pax_global_header00006660000000000000000000000064143650655110014520gustar00rootroot0000000000000052 comment=3b19db4e6e7493a748369974819b4c5fa84c7614 libjpeg-turbo-2.1.5/000077500000000000000000000000001436506551100142725ustar00rootroot00000000000000libjpeg-turbo-2.1.5/BUILDING.md000066400000000000000000000617771436506551100160330ustar00rootroot00000000000000Building libjpeg-turbo ====================== Build Requirements ------------------ ### All Systems - [CMake](http://www.cmake.org) v2.8.12 or later - [NASM](http://www.nasm.us) or [Yasm](http://yasm.tortall.net) (if building x86 or x86-64 SIMD extensions) * If using NASM, 2.13 or later is required. * If using Yasm, 1.2.0 or later is required. * If building on macOS, NASM or Yasm can be obtained from [MacPorts](http://www.macports.org/) or [Homebrew](http://brew.sh/). - NOTE: Currently, if it is desirable to hide the SIMD function symbols in Mac executables or shared libraries that statically link with libjpeg-turbo, then NASM 2.14 or later or Yasm must be used when building libjpeg-turbo. * If NASM or Yasm is not in your `PATH`, then you can specify the full path to the assembler by using either the `CMAKE_ASM_NASM_COMPILER` CMake variable or the `ASM_NASM` environment variable. On Windows, use forward slashes rather than backslashes in the path (for example, **c:/nasm/nasm.exe**). * NASM and Yasm are located in the CRB (Code Ready Builder) or PowerTools repository on Red Hat Enterprise Linux 8+ and derivatives, which is not enabled by default. ### Un*x Platforms (including Linux, Mac, FreeBSD, Solaris, and Cygwin) - GCC v4.1 (or later) or Clang recommended for best performance - If building the TurboJPEG Java wrapper, JDK or OpenJDK 1.5 or later is required. Most modern Linux distributions, as well as Solaris 10 and later, include JDK or OpenJDK. For other systems, you can obtain the Oracle Java Development Kit from . * If using JDK 11 or later, CMake 3.10.x or later must also be used. ### Windows - Microsoft Visual C++ 2005 or later If you don't already have Visual C++, then the easiest way to get it is by installing [Visual Studio Community Edition](https://visualstudio.microsoft.com), which includes everything necessary to build libjpeg-turbo. * You can also download and install the standalone Windows SDK (for Windows 7 or later), which includes command-line versions of the 32-bit and 64-bit Visual C++ compilers. * If you intend to build libjpeg-turbo from the command line, then add the appropriate compiler and SDK directories to the `INCLUDE`, `LIB`, and `PATH` environment variables. This is generally accomplished by executing `vcvars32.bat` or `vcvars64.bat`, which are located in the same directory as the compiler. * If built with Visual C++ 2015 or later, the libjpeg-turbo static libraries cannot be used with earlier versions of Visual C++, and vice versa. * The libjpeg API DLL (**jpeg{version}.dll**) will depend on the C run-time DLLs corresponding to the version of Visual C++ that was used to build it. ... OR ... - MinGW [MSYS2](http://msys2.github.io/) or [tdm-gcc](http://tdm-gcc.tdragon.net/) recommended if building on a Windows machine. Both distributions install a Start Menu link that can be used to launch a command prompt with the appropriate compiler paths automatically set. - If building the TurboJPEG Java wrapper, JDK 1.5 or later is required. This can be downloaded from . * If using JDK 11 or later, CMake 3.10.x or later must also be used. Sub-Project Builds ------------------ The libjpeg-turbo build system does not support being included as a sub-project using the CMake `add_subdirectory()` function. Use the CMake `ExternalProject_Add()` function instead. Out-of-Tree Builds ------------------ Binary objects, libraries, and executables are generated in the directory from which CMake is executed (the "binary directory"), and this directory need not necessarily be the same as the libjpeg-turbo source directory. You can create multiple independent binary directories, in which different versions of libjpeg-turbo can be built from the same source tree using different compilers or settings. In the sections below, *{build_directory}* refers to the binary directory, whereas *{source_directory}* refers to the libjpeg-turbo source directory. For in-tree builds, these directories are the same. Ninja ----- If using Ninja, then replace `make` or `nmake` with `ninja`, and replace the CMake generator (specified with the `-G` option) with `Ninja`, in all of the procedures and recipes below. Build Procedure --------------- NOTE: The build procedures below assume that CMake is invoked from the command line, but all of these procedures can be adapted to the CMake GUI as well. ### Un*x The following procedure will build libjpeg-turbo on Unix and Unix-like systems. (On Solaris, this generates a 32-bit build. See "Build Recipes" below for 64-bit build instructions.) cd {build_directory} cmake -G"Unix Makefiles" [additional CMake flags] {source_directory} make This will generate the following files under *{build_directory}*: **libjpeg.a**
Static link library for the libjpeg API **libjpeg.so.{version}** (Linux, Unix)
**libjpeg.{version}.dylib** (Mac)
**cygjpeg-{version}.dll** (Cygwin)
Shared library for the libjpeg API By default, *{version}* is 62.2.0, 7.2.0, or 8.1.2, depending on whether libjpeg v6b (default), v7, or v8 emulation is enabled. If using Cygwin, *{version}* is 62, 7, or 8. **libjpeg.so** (Linux, Unix)
**libjpeg.dylib** (Mac)
Development symlink for the libjpeg API **libjpeg.dll.a** (Cygwin)
Import library for the libjpeg API **libturbojpeg.a**
Static link library for the TurboJPEG API **libturbojpeg.so.0.2.0** (Linux, Unix)
**libturbojpeg.0.2.0.dylib** (Mac)
**cygturbojpeg-0.dll** (Cygwin)
Shared library for the TurboJPEG API **libturbojpeg.so** (Linux, Unix)
**libturbojpeg.dylib** (Mac)
Development symlink for the TurboJPEG API **libturbojpeg.dll.a** (Cygwin)
Import library for the TurboJPEG API ### Visual C++ (Command Line) cd {build_directory} cmake -G"NMake Makefiles" -DCMAKE_BUILD_TYPE=Release [additional CMake flags] {source_directory} nmake This will build either a 32-bit or a 64-bit version of libjpeg-turbo, depending on which version of **cl.exe** is in the `PATH`. The following files will be generated under *{build_directory}*: **jpeg-static.lib**
Static link library for the libjpeg API **jpeg{version}.dll**
DLL for the libjpeg API **jpeg.lib**
Import library for the libjpeg API **turbojpeg-static.lib**
Static link library for the TurboJPEG API **turbojpeg.dll**
DLL for the TurboJPEG API **turbojpeg.lib**
Import library for the TurboJPEG API *{version}* is 62, 7, or 8, depending on whether libjpeg v6b (default), v7, or v8 emulation is enabled. ### Visual C++ (IDE) Choose the appropriate CMake generator option for your version of Visual Studio (run `cmake` with no arguments for a list of available generators.) For instance: cd {build_directory} cmake -G"Visual Studio 10" [additional CMake flags] {source_directory} NOTE: Add "Win64" to the generator name (for example, "Visual Studio 10 Win64") to build a 64-bit version of libjpeg-turbo. A separate build directory must be used for 32-bit and 64-bit builds. You can then open **ALL_BUILD.vcproj** in Visual Studio and build one of the configurations in that project ("Debug", "Release", etc.) to generate a full build of libjpeg-turbo. This will generate the following files under *{build_directory}*: **{configuration}/jpeg-static.lib**
Static link library for the libjpeg API **{configuration}/jpeg{version}.dll**
DLL for the libjpeg API **{configuration}/jpeg.lib**
Import library for the libjpeg API **{configuration}/turbojpeg-static.lib**
Static link library for the TurboJPEG API **{configuration}/turbojpeg.dll**
DLL for the TurboJPEG API **{configuration}/turbojpeg.lib**
Import library for the TurboJPEG API *{configuration}* is Debug, Release, RelWithDebInfo, or MinSizeRel, depending on the configuration you built in the IDE, and *{version}* is 62, 7, or 8, depending on whether libjpeg v6b (default), v7, or v8 emulation is enabled. ### MinGW NOTE: This assumes that you are building on a Windows machine using the MSYS environment. If you are cross-compiling on a Un*x platform (including Mac and Cygwin), then see "Build Recipes" below. cd {build_directory} cmake -G"MSYS Makefiles" [additional CMake flags] {source_directory} make This will generate the following files under *{build_directory}*: **libjpeg.a**
Static link library for the libjpeg API **libjpeg-{version}.dll**
DLL for the libjpeg API **libjpeg.dll.a**
Import library for the libjpeg API **libturbojpeg.a**
Static link library for the TurboJPEG API **libturbojpeg.dll**
DLL for the TurboJPEG API **libturbojpeg.dll.a**
Import library for the TurboJPEG API *{version}* is 62, 7, or 8, depending on whether libjpeg v6b (default), v7, or v8 emulation is enabled. ### Debug Build Add `-DCMAKE_BUILD_TYPE=Debug` to the CMake command line. Or, if building with NMake, remove `-DCMAKE_BUILD_TYPE=Release` (Debug builds are the default with NMake.) ### libjpeg v7 or v8 API/ABI Emulation Add `-DWITH_JPEG7=1` to the CMake command line to build a version of libjpeg-turbo that is API/ABI-compatible with libjpeg v7. Add `-DWITH_JPEG8=1` to the CMake command line to build a version of libjpeg-turbo that is API/ABI-compatible with libjpeg v8. See [README.md](README.md) for more information about libjpeg v7 and v8 emulation. ### In-Memory Source/Destination Managers When using libjpeg v6b or v7 API/ABI emulation, add `-DWITH_MEM_SRCDST=0` to the CMake command line to build a version of libjpeg-turbo that lacks the `jpeg_mem_src()` and `jpeg_mem_dest()` functions. These functions were not part of the original libjpeg v6b and v7 APIs, so removing them ensures strict conformance with those APIs. See [README.md](README.md) for more information. ### Arithmetic Coding Support Since the patent on arithmetic coding has expired, this functionality has been included in this release of libjpeg-turbo. libjpeg-turbo's implementation is based on the implementation in libjpeg v8, but it works when emulating libjpeg v7 or v6b as well. The default is to enable both arithmetic encoding and decoding, but those who have philosophical objections to arithmetic coding can add `-DWITH_ARITH_ENC=0` or `-DWITH_ARITH_DEC=0` to the CMake command line to disable encoding or decoding (respectively.) ### TurboJPEG Java Wrapper Add `-DWITH_JAVA=1` to the CMake command line to incorporate an optional Java Native Interface (JNI) wrapper into the TurboJPEG shared library and build the Java front-end classes to support it. This allows the TurboJPEG shared library to be used directly from Java applications. See [java/README](java/README) for more details. If Java is not in your `PATH`, or if you wish to use an alternate JDK to build/test libjpeg-turbo, then (prior to running CMake) set the `JAVA_HOME` environment variable to the location of the JDK that you wish to use. The `Java_JAVAC_EXECUTABLE`, `Java_JAVA_EXECUTABLE`, and `Java_JAR_EXECUTABLE` CMake variables can also be used to specify alternate commands or locations for javac, jar, and java (respectively.) You can also set the `CMAKE_JAVA_COMPILE_FLAGS` CMake variable or the `JAVAFLAGS` environment variable to specify arguments that should be passed to the Java compiler when building the TurboJPEG classes, and the `JAVAARGS` CMake variable to specify arguments that should be passed to the JRE when running the TurboJPEG Java unit tests. Build Recipes ------------- ### 32-bit Build on 64-bit Linux/Unix Use export/setenv to set the following environment variables before running CMake: CFLAGS=-m32 LDFLAGS=-m32 ### 64-bit Build on Solaris Use export/setenv to set the following environment variables before running CMake: CFLAGS=-m64 LDFLAGS=-m64 ### Other Compilers On Un*x systems, prior to running CMake, you can set the `CC` environment variable to the command used to invoke the C compiler. ### 32-bit MinGW Build on Un*x (including Mac and Cygwin) Create a file called **toolchain.cmake** under *{build_directory}*, with the following contents: set(CMAKE_SYSTEM_NAME Windows) set(CMAKE_SYSTEM_PROCESSOR X86) set(CMAKE_C_COMPILER {mingw_binary_path}/i686-w64-mingw32-gcc) set(CMAKE_RC_COMPILER {mingw_binary_path}/i686-w64-mingw32-windres) *{mingw\_binary\_path}* is the directory under which the MinGW binaries are located (usually **/usr/bin**.) Next, execute the following commands: cd {build_directory} cmake -G"Unix Makefiles" -DCMAKE_TOOLCHAIN_FILE=toolchain.cmake \ -DCMAKE_INSTALL_PREFIX={install_path} \ [additional CMake flags] {source_directory} make *{install\_path}* is the path under which the libjpeg-turbo binaries should be installed. ### 64-bit MinGW Build on Un*x (including Mac and Cygwin) Create a file called **toolchain.cmake** under *{build_directory}*, with the following contents: set(CMAKE_SYSTEM_NAME Windows) set(CMAKE_SYSTEM_PROCESSOR AMD64) set(CMAKE_C_COMPILER {mingw_binary_path}/x86_64-w64-mingw32-gcc) set(CMAKE_RC_COMPILER {mingw_binary_path}/x86_64-w64-mingw32-windres) *{mingw\_binary\_path}* is the directory under which the MinGW binaries are located (usually **/usr/bin**.) Next, execute the following commands: cd {build_directory} cmake -G"Unix Makefiles" -DCMAKE_TOOLCHAIN_FILE=toolchain.cmake \ -DCMAKE_INSTALL_PREFIX={install_path} \ [additional CMake flags] {source_directory} make *{install\_path}* is the path under which the libjpeg-turbo binaries should be installed. Building libjpeg-turbo for iOS ------------------------------ iOS platforms, such as the iPhone and iPad, use Arm processors, and all currently supported models include Neon instructions. Thus, they can take advantage of libjpeg-turbo's SIMD extensions to significantly accelerate JPEG compression/decompression. This section describes how to build libjpeg-turbo for these platforms. ### Armv8 (64-bit) **Xcode 5 or later required, Xcode 6.3.x or later recommended** The following script demonstrates how to build libjpeg-turbo to run on the iPhone 5S/iPad Mini 2/iPad Air and newer. IOS_PLATFORMDIR=/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform IOS_SYSROOT=($IOS_PLATFORMDIR/Developer/SDKs/iPhoneOS*.sdk) export CFLAGS="-Wall -arch arm64 -miphoneos-version-min=8.0 -funwind-tables" cd {build_directory} cat <toolchain.cmake set(CMAKE_SYSTEM_NAME Darwin) set(CMAKE_SYSTEM_PROCESSOR aarch64) set(CMAKE_C_COMPILER /Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/clang) EOF cmake -G"Unix Makefiles" -DCMAKE_TOOLCHAIN_FILE=toolchain.cmake \ -DCMAKE_OSX_SYSROOT=${IOS_SYSROOT[0]} \ [additional CMake flags] {source_directory} make Replace `iPhoneOS` with `iPhoneSimulator` and `-miphoneos-version-min` with `-miphonesimulator-version-min` to build libjpeg-turbo for the iOS simulator on Macs with Apple silicon CPUs. Building libjpeg-turbo for Android ---------------------------------- Building libjpeg-turbo for Android platforms requires v13b or later of the [Android NDK](https://developer.android.com/tools/sdk/ndk). ### Armv7 (32-bit) **NDK r19 or later with Clang recommended** The following is a general recipe script that can be modified for your specific needs. # Set these variables to suit your needs NDK_PATH={full path to the NDK directory-- for example, /opt/android/android-ndk-r16b} TOOLCHAIN={"gcc" or "clang"-- "gcc" must be used with NDK r16b and earlier, and "clang" must be used with NDK r17c and later} ANDROID_VERSION={the minimum version of Android to support-- for example, "16", "19", etc.} cd {build_directory} cmake -G"Unix Makefiles" \ -DANDROID_ABI=armeabi-v7a \ -DANDROID_ARM_MODE=arm \ -DANDROID_PLATFORM=android-${ANDROID_VERSION} \ -DANDROID_TOOLCHAIN=${TOOLCHAIN} \ -DCMAKE_ASM_FLAGS="--target=arm-linux-androideabi${ANDROID_VERSION}" \ -DCMAKE_TOOLCHAIN_FILE=${NDK_PATH}/build/cmake/android.toolchain.cmake \ [additional CMake flags] {source_directory} make ### Armv8 (64-bit) **Clang recommended** The following is a general recipe script that can be modified for your specific needs. # Set these variables to suit your needs NDK_PATH={full path to the NDK directory-- for example, /opt/android/android-ndk-r16b} TOOLCHAIN={"gcc" or "clang"-- "gcc" must be used with NDK r14b and earlier, and "clang" must be used with NDK r17c and later} ANDROID_VERSION={the minimum version of Android to support. "21" or later is required for a 64-bit build.} cd {build_directory} cmake -G"Unix Makefiles" \ -DANDROID_ABI=arm64-v8a \ -DANDROID_ARM_MODE=arm \ -DANDROID_PLATFORM=android-${ANDROID_VERSION} \ -DANDROID_TOOLCHAIN=${TOOLCHAIN} \ -DCMAKE_ASM_FLAGS="--target=aarch64-linux-android${ANDROID_VERSION}" \ -DCMAKE_TOOLCHAIN_FILE=${NDK_PATH}/build/cmake/android.toolchain.cmake \ [additional CMake flags] {source_directory} make ### x86 (32-bit) The following is a general recipe script that can be modified for your specific needs. # Set these variables to suit your needs NDK_PATH={full path to the NDK directory-- for example, /opt/android/android-ndk-r16b} TOOLCHAIN={"gcc" or "clang"-- "gcc" must be used with NDK r14b and earlier, and "clang" must be used with NDK r17c and later} ANDROID_VERSION={The minimum version of Android to support-- for example, "16", "19", etc.} cd {build_directory} cmake -G"Unix Makefiles" \ -DANDROID_ABI=x86 \ -DANDROID_PLATFORM=android-${ANDROID_VERSION} \ -DANDROID_TOOLCHAIN=${TOOLCHAIN} \ -DCMAKE_TOOLCHAIN_FILE=${NDK_PATH}/build/cmake/android.toolchain.cmake \ [additional CMake flags] {source_directory} make ### x86-64 (64-bit) The following is a general recipe script that can be modified for your specific needs. # Set these variables to suit your needs NDK_PATH={full path to the NDK directory-- for example, /opt/android/android-ndk-r16b} TOOLCHAIN={"gcc" or "clang"-- "gcc" must be used with NDK r14b and earlier, and "clang" must be used with NDK r17c and later} ANDROID_VERSION={the minimum version of Android to support. "21" or later is required for a 64-bit build.} cd {build_directory} cmake -G"Unix Makefiles" \ -DANDROID_ABI=x86_64 \ -DANDROID_PLATFORM=android-${ANDROID_VERSION} \ -DANDROID_TOOLCHAIN=${TOOLCHAIN} \ -DCMAKE_TOOLCHAIN_FILE=${NDK_PATH}/build/cmake/android.toolchain.cmake \ [additional CMake flags] {source_directory} make Advanced CMake Options ---------------------- To list and configure other CMake options not specifically mentioned in this guide, run ccmake {source_directory} or cmake-gui {source_directory} from the build directory after initially configuring the build. CCMake is a text-based interactive version of CMake, and CMake-GUI is a GUI version. Both will display all variables that are relevant to the libjpeg-turbo build, their current values, and a help string describing what they do. Installing libjpeg-turbo ======================== You can use the build system to install libjpeg-turbo (as opposed to creating an installer package.) To do this, run `make install` or `nmake install` (or build the "install" target in the Visual Studio IDE.) Running `make uninstall` or `nmake uninstall` (or building the "uninstall" target in the Visual Studio IDE) will uninstall libjpeg-turbo. The `CMAKE_INSTALL_PREFIX` CMake variable can be modified in order to install libjpeg-turbo into a directory of your choosing. If you don't specify `CMAKE_INSTALL_PREFIX`, then the default is: **c:\libjpeg-turbo**
Visual Studio 32-bit build **c:\libjpeg-turbo64**
Visual Studio 64-bit build **c:\libjpeg-turbo-gcc**
MinGW 32-bit build **c:\libjpeg-turbo-gcc64**
MinGW 64-bit build **/opt/libjpeg-turbo**
Un*x The default value of `CMAKE_INSTALL_PREFIX` causes the libjpeg-turbo files to be installed with a directory structure resembling that of the official libjpeg-turbo binary packages. Changing the value of `CMAKE_INSTALL_PREFIX` (for instance, to **/usr/local**) causes the libjpeg-turbo files to be installed with a directory structure that conforms to GNU standards. The `CMAKE_INSTALL_BINDIR`, `CMAKE_INSTALL_DATAROOTDIR`, `CMAKE_INSTALL_DOCDIR`, `CMAKE_INSTALL_INCLUDEDIR`, `CMAKE_INSTALL_JAVADIR`, `CMAKE_INSTALL_LIBDIR`, and `CMAKE_INSTALL_MANDIR` CMake variables allow a finer degree of control over where specific files in the libjpeg-turbo distribution should be installed. These directory variables can either be specified as absolute paths or as paths relative to `CMAKE_INSTALL_PREFIX` (for instance, setting `CMAKE_INSTALL_DOCDIR` to **doc** would cause the documentation to be installed in **${CMAKE\_INSTALL\_PREFIX}/doc**.) If a directory variable contains the name of another directory variable in angle brackets, then its final value will depend on the final value of that other variable. For instance, the default value of `CMAKE_INSTALL_MANDIR` is **\/man**. NOTE: If setting one of these directory variables to a relative path using the CMake command line, you must specify that the variable is of type `PATH`. For example: cmake -G"{generator type}" -DCMAKE_INSTALL_LIBDIR:PATH=lib {source_directory} Otherwise, CMake will assume that the path is relative to the build directory rather than the install directory. Creating Distribution Packages ============================== The following commands can be used to create various types of distribution packages: Linux ----- make rpm Create Red Hat-style binary RPM package. Requires RPM v4 or later. make srpm This runs `make dist` to create a pristine source tarball, then creates a Red Hat-style source RPM package from the tarball. Requires RPM v4 or later. make deb Create Debian-style binary package. Requires dpkg. Mac --- make dmg Create Mac package/disk image. This requires pkgbuild and productbuild, which are installed by default on OS X/macOS 10.7 and later. In order to create a Mac package/disk image that contains universal x86-64/Arm binaries, set the following CMake variable: * `ARMV8_BUILD`: Directory containing an Armv8 (64-bit) iOS or macOS build of libjpeg-turbo to include in the universal binaries You should first use CMake to configure an Armv8 sub-build of libjpeg-turbo (see "Building libjpeg-turbo for iOS" above, if applicable) in a build directory that matches the one specified in the aforementioned CMake variable. Next, configure the primary (x86-64) build of libjpeg-turbo as an out-of-tree build, specifying the aforementioned CMake variable, and build it. Once the primary build has been built, run `make dmg` from the build directory. The packaging system will build the sub-build, use lipo to combine it with the primary build into a single set of universal binaries, then package the universal binaries. Windows ------- If using NMake: cd {build_directory} nmake installer If using MinGW: cd {build_directory} make installer If using the Visual Studio IDE, build the "installer" target. The installer package (libjpeg-turbo-*{version}*[-gcc|-vc][64].exe) will be located under *{build_directory}*. If building using the Visual Studio IDE, then the installer package will be located in a subdirectory with the same name as the configuration you built (such as *{build_directory}*\Debug\ or *{build_directory}*\Release\). Building a Windows installer requires the [Nullsoft Install System](http://nsis.sourceforge.net/). makensis.exe should be in your `PATH`. Regression testing ================== The most common way to test libjpeg-turbo is by invoking `make test` (Un*x) or `nmake test` (Windows command line) or by building the "RUN_TESTS" target (Visual Studio IDE), once the build has completed. This runs a series of tests to ensure that mathematical compatibility has been maintained between libjpeg-turbo and libjpeg v6b. This also invokes the TurboJPEG unit tests, which ensure that the colorspace extensions, YUV encoding, decompression scaling, and other features of the TurboJPEG C and Java APIs are working properly (and, by extension, that the equivalent features of the underlying libjpeg API are also working.) Invoking `make testclean` (Un*x) or `nmake testclean` (Windows command line) or building the "testclean" target (Visual Studio IDE) will clean up the output images generated by the tests. On Un*x platforms, more extensive tests of the TurboJPEG C and Java wrappers can be run by invoking `make tjtest`. These extended TurboJPEG tests essentially iterate through all of the available features of the TurboJPEG APIs that are not covered by the TurboJPEG unit tests (including the lossless transform options) and compare the images generated by each feature to images generated using the equivalent feature in the libjpeg API. The extended TurboJPEG tests are meant to test for regressions in the TurboJPEG wrappers, not in the underlying libjpeg API library. libjpeg-turbo-2.1.5/CMakeLists.txt000066400000000000000000001747121436506551100170460ustar00rootroot00000000000000cmake_minimum_required(VERSION 2.8.12) # When using CMake 3.4 and later, don't export symbols from executables unless # the CMAKE_ENABLE_EXPORTS variable is set. if(POLICY CMP0065) cmake_policy(SET CMP0065 NEW) endif() if(CMAKE_EXECUTABLE_SUFFIX) set(CMAKE_EXECUTABLE_SUFFIX_TMP ${CMAKE_EXECUTABLE_SUFFIX}) endif() project(libjpeg-turbo C) set(VERSION 2.1.5) set(COPYRIGHT_YEAR "1991-2023") string(REPLACE "." ";" VERSION_TRIPLET ${VERSION}) list(GET VERSION_TRIPLET 0 VERSION_MAJOR) list(GET VERSION_TRIPLET 1 VERSION_MINOR) list(GET VERSION_TRIPLET 2 VERSION_REVISION) function(pad_number NUMBER OUTPUT_LEN) string(LENGTH "${${NUMBER}}" INPUT_LEN) if(INPUT_LEN LESS OUTPUT_LEN) math(EXPR ZEROES "${OUTPUT_LEN} - ${INPUT_LEN} - 1") set(NUM ${${NUMBER}}) foreach(C RANGE ${ZEROES}) set(NUM "0${NUM}") endforeach() set(${NUMBER} ${NUM} PARENT_SCOPE) endif() endfunction() pad_number(VERSION_MINOR 3) pad_number(VERSION_REVISION 3) set(LIBJPEG_TURBO_VERSION_NUMBER ${VERSION_MAJOR}${VERSION_MINOR}${VERSION_REVISION}) # CMake 3.14 and later sets CMAKE_MACOSX_BUNDLE to TRUE by default when # CMAKE_SYSTEM_NAME is iOS, tvOS, or watchOS, which breaks the libjpeg-turbo # build. (Specifically, when CMAKE_MACOSX_BUNDLE is TRUE, executables for # Apple platforms are built as application bundles, which causes CMake to # complain that our install() directives for executables do not specify a # BUNDLE DESTINATION. Even if CMake did not complain, building executables as # application bundles would break our iOS packages.) set(CMAKE_MACOSX_BUNDLE FALSE) get_property(GENERATOR_IS_MULTI_CONFIG GLOBAL PROPERTY GENERATOR_IS_MULTI_CONFIG) # If the GENERATOR_IS_MULTI_CONFIG property doesn't exist (CMake < 3.9), then # set the GENERATOR_IS_MULTI_CONFIG variable manually if the generator is # Visual Studio or Xcode (the only multi-config generators in CMake < 3.9). if(NOT GENERATOR_IS_MULTI_CONFIG AND (MSVC_IDE OR XCODE)) set(GENERATOR_IS_MULTI_CONFIG TRUE) endif() string(TIMESTAMP DEFAULT_BUILD "%Y%m%d") set(BUILD ${DEFAULT_BUILD} CACHE STRING "Build string (default: ${DEFAULT_BUILD})") # NOTE: On Windows, this does nothing except when using MinGW or Cygwin. # CMAKE_BUILD_TYPE has no meaning in Visual Studio, and it always defaults to # Debug when using NMake. if(NOT CMAKE_BUILD_TYPE) set(CMAKE_BUILD_TYPE Release) endif() message(STATUS "CMAKE_BUILD_TYPE = ${CMAKE_BUILD_TYPE}") message(STATUS "VERSION = ${VERSION}, BUILD = ${BUILD}") include(cmakescripts/PackageInfo.cmake) # Detect CPU type and whether we're building 64-bit or 32-bit code math(EXPR BITS "${CMAKE_SIZEOF_VOID_P} * 8") string(TOLOWER ${CMAKE_SYSTEM_PROCESSOR} CMAKE_SYSTEM_PROCESSOR_LC) set(COUNT 1) foreach(ARCH ${CMAKE_OSX_ARCHITECTURES}) if(COUNT GREATER 1) message(FATAL_ERROR "The libjpeg-turbo build system does not support multiple values in CMAKE_OSX_ARCHITECTURES.") endif() math(EXPR COUNT "${COUNT}+1") endforeach() if(CMAKE_SYSTEM_PROCESSOR_LC MATCHES "x86_64" OR CMAKE_SYSTEM_PROCESSOR_LC MATCHES "amd64" OR CMAKE_SYSTEM_PROCESSOR_LC MATCHES "i[0-9]86" OR CMAKE_SYSTEM_PROCESSOR_LC MATCHES "x86" OR CMAKE_SYSTEM_PROCESSOR_LC MATCHES "ia32") if(BITS EQUAL 64 OR CMAKE_C_COMPILER_ABI MATCHES "ELF X32") set(CPU_TYPE x86_64) else() set(CPU_TYPE i386) endif() if(NOT CMAKE_SYSTEM_PROCESSOR STREQUAL ${CPU_TYPE}) set(CMAKE_SYSTEM_PROCESSOR ${CPU_TYPE}) endif() elseif(CMAKE_SYSTEM_PROCESSOR_LC STREQUAL "aarch64" OR CMAKE_SYSTEM_PROCESSOR_LC MATCHES "^arm") if(BITS EQUAL 64) set(CPU_TYPE arm64) else() set(CPU_TYPE arm) endif() elseif(CMAKE_SYSTEM_PROCESSOR_LC MATCHES "^ppc" OR CMAKE_SYSTEM_PROCESSOR_LC MATCHES "^powerpc") set(CPU_TYPE powerpc) else() set(CPU_TYPE ${CMAKE_SYSTEM_PROCESSOR_LC}) endif() if(CMAKE_OSX_ARCHITECTURES MATCHES "x86_64" OR CMAKE_OSX_ARCHITECTURES MATCHES "arm64" OR CMAKE_OSX_ARCHITECTURES MATCHES "i386") set(CPU_TYPE ${CMAKE_OSX_ARCHITECTURES}) endif() if(CMAKE_OSX_ARCHITECTURES MATCHES "ppc") set(CPU_TYPE powerpc) endif() if(MSVC_IDE AND CMAKE_GENERATOR_PLATFORM MATCHES "arm64") set(CPU_TYPE arm64) endif() message(STATUS "${BITS}-bit build (${CPU_TYPE})") ############################################################################### # INSTALL DIRECTORIES ############################################################################### if(WIN32) if(MSVC) set(CMAKE_INSTALL_DEFAULT_PREFIX "c:/${CMAKE_PROJECT_NAME}") else() set(CMAKE_INSTALL_DEFAULT_PREFIX "c:/${CMAKE_PROJECT_NAME}-gcc") endif() if(BITS EQUAL 64) set(CMAKE_INSTALL_DEFAULT_PREFIX "${CMAKE_INSTALL_DEFAULT_PREFIX}64") endif() else() if(NOT CMAKE_INSTALL_DEFAULT_PREFIX) set(CMAKE_INSTALL_DEFAULT_PREFIX /opt/${CMAKE_PROJECT_NAME}) endif() endif() if(CMAKE_INSTALL_PREFIX_INITIALIZED_TO_DEFAULT) set(CMAKE_INSTALL_PREFIX "${CMAKE_INSTALL_DEFAULT_PREFIX}" CACHE PATH "Directory into which to install ${CMAKE_PROJECT_NAME} (default: ${CMAKE_INSTALL_DEFAULT_PREFIX})" FORCE) endif() message(STATUS "CMAKE_INSTALL_PREFIX = ${CMAKE_INSTALL_PREFIX}") # When the prefix is /opt/${CMAKE_PROJECT_NAME}, we assume that an "official" # build is being created, and thus we install things into specific locations. if(CMAKE_INSTALL_PREFIX STREQUAL "${CMAKE_INSTALL_DEFAULT_PREFIX}") set(CMAKE_INSTALL_DEFAULT_DATAROOTDIR "") set(CMAKE_INSTALL_DEFAULT_DOCDIR "/doc") set(CMAKE_INSTALL_DEFAULT_JAVADIR "/classes") if(UNIX AND NOT APPLE) if(BITS EQUAL 64) set(CMAKE_INSTALL_DEFAULT_LIBDIR "lib64") elseif(CMAKE_C_COMPILER_ABI MATCHES "ELF X32") set(CMAKE_INSTALL_DEFAULT_LIBDIR "libx32") else() set(CMAKE_INSTALL_DEFAULT_LIBDIR "lib32") endif() endif() endif() include(cmakescripts/GNUInstallDirs.cmake) macro(report_directory var) if(CMAKE_INSTALL_${var} STREQUAL CMAKE_INSTALL_FULL_${var}) message(STATUS "CMAKE_INSTALL_${var} = ${CMAKE_INSTALL_${var}}") else() message(STATUS "CMAKE_INSTALL_${var} = ${CMAKE_INSTALL_${var}} (${CMAKE_INSTALL_FULL_${var}})") endif() mark_as_advanced(CLEAR CMAKE_INSTALL_${var}) endmacro() set(DIRLIST "BINDIR;DATAROOTDIR;DOCDIR;INCLUDEDIR;LIBDIR") if(UNIX) list(APPEND DIRLIST "MANDIR") endif() foreach(dir ${DIRLIST}) report_directory(${dir}) endforeach() ############################################################################### # CONFIGURATION OPTIONS ############################################################################### macro(boolean_number var) if(${var}) set(${var} 1 ${ARGN}) else() set(${var} 0 ${ARGN}) endif() endmacro() option(ENABLE_SHARED "Build shared libraries" TRUE) boolean_number(ENABLE_SHARED) option(ENABLE_STATIC "Build static libraries" TRUE) boolean_number(ENABLE_STATIC) option(REQUIRE_SIMD "Generate a fatal error if SIMD extensions are not available for this platform (default is to fall back to a non-SIMD build)" FALSE) boolean_number(REQUIRE_SIMD) option(WITH_12BIT "Encode/decode JPEG images with 12-bit samples (implies WITH_ARITH_DEC=0 WITH_ARITH_ENC=0 WITH_JAVA=0 WITH_SIMD=0 WITH_TURBOJPEG=0 )" FALSE) boolean_number(WITH_12BIT) option(WITH_ARITH_DEC "Include arithmetic decoding support when emulating the libjpeg v6b API/ABI" TRUE) boolean_number(WITH_ARITH_DEC) option(WITH_ARITH_ENC "Include arithmetic encoding support when emulating the libjpeg v6b API/ABI" TRUE) boolean_number(WITH_ARITH_ENC) if(CMAKE_C_COMPILER_ABI MATCHES "ELF X32") set(WITH_JAVA 0) else() option(WITH_JAVA "Build Java wrapper for the TurboJPEG API library (implies ENABLE_SHARED=1)" FALSE) boolean_number(WITH_JAVA) endif() option(WITH_JPEG7 "Emulate libjpeg v7 API/ABI (this makes ${CMAKE_PROJECT_NAME} backward-incompatible with libjpeg v6b)" FALSE) boolean_number(WITH_JPEG7) option(WITH_JPEG8 "Emulate libjpeg v8 API/ABI (this makes ${CMAKE_PROJECT_NAME} backward-incompatible with libjpeg v6b)" FALSE) boolean_number(WITH_JPEG8) option(WITH_MEM_SRCDST "Include in-memory source/destination manager functions when emulating the libjpeg v6b or v7 API/ABI" TRUE) boolean_number(WITH_MEM_SRCDST) option(WITH_SIMD "Include SIMD extensions, if available for this platform" TRUE) boolean_number(WITH_SIMD) option(WITH_TURBOJPEG "Include the TurboJPEG API library and associated test programs" TRUE) boolean_number(WITH_TURBOJPEG) option(WITH_FUZZ "Build fuzz targets" FALSE) macro(report_option var desc) if(${var}) message(STATUS "${desc} enabled (${var} = ${${var}})") else() message(STATUS "${desc} disabled (${var} = ${${var}})") endif() endmacro() if(WITH_JAVA) set(ENABLE_SHARED 1) endif() # Explicitly setting CMAKE_POSITION_INDEPENDENT_CODE=FALSE disables PIC for all # targets, which will cause the shared library builds to fail. Thus, if shared # libraries are enabled and CMAKE_POSITION_INDEPENDENT_CODE is explicitly set # to FALSE, we need to unset it, thus restoring the default behavior # (automatically using PIC for shared library targets.) if(DEFINED CMAKE_POSITION_INDEPENDENT_CODE AND NOT CMAKE_POSITION_INDEPENDENT_CODE AND ENABLE_SHARED) unset(CMAKE_POSITION_INDEPENDENT_CODE CACHE) endif() report_option(ENABLE_SHARED "Shared libraries") report_option(ENABLE_STATIC "Static libraries") if(ENABLE_SHARED) set(CMAKE_INSTALL_RPATH ${CMAKE_INSTALL_FULL_LIBDIR}) endif() if(WITH_JPEG8 OR WITH_JPEG7) set(WITH_ARITH_ENC 1) set(WITH_ARITH_DEC 1) endif() if(WITH_JPEG8) set(WITH_MEM_SRCDST 0) endif() if(WITH_12BIT) set(WITH_ARITH_DEC 0) set(WITH_ARITH_ENC 0) set(WITH_JAVA 0) set(WITH_SIMD 0) set(WITH_TURBOJPEG 0) set(BITS_IN_JSAMPLE 12) else() set(BITS_IN_JSAMPLE 8) endif() report_option(WITH_12BIT "12-bit JPEG support") if(WITH_ARITH_DEC) set(D_ARITH_CODING_SUPPORTED 1) endif() if(NOT WITH_12BIT) report_option(WITH_ARITH_DEC "Arithmetic decoding support") endif() if(WITH_ARITH_ENC) set(C_ARITH_CODING_SUPPORTED 1) endif() if(NOT WITH_12BIT) report_option(WITH_ARITH_ENC "Arithmetic encoding support") endif() if(NOT WITH_12BIT) report_option(WITH_TURBOJPEG "TurboJPEG API library") report_option(WITH_JAVA "TurboJPEG Java wrapper") endif() if(WITH_MEM_SRCDST) set(MEM_SRCDST_SUPPORTED 1) set(MEM_SRCDST_FUNCTIONS "global: jpeg_mem_dest; jpeg_mem_src;") endif() if(NOT WITH_JPEG8) report_option(WITH_MEM_SRCDST "In-memory source/destination managers") endif() # 0: Original libjpeg v6b/v7/v8 API/ABI # # libjpeg v6b/v7 API/ABI emulation: # 1: + In-memory source/destination managers (libjpeg-turbo 1.3.x) # 2: + Partial image decompression functions (libjpeg-turbo 1.5.x) # 3: + ICC functions (libjpeg-turbo 2.0.x) # # libjpeg v8 API/ABI emulation: # 1: + Partial image decompression functions (libjpeg-turbo 1.5.x) # 2: + ICC functions (libjpeg-turbo 2.0.x) set(SO_AGE 2) if(WITH_MEM_SRCDST) set(SO_AGE 3) endif() if(WITH_JPEG8) set(JPEG_LIB_VERSION 80) elseif(WITH_JPEG7) set(JPEG_LIB_VERSION 70) else() set(JPEG_LIB_VERSION 62) endif() math(EXPR JPEG_LIB_VERSION_DIV10 "${JPEG_LIB_VERSION} / 10") math(EXPR JPEG_LIB_VERSION_MOD10 "${JPEG_LIB_VERSION} % 10") if(JPEG_LIB_VERSION STREQUAL "62") set(DEFAULT_SO_MAJOR_VERSION ${JPEG_LIB_VERSION}) else() set(DEFAULT_SO_MAJOR_VERSION ${JPEG_LIB_VERSION_DIV10}) endif() if(JPEG_LIB_VERSION STREQUAL "80") set(DEFAULT_SO_MINOR_VERSION 2) else() set(DEFAULT_SO_MINOR_VERSION 0) endif() # This causes SO_MAJOR_VERSION/SO_MINOR_VERSION to reset to defaults if # WITH_JPEG7 or WITH_JPEG8 has changed. if((DEFINED WITH_JPEG7_INT AND NOT WITH_JPEG7 EQUAL WITH_JPEG7_INT) OR (DEFINED WITH_JPEG8_INT AND NOT WITH_JPEG8 EQUAL WITH_JPEG8_INT)) set(FORCE_SO_VERSION "FORCE") endif() set(WITH_JPEG7_INT ${WITH_JPEG7} CACHE INTERNAL "") set(WITH_JPEG8_INT ${WITH_JPEG8} CACHE INTERNAL "") set(SO_MAJOR_VERSION ${DEFAULT_SO_MAJOR_VERSION} CACHE STRING "Major version of the libjpeg API shared library (default: ${DEFAULT_SO_MAJOR_VERSION})" ${FORCE_SO_VERSION}) set(SO_MINOR_VERSION ${DEFAULT_SO_MINOR_VERSION} CACHE STRING "Minor version of the libjpeg API shared library (default: ${DEFAULT_SO_MINOR_VERSION})" ${FORCE_SO_VERSION}) set(JPEG_LIB_VERSION_DECIMAL "${JPEG_LIB_VERSION_DIV10}.${JPEG_LIB_VERSION_MOD10}") message(STATUS "Emulating libjpeg API/ABI v${JPEG_LIB_VERSION_DECIMAL} (WITH_JPEG7 = ${WITH_JPEG7}, WITH_JPEG8 = ${WITH_JPEG8})") message(STATUS "libjpeg API shared library version = ${SO_MAJOR_VERSION}.${SO_AGE}.${SO_MINOR_VERSION}") # Because the TurboJPEG API library uses versioned symbols and changes the # names of functions whenever they are modified in a backward-incompatible # manner, it is always backward-ABI-compatible with itself, so the major and # minor SO versions don't change. However, we increase the middle number (the # SO "age") whenever functions are added to the API, because adding functions # affects forward API/ABI compatibility. set(TURBOJPEG_SO_MAJOR_VERSION 0) # 0: TurboJPEG 1.3.x API # 1: TurboJPEG 1.4.x API # The TurboJPEG 1.5.x API modified some of the function prototypes, adding # the const keyword in front of pointers to unmodified buffers, but that did # not affect forward API/ABI compatibility. # 2: TurboJPEG 2.0.x API # The TurboJPEG 2.1.x API modified the behavior of the tjDecompressHeader3() # function so that it accepts "abbreviated table specification" (AKA # "tables-only") datastreams as well as JPEG images, but that did not affect # forward API/ABI compatibility. set(TURBOJPEG_SO_AGE 2) set(TURBOJPEG_SO_VERSION 0.${TURBOJPEG_SO_AGE}.0) ############################################################################### # COMPILER SETTINGS ############################################################################### if(MSVC) option(WITH_CRT_DLL "Link all ${CMAKE_PROJECT_NAME} libraries and executables with the C run-time DLL (msvcr*.dll) instead of the static C run-time library (libcmt*.lib.) The default is to use the C run-time DLL only with the libraries and executables that need it." FALSE) if(NOT WITH_CRT_DLL) # Use the static C library for all build types foreach(var CMAKE_C_FLAGS CMAKE_C_FLAGS_DEBUG CMAKE_C_FLAGS_RELEASE CMAKE_C_FLAGS_MINSIZEREL CMAKE_C_FLAGS_RELWITHDEBINFO) if(${var} MATCHES "/MD") string(REGEX REPLACE "/MD" "/MT" ${var} "${${var}}") endif() endforeach() endif() add_definitions(-D_CRT_NONSTDC_NO_WARNINGS) endif() if(CMAKE_COMPILER_IS_GNUCC OR CMAKE_C_COMPILER_ID STREQUAL "Clang") # Use the maximum optimization level for release builds foreach(var CMAKE_C_FLAGS_RELEASE CMAKE_C_FLAGS_RELWITHDEBINFO) if(${var} MATCHES "-O2") string(REGEX REPLACE "-O2" "-O3" ${var} "${${var}}") endif() endforeach() endif() if(CMAKE_SYSTEM_NAME STREQUAL "SunOS") if(CMAKE_C_COMPILER_ID MATCHES "SunPro") # Use the maximum optimization level for release builds foreach(var CMAKE_C_FLAGS_RELEASE CMAKE_C_FLAGS_RELWITHDEBINFO) if(${var} MATCHES "-xO3") string(REGEX REPLACE "-xO3" "-xO5" ${var} "${${var}}") endif() if(${var} MATCHES "-xO2") string(REGEX REPLACE "-xO2" "-xO5" ${var} "${${var}}") endif() endforeach() endif() endif() string(TOUPPER ${CMAKE_BUILD_TYPE} CMAKE_BUILD_TYPE_UC) set(EFFECTIVE_C_FLAGS "${CMAKE_C_FLAGS} ${CMAKE_C_FLAGS_${CMAKE_BUILD_TYPE_UC}}") message(STATUS "Compiler flags = ${EFFECTIVE_C_FLAGS}") set(EFFECTIVE_LD_FLAGS "${CMAKE_EXE_LINKER_FLAGS} ${CMAKE_EXE_LINKER_FLAGS_${CMAKE_BUILD_TYPE_UC}}") message(STATUS "Linker flags = ${EFFECTIVE_LD_FLAGS}") include(CheckCSourceCompiles) include(CheckIncludeFiles) include(CheckTypeSize) check_type_size("size_t" SIZE_T) check_type_size("unsigned long" UNSIGNED_LONG) if(SIZE_T EQUAL UNSIGNED_LONG) check_c_source_compiles("int main(int argc, char **argv) { unsigned long a = argc; return __builtin_ctzl(a); }" HAVE_BUILTIN_CTZL) endif() if(MSVC) check_include_files("intrin.h" HAVE_INTRIN_H) endif() if(UNIX) if(CMAKE_CROSSCOMPILING) set(RIGHT_SHIFT_IS_UNSIGNED 0) else() include(CheckCSourceRuns) check_c_source_runs(" #include #include int is_shifting_signed (long arg) { long res = arg >> 4; if (res == -0x7F7E80CL) return 1; /* right shift is signed */ /* see if unsigned-shift hack will fix it. */ /* we can't just test exact value since it depends on width of long... */ res |= (~0L) << (32-4); if (res == -0x7F7E80CL) return 0; /* right shift is unsigned */ printf(\"Right shift isn't acting as I expect it to.\\\\n\"); printf(\"I fear the JPEG software will not work at all.\\\\n\\\\n\"); return 0; /* try it with unsigned anyway */ } int main (void) { exit(is_shifting_signed(-0x7F7E80B1L)); }" RIGHT_SHIFT_IS_UNSIGNED) endif() endif() if(MSVC) set(INLINE_OPTIONS "__inline;inline") else() set(INLINE_OPTIONS "__inline__;inline") endif() option(FORCE_INLINE "Force function inlining" TRUE) boolean_number(FORCE_INLINE) if(FORCE_INLINE) if(MSVC) list(INSERT INLINE_OPTIONS 0 "__forceinline") else() list(INSERT INLINE_OPTIONS 0 "inline __attribute__((always_inline))") list(INSERT INLINE_OPTIONS 0 "__inline__ __attribute__((always_inline))") endif() endif() foreach(inline ${INLINE_OPTIONS}) check_c_source_compiles("${inline} static int foo(void) { return 0; } int main(void) { return foo(); }" INLINE_WORKS) if(INLINE_WORKS) set(INLINE ${inline}) break() endif() endforeach() if(NOT INLINE_WORKS) message(FATAL_ERROR "Could not determine how to inline functions.") endif() message(STATUS "INLINE = ${INLINE} (FORCE_INLINE = ${FORCE_INLINE})") if(WITH_TURBOJPEG) if(MSVC) set(THREAD_LOCAL "__declspec(thread)") else() set(THREAD_LOCAL "__thread") endif() check_c_source_compiles("${THREAD_LOCAL} int i; int main(void) { i = 0; return i; }" HAVE_THREAD_LOCAL) if(HAVE_THREAD_LOCAL) message(STATUS "THREAD_LOCAL = ${THREAD_LOCAL}") else() message(WARNING "Thread-local storage is not available. The TurboJPEG API library's global error handler will not be thread-safe.") unset(THREAD_LOCAL) endif() endif() if(UNIX AND NOT APPLE) file(WRITE ${CMAKE_CURRENT_BINARY_DIR}/conftest.map "VERS_1 { global: *; };") set(CMAKE_REQUIRED_FLAGS "-Wl,--version-script,${CMAKE_CURRENT_BINARY_DIR}/conftest.map") check_c_source_compiles("int main(void) { return 0; }" HAVE_VERSION_SCRIPT) set(CMAKE_REQUIRED_FLAGS) file(REMOVE ${CMAKE_CURRENT_BINARY_DIR}/conftest.map) if(HAVE_VERSION_SCRIPT) message(STATUS "Linker supports GNU-style version scripts") set(MAPFLAG "-Wl,--version-script,") set(TJMAPFLAG "-Wl,--version-script,") else() message(STATUS "Linker does not support GNU-style version scripts") if(CMAKE_SYSTEM_NAME STREQUAL "SunOS") # The Solaris linker doesn't like our version script for the libjpeg API # library, but the version script for the TurboJPEG API library should # still work. file(WRITE ${CMAKE_CURRENT_BINARY_DIR}/conftest.map "VERS_1 { global: foo; local: *; }; VERS_2 { global: foo2; } VERS_1;") set(CMAKE_REQUIRED_FLAGS "-Wl,-M,${CMAKE_CURRENT_BINARY_DIR}/conftest.map -shared") check_c_source_compiles("int foo() { return 0; } int foo2() { return 2; }" HAVE_MAPFILE) set(CMAKE_REQUIRED_FLAGS) file(REMOVE ${CMAKE_CURRENT_BINARY_DIR}/conftest.map) if(HAVE_MAPFILE) message(STATUS "Linker supports mapfiles") set(TJMAPFLAG "-Wl,-M,") else() message(STATUS "Linker does not support mapfiles") endif() endif() endif() endif() # Generate files if(WIN32) configure_file(win/jconfig.h.in jconfig.h) else() configure_file(jconfig.h.in jconfig.h) endif() configure_file(jconfigint.h.in jconfigint.h) configure_file(jversion.h.in jversion.h) if(UNIX) configure_file(libjpeg.map.in libjpeg.map) endif() # Include directories and compiler definitions include_directories(${CMAKE_CURRENT_BINARY_DIR} ${CMAKE_CURRENT_SOURCE_DIR}) ############################################################################### # TARGETS ############################################################################### if(CMAKE_EXECUTABLE_SUFFIX_TMP) set(CMAKE_EXECUTABLE_SUFFIX ${CMAKE_EXECUTABLE_SUFFIX_TMP}) endif() message(STATUS "CMAKE_EXECUTABLE_SUFFIX = ${CMAKE_EXECUTABLE_SUFFIX}") set(JPEG_SOURCES jcapimin.c jcapistd.c jccoefct.c jccolor.c jcdctmgr.c jchuff.c jcicc.c jcinit.c jcmainct.c jcmarker.c jcmaster.c jcomapi.c jcparam.c jcphuff.c jcprepct.c jcsample.c jctrans.c jdapimin.c jdapistd.c jdatadst.c jdatasrc.c jdcoefct.c jdcolor.c jddctmgr.c jdhuff.c jdicc.c jdinput.c jdmainct.c jdmarker.c jdmaster.c jdmerge.c jdphuff.c jdpostct.c jdsample.c jdtrans.c jerror.c jfdctflt.c jfdctfst.c jfdctint.c jidctflt.c jidctfst.c jidctint.c jidctred.c jquant1.c jquant2.c jutils.c jmemmgr.c jmemnobs.c) if(WITH_ARITH_ENC OR WITH_ARITH_DEC) set(JPEG_SOURCES ${JPEG_SOURCES} jaricom.c) endif() if(WITH_ARITH_ENC) set(JPEG_SOURCES ${JPEG_SOURCES} jcarith.c) endif() if(WITH_ARITH_DEC) set(JPEG_SOURCES ${JPEG_SOURCES} jdarith.c) endif() if(WITH_SIMD) add_subdirectory(simd) if(NEON_INTRINSICS) add_definitions(-DNEON_INTRINSICS) endif() elseif(NOT WITH_12BIT) message(STATUS "SIMD extensions: None (WITH_SIMD = ${WITH_SIMD})") endif() if(WITH_SIMD) message(STATUS "SIMD extensions: ${CPU_TYPE} (WITH_SIMD = ${WITH_SIMD})") if(MSVC_IDE OR XCODE) set_source_files_properties(${SIMD_OBJS} PROPERTIES GENERATED 1) endif() else() add_library(simd OBJECT jsimd_none.c) if(NOT WIN32 AND (CMAKE_POSITION_INDEPENDENT_CODE OR ENABLE_SHARED)) set_target_properties(simd PROPERTIES POSITION_INDEPENDENT_CODE 1) endif() endif() if(WITH_JAVA) add_subdirectory(java) endif() if(ENABLE_SHARED) add_subdirectory(sharedlib) endif() if(ENABLE_STATIC) add_library(jpeg-static STATIC ${JPEG_SOURCES} $ ${SIMD_OBJS}) if(NOT MSVC) set_target_properties(jpeg-static PROPERTIES OUTPUT_NAME jpeg) endif() endif() if(WITH_TURBOJPEG) if(ENABLE_SHARED) set(TURBOJPEG_SOURCES ${JPEG_SOURCES} $ ${SIMD_OBJS} turbojpeg.c transupp.c jdatadst-tj.c jdatasrc-tj.c rdbmp.c rdppm.c wrbmp.c wrppm.c) set(TJMAPFILE ${CMAKE_CURRENT_SOURCE_DIR}/turbojpeg-mapfile) if(WITH_JAVA) set(TURBOJPEG_SOURCES ${TURBOJPEG_SOURCES} turbojpeg-jni.c) include_directories(${JAVA_INCLUDE_PATH} ${JAVA_INCLUDE_PATH2}) set(TJMAPFILE ${CMAKE_CURRENT_SOURCE_DIR}/turbojpeg-mapfile.jni) endif() if(MSVC) configure_file(${CMAKE_SOURCE_DIR}/win/turbojpeg.rc.in ${CMAKE_BINARY_DIR}/win/turbojpeg.rc) set(TURBOJPEG_SOURCES ${TURBOJPEG_SOURCES} ${CMAKE_BINARY_DIR}/win/turbojpeg.rc) endif() add_library(turbojpeg SHARED ${TURBOJPEG_SOURCES}) set_property(TARGET turbojpeg PROPERTY COMPILE_FLAGS "-DBMP_SUPPORTED -DPPM_SUPPORTED") if(WIN32) set_target_properties(turbojpeg PROPERTIES DEFINE_SYMBOL DLLDEFINE) endif() if(MINGW) set_target_properties(turbojpeg PROPERTIES LINK_FLAGS -Wl,--kill-at) endif() if(APPLE AND (NOT CMAKE_OSX_DEPLOYMENT_TARGET OR CMAKE_OSX_DEPLOYMENT_TARGET VERSION_GREATER 10.4)) if(NOT CMAKE_SHARED_LIBRARY_RUNTIME_C_FLAG) set(CMAKE_SHARED_LIBRARY_RUNTIME_C_FLAG "-Wl,-rpath,") endif() set_target_properties(turbojpeg PROPERTIES MACOSX_RPATH 1) endif() set_target_properties(turbojpeg PROPERTIES SOVERSION ${TURBOJPEG_SO_MAJOR_VERSION} VERSION ${TURBOJPEG_SO_VERSION}) if(TJMAPFLAG) set_target_properties(turbojpeg PROPERTIES LINK_FLAGS "${TJMAPFLAG}${TJMAPFILE}") endif() add_executable(tjunittest tjunittest.c tjutil.c md5/md5.c md5/md5hl.c) target_link_libraries(tjunittest turbojpeg) add_executable(tjbench tjbench.c tjutil.c) target_link_libraries(tjbench turbojpeg) if(UNIX) target_link_libraries(tjbench m) endif() add_executable(tjexample tjexample.c) target_link_libraries(tjexample turbojpeg) endif() if(ENABLE_STATIC) add_library(turbojpeg-static STATIC ${JPEG_SOURCES} $ ${SIMD_OBJS} turbojpeg.c transupp.c jdatadst-tj.c jdatasrc-tj.c rdbmp.c rdppm.c wrbmp.c wrppm.c) set_property(TARGET turbojpeg-static PROPERTY COMPILE_FLAGS "-DBMP_SUPPORTED -DPPM_SUPPORTED") if(NOT MSVC) set_target_properties(turbojpeg-static PROPERTIES OUTPUT_NAME turbojpeg) endif() add_executable(tjunittest-static tjunittest.c tjutil.c md5/md5.c md5/md5hl.c) target_link_libraries(tjunittest-static turbojpeg-static) add_executable(tjbench-static tjbench.c tjutil.c) target_link_libraries(tjbench-static turbojpeg-static) if(UNIX) target_link_libraries(tjbench-static m) endif() endif() endif() if(WIN32) set(USE_SETMODE "-DUSE_SETMODE") endif() if(WITH_12BIT) set(COMPILE_FLAGS "-DGIF_SUPPORTED -DPPM_SUPPORTED ${USE_SETMODE}") else() set(COMPILE_FLAGS "-DBMP_SUPPORTED -DGIF_SUPPORTED -DPPM_SUPPORTED -DTARGA_SUPPORTED ${USE_SETMODE}") set(CJPEG_BMP_SOURCES rdbmp.c rdtarga.c) set(DJPEG_BMP_SOURCES wrbmp.c wrtarga.c) endif() if(ENABLE_STATIC) add_executable(cjpeg-static cjpeg.c cdjpeg.c rdgif.c rdppm.c rdswitch.c ${CJPEG_BMP_SOURCES}) set_property(TARGET cjpeg-static PROPERTY COMPILE_FLAGS ${COMPILE_FLAGS}) target_link_libraries(cjpeg-static jpeg-static) add_executable(djpeg-static djpeg.c cdjpeg.c rdcolmap.c rdswitch.c wrgif.c wrppm.c ${DJPEG_BMP_SOURCES}) set_property(TARGET djpeg-static PROPERTY COMPILE_FLAGS ${COMPILE_FLAGS}) target_link_libraries(djpeg-static jpeg-static) add_executable(jpegtran-static jpegtran.c cdjpeg.c rdswitch.c transupp.c) target_link_libraries(jpegtran-static jpeg-static) set_property(TARGET jpegtran-static PROPERTY COMPILE_FLAGS "${USE_SETMODE}") endif() add_executable(rdjpgcom rdjpgcom.c) add_executable(wrjpgcom wrjpgcom.c) ############################################################################### # TESTS ############################################################################### if(WITH_FUZZ) add_subdirectory(fuzz) endif() add_executable(strtest strtest.c) add_subdirectory(md5) if(GENERATOR_IS_MULTI_CONFIG) set(OBJDIR "\${CTEST_CONFIGURATION_TYPE}/") else() set(OBJDIR "") endif() enable_testing() if(WITH_12BIT) set(TESTORIG testorig12.jpg) set(MD5_JPEG_RGB_ISLOW 9d7369207c520d37f2c1cbfcb82b2964) set(MD5_JPEG_RGB_ISLOW2 a00bd20d8ae49684640ef7177d2e0b64) set(MD5_PPM_RGB_ISLOW f3301d2219783b8b3d942b7239fa50c0) set(MD5_JPEG_422_IFAST_OPT 7322e3bd2f127f7de4b40d4480ce60e4) set(MD5_PPM_422_IFAST 79807fa552899e66a04708f533e16950) set(MD5_JPEG_440_ISLOW e25c1912e38367be505a89c410c1c2d2) set(MD5_PPM_440_ISLOW e7d2e26288870cfcb30f3114ad01e380) set(MD5_PPM_422M_IFAST 07737bfe8a7c1c87aaa393a0098d16b0) set(MD5_JPEG_420_IFAST_Q100_PROG 9447cef4803d9b0f74bcf333cc710a29) set(MD5_PPM_420_Q100_IFAST 1b3730122709f53d007255e8dfd3305e) set(MD5_PPM_420M_Q100_IFAST 980a1a3c5bf9510022869d30b7d26566) set(MD5_JPEG_GRAY_ISLOW 235c90707b16e2e069f37c888b2636d9) set(MD5_PPM_GRAY_ISLOW 7213c10af507ad467da5578ca5ee1fca) set(MD5_PPM_GRAY_ISLOW_RGB e96ee81c30a6ed422d466338bd3de65d) set(MD5_JPEG_420S_IFAST_OPT 7af8e60be4d9c227ec63ac9b6630855e) set(MD5_JPEG_3x2_FLOAT_PROG_SSE a8c17daf77b457725ec929e215b603f8) set(MD5_PPM_3x2_FLOAT_SSE 42876ab9e5c2f76a87d08db5fbd57956) set(MD5_JPEG_3x2_FLOAT_PROG_NO_FP_CONTRACT a8c17daf77b457725ec929e215b603f8) set(MD5_PPM_3x2_FLOAT_NO_FP_CONTRACT ${MD5_PPM_3x2_FLOAT_SSE}) set(MD5_JPEG_3x2_FLOAT_PROG_FP_CONTRACT ${MD5_JPEG_3x2_FLOAT_PROG_NO_FP_CONTRACT}) set(MD5_PPM_3x2_FLOAT_FP_CONTRACT ${MD5_PPM_3x2_FLOAT_SSE}) set(MD5_JPEG_3x2_FLOAT_PROG_387 bc6dbbefac2872f6b9d6c4a0ae60c3c0) set(MD5_PPM_3x2_FLOAT_387 bcc5723c61560463ac60f772e742d092) set(MD5_JPEG_3x2_FLOAT_PROG_MSVC e27840755870fa849872e58aa0cd1400) set(MD5_PPM_3x2_FLOAT_MSVC 6c2880b83bb1aa41dfe330e7a9768690) set(MD5_JPEG_3x2_IFAST_PROG 1396cc2b7185cfe943d408c9d305339e) set(MD5_PPM_3x2_IFAST 3975985ef6eeb0a2cdc58daa651ccc00) set(MD5_PPM_420M_ISLOW_2_1 4ca6be2a6f326ff9eaab63e70a8259c0) set(MD5_PPM_420M_ISLOW_15_8 12aa9f9534c1b3d7ba047322226365eb) set(MD5_PPM_420M_ISLOW_13_8 f7e22817c7b25e1393e4ec101e9d4e96) set(MD5_PPM_420M_ISLOW_11_8 800a16f9f4dc9b293197bfe11be10a82) set(MD5_PPM_420M_ISLOW_9_8 06b7a92a9bc69f4dc36ec40f1937d55c) set(MD5_PPM_420M_ISLOW_7_8 3ec444a14a4ab4eab88ffc49c48eca43) set(MD5_PPM_420M_ISLOW_3_4 3e726b7ea872445b19437d1c1d4f0d93) set(MD5_PPM_420M_ISLOW_5_8 a8a771abdc94301d20ffac119b2caccd) set(MD5_PPM_420M_ISLOW_1_2 b419124dd5568b085787234866102866) set(MD5_PPM_420M_ISLOW_3_8 343d19015531b7bbe746124127244fa8) set(MD5_PPM_420M_ISLOW_1_4 35fd59d866e44659edfa3c18db2a3edb) set(MD5_PPM_420M_ISLOW_1_8 ccaed48ac0aedefda5d4abe4013f4ad7) set(MD5_PPM_420_ISLOW_SKIP15_31 86664cd9dc956536409e44e244d20a97) set(MD5_PPM_420_ISLOW_PROG_CROP62x62_71_71 452a21656115a163029cfba5c04fa76a) set(MD5_PPM_444_ISLOW_SKIP1_6 ef63901f71ef7a75cd78253fc0914f84) set(MD5_PPM_444_ISLOW_PROG_CROP98x98_13_13 15b173fb5872d9575572fbcc1b05956f) set(MD5_JPEG_CROP cdb35ff4b4519392690ea040c56ea99c) else() set(TESTORIG testorig.jpg) set(MD5_JPEG_RGB_ISLOW 1d44a406f61da743b5fd31c0a9abdca3) set(MD5_JPEG_RGB_ISLOW2 31d121e57b6c2934c890a7fc7763bcd4) set(MD5_PPM_RGB_ISLOW 00a257f5393fef8821f2b88ac7421291) set(MD5_BMP_RGB_ISLOW_565 f07d2e75073e4bb10f6c6f4d36e2e3be) set(MD5_BMP_RGB_ISLOW_565D 4cfa0928ef3e6bb626d7728c924cfda4) set(MD5_JPEG_422_IFAST_OPT 2540287b79d913f91665e660303ab2c8) set(MD5_PPM_422_IFAST 35bd6b3f833bad23de82acea847129fa) set(MD5_JPEG_440_ISLOW 538bc02bd4b4658fd85de6ece6cbeda6) set(MD5_PPM_440_ISLOW 11e7eab7ef7ef3276934bb7e7b6bb377) set(MD5_PPM_422M_IFAST 8dbc65323d62cca7c91ba02dd1cfa81d) set(MD5_BMP_422M_IFAST_565 3294bd4d9a1f2b3d08ea6020d0db7065) set(MD5_BMP_422M_IFAST_565D da98c9c7b6039511be4a79a878a9abc1) set(MD5_JPEG_420_IFAST_Q100_PROG 0ba15f9dab81a703505f835f9dbbac6d) set(MD5_PPM_420_Q100_IFAST 5a732542015c278ff43635e473a8a294) set(MD5_PPM_420M_Q100_IFAST ff692ee9323a3b424894862557c092f1) set(MD5_JPEG_GRAY_ISLOW 72b51f894b8f4a10b3ee3066770aa38d) set(MD5_PPM_GRAY_ISLOW 8d3596c56eace32f205deccc229aa5ed) set(MD5_PPM_GRAY_ISLOW_RGB 116424ac07b79e5e801f00508eab48ec) set(MD5_BMP_GRAY_ISLOW_565 12f78118e56a2f48b966f792fedf23cc) set(MD5_BMP_GRAY_ISLOW_565D bdbbd616441a24354c98553df5dc82db) set(MD5_JPEG_420S_IFAST_OPT 388708217ac46273ca33086b22827ed8) set(MD5_JPEG_3x2_FLOAT_PROG_SSE 343e3f8caf8af5986ebaf0bdc13b5c71) set(MD5_PPM_3x2_FLOAT_SSE 1a75f36e5904d6fc3a85a43da9ad89bb) set(MD5_JPEG_3x2_FLOAT_PROG_NO_FP_CONTRACT 9bca803d2042bd1eb03819e2bf92b3e5) set(MD5_PPM_3x2_FLOAT_NO_FP_CONTRACT f6bfab038438ed8f5522fbd33595dcdc) set(MD5_JPEG_3x2_FLOAT_PROG_FP_CONTRACT ${MD5_JPEG_3x2_FLOAT_PROG_NO_FP_CONTRACT}) set(MD5_PPM_3x2_FLOAT_FP_CONTRACT 0e917a34193ef976b679a6b069b1be26) set(MD5_JPEG_3x2_FLOAT_PROG_387 1657664a410e0822c924b54f6f65e6e9) set(MD5_PPM_3x2_FLOAT_387 cb0a1f027f3d2917c902b5640214e025) set(MD5_JPEG_3x2_FLOAT_PROG_MSVC 7999ce9cd0ee9b6c7043b7351ab7639d) set(MD5_PPM_3x2_FLOAT_MSVC 28cdc448a6b75e97892f0e0f8d4b21f3) set(MD5_JPEG_3x2_IFAST_PROG 1ee5d2c1a77f2da495f993c8c7cceca5) set(MD5_PPM_3x2_IFAST fd283664b3b49127984af0a7f118fccd) set(MD5_JPEG_420_ISLOW_ARI e986fb0a637a8d833d96e8a6d6d84ea1) set(MD5_JPEG_444_ISLOW_PROGARI 0a8f1c8f66e113c3cf635df0a475a617) set(MD5_PPM_420M_IFAST_ARI 57251da28a35b46eecb7177d82d10e0e) set(MD5_JPEG_420_ISLOW 9a68f56bc76e466aa7e52f415d0f4a5f) set(MD5_PPM_420M_ISLOW_2_1 9f9de8c0612f8d06869b960b05abf9c9) set(MD5_PPM_420M_ISLOW_15_8 b6875bc070720b899566cc06459b63b7) set(MD5_PPM_420M_ISLOW_13_8 bc3452573c8152f6ae552939ee19f82f) set(MD5_PPM_420M_ISLOW_11_8 d8cc73c0aaacd4556569b59437ba00a5) set(MD5_PPM_420M_ISLOW_9_8 d25e61bc7eac0002f5b393aa223747b6) set(MD5_PPM_420M_ISLOW_7_8 ddb564b7c74a09494016d6cd7502a946) set(MD5_PPM_420M_ISLOW_3_4 8ed8e68808c3fbc4ea764fc9d2968646) set(MD5_PPM_420M_ISLOW_5_8 a3363274999da2366a024efae6d16c9b) set(MD5_PPM_420M_ISLOW_1_2 e692a315cea26b988c8e8b29a5dbcd81) set(MD5_PPM_420M_ISLOW_3_8 79eca9175652ced755155c90e785a996) set(MD5_PPM_420M_ISLOW_1_4 79cd778f8bf1a117690052cacdd54eca) set(MD5_PPM_420M_ISLOW_1_8 391b3d4aca640c8567d6f8745eb2142f) set(MD5_BMP_420_ISLOW_256 4980185e3776e89bd931736e1cddeee6) set(MD5_BMP_420_ISLOW_565 bf9d13e16c4923b92e1faa604d7922cb) set(MD5_BMP_420_ISLOW_565D 6bde71526acc44bcff76f696df8638d2) set(MD5_BMP_420M_ISLOW_565 8dc0185245353cfa32ad97027342216f) set(MD5_BMP_420M_ISLOW_565D ce034037d212bc403330df6f915c161b) set(MD5_PPM_420_ISLOW_SKIP15_31 c4c65c1e43d7275cd50328a61e6534f0) set(MD5_PPM_420_ISLOW_ARI_SKIP16_139 087c6b123db16ac00cb88c5b590bb74a) set(MD5_PPM_420_ISLOW_PROG_CROP62x62_71_71 26eb36ccc7d1f0cb80cdabb0ac8b5d99) set(MD5_PPM_420_ISLOW_ARI_CROP53x53_4_4 886c6775af22370257122f8b16207e6d) set(MD5_PPM_444_ISLOW_SKIP1_6 5606f86874cf26b8fcee1117a0a436a6) set(MD5_PPM_444_ISLOW_PROG_CROP98x98_13_13 db87dc7ce26bcdc7a6b56239ce2b9d6c) set(MD5_PPM_444_ISLOW_ARI_CROP37x37_0_0 cb57b32bd6d03e35432362f7bf184b6d) set(MD5_JPEG_CROP b4197f377e621c4e9b1d20471432610d) endif() if(WITH_JAVA) add_test(TJUnitTest ${Java_JAVA_EXECUTABLE} ${JAVAARGS} -cp java/turbojpeg.jar -Djava.library.path=${CMAKE_CURRENT_BINARY_DIR}/${OBJDIR} TJUnitTest) add_test(TJUnitTest-yuv ${Java_JAVA_EXECUTABLE} ${JAVAARGS} -cp java/turbojpeg.jar -Djava.library.path=${CMAKE_CURRENT_BINARY_DIR}/${OBJDIR} TJUnitTest -yuv) add_test(TJUnitTest-yuv-nopad ${Java_JAVA_EXECUTABLE} ${JAVAARGS} -cp java/turbojpeg.jar -Djava.library.path=${CMAKE_CURRENT_BINARY_DIR}/${OBJDIR} TJUnitTest -yuv -noyuvpad) add_test(TJUnitTest-bi ${Java_JAVA_EXECUTABLE} ${JAVAARGS} -cp java/turbojpeg.jar -Djava.library.path=${CMAKE_CURRENT_BINARY_DIR}/${OBJDIR} TJUnitTest -bi) add_test(TJUnitTest-bi-yuv ${Java_JAVA_EXECUTABLE} ${JAVAARGS} -cp java/turbojpeg.jar -Djava.library.path=${CMAKE_CURRENT_BINARY_DIR}/${OBJDIR} TJUnitTest -bi -yuv) add_test(TJUnitTest-bi-yuv-nopad ${Java_JAVA_EXECUTABLE} ${JAVAARGS} -cp java/turbojpeg.jar -Djava.library.path=${CMAKE_CURRENT_BINARY_DIR}/${OBJDIR} TJUnitTest -bi -yuv -noyuvpad) endif() set(TEST_LIBTYPES "") if(ENABLE_SHARED) set(TEST_LIBTYPES ${TEST_LIBTYPES} shared) endif() if(ENABLE_STATIC) set(TEST_LIBTYPES ${TEST_LIBTYPES} static) endif() set(TESTIMAGES ${CMAKE_CURRENT_SOURCE_DIR}/testimages) set(MD5CMP ${CMAKE_CURRENT_BINARY_DIR}/md5/md5cmp) if(CMAKE_CROSSCOMPILING) file(RELATIVE_PATH TESTIMAGES ${CMAKE_CURRENT_BINARY_DIR} ${TESTIMAGES}) file(RELATIVE_PATH MD5CMP ${CMAKE_CURRENT_BINARY_DIR} ${MD5CMP}) endif() # The output of the floating point DCT/IDCT algorithms differs depending on the # type of floating point math used, so the FLOATTEST CMake variable must be # set in order to tell the testing system which floating point results it # should expect: # # sse = validate against the expected results from the libjpeg-turbo SSE SIMD # extensions # no-fp-contract = validate against the expected results from the C code when # floating point expression contraction is disabled (the # default with Clang, with GCC when building for platforms # that lack fused multiply-add [FMA] instructions, or when # passing -ffp-contract=off to the compiler) # fp-contract = validate against the expected results from the C code when # floating point expression contraction is enabled (the default # with GCC when building for platforms that have fused multiply- # add [FMA] instructions or when passing -ffp-contract=fast to # the compiler) # 387 = validate against the expected results from the C code when the 387 FPU # is being used for floating point math (which is generally the default # with x86 compilers) # msvc = validate against the expected results from the C code when compiled # with a 32-bit version of Visual C++ if(CPU_TYPE STREQUAL "x86_64" OR CPU_TYPE STREQUAL "i386") if(WITH_SIMD) set(DEFAULT_FLOATTEST sse) elseif(CPU_TYPE STREQUAL "x86_64") set(DEFAULT_FLOATTEST no-fp-contract) # else we can't really set an intelligent default for i386. The appropriate # value could be no-fp-contract, fp-contract, 387, or msvc, depending on the # compiler and compiler options. We leave it to the user to set FLOATTEST # manually. endif() else() if((CPU_TYPE STREQUAL "powerpc" OR CPU_TYPE STREQUAL "arm64") AND NOT CMAKE_C_COMPILER_ID STREQUAL "Clang" AND NOT MSVC) set(DEFAULT_FLOATTEST fp-contract) else() set(DEFAULT_FLOATTEST no-fp-contract) endif() endif() # This causes FLOATTEST to reset to the default value if WITH_SIMD has # changed. if(DEFINED WITH_SIMD_INT AND NOT WITH_SIMD EQUAL WITH_SIMD_INT) set(FORCE_FLOATTEST "FORCE") endif() set(WITH_SIMD_INT ${WITH_SIMD} CACHE INTERNAL "") set(FLOATTEST ${DEFAULT_FLOATTEST} CACHE STRING "The type of floating point math used by the floating point DCT/IDCT algorithms. This tells the testing system which numerical results it should expect from those tests. [sse = libjpeg-turbo x86/x86-64 SIMD extensions, no-fp-contract = generic FPU with floating point expression contraction disabled, fp-contract = generic FPU with floating point expression contraction enabled, 387 = 387 FPU, msvc = 32-bit Visual Studio] (default = ${DEFAULT_FLOATTEST})" ${FORCE_FLOATTEST}) message(STATUS "FLOATTEST = ${FLOATTEST}") if(FLOATTEST) string(TOUPPER ${FLOATTEST} FLOATTEST_UC) string(REGEX REPLACE "-" "_" FLOATTEST_UC ${FLOATTEST_UC}) string(TOLOWER ${FLOATTEST} FLOATTEST) if(NOT FLOATTEST STREQUAL "sse" AND NOT FLOATTEST STREQUAL "no-fp-contract" AND NOT FLOATTEST STREQUAL "fp-contract" AND NOT FLOATTEST STREQUAL "387" AND NOT FLOATTEST STREQUAL "msvc") message(FATAL_ERROR "\"${FLOATTEST}\" is not a valid value for FLOATTEST.") endif() endif() foreach(libtype ${TEST_LIBTYPES}) if(libtype STREQUAL "static") set(suffix -static) endif() if(WITH_TURBOJPEG) add_test(tjunittest-${libtype} ${CMAKE_CROSSCOMPILING_EMULATOR} tjunittest${suffix}) add_test(tjunittest-${libtype}-alloc ${CMAKE_CROSSCOMPILING_EMULATOR} tjunittest${suffix} -alloc) add_test(tjunittest-${libtype}-yuv ${CMAKE_CROSSCOMPILING_EMULATOR} tjunittest${suffix} -yuv) add_test(tjunittest-${libtype}-yuv-alloc ${CMAKE_CROSSCOMPILING_EMULATOR} tjunittest${suffix} -yuv -alloc) add_test(tjunittest-${libtype}-yuv-nopad ${CMAKE_CROSSCOMPILING_EMULATOR} tjunittest${suffix} -yuv -noyuvpad) add_test(tjunittest-${libtype}-bmp ${CMAKE_CROSSCOMPILING_EMULATOR} tjunittest${suffix} -bmp) set(MD5_PPM_GRAY_TILE 89d3ca21213d9d864b50b4e4e7de4ca6) set(MD5_PPM_420_8x8_TILE 847fceab15c5b7b911cb986cf0f71de3) set(MD5_PPM_420_16x16_TILE ca45552a93687e078f7137cc4126a7b0) set(MD5_PPM_420_32x32_TILE d8676f1d6b68df358353bba9844f4a00) set(MD5_PPM_420_64x64_TILE 4e4c1a3d7ea4bace4f868bcbe83b7050) set(MD5_PPM_420_128x128_TILE f24c3429c52265832beab9df72a0ceae) set(MD5_PPM_420M_8x8_TILE bc25320e1f4c31ce2e610e43e9fd173c) set(MD5_PPM_420M_TILE 75ffdf14602258c5c189522af57fa605) set(MD5_PPM_422_8x8_TILE d83dacd9fc73b0a6f10c09acad64eb1e) set(MD5_PPM_422_16x16_TILE 35077fb610d72dd743b1eb0cbcfe10fb) set(MD5_PPM_422_32x32_TILE e6902ed8a449ecc0f0d6f2bf945f65f7) set(MD5_PPM_422_64x64_TILE 2b4502a8f316cedbde1da7bce3d2231e) set(MD5_PPM_422_128x128_TILE f0b5617d578f5e13c8eee215d64d4877) set(MD5_PPM_422M_8x8_TILE 828941d7f41cd6283abd6beffb7fd51d) set(MD5_PPM_422M_TILE e877ae1324c4a280b95376f7f018172f) set(MD5_PPM_444_TILE 7964e41e67cfb8d0a587c0aa4798f9c3) # Test compressing from/decompressing to an arbitrary subregion of a larger # image buffer add_test(tjbench-${libtype}-tile-cp ${CMAKE_COMMAND} -E copy_if_different ${TESTIMAGES}/testorig.ppm testout_tile.ppm) add_test(tjbench-${libtype}-tile ${CMAKE_CROSSCOMPILING_EMULATOR} tjbench${suffix} testout_tile.ppm 95 -rgb -quiet -tile -benchtime 0.01 -warmup 0) set_tests_properties(tjbench-${libtype}-tile PROPERTIES DEPENDS tjbench-${libtype}-tile-cp) foreach(tile 8 16 32 64 128) add_test(tjbench-${libtype}-tile-gray-${tile}x${tile}-cmp ${CMAKE_CROSSCOMPILING_EMULATOR} ${MD5CMP} ${MD5_PPM_GRAY_TILE} testout_tile_GRAY_Q95_${tile}x${tile}.ppm) foreach(subsamp 420 422) add_test(tjbench-${libtype}-tile-${subsamp}-${tile}x${tile}-cmp ${CMAKE_CROSSCOMPILING_EMULATOR} ${MD5CMP} ${MD5_PPM_${subsamp}_${tile}x${tile}_TILE} testout_tile_${subsamp}_Q95_${tile}x${tile}.ppm) endforeach() add_test(tjbench-${libtype}-tile-444-${tile}x${tile}-cmp ${CMAKE_CROSSCOMPILING_EMULATOR} ${MD5CMP} ${MD5_PPM_444_TILE} testout_tile_444_Q95_${tile}x${tile}.ppm) foreach(subsamp gray 420 422 444) set_tests_properties(tjbench-${libtype}-tile-${subsamp}-${tile}x${tile}-cmp PROPERTIES DEPENDS tjbench-${libtype}-tile) endforeach() endforeach() add_test(tjbench-${libtype}-tilem-cp ${CMAKE_COMMAND} -E copy_if_different ${TESTIMAGES}/testorig.ppm testout_tilem.ppm) add_test(tjbench-${libtype}-tilem ${CMAKE_CROSSCOMPILING_EMULATOR} tjbench${suffix} testout_tilem.ppm 95 -rgb -fastupsample -quiet -tile -benchtime 0.01 -warmup 0) set_tests_properties(tjbench-${libtype}-tilem PROPERTIES DEPENDS tjbench-${libtype}-tilem-cp) add_test(tjbench-${libtype}-tile-420m-8x8-cmp ${CMAKE_CROSSCOMPILING_EMULATOR} ${MD5CMP} ${MD5_PPM_420M_8x8_TILE} testout_tilem_420_Q95_8x8.ppm) add_test(tjbench-${libtype}-tile-422m-8x8-cmp ${CMAKE_CROSSCOMPILING_EMULATOR} ${MD5CMP} ${MD5_PPM_422M_8x8_TILE} testout_tilem_422_Q95_8x8.ppm) foreach(tile 16 32 64 128) foreach(subsamp 420 422) add_test(tjbench-${libtype}-tile-${subsamp}m-${tile}x${tile}-cmp ${CMAKE_CROSSCOMPILING_EMULATOR} ${MD5CMP} ${MD5_PPM_${subsamp}M_TILE} testout_tilem_${subsamp}_Q95_${tile}x${tile}.ppm) endforeach() endforeach() foreach(tile 8 16 32 64 128) foreach(subsamp 420 422) set_tests_properties(tjbench-${libtype}-tile-${subsamp}m-${tile}x${tile}-cmp PROPERTIES DEPENDS tjbench-${libtype}-tilem) endforeach() endforeach() endif() # These tests are carefully crafted to provide full coverage of as many of # the underlying algorithms as possible (including all of the # SIMD-accelerated ones.) macro(add_bittest PROG NAME ARGS OUTFILE INFILE MD5SUM) add_test(${PROG}-${libtype}-${NAME} ${CMAKE_CROSSCOMPILING_EMULATOR} ${PROG}${suffix} ${ARGS} -outfile ${OUTFILE} ${INFILE}) add_test(${PROG}-${libtype}-${NAME}-cmp ${CMAKE_CROSSCOMPILING_EMULATOR} ${MD5CMP} ${MD5SUM} ${OUTFILE}) set_tests_properties(${PROG}-${libtype}-${NAME}-cmp PROPERTIES DEPENDS ${PROG}-${libtype}-${NAME}) if(${ARGC} GREATER 6) set(DEPENDS ${ARGN}) set_tests_properties(${PROG}-${libtype}-${NAME} PROPERTIES DEPENDS ${DEPENDS}) endif() endmacro() # CC: null SAMP: fullsize FDCT: islow ENT: huff add_bittest(cjpeg rgb-islow "-rgb;-dct;int;-icc;${TESTIMAGES}/test1.icc" testout_rgb_islow.jpg ${TESTIMAGES}/testorig.ppm ${MD5_JPEG_RGB_ISLOW}) # CC: null SAMP: fullsize IDCT: islow ENT: huff add_bittest(djpeg rgb-islow "-dct;int;-ppm;-icc;testout_rgb_islow.icc" testout_rgb_islow.ppm testout_rgb_islow.jpg ${MD5_PPM_RGB_ISLOW} cjpeg-${libtype}-rgb-islow) add_test(djpeg-${libtype}-rgb-islow-icc-cmp ${CMAKE_CROSSCOMPILING_EMULATOR} ${MD5CMP} b06a39d730129122e85c1363ed1bbc9e testout_rgb_islow.icc) set_tests_properties(djpeg-${libtype}-rgb-islow-icc-cmp PROPERTIES DEPENDS djpeg-${libtype}-rgb-islow) add_bittest(jpegtran icc "-copy;all;-icc;${TESTIMAGES}/test2.icc" testout_rgb_islow2.jpg testout_rgb_islow.jpg ${MD5_JPEG_RGB_ISLOW2} cjpeg-${libtype}-rgb-islow) if(NOT WITH_12BIT) # CC: RGB->RGB565 SAMP: fullsize IDCT: islow ENT: huff add_bittest(djpeg rgb-islow-565 "-dct;int;-rgb565;-dither;none;-bmp" testout_rgb_islow_565.bmp testout_rgb_islow.jpg ${MD5_BMP_RGB_ISLOW_565} cjpeg-${libtype}-rgb-islow) # CC: RGB->RGB565 (dithered) SAMP: fullsize IDCT: islow ENT: huff add_bittest(djpeg rgb-islow-565D "-dct;int;-rgb565;-bmp" testout_rgb_islow_565D.bmp testout_rgb_islow.jpg ${MD5_BMP_RGB_ISLOW_565D} cjpeg-${libtype}-rgb-islow) endif() # CC: RGB->YCC SAMP: fullsize/h2v1 FDCT: ifast ENT: 2-pass huff add_bittest(cjpeg 422-ifast-opt "-sample;2x1;-dct;fast;-opt" testout_422_ifast_opt.jpg ${TESTIMAGES}/testorig.ppm ${MD5_JPEG_422_IFAST_OPT}) # CC: YCC->RGB SAMP: fullsize/h2v1 fancy IDCT: ifast ENT: huff add_bittest(djpeg 422-ifast "-dct;fast" testout_422_ifast.ppm testout_422_ifast_opt.jpg ${MD5_PPM_422_IFAST} cjpeg-${libtype}-422-ifast-opt) # CC: RGB->YCC SAMP: fullsize/h1v2 FDCT: islow ENT: huff add_bittest(cjpeg 440-islow "-sample;1x2;-dct;int" testout_440_islow.jpg ${TESTIMAGES}/testorig.ppm ${MD5_JPEG_440_ISLOW}) # CC: YCC->RGB SAMP: fullsize/h1v2 fancy IDCT: islow ENT: huff add_bittest(djpeg 440-islow "-dct;int" testout_440_islow.ppm testout_440_islow.jpg ${MD5_PPM_440_ISLOW} cjpeg-${libtype}-440-islow) # CC: YCC->RGB SAMP: h2v1 merged IDCT: ifast ENT: huff add_bittest(djpeg 422m-ifast "-dct;fast;-nosmooth" testout_422m_ifast.ppm testout_422_ifast_opt.jpg ${MD5_PPM_422M_IFAST} cjpeg-${libtype}-422-ifast-opt) if(NOT WITH_12BIT) # CC: YCC->RGB565 SAMP: h2v1 merged IDCT: ifast ENT: huff add_bittest(djpeg 422m-ifast-565 "-dct;int;-nosmooth;-rgb565;-dither;none;-bmp" testout_422m_ifast_565.bmp testout_422_ifast_opt.jpg ${MD5_BMP_422M_IFAST_565} cjpeg-${libtype}-422-ifast-opt) # CC: YCC->RGB565 (dithered) SAMP: h2v1 merged IDCT: ifast ENT: huff add_bittest(djpeg 422m-ifast-565D "-dct;int;-nosmooth;-rgb565;-bmp" testout_422m_ifast_565D.bmp testout_422_ifast_opt.jpg ${MD5_BMP_422M_IFAST_565D} cjpeg-${libtype}-422-ifast-opt) endif() # CC: RGB->YCC SAMP: fullsize/h2v2 FDCT: ifast ENT: prog huff add_bittest(cjpeg 420-q100-ifast-prog "-sample;2x2;-quality;100;-dct;fast;-scans;${TESTIMAGES}/test.scan" testout_420_q100_ifast_prog.jpg ${TESTIMAGES}/testorig.ppm ${MD5_JPEG_420_IFAST_Q100_PROG}) # CC: YCC->RGB SAMP: fullsize/h2v2 fancy IDCT: ifast ENT: prog huff add_bittest(djpeg 420-q100-ifast-prog "-dct;fast" testout_420_q100_ifast.ppm testout_420_q100_ifast_prog.jpg ${MD5_PPM_420_Q100_IFAST} cjpeg-${libtype}-420-q100-ifast-prog) # CC: YCC->RGB SAMP: h2v2 merged IDCT: ifast ENT: prog huff add_bittest(djpeg 420m-q100-ifast-prog "-dct;fast;-nosmooth" testout_420m_q100_ifast.ppm testout_420_q100_ifast_prog.jpg ${MD5_PPM_420M_Q100_IFAST} cjpeg-${libtype}-420-q100-ifast-prog) # CC: RGB->Gray SAMP: fullsize FDCT: islow ENT: huff add_bittest(cjpeg gray-islow "-gray;-dct;int" testout_gray_islow.jpg ${TESTIMAGES}/testorig.ppm ${MD5_JPEG_GRAY_ISLOW}) # CC: Gray->Gray SAMP: fullsize IDCT: islow ENT: huff add_bittest(djpeg gray-islow "-dct;int" testout_gray_islow.ppm testout_gray_islow.jpg ${MD5_PPM_GRAY_ISLOW} cjpeg-${libtype}-gray-islow) # CC: Gray->RGB SAMP: fullsize IDCT: islow ENT: huff add_bittest(djpeg gray-islow-rgb "-dct;int;-rgb" testout_gray_islow_rgb.ppm testout_gray_islow.jpg ${MD5_PPM_GRAY_ISLOW_RGB} cjpeg-${libtype}-gray-islow) if(NOT WITH_12BIT) # CC: Gray->RGB565 SAMP: fullsize IDCT: islow ENT: huff add_bittest(djpeg gray-islow-565 "-dct;int;-rgb565;-dither;none;-bmp" testout_gray_islow_565.bmp testout_gray_islow.jpg ${MD5_BMP_GRAY_ISLOW_565} cjpeg-${libtype}-gray-islow) # CC: Gray->RGB565 (dithered) SAMP: fullsize IDCT: islow ENT: huff add_bittest(djpeg gray-islow-565D "-dct;int;-rgb565;-bmp" testout_gray_islow_565D.bmp testout_gray_islow.jpg ${MD5_BMP_GRAY_ISLOW_565D} cjpeg-${libtype}-gray-islow) endif() # CC: RGB->YCC SAMP: fullsize smooth/h2v2 smooth FDCT: islow # ENT: 2-pass huff add_bittest(cjpeg 420s-ifast-opt "-sample;2x2;-smooth;1;-dct;int;-opt" testout_420s_ifast_opt.jpg ${TESTIMAGES}/testorig.ppm ${MD5_JPEG_420S_IFAST_OPT}) if(FLOATTEST) # CC: RGB->YCC SAMP: fullsize/int FDCT: float ENT: prog huff add_bittest(cjpeg 3x2-float-prog "-sample;3x2;-dct;float;-prog" testout_3x2_float_prog.jpg ${TESTIMAGES}/testorig.ppm ${MD5_JPEG_3x2_FLOAT_PROG_${FLOATTEST_UC}}) # CC: YCC->RGB SAMP: fullsize/int IDCT: float ENT: prog huff add_bittest(djpeg 3x2-float-prog "-dct;float" testout_3x2_float.ppm testout_3x2_float_prog.jpg ${MD5_PPM_3x2_FLOAT_${FLOATTEST_UC}} cjpeg-${libtype}-3x2-float-prog) endif() # CC: RGB->YCC SAMP: fullsize/int FDCT: ifast ENT: prog huff add_bittest(cjpeg 3x2-ifast-prog "-sample;3x2;-dct;fast;-prog" testout_3x2_ifast_prog.jpg ${TESTIMAGES}/testorig.ppm ${MD5_JPEG_3x2_IFAST_PROG}) # CC: YCC->RGB SAMP: fullsize/int IDCT: ifast ENT: prog huff add_bittest(djpeg 3x2-ifast-prog "-dct;fast" testout_3x2_ifast.ppm testout_3x2_ifast_prog.jpg ${MD5_PPM_3x2_IFAST} cjpeg-${libtype}-3x2-ifast-prog) if(WITH_ARITH_ENC) # CC: YCC->RGB SAMP: fullsize/h2v2 FDCT: islow ENT: arith add_bittest(cjpeg 420-islow-ari "-dct;int;-arithmetic" testout_420_islow_ari.jpg ${TESTIMAGES}/testorig.ppm ${MD5_JPEG_420_ISLOW_ARI}) add_bittest(jpegtran 420-islow-ari "-arithmetic" testout_420_islow_ari2.jpg ${TESTIMAGES}/testimgint.jpg ${MD5_JPEG_420_ISLOW_ARI}) # CC: YCC->RGB SAMP: fullsize FDCT: islow ENT: prog arith add_bittest(cjpeg 444-islow-progari "-sample;1x1;-dct;int;-prog;-arithmetic" testout_444_islow_progari.jpg ${TESTIMAGES}/testorig.ppm ${MD5_JPEG_444_ISLOW_PROGARI}) endif() if(WITH_ARITH_DEC) # CC: RGB->YCC SAMP: h2v2 merged IDCT: ifast ENT: arith add_bittest(djpeg 420m-ifast-ari "-fast;-skip;1,20;-ppm" testout_420m_ifast_ari.ppm ${TESTIMAGES}/testimgari.jpg ${MD5_PPM_420M_IFAST_ARI}) add_bittest(jpegtran 420-islow "" testout_420_islow.jpg ${TESTIMAGES}/testimgari.jpg ${MD5_JPEG_420_ISLOW}) endif() # 2/1-- CC: YCC->RGB SAMP: h2v2 merged IDCT: 16x16 islow ENT: huff # 15/8-- CC: YCC->RGB SAMP: h2v2 merged IDCT: 15x15 islow ENT: huff # 13/8-- CC: YCC->RGB SAMP: h2v2 merged IDCT: 13x13 islow ENT: huff # 11/8-- CC: YCC->RGB SAMP: h2v2 merged IDCT: 11x11 islow ENT: huff # 9/8-- CC: YCC->RGB SAMP: h2v2 merged IDCT: 9x9 islow ENT: huff # 7/8-- CC: YCC->RGB SAMP: h2v2 merged IDCT: 7x7 islow/14x14 islow # ENT: huff # 3/4-- CC: YCC->RGB SAMP: h2v2 merged IDCT: 6x6 islow/12x12 islow # ENT: huff # 5/8-- CC: YCC->RGB SAMP: h2v2 merged IDCT: 5x5 islow/10x10 islow # ENT: huff # 1/2-- CC: YCC->RGB SAMP: h2v2 merged IDCT: 4x4 islow/8x8 islow # ENT: huff # 3/8-- CC: YCC->RGB SAMP: h2v2 merged IDCT: 3x3 islow/6x6 islow # ENT: huff # 1/4-- CC: YCC->RGB SAMP: h2v2 merged IDCT: 2x2 islow/4x4 islow # ENT: huff # 1/8-- CC: YCC->RGB SAMP: h2v2 merged IDCT: 1x1 islow/2x2 islow # ENT: huff foreach(scale 2_1 15_8 13_8 11_8 9_8 7_8 3_4 5_8 1_2 3_8 1_4 1_8) string(REGEX REPLACE "_" "/" scalearg ${scale}) add_bittest(djpeg 420m-islow-${scale} "-dct;int;-scale;${scalearg};-nosmooth;-ppm" testout_420m_islow_${scale}.ppm ${TESTIMAGES}/${TESTORIG} ${MD5_PPM_420M_ISLOW_${scale}}) endforeach() if(NOT WITH_12BIT) # CC: YCC->RGB (dithered) SAMP: h2v2 fancy IDCT: islow ENT: huff add_bittest(djpeg 420-islow-256 "-dct;int;-colors;256;-bmp" testout_420_islow_256.bmp ${TESTIMAGES}/${TESTORIG} ${MD5_BMP_420_ISLOW_256}) # CC: YCC->RGB565 SAMP: h2v2 fancy IDCT: islow ENT: huff add_bittest(djpeg 420-islow-565 "-dct;int;-rgb565;-dither;none;-bmp" testout_420_islow_565.bmp ${TESTIMAGES}/${TESTORIG} ${MD5_BMP_420_ISLOW_565}) # CC: YCC->RGB565 (dithered) SAMP: h2v2 fancy IDCT: islow ENT: huff add_bittest(djpeg 420-islow-565D "-dct;int;-rgb565;-bmp" testout_420_islow_565D.bmp ${TESTIMAGES}/${TESTORIG} ${MD5_BMP_420_ISLOW_565D}) # CC: YCC->RGB565 SAMP: h2v2 merged IDCT: islow ENT: huff add_bittest(djpeg 420m-islow-565 "-dct;int;-nosmooth;-rgb565;-dither;none;-bmp" testout_420m_islow_565.bmp ${TESTIMAGES}/${TESTORIG} ${MD5_BMP_420M_ISLOW_565}) # CC: YCC->RGB565 (dithered) SAMP: h2v2 merged IDCT: islow ENT: huff add_bittest(djpeg 420m-islow-565D "-dct;int;-nosmooth;-rgb565;-bmp" testout_420m_islow_565D.bmp ${TESTIMAGES}/${TESTORIG} ${MD5_BMP_420M_ISLOW_565D}) endif() # Partial decode tests. These tests are designed to cover all of the # possible code paths in jpeg_skip_scanlines(). # Context rows: Yes Intra-iMCU row: Yes iMCU row prefetch: No ENT: huff add_bittest(djpeg 420-islow-skip15_31 "-dct;int;-skip;15,31;-ppm" testout_420_islow_skip15,31.ppm ${TESTIMAGES}/${TESTORIG} ${MD5_PPM_420_ISLOW_SKIP15_31}) # Context rows: Yes Intra-iMCU row: No iMCU row prefetch: Yes ENT: arith if(WITH_ARITH_DEC) add_bittest(djpeg 420-islow-ari-skip16_139 "-dct;int;-skip;16,139;-ppm" testout_420_islow_ari_skip16,139.ppm ${TESTIMAGES}/testimgari.jpg ${MD5_PPM_420_ISLOW_ARI_SKIP16_139}) endif() # Context rows: Yes Intra-iMCU row: No iMCU row prefetch: No ENT: prog huff add_test(cjpeg-${libtype}-420-islow-prog ${CMAKE_CROSSCOMPILING_EMULATOR} cjpeg${suffix} -dct int -prog -outfile testout_420_islow_prog.jpg ${TESTIMAGES}/testorig.ppm) add_bittest(djpeg 420-islow-prog-crop62x62_71_71 "-dct;int;-crop;62x62+71+71;-ppm" testout_420_islow_prog_crop62x62,71,71.ppm testout_420_islow_prog.jpg ${MD5_PPM_420_ISLOW_PROG_CROP62x62_71_71} cjpeg-${libtype}-420-islow-prog) # Context rows: Yes Intra-iMCU row: No iMCU row prefetch: No ENT: arith if(WITH_ARITH_DEC) add_bittest(djpeg 420-islow-ari-crop53x53_4_4 "-dct;int;-crop;53x53+4+4;-ppm" testout_420_islow_ari_crop53x53,4,4.ppm ${TESTIMAGES}/testimgari.jpg ${MD5_PPM_420_ISLOW_ARI_CROP53x53_4_4}) endif() # Context rows: No Intra-iMCU row: Yes ENT: huff add_test(cjpeg-${libtype}-444-islow ${CMAKE_CROSSCOMPILING_EMULATOR} cjpeg${suffix} -dct int -sample 1x1 -outfile testout_444_islow.jpg ${TESTIMAGES}/testorig.ppm) add_bittest(djpeg 444-islow-skip1_6 "-dct;int;-skip;1,6;-ppm" testout_444_islow_skip1,6.ppm testout_444_islow.jpg ${MD5_PPM_444_ISLOW_SKIP1_6} cjpeg-${libtype}-444-islow) # Context rows: No Intra-iMCU row: No ENT: prog huff add_test(cjpeg-${libtype}-444-islow-prog ${CMAKE_CROSSCOMPILING_EMULATOR} cjpeg${suffix} -dct int -prog -sample 1x1 -outfile testout_444_islow_prog.jpg ${TESTIMAGES}/testorig.ppm) add_bittest(djpeg 444-islow-prog-crop98x98_13_13 "-dct;int;-crop;98x98+13+13;-ppm" testout_444_islow_prog_crop98x98,13,13.ppm testout_444_islow_prog.jpg ${MD5_PPM_444_ISLOW_PROG_CROP98x98_13_13} cjpeg-${libtype}-444-islow-prog) # Context rows: No Intra-iMCU row: No ENT: arith if(WITH_ARITH_ENC) add_test(cjpeg-${libtype}-444-islow-ari ${CMAKE_CROSSCOMPILING_EMULATOR} cjpeg${suffix} -dct int -arithmetic -sample 1x1 -outfile testout_444_islow_ari.jpg ${TESTIMAGES}/testorig.ppm) if(WITH_ARITH_DEC) add_bittest(djpeg 444-islow-ari-crop37x37_0_0 "-dct;int;-crop;37x37+0+0;-ppm" testout_444_islow_ari_crop37x37,0,0.ppm testout_444_islow_ari.jpg ${MD5_PPM_444_ISLOW_ARI_CROP37x37_0_0} cjpeg-${libtype}-444-islow-ari) endif() endif() add_bittest(jpegtran crop "-crop;120x90+20+50;-transpose;-perfect" testout_crop.jpg ${TESTIMAGES}/${TESTORIG} ${MD5_JPEG_CROP}) endforeach() add_custom_target(testclean COMMAND ${CMAKE_COMMAND} -P ${CMAKE_CURRENT_SOURCE_DIR}/cmakescripts/testclean.cmake) configure_file(croptest.in croptest @ONLY) add_custom_target(croptest COMMAND echo croptest COMMAND ${BASH} ${CMAKE_CURRENT_BINARY_DIR}/croptest) if(WITH_TURBOJPEG) configure_file(tjbenchtest.in tjbenchtest @ONLY) configure_file(tjexampletest.in tjexampletest @ONLY) if(WIN32) set(BASH bash) endif() if(WITH_JAVA) configure_file(tjbenchtest.java.in tjbenchtest.java @ONLY) configure_file(tjexampletest.java.in tjexampletest.java @ONLY) add_custom_target(tjtest COMMAND echo tjbenchtest COMMAND ${BASH} ${CMAKE_CURRENT_BINARY_DIR}/tjbenchtest COMMAND echo tjbenchtest -alloc COMMAND ${BASH} ${CMAKE_CURRENT_BINARY_DIR}/tjbenchtest -alloc COMMAND echo tjbenchtest -yuv COMMAND ${BASH} ${CMAKE_CURRENT_BINARY_DIR}/tjbenchtest -yuv COMMAND echo tjbenchtest -yuv -alloc COMMAND ${BASH} ${CMAKE_CURRENT_BINARY_DIR}/tjbenchtest -yuv -alloc COMMAND echo tjbenchtest -progressive COMMAND ${BASH} ${CMAKE_CURRENT_BINARY_DIR}/tjbenchtest -progressive COMMAND echo tjbenchtest -progressive -yuv COMMAND ${BASH} ${CMAKE_CURRENT_BINARY_DIR}/tjbenchtest -progressive -yuv COMMAND echo tjexampletest COMMAND ${BASH} ${CMAKE_CURRENT_BINARY_DIR}/tjexampletest COMMAND echo tjbenchtest.java COMMAND ${BASH} ${CMAKE_CURRENT_BINARY_DIR}/tjbenchtest.java COMMAND echo tjbenchtest.java -yuv COMMAND ${BASH} ${CMAKE_CURRENT_BINARY_DIR}/tjbenchtest.java -yuv COMMAND echo tjbenchtest.java -progressive COMMAND ${BASH} ${CMAKE_CURRENT_BINARY_DIR}/tjbenchtest.java -progressive COMMAND echo tjbenchtest.java -progressive -yuv COMMAND ${BASH} ${CMAKE_CURRENT_BINARY_DIR}/tjbenchtest.java -progressive -yuv COMMAND echo tjexampletest.java COMMAND ${BASH} ${CMAKE_CURRENT_BINARY_DIR}/tjexampletest.java DEPENDS ${CMAKE_CURRENT_BINARY_DIR}/tjbenchtest ${CMAKE_CURRENT_BINARY_DIR}/tjbenchtest.java ${CMAKE_CURRENT_BINARY_DIR}/tjexampletest ${CMAKE_CURRENT_BINARY_DIR}/tjexampletest.java) else() add_custom_target(tjtest COMMAND echo tjbenchtest COMMAND ${BASH} ${CMAKE_CURRENT_BINARY_DIR}/tjbenchtest COMMAND echo tjbenchtest -alloc COMMAND ${BASH} ${CMAKE_CURRENT_BINARY_DIR}/tjbenchtest -alloc COMMAND echo tjbenchtest -yuv COMMAND ${BASH} ${CMAKE_CURRENT_BINARY_DIR}/tjbenchtest -yuv COMMAND echo tjbenchtest -yuv -alloc COMMAND ${BASH} ${CMAKE_CURRENT_BINARY_DIR}/tjbenchtest -yuv -alloc COMMAND echo tjbenchtest -progressive COMMAND ${BASH} ${CMAKE_CURRENT_BINARY_DIR}/tjbenchtest -progressive COMMAND echo tjbenchtest -progressive -yuv COMMAND ${BASH} ${CMAKE_CURRENT_BINARY_DIR}/tjbenchtest -progressive -yuv COMMAND echo tjexampletest COMMAND ${BASH} ${CMAKE_CURRENT_BINARY_DIR}/tjexampletest DEPENDS ${CMAKE_CURRENT_BINARY_DIR}/tjbenchtest ${CMAKE_CURRENT_BINARY_DIR}/tjexampletest) endif() endif() ############################################################################### # INSTALLATION ############################################################################### set(EXE ${CMAKE_EXECUTABLE_SUFFIX}) if(WITH_TURBOJPEG) if(ENABLE_SHARED) install(TARGETS turbojpeg EXPORT ${CMAKE_PROJECT_NAME}Targets INCLUDES DESTINATION ${CMAKE_INSTALL_INCLUDEDIR} ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR} LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR} RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR}) install(TARGETS tjbench RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR}) if(NOT CMAKE_VERSION VERSION_LESS "3.1" AND MSVC AND CMAKE_C_LINKER_SUPPORTS_PDB) install(FILES "$" DESTINATION ${CMAKE_INSTALL_BINDIR} OPTIONAL) endif() endif() if(ENABLE_STATIC) install(TARGETS turbojpeg-static EXPORT ${CMAKE_PROJECT_NAME}Targets INCLUDES DESTINATION ${CMAKE_INSTALL_INCLUDEDIR} ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR}) if(NOT ENABLE_SHARED) if(GENERATOR_IS_MULTI_CONFIG) set(DIR "${CMAKE_CURRENT_BINARY_DIR}/\${CMAKE_INSTALL_CONFIG_NAME}") else() set(DIR ${CMAKE_CURRENT_BINARY_DIR}) endif() install(PROGRAMS ${DIR}/tjbench-static${EXE} DESTINATION ${CMAKE_INSTALL_BINDIR} RENAME tjbench${EXE}) endif() endif() install(FILES ${CMAKE_CURRENT_SOURCE_DIR}/turbojpeg.h DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}) endif() if(ENABLE_STATIC) install(TARGETS jpeg-static EXPORT ${CMAKE_PROJECT_NAME}Targets INCLUDES DESTINATION ${CMAKE_INSTALL_INCLUDEDIR} ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR}) if(NOT ENABLE_SHARED) if(GENERATOR_IS_MULTI_CONFIG) set(DIR "${CMAKE_CURRENT_BINARY_DIR}/\${CMAKE_INSTALL_CONFIG_NAME}") else() set(DIR ${CMAKE_CURRENT_BINARY_DIR}) endif() install(PROGRAMS ${DIR}/cjpeg-static${EXE} DESTINATION ${CMAKE_INSTALL_BINDIR} RENAME cjpeg${EXE}) install(PROGRAMS ${DIR}/djpeg-static${EXE} DESTINATION ${CMAKE_INSTALL_BINDIR} RENAME djpeg${EXE}) install(PROGRAMS ${DIR}/jpegtran-static${EXE} DESTINATION ${CMAKE_INSTALL_BINDIR} RENAME jpegtran${EXE}) endif() endif() install(TARGETS rdjpgcom wrjpgcom RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR}) install(FILES ${CMAKE_CURRENT_SOURCE_DIR}/README.ijg ${CMAKE_CURRENT_SOURCE_DIR}/README.md ${CMAKE_CURRENT_SOURCE_DIR}/example.txt ${CMAKE_CURRENT_SOURCE_DIR}/tjexample.c ${CMAKE_CURRENT_SOURCE_DIR}/libjpeg.txt ${CMAKE_CURRENT_SOURCE_DIR}/structure.txt ${CMAKE_CURRENT_SOURCE_DIR}/usage.txt ${CMAKE_CURRENT_SOURCE_DIR}/wizard.txt ${CMAKE_CURRENT_SOURCE_DIR}/LICENSE.md DESTINATION ${CMAKE_INSTALL_DOCDIR}) if(WITH_JAVA) install(FILES ${CMAKE_CURRENT_SOURCE_DIR}/java/TJExample.java DESTINATION ${CMAKE_INSTALL_DOCDIR}) endif() if(UNIX OR MINGW) install(FILES ${CMAKE_CURRENT_SOURCE_DIR}/cjpeg.1 ${CMAKE_CURRENT_SOURCE_DIR}/djpeg.1 ${CMAKE_CURRENT_SOURCE_DIR}/jpegtran.1 ${CMAKE_CURRENT_SOURCE_DIR}/rdjpgcom.1 ${CMAKE_CURRENT_SOURCE_DIR}/wrjpgcom.1 DESTINATION ${CMAKE_INSTALL_MANDIR}/man1) endif() install(FILES ${CMAKE_CURRENT_BINARY_DIR}/pkgscripts/libjpeg.pc DESTINATION ${CMAKE_INSTALL_LIBDIR}/pkgconfig) if(WITH_TURBOJPEG) install(FILES ${CMAKE_CURRENT_BINARY_DIR}/pkgscripts/libturbojpeg.pc DESTINATION ${CMAKE_INSTALL_LIBDIR}/pkgconfig) endif() install(FILES ${CMAKE_CURRENT_BINARY_DIR}/pkgscripts/${CMAKE_PROJECT_NAME}Config.cmake ${CMAKE_CURRENT_BINARY_DIR}/pkgscripts/${CMAKE_PROJECT_NAME}ConfigVersion.cmake DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/${CMAKE_PROJECT_NAME}) install(EXPORT ${CMAKE_PROJECT_NAME}Targets NAMESPACE ${CMAKE_PROJECT_NAME}:: DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/${CMAKE_PROJECT_NAME}) install(FILES ${CMAKE_CURRENT_BINARY_DIR}/jconfig.h ${CMAKE_CURRENT_SOURCE_DIR}/jerror.h ${CMAKE_CURRENT_SOURCE_DIR}/jmorecfg.h ${CMAKE_CURRENT_SOURCE_DIR}/jpeglib.h DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}) include(cmakescripts/BuildPackages.cmake) configure_file("${CMAKE_CURRENT_SOURCE_DIR}/cmakescripts/cmake_uninstall.cmake.in" "cmake_uninstall.cmake" IMMEDIATE @ONLY) add_custom_target(uninstall COMMAND ${CMAKE_COMMAND} -P cmake_uninstall.cmake) libjpeg-turbo-2.1.5/ChangeLog.md000066400000000000000000002714651436506551100164620ustar00rootroot000000000000002.1.5 ===== ### Significant changes relative to 2.1.4: 1. Fixed issues in the build system whereby, when using the Ninja Multi-Config CMake generator, a static build of libjpeg-turbo (a build in which `ENABLE_SHARED` is `0`) could not be installed, a Windows installer could not be built, and the Java regression tests failed. 2. Fixed a regression introduced by 2.0 beta1[15] that caused a buffer overrun in the progressive Huffman encoder when attempting to transform a specially-crafted malformed 12-bit-per-component JPEG image into a progressive 12-bit-per-component JPEG image using a 12-bit-per-component build of libjpeg-turbo (`-DWITH_12BIT=1`.) Given that the buffer overrun was fully contained within the progressive Huffman encoder structure and did not cause a segfault or other user-visible errant behavior, given that the lossless transformer (unlike the decompressor) is not generally exposed to arbitrary data exploits, and given that 12-bit-per-component builds of libjpeg-turbo are uncommon, this issue did not likely pose a security risk. 3. Fixed an issue whereby, when using a 12-bit-per-component build of libjpeg-turbo (`-DWITH_12BIT=1`), passing samples with values greater than 4095 or less than 0 to `jpeg_write_scanlines()` caused a buffer overrun or underrun in the RGB-to-YCbCr color converter. 4. Fixed a floating point exception that occurred when attempting to use the jpegtran `-drop` and `-trim` options to losslessly transform a specially-crafted malformed JPEG image. 5. Fixed an issue in `tjBufSizeYUV2()` whereby it returned a bogus result, rather than throwing an error, if the `align` parameter was not a power of 2. Fixed a similar issue in `tjCompressFromYUV()` whereby it generated a corrupt JPEG image in certain cases, rather than throwing an error, if the `align` parameter was not a power of 2. 6. Fixed an issue whereby `tjDecompressToYUV2()`, which is a wrapper for `tjDecompressToYUVPlanes()`, used the desired YUV image dimensions rather than the actual scaled image dimensions when computing the plane pointers and strides to pass to `tjDecompressToYUVPlanes()`. This caused a buffer overrun and subsequent segfault if the desired image dimensions exceeded the scaled image dimensions. 7. Fixed an issue whereby, when decompressing a 12-bit-per-component JPEG image (`-DWITH_12BIT=1`) using an alpha-enabled output color space such as `JCS_EXT_RGBA`, the alpha channel was set to 255 rather than 4095. 8. Fixed an issue whereby the Java version of TJBench did not accept a range of quality values. 9. Fixed an issue whereby, when `-progressive` was passed to TJBench, the JPEG input image was not transformed into a progressive JPEG image prior to decompression. 2.1.4 ===== ### Significant changes relative to 2.1.3: 1. Fixed a regression introduced in 2.1.3 that caused build failures with Visual Studio 2010. 2. The `tjDecompressHeader3()` function in the TurboJPEG C API and the `TJDecompressor.setSourceImage()` method in the TurboJPEG Java API now accept "abbreviated table specification" (AKA "tables-only") datastreams, which can be used to prime the decompressor with quantization and Huffman tables that can be used when decompressing subsequent "abbreviated image" datastreams. 3. libjpeg-turbo now performs run-time detection of AltiVec instructions on OS X/PowerPC systems if AltiVec instructions are not enabled at compile time. This allows both AltiVec-equipped (PowerPC G4 and G5) and non-AltiVec-equipped (PowerPC G3) CPUs to be supported using the same build of libjpeg-turbo. 4. Fixed an error ("Bogus virtual array access") that occurred when attempting to decompress a progressive JPEG image with a height less than or equal to one iMCU (8 * the vertical sampling factor) using buffered-image mode with interblock smoothing enabled. This was a regression introduced by 2.1 beta1[6(b)]. 5. Fixed two issues that prevented partial image decompression from working properly with buffered-image mode: - Attempting to call `jpeg_crop_scanline()` after `jpeg_start_decompress()` but before `jpeg_start_output()` resulted in an error ("Improper call to JPEG library in state 207".) - Attempting to use `jpeg_skip_scanlines()` resulted in an error ("Bogus virtual array access") under certain circumstances. 2.1.3 ===== ### Significant changes relative to 2.1.2: 1. Fixed a regression introduced by 2.0 beta1[7] whereby cjpeg compressed PGM input files into full-color JPEG images unless the `-grayscale` option was used. 2. cjpeg now automatically compresses GIF and 8-bit BMP input files into grayscale JPEG images if the input files contain only shades of gray. 3. The build system now enables the intrinsics implementation of the AArch64 (Arm 64-bit) Neon SIMD extensions by default when using GCC 12 or later. 4. Fixed a segfault that occurred while decompressing a 4:2:0 JPEG image using the merged (non-fancy) upsampling algorithms (that is, with `cinfo.do_fancy_upsampling` set to `FALSE`) along with `jpeg_crop_scanline()`. Specifically, the segfault occurred if the number of bytes remaining in the output buffer was less than the number of bytes required to represent one uncropped scanline of the output image. For that reason, the issue could only be reproduced using the libjpeg API, not using djpeg. 2.1.2 ===== ### Significant changes relative to 2.1.1: 1. Fixed a regression introduced by 2.1 beta1[13] that caused the remaining GAS implementations of AArch64 (Arm 64-bit) Neon SIMD functions (which are used by default with GCC for performance reasons) to be placed in the `.rodata` section rather than in the `.text` section. This caused the GNU linker to automatically place the `.rodata` section in an executable segment, which prevented libjpeg-turbo from working properly with other linkers and also represented a potential security risk. 2. Fixed an issue whereby the `tjTransform()` function incorrectly computed the MCU block size for 4:4:4 JPEG images with non-unary sampling factors and thus unduly rejected some cropping regions, even though those regions aligned with 8x8 MCU block boundaries. 3. Fixed a regression introduced by 2.1 beta1[13] that caused the build system to enable the Arm Neon SIMD extensions when targetting Armv6 and other legacy architectures that do not support Neon instructions. 4. libjpeg-turbo now performs run-time detection of AltiVec instructions on FreeBSD/PowerPC systems if AltiVec instructions are not enabled at compile time. This allows both AltiVec-equipped and non-AltiVec-equipped CPUs to be supported using the same build of libjpeg-turbo. 5. cjpeg now accepts a `-strict` argument similar to that of djpeg and jpegtran, which causes the compressor to abort if an LZW-compressed GIF input image contains incomplete or corrupt image data. 2.1.1 ===== ### Significant changes relative to 2.1.0: 1. Fixed a regression introduced in 2.1.0 that caused build failures with non-GCC-compatible compilers for Un*x/Arm platforms. 2. Fixed a regression introduced by 2.1 beta1[13] that prevented the Arm 32-bit (AArch32) Neon SIMD extensions from building unless the C compiler flags included `-mfloat-abi=softfp` or `-mfloat-abi=hard`. 3. Fixed an issue in the AArch32 Neon SIMD Huffman encoder whereby reliance on undefined C compiler behavior led to crashes ("SIGBUS: illegal alignment") on Android systems when running AArch32/Thumb builds of libjpeg-turbo built with recent versions of Clang. 4. Added a command-line argument (`-copy icc`) to jpegtran that causes it to copy only the ICC profile markers from the source file and discard any other metadata. 5. libjpeg-turbo should now build and run on CHERI-enabled architectures, which use capability pointers that are larger than the size of `size_t`. 6. Fixed a regression (CVE-2021-37972) introduced by 2.1 beta1[5] that caused a segfault in the 64-bit SSE2 Huffman encoder when attempting to losslessly transform a specially-crafted malformed JPEG image. 2.1.0 ===== ### Significant changes relative to 2.1 beta1: 1. Fixed a regression introduced by 2.1 beta1[6(b)] whereby attempting to decompress certain progressive JPEG images with one or more component planes of width 8 or less caused a buffer overrun. 2. Fixed a regression introduced by 2.1 beta1[6(b)] whereby attempting to decompress a specially-crafted malformed progressive JPEG image caused the block smoothing algorithm to read from uninitialized memory. 3. Fixed an issue in the Arm Neon SIMD Huffman encoders that caused the encoders to generate incorrect results when using the Clang compiler with Visual Studio. 4. Fixed a floating point exception (CVE-2021-20205) that occurred when attempting to compress a specially-crafted malformed GIF image with a specified image width of 0 using cjpeg. 5. Fixed a regression introduced by 2.0 beta1[15] whereby attempting to generate a progressive JPEG image on an SSE2-capable CPU using a scan script containing one or more scans with lengths divisible by 32 and non-zero successive approximation low bit positions would, under certain circumstances, result in an error ("Missing Huffman code table entry") and an invalid JPEG image. 6. Introduced a new flag (`TJFLAG_LIMITSCANS` in the TurboJPEG C API and `TJ.FLAG_LIMIT_SCANS` in the TurboJPEG Java API) and a corresponding TJBench command-line argument (`-limitscans`) that causes the TurboJPEG decompression and transform functions/operations to return/throw an error if a progressive JPEG image contains an unreasonably large number of scans. This allows applications that use the TurboJPEG API to guard against an exploit of the progressive JPEG format described in the report ["Two Issues with the JPEG Standard"](https://libjpeg-turbo.org/pmwiki/uploads/About/TwoIssueswiththeJPEGStandard.pdf). 7. The PPM reader now throws an error, rather than segfaulting (due to a buffer overrun, CVE-2021-46822) or generating incorrect pixels, if an application attempts to use the `tjLoadImage()` function to load a 16-bit binary PPM file (a binary PPM file with a maximum value greater than 255) into a grayscale image buffer or to load a 16-bit binary PGM file into an RGB image buffer. 8. Fixed an issue in the PPM reader that caused incorrect pixels to be generated when using the `tjLoadImage()` function to load a 16-bit binary PPM file into an extended RGB image buffer. 9. Fixed an issue whereby, if a JPEG buffer was automatically re-allocated by one of the TurboJPEG compression or transform functions and an error subsequently occurred during compression or transformation, the JPEG buffer pointer passed by the application was not updated when the function returned. 2.0.90 (2.1 beta1) ================== ### Significant changes relative to 2.0.6: 1. The build system, x86-64 SIMD extensions, and accelerated Huffman codec now support the x32 ABI on Linux, which allows for using x86-64 instructions with 32-bit pointers. The x32 ABI is generally enabled by adding `-mx32` to the compiler flags. Caveats: - CMake 3.9.0 or later is required in order for the build system to automatically detect an x32 build. - Java does not support the x32 ABI, and thus the TurboJPEG Java API will automatically be disabled with x32 builds. 2. Added Loongson MMI SIMD implementations of the RGB-to-grayscale, 4:2:2 fancy chroma upsampling, 4:2:2 and 4:2:0 merged chroma upsampling/color conversion, and fast integer DCT/IDCT algorithms. Relative to libjpeg-turbo 2.0.x, this speeds up: - the compression of RGB source images into grayscale JPEG images by approximately 20% - the decompression of 4:2:2 JPEG images by approximately 40-60% when using fancy upsampling - the decompression of 4:2:2 and 4:2:0 JPEG images by approximately 15-20% when using merged upsampling - the compression of RGB source images by approximately 30-45% when using the fast integer DCT - the decompression of JPEG images into RGB destination images by approximately 2x when using the fast integer IDCT The overall decompression speedup for RGB images is now approximately 2.3-3.7x (compared to 2-3.5x with libjpeg-turbo 2.0.x.) 3. 32-bit (Armv7 or Armv7s) iOS builds of libjpeg-turbo are no longer supported, and the libjpeg-turbo build system can no longer be used to package such builds. 32-bit iOS apps cannot run in iOS 11 and later, and the App Store no longer allows them. 4. 32-bit (i386) OS X/macOS builds of libjpeg-turbo are no longer supported, and the libjpeg-turbo build system can no longer be used to package such builds. 32-bit Mac applications cannot run in macOS 10.15 "Catalina" and later, and the App Store no longer allows them. 5. The SSE2 (x86 SIMD) and C Huffman encoding algorithms have been significantly optimized, resulting in a measured average overall compression speedup of 12-28% for 64-bit code and 22-52% for 32-bit code on various Intel and AMD CPUs, as well as a measured average overall compression speedup of 0-23% on platforms that do not have a SIMD-accelerated Huffman encoding implementation. 6. The block smoothing algorithm that is applied by default when decompressing progressive Huffman-encoded JPEG images has been improved in the following ways: - The algorithm is now more fault-tolerant. Previously, if a particular scan was incomplete, then the smoothing parameters for the incomplete scan would be applied to the entire output image, including the parts of the image that were generated by the prior (complete) scan. Visually, this had the effect of removing block smoothing from lower-frequency scans if they were followed by an incomplete higher-frequency scan. libjpeg-turbo now applies block smoothing parameters to each iMCU row based on which scan generated the pixels in that row, rather than always using the block smoothing parameters for the most recent scan. - When applying block smoothing to DC scans, a Gaussian-like kernel with a 5x5 window is used to reduce the "blocky" appearance. 7. Added SIMD acceleration for progressive Huffman encoding on Arm platforms. This speeds up the compression of full-color progressive JPEGs by about 30-40% on average (relative to libjpeg-turbo 2.0.x) when using modern Arm CPUs. 8. Added configure-time and run-time auto-detection of Loongson MMI SIMD instructions, so that the Loongson MMI SIMD extensions can be included in any MIPS64 libjpeg-turbo build. 9. Added fault tolerance features to djpeg and jpegtran, mainly to demonstrate methods by which applications can guard against the exploits of the JPEG format described in the report ["Two Issues with the JPEG Standard"](https://libjpeg-turbo.org/pmwiki/uploads/About/TwoIssueswiththeJPEGStandard.pdf). - Both programs now accept a `-maxscans` argument, which can be used to limit the number of allowable scans in the input file. - Both programs now accept a `-strict` argument, which can be used to treat all warnings as fatal. 10. CMake package config files are now included for both the libjpeg and TurboJPEG API libraries. This facilitates using libjpeg-turbo with CMake's `find_package()` function. For example: find_package(libjpeg-turbo CONFIG REQUIRED) add_executable(libjpeg_program libjpeg_program.c) target_link_libraries(libjpeg_program PUBLIC libjpeg-turbo::jpeg) add_executable(libjpeg_program_static libjpeg_program.c) target_link_libraries(libjpeg_program_static PUBLIC libjpeg-turbo::jpeg-static) add_executable(turbojpeg_program turbojpeg_program.c) target_link_libraries(turbojpeg_program PUBLIC libjpeg-turbo::turbojpeg) add_executable(turbojpeg_program_static turbojpeg_program.c) target_link_libraries(turbojpeg_program_static PUBLIC libjpeg-turbo::turbojpeg-static) 11. Since the Unisys LZW patent has long expired, cjpeg and djpeg can now read/write both LZW-compressed and uncompressed GIF files (feature ported from jpeg-6a and jpeg-9d.) 12. jpegtran now includes the `-wipe` and `-drop` options from jpeg-9a and jpeg-9d, as well as the ability to expand the image size using the `-crop` option. Refer to jpegtran.1 or usage.txt for more details. 13. Added a complete intrinsics implementation of the Arm Neon SIMD extensions, thus providing SIMD acceleration on Arm platforms for all of the algorithms that are SIMD-accelerated on x86 platforms. This new implementation is significantly faster in some cases than the old GAS implementation-- depending on the algorithms used, the type of CPU core, and the compiler. GCC, as of this writing, does not provide a full or optimal set of Neon intrinsics, so for performance reasons, the default when building libjpeg-turbo with GCC is to continue using the GAS implementation of the following algorithms: - 32-bit RGB-to-YCbCr color conversion - 32-bit fast and accurate inverse DCT - 64-bit RGB-to-YCbCr and YCbCr-to-RGB color conversion - 64-bit accurate forward and inverse DCT - 64-bit Huffman encoding A new CMake variable (`NEON_INTRINSICS`) can be used to override this default. Since the new intrinsics implementation includes SIMD acceleration for merged upsampling/color conversion, 1.5.1[5] is no longer necessary and has been reverted. 14. The Arm Neon SIMD extensions can now be built using Visual Studio. 15. The build system can now be used to generate a universal x86-64 + Armv8 libjpeg-turbo SDK package for both iOS and macOS. 2.0.6 ===== ### Significant changes relative to 2.0.5: 1. Fixed "using JNI after critical get" errors that occurred on Android platforms when using any of the YUV encoding/compression/decompression/decoding methods in the TurboJPEG Java API. 2. Fixed or worked around multiple issues with `jpeg_skip_scanlines()`: - Fixed segfaults (CVE-2020-35538) or "Corrupt JPEG data: premature end of data segment" errors in `jpeg_skip_scanlines()` that occurred when decompressing 4:2:2 or 4:2:0 JPEG images using merged (non-fancy) upsampling/color conversion (that is, when setting `cinfo.do_fancy_upsampling` to `FALSE`.) 2.0.0[6] was a similar fix, but it did not cover all cases. - `jpeg_skip_scanlines()` now throws an error if two-pass color quantization is enabled. Two-pass color quantization never worked properly with `jpeg_skip_scanlines()`, and the issues could not readily be fixed. - Fixed an issue whereby `jpeg_skip_scanlines()` always returned 0 when skipping past the end of an image. 3. The Arm 64-bit (Armv8) Neon SIMD extensions can now be built using MinGW toolchains targetting Arm64 (AArch64) Windows binaries. 4. Fixed unexpected visual artifacts that occurred when using `jpeg_crop_scanline()` and interblock smoothing while decompressing only the DC scan of a progressive JPEG image. 5. Fixed an issue whereby libjpeg-turbo would not build if 12-bit-per-component JPEG support (`WITH_12BIT`) was enabled along with libjpeg v7 or libjpeg v8 API/ABI emulation (`WITH_JPEG7` or `WITH_JPEG8`.) 2.0.5 ===== ### Significant changes relative to 2.0.4: 1. Worked around issues in the MIPS DSPr2 SIMD extensions that caused failures in the libjpeg-turbo regression tests. Specifically, the `jsimd_h2v1_downsample_dspr2()` and `jsimd_h2v2_downsample_dspr2()` functions in the MIPS DSPr2 SIMD extensions are now disabled until/unless they can be fixed, and other functions that are incompatible with big endian MIPS CPUs are disabled when building libjpeg-turbo for such CPUs. 2. Fixed an oversight in the `TJCompressor.compress(int)` method in the TurboJPEG Java API that caused an error ("java.lang.IllegalStateException: No source image is associated with this instance") when attempting to use that method to compress a YUV image. 3. Fixed an issue (CVE-2020-13790) in the PPM reader that caused a buffer overrun in cjpeg, TJBench, or the `tjLoadImage()` function if one of the values in a binary PPM/PGM input file exceeded the maximum value defined in the file's header and that maximum value was less than 255. libjpeg-turbo 1.5.0 already included a similar fix for binary PPM/PGM files with maximum values greater than 255. 4. The TurboJPEG API library's global error handler, which is used in functions such as `tjBufSize()` and `tjLoadImage()` that do not require a TurboJPEG instance handle, is now thread-safe on platforms that support thread-local storage. 2.0.4 ===== ### Significant changes relative to 2.0.3: 1. Fixed a regression in the Windows packaging system (introduced by 2.0 beta1[2]) whereby, if both the 64-bit libjpeg-turbo SDK for GCC and the 64-bit libjpeg-turbo SDK for Visual C++ were installed on the same system, only one of them could be uninstalled. 2. Fixed a signed integer overflow and subsequent segfault that occurred when attempting to decompress images with more than 715827882 pixels using the 64-bit C version of TJBench. 3. Fixed out-of-bounds write in `tjDecompressToYUV2()` and `tjDecompressToYUVPlanes()` (sometimes manifesting as a double free) that occurred when attempting to decompress grayscale JPEG images that were compressed with a sampling factor other than 1 (for instance, with `cjpeg -grayscale -sample 2x2`). 4. Fixed a regression introduced by 2.0.2[5] that caused the TurboJPEG API to incorrectly identify some JPEG images with unusual sampling factors as 4:4:4 JPEG images. This was known to cause a buffer overflow when attempting to decompress some such images using `tjDecompressToYUV2()` or `tjDecompressToYUVPlanes()`. 5. Fixed an issue (CVE-2020-17541), detected by ASan, whereby attempting to losslessly transform a specially-crafted malformed JPEG image containing an extremely-high-frequency coefficient block (junk image data that could never be generated by a legitimate JPEG compressor) could cause the Huffman encoder's local buffer to be overrun. (Refer to 1.4.0[9] and 1.4beta1[15].) Given that the buffer overrun was fully contained within the stack and did not cause a segfault or other user-visible errant behavior, and given that the lossless transformer (unlike the decompressor) is not generally exposed to arbitrary data exploits, this issue did not likely pose a security risk. 6. The Arm 64-bit (Armv8) Neon SIMD assembly code now stores constants in a separate read-only data section rather than in the text section, to support execute-only memory layouts. 2.0.3 ===== ### Significant changes relative to 2.0.2: 1. Fixed "using JNI after critical get" errors that occurred on Android platforms when passing invalid arguments to certain methods in the TurboJPEG Java API. 2. Fixed a regression in the SIMD feature detection code, introduced by the AVX2 SIMD extensions (2.0 beta1[1]), that was known to cause an illegal instruction exception, in rare cases, on CPUs that lack support for CPUID leaf 07H (or on which the maximum CPUID leaf has been limited by way of a BIOS setting.) 3. The 4:4:0 (h1v2) fancy (smooth) chroma upsampling algorithm in the decompressor now uses a similar bias pattern to that of the 4:2:2 (h2v1) fancy chroma upsampling algorithm, rounding up or down the upsampled result for alternate pixels rather than always rounding down. This ensures that, regardless of whether a 4:2:2 JPEG image is rotated or transposed prior to decompression (in the frequency domain) or after decompression (in the spatial domain), the final image will be similar. 4. Fixed an integer overflow and subsequent segfault that occurred when attempting to compress or decompress images with more than 1 billion pixels using the TurboJPEG API. 5. Fixed a regression introduced by 2.0 beta1[15] whereby attempting to generate a progressive JPEG image on an SSE2-capable CPU using a scan script containing one or more scans with lengths divisible by 16 would result in an error ("Missing Huffman code table entry") and an invalid JPEG image. 6. Fixed an issue whereby `tjDecodeYUV()` and `tjDecodeYUVPlanes()` would throw an error ("Invalid progressive parameters") or a warning ("Inconsistent progression sequence") if passed a TurboJPEG instance that was previously used to decompress a progressive JPEG image. 2.0.2 ===== ### Significant changes relative to 2.0.1: 1. Fixed a regression introduced by 2.0.1[5] that prevented a runtime search path (rpath) from being embedded in the libjpeg-turbo shared libraries and executables for macOS and iOS. This caused a fatal error of the form "dyld: Library not loaded" when attempting to use one of the executables, unless `DYLD_LIBRARY_PATH` was explicitly set to the location of the libjpeg-turbo shared libraries. 2. Fixed an integer overflow and subsequent segfault (CVE-2018-20330) that occurred when attempting to load a BMP file with more than 1 billion pixels using the `tjLoadImage()` function. 3. Fixed a buffer overrun (CVE-2018-19664) that occurred when attempting to decompress a specially-crafted malformed JPEG image to a 256-color BMP using djpeg. 4. Fixed a floating point exception that occurred when attempting to decompress a specially-crafted malformed JPEG image with a specified image width or height of 0 using the C version of TJBench. 5. The TurboJPEG API will now decompress 4:4:4 JPEG images with 2x1, 1x2, 3x1, or 1x3 luminance and chrominance sampling factors. This is a non-standard way of specifying 1x subsampling (normally 4:4:4 JPEGs have 1x1 luminance and chrominance sampling factors), but the JPEG format and the libjpeg API both allow it. 6. Fixed a regression introduced by 2.0 beta1[7] that caused djpeg to generate incorrect PPM images when used with the `-colors` option. 7. Fixed an issue whereby a static build of libjpeg-turbo (a build in which `ENABLE_SHARED` is `0`) could not be installed using the Visual Studio IDE. 8. Fixed a severe performance issue in the Loongson MMI SIMD extensions that occurred when compressing RGB images whose image rows were not 64-bit-aligned. 2.0.1 ===== ### Significant changes relative to 2.0.0: 1. Fixed a regression introduced with the new CMake-based Un*x build system, whereby jconfig.h could cause compiler warnings of the form `"HAVE_*_H" redefined` if it was included by downstream Autotools-based projects that used `AC_CHECK_HEADERS()` to check for the existence of locale.h, stddef.h, or stdlib.h. 2. The `jsimd_quantize_float_dspr2()` and `jsimd_convsamp_float_dspr2()` functions in the MIPS DSPr2 SIMD extensions are now disabled at compile time if the soft float ABI is enabled. Those functions use instructions that are incompatible with the soft float ABI. 3. Fixed a regression in the SIMD feature detection code, introduced by the AVX2 SIMD extensions (2.0 beta1[1]), that caused libjpeg-turbo to crash on Windows 7 if Service Pack 1 was not installed. 4. Fixed out-of-bounds read in cjpeg that occurred when attempting to compress a specially-crafted malformed color-index (8-bit-per-sample) Targa file in which some of the samples (color indices) exceeded the bounds of the Targa file's color table. 5. Fixed an issue whereby installing a fully static build of libjpeg-turbo (a build in which `CFLAGS` contains `-static` and `ENABLE_SHARED` is `0`) would fail with "No valid ELF RPATH or RUNPATH entry exists in the file." 2.0.0 ===== ### Significant changes relative to 2.0 beta1: 1. The TurboJPEG API can now decompress CMYK JPEG images that have subsampled M and Y components (not to be confused with YCCK JPEG images, in which the C/M/Y components have been transformed into luma and chroma.) Previously, an error was generated ("Could not determine subsampling type for JPEG image") when such an image was passed to `tjDecompressHeader3()`, `tjTransform()`, `tjDecompressToYUVPlanes()`, `tjDecompressToYUV2()`, or the equivalent Java methods. 2. Fixed an issue (CVE-2018-11813) whereby a specially-crafted malformed input file (specifically, a file with a valid Targa header but incomplete pixel data) would cause cjpeg to generate a JPEG file that was potentially thousands of times larger than the input file. The Targa reader in cjpeg was not properly detecting that the end of the input file had been reached prematurely, so after all valid pixels had been read from the input, the reader injected dummy pixels with values of 255 into the JPEG compressor until the number of pixels specified in the Targa header had been compressed. The Targa reader in cjpeg now behaves like the PPM reader and aborts compression if the end of the input file is reached prematurely. Because this issue only affected cjpeg and not the underlying library, and because it did not involve any out-of-bounds reads or other exploitable behaviors, it was not believed to represent a security threat. 3. Fixed an issue whereby the `tjLoadImage()` and `tjSaveImage()` functions would produce a "Bogus message code" error message if the underlying bitmap and PPM readers/writers threw an error that was specific to the readers/writers (as opposed to a general libjpeg API error.) 4. Fixed an issue (CVE-2018-1152) whereby a specially-crafted malformed BMP file, one in which the header specified an image width of 1073741824 pixels, would trigger a floating point exception (division by zero) in the `tjLoadImage()` function when attempting to load the BMP file into a 4-component image buffer. 5. Fixed an issue whereby certain combinations of calls to `jpeg_skip_scanlines()` and `jpeg_read_scanlines()` could trigger an infinite loop when decompressing progressive JPEG images that use vertical chroma subsampling (for instance, 4:2:0 or 4:4:0.) 6. Fixed a segfault in `jpeg_skip_scanlines()` that occurred when decompressing a 4:2:2 or 4:2:0 JPEG image using the merged (non-fancy) upsampling algorithms (that is, when setting `cinfo.do_fancy_upsampling` to `FALSE`.) 7. The new CMake-based build system will now disable the MIPS DSPr2 SIMD extensions if it detects that the compiler does not support DSPr2 instructions. 8. Fixed out-of-bounds read in cjpeg (CVE-2018-14498) that occurred when attempting to compress a specially-crafted malformed color-index (8-bit-per-sample) BMP file in which some of the samples (color indices) exceeded the bounds of the BMP file's color table. 9. Fixed a signed integer overflow in the progressive Huffman decoder, detected by the Clang and GCC undefined behavior sanitizers, that could be triggered by attempting to decompress a specially-crafted malformed JPEG image. This issue did not pose a security threat, but removing the warning made it easier to detect actual security issues, should they arise in the future. 1.5.90 (2.0 beta1) ================== ### Significant changes relative to 1.5.3: 1. Added AVX2 SIMD implementations of the colorspace conversion, chroma downsampling and upsampling, integer quantization and sample conversion, and accurate integer DCT/IDCT algorithms. When using the accurate integer DCT/IDCT algorithms on AVX2-equipped CPUs, the compression of RGB images is approximately 13-36% (avg. 22%) faster (relative to libjpeg-turbo 1.5.x) with 64-bit code and 11-21% (avg. 17%) faster with 32-bit code, and the decompression of RGB images is approximately 9-35% (avg. 17%) faster with 64-bit code and 7-17% (avg. 12%) faster with 32-bit code. (As tested on a 3 GHz Intel Core i7. Actual mileage may vary.) 2. Overhauled the build system to use CMake on all platforms, and removed the autotools-based build system. This decision resulted from extensive discussions within the libjpeg-turbo community. libjpeg-turbo traditionally used CMake only for Windows builds, but there was an increasing amount of demand to extend CMake support to other platforms. However, because of the unique nature of our code base (the need to support different assemblers on each platform, the need for Java support, etc.), providing dual build systems as other OSS imaging libraries do (including libpng and libtiff) would have created a maintenance burden. The use of CMake greatly simplifies some aspects of our build system, owing to CMake's built-in support for various assemblers, Java, and unit testing, as well as generally fewer quirks that have to be worked around in order to implement our packaging system. Eliminating autotools puts our project slightly at odds with the traditional practices of the OSS community, since most "system libraries" tend to be built with autotools, but it is believed that the benefits of this move outweigh the risks. In addition to providing a unified build environment, switching to CMake allows for the use of various build tools and IDEs that aren't supported under autotools, including XCode, Ninja, and Eclipse. It also eliminates the need to install autotools via MacPorts/Homebrew on OS X and allows libjpeg-turbo to be configured without the use of a terminal/command prompt. Extensive testing was conducted to ensure that all features provided by the autotools-based build system are provided by the new build system. 3. The libjpeg API in this version of libjpeg-turbo now includes two additional functions, `jpeg_read_icc_profile()` and `jpeg_write_icc_profile()`, that can be used to extract ICC profile data from a JPEG file while decompressing or to embed ICC profile data in a JPEG file while compressing or transforming. This eliminates the need for downstream projects, such as color management libraries and browsers, to include their own glueware for accomplishing this. 4. Improved error handling in the TurboJPEG API library: - Introduced a new function (`tjGetErrorStr2()`) in the TurboJPEG C API that allows compression/decompression/transform error messages to be retrieved in a thread-safe manner. Retrieving error messages from global functions, such as `tjInitCompress()` or `tjBufSize()`, is still thread-unsafe, but since those functions will only throw errors if passed an invalid argument or if a memory allocation failure occurs, thread safety is not as much of a concern. - Introduced a new function (`tjGetErrorCode()`) in the TurboJPEG C API and a new method (`TJException.getErrorCode()`) in the TurboJPEG Java API that can be used to determine the severity of the last compression/decompression/transform error. This allows applications to choose whether to ignore warnings (non-fatal errors) from the underlying libjpeg API or to treat them as fatal. - Introduced a new flag (`TJFLAG_STOPONWARNING` in the TurboJPEG C API and `TJ.FLAG_STOPONWARNING` in the TurboJPEG Java API) that causes the library to immediately halt a compression/decompression/transform operation if it encounters a warning from the underlying libjpeg API (the default behavior is to allow the operation to complete unless a fatal error is encountered.) 5. Introduced a new flag in the TurboJPEG C and Java APIs (`TJFLAG_PROGRESSIVE` and `TJ.FLAG_PROGRESSIVE`, respectively) that causes the library to use progressive entropy coding in JPEG images generated by compression and transform operations. Additionally, a new transform option (`TJXOPT_PROGRESSIVE` in the C API and `TJTransform.OPT_PROGRESSIVE` in the Java API) has been introduced, allowing progressive entropy coding to be enabled for selected transforms in a multi-transform operation. 6. Introduced a new transform option in the TurboJPEG API (`TJXOPT_COPYNONE` in the C API and `TJTransform.OPT_COPYNONE` in the Java API) that allows the copying of markers (including EXIF and ICC profile data) to be disabled for a particular transform. 7. Added two functions to the TurboJPEG C API (`tjLoadImage()` and `tjSaveImage()`) that can be used to load/save a BMP or PPM/PGM image to/from a memory buffer with a specified pixel format and layout. These functions replace the project-private (and slow) bmp API, which was previously used by TJBench, and they also provide a convenient way for first-time users of libjpeg-turbo to quickly develop a complete JPEG compression/decompression program. 8. The TurboJPEG C API now includes a new convenience array (`tjAlphaOffset[]`) that contains the alpha component index for each pixel format (or -1 if the pixel format lacks an alpha component.) The TurboJPEG Java API now includes a new method (`TJ.getAlphaOffset()`) that returns the same value. In addition, the `tjRedOffset[]`, `tjGreenOffset[]`, and `tjBlueOffset[]` arrays-- and the corresponding `TJ.getRedOffset()`, `TJ.getGreenOffset()`, and `TJ.getBlueOffset()` methods-- now return -1 for `TJPF_GRAY`/`TJ.PF_GRAY` rather than 0. This allows programs to easily determine whether a pixel format has red, green, blue, and alpha components. 9. Added a new example (tjexample.c) that demonstrates the basic usage of the TurboJPEG C API. This example mirrors the functionality of TJExample.java. Both files are now included in the libjpeg-turbo documentation. 10. Fixed two signed integer overflows in the arithmetic decoder, detected by the Clang undefined behavior sanitizer, that could be triggered by attempting to decompress a specially-crafted malformed JPEG image. These issues did not pose a security threat, but removing the warnings makes it easier to detect actual security issues, should they arise in the future. 11. Fixed a bug in the merged 4:2:0 upsampling/dithered RGB565 color conversion algorithm that caused incorrect dithering in the output image. This algorithm now produces bitwise-identical results to the unmerged algorithms. 12. The SIMD function symbols for x86[-64]/ELF, MIPS/ELF, macOS/x86[-64] (if libjpeg-turbo is built with Yasm), and iOS/Arm[64] builds are now private. This prevents those symbols from being exposed in applications or shared libraries that link statically with libjpeg-turbo. 13. Added Loongson MMI SIMD implementations of the RGB-to-YCbCr and YCbCr-to-RGB colorspace conversion, 4:2:0 chroma downsampling, 4:2:0 fancy chroma upsampling, integer quantization, and accurate integer DCT/IDCT algorithms. When using the accurate integer DCT/IDCT, this speeds up the compression of RGB images by approximately 70-100% and the decompression of RGB images by approximately 2-3.5x. 14. Fixed a build error when building with older MinGW releases (regression caused by 1.5.1[7].) 15. Added SIMD acceleration for progressive Huffman encoding on SSE2-capable x86 and x86-64 platforms. This speeds up the compression of full-color progressive JPEGs by about 85-90% on average (relative to libjpeg-turbo 1.5.x) when using modern Intel and AMD CPUs. 1.5.3 ===== ### Significant changes relative to 1.5.2: 1. Fixed a NullPointerException in the TurboJPEG Java wrapper that occurred when using the YUVImage constructor that creates an instance backed by separate image planes and allocates memory for the image planes. 2. Fixed an issue whereby the Java version of TJUnitTest would fail when testing BufferedImage encoding/decoding on big endian systems. 3. Fixed a segfault in djpeg that would occur if an output format other than PPM/PGM was selected along with the `-crop` option. The `-crop` option now works with the GIF and Targa formats as well (unfortunately, it cannot be made to work with the BMP and RLE formats due to the fact that those output engines write scanlines in bottom-up order.) djpeg will now exit gracefully if an output format other than PPM/PGM, GIF, or Targa is selected along with the `-crop` option. 4. Fixed an issue (CVE-2017-15232) whereby `jpeg_skip_scanlines()` would segfault if color quantization was enabled. 5. TJBench (both C and Java versions) will now display usage information if any command-line argument is unrecognized. This prevents the program from silently ignoring typos. 6. Fixed an access violation in tjbench.exe (Windows) that occurred when the program was used to decompress an existing JPEG image. 7. Fixed an ArrayIndexOutOfBoundsException in the TJExample Java program that occurred when attempting to decompress a JPEG image that had been compressed with 4:1:1 chrominance subsampling. 8. Fixed an issue whereby, when using `jpeg_skip_scanlines()` to skip to the end of a single-scan (non-progressive) image, subsequent calls to `jpeg_consume_input()` would return `JPEG_SUSPENDED` rather than `JPEG_REACHED_EOI`. 9. `jpeg_crop_scanline()` now works correctly when decompressing grayscale JPEG images that were compressed with a sampling factor other than 1 (for instance, with `cjpeg -grayscale -sample 2x2`). 1.5.2 ===== ### Significant changes relative to 1.5.1: 1. Fixed a regression introduced by 1.5.1[7] that prevented libjpeg-turbo from building with Android NDK platforms prior to android-21 (5.0). 2. Fixed a regression introduced by 1.5.1[1] that prevented the MIPS DSPR2 SIMD code in libjpeg-turbo from building. 3. Fixed a regression introduced by 1.5 beta1[11] that prevented the Java version of TJBench from outputting any reference images (the `-nowrite` switch was accidentally enabled by default.) 4. libjpeg-turbo should now build and run with full AltiVec SIMD acceleration on PowerPC-based AmigaOS 4 and OpenBSD systems. 5. Fixed build and runtime errors on Windows that occurred when building libjpeg-turbo with libjpeg v7 API/ABI emulation and the in-memory source/destination managers. Due to an oversight, the `jpeg_skip_scanlines()` and `jpeg_crop_scanline()` functions were not being included in jpeg7.dll when libjpeg-turbo was built with `-DWITH_JPEG7=1` and `-DWITH_MEMSRCDST=1`. 6. Fixed "Bogus virtual array access" error that occurred when using the lossless crop feature in jpegtran or the TurboJPEG API, if libjpeg-turbo was built with libjpeg v7 API/ABI emulation. This was apparently a long-standing bug that has existed since the introduction of libjpeg v7/v8 API/ABI emulation in libjpeg-turbo v1.1. 7. The lossless transform features in jpegtran and the TurboJPEG API will now always attempt to adjust the EXIF image width and height tags if the image size changed as a result of the transform. This behavior has always existed when using libjpeg v8 API/ABI emulation. It was supposed to be available with libjpeg v7 API/ABI emulation as well but did not work properly due to a bug. Furthermore, there was never any good reason not to enable it with libjpeg v6b API/ABI emulation, since the behavior is entirely internal. Note that `-copy all` must be passed to jpegtran in order to transfer the EXIF tags from the source image to the destination image. 8. Fixed several memory leaks in the TurboJPEG API library that could occur if the library was built with certain compilers and optimization levels (known to occur with GCC 4.x and clang with `-O1` and higher but not with GCC 5.x or 6.x) and one of the underlying libjpeg API functions threw an error after a TurboJPEG API function allocated a local buffer. 9. The libjpeg-turbo memory manager will now honor the `max_memory_to_use` structure member in jpeg\_memory\_mgr, which can be set to the maximum amount of memory (in bytes) that libjpeg-turbo should use during decompression or multi-pass (including progressive) compression. This limit can also be set using the `JPEGMEM` environment variable or using the `-maxmemory` switch in cjpeg/djpeg/jpegtran (refer to the respective man pages for more details.) This has been a documented feature of libjpeg since v5, but the `malloc()`/`free()` implementation of the memory manager (jmemnobs.c) never implemented the feature. Restricting libjpeg-turbo's memory usage is useful for two reasons: it allows testers to more easily work around the 2 GB limit in libFuzzer, and it allows developers of security-sensitive applications to more easily defend against one of the progressive JPEG exploits (LJT-01-004) identified in [this report](http://www.libjpeg-turbo.org/pmwiki/uploads/About/TwoIssueswiththeJPEGStandard.pdf). 10. TJBench will now run each benchmark for 1 second prior to starting the timer, in order to improve the consistency of the results. Furthermore, the `-warmup` option is now used to specify the amount of warmup time rather than the number of warmup iterations. 11. Fixed an error (`short jump is out of range`) that occurred when assembling the 32-bit x86 SIMD extensions with NASM versions prior to 2.04. This was a regression introduced by 1.5 beta1[12]. 1.5.1 ===== ### Significant changes relative to 1.5.0: 1. Previously, the undocumented `JSIMD_FORCE*` environment variables could be used to force-enable a particular SIMD instruction set if multiple instruction sets were available on a particular platform. On x86 platforms, where CPU feature detection is bulletproof and multiple SIMD instruction sets are available, it makes sense for those environment variables to allow forcing the use of an instruction set only if that instruction set is available. However, since the ARM implementations of libjpeg-turbo can only use one SIMD instruction set, and since their feature detection code is less bulletproof (parsing /proc/cpuinfo), it makes sense for the `JSIMD_FORCENEON` environment variable to bypass the feature detection code and really force the use of NEON instructions. A new environment variable (`JSIMD_FORCEDSPR2`) was introduced in the MIPS implementation for the same reasons, and the existing `JSIMD_FORCENONE` environment variable was extended to that implementation. These environment variables provide a workaround for those attempting to test ARM and MIPS builds of libjpeg-turbo in QEMU, which passes through /proc/cpuinfo from the host system. 2. libjpeg-turbo previously assumed that AltiVec instructions were always available on PowerPC platforms, which led to "illegal instruction" errors when running on PowerPC chips that lack AltiVec support (such as the older 7xx/G3 and newer e5500 series.) libjpeg-turbo now examines /proc/cpuinfo on Linux/Android systems and enables AltiVec instructions only if the CPU supports them. It also now provides two environment variables, `JSIMD_FORCEALTIVEC` and `JSIMD_FORCENONE`, to force-enable and force-disable AltiVec instructions in environments where /proc/cpuinfo is an unreliable means of CPU feature detection (such as when running in QEMU.) On OS X, libjpeg-turbo continues to assume that AltiVec support is always available, which means that libjpeg-turbo cannot be used with G3 Macs unless you set the environment variable `JSIMD_FORCENONE` to `1`. 3. Fixed an issue whereby 64-bit ARM (AArch64) builds of libjpeg-turbo would crash when built with recent releases of the Clang/LLVM compiler. This was caused by an ABI conformance issue in some of libjpeg-turbo's 64-bit NEON SIMD routines. Those routines were incorrectly using 64-bit instructions to transfer a 32-bit JDIMENSION argument, whereas the ABI allows the upper (unused) 32 bits of a 32-bit argument's register to be undefined. The new Clang/LLVM optimizer uses load combining to transfer multiple adjacent 32-bit structure members into a single 64-bit register, and this exposed the ABI conformance issue. 4. Fancy upsampling is now supported when decompressing JPEG images that use 4:4:0 (h1v2) chroma subsampling. These images are generated when losslessly rotating or transposing JPEG images that use 4:2:2 (h2v1) chroma subsampling. The h1v2 fancy upsampling algorithm is not currently SIMD-accelerated. 5. If merged upsampling isn't SIMD-accelerated but YCbCr-to-RGB conversion is, then libjpeg-turbo will now disable merged upsampling when decompressing YCbCr JPEG images into RGB or extended RGB output images. This significantly speeds up the decompression of 4:2:0 and 4:2:2 JPEGs on ARM platforms if fancy upsampling is not used (for example, if the `-nosmooth` option to djpeg is specified.) 6. The TurboJPEG API will now decompress 4:2:2 and 4:4:0 JPEG images with 2x2 luminance sampling factors and 2x1 or 1x2 chrominance sampling factors. This is a non-standard way of specifying 2x subsampling (normally 4:2:2 JPEGs have 2x1 luminance and 1x1 chrominance sampling factors, and 4:4:0 JPEGs have 1x2 luminance and 1x1 chrominance sampling factors), but the JPEG format and the libjpeg API both allow it. 7. Fixed an unsigned integer overflow in the libjpeg memory manager, detected by the Clang undefined behavior sanitizer, that could be triggered by attempting to decompress a specially-crafted malformed JPEG image. This issue affected only 32-bit code and did not pose a security threat, but removing the warning makes it easier to detect actual security issues, should they arise in the future. 8. Fixed additional negative left shifts and other issues reported by the GCC and Clang undefined behavior sanitizers when attempting to decompress specially-crafted malformed JPEG images. None of these issues posed a security threat, but removing the warnings makes it easier to detect actual security issues, should they arise in the future. 9. Fixed an out-of-bounds array reference, introduced by 1.4.90[2] (partial image decompression) and detected by the Clang undefined behavior sanitizer, that could be triggered by a specially-crafted malformed JPEG image with more than four components. Because the out-of-bounds reference was still within the same structure, it was not known to pose a security threat, but removing the warning makes it easier to detect actual security issues, should they arise in the future. 10. Fixed another ABI conformance issue in the 64-bit ARM (AArch64) NEON SIMD code. Some of the routines were incorrectly reading and storing data below the stack pointer, which caused segfaults in certain applications under specific circumstances. 1.5.0 ===== ### Significant changes relative to 1.5 beta1: 1. Fixed an issue whereby a malformed motion-JPEG frame could cause the "fast path" of libjpeg-turbo's Huffman decoder to read from uninitialized memory. 2. Added libjpeg-turbo version and build information to the global string table of the libjpeg and TurboJPEG API libraries. This is a common practice in other infrastructure libraries, such as OpenSSL and libpng, because it makes it easy to examine an application binary and determine which version of the library the application was linked against. 3. Fixed a couple of issues in the PPM reader that would cause buffer overruns in cjpeg if one of the values in a binary PPM/PGM input file exceeded the maximum value defined in the file's header and that maximum value was greater than 255. libjpeg-turbo 1.4.2 already included a similar fix for ASCII PPM/PGM files. Note that these issues were not security bugs, since they were confined to the cjpeg program and did not affect any of the libjpeg-turbo libraries. 4. Fixed an issue whereby attempting to decompress a JPEG file with a corrupt header using the `tjDecompressToYUV2()` function would cause the function to abort without returning an error and, under certain circumstances, corrupt the stack. This only occurred if `tjDecompressToYUV2()` was called prior to calling `tjDecompressHeader3()`, or if the return value from `tjDecompressHeader3()` was ignored (both cases represent incorrect usage of the TurboJPEG API.) 5. Fixed an issue in the ARM 32-bit SIMD-accelerated Huffman encoder that prevented the code from assembling properly with clang. 6. The `jpeg_stdio_src()`, `jpeg_mem_src()`, `jpeg_stdio_dest()`, and `jpeg_mem_dest()` functions in the libjpeg API will now throw an error if a source/destination manager has already been assigned to the compress or decompress object by a different function or by the calling program. This prevents these functions from attempting to reuse a source/destination manager structure that was allocated elsewhere, because there is no way to ensure that it would be big enough to accommodate the new source/destination manager. 1.4.90 (1.5 beta1) ================== ### Significant changes relative to 1.4.2: 1. Added full SIMD acceleration for PowerPC platforms using AltiVec VMX (128-bit SIMD) instructions. Although the performance of libjpeg-turbo on PowerPC was already good, due to the increased number of registers available to the compiler vs. x86, it was still possible to speed up compression by about 3-4x and decompression by about 2-2.5x (relative to libjpeg v6b) through the use of AltiVec instructions. 2. Added two new libjpeg API functions (`jpeg_skip_scanlines()` and `jpeg_crop_scanline()`) that can be used to partially decode a JPEG image. See [libjpeg.txt](libjpeg.txt) for more details. 3. The TJCompressor and TJDecompressor classes in the TurboJPEG Java API now implement the Closeable interface, so those classes can be used with a try-with-resources statement. 4. The TurboJPEG Java classes now throw unchecked idiomatic exceptions (IllegalArgumentException, IllegalStateException) for unrecoverable errors caused by incorrect API usage, and those classes throw a new checked exception type (TJException) for errors that are passed through from the C library. 5. Source buffers for the TurboJPEG C API functions, as well as the `jpeg_mem_src()` function in the libjpeg API, are now declared as const pointers. This facilitates passing read-only buffers to those functions and ensures the caller that the source buffer will not be modified. This should not create any backward API or ABI incompatibilities with prior libjpeg-turbo releases. 6. The MIPS DSPr2 SIMD code can now be compiled to support either FR=0 or FR=1 FPUs. 7. Fixed additional negative left shifts and other issues reported by the GCC and Clang undefined behavior sanitizers. Most of these issues affected only 32-bit code, and none of them was known to pose a security threat, but removing the warnings makes it easier to detect actual security issues, should they arise in the future. 8. Removed the unnecessary `.arch` directive from the ARM64 NEON SIMD code. This directive was preventing the code from assembling using the clang integrated assembler. 9. Fixed a regression caused by 1.4.1[6] that prevented 32-bit and 64-bit libjpeg-turbo RPMs from being installed simultaneously on recent Red Hat/Fedora distributions. This was due to the addition of a macro in jconfig.h that allows the Huffman codec to determine the word size at compile time. Since that macro differs between 32-bit and 64-bit builds, this caused a conflict between the i386 and x86_64 RPMs (any differing files, other than executables, are not allowed when 32-bit and 64-bit RPMs are installed simultaneously.) Since the macro is used only internally, it has been moved into jconfigint.h. 10. The x86-64 SIMD code can now be disabled at run time by setting the `JSIMD_FORCENONE` environment variable to `1` (the other SIMD implementations already had this capability.) 11. Added a new command-line argument to TJBench (`-nowrite`) that prevents the benchmark from outputting any images. This removes any potential operating system overhead that might be caused by lazy writes to disk and thus improves the consistency of the performance measurements. 12. Added SIMD acceleration for Huffman encoding on SSE2-capable x86 and x86-64 platforms. This speeds up the compression of full-color JPEGs by about 10-15% on average (relative to libjpeg-turbo 1.4.x) when using modern Intel and AMD CPUs. Additionally, this works around an issue in the clang optimizer that prevents it (as of this writing) from achieving the same performance as GCC when compiling the C version of the Huffman encoder (). For the purposes of benchmarking or regression testing, SIMD-accelerated Huffman encoding can be disabled by setting the `JSIMD_NOHUFFENC` environment variable to `1`. 13. Added ARM 64-bit (ARMv8) NEON SIMD implementations of the commonly-used compression algorithms (including the accurate integer forward DCT and h2v2 & h2v1 downsampling algorithms, which are not accelerated in the 32-bit NEON implementation.) This speeds up the compression of full-color JPEGs by about 75% on average on a Cavium ThunderX processor and by about 2-2.5x on average on Cortex-A53 and Cortex-A57 cores. 14. Added SIMD acceleration for Huffman encoding on NEON-capable ARM 32-bit and 64-bit platforms. For 32-bit code, this speeds up the compression of full-color JPEGs by about 30% on average on a typical iOS device (iPhone 4S, Cortex-A9) and by about 6-7% on average on a typical Android device (Nexus 5X, Cortex-A53 and Cortex-A57), relative to libjpeg-turbo 1.4.x. Note that the larger speedup under iOS is due to the fact that iOS builds use LLVM, which does not optimize the C Huffman encoder as well as GCC does. For 64-bit code, NEON-accelerated Huffman encoding speeds up the compression of full-color JPEGs by about 40% on average on a typical iOS device (iPhone 5S, Apple A7) and by about 7-8% on average on a typical Android device (Nexus 5X, Cortex-A53 and Cortex-A57), in addition to the speedup described in [13] above. For the purposes of benchmarking or regression testing, SIMD-accelerated Huffman encoding can be disabled by setting the `JSIMD_NOHUFFENC` environment variable to `1`. 15. pkg-config (.pc) scripts are now included for both the libjpeg and TurboJPEG API libraries on Un*x systems. Note that if a project's build system relies on these scripts, then it will not be possible to build that project with libjpeg or with a prior version of libjpeg-turbo. 16. Optimized the ARM 64-bit (ARMv8) NEON SIMD decompression routines to improve performance on CPUs with in-order pipelines. This speeds up the decompression of full-color JPEGs by nearly 2x on average on a Cavium ThunderX processor and by about 15% on average on a Cortex-A53 core. 17. Fixed an issue in the accelerated Huffman decoder that could have caused the decoder to read past the end of the input buffer when a malformed, specially-crafted JPEG image was being decompressed. In prior versions of libjpeg-turbo, the accelerated Huffman decoder was invoked (in most cases) only if there were > 128 bytes of data in the input buffer. However, it is possible to construct a JPEG image in which a single Huffman block is over 430 bytes long, so this version of libjpeg-turbo activates the accelerated Huffman decoder only if there are > 512 bytes of data in the input buffer. 18. Fixed a memory leak in tjunittest encountered when running the program with the `-yuv` option. 1.4.2 ===== ### Significant changes relative to 1.4.1: 1. Fixed an issue whereby cjpeg would segfault if a Windows bitmap with a negative width or height was used as an input image (Windows bitmaps can have a negative height if they are stored in top-down order, but such files are rare and not supported by libjpeg-turbo.) 2. Fixed an issue whereby, under certain circumstances, libjpeg-turbo would incorrectly encode certain JPEG images when quality=100 and the fast integer forward DCT were used. This was known to cause `make test` to fail when the library was built with `-march=haswell` on x86 systems. 3. Fixed an issue whereby libjpeg-turbo would crash when built with the latest & greatest development version of the Clang/LLVM compiler. This was caused by an x86-64 ABI conformance issue in some of libjpeg-turbo's 64-bit SSE2 SIMD routines. Those routines were incorrectly using a 64-bit `mov` instruction to transfer a 32-bit JDIMENSION argument, whereas the x86-64 ABI allows the upper (unused) 32 bits of a 32-bit argument's register to be undefined. The new Clang/LLVM optimizer uses load combining to transfer multiple adjacent 32-bit structure members into a single 64-bit register, and this exposed the ABI conformance issue. 4. Fixed a bug in the MIPS DSPr2 4:2:0 "plain" (non-fancy and non-merged) upsampling routine that caused a buffer overflow (and subsequent segfault) when decompressing a 4:2:0 JPEG image whose scaled output width was less than 16 pixels. The "plain" upsampling routines are normally only used when decompressing a non-YCbCr JPEG image, but they are also used when decompressing a JPEG image whose scaled output height is 1. 5. Fixed various negative left shifts and other issues reported by the GCC and Clang undefined behavior sanitizers. None of these was known to pose a security threat, but removing the warnings makes it easier to detect actual security issues, should they arise in the future. 1.4.1 ===== ### Significant changes relative to 1.4.0: 1. tjbench now properly handles CMYK/YCCK JPEG files. Passing an argument of `-cmyk` (instead of, for instance, `-rgb`) will cause tjbench to internally convert the source bitmap to CMYK prior to compression, to generate YCCK JPEG files, and to internally convert the decompressed CMYK pixels back to RGB after decompression (the latter is done automatically if a CMYK or YCCK JPEG is passed to tjbench as a source image.) The CMYK<->RGB conversion operation is not benchmarked. NOTE: The quick & dirty CMYK<->RGB conversions that tjbench uses are suitable for testing only. Proper conversion between CMYK and RGB requires a color management system. 2. `make test` now performs additional bitwise regression tests using tjbench, mainly for the purpose of testing compression from/decompression to a subregion of a larger image buffer. 3. `make test` no longer tests the regression of the floating point DCT/IDCT by default, since the results of those tests can vary if the algorithms in question are not implemented using SIMD instructions on a particular platform. See the comments in [Makefile.am](Makefile.am) for information on how to re-enable the tests and to specify an expected result for them based on the particulars of your platform. 4. The NULL color conversion routines have been significantly optimized, which speeds up the compression of RGB and CMYK JPEGs by 5-20% when using 64-bit code and 0-3% when using 32-bit code, and the decompression of those images by 10-30% when using 64-bit code and 3-12% when using 32-bit code. 5. Fixed an "illegal instruction" error that occurred when djpeg from a SIMD-enabled libjpeg-turbo MIPS build was executed with the `-nosmooth` option on a MIPS machine that lacked DSPr2 support. The MIPS SIMD routines for h2v1 and h2v2 merged upsampling were not properly checking for the existence of DSPr2. 6. Performance has been improved significantly on 64-bit non-Linux and non-Windows platforms (generally 10-20% faster compression and 5-10% faster decompression.) Due to an oversight, the 64-bit version of the accelerated Huffman codec was not being compiled in when libjpeg-turbo was built on platforms other than Windows or Linux. Oops. 7. Fixed an extremely rare bug in the Huffman encoder that caused 64-bit builds of libjpeg-turbo to incorrectly encode a few specific test images when quality=98, an optimized Huffman table, and the accurate integer forward DCT were used. 8. The Windows (CMake) build system now supports building only static or only shared libraries. This is accomplished by adding either `-DENABLE_STATIC=0` or `-DENABLE_SHARED=0` to the CMake command line. 9. TurboJPEG API functions will now return an error code if a warning is triggered in the underlying libjpeg API. For instance, if a JPEG file is corrupt, the TurboJPEG decompression functions will attempt to decompress as much of the image as possible, but those functions will now return -1 to indicate that the decompression was not entirely successful. 10. Fixed a bug in the MIPS DSPr2 4:2:2 fancy upsampling routine that caused a buffer overflow (and subsequent segfault) when decompressing a 4:2:2 JPEG image in which the right-most MCU was 5 or 6 pixels wide. 1.4.0 ===== ### Significant changes relative to 1.4 beta1: 1. Fixed a build issue on OS X PowerPC platforms (md5cmp failed to build because OS X does not provide the `le32toh()` and `htole32()` functions.) 2. The non-SIMD RGB565 color conversion code did not work correctly on big endian machines. This has been fixed. 3. Fixed an issue in `tjPlaneSizeYUV()` whereby it would erroneously return 1 instead of -1 if `componentID` was > 0 and `subsamp` was `TJSAMP_GRAY`. 3. Fixed an issue in `tjBufSizeYUV2()` whereby it would erroneously return 0 instead of -1 if `width` was < 1. 5. The Huffman encoder now uses `clz` and `bsr` instructions for bit counting on ARM64 platforms (see 1.4 beta1[5].) 6. The `close()` method in the TJCompressor and TJDecompressor Java classes is now idempotent. Previously, that method would call the native `tjDestroy()` function even if the TurboJPEG instance had already been destroyed. This caused an exception to be thrown during finalization, if the `close()` method had already been called. The exception was caught, but it was still an expensive operation. 7. The TurboJPEG API previously generated an error (`Could not determine subsampling type for JPEG image`) when attempting to decompress grayscale JPEG images that were compressed with a sampling factor other than 1 (for instance, with `cjpeg -grayscale -sample 2x2`). Subsampling technically has no meaning with grayscale JPEGs, and thus the horizontal and vertical sampling factors for such images are ignored by the decompressor. However, the TurboJPEG API was being too rigid and was expecting the sampling factors to be equal to 1 before it treated the image as a grayscale JPEG. 8. cjpeg, djpeg, and jpegtran now accept an argument of `-version`, which will print the library version and exit. 9. Referring to 1.4 beta1[15], another extremely rare circumstance was discovered under which the Huffman encoder's local buffer can be overrun when a buffered destination manager is being used and an extremely-high-frequency block (basically junk image data) is being encoded. Even though the Huffman local buffer was increased from 128 bytes to 136 bytes to address the previous issue, the new issue caused even the larger buffer to be overrun. Further analysis reveals that, in the absolute worst case (such as setting alternating AC coefficients to 32767 and -32768 in the JPEG scanning order), the Huffman encoder can produce encoded blocks that approach double the size of the unencoded blocks. Thus, the Huffman local buffer was increased to 256 bytes, which should prevent any such issue from re-occurring in the future. 10. The new `tjPlaneSizeYUV()`, `tjPlaneWidth()`, and `tjPlaneHeight()` functions were not actually usable on any platform except OS X and Windows, because those functions were not included in the libturbojpeg mapfile. This has been fixed. 11. Restored the `JPP()`, `JMETHOD()`, and `FAR` macros in the libjpeg-turbo header files. The `JPP()` and `JMETHOD()` macros were originally implemented in libjpeg as a way of supporting non-ANSI compilers that lacked support for prototype parameters. libjpeg-turbo has never supported such compilers, but some software packages still use the macros to define their own prototypes. Similarly, libjpeg-turbo has never supported MS-DOS and other platforms that have far symbols, but some software packages still use the `FAR` macro. A pretty good argument can be made that this is a bad practice on the part of the software in question, but since this affects more than one package, it's just easier to fix it here. 12. Fixed issues that were preventing the ARM 64-bit SIMD code from compiling for iOS, and included an ARMv8 architecture in all of the binaries installed by the "official" libjpeg-turbo SDK for OS X. 1.3.90 (1.4 beta1) ================== ### Significant changes relative to 1.3.1: 1. New features in the TurboJPEG API: - YUV planar images can now be generated with an arbitrary line padding (previously only 4-byte padding, which was compatible with X Video, was supported.) - The decompress-to-YUV function has been extended to support image scaling. - JPEG images can now be compressed from YUV planar source images. - YUV planar images can now be decoded into RGB or grayscale images. - 4:1:1 subsampling is now supported. This is mainly included for compatibility, since 4:1:1 is not fully accelerated in libjpeg-turbo and has no significant advantages relative to 4:2:0. - CMYK images are now supported. This feature allows CMYK source images to be compressed to YCCK JPEGs and YCCK or CMYK JPEGs to be decompressed to CMYK destination images. Conversion between CMYK/YCCK and RGB or YUV images is not supported. Such conversion requires a color management system and is thus out of scope for a codec library. - The handling of YUV images in the Java API has been significantly refactored and should now be much more intuitive. - The Java API now supports encoding a YUV image from an arbitrary position in a large image buffer. - All of the YUV functions now have a corresponding function that operates on separate image planes instead of a unified image buffer. This allows for compressing/decoding from or decompressing/encoding to a subregion of a larger YUV image. It also allows for handling YUV formats that swap the order of the U and V planes. 2. Added SIMD acceleration for DSPr2-capable MIPS platforms. This speeds up the compression of full-color JPEGs by 70-80% on such platforms and decompression by 25-35%. 3. If an application attempts to decompress a Huffman-coded JPEG image whose header does not contain Huffman tables, libjpeg-turbo will now insert the default Huffman tables. In order to save space, many motion JPEG video frames are encoded without the default Huffman tables, so these frames can now be successfully decompressed by libjpeg-turbo without additional work on the part of the application. An application can still override the Huffman tables, for instance to re-use tables from a previous frame of the same video. 4. The Mac packaging system now uses pkgbuild and productbuild rather than PackageMaker (which is obsolete and no longer supported.) This means that OS X 10.6 "Snow Leopard" or later must be used when packaging libjpeg-turbo, although the packages produced can be installed on OS X 10.5 "Leopard" or later. OS X 10.4 "Tiger" is no longer supported. 5. The Huffman encoder now uses `clz` and `bsr` instructions for bit counting on ARM platforms rather than a lookup table. This reduces the memory footprint by 64k, which may be important for some mobile applications. Out of four Android devices that were tested, two demonstrated a small overall performance loss (~3-4% on average) with ARMv6 code and a small gain (also ~3-4%) with ARMv7 code when enabling this new feature, but the other two devices demonstrated a significant overall performance gain with both ARMv6 and ARMv7 code (~10-20%) when enabling the feature. Actual mileage may vary. 6. Worked around an issue with Visual C++ 2010 and later that caused incorrect pixels to be generated when decompressing a JPEG image to a 256-color bitmap, if compiler optimization was enabled when libjpeg-turbo was built. This caused the regression tests to fail when doing a release build under Visual C++ 2010 and later. 7. Improved the accuracy and performance of the non-SIMD implementation of the floating point inverse DCT (using code borrowed from libjpeg v8a and later.) The accuracy of this implementation now matches the accuracy of the SSE/SSE2 implementation. Note, however, that the floating point DCT/IDCT algorithms are mainly a legacy feature. They generally do not produce significantly better accuracy than the accurate integer DCT/IDCT algorithms, and they are quite a bit slower. 8. Added a new output colorspace (`JCS_RGB565`) to the libjpeg API that allows for decompressing JPEG images into RGB565 (16-bit) pixels. If dithering is not used, then this code path is SIMD-accelerated on ARM platforms. 9. Numerous obsolete features, such as support for non-ANSI compilers and support for the MS-DOS memory model, were removed from the libjpeg code, greatly improving its readability and making it easier to maintain and extend. 10. Fixed a segfault that occurred when calling `output_message()` with `msg_code` set to `JMSG_COPYRIGHT`. 11. Fixed an issue whereby wrjpgcom was allowing comments longer than 65k characters to be passed on the command line, which was causing it to generate incorrect JPEG files. 12. Fixed a bug in the build system that was causing the Windows version of wrjpgcom to be built using the rdjpgcom source code. 13. Restored 12-bit-per-component JPEG support. A 12-bit version of libjpeg-turbo can now be built by passing an argument of `--with-12bit` to configure (Unix) or `-DWITH_12BIT=1` to cmake (Windows.) 12-bit JPEG support is included only for convenience. Enabling this feature disables all of the performance features in libjpeg-turbo, as well as arithmetic coding and the TurboJPEG API. The resulting library still contains the other libjpeg-turbo features (such as the colorspace extensions), but in general, it performs no faster than libjpeg v6b. 14. Added ARM 64-bit SIMD acceleration for the YCC-to-RGB color conversion and IDCT algorithms (both are used during JPEG decompression.) For unknown reasons (probably related to clang), this code cannot currently be compiled for iOS. 15. Fixed an extremely rare bug (CVE-2014-9092) that could cause the Huffman encoder's local buffer to overrun when a very high-frequency MCU is compressed using quality 100 and no subsampling, and when the JPEG output buffer is being dynamically resized by the destination manager. This issue was so rare that, even with a test program specifically designed to make the bug occur (by injecting random high-frequency YUV data into the compressor), it was reproducible only once in about every 25 million iterations. 16. Fixed an oversight in the TurboJPEG C wrapper: if any of the JPEG compression functions was called repeatedly with the same automatically-allocated destination buffer, then TurboJPEG would erroneously assume that the `jpegSize` parameter was equal to the size of the buffer, when in fact that parameter was probably equal to the size of the most recently compressed JPEG image. If the size of the previous JPEG image was not as large as the current JPEG image, then TurboJPEG would unnecessarily reallocate the destination buffer. 1.3.1 ===== ### Significant changes relative to 1.3.0: 1. On Un*x systems, `make install` now installs the libjpeg-turbo libraries into /opt/libjpeg-turbo/lib32 by default on any 32-bit system, not just x86, and into /opt/libjpeg-turbo/lib64 by default on any 64-bit system, not just x86-64. You can override this by overriding either the `prefix` or `libdir` configure variables. 2. The Windows installer now places a copy of the TurboJPEG DLLs in the same directory as the rest of the libjpeg-turbo binaries. This was mainly done to support TurboVNC 1.3, which bundles the DLLs in its Windows installation. When using a 32-bit version of CMake on 64-bit Windows, it is impossible to access the c:\WINDOWS\system32 directory, which made it impossible for the TurboVNC build scripts to bundle the 64-bit TurboJPEG DLL. 3. Fixed a bug whereby attempting to encode a progressive JPEG with arithmetic entropy coding (by passing arguments of `-progressive -arithmetic` to cjpeg or jpegtran, for instance) would result in an error, `Requested feature was omitted at compile time`. 4. Fixed a couple of issues (CVE-2013-6629 and CVE-2013-6630) whereby malformed JPEG images would cause libjpeg-turbo to use uninitialized memory during decompression. 5. Fixed an error (`Buffer passed to JPEG library is too small`) that occurred when calling the TurboJPEG YUV encoding function with a very small (< 5x5) source image, and added a unit test to check for this error. 6. The Java classes should now build properly under Visual Studio 2010 and later. 7. Fixed an issue that prevented SRPMs generated using the in-tree packaging tools from being rebuilt on certain newer Linux distributions. 8. Numerous minor fixes to eliminate compilation and build/packaging system warnings, fix cosmetic issues, improve documentation clarity, and other general source cleanup. 1.3.0 ===== ### Significant changes relative to 1.3 beta1: 1. `make test` now works properly on FreeBSD, and it no longer requires the md5sum executable to be present on other Un*x platforms. 2. Overhauled the packaging system: - To avoid conflict with vendor-supplied libjpeg-turbo packages, the official RPMs and DEBs for libjpeg-turbo have been renamed to "libjpeg-turbo-official". - The TurboJPEG libraries are now located under /opt/libjpeg-turbo in the official Linux and Mac packages, to avoid conflict with vendor-supplied packages and also to streamline the packaging system. - Release packages are now created with the directory structure defined by the configure variables `prefix`, `bindir`, `libdir`, etc. (Un\*x) or by the `CMAKE_INSTALL_PREFIX` variable (Windows.) The exception is that the docs are always located under the system default documentation directory on Un\*x and Mac systems, and on Windows, the TurboJPEG DLL is always located in the Windows system directory. - To avoid confusion, official libjpeg-turbo packages on Linux/Unix platforms (except for Mac) will always install the 32-bit libraries in /opt/libjpeg-turbo/lib32 and the 64-bit libraries in /opt/libjpeg-turbo/lib64. - Fixed an issue whereby, in some cases, the libjpeg-turbo executables on Un*x systems were not properly linking with the shared libraries installed by the same package. - Fixed an issue whereby building the "installer" target on Windows when `WITH_JAVA=1` would fail if the TurboJPEG JAR had not been previously built. - Building the "install" target on Windows now installs files into the same places that the installer does. 3. Fixed a Huffman encoder bug that prevented I/O suspension from working properly. 1.2.90 (1.3 beta1) ================== ### Significant changes relative to 1.2.1: 1. Added support for additional scaling factors (3/8, 5/8, 3/4, 7/8, 9/8, 5/4, 11/8, 3/2, 13/8, 7/4, 15/8, and 2) when decompressing. Note that the IDCT will not be SIMD-accelerated when using any of these new scaling factors. 2. The TurboJPEG dynamic library is now versioned. It was not strictly necessary to do so, because TurboJPEG uses versioned symbols, and if a function changes in an ABI-incompatible way, that function is renamed and a legacy function is provided to maintain backward compatibility. However, certain Linux distro maintainers have a policy against accepting any library that isn't versioned. 3. Extended the TurboJPEG Java API so that it can be used to compress a JPEG image from and decompress a JPEG image to an arbitrary position in a large image buffer. 4. The `tjDecompressToYUV()` function now supports the `TJFLAG_FASTDCT` flag. 5. The 32-bit supplementary package for amd64 Debian systems now provides symlinks in /usr/lib/i386-linux-gnu for the TurboJPEG libraries in /usr/lib32. This allows those libraries to be used on MultiArch-compatible systems (such as Ubuntu 11 and later) without setting the linker path. 6. The TurboJPEG Java wrapper should now find the JNI library on Mac systems without having to pass `-Djava.library.path=/usr/lib` to java. 7. TJBench has been ported to Java to provide a convenient way of validating the performance of the TurboJPEG Java API. It can be run with `java -cp turbojpeg.jar TJBench`. 8. cjpeg can now be used to generate JPEG files with the RGB colorspace (feature ported from jpeg-8d.) 9. The width and height in the `-crop` argument passed to jpegtran can now be suffixed with `f` to indicate that, when the upper left corner of the cropping region is automatically moved to the nearest iMCU boundary, the bottom right corner should be moved by the same amount. In other words, this feature causes jpegtran to strictly honor the specified width/height rather than the specified bottom right corner (feature ported from jpeg-8d.) 10. JPEG files using the RGB colorspace can now be decompressed into grayscale images (feature ported from jpeg-8d.) 11. Fixed a regression caused by 1.2.1[7] whereby the build would fail with multiple "Mismatch in operand sizes" errors when attempting to build the x86 SIMD code with NASM 0.98. 12. The in-memory source/destination managers (`jpeg_mem_src()` and `jpeg_mem_dest()`) are now included by default when building libjpeg-turbo with libjpeg v6b or v7 emulation, so that programs can take advantage of these functions without requiring the use of the backward-incompatible libjpeg v8 ABI. The "age number" of the libjpeg-turbo library on Un*x systems has been incremented by 1 to reflect this. You can disable this feature with a configure/CMake switch in order to retain strict API/ABI compatibility with the libjpeg v6b or v7 API/ABI (or with previous versions of libjpeg-turbo.) See [README.md](README.md) for more details. 13. Added ARMv7s architecture to libjpeg.a and libturbojpeg.a in the official libjpeg-turbo binary package for OS X, so that those libraries can be used to build applications that leverage the faster CPUs in the iPhone 5 and iPad 4. 1.2.1 ===== ### Significant changes relative to 1.2.0: 1. Creating or decoding a JPEG file that uses the RGB colorspace should now properly work when the input or output colorspace is one of the libjpeg-turbo colorspace extensions. 2. When libjpeg-turbo was built without SIMD support and merged (non-fancy) upsampling was used along with an alpha-enabled colorspace during decompression, the unused byte of the decompressed pixels was not being set to 0xFF. This has been fixed. TJUnitTest has also been extended to test for the correct behavior of the colorspace extensions when merged upsampling is used. 3. Fixed a bug whereby the libjpeg-turbo SSE2 SIMD code would not preserve the upper 64 bits of xmm6 and xmm7 on Win64 platforms, which violated the Win64 calling conventions. 4. Fixed a regression (CVE-2012-2806) caused by 1.2.0[6] whereby decompressing corrupt JPEG images (specifically, images in which the component count was erroneously set to a large value) would cause libjpeg-turbo to segfault. 5. Worked around a severe performance issue with "Bobcat" (AMD Embedded APU) processors. The `MASKMOVDQU` instruction, which was used by the libjpeg-turbo SSE2 SIMD code, is apparently implemented in microcode on AMD processors, and it is painfully slow on Bobcat processors in particular. Eliminating the use of this instruction improved performance by an order of magnitude on Bobcat processors and by a small amount (typically 5%) on AMD desktop processors. 6. Added SIMD acceleration for performing 4:2:2 upsampling on NEON-capable ARM platforms. This speeds up the decompression of 4:2:2 JPEGs by 20-25% on such platforms. 7. Fixed a regression caused by 1.2.0[2] whereby, on Linux/x86 platforms running the 32-bit SSE2 SIMD code in libjpeg-turbo, decompressing a 4:2:0 or 4:2:2 JPEG image into a 32-bit (RGBX, BGRX, etc.) buffer without using fancy upsampling would produce several incorrect columns of pixels at the right-hand side of the output image if each row in the output image was not evenly divisible by 16 bytes. 8. Fixed an issue whereby attempting to build the SIMD extensions with Xcode 4.3 on OS X platforms would cause NASM to return numerous errors of the form "'%define' expects a macro identifier". 9. Added flags to the TurboJPEG API that allow the caller to force the use of either the fast or the accurate DCT/IDCT algorithms in the underlying codec. 1.2.0 ===== ### Significant changes relative to 1.2 beta1: 1. Fixed build issue with Yasm on Unix systems (the libjpeg-turbo build system was not adding the current directory to the assembler include path, so Yasm was not able to find jsimdcfg.inc.) 2. Fixed out-of-bounds read in SSE2 SIMD code that occurred when decompressing a JPEG image to a bitmap buffer whose size was not a multiple of 16 bytes. This was more of an annoyance than an actual bug, since it did not cause any actual run-time problems, but the issue showed up when running libjpeg-turbo in valgrind. See for more information. 3. Added a compile-time macro (`LIBJPEG_TURBO_VERSION`) that can be used to check the version of libjpeg-turbo against which an application was compiled. 4. Added new RGBA/BGRA/ABGR/ARGB colorspace extension constants (libjpeg API) and pixel formats (TurboJPEG API), which allow applications to specify that, when decompressing to a 4-component RGB buffer, the unused byte should be set to 0xFF so that it can be interpreted as an opaque alpha channel. 5. Fixed regression issue whereby DevIL failed to build against libjpeg-turbo because libjpeg-turbo's distributed version of jconfig.h contained an `INLINE` macro, which conflicted with a similar macro in DevIL. This macro is used only internally when building libjpeg-turbo, so it was moved into config.h. 6. libjpeg-turbo will now correctly decompress erroneous CMYK/YCCK JPEGs whose K component is assigned a component ID of 1 instead of 4. Although these files are in violation of the spec, other JPEG implementations handle them correctly. 7. Added ARMv6 and ARMv7 architectures to libjpeg.a and libturbojpeg.a in the official libjpeg-turbo binary package for OS X, so that those libraries can be used to build both OS X and iOS applications. 1.1.90 (1.2 beta1) ================== ### Significant changes relative to 1.1.1: 1. Added a Java wrapper for the TurboJPEG API. See [java/README](java/README) for more details. 2. The TurboJPEG API can now be used to scale down images during decompression. 3. Added SIMD routines for RGB-to-grayscale color conversion, which significantly improves the performance of grayscale JPEG compression from an RGB source image. 4. Improved the performance of the C color conversion routines, which are used on platforms for which SIMD acceleration is not available. 5. Added a function to the TurboJPEG API that performs lossless transforms. This function is implemented using the same back end as jpegtran, but it performs transcoding entirely in memory and allows multiple transforms and/or crop operations to be batched together, so the source coefficients only need to be read once. This is useful when generating image tiles from a single source JPEG. 6. Added tests for the new TurboJPEG scaled decompression and lossless transform features to tjbench (the TurboJPEG benchmark, formerly called "jpgtest".) 7. Added support for 4:4:0 (transposed 4:2:2) subsampling in TurboJPEG, which was necessary in order for it to read 4:2:2 JPEG files that had been losslessly transposed or rotated 90 degrees. 8. All legacy VirtualGL code has been re-factored, and this has allowed libjpeg-turbo, in its entirety, to be re-licensed under a BSD-style license. 9. libjpeg-turbo can now be built with Yasm. 10. Added SIMD acceleration for ARM Linux and iOS platforms that support NEON instructions. 11. Refactored the TurboJPEG C API and documented it using Doxygen. The TurboJPEG 1.2 API uses pixel formats to define the size and component order of the uncompressed source/destination images, and it includes a more efficient version of `TJBUFSIZE()` that computes a worst-case JPEG size based on the level of chrominance subsampling. The refactored implementation of the TurboJPEG API now uses the libjpeg memory source and destination managers, which allows the TurboJPEG compressor to grow the JPEG buffer as necessary. 12. Eliminated errors in the output of jpegtran on Windows that occurred when the application was invoked using I/O redirection (`jpegtran output.jpg`.) 13. The inclusion of libjpeg v7 and v8 emulation as well as arithmetic coding support in libjpeg-turbo v1.1.0 introduced several new error constants in jerror.h, and these were mistakenly enabled for all emulation modes, causing the error enum in libjpeg-turbo to sometimes have different values than the same enum in libjpeg. This represents an ABI incompatibility, and it caused problems with rare applications that took specific action based on a particular error value. The fix was to include the new error constants conditionally based on whether libjpeg v7 or v8 emulation was enabled. 14. Fixed an issue whereby Windows applications that used libjpeg-turbo would fail to compile if the Windows system headers were included before jpeglib.h. This issue was caused by a conflict in the definition of the INT32 type. 15. Fixed 32-bit supplementary package for amd64 Debian systems, which was broken by enhancements to the packaging system in 1.1. 16. When decompressing a JPEG image using an output colorspace of `JCS_EXT_RGBX`, `JCS_EXT_BGRX`, `JCS_EXT_XBGR`, or `JCS_EXT_XRGB`, libjpeg-turbo will now set the unused byte to 0xFF, which allows applications to interpret that byte as an alpha channel (0xFF = opaque). 1.1.1 ===== ### Significant changes relative to 1.1.0: 1. Fixed a 1-pixel error in row 0, column 21 of the luminance plane generated by `tjEncodeYUV()`. 2. libjpeg-turbo's accelerated Huffman decoder previously ignored unexpected markers found in the middle of the JPEG data stream during decompression. It will now hand off decoding of a particular block to the unaccelerated Huffman decoder if an unexpected marker is found, so that the unaccelerated Huffman decoder can generate an appropriate warning. 3. Older versions of MinGW64 prefixed symbol names with underscores by default, which differed from the behavior of 64-bit Visual C++. MinGW64 1.0 has adopted the behavior of 64-bit Visual C++ as the default, so to accommodate this, the libjpeg-turbo SIMD function names are no longer prefixed with an underscore when building with MinGW64. This means that, when building libjpeg-turbo with older versions of MinGW64, you will now have to add `-fno-leading-underscore` to the `CFLAGS`. 4. Fixed a regression bug in the NSIS script that caused the Windows installer build to fail when using the Visual Studio IDE. 5. Fixed a bug in `jpeg_read_coefficients()` whereby it would not initialize `cinfo->image_width` and `cinfo->image_height` if libjpeg v7 or v8 emulation was enabled. This specifically caused the jpegoptim program to fail if it was linked against a version of libjpeg-turbo that was built with libjpeg v7 or v8 emulation. 6. Eliminated excessive I/O overhead that occurred when reading BMP files in cjpeg. 7. Eliminated errors in the output of cjpeg on Windows that occurred when the application was invoked using I/O redirection (`cjpeg output.jpg`.) 1.1.0 ===== ### Significant changes relative to 1.1 beta1: 1. The algorithm used by the SIMD quantization function cannot produce correct results when the JPEG quality is >= 98 and the fast integer forward DCT is used. Thus, the non-SIMD quantization function is now used for those cases, and libjpeg-turbo should now produce identical output to libjpeg v6b in all cases. 2. Despite the above, the fast integer forward DCT still degrades somewhat for JPEG qualities greater than 95, so the TurboJPEG wrapper will now automatically use the accurate integer forward DCT when generating JPEG images of quality 96 or greater. This reduces compression performance by as much as 15% for these high-quality images but is necessary to ensure that the images are perceptually lossless. It also ensures that the library can avoid the performance pitfall created by [1]. 3. Ported jpgtest.cxx to pure C to avoid the need for a C++ compiler. 4. Fixed visual artifacts in grayscale JPEG compression caused by a typo in the RGB-to-luminance lookup tables. 5. The Windows distribution packages now include the libjpeg run-time programs (cjpeg, etc.) 6. All packages now include jpgtest. 7. The TurboJPEG dynamic library now uses versioned symbols. 8. Added two new TurboJPEG API functions, `tjEncodeYUV()` and `tjDecompressToYUV()`, to replace the somewhat hackish `TJ_YUV` flag. 1.0.90 (1.1 beta1) ================== ### Significant changes relative to 1.0.1: 1. Added emulation of the libjpeg v7 and v8 APIs and ABIs. See [README.md](README.md) for more details. This feature was sponsored by CamTrace SAS. 2. Created a new CMake-based build system for the Visual C++ and MinGW builds. 3. Grayscale bitmaps can now be compressed from/decompressed to using the TurboJPEG API. 4. jpgtest can now be used to test decompression performance with existing JPEG images. 5. If the default install prefix (/opt/libjpeg-turbo) is used, then `make install` now creates /opt/libjpeg-turbo/lib32 and /opt/libjpeg-turbo/lib64 sym links to duplicate the behavior of the binary packages. 6. All symbols in the libjpeg-turbo dynamic library are now versioned, even when the library is built with libjpeg v6b emulation. 7. Added arithmetic encoding and decoding support (can be disabled with configure or CMake options) 8. Added a `TJ_YUV` flag to the TurboJPEG API, which causes both the compressor and decompressor to output planar YUV images. 9. Added an extended version of `tjDecompressHeader()` to the TurboJPEG API, which allows the caller to determine the type of subsampling used in a JPEG image. 10. Added further protections against invalid Huffman codes. 1.0.1 ===== ### Significant changes relative to 1.0.0: 1. The Huffman decoder will now handle erroneous Huffman codes (for instance, from a corrupt JPEG image.) Previously, these would cause libjpeg-turbo to crash under certain circumstances. 2. Fixed typo in SIMD dispatch routines that was causing 4:2:2 upsampling to be used instead of 4:2:0 when decompressing JPEG images using SSE2 code. 3. The configure script will now automatically determine whether the `INCOMPLETE_TYPES_BROKEN` macro should be defined. 1.0.0 ===== ### Significant changes relative to 0.0.93: 1. 2983700: Further FreeBSD build tweaks (no longer necessary to specify `--host` when configuring on a 64-bit system) 2. Created symlinks in the Unix/Linux packages so that the TurboJPEG include file can always be found in /opt/libjpeg-turbo/include, the 32-bit static libraries can always be found in /opt/libjpeg-turbo/lib32, and the 64-bit static libraries can always be found in /opt/libjpeg-turbo/lib64. 3. The Unix/Linux distribution packages now include the libjpeg run-time programs (cjpeg, etc.) and man pages. 4. Created a 32-bit supplementary package for amd64 Debian systems, which contains just the 32-bit libjpeg-turbo libraries. 5. Moved the libraries from */lib32 to */lib in the i386 Debian package. 6. Include distribution package for Cygwin 7. No longer necessary to specify `--without-simd` on non-x86 architectures, and unit tests now work on those architectures. 0.0.93 ====== ### Significant changes since 0.0.91: 1. 2982659: Fixed x86-64 build on FreeBSD systems 2. 2988188: Added support for Windows 64-bit systems 0.0.91 ====== ### Significant changes relative to 0.0.90: 1. Added documentation to .deb packages 2. 2968313: Fixed data corruption issues when decompressing large JPEG images and/or using buffered I/O with the libjpeg-turbo decompressor 0.0.90 ====== Initial release libjpeg-turbo-2.1.5/LICENSE.md000066400000000000000000000121351436506551100157000ustar00rootroot00000000000000libjpeg-turbo Licenses ====================== libjpeg-turbo is covered by three compatible BSD-style open source licenses: - The IJG (Independent JPEG Group) License, which is listed in [README.ijg](README.ijg) This license applies to the libjpeg API library and associated programs (any code inherited from libjpeg, and any modifications to that code.) - The Modified (3-clause) BSD License, which is listed below This license covers the TurboJPEG API library and associated programs, as well as the build system. - The [zlib License](https://opensource.org/licenses/Zlib) This license is a subset of the other two, and it covers the libjpeg-turbo SIMD extensions. Complying with the libjpeg-turbo Licenses ========================================= This section provides a roll-up of the libjpeg-turbo licensing terms, to the best of our understanding. 1. If you are distributing a modified version of the libjpeg-turbo source, then: 1. You cannot alter or remove any existing copyright or license notices from the source. **Origin** - Clause 1 of the IJG License - Clause 1 of the Modified BSD License - Clauses 1 and 3 of the zlib License 2. You must add your own copyright notice to the header of each source file you modified, so others can tell that you modified that file (if there is not an existing copyright header in that file, then you can simply add a notice stating that you modified the file.) **Origin** - Clause 1 of the IJG License - Clause 2 of the zlib License 3. You must include the IJG README file, and you must not alter any of the copyright or license text in that file. **Origin** - Clause 1 of the IJG License 2. If you are distributing only libjpeg-turbo binaries without the source, or if you are distributing an application that statically links with libjpeg-turbo, then: 1. Your product documentation must include a message stating: This software is based in part on the work of the Independent JPEG Group. **Origin** - Clause 2 of the IJG license 2. If your binary distribution includes or uses the TurboJPEG API, then your product documentation must include the text of the Modified BSD License (see below.) **Origin** - Clause 2 of the Modified BSD License 3. You cannot use the name of the IJG or The libjpeg-turbo Project or the contributors thereof in advertising, publicity, etc. **Origin** - IJG License - Clause 3 of the Modified BSD License 4. The IJG and The libjpeg-turbo Project do not warrant libjpeg-turbo to be free of defects, nor do we accept any liability for undesirable consequences resulting from your use of the software. **Origin** - IJG License - Modified BSD License - zlib License The Modified (3-clause) BSD License =================================== Copyright (C)2009-2023 D. R. Commander. All Rights Reserved.
Copyright (C)2015 Viktor Szathmáry. All Rights Reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name of the libjpeg-turbo Project nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Why Three Licenses? =================== The zlib License could have been used instead of the Modified (3-clause) BSD License, and since the IJG License effectively subsumes the distribution conditions of the zlib License, this would have effectively placed libjpeg-turbo binary distributions under the IJG License. However, the IJG License specifically refers to the Independent JPEG Group and does not extend attribution and endorsement protections to other entities. Thus, it was desirable to choose a license that granted us the same protections for new code that were granted to the IJG for code derived from their software. libjpeg-turbo-2.1.5/README.ijg000066400000000000000000000306741436506551100157340ustar00rootroot00000000000000libjpeg-turbo note: This file has been modified by The libjpeg-turbo Project to include only information relevant to libjpeg-turbo, to wordsmith certain sections, and to remove impolitic language that existed in the libjpeg v8 README. It is included only for reference. Please see README.md for information specific to libjpeg-turbo. The Independent JPEG Group's JPEG software ========================================== This distribution contains a release of the Independent JPEG Group's free JPEG software. You are welcome to redistribute this software and to use it for any purpose, subject to the conditions under LEGAL ISSUES, below. This software is the work of Tom Lane, Guido Vollbeding, Philip Gladstone, Bill Allombert, Jim Boucher, Lee Crocker, Bob Friesenhahn, Ben Jackson, Julian Minguillon, Luis Ortiz, George Phillips, Davide Rossi, Ge' Weijers, and other members of the Independent JPEG Group. IJG is not affiliated with the ISO/IEC JTC1/SC29/WG1 standards committee (also known as JPEG, together with ITU-T SG16). DOCUMENTATION ROADMAP ===================== This file contains the following sections: OVERVIEW General description of JPEG and the IJG software. LEGAL ISSUES Copyright, lack of warranty, terms of distribution. REFERENCES Where to learn more about JPEG. ARCHIVE LOCATIONS Where to find newer versions of this software. FILE FORMAT WARS Software *not* to get. TO DO Plans for future IJG releases. Other documentation files in the distribution are: User documentation: usage.txt Usage instructions for cjpeg, djpeg, jpegtran, rdjpgcom, and wrjpgcom. *.1 Unix-style man pages for programs (same info as usage.txt). wizard.txt Advanced usage instructions for JPEG wizards only. change.log Version-to-version change highlights. Programmer and internal documentation: libjpeg.txt How to use the JPEG library in your own programs. example.txt Sample code for calling the JPEG library. structure.txt Overview of the JPEG library's internal structure. coderules.txt Coding style rules --- please read if you contribute code. Please read at least usage.txt. Some information can also be found in the JPEG FAQ (Frequently Asked Questions) article. See ARCHIVE LOCATIONS below to find out where to obtain the FAQ article. If you want to understand how the JPEG code works, we suggest reading one or more of the REFERENCES, then looking at the documentation files (in roughly the order listed) before diving into the code. OVERVIEW ======== This package contains C software to implement JPEG image encoding, decoding, and transcoding. JPEG (pronounced "jay-peg") is a standardized compression method for full-color and grayscale images. JPEG's strong suit is compressing photographic images or other types of images that have smooth color and brightness transitions between neighboring pixels. Images with sharp lines or other abrupt features may not compress well with JPEG, and a higher JPEG quality may have to be used to avoid visible compression artifacts with such images. JPEG is lossy, meaning that the output pixels are not necessarily identical to the input pixels. However, on photographic content and other "smooth" images, very good compression ratios can be obtained with no visible compression artifacts, and extremely high compression ratios are possible if you are willing to sacrifice image quality (by reducing the "quality" setting in the compressor.) This software implements JPEG baseline, extended-sequential, and progressive compression processes. Provision is made for supporting all variants of these processes, although some uncommon parameter settings aren't implemented yet. We have made no provision for supporting the hierarchical or lossless processes defined in the standard. We provide a set of library routines for reading and writing JPEG image files, plus two sample applications "cjpeg" and "djpeg", which use the library to perform conversion between JPEG and some other popular image file formats. The library is intended to be reused in other applications. In order to support file conversion and viewing software, we have included considerable functionality beyond the bare JPEG coding/decoding capability; for example, the color quantization modules are not strictly part of JPEG decoding, but they are essential for output to colormapped file formats or colormapped displays. These extra functions can be compiled out of the library if not required for a particular application. We have also included "jpegtran", a utility for lossless transcoding between different JPEG processes, and "rdjpgcom" and "wrjpgcom", two simple applications for inserting and extracting textual comments in JFIF files. The emphasis in designing this software has been on achieving portability and flexibility, while also making it fast enough to be useful. In particular, the software is not intended to be read as a tutorial on JPEG. (See the REFERENCES section for introductory material.) Rather, it is intended to be reliable, portable, industrial-strength code. We do not claim to have achieved that goal in every aspect of the software, but we strive for it. We welcome the use of this software as a component of commercial products. No royalty is required, but we do ask for an acknowledgement in product documentation, as described under LEGAL ISSUES. LEGAL ISSUES ============ In plain English: 1. We don't promise that this software works. (But if you find any bugs, please let us know!) 2. You can use this software for whatever you want. You don't have to pay us. 3. You may not pretend that you wrote this software. If you use it in a program, you must acknowledge somewhere in your documentation that you've used the IJG code. In legalese: The authors make NO WARRANTY or representation, either express or implied, with respect to this software, its quality, accuracy, merchantability, or fitness for a particular purpose. This software is provided "AS IS", and you, its user, assume the entire risk as to its quality and accuracy. This software is copyright (C) 1991-2020, Thomas G. Lane, Guido Vollbeding. All Rights Reserved except as specified below. Permission is hereby granted to use, copy, modify, and distribute this software (or portions thereof) for any purpose, without fee, subject to these conditions: (1) If any part of the source code for this software is distributed, then this README file must be included, with this copyright and no-warranty notice unaltered; and any additions, deletions, or changes to the original files must be clearly indicated in accompanying documentation. (2) If only executable code is distributed, then the accompanying documentation must state that "this software is based in part on the work of the Independent JPEG Group". (3) Permission for use of this software is granted only if the user accepts full responsibility for any undesirable consequences; the authors accept NO LIABILITY for damages of any kind. These conditions apply to any software derived from or based on the IJG code, not just to the unmodified library. If you use our work, you ought to acknowledge us. Permission is NOT granted for the use of any IJG author's name or company name in advertising or publicity relating to this software or products derived from it. This software may be referred to only as "the Independent JPEG Group's software". We specifically permit and encourage the use of this software as the basis of commercial products, provided that all warranty or liability claims are assumed by the product vendor. REFERENCES ========== We recommend reading one or more of these references before trying to understand the innards of the JPEG software. The best short technical introduction to the JPEG compression algorithm is Wallace, Gregory K. "The JPEG Still Picture Compression Standard", Communications of the ACM, April 1991 (vol. 34 no. 4), pp. 30-44. (Adjacent articles in that issue discuss MPEG motion picture compression, applications of JPEG, and related topics.) If you don't have the CACM issue handy, a PDF file containing a revised version of Wallace's article is available at http://www.ijg.org/files/Wallace.JPEG.pdf. The file (actually a preprint for an article that appeared in IEEE Trans. Consumer Electronics) omits the sample images that appeared in CACM, but it includes corrections and some added material. Note: the Wallace article is copyright ACM and IEEE, and it may not be used for commercial purposes. A somewhat less technical, more leisurely introduction to JPEG can be found in "The Data Compression Book" by Mark Nelson and Jean-loup Gailly, published by M&T Books (New York), 2nd ed. 1996, ISBN 1-55851-434-1. This book provides good explanations and example C code for a multitude of compression methods including JPEG. It is an excellent source if you are comfortable reading C code but don't know much about data compression in general. The book's JPEG sample code is far from industrial-strength, but when you are ready to look at a full implementation, you've got one here... The best currently available description of JPEG is the textbook "JPEG Still Image Data Compression Standard" by William B. Pennebaker and Joan L. Mitchell, published by Van Nostrand Reinhold, 1993, ISBN 0-442-01272-1. Price US$59.95, 638 pp. The book includes the complete text of the ISO JPEG standards (DIS 10918-1 and draft DIS 10918-2). The original JPEG standard is divided into two parts, Part 1 being the actual specification, while Part 2 covers compliance testing methods. Part 1 is titled "Digital Compression and Coding of Continuous-tone Still Images, Part 1: Requirements and guidelines" and has document numbers ISO/IEC IS 10918-1, ITU-T T.81. Part 2 is titled "Digital Compression and Coding of Continuous-tone Still Images, Part 2: Compliance testing" and has document numbers ISO/IEC IS 10918-2, ITU-T T.83. The JPEG standard does not specify all details of an interchangeable file format. For the omitted details, we follow the "JFIF" conventions, revision 1.02. JFIF version 1 has been adopted as ISO/IEC 10918-5 (05/2013) and Recommendation ITU-T T.871 (05/2011): Information technology - Digital compression and coding of continuous-tone still images: JPEG File Interchange Format (JFIF). It is available as a free download in PDF file format from https://www.iso.org/standard/54989.html and http://www.itu.int/rec/T-REC-T.871. A PDF file of the older JFIF 1.02 specification is available at http://www.w3.org/Graphics/JPEG/jfif3.pdf. The TIFF 6.0 file format specification can be obtained from http://mirrors.ctan.org/graphics/tiff/TIFF6.ps.gz. The JPEG incorporation scheme found in the TIFF 6.0 spec of 3-June-92 has a number of serious problems. IJG does not recommend use of the TIFF 6.0 design (TIFF Compression tag 6). Instead, we recommend the JPEG design proposed by TIFF Technical Note #2 (Compression tag 7). Copies of this Note can be obtained from http://www.ijg.org/files/. It is expected that the next revision of the TIFF spec will replace the 6.0 JPEG design with the Note's design. Although IJG's own code does not support TIFF/JPEG, the free libtiff library uses our library to implement TIFF/JPEG per the Note. ARCHIVE LOCATIONS ================= The "official" archive site for this software is www.ijg.org. The most recent released version can always be found there in directory "files". The JPEG FAQ (Frequently Asked Questions) article is a source of some general information about JPEG. It is available at http://www.faqs.org/faqs/jpeg-faq. FILE FORMAT COMPATIBILITY ========================= This software implements ITU T.81 | ISO/IEC 10918 with some extensions from ITU T.871 | ISO/IEC 10918-5 (JPEG File Interchange Format-- see REFERENCES). Informally, the term "JPEG image" or "JPEG file" most often refers to JFIF or a subset thereof, but there are other formats containing the name "JPEG" that are incompatible with the DCT-based JPEG standard or with JFIF (for instance, JPEG 2000 and JPEG XR). This software therefore does not support these formats. Indeed, one of the original reasons for developing this free software was to help force convergence on a common, interoperable format standard for JPEG files. JFIF is a minimal or "low end" representation. TIFF/JPEG (TIFF revision 6.0 as modified by TIFF Technical Note #2) can be used for "high end" applications that need to record a lot of additional data about an image. TO DO ===== Please send bug reports, offers of help, etc. to jpeg-info@jpegclub.org. libjpeg-turbo-2.1.5/README.md000066400000000000000000000412171436506551100155560ustar00rootroot00000000000000Background ========== libjpeg-turbo is a JPEG image codec that uses SIMD instructions to accelerate baseline JPEG compression and decompression on x86, x86-64, Arm, PowerPC, and MIPS systems, as well as progressive JPEG compression on x86, x86-64, and Arm systems. On such systems, libjpeg-turbo is generally 2-6x as fast as libjpeg, all else being equal. On other types of systems, libjpeg-turbo can still outperform libjpeg by a significant amount, by virtue of its highly-optimized Huffman coding routines. In many cases, the performance of libjpeg-turbo rivals that of proprietary high-speed JPEG codecs. libjpeg-turbo implements both the traditional libjpeg API as well as the less powerful but more straightforward TurboJPEG API. libjpeg-turbo also features colorspace extensions that allow it to compress from/decompress to 32-bit and big-endian pixel buffers (RGBX, XBGR, etc.), as well as a full-featured Java interface. libjpeg-turbo was originally based on libjpeg/SIMD, an MMX-accelerated derivative of libjpeg v6b developed by Miyasaka Masaru. The TigerVNC and VirtualGL projects made numerous enhancements to the codec in 2009, and in early 2010, libjpeg-turbo spun off into an independent project, with the goal of making high-speed JPEG compression/decompression technology available to a broader range of users and developers. License ======= libjpeg-turbo is covered by three compatible BSD-style open source licenses. Refer to [LICENSE.md](LICENSE.md) for a roll-up of license terms. Building libjpeg-turbo ====================== Refer to [BUILDING.md](BUILDING.md) for complete instructions. Using libjpeg-turbo =================== libjpeg-turbo includes two APIs that can be used to compress and decompress JPEG images: - **TurboJPEG API**
This API provides an easy-to-use interface for compressing and decompressing JPEG images in memory. It also provides some functionality that would not be straightforward to achieve using the underlying libjpeg API, such as generating planar YUV images and performing multiple simultaneous lossless transforms on an image. The Java interface for libjpeg-turbo is written on top of the TurboJPEG API. The TurboJPEG API is recommended for first-time users of libjpeg-turbo. Refer to [tjexample.c](tjexample.c) and [TJExample.java](java/TJExample.java) for examples of its usage and to for API documentation. - **libjpeg API**
This is the de facto industry-standard API for compressing and decompressing JPEG images. It is more difficult to use than the TurboJPEG API but also more powerful. The libjpeg API implementation in libjpeg-turbo is both API/ABI-compatible and mathematically compatible with libjpeg v6b. It can also optionally be configured to be API/ABI-compatible with libjpeg v7 and v8 (see below.) Refer to [cjpeg.c](cjpeg.c) and [djpeg.c](djpeg.c) for examples of its usage and to [libjpeg.txt](libjpeg.txt) for API documentation. There is no significant performance advantage to either API when both are used to perform similar operations. Colorspace Extensions --------------------- libjpeg-turbo includes extensions that allow JPEG images to be compressed directly from (and decompressed directly to) buffers that use BGR, BGRX, RGBX, XBGR, and XRGB pixel ordering. This is implemented with ten new colorspace constants: JCS_EXT_RGB /* red/green/blue */ JCS_EXT_RGBX /* red/green/blue/x */ JCS_EXT_BGR /* blue/green/red */ JCS_EXT_BGRX /* blue/green/red/x */ JCS_EXT_XBGR /* x/blue/green/red */ JCS_EXT_XRGB /* x/red/green/blue */ JCS_EXT_RGBA /* red/green/blue/alpha */ JCS_EXT_BGRA /* blue/green/red/alpha */ JCS_EXT_ABGR /* alpha/blue/green/red */ JCS_EXT_ARGB /* alpha/red/green/blue */ Setting `cinfo.in_color_space` (compression) or `cinfo.out_color_space` (decompression) to one of these values will cause libjpeg-turbo to read the red, green, and blue values from (or write them to) the appropriate position in the pixel when compressing from/decompressing to an RGB buffer. Your application can check for the existence of these extensions at compile time with: #ifdef JCS_EXTENSIONS At run time, attempting to use these extensions with a libjpeg implementation that does not support them will result in a "Bogus input colorspace" error. Applications can trap this error in order to test whether run-time support is available for the colorspace extensions. When using the RGBX, BGRX, XBGR, and XRGB colorspaces during decompression, the X byte is undefined, and in order to ensure the best performance, libjpeg-turbo can set that byte to whatever value it wishes. If an application expects the X byte to be used as an alpha channel, then it should specify `JCS_EXT_RGBA`, `JCS_EXT_BGRA`, `JCS_EXT_ABGR`, or `JCS_EXT_ARGB`. When these colorspace constants are used, the X byte is guaranteed to be 0xFF, which is interpreted as opaque. Your application can check for the existence of the alpha channel colorspace extensions at compile time with: #ifdef JCS_ALPHA_EXTENSIONS [jcstest.c](jcstest.c), located in the libjpeg-turbo source tree, demonstrates how to check for the existence of the colorspace extensions at compile time and run time. libjpeg v7 and v8 API/ABI Emulation ----------------------------------- With libjpeg v7 and v8, new features were added that necessitated extending the compression and decompression structures. Unfortunately, due to the exposed nature of those structures, extending them also necessitated breaking backward ABI compatibility with previous libjpeg releases. Thus, programs that were built to use libjpeg v7 or v8 did not work with libjpeg-turbo, since it is based on the libjpeg v6b code base. Although libjpeg v7 and v8 are not as widely used as v6b, enough programs (including a few Linux distros) made the switch that there was a demand to emulate the libjpeg v7 and v8 ABIs in libjpeg-turbo. It should be noted, however, that this feature was added primarily so that applications that had already been compiled to use libjpeg v7+ could take advantage of accelerated baseline JPEG encoding/decoding without recompiling. libjpeg-turbo does not claim to support all of the libjpeg v7+ features, nor to produce identical output to libjpeg v7+ in all cases (see below.) By passing an argument of `-DWITH_JPEG7=1` or `-DWITH_JPEG8=1` to `cmake`, you can build a version of libjpeg-turbo that emulates the libjpeg v7 or v8 ABI, so that programs that are built against libjpeg v7 or v8 can be run with libjpeg-turbo. The following section describes which libjpeg v7+ features are supported and which aren't. ### Support for libjpeg v7 and v8 Features #### Fully supported - **libjpeg API: IDCT scaling extensions in decompressor**
libjpeg-turbo supports IDCT scaling with scaling factors of 1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8, 9/8, 5/4, 11/8, 3/2, 13/8, 7/4, 15/8, and 2/1 (only 1/4 and 1/2 are SIMD-accelerated.) - **libjpeg API: Arithmetic coding** - **libjpeg API: In-memory source and destination managers**
See notes below. - **cjpeg: Separate quality settings for luminance and chrominance**
Note that the libpjeg v7+ API was extended to accommodate this feature only for convenience purposes. It has always been possible to implement this feature with libjpeg v6b (see rdswitch.c for an example.) - **cjpeg: 32-bit BMP support** - **cjpeg: `-rgb` option** - **jpegtran: Lossless cropping** - **jpegtran: `-perfect` option** - **jpegtran: Forcing width/height when performing lossless crop** - **rdjpgcom: `-raw` option** - **rdjpgcom: Locale awareness** #### Not supported NOTE: As of this writing, extensive research has been conducted into the usefulness of DCT scaling as a means of data reduction and SmartScale as a means of quality improvement. Readers are invited to peruse the research at and draw their own conclusions, but it is the general belief of our project that these features have not demonstrated sufficient usefulness to justify inclusion in libjpeg-turbo. - **libjpeg API: DCT scaling in compressor**
`cinfo.scale_num` and `cinfo.scale_denom` are silently ignored. There is no technical reason why DCT scaling could not be supported when emulating the libjpeg v7+ API/ABI, but without the SmartScale extension (see below), only scaling factors of 1/2, 8/15, 4/7, 8/13, 2/3, 8/11, 4/5, and 8/9 would be available, which is of limited usefulness. - **libjpeg API: SmartScale**
`cinfo.block_size` is silently ignored. SmartScale is an extension to the JPEG format that allows for DCT block sizes other than 8x8. Providing support for this new format would be feasible (particularly without full acceleration.) However, until/unless the format becomes either an official industry standard or, at minimum, an accepted solution in the community, we are hesitant to implement it, as there is no sense of whether or how it might change in the future. It is our belief that SmartScale has not demonstrated sufficient usefulness as a lossless format nor as a means of quality enhancement, and thus our primary interest in providing this feature would be as a means of supporting additional DCT scaling factors. - **libjpeg API: Fancy downsampling in compressor**
`cinfo.do_fancy_downsampling` is silently ignored. This requires the DCT scaling feature, which is not supported. - **jpegtran: Scaling**
This requires both the DCT scaling and SmartScale features, which are not supported. - **Lossless RGB JPEG files**
This requires the SmartScale feature, which is not supported. ### What About libjpeg v9? libjpeg v9 introduced yet another field to the JPEG compression structure (`color_transform`), thus making the ABI backward incompatible with that of libjpeg v8. This new field was introduced solely for the purpose of supporting lossless SmartScale encoding. Furthermore, there was actually no reason to extend the API in this manner, as the color transform could have just as easily been activated by way of a new JPEG colorspace constant, thus preserving backward ABI compatibility. Our research (see link above) has shown that lossless SmartScale does not generally accomplish anything that can't already be accomplished better with existing, standard lossless formats. Therefore, at this time it is our belief that there is not sufficient technical justification for software projects to upgrade from libjpeg v8 to libjpeg v9, and thus there is not sufficient technical justification for us to emulate the libjpeg v9 ABI. In-Memory Source/Destination Managers ------------------------------------- By default, libjpeg-turbo 1.3 and later includes the `jpeg_mem_src()` and `jpeg_mem_dest()` functions, even when not emulating the libjpeg v8 API/ABI. Previously, it was necessary to build libjpeg-turbo from source with libjpeg v8 API/ABI emulation in order to use the in-memory source/destination managers, but several projects requested that those functions be included when emulating the libjpeg v6b API/ABI as well. This allows the use of those functions by programs that need them, without breaking ABI compatibility for programs that don't, and it allows those functions to be provided in the "official" libjpeg-turbo binaries. Those who are concerned about maintaining strict conformance with the libjpeg v6b or v7 API can pass an argument of `-DWITH_MEM_SRCDST=0` to `cmake` prior to building libjpeg-turbo. This will restore the pre-1.3 behavior, in which `jpeg_mem_src()` and `jpeg_mem_dest()` are only included when emulating the libjpeg v8 API/ABI. On Un*x systems, including the in-memory source/destination managers changes the dynamic library version from 62.2.0 to 62.3.0 if using libjpeg v6b API/ABI emulation and from 7.2.0 to 7.3.0 if using libjpeg v7 API/ABI emulation. Note that, on most Un*x systems, the dynamic linker will not look for a function in a library until that function is actually used. Thus, if a program is built against libjpeg-turbo 1.3+ and uses `jpeg_mem_src()` or `jpeg_mem_dest()`, that program will not fail if run against an older version of libjpeg-turbo or against libjpeg v7- until the program actually tries to call `jpeg_mem_src()` or `jpeg_mem_dest()`. Such is not the case on Windows. If a program is built against the libjpeg-turbo 1.3+ DLL and uses `jpeg_mem_src()` or `jpeg_mem_dest()`, then it must use the libjpeg-turbo 1.3+ DLL at run time. Both cjpeg and djpeg have been extended to allow testing the in-memory source/destination manager functions. See their respective man pages for more details. Mathematical Compatibility ========================== For the most part, libjpeg-turbo should produce identical output to libjpeg v6b. The one exception to this is when using the floating point DCT/IDCT, in which case the outputs of libjpeg v6b and libjpeg-turbo can differ for the following reasons: - The SSE/SSE2 floating point DCT implementation in libjpeg-turbo is ever so slightly more accurate than the implementation in libjpeg v6b, but not by any amount perceptible to human vision (generally in the range of 0.01 to 0.08 dB gain in PNSR.) - When not using the SIMD extensions, libjpeg-turbo uses the more accurate (and slightly faster) floating point IDCT algorithm introduced in libjpeg v8a as opposed to the algorithm used in libjpeg v6b. It should be noted, however, that this algorithm basically brings the accuracy of the floating point IDCT in line with the accuracy of the accurate integer IDCT. The floating point DCT/IDCT algorithms are mainly a legacy feature, and they do not produce significantly more accuracy than the accurate integer algorithms (to put numbers on this, the typical difference in PNSR between the two algorithms is less than 0.10 dB, whereas changing the quality level by 1 in the upper range of the quality scale is typically more like a 1.0 dB difference.) - If the floating point algorithms in libjpeg-turbo are not implemented using SIMD instructions on a particular platform, then the accuracy of the floating point DCT/IDCT can depend on the compiler settings. While libjpeg-turbo does emulate the libjpeg v8 API/ABI, under the hood it is still using the same algorithms as libjpeg v6b, so there are several specific cases in which libjpeg-turbo cannot be expected to produce the same output as libjpeg v8: - When decompressing using scaling factors of 1/2 and 1/4, because libjpeg v8 implements those scaling algorithms differently than libjpeg v6b does, and libjpeg-turbo's SIMD extensions are based on the libjpeg v6b behavior. - When using chrominance subsampling, because libjpeg v8 implements this with its DCT/IDCT scaling algorithms rather than with a separate downsampling/upsampling algorithm. In our testing, the subsampled/upsampled output of libjpeg v8 is less accurate than that of libjpeg v6b for this reason. - When decompressing using a scaling factor > 1 and merged (AKA "non-fancy" or "non-smooth") chrominance upsampling, because libjpeg v8 does not support merged upsampling with scaling factors > 1. Performance Pitfalls ==================== Restart Markers --------------- The optimized Huffman decoder in libjpeg-turbo does not handle restart markers in a way that makes the rest of the libjpeg infrastructure happy, so it is necessary to use the slow Huffman decoder when decompressing a JPEG image that has restart markers. This can cause the decompression performance to drop by as much as 20%, but the performance will still be much greater than that of libjpeg. Many consumer packages, such as Photoshop, use restart markers when generating JPEG images, so images generated by those programs will experience this issue. Fast Integer Forward DCT at High Quality Levels ----------------------------------------------- The algorithm used by the SIMD-accelerated quantization function cannot produce correct results whenever the fast integer forward DCT is used along with a JPEG quality of 98-100. Thus, libjpeg-turbo must use the non-SIMD quantization function in those cases. This causes performance to drop by as much as 40%. It is therefore strongly advised that you use the accurate integer forward DCT whenever encoding images with a JPEG quality of 98 or higher. Memory Debugger Pitfalls ======================== Valgrind and Memory Sanitizer (MSan) can generate false positives (specifically, incorrect reports of uninitialized memory accesses) when used with libjpeg-turbo's SIMD extensions. It is generally recommended that the SIMD extensions be disabled, either by passing an argument of `-DWITH_SIMD=0` to `cmake` when configuring the build or by setting the environment variable `JSIMD_FORCENONE` to `1` at run time, when testing libjpeg-turbo with Valgrind, MSan, or other memory debuggers. libjpeg-turbo-2.1.5/cderror.h000066400000000000000000000111441436506551100161040ustar00rootroot00000000000000/* * cderror.h * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1997, Thomas G. Lane. * Modified 2009-2017 by Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright (C) 2021, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file defines the error and message codes for the cjpeg/djpeg * applications. These strings are not needed as part of the JPEG library * proper. * Edit this file to add new codes, or to translate the message strings to * some other language. */ /* * To define the enum list of message codes, include this file without * defining macro JMESSAGE. To create a message string table, include it * again with a suitable JMESSAGE definition (see jerror.c for an example). */ #ifndef JMESSAGE #ifndef CDERROR_H #define CDERROR_H /* First time through, define the enum list */ #define JMAKE_ENUM_LIST #else /* Repeated inclusions of this file are no-ops unless JMESSAGE is defined */ #define JMESSAGE(code, string) #endif /* CDERROR_H */ #endif /* JMESSAGE */ #ifdef JMAKE_ENUM_LIST typedef enum { #define JMESSAGE(code, string) code, #endif /* JMAKE_ENUM_LIST */ JMESSAGE(JMSG_FIRSTADDONCODE = 1000, NULL) /* Must be first entry! */ #ifdef BMP_SUPPORTED JMESSAGE(JERR_BMP_BADCMAP, "Unsupported BMP colormap format") JMESSAGE(JERR_BMP_BADDEPTH, "Only 8-, 24-, and 32-bit BMP files are supported") JMESSAGE(JERR_BMP_BADHEADER, "Invalid BMP file: bad header length") JMESSAGE(JERR_BMP_BADPLANES, "Invalid BMP file: biPlanes not equal to 1") JMESSAGE(JERR_BMP_COLORSPACE, "BMP output must be grayscale or RGB") JMESSAGE(JERR_BMP_COMPRESSED, "Sorry, compressed BMPs not yet supported") JMESSAGE(JERR_BMP_EMPTY, "Empty BMP image") JMESSAGE(JERR_BMP_NOT, "Not a BMP file - does not start with BM") JMESSAGE(JERR_BMP_OUTOFRANGE, "Numeric value out of range in BMP file") JMESSAGE(JTRC_BMP, "%ux%u %d-bit BMP image") JMESSAGE(JTRC_BMP_MAPPED, "%ux%u 8-bit colormapped BMP image") JMESSAGE(JTRC_BMP_OS2, "%ux%u %d-bit OS2 BMP image") JMESSAGE(JTRC_BMP_OS2_MAPPED, "%ux%u 8-bit colormapped OS2 BMP image") #endif /* BMP_SUPPORTED */ #ifdef GIF_SUPPORTED JMESSAGE(JERR_GIF_BUG, "GIF output got confused") JMESSAGE(JERR_GIF_CODESIZE, "Bogus GIF codesize %d") JMESSAGE(JERR_GIF_COLORSPACE, "GIF output must be grayscale or RGB") JMESSAGE(JERR_GIF_EMPTY, "Empty GIF image") JMESSAGE(JERR_GIF_IMAGENOTFOUND, "Too few images in GIF file") JMESSAGE(JERR_GIF_NOT, "Not a GIF file") JMESSAGE(JTRC_GIF, "%ux%ux%d GIF image") JMESSAGE(JTRC_GIF_BADVERSION, "Warning: unexpected GIF version number '%c%c%c'") JMESSAGE(JTRC_GIF_EXTENSION, "Ignoring GIF extension block of type 0x%02x") JMESSAGE(JTRC_GIF_NONSQUARE, "Caution: nonsquare pixels in input") JMESSAGE(JWRN_GIF_BADDATA, "Corrupt data in GIF file") JMESSAGE(JWRN_GIF_CHAR, "Bogus char 0x%02x in GIF file, ignoring") JMESSAGE(JWRN_GIF_ENDCODE, "Premature end of GIF image") JMESSAGE(JWRN_GIF_NOMOREDATA, "Ran out of GIF bits") #endif /* GIF_SUPPORTED */ #ifdef PPM_SUPPORTED JMESSAGE(JERR_PPM_COLORSPACE, "PPM output must be grayscale or RGB") JMESSAGE(JERR_PPM_NONNUMERIC, "Nonnumeric data in PPM file") JMESSAGE(JERR_PPM_NOT, "Not a PPM/PGM file") JMESSAGE(JERR_PPM_OUTOFRANGE, "Numeric value out of range in PPM file") JMESSAGE(JTRC_PGM, "%ux%u PGM image") JMESSAGE(JTRC_PGM_TEXT, "%ux%u text PGM image") JMESSAGE(JTRC_PPM, "%ux%u PPM image") JMESSAGE(JTRC_PPM_TEXT, "%ux%u text PPM image") #endif /* PPM_SUPPORTED */ #ifdef TARGA_SUPPORTED JMESSAGE(JERR_TGA_BADCMAP, "Unsupported Targa colormap format") JMESSAGE(JERR_TGA_BADPARMS, "Invalid or unsupported Targa file") JMESSAGE(JERR_TGA_COLORSPACE, "Targa output must be grayscale or RGB") JMESSAGE(JTRC_TGA, "%ux%u RGB Targa image") JMESSAGE(JTRC_TGA_GRAY, "%ux%u grayscale Targa image") JMESSAGE(JTRC_TGA_MAPPED, "%ux%u colormapped Targa image") #else JMESSAGE(JERR_TGA_NOTCOMP, "Targa support was not compiled") #endif /* TARGA_SUPPORTED */ JMESSAGE(JERR_BAD_CMAP_FILE, "Color map file is invalid or of unsupported format") JMESSAGE(JERR_TOO_MANY_COLORS, "Output file format cannot handle %d colormap entries") JMESSAGE(JERR_UNGETC_FAILED, "ungetc failed") #ifdef TARGA_SUPPORTED JMESSAGE(JERR_UNKNOWN_FORMAT, "Unrecognized input file format --- perhaps you need -targa") #else JMESSAGE(JERR_UNKNOWN_FORMAT, "Unrecognized input file format") #endif JMESSAGE(JERR_UNSUPPORTED_FORMAT, "Unsupported output file format") #ifdef JMAKE_ENUM_LIST JMSG_LASTADDONCODE } ADDON_MESSAGE_CODE; #undef JMAKE_ENUM_LIST #endif /* JMAKE_ENUM_LIST */ /* Zap JMESSAGE macro so that future re-inclusions do nothing by default */ #undef JMESSAGE libjpeg-turbo-2.1.5/cdjpeg.c000066400000000000000000000104271436506551100156760ustar00rootroot00000000000000/* * cdjpeg.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1997, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2019, 2022, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains common support routines used by the IJG application * programs (cjpeg, djpeg, jpegtran). */ #include "cdjpeg.h" /* Common decls for cjpeg/djpeg applications */ #include /* to declare isupper(), tolower() */ #ifdef USE_SETMODE #include /* to declare setmode()'s parameter macros */ /* If you have setmode() but not , just delete this line: */ #include /* to declare setmode() */ #endif /* * Optional progress monitor: display a percent-done figure on stderr. */ METHODDEF(void) progress_monitor(j_common_ptr cinfo) { cd_progress_ptr prog = (cd_progress_ptr)cinfo->progress; if (prog->max_scans != 0 && cinfo->is_decompressor) { int scan_no = ((j_decompress_ptr)cinfo)->input_scan_number; if (scan_no > (int)prog->max_scans) { fprintf(stderr, "Scan number %d exceeds maximum scans (%u)\n", scan_no, prog->max_scans); exit(EXIT_FAILURE); } } if (prog->report) { int total_passes = prog->pub.total_passes + prog->total_extra_passes; int percent_done = (int)(prog->pub.pass_counter * 100L / prog->pub.pass_limit); if (percent_done != prog->percent_done) { prog->percent_done = percent_done; if (total_passes > 1) { fprintf(stderr, "\rPass %d/%d: %3d%% ", prog->pub.completed_passes + prog->completed_extra_passes + 1, total_passes, percent_done); } else { fprintf(stderr, "\r %3d%% ", percent_done); } fflush(stderr); } } } GLOBAL(void) start_progress_monitor(j_common_ptr cinfo, cd_progress_ptr progress) { /* Enable progress display, unless trace output is on */ if (cinfo->err->trace_level == 0) { progress->pub.progress_monitor = progress_monitor; progress->completed_extra_passes = 0; progress->total_extra_passes = 0; progress->max_scans = 0; progress->report = FALSE; progress->percent_done = -1; cinfo->progress = &progress->pub; } } GLOBAL(void) end_progress_monitor(j_common_ptr cinfo) { /* Clear away progress display */ if (cinfo->err->trace_level == 0) { fprintf(stderr, "\r \r"); fflush(stderr); } } /* * Case-insensitive matching of possibly-abbreviated keyword switches. * keyword is the constant keyword (must be lower case already), * minchars is length of minimum legal abbreviation. */ GLOBAL(boolean) keymatch(char *arg, const char *keyword, int minchars) { register int ca, ck; register int nmatched = 0; while ((ca = *arg++) != '\0') { if ((ck = *keyword++) == '\0') return FALSE; /* arg longer than keyword, no good */ if (isupper(ca)) /* force arg to lcase (assume ck is already) */ ca = tolower(ca); if (ca != ck) return FALSE; /* no good */ nmatched++; /* count matched characters */ } /* reached end of argument; fail if it's too short for unique abbrev */ if (nmatched < minchars) return FALSE; return TRUE; /* A-OK */ } /* * Routines to establish binary I/O mode for stdin and stdout. * Non-Unix systems often require some hacking to get out of text mode. */ GLOBAL(FILE *) read_stdin(void) { FILE *input_file = stdin; #ifdef USE_SETMODE /* need to hack file mode? */ setmode(fileno(stdin), O_BINARY); #endif #ifdef USE_FDOPEN /* need to re-open in binary mode? */ if ((input_file = fdopen(fileno(stdin), READ_BINARY)) == NULL) { fprintf(stderr, "Cannot reopen stdin\n"); exit(EXIT_FAILURE); } #endif return input_file; } GLOBAL(FILE *) write_stdout(void) { FILE *output_file = stdout; #ifdef USE_SETMODE /* need to hack file mode? */ setmode(fileno(stdout), O_BINARY); #endif #ifdef USE_FDOPEN /* need to re-open in binary mode? */ if ((output_file = fdopen(fileno(stdout), WRITE_BINARY)) == NULL) { fprintf(stderr, "Cannot reopen stdout\n"); exit(EXIT_FAILURE); } #endif return output_file; } libjpeg-turbo-2.1.5/cdjpeg.h000066400000000000000000000134511436506551100157030ustar00rootroot00000000000000/* * cdjpeg.h * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1997, Thomas G. Lane. * Modified 2019 by Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright (C) 2017, 2019, 2021, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains common declarations for the sample applications * cjpeg and djpeg. It is NOT used by the core JPEG library. */ #define JPEG_CJPEG_DJPEG /* define proper options in jconfig.h */ #define JPEG_INTERNAL_OPTIONS /* cjpeg.c,djpeg.c need to see xxx_SUPPORTED */ #include "jinclude.h" #include "jpeglib.h" #include "jerror.h" /* get library error codes too */ #include "cderror.h" /* get application-specific error codes */ /* * Object interface for cjpeg's source file decoding modules */ typedef struct cjpeg_source_struct *cjpeg_source_ptr; struct cjpeg_source_struct { void (*start_input) (j_compress_ptr cinfo, cjpeg_source_ptr sinfo); JDIMENSION (*get_pixel_rows) (j_compress_ptr cinfo, cjpeg_source_ptr sinfo); void (*finish_input) (j_compress_ptr cinfo, cjpeg_source_ptr sinfo); FILE *input_file; JSAMPARRAY buffer; JDIMENSION buffer_height; #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION JDIMENSION max_pixels; #endif }; /* * Object interface for djpeg's output file encoding modules */ typedef struct djpeg_dest_struct *djpeg_dest_ptr; struct djpeg_dest_struct { /* start_output is called after jpeg_start_decompress finishes. * The color map will be ready at this time, if one is needed. */ void (*start_output) (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo); /* Emit the specified number of pixel rows from the buffer. */ void (*put_pixel_rows) (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo, JDIMENSION rows_supplied); /* Finish up at the end of the image. */ void (*finish_output) (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo); /* Re-calculate buffer dimensions based on output dimensions (for use with partial image decompression.) If this is NULL, then the output format does not support partial image decompression (BMP, in particular, cannot support partial decompression because it uses an inversion buffer to write the image in bottom-up order.) */ void (*calc_buffer_dimensions) (j_decompress_ptr cinfo, djpeg_dest_ptr dinfo); /* Target file spec; filled in by djpeg.c after object is created. */ FILE *output_file; /* Output pixel-row buffer. Created by module init or start_output. * Width is cinfo->output_width * cinfo->output_components; * height is buffer_height. */ JSAMPARRAY buffer; JDIMENSION buffer_height; }; /* * cjpeg/djpeg may need to perform extra passes to convert to or from * the source/destination file format. The JPEG library does not know * about these passes, but we'd like them to be counted by the progress * monitor. We use an expanded progress monitor object to hold the * additional pass count. */ struct cdjpeg_progress_mgr { struct jpeg_progress_mgr pub; /* fields known to JPEG library */ int completed_extra_passes; /* extra passes completed */ int total_extra_passes; /* total extra */ JDIMENSION max_scans; /* abort if the number of scans exceeds this value and the value is non-zero */ boolean report; /* whether or not to report progress */ /* last printed percentage stored here to avoid multiple printouts */ int percent_done; }; typedef struct cdjpeg_progress_mgr *cd_progress_ptr; /* Module selection routines for I/O modules. */ EXTERN(cjpeg_source_ptr) jinit_read_bmp(j_compress_ptr cinfo, boolean use_inversion_array); EXTERN(djpeg_dest_ptr) jinit_write_bmp(j_decompress_ptr cinfo, boolean is_os2, boolean use_inversion_array); EXTERN(cjpeg_source_ptr) jinit_read_gif(j_compress_ptr cinfo); EXTERN(djpeg_dest_ptr) jinit_write_gif(j_decompress_ptr cinfo, boolean is_lzw); EXTERN(cjpeg_source_ptr) jinit_read_ppm(j_compress_ptr cinfo); EXTERN(djpeg_dest_ptr) jinit_write_ppm(j_decompress_ptr cinfo); EXTERN(cjpeg_source_ptr) jinit_read_targa(j_compress_ptr cinfo); EXTERN(djpeg_dest_ptr) jinit_write_targa(j_decompress_ptr cinfo); /* cjpeg support routines (in rdswitch.c) */ EXTERN(boolean) read_quant_tables(j_compress_ptr cinfo, char *filename, boolean force_baseline); EXTERN(boolean) read_scan_script(j_compress_ptr cinfo, char *filename); EXTERN(boolean) set_quality_ratings(j_compress_ptr cinfo, char *arg, boolean force_baseline); EXTERN(boolean) set_quant_slots(j_compress_ptr cinfo, char *arg); EXTERN(boolean) set_sample_factors(j_compress_ptr cinfo, char *arg); /* djpeg support routines (in rdcolmap.c) */ EXTERN(void) read_color_map(j_decompress_ptr cinfo, FILE *infile); /* common support routines (in cdjpeg.c) */ EXTERN(void) start_progress_monitor(j_common_ptr cinfo, cd_progress_ptr progress); EXTERN(void) end_progress_monitor(j_common_ptr cinfo); EXTERN(boolean) keymatch(char *arg, const char *keyword, int minchars); EXTERN(FILE *) read_stdin(void); EXTERN(FILE *) write_stdout(void); /* miscellaneous useful macros */ #ifdef DONT_USE_B_MODE /* define mode parameters for fopen() */ #define READ_BINARY "r" #define WRITE_BINARY "w" #else #define READ_BINARY "rb" #define WRITE_BINARY "wb" #endif #ifndef EXIT_FAILURE /* define exit() codes if not provided */ #define EXIT_FAILURE 1 #endif #ifndef EXIT_SUCCESS #define EXIT_SUCCESS 0 #endif #ifndef EXIT_WARNING #define EXIT_WARNING 2 #endif #define IsExtRGB(cs) \ (cs == JCS_RGB || (cs >= JCS_EXT_RGB && cs <= JCS_EXT_ARGB)) libjpeg-turbo-2.1.5/change.log000066400000000000000000000311171436506551100162250ustar00rootroot00000000000000libjpeg-turbo note: This file has been modified by The libjpeg-turbo Project to include only information relevant to libjpeg-turbo. It is included only for reference. Please see ChangeLog.md for information specific to libjpeg-turbo. CHANGE LOG for Independent JPEG Group's JPEG software Version 9d 12-Jan-2020 ----------------------- Restore GIF read and write support from libjpeg version 6a. Thank to Wolfgang Werner (W.W.) Heinz for suggestion. Add jpegtran -drop option; add options to the crop extension and wipe to fill the extra area with content from the source image region, instead of gray out. Version 9c 14-Jan-2018 ----------------------- jpegtran: add an option to the -wipe switch to fill the region with the average of adjacent blocks, instead of gray out. Thank to Caitlyn Feddock and Maddie Ziegler for inspiration. Version 9b 17-Jan-2016 ----------------------- Document 'f' specifier for jpegtran -crop specification. Thank to Michele Martone for suggestion. Version 9a 19-Jan-2014 ----------------------- Add jpegtran -wipe option and extension for -crop. Thank to Andrew Senior, David Clunie, and Josef Schmid for suggestion. Version 9 13-Jan-2013 ---------------------- Add remark for jpeg_mem_dest() in jdatadst.c. Thank to Elie-Gregoire Khoury for the hint. Correct argument type in format string, avoid compiler warnings. Thank to Vincent Torri for hint. Version 8d 15-Jan-2012 ----------------------- Add cjpeg -rgb option to create RGB JPEG files. Using this switch suppresses the conversion from RGB colorspace input to the default YCbCr JPEG colorspace. Thank to Michael Koch for the initial suggestion. Add option to disable the region adjustment in the transupp crop code. Thank to Jeffrey Friedl for the suggestion. Version 8b 16-May-2010 ----------------------- Repair problem in new memory source manager with corrupt JPEG data. Thank to Ted Campbell and Samuel Chun for the report. Version 8a 28-Feb-2010 ----------------------- Writing tables-only datastreams via jpeg_write_tables works again. Support 32-bit BMPs (RGB image with Alpha channel) for read in cjpeg. Thank to Brett Blackham for the suggestion. Version 8 10-Jan-2010 ---------------------- Add sanity check in BMP reader module to avoid cjpeg crash for empty input image (thank to Isaev Ildar of ISP RAS, Moscow, RU for reporting this error). Add data source and destination managers for read from and write to memory buffers. New API functions jpeg_mem_src and jpeg_mem_dest. Thank to Roberto Boni from Italy for the suggestion. Version 7 27-Jun-2009 ---------------------- New scaled DCTs implemented. djpeg now supports scalings N/8 with all N from 1 to 16. cjpeg -quality option has been extended for support of separate quality settings for luminance and chrominance (or in general, for every provided quantization table slot). New API function jpeg_default_qtables() and q_scale_factor array in library. Support arithmetic entropy encoding and decoding. Added files jaricom.c, jcarith.c, jdarith.c. jpegtran has a new "lossless" cropping feature. Implement -perfect option in jpegtran, new API function jtransform_perfect_transform() in transupp. (DP 204_perfect.dpatch) Better error messages for jpegtran fopen failure. (DP 203_jpegtran_errmsg.dpatch) Fix byte order issue with 16bit PPM/PGM files in rdppm.c/wrppm.c: according to Netpbm, the de facto standard implementation of the PNM formats, the most significant byte is first. (DP 203_rdppm.dpatch) Add -raw option to rdjpgcom not to mangle the output. (DP 205_rdjpgcom_raw.dpatch) Make rdjpgcom locale aware. (DP 201_rdjpgcom_locale.dpatch) Add extern "C" to jpeglib.h. This avoids the need to put extern "C" { ... } around #include "jpeglib.h" in your C++ application. Defining the symbol DONT_USE_EXTERN_C in the configuration prevents this. (DP 202_jpeglib.h_c++.dpatch) Version 6b 27-Mar-1998 ----------------------- jpegtran has new features for lossless image transformations (rotation and flipping) as well as "lossless" reduction to grayscale. jpegtran now copies comments by default; it has a -copy switch to enable copying all APPn blocks as well, or to suppress comments. (Formerly it always suppressed comments and APPn blocks.) jpegtran now also preserves JFIF version and resolution information. New decompressor library feature: COM and APPn markers found in the input file can be saved in memory for later use by the application. (Before, you had to code this up yourself with a custom marker processor.) There is an unused field "void * client_data" now in compress and decompress parameter structs; this may be useful in some applications. JFIF version number information is now saved by the decoder and accepted by the encoder. jpegtran uses this to copy the source file's version number, to ensure "jpegtran -copy all" won't create bogus files that contain JFXX extensions but claim to be version 1.01. Applications that generate their own JFXX extension markers also (finally) have a supported way to cause the encoder to emit JFIF version number 1.02. djpeg's trace mode reports JFIF 1.02 thumbnail images as such, rather than as unknown APP0 markers. In -verbose mode, djpeg and rdjpgcom will try to print the contents of APP12 markers as text. Some digital cameras store useful text information in APP12 markers. Handling of truncated data streams is more robust: blocks beyond the one in which the error occurs will be output as uniform gray, or left unchanged if decoding a progressive JPEG. The appearance no longer depends on the Huffman tables being used. Huffman tables are checked for validity much more carefully than before. The configure script now supports building libjpeg as a shared library on many flavors of Unix (all the ones that GNU libtool knows how to build shared libraries for). Use "./configure --enable-shared" to try this out. New jconfig file and makefiles for Microsoft Visual C++ and Developer Studio. Also, a jconfig file and a build script for Metrowerks CodeWarrior on Apple Macintosh. makefile.dj has been updated for DJGPP v2, and there are miscellaneous other minor improvements in the makefiles. jmemmac.c now knows how to create temporary files following Mac System 7 conventions. djpeg's -map switch is now able to read raw-format PPM files reliably. cjpeg -progressive -restart no longer generates any unnecessary DRI markers. Multiple calls to jpeg_simple_progression for a single JPEG object no longer leak memory. Version 6a 7-Feb-96 -------------------- Library initialization sequence modified to detect version mismatches and struct field packing mismatches between library and calling application. This change requires applications to be recompiled, but does not require any application source code change. All routine declarations changed to the style "GLOBAL(type) name ...", that is, GLOBAL, LOCAL, METHODDEF, EXTERN are now macros taking the routine's return type as an argument. This makes it possible to add Microsoft-style linkage keywords to all the routines by changing just these macros. Note that any application code that was using these macros will have to be changed. DCT coefficient quantization tables are now stored in normal array order rather than zigzag order. Application code that calls jpeg_add_quant_table, or otherwise manipulates quantization tables directly, will need to be changed. If you need to make such code work with either older or newer versions of the library, a test like "#if JPEG_LIB_VERSION >= 61" is recommended. djpeg's trace capability now dumps DQT tables in natural order, not zigzag order. This allows the trace output to be made into a "-qtables" file more easily. New system-dependent memory manager module for use on Apple Macintosh. Fix bug in cjpeg's -smooth option: last one or two scanlines would be duplicates of the prior line unless the image height mod 16 was 1 or 2. Repair minor problems in VMS, BCC, MC6 makefiles. New configure script based on latest GNU Autoconf. Correct the list of include files needed by MetroWerks C for ccommand(). Numerous small documentation updates. Version 6 2-Aug-95 ------------------- Progressive JPEG support: library can read and write full progressive JPEG files. A "buffered image" mode supports incremental decoding for on-the-fly display of progressive images. Simply recompiling an existing IJG-v5-based decoder with v6 should allow it to read progressive files, though of course without any special progressive display. New "jpegtran" application performs lossless transcoding between different JPEG formats; primarily, it can be used to convert baseline to progressive JPEG and vice versa. In support of jpegtran, the library now allows lossless reading and writing of JPEG files as DCT coefficient arrays. This ability may be of use in other applications. Notes for programmers: * We changed jpeg_start_decompress() to be able to suspend; this makes all decoding modes available to suspending-input applications. However, existing applications that use suspending input will need to be changed to check the return value from jpeg_start_decompress(). You don't need to do anything if you don't use a suspending data source. * We changed the interface to the virtual array routines: access_virt_array routines now take a count of the number of rows to access this time. The last parameter to request_virt_array routines is now interpreted as the maximum number of rows that may be accessed at once, but not necessarily the height of every access. Version 5b 15-Mar-95 --------------------- Correct bugs with grayscale images having v_samp_factor > 1. jpeg_write_raw_data() now supports output suspension. Correct bugs in "configure" script for case of compiling in a directory other than the one containing the source files. Repair bug in jquant1.c: sometimes didn't use as many colors as it could. Borland C makefile and jconfig file work under either MS-DOS or OS/2. Miscellaneous improvements to documentation. Version 5a 7-Dec-94 -------------------- Changed color conversion roundoff behavior so that grayscale values are represented exactly. (This causes test image files to change.) Make ordered dither use 16x16 instead of 4x4 pattern for a small quality improvement. New configure script based on latest GNU Autoconf. Fix configure script to handle CFLAGS correctly. Rename *.auto files to *.cfg, so that configure script still works if file names have been truncated for DOS. Fix bug in rdbmp.c: didn't allow for extra data between header and image. Modify rdppm.c/wrppm.c to handle 2-byte raw PPM/PGM formats for 12-bit data. Fix several bugs in rdrle.c. NEED_SHORT_EXTERNAL_NAMES option was broken. Revise jerror.h/jerror.c for more flexibility in message table. Repair oversight in jmemname.c NO_MKTEMP case: file could be there but unreadable. Version 5 24-Sep-94 -------------------- Version 5 represents a nearly complete redesign and rewrite of the IJG software. Major user-visible changes include: * Automatic configuration simplifies installation for most Unix systems. * A range of speed vs. image quality tradeoffs are supported. This includes resizing of an image during decompression: scaling down by a factor of 1/2, 1/4, or 1/8 is handled very efficiently. * New programs rdjpgcom and wrjpgcom allow insertion and extraction of text comments in a JPEG file. The application programmer's interface to the library has changed completely. Notable improvements include: * We have eliminated the use of callback routines for handling the uncompressed image data. The application now sees the library as a set of routines that it calls to read or write image data on a scanline-by-scanline basis. * The application image data is represented in a conventional interleaved- pixel format, rather than as a separate array for each color channel. This can save a copying step in many programs. * The handling of compressed data has been cleaned up: the application can supply routines to source or sink the compressed data. It is possible to suspend processing on source/sink buffer overrun, although this is not supported in all operating modes. * All static state has been eliminated from the library, so that multiple instances of compression or decompression can be active concurrently. * JPEG abbreviated datastream formats are supported, ie, quantization and Huffman tables can be stored separately from the image data. * And not only that, but the documentation of the library has improved considerably! The last widely used release before the version 5 rewrite was version 4A of 18-Feb-93. Change logs before that point have been discarded, since they are not of much interest after the rewrite. libjpeg-turbo-2.1.5/cjpeg.1000066400000000000000000000330511436506551100154460ustar00rootroot00000000000000.TH CJPEG 1 "30 November 2021" .SH NAME cjpeg \- compress an image file to a JPEG file .SH SYNOPSIS .B cjpeg [ .I options ] [ .I filename ] .LP .SH DESCRIPTION .LP .B cjpeg compresses the named image file, or the standard input if no file is named, and produces a JPEG/JFIF file on the standard output. The currently supported input file formats are: PPM (PBMPLUS color format), PGM (PBMPLUS grayscale format), BMP, GIF, and Targa. .SH OPTIONS All switch names may be abbreviated; for example, .B \-grayscale may be written .B \-gray or .BR \-gr . Most of the "basic" switches can be abbreviated to as little as one letter. Upper and lower case are equivalent (thus .B \-BMP is the same as .BR \-bmp ). British spellings are also accepted (e.g., .BR \-greyscale ), though for brevity these are not mentioned below. .PP The basic switches are: .TP .BI \-quality " N[,...]" Scale quantization tables to adjust image quality. Quality is 0 (worst) to 100 (best); default is 75. (See below for more info.) .TP .B \-grayscale Create monochrome JPEG file from color input. By saying .BR \-grayscale, you'll get a smaller JPEG file that takes less time to process. .TP .B \-rgb Create RGB JPEG file. Using this switch suppresses the conversion from RGB colorspace input to the default YCbCr JPEG colorspace. .TP .B \-optimize Perform optimization of entropy encoding parameters. Without this, default encoding parameters are used. .B \-optimize usually makes the JPEG file a little smaller, but .B cjpeg runs somewhat slower and needs much more memory. Image quality and speed of decompression are unaffected by .BR \-optimize . .TP .B \-progressive Create progressive JPEG file (see below). .TP .B \-targa Input file is Targa format. Targa files that contain an "identification" field will not be automatically recognized by .BR cjpeg ; for such files you must specify .B \-targa to make .B cjpeg treat the input as Targa format. For most Targa files, you won't need this switch. .PP The .B \-quality switch lets you trade off compressed file size against quality of the reconstructed image: the higher the quality setting, the larger the JPEG file, and the closer the output image will be to the original input. Normally you want to use the lowest quality setting (smallest file) that decompresses into something visually indistinguishable from the original image. For this purpose the quality setting should generally be between 50 and 95 (the default is 75) for photographic images. If you see defects at .B \-quality 75, then go up 5 or 10 counts at a time until you are happy with the output image. (The optimal setting will vary from one image to another.) .PP .B \-quality 100 will generate a quantization table of all 1's, minimizing loss in the quantization step (but there is still information loss in subsampling, as well as roundoff error.) For most images, specifying a quality value above about 95 will increase the size of the compressed file dramatically, and while the quality gain from these higher quality values is measurable (using metrics such as PSNR or SSIM), it is rarely perceivable by human vision. .PP In the other direction, quality values below 50 will produce very small files of low image quality. Settings around 5 to 10 might be useful in preparing an index of a large image library, for example. Try .B \-quality 2 (or so) for some amusing Cubist effects. (Note: quality values below about 25 generate 2-byte quantization tables, which are considered optional in the JPEG standard. .B cjpeg emits a warning message when you give such a quality value, because some other JPEG programs may be unable to decode the resulting file. Use .B \-baseline if you need to ensure compatibility at low quality values.) .PP The \fB-quality\fR option has been extended in this version of \fBcjpeg\fR to support separate quality settings for luminance and chrominance (or, in general, separate settings for every quantization table slot.) The principle is the same as chrominance subsampling: since the human eye is more sensitive to spatial changes in brightness than spatial changes in color, the chrominance components can be quantized more than the luminance components without incurring any visible image quality loss. However, unlike subsampling, this feature reduces data in the frequency domain instead of the spatial domain, which allows for more fine-grained control. This option is useful in quality-sensitive applications, for which the artifacts generated by subsampling may be unacceptable. .PP The \fB-quality\fR option accepts a comma-separated list of parameters, which respectively refer to the quality levels that should be assigned to the quantization table slots. If there are more q-table slots than parameters, then the last parameter is replicated. Thus, if only one quality parameter is given, this is used for both luminance and chrominance (slots 0 and 1, respectively), preserving the legacy behavior of cjpeg v6b and prior. More (or customized) quantization tables can be set with the \fB-qtables\fR option and assigned to components with the \fB-qslots\fR option (see the "wizard" switches below.) .PP JPEG files generated with separate luminance and chrominance quality are fully compliant with standard JPEG decoders. .PP .BR CAUTION: For this setting to be useful, be sure to pass an argument of \fB-sample 1x1\fR to \fBcjpeg\fR to disable chrominance subsampling. Otherwise, the default subsampling level (2x2, AKA "4:2:0") will be used. .PP The .B \-progressive switch creates a "progressive JPEG" file. In this type of JPEG file, the data is stored in multiple scans of increasing quality. If the file is being transmitted over a slow communications link, the decoder can use the first scan to display a low-quality image very quickly, and can then improve the display with each subsequent scan. The final image is exactly equivalent to a standard JPEG file of the same quality setting, and the total file size is about the same --- often a little smaller. .PP Switches for advanced users: .TP .B \-arithmetic Use arithmetic coding. .B Caution: arithmetic coded JPEG is not yet widely implemented, so many decoders will be unable to view an arithmetic coded JPEG file at all. .TP .B \-dct int Use accurate integer DCT method (default). .TP .B \-dct fast Use less accurate integer DCT method [legacy feature]. When the Independent JPEG Group's software was first released in 1991, the compression time for a 1-megapixel JPEG image on a mainstream PC was measured in minutes. Thus, the \fBfast\fR integer DCT algorithm provided noticeable performance benefits. On modern CPUs running libjpeg-turbo, however, the compression time for a 1-megapixel JPEG image is measured in milliseconds, and thus the performance benefits of the \fBfast\fR algorithm are much less noticeable. On modern x86/x86-64 CPUs that support AVX2 instructions, the \fBfast\fR and \fBint\fR methods have similar performance. On other types of CPUs, the \fBfast\fR method is generally about 5-15% faster than the \fBint\fR method. For quality levels of 90 and below, there should be little or no perceptible quality difference between the two algorithms. For quality levels above 90, however, the difference between the \fBfast\fR and \fBint\fR methods becomes more pronounced. With quality=97, for instance, the \fBfast\fR method incurs generally about a 1-3 dB loss in PSNR relative to the \fBint\fR method, but this can be larger for some images. Do not use the \fBfast\fR method with quality levels above 97. The algorithm often degenerates at quality=98 and above and can actually produce a more lossy image than if lower quality levels had been used. Also, in libjpeg-turbo, the \fBfast\fR method is not fully accelerated for quality levels above 97, so it will be slower than the \fBint\fR method. .TP .B \-dct float Use floating-point DCT method [legacy feature]. The \fBfloat\fR method does not produce significantly more accurate results than the \fBint\fR method, and it is much slower. The \fBfloat\fR method may also give different results on different machines due to varying roundoff behavior, whereas the integer methods should give the same results on all machines. .TP .BI \-icc " file" Embed ICC color management profile contained in the specified file. .TP .BI \-restart " N" Emit a JPEG restart marker every N MCU rows, or every N MCU blocks if "B" is attached to the number. .B \-restart 0 (the default) means no restart markers. .TP .BI \-smooth " N" Smooth the input image to eliminate dithering noise. N, ranging from 1 to 100, indicates the strength of smoothing. 0 (the default) means no smoothing. .TP .BI \-maxmemory " N" Set limit for amount of memory to use in processing large images. Value is in thousands of bytes, or millions of bytes if "M" is attached to the number. For example, .B \-max 4m selects 4000000 bytes. If more space is needed, an error will occur. .TP .BI \-outfile " name" Send output image to the named file, not to standard output. .TP .BI \-memdst Compress to memory instead of a file. This feature was implemented mainly as a way of testing the in-memory destination manager (jpeg_mem_dest()), but it is also useful for benchmarking, since it reduces the I/O overhead. .TP .BI \-report Report compression progress. .TP .BI \-strict Treat all warnings as fatal. Enabling this option will cause the compressor to abort if an LZW-compressed GIF input image contains incomplete or corrupt image data. .TP .B \-verbose Enable debug printout. More .BR \-v 's give more output. Also, version information is printed at startup. .TP .B \-debug Same as .BR \-verbose . .TP .B \-version Print version information and exit. .PP The .B \-restart option inserts extra markers that allow a JPEG decoder to resynchronize after a transmission error. Without restart markers, any damage to a compressed file will usually ruin the image from the point of the error to the end of the image; with restart markers, the damage is usually confined to the portion of the image up to the next restart marker. Of course, the restart markers occupy extra space. We recommend .B \-restart 1 for images that will be transmitted across unreliable networks such as Usenet. .PP The .B \-smooth option filters the input to eliminate fine-scale noise. This is often useful when converting dithered images to JPEG: a moderate smoothing factor of 10 to 50 gets rid of dithering patterns in the input file, resulting in a smaller JPEG file and a better-looking image. Too large a smoothing factor will visibly blur the image, however. .PP Switches for wizards: .TP .B \-baseline Force baseline-compatible quantization tables to be generated. This clamps quantization values to 8 bits even at low quality settings. (This switch is poorly named, since it does not ensure that the output is actually baseline JPEG. For example, you can use .B \-baseline and .B \-progressive together.) .TP .BI \-qtables " file" Use the quantization tables given in the specified text file. .TP .BI \-qslots " N[,...]" Select which quantization table to use for each color component. .TP .BI \-sample " HxV[,...]" Set JPEG sampling factors for each color component. .TP .BI \-scans " file" Use the scan script given in the specified text file. .PP The "wizard" switches are intended for experimentation with JPEG. If you don't know what you are doing, \fBdon't use them\fR. These switches are documented further in the file wizard.txt. .SH EXAMPLES .LP This example compresses the PPM file foo.ppm with a quality factor of 60 and saves the output as foo.jpg: .IP .B cjpeg \-quality .I 60 foo.ppm .B > .I foo.jpg .SH HINTS Color GIF files are not the ideal input for JPEG; JPEG is really intended for compressing full-color (24-bit) images. In particular, don't try to convert cartoons, line drawings, and other images that have only a few distinct colors. GIF works great on these, JPEG does not. If you want to convert a GIF to JPEG, you should experiment with .BR cjpeg 's .B \-quality and .B \-smooth options to get a satisfactory conversion. .B \-smooth 10 or so is often helpful. .PP Avoid running an image through a series of JPEG compression/decompression cycles. Image quality loss will accumulate; after ten or so cycles the image may be noticeably worse than it was after one cycle. It's best to use a lossless format while manipulating an image, then convert to JPEG format when you are ready to file the image away. .PP The .B \-optimize option to .B cjpeg is worth using when you are making a "final" version for posting or archiving. It's also a win when you are using low quality settings to make very small JPEG files; the percentage improvement is often a lot more than it is on larger files. (At present, .B \-optimize mode is always selected when generating progressive JPEG files.) .SH ENVIRONMENT .TP .B JPEGMEM If this environment variable is set, its value is the default memory limit. The value is specified as described for the .B \-maxmemory switch. .B JPEGMEM overrides the default value specified when the program was compiled, and itself is overridden by an explicit .BR \-maxmemory . .SH SEE ALSO .BR djpeg (1), .BR jpegtran (1), .BR rdjpgcom (1), .BR wrjpgcom (1) .br .BR ppm (5), .BR pgm (5) .br Wallace, Gregory K. "The JPEG Still Picture Compression Standard", Communications of the ACM, April 1991 (vol. 34, no. 4), pp. 30-44. .SH AUTHOR Independent JPEG Group .PP This file was modified by The libjpeg-turbo Project to include only information relevant to libjpeg-turbo, to wordsmith certain sections, and to describe features not present in libjpeg. .SH ISSUES Not all variants of BMP and Targa file formats are supported. .PP The .B \-targa switch is not a bug, it's a feature. (It would be a bug if the Targa format designers had not been clueless.) libjpeg-turbo-2.1.5/cjpeg.c000066400000000000000000000603361436506551100155360ustar00rootroot00000000000000/* * cjpeg.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1998, Thomas G. Lane. * Modified 2003-2011 by Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright (C) 2010, 2013-2014, 2017, 2019-2022, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains a command-line user interface for the JPEG compressor. * It should work on any system with Unix- or MS-DOS-style command lines. * * Two different command line styles are permitted, depending on the * compile-time switch TWO_FILE_COMMANDLINE: * cjpeg [options] inputfile outputfile * cjpeg [options] [inputfile] * In the second style, output is always to standard output, which you'd * normally redirect to a file or pipe to some other program. Input is * either from a named file or from standard input (typically redirected). * The second style is convenient on Unix but is unhelpful on systems that * don't support pipes. Also, you MUST use the first style if your system * doesn't do binary I/O to stdin/stdout. * To simplify script writing, the "-outfile" switch is provided. The syntax * cjpeg [options] -outfile outputfile inputfile * works regardless of which command line style is used. */ #ifdef _MSC_VER #define _CRT_SECURE_NO_DEPRECATE #endif #ifdef CJPEG_FUZZER #define JPEG_INTERNALS #endif #include "cdjpeg.h" /* Common decls for cjpeg/djpeg applications */ #include "jversion.h" /* for version message */ #include "jconfigint.h" /* Create the add-on message string table. */ #define JMESSAGE(code, string) string, static const char * const cdjpeg_message_table[] = { #include "cderror.h" NULL }; /* * This routine determines what format the input file is, * and selects the appropriate input-reading module. * * To determine which family of input formats the file belongs to, * we may look only at the first byte of the file, since C does not * guarantee that more than one character can be pushed back with ungetc. * Looking at additional bytes would require one of these approaches: * 1) assume we can fseek() the input file (fails for piped input); * 2) assume we can push back more than one character (works in * some C implementations, but unportable); * 3) provide our own buffering (breaks input readers that want to use * stdio directly); * or 4) don't put back the data, and modify the input_init methods to assume * they start reading after the start of file. * #1 is attractive for MS-DOS but is untenable on Unix. * * The most portable solution for file types that can't be identified by their * first byte is to make the user tell us what they are. This is also the * only approach for "raw" file types that contain only arbitrary values. * We presently apply this method for Targa files. Most of the time Targa * files start with 0x00, so we recognize that case. Potentially, however, * a Targa file could start with any byte value (byte 0 is the length of the * seldom-used ID field), so we provide a switch to force Targa input mode. */ static boolean is_targa; /* records user -targa switch */ LOCAL(cjpeg_source_ptr) select_file_type(j_compress_ptr cinfo, FILE *infile) { int c; if (is_targa) { #ifdef TARGA_SUPPORTED return jinit_read_targa(cinfo); #else ERREXIT(cinfo, JERR_TGA_NOTCOMP); #endif } if ((c = getc(infile)) == EOF) ERREXIT(cinfo, JERR_INPUT_EMPTY); if (ungetc(c, infile) == EOF) ERREXIT(cinfo, JERR_UNGETC_FAILED); switch (c) { #ifdef BMP_SUPPORTED case 'B': return jinit_read_bmp(cinfo, TRUE); #endif #ifdef GIF_SUPPORTED case 'G': return jinit_read_gif(cinfo); #endif #ifdef PPM_SUPPORTED case 'P': return jinit_read_ppm(cinfo); #endif #ifdef TARGA_SUPPORTED case 0x00: return jinit_read_targa(cinfo); #endif default: ERREXIT(cinfo, JERR_UNKNOWN_FORMAT); break; } return NULL; /* suppress compiler warnings */ } /* * Argument-parsing code. * The switch parser is designed to be useful with DOS-style command line * syntax, ie, intermixed switches and file names, where only the switches * to the left of a given file name affect processing of that file. * The main program in this file doesn't actually use this capability... */ static const char *progname; /* program name for error messages */ static char *icc_filename; /* for -icc switch */ static char *outfilename; /* for -outfile switch */ boolean memdst; /* for -memdst switch */ boolean report; /* for -report switch */ boolean strict; /* for -strict switch */ #ifdef CJPEG_FUZZER #include struct my_error_mgr { struct jpeg_error_mgr pub; jmp_buf setjmp_buffer; }; void my_error_exit(j_common_ptr cinfo) { struct my_error_mgr *myerr = (struct my_error_mgr *)cinfo->err; longjmp(myerr->setjmp_buffer, 1); } static void my_emit_message_fuzzer(j_common_ptr cinfo, int msg_level) { if (msg_level < 0) cinfo->err->num_warnings++; } #define HANDLE_ERROR() { \ if (cinfo.global_state > CSTATE_START) { \ if (memdst && outbuffer) \ (*cinfo.dest->term_destination) (&cinfo); \ jpeg_abort_compress(&cinfo); \ } \ jpeg_destroy_compress(&cinfo); \ if (input_file != stdin && input_file != NULL) \ fclose(input_file); \ if (memdst) \ free(outbuffer); \ return EXIT_FAILURE; \ } #endif LOCAL(void) usage(void) /* complain about bad command line */ { fprintf(stderr, "usage: %s [switches] ", progname); #ifdef TWO_FILE_COMMANDLINE fprintf(stderr, "inputfile outputfile\n"); #else fprintf(stderr, "[inputfile]\n"); #endif fprintf(stderr, "Switches (names may be abbreviated):\n"); fprintf(stderr, " -quality N[,...] Compression quality (0..100; 5-95 is most useful range,\n"); fprintf(stderr, " default is 75)\n"); fprintf(stderr, " -grayscale Create monochrome JPEG file\n"); fprintf(stderr, " -rgb Create RGB JPEG file\n"); #ifdef ENTROPY_OPT_SUPPORTED fprintf(stderr, " -optimize Optimize Huffman table (smaller file, but slow compression)\n"); #endif #ifdef C_PROGRESSIVE_SUPPORTED fprintf(stderr, " -progressive Create progressive JPEG file\n"); #endif #ifdef TARGA_SUPPORTED fprintf(stderr, " -targa Input file is Targa format (usually not needed)\n"); #endif fprintf(stderr, "Switches for advanced users:\n"); #ifdef C_ARITH_CODING_SUPPORTED fprintf(stderr, " -arithmetic Use arithmetic coding\n"); #endif #ifdef DCT_ISLOW_SUPPORTED fprintf(stderr, " -dct int Use accurate integer DCT method%s\n", (JDCT_DEFAULT == JDCT_ISLOW ? " (default)" : "")); #endif #ifdef DCT_IFAST_SUPPORTED fprintf(stderr, " -dct fast Use less accurate integer DCT method [legacy feature]%s\n", (JDCT_DEFAULT == JDCT_IFAST ? " (default)" : "")); #endif #ifdef DCT_FLOAT_SUPPORTED fprintf(stderr, " -dct float Use floating-point DCT method [legacy feature]%s\n", (JDCT_DEFAULT == JDCT_FLOAT ? " (default)" : "")); #endif fprintf(stderr, " -icc FILE Embed ICC profile contained in FILE\n"); fprintf(stderr, " -restart N Set restart interval in rows, or in blocks with B\n"); #ifdef INPUT_SMOOTHING_SUPPORTED fprintf(stderr, " -smooth N Smooth dithered input (N=1..100 is strength)\n"); #endif fprintf(stderr, " -maxmemory N Maximum memory to use (in kbytes)\n"); fprintf(stderr, " -outfile name Specify name for output file\n"); #if JPEG_LIB_VERSION >= 80 || defined(MEM_SRCDST_SUPPORTED) fprintf(stderr, " -memdst Compress to memory instead of file (useful for benchmarking)\n"); #endif fprintf(stderr, " -report Report compression progress\n"); fprintf(stderr, " -strict Treat all warnings as fatal\n"); fprintf(stderr, " -verbose or -debug Emit debug output\n"); fprintf(stderr, " -version Print version information and exit\n"); fprintf(stderr, "Switches for wizards:\n"); fprintf(stderr, " -baseline Force baseline quantization tables\n"); fprintf(stderr, " -qtables FILE Use quantization tables given in FILE\n"); fprintf(stderr, " -qslots N[,...] Set component quantization tables\n"); fprintf(stderr, " -sample HxV[,...] Set component sampling factors\n"); #ifdef C_MULTISCAN_FILES_SUPPORTED fprintf(stderr, " -scans FILE Create multi-scan JPEG per script FILE\n"); #endif exit(EXIT_FAILURE); } LOCAL(int) parse_switches(j_compress_ptr cinfo, int argc, char **argv, int last_file_arg_seen, boolean for_real) /* Parse optional switches. * Returns argv[] index of first file-name argument (== argc if none). * Any file names with indexes <= last_file_arg_seen are ignored; * they have presumably been processed in a previous iteration. * (Pass 0 for last_file_arg_seen on the first or only iteration.) * for_real is FALSE on the first (dummy) pass; we may skip any expensive * processing. */ { int argn; char *arg; boolean force_baseline; boolean simple_progressive; char *qualityarg = NULL; /* saves -quality parm if any */ char *qtablefile = NULL; /* saves -qtables filename if any */ char *qslotsarg = NULL; /* saves -qslots parm if any */ char *samplearg = NULL; /* saves -sample parm if any */ char *scansarg = NULL; /* saves -scans parm if any */ /* Set up default JPEG parameters. */ force_baseline = FALSE; /* by default, allow 16-bit quantizers */ simple_progressive = FALSE; is_targa = FALSE; icc_filename = NULL; outfilename = NULL; memdst = FALSE; report = FALSE; strict = FALSE; cinfo->err->trace_level = 0; /* Scan command line options, adjust parameters */ for (argn = 1; argn < argc; argn++) { arg = argv[argn]; if (*arg != '-') { /* Not a switch, must be a file name argument */ if (argn <= last_file_arg_seen) { outfilename = NULL; /* -outfile applies to just one input file */ continue; /* ignore this name if previously processed */ } break; /* else done parsing switches */ } arg++; /* advance past switch marker character */ if (keymatch(arg, "arithmetic", 1)) { /* Use arithmetic coding. */ #ifdef C_ARITH_CODING_SUPPORTED cinfo->arith_code = TRUE; #else fprintf(stderr, "%s: sorry, arithmetic coding not supported\n", progname); exit(EXIT_FAILURE); #endif } else if (keymatch(arg, "baseline", 1)) { /* Force baseline-compatible output (8-bit quantizer values). */ force_baseline = TRUE; } else if (keymatch(arg, "dct", 2)) { /* Select DCT algorithm. */ if (++argn >= argc) /* advance to next argument */ usage(); if (keymatch(argv[argn], "int", 1)) { cinfo->dct_method = JDCT_ISLOW; } else if (keymatch(argv[argn], "fast", 2)) { cinfo->dct_method = JDCT_IFAST; } else if (keymatch(argv[argn], "float", 2)) { cinfo->dct_method = JDCT_FLOAT; } else usage(); } else if (keymatch(arg, "debug", 1) || keymatch(arg, "verbose", 1)) { /* Enable debug printouts. */ /* On first -d, print version identification */ static boolean printed_version = FALSE; if (!printed_version) { fprintf(stderr, "%s version %s (build %s)\n", PACKAGE_NAME, VERSION, BUILD); fprintf(stderr, "%s\n\n", JCOPYRIGHT); fprintf(stderr, "Emulating The Independent JPEG Group's software, version %s\n\n", JVERSION); printed_version = TRUE; } cinfo->err->trace_level++; } else if (keymatch(arg, "version", 4)) { fprintf(stderr, "%s version %s (build %s)\n", PACKAGE_NAME, VERSION, BUILD); exit(EXIT_SUCCESS); } else if (keymatch(arg, "grayscale", 2) || keymatch(arg, "greyscale", 2)) { /* Force a monochrome JPEG file to be generated. */ jpeg_set_colorspace(cinfo, JCS_GRAYSCALE); } else if (keymatch(arg, "rgb", 3)) { /* Force an RGB JPEG file to be generated. */ jpeg_set_colorspace(cinfo, JCS_RGB); } else if (keymatch(arg, "icc", 1)) { /* Set ICC filename. */ if (++argn >= argc) /* advance to next argument */ usage(); icc_filename = argv[argn]; } else if (keymatch(arg, "maxmemory", 3)) { /* Maximum memory in Kb (or Mb with 'm'). */ long lval; char ch = 'x'; if (++argn >= argc) /* advance to next argument */ usage(); if (sscanf(argv[argn], "%ld%c", &lval, &ch) < 1) usage(); if (ch == 'm' || ch == 'M') lval *= 1000L; cinfo->mem->max_memory_to_use = lval * 1000L; } else if (keymatch(arg, "optimize", 1) || keymatch(arg, "optimise", 1)) { /* Enable entropy parm optimization. */ #ifdef ENTROPY_OPT_SUPPORTED cinfo->optimize_coding = TRUE; #else fprintf(stderr, "%s: sorry, entropy optimization was not compiled in\n", progname); exit(EXIT_FAILURE); #endif } else if (keymatch(arg, "outfile", 4)) { /* Set output file name. */ if (++argn >= argc) /* advance to next argument */ usage(); outfilename = argv[argn]; /* save it away for later use */ } else if (keymatch(arg, "progressive", 1)) { /* Select simple progressive mode. */ #ifdef C_PROGRESSIVE_SUPPORTED simple_progressive = TRUE; /* We must postpone execution until num_components is known. */ #else fprintf(stderr, "%s: sorry, progressive output was not compiled in\n", progname); exit(EXIT_FAILURE); #endif } else if (keymatch(arg, "memdst", 2)) { /* Use in-memory destination manager */ #if JPEG_LIB_VERSION >= 80 || defined(MEM_SRCDST_SUPPORTED) memdst = TRUE; #else fprintf(stderr, "%s: sorry, in-memory destination manager was not compiled in\n", progname); exit(EXIT_FAILURE); #endif } else if (keymatch(arg, "quality", 1)) { /* Quality ratings (quantization table scaling factors). */ if (++argn >= argc) /* advance to next argument */ usage(); qualityarg = argv[argn]; } else if (keymatch(arg, "qslots", 2)) { /* Quantization table slot numbers. */ if (++argn >= argc) /* advance to next argument */ usage(); qslotsarg = argv[argn]; /* Must delay setting qslots until after we have processed any * colorspace-determining switches, since jpeg_set_colorspace sets * default quant table numbers. */ } else if (keymatch(arg, "qtables", 2)) { /* Quantization tables fetched from file. */ if (++argn >= argc) /* advance to next argument */ usage(); qtablefile = argv[argn]; /* We postpone actually reading the file in case -quality comes later. */ } else if (keymatch(arg, "report", 3)) { report = TRUE; } else if (keymatch(arg, "restart", 1)) { /* Restart interval in MCU rows (or in MCUs with 'b'). */ long lval; char ch = 'x'; if (++argn >= argc) /* advance to next argument */ usage(); if (sscanf(argv[argn], "%ld%c", &lval, &ch) < 1) usage(); if (lval < 0 || lval > 65535L) usage(); if (ch == 'b' || ch == 'B') { cinfo->restart_interval = (unsigned int)lval; cinfo->restart_in_rows = 0; /* else prior '-restart n' overrides me */ } else { cinfo->restart_in_rows = (int)lval; /* restart_interval will be computed during startup */ } } else if (keymatch(arg, "sample", 2)) { /* Set sampling factors. */ if (++argn >= argc) /* advance to next argument */ usage(); samplearg = argv[argn]; /* Must delay setting sample factors until after we have processed any * colorspace-determining switches, since jpeg_set_colorspace sets * default sampling factors. */ } else if (keymatch(arg, "scans", 4)) { /* Set scan script. */ #ifdef C_MULTISCAN_FILES_SUPPORTED if (++argn >= argc) /* advance to next argument */ usage(); scansarg = argv[argn]; /* We must postpone reading the file in case -progressive appears. */ #else fprintf(stderr, "%s: sorry, multi-scan output was not compiled in\n", progname); exit(EXIT_FAILURE); #endif } else if (keymatch(arg, "smooth", 2)) { /* Set input smoothing factor. */ int val; if (++argn >= argc) /* advance to next argument */ usage(); if (sscanf(argv[argn], "%d", &val) != 1) usage(); if (val < 0 || val > 100) usage(); cinfo->smoothing_factor = val; } else if (keymatch(arg, "strict", 2)) { strict = TRUE; } else if (keymatch(arg, "targa", 1)) { /* Input file is Targa format. */ is_targa = TRUE; } else { usage(); /* bogus switch */ } } /* Post-switch-scanning cleanup */ if (for_real) { /* Set quantization tables for selected quality. */ /* Some or all may be overridden if -qtables is present. */ if (qualityarg != NULL) /* process -quality if it was present */ if (!set_quality_ratings(cinfo, qualityarg, force_baseline)) usage(); if (qtablefile != NULL) /* process -qtables if it was present */ if (!read_quant_tables(cinfo, qtablefile, force_baseline)) usage(); if (qslotsarg != NULL) /* process -qslots if it was present */ if (!set_quant_slots(cinfo, qslotsarg)) usage(); if (samplearg != NULL) /* process -sample if it was present */ if (!set_sample_factors(cinfo, samplearg)) usage(); #ifdef C_PROGRESSIVE_SUPPORTED if (simple_progressive) /* process -progressive; -scans can override */ jpeg_simple_progression(cinfo); #endif #ifdef C_MULTISCAN_FILES_SUPPORTED if (scansarg != NULL) /* process -scans if it was present */ if (!read_scan_script(cinfo, scansarg)) usage(); #endif } return argn; /* return index of next arg (file name) */ } METHODDEF(void) my_emit_message(j_common_ptr cinfo, int msg_level) { if (msg_level < 0) { /* Treat warning as fatal */ cinfo->err->error_exit(cinfo); } else { if (cinfo->err->trace_level >= msg_level) cinfo->err->output_message(cinfo); } } /* * The main program. */ int main(int argc, char **argv) { struct jpeg_compress_struct cinfo; #ifdef CJPEG_FUZZER struct my_error_mgr myerr; struct jpeg_error_mgr &jerr = myerr.pub; #else struct jpeg_error_mgr jerr; #endif struct cdjpeg_progress_mgr progress; int file_index; cjpeg_source_ptr src_mgr; FILE *input_file = NULL; FILE *icc_file; JOCTET *icc_profile = NULL; long icc_len = 0; FILE *output_file = NULL; unsigned char *outbuffer = NULL; unsigned long outsize = 0; JDIMENSION num_scanlines; progname = argv[0]; if (progname == NULL || progname[0] == 0) progname = "cjpeg"; /* in case C library doesn't provide it */ /* Initialize the JPEG compression object with default error handling. */ cinfo.err = jpeg_std_error(&jerr); jpeg_create_compress(&cinfo); /* Add some application-specific error messages (from cderror.h) */ jerr.addon_message_table = cdjpeg_message_table; jerr.first_addon_message = JMSG_FIRSTADDONCODE; jerr.last_addon_message = JMSG_LASTADDONCODE; /* Initialize JPEG parameters. * Much of this may be overridden later. * In particular, we don't yet know the input file's color space, * but we need to provide some value for jpeg_set_defaults() to work. */ cinfo.in_color_space = JCS_RGB; /* arbitrary guess */ jpeg_set_defaults(&cinfo); /* Scan command line to find file names. * It is convenient to use just one switch-parsing routine, but the switch * values read here are ignored; we will rescan the switches after opening * the input file. */ file_index = parse_switches(&cinfo, argc, argv, 0, FALSE); if (strict) jerr.emit_message = my_emit_message; #ifdef TWO_FILE_COMMANDLINE if (!memdst) { /* Must have either -outfile switch or explicit output file name */ if (outfilename == NULL) { if (file_index != argc - 2) { fprintf(stderr, "%s: must name one input and one output file\n", progname); usage(); } outfilename = argv[file_index + 1]; } else { if (file_index != argc - 1) { fprintf(stderr, "%s: must name one input and one output file\n", progname); usage(); } } } #else /* Unix style: expect zero or one file name */ if (file_index < argc - 1) { fprintf(stderr, "%s: only one input file\n", progname); usage(); } #endif /* TWO_FILE_COMMANDLINE */ /* Open the input file. */ if (file_index < argc) { if ((input_file = fopen(argv[file_index], READ_BINARY)) == NULL) { fprintf(stderr, "%s: can't open %s\n", progname, argv[file_index]); exit(EXIT_FAILURE); } } else { /* default input file is stdin */ input_file = read_stdin(); } /* Open the output file. */ if (outfilename != NULL) { if ((output_file = fopen(outfilename, WRITE_BINARY)) == NULL) { fprintf(stderr, "%s: can't open %s\n", progname, outfilename); exit(EXIT_FAILURE); } } else if (!memdst) { /* default output file is stdout */ output_file = write_stdout(); } if (icc_filename != NULL) { if ((icc_file = fopen(icc_filename, READ_BINARY)) == NULL) { fprintf(stderr, "%s: can't open %s\n", progname, icc_filename); exit(EXIT_FAILURE); } if (fseek(icc_file, 0, SEEK_END) < 0 || (icc_len = ftell(icc_file)) < 1 || fseek(icc_file, 0, SEEK_SET) < 0) { fprintf(stderr, "%s: can't determine size of %s\n", progname, icc_filename); exit(EXIT_FAILURE); } if ((icc_profile = (JOCTET *)malloc(icc_len)) == NULL) { fprintf(stderr, "%s: can't allocate memory for ICC profile\n", progname); fclose(icc_file); exit(EXIT_FAILURE); } if (fread(icc_profile, icc_len, 1, icc_file) < 1) { fprintf(stderr, "%s: can't read ICC profile from %s\n", progname, icc_filename); free(icc_profile); fclose(icc_file); exit(EXIT_FAILURE); } fclose(icc_file); } #ifdef CJPEG_FUZZER jerr.error_exit = my_error_exit; jerr.emit_message = my_emit_message_fuzzer; if (setjmp(myerr.setjmp_buffer)) HANDLE_ERROR() #endif if (report) { start_progress_monitor((j_common_ptr)&cinfo, &progress); progress.report = report; } /* Figure out the input file format, and set up to read it. */ src_mgr = select_file_type(&cinfo, input_file); src_mgr->input_file = input_file; #ifdef CJPEG_FUZZER src_mgr->max_pixels = 1048576; #endif /* Read the input file header to obtain file size & colorspace. */ (*src_mgr->start_input) (&cinfo, src_mgr); /* Now that we know input colorspace, fix colorspace-dependent defaults */ jpeg_default_colorspace(&cinfo); /* Adjust default compression parameters by re-parsing the options */ file_index = parse_switches(&cinfo, argc, argv, 0, TRUE); /* Specify data destination for compression */ #if JPEG_LIB_VERSION >= 80 || defined(MEM_SRCDST_SUPPORTED) if (memdst) jpeg_mem_dest(&cinfo, &outbuffer, &outsize); else #endif jpeg_stdio_dest(&cinfo, output_file); #ifdef CJPEG_FUZZER if (setjmp(myerr.setjmp_buffer)) HANDLE_ERROR() #endif /* Start compressor */ jpeg_start_compress(&cinfo, TRUE); if (icc_profile != NULL) jpeg_write_icc_profile(&cinfo, icc_profile, (unsigned int)icc_len); /* Process data */ while (cinfo.next_scanline < cinfo.image_height) { num_scanlines = (*src_mgr->get_pixel_rows) (&cinfo, src_mgr); (void)jpeg_write_scanlines(&cinfo, src_mgr->buffer, num_scanlines); } /* Finish compression and release memory */ (*src_mgr->finish_input) (&cinfo, src_mgr); jpeg_finish_compress(&cinfo); jpeg_destroy_compress(&cinfo); /* Close files, if we opened them */ if (input_file != stdin) fclose(input_file); if (output_file != stdout && output_file != NULL) fclose(output_file); if (report) end_progress_monitor((j_common_ptr)&cinfo); if (memdst) { #ifndef CJPEG_FUZZER fprintf(stderr, "Compressed size: %lu bytes\n", outsize); #endif free(outbuffer); } free(icc_profile); /* All done. */ return (jerr.num_warnings ? EXIT_WARNING : EXIT_SUCCESS); } libjpeg-turbo-2.1.5/cmakescripts/000077500000000000000000000000001436506551100167625ustar00rootroot00000000000000libjpeg-turbo-2.1.5/cmakescripts/BuildPackages.cmake000066400000000000000000000131521436506551100224640ustar00rootroot00000000000000# This file is included from the top-level CMakeLists.txt. We just store it # here to avoid cluttering up that file. ############################################################################### # Linux RPM and DEB ############################################################################### if(CMAKE_SYSTEM_NAME STREQUAL "Linux") set(RPMARCH ${CMAKE_SYSTEM_PROCESSOR}) if(CPU_TYPE STREQUAL "x86_64") set(DEBARCH amd64) elseif(CPU_TYPE STREQUAL "arm64") set(DEBARCH ${CPU_TYPE}) elseif(CPU_TYPE STREQUAL "arm") check_c_source_compiles(" #if __ARM_PCS_VFP != 1 #error \"float ABI != hard\" #endif int main(void) { return 0; }" HAVE_HARD_FLOAT) if(HAVE_HARD_FLOAT) set(RPMARCH armv7hl) set(DEBARCH armhf) else() set(RPMARCH armel) set(DEBARCH armel) endif() elseif(CMAKE_SYSTEM_PROCESSOR_LC STREQUAL "ppc64le") set(DEBARCH ppc64el) elseif(CPU_TYPE STREQUAL "powerpc" AND BITS EQUAL 32) set(RPMARCH ppc) set(DEBARCH ppc) else() set(DEBARCH ${CMAKE_SYSTEM_PROCESSOR}) endif() message(STATUS "RPM architecture = ${RPMARCH}, DEB architecture = ${DEBARCH}") # Re-set CMAKE_POSITION_INDEPENDENT_CODE so that the RPM spec file works # properly boolean_number(CMAKE_POSITION_INDEPENDENT_CODE) configure_file(release/makerpm.in pkgscripts/makerpm) configure_file(release/rpm.spec.in pkgscripts/rpm.spec @ONLY) add_custom_target(rpm pkgscripts/makerpm SOURCES pkgscripts/makerpm) configure_file(release/makesrpm.in pkgscripts/makesrpm) add_custom_target(srpm pkgscripts/makesrpm SOURCES pkgscripts/makesrpm DEPENDS dist) configure_file(release/makedpkg.in pkgscripts/makedpkg) configure_file(release/deb-control.in pkgscripts/deb-control) add_custom_target(deb pkgscripts/makedpkg SOURCES pkgscripts/makedpkg) endif() # Linux ############################################################################### # Windows installer (NullSoft Installer) ############################################################################### if(WIN32) if(MSVC) set(INST_PLATFORM "Visual C++") set(INST_ID vc) set(INST_NAME ${CMAKE_PROJECT_NAME}-${VERSION}-${INST_ID}) set(INST_REG_NAME ${CMAKE_PROJECT_NAME}) elseif(MINGW) set(INST_PLATFORM GCC) set(INST_ID gcc) set(INST_NAME ${CMAKE_PROJECT_NAME}-${VERSION}-${INST_ID}) set(INST_REG_NAME ${CMAKE_PROJECT_NAME}-${INST_ID}) set(INST_DEFS -DGCC) endif() if(BITS EQUAL 64) set(INST_PLATFORM "${INST_PLATFORM} 64-bit") set(INST_NAME ${INST_NAME}64) set(INST_REG_NAME ${INST_REG_NAME}64) set(INST_DEFS ${INST_DEFS} -DWIN64) endif() if(WITH_JAVA) set(INST_DEFS ${INST_DEFS} -DJAVA) endif() if(GENERATOR_IS_MULTI_CONFIG) set(INST_DEFS ${INST_DEFS} "-DBUILDDIR=${CMAKE_CFG_INTDIR}\\") else() set(INST_DEFS ${INST_DEFS} "-DBUILDDIR=") endif() string(REGEX REPLACE "/" "\\\\" INST_DIR ${CMAKE_INSTALL_PREFIX}) configure_file(release/installer.nsi.in installer.nsi @ONLY) # TODO: It would be nice to eventually switch to CPack and eliminate this mess, # but not today. configure_file(win/projectTargets.cmake.in win/${CMAKE_PROJECT_NAME}Targets.cmake @ONLY) configure_file(win/${INST_ID}/projectTargets-release.cmake.in win/${CMAKE_PROJECT_NAME}Targets-release.cmake @ONLY) if(WITH_JAVA) set(JAVA_DEPEND turbojpeg-java) endif() if(WITH_TURBOJPEG) set(TURBOJPEG_DEPEND turbojpeg turbojpeg-static tjbench) endif() add_custom_target(installer makensis -nocd ${INST_DEFS} installer.nsi DEPENDS jpeg jpeg-static rdjpgcom wrjpgcom cjpeg djpeg jpegtran ${JAVA_DEPEND} ${TURBOJPEG_DEPEND} SOURCES installer.nsi) endif() # WIN32 ############################################################################### # Mac DMG ############################################################################### if(APPLE) set(ARMV8_BUILD "" CACHE PATH "Directory containing Armv8 iOS or macOS build to include in universal binaries") set(MACOS_APP_CERT_NAME "" CACHE STRING "Name of the Developer ID Application certificate (in the macOS keychain) that should be used to sign the libjpeg-turbo DMG. Leave this blank to generate an unsigned DMG.") set(MACOS_INST_CERT_NAME "" CACHE STRING "Name of the Developer ID Installer certificate (in the macOS keychain) that should be used to sign the libjpeg-turbo installer package. Leave this blank to generate an unsigned package.") configure_file(release/makemacpkg.in pkgscripts/makemacpkg) configure_file(release/Distribution.xml.in pkgscripts/Distribution.xml) configure_file(release/Welcome.rtf.in pkgscripts/Welcome.rtf) configure_file(release/uninstall.in pkgscripts/uninstall) add_custom_target(dmg pkgscripts/makemacpkg SOURCES pkgscripts/makemacpkg) endif() # APPLE ############################################################################### # Generic ############################################################################### add_custom_target(dist COMMAND git archive --prefix=${CMAKE_PROJECT_NAME}-${VERSION}/ HEAD | gzip > ${CMAKE_CURRENT_BINARY_DIR}/${CMAKE_PROJECT_NAME}-${VERSION}.tar.gz WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}) configure_file(release/maketarball.in pkgscripts/maketarball) add_custom_target(tarball pkgscripts/maketarball SOURCES pkgscripts/maketarball) configure_file(release/libjpeg.pc.in pkgscripts/libjpeg.pc @ONLY) if(WITH_TURBOJPEG) configure_file(release/libturbojpeg.pc.in pkgscripts/libturbojpeg.pc @ONLY) endif() include(CMakePackageConfigHelpers) write_basic_package_version_file( pkgscripts/${CMAKE_PROJECT_NAME}ConfigVersion.cmake VERSION ${VERSION} COMPATIBILITY AnyNewerVersion) configure_package_config_file(release/Config.cmake.in pkgscripts/${CMAKE_PROJECT_NAME}Config.cmake INSTALL_DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/${CMAKE_PROJECT_NAME}) libjpeg-turbo-2.1.5/cmakescripts/GNUInstallDirs.cmake000066400000000000000000000370121436506551100225710ustar00rootroot00000000000000#.rst: # GNUInstallDirs # -------------- # # Define GNU standard installation directories # # Provides install directory variables as defined by the # `GNU Coding Standards`_. # # .. _`GNU Coding Standards`: https://www.gnu.org/prep/standards/html_node/Directory-Variables.html # # Result Variables # ^^^^^^^^^^^^^^^^ # # Inclusion of this module defines the following variables: # # ``CMAKE_INSTALL_`` # # Destination for files of a given type. This value may be passed to # the ``DESTINATION`` options of :command:`install` commands for the # corresponding file type. # # ``CMAKE_INSTALL_FULL_`` # # The absolute path generated from the corresponding ``CMAKE_INSTALL_`` # value. If the value is not already an absolute path, an absolute path # is constructed typically by prepending the value of the # :variable:`CMAKE_INSTALL_PREFIX` variable. However, there are some # `special cases`_ as documented below. # # where ```` is one of: # # ``BINDIR`` # user executables (``bin``) # ``SBINDIR`` # system admin executables (``sbin``) # ``LIBEXECDIR`` # program executables (``libexec``) # ``SYSCONFDIR`` # read-only single-machine data (``etc``) # ``SHAREDSTATEDIR`` # modifiable architecture-independent data (``com``) # ``LOCALSTATEDIR`` # modifiable single-machine data (``var``) # ``LIBDIR`` # object code libraries (``lib`` or ``lib64`` # or ``lib/`` on Debian) # ``INCLUDEDIR`` # C header files (``include``) # ``OLDINCLUDEDIR`` # C header files for non-gcc (``/usr/include``) # ``DATAROOTDIR`` # read-only architecture-independent data root (``share``) # ``DATADIR`` # read-only architecture-independent data (``DATAROOTDIR``) # ``INFODIR`` # info documentation (``DATAROOTDIR/info``) # ``LOCALEDIR`` # locale-dependent data (``DATAROOTDIR/locale``) # ``MANDIR`` # man documentation (``DATAROOTDIR/man``) # ``DOCDIR`` # documentation root (``DATAROOTDIR/doc/PROJECT_NAME``) # # If the includer does not define a value the above-shown default will be # used and the value will appear in the cache for editing by the user. # # Special Cases # ^^^^^^^^^^^^^ # # The following values of :variable:`CMAKE_INSTALL_PREFIX` are special: # # ``/`` # # For ```` other than the ``SYSCONFDIR`` and ``LOCALSTATEDIR``, # the value of ``CMAKE_INSTALL_`` is prefixed with ``usr/`` if # it is not user-specified as an absolute path. For example, the # ``INCLUDEDIR`` value ``include`` becomes ``usr/include``. # This is required by the `GNU Coding Standards`_, which state: # # When building the complete GNU system, the prefix will be empty # and ``/usr`` will be a symbolic link to ``/``. # # ``/usr`` # # For ```` equal to ``SYSCONFDIR`` or ``LOCALSTATEDIR``, the # ``CMAKE_INSTALL_FULL_`` is computed by prepending just ``/`` # to the value of ``CMAKE_INSTALL_`` if it is not user-specified # as an absolute path. For example, the ``SYSCONFDIR`` value ``etc`` # becomes ``/etc``. This is required by the `GNU Coding Standards`_. # # ``/opt/...`` # # For ```` equal to ``SYSCONFDIR`` or ``LOCALSTATEDIR``, the # ``CMAKE_INSTALL_FULL_`` is computed by *appending* the prefix # to the value of ``CMAKE_INSTALL_`` if it is not user-specified # as an absolute path. For example, the ``SYSCONFDIR`` value ``etc`` # becomes ``/etc/opt/...``. This is defined by the # `Filesystem Hierarchy Standard`_. # # .. _`Filesystem Hierarchy Standard`: https://refspecs.linuxfoundation.org/FHS_3.0/fhs/index.html # # Macros # ^^^^^^ # # .. command:: GNUInstallDirs_get_absolute_install_dir # # :: # # GNUInstallDirs_get_absolute_install_dir(absvar var) # # Set the given variable ``absvar`` to the absolute path contained # within the variable ``var``. This is to allow the computation of an # absolute path, accounting for all the special cases documented # above. While this macro is used to compute the various # ``CMAKE_INSTALL_FULL_`` variables, it is exposed publicly to # allow users who create additional path variables to also compute # absolute paths where necessary, using the same logic. #============================================================================= # Copyright 2018 Matthias Räncker # Copyright 2016, 2019 D. R. Commander # Copyright 2016 Dmitry Marakasov # Copyright 2016 Roger Leigh # Copyright 2015 Alex Turbov # Copyright 2014 Rolf Eike Beer # Copyright 2014 Daniele E. Domenichelli # Copyright 2013 Dimitri John Ledkov # Copyright 2011 Alex Neundorf # Copyright 2011 Eric NOULARD # Copyright 2011, 2013-2015 Kitware, Inc. # Copyright 2011 Nikita Krupen'ko # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # * Neither the names of Kitware, Inc., the Insight Software Consortium, # nor the names of their contributors may be used to endorse or promote # products derived from this software without specific prior written # permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #============================================================================= # Installation directories # macro(GNUInstallDirs_set_install_dir var docstring) # If CMAKE_INSTALL_PREFIX changes and CMAKE_INSTALL_*DIR is still set to the # default value, then modify it accordingly. This presumes that the default # value may change based on the prefix. set(_GNUInstallDirs_CMAKE_INSTALL_FORCE_${var} "") if(NOT DEFINED CMAKE_INSTALL_${var}) set(_GNUInstallDirs_CMAKE_INSTALL_DEFAULT_${var} 1 CACHE INTERNAL "CMAKE_INSTALL_${var} has default value") elseif(DEFINED _GNUInstallDirs_CMAKE_INSTALL_LAST_DEFAULT_${var} AND NOT "${_GNUInstallDirs_CMAKE_INSTALL_LAST_DEFAULT_${var}}" STREQUAL "${CMAKE_INSTALL_DEFAULT_${var}}" AND _GNUInstallDirs_CMAKE_INSTALL_DEFAULT_${var} AND "${_GNUInstallDirs_CMAKE_INSTALL_LAST_${var}}" STREQUAL "${CMAKE_INSTALL_${var}}") set(_GNUInstallDirs_CMAKE_INSTALL_FORCE_${var} "FORCE") endif() set(CMAKE_INSTALL_${var} "${CMAKE_INSTALL_DEFAULT_${var}}" CACHE PATH "${docstring} (Default: ${CMAKE_INSTALL_DEFAULT_${var}})" ${_GNUInstallDirs_CMAKE_INSTALL_FORCE_${var}}) if(NOT CMAKE_INSTALL_${var} STREQUAL CMAKE_INSTALL_DEFAULT_${var}) unset(_GNUInstallDirs_CMAKE_INSTALL_DEFAULT_${var} CACHE) endif() # Save for next run set(_GNUInstallDirs_CMAKE_INSTALL_LAST_${var} "${CMAKE_INSTALL_${var}}" CACHE INTERNAL "CMAKE_INSTALL_${var} during last run") set(_GNUInstallDirs_CMAKE_INSTALL_LAST_DEFAULT_${var} "${CMAKE_INSTALL_DEFAULT_${var}}" CACHE INTERNAL "CMAKE_INSTALL_DEFAULT_${var} during last run") endmacro() if(NOT DEFINED CMAKE_INSTALL_DEFAULT_BINDIR) set(CMAKE_INSTALL_DEFAULT_BINDIR "bin") endif() GNUInstallDirs_set_install_dir(BINDIR "Directory into which user executables should be installed") if(NOT DEFINED CMAKE_INSTALL_DEFAULT_SBINDIR) set(CMAKE_INSTALL_DEFAULT_SBINDIR "sbin") endif() GNUInstallDirs_set_install_dir(SBINDIR "Directory into which system admin executables should be installed") if(NOT DEFINED CMAKE_INSTALL_DEFAULT_LIBEXECDIR) set(CMAKE_INSTALL_DEFAULT_LIBEXECDIR "libexec") endif() GNUInstallDirs_set_install_dir(LIBEXECDIR "Directory under which executables run by other programs should be installed") if(NOT DEFINED CMAKE_INSTALL_DEFAULT_SYSCONFDIR) set(CMAKE_INSTALL_DEFAULT_SYSCONFDIR "etc") endif() GNUInstallDirs_set_install_dir(SYSCONFDIR "Directory into which machine-specific read-only ASCII data and configuration files should be installed") if(NOT DEFINED CMAKE_INSTALL_DEFAULT_SHAREDSTATEDIR) set(CMAKE_INSTALL_DEFAULT_SHAREDSTATEDIR "com") endif() GNUInstallDirs_set_install_dir(SHAREDSTATEDIR "Directory into which architecture-independent run-time-modifiable data files should be installed") if(NOT DEFINED CMAKE_INSTALL_DEFAULT_LOCALSTATEDIR) set(CMAKE_INSTALL_DEFAULT_LOCALSTATEDIR "var") endif() GNUInstallDirs_set_install_dir(LOCALSTATEDIR "Directory into which machine-specific run-time-modifiable data files should be installed") if(NOT DEFINED CMAKE_INSTALL_DEFAULT_LIBDIR) set(CMAKE_INSTALL_DEFAULT_LIBDIR "lib") # Override this default 'lib' with 'lib64' iff: # - we are on Linux system but NOT cross-compiling # - we are NOT on debian # - we are on a 64 bits system # reason is: amd64 ABI: http://www.x86-64.org/documentation/abi.pdf # For Debian with multiarch, use 'lib/${CMAKE_LIBRARY_ARCHITECTURE}' if # CMAKE_LIBRARY_ARCHITECTURE is set (which contains e.g. "i386-linux-gnu" # and CMAKE_INSTALL_PREFIX is "/usr" # See http://wiki.debian.org/Multiarch if(CMAKE_SYSTEM_NAME MATCHES "^(Linux|kFreeBSD|GNU)$" AND NOT CMAKE_CROSSCOMPILING) if (EXISTS "/etc/debian_version") # is this a debian system ? if(CMAKE_LIBRARY_ARCHITECTURE) if("${CMAKE_INSTALL_PREFIX}" MATCHES "^/usr/?$") set(CMAKE_INSTALL_DEFAULT_LIBDIR "lib/${CMAKE_LIBRARY_ARCHITECTURE}") endif() endif() else() # not debian, rely on CMAKE_SIZEOF_VOID_P: if(NOT DEFINED CMAKE_SIZEOF_VOID_P) message(AUTHOR_WARNING "Unable to determine default CMAKE_INSTALL_LIBDIR directory because no target architecture is known. " "Please enable at least one language before including GNUInstallDirs.") else() if("${CMAKE_SIZEOF_VOID_P}" EQUAL "8") set(CMAKE_INSTALL_DEFAULT_LIBDIR "lib64") elseif(CMAKE_C_COMPILER_ABI MATCHES "ELF X32") set(CMAKE_INSTALL_DEFAULT_LIBDIR "libx32") endif() endif() endif() endif() endif() GNUInstallDirs_set_install_dir(LIBDIR "Directory into which object files and object code libraries should be installed") if(NOT DEFINED CMAKE_INSTALL_DEFAULT_INCLUDEDIR) set(CMAKE_INSTALL_DEFAULT_INCLUDEDIR "include") endif() GNUInstallDirs_set_install_dir(INCLUDEDIR "Directory into which C header files should be installed") if(NOT DEFINED CMAKE_INSTALL_DEFAULT_OLDINCLUDEDIR) set(CMAKE_INSTALL_DEFAULT_OLDINCLUDEDIR "/usr/include") endif() GNUInstallDirs_set_install_dir(OLDINCLUDEDIR PATH "Directory into which C header files for non-GCC compilers should be installed") if(NOT DEFINED CMAKE_INSTALL_DEFAULT_DATAROOTDIR) set(CMAKE_INSTALL_DEFAULT_DATAROOTDIR "share") endif() GNUInstallDirs_set_install_dir(DATAROOTDIR "The root of the directory tree for read-only architecture-independent data files") #----------------------------------------------------------------------------- # Values whose defaults are relative to DATAROOTDIR. Store empty values in # the cache and store the defaults in local variables if the cache values are # not set explicitly. This auto-updates the defaults as DATAROOTDIR changes. if(NOT DEFINED CMAKE_INSTALL_DEFAULT_DATADIR) set(CMAKE_INSTALL_DEFAULT_DATADIR "") endif() GNUInstallDirs_set_install_dir(DATADIR "The directory under which read-only architecture-independent data files should be installed") if(NOT DEFINED CMAKE_INSTALL_DEFAULT_INFODIR) if(CMAKE_SYSTEM_NAME MATCHES "^(.*BSD|DragonFly)$") set(CMAKE_INSTALL_DEFAULT_INFODIR "info") else() set(CMAKE_INSTALL_DEFAULT_INFODIR "/info") endif() endif() GNUInstallDirs_set_install_dir(INFODIR "The directory into which info documentation files should be installed") if(NOT DEFINED CMAKE_INSTALL_DEFAULT_MANDIR) if(CMAKE_SYSTEM_NAME MATCHES "^(.*BSD|DragonFly)$") set(CMAKE_INSTALL_DEFAULT_MANDIR "man") else() set(CMAKE_INSTALL_DEFAULT_MANDIR "/man") endif() endif() GNUInstallDirs_set_install_dir(MANDIR "The directory under which man pages should be installed") if(NOT DEFINED CMAKE_INSTALL_DEFAULT_LOCALEDIR) set(CMAKE_INSTALL_DEFAULT_LOCALEDIR "/locale") endif() GNUInstallDirs_set_install_dir(LOCALEDIR "The directory under which locale-specific message catalogs should be installed") if(NOT DEFINED CMAKE_INSTALL_DEFAULT_DOCDIR) set(CMAKE_INSTALL_DEFAULT_DOCDIR "/doc/${PROJECT_NAME}") endif() GNUInstallDirs_set_install_dir(DOCDIR "The directory into which documentation files (other than info files) should be installed") #----------------------------------------------------------------------------- mark_as_advanced( CMAKE_INSTALL_BINDIR CMAKE_INSTALL_SBINDIR CMAKE_INSTALL_LIBEXECDIR CMAKE_INSTALL_SYSCONFDIR CMAKE_INSTALL_SHAREDSTATEDIR CMAKE_INSTALL_LOCALSTATEDIR CMAKE_INSTALL_LIBDIR CMAKE_INSTALL_INCLUDEDIR CMAKE_INSTALL_OLDINCLUDEDIR CMAKE_INSTALL_DATAROOTDIR CMAKE_INSTALL_DATADIR CMAKE_INSTALL_INFODIR CMAKE_INSTALL_LOCALEDIR CMAKE_INSTALL_MANDIR CMAKE_INSTALL_DOCDIR ) macro(GNUInstallDirs_get_absolute_install_dir absvar var) string(REGEX REPLACE "[<>]" "@" ${var} "${${var}}") # Handle the specific case of an empty CMAKE_INSTALL_DATAROOTDIR if(NOT CMAKE_INSTALL_DATAROOTDIR AND ${var} MATCHES "\@CMAKE_INSTALL_DATAROOTDIR\@/") string(CONFIGURE "${${var}}" ${var} @ONLY) string(REGEX REPLACE "^/" "" ${var} "${${var}}") else() string(CONFIGURE "${${var}}" ${var} @ONLY) endif() if(NOT IS_ABSOLUTE "${${var}}") # Handle special cases: # - CMAKE_INSTALL_PREFIX == / # - CMAKE_INSTALL_PREFIX == /usr # - CMAKE_INSTALL_PREFIX == /opt/... if("${CMAKE_INSTALL_PREFIX}" STREQUAL "/") if("${dir}" STREQUAL "SYSCONFDIR" OR "${dir}" STREQUAL "LOCALSTATEDIR") set(${absvar} "/${${var}}") else() if (NOT "${${var}}" MATCHES "^usr/") set(${var} "usr/${${var}}") endif() set(${absvar} "/${${var}}") endif() elseif("${CMAKE_INSTALL_PREFIX}" MATCHES "^/usr/?$") if("${dir}" STREQUAL "SYSCONFDIR" OR "${dir}" STREQUAL "LOCALSTATEDIR") set(${absvar} "/${${var}}") else() set(${absvar} "${CMAKE_INSTALL_PREFIX}/${${var}}") endif() elseif("${CMAKE_INSTALL_PREFIX}" MATCHES "^/opt/.*") if("${dir}" STREQUAL "SYSCONFDIR" OR "${dir}" STREQUAL "LOCALSTATEDIR") set(${absvar} "/${${var}}${CMAKE_INSTALL_PREFIX}") else() set(${absvar} "${CMAKE_INSTALL_PREFIX}/${${var}}") endif() else() set(${absvar} "${CMAKE_INSTALL_PREFIX}/${${var}}") endif() else() set(${absvar} "${${var}}") endif() string(REGEX REPLACE "/$" "" ${absvar} "${${absvar}}") endmacro() # Result directories # foreach(dir BINDIR SBINDIR LIBEXECDIR SYSCONFDIR SHAREDSTATEDIR LOCALSTATEDIR LIBDIR INCLUDEDIR OLDINCLUDEDIR DATAROOTDIR DATADIR INFODIR LOCALEDIR MANDIR DOCDIR ) GNUInstallDirs_get_absolute_install_dir(CMAKE_INSTALL_FULL_${dir} CMAKE_INSTALL_${dir}) endforeach() libjpeg-turbo-2.1.5/cmakescripts/PackageInfo.cmake000066400000000000000000000017141436506551100221360ustar00rootroot00000000000000# This file is included from the top-level CMakeLists.txt. We just store it # here to avoid cluttering up that file. set(PKGNAME ${CMAKE_PROJECT_NAME} CACHE STRING "Distribution package name (default: ${CMAKE_PROJECT_NAME})") set(PKGVENDOR "The ${CMAKE_PROJECT_NAME} Project" CACHE STRING "Vendor name to be included in distribution package descriptions (default: The ${CMAKE_PROJECT_NAME} Project)") set(PKGURL "http://www.${CMAKE_PROJECT_NAME}.org" CACHE STRING "URL of project web site to be included in distribution package descriptions (default: http://www.${CMAKE_PROJECT_NAME}.org)") set(PKGEMAIL "information@${CMAKE_PROJECT_NAME}.org" CACHE STRING "E-mail of project maintainer to be included in distribution package descriptions (default: information@${CMAKE_PROJECT_NAME}.org") set(PKGID "com.${CMAKE_PROJECT_NAME}.${PKGNAME}" CACHE STRING "Globally unique package identifier (reverse DNS notation) (default: com.${CMAKE_PROJECT_NAME}.${PKGNAME})") libjpeg-turbo-2.1.5/cmakescripts/cmake_uninstall.cmake.in000066400000000000000000000017161436506551100235470ustar00rootroot00000000000000# This code is from the CMake FAQ if (NOT EXISTS "@CMAKE_BINARY_DIR@/install_manifest.txt") message(FATAL_ERROR "Cannot find install manifest: \"@CMAKE_BINARY_DIR@/install_manifest.txt\"") endif(NOT EXISTS "@CMAKE_BINARY_DIR@/install_manifest.txt") file(READ "@CMAKE_BINARY_DIR@/install_manifest.txt" files) string(REGEX REPLACE "\n" ";" files "${files}") list(REVERSE files) foreach (file ${files}) message(STATUS "Uninstalling \"$ENV{DESTDIR}${file}\"") if (EXISTS "$ENV{DESTDIR}${file}") execute_process( COMMAND "@CMAKE_COMMAND@" -E remove "$ENV{DESTDIR}${file}" OUTPUT_VARIABLE rm_out RESULT_VARIABLE rm_retval ) if(NOT ${rm_retval} EQUAL 0) message(FATAL_ERROR "Problem when removing \"$ENV{DESTDIR}${file}\"") endif (NOT ${rm_retval} EQUAL 0) else (EXISTS "$ENV{DESTDIR}${file}") message(STATUS "File \"$ENV{DESTDIR}${file}\" does not exist.") endif (EXISTS "$ENV{DESTDIR}${file}") endforeach(file) libjpeg-turbo-2.1.5/cmakescripts/testclean.cmake000066400000000000000000000011621436506551100217460ustar00rootroot00000000000000file(GLOB FILES testout* *_GRAY_*.bmp *_GRAY_*.png *_GRAY_*.ppm *_GRAY_*.jpg *_GRAY.yuv *_420_*.bmp *_420_*.png *_420_*.ppm *_420_*.jpg *_420.yuv *_422_*.bmp *_422_*.png *_422_*.ppm *_422_*.jpg *_422.yuv *_444_*.bmp *_444_*.png *_444_*.ppm *_444_*.jpg *_444.yuv *_440_*.bmp *_440_*.png *_440_*.ppm *_440_*.jpg *_440.yuv *_411_*.bmp *_411_*.png *_411_*.ppm *_411_*.jpg *_411.yuv tjbenchtest*.log tjexampletest*.log) if(NOT FILES STREQUAL "") message(STATUS "Removing test files") file(REMOVE ${FILES}) else() message(STATUS "No files to remove") endif() libjpeg-turbo-2.1.5/cmyk.h000066400000000000000000000030461436506551100154110ustar00rootroot00000000000000/* * cmyk.h * * Copyright (C) 2017-2018, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains convenience functions for performing quick & dirty * CMYK<->RGB conversion. This algorithm is suitable for testing purposes * only. Properly converting between CMYK and RGB requires a color management * system. */ #ifndef CMYK_H #define CMYK_H #include #define JPEG_INTERNALS #include /* Fully reversible */ INLINE LOCAL(void) rgb_to_cmyk(JSAMPLE r, JSAMPLE g, JSAMPLE b, JSAMPLE *c, JSAMPLE *m, JSAMPLE *y, JSAMPLE *k) { double ctmp = 1.0 - ((double)r / 255.0); double mtmp = 1.0 - ((double)g / 255.0); double ytmp = 1.0 - ((double)b / 255.0); double ktmp = MIN(MIN(ctmp, mtmp), ytmp); if (ktmp == 1.0) ctmp = mtmp = ytmp = 0.0; else { ctmp = (ctmp - ktmp) / (1.0 - ktmp); mtmp = (mtmp - ktmp) / (1.0 - ktmp); ytmp = (ytmp - ktmp) / (1.0 - ktmp); } *c = (JSAMPLE)(255.0 - ctmp * 255.0 + 0.5); *m = (JSAMPLE)(255.0 - mtmp * 255.0 + 0.5); *y = (JSAMPLE)(255.0 - ytmp * 255.0 + 0.5); *k = (JSAMPLE)(255.0 - ktmp * 255.0 + 0.5); } /* Fully reversible only for C/M/Y/K values generated with rgb_to_cmyk() */ INLINE LOCAL(void) cmyk_to_rgb(JSAMPLE c, JSAMPLE m, JSAMPLE y, JSAMPLE k, JSAMPLE *r, JSAMPLE *g, JSAMPLE *b) { *r = (JSAMPLE)((double)c * (double)k / 255.0 + 0.5); *g = (JSAMPLE)((double)m * (double)k / 255.0 + 0.5); *b = (JSAMPLE)((double)y * (double)k / 255.0 + 0.5); } #endif /* CMYK_H */ libjpeg-turbo-2.1.5/coderules.txt000066400000000000000000000066131436506551100170260ustar00rootroot00000000000000IJG JPEG LIBRARY: CODING RULES This file was part of the Independent JPEG Group's software: Copyright (C) 1991-1996, Thomas G. Lane. It was modified by The libjpeg-turbo Project to include only information relevant to libjpeg-turbo. For conditions of distribution and use, see the accompanying README.ijg file. Since numerous people will be contributing code and bug fixes, it's important to establish a common coding style. The goal of using similar coding styles is much more important than the details of just what that style is. In general we follow the recommendations of "Recommended C Style and Coding Standards" revision 6.1 (Cannon et al. as modified by Spencer, Keppel and Brader). This document is available in the IJG FTP archive (see jpeg/doc/cstyle.ms.tbl.Z, or cstyle.txt.Z for those without nroff/tbl). Block comments should be laid out thusly: /* * Block comments in this style. */ We indent statements in K&R style, e.g., if (test) { then-part; } else { else-part; } with two spaces per indentation level. (This indentation convention is handled automatically by GNU Emacs and many other text editors.) Multi-word names should be written in lower case with underscores, e.g., multi_word_name (not multiWordName). Preprocessor symbols and enum constants are similar but upper case (MULTI_WORD_NAME). Names should be unique within the first fifteen characters. Note that each function definition must begin with GLOBAL(type), LOCAL(type), or METHODDEF(type). These macros expand to "static type" or just "type" as appropriate. They provide a readable indication of the routine's usage and can readily be changed for special needs. (For instance, special linkage keywords can be inserted for use in Windows DLLs.) A similar solution is used for external function declarations (see the EXTERN macro.) The JPEG library is intended to be used within larger programs. Furthermore, we want it to be reentrant so that it can be used by applications that process multiple images concurrently. The following rules support these requirements: 1. Avoid direct use of file I/O, "malloc", error report printouts, etc; pass these through the common routines provided. 2. Minimize global namespace pollution. Functions should be declared static wherever possible. (Note that our method-based calling conventions help this a lot: in many modules only the initialization function will ever need to be called directly, so only that function need be externally visible.) All global function names should begin with "jpeg_". 3. Don't use global variables; anything that must be used in another module should be in the common data structures. 4. Don't use static variables except for read-only constant tables. Variables that should be private to a module can be placed into private structures (see the system architecture document, structure.txt). 5. Source file names should begin with "j" for files that are part of the library proper; source files that are not part of the library, such as cjpeg.c and djpeg.c, do not begin with "j". Keep compression and decompression code in separate source files --- some applications may want only one half of the library. Note: these rules (particularly #4) are not followed religiously in the modules that are used in cjpeg/djpeg but are not part of the JPEG library proper. Those modules are not really intended to be used in other applications. libjpeg-turbo-2.1.5/croptest.in000077500000000000000000000047251436506551100165000ustar00rootroot00000000000000#!/bin/bash set -u set -e trap onexit INT trap onexit TERM trap onexit EXIT onexit() { if [ -d $OUTDIR ]; then rm -rf $OUTDIR fi } runme() { echo \*\*\* $* $* } IMAGE=vgl_6548_0026a.bmp WIDTH=128 HEIGHT=95 IMGDIR=@CMAKE_CURRENT_SOURCE_DIR@/testimages OUTDIR=`mktemp -d /tmp/__croptest_output.XXXXXX` EXEDIR=@CMAKE_CURRENT_BINARY_DIR@ if [ -d $OUTDIR ]; then rm -rf $OUTDIR fi mkdir -p $OUTDIR exec >$EXEDIR/croptest.log echo "============================================================" echo "$IMAGE ($WIDTH x $HEIGHT)" echo "============================================================" echo for PROGARG in "" -progressive; do cp $IMGDIR/$IMAGE $OUTDIR basename=`basename $IMAGE .bmp` echo "------------------------------------------------------------" echo "Generating test images" echo "------------------------------------------------------------" echo runme $EXEDIR/cjpeg $PROGARG -grayscale -outfile $OUTDIR/${basename}_GRAY.jpg $IMGDIR/${basename}.bmp runme $EXEDIR/cjpeg $PROGARG -sample 2x2 -outfile $OUTDIR/${basename}_420.jpg $IMGDIR/${basename}.bmp runme $EXEDIR/cjpeg $PROGARG -sample 2x1 -outfile $OUTDIR/${basename}_422.jpg $IMGDIR/${basename}.bmp runme $EXEDIR/cjpeg $PROGARG -sample 1x2 -outfile $OUTDIR/${basename}_440.jpg $IMGDIR/${basename}.bmp runme $EXEDIR/cjpeg $PROGARG -sample 1x1 -outfile $OUTDIR/${basename}_444.jpg $IMGDIR/${basename}.bmp echo for NSARG in "" -nosmooth; do for COLORSARG in "" "-colors 256 -dither none -onepass"; do for Y in {0..16}; do for H in {1..16}; do X=$(( (Y*16)%128 )) W=$(( WIDTH-X-7 )) if [ $Y -le 15 ]; then CROPSPEC="${W}x${H}+${X}+${Y}" else Y2=$(( HEIGHT-H )); CROPSPEC="${W}x${H}+${X}+${Y2}" fi echo "------------------------------------------------------------" echo $PROGARG $NSARG $COLORSARG -crop $CROPSPEC echo "------------------------------------------------------------" echo for samp in GRAY 420 422 440 444; do $EXEDIR/djpeg $NSARG $COLORSARG -rgb -outfile $OUTDIR/${basename}_${samp}_full.ppm $OUTDIR/${basename}_${samp}.jpg convert -crop $CROPSPEC $OUTDIR/${basename}_${samp}_full.ppm $OUTDIR/${basename}_${samp}_ref.ppm runme $EXEDIR/djpeg $NSARG $COLORSARG -crop $CROPSPEC -rgb -outfile $OUTDIR/${basename}_${samp}.ppm $OUTDIR/${basename}_${samp}.jpg runme cmp $OUTDIR/${basename}_${samp}.ppm $OUTDIR/${basename}_${samp}_ref.ppm done echo done done done done done echo SUCCESS! libjpeg-turbo-2.1.5/djpeg.1000066400000000000000000000252061436506551100154520ustar00rootroot00000000000000.TH DJPEG 1 "4 November 2020" .SH NAME djpeg \- decompress a JPEG file to an image file .SH SYNOPSIS .B djpeg [ .I options ] [ .I filename ] .LP .SH DESCRIPTION .LP .B djpeg decompresses the named JPEG file, or the standard input if no file is named, and produces an image file on the standard output. PBMPLUS (PPM/PGM), BMP, GIF, or Targa output format can be selected. .SH OPTIONS All switch names may be abbreviated; for example, .B \-grayscale may be written .B \-gray or .BR \-gr . Most of the "basic" switches can be abbreviated to as little as one letter. Upper and lower case are equivalent (thus .B \-BMP is the same as .BR \-bmp ). British spellings are also accepted (e.g., .BR \-greyscale ), though for brevity these are not mentioned below. .PP The basic switches are: .TP .BI \-colors " N" Reduce image to at most N colors. This reduces the number of colors used in the output image, so that it can be displayed on a colormapped display or stored in a colormapped file format. For example, if you have an 8-bit display, you'd need to reduce to 256 or fewer colors. .TP .BI \-quantize " N" Same as .BR \-colors . .B \-colors is the recommended name, .B \-quantize is provided only for backwards compatibility. .TP .B \-fast Select recommended processing options for fast, low quality output. (The default options are chosen for highest quality output.) Currently, this is equivalent to \fB\-dct fast \-nosmooth \-onepass \-dither ordered\fR. .TP .B \-grayscale Force grayscale output even if JPEG file is color. Useful for viewing on monochrome displays; also, .B djpeg runs noticeably faster in this mode. .TP .B \-rgb Force RGB output even if JPEG file is grayscale. .TP .BI \-scale " M/N" Scale the output image by a factor M/N. Currently the scale factor must be M/8, where M is an integer between 1 and 16 inclusive, or any reduced fraction thereof (such as 1/2, 3/4, etc.) Scaling is handy if the image is larger than your screen; also, .B djpeg runs much faster when scaling down the output. .TP .B \-bmp Select BMP output format (Windows flavor). 8-bit colormapped format is emitted if .B \-colors or .B \-grayscale is specified, or if the JPEG file is grayscale; otherwise, 24-bit full-color format is emitted. .TP .B \-gif Select GIF output format (LZW-compressed). Since GIF does not support more than 256 colors, .B \-colors 256 is assumed (unless you specify a smaller number of colors). If you specify .BR \-fast, the default number of colors is 216. .TP .B \-gif0 Select GIF output format (uncompressed). Since GIF does not support more than 256 colors, .B \-colors 256 is assumed (unless you specify a smaller number of colors). If you specify .BR \-fast, the default number of colors is 216. .TP .B \-os2 Select BMP output format (OS/2 1.x flavor). 8-bit colormapped format is emitted if .B \-colors or .B \-grayscale is specified, or if the JPEG file is grayscale; otherwise, 24-bit full-color format is emitted. .TP .B \-pnm Select PBMPLUS (PPM/PGM) output format (this is the default format). PGM is emitted if the JPEG file is grayscale or if .B \-grayscale is specified; otherwise PPM is emitted. .TP .B \-targa Select Targa output format. Grayscale format is emitted if the JPEG file is grayscale or if .B \-grayscale is specified; otherwise, colormapped format is emitted if .B \-colors is specified; otherwise, 24-bit full-color format is emitted. .PP Switches for advanced users: .TP .B \-dct int Use accurate integer DCT method (default). .TP .B \-dct fast Use less accurate integer DCT method [legacy feature]. When the Independent JPEG Group's software was first released in 1991, the decompression time for a 1-megapixel JPEG image on a mainstream PC was measured in minutes. Thus, the \fBfast\fR integer DCT algorithm provided noticeable performance benefits. On modern CPUs running libjpeg-turbo, however, the decompression time for a 1-megapixel JPEG image is measured in milliseconds, and thus the performance benefits of the \fBfast\fR algorithm are much less noticeable. On modern x86/x86-64 CPUs that support AVX2 instructions, the \fBfast\fR and \fBint\fR methods have similar performance. On other types of CPUs, the \fBfast\fR method is generally about 5-15% faster than the \fBint\fR method. If the JPEG image was compressed using a quality level of 85 or below, then there should be little or no perceptible quality difference between the two algorithms. When decompressing images that were compressed using quality levels above 85, however, the difference between the \fBfast\fR and \fBint\fR methods becomes more pronounced. With images compressed using quality=97, for instance, the \fBfast\fR method incurs generally about a 4-6 dB loss in PSNR relative to the \fBint\fR method, but this can be larger for some images. If you can avoid it, do not use the \fBfast\fR method when decompressing images that were compressed using quality levels above 97. The algorithm often degenerates for such images and can actually produce a more lossy output image than if the JPEG image had been compressed using lower quality levels. .TP .B \-dct float Use floating-point DCT method [legacy feature]. The \fBfloat\fR method does not produce significantly more accurate results than the \fBint\fR method, and it is much slower. The \fBfloat\fR method may also give different results on different machines due to varying roundoff behavior, whereas the integer methods should give the same results on all machines. .TP .B \-dither fs Use Floyd-Steinberg dithering in color quantization. .TP .B \-dither ordered Use ordered dithering in color quantization. .TP .B \-dither none Do not use dithering in color quantization. By default, Floyd-Steinberg dithering is applied when quantizing colors; this is slow but usually produces the best results. Ordered dither is a compromise between speed and quality; no dithering is fast but usually looks awful. Note that these switches have no effect unless color quantization is being done. Ordered dither is only available in .B \-onepass mode. .TP .BI \-icc " file" Extract ICC color management profile to the specified file. .TP .BI \-map " file" Quantize to the colors used in the specified image file. This is useful for producing multiple files with identical color maps, or for forcing a predefined set of colors to be used. The .I file must be a GIF or PPM file. This option overrides .B \-colors and .BR \-onepass . .TP .B \-nosmooth Use a faster, lower-quality upsampling routine. .TP .B \-onepass Use one-pass instead of two-pass color quantization. The one-pass method is faster and needs less memory, but it produces a lower-quality image. .B \-onepass is ignored unless you also say .B \-colors .IR N . Also, the one-pass method is always used for grayscale output (the two-pass method is no improvement then). .TP .BI \-maxmemory " N" Set limit for amount of memory to use in processing large images. Value is in thousands of bytes, or millions of bytes if "M" is attached to the number. For example, .B \-max 4m selects 4000000 bytes. If more space is needed, an error will occur. .TP .BI \-maxscans " N" Abort if the JPEG image contains more than .I N scans. This feature demonstrates a method by which applications can guard against denial-of-service attacks instigated by specially-crafted malformed JPEG images containing numerous scans with missing image data or image data consisting only of "EOB runs" (a feature of progressive JPEG images that allows potentially hundreds of thousands of adjoining zero-value pixels to be represented using only a few bytes.) Attempting to decompress such malformed JPEG images can cause excessive CPU activity, since the decompressor must fully process each scan (even if the scan is corrupt) before it can proceed to the next scan. .TP .BI \-outfile " name" Send output image to the named file, not to standard output. .TP .BI \-memsrc Load input file into memory before decompressing. This feature was implemented mainly as a way of testing the in-memory source manager (jpeg_mem_src().) .TP .BI \-report Report decompression progress. .TP .BI \-skip " Y0,Y1" Decompress all rows of the JPEG image except those between Y0 and Y1 (inclusive.) Note that if decompression scaling is being used, then Y0 and Y1 are relative to the scaled image dimensions. .TP .BI \-crop " WxH+X+Y" Decompress only a rectangular subregion of the image, starting at point X,Y with width W and height H. If necessary, X will be shifted left to the nearest iMCU boundary, and the width will be increased accordingly. Note that if decompression scaling is being used, then X, Y, W, and H are relative to the scaled image dimensions. Currently this option only works with the PBMPLUS (PPM/PGM), GIF, and Targa output formats. .TP .BI \-strict Treat all warnings as fatal. This feature also demonstrates a method by which applications can guard against attacks instigated by specially-crafted malformed JPEG images. Enabling this option will cause the decompressor to abort if the JPEG image contains incomplete or corrupt image data. .TP .B \-verbose Enable debug printout. More .BR \-v 's give more output. Also, version information is printed at startup. .TP .B \-debug Same as .BR \-verbose . .TP .B \-version Print version information and exit. .SH EXAMPLES .LP This example decompresses the JPEG file foo.jpg, quantizes it to 256 colors, and saves the output in 8-bit BMP format in foo.bmp: .IP .B djpeg \-colors 256 \-bmp .I foo.jpg .B > .I foo.bmp .SH HINTS To get a quick preview of an image, use the .B \-grayscale and/or .B \-scale switches. .B \-grayscale \-scale 1/8 is the fastest case. .PP Several options are available that trade off image quality to gain speed. .B \-fast turns on the recommended settings. .PP .B \-dct fast and/or .B \-nosmooth gain speed at a small sacrifice in quality. When producing a color-quantized image, .B \-onepass \-dither ordered is fast but much lower quality than the default behavior. .B \-dither none may give acceptable results in two-pass mode, but is seldom tolerable in one-pass mode. .SH ENVIRONMENT .TP .B JPEGMEM If this environment variable is set, its value is the default memory limit. The value is specified as described for the .B \-maxmemory switch. .B JPEGMEM overrides the default value specified when the program was compiled, and itself is overridden by an explicit .BR \-maxmemory . .SH SEE ALSO .BR cjpeg (1), .BR jpegtran (1), .BR rdjpgcom (1), .BR wrjpgcom (1) .br .BR ppm (5), .BR pgm (5) .br Wallace, Gregory K. "The JPEG Still Picture Compression Standard", Communications of the ACM, April 1991 (vol. 34, no. 4), pp. 30-44. .SH AUTHOR Independent JPEG Group .PP This file was modified by The libjpeg-turbo Project to include only information relevant to libjpeg-turbo, to wordsmith certain sections, and to describe features not present in libjpeg. libjpeg-turbo-2.1.5/djpeg.c000066400000000000000000000712411436506551100155340ustar00rootroot00000000000000/* * djpeg.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1997, Thomas G. Lane. * Modified 2013-2019 by Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright (C) 2010-2011, 2013-2017, 2019-2020, 2022, D. R. Commander. * Copyright (C) 2015, Google, Inc. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains a command-line user interface for the JPEG decompressor. * It should work on any system with Unix- or MS-DOS-style command lines. * * Two different command line styles are permitted, depending on the * compile-time switch TWO_FILE_COMMANDLINE: * djpeg [options] inputfile outputfile * djpeg [options] [inputfile] * In the second style, output is always to standard output, which you'd * normally redirect to a file or pipe to some other program. Input is * either from a named file or from standard input (typically redirected). * The second style is convenient on Unix but is unhelpful on systems that * don't support pipes. Also, you MUST use the first style if your system * doesn't do binary I/O to stdin/stdout. * To simplify script writing, the "-outfile" switch is provided. The syntax * djpeg [options] -outfile outputfile inputfile * works regardless of which command line style is used. */ #ifdef _MSC_VER #define _CRT_SECURE_NO_DEPRECATE #endif #include "cdjpeg.h" /* Common decls for cjpeg/djpeg applications */ #include "jversion.h" /* for version message */ #include "jconfigint.h" #include /* to declare isprint() */ /* Create the add-on message string table. */ #define JMESSAGE(code, string) string, static const char * const cdjpeg_message_table[] = { #include "cderror.h" NULL }; /* * This list defines the known output image formats * (not all of which need be supported by a given version). * You can change the default output format by defining DEFAULT_FMT; * indeed, you had better do so if you undefine PPM_SUPPORTED. */ typedef enum { FMT_BMP, /* BMP format (Windows flavor) */ FMT_GIF, /* GIF format (LZW-compressed) */ FMT_GIF0, /* GIF format (uncompressed) */ FMT_OS2, /* BMP format (OS/2 flavor) */ FMT_PPM, /* PPM/PGM (PBMPLUS formats) */ FMT_TARGA, /* Targa format */ FMT_TIFF /* TIFF format */ } IMAGE_FORMATS; #ifndef DEFAULT_FMT /* so can override from CFLAGS in Makefile */ #define DEFAULT_FMT FMT_PPM #endif static IMAGE_FORMATS requested_fmt; /* * Argument-parsing code. * The switch parser is designed to be useful with DOS-style command line * syntax, ie, intermixed switches and file names, where only the switches * to the left of a given file name affect processing of that file. * The main program in this file doesn't actually use this capability... */ static const char *progname; /* program name for error messages */ static char *icc_filename; /* for -icc switch */ JDIMENSION max_scans; /* for -maxscans switch */ static char *outfilename; /* for -outfile switch */ boolean memsrc; /* for -memsrc switch */ boolean report; /* for -report switch */ boolean skip, crop; JDIMENSION skip_start, skip_end; JDIMENSION crop_x, crop_y, crop_width, crop_height; boolean strict; /* for -strict switch */ #define INPUT_BUF_SIZE 4096 LOCAL(void) usage(void) /* complain about bad command line */ { fprintf(stderr, "usage: %s [switches] ", progname); #ifdef TWO_FILE_COMMANDLINE fprintf(stderr, "inputfile outputfile\n"); #else fprintf(stderr, "[inputfile]\n"); #endif fprintf(stderr, "Switches (names may be abbreviated):\n"); fprintf(stderr, " -colors N Reduce image to no more than N colors\n"); fprintf(stderr, " -fast Fast, low-quality processing\n"); fprintf(stderr, " -grayscale Force grayscale output\n"); fprintf(stderr, " -rgb Force RGB output\n"); fprintf(stderr, " -rgb565 Force RGB565 output\n"); #ifdef IDCT_SCALING_SUPPORTED fprintf(stderr, " -scale M/N Scale output image by fraction M/N, eg, 1/8\n"); #endif #ifdef BMP_SUPPORTED fprintf(stderr, " -bmp Select BMP output format (Windows style)%s\n", (DEFAULT_FMT == FMT_BMP ? " (default)" : "")); #endif #ifdef GIF_SUPPORTED fprintf(stderr, " -gif Select GIF output format (LZW-compressed)%s\n", (DEFAULT_FMT == FMT_GIF ? " (default)" : "")); fprintf(stderr, " -gif0 Select GIF output format (uncompressed)%s\n", (DEFAULT_FMT == FMT_GIF0 ? " (default)" : "")); #endif #ifdef BMP_SUPPORTED fprintf(stderr, " -os2 Select BMP output format (OS/2 style)%s\n", (DEFAULT_FMT == FMT_OS2 ? " (default)" : "")); #endif #ifdef PPM_SUPPORTED fprintf(stderr, " -pnm Select PBMPLUS (PPM/PGM) output format%s\n", (DEFAULT_FMT == FMT_PPM ? " (default)" : "")); #endif #ifdef TARGA_SUPPORTED fprintf(stderr, " -targa Select Targa output format%s\n", (DEFAULT_FMT == FMT_TARGA ? " (default)" : "")); #endif fprintf(stderr, "Switches for advanced users:\n"); #ifdef DCT_ISLOW_SUPPORTED fprintf(stderr, " -dct int Use accurate integer DCT method%s\n", (JDCT_DEFAULT == JDCT_ISLOW ? " (default)" : "")); #endif #ifdef DCT_IFAST_SUPPORTED fprintf(stderr, " -dct fast Use less accurate integer DCT method [legacy feature]%s\n", (JDCT_DEFAULT == JDCT_IFAST ? " (default)" : "")); #endif #ifdef DCT_FLOAT_SUPPORTED fprintf(stderr, " -dct float Use floating-point DCT method [legacy feature]%s\n", (JDCT_DEFAULT == JDCT_FLOAT ? " (default)" : "")); #endif fprintf(stderr, " -dither fs Use F-S dithering (default)\n"); fprintf(stderr, " -dither none Don't use dithering in quantization\n"); fprintf(stderr, " -dither ordered Use ordered dither (medium speed, quality)\n"); fprintf(stderr, " -icc FILE Extract ICC profile to FILE\n"); #ifdef QUANT_2PASS_SUPPORTED fprintf(stderr, " -map FILE Map to colors used in named image file\n"); #endif fprintf(stderr, " -nosmooth Don't use high-quality upsampling\n"); #ifdef QUANT_1PASS_SUPPORTED fprintf(stderr, " -onepass Use 1-pass quantization (fast, low quality)\n"); #endif fprintf(stderr, " -maxmemory N Maximum memory to use (in kbytes)\n"); fprintf(stderr, " -maxscans N Maximum number of scans to allow in input file\n"); fprintf(stderr, " -outfile name Specify name for output file\n"); #if JPEG_LIB_VERSION >= 80 || defined(MEM_SRCDST_SUPPORTED) fprintf(stderr, " -memsrc Load input file into memory before decompressing\n"); #endif fprintf(stderr, " -report Report decompression progress\n"); fprintf(stderr, " -skip Y0,Y1 Decompress all rows except those between Y0 and Y1 (inclusive)\n"); fprintf(stderr, " -crop WxH+X+Y Decompress only a rectangular subregion of the image\n"); fprintf(stderr, " [requires PBMPLUS (PPM/PGM), GIF, or Targa output format]\n"); fprintf(stderr, " -strict Treat all warnings as fatal\n"); fprintf(stderr, " -verbose or -debug Emit debug output\n"); fprintf(stderr, " -version Print version information and exit\n"); exit(EXIT_FAILURE); } LOCAL(int) parse_switches(j_decompress_ptr cinfo, int argc, char **argv, int last_file_arg_seen, boolean for_real) /* Parse optional switches. * Returns argv[] index of first file-name argument (== argc if none). * Any file names with indexes <= last_file_arg_seen are ignored; * they have presumably been processed in a previous iteration. * (Pass 0 for last_file_arg_seen on the first or only iteration.) * for_real is FALSE on the first (dummy) pass; we may skip any expensive * processing. */ { int argn; char *arg; /* Set up default JPEG parameters. */ requested_fmt = DEFAULT_FMT; /* set default output file format */ icc_filename = NULL; max_scans = 0; outfilename = NULL; memsrc = FALSE; report = FALSE; skip = FALSE; crop = FALSE; strict = FALSE; cinfo->err->trace_level = 0; /* Scan command line options, adjust parameters */ for (argn = 1; argn < argc; argn++) { arg = argv[argn]; if (*arg != '-') { /* Not a switch, must be a file name argument */ if (argn <= last_file_arg_seen) { outfilename = NULL; /* -outfile applies to just one input file */ continue; /* ignore this name if previously processed */ } break; /* else done parsing switches */ } arg++; /* advance past switch marker character */ if (keymatch(arg, "bmp", 1)) { /* BMP output format (Windows flavor). */ requested_fmt = FMT_BMP; } else if (keymatch(arg, "colors", 1) || keymatch(arg, "colours", 1) || keymatch(arg, "quantize", 1) || keymatch(arg, "quantise", 1)) { /* Do color quantization. */ int val; if (++argn >= argc) /* advance to next argument */ usage(); if (sscanf(argv[argn], "%d", &val) != 1) usage(); cinfo->desired_number_of_colors = val; cinfo->quantize_colors = TRUE; } else if (keymatch(arg, "dct", 2)) { /* Select IDCT algorithm. */ if (++argn >= argc) /* advance to next argument */ usage(); if (keymatch(argv[argn], "int", 1)) { cinfo->dct_method = JDCT_ISLOW; } else if (keymatch(argv[argn], "fast", 2)) { cinfo->dct_method = JDCT_IFAST; } else if (keymatch(argv[argn], "float", 2)) { cinfo->dct_method = JDCT_FLOAT; } else usage(); } else if (keymatch(arg, "dither", 2)) { /* Select dithering algorithm. */ if (++argn >= argc) /* advance to next argument */ usage(); if (keymatch(argv[argn], "fs", 2)) { cinfo->dither_mode = JDITHER_FS; } else if (keymatch(argv[argn], "none", 2)) { cinfo->dither_mode = JDITHER_NONE; } else if (keymatch(argv[argn], "ordered", 2)) { cinfo->dither_mode = JDITHER_ORDERED; } else usage(); } else if (keymatch(arg, "debug", 1) || keymatch(arg, "verbose", 1)) { /* Enable debug printouts. */ /* On first -d, print version identification */ static boolean printed_version = FALSE; if (!printed_version) { fprintf(stderr, "%s version %s (build %s)\n", PACKAGE_NAME, VERSION, BUILD); fprintf(stderr, "%s\n\n", JCOPYRIGHT); fprintf(stderr, "Emulating The Independent JPEG Group's software, version %s\n\n", JVERSION); printed_version = TRUE; } cinfo->err->trace_level++; } else if (keymatch(arg, "version", 4)) { fprintf(stderr, "%s version %s (build %s)\n", PACKAGE_NAME, VERSION, BUILD); exit(EXIT_SUCCESS); } else if (keymatch(arg, "fast", 1)) { /* Select recommended processing options for quick-and-dirty output. */ cinfo->two_pass_quantize = FALSE; cinfo->dither_mode = JDITHER_ORDERED; if (!cinfo->quantize_colors) /* don't override an earlier -colors */ cinfo->desired_number_of_colors = 216; cinfo->dct_method = JDCT_FASTEST; cinfo->do_fancy_upsampling = FALSE; } else if (keymatch(arg, "gif", 1)) { /* GIF output format (LZW-compressed). */ requested_fmt = FMT_GIF; } else if (keymatch(arg, "gif0", 4)) { /* GIF output format (uncompressed). */ requested_fmt = FMT_GIF0; } else if (keymatch(arg, "grayscale", 2) || keymatch(arg, "greyscale", 2)) { /* Force monochrome output. */ cinfo->out_color_space = JCS_GRAYSCALE; } else if (keymatch(arg, "rgb", 2)) { /* Force RGB output. */ cinfo->out_color_space = JCS_RGB; } else if (keymatch(arg, "rgb565", 2)) { /* Force RGB565 output. */ cinfo->out_color_space = JCS_RGB565; } else if (keymatch(arg, "icc", 1)) { /* Set ICC filename. */ if (++argn >= argc) /* advance to next argument */ usage(); icc_filename = argv[argn]; #ifdef SAVE_MARKERS_SUPPORTED jpeg_save_markers(cinfo, JPEG_APP0 + 2, 0xFFFF); #endif } else if (keymatch(arg, "map", 3)) { /* Quantize to a color map taken from an input file. */ if (++argn >= argc) /* advance to next argument */ usage(); if (for_real) { /* too expensive to do twice! */ #ifdef QUANT_2PASS_SUPPORTED /* otherwise can't quantize to supplied map */ FILE *mapfile; if ((mapfile = fopen(argv[argn], READ_BINARY)) == NULL) { fprintf(stderr, "%s: can't open %s\n", progname, argv[argn]); exit(EXIT_FAILURE); } read_color_map(cinfo, mapfile); fclose(mapfile); cinfo->quantize_colors = TRUE; #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif } } else if (keymatch(arg, "maxmemory", 3)) { /* Maximum memory in Kb (or Mb with 'm'). */ long lval; char ch = 'x'; if (++argn >= argc) /* advance to next argument */ usage(); if (sscanf(argv[argn], "%ld%c", &lval, &ch) < 1) usage(); if (ch == 'm' || ch == 'M') lval *= 1000L; cinfo->mem->max_memory_to_use = lval * 1000L; } else if (keymatch(arg, "maxscans", 4)) { if (++argn >= argc) /* advance to next argument */ usage(); if (sscanf(argv[argn], "%u", &max_scans) != 1) usage(); } else if (keymatch(arg, "nosmooth", 3)) { /* Suppress fancy upsampling */ cinfo->do_fancy_upsampling = FALSE; } else if (keymatch(arg, "onepass", 3)) { /* Use fast one-pass quantization. */ cinfo->two_pass_quantize = FALSE; } else if (keymatch(arg, "os2", 3)) { /* BMP output format (OS/2 flavor). */ requested_fmt = FMT_OS2; } else if (keymatch(arg, "outfile", 4)) { /* Set output file name. */ if (++argn >= argc) /* advance to next argument */ usage(); outfilename = argv[argn]; /* save it away for later use */ } else if (keymatch(arg, "memsrc", 2)) { /* Use in-memory source manager */ #if JPEG_LIB_VERSION >= 80 || defined(MEM_SRCDST_SUPPORTED) memsrc = TRUE; #else fprintf(stderr, "%s: sorry, in-memory source manager was not compiled in\n", progname); exit(EXIT_FAILURE); #endif } else if (keymatch(arg, "pnm", 1) || keymatch(arg, "ppm", 1)) { /* PPM/PGM output format. */ requested_fmt = FMT_PPM; } else if (keymatch(arg, "report", 2)) { report = TRUE; } else if (keymatch(arg, "scale", 2)) { /* Scale the output image by a fraction M/N. */ if (++argn >= argc) /* advance to next argument */ usage(); if (sscanf(argv[argn], "%u/%u", &cinfo->scale_num, &cinfo->scale_denom) != 2) usage(); } else if (keymatch(arg, "skip", 2)) { if (++argn >= argc) usage(); if (sscanf(argv[argn], "%u,%u", &skip_start, &skip_end) != 2 || skip_start > skip_end) usage(); skip = TRUE; } else if (keymatch(arg, "crop", 2)) { char c; if (++argn >= argc) usage(); if (sscanf(argv[argn], "%u%c%u+%u+%u", &crop_width, &c, &crop_height, &crop_x, &crop_y) != 5 || (c != 'X' && c != 'x') || crop_width < 1 || crop_height < 1) usage(); crop = TRUE; } else if (keymatch(arg, "strict", 2)) { strict = TRUE; } else if (keymatch(arg, "targa", 1)) { /* Targa output format. */ requested_fmt = FMT_TARGA; } else { usage(); /* bogus switch */ } } return argn; /* return index of next arg (file name) */ } /* * Marker processor for COM and interesting APPn markers. * This replaces the library's built-in processor, which just skips the marker. * We want to print out the marker as text, to the extent possible. * Note this code relies on a non-suspending data source. */ LOCAL(unsigned int) jpeg_getc(j_decompress_ptr cinfo) /* Read next byte */ { struct jpeg_source_mgr *datasrc = cinfo->src; if (datasrc->bytes_in_buffer == 0) { if (!(*datasrc->fill_input_buffer) (cinfo)) ERREXIT(cinfo, JERR_CANT_SUSPEND); } datasrc->bytes_in_buffer--; return *datasrc->next_input_byte++; } METHODDEF(boolean) print_text_marker(j_decompress_ptr cinfo) { boolean traceit = (cinfo->err->trace_level >= 1); long length; unsigned int ch; unsigned int lastch = 0; length = jpeg_getc(cinfo) << 8; length += jpeg_getc(cinfo); length -= 2; /* discount the length word itself */ if (traceit) { if (cinfo->unread_marker == JPEG_COM) fprintf(stderr, "Comment, length %ld:\n", (long)length); else /* assume it is an APPn otherwise */ fprintf(stderr, "APP%d, length %ld:\n", cinfo->unread_marker - JPEG_APP0, (long)length); } while (--length >= 0) { ch = jpeg_getc(cinfo); if (traceit) { /* Emit the character in a readable form. * Nonprintables are converted to \nnn form, * while \ is converted to \\. * Newlines in CR, CR/LF, or LF form will be printed as one newline. */ if (ch == '\r') { fprintf(stderr, "\n"); } else if (ch == '\n') { if (lastch != '\r') fprintf(stderr, "\n"); } else if (ch == '\\') { fprintf(stderr, "\\\\"); } else if (isprint(ch)) { putc(ch, stderr); } else { fprintf(stderr, "\\%03o", ch); } lastch = ch; } } if (traceit) fprintf(stderr, "\n"); return TRUE; } METHODDEF(void) my_emit_message(j_common_ptr cinfo, int msg_level) { if (msg_level < 0) { /* Treat warning as fatal */ cinfo->err->error_exit(cinfo); } else { if (cinfo->err->trace_level >= msg_level) cinfo->err->output_message(cinfo); } } /* * The main program. */ int main(int argc, char **argv) { struct jpeg_decompress_struct cinfo; struct jpeg_error_mgr jerr; struct cdjpeg_progress_mgr progress; int file_index; djpeg_dest_ptr dest_mgr = NULL; FILE *input_file; FILE *output_file; unsigned char *inbuffer = NULL; #if JPEG_LIB_VERSION >= 80 || defined(MEM_SRCDST_SUPPORTED) unsigned long insize = 0; #endif JDIMENSION num_scanlines; progname = argv[0]; if (progname == NULL || progname[0] == 0) progname = "djpeg"; /* in case C library doesn't provide it */ /* Initialize the JPEG decompression object with default error handling. */ cinfo.err = jpeg_std_error(&jerr); jpeg_create_decompress(&cinfo); /* Add some application-specific error messages (from cderror.h) */ jerr.addon_message_table = cdjpeg_message_table; jerr.first_addon_message = JMSG_FIRSTADDONCODE; jerr.last_addon_message = JMSG_LASTADDONCODE; /* Insert custom marker processor for COM and APP12. * APP12 is used by some digital camera makers for textual info, * so we provide the ability to display it as text. * If you like, additional APPn marker types can be selected for display, * but don't try to override APP0 or APP14 this way (see libjpeg.txt). */ jpeg_set_marker_processor(&cinfo, JPEG_COM, print_text_marker); jpeg_set_marker_processor(&cinfo, JPEG_APP0 + 12, print_text_marker); /* Scan command line to find file names. */ /* It is convenient to use just one switch-parsing routine, but the switch * values read here are ignored; we will rescan the switches after opening * the input file. * (Exception: tracing level set here controls verbosity for COM markers * found during jpeg_read_header...) */ file_index = parse_switches(&cinfo, argc, argv, 0, FALSE); if (strict) jerr.emit_message = my_emit_message; #ifdef TWO_FILE_COMMANDLINE /* Must have either -outfile switch or explicit output file name */ if (outfilename == NULL) { if (file_index != argc - 2) { fprintf(stderr, "%s: must name one input and one output file\n", progname); usage(); } outfilename = argv[file_index + 1]; } else { if (file_index != argc - 1) { fprintf(stderr, "%s: must name one input and one output file\n", progname); usage(); } } #else /* Unix style: expect zero or one file name */ if (file_index < argc - 1) { fprintf(stderr, "%s: only one input file\n", progname); usage(); } #endif /* TWO_FILE_COMMANDLINE */ /* Open the input file. */ if (file_index < argc) { if ((input_file = fopen(argv[file_index], READ_BINARY)) == NULL) { fprintf(stderr, "%s: can't open %s\n", progname, argv[file_index]); exit(EXIT_FAILURE); } } else { /* default input file is stdin */ input_file = read_stdin(); } /* Open the output file. */ if (outfilename != NULL) { if ((output_file = fopen(outfilename, WRITE_BINARY)) == NULL) { fprintf(stderr, "%s: can't open %s\n", progname, outfilename); exit(EXIT_FAILURE); } } else { /* default output file is stdout */ output_file = write_stdout(); } if (report || max_scans != 0) { start_progress_monitor((j_common_ptr)&cinfo, &progress); progress.report = report; progress.max_scans = max_scans; } /* Specify data source for decompression */ #if JPEG_LIB_VERSION >= 80 || defined(MEM_SRCDST_SUPPORTED) if (memsrc) { size_t nbytes; do { inbuffer = (unsigned char *)realloc(inbuffer, insize + INPUT_BUF_SIZE); if (inbuffer == NULL) { fprintf(stderr, "%s: memory allocation failure\n", progname); exit(EXIT_FAILURE); } nbytes = fread(&inbuffer[insize], 1, INPUT_BUF_SIZE, input_file); if (nbytes < INPUT_BUF_SIZE && ferror(input_file)) { if (file_index < argc) fprintf(stderr, "%s: can't read from %s\n", progname, argv[file_index]); else fprintf(stderr, "%s: can't read from stdin\n", progname); } insize += (unsigned long)nbytes; } while (nbytes == INPUT_BUF_SIZE); fprintf(stderr, "Compressed size: %lu bytes\n", insize); jpeg_mem_src(&cinfo, inbuffer, insize); } else #endif jpeg_stdio_src(&cinfo, input_file); /* Read file header, set default decompression parameters */ (void)jpeg_read_header(&cinfo, TRUE); /* Adjust default decompression parameters by re-parsing the options */ file_index = parse_switches(&cinfo, argc, argv, 0, TRUE); /* Initialize the output module now to let it override any crucial * option settings (for instance, GIF wants to force color quantization). */ switch (requested_fmt) { #ifdef BMP_SUPPORTED case FMT_BMP: dest_mgr = jinit_write_bmp(&cinfo, FALSE, TRUE); break; case FMT_OS2: dest_mgr = jinit_write_bmp(&cinfo, TRUE, TRUE); break; #endif #ifdef GIF_SUPPORTED case FMT_GIF: dest_mgr = jinit_write_gif(&cinfo, TRUE); break; case FMT_GIF0: dest_mgr = jinit_write_gif(&cinfo, FALSE); break; #endif #ifdef PPM_SUPPORTED case FMT_PPM: dest_mgr = jinit_write_ppm(&cinfo); break; #endif #ifdef TARGA_SUPPORTED case FMT_TARGA: dest_mgr = jinit_write_targa(&cinfo); break; #endif default: ERREXIT(&cinfo, JERR_UNSUPPORTED_FORMAT); break; } dest_mgr->output_file = output_file; /* Start decompressor */ (void)jpeg_start_decompress(&cinfo); /* Skip rows */ if (skip) { JDIMENSION tmp; /* Check for valid skip_end. We cannot check this value until after * jpeg_start_decompress() is called. Note that we have already verified * that skip_start <= skip_end. */ if (skip_end > cinfo.output_height - 1) { fprintf(stderr, "%s: skip region exceeds image height %u\n", progname, cinfo.output_height); exit(EXIT_FAILURE); } /* Write output file header. This is a hack to ensure that the destination * manager creates an output image of the proper size. */ tmp = cinfo.output_height; cinfo.output_height -= (skip_end - skip_start + 1); (*dest_mgr->start_output) (&cinfo, dest_mgr); cinfo.output_height = tmp; /* Process data */ while (cinfo.output_scanline < skip_start) { num_scanlines = jpeg_read_scanlines(&cinfo, dest_mgr->buffer, dest_mgr->buffer_height); (*dest_mgr->put_pixel_rows) (&cinfo, dest_mgr, num_scanlines); } if ((tmp = jpeg_skip_scanlines(&cinfo, skip_end - skip_start + 1)) != skip_end - skip_start + 1) { fprintf(stderr, "%s: jpeg_skip_scanlines() returned %u rather than %u\n", progname, tmp, skip_end - skip_start + 1); exit(EXIT_FAILURE); } while (cinfo.output_scanline < cinfo.output_height) { num_scanlines = jpeg_read_scanlines(&cinfo, dest_mgr->buffer, dest_mgr->buffer_height); (*dest_mgr->put_pixel_rows) (&cinfo, dest_mgr, num_scanlines); } /* Decompress a subregion */ } else if (crop) { JDIMENSION tmp; /* Check for valid crop dimensions. We cannot check these values until * after jpeg_start_decompress() is called. */ if (crop_x + crop_width > cinfo.output_width || crop_y + crop_height > cinfo.output_height) { fprintf(stderr, "%s: crop dimensions exceed image dimensions %u x %u\n", progname, cinfo.output_width, cinfo.output_height); exit(EXIT_FAILURE); } jpeg_crop_scanline(&cinfo, &crop_x, &crop_width); if (dest_mgr->calc_buffer_dimensions) (*dest_mgr->calc_buffer_dimensions) (&cinfo, dest_mgr); else ERREXIT(&cinfo, JERR_UNSUPPORTED_FORMAT); /* Write output file header. This is a hack to ensure that the destination * manager creates an output image of the proper size. */ tmp = cinfo.output_height; cinfo.output_height = crop_height; (*dest_mgr->start_output) (&cinfo, dest_mgr); cinfo.output_height = tmp; /* Process data */ if ((tmp = jpeg_skip_scanlines(&cinfo, crop_y)) != crop_y) { fprintf(stderr, "%s: jpeg_skip_scanlines() returned %u rather than %u\n", progname, tmp, crop_y); exit(EXIT_FAILURE); } while (cinfo.output_scanline < crop_y + crop_height) { num_scanlines = jpeg_read_scanlines(&cinfo, dest_mgr->buffer, dest_mgr->buffer_height); (*dest_mgr->put_pixel_rows) (&cinfo, dest_mgr, num_scanlines); } if ((tmp = jpeg_skip_scanlines(&cinfo, cinfo.output_height - crop_y - crop_height)) != cinfo.output_height - crop_y - crop_height) { fprintf(stderr, "%s: jpeg_skip_scanlines() returned %u rather than %u\n", progname, tmp, cinfo.output_height - crop_y - crop_height); exit(EXIT_FAILURE); } /* Normal full-image decompress */ } else { /* Write output file header */ (*dest_mgr->start_output) (&cinfo, dest_mgr); /* Process data */ while (cinfo.output_scanline < cinfo.output_height) { num_scanlines = jpeg_read_scanlines(&cinfo, dest_mgr->buffer, dest_mgr->buffer_height); (*dest_mgr->put_pixel_rows) (&cinfo, dest_mgr, num_scanlines); } } /* Hack: count final pass as done in case finish_output does an extra pass. * The library won't have updated completed_passes. */ if (report || max_scans != 0) progress.pub.completed_passes = progress.pub.total_passes; if (icc_filename != NULL) { FILE *icc_file; JOCTET *icc_profile; unsigned int icc_len; if ((icc_file = fopen(icc_filename, WRITE_BINARY)) == NULL) { fprintf(stderr, "%s: can't open %s\n", progname, icc_filename); exit(EXIT_FAILURE); } if (jpeg_read_icc_profile(&cinfo, &icc_profile, &icc_len)) { if (fwrite(icc_profile, icc_len, 1, icc_file) < 1) { fprintf(stderr, "%s: can't read ICC profile from %s\n", progname, icc_filename); free(icc_profile); fclose(icc_file); exit(EXIT_FAILURE); } free(icc_profile); fclose(icc_file); } else if (cinfo.err->msg_code != JWRN_BOGUS_ICC) fprintf(stderr, "%s: no ICC profile data in JPEG file\n", progname); } /* Finish decompression and release memory. * I must do it in this order because output module has allocated memory * of lifespan JPOOL_IMAGE; it needs to finish before releasing memory. */ (*dest_mgr->finish_output) (&cinfo, dest_mgr); (void)jpeg_finish_decompress(&cinfo); jpeg_destroy_decompress(&cinfo); /* Close files, if we opened them */ if (input_file != stdin) fclose(input_file); if (output_file != stdout) fclose(output_file); if (report || max_scans != 0) end_progress_monitor((j_common_ptr)&cinfo); if (memsrc) free(inbuffer); /* All done. */ exit(jerr.num_warnings ? EXIT_WARNING : EXIT_SUCCESS); return 0; /* suppress no-return-value warnings */ } libjpeg-turbo-2.1.5/doc/000077500000000000000000000000001436506551100150375ustar00rootroot00000000000000libjpeg-turbo-2.1.5/doc/html/000077500000000000000000000000001436506551100160035ustar00rootroot00000000000000libjpeg-turbo-2.1.5/doc/html/annotated.html000066400000000000000000000076041436506551100206550ustar00rootroot00000000000000 TurboJPEG: Data Structures
TurboJPEG  2.1.4
Data Structures
Here are the data structures with brief descriptions:
 CtjregionCropping region
 CtjscalingfactorScaling factor
 CtjtransformLossless transform
libjpeg-turbo-2.1.5/doc/html/bc_s.png000066400000000000000000000012441436506551100174200ustar00rootroot00000000000000‰PNG  IHDR€_ kIDATxíËkQÆÏ¹É̤I&“¦mš&156*nÄ…”ܸR,4 +Hµ(U­b”ª1‚ŠˆJ.º(E·mßúhëJmKS'C›(‚èäÑ…¤ï &äÖþ ‡ïrÎåü3gö(z÷ýÒ&_9ó}’ÕŸ@‰mÚu ` Øh`ñ÷Ô¯  „ú&·ññ×Ù~“½—Üò‡ÎÝÑM4¸%‰3²§?Êêh)€ÿù™\ÄYi>Jb @gûßiÞˆú²Ñkg§ãê\è½­šEUæv+?E€î"pæÖÛB\ƒY&ðØó$vM+ê’Dn¼)}òþ:§Xoâ ƒ3ŠÚ¯'¯¿.‚fÁ0ìuŠ9òLýj€f6¸%«3Gf”Ô#Ôsm(,ùÃk*Ê’³Jª…¯¼JË¢o䆔¼u_~ °r]%%mnu]z°r5[ÍÆ°«Úò•Xeµ’†Iù<ÈèÐÅg@IÔÚÞàµë3‚:/<JÇ’ÐQ) ñ¹…tÚß÷(Mû\63éCgl!ýí;ÿ¸4Ùhâñ=÷Zë29­w’ÝÒ´·ˆV;ÊL3ƒj&7©·º½÷a!I†)ëë$-öÇÓú³›‹7tIV¾VàñÔübf¨8¡ÈƒB<﫵imnÿœÈ‡„ lߣù‡ÛD —#É5“­'Æ4?쬲øM’™›°»g¬‚|5Åçµ½GNdÓÐr|ô”Ã&„ì"7+'³@ 5‡G➑Džâɬ^;õã–.3Òr"ý_R³¿Â@²oI¾å$IEND®B`‚libjpeg-turbo-2.1.5/doc/html/bdwn.png000066400000000000000000000002231436506551100174400ustar00rootroot00000000000000‰PNG  IHDR5åZIDATxíË € DŸP–1ñlžmÀ r±j².e è†D[ØÉ¾ÙÏÔ¼µ¦ã´Þ|陣6€Všë3´Å?Ls'(}¬>+ žKó÷¥¿ch`‚ ^׃ÞnIEND®B`‚libjpeg-turbo-2.1.5/doc/html/classes.html000066400000000000000000000072711436506551100203350ustar00rootroot00000000000000 TurboJPEG: Data Structure Index
TurboJPEG  2.1.4
Data Structure Index
  t  
tjscalingfactor    tjtransform   
tjregion   
libjpeg-turbo-2.1.5/doc/html/closed.png000066400000000000000000000002041436506551100177560ustar00rootroot00000000000000‰PNG  IHDR à‘KIDATxíÝm @!†ÑGk™É7À-`&séts¦Àñþòð@åk}ª2€… P%Á_Ëþ¿N² .:0Dk¥‹Â›x" Ö›)¡xÒ5õIEND®B`‚libjpeg-turbo-2.1.5/doc/html/doc.png000066400000000000000000000013521436506551100172570ustar00rootroot00000000000000‰PNG  IHDRÚ}\ˆ±IDATxíMOS[…Ÿžsúa?-XZ(PD4‚ AWbu`b 77wäHFÆCËÔÂÿà/`vo„ˆAPòq‹P @ ­ûÝè980 îà¤+»§Ýy×^ïZï9SW¹\83g‰3'°Nâçl¹¸_b¯p ïåûÆVÜÖ¡€Ÿ×"¬Ö†X€d]Ðà3“ÉÃÄÌ™xŸ ßMàœ[<çSPkvc—hÈ'…™˜^Åm™hØ7 `Û™¦ èÀåráq›‘œ¾!daeKŸþÆÕ˜:Ì*³_דâèi?I–eP*B7Ÿ¿åô!¹Ýgr6Ër6oKbëþãðôrI”ËTˆüªŒ¨xóö=›ù¢&‰(e+ßóÄkýÇ`ëÁÜb.“¸ÐW×w0¥°jÑzN™¬|©WEãµ¢a¯6[öX†AkÓù*/œ¨‰€ÉY­ ÿV’§–u²jÂ>1W *½·°PGŽzÿ¨/Eg{ ŸÇâaoŠÁVú:è¿™¤1$ôR§W,–ªà¨@ŠË56¾ÀÔÜ-¾,mê¸Î/æè¹– òr5¥T*S(Vf8ö9u’ Õ£w›ùóa=Í<{Ò¡UŒ÷r¯+ÉådDÏF$è°…£é¿`zþ»ÎúöN‘µÜ®0Q3£~_^Ëóâ¯N=ˆvpTà±LžT}ˆîkq†Òm<¼ÎÓ?Zh¿X£ï_þÝ¥[)ƒ `gêÃa_Ô*äÔ2`'=õ´Fÿ2EâÁPú ÷»›l=8‹Wv°%THqÉ¿<"¤ïG¾ÆxH{#ÆÖ«aÔJÕÞ‡—m‹„ çñKsÿàñVŠØ¡°·MâÒ^ TÁ– Ý›r¥ß½ømüÿ_™?ªWİ÷#uIEND®B`‚libjpeg-turbo-2.1.5/doc/html/doxygen-extra.css000066400000000000000000000000321436506551100213060ustar00rootroot00000000000000code { color: #4665A2; } libjpeg-turbo-2.1.5/doc/html/doxygen.css000066400000000000000000000733551436506551100202070ustar00rootroot00000000000000/* The standard CSS for doxygen 1.8.20 */ body, table, div, p, dl { font: 400 14px/22px Roboto,sans-serif; } p.reference, p.definition { font: 400 14px/22px Roboto,sans-serif; } /* @group Heading Levels */ h1.groupheader { font-size: 150%; } .title { font: 400 14px/28px Roboto,sans-serif; font-size: 150%; font-weight: bold; margin: 10px 2px; } h2.groupheader { border-bottom: 1px solid #879ECB; color: #354C7B; font-size: 150%; font-weight: normal; margin-top: 1.75em; padding-top: 8px; padding-bottom: 4px; width: 100%; } h3.groupheader { font-size: 100%; } h1, h2, h3, h4, h5, h6 { -webkit-transition: text-shadow 0.5s linear; -moz-transition: text-shadow 0.5s linear; -ms-transition: text-shadow 0.5s linear; -o-transition: text-shadow 0.5s linear; transition: text-shadow 0.5s linear; margin-right: 15px; } h1.glow, h2.glow, h3.glow, h4.glow, h5.glow, h6.glow { text-shadow: 0 0 15px cyan; } dt { font-weight: bold; } ul.multicol { -moz-column-gap: 1em; -webkit-column-gap: 1em; column-gap: 1em; -moz-column-count: 3; -webkit-column-count: 3; column-count: 3; } p.startli, p.startdd { margin-top: 2px; } th p.starttd, th p.intertd, th p.endtd { font-size: 100%; font-weight: 700; } p.starttd { margin-top: 0px; } p.endli { margin-bottom: 0px; } p.enddd { margin-bottom: 4px; } p.endtd { margin-bottom: 2px; } p.interli { } p.interdd { } p.intertd { } /* @end */ caption { font-weight: bold; } span.legend { font-size: 70%; text-align: center; } h3.version { font-size: 90%; text-align: center; } div.qindex, div.navtab{ background-color: #EBEFF6; border: 1px solid #A3B4D7; text-align: center; } div.qindex, div.navpath { width: 100%; line-height: 140%; } div.navtab { margin-right: 15px; } /* @group Link Styling */ a { color: #3D578C; font-weight: normal; text-decoration: none; } .contents a:visited { color: #4665A2; } a:hover { text-decoration: underline; } a.qindex { font-weight: bold; } a.qindexHL { font-weight: bold; background-color: #9CAFD4; color: #FFFFFF; border: 1px double #869DCA; } .contents a.qindexHL:visited { color: #FFFFFF; } a.el { font-weight: bold; } a.elRef { } a.code, a.code:visited, a.line, a.line:visited { color: #4665A2; } a.codeRef, a.codeRef:visited, a.lineRef, a.lineRef:visited { color: #4665A2; } /* @end */ dl.el { margin-left: -1cm; } ul { overflow: hidden; /*Fixed: list item bullets overlap floating elements*/ } #side-nav ul { overflow: visible; /* reset ul rule for scroll bar in GENERATE_TREEVIEW window */ } #main-nav ul { overflow: visible; /* reset ul rule for the navigation bar drop down lists */ } .fragment { text-align: left; direction: ltr; overflow-x: auto; /*Fixed: fragment lines overlap floating elements*/ overflow-y: hidden; } pre.fragment { border: 1px solid #C4CFE5; background-color: #FBFCFD; padding: 4px 6px; margin: 4px 8px 4px 2px; overflow: auto; word-wrap: break-word; font-size: 9pt; line-height: 125%; font-family: monospace, fixed; font-size: 105%; } div.fragment { padding: 0 0 1px 0; /*Fixed: last line underline overlap border*/ margin: 4px 8px 4px 2px; background-color: #FBFCFD; border: 1px solid #C4CFE5; } div.line { font-family: monospace, fixed; font-size: 13px; min-height: 13px; line-height: 1.0; text-wrap: unrestricted; white-space: -moz-pre-wrap; /* Moz */ white-space: -pre-wrap; /* Opera 4-6 */ white-space: -o-pre-wrap; /* Opera 7 */ white-space: pre-wrap; /* CSS3 */ word-wrap: break-word; /* IE 5.5+ */ text-indent: -53px; padding-left: 53px; padding-bottom: 0px; margin: 0px; -webkit-transition-property: background-color, box-shadow; -webkit-transition-duration: 0.5s; -moz-transition-property: background-color, box-shadow; -moz-transition-duration: 0.5s; -ms-transition-property: background-color, box-shadow; -ms-transition-duration: 0.5s; -o-transition-property: background-color, box-shadow; -o-transition-duration: 0.5s; transition-property: background-color, box-shadow; transition-duration: 0.5s; } div.line:after { content:"\000A"; white-space: pre; } div.line.glow { background-color: cyan; box-shadow: 0 0 10px cyan; } span.lineno { padding-right: 4px; text-align: right; border-right: 2px solid #0F0; background-color: #E8E8E8; white-space: pre; } span.lineno a { background-color: #D8D8D8; } span.lineno a:hover { background-color: #C8C8C8; } .lineno { -webkit-touch-callout: none; -webkit-user-select: none; -khtml-user-select: none; -moz-user-select: none; -ms-user-select: none; user-select: none; } div.ah, span.ah { background-color: black; font-weight: bold; color: #FFFFFF; margin-bottom: 3px; margin-top: 3px; padding: 0.2em; border: solid thin #333; border-radius: 0.5em; -webkit-border-radius: .5em; -moz-border-radius: .5em; box-shadow: 2px 2px 3px #999; -webkit-box-shadow: 2px 2px 3px #999; -moz-box-shadow: rgba(0, 0, 0, 0.15) 2px 2px 2px; background-image: -webkit-gradient(linear, left top, left bottom, from(#eee), to(#000),color-stop(0.3, #444)); background-image: -moz-linear-gradient(center top, #eee 0%, #444 40%, #000 110%); } div.classindex ul { list-style: none; padding-left: 0; } div.classindex span.ai { display: inline-block; } div.groupHeader { margin-left: 16px; margin-top: 12px; font-weight: bold; } div.groupText { margin-left: 16px; font-style: italic; } body { background-color: white; color: black; margin: 0; } div.contents { margin-top: 10px; margin-left: 12px; margin-right: 8px; } td.indexkey { background-color: #EBEFF6; font-weight: bold; border: 1px solid #C4CFE5; margin: 2px 0px 2px 0; padding: 2px 10px; white-space: nowrap; vertical-align: top; } td.indexvalue { background-color: #EBEFF6; border: 1px solid #C4CFE5; padding: 2px 10px; margin: 2px 0px; } tr.memlist { background-color: #EEF1F7; } p.formulaDsp { text-align: center; } img.formulaDsp { } img.formulaInl, img.inline { vertical-align: middle; } div.center { text-align: center; margin-top: 0px; margin-bottom: 0px; padding: 0px; } div.center img { border: 0px; } address.footer { text-align: right; padding-right: 12px; } img.footer { border: 0px; vertical-align: middle; } /* @group Code Colorization */ span.keyword { color: #008000 } span.keywordtype { color: #604020 } span.keywordflow { color: #e08000 } span.comment { color: #800000 } span.preprocessor { color: #806020 } span.stringliteral { color: #002080 } span.charliteral { color: #008080 } span.vhdldigit { color: #ff00ff } span.vhdlchar { color: #000000 } span.vhdlkeyword { color: #700070 } span.vhdllogic { color: #ff0000 } blockquote { background-color: #F7F8FB; border-left: 2px solid #9CAFD4; margin: 0 24px 0 4px; padding: 0 12px 0 16px; } blockquote.DocNodeRTL { border-left: 0; border-right: 2px solid #9CAFD4; margin: 0 4px 0 24px; padding: 0 16px 0 12px; } /* @end */ /* .search { color: #003399; font-weight: bold; } form.search { margin-bottom: 0px; margin-top: 0px; } input.search { font-size: 75%; color: #000080; font-weight: normal; background-color: #e8eef2; } */ td.tiny { font-size: 75%; } .dirtab { padding: 4px; border-collapse: collapse; border: 1px solid #A3B4D7; } th.dirtab { background: #EBEFF6; font-weight: bold; } hr { height: 0px; border: none; border-top: 1px solid #4A6AAA; } hr.footer { height: 1px; } /* @group Member Descriptions */ table.memberdecls { border-spacing: 0px; padding: 0px; } .memberdecls td, .fieldtable tr { -webkit-transition-property: background-color, box-shadow; -webkit-transition-duration: 0.5s; -moz-transition-property: background-color, box-shadow; -moz-transition-duration: 0.5s; -ms-transition-property: background-color, box-shadow; -ms-transition-duration: 0.5s; -o-transition-property: background-color, box-shadow; -o-transition-duration: 0.5s; transition-property: background-color, box-shadow; transition-duration: 0.5s; } .memberdecls td.glow, .fieldtable tr.glow { background-color: cyan; box-shadow: 0 0 15px cyan; } .mdescLeft, .mdescRight, .memItemLeft, .memItemRight, .memTemplItemLeft, .memTemplItemRight, .memTemplParams { background-color: #F9FAFC; border: none; margin: 4px; padding: 1px 0 0 8px; } .mdescLeft, .mdescRight { padding: 0px 8px 4px 8px; color: #555; } .memSeparator { border-bottom: 1px solid #DEE4F0; line-height: 1px; margin: 0px; padding: 0px; } .memItemLeft, .memTemplItemLeft { white-space: nowrap; } .memItemRight, .memTemplItemRight { width: 100%; } .memTemplParams { color: #4665A2; white-space: nowrap; font-size: 80%; } /* @end */ /* @group Member Details */ /* Styles for detailed member documentation */ .memtitle { padding: 8px; border-top: 1px solid #A8B8D9; border-left: 1px solid #A8B8D9; border-right: 1px solid #A8B8D9; border-top-right-radius: 4px; border-top-left-radius: 4px; margin-bottom: -1px; background-image: url('nav_f.png'); background-repeat: repeat-x; background-color: #E2E8F2; line-height: 1.25; font-weight: 300; float:left; } .permalink { font-size: 65%; display: inline-block; vertical-align: middle; } .memtemplate { font-size: 80%; color: #4665A2; font-weight: normal; margin-left: 9px; } .memnav { background-color: #EBEFF6; border: 1px solid #A3B4D7; text-align: center; margin: 2px; margin-right: 15px; padding: 2px; } .mempage { width: 100%; } .memitem { padding: 0; margin-bottom: 10px; margin-right: 5px; -webkit-transition: box-shadow 0.5s linear; -moz-transition: box-shadow 0.5s linear; -ms-transition: box-shadow 0.5s linear; -o-transition: box-shadow 0.5s linear; transition: box-shadow 0.5s linear; display: table !important; width: 100%; } .memitem.glow { box-shadow: 0 0 15px cyan; } .memname { font-weight: 400; margin-left: 6px; } .memname td { vertical-align: bottom; } .memproto, dl.reflist dt { border-top: 1px solid #A8B8D9; border-left: 1px solid #A8B8D9; border-right: 1px solid #A8B8D9; padding: 6px 0px 6px 0px; color: #253555; font-weight: bold; text-shadow: 0px 1px 1px rgba(255, 255, 255, 0.9); background-color: #DFE5F1; /* opera specific markup */ box-shadow: 5px 5px 5px rgba(0, 0, 0, 0.15); border-top-right-radius: 4px; /* firefox specific markup */ -moz-box-shadow: rgba(0, 0, 0, 0.15) 5px 5px 5px; -moz-border-radius-topright: 4px; /* webkit specific markup */ -webkit-box-shadow: 5px 5px 5px rgba(0, 0, 0, 0.15); -webkit-border-top-right-radius: 4px; } .overload { font-family: "courier new",courier,monospace; font-size: 65%; } .memdoc, dl.reflist dd { border-bottom: 1px solid #A8B8D9; border-left: 1px solid #A8B8D9; border-right: 1px solid #A8B8D9; padding: 6px 10px 2px 10px; background-color: #FBFCFD; border-top-width: 0; background-image:url('nav_g.png'); background-repeat:repeat-x; background-color: #FFFFFF; /* opera specific markup */ border-bottom-left-radius: 4px; border-bottom-right-radius: 4px; box-shadow: 5px 5px 5px rgba(0, 0, 0, 0.15); /* firefox specific markup */ -moz-border-radius-bottomleft: 4px; -moz-border-radius-bottomright: 4px; -moz-box-shadow: rgba(0, 0, 0, 0.15) 5px 5px 5px; /* webkit specific markup */ -webkit-border-bottom-left-radius: 4px; -webkit-border-bottom-right-radius: 4px; -webkit-box-shadow: 5px 5px 5px rgba(0, 0, 0, 0.15); } dl.reflist dt { padding: 5px; } dl.reflist dd { margin: 0px 0px 10px 0px; padding: 5px; } .paramkey { text-align: right; } .paramtype { white-space: nowrap; } .paramname { color: #602020; white-space: nowrap; } .paramname em { font-style: normal; } .paramname code { line-height: 14px; } .params, .retval, .exception, .tparams { margin-left: 0px; padding-left: 0px; } .params .paramname, .retval .paramname, .tparams .paramname, .exception .paramname { font-weight: bold; vertical-align: top; } .params .paramtype, .tparams .paramtype { font-style: italic; vertical-align: top; } .params .paramdir, .tparams .paramdir { font-family: "courier new",courier,monospace; vertical-align: top; } table.mlabels { border-spacing: 0px; } td.mlabels-left { width: 100%; padding: 0px; } td.mlabels-right { vertical-align: bottom; padding: 0px; white-space: nowrap; } span.mlabels { margin-left: 8px; } span.mlabel { background-color: #728DC1; border-top:1px solid #5373B4; border-left:1px solid #5373B4; border-right:1px solid #C4CFE5; border-bottom:1px solid #C4CFE5; text-shadow: none; color: white; margin-right: 4px; padding: 2px 3px; border-radius: 3px; font-size: 7pt; white-space: nowrap; vertical-align: middle; } /* @end */ /* these are for tree view inside a (index) page */ div.directory { margin: 10px 0px; border-top: 1px solid #9CAFD4; border-bottom: 1px solid #9CAFD4; width: 100%; } .directory table { border-collapse:collapse; } .directory td { margin: 0px; padding: 0px; vertical-align: top; } .directory td.entry { white-space: nowrap; padding-right: 6px; padding-top: 3px; } .directory td.entry a { outline:none; } .directory td.entry a img { border: none; } .directory td.desc { width: 100%; padding-left: 6px; padding-right: 6px; padding-top: 3px; border-left: 1px solid rgba(0,0,0,0.05); } .directory tr.even { padding-left: 6px; background-color: #F7F8FB; } .directory img { vertical-align: -30%; } .directory .levels { white-space: nowrap; width: 100%; text-align: right; font-size: 9pt; } .directory .levels span { cursor: pointer; padding-left: 2px; padding-right: 2px; color: #3D578C; } .arrow { color: #9CAFD4; -webkit-user-select: none; -khtml-user-select: none; -moz-user-select: none; -ms-user-select: none; user-select: none; cursor: pointer; font-size: 80%; display: inline-block; width: 16px; height: 22px; } .icon { font-family: Arial, Helvetica; font-weight: bold; font-size: 12px; height: 14px; width: 16px; display: inline-block; background-color: #728DC1; color: white; text-align: center; border-radius: 4px; margin-left: 2px; margin-right: 2px; } .icona { width: 24px; height: 22px; display: inline-block; } .iconfopen { width: 24px; height: 18px; margin-bottom: 4px; background-image:url('folderopen.png'); background-position: 0px -4px; background-repeat: repeat-y; vertical-align:top; display: inline-block; } .iconfclosed { width: 24px; height: 18px; margin-bottom: 4px; background-image:url('folderclosed.png'); background-position: 0px -4px; background-repeat: repeat-y; vertical-align:top; display: inline-block; } .icondoc { width: 24px; height: 18px; margin-bottom: 4px; background-image:url('doc.png'); background-position: 0px -4px; background-repeat: repeat-y; vertical-align:top; display: inline-block; } table.directory { font: 400 14px Roboto,sans-serif; } /* @end */ div.dynheader { margin-top: 8px; -webkit-touch-callout: none; -webkit-user-select: none; -khtml-user-select: none; -moz-user-select: none; -ms-user-select: none; user-select: none; } address { font-style: normal; color: #2A3D61; } table.doxtable caption { caption-side: top; } table.doxtable { border-collapse:collapse; margin-top: 4px; margin-bottom: 4px; } table.doxtable td, table.doxtable th { border: 1px solid #2D4068; padding: 3px 7px 2px; } table.doxtable th { background-color: #374F7F; color: #FFFFFF; font-size: 110%; padding-bottom: 4px; padding-top: 5px; } table.fieldtable { /*width: 100%;*/ margin-bottom: 10px; border: 1px solid #A8B8D9; border-spacing: 0px; -moz-border-radius: 4px; -webkit-border-radius: 4px; border-radius: 4px; -moz-box-shadow: rgba(0, 0, 0, 0.15) 2px 2px 2px; -webkit-box-shadow: 2px 2px 2px rgba(0, 0, 0, 0.15); box-shadow: 2px 2px 2px rgba(0, 0, 0, 0.15); } .fieldtable td, .fieldtable th { padding: 3px 7px 2px; } .fieldtable td.fieldtype, .fieldtable td.fieldname { white-space: nowrap; border-right: 1px solid #A8B8D9; border-bottom: 1px solid #A8B8D9; vertical-align: top; } .fieldtable td.fieldname { padding-top: 3px; } .fieldtable td.fielddoc { border-bottom: 1px solid #A8B8D9; /*width: 100%;*/ } .fieldtable td.fielddoc p:first-child { margin-top: 0px; } .fieldtable td.fielddoc p:last-child { margin-bottom: 2px; } .fieldtable tr:last-child td { border-bottom: none; } .fieldtable th { background-image:url('nav_f.png'); background-repeat:repeat-x; background-color: #E2E8F2; font-size: 90%; color: #253555; padding-bottom: 4px; padding-top: 5px; text-align:left; font-weight: 400; -moz-border-radius-topleft: 4px; -moz-border-radius-topright: 4px; -webkit-border-top-left-radius: 4px; -webkit-border-top-right-radius: 4px; border-top-left-radius: 4px; border-top-right-radius: 4px; border-bottom: 1px solid #A8B8D9; } .tabsearch { top: 0px; left: 10px; height: 36px; background-image: url('tab_b.png'); z-index: 101; overflow: hidden; font-size: 13px; } .navpath ul { font-size: 11px; background-image:url('tab_b.png'); background-repeat:repeat-x; background-position: 0 -5px; height:30px; line-height:30px; color:#8AA0CC; border:solid 1px #C2CDE4; overflow:hidden; margin:0px; padding:0px; } .navpath li { list-style-type:none; float:left; padding-left:10px; padding-right:15px; background-image:url('bc_s.png'); background-repeat:no-repeat; background-position:right; color:#364D7C; } .navpath li.navelem a { height:32px; display:block; text-decoration: none; outline: none; color: #283A5D; font-family: 'Lucida Grande',Geneva,Helvetica,Arial,sans-serif; text-shadow: 0px 1px 1px rgba(255, 255, 255, 0.9); text-decoration: none; } .navpath li.navelem a:hover { color:#6884BD; } .navpath li.footer { list-style-type:none; float:right; padding-left:10px; padding-right:15px; background-image:none; background-repeat:no-repeat; background-position:right; color:#364D7C; font-size: 8pt; } div.summary { float: right; font-size: 8pt; padding-right: 5px; width: 50%; text-align: right; } div.summary a { white-space: nowrap; } table.classindex { margin: 10px; white-space: nowrap; margin-left: 3%; margin-right: 3%; width: 94%; border: 0; border-spacing: 0; padding: 0; } div.ingroups { font-size: 8pt; width: 50%; text-align: left; } div.ingroups a { white-space: nowrap; } div.header { background-image:url('nav_h.png'); background-repeat:repeat-x; background-color: #F9FAFC; margin: 0px; border-bottom: 1px solid #C4CFE5; } div.headertitle { padding: 5px 5px 5px 10px; } .PageDocRTL-title div.headertitle { text-align: right; direction: rtl; } dl { padding: 0 0 0 0; } /* dl.note, dl.warning, dl.attention, dl.pre, dl.post, dl.invariant, dl.deprecated, dl.todo, dl.test, dl.bug, dl.examples */ dl.section { margin-left: 0px; padding-left: 0px; } dl.section.DocNodeRTL { margin-right: 0px; padding-right: 0px; } dl.note { margin-left: -7px; padding-left: 3px; border-left: 4px solid; border-color: #D0C000; } dl.note.DocNodeRTL { margin-left: 0; padding-left: 0; border-left: 0; margin-right: -7px; padding-right: 3px; border-right: 4px solid; border-color: #D0C000; } dl.warning, dl.attention { margin-left: -7px; padding-left: 3px; border-left: 4px solid; border-color: #FF0000; } dl.warning.DocNodeRTL, dl.attention.DocNodeRTL { margin-left: 0; padding-left: 0; border-left: 0; margin-right: -7px; padding-right: 3px; border-right: 4px solid; border-color: #FF0000; } dl.pre, dl.post, dl.invariant { margin-left: -7px; padding-left: 3px; border-left: 4px solid; border-color: #00D000; } dl.pre.DocNodeRTL, dl.post.DocNodeRTL, dl.invariant.DocNodeRTL { margin-left: 0; padding-left: 0; border-left: 0; margin-right: -7px; padding-right: 3px; border-right: 4px solid; border-color: #00D000; } dl.deprecated { margin-left: -7px; padding-left: 3px; border-left: 4px solid; border-color: #505050; } dl.deprecated.DocNodeRTL { margin-left: 0; padding-left: 0; border-left: 0; margin-right: -7px; padding-right: 3px; border-right: 4px solid; border-color: #505050; } dl.todo { margin-left: -7px; padding-left: 3px; border-left: 4px solid; border-color: #00C0E0; } dl.todo.DocNodeRTL { margin-left: 0; padding-left: 0; border-left: 0; margin-right: -7px; padding-right: 3px; border-right: 4px solid; border-color: #00C0E0; } dl.test { margin-left: -7px; padding-left: 3px; border-left: 4px solid; border-color: #3030E0; } dl.test.DocNodeRTL { margin-left: 0; padding-left: 0; border-left: 0; margin-right: -7px; padding-right: 3px; border-right: 4px solid; border-color: #3030E0; } dl.bug { margin-left: -7px; padding-left: 3px; border-left: 4px solid; border-color: #C08050; } dl.bug.DocNodeRTL { margin-left: 0; padding-left: 0; border-left: 0; margin-right: -7px; padding-right: 3px; border-right: 4px solid; border-color: #C08050; } dl.section dd { margin-bottom: 6px; } #projectlogo { text-align: center; vertical-align: bottom; border-collapse: separate; } #projectlogo img { border: 0px none; } #projectalign { vertical-align: middle; } #projectname { font: 300% Tahoma, Arial,sans-serif; margin: 0px; padding: 2px 0px; } #projectbrief { font: 120% Tahoma, Arial,sans-serif; margin: 0px; padding: 0px; } #projectnumber { font: 50% Tahoma, Arial,sans-serif; margin: 0px; padding: 0px; } #titlearea { padding: 0px; margin: 0px; width: 100%; border-bottom: 1px solid #5373B4; } .image { text-align: center; } .dotgraph { text-align: center; } .mscgraph { text-align: center; } .plantumlgraph { text-align: center; } .diagraph { text-align: center; } .caption { font-weight: bold; } div.zoom { border: 1px solid #90A5CE; } dl.citelist { margin-bottom:50px; } dl.citelist dt { color:#334975; float:left; font-weight:bold; margin-right:10px; padding:5px; text-align:right; width:52px; } dl.citelist dd { margin:2px 0 2px 72px; padding:5px 0; } div.toc { padding: 14px 25px; background-color: #F4F6FA; border: 1px solid #D8DFEE; border-radius: 7px 7px 7px 7px; float: right; height: auto; margin: 0 8px 10px 10px; width: 200px; } .PageDocRTL-title div.toc { float: left !important; text-align: right; } div.toc li { background: url("bdwn.png") no-repeat scroll 0 5px transparent; font: 10px/1.2 Verdana,DejaVu Sans,Geneva,sans-serif; margin-top: 5px; padding-left: 10px; padding-top: 2px; } .PageDocRTL-title div.toc li { background-position-x: right !important; padding-left: 0 !important; padding-right: 10px; } div.toc h3 { font: bold 12px/1.2 Arial,FreeSans,sans-serif; color: #4665A2; border-bottom: 0 none; margin: 0; } div.toc ul { list-style: none outside none; border: medium none; padding: 0px; } div.toc li.level1 { margin-left: 0px; } div.toc li.level2 { margin-left: 15px; } div.toc li.level3 { margin-left: 30px; } div.toc li.level4 { margin-left: 45px; } .PageDocRTL-title div.toc li.level1 { margin-left: 0 !important; margin-right: 0; } .PageDocRTL-title div.toc li.level2 { margin-left: 0 !important; margin-right: 15px; } .PageDocRTL-title div.toc li.level3 { margin-left: 0 !important; margin-right: 30px; } .PageDocRTL-title div.toc li.level4 { margin-left: 0 !important; margin-right: 45px; } .inherit_header { font-weight: bold; color: gray; cursor: pointer; -webkit-touch-callout: none; -webkit-user-select: none; -khtml-user-select: none; -moz-user-select: none; -ms-user-select: none; user-select: none; } .inherit_header td { padding: 6px 0px 2px 5px; } .inherit { display: none; } tr.heading h2 { margin-top: 12px; margin-bottom: 4px; } /* tooltip related style info */ .ttc { position: absolute; display: none; } #powerTip { cursor: default; white-space: nowrap; background-color: white; border: 1px solid gray; border-radius: 4px 4px 4px 4px; box-shadow: 1px 1px 7px gray; display: none; font-size: smaller; max-width: 80%; opacity: 0.9; padding: 1ex 1em 1em; position: absolute; z-index: 2147483647; } #powerTip div.ttdoc { color: grey; font-style: italic; } #powerTip div.ttname a { font-weight: bold; } #powerTip div.ttname { font-weight: bold; } #powerTip div.ttdeci { color: #006318; } #powerTip div { margin: 0px; padding: 0px; font: 12px/16px Roboto,sans-serif; } #powerTip:before, #powerTip:after { content: ""; position: absolute; margin: 0px; } #powerTip.n:after, #powerTip.n:before, #powerTip.s:after, #powerTip.s:before, #powerTip.w:after, #powerTip.w:before, #powerTip.e:after, #powerTip.e:before, #powerTip.ne:after, #powerTip.ne:before, #powerTip.se:after, #powerTip.se:before, #powerTip.nw:after, #powerTip.nw:before, #powerTip.sw:after, #powerTip.sw:before { border: solid transparent; content: " "; height: 0; width: 0; position: absolute; } #powerTip.n:after, #powerTip.s:after, #powerTip.w:after, #powerTip.e:after, #powerTip.nw:after, #powerTip.ne:after, #powerTip.sw:after, #powerTip.se:after { border-color: rgba(255, 255, 255, 0); } #powerTip.n:before, #powerTip.s:before, #powerTip.w:before, #powerTip.e:before, #powerTip.nw:before, #powerTip.ne:before, #powerTip.sw:before, #powerTip.se:before { border-color: rgba(128, 128, 128, 0); } #powerTip.n:after, #powerTip.n:before, #powerTip.ne:after, #powerTip.ne:before, #powerTip.nw:after, #powerTip.nw:before { top: 100%; } #powerTip.n:after, #powerTip.ne:after, #powerTip.nw:after { border-top-color: #FFFFFF; border-width: 10px; margin: 0px -10px; } #powerTip.n:before { border-top-color: #808080; border-width: 11px; margin: 0px -11px; } #powerTip.n:after, #powerTip.n:before { left: 50%; } #powerTip.nw:after, #powerTip.nw:before { right: 14px; } #powerTip.ne:after, #powerTip.ne:before { left: 14px; } #powerTip.s:after, #powerTip.s:before, #powerTip.se:after, #powerTip.se:before, #powerTip.sw:after, #powerTip.sw:before { bottom: 100%; } #powerTip.s:after, #powerTip.se:after, #powerTip.sw:after { border-bottom-color: #FFFFFF; border-width: 10px; margin: 0px -10px; } #powerTip.s:before, #powerTip.se:before, #powerTip.sw:before { border-bottom-color: #808080; border-width: 11px; margin: 0px -11px; } #powerTip.s:after, #powerTip.s:before { left: 50%; } #powerTip.sw:after, #powerTip.sw:before { right: 14px; } #powerTip.se:after, #powerTip.se:before { left: 14px; } #powerTip.e:after, #powerTip.e:before { left: 100%; } #powerTip.e:after { border-left-color: #FFFFFF; border-width: 10px; top: 50%; margin-top: -10px; } #powerTip.e:before { border-left-color: #808080; border-width: 11px; top: 50%; margin-top: -11px; } #powerTip.w:after, #powerTip.w:before { right: 100%; } #powerTip.w:after { border-right-color: #FFFFFF; border-width: 10px; top: 50%; margin-top: -10px; } #powerTip.w:before { border-right-color: #808080; border-width: 11px; top: 50%; margin-top: -11px; } @media print { #top { display: none; } #side-nav { display: none; } #nav-path { display: none; } body { overflow:visible; } h1, h2, h3, h4, h5, h6 { page-break-after: avoid; } .summary { display: none; } .memitem { page-break-inside: avoid; } #doc-content { margin-left:0 !important; height:auto !important; width:auto !important; overflow:inherit; display:inline; } } /* @group Markdown */ table.markdownTable { border-collapse:collapse; margin-top: 4px; margin-bottom: 4px; } table.markdownTable td, table.markdownTable th { border: 1px solid #2D4068; padding: 3px 7px 2px; } table.markdownTable tr { } th.markdownTableHeadLeft, th.markdownTableHeadRight, th.markdownTableHeadCenter, th.markdownTableHeadNone { background-color: #374F7F; color: #FFFFFF; font-size: 110%; padding-bottom: 4px; padding-top: 5px; } th.markdownTableHeadLeft, td.markdownTableBodyLeft { text-align: left } th.markdownTableHeadRight, td.markdownTableBodyRight { text-align: right } th.markdownTableHeadCenter, td.markdownTableBodyCenter { text-align: center } .DocNodeRTL { text-align: right; direction: rtl; } .DocNodeLTR { text-align: left; direction: ltr; } table.DocNodeRTL { width: auto; margin-right: 0; margin-left: auto; } table.DocNodeLTR { width: auto; margin-right: auto; margin-left: 0; } tt, code, kbd, samp { display: inline-block; direction:ltr; } /* @end */ u { text-decoration: underline; } libjpeg-turbo-2.1.5/doc/html/doxygen.svg000066400000000000000000000360261436506551100202100ustar00rootroot00000000000000 libjpeg-turbo-2.1.5/doc/html/dynsections.js000066400000000000000000000105441436506551100207070ustar00rootroot00000000000000/* @licstart The following is the entire license notice for the JavaScript code in this file. The MIT License (MIT) Copyright (C) 1997-2020 by Dimitri van Heesch Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. @licend The above is the entire license notice for the JavaScript code in this file */ function toggleVisibility(linkObj) { var base = $(linkObj).attr('id'); var summary = $('#'+base+'-summary'); var content = $('#'+base+'-content'); var trigger = $('#'+base+'-trigger'); var src=$(trigger).attr('src'); if (content.is(':visible')===true) { content.hide(); summary.show(); $(linkObj).addClass('closed').removeClass('opened'); $(trigger).attr('src',src.substring(0,src.length-8)+'closed.png'); } else { content.show(); summary.hide(); $(linkObj).removeClass('closed').addClass('opened'); $(trigger).attr('src',src.substring(0,src.length-10)+'open.png'); } return false; } function updateStripes() { $('table.directory tr'). removeClass('even').filter(':visible:even').addClass('even'); } function toggleLevel(level) { $('table.directory tr').each(function() { var l = this.id.split('_').length-1; var i = $('#img'+this.id.substring(3)); var a = $('#arr'+this.id.substring(3)); if (lp9¤™EEά¨ÎÊ‘" u¥n€$R"?{¹<˜…ë…%PNtâ$‰ß¶±úá+^<é"§2 ªDq”q´\¬«Ò™a–Œ‘©Aÿ€"Ôµ ™êŸèP£}#Eàz{û.8i îp³ê(ADwD¦E<ê¬cE¦$ HdÊÄ ”.:Ù GŽ-`ŒL‚ý¾'¢‰Ä<¤CIª½;ÙÇTZd±i};>èôß‚z×;K×§8t ¤Ž q”:uvÿv•Ý›¬²ÙvEân{„M·FXg¼ÌfZÖ¨°¹‰*›ßÌß©±ù©:›j–YqèÜë#3çÏSøWøÿÿÑr'ø Ôùù‚ ©¡IEND®B`‚libjpeg-turbo-2.1.5/doc/html/folderopen.png000066400000000000000000000011251436506551100206450ustar00rootroot00000000000000‰PNG  IHDRÚ}\ˆIDATxí]?oÓPÿ9iš4i°;ii“¶‰ZЉ‘‰ÀÀ7`bèÔÙ¬Øù,HìU'ô$*Tµ]‚T¡DPÚÄ6wÏ}‰;¡C; a¿ÓߟûÝïîž¼jAÀ­InSþ}€9H“ÓŽ|?íÁ÷ =_ÊÆŠ­†¥Àue*;¯YEäsYäæB¢Ÿ¿þÄ—£sÙ½½ÙŒ† É«›©ÀYÇq !GÇ¿v̇¹ÑØ®š °Œ‚ÔF¹}q¥b]÷7í·0)Úd›¾ÿð-èº}Pfä£ÖY{4™ÑÂ@}úæôñ2ÛüÔ—ñúåNŒI‚ÁǃcçÁº%£¬UаI³mc±ô˜å¼ÔÆüÈ>é¸xþt9Æ$µý OæVE*õU´Ì‚ç#ž×ˆ•ïûr@l$øPÿrHaaÇ¥ ²›dZ®rè‘ãqI„o¼øT\Ž,tªj2FAxv-LŸp׌p TÄI/ \¥sfí½; jViTƒèú¤o^cpÅü¼ûû»Ïb]”€¢¤<†aþÕœ²“ßÓ˜y“£§9:Œîù+À³€ñà,E žf³6éNˆÄE£KU}Ü^;¶ØnZ¢uß­US4— ѬëbížN¶.Úk¦ØjTÄöº%µªâ i¯VÄÊÝò§™ Èù¸)ùÿG€™òºJ@T x”IEND®B`‚libjpeg-turbo-2.1.5/doc/html/functions.html000066400000000000000000000101551436506551100207030ustar00rootroot00000000000000 TurboJPEG: Data Fields
TurboJPEG  2.1.4
Here is a list of all documented struct and union fields with links to the struct/union documentation for each field:
libjpeg-turbo-2.1.5/doc/html/functions_vars.html000066400000000000000000000077551436506551100217520ustar00rootroot00000000000000 TurboJPEG: Data Fields - Variables
TurboJPEG  2.1.4
 
libjpeg-turbo-2.1.5/doc/html/group___turbo_j_p_e_g.html000066400000000000000000006477761436506551100232330ustar00rootroot00000000000000 TurboJPEG: TurboJPEG
TurboJPEG  2.1.4

TurboJPEG API. More...

Data Structures

struct  tjscalingfactor
 Scaling factor. More...
 
struct  tjregion
 Cropping region. More...
 
struct  tjtransform
 Lossless transform. More...
 

Macros

#define TJ_NUMSAMP
 The number of chrominance subsampling options. More...
 
#define TJ_NUMPF
 The number of pixel formats. More...
 
#define TJ_NUMCS
 The number of JPEG colorspaces. More...
 
#define TJFLAG_BOTTOMUP
 Rows in the packed-pixel source/destination image are stored in bottom-up (Windows, OpenGL) order rather than in top-down (X11) order. More...
 
#define TJFLAG_FASTUPSAMPLE
 When decompressing an image that was compressed using chrominance subsampling, use the fastest chrominance upsampling algorithm available. More...
 
#define TJFLAG_NOREALLOC
 Disable JPEG buffer (re)allocation. More...
 
#define TJFLAG_FASTDCT
 Use the fastest DCT/IDCT algorithm available. More...
 
#define TJFLAG_ACCURATEDCT
 Use the most accurate DCT/IDCT algorithm available. More...
 
#define TJFLAG_STOPONWARNING
 Immediately discontinue the current compression/decompression/transform operation if a warning (non-fatal error) occurs. More...
 
#define TJFLAG_PROGRESSIVE
 Use progressive entropy coding in JPEG images generated by the compression and transform functions. More...
 
#define TJFLAG_LIMITSCANS
 Limit the number of progressive JPEG scans that the decompression and transform functions will process. More...
 
#define TJ_NUMERR
 The number of error codes. More...
 
#define TJ_NUMXOP
 The number of transform operations. More...
 
#define TJXOPT_PERFECT
 This option will cause tjTransform() to return an error if the transform is not perfect. More...
 
#define TJXOPT_TRIM
 This option will cause tjTransform() to discard any partial MCU blocks that cannot be transformed. More...
 
#define TJXOPT_CROP
 This option will enable lossless cropping. More...
 
#define TJXOPT_GRAY
 This option will discard the color data in the source image and produce a grayscale destination image. More...
 
#define TJXOPT_NOOUTPUT
 This option will prevent tjTransform() from outputting a JPEG image for this particular transform. More...
 
#define TJXOPT_PROGRESSIVE
 This option will enable progressive entropy coding in the JPEG image generated by this particular transform. More...
 
#define TJXOPT_COPYNONE
 This option will prevent tjTransform() from copying any extra markers (including EXIF and ICC profile data) from the source image to the destination image. More...
 
#define TJPAD(width)
 Pad the given width to the nearest multiple of 4. More...
 
#define TJSCALED(dimension, scalingFactor)
 Compute the scaled value of dimension using the given scaling factor. More...
 

Typedefs

typedef struct tjtransform tjtransform
 Lossless transform. More...
 
typedef void * tjhandle
 TurboJPEG instance handle. More...
 

Enumerations

enum  TJSAMP {
  TJSAMP_444, TJSAMP_422, TJSAMP_420, TJSAMP_GRAY,
  TJSAMP_440, TJSAMP_411
}
 Chrominance subsampling options. More...
 
enum  TJPF {
  TJPF_RGB, TJPF_BGR, TJPF_RGBX, TJPF_BGRX,
  TJPF_XBGR, TJPF_XRGB, TJPF_GRAY, TJPF_RGBA,
  TJPF_BGRA, TJPF_ABGR, TJPF_ARGB, TJPF_CMYK,
  TJPF_UNKNOWN
}
 Pixel formats. More...
 
enum  TJCS {
  TJCS_RGB, TJCS_YCbCr, TJCS_GRAY, TJCS_CMYK,
  TJCS_YCCK
}
 JPEG colorspaces. More...
 
enum  TJERR { TJERR_WARNING, TJERR_FATAL }
 Error codes. More...
 
enum  TJXOP {
  TJXOP_NONE, TJXOP_HFLIP, TJXOP_VFLIP, TJXOP_TRANSPOSE,
  TJXOP_TRANSVERSE, TJXOP_ROT90, TJXOP_ROT180, TJXOP_ROT270
}
 Transform operations for tjTransform() More...
 

Functions

DLLEXPORT tjhandle tjInitCompress (void)
 Create a TurboJPEG compressor instance. More...
 
DLLEXPORT int tjCompress2 (tjhandle handle, const unsigned char *srcBuf, int width, int pitch, int height, int pixelFormat, unsigned char **jpegBuf, unsigned long *jpegSize, int jpegSubsamp, int jpegQual, int flags)
 Compress a packed-pixel RGB, grayscale, or CMYK image into a JPEG image. More...
 
DLLEXPORT int tjCompressFromYUV (tjhandle handle, const unsigned char *srcBuf, int width, int align, int height, int subsamp, unsigned char **jpegBuf, unsigned long *jpegSize, int jpegQual, int flags)
 Compress a unified planar YUV image into a JPEG image. More...
 
DLLEXPORT int tjCompressFromYUVPlanes (tjhandle handle, const unsigned char **srcPlanes, int width, const int *strides, int height, int subsamp, unsigned char **jpegBuf, unsigned long *jpegSize, int jpegQual, int flags)
 Compress a set of Y, U (Cb), and V (Cr) image planes into a JPEG image. More...
 
DLLEXPORT unsigned long tjBufSize (int width, int height, int jpegSubsamp)
 The maximum size of the buffer (in bytes) required to hold a JPEG image with the given parameters. More...
 
DLLEXPORT unsigned long tjBufSizeYUV2 (int width, int align, int height, int subsamp)
 The size of the buffer (in bytes) required to hold a unified planar YUV image with the given parameters. More...
 
DLLEXPORT unsigned long tjPlaneSizeYUV (int componentID, int width, int stride, int height, int subsamp)
 The size of the buffer (in bytes) required to hold a YUV image plane with the given parameters. More...
 
DLLEXPORT int tjPlaneWidth (int componentID, int width, int subsamp)
 The plane width of a YUV image plane with the given parameters. More...
 
DLLEXPORT int tjPlaneHeight (int componentID, int height, int subsamp)
 The plane height of a YUV image plane with the given parameters. More...
 
DLLEXPORT int tjEncodeYUV3 (tjhandle handle, const unsigned char *srcBuf, int width, int pitch, int height, int pixelFormat, unsigned char *dstBuf, int align, int subsamp, int flags)
 Encode a packed-pixel RGB or grayscale image into a unified planar YUV image. More...
 
DLLEXPORT int tjEncodeYUVPlanes (tjhandle handle, const unsigned char *srcBuf, int width, int pitch, int height, int pixelFormat, unsigned char **dstPlanes, int *strides, int subsamp, int flags)
 Encode a packed-pixel RGB or grayscale image into separate Y, U (Cb), and V (Cr) image planes. More...
 
DLLEXPORT tjhandle tjInitDecompress (void)
 Create a TurboJPEG decompressor instance. More...
 
DLLEXPORT int tjDecompressHeader3 (tjhandle handle, const unsigned char *jpegBuf, unsigned long jpegSize, int *width, int *height, int *jpegSubsamp, int *jpegColorspace)
 Retrieve information about a JPEG image without decompressing it, or prime the decompressor with quantization and Huffman tables. More...
 
DLLEXPORT tjscalingfactortjGetScalingFactors (int *numScalingFactors)
 Returns a list of fractional scaling factors that the JPEG decompressor supports. More...
 
DLLEXPORT int tjDecompress2 (tjhandle handle, const unsigned char *jpegBuf, unsigned long jpegSize, unsigned char *dstBuf, int width, int pitch, int height, int pixelFormat, int flags)
 Decompress a JPEG image into a packed-pixel RGB, grayscale, or CMYK image. More...
 
DLLEXPORT int tjDecompressToYUV2 (tjhandle handle, const unsigned char *jpegBuf, unsigned long jpegSize, unsigned char *dstBuf, int width, int align, int height, int flags)
 Decompress a JPEG image into a unified planar YUV image. More...
 
DLLEXPORT int tjDecompressToYUVPlanes (tjhandle handle, const unsigned char *jpegBuf, unsigned long jpegSize, unsigned char **dstPlanes, int width, int *strides, int height, int flags)
 Decompress a JPEG image into separate Y, U (Cb), and V (Cr) image planes. More...
 
DLLEXPORT int tjDecodeYUV (tjhandle handle, const unsigned char *srcBuf, int align, int subsamp, unsigned char *dstBuf, int width, int pitch, int height, int pixelFormat, int flags)
 Decode a unified planar YUV image into a packed-pixel RGB or grayscale image. More...
 
DLLEXPORT int tjDecodeYUVPlanes (tjhandle handle, const unsigned char **srcPlanes, const int *strides, int subsamp, unsigned char *dstBuf, int width, int pitch, int height, int pixelFormat, int flags)
 Decode a set of Y, U (Cb), and V (Cr) image planes into a packed-pixel RGB or grayscale image. More...
 
DLLEXPORT tjhandle tjInitTransform (void)
 Create a new TurboJPEG transformer instance. More...
 
DLLEXPORT int tjTransform (tjhandle handle, const unsigned char *jpegBuf, unsigned long jpegSize, int n, unsigned char **dstBufs, unsigned long *dstSizes, tjtransform *transforms, int flags)
 Losslessly transform a JPEG image into another JPEG image. More...
 
DLLEXPORT int tjDestroy (tjhandle handle)
 Destroy a TurboJPEG compressor, decompressor, or transformer instance. More...
 
DLLEXPORT unsigned char * tjAlloc (int bytes)
 Allocate a byte buffer for use with TurboJPEG. More...
 
DLLEXPORT unsigned char * tjLoadImage (const char *filename, int *width, int align, int *height, int *pixelFormat, int flags)
 Load a packed-pixel image from disk into memory. More...
 
DLLEXPORT int tjSaveImage (const char *filename, unsigned char *buffer, int width, int pitch, int height, int pixelFormat, int flags)
 Save a packed-pixel image from memory to disk. More...
 
DLLEXPORT void tjFree (unsigned char *buffer)
 Free a byte buffer previously allocated by TurboJPEG. More...
 
DLLEXPORT char * tjGetErrorStr2 (tjhandle handle)
 Returns a descriptive error message explaining why the last command failed. More...
 
DLLEXPORT int tjGetErrorCode (tjhandle handle)
 Returns a code indicating the severity of the last error. More...
 

Variables

static const int tjMCUWidth [TJ_NUMSAMP]
 MCU block width (in pixels) for a given level of chrominance subsampling. More...
 
static const int tjMCUHeight [TJ_NUMSAMP]
 MCU block height (in pixels) for a given level of chrominance subsampling. More...
 
static const int tjRedOffset [TJ_NUMPF]
 Red offset (in bytes) for a given pixel format. More...
 
static const int tjGreenOffset [TJ_NUMPF]
 Green offset (in bytes) for a given pixel format. More...
 
static const int tjBlueOffset [TJ_NUMPF]
 Blue offset (in bytes) for a given pixel format. More...
 
static const int tjAlphaOffset [TJ_NUMPF]
 Alpha offset (in bytes) for a given pixel format. More...
 
static const int tjPixelSize [TJ_NUMPF]
 Pixel size (in bytes) for a given pixel format. More...
 

Detailed Description

TurboJPEG API.

This API provides an interface for generating, decoding, and transforming planar YUV and JPEG images in memory.

YUV Image Format Notes

Technically, the JPEG format uses the YCbCr colorspace (which is technically not a colorspace but a color transform), but per the convention of the digital video community, the TurboJPEG API uses "YUV" to refer to an image format consisting of Y, Cb, and Cr image planes.

Each plane is simply a 2D array of bytes, each byte representing the value of one of the components (Y, Cb, or Cr) at a particular location in the image. The width and height of each plane are determined by the image width, height, and level of chrominance subsampling. The luminance plane width is the image width padded to the nearest multiple of the horizontal subsampling factor (1 in the case of 4:4:4, grayscale, or 4:4:0; 2 in the case of 4:2:2 or 4:2:0; 4 in the case of 4:1:1.) Similarly, the luminance plane height is the image height padded to the nearest multiple of the vertical subsampling factor (1 in the case of 4:4:4, 4:2:2, grayscale, or 4:1:1; 2 in the case of 4:2:0 or 4:4:0.) This is irrespective of any additional padding that may be specified as an argument to the various YUV functions. The chrominance plane width is equal to the luminance plane width divided by the horizontal subsampling factor, and the chrominance plane height is equal to the luminance plane height divided by the vertical subsampling factor.

For example, if the source image is 35 x 35 pixels and 4:2:2 subsampling is used, then the luminance plane would be 36 x 35 bytes, and each of the chrominance planes would be 18 x 35 bytes. If you specify a row alignment of 4 bytes on top of this, then the luminance plane would be 36 x 35 bytes, and each of the chrominance planes would be 20 x 35 bytes.

Macro Definition Documentation

◆ TJ_NUMCS

#define TJ_NUMCS

The number of JPEG colorspaces.

◆ TJ_NUMERR

#define TJ_NUMERR

The number of error codes.

◆ TJ_NUMPF

#define TJ_NUMPF

The number of pixel formats.

◆ TJ_NUMSAMP

#define TJ_NUMSAMP

The number of chrominance subsampling options.

◆ TJ_NUMXOP

#define TJ_NUMXOP

The number of transform operations.

◆ TJFLAG_ACCURATEDCT

#define TJFLAG_ACCURATEDCT

Use the most accurate DCT/IDCT algorithm available.

The default if this flag is not specified is implementation-specific. For example, the implementation of the TurboJPEG API in libjpeg-turbo uses the fast algorithm by default when compressing, because this has been shown to have only a very slight effect on accuracy, but it uses the accurate algorithm when decompressing, because this has been shown to have a larger effect.

◆ TJFLAG_BOTTOMUP

#define TJFLAG_BOTTOMUP

Rows in the packed-pixel source/destination image are stored in bottom-up (Windows, OpenGL) order rather than in top-down (X11) order.

◆ TJFLAG_FASTDCT

#define TJFLAG_FASTDCT

Use the fastest DCT/IDCT algorithm available.

The default if this flag is not specified is implementation-specific. For example, the implementation of the TurboJPEG API in libjpeg-turbo uses the fast algorithm by default when compressing, because this has been shown to have only a very slight effect on accuracy, but it uses the accurate algorithm when decompressing, because this has been shown to have a larger effect.

◆ TJFLAG_FASTUPSAMPLE

#define TJFLAG_FASTUPSAMPLE

When decompressing an image that was compressed using chrominance subsampling, use the fastest chrominance upsampling algorithm available.

The default is to use smooth upsampling, which creates a smooth transition between neighboring chrominance components in order to reduce upsampling artifacts in the decompressed image.

◆ TJFLAG_LIMITSCANS

#define TJFLAG_LIMITSCANS

Limit the number of progressive JPEG scans that the decompression and transform functions will process.

If a progressive JPEG image contains an unreasonably large number of scans, then this flag will cause the decompression and transform functions to return an error. The primary purpose of this is to allow security-critical applications to guard against an exploit of the progressive JPEG format described in this report.

◆ TJFLAG_NOREALLOC

#define TJFLAG_NOREALLOC

Disable JPEG buffer (re)allocation.

If passed to one of the JPEG compression or transform functions, this flag will cause those functions to generate an error if the JPEG destination buffer is invalid or too small, rather than attempt to allocate or reallocate that buffer.

◆ TJFLAG_PROGRESSIVE

#define TJFLAG_PROGRESSIVE

Use progressive entropy coding in JPEG images generated by the compression and transform functions.

Progressive entropy coding will generally improve compression relative to baseline entropy coding (the default), but it will reduce compression and decompression performance considerably.

◆ TJFLAG_STOPONWARNING

#define TJFLAG_STOPONWARNING

Immediately discontinue the current compression/decompression/transform operation if a warning (non-fatal error) occurs.

The default behavior is to allow the operation to complete unless a fatal error is encountered.

◆ TJPAD

#define TJPAD (   width)

Pad the given width to the nearest multiple of 4.

◆ TJSCALED

#define TJSCALED (   dimension,
  scalingFactor 
)

Compute the scaled value of dimension using the given scaling factor.

This macro performs the integer equivalent of ceil(dimension * scalingFactor).

◆ TJXOPT_COPYNONE

#define TJXOPT_COPYNONE

This option will prevent tjTransform() from copying any extra markers (including EXIF and ICC profile data) from the source image to the destination image.

◆ TJXOPT_CROP

#define TJXOPT_CROP

This option will enable lossless cropping.

See tjTransform() for more information.

◆ TJXOPT_GRAY

#define TJXOPT_GRAY

This option will discard the color data in the source image and produce a grayscale destination image.

◆ TJXOPT_NOOUTPUT

#define TJXOPT_NOOUTPUT

This option will prevent tjTransform() from outputting a JPEG image for this particular transform.

(This can be used in conjunction with a custom filter to capture the transformed DCT coefficients without transcoding them.)

◆ TJXOPT_PERFECT

#define TJXOPT_PERFECT

This option will cause tjTransform() to return an error if the transform is not perfect.

Lossless transforms operate on MCU blocks, whose size depends on the level of chrominance subsampling used (see tjMCUWidth and tjMCUHeight.) If the image's width or height is not evenly divisible by the MCU block size, then there will be partial MCU blocks on the right and/or bottom edges. It is not possible to move these partial MCU blocks to the top or left of the image, so any transform that would require that is "imperfect." If this option is not specified, then any partial MCU blocks that cannot be transformed will be left in place, which will create odd-looking strips on the right or bottom edge of the image.

◆ TJXOPT_PROGRESSIVE

#define TJXOPT_PROGRESSIVE

This option will enable progressive entropy coding in the JPEG image generated by this particular transform.

Progressive entropy coding will generally improve compression relative to baseline entropy coding (the default), but it will reduce decompression performance considerably.

◆ TJXOPT_TRIM

#define TJXOPT_TRIM

This option will cause tjTransform() to discard any partial MCU blocks that cannot be transformed.

Typedef Documentation

◆ tjhandle

typedef void* tjhandle

TurboJPEG instance handle.

◆ tjtransform

typedef struct tjtransform tjtransform

Lossless transform.

Enumeration Type Documentation

◆ TJCS

enum TJCS

JPEG colorspaces.

Enumerator
TJCS_RGB 

RGB colorspace.

When compressing the JPEG image, the R, G, and B components in the source image are reordered into image planes, but no colorspace conversion or subsampling is performed. RGB JPEG images can be decompressed to packed-pixel images with any of the extended RGB or grayscale pixel formats, but they cannot be decompressed to planar YUV images.

TJCS_YCbCr 

YCbCr colorspace.

YCbCr is not an absolute colorspace but rather a mathematical transformation of RGB designed solely for storage and transmission. YCbCr images must be converted to RGB before they can actually be displayed. In the YCbCr colorspace, the Y (luminance) component represents the black & white portion of the original image, and the Cb and Cr (chrominance) components represent the color portion of the original image. Originally, the analog equivalent of this transformation allowed the same signal to drive both black & white and color televisions, but JPEG images use YCbCr primarily because it allows the color data to be optionally subsampled for the purposes of reducing network or disk usage. YCbCr is the most common JPEG colorspace, and YCbCr JPEG images can be compressed from and decompressed to packed-pixel images with any of the extended RGB or grayscale pixel formats. YCbCr JPEG images can also be compressed from and decompressed to planar YUV images.

TJCS_GRAY 

Grayscale colorspace.

The JPEG image retains only the luminance data (Y component), and any color data from the source image is discarded. Grayscale JPEG images can be compressed from and decompressed to packed-pixel images with any of the extended RGB or grayscale pixel formats, or they can be compressed from and decompressed to planar YUV images.

TJCS_CMYK 

CMYK colorspace.

When compressing the JPEG image, the C, M, Y, and K components in the source image are reordered into image planes, but no colorspace conversion or subsampling is performed. CMYK JPEG images can only be decompressed to packed-pixel images with the CMYK pixel format.

TJCS_YCCK 

YCCK colorspace.

YCCK (AKA "YCbCrK") is not an absolute colorspace but rather a mathematical transformation of CMYK designed solely for storage and transmission. It is to CMYK as YCbCr is to RGB. CMYK pixels can be reversibly transformed into YCCK, and as with YCbCr, the chrominance components in the YCCK pixels can be subsampled without incurring major perceptual loss. YCCK JPEG images can only be compressed from and decompressed to packed-pixel images with the CMYK pixel format.

◆ TJERR

enum TJERR

Error codes.

Enumerator
TJERR_WARNING 

The error was non-fatal and recoverable, but the destination image may still be corrupt.

TJERR_FATAL 

The error was fatal and non-recoverable.

◆ TJPF

enum TJPF

Pixel formats.

Enumerator
TJPF_RGB 

RGB pixel format.

The red, green, and blue components in the image are stored in 3-byte pixels in the order R, G, B from lowest to highest byte address within each pixel.

TJPF_BGR 

BGR pixel format.

The red, green, and blue components in the image are stored in 3-byte pixels in the order B, G, R from lowest to highest byte address within each pixel.

TJPF_RGBX 

RGBX pixel format.

The red, green, and blue components in the image are stored in 4-byte pixels in the order R, G, B from lowest to highest byte address within each pixel. The X component is ignored when compressing and undefined when decompressing.

TJPF_BGRX 

BGRX pixel format.

The red, green, and blue components in the image are stored in 4-byte pixels in the order B, G, R from lowest to highest byte address within each pixel. The X component is ignored when compressing and undefined when decompressing.

TJPF_XBGR 

XBGR pixel format.

The red, green, and blue components in the image are stored in 4-byte pixels in the order R, G, B from highest to lowest byte address within each pixel. The X component is ignored when compressing and undefined when decompressing.

TJPF_XRGB 

XRGB pixel format.

The red, green, and blue components in the image are stored in 4-byte pixels in the order B, G, R from highest to lowest byte address within each pixel. The X component is ignored when compressing and undefined when decompressing.

TJPF_GRAY 

Grayscale pixel format.

Each 1-byte pixel represents a luminance (brightness) level from 0 to 255.

TJPF_RGBA 

RGBA pixel format.

This is the same as TJPF_RGBX, except that when decompressing, the X component is guaranteed to be 0xFF, which can be interpreted as an opaque alpha channel.

TJPF_BGRA 

BGRA pixel format.

This is the same as TJPF_BGRX, except that when decompressing, the X component is guaranteed to be 0xFF, which can be interpreted as an opaque alpha channel.

TJPF_ABGR 

ABGR pixel format.

This is the same as TJPF_XBGR, except that when decompressing, the X component is guaranteed to be 0xFF, which can be interpreted as an opaque alpha channel.

TJPF_ARGB 

ARGB pixel format.

This is the same as TJPF_XRGB, except that when decompressing, the X component is guaranteed to be 0xFF, which can be interpreted as an opaque alpha channel.

TJPF_CMYK 

CMYK pixel format.

Unlike RGB, which is an additive color model used primarily for display, CMYK (Cyan/Magenta/Yellow/Key) is a subtractive color model used primarily for printing. In the CMYK color model, the value of each color component typically corresponds to an amount of cyan, magenta, yellow, or black ink that is applied to a white background. In order to convert between CMYK and RGB, it is necessary to use a color management system (CMS.) A CMS will attempt to map colors within the printer's gamut to perceptually similar colors in the display's gamut and vice versa, but the mapping is typically not 1:1 or reversible, nor can it be defined with a simple formula. Thus, such a conversion is out of scope for a codec library. However, the TurboJPEG API allows for compressing packed-pixel CMYK images into YCCK JPEG images (see TJCS_YCCK) and decompressing YCCK JPEG images into packed-pixel CMYK images.

TJPF_UNKNOWN 

Unknown pixel format.

Currently this is only used by tjLoadImage().

◆ TJSAMP

enum TJSAMP

Chrominance subsampling options.

When pixels are converted from RGB to YCbCr (see TJCS_YCbCr) or from CMYK to YCCK (see TJCS_YCCK) as part of the JPEG compression process, some of the Cb and Cr (chrominance) components can be discarded or averaged together to produce a smaller image with little perceptible loss of image clarity. (The human eye is more sensitive to small changes in brightness than to small changes in color.) This is called "chrominance subsampling".

Enumerator
TJSAMP_444 

4:4:4 chrominance subsampling (no chrominance subsampling).

The JPEG or YUV image will contain one chrominance component for every pixel in the source image.

TJSAMP_422 

4:2:2 chrominance subsampling.

The JPEG or YUV image will contain one chrominance component for every 2x1 block of pixels in the source image.

TJSAMP_420 

4:2:0 chrominance subsampling.

The JPEG or YUV image will contain one chrominance component for every 2x2 block of pixels in the source image.

TJSAMP_GRAY 

Grayscale.

The JPEG or YUV image will contain no chrominance components.

TJSAMP_440 

4:4:0 chrominance subsampling.

The JPEG or YUV image will contain one chrominance component for every 1x2 block of pixels in the source image.

Note
4:4:0 subsampling is not fully accelerated in libjpeg-turbo.
TJSAMP_411 

4:1:1 chrominance subsampling.

The JPEG or YUV image will contain one chrominance component for every 4x1 block of pixels in the source image. JPEG images compressed with 4:1:1 subsampling will be almost exactly the same size as those compressed with 4:2:0 subsampling, and in the aggregate, both subsampling methods produce approximately the same perceptual quality. However, 4:1:1 is better able to reproduce sharp horizontal features.

Note
4:1:1 subsampling is not fully accelerated in libjpeg-turbo.

◆ TJXOP

enum TJXOP

Transform operations for tjTransform()

Enumerator
TJXOP_NONE 

Do not transform the position of the image pixels.

TJXOP_HFLIP 

Flip (mirror) image horizontally.

This transform is imperfect if there are any partial MCU blocks on the right edge (see TJXOPT_PERFECT.)

TJXOP_VFLIP 

Flip (mirror) image vertically.

This transform is imperfect if there are any partial MCU blocks on the bottom edge (see TJXOPT_PERFECT.)

TJXOP_TRANSPOSE 

Transpose image (flip/mirror along upper left to lower right axis.) This transform is always perfect.

TJXOP_TRANSVERSE 

Transverse transpose image (flip/mirror along upper right to lower left axis.) This transform is imperfect if there are any partial MCU blocks in the image (see TJXOPT_PERFECT.)

TJXOP_ROT90 

Rotate image clockwise by 90 degrees.

This transform is imperfect if there are any partial MCU blocks on the bottom edge (see TJXOPT_PERFECT.)

TJXOP_ROT180 

Rotate image 180 degrees.

This transform is imperfect if there are any partial MCU blocks in the image (see TJXOPT_PERFECT.)

TJXOP_ROT270 

Rotate image counter-clockwise by 90 degrees.

This transform is imperfect if there are any partial MCU blocks on the right edge (see TJXOPT_PERFECT.)

Function Documentation

◆ tjAlloc()

DLLEXPORT unsigned char* tjAlloc ( int  bytes)

Allocate a byte buffer for use with TurboJPEG.

You should always use this function to allocate the JPEG destination buffer(s) for the compression and transform functions unless you are disabling automatic buffer (re)allocation (by setting TJFLAG_NOREALLOC.)

Parameters
bytesthe number of bytes to allocate
Returns
a pointer to a newly-allocated buffer with the specified number of bytes.
See also
tjFree()

◆ tjBufSize()

DLLEXPORT unsigned long tjBufSize ( int  width,
int  height,
int  jpegSubsamp 
)

The maximum size of the buffer (in bytes) required to hold a JPEG image with the given parameters.

The number of bytes returned by this function is larger than the size of the uncompressed source image. The reason for this is that the JPEG format uses 16-bit coefficients, so it is possible for a very high-quality source image with very high-frequency content to expand rather than compress when converted to the JPEG format. Such images represent very rare corner cases, but since there is no way to predict the size of a JPEG image prior to compression, the corner cases have to be handled.

Parameters
widthwidth (in pixels) of the image
heightheight (in pixels) of the image
jpegSubsampthe level of chrominance subsampling to be used when generating the JPEG image (see Chrominance subsampling options.)
Returns
the maximum size of the buffer (in bytes) required to hold the image, or -1 if the arguments are out of bounds.

◆ tjBufSizeYUV2()

DLLEXPORT unsigned long tjBufSizeYUV2 ( int  width,
int  align,
int  height,
int  subsamp 
)

The size of the buffer (in bytes) required to hold a unified planar YUV image with the given parameters.

Parameters
widthwidth (in pixels) of the image
alignrow alignment (in bytes) of the image (must be a power of 2.) Setting this parameter to n specifies that each row in each plane of the image will be padded to the nearest multiple of n bytes (1 = unpadded.)
heightheight (in pixels) of the image
subsamplevel of chrominance subsampling in the image (see Chrominance subsampling options.)
Returns
the size of the buffer (in bytes) required to hold the image, or -1 if the arguments are out of bounds.

◆ tjCompress2()

DLLEXPORT int tjCompress2 ( tjhandle  handle,
const unsigned char *  srcBuf,
int  width,
int  pitch,
int  height,
int  pixelFormat,
unsigned char **  jpegBuf,
unsigned long *  jpegSize,
int  jpegSubsamp,
int  jpegQual,
int  flags 
)

Compress a packed-pixel RGB, grayscale, or CMYK image into a JPEG image.

Parameters
handlea handle to a TurboJPEG compressor or transformer instance
srcBufpointer to a buffer containing a packed-pixel RGB, grayscale, or CMYK source image to be compressed
widthwidth (in pixels) of the source image
pitchbytes per row in the source image. Normally this should be width * tjPixelSize[pixelFormat], if the image is unpadded, or TJPAD(width * tjPixelSize[pixelFormat]) if each row of the image is padded to the nearest multiple of 4 bytes, as is the case for Windows bitmaps. You can also be clever and use this parameter to skip rows, etc. Setting this parameter to 0 is the equivalent of setting it to width * tjPixelSize[pixelFormat].
heightheight (in pixels) of the source image
pixelFormatpixel format of the source image (see Pixel formats.)
jpegBufaddress of a pointer to a byte buffer that will receive the JPEG image. TurboJPEG has the ability to reallocate the JPEG buffer to accommodate the size of the JPEG image. Thus, you can choose to:
  1. pre-allocate the JPEG buffer with an arbitrary size using tjAlloc() and let TurboJPEG grow the buffer as needed,
  2. set *jpegBuf to NULL to tell TurboJPEG to allocate the buffer for you, or
  3. pre-allocate the buffer to a "worst case" size determined by calling tjBufSize(). This should ensure that the buffer never has to be re-allocated. (Setting TJFLAG_NOREALLOC guarantees that it won't be.)
If you choose option 1, then *jpegSize should be set to the size of your pre-allocated buffer. In any case, unless you have set TJFLAG_NOREALLOC, you should always check *jpegBuf upon return from this function, as it may have changed.
jpegSizepointer to an unsigned long variable that holds the size of the JPEG buffer. If *jpegBuf points to a pre-allocated buffer, then *jpegSize should be set to the size of the buffer. Upon return, *jpegSize will contain the size of the JPEG image (in bytes.) If *jpegBuf points to a JPEG buffer that is being reused from a previous call to one of the JPEG compression functions, then *jpegSize is ignored.
jpegSubsampthe level of chrominance subsampling to be used when generating the JPEG image (see Chrominance subsampling options.)
jpegQualthe image quality of the generated JPEG image (1 = worst, 100 = best)
flagsthe bitwise OR of one or more of the flags
Returns
0 if successful, or -1 if an error occurred (see tjGetErrorStr2() and tjGetErrorCode().)

◆ tjCompressFromYUV()

DLLEXPORT int tjCompressFromYUV ( tjhandle  handle,
const unsigned char *  srcBuf,
int  width,
int  align,
int  height,
int  subsamp,
unsigned char **  jpegBuf,
unsigned long *  jpegSize,
int  jpegQual,
int  flags 
)

Compress a unified planar YUV image into a JPEG image.

Parameters
handlea handle to a TurboJPEG compressor or transformer instance
srcBufpointer to a buffer containing a unified planar YUV source image to be compressed. The size of this buffer should match the value returned by tjBufSizeYUV2() for the given image width, height, row alignment, and level of chrominance subsampling. The Y, U (Cb), and V (Cr) image planes should be stored sequentially in the buffer. (Refer to YUV Image Format Notes.)
widthwidth (in pixels) of the source image. If the width is not an even multiple of the MCU block width (see tjMCUWidth), then an intermediate buffer copy will be performed.
alignrow alignment (in bytes) of the source image (must be a power of 2.) Setting this parameter to n indicates that each row in each plane of the source image is padded to the nearest multiple of n bytes (1 = unpadded.)
heightheight (in pixels) of the source image. If the height is not an even multiple of the MCU block height (see tjMCUHeight), then an intermediate buffer copy will be performed.
subsampthe level of chrominance subsampling used in the source image (see Chrominance subsampling options.)
jpegBufaddress of a pointer to a byte buffer that will receive the JPEG image. TurboJPEG has the ability to reallocate the JPEG buffer to accommodate the size of the JPEG image. Thus, you can choose to:
  1. pre-allocate the JPEG buffer with an arbitrary size using tjAlloc() and let TurboJPEG grow the buffer as needed,
  2. set *jpegBuf to NULL to tell TurboJPEG to allocate the buffer for you, or
  3. pre-allocate the buffer to a "worst case" size determined by calling tjBufSize(). This should ensure that the buffer never has to be re-allocated. (Setting TJFLAG_NOREALLOC guarantees that it won't be.)
If you choose option 1, then *jpegSize should be set to the size of your pre-allocated buffer. In any case, unless you have set TJFLAG_NOREALLOC, you should always check *jpegBuf upon return from this function, as it may have changed.
jpegSizepointer to an unsigned long variable that holds the size of the JPEG buffer. If *jpegBuf points to a pre-allocated buffer, then *jpegSize should be set to the size of the buffer. Upon return, *jpegSize will contain the size of the JPEG image (in bytes.) If *jpegBuf points to a JPEG buffer that is being reused from a previous call to one of the JPEG compression functions, then *jpegSize is ignored.
jpegQualthe image quality of the generated JPEG image (1 = worst, 100 = best)
flagsthe bitwise OR of one or more of the flags
Returns
0 if successful, or -1 if an error occurred (see tjGetErrorStr2() and tjGetErrorCode().)

◆ tjCompressFromYUVPlanes()

DLLEXPORT int tjCompressFromYUVPlanes ( tjhandle  handle,
const unsigned char **  srcPlanes,
int  width,
const int *  strides,
int  height,
int  subsamp,
unsigned char **  jpegBuf,
unsigned long *  jpegSize,
int  jpegQual,
int  flags 
)

Compress a set of Y, U (Cb), and V (Cr) image planes into a JPEG image.

Parameters
handlea handle to a TurboJPEG compressor or transformer instance
srcPlanesan array of pointers to Y, U (Cb), and V (Cr) image planes (or just a Y plane, if compressing a grayscale image) that contain a YUV source image to be compressed. These planes can be contiguous or non-contiguous in memory. The size of each plane should match the value returned by tjPlaneSizeYUV() for the given image width, height, strides, and level of chrominance subsampling. Refer to YUV Image Format Notes for more details.
widthwidth (in pixels) of the source image. If the width is not an even multiple of the MCU block width (see tjMCUWidth), then an intermediate buffer copy will be performed.
stridesan array of integers, each specifying the number of bytes per row in the corresponding plane of the YUV source image. Setting the stride for any plane to 0 is the same as setting it to the plane width (see YUV Image Format Notes.) If strides is NULL, then the strides for all planes will be set to their respective plane widths. You can adjust the strides in order to specify an arbitrary amount of row padding in each plane or to create a JPEG image from a subregion of a larger planar YUV image.
heightheight (in pixels) of the source image. If the height is not an even multiple of the MCU block height (see tjMCUHeight), then an intermediate buffer copy will be performed.
subsampthe level of chrominance subsampling used in the source image (see Chrominance subsampling options.)
jpegBufaddress of a pointer to a byte buffer that will receive the JPEG image. TurboJPEG has the ability to reallocate the JPEG buffer to accommodate the size of the JPEG image. Thus, you can choose to:
  1. pre-allocate the JPEG buffer with an arbitrary size using tjAlloc() and let TurboJPEG grow the buffer as needed,
  2. set *jpegBuf to NULL to tell TurboJPEG to allocate the buffer for you, or
  3. pre-allocate the buffer to a "worst case" size determined by calling tjBufSize(). This should ensure that the buffer never has to be re-allocated. (Setting TJFLAG_NOREALLOC guarantees that it won't be.)
If you choose option 1, then *jpegSize should be set to the size of your pre-allocated buffer. In any case, unless you have set TJFLAG_NOREALLOC, you should always check *jpegBuf upon return from this function, as it may have changed.
jpegSizepointer to an unsigned long variable that holds the size of the JPEG buffer. If *jpegBuf points to a pre-allocated buffer, then *jpegSize should be set to the size of the buffer. Upon return, *jpegSize will contain the size of the JPEG image (in bytes.) If *jpegBuf points to a JPEG buffer that is being reused from a previous call to one of the JPEG compression functions, then *jpegSize is ignored.
jpegQualthe image quality of the generated JPEG image (1 = worst, 100 = best)
flagsthe bitwise OR of one or more of the flags
Returns
0 if successful, or -1 if an error occurred (see tjGetErrorStr2() and tjGetErrorCode().)

◆ tjDecodeYUV()

DLLEXPORT int tjDecodeYUV ( tjhandle  handle,
const unsigned char *  srcBuf,
int  align,
int  subsamp,
unsigned char *  dstBuf,
int  width,
int  pitch,
int  height,
int  pixelFormat,
int  flags 
)

Decode a unified planar YUV image into a packed-pixel RGB or grayscale image.

This function performs color conversion (which is accelerated in the libjpeg-turbo implementation) but does not execute any of the other steps in the JPEG decompression process.

Parameters
handlea handle to a TurboJPEG decompressor or transformer instance
srcBufpointer to a buffer containing a unified planar YUV source image to be decoded. The size of this buffer should match the value returned by tjBufSizeYUV2() for the given image width, height, row alignment, and level of chrominance subsampling. The Y, U (Cb), and V (Cr) image planes should be stored sequentially in the source buffer. (Refer to YUV Image Format Notes.)
alignrow alignment (in bytes) of the YUV source image (must be a power of 2.) Setting this parameter to n indicates that each row in each plane of the YUV source image is padded to the nearest multiple of n bytes (1 = unpadded.)
subsampthe level of chrominance subsampling used in the YUV source image (see Chrominance subsampling options.)
dstBufpointer to a buffer that will receive the packed-pixel decoded image. This buffer should normally be pitch * height bytes in size, but the dstBuf pointer can also be used to decode into a specific region of a larger buffer.
widthwidth (in pixels) of the source and destination images
pitchbytes per row in the destination image. Normally this should be set to width * tjPixelSize[pixelFormat], if the destination image should be unpadded, or TJPAD(width * tjPixelSize[pixelFormat]) if each row of the destination image should be padded to the nearest multiple of 4 bytes, as is the case for Windows bitmaps. You can also be clever and use the pitch parameter to skip rows, etc. Setting this parameter to 0 is the equivalent of setting it to width * tjPixelSize[pixelFormat].
heightheight (in pixels) of the source and destination images
pixelFormatpixel format of the destination image (see Pixel formats.)
flagsthe bitwise OR of one or more of the flags
Returns
0 if successful, or -1 if an error occurred (see tjGetErrorStr2() and tjGetErrorCode().)

◆ tjDecodeYUVPlanes()

DLLEXPORT int tjDecodeYUVPlanes ( tjhandle  handle,
const unsigned char **  srcPlanes,
const int *  strides,
int  subsamp,
unsigned char *  dstBuf,
int  width,
int  pitch,
int  height,
int  pixelFormat,
int  flags 
)

Decode a set of Y, U (Cb), and V (Cr) image planes into a packed-pixel RGB or grayscale image.

This function performs color conversion (which is accelerated in the libjpeg-turbo implementation) but does not execute any of the other steps in the JPEG decompression process.

Parameters
handlea handle to a TurboJPEG decompressor or transformer instance
srcPlanesan array of pointers to Y, U (Cb), and V (Cr) image planes (or just a Y plane, if decoding a grayscale image) that contain a YUV image to be decoded. These planes can be contiguous or non-contiguous in memory. The size of each plane should match the value returned by tjPlaneSizeYUV() for the given image width, height, strides, and level of chrominance subsampling. Refer to YUV Image Format Notes for more details.
stridesan array of integers, each specifying the number of bytes per row in the corresponding plane of the YUV source image. Setting the stride for any plane to 0 is the same as setting it to the plane width (see YUV Image Format Notes.) If strides is NULL, then the strides for all planes will be set to their respective plane widths. You can adjust the strides in order to specify an arbitrary amount of row padding in each plane or to decode a subregion of a larger planar YUV image.
subsampthe level of chrominance subsampling used in the YUV source image (see Chrominance subsampling options.)
dstBufpointer to a buffer that will receive the packed-pixel decoded image. This buffer should normally be pitch * height bytes in size, but the dstBuf pointer can also be used to decode into a specific region of a larger buffer.
widthwidth (in pixels) of the source and destination images
pitchbytes per row in the destination image. Normally this should be set to width * tjPixelSize[pixelFormat], if the destination image should be unpadded, or TJPAD(width * tjPixelSize[pixelFormat]) if each row of the destination image should be padded to the nearest multiple of 4 bytes, as is the case for Windows bitmaps. You can also be clever and use the pitch parameter to skip rows, etc. Setting this parameter to 0 is the equivalent of setting it to width * tjPixelSize[pixelFormat].
heightheight (in pixels) of the source and destination images
pixelFormatpixel format of the destination image (see Pixel formats.)
flagsthe bitwise OR of one or more of the flags
Returns
0 if successful, or -1 if an error occurred (see tjGetErrorStr2() and tjGetErrorCode().)

◆ tjDecompress2()

DLLEXPORT int tjDecompress2 ( tjhandle  handle,
const unsigned char *  jpegBuf,
unsigned long  jpegSize,
unsigned char *  dstBuf,
int  width,
int  pitch,
int  height,
int  pixelFormat,
int  flags 
)

Decompress a JPEG image into a packed-pixel RGB, grayscale, or CMYK image.

Parameters
handlea handle to a TurboJPEG decompressor or transformer instance
jpegBufpointer to a byte buffer containing the JPEG image to decompress
jpegSizesize of the JPEG image (in bytes)
dstBufpointer to a buffer that will receive the packed-pixel decompressed image. This buffer should normally be pitch * scaledHeight bytes in size, where scaledHeight can be determined by calling TJSCALED() with the JPEG image height and one of the scaling factors returned by tjGetScalingFactors(). The dstBuf pointer may also be used to decompress into a specific region of a larger buffer.
widthdesired width (in pixels) of the destination image. If this is different than the width of the JPEG image being decompressed, then TurboJPEG will use scaling in the JPEG decompressor to generate the largest possible image that will fit within the desired width. If width is set to 0, then only the height will be considered when determining the scaled image size.
pitchbytes per row in the destination image. Normally this should be set to scaledWidth * tjPixelSize[pixelFormat], if the destination image should be unpadded, or TJPAD(scaledWidth * tjPixelSize[pixelFormat]) if each row of the destination image should be padded to the nearest multiple of 4 bytes, as is the case for Windows bitmaps. (NOTE: scaledWidth can be determined by calling TJSCALED() with the JPEG image width and one of the scaling factors returned by tjGetScalingFactors().) You can also be clever and use the pitch parameter to skip rows, etc. Setting this parameter to 0 is the equivalent of setting it to scaledWidth * tjPixelSize[pixelFormat].
heightdesired height (in pixels) of the destination image. If this is different than the height of the JPEG image being decompressed, then TurboJPEG will use scaling in the JPEG decompressor to generate the largest possible image that will fit within the desired height. If height is set to 0, then only the width will be considered when determining the scaled image size.
pixelFormatpixel format of the destination image (see Pixel formats.)
flagsthe bitwise OR of one or more of the flags
Returns
0 if successful, or -1 if an error occurred (see tjGetErrorStr2() and tjGetErrorCode().)

◆ tjDecompressHeader3()

DLLEXPORT int tjDecompressHeader3 ( tjhandle  handle,
const unsigned char *  jpegBuf,
unsigned long  jpegSize,
int *  width,
int *  height,
int *  jpegSubsamp,
int *  jpegColorspace 
)

Retrieve information about a JPEG image without decompressing it, or prime the decompressor with quantization and Huffman tables.

Parameters
handlea handle to a TurboJPEG decompressor or transformer instance
jpegBufpointer to a byte buffer containing a JPEG image or an "abbreviated table specification" (AKA "tables-only") datastream. Passing a tables-only datastream to this function primes the decompressor with quantization and Huffman tables that can be used when decompressing subsequent "abbreviated image" datastreams. This is useful, for instance, when decompressing video streams in which all frames share the same quantization and Huffman tables.
jpegSizesize of the JPEG image or tables-only datastream (in bytes)
widthpointer to an integer variable that will receive the width (in pixels) of the JPEG image. If jpegBuf points to a tables-only datastream, then width is ignored.
heightpointer to an integer variable that will receive the height (in pixels) of the JPEG image. If jpegBuf points to a tables-only datastream, then height is ignored.
jpegSubsamppointer to an integer variable that will receive the level of chrominance subsampling used when the JPEG image was compressed (see Chrominance subsampling options.) If jpegBuf points to a tables-only datastream, then jpegSubsamp is ignored.
jpegColorspacepointer to an integer variable that will receive one of the JPEG colorspace constants, indicating the colorspace of the JPEG image (see JPEG colorspaces.) If jpegBuf points to a tables-only datastream, then jpegColorspace is ignored.
Returns
0 if successful, or -1 if an error occurred (see tjGetErrorStr2() and tjGetErrorCode().)

◆ tjDecompressToYUV2()

DLLEXPORT int tjDecompressToYUV2 ( tjhandle  handle,
const unsigned char *  jpegBuf,
unsigned long  jpegSize,
unsigned char *  dstBuf,
int  width,
int  align,
int  height,
int  flags 
)

Decompress a JPEG image into a unified planar YUV image.

This function performs JPEG decompression but leaves out the color conversion step, so a planar YUV image is generated instead of a packed-pixel image.

Parameters
handlea handle to a TurboJPEG decompressor or transformer instance
jpegBufpointer to a byte buffer containing the JPEG image to decompress
jpegSizesize of the JPEG image (in bytes)
dstBufpointer to a buffer that will receive the unified planar YUV decompressed image. Use tjBufSizeYUV2() to determine the appropriate size for this buffer based on the scaled image width, scaled image height, row alignment, and level of chrominance subsampling. The Y, U (Cb), and V (Cr) image planes will be stored sequentially in the buffer. (Refer to YUV Image Format Notes.)
widthdesired width (in pixels) of the YUV image. If this is different than the width of the JPEG image being decompressed, then TurboJPEG will use scaling in the JPEG decompressor to generate the largest possible image that will fit within the desired width. If width is set to 0, then only the height will be considered when determining the scaled image size. If the scaled width is not an even multiple of the MCU block width (see tjMCUWidth), then an intermediate buffer copy will be performed.
alignrow alignment (in bytes) of the YUV image (must be a power of 2.) Setting this parameter to n will cause each row in each plane of the YUV image to be padded to the nearest multiple of n bytes (1 = unpadded.) To generate images suitable for X Video, align should be set to 4.
heightdesired height (in pixels) of the YUV image. If this is different than the height of the JPEG image being decompressed, then TurboJPEG will use scaling in the JPEG decompressor to generate the largest possible image that will fit within the desired height. If height is set to 0, then only the width will be considered when determining the scaled image size. If the scaled height is not an even multiple of the MCU block height (see tjMCUHeight), then an intermediate buffer copy will be performed.
flagsthe bitwise OR of one or more of the flags
Returns
0 if successful, or -1 if an error occurred (see tjGetErrorStr2() and tjGetErrorCode().)

◆ tjDecompressToYUVPlanes()

DLLEXPORT int tjDecompressToYUVPlanes ( tjhandle  handle,
const unsigned char *  jpegBuf,
unsigned long  jpegSize,
unsigned char **  dstPlanes,
int  width,
int *  strides,
int  height,
int  flags 
)

Decompress a JPEG image into separate Y, U (Cb), and V (Cr) image planes.

This function performs JPEG decompression but leaves out the color conversion step, so a planar YUV image is generated instead of a packed-pixel image.

Parameters
handlea handle to a TurboJPEG decompressor or transformer instance
jpegBufpointer to a byte buffer containing the JPEG image to decompress
jpegSizesize of the JPEG image (in bytes)
dstPlanesan array of pointers to Y, U (Cb), and V (Cr) image planes (or just a Y plane, if decompressing a grayscale image) that will receive the decompressed image. These planes can be contiguous or non-contiguous in memory. Use tjPlaneSizeYUV() to determine the appropriate size for each plane based on the scaled image width, scaled image height, strides, and level of chrominance subsampling. Refer to YUV Image Format Notes for more details.
widthdesired width (in pixels) of the YUV image. If this is different than the width of the JPEG image being decompressed, then TurboJPEG will use scaling in the JPEG decompressor to generate the largest possible image that will fit within the desired width. If width is set to 0, then only the height will be considered when determining the scaled image size. If the scaled width is not an even multiple of the MCU block width (see tjMCUWidth), then an intermediate buffer copy will be performed.
stridesan array of integers, each specifying the number of bytes per row in the corresponding plane of the YUV image. Setting the stride for any plane to 0 is the same as setting it to the scaled plane width (see YUV Image Format Notes.) If strides is NULL, then the strides for all planes will be set to their respective scaled plane widths. You can adjust the strides in order to add an arbitrary amount of row padding to each plane or to decompress the JPEG image into a subregion of a larger planar YUV image.
heightdesired height (in pixels) of the YUV image. If this is different than the height of the JPEG image being decompressed, then TurboJPEG will use scaling in the JPEG decompressor to generate the largest possible image that will fit within the desired height. If height is set to 0, then only the width will be considered when determining the scaled image size. If the scaled height is not an even multiple of the MCU block height (see tjMCUHeight), then an intermediate buffer copy will be performed.
flagsthe bitwise OR of one or more of the flags
Returns
0 if successful, or -1 if an error occurred (see tjGetErrorStr2() and tjGetErrorCode().)

◆ tjDestroy()

DLLEXPORT int tjDestroy ( tjhandle  handle)

Destroy a TurboJPEG compressor, decompressor, or transformer instance.

Parameters
handlea handle to a TurboJPEG compressor, decompressor or transformer instance
Returns
0 if successful, or -1 if an error occurred (see tjGetErrorStr2().)

◆ tjEncodeYUV3()

DLLEXPORT int tjEncodeYUV3 ( tjhandle  handle,
const unsigned char *  srcBuf,
int  width,
int  pitch,
int  height,
int  pixelFormat,
unsigned char *  dstBuf,
int  align,
int  subsamp,
int  flags 
)

Encode a packed-pixel RGB or grayscale image into a unified planar YUV image.

This function performs color conversion (which is accelerated in the libjpeg-turbo implementation) but does not execute any of the other steps in the JPEG compression process.

Parameters
handlea handle to a TurboJPEG compressor or transformer instance
srcBufpointer to a buffer containing a packed-pixel RGB or grayscale source image to be encoded
widthwidth (in pixels) of the source image
pitchbytes per row in the source image. Normally this should be width * tjPixelSize[pixelFormat], if the image is unpadded, or TJPAD(width * tjPixelSize[pixelFormat]) if each row of the image is padded to the nearest multiple of 4 bytes, as is the case for Windows bitmaps. You can also be clever and use this parameter to skip rows, etc. Setting this parameter to 0 is the equivalent of setting it to width * tjPixelSize[pixelFormat].
heightheight (in pixels) of the source image
pixelFormatpixel format of the source image (see Pixel formats.)
dstBufpointer to a buffer that will receive the unified planar YUV image. Use tjBufSizeYUV2() to determine the appropriate size for this buffer based on the image width, height, row alignment, and level of chrominance subsampling. The Y, U (Cb), and V (Cr) image planes will be stored sequentially in the buffer. (Refer to YUV Image Format Notes.)
alignrow alignment (in bytes) of the YUV image (must be a power of 2.) Setting this parameter to n will cause each row in each plane of the YUV image to be padded to the nearest multiple of n bytes (1 = unpadded.) To generate images suitable for X Video, align should be set to 4.
subsampthe level of chrominance subsampling to be used when generating the YUV image (see Chrominance subsampling options.) To generate images suitable for X Video, subsamp should be set to TJSAMP_420. This produces an image compatible with the I420 (AKA "YUV420P") format.
flagsthe bitwise OR of one or more of the flags
Returns
0 if successful, or -1 if an error occurred (see tjGetErrorStr2() and tjGetErrorCode().)

◆ tjEncodeYUVPlanes()

DLLEXPORT int tjEncodeYUVPlanes ( tjhandle  handle,
const unsigned char *  srcBuf,
int  width,
int  pitch,
int  height,
int  pixelFormat,
unsigned char **  dstPlanes,
int *  strides,
int  subsamp,
int  flags 
)

Encode a packed-pixel RGB or grayscale image into separate Y, U (Cb), and V (Cr) image planes.

This function performs color conversion (which is accelerated in the libjpeg-turbo implementation) but does not execute any of the other steps in the JPEG compression process.

Parameters
handlea handle to a TurboJPEG compressor or transformer instance
srcBufpointer to a buffer containing a packed-pixel RGB or grayscale source image to be encoded
widthwidth (in pixels) of the source image
pitchbytes per row in the source image. Normally this should be width * tjPixelSize[pixelFormat], if the image is unpadded, or TJPAD(width * tjPixelSize[pixelFormat]) if each row of the image is padded to the nearest multiple of 4 bytes, as is the case for Windows bitmaps. You can also be clever and use this parameter to skip rows, etc. Setting this parameter to 0 is the equivalent of setting it to width * tjPixelSize[pixelFormat].
heightheight (in pixels) of the source image
pixelFormatpixel format of the source image (see Pixel formats.)
dstPlanesan array of pointers to Y, U (Cb), and V (Cr) image planes (or just a Y plane, if generating a grayscale image) that will receive the encoded image. These planes can be contiguous or non-contiguous in memory. Use tjPlaneSizeYUV() to determine the appropriate size for each plane based on the image width, height, strides, and level of chrominance subsampling. Refer to YUV Image Format Notes for more details.
stridesan array of integers, each specifying the number of bytes per row in the corresponding plane of the YUV image. Setting the stride for any plane to 0 is the same as setting it to the plane width (see YUV Image Format Notes.) If strides is NULL, then the strides for all planes will be set to their respective plane widths. You can adjust the strides in order to add an arbitrary amount of row padding to each plane or to encode an RGB or grayscale image into a subregion of a larger planar YUV image.
subsampthe level of chrominance subsampling to be used when generating the YUV image (see Chrominance subsampling options.) To generate images suitable for X Video, subsamp should be set to TJSAMP_420. This produces an image compatible with the I420 (AKA "YUV420P") format.
flagsthe bitwise OR of one or more of the flags
Returns
0 if successful, or -1 if an error occurred (see tjGetErrorStr2() and tjGetErrorCode().)

◆ tjFree()

DLLEXPORT void tjFree ( unsigned char *  buffer)

Free a byte buffer previously allocated by TurboJPEG.

You should always use this function to free JPEG destination buffer(s) that were automatically (re)allocated by the compression and transform functions or that were manually allocated using tjAlloc().

Parameters
bufferaddress of the buffer to free. If the address is NULL, then this function has no effect.
See also
tjAlloc()

◆ tjGetErrorCode()

DLLEXPORT int tjGetErrorCode ( tjhandle  handle)

Returns a code indicating the severity of the last error.

See Error codes.

Parameters
handlea handle to a TurboJPEG compressor, decompressor or transformer instance
Returns
a code indicating the severity of the last error. See Error codes.

◆ tjGetErrorStr2()

DLLEXPORT char* tjGetErrorStr2 ( tjhandle  handle)

Returns a descriptive error message explaining why the last command failed.

Parameters
handlea handle to a TurboJPEG compressor, decompressor, or transformer instance, or NULL if the error was generated by a global function (but note that retrieving the error message for a global function is thread-safe only on platforms that support thread-local storage.)
Returns
a descriptive error message explaining why the last command failed.

◆ tjGetScalingFactors()

DLLEXPORT tjscalingfactor* tjGetScalingFactors ( int *  numScalingFactors)

Returns a list of fractional scaling factors that the JPEG decompressor supports.

Parameters
numScalingFactorspointer to an integer variable that will receive the number of elements in the list
Returns
a pointer to a list of fractional scaling factors, or NULL if an error is encountered (see tjGetErrorStr2().)

◆ tjInitCompress()

DLLEXPORT tjhandle tjInitCompress ( void  )

Create a TurboJPEG compressor instance.

Returns
a handle to the newly-created instance, or NULL if an error occurred (see tjGetErrorStr2().)

◆ tjInitDecompress()

DLLEXPORT tjhandle tjInitDecompress ( void  )

Create a TurboJPEG decompressor instance.

Returns
a handle to the newly-created instance, or NULL if an error occurred (see tjGetErrorStr2().)

◆ tjInitTransform()

DLLEXPORT tjhandle tjInitTransform ( void  )

Create a new TurboJPEG transformer instance.

Returns
a handle to the newly-created instance, or NULL if an error occurred (see tjGetErrorStr2().)

◆ tjLoadImage()

DLLEXPORT unsigned char* tjLoadImage ( const char *  filename,
int *  width,
int  align,
int *  height,
int *  pixelFormat,
int  flags 
)

Load a packed-pixel image from disk into memory.

Parameters
filenamename of a file containing a packed-pixel image in Windows BMP or PBMPLUS (PPM/PGM) format
widthpointer to an integer variable that will receive the width (in pixels) of the packed-pixel image
alignrow alignment of the packed-pixel buffer to be returned (must be a power of 2.) Setting this parameter to n will cause all rows in the buffer to be padded to the nearest multiple of n bytes (1 = unpadded.)
heightpointer to an integer variable that will receive the height (in pixels) of the packed-pixel image
pixelFormatpointer to an integer variable that specifies or will receive the pixel format of the packed-pixel buffer. The behavior of tjLoadImage() will vary depending on the value of *pixelFormat passed to the function:
  • TJPF_UNKNOWN : The packed-pixel buffer returned by this function will use the most optimal pixel format for the file type, and *pixelFormat will contain the ID of that pixel format upon successful return from this function.
  • TJPF_GRAY : Only PGM files and 8-bit-per-pixel BMP files with a grayscale colormap can be loaded.
  • TJPF_CMYK : The RGB or grayscale pixels stored in the file will be converted using a quick & dirty algorithm that is suitable only for testing purposes. (Proper conversion between CMYK and other formats requires a color management system.)
  • Other pixel formats : The packed-pixel buffer will use the specified pixel format, and pixel format conversion will be performed if necessary.
flagsthe bitwise OR of one or more of the flags.
Returns
a pointer to a newly-allocated buffer containing the packed-pixel image, converted to the chosen pixel format and with the chosen row alignment, or NULL if an error occurred (see tjGetErrorStr2().) This buffer should be freed using tjFree().

◆ tjPlaneHeight()

DLLEXPORT int tjPlaneHeight ( int  componentID,
int  height,
int  subsamp 
)

The plane height of a YUV image plane with the given parameters.

Refer to YUV Image Format Notes for a description of plane height.

Parameters
componentIDID number of the image plane (0 = Y, 1 = U/Cb, 2 = V/Cr)
heightheight (in pixels) of the YUV image
subsamplevel of chrominance subsampling in the image (see Chrominance subsampling options.)
Returns
the plane height of a YUV image plane with the given parameters, or -1 if the arguments are out of bounds.

◆ tjPlaneSizeYUV()

DLLEXPORT unsigned long tjPlaneSizeYUV ( int  componentID,
int  width,
int  stride,
int  height,
int  subsamp 
)

The size of the buffer (in bytes) required to hold a YUV image plane with the given parameters.

Parameters
componentIDID number of the image plane (0 = Y, 1 = U/Cb, 2 = V/Cr)
widthwidth (in pixels) of the YUV image. NOTE: this is the width of the whole image, not the plane width.
stridebytes per row in the image plane. Setting this to 0 is the equivalent of setting it to the plane width.
heightheight (in pixels) of the YUV image. NOTE: this is the height of the whole image, not the plane height.
subsamplevel of chrominance subsampling in the image (see Chrominance subsampling options.)
Returns
the size of the buffer (in bytes) required to hold the YUV image plane, or -1 if the arguments are out of bounds.

◆ tjPlaneWidth()

DLLEXPORT int tjPlaneWidth ( int  componentID,
int  width,
int  subsamp 
)

The plane width of a YUV image plane with the given parameters.

Refer to YUV Image Format Notes for a description of plane width.

Parameters
componentIDID number of the image plane (0 = Y, 1 = U/Cb, 2 = V/Cr)
widthwidth (in pixels) of the YUV image
subsamplevel of chrominance subsampling in the image (see Chrominance subsampling options.)
Returns
the plane width of a YUV image plane with the given parameters, or -1 if the arguments are out of bounds.

◆ tjSaveImage()

DLLEXPORT int tjSaveImage ( const char *  filename,
unsigned char *  buffer,
int  width,
int  pitch,
int  height,
int  pixelFormat,
int  flags 
)

Save a packed-pixel image from memory to disk.

Parameters
filenamename of a file to which to save the packed-pixel image. The image will be stored in Windows BMP or PBMPLUS (PPM/PGM) format, depending on the file extension.
bufferpointer to a buffer containing a packed-pixel RGB, grayscale, or CMYK image to be saved
widthwidth (in pixels) of the packed-pixel image
pitchbytes per row in the packed-pixel image. Setting this parameter to 0 is the equivalent of setting it to width * tjPixelSize[pixelFormat].
heightheight (in pixels) of the packed-pixel image
pixelFormatpixel format of the packed-pixel image (see Pixel formats.) If this parameter is set to TJPF_GRAY, then the image will be stored in PGM or 8-bit-per-pixel (indexed color) BMP format. Otherwise, the image will be stored in PPM or 24-bit-per-pixel BMP format. If this parameter is set to TJPF_CMYK, then the CMYK pixels will be converted to RGB using a quick & dirty algorithm that is suitable only for testing purposes. (Proper conversion between CMYK and other formats requires a color management system.)
flagsthe bitwise OR of one or more of the flags.
Returns
0 if successful, or -1 if an error occurred (see tjGetErrorStr2().)

◆ tjTransform()

DLLEXPORT int tjTransform ( tjhandle  handle,
const unsigned char *  jpegBuf,
unsigned long  jpegSize,
int  n,
unsigned char **  dstBufs,
unsigned long *  dstSizes,
tjtransform transforms,
int  flags 
)

Losslessly transform a JPEG image into another JPEG image.

Lossless transforms work by moving the raw DCT coefficients from one JPEG image structure to another without altering the values of the coefficients. While this is typically faster than decompressing the image, transforming it, and re-compressing it, lossless transforms are not free. Each lossless transform requires reading and performing Huffman decoding on all of the coefficients in the source image, regardless of the size of the destination image. Thus, this function provides a means of generating multiple transformed images from the same source or applying multiple transformations simultaneously, in order to eliminate the need to read the source coefficients multiple times.

Parameters
handlea handle to a TurboJPEG transformer instance
jpegBufpointer to a byte buffer containing the JPEG source image to transform
jpegSizesize of the JPEG source image (in bytes)
nthe number of transformed JPEG images to generate
dstBufspointer to an array of n byte buffers. dstBufs[i] will receive a JPEG image that has been transformed using the parameters in transforms[i]. TurboJPEG has the ability to reallocate the JPEG destination buffer to accommodate the size of the transformed JPEG image. Thus, you can choose to:
  1. pre-allocate the JPEG destination buffer with an arbitrary size using tjAlloc() and let TurboJPEG grow the buffer as needed,
  2. set dstBufs[i] to NULL to tell TurboJPEG to allocate the buffer for you, or
  3. pre-allocate the buffer to a "worst case" size determined by calling tjBufSize() with the transformed or cropped width and height. Under normal circumstances, this should ensure that the buffer never has to be re-allocated. (Setting TJFLAG_NOREALLOC guarantees that it won't be.) Note, however, that there are some rare cases (such as transforming images with a large amount of embedded EXIF or ICC profile data) in which the transformed JPEG image will be larger than the worst-case size, and TJFLAG_NOREALLOC cannot be used in those cases.
If you choose option 1, then dstSizes[i] should be set to the size of your pre-allocated buffer. In any case, unless you have set TJFLAG_NOREALLOC, you should always check dstBufs[i] upon return from this function, as it may have changed.
dstSizespointer to an array of n unsigned long variables that will receive the actual sizes (in bytes) of each transformed JPEG image. If dstBufs[i] points to a pre-allocated buffer, then dstSizes[i] should be set to the size of the buffer. Upon return, dstSizes[i] will contain the size of the transformed JPEG image (in bytes.)
transformspointer to an array of n tjtransform structures, each of which specifies the transform parameters and/or cropping region for the corresponding transformed JPEG image.
flagsthe bitwise OR of one or more of the flags
Returns
0 if successful, or -1 if an error occurred (see tjGetErrorStr2() and tjGetErrorCode().)

Variable Documentation

◆ tjAlphaOffset

const int tjAlphaOffset[TJ_NUMPF]
static

Alpha offset (in bytes) for a given pixel format.

This specifies the number of bytes that the alpha component is offset from the start of the pixel. For instance, if a pixel of format TJPF_BGRA is stored in unsigned char pixel[], then the alpha component will be pixel[tjAlphaOffset[TJPF_BGRA]]. This will be -1 if the pixel format does not have an alpha component.

◆ tjBlueOffset

const int tjBlueOffset[TJ_NUMPF]
static

Blue offset (in bytes) for a given pixel format.

This specifies the number of bytes that the blue component is offset from the start of the pixel. For instance, if a pixel of format TJPF_BGRX is stored in unsigned char pixel[], then the blue component will be pixel[tjBlueOffset[TJPF_BGRX]]. This will be -1 if the pixel format does not have a blue component.

◆ tjGreenOffset

const int tjGreenOffset[TJ_NUMPF]
static

Green offset (in bytes) for a given pixel format.

This specifies the number of bytes that the green component is offset from the start of the pixel. For instance, if a pixel of format TJPF_BGRX is stored in unsigned char pixel[], then the green component will be pixel[tjGreenOffset[TJPF_BGRX]]. This will be -1 if the pixel format does not have a green component.

◆ tjMCUHeight

const int tjMCUHeight[TJ_NUMSAMP]
static

MCU block height (in pixels) for a given level of chrominance subsampling.

MCU block sizes:

  • 8x8 for no subsampling or grayscale
  • 16x8 for 4:2:2
  • 8x16 for 4:4:0
  • 16x16 for 4:2:0
  • 32x8 for 4:1:1

◆ tjMCUWidth

const int tjMCUWidth[TJ_NUMSAMP]
static

MCU block width (in pixels) for a given level of chrominance subsampling.

MCU block sizes:

  • 8x8 for no subsampling or grayscale
  • 16x8 for 4:2:2
  • 8x16 for 4:4:0
  • 16x16 for 4:2:0
  • 32x8 for 4:1:1

◆ tjPixelSize

const int tjPixelSize[TJ_NUMPF]
static

Pixel size (in bytes) for a given pixel format.

◆ tjRedOffset

const int tjRedOffset[TJ_NUMPF]
static

Red offset (in bytes) for a given pixel format.

This specifies the number of bytes that the red component is offset from the start of the pixel. For instance, if a pixel of format TJPF_BGRX is stored in unsigned char pixel[], then the red component will be pixel[tjRedOffset[TJPF_BGRX]]. This will be -1 if the pixel format does not have a red component.

libjpeg-turbo-2.1.5/doc/html/index.html000066400000000000000000000056251436506551100200100ustar00rootroot00000000000000 TurboJPEG: Main Page
TurboJPEG  2.1.4
TurboJPEG Documentation
libjpeg-turbo-2.1.5/doc/html/jquery.js000066400000000000000000005265411436506551100176750ustar00rootroot00000000000000/*! jQuery v3.4.1 | (c) JS Foundation and other contributors | jquery.org/license */ !function(e,t){"use strict";"object"==typeof module&&"object"==typeof module.exports?module.exports=e.document?t(e,!0):function(e){if(!e.document)throw new Error("jQuery requires a window with a document");return t(e)}:t(e)}("undefined"!=typeof window?window:this,function(C,e){"use strict";var t=[],E=C.document,r=Object.getPrototypeOf,s=t.slice,g=t.concat,u=t.push,i=t.indexOf,n={},o=n.toString,v=n.hasOwnProperty,a=v.toString,l=a.call(Object),y={},m=function(e){return"function"==typeof e&&"number"!=typeof e.nodeType},x=function(e){return null!=e&&e===e.window},c={type:!0,src:!0,nonce:!0,noModule:!0};function b(e,t,n){var r,i,o=(n=n||E).createElement("script");if(o.text=e,t)for(r in c)(i=t[r]||t.getAttribute&&t.getAttribute(r))&&o.setAttribute(r,i);n.head.appendChild(o).parentNode.removeChild(o)}function w(e){return null==e?e+"":"object"==typeof e||"function"==typeof e?n[o.call(e)]||"object":typeof e}var f="3.4.1",k=function(e,t){return new k.fn.init(e,t)},p=/^[\s\uFEFF\xA0]+|[\s\uFEFF\xA0]+$/g;function d(e){var t=!!e&&"length"in e&&e.length,n=w(e);return!m(e)&&!x(e)&&("array"===n||0===t||"number"==typeof t&&0+~]|"+M+")"+M+"*"),U=new RegExp(M+"|>"),X=new RegExp($),V=new RegExp("^"+I+"$"),G={ID:new RegExp("^#("+I+")"),CLASS:new RegExp("^\\.("+I+")"),TAG:new RegExp("^("+I+"|[*])"),ATTR:new RegExp("^"+W),PSEUDO:new RegExp("^"+$),CHILD:new RegExp("^:(only|first|last|nth|nth-last)-(child|of-type)(?:\\("+M+"*(even|odd|(([+-]|)(\\d*)n|)"+M+"*(?:([+-]|)"+M+"*(\\d+)|))"+M+"*\\)|)","i"),bool:new RegExp("^(?:"+R+")$","i"),needsContext:new RegExp("^"+M+"*[>+~]|:(even|odd|eq|gt|lt|nth|first|last)(?:\\("+M+"*((?:-\\d)?\\d*)"+M+"*\\)|)(?=[^-]|$)","i")},Y=/HTML$/i,Q=/^(?:input|select|textarea|button)$/i,J=/^h\d$/i,K=/^[^{]+\{\s*\[native \w/,Z=/^(?:#([\w-]+)|(\w+)|\.([\w-]+))$/,ee=/[+~]/,te=new RegExp("\\\\([\\da-f]{1,6}"+M+"?|("+M+")|.)","ig"),ne=function(e,t,n){var r="0x"+t-65536;return r!=r||n?t:r<0?String.fromCharCode(r+65536):String.fromCharCode(r>>10|55296,1023&r|56320)},re=/([\0-\x1f\x7f]|^-?\d)|^-$|[^\0-\x1f\x7f-\uFFFF\w-]/g,ie=function(e,t){return t?"\0"===e?"\ufffd":e.slice(0,-1)+"\\"+e.charCodeAt(e.length-1).toString(16)+" ":"\\"+e},oe=function(){T()},ae=be(function(e){return!0===e.disabled&&"fieldset"===e.nodeName.toLowerCase()},{dir:"parentNode",next:"legend"});try{H.apply(t=O.call(m.childNodes),m.childNodes),t[m.childNodes.length].nodeType}catch(e){H={apply:t.length?function(e,t){L.apply(e,O.call(t))}:function(e,t){var n=e.length,r=0;while(e[n++]=t[r++]);e.length=n-1}}}function se(t,e,n,r){var i,o,a,s,u,l,c,f=e&&e.ownerDocument,p=e?e.nodeType:9;if(n=n||[],"string"!=typeof t||!t||1!==p&&9!==p&&11!==p)return n;if(!r&&((e?e.ownerDocument||e:m)!==C&&T(e),e=e||C,E)){if(11!==p&&(u=Z.exec(t)))if(i=u[1]){if(9===p){if(!(a=e.getElementById(i)))return n;if(a.id===i)return n.push(a),n}else if(f&&(a=f.getElementById(i))&&y(e,a)&&a.id===i)return n.push(a),n}else{if(u[2])return H.apply(n,e.getElementsByTagName(t)),n;if((i=u[3])&&d.getElementsByClassName&&e.getElementsByClassName)return H.apply(n,e.getElementsByClassName(i)),n}if(d.qsa&&!A[t+" "]&&(!v||!v.test(t))&&(1!==p||"object"!==e.nodeName.toLowerCase())){if(c=t,f=e,1===p&&U.test(t)){(s=e.getAttribute("id"))?s=s.replace(re,ie):e.setAttribute("id",s=k),o=(l=h(t)).length;while(o--)l[o]="#"+s+" "+xe(l[o]);c=l.join(","),f=ee.test(t)&&ye(e.parentNode)||e}try{return H.apply(n,f.querySelectorAll(c)),n}catch(e){A(t,!0)}finally{s===k&&e.removeAttribute("id")}}}return g(t.replace(B,"$1"),e,n,r)}function ue(){var r=[];return function e(t,n){return r.push(t+" ")>b.cacheLength&&delete e[r.shift()],e[t+" "]=n}}function le(e){return e[k]=!0,e}function ce(e){var t=C.createElement("fieldset");try{return!!e(t)}catch(e){return!1}finally{t.parentNode&&t.parentNode.removeChild(t),t=null}}function fe(e,t){var n=e.split("|"),r=n.length;while(r--)b.attrHandle[n[r]]=t}function pe(e,t){var n=t&&e,r=n&&1===e.nodeType&&1===t.nodeType&&e.sourceIndex-t.sourceIndex;if(r)return r;if(n)while(n=n.nextSibling)if(n===t)return-1;return e?1:-1}function de(t){return function(e){return"input"===e.nodeName.toLowerCase()&&e.type===t}}function he(n){return function(e){var t=e.nodeName.toLowerCase();return("input"===t||"button"===t)&&e.type===n}}function ge(t){return function(e){return"form"in e?e.parentNode&&!1===e.disabled?"label"in e?"label"in e.parentNode?e.parentNode.disabled===t:e.disabled===t:e.isDisabled===t||e.isDisabled!==!t&&ae(e)===t:e.disabled===t:"label"in e&&e.disabled===t}}function ve(a){return le(function(o){return o=+o,le(function(e,t){var n,r=a([],e.length,o),i=r.length;while(i--)e[n=r[i]]&&(e[n]=!(t[n]=e[n]))})})}function ye(e){return e&&"undefined"!=typeof e.getElementsByTagName&&e}for(e in d=se.support={},i=se.isXML=function(e){var t=e.namespaceURI,n=(e.ownerDocument||e).documentElement;return!Y.test(t||n&&n.nodeName||"HTML")},T=se.setDocument=function(e){var t,n,r=e?e.ownerDocument||e:m;return r!==C&&9===r.nodeType&&r.documentElement&&(a=(C=r).documentElement,E=!i(C),m!==C&&(n=C.defaultView)&&n.top!==n&&(n.addEventListener?n.addEventListener("unload",oe,!1):n.attachEvent&&n.attachEvent("onunload",oe)),d.attributes=ce(function(e){return e.className="i",!e.getAttribute("className")}),d.getElementsByTagName=ce(function(e){return e.appendChild(C.createComment("")),!e.getElementsByTagName("*").length}),d.getElementsByClassName=K.test(C.getElementsByClassName),d.getById=ce(function(e){return a.appendChild(e).id=k,!C.getElementsByName||!C.getElementsByName(k).length}),d.getById?(b.filter.ID=function(e){var t=e.replace(te,ne);return function(e){return e.getAttribute("id")===t}},b.find.ID=function(e,t){if("undefined"!=typeof t.getElementById&&E){var n=t.getElementById(e);return n?[n]:[]}}):(b.filter.ID=function(e){var n=e.replace(te,ne);return function(e){var t="undefined"!=typeof e.getAttributeNode&&e.getAttributeNode("id");return t&&t.value===n}},b.find.ID=function(e,t){if("undefined"!=typeof t.getElementById&&E){var n,r,i,o=t.getElementById(e);if(o){if((n=o.getAttributeNode("id"))&&n.value===e)return[o];i=t.getElementsByName(e),r=0;while(o=i[r++])if((n=o.getAttributeNode("id"))&&n.value===e)return[o]}return[]}}),b.find.TAG=d.getElementsByTagName?function(e,t){return"undefined"!=typeof t.getElementsByTagName?t.getElementsByTagName(e):d.qsa?t.querySelectorAll(e):void 0}:function(e,t){var n,r=[],i=0,o=t.getElementsByTagName(e);if("*"===e){while(n=o[i++])1===n.nodeType&&r.push(n);return r}return o},b.find.CLASS=d.getElementsByClassName&&function(e,t){if("undefined"!=typeof t.getElementsByClassName&&E)return t.getElementsByClassName(e)},s=[],v=[],(d.qsa=K.test(C.querySelectorAll))&&(ce(function(e){a.appendChild(e).innerHTML="",e.querySelectorAll("[msallowcapture^='']").length&&v.push("[*^$]="+M+"*(?:''|\"\")"),e.querySelectorAll("[selected]").length||v.push("\\["+M+"*(?:value|"+R+")"),e.querySelectorAll("[id~="+k+"-]").length||v.push("~="),e.querySelectorAll(":checked").length||v.push(":checked"),e.querySelectorAll("a#"+k+"+*").length||v.push(".#.+[+~]")}),ce(function(e){e.innerHTML="";var t=C.createElement("input");t.setAttribute("type","hidden"),e.appendChild(t).setAttribute("name","D"),e.querySelectorAll("[name=d]").length&&v.push("name"+M+"*[*^$|!~]?="),2!==e.querySelectorAll(":enabled").length&&v.push(":enabled",":disabled"),a.appendChild(e).disabled=!0,2!==e.querySelectorAll(":disabled").length&&v.push(":enabled",":disabled"),e.querySelectorAll("*,:x"),v.push(",.*:")})),(d.matchesSelector=K.test(c=a.matches||a.webkitMatchesSelector||a.mozMatchesSelector||a.oMatchesSelector||a.msMatchesSelector))&&ce(function(e){d.disconnectedMatch=c.call(e,"*"),c.call(e,"[s!='']:x"),s.push("!=",$)}),v=v.length&&new RegExp(v.join("|")),s=s.length&&new RegExp(s.join("|")),t=K.test(a.compareDocumentPosition),y=t||K.test(a.contains)?function(e,t){var n=9===e.nodeType?e.documentElement:e,r=t&&t.parentNode;return e===r||!(!r||1!==r.nodeType||!(n.contains?n.contains(r):e.compareDocumentPosition&&16&e.compareDocumentPosition(r)))}:function(e,t){if(t)while(t=t.parentNode)if(t===e)return!0;return!1},D=t?function(e,t){if(e===t)return l=!0,0;var n=!e.compareDocumentPosition-!t.compareDocumentPosition;return n||(1&(n=(e.ownerDocument||e)===(t.ownerDocument||t)?e.compareDocumentPosition(t):1)||!d.sortDetached&&t.compareDocumentPosition(e)===n?e===C||e.ownerDocument===m&&y(m,e)?-1:t===C||t.ownerDocument===m&&y(m,t)?1:u?P(u,e)-P(u,t):0:4&n?-1:1)}:function(e,t){if(e===t)return l=!0,0;var n,r=0,i=e.parentNode,o=t.parentNode,a=[e],s=[t];if(!i||!o)return e===C?-1:t===C?1:i?-1:o?1:u?P(u,e)-P(u,t):0;if(i===o)return pe(e,t);n=e;while(n=n.parentNode)a.unshift(n);n=t;while(n=n.parentNode)s.unshift(n);while(a[r]===s[r])r++;return r?pe(a[r],s[r]):a[r]===m?-1:s[r]===m?1:0}),C},se.matches=function(e,t){return se(e,null,null,t)},se.matchesSelector=function(e,t){if((e.ownerDocument||e)!==C&&T(e),d.matchesSelector&&E&&!A[t+" "]&&(!s||!s.test(t))&&(!v||!v.test(t)))try{var n=c.call(e,t);if(n||d.disconnectedMatch||e.document&&11!==e.document.nodeType)return n}catch(e){A(t,!0)}return 0":{dir:"parentNode",first:!0}," ":{dir:"parentNode"},"+":{dir:"previousSibling",first:!0},"~":{dir:"previousSibling"}},preFilter:{ATTR:function(e){return e[1]=e[1].replace(te,ne),e[3]=(e[3]||e[4]||e[5]||"").replace(te,ne),"~="===e[2]&&(e[3]=" "+e[3]+" "),e.slice(0,4)},CHILD:function(e){return e[1]=e[1].toLowerCase(),"nth"===e[1].slice(0,3)?(e[3]||se.error(e[0]),e[4]=+(e[4]?e[5]+(e[6]||1):2*("even"===e[3]||"odd"===e[3])),e[5]=+(e[7]+e[8]||"odd"===e[3])):e[3]&&se.error(e[0]),e},PSEUDO:function(e){var t,n=!e[6]&&e[2];return G.CHILD.test(e[0])?null:(e[3]?e[2]=e[4]||e[5]||"":n&&X.test(n)&&(t=h(n,!0))&&(t=n.indexOf(")",n.length-t)-n.length)&&(e[0]=e[0].slice(0,t),e[2]=n.slice(0,t)),e.slice(0,3))}},filter:{TAG:function(e){var t=e.replace(te,ne).toLowerCase();return"*"===e?function(){return!0}:function(e){return e.nodeName&&e.nodeName.toLowerCase()===t}},CLASS:function(e){var t=p[e+" "];return t||(t=new RegExp("(^|"+M+")"+e+"("+M+"|$)"))&&p(e,function(e){return t.test("string"==typeof e.className&&e.className||"undefined"!=typeof e.getAttribute&&e.getAttribute("class")||"")})},ATTR:function(n,r,i){return function(e){var t=se.attr(e,n);return null==t?"!="===r:!r||(t+="","="===r?t===i:"!="===r?t!==i:"^="===r?i&&0===t.indexOf(i):"*="===r?i&&-1:\x20\t\r\n\f]*)[\x20\t\r\n\f]*\/?>(?:<\/\1>|)$/i;function j(e,n,r){return m(n)?k.grep(e,function(e,t){return!!n.call(e,t,e)!==r}):n.nodeType?k.grep(e,function(e){return e===n!==r}):"string"!=typeof n?k.grep(e,function(e){return-1)[^>]*|#([\w-]+))$/;(k.fn.init=function(e,t,n){var r,i;if(!e)return this;if(n=n||q,"string"==typeof e){if(!(r="<"===e[0]&&">"===e[e.length-1]&&3<=e.length?[null,e,null]:L.exec(e))||!r[1]&&t)return!t||t.jquery?(t||n).find(e):this.constructor(t).find(e);if(r[1]){if(t=t instanceof k?t[0]:t,k.merge(this,k.parseHTML(r[1],t&&t.nodeType?t.ownerDocument||t:E,!0)),D.test(r[1])&&k.isPlainObject(t))for(r in t)m(this[r])?this[r](t[r]):this.attr(r,t[r]);return this}return(i=E.getElementById(r[2]))&&(this[0]=i,this.length=1),this}return e.nodeType?(this[0]=e,this.length=1,this):m(e)?void 0!==n.ready?n.ready(e):e(k):k.makeArray(e,this)}).prototype=k.fn,q=k(E);var H=/^(?:parents|prev(?:Until|All))/,O={children:!0,contents:!0,next:!0,prev:!0};function P(e,t){while((e=e[t])&&1!==e.nodeType);return e}k.fn.extend({has:function(e){var t=k(e,this),n=t.length;return this.filter(function(){for(var e=0;e\x20\t\r\n\f]*)/i,he=/^$|^module$|\/(?:java|ecma)script/i,ge={option:[1,""],thead:[1,"","
"],col:[2,"","
"],tr:[2,"","
"],td:[3,"","
"],_default:[0,"",""]};function ve(e,t){var n;return n="undefined"!=typeof e.getElementsByTagName?e.getElementsByTagName(t||"*"):"undefined"!=typeof e.querySelectorAll?e.querySelectorAll(t||"*"):[],void 0===t||t&&A(e,t)?k.merge([e],n):n}function ye(e,t){for(var n=0,r=e.length;nx",y.noCloneChecked=!!me.cloneNode(!0).lastChild.defaultValue;var Te=/^key/,Ce=/^(?:mouse|pointer|contextmenu|drag|drop)|click/,Ee=/^([^.]*)(?:\.(.+)|)/;function ke(){return!0}function Se(){return!1}function Ne(e,t){return e===function(){try{return E.activeElement}catch(e){}}()==("focus"===t)}function Ae(e,t,n,r,i,o){var a,s;if("object"==typeof t){for(s in"string"!=typeof n&&(r=r||n,n=void 0),t)Ae(e,s,n,r,t[s],o);return e}if(null==r&&null==i?(i=n,r=n=void 0):null==i&&("string"==typeof n?(i=r,r=void 0):(i=r,r=n,n=void 0)),!1===i)i=Se;else if(!i)return e;return 1===o&&(a=i,(i=function(e){return k().off(e),a.apply(this,arguments)}).guid=a.guid||(a.guid=k.guid++)),e.each(function(){k.event.add(this,t,i,r,n)})}function De(e,i,o){o?(Q.set(e,i,!1),k.event.add(e,i,{namespace:!1,handler:function(e){var t,n,r=Q.get(this,i);if(1&e.isTrigger&&this[i]){if(r.length)(k.event.special[i]||{}).delegateType&&e.stopPropagation();else if(r=s.call(arguments),Q.set(this,i,r),t=o(this,i),this[i](),r!==(n=Q.get(this,i))||t?Q.set(this,i,!1):n={},r!==n)return e.stopImmediatePropagation(),e.preventDefault(),n.value}else r.length&&(Q.set(this,i,{value:k.event.trigger(k.extend(r[0],k.Event.prototype),r.slice(1),this)}),e.stopImmediatePropagation())}})):void 0===Q.get(e,i)&&k.event.add(e,i,ke)}k.event={global:{},add:function(t,e,n,r,i){var o,a,s,u,l,c,f,p,d,h,g,v=Q.get(t);if(v){n.handler&&(n=(o=n).handler,i=o.selector),i&&k.find.matchesSelector(ie,i),n.guid||(n.guid=k.guid++),(u=v.events)||(u=v.events={}),(a=v.handle)||(a=v.handle=function(e){return"undefined"!=typeof k&&k.event.triggered!==e.type?k.event.dispatch.apply(t,arguments):void 0}),l=(e=(e||"").match(R)||[""]).length;while(l--)d=g=(s=Ee.exec(e[l])||[])[1],h=(s[2]||"").split(".").sort(),d&&(f=k.event.special[d]||{},d=(i?f.delegateType:f.bindType)||d,f=k.event.special[d]||{},c=k.extend({type:d,origType:g,data:r,handler:n,guid:n.guid,selector:i,needsContext:i&&k.expr.match.needsContext.test(i),namespace:h.join(".")},o),(p=u[d])||((p=u[d]=[]).delegateCount=0,f.setup&&!1!==f.setup.call(t,r,h,a)||t.addEventListener&&t.addEventListener(d,a)),f.add&&(f.add.call(t,c),c.handler.guid||(c.handler.guid=n.guid)),i?p.splice(p.delegateCount++,0,c):p.push(c),k.event.global[d]=!0)}},remove:function(e,t,n,r,i){var o,a,s,u,l,c,f,p,d,h,g,v=Q.hasData(e)&&Q.get(e);if(v&&(u=v.events)){l=(t=(t||"").match(R)||[""]).length;while(l--)if(d=g=(s=Ee.exec(t[l])||[])[1],h=(s[2]||"").split(".").sort(),d){f=k.event.special[d]||{},p=u[d=(r?f.delegateType:f.bindType)||d]||[],s=s[2]&&new RegExp("(^|\\.)"+h.join("\\.(?:.*\\.|)")+"(\\.|$)"),a=o=p.length;while(o--)c=p[o],!i&&g!==c.origType||n&&n.guid!==c.guid||s&&!s.test(c.namespace)||r&&r!==c.selector&&("**"!==r||!c.selector)||(p.splice(o,1),c.selector&&p.delegateCount--,f.remove&&f.remove.call(e,c));a&&!p.length&&(f.teardown&&!1!==f.teardown.call(e,h,v.handle)||k.removeEvent(e,d,v.handle),delete u[d])}else for(d in u)k.event.remove(e,d+t[l],n,r,!0);k.isEmptyObject(u)&&Q.remove(e,"handle events")}},dispatch:function(e){var t,n,r,i,o,a,s=k.event.fix(e),u=new Array(arguments.length),l=(Q.get(this,"events")||{})[s.type]||[],c=k.event.special[s.type]||{};for(u[0]=s,t=1;t\x20\t\r\n\f]*)[^>]*)\/>/gi,qe=/\s*$/g;function Oe(e,t){return A(e,"table")&&A(11!==t.nodeType?t:t.firstChild,"tr")&&k(e).children("tbody")[0]||e}function Pe(e){return e.type=(null!==e.getAttribute("type"))+"/"+e.type,e}function Re(e){return"true/"===(e.type||"").slice(0,5)?e.type=e.type.slice(5):e.removeAttribute("type"),e}function Me(e,t){var n,r,i,o,a,s,u,l;if(1===t.nodeType){if(Q.hasData(e)&&(o=Q.access(e),a=Q.set(t,o),l=o.events))for(i in delete a.handle,a.events={},l)for(n=0,r=l[i].length;n")},clone:function(e,t,n){var r,i,o,a,s,u,l,c=e.cloneNode(!0),f=oe(e);if(!(y.noCloneChecked||1!==e.nodeType&&11!==e.nodeType||k.isXMLDoc(e)))for(a=ve(c),r=0,i=(o=ve(e)).length;r").attr(n.scriptAttrs||{}).prop({charset:n.scriptCharset,src:n.url}).on("load error",i=function(e){r.remove(),i=null,e&&t("error"===e.type?404:200,e.type)}),E.head.appendChild(r[0])},abort:function(){i&&i()}}});var Vt,Gt=[],Yt=/(=)\?(?=&|$)|\?\?/;k.ajaxSetup({jsonp:"callback",jsonpCallback:function(){var e=Gt.pop()||k.expando+"_"+kt++;return this[e]=!0,e}}),k.ajaxPrefilter("json jsonp",function(e,t,n){var r,i,o,a=!1!==e.jsonp&&(Yt.test(e.url)?"url":"string"==typeof e.data&&0===(e.contentType||"").indexOf("application/x-www-form-urlencoded")&&Yt.test(e.data)&&"data");if(a||"jsonp"===e.dataTypes[0])return r=e.jsonpCallback=m(e.jsonpCallback)?e.jsonpCallback():e.jsonpCallback,a?e[a]=e[a].replace(Yt,"$1"+r):!1!==e.jsonp&&(e.url+=(St.test(e.url)?"&":"?")+e.jsonp+"="+r),e.converters["script json"]=function(){return o||k.error(r+" was not called"),o[0]},e.dataTypes[0]="json",i=C[r],C[r]=function(){o=arguments},n.always(function(){void 0===i?k(C).removeProp(r):C[r]=i,e[r]&&(e.jsonpCallback=t.jsonpCallback,Gt.push(r)),o&&m(i)&&i(o[0]),o=i=void 0}),"script"}),y.createHTMLDocument=((Vt=E.implementation.createHTMLDocument("").body).innerHTML="
",2===Vt.childNodes.length),k.parseHTML=function(e,t,n){return"string"!=typeof e?[]:("boolean"==typeof t&&(n=t,t=!1),t||(y.createHTMLDocument?((r=(t=E.implementation.createHTMLDocument("")).createElement("base")).href=E.location.href,t.head.appendChild(r)):t=E),o=!n&&[],(i=D.exec(e))?[t.createElement(i[1])]:(i=we([e],t,o),o&&o.length&&k(o).remove(),k.merge([],i.childNodes)));var r,i,o},k.fn.load=function(e,t,n){var r,i,o,a=this,s=e.indexOf(" ");return-1").append(k.parseHTML(e)).find(r):e)}).always(n&&function(e,t){a.each(function(){n.apply(this,o||[e.responseText,t,e])})}),this},k.each(["ajaxStart","ajaxStop","ajaxComplete","ajaxError","ajaxSuccess","ajaxSend"],function(e,t){k.fn[t]=function(e){return this.on(t,e)}}),k.expr.pseudos.animated=function(t){return k.grep(k.timers,function(e){return t===e.elem}).length},k.offset={setOffset:function(e,t,n){var r,i,o,a,s,u,l=k.css(e,"position"),c=k(e),f={};"static"===l&&(e.style.position="relative"),s=c.offset(),o=k.css(e,"top"),u=k.css(e,"left"),("absolute"===l||"fixed"===l)&&-1<(o+u).indexOf("auto")?(a=(r=c.position()).top,i=r.left):(a=parseFloat(o)||0,i=parseFloat(u)||0),m(t)&&(t=t.call(e,n,k.extend({},s))),null!=t.top&&(f.top=t.top-s.top+a),null!=t.left&&(f.left=t.left-s.left+i),"using"in t?t.using.call(e,f):c.css(f)}},k.fn.extend({offset:function(t){if(arguments.length)return void 0===t?this:this.each(function(e){k.offset.setOffset(this,t,e)});var e,n,r=this[0];return r?r.getClientRects().length?(e=r.getBoundingClientRect(),n=r.ownerDocument.defaultView,{top:e.top+n.pageYOffset,left:e.left+n.pageXOffset}):{top:0,left:0}:void 0},position:function(){if(this[0]){var e,t,n,r=this[0],i={top:0,left:0};if("fixed"===k.css(r,"position"))t=r.getBoundingClientRect();else{t=this.offset(),n=r.ownerDocument,e=r.offsetParent||n.documentElement;while(e&&(e===n.body||e===n.documentElement)&&"static"===k.css(e,"position"))e=e.parentNode;e&&e!==r&&1===e.nodeType&&((i=k(e).offset()).top+=k.css(e,"borderTopWidth",!0),i.left+=k.css(e,"borderLeftWidth",!0))}return{top:t.top-i.top-k.css(r,"marginTop",!0),left:t.left-i.left-k.css(r,"marginLeft",!0)}}},offsetParent:function(){return this.map(function(){var e=this.offsetParent;while(e&&"static"===k.css(e,"position"))e=e.offsetParent;return e||ie})}}),k.each({scrollLeft:"pageXOffset",scrollTop:"pageYOffset"},function(t,i){var o="pageYOffset"===i;k.fn[t]=function(e){return _(this,function(e,t,n){var r;if(x(e)?r=e:9===e.nodeType&&(r=e.defaultView),void 0===n)return r?r[i]:e[t];r?r.scrollTo(o?r.pageXOffset:n,o?n:r.pageYOffset):e[t]=n},t,e,arguments.length)}}),k.each(["top","left"],function(e,n){k.cssHooks[n]=ze(y.pixelPosition,function(e,t){if(t)return t=_e(e,n),$e.test(t)?k(e).position()[n]+"px":t})}),k.each({Height:"height",Width:"width"},function(a,s){k.each({padding:"inner"+a,content:s,"":"outer"+a},function(r,o){k.fn[o]=function(e,t){var n=arguments.length&&(r||"boolean"!=typeof e),i=r||(!0===e||!0===t?"margin":"border");return _(this,function(e,t,n){var r;return x(e)?0===o.indexOf("outer")?e["inner"+a]:e.document.documentElement["client"+a]:9===e.nodeType?(r=e.documentElement,Math.max(e.body["scroll"+a],r["scroll"+a],e.body["offset"+a],r["offset"+a],r["client"+a])):void 0===n?k.css(e,t,i):k.style(e,t,n,i)},s,n?e:void 0,n)}})}),k.each("blur focus focusin focusout resize scroll click dblclick mousedown mouseup mousemove mouseover mouseout mouseenter mouseleave change select submit keydown keypress keyup contextmenu".split(" "),function(e,n){k.fn[n]=function(e,t){return 0a;a++)for(i in o[a])n=o[a][i],o[a].hasOwnProperty(i)&&void 0!==n&&(e[i]=t.isPlainObject(n)?t.isPlainObject(e[i])?t.widget.extend({},e[i],n):t.widget.extend({},n):n);return e},t.widget.bridge=function(e,i){var n=i.prototype.widgetFullName||e;t.fn[e]=function(o){var a="string"==typeof o,r=s.call(arguments,1),h=this;return a?this.length||"instance"!==o?this.each(function(){var i,s=t.data(this,n);return"instance"===o?(h=s,!1):s?t.isFunction(s[o])&&"_"!==o.charAt(0)?(i=s[o].apply(s,r),i!==s&&void 0!==i?(h=i&&i.jquery?h.pushStack(i.get()):i,!1):void 0):t.error("no such method '"+o+"' for "+e+" widget instance"):t.error("cannot call methods on "+e+" prior to initialization; "+"attempted to call method '"+o+"'")}):h=void 0:(r.length&&(o=t.widget.extend.apply(null,[o].concat(r))),this.each(function(){var e=t.data(this,n);e?(e.option(o||{}),e._init&&e._init()):t.data(this,n,new i(o,this))})),h}},t.Widget=function(){},t.Widget._childConstructors=[],t.Widget.prototype={widgetName:"widget",widgetEventPrefix:"",defaultElement:"
",options:{classes:{},disabled:!1,create:null},_createWidget:function(e,s){s=t(s||this.defaultElement||this)[0],this.element=t(s),this.uuid=i++,this.eventNamespace="."+this.widgetName+this.uuid,this.bindings=t(),this.hoverable=t(),this.focusable=t(),this.classesElementLookup={},s!==this&&(t.data(s,this.widgetFullName,this),this._on(!0,this.element,{remove:function(t){t.target===s&&this.destroy()}}),this.document=t(s.style?s.ownerDocument:s.document||s),this.window=t(this.document[0].defaultView||this.document[0].parentWindow)),this.options=t.widget.extend({},this.options,this._getCreateOptions(),e),this._create(),this.options.disabled&&this._setOptionDisabled(this.options.disabled),this._trigger("create",null,this._getCreateEventData()),this._init()},_getCreateOptions:function(){return{}},_getCreateEventData:t.noop,_create:t.noop,_init:t.noop,destroy:function(){var e=this;this._destroy(),t.each(this.classesElementLookup,function(t,i){e._removeClass(i,t)}),this.element.off(this.eventNamespace).removeData(this.widgetFullName),this.widget().off(this.eventNamespace).removeAttr("aria-disabled"),this.bindings.off(this.eventNamespace)},_destroy:t.noop,widget:function(){return this.element},option:function(e,i){var s,n,o,a=e;if(0===arguments.length)return t.widget.extend({},this.options);if("string"==typeof e)if(a={},s=e.split("."),e=s.shift(),s.length){for(n=a[e]=t.widget.extend({},this.options[e]),o=0;s.length-1>o;o++)n[s[o]]=n[s[o]]||{},n=n[s[o]];if(e=s.pop(),1===arguments.length)return void 0===n[e]?null:n[e];n[e]=i}else{if(1===arguments.length)return void 0===this.options[e]?null:this.options[e];a[e]=i}return this._setOptions(a),this},_setOptions:function(t){var e;for(e in t)this._setOption(e,t[e]);return this},_setOption:function(t,e){return"classes"===t&&this._setOptionClasses(e),this.options[t]=e,"disabled"===t&&this._setOptionDisabled(e),this},_setOptionClasses:function(e){var i,s,n;for(i in e)n=this.classesElementLookup[i],e[i]!==this.options.classes[i]&&n&&n.length&&(s=t(n.get()),this._removeClass(n,i),s.addClass(this._classes({element:s,keys:i,classes:e,add:!0})))},_setOptionDisabled:function(t){this._toggleClass(this.widget(),this.widgetFullName+"-disabled",null,!!t),t&&(this._removeClass(this.hoverable,null,"ui-state-hover"),this._removeClass(this.focusable,null,"ui-state-focus"))},enable:function(){return this._setOptions({disabled:!1})},disable:function(){return this._setOptions({disabled:!0})},_classes:function(e){function i(i,o){var a,r;for(r=0;i.length>r;r++)a=n.classesElementLookup[i[r]]||t(),a=e.add?t(t.unique(a.get().concat(e.element.get()))):t(a.not(e.element).get()),n.classesElementLookup[i[r]]=a,s.push(i[r]),o&&e.classes[i[r]]&&s.push(e.classes[i[r]])}var s=[],n=this;return e=t.extend({element:this.element,classes:this.options.classes||{}},e),this._on(e.element,{remove:"_untrackClassesElement"}),e.keys&&i(e.keys.match(/\S+/g)||[],!0),e.extra&&i(e.extra.match(/\S+/g)||[]),s.join(" ")},_untrackClassesElement:function(e){var i=this;t.each(i.classesElementLookup,function(s,n){-1!==t.inArray(e.target,n)&&(i.classesElementLookup[s]=t(n.not(e.target).get()))})},_removeClass:function(t,e,i){return this._toggleClass(t,e,i,!1)},_addClass:function(t,e,i){return this._toggleClass(t,e,i,!0)},_toggleClass:function(t,e,i,s){s="boolean"==typeof s?s:i;var n="string"==typeof t||null===t,o={extra:n?e:i,keys:n?t:e,element:n?this.element:t,add:s};return o.element.toggleClass(this._classes(o),s),this},_on:function(e,i,s){var n,o=this;"boolean"!=typeof e&&(s=i,i=e,e=!1),s?(i=n=t(i),this.bindings=this.bindings.add(i)):(s=i,i=this.element,n=this.widget()),t.each(s,function(s,a){function r(){return e||o.options.disabled!==!0&&!t(this).hasClass("ui-state-disabled")?("string"==typeof a?o[a]:a).apply(o,arguments):void 0}"string"!=typeof a&&(r.guid=a.guid=a.guid||r.guid||t.guid++);var h=s.match(/^([\w:-]*)\s*(.*)$/),l=h[1]+o.eventNamespace,c=h[2];c?n.on(l,c,r):i.on(l,r)})},_off:function(e,i){i=(i||"").split(" ").join(this.eventNamespace+" ")+this.eventNamespace,e.off(i).off(i),this.bindings=t(this.bindings.not(e).get()),this.focusable=t(this.focusable.not(e).get()),this.hoverable=t(this.hoverable.not(e).get())},_delay:function(t,e){function i(){return("string"==typeof t?s[t]:t).apply(s,arguments)}var s=this;return setTimeout(i,e||0)},_hoverable:function(e){this.hoverable=this.hoverable.add(e),this._on(e,{mouseenter:function(e){this._addClass(t(e.currentTarget),null,"ui-state-hover")},mouseleave:function(e){this._removeClass(t(e.currentTarget),null,"ui-state-hover")}})},_focusable:function(e){this.focusable=this.focusable.add(e),this._on(e,{focusin:function(e){this._addClass(t(e.currentTarget),null,"ui-state-focus")},focusout:function(e){this._removeClass(t(e.currentTarget),null,"ui-state-focus")}})},_trigger:function(e,i,s){var n,o,a=this.options[e];if(s=s||{},i=t.Event(i),i.type=(e===this.widgetEventPrefix?e:this.widgetEventPrefix+e).toLowerCase(),i.target=this.element[0],o=i.originalEvent)for(n in o)n in i||(i[n]=o[n]);return this.element.trigger(i,s),!(t.isFunction(a)&&a.apply(this.element[0],[i].concat(s))===!1||i.isDefaultPrevented())}},t.each({show:"fadeIn",hide:"fadeOut"},function(e,i){t.Widget.prototype["_"+e]=function(s,n,o){"string"==typeof n&&(n={effect:n});var a,r=n?n===!0||"number"==typeof n?i:n.effect||i:e;n=n||{},"number"==typeof n&&(n={duration:n}),a=!t.isEmptyObject(n),n.complete=o,n.delay&&s.delay(n.delay),a&&t.effects&&t.effects.effect[r]?s[e](n):r!==e&&s[r]?s[r](n.duration,n.easing,o):s.queue(function(i){t(this)[e](),o&&o.call(s[0]),i()})}}),t.widget,function(){function e(t,e,i){return[parseFloat(t[0])*(u.test(t[0])?e/100:1),parseFloat(t[1])*(u.test(t[1])?i/100:1)]}function i(e,i){return parseInt(t.css(e,i),10)||0}function s(e){var i=e[0];return 9===i.nodeType?{width:e.width(),height:e.height(),offset:{top:0,left:0}}:t.isWindow(i)?{width:e.width(),height:e.height(),offset:{top:e.scrollTop(),left:e.scrollLeft()}}:i.preventDefault?{width:0,height:0,offset:{top:i.pageY,left:i.pageX}}:{width:e.outerWidth(),height:e.outerHeight(),offset:e.offset()}}var n,o=Math.max,a=Math.abs,r=/left|center|right/,h=/top|center|bottom/,l=/[\+\-]\d+(\.[\d]+)?%?/,c=/^\w+/,u=/%$/,d=t.fn.position;t.position={scrollbarWidth:function(){if(void 0!==n)return n;var e,i,s=t("
"),o=s.children()[0];return t("body").append(s),e=o.offsetWidth,s.css("overflow","scroll"),i=o.offsetWidth,e===i&&(i=s[0].clientWidth),s.remove(),n=e-i},getScrollInfo:function(e){var i=e.isWindow||e.isDocument?"":e.element.css("overflow-x"),s=e.isWindow||e.isDocument?"":e.element.css("overflow-y"),n="scroll"===i||"auto"===i&&e.widthi?"left":e>0?"right":"center",vertical:0>r?"top":s>0?"bottom":"middle"};l>p&&p>a(e+i)&&(u.horizontal="center"),c>f&&f>a(s+r)&&(u.vertical="middle"),u.important=o(a(e),a(i))>o(a(s),a(r))?"horizontal":"vertical",n.using.call(this,t,u)}),h.offset(t.extend(D,{using:r}))})},t.ui.position={fit:{left:function(t,e){var i,s=e.within,n=s.isWindow?s.scrollLeft:s.offset.left,a=s.width,r=t.left-e.collisionPosition.marginLeft,h=n-r,l=r+e.collisionWidth-a-n;e.collisionWidth>a?h>0&&0>=l?(i=t.left+h+e.collisionWidth-a-n,t.left+=h-i):t.left=l>0&&0>=h?n:h>l?n+a-e.collisionWidth:n:h>0?t.left+=h:l>0?t.left-=l:t.left=o(t.left-r,t.left)},top:function(t,e){var i,s=e.within,n=s.isWindow?s.scrollTop:s.offset.top,a=e.within.height,r=t.top-e.collisionPosition.marginTop,h=n-r,l=r+e.collisionHeight-a-n;e.collisionHeight>a?h>0&&0>=l?(i=t.top+h+e.collisionHeight-a-n,t.top+=h-i):t.top=l>0&&0>=h?n:h>l?n+a-e.collisionHeight:n:h>0?t.top+=h:l>0?t.top-=l:t.top=o(t.top-r,t.top)}},flip:{left:function(t,e){var i,s,n=e.within,o=n.offset.left+n.scrollLeft,r=n.width,h=n.isWindow?n.scrollLeft:n.offset.left,l=t.left-e.collisionPosition.marginLeft,c=l-h,u=l+e.collisionWidth-r-h,d="left"===e.my[0]?-e.elemWidth:"right"===e.my[0]?e.elemWidth:0,p="left"===e.at[0]?e.targetWidth:"right"===e.at[0]?-e.targetWidth:0,f=-2*e.offset[0];0>c?(i=t.left+d+p+f+e.collisionWidth-r-o,(0>i||a(c)>i)&&(t.left+=d+p+f)):u>0&&(s=t.left-e.collisionPosition.marginLeft+d+p+f-h,(s>0||u>a(s))&&(t.left+=d+p+f))},top:function(t,e){var i,s,n=e.within,o=n.offset.top+n.scrollTop,r=n.height,h=n.isWindow?n.scrollTop:n.offset.top,l=t.top-e.collisionPosition.marginTop,c=l-h,u=l+e.collisionHeight-r-h,d="top"===e.my[1],p=d?-e.elemHeight:"bottom"===e.my[1]?e.elemHeight:0,f="top"===e.at[1]?e.targetHeight:"bottom"===e.at[1]?-e.targetHeight:0,m=-2*e.offset[1];0>c?(s=t.top+p+f+m+e.collisionHeight-r-o,(0>s||a(c)>s)&&(t.top+=p+f+m)):u>0&&(i=t.top-e.collisionPosition.marginTop+p+f+m-h,(i>0||u>a(i))&&(t.top+=p+f+m))}},flipfit:{left:function(){t.ui.position.flip.left.apply(this,arguments),t.ui.position.fit.left.apply(this,arguments)},top:function(){t.ui.position.flip.top.apply(this,arguments),t.ui.position.fit.top.apply(this,arguments)}}}}(),t.ui.position,t.extend(t.expr[":"],{data:t.expr.createPseudo?t.expr.createPseudo(function(e){return function(i){return!!t.data(i,e)}}):function(e,i,s){return!!t.data(e,s[3])}}),t.fn.extend({disableSelection:function(){var t="onselectstart"in document.createElement("div")?"selectstart":"mousedown";return function(){return this.on(t+".ui-disableSelection",function(t){t.preventDefault()})}}(),enableSelection:function(){return this.off(".ui-disableSelection")}}),t.ui.focusable=function(i,s){var n,o,a,r,h,l=i.nodeName.toLowerCase();return"area"===l?(n=i.parentNode,o=n.name,i.href&&o&&"map"===n.nodeName.toLowerCase()?(a=t("img[usemap='#"+o+"']"),a.length>0&&a.is(":visible")):!1):(/^(input|select|textarea|button|object)$/.test(l)?(r=!i.disabled,r&&(h=t(i).closest("fieldset")[0],h&&(r=!h.disabled))):r="a"===l?i.href||s:s,r&&t(i).is(":visible")&&e(t(i)))},t.extend(t.expr[":"],{focusable:function(e){return t.ui.focusable(e,null!=t.attr(e,"tabindex"))}}),t.ui.focusable,t.fn.form=function(){return"string"==typeof this[0].form?this.closest("form"):t(this[0].form)},t.ui.formResetMixin={_formResetHandler:function(){var e=t(this);setTimeout(function(){var i=e.data("ui-form-reset-instances");t.each(i,function(){this.refresh()})})},_bindFormResetHandler:function(){if(this.form=this.element.form(),this.form.length){var t=this.form.data("ui-form-reset-instances")||[];t.length||this.form.on("reset.ui-form-reset",this._formResetHandler),t.push(this),this.form.data("ui-form-reset-instances",t)}},_unbindFormResetHandler:function(){if(this.form.length){var e=this.form.data("ui-form-reset-instances");e.splice(t.inArray(this,e),1),e.length?this.form.data("ui-form-reset-instances",e):this.form.removeData("ui-form-reset-instances").off("reset.ui-form-reset")}}},"1.7"===t.fn.jquery.substring(0,3)&&(t.each(["Width","Height"],function(e,i){function s(e,i,s,o){return t.each(n,function(){i-=parseFloat(t.css(e,"padding"+this))||0,s&&(i-=parseFloat(t.css(e,"border"+this+"Width"))||0),o&&(i-=parseFloat(t.css(e,"margin"+this))||0)}),i}var n="Width"===i?["Left","Right"]:["Top","Bottom"],o=i.toLowerCase(),a={innerWidth:t.fn.innerWidth,innerHeight:t.fn.innerHeight,outerWidth:t.fn.outerWidth,outerHeight:t.fn.outerHeight};t.fn["inner"+i]=function(e){return void 0===e?a["inner"+i].call(this):this.each(function(){t(this).css(o,s(this,e)+"px")})},t.fn["outer"+i]=function(e,n){return"number"!=typeof e?a["outer"+i].call(this,e):this.each(function(){t(this).css(o,s(this,e,!0,n)+"px")})}}),t.fn.addBack=function(t){return this.add(null==t?this.prevObject:this.prevObject.filter(t))}),t.ui.keyCode={BACKSPACE:8,COMMA:188,DELETE:46,DOWN:40,END:35,ENTER:13,ESCAPE:27,HOME:36,LEFT:37,PAGE_DOWN:34,PAGE_UP:33,PERIOD:190,RIGHT:39,SPACE:32,TAB:9,UP:38},t.ui.escapeSelector=function(){var t=/([!"#$%&'()*+,./:;<=>?@[\]^`{|}~])/g;return function(e){return e.replace(t,"\\$1")}}(),t.fn.labels=function(){var e,i,s,n,o;return this[0].labels&&this[0].labels.length?this.pushStack(this[0].labels):(n=this.eq(0).parents("label"),s=this.attr("id"),s&&(e=this.eq(0).parents().last(),o=e.add(e.length?e.siblings():this.siblings()),i="label[for='"+t.ui.escapeSelector(s)+"']",n=n.add(o.find(i).addBack(i))),this.pushStack(n))},t.fn.scrollParent=function(e){var i=this.css("position"),s="absolute"===i,n=e?/(auto|scroll|hidden)/:/(auto|scroll)/,o=this.parents().filter(function(){var e=t(this);return s&&"static"===e.css("position")?!1:n.test(e.css("overflow")+e.css("overflow-y")+e.css("overflow-x"))}).eq(0);return"fixed"!==i&&o.length?o:t(this[0].ownerDocument||document)},t.extend(t.expr[":"],{tabbable:function(e){var i=t.attr(e,"tabindex"),s=null!=i;return(!s||i>=0)&&t.ui.focusable(e,s)}}),t.fn.extend({uniqueId:function(){var t=0;return function(){return this.each(function(){this.id||(this.id="ui-id-"+ ++t)})}}(),removeUniqueId:function(){return this.each(function(){/^ui-id-\d+$/.test(this.id)&&t(this).removeAttr("id")})}}),t.ui.ie=!!/msie [\w.]+/.exec(navigator.userAgent.toLowerCase());var n=!1;t(document).on("mouseup",function(){n=!1}),t.widget("ui.mouse",{version:"1.12.1",options:{cancel:"input, textarea, button, select, option",distance:1,delay:0},_mouseInit:function(){var e=this;this.element.on("mousedown."+this.widgetName,function(t){return e._mouseDown(t)}).on("click."+this.widgetName,function(i){return!0===t.data(i.target,e.widgetName+".preventClickEvent")?(t.removeData(i.target,e.widgetName+".preventClickEvent"),i.stopImmediatePropagation(),!1):void 0}),this.started=!1},_mouseDestroy:function(){this.element.off("."+this.widgetName),this._mouseMoveDelegate&&this.document.off("mousemove."+this.widgetName,this._mouseMoveDelegate).off("mouseup."+this.widgetName,this._mouseUpDelegate)},_mouseDown:function(e){if(!n){this._mouseMoved=!1,this._mouseStarted&&this._mouseUp(e),this._mouseDownEvent=e;var i=this,s=1===e.which,o="string"==typeof this.options.cancel&&e.target.nodeName?t(e.target).closest(this.options.cancel).length:!1;return s&&!o&&this._mouseCapture(e)?(this.mouseDelayMet=!this.options.delay,this.mouseDelayMet||(this._mouseDelayTimer=setTimeout(function(){i.mouseDelayMet=!0},this.options.delay)),this._mouseDistanceMet(e)&&this._mouseDelayMet(e)&&(this._mouseStarted=this._mouseStart(e)!==!1,!this._mouseStarted)?(e.preventDefault(),!0):(!0===t.data(e.target,this.widgetName+".preventClickEvent")&&t.removeData(e.target,this.widgetName+".preventClickEvent"),this._mouseMoveDelegate=function(t){return i._mouseMove(t)},this._mouseUpDelegate=function(t){return i._mouseUp(t)},this.document.on("mousemove."+this.widgetName,this._mouseMoveDelegate).on("mouseup."+this.widgetName,this._mouseUpDelegate),e.preventDefault(),n=!0,!0)):!0}},_mouseMove:function(e){if(this._mouseMoved){if(t.ui.ie&&(!document.documentMode||9>document.documentMode)&&!e.button)return this._mouseUp(e);if(!e.which)if(e.originalEvent.altKey||e.originalEvent.ctrlKey||e.originalEvent.metaKey||e.originalEvent.shiftKey)this.ignoreMissingWhich=!0;else if(!this.ignoreMissingWhich)return this._mouseUp(e)}return(e.which||e.button)&&(this._mouseMoved=!0),this._mouseStarted?(this._mouseDrag(e),e.preventDefault()):(this._mouseDistanceMet(e)&&this._mouseDelayMet(e)&&(this._mouseStarted=this._mouseStart(this._mouseDownEvent,e)!==!1,this._mouseStarted?this._mouseDrag(e):this._mouseUp(e)),!this._mouseStarted)},_mouseUp:function(e){this.document.off("mousemove."+this.widgetName,this._mouseMoveDelegate).off("mouseup."+this.widgetName,this._mouseUpDelegate),this._mouseStarted&&(this._mouseStarted=!1,e.target===this._mouseDownEvent.target&&t.data(e.target,this.widgetName+".preventClickEvent",!0),this._mouseStop(e)),this._mouseDelayTimer&&(clearTimeout(this._mouseDelayTimer),delete this._mouseDelayTimer),this.ignoreMissingWhich=!1,n=!1,e.preventDefault()},_mouseDistanceMet:function(t){return Math.max(Math.abs(this._mouseDownEvent.pageX-t.pageX),Math.abs(this._mouseDownEvent.pageY-t.pageY))>=this.options.distance},_mouseDelayMet:function(){return this.mouseDelayMet},_mouseStart:function(){},_mouseDrag:function(){},_mouseStop:function(){},_mouseCapture:function(){return!0}}),t.ui.plugin={add:function(e,i,s){var n,o=t.ui[e].prototype;for(n in s)o.plugins[n]=o.plugins[n]||[],o.plugins[n].push([i,s[n]])},call:function(t,e,i,s){var n,o=t.plugins[e];if(o&&(s||t.element[0].parentNode&&11!==t.element[0].parentNode.nodeType))for(n=0;o.length>n;n++)t.options[o[n][0]]&&o[n][1].apply(t.element,i)}},t.widget("ui.resizable",t.ui.mouse,{version:"1.12.1",widgetEventPrefix:"resize",options:{alsoResize:!1,animate:!1,animateDuration:"slow",animateEasing:"swing",aspectRatio:!1,autoHide:!1,classes:{"ui-resizable-se":"ui-icon ui-icon-gripsmall-diagonal-se"},containment:!1,ghost:!1,grid:!1,handles:"e,s,se",helper:!1,maxHeight:null,maxWidth:null,minHeight:10,minWidth:10,zIndex:90,resize:null,start:null,stop:null},_num:function(t){return parseFloat(t)||0},_isNumber:function(t){return!isNaN(parseFloat(t))},_hasScroll:function(e,i){if("hidden"===t(e).css("overflow"))return!1;var s=i&&"left"===i?"scrollLeft":"scrollTop",n=!1;return e[s]>0?!0:(e[s]=1,n=e[s]>0,e[s]=0,n)},_create:function(){var e,i=this.options,s=this;this._addClass("ui-resizable"),t.extend(this,{_aspectRatio:!!i.aspectRatio,aspectRatio:i.aspectRatio,originalElement:this.element,_proportionallyResizeElements:[],_helper:i.helper||i.ghost||i.animate?i.helper||"ui-resizable-helper":null}),this.element[0].nodeName.match(/^(canvas|textarea|input|select|button|img)$/i)&&(this.element.wrap(t("
").css({position:this.element.css("position"),width:this.element.outerWidth(),height:this.element.outerHeight(),top:this.element.css("top"),left:this.element.css("left")})),this.element=this.element.parent().data("ui-resizable",this.element.resizable("instance")),this.elementIsWrapper=!0,e={marginTop:this.originalElement.css("marginTop"),marginRight:this.originalElement.css("marginRight"),marginBottom:this.originalElement.css("marginBottom"),marginLeft:this.originalElement.css("marginLeft")},this.element.css(e),this.originalElement.css("margin",0),this.originalResizeStyle=this.originalElement.css("resize"),this.originalElement.css("resize","none"),this._proportionallyResizeElements.push(this.originalElement.css({position:"static",zoom:1,display:"block"})),this.originalElement.css(e),this._proportionallyResize()),this._setupHandles(),i.autoHide&&t(this.element).on("mouseenter",function(){i.disabled||(s._removeClass("ui-resizable-autohide"),s._handles.show())}).on("mouseleave",function(){i.disabled||s.resizing||(s._addClass("ui-resizable-autohide"),s._handles.hide())}),this._mouseInit()},_destroy:function(){this._mouseDestroy();var e,i=function(e){t(e).removeData("resizable").removeData("ui-resizable").off(".resizable").find(".ui-resizable-handle").remove()};return this.elementIsWrapper&&(i(this.element),e=this.element,this.originalElement.css({position:e.css("position"),width:e.outerWidth(),height:e.outerHeight(),top:e.css("top"),left:e.css("left")}).insertAfter(e),e.remove()),this.originalElement.css("resize",this.originalResizeStyle),i(this.originalElement),this},_setOption:function(t,e){switch(this._super(t,e),t){case"handles":this._removeHandles(),this._setupHandles();break;default:}},_setupHandles:function(){var e,i,s,n,o,a=this.options,r=this;if(this.handles=a.handles||(t(".ui-resizable-handle",this.element).length?{n:".ui-resizable-n",e:".ui-resizable-e",s:".ui-resizable-s",w:".ui-resizable-w",se:".ui-resizable-se",sw:".ui-resizable-sw",ne:".ui-resizable-ne",nw:".ui-resizable-nw"}:"e,s,se"),this._handles=t(),this.handles.constructor===String)for("all"===this.handles&&(this.handles="n,e,s,w,se,sw,ne,nw"),s=this.handles.split(","),this.handles={},i=0;s.length>i;i++)e=t.trim(s[i]),n="ui-resizable-"+e,o=t("
"),this._addClass(o,"ui-resizable-handle "+n),o.css({zIndex:a.zIndex}),this.handles[e]=".ui-resizable-"+e,this.element.append(o);this._renderAxis=function(e){var i,s,n,o;e=e||this.element;for(i in this.handles)this.handles[i].constructor===String?this.handles[i]=this.element.children(this.handles[i]).first().show():(this.handles[i].jquery||this.handles[i].nodeType)&&(this.handles[i]=t(this.handles[i]),this._on(this.handles[i],{mousedown:r._mouseDown})),this.elementIsWrapper&&this.originalElement[0].nodeName.match(/^(textarea|input|select|button)$/i)&&(s=t(this.handles[i],this.element),o=/sw|ne|nw|se|n|s/.test(i)?s.outerHeight():s.outerWidth(),n=["padding",/ne|nw|n/.test(i)?"Top":/se|sw|s/.test(i)?"Bottom":/^e$/.test(i)?"Right":"Left"].join(""),e.css(n,o),this._proportionallyResize()),this._handles=this._handles.add(this.handles[i])},this._renderAxis(this.element),this._handles=this._handles.add(this.element.find(".ui-resizable-handle")),this._handles.disableSelection(),this._handles.on("mouseover",function(){r.resizing||(this.className&&(o=this.className.match(/ui-resizable-(se|sw|ne|nw|n|e|s|w)/i)),r.axis=o&&o[1]?o[1]:"se")}),a.autoHide&&(this._handles.hide(),this._addClass("ui-resizable-autohide"))},_removeHandles:function(){this._handles.remove()},_mouseCapture:function(e){var i,s,n=!1;for(i in this.handles)s=t(this.handles[i])[0],(s===e.target||t.contains(s,e.target))&&(n=!0);return!this.options.disabled&&n},_mouseStart:function(e){var i,s,n,o=this.options,a=this.element;return this.resizing=!0,this._renderProxy(),i=this._num(this.helper.css("left")),s=this._num(this.helper.css("top")),o.containment&&(i+=t(o.containment).scrollLeft()||0,s+=t(o.containment).scrollTop()||0),this.offset=this.helper.offset(),this.position={left:i,top:s},this.size=this._helper?{width:this.helper.width(),height:this.helper.height()}:{width:a.width(),height:a.height()},this.originalSize=this._helper?{width:a.outerWidth(),height:a.outerHeight()}:{width:a.width(),height:a.height()},this.sizeDiff={width:a.outerWidth()-a.width(),height:a.outerHeight()-a.height()},this.originalPosition={left:i,top:s},this.originalMousePosition={left:e.pageX,top:e.pageY},this.aspectRatio="number"==typeof o.aspectRatio?o.aspectRatio:this.originalSize.width/this.originalSize.height||1,n=t(".ui-resizable-"+this.axis).css("cursor"),t("body").css("cursor","auto"===n?this.axis+"-resize":n),this._addClass("ui-resizable-resizing"),this._propagate("start",e),!0},_mouseDrag:function(e){var i,s,n=this.originalMousePosition,o=this.axis,a=e.pageX-n.left||0,r=e.pageY-n.top||0,h=this._change[o];return this._updatePrevProperties(),h?(i=h.apply(this,[e,a,r]),this._updateVirtualBoundaries(e.shiftKey),(this._aspectRatio||e.shiftKey)&&(i=this._updateRatio(i,e)),i=this._respectSize(i,e),this._updateCache(i),this._propagate("resize",e),s=this._applyChanges(),!this._helper&&this._proportionallyResizeElements.length&&this._proportionallyResize(),t.isEmptyObject(s)||(this._updatePrevProperties(),this._trigger("resize",e,this.ui()),this._applyChanges()),!1):!1},_mouseStop:function(e){this.resizing=!1;var i,s,n,o,a,r,h,l=this.options,c=this;return this._helper&&(i=this._proportionallyResizeElements,s=i.length&&/textarea/i.test(i[0].nodeName),n=s&&this._hasScroll(i[0],"left")?0:c.sizeDiff.height,o=s?0:c.sizeDiff.width,a={width:c.helper.width()-o,height:c.helper.height()-n},r=parseFloat(c.element.css("left"))+(c.position.left-c.originalPosition.left)||null,h=parseFloat(c.element.css("top"))+(c.position.top-c.originalPosition.top)||null,l.animate||this.element.css(t.extend(a,{top:h,left:r})),c.helper.height(c.size.height),c.helper.width(c.size.width),this._helper&&!l.animate&&this._proportionallyResize()),t("body").css("cursor","auto"),this._removeClass("ui-resizable-resizing"),this._propagate("stop",e),this._helper&&this.helper.remove(),!1},_updatePrevProperties:function(){this.prevPosition={top:this.position.top,left:this.position.left},this.prevSize={width:this.size.width,height:this.size.height}},_applyChanges:function(){var t={};return this.position.top!==this.prevPosition.top&&(t.top=this.position.top+"px"),this.position.left!==this.prevPosition.left&&(t.left=this.position.left+"px"),this.size.width!==this.prevSize.width&&(t.width=this.size.width+"px"),this.size.height!==this.prevSize.height&&(t.height=this.size.height+"px"),this.helper.css(t),t},_updateVirtualBoundaries:function(t){var e,i,s,n,o,a=this.options;o={minWidth:this._isNumber(a.minWidth)?a.minWidth:0,maxWidth:this._isNumber(a.maxWidth)?a.maxWidth:1/0,minHeight:this._isNumber(a.minHeight)?a.minHeight:0,maxHeight:this._isNumber(a.maxHeight)?a.maxHeight:1/0},(this._aspectRatio||t)&&(e=o.minHeight*this.aspectRatio,s=o.minWidth/this.aspectRatio,i=o.maxHeight*this.aspectRatio,n=o.maxWidth/this.aspectRatio,e>o.minWidth&&(o.minWidth=e),s>o.minHeight&&(o.minHeight=s),o.maxWidth>i&&(o.maxWidth=i),o.maxHeight>n&&(o.maxHeight=n)),this._vBoundaries=o},_updateCache:function(t){this.offset=this.helper.offset(),this._isNumber(t.left)&&(this.position.left=t.left),this._isNumber(t.top)&&(this.position.top=t.top),this._isNumber(t.height)&&(this.size.height=t.height),this._isNumber(t.width)&&(this.size.width=t.width)},_updateRatio:function(t){var e=this.position,i=this.size,s=this.axis;return this._isNumber(t.height)?t.width=t.height*this.aspectRatio:this._isNumber(t.width)&&(t.height=t.width/this.aspectRatio),"sw"===s&&(t.left=e.left+(i.width-t.width),t.top=null),"nw"===s&&(t.top=e.top+(i.height-t.height),t.left=e.left+(i.width-t.width)),t},_respectSize:function(t){var e=this._vBoundaries,i=this.axis,s=this._isNumber(t.width)&&e.maxWidth&&e.maxWidtht.width,a=this._isNumber(t.height)&&e.minHeight&&e.minHeight>t.height,r=this.originalPosition.left+this.originalSize.width,h=this.originalPosition.top+this.originalSize.height,l=/sw|nw|w/.test(i),c=/nw|ne|n/.test(i);return o&&(t.width=e.minWidth),a&&(t.height=e.minHeight),s&&(t.width=e.maxWidth),n&&(t.height=e.maxHeight),o&&l&&(t.left=r-e.minWidth),s&&l&&(t.left=r-e.maxWidth),a&&c&&(t.top=h-e.minHeight),n&&c&&(t.top=h-e.maxHeight),t.width||t.height||t.left||!t.top?t.width||t.height||t.top||!t.left||(t.left=null):t.top=null,t},_getPaddingPlusBorderDimensions:function(t){for(var e=0,i=[],s=[t.css("borderTopWidth"),t.css("borderRightWidth"),t.css("borderBottomWidth"),t.css("borderLeftWidth")],n=[t.css("paddingTop"),t.css("paddingRight"),t.css("paddingBottom"),t.css("paddingLeft")];4>e;e++)i[e]=parseFloat(s[e])||0,i[e]+=parseFloat(n[e])||0;return{height:i[0]+i[2],width:i[1]+i[3]}},_proportionallyResize:function(){if(this._proportionallyResizeElements.length)for(var t,e=0,i=this.helper||this.element;this._proportionallyResizeElements.length>e;e++)t=this._proportionallyResizeElements[e],this.outerDimensions||(this.outerDimensions=this._getPaddingPlusBorderDimensions(t)),t.css({height:i.height()-this.outerDimensions.height||0,width:i.width()-this.outerDimensions.width||0})},_renderProxy:function(){var e=this.element,i=this.options;this.elementOffset=e.offset(),this._helper?(this.helper=this.helper||t("
"),this._addClass(this.helper,this._helper),this.helper.css({width:this.element.outerWidth(),height:this.element.outerHeight(),position:"absolute",left:this.elementOffset.left+"px",top:this.elementOffset.top+"px",zIndex:++i.zIndex}),this.helper.appendTo("body").disableSelection()):this.helper=this.element },_change:{e:function(t,e){return{width:this.originalSize.width+e}},w:function(t,e){var i=this.originalSize,s=this.originalPosition;return{left:s.left+e,width:i.width-e}},n:function(t,e,i){var s=this.originalSize,n=this.originalPosition;return{top:n.top+i,height:s.height-i}},s:function(t,e,i){return{height:this.originalSize.height+i}},se:function(e,i,s){return t.extend(this._change.s.apply(this,arguments),this._change.e.apply(this,[e,i,s]))},sw:function(e,i,s){return t.extend(this._change.s.apply(this,arguments),this._change.w.apply(this,[e,i,s]))},ne:function(e,i,s){return t.extend(this._change.n.apply(this,arguments),this._change.e.apply(this,[e,i,s]))},nw:function(e,i,s){return t.extend(this._change.n.apply(this,arguments),this._change.w.apply(this,[e,i,s]))}},_propagate:function(e,i){t.ui.plugin.call(this,e,[i,this.ui()]),"resize"!==e&&this._trigger(e,i,this.ui())},plugins:{},ui:function(){return{originalElement:this.originalElement,element:this.element,helper:this.helper,position:this.position,size:this.size,originalSize:this.originalSize,originalPosition:this.originalPosition}}}),t.ui.plugin.add("resizable","animate",{stop:function(e){var i=t(this).resizable("instance"),s=i.options,n=i._proportionallyResizeElements,o=n.length&&/textarea/i.test(n[0].nodeName),a=o&&i._hasScroll(n[0],"left")?0:i.sizeDiff.height,r=o?0:i.sizeDiff.width,h={width:i.size.width-r,height:i.size.height-a},l=parseFloat(i.element.css("left"))+(i.position.left-i.originalPosition.left)||null,c=parseFloat(i.element.css("top"))+(i.position.top-i.originalPosition.top)||null;i.element.animate(t.extend(h,c&&l?{top:c,left:l}:{}),{duration:s.animateDuration,easing:s.animateEasing,step:function(){var s={width:parseFloat(i.element.css("width")),height:parseFloat(i.element.css("height")),top:parseFloat(i.element.css("top")),left:parseFloat(i.element.css("left"))};n&&n.length&&t(n[0]).css({width:s.width,height:s.height}),i._updateCache(s),i._propagate("resize",e)}})}}),t.ui.plugin.add("resizable","containment",{start:function(){var e,i,s,n,o,a,r,h=t(this).resizable("instance"),l=h.options,c=h.element,u=l.containment,d=u instanceof t?u.get(0):/parent/.test(u)?c.parent().get(0):u;d&&(h.containerElement=t(d),/document/.test(u)||u===document?(h.containerOffset={left:0,top:0},h.containerPosition={left:0,top:0},h.parentData={element:t(document),left:0,top:0,width:t(document).width(),height:t(document).height()||document.body.parentNode.scrollHeight}):(e=t(d),i=[],t(["Top","Right","Left","Bottom"]).each(function(t,s){i[t]=h._num(e.css("padding"+s))}),h.containerOffset=e.offset(),h.containerPosition=e.position(),h.containerSize={height:e.innerHeight()-i[3],width:e.innerWidth()-i[1]},s=h.containerOffset,n=h.containerSize.height,o=h.containerSize.width,a=h._hasScroll(d,"left")?d.scrollWidth:o,r=h._hasScroll(d)?d.scrollHeight:n,h.parentData={element:d,left:s.left,top:s.top,width:a,height:r}))},resize:function(e){var i,s,n,o,a=t(this).resizable("instance"),r=a.options,h=a.containerOffset,l=a.position,c=a._aspectRatio||e.shiftKey,u={top:0,left:0},d=a.containerElement,p=!0;d[0]!==document&&/static/.test(d.css("position"))&&(u=h),l.left<(a._helper?h.left:0)&&(a.size.width=a.size.width+(a._helper?a.position.left-h.left:a.position.left-u.left),c&&(a.size.height=a.size.width/a.aspectRatio,p=!1),a.position.left=r.helper?h.left:0),l.top<(a._helper?h.top:0)&&(a.size.height=a.size.height+(a._helper?a.position.top-h.top:a.position.top),c&&(a.size.width=a.size.height*a.aspectRatio,p=!1),a.position.top=a._helper?h.top:0),n=a.containerElement.get(0)===a.element.parent().get(0),o=/relative|absolute/.test(a.containerElement.css("position")),n&&o?(a.offset.left=a.parentData.left+a.position.left,a.offset.top=a.parentData.top+a.position.top):(a.offset.left=a.element.offset().left,a.offset.top=a.element.offset().top),i=Math.abs(a.sizeDiff.width+(a._helper?a.offset.left-u.left:a.offset.left-h.left)),s=Math.abs(a.sizeDiff.height+(a._helper?a.offset.top-u.top:a.offset.top-h.top)),i+a.size.width>=a.parentData.width&&(a.size.width=a.parentData.width-i,c&&(a.size.height=a.size.width/a.aspectRatio,p=!1)),s+a.size.height>=a.parentData.height&&(a.size.height=a.parentData.height-s,c&&(a.size.width=a.size.height*a.aspectRatio,p=!1)),p||(a.position.left=a.prevPosition.left,a.position.top=a.prevPosition.top,a.size.width=a.prevSize.width,a.size.height=a.prevSize.height)},stop:function(){var e=t(this).resizable("instance"),i=e.options,s=e.containerOffset,n=e.containerPosition,o=e.containerElement,a=t(e.helper),r=a.offset(),h=a.outerWidth()-e.sizeDiff.width,l=a.outerHeight()-e.sizeDiff.height;e._helper&&!i.animate&&/relative/.test(o.css("position"))&&t(this).css({left:r.left-n.left-s.left,width:h,height:l}),e._helper&&!i.animate&&/static/.test(o.css("position"))&&t(this).css({left:r.left-n.left-s.left,width:h,height:l})}}),t.ui.plugin.add("resizable","alsoResize",{start:function(){var e=t(this).resizable("instance"),i=e.options;t(i.alsoResize).each(function(){var e=t(this);e.data("ui-resizable-alsoresize",{width:parseFloat(e.width()),height:parseFloat(e.height()),left:parseFloat(e.css("left")),top:parseFloat(e.css("top"))})})},resize:function(e,i){var s=t(this).resizable("instance"),n=s.options,o=s.originalSize,a=s.originalPosition,r={height:s.size.height-o.height||0,width:s.size.width-o.width||0,top:s.position.top-a.top||0,left:s.position.left-a.left||0};t(n.alsoResize).each(function(){var e=t(this),s=t(this).data("ui-resizable-alsoresize"),n={},o=e.parents(i.originalElement[0]).length?["width","height"]:["width","height","top","left"];t.each(o,function(t,e){var i=(s[e]||0)+(r[e]||0);i&&i>=0&&(n[e]=i||null)}),e.css(n)})},stop:function(){t(this).removeData("ui-resizable-alsoresize")}}),t.ui.plugin.add("resizable","ghost",{start:function(){var e=t(this).resizable("instance"),i=e.size;e.ghost=e.originalElement.clone(),e.ghost.css({opacity:.25,display:"block",position:"relative",height:i.height,width:i.width,margin:0,left:0,top:0}),e._addClass(e.ghost,"ui-resizable-ghost"),t.uiBackCompat!==!1&&"string"==typeof e.options.ghost&&e.ghost.addClass(this.options.ghost),e.ghost.appendTo(e.helper)},resize:function(){var e=t(this).resizable("instance");e.ghost&&e.ghost.css({position:"relative",height:e.size.height,width:e.size.width})},stop:function(){var e=t(this).resizable("instance");e.ghost&&e.helper&&e.helper.get(0).removeChild(e.ghost.get(0))}}),t.ui.plugin.add("resizable","grid",{resize:function(){var e,i=t(this).resizable("instance"),s=i.options,n=i.size,o=i.originalSize,a=i.originalPosition,r=i.axis,h="number"==typeof s.grid?[s.grid,s.grid]:s.grid,l=h[0]||1,c=h[1]||1,u=Math.round((n.width-o.width)/l)*l,d=Math.round((n.height-o.height)/c)*c,p=o.width+u,f=o.height+d,m=s.maxWidth&&p>s.maxWidth,g=s.maxHeight&&f>s.maxHeight,_=s.minWidth&&s.minWidth>p,v=s.minHeight&&s.minHeight>f;s.grid=h,_&&(p+=l),v&&(f+=c),m&&(p-=l),g&&(f-=c),/^(se|s|e)$/.test(r)?(i.size.width=p,i.size.height=f):/^(ne)$/.test(r)?(i.size.width=p,i.size.height=f,i.position.top=a.top-d):/^(sw)$/.test(r)?(i.size.width=p,i.size.height=f,i.position.left=a.left-u):((0>=f-c||0>=p-l)&&(e=i._getPaddingPlusBorderDimensions(this)),f-c>0?(i.size.height=f,i.position.top=a.top-d):(f=c-e.height,i.size.height=f,i.position.top=a.top+o.height-f),p-l>0?(i.size.width=p,i.position.left=a.left-u):(p=l-e.width,i.size.width=p,i.position.left=a.left+o.width-p))}}),t.ui.resizable});/** * Copyright (c) 2007 Ariel Flesler - aflesler ○ gmail • com | https://github.com/flesler * Licensed under MIT * @author Ariel Flesler * @version 2.1.2 */ ;(function(f){"use strict";"function"===typeof define&&define.amd?define(["jquery"],f):"undefined"!==typeof module&&module.exports?module.exports=f(require("jquery")):f(jQuery)})(function($){"use strict";function n(a){return!a.nodeName||-1!==$.inArray(a.nodeName.toLowerCase(),["iframe","#document","html","body"])}function h(a){return $.isFunction(a)||$.isPlainObject(a)?a:{top:a,left:a}}var p=$.scrollTo=function(a,d,b){return $(window).scrollTo(a,d,b)};p.defaults={axis:"xy",duration:0,limit:!0};$.fn.scrollTo=function(a,d,b){"object"=== typeof d&&(b=d,d=0);"function"===typeof b&&(b={onAfter:b});"max"===a&&(a=9E9);b=$.extend({},p.defaults,b);d=d||b.duration;var u=b.queue&&1=f[g]?0:Math.min(f[g],n));!a&&1-1){targetElements.on(evt+EVENT_NAMESPACE,function elementToggle(event){$.powerTip.toggle(this,event)})}else{targetElements.on(evt+EVENT_NAMESPACE,function elementOpen(event){$.powerTip.show(this,event)})}});$.each(options.closeEvents,function(idx,evt){if($.inArray(evt,options.openEvents)<0){targetElements.on(evt+EVENT_NAMESPACE,function elementClose(event){$.powerTip.hide(this,!isMouseEvent(event))})}});targetElements.on("keydown"+EVENT_NAMESPACE,function elementKeyDown(event){if(event.keyCode===27){$.powerTip.hide(this,true)}})}return targetElements};$.fn.powerTip.defaults={fadeInTime:200,fadeOutTime:100,followMouse:false,popupId:"powerTip",popupClass:null,intentSensitivity:7,intentPollInterval:100,closeDelay:100,placement:"n",smartPlacement:false,offset:10,mouseOnToPopup:false,manual:false,openEvents:["mouseenter","focus"],closeEvents:["mouseleave","blur"]};$.fn.powerTip.smartPlacementLists={n:["n","ne","nw","s"],e:["e","ne","se","w","nw","sw","n","s","e"],s:["s","se","sw","n"],w:["w","nw","sw","e","ne","se","n","s","w"],nw:["nw","w","sw","n","s","se","nw"],ne:["ne","e","se","n","s","sw","ne"],sw:["sw","w","nw","s","n","ne","sw"],se:["se","e","ne","s","n","nw","se"],"nw-alt":["nw-alt","n","ne-alt","sw-alt","s","se-alt","w","e"],"ne-alt":["ne-alt","n","nw-alt","se-alt","s","sw-alt","e","w"],"sw-alt":["sw-alt","s","se-alt","nw-alt","n","ne-alt","w","e"],"se-alt":["se-alt","s","sw-alt","ne-alt","n","nw-alt","e","w"]};$.powerTip={show:function apiShowTip(element,event){if(isMouseEvent(event)){trackMouse(event);session.previousX=event.pageX;session.previousY=event.pageY;$(element).data(DATA_DISPLAYCONTROLLER).show()}else{$(element).first().data(DATA_DISPLAYCONTROLLER).show(true,true)}return element},reposition:function apiResetPosition(element){$(element).first().data(DATA_DISPLAYCONTROLLER).resetPosition();return element},hide:function apiCloseTip(element,immediate){var displayController;immediate=element?immediate:true;if(element){displayController=$(element).first().data(DATA_DISPLAYCONTROLLER)}else if(session.activeHover){displayController=session.activeHover.data(DATA_DISPLAYCONTROLLER)}if(displayController){displayController.hide(immediate)}return element},toggle:function apiToggle(element,event){if(session.activeHover&&session.activeHover.is(element)){$.powerTip.hide(element,!isMouseEvent(event))}else{$.powerTip.show(element,event)}return element}};$.powerTip.showTip=$.powerTip.show;$.powerTip.closeTip=$.powerTip.hide;function CSSCoordinates(){var me=this;me.top="auto";me.left="auto";me.right="auto";me.bottom="auto";me.set=function(property,value){if($.isNumeric(value)){me[property]=Math.round(value)}}}function DisplayController(element,options,tipController){var hoverTimer=null,myCloseDelay=null;function openTooltip(immediate,forceOpen){cancelTimer();if(!element.data(DATA_HASACTIVEHOVER)){if(!immediate){session.tipOpenImminent=true;hoverTimer=setTimeout(function intentDelay(){hoverTimer=null;checkForIntent()},options.intentPollInterval)}else{if(forceOpen){element.data(DATA_FORCEDOPEN,true)}closeAnyDelayed();tipController.showTip(element)}}else{cancelClose()}}function closeTooltip(disableDelay){if(myCloseDelay){myCloseDelay=session.closeDelayTimeout=clearTimeout(myCloseDelay);session.delayInProgress=false}cancelTimer();session.tipOpenImminent=false;if(element.data(DATA_HASACTIVEHOVER)){element.data(DATA_FORCEDOPEN,false);if(!disableDelay){session.delayInProgress=true;session.closeDelayTimeout=setTimeout(function closeDelay(){session.closeDelayTimeout=null;tipController.hideTip(element);session.delayInProgress=false;myCloseDelay=null},options.closeDelay);myCloseDelay=session.closeDelayTimeout}else{tipController.hideTip(element)}}}function checkForIntent(){var xDifference=Math.abs(session.previousX-session.currentX),yDifference=Math.abs(session.previousY-session.currentY),totalDifference=xDifference+yDifference;if(totalDifference",{id:options.popupId});if($body.length===0){$body=$("body")}$body.append(tipElement);session.tooltips=session.tooltips?session.tooltips.add(tipElement):tipElement}if(options.followMouse){if(!tipElement.data(DATA_HASMOUSEMOVE)){$document.on("mousemove"+EVENT_NAMESPACE,positionTipOnCursor);$window.on("scroll"+EVENT_NAMESPACE,positionTipOnCursor);tipElement.data(DATA_HASMOUSEMOVE,true)}}function beginShowTip(element){element.data(DATA_HASACTIVEHOVER,true);tipElement.queue(function queueTipInit(next){showTip(element);next()})}function showTip(element){var tipContent;if(!element.data(DATA_HASACTIVEHOVER)){return}if(session.isTipOpen){if(!session.isClosing){hideTip(session.activeHover)}tipElement.delay(100).queue(function queueTipAgain(next){showTip(element);next()});return}element.trigger("powerTipPreRender");tipContent=getTooltipContent(element);if(tipContent){tipElement.empty().append(tipContent)}else{return}element.trigger("powerTipRender");session.activeHover=element;session.isTipOpen=true;tipElement.data(DATA_MOUSEONTOTIP,options.mouseOnToPopup);tipElement.addClass(options.popupClass);if(!options.followMouse||element.data(DATA_FORCEDOPEN)){positionTipOnElement(element);session.isFixedTipOpen=true}else{positionTipOnCursor()}if(!element.data(DATA_FORCEDOPEN)&&!options.followMouse){$document.on("click"+EVENT_NAMESPACE,function documentClick(event){var target=event.target;if(target!==element[0]){if(options.mouseOnToPopup){if(target!==tipElement[0]&&!$.contains(tipElement[0],target)){$.powerTip.hide()}}else{$.powerTip.hide()}}})}if(options.mouseOnToPopup&&!options.manual){tipElement.on("mouseenter"+EVENT_NAMESPACE,function tipMouseEnter(){if(session.activeHover){session.activeHover.data(DATA_DISPLAYCONTROLLER).cancel()}});tipElement.on("mouseleave"+EVENT_NAMESPACE,function tipMouseLeave(){if(session.activeHover){session.activeHover.data(DATA_DISPLAYCONTROLLER).hide()}})}tipElement.fadeIn(options.fadeInTime,function fadeInCallback(){if(!session.desyncTimeout){session.desyncTimeout=setInterval(closeDesyncedTip,500)}element.trigger("powerTipOpen")})}function hideTip(element){session.isClosing=true;session.isTipOpen=false;session.desyncTimeout=clearInterval(session.desyncTimeout);element.data(DATA_HASACTIVEHOVER,false);element.data(DATA_FORCEDOPEN,false);$document.off("click"+EVENT_NAMESPACE);tipElement.off(EVENT_NAMESPACE);tipElement.fadeOut(options.fadeOutTime,function fadeOutCallback(){var coords=new CSSCoordinates;session.activeHover=null;session.isClosing=false;session.isFixedTipOpen=false;tipElement.removeClass();coords.set("top",session.currentY+options.offset);coords.set("left",session.currentX+options.offset);tipElement.css(coords);element.trigger("powerTipClose")})}function positionTipOnCursor(){var tipWidth,tipHeight,coords,collisions,collisionCount;if(!session.isFixedTipOpen&&(session.isTipOpen||session.tipOpenImminent&&tipElement.data(DATA_HASMOUSEMOVE))){tipWidth=tipElement.outerWidth();tipHeight=tipElement.outerHeight();coords=new CSSCoordinates;coords.set("top",session.currentY+options.offset);coords.set("left",session.currentX+options.offset);collisions=getViewportCollisions(coords,tipWidth,tipHeight);if(collisions!==Collision.none){collisionCount=countFlags(collisions);if(collisionCount===1){if(collisions===Collision.right){coords.set("left",session.scrollLeft+session.windowWidth-tipWidth)}else if(collisions===Collision.bottom){coords.set("top",session.scrollTop+session.windowHeight-tipHeight)}}else{coords.set("left",session.currentX-tipWidth-options.offset);coords.set("top",session.currentY-tipHeight-options.offset)}}tipElement.css(coords)}}function positionTipOnElement(element){var priorityList,finalPlacement;if(options.smartPlacement||options.followMouse&&element.data(DATA_FORCEDOPEN)){priorityList=$.fn.powerTip.smartPlacementLists[options.placement];$.each(priorityList,function(idx,pos){var collisions=getViewportCollisions(placeTooltip(element,pos),tipElement.outerWidth(),tipElement.outerHeight());finalPlacement=pos;return collisions!==Collision.none})}else{placeTooltip(element,options.placement);finalPlacement=options.placement}tipElement.removeClass("w nw sw e ne se n s w se-alt sw-alt ne-alt nw-alt");tipElement.addClass(finalPlacement)}function placeTooltip(element,placement){var iterationCount=0,tipWidth,tipHeight,coords=new CSSCoordinates;coords.set("top",0);coords.set("left",0);tipElement.css(coords);do{tipWidth=tipElement.outerWidth();tipHeight=tipElement.outerHeight();coords=placementCalculator.compute(element,placement,tipWidth,tipHeight,options.offset);tipElement.css(coords)}while(++iterationCount<=5&&(tipWidth!==tipElement.outerWidth()||tipHeight!==tipElement.outerHeight()));return coords}function closeDesyncedTip(){var isDesynced=false,hasDesyncableCloseEvent=$.grep(["mouseleave","mouseout","blur","focusout"],function(eventType){return $.inArray(eventType,options.closeEvents)!==-1}).length>0;if(session.isTipOpen&&!session.isClosing&&!session.delayInProgress&&hasDesyncableCloseEvent){if(session.activeHover.data(DATA_HASACTIVEHOVER)===false||session.activeHover.is(":disabled")){isDesynced=true}else if(!isMouseOver(session.activeHover)&&!session.activeHover.is(":focus")&&!session.activeHover.data(DATA_FORCEDOPEN)){if(tipElement.data(DATA_MOUSEONTOTIP)){if(!isMouseOver(tipElement)){isDesynced=true}}else{isDesynced=true}}if(isDesynced){hideTip(session.activeHover)}}}this.showTip=beginShowTip;this.hideTip=hideTip;this.resetPosition=positionTipOnElement}function isSvgElement(element){return Boolean(window.SVGElement&&element[0]instanceof SVGElement)}function isMouseEvent(event){return Boolean(event&&$.inArray(event.type,MOUSE_EVENTS)>-1&&typeof event.pageX==="number")}function initTracking(){if(!session.mouseTrackingActive){session.mouseTrackingActive=true;getViewportDimensions();$(getViewportDimensions);$document.on("mousemove"+EVENT_NAMESPACE,trackMouse);$window.on("resize"+EVENT_NAMESPACE,trackResize);$window.on("scroll"+EVENT_NAMESPACE,trackScroll)}}function getViewportDimensions(){session.scrollLeft=$window.scrollLeft();session.scrollTop=$window.scrollTop();session.windowWidth=$window.width();session.windowHeight=$window.height()}function trackResize(){session.windowWidth=$window.width();session.windowHeight=$window.height()}function trackScroll(){var x=$window.scrollLeft(),y=$window.scrollTop();if(x!==session.scrollLeft){session.currentX+=x-session.scrollLeft;session.scrollLeft=x}if(y!==session.scrollTop){session.currentY+=y-session.scrollTop;session.scrollTop=y}}function trackMouse(event){session.currentX=event.pageX;session.currentY=event.pageY}function isMouseOver(element){var elementPosition=element.offset(),elementBox=element[0].getBoundingClientRect(),elementWidth=elementBox.right-elementBox.left,elementHeight=elementBox.bottom-elementBox.top;return session.currentX>=elementPosition.left&&session.currentX<=elementPosition.left+elementWidth&&session.currentY>=elementPosition.top&&session.currentY<=elementPosition.top+elementHeight}function getTooltipContent(element){var tipText=element.data(DATA_POWERTIP),tipObject=element.data(DATA_POWERTIPJQ),tipTarget=element.data(DATA_POWERTIPTARGET),targetElement,content;if(tipText){if($.isFunction(tipText)){tipText=tipText.call(element[0])}content=tipText}else if(tipObject){if($.isFunction(tipObject)){tipObject=tipObject.call(element[0])}if(tipObject.length>0){content=tipObject.clone(true,true)}}else if(tipTarget){targetElement=$("#"+tipTarget);if(targetElement.length>0){content=targetElement.html()}}return content}function getViewportCollisions(coords,elementWidth,elementHeight){var viewportTop=session.scrollTop,viewportLeft=session.scrollLeft,viewportBottom=viewportTop+session.windowHeight,viewportRight=viewportLeft+session.windowWidth,collisions=Collision.none;if(coords.topviewportBottom||Math.abs(coords.bottom-session.windowHeight)>viewportBottom){collisions|=Collision.bottom}if(coords.leftviewportRight){collisions|=Collision.left}if(coords.left+elementWidth>viewportRight||coords.right1)){a.preventDefault();var c=a.originalEvent.changedTouches[0],d=document.createEvent("MouseEvents");d.initMouseEvent(b,!0,!0,window,1,c.screenX,c.screenY,c.clientX,c.clientY,!1,!1,!1,!1,0,null),a.target.dispatchEvent(d)}}if(a.support.touch="ontouchend"in document,a.support.touch){var e,b=a.ui.mouse.prototype,c=b._mouseInit,d=b._mouseDestroy;b._touchStart=function(a){var b=this;!e&&b._mouseCapture(a.originalEvent.changedTouches[0])&&(e=!0,b._touchMoved=!1,f(a,"mouseover"),f(a,"mousemove"),f(a,"mousedown"))},b._touchMove=function(a){e&&(this._touchMoved=!0,f(a,"mousemove"))},b._touchEnd=function(a){e&&(f(a,"mouseup"),f(a,"mouseout"),this._touchMoved||f(a,"click"),e=!1)},b._mouseInit=function(){var b=this;b.element.bind({touchstart:a.proxy(b,"_touchStart"),touchmove:a.proxy(b,"_touchMove"),touchend:a.proxy(b,"_touchEnd")}),c.call(b)},b._mouseDestroy=function(){var b=this;b.element.unbind({touchstart:a.proxy(b,"_touchStart"),touchmove:a.proxy(b,"_touchMove"),touchend:a.proxy(b,"_touchEnd")}),d.call(b)}}}(jQuery);/*! SmartMenus jQuery Plugin - v1.1.0 - September 17, 2017 * http://www.smartmenus.org/ * Copyright Vasil Dinkov, Vadikom Web Ltd. http://vadikom.com; Licensed MIT */(function(t){"function"==typeof define&&define.amd?define(["jquery"],t):"object"==typeof module&&"object"==typeof module.exports?module.exports=t(require("jquery")):t(jQuery)})(function($){function initMouseDetection(t){var e=".smartmenus_mouse";if(mouseDetectionEnabled||t)mouseDetectionEnabled&&t&&($(document).off(e),mouseDetectionEnabled=!1);else{var i=!0,s=null,o={mousemove:function(t){var e={x:t.pageX,y:t.pageY,timeStamp:(new Date).getTime()};if(s){var o=Math.abs(s.x-e.x),a=Math.abs(s.y-e.y);if((o>0||a>0)&&2>=o&&2>=a&&300>=e.timeStamp-s.timeStamp&&(mouse=!0,i)){var n=$(t.target).closest("a");n.is("a")&&$.each(menuTrees,function(){return $.contains(this.$root[0],n[0])?(this.itemEnter({currentTarget:n[0]}),!1):void 0}),i=!1}}s=e}};o[touchEvents?"touchstart":"pointerover pointermove pointerout MSPointerOver MSPointerMove MSPointerOut"]=function(t){isTouchEvent(t.originalEvent)&&(mouse=!1)},$(document).on(getEventsNS(o,e)),mouseDetectionEnabled=!0}}function isTouchEvent(t){return!/^(4|mouse)$/.test(t.pointerType)}function getEventsNS(t,e){e||(e="");var i={};for(var s in t)i[s.split(" ").join(e+" ")+e]=t[s];return i}var menuTrees=[],mouse=!1,touchEvents="ontouchstart"in window,mouseDetectionEnabled=!1,requestAnimationFrame=window.requestAnimationFrame||function(t){return setTimeout(t,1e3/60)},cancelAnimationFrame=window.cancelAnimationFrame||function(t){clearTimeout(t)},canAnimate=!!$.fn.animate;return $.SmartMenus=function(t,e){this.$root=$(t),this.opts=e,this.rootId="",this.accessIdPrefix="",this.$subArrow=null,this.activatedItems=[],this.visibleSubMenus=[],this.showTimeout=0,this.hideTimeout=0,this.scrollTimeout=0,this.clickActivated=!1,this.focusActivated=!1,this.zIndexInc=0,this.idInc=0,this.$firstLink=null,this.$firstSub=null,this.disabled=!1,this.$disableOverlay=null,this.$touchScrollingSub=null,this.cssTransforms3d="perspective"in t.style||"webkitPerspective"in t.style,this.wasCollapsible=!1,this.init()},$.extend($.SmartMenus,{hideAll:function(){$.each(menuTrees,function(){this.menuHideAll()})},destroy:function(){for(;menuTrees.length;)menuTrees[0].destroy();initMouseDetection(!0)},prototype:{init:function(t){var e=this;if(!t){menuTrees.push(this),this.rootId=((new Date).getTime()+Math.random()+"").replace(/\D/g,""),this.accessIdPrefix="sm-"+this.rootId+"-",this.$root.hasClass("sm-rtl")&&(this.opts.rightToLeftSubMenus=!0);var i=".smartmenus";this.$root.data("smartmenus",this).attr("data-smartmenus-id",this.rootId).dataSM("level",1).on(getEventsNS({"mouseover focusin":$.proxy(this.rootOver,this),"mouseout focusout":$.proxy(this.rootOut,this),keydown:$.proxy(this.rootKeyDown,this)},i)).on(getEventsNS({mouseenter:$.proxy(this.itemEnter,this),mouseleave:$.proxy(this.itemLeave,this),mousedown:$.proxy(this.itemDown,this),focus:$.proxy(this.itemFocus,this),blur:$.proxy(this.itemBlur,this),click:$.proxy(this.itemClick,this)},i),"a"),i+=this.rootId,this.opts.hideOnClick&&$(document).on(getEventsNS({touchstart:$.proxy(this.docTouchStart,this),touchmove:$.proxy(this.docTouchMove,this),touchend:$.proxy(this.docTouchEnd,this),click:$.proxy(this.docClick,this)},i)),$(window).on(getEventsNS({"resize orientationchange":$.proxy(this.winResize,this)},i)),this.opts.subIndicators&&(this.$subArrow=$("").addClass("sub-arrow"),this.opts.subIndicatorsText&&this.$subArrow.html(this.opts.subIndicatorsText)),initMouseDetection()}if(this.$firstSub=this.$root.find("ul").each(function(){e.menuInit($(this))}).eq(0),this.$firstLink=this.$root.find("a").eq(0),this.opts.markCurrentItem){var s=/(index|default)\.[^#\?\/]*/i,o=/#.*/,a=window.location.href.replace(s,""),n=a.replace(o,"");this.$root.find("a").each(function(){var t=this.href.replace(s,""),i=$(this);(t==a||t==n)&&(i.addClass("current"),e.opts.markCurrentTree&&i.parentsUntil("[data-smartmenus-id]","ul").each(function(){$(this).dataSM("parent-a").addClass("current")}))})}this.wasCollapsible=this.isCollapsible()},destroy:function(t){if(!t){var e=".smartmenus";this.$root.removeData("smartmenus").removeAttr("data-smartmenus-id").removeDataSM("level").off(e),e+=this.rootId,$(document).off(e),$(window).off(e),this.opts.subIndicators&&(this.$subArrow=null)}this.menuHideAll();var i=this;this.$root.find("ul").each(function(){var t=$(this);t.dataSM("scroll-arrows")&&t.dataSM("scroll-arrows").remove(),t.dataSM("shown-before")&&((i.opts.subMenusMinWidth||i.opts.subMenusMaxWidth)&&t.css({width:"",minWidth:"",maxWidth:""}).removeClass("sm-nowrap"),t.dataSM("scroll-arrows")&&t.dataSM("scroll-arrows").remove(),t.css({zIndex:"",top:"",left:"",marginLeft:"",marginTop:"",display:""})),0==(t.attr("id")||"").indexOf(i.accessIdPrefix)&&t.removeAttr("id")}).removeDataSM("in-mega").removeDataSM("shown-before").removeDataSM("scroll-arrows").removeDataSM("parent-a").removeDataSM("level").removeDataSM("beforefirstshowfired").removeAttr("role").removeAttr("aria-hidden").removeAttr("aria-labelledby").removeAttr("aria-expanded"),this.$root.find("a.has-submenu").each(function(){var t=$(this);0==t.attr("id").indexOf(i.accessIdPrefix)&&t.removeAttr("id")}).removeClass("has-submenu").removeDataSM("sub").removeAttr("aria-haspopup").removeAttr("aria-controls").removeAttr("aria-expanded").closest("li").removeDataSM("sub"),this.opts.subIndicators&&this.$root.find("span.sub-arrow").remove(),this.opts.markCurrentItem&&this.$root.find("a.current").removeClass("current"),t||(this.$root=null,this.$firstLink=null,this.$firstSub=null,this.$disableOverlay&&(this.$disableOverlay.remove(),this.$disableOverlay=null),menuTrees.splice($.inArray(this,menuTrees),1))},disable:function(t){if(!this.disabled){if(this.menuHideAll(),!t&&!this.opts.isPopup&&this.$root.is(":visible")){var e=this.$root.offset();this.$disableOverlay=$('
').css({position:"absolute",top:e.top,left:e.left,width:this.$root.outerWidth(),height:this.$root.outerHeight(),zIndex:this.getStartZIndex(!0),opacity:0}).appendTo(document.body)}this.disabled=!0}},docClick:function(t){return this.$touchScrollingSub?(this.$touchScrollingSub=null,void 0):((this.visibleSubMenus.length&&!$.contains(this.$root[0],t.target)||$(t.target).closest("a").length)&&this.menuHideAll(),void 0)},docTouchEnd:function(){if(this.lastTouch){if(!(!this.visibleSubMenus.length||void 0!==this.lastTouch.x2&&this.lastTouch.x1!=this.lastTouch.x2||void 0!==this.lastTouch.y2&&this.lastTouch.y1!=this.lastTouch.y2||this.lastTouch.target&&$.contains(this.$root[0],this.lastTouch.target))){this.hideTimeout&&(clearTimeout(this.hideTimeout),this.hideTimeout=0);var t=this;this.hideTimeout=setTimeout(function(){t.menuHideAll()},350)}this.lastTouch=null}},docTouchMove:function(t){if(this.lastTouch){var e=t.originalEvent.touches[0];this.lastTouch.x2=e.pageX,this.lastTouch.y2=e.pageY}},docTouchStart:function(t){var e=t.originalEvent.touches[0];this.lastTouch={x1:e.pageX,y1:e.pageY,target:e.target}},enable:function(){this.disabled&&(this.$disableOverlay&&(this.$disableOverlay.remove(),this.$disableOverlay=null),this.disabled=!1)},getClosestMenu:function(t){for(var e=$(t).closest("ul");e.dataSM("in-mega");)e=e.parent().closest("ul");return e[0]||null},getHeight:function(t){return this.getOffset(t,!0)},getOffset:function(t,e){var i;"none"==t.css("display")&&(i={position:t[0].style.position,visibility:t[0].style.visibility},t.css({position:"absolute",visibility:"hidden"}).show());var s=t[0].getBoundingClientRect&&t[0].getBoundingClientRect(),o=s&&(e?s.height||s.bottom-s.top:s.width||s.right-s.left);return o||0===o||(o=e?t[0].offsetHeight:t[0].offsetWidth),i&&t.hide().css(i),o},getStartZIndex:function(t){var e=parseInt(this[t?"$root":"$firstSub"].css("z-index"));return!t&&isNaN(e)&&(e=parseInt(this.$root.css("z-index"))),isNaN(e)?1:e},getTouchPoint:function(t){return t.touches&&t.touches[0]||t.changedTouches&&t.changedTouches[0]||t},getViewport:function(t){var e=t?"Height":"Width",i=document.documentElement["client"+e],s=window["inner"+e];return s&&(i=Math.min(i,s)),i},getViewportHeight:function(){return this.getViewport(!0)},getViewportWidth:function(){return this.getViewport()},getWidth:function(t){return this.getOffset(t)},handleEvents:function(){return!this.disabled&&this.isCSSOn()},handleItemEvents:function(t){return this.handleEvents()&&!this.isLinkInMegaMenu(t)},isCollapsible:function(){return"static"==this.$firstSub.css("position")},isCSSOn:function(){return"inline"!=this.$firstLink.css("display")},isFixed:function(){var t="fixed"==this.$root.css("position");return t||this.$root.parentsUntil("body").each(function(){return"fixed"==$(this).css("position")?(t=!0,!1):void 0}),t},isLinkInMegaMenu:function(t){return $(this.getClosestMenu(t[0])).hasClass("mega-menu")},isTouchMode:function(){return!mouse||this.opts.noMouseOver||this.isCollapsible()},itemActivate:function(t,e){var i=t.closest("ul"),s=i.dataSM("level");if(s>1&&(!this.activatedItems[s-2]||this.activatedItems[s-2][0]!=i.dataSM("parent-a")[0])){var o=this;$(i.parentsUntil("[data-smartmenus-id]","ul").get().reverse()).add(i).each(function(){o.itemActivate($(this).dataSM("parent-a"))})}if((!this.isCollapsible()||e)&&this.menuHideSubMenus(this.activatedItems[s-1]&&this.activatedItems[s-1][0]==t[0]?s:s-1),this.activatedItems[s-1]=t,this.$root.triggerHandler("activate.smapi",t[0])!==!1){var a=t.dataSM("sub");a&&(this.isTouchMode()||!this.opts.showOnClick||this.clickActivated)&&this.menuShow(a)}},itemBlur:function(t){var e=$(t.currentTarget);this.handleItemEvents(e)&&this.$root.triggerHandler("blur.smapi",e[0])},itemClick:function(t){var e=$(t.currentTarget);if(this.handleItemEvents(e)){if(this.$touchScrollingSub&&this.$touchScrollingSub[0]==e.closest("ul")[0])return this.$touchScrollingSub=null,t.stopPropagation(),!1;if(this.$root.triggerHandler("click.smapi",e[0])===!1)return!1;var i=$(t.target).is(".sub-arrow"),s=e.dataSM("sub"),o=s?2==s.dataSM("level"):!1,a=this.isCollapsible(),n=/toggle$/.test(this.opts.collapsibleBehavior),r=/link$/.test(this.opts.collapsibleBehavior),h=/^accordion/.test(this.opts.collapsibleBehavior);if(s&&!s.is(":visible")){if((!r||!a||i)&&(this.opts.showOnClick&&o&&(this.clickActivated=!0),this.itemActivate(e,h),s.is(":visible")))return this.focusActivated=!0,!1}else if(a&&(n||i))return this.itemActivate(e,h),this.menuHide(s),n&&(this.focusActivated=!1),!1;return this.opts.showOnClick&&o||e.hasClass("disabled")||this.$root.triggerHandler("select.smapi",e[0])===!1?!1:void 0}},itemDown:function(t){var e=$(t.currentTarget);this.handleItemEvents(e)&&e.dataSM("mousedown",!0)},itemEnter:function(t){var e=$(t.currentTarget);if(this.handleItemEvents(e)){if(!this.isTouchMode()){this.showTimeout&&(clearTimeout(this.showTimeout),this.showTimeout=0);var i=this;this.showTimeout=setTimeout(function(){i.itemActivate(e)},this.opts.showOnClick&&1==e.closest("ul").dataSM("level")?1:this.opts.showTimeout)}this.$root.triggerHandler("mouseenter.smapi",e[0])}},itemFocus:function(t){var e=$(t.currentTarget);this.handleItemEvents(e)&&(!this.focusActivated||this.isTouchMode()&&e.dataSM("mousedown")||this.activatedItems.length&&this.activatedItems[this.activatedItems.length-1][0]==e[0]||this.itemActivate(e,!0),this.$root.triggerHandler("focus.smapi",e[0]))},itemLeave:function(t){var e=$(t.currentTarget);this.handleItemEvents(e)&&(this.isTouchMode()||(e[0].blur(),this.showTimeout&&(clearTimeout(this.showTimeout),this.showTimeout=0)),e.removeDataSM("mousedown"),this.$root.triggerHandler("mouseleave.smapi",e[0]))},menuHide:function(t){if(this.$root.triggerHandler("beforehide.smapi",t[0])!==!1&&(canAnimate&&t.stop(!0,!0),"none"!=t.css("display"))){var e=function(){t.css("z-index","")};this.isCollapsible()?canAnimate&&this.opts.collapsibleHideFunction?this.opts.collapsibleHideFunction.call(this,t,e):t.hide(this.opts.collapsibleHideDuration,e):canAnimate&&this.opts.hideFunction?this.opts.hideFunction.call(this,t,e):t.hide(this.opts.hideDuration,e),t.dataSM("scroll")&&(this.menuScrollStop(t),t.css({"touch-action":"","-ms-touch-action":"","-webkit-transform":"",transform:""}).off(".smartmenus_scroll").removeDataSM("scroll").dataSM("scroll-arrows").hide()),t.dataSM("parent-a").removeClass("highlighted").attr("aria-expanded","false"),t.attr({"aria-expanded":"false","aria-hidden":"true"});var i=t.dataSM("level");this.activatedItems.splice(i-1,1),this.visibleSubMenus.splice($.inArray(t,this.visibleSubMenus),1),this.$root.triggerHandler("hide.smapi",t[0])}},menuHideAll:function(){this.showTimeout&&(clearTimeout(this.showTimeout),this.showTimeout=0);for(var t=this.opts.isPopup?1:0,e=this.visibleSubMenus.length-1;e>=t;e--)this.menuHide(this.visibleSubMenus[e]);this.opts.isPopup&&(canAnimate&&this.$root.stop(!0,!0),this.$root.is(":visible")&&(canAnimate&&this.opts.hideFunction?this.opts.hideFunction.call(this,this.$root):this.$root.hide(this.opts.hideDuration))),this.activatedItems=[],this.visibleSubMenus=[],this.clickActivated=!1,this.focusActivated=!1,this.zIndexInc=0,this.$root.triggerHandler("hideAll.smapi")},menuHideSubMenus:function(t){for(var e=this.activatedItems.length-1;e>=t;e--){var i=this.activatedItems[e].dataSM("sub");i&&this.menuHide(i)}},menuInit:function(t){if(!t.dataSM("in-mega")){t.hasClass("mega-menu")&&t.find("ul").dataSM("in-mega",!0);for(var e=2,i=t[0];(i=i.parentNode.parentNode)!=this.$root[0];)e++;var s=t.prevAll("a").eq(-1);s.length||(s=t.prevAll().find("a").eq(-1)),s.addClass("has-submenu").dataSM("sub",t),t.dataSM("parent-a",s).dataSM("level",e).parent().dataSM("sub",t);var o=s.attr("id")||this.accessIdPrefix+ ++this.idInc,a=t.attr("id")||this.accessIdPrefix+ ++this.idInc;s.attr({id:o,"aria-haspopup":"true","aria-controls":a,"aria-expanded":"false"}),t.attr({id:a,role:"group","aria-hidden":"true","aria-labelledby":o,"aria-expanded":"false"}),this.opts.subIndicators&&s[this.opts.subIndicatorsPos](this.$subArrow.clone())}},menuPosition:function(t){var e,i,s=t.dataSM("parent-a"),o=s.closest("li"),a=o.parent(),n=t.dataSM("level"),r=this.getWidth(t),h=this.getHeight(t),u=s.offset(),l=u.left,c=u.top,d=this.getWidth(s),m=this.getHeight(s),p=$(window),f=p.scrollLeft(),v=p.scrollTop(),b=this.getViewportWidth(),S=this.getViewportHeight(),g=a.parent().is("[data-sm-horizontal-sub]")||2==n&&!a.hasClass("sm-vertical"),M=this.opts.rightToLeftSubMenus&&!o.is("[data-sm-reverse]")||!this.opts.rightToLeftSubMenus&&o.is("[data-sm-reverse]"),w=2==n?this.opts.mainMenuSubOffsetX:this.opts.subMenusSubOffsetX,T=2==n?this.opts.mainMenuSubOffsetY:this.opts.subMenusSubOffsetY;if(g?(e=M?d-r-w:w,i=this.opts.bottomToTopSubMenus?-h-T:m+T):(e=M?w-r:d-w,i=this.opts.bottomToTopSubMenus?m-T-h:T),this.opts.keepInViewport){var y=l+e,I=c+i;if(M&&f>y?e=g?f-y+e:d-w:!M&&y+r>f+b&&(e=g?f+b-r-y+e:w-r),g||(S>h&&I+h>v+S?i+=v+S-h-I:(h>=S||v>I)&&(i+=v-I)),g&&(I+h>v+S+.49||v>I)||!g&&h>S+.49){var x=this;t.dataSM("scroll-arrows")||t.dataSM("scroll-arrows",$([$('')[0],$('')[0]]).on({mouseenter:function(){t.dataSM("scroll").up=$(this).hasClass("scroll-up"),x.menuScroll(t)},mouseleave:function(e){x.menuScrollStop(t),x.menuScrollOut(t,e)},"mousewheel DOMMouseScroll":function(t){t.preventDefault()}}).insertAfter(t));var A=".smartmenus_scroll";if(t.dataSM("scroll",{y:this.cssTransforms3d?0:i-m,step:1,itemH:m,subH:h,arrowDownH:this.getHeight(t.dataSM("scroll-arrows").eq(1))}).on(getEventsNS({mouseover:function(e){x.menuScrollOver(t,e)},mouseout:function(e){x.menuScrollOut(t,e)},"mousewheel DOMMouseScroll":function(e){x.menuScrollMousewheel(t,e)}},A)).dataSM("scroll-arrows").css({top:"auto",left:"0",marginLeft:e+(parseInt(t.css("border-left-width"))||0),width:r-(parseInt(t.css("border-left-width"))||0)-(parseInt(t.css("border-right-width"))||0),zIndex:t.css("z-index")}).eq(g&&this.opts.bottomToTopSubMenus?0:1).show(),this.isFixed()){var C={};C[touchEvents?"touchstart touchmove touchend":"pointerdown pointermove pointerup MSPointerDown MSPointerMove MSPointerUp"]=function(e){x.menuScrollTouch(t,e)},t.css({"touch-action":"none","-ms-touch-action":"none"}).on(getEventsNS(C,A))}}}t.css({top:"auto",left:"0",marginLeft:e,marginTop:i-m})},menuScroll:function(t,e,i){var s,o=t.dataSM("scroll"),a=t.dataSM("scroll-arrows"),n=o.up?o.upEnd:o.downEnd;if(!e&&o.momentum){if(o.momentum*=.92,s=o.momentum,.5>s)return this.menuScrollStop(t),void 0}else s=i||(e||!this.opts.scrollAccelerate?this.opts.scrollStep:Math.floor(o.step));var r=t.dataSM("level");if(this.activatedItems[r-1]&&this.activatedItems[r-1].dataSM("sub")&&this.activatedItems[r-1].dataSM("sub").is(":visible")&&this.menuHideSubMenus(r-1),o.y=o.up&&o.y>=n||!o.up&&n>=o.y?o.y:Math.abs(n-o.y)>s?o.y+(o.up?s:-s):n,t.css(this.cssTransforms3d?{"-webkit-transform":"translate3d(0, "+o.y+"px, 0)",transform:"translate3d(0, "+o.y+"px, 0)"}:{marginTop:o.y}),mouse&&(o.up&&o.y>o.downEnd||!o.up&&o.y0;t.dataSM("scroll-arrows").eq(i?0:1).is(":visible")&&(t.dataSM("scroll").up=i,this.menuScroll(t,!0))}e.preventDefault()},menuScrollOut:function(t,e){mouse&&(/^scroll-(up|down)/.test((e.relatedTarget||"").className)||(t[0]==e.relatedTarget||$.contains(t[0],e.relatedTarget))&&this.getClosestMenu(e.relatedTarget)==t[0]||t.dataSM("scroll-arrows").css("visibility","hidden"))},menuScrollOver:function(t,e){if(mouse&&!/^scroll-(up|down)/.test(e.target.className)&&this.getClosestMenu(e.target)==t[0]){this.menuScrollRefreshData(t);var i=t.dataSM("scroll"),s=$(window).scrollTop()-t.dataSM("parent-a").offset().top-i.itemH;t.dataSM("scroll-arrows").eq(0).css("margin-top",s).end().eq(1).css("margin-top",s+this.getViewportHeight()-i.arrowDownH).end().css("visibility","visible")}},menuScrollRefreshData:function(t){var e=t.dataSM("scroll"),i=$(window).scrollTop()-t.dataSM("parent-a").offset().top-e.itemH;this.cssTransforms3d&&(i=-(parseFloat(t.css("margin-top"))-i)),$.extend(e,{upEnd:i,downEnd:i+this.getViewportHeight()-e.subH})},menuScrollStop:function(t){return this.scrollTimeout?(cancelAnimationFrame(this.scrollTimeout),this.scrollTimeout=0,t.dataSM("scroll").step=1,!0):void 0},menuScrollTouch:function(t,e){if(e=e.originalEvent,isTouchEvent(e)){var i=this.getTouchPoint(e);if(this.getClosestMenu(i.target)==t[0]){var s=t.dataSM("scroll");if(/(start|down)$/i.test(e.type))this.menuScrollStop(t)?(e.preventDefault(),this.$touchScrollingSub=t):this.$touchScrollingSub=null,this.menuScrollRefreshData(t),$.extend(s,{touchStartY:i.pageY,touchStartTime:e.timeStamp});else if(/move$/i.test(e.type)){var o=void 0!==s.touchY?s.touchY:s.touchStartY;if(void 0!==o&&o!=i.pageY){this.$touchScrollingSub=t;var a=i.pageY>o;void 0!==s.up&&s.up!=a&&$.extend(s,{touchStartY:i.pageY,touchStartTime:e.timeStamp}),$.extend(s,{up:a,touchY:i.pageY}),this.menuScroll(t,!0,Math.abs(i.pageY-o))}e.preventDefault()}else void 0!==s.touchY&&((s.momentum=15*Math.pow(Math.abs(i.pageY-s.touchStartY)/(e.timeStamp-s.touchStartTime),2))&&(this.menuScrollStop(t),this.menuScroll(t),e.preventDefault()),delete s.touchY)}}},menuShow:function(t){if((t.dataSM("beforefirstshowfired")||(t.dataSM("beforefirstshowfired",!0),this.$root.triggerHandler("beforefirstshow.smapi",t[0])!==!1))&&this.$root.triggerHandler("beforeshow.smapi",t[0])!==!1&&(t.dataSM("shown-before",!0),canAnimate&&t.stop(!0,!0),!t.is(":visible"))){var e=t.dataSM("parent-a"),i=this.isCollapsible();if((this.opts.keepHighlighted||i)&&e.addClass("highlighted"),i)t.removeClass("sm-nowrap").css({zIndex:"",width:"auto",minWidth:"",maxWidth:"",top:"",left:"",marginLeft:"",marginTop:""});else{if(t.css("z-index",this.zIndexInc=(this.zIndexInc||this.getStartZIndex())+1),(this.opts.subMenusMinWidth||this.opts.subMenusMaxWidth)&&(t.css({width:"auto",minWidth:"",maxWidth:""}).addClass("sm-nowrap"),this.opts.subMenusMinWidth&&t.css("min-width",this.opts.subMenusMinWidth),this.opts.subMenusMaxWidth)){var s=this.getWidth(t);t.css("max-width",this.opts.subMenusMaxWidth),s>this.getWidth(t)&&t.removeClass("sm-nowrap").css("width",this.opts.subMenusMaxWidth)}this.menuPosition(t)}var o=function(){t.css("overflow","")};i?canAnimate&&this.opts.collapsibleShowFunction?this.opts.collapsibleShowFunction.call(this,t,o):t.show(this.opts.collapsibleShowDuration,o):canAnimate&&this.opts.showFunction?this.opts.showFunction.call(this,t,o):t.show(this.opts.showDuration,o),e.attr("aria-expanded","true"),t.attr({"aria-expanded":"true","aria-hidden":"false"}),this.visibleSubMenus.push(t),this.$root.triggerHandler("show.smapi",t[0])}},popupHide:function(t){this.hideTimeout&&(clearTimeout(this.hideTimeout),this.hideTimeout=0);var e=this;this.hideTimeout=setTimeout(function(){e.menuHideAll()},t?1:this.opts.hideTimeout)},popupShow:function(t,e){if(!this.opts.isPopup)return alert('SmartMenus jQuery Error:\n\nIf you want to show this menu via the "popupShow" method, set the isPopup:true option.'),void 0;if(this.hideTimeout&&(clearTimeout(this.hideTimeout),this.hideTimeout=0),this.$root.dataSM("shown-before",!0),canAnimate&&this.$root.stop(!0,!0),!this.$root.is(":visible")){this.$root.css({left:t,top:e});var i=this,s=function(){i.$root.css("overflow","")};canAnimate&&this.opts.showFunction?this.opts.showFunction.call(this,this.$root,s):this.$root.show(this.opts.showDuration,s),this.visibleSubMenus[0]=this.$root}},refresh:function(){this.destroy(!0),this.init(!0)},rootKeyDown:function(t){if(this.handleEvents())switch(t.keyCode){case 27:var e=this.activatedItems[0];if(e){this.menuHideAll(),e[0].focus();var i=e.dataSM("sub");i&&this.menuHide(i)}break;case 32:var s=$(t.target);if(s.is("a")&&this.handleItemEvents(s)){var i=s.dataSM("sub");i&&!i.is(":visible")&&(this.itemClick({currentTarget:t.target}),t.preventDefault())}}},rootOut:function(t){if(this.handleEvents()&&!this.isTouchMode()&&t.target!=this.$root[0]&&(this.hideTimeout&&(clearTimeout(this.hideTimeout),this.hideTimeout=0),!this.opts.showOnClick||!this.opts.hideOnClick)){var e=this;this.hideTimeout=setTimeout(function(){e.menuHideAll()},this.opts.hideTimeout)}},rootOver:function(t){this.handleEvents()&&!this.isTouchMode()&&t.target!=this.$root[0]&&this.hideTimeout&&(clearTimeout(this.hideTimeout),this.hideTimeout=0)},winResize:function(t){if(this.handleEvents()){if(!("onorientationchange"in window)||"orientationchange"==t.type){var e=this.isCollapsible();this.wasCollapsible&&e||(this.activatedItems.length&&this.activatedItems[this.activatedItems.length-1][0].blur(),this.menuHideAll()),this.wasCollapsible=e}}else if(this.$disableOverlay){var i=this.$root.offset();this.$disableOverlay.css({top:i.top,left:i.left,width:this.$root.outerWidth(),height:this.$root.outerHeight()})}}}}),$.fn.dataSM=function(t,e){return e?this.data(t+"_smartmenus",e):this.data(t+"_smartmenus")},$.fn.removeDataSM=function(t){return this.removeData(t+"_smartmenus")},$.fn.smartmenus=function(options){if("string"==typeof options){var args=arguments,method=options;return Array.prototype.shift.call(args),this.each(function(){var t=$(this).data("smartmenus");t&&t[method]&&t[method].apply(t,args)})}return this.each(function(){var dataOpts=$(this).data("sm-options")||null;if(dataOpts)try{dataOpts=eval("("+dataOpts+")")}catch(e){dataOpts=null,alert('ERROR\n\nSmartMenus jQuery init:\nInvalid "data-sm-options" attribute value syntax.')}new $.SmartMenus(this,$.extend({},$.fn.smartmenus.defaults,options,dataOpts))})},$.fn.smartmenus.defaults={isPopup:!1,mainMenuSubOffsetX:0,mainMenuSubOffsetY:0,subMenusSubOffsetX:0,subMenusSubOffsetY:0,subMenusMinWidth:"10em",subMenusMaxWidth:"20em",subIndicators:!0,subIndicatorsPos:"append",subIndicatorsText:"",scrollStep:30,scrollAccelerate:!0,showTimeout:250,hideTimeout:500,showDuration:0,showFunction:null,hideDuration:0,hideFunction:function(t,e){t.fadeOut(200,e)},collapsibleShowDuration:0,collapsibleShowFunction:function(t,e){t.slideDown(200,e)},collapsibleHideDuration:0,collapsibleHideFunction:function(t,e){t.slideUp(200,e)},showOnClick:!1,hideOnClick:!0,noMouseOver:!1,keepInViewport:!0,keepHighlighted:!0,markCurrentItem:!1,markCurrentTree:!0,rightToLeftSubMenus:!1,bottomToTopSubMenus:!1,collapsibleBehavior:"default"},$});libjpeg-turbo-2.1.5/doc/html/menu.js000066400000000000000000000062261436506551100173130ustar00rootroot00000000000000/* @licstart The following is the entire license notice for the JavaScript code in this file. The MIT License (MIT) Copyright (C) 1997-2020 by Dimitri van Heesch Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. @licend The above is the entire license notice for the JavaScript code in this file */ function initMenu(relPath,searchEnabled,serverSide,searchPage,search) { function makeTree(data,relPath) { var result=''; if ('children' in data) { result+=''; } return result; } $('#main-nav').append(makeTree(menudata,relPath)); $('#main-nav').children(':first').addClass('sm sm-dox').attr('id','main-menu'); if (searchEnabled) { if (serverSide) { $('#main-menu').append('
  • '); } else { $('#main-menu').append('
  • '); } } $('#main-menu').smartmenus(); } /* @license-end */ libjpeg-turbo-2.1.5/doc/html/menudata.js000066400000000000000000000032241436506551100201400ustar00rootroot00000000000000/* @licstart The following is the entire license notice for the JavaScript code in this file. The MIT License (MIT) Copyright (C) 1997-2020 by Dimitri van Heesch Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. @licend The above is the entire license notice for the JavaScript code in this file */ var menudata={children:[ {text:"Main Page",url:"index.html"}, {text:"Modules",url:"modules.html"}, {text:"Data Structures",url:"annotated.html",children:[ {text:"Data Structures",url:"annotated.html"}, {text:"Data Structure Index",url:"classes.html"}, {text:"Data Fields",url:"functions.html",children:[ {text:"All",url:"functions.html"}, {text:"Variables",url:"functions_vars.html"}]}]}]} libjpeg-turbo-2.1.5/doc/html/modules.html000066400000000000000000000063701436506551100203470ustar00rootroot00000000000000 TurboJPEG: Modules
    TurboJPEG  2.1.4
    Modules
    Here is a list of all modules:
     TurboJPEGTurboJPEG API
    libjpeg-turbo-2.1.5/doc/html/nav_f.png000066400000000000000000000002311436506551100175760ustar00rootroot00000000000000‰PNG  IHDR8³»`IDATxíÝK€ EÑ–·[†øBÑmkâÄÂH—prÓ¼.‚Žó‚ꎤR6Z VI±E‚5j³„lóš›iI˜¬ÞêçJ0ŒÑÑ/Žû›™uøñóÞ¿6sH ÝõyIEND®B`‚libjpeg-turbo-2.1.5/doc/html/nav_g.png000066400000000000000000000001371436506551100176040ustar00rootroot00000000000000‰PNG  IHDRô1&IDATxíÝ1 ÁOHf„á_ ->~¸åM iËMèÀƒS½ü‚<IEND®B`‚libjpeg-turbo-2.1.5/doc/html/nav_h.png000066400000000000000000000001421436506551100176010ustar00rootroot00000000000000‰PNG  IHDR ,é@)IDATxíÝA @BQ­³šÛ›Ð¢Žáà) )ëý éaÅèÜ¿Æo‡RlÐßIEND®B`‚libjpeg-turbo-2.1.5/doc/html/open.png000066400000000000000000000001731436506551100174530ustar00rootroot00000000000000‰PNG  IHDR à‘BIDATxíÝÁ €0 Ð׬ՙ\Àº€39—b!©9{|ðI>$#Àß´ý8/¨ÄØzƒ/Ï>2À[ÎgiU,/¬~¼Ï\ Ä9Ù¸IEND®B`‚libjpeg-turbo-2.1.5/doc/html/search/000077500000000000000000000000001436506551100172505ustar00rootroot00000000000000libjpeg-turbo-2.1.5/doc/html/search/all_0.html000066400000000000000000000026161436506551100211320ustar00rootroot00000000000000
    Loading...
    Searching...
    No Matches
    libjpeg-turbo-2.1.5/doc/html/search/all_0.js000066400000000000000000000002131436506551100205710ustar00rootroot00000000000000var searchData= [ ['customfilter_0',['customFilter',['../structtjtransform.html#afd7fc262df33f741e120ef4183202ef5',1,'tjtransform']]] ]; libjpeg-turbo-2.1.5/doc/html/search/all_1.html000066400000000000000000000026161436506551100211330ustar00rootroot00000000000000
    Loading...
    Searching...
    No Matches
    libjpeg-turbo-2.1.5/doc/html/search/all_1.js000066400000000000000000000003541436506551100206000ustar00rootroot00000000000000var searchData= [ ['data_1',['data',['../structtjtransform.html#a688fe8f1a8ecc12a538d9e561cf338e3',1,'tjtransform']]], ['denom_2',['denom',['../structtjscalingfactor.html#aefbcdf3e9e62274b2d312c695f133ce3',1,'tjscalingfactor']]] ]; libjpeg-turbo-2.1.5/doc/html/search/all_2.html000066400000000000000000000026161436506551100211340ustar00rootroot00000000000000
    Loading...
    Searching...
    No Matches
    libjpeg-turbo-2.1.5/doc/html/search/all_2.js000066400000000000000000000001571436506551100206020ustar00rootroot00000000000000var searchData= [ ['h_3',['h',['../structtjregion.html#aecefc45a26f4d8b60dd4d825c1710115',1,'tjregion']]] ]; libjpeg-turbo-2.1.5/doc/html/search/all_3.html000066400000000000000000000026161436506551100211350ustar00rootroot00000000000000
    Loading...
    Searching...
    No Matches
    libjpeg-turbo-2.1.5/doc/html/search/all_3.js000066400000000000000000000002011436506551100205710ustar00rootroot00000000000000var searchData= [ ['num_4',['num',['../structtjscalingfactor.html#a9b011e57f981ee23083e2c1aa5e640ec',1,'tjscalingfactor']]] ]; libjpeg-turbo-2.1.5/doc/html/search/all_4.html000066400000000000000000000026161436506551100211360ustar00rootroot00000000000000
    Loading...
    Searching...
    No Matches
    libjpeg-turbo-2.1.5/doc/html/search/all_4.js000066400000000000000000000003441436506551100206020ustar00rootroot00000000000000var searchData= [ ['op_5',['op',['../structtjtransform.html#a2525aab4ba6978a1c273f74fef50e498',1,'tjtransform']]], ['options_6',['options',['../structtjtransform.html#ac0e74655baa4402209a21e1ae481c8f6',1,'tjtransform']]] ]; libjpeg-turbo-2.1.5/doc/html/search/all_5.html000066400000000000000000000026161436506551100211370ustar00rootroot00000000000000
    Loading...
    Searching...
    No Matches
    libjpeg-turbo-2.1.5/doc/html/search/all_5.js000066400000000000000000000001651436506551100206040ustar00rootroot00000000000000var searchData= [ ['r_7',['r',['../structtjtransform.html#ac324e5e442abec8a961e5bf219db12cf',1,'tjtransform']]] ]; libjpeg-turbo-2.1.5/doc/html/search/all_6.html000066400000000000000000000026161436506551100211400ustar00rootroot00000000000000
    Loading...
    Searching...
    No Matches
    libjpeg-turbo-2.1.5/doc/html/search/all_6.js000066400000000000000000000331341436506551100206070ustar00rootroot00000000000000var searchData= [ ['tj_5fnumcs_8',['TJ_NUMCS',['../group___turbo_j_p_e_g.html#ga39f57a6fb02d9cf32e7b6890099b5a71',1,'turbojpeg.h']]], ['tj_5fnumerr_9',['TJ_NUMERR',['../group___turbo_j_p_e_g.html#ga79bde1b4a3e2351e00887e47781b966e',1,'turbojpeg.h']]], ['tj_5fnumpf_10',['TJ_NUMPF',['../group___turbo_j_p_e_g.html#ga7010a4402f54a45ba822ad8675a4655e',1,'turbojpeg.h']]], ['tj_5fnumsamp_11',['TJ_NUMSAMP',['../group___turbo_j_p_e_g.html#ga5ef3d169162ce77ce348e292a0b7477c',1,'turbojpeg.h']]], ['tj_5fnumxop_12',['TJ_NUMXOP',['../group___turbo_j_p_e_g.html#ga0f6dbd18adf38b7d46ac547f0f4d562c',1,'turbojpeg.h']]], ['tjalloc_13',['tjAlloc',['../group___turbo_j_p_e_g.html#gaec627dd4c5f30b7a775a7aea3bec5d83',1,'turbojpeg.h']]], ['tjalphaoffset_14',['tjAlphaOffset',['../group___turbo_j_p_e_g.html#ga5af0ab065feefd526debf1e20c43e837',1,'turbojpeg.h']]], ['tjblueoffset_15',['tjBlueOffset',['../group___turbo_j_p_e_g.html#ga84e2e35d3f08025f976ec1ec53693dea',1,'turbojpeg.h']]], ['tjbufsize_16',['tjBufSize',['../group___turbo_j_p_e_g.html#ga67ac12fee79073242cb216e07c9f1f90',1,'turbojpeg.h']]], ['tjbufsizeyuv2_17',['tjBufSizeYUV2',['../group___turbo_j_p_e_g.html#ga5e5aac9e8bcf17049279301e2466474c',1,'turbojpeg.h']]], ['tjcompress2_18',['tjCompress2',['../group___turbo_j_p_e_g.html#gafbdce0112fd78fd38efae841443a9bcf',1,'turbojpeg.h']]], ['tjcompressfromyuv_19',['tjCompressFromYUV',['../group___turbo_j_p_e_g.html#gab40f5096a72fd7e5bda9d6b58fa37e2e',1,'turbojpeg.h']]], ['tjcompressfromyuvplanes_20',['tjCompressFromYUVPlanes',['../group___turbo_j_p_e_g.html#ga29ec5dfbd2d84b8724e951d6fa0d5d9e',1,'turbojpeg.h']]], ['tjcs_21',['TJCS',['../group___turbo_j_p_e_g.html#ga4f83ad3368e0e29d1957be0efa7c3720',1,'turbojpeg.h']]], ['tjcs_5fcmyk_22',['TJCS_CMYK',['../group___turbo_j_p_e_g.html#gga4f83ad3368e0e29d1957be0efa7c3720a6c8b636152ac8195b869587db315ee53',1,'turbojpeg.h']]], ['tjcs_5fgray_23',['TJCS_GRAY',['../group___turbo_j_p_e_g.html#gga4f83ad3368e0e29d1957be0efa7c3720ab3e7d6a87f695e45b81c1b5262b5a50a',1,'turbojpeg.h']]], ['tjcs_5frgb_24',['TJCS_RGB',['../group___turbo_j_p_e_g.html#gga4f83ad3368e0e29d1957be0efa7c3720a677cb7ccb85c4038ac41964a2e09e555',1,'turbojpeg.h']]], ['tjcs_5fycbcr_25',['TJCS_YCbCr',['../group___turbo_j_p_e_g.html#gga4f83ad3368e0e29d1957be0efa7c3720a7389b8f65bb387ffedce3efd0d78ec75',1,'turbojpeg.h']]], ['tjcs_5fycck_26',['TJCS_YCCK',['../group___turbo_j_p_e_g.html#gga4f83ad3368e0e29d1957be0efa7c3720a53839e0fe867b76b58d16b0a1a7c598e',1,'turbojpeg.h']]], ['tjdecodeyuv_27',['tjDecodeYUV',['../group___turbo_j_p_e_g.html#ga97c2cedc1e2bade15a84164c94e503c1',1,'turbojpeg.h']]], ['tjdecodeyuvplanes_28',['tjDecodeYUVPlanes',['../group___turbo_j_p_e_g.html#ga10e837c07fa9d25770565b237d3898d9',1,'turbojpeg.h']]], ['tjdecompress2_29',['tjDecompress2',['../group___turbo_j_p_e_g.html#gae9eccef8b682a48f43a9117c231ed013',1,'turbojpeg.h']]], ['tjdecompressheader3_30',['tjDecompressHeader3',['../group___turbo_j_p_e_g.html#ga0595681096bba7199cc6f3533cb25f77',1,'turbojpeg.h']]], ['tjdecompresstoyuv2_31',['tjDecompressToYUV2',['../group___turbo_j_p_e_g.html#ga5a3093e325598c17a9f004323af6fafa',1,'turbojpeg.h']]], ['tjdecompresstoyuvplanes_32',['tjDecompressToYUVPlanes',['../group___turbo_j_p_e_g.html#gaa59f901a5258ada5bd0185ad59368540',1,'turbojpeg.h']]], ['tjdestroy_33',['tjDestroy',['../group___turbo_j_p_e_g.html#ga75f355fa27225ba1a4ee392c852394d2',1,'turbojpeg.h']]], ['tjencodeyuv3_34',['tjEncodeYUV3',['../group___turbo_j_p_e_g.html#ga5d619e0a02b71e05a8dffb764f6d7a64',1,'turbojpeg.h']]], ['tjencodeyuvplanes_35',['tjEncodeYUVPlanes',['../group___turbo_j_p_e_g.html#gae2d04c72457fe7f4d60cf78ab1b1feb1',1,'turbojpeg.h']]], ['tjerr_36',['TJERR',['../group___turbo_j_p_e_g.html#gafbc17cfa57d0d5d11fea35ac025950fe',1,'turbojpeg.h']]], ['tjerr_5ffatal_37',['TJERR_FATAL',['../group___turbo_j_p_e_g.html#ggafbc17cfa57d0d5d11fea35ac025950feafc9cceeada13122b09e4851e3788039a',1,'turbojpeg.h']]], ['tjerr_5fwarning_38',['TJERR_WARNING',['../group___turbo_j_p_e_g.html#ggafbc17cfa57d0d5d11fea35ac025950fea342dd6e2aedb47bb257b4e7568329b59',1,'turbojpeg.h']]], ['tjflag_5faccuratedct_39',['TJFLAG_ACCURATEDCT',['../group___turbo_j_p_e_g.html#gacb233cfd722d66d1ccbf48a7de81f0e0',1,'turbojpeg.h']]], ['tjflag_5fbottomup_40',['TJFLAG_BOTTOMUP',['../group___turbo_j_p_e_g.html#ga72ecf4ebe6eb702d3c6f5ca27455e1ec',1,'turbojpeg.h']]], ['tjflag_5ffastdct_41',['TJFLAG_FASTDCT',['../group___turbo_j_p_e_g.html#gaabce235db80d3f698b27f36cbd453da2',1,'turbojpeg.h']]], ['tjflag_5ffastupsample_42',['TJFLAG_FASTUPSAMPLE',['../group___turbo_j_p_e_g.html#ga4ee4506c81177a06f77e2504a22efd2d',1,'turbojpeg.h']]], ['tjflag_5flimitscans_43',['TJFLAG_LIMITSCANS',['../group___turbo_j_p_e_g.html#ga163e6482dc5096831feef9c79ff3f805',1,'turbojpeg.h']]], ['tjflag_5fnorealloc_44',['TJFLAG_NOREALLOC',['../group___turbo_j_p_e_g.html#ga8808d403c68b62aaa58a4c1e58e98963',1,'turbojpeg.h']]], ['tjflag_5fprogressive_45',['TJFLAG_PROGRESSIVE',['../group___turbo_j_p_e_g.html#ga43b426750b46190a25d34a67ef76df1b',1,'turbojpeg.h']]], ['tjflag_5fstoponwarning_46',['TJFLAG_STOPONWARNING',['../group___turbo_j_p_e_g.html#ga519cfa4ef6c18d9e5b455fdf59306a3a',1,'turbojpeg.h']]], ['tjfree_47',['tjFree',['../group___turbo_j_p_e_g.html#gaea863d2da0cdb609563aabdf9196514b',1,'turbojpeg.h']]], ['tjgeterrorcode_48',['tjGetErrorCode',['../group___turbo_j_p_e_g.html#ga414feeffbf860ebd31c745df203de410',1,'turbojpeg.h']]], ['tjgeterrorstr2_49',['tjGetErrorStr2',['../group___turbo_j_p_e_g.html#ga1ead8574f9f39fbafc6b497124e7aafa',1,'turbojpeg.h']]], ['tjgetscalingfactors_50',['tjGetScalingFactors',['../group___turbo_j_p_e_g.html#ga193d0977b3b9966d53a6c402e90899b1',1,'turbojpeg.h']]], ['tjgreenoffset_51',['tjGreenOffset',['../group___turbo_j_p_e_g.html#ga82d6e35da441112a411da41923c0ba2f',1,'turbojpeg.h']]], ['tjhandle_52',['tjhandle',['../group___turbo_j_p_e_g.html#ga758d2634ecb4949de7815cba621f5763',1,'turbojpeg.h']]], ['tjinitcompress_53',['tjInitCompress',['../group___turbo_j_p_e_g.html#ga9d63a05fc6d813f4aae06107041a37e8',1,'turbojpeg.h']]], ['tjinitdecompress_54',['tjInitDecompress',['../group___turbo_j_p_e_g.html#ga52300eac3f3d9ef4bab303bc244f62d3',1,'turbojpeg.h']]], ['tjinittransform_55',['tjInitTransform',['../group___turbo_j_p_e_g.html#ga928beff6ac248ceadf01089fc6b41957',1,'turbojpeg.h']]], ['tjloadimage_56',['tjLoadImage',['../group___turbo_j_p_e_g.html#gaffbd83c375e79f5db4b5c5d8ad4466e7',1,'turbojpeg.h']]], ['tjmcuheight_57',['tjMCUHeight',['../group___turbo_j_p_e_g.html#gabd247bb9fecb393eca57366feb8327bf',1,'turbojpeg.h']]], ['tjmcuwidth_58',['tjMCUWidth',['../group___turbo_j_p_e_g.html#ga9e61e7cd47a15a173283ba94e781308c',1,'turbojpeg.h']]], ['tjpad_59',['TJPAD',['../group___turbo_j_p_e_g.html#ga0aba955473315e405295d978f0c16511',1,'turbojpeg.h']]], ['tjpf_60',['TJPF',['../group___turbo_j_p_e_g.html#gac916144e26c3817ac514e64ae5d12e2a',1,'turbojpeg.h']]], ['tjpf_5fabgr_61',['TJPF_ABGR',['../group___turbo_j_p_e_g.html#ggac916144e26c3817ac514e64ae5d12e2aa1ba1a7f1631dbeaa49a0a85fc4a40081',1,'turbojpeg.h']]], ['tjpf_5fargb_62',['TJPF_ARGB',['../group___turbo_j_p_e_g.html#ggac916144e26c3817ac514e64ae5d12e2aae8f846ed9d9de99b6e1dfe448848765c',1,'turbojpeg.h']]], ['tjpf_5fbgr_63',['TJPF_BGR',['../group___turbo_j_p_e_g.html#ggac916144e26c3817ac514e64ae5d12e2aab10624437fb8ef495a0b153e65749839',1,'turbojpeg.h']]], ['tjpf_5fbgra_64',['TJPF_BGRA',['../group___turbo_j_p_e_g.html#ggac916144e26c3817ac514e64ae5d12e2aac037ff1845cf9b74bb81a3659c2b9fb4',1,'turbojpeg.h']]], ['tjpf_5fbgrx_65',['TJPF_BGRX',['../group___turbo_j_p_e_g.html#ggac916144e26c3817ac514e64ae5d12e2aa2a1fbf569ca79897eae886e3376ca4c8',1,'turbojpeg.h']]], ['tjpf_5fcmyk_66',['TJPF_CMYK',['../group___turbo_j_p_e_g.html#ggac916144e26c3817ac514e64ae5d12e2aa7f5100ec44c91994e243f1cf55553f8b',1,'turbojpeg.h']]], ['tjpf_5fgray_67',['TJPF_GRAY',['../group___turbo_j_p_e_g.html#ggac916144e26c3817ac514e64ae5d12e2aa5431b54b015337705f13118073711a1a',1,'turbojpeg.h']]], ['tjpf_5frgb_68',['TJPF_RGB',['../group___turbo_j_p_e_g.html#ggac916144e26c3817ac514e64ae5d12e2aa7ce93230bff449518ce387c17e6ed37c',1,'turbojpeg.h']]], ['tjpf_5frgba_69',['TJPF_RGBA',['../group___turbo_j_p_e_g.html#ggac916144e26c3817ac514e64ae5d12e2aa88d2e88fab67f6503cf972e14851cc12',1,'turbojpeg.h']]], ['tjpf_5frgbx_70',['TJPF_RGBX',['../group___turbo_j_p_e_g.html#ggac916144e26c3817ac514e64ae5d12e2aa83973bebb7e2dc6fa8bae89ff3f42e01',1,'turbojpeg.h']]], ['tjpf_5funknown_71',['TJPF_UNKNOWN',['../group___turbo_j_p_e_g.html#ggac916144e26c3817ac514e64ae5d12e2aa84c1a6cead7952998e2fb895844a21ed',1,'turbojpeg.h']]], ['tjpf_5fxbgr_72',['TJPF_XBGR',['../group___turbo_j_p_e_g.html#ggac916144e26c3817ac514e64ae5d12e2aaf6603b27147de47e212e75dac027b2af',1,'turbojpeg.h']]], ['tjpf_5fxrgb_73',['TJPF_XRGB',['../group___turbo_j_p_e_g.html#ggac916144e26c3817ac514e64ae5d12e2aadae996905efcfa3b42a0bb3bea7f9d84',1,'turbojpeg.h']]], ['tjpixelsize_74',['tjPixelSize',['../group___turbo_j_p_e_g.html#gad77cf8fe5b2bfd3cb3f53098146abb4c',1,'turbojpeg.h']]], ['tjplaneheight_75',['tjPlaneHeight',['../group___turbo_j_p_e_g.html#ga1a209696c6a80748f20e134b3c64789f',1,'turbojpeg.h']]], ['tjplanesizeyuv_76',['tjPlaneSizeYUV',['../group___turbo_j_p_e_g.html#gab4ab7b24f6e797d79abaaa670373961d',1,'turbojpeg.h']]], ['tjplanewidth_77',['tjPlaneWidth',['../group___turbo_j_p_e_g.html#ga63fb66bb1e36c74008c4634360becbb1',1,'turbojpeg.h']]], ['tjredoffset_78',['tjRedOffset',['../group___turbo_j_p_e_g.html#gadd9b446742ac8a3923f7992c7988fea8',1,'turbojpeg.h']]], ['tjregion_79',['tjregion',['../structtjregion.html',1,'']]], ['tjsamp_80',['TJSAMP',['../group___turbo_j_p_e_g.html#ga1d047060ea80bb9820d540bb928e9074',1,'turbojpeg.h']]], ['tjsamp_5f411_81',['TJSAMP_411',['../group___turbo_j_p_e_g.html#gga1d047060ea80bb9820d540bb928e9074a28ec62575e5ea295c3fde3001dc628e2',1,'turbojpeg.h']]], ['tjsamp_5f420_82',['TJSAMP_420',['../group___turbo_j_p_e_g.html#gga1d047060ea80bb9820d540bb928e9074a63085dbf683cfe39e513cdb6343e3737',1,'turbojpeg.h']]], ['tjsamp_5f422_83',['TJSAMP_422',['../group___turbo_j_p_e_g.html#gga1d047060ea80bb9820d540bb928e9074a136130902cc578f11f32429b59368404',1,'turbojpeg.h']]], ['tjsamp_5f440_84',['TJSAMP_440',['../group___turbo_j_p_e_g.html#gga1d047060ea80bb9820d540bb928e9074accf740e6f3aa6ba20ba922cad13cb974',1,'turbojpeg.h']]], ['tjsamp_5f444_85',['TJSAMP_444',['../group___turbo_j_p_e_g.html#gga1d047060ea80bb9820d540bb928e9074afb8da4f44197837bdec0a4f593dacae3',1,'turbojpeg.h']]], ['tjsamp_5fgray_86',['TJSAMP_GRAY',['../group___turbo_j_p_e_g.html#gga1d047060ea80bb9820d540bb928e9074a3f1c9504842ddc7a48d0f690754b6248',1,'turbojpeg.h']]], ['tjsaveimage_87',['tjSaveImage',['../group___turbo_j_p_e_g.html#ga6f445b22d8933ae4815b3370a538d879',1,'turbojpeg.h']]], ['tjscaled_88',['TJSCALED',['../group___turbo_j_p_e_g.html#ga84878bb65404204743aa18cac02781df',1,'turbojpeg.h']]], ['tjscalingfactor_89',['tjscalingfactor',['../structtjscalingfactor.html',1,'']]], ['tjtransform_90',['tjtransform',['../structtjtransform.html',1,'tjtransform'],['../group___turbo_j_p_e_g.html#ga9cb8abf4cc91881e04a0329b2270be25',1,'tjTransform(tjhandle handle, const unsigned char *jpegBuf, unsigned long jpegSize, int n, unsigned char **dstBufs, unsigned long *dstSizes, tjtransform *transforms, int flags): turbojpeg.h'],['../group___turbo_j_p_e_g.html#ga504805ec0161f1b505397ca0118bf8fd',1,'tjtransform(): turbojpeg.h']]], ['tjxop_91',['TJXOP',['../group___turbo_j_p_e_g.html#ga2de531af4e7e6c4f124908376b354866',1,'turbojpeg.h']]], ['tjxop_5fhflip_92',['TJXOP_HFLIP',['../group___turbo_j_p_e_g.html#gga2de531af4e7e6c4f124908376b354866aa0df69776caa30f0fa28e26332d311ce',1,'turbojpeg.h']]], ['tjxop_5fnone_93',['TJXOP_NONE',['../group___turbo_j_p_e_g.html#gga2de531af4e7e6c4f124908376b354866aad88c0366cd3f7d0eac9d7a3fa1c2c27',1,'turbojpeg.h']]], ['tjxop_5frot180_94',['TJXOP_ROT180',['../group___turbo_j_p_e_g.html#gga2de531af4e7e6c4f124908376b354866a140952eb8dd0300accfcc22726d69692',1,'turbojpeg.h']]], ['tjxop_5frot270_95',['TJXOP_ROT270',['../group___turbo_j_p_e_g.html#gga2de531af4e7e6c4f124908376b354866a3064ee5dfb7f032df332818587567a08',1,'turbojpeg.h']]], ['tjxop_5frot90_96',['TJXOP_ROT90',['../group___turbo_j_p_e_g.html#gga2de531af4e7e6c4f124908376b354866a43b2bbb23bc4bd548422d43fbe9af128',1,'turbojpeg.h']]], ['tjxop_5ftranspose_97',['TJXOP_TRANSPOSE',['../group___turbo_j_p_e_g.html#gga2de531af4e7e6c4f124908376b354866a31060aed199f886afdd417f80499c32d',1,'turbojpeg.h']]], ['tjxop_5ftransverse_98',['TJXOP_TRANSVERSE',['../group___turbo_j_p_e_g.html#gga2de531af4e7e6c4f124908376b354866af3b14d488aea6ece9e5b3df73a74d6a4',1,'turbojpeg.h']]], ['tjxop_5fvflip_99',['TJXOP_VFLIP',['../group___turbo_j_p_e_g.html#gga2de531af4e7e6c4f124908376b354866a324eddfbec53b7e691f61e56929d0d5d',1,'turbojpeg.h']]], ['tjxopt_5fcopynone_100',['TJXOPT_COPYNONE',['../group___turbo_j_p_e_g.html#ga153b468cfb905d0de61706c838986fe8',1,'turbojpeg.h']]], ['tjxopt_5fcrop_101',['TJXOPT_CROP',['../group___turbo_j_p_e_g.html#ga9c771a757fc1294add611906b89ab2d2',1,'turbojpeg.h']]], ['tjxopt_5fgray_102',['TJXOPT_GRAY',['../group___turbo_j_p_e_g.html#ga3acee7b48ade1b99e5588736007c2589',1,'turbojpeg.h']]], ['tjxopt_5fnooutput_103',['TJXOPT_NOOUTPUT',['../group___turbo_j_p_e_g.html#gafbf992bbf6e006705886333703ffab31',1,'turbojpeg.h']]], ['tjxopt_5fperfect_104',['TJXOPT_PERFECT',['../group___turbo_j_p_e_g.html#ga50e03cb5ed115330e212417429600b00',1,'turbojpeg.h']]], ['tjxopt_5fprogressive_105',['TJXOPT_PROGRESSIVE',['../group___turbo_j_p_e_g.html#gad2371c80674584ecc1a7d75e564cf026',1,'turbojpeg.h']]], ['tjxopt_5ftrim_106',['TJXOPT_TRIM',['../group___turbo_j_p_e_g.html#ga319826b7eb1583c0595bbe7b95428709',1,'turbojpeg.h']]], ['turbojpeg_107',['TurboJPEG',['../group___turbo_j_p_e_g.html',1,'']]] ]; libjpeg-turbo-2.1.5/doc/html/search/all_7.html000066400000000000000000000026161436506551100211410ustar00rootroot00000000000000
    Loading...
    Searching...
    No Matches
    libjpeg-turbo-2.1.5/doc/html/search/all_7.js000066400000000000000000000001611436506551100206020ustar00rootroot00000000000000var searchData= [ ['w_108',['w',['../structtjregion.html#ab6eb73ceef584fc23c8c8097926dce42',1,'tjregion']]] ]; libjpeg-turbo-2.1.5/doc/html/search/all_8.html000066400000000000000000000026161436506551100211420ustar00rootroot00000000000000
    Loading...
    Searching...
    No Matches
    libjpeg-turbo-2.1.5/doc/html/search/all_8.js000066400000000000000000000001611436506551100206030ustar00rootroot00000000000000var searchData= [ ['x_109',['x',['../structtjregion.html#a4b6a37a93997091b26a75831fa291ad9',1,'tjregion']]] ]; libjpeg-turbo-2.1.5/doc/html/search/all_9.html000066400000000000000000000026161436506551100211430ustar00rootroot00000000000000
    Loading...
    Searching...
    No Matches
    libjpeg-turbo-2.1.5/doc/html/search/all_9.js000066400000000000000000000001611436506551100206040ustar00rootroot00000000000000var searchData= [ ['y_110',['y',['../structtjregion.html#a7b3e0c24cfe87acc80e334cafdcf22c2',1,'tjregion']]] ]; libjpeg-turbo-2.1.5/doc/html/search/classes_0.html000066400000000000000000000026221436506551100220140ustar00rootroot00000000000000
    Loading...
    Searching...
    No Matches
    libjpeg-turbo-2.1.5/doc/html/search/classes_0.js000066400000000000000000000003651436506551100214660ustar00rootroot00000000000000var searchData= [ ['tjregion_111',['tjregion',['../structtjregion.html',1,'']]], ['tjscalingfactor_112',['tjscalingfactor',['../structtjscalingfactor.html',1,'']]], ['tjtransform_113',['tjtransform',['../structtjtransform.html',1,'']]] ]; libjpeg-turbo-2.1.5/doc/html/search/close.svg000066400000000000000000000024041436506551100210760ustar00rootroot00000000000000 image/svg+xml libjpeg-turbo-2.1.5/doc/html/search/enums_0.html000066400000000000000000000026201436506551100215040ustar00rootroot00000000000000
    Loading...
    Searching...
    No Matches
    libjpeg-turbo-2.1.5/doc/html/search/enums_0.js000066400000000000000000000011021436506551100211460ustar00rootroot00000000000000var searchData= [ ['tjcs_162',['TJCS',['../group___turbo_j_p_e_g.html#ga4f83ad3368e0e29d1957be0efa7c3720',1,'turbojpeg.h']]], ['tjerr_163',['TJERR',['../group___turbo_j_p_e_g.html#gafbc17cfa57d0d5d11fea35ac025950fe',1,'turbojpeg.h']]], ['tjpf_164',['TJPF',['../group___turbo_j_p_e_g.html#gac916144e26c3817ac514e64ae5d12e2a',1,'turbojpeg.h']]], ['tjsamp_165',['TJSAMP',['../group___turbo_j_p_e_g.html#ga1d047060ea80bb9820d540bb928e9074',1,'turbojpeg.h']]], ['tjxop_166',['TJXOP',['../group___turbo_j_p_e_g.html#ga2de531af4e7e6c4f124908376b354866',1,'turbojpeg.h']]] ]; libjpeg-turbo-2.1.5/doc/html/search/enumvalues_0.html000066400000000000000000000026251436506551100225460ustar00rootroot00000000000000
    Loading...
    Searching...
    No Matches
    libjpeg-turbo-2.1.5/doc/html/search/enumvalues_0.js000066400000000000000000000124341436506551100222150ustar00rootroot00000000000000var searchData= [ ['tjcs_5fcmyk_167',['TJCS_CMYK',['../group___turbo_j_p_e_g.html#gga4f83ad3368e0e29d1957be0efa7c3720a6c8b636152ac8195b869587db315ee53',1,'turbojpeg.h']]], ['tjcs_5fgray_168',['TJCS_GRAY',['../group___turbo_j_p_e_g.html#gga4f83ad3368e0e29d1957be0efa7c3720ab3e7d6a87f695e45b81c1b5262b5a50a',1,'turbojpeg.h']]], ['tjcs_5frgb_169',['TJCS_RGB',['../group___turbo_j_p_e_g.html#gga4f83ad3368e0e29d1957be0efa7c3720a677cb7ccb85c4038ac41964a2e09e555',1,'turbojpeg.h']]], ['tjcs_5fycbcr_170',['TJCS_YCbCr',['../group___turbo_j_p_e_g.html#gga4f83ad3368e0e29d1957be0efa7c3720a7389b8f65bb387ffedce3efd0d78ec75',1,'turbojpeg.h']]], ['tjcs_5fycck_171',['TJCS_YCCK',['../group___turbo_j_p_e_g.html#gga4f83ad3368e0e29d1957be0efa7c3720a53839e0fe867b76b58d16b0a1a7c598e',1,'turbojpeg.h']]], ['tjerr_5ffatal_172',['TJERR_FATAL',['../group___turbo_j_p_e_g.html#ggafbc17cfa57d0d5d11fea35ac025950feafc9cceeada13122b09e4851e3788039a',1,'turbojpeg.h']]], ['tjerr_5fwarning_173',['TJERR_WARNING',['../group___turbo_j_p_e_g.html#ggafbc17cfa57d0d5d11fea35ac025950fea342dd6e2aedb47bb257b4e7568329b59',1,'turbojpeg.h']]], ['tjpf_5fabgr_174',['TJPF_ABGR',['../group___turbo_j_p_e_g.html#ggac916144e26c3817ac514e64ae5d12e2aa1ba1a7f1631dbeaa49a0a85fc4a40081',1,'turbojpeg.h']]], ['tjpf_5fargb_175',['TJPF_ARGB',['../group___turbo_j_p_e_g.html#ggac916144e26c3817ac514e64ae5d12e2aae8f846ed9d9de99b6e1dfe448848765c',1,'turbojpeg.h']]], ['tjpf_5fbgr_176',['TJPF_BGR',['../group___turbo_j_p_e_g.html#ggac916144e26c3817ac514e64ae5d12e2aab10624437fb8ef495a0b153e65749839',1,'turbojpeg.h']]], ['tjpf_5fbgra_177',['TJPF_BGRA',['../group___turbo_j_p_e_g.html#ggac916144e26c3817ac514e64ae5d12e2aac037ff1845cf9b74bb81a3659c2b9fb4',1,'turbojpeg.h']]], ['tjpf_5fbgrx_178',['TJPF_BGRX',['../group___turbo_j_p_e_g.html#ggac916144e26c3817ac514e64ae5d12e2aa2a1fbf569ca79897eae886e3376ca4c8',1,'turbojpeg.h']]], ['tjpf_5fcmyk_179',['TJPF_CMYK',['../group___turbo_j_p_e_g.html#ggac916144e26c3817ac514e64ae5d12e2aa7f5100ec44c91994e243f1cf55553f8b',1,'turbojpeg.h']]], ['tjpf_5fgray_180',['TJPF_GRAY',['../group___turbo_j_p_e_g.html#ggac916144e26c3817ac514e64ae5d12e2aa5431b54b015337705f13118073711a1a',1,'turbojpeg.h']]], ['tjpf_5frgb_181',['TJPF_RGB',['../group___turbo_j_p_e_g.html#ggac916144e26c3817ac514e64ae5d12e2aa7ce93230bff449518ce387c17e6ed37c',1,'turbojpeg.h']]], ['tjpf_5frgba_182',['TJPF_RGBA',['../group___turbo_j_p_e_g.html#ggac916144e26c3817ac514e64ae5d12e2aa88d2e88fab67f6503cf972e14851cc12',1,'turbojpeg.h']]], ['tjpf_5frgbx_183',['TJPF_RGBX',['../group___turbo_j_p_e_g.html#ggac916144e26c3817ac514e64ae5d12e2aa83973bebb7e2dc6fa8bae89ff3f42e01',1,'turbojpeg.h']]], ['tjpf_5funknown_184',['TJPF_UNKNOWN',['../group___turbo_j_p_e_g.html#ggac916144e26c3817ac514e64ae5d12e2aa84c1a6cead7952998e2fb895844a21ed',1,'turbojpeg.h']]], ['tjpf_5fxbgr_185',['TJPF_XBGR',['../group___turbo_j_p_e_g.html#ggac916144e26c3817ac514e64ae5d12e2aaf6603b27147de47e212e75dac027b2af',1,'turbojpeg.h']]], ['tjpf_5fxrgb_186',['TJPF_XRGB',['../group___turbo_j_p_e_g.html#ggac916144e26c3817ac514e64ae5d12e2aadae996905efcfa3b42a0bb3bea7f9d84',1,'turbojpeg.h']]], ['tjsamp_5f411_187',['TJSAMP_411',['../group___turbo_j_p_e_g.html#gga1d047060ea80bb9820d540bb928e9074a28ec62575e5ea295c3fde3001dc628e2',1,'turbojpeg.h']]], ['tjsamp_5f420_188',['TJSAMP_420',['../group___turbo_j_p_e_g.html#gga1d047060ea80bb9820d540bb928e9074a63085dbf683cfe39e513cdb6343e3737',1,'turbojpeg.h']]], ['tjsamp_5f422_189',['TJSAMP_422',['../group___turbo_j_p_e_g.html#gga1d047060ea80bb9820d540bb928e9074a136130902cc578f11f32429b59368404',1,'turbojpeg.h']]], ['tjsamp_5f440_190',['TJSAMP_440',['../group___turbo_j_p_e_g.html#gga1d047060ea80bb9820d540bb928e9074accf740e6f3aa6ba20ba922cad13cb974',1,'turbojpeg.h']]], ['tjsamp_5f444_191',['TJSAMP_444',['../group___turbo_j_p_e_g.html#gga1d047060ea80bb9820d540bb928e9074afb8da4f44197837bdec0a4f593dacae3',1,'turbojpeg.h']]], ['tjsamp_5fgray_192',['TJSAMP_GRAY',['../group___turbo_j_p_e_g.html#gga1d047060ea80bb9820d540bb928e9074a3f1c9504842ddc7a48d0f690754b6248',1,'turbojpeg.h']]], ['tjxop_5fhflip_193',['TJXOP_HFLIP',['../group___turbo_j_p_e_g.html#gga2de531af4e7e6c4f124908376b354866aa0df69776caa30f0fa28e26332d311ce',1,'turbojpeg.h']]], ['tjxop_5fnone_194',['TJXOP_NONE',['../group___turbo_j_p_e_g.html#gga2de531af4e7e6c4f124908376b354866aad88c0366cd3f7d0eac9d7a3fa1c2c27',1,'turbojpeg.h']]], ['tjxop_5frot180_195',['TJXOP_ROT180',['../group___turbo_j_p_e_g.html#gga2de531af4e7e6c4f124908376b354866a140952eb8dd0300accfcc22726d69692',1,'turbojpeg.h']]], ['tjxop_5frot270_196',['TJXOP_ROT270',['../group___turbo_j_p_e_g.html#gga2de531af4e7e6c4f124908376b354866a3064ee5dfb7f032df332818587567a08',1,'turbojpeg.h']]], ['tjxop_5frot90_197',['TJXOP_ROT90',['../group___turbo_j_p_e_g.html#gga2de531af4e7e6c4f124908376b354866a43b2bbb23bc4bd548422d43fbe9af128',1,'turbojpeg.h']]], ['tjxop_5ftranspose_198',['TJXOP_TRANSPOSE',['../group___turbo_j_p_e_g.html#gga2de531af4e7e6c4f124908376b354866a31060aed199f886afdd417f80499c32d',1,'turbojpeg.h']]], ['tjxop_5ftransverse_199',['TJXOP_TRANSVERSE',['../group___turbo_j_p_e_g.html#gga2de531af4e7e6c4f124908376b354866af3b14d488aea6ece9e5b3df73a74d6a4',1,'turbojpeg.h']]], ['tjxop_5fvflip_200',['TJXOP_VFLIP',['../group___turbo_j_p_e_g.html#gga2de531af4e7e6c4f124908376b354866a324eddfbec53b7e691f61e56929d0d5d',1,'turbojpeg.h']]] ]; libjpeg-turbo-2.1.5/doc/html/search/functions_0.html000066400000000000000000000026241436506551100223710ustar00rootroot00000000000000
    Loading...
    Searching...
    No Matches
    libjpeg-turbo-2.1.5/doc/html/search/functions_0.js000066400000000000000000000071061436506551100220410ustar00rootroot00000000000000var searchData= [ ['tjalloc_114',['tjAlloc',['../group___turbo_j_p_e_g.html#gaec627dd4c5f30b7a775a7aea3bec5d83',1,'turbojpeg.h']]], ['tjbufsize_115',['tjBufSize',['../group___turbo_j_p_e_g.html#ga67ac12fee79073242cb216e07c9f1f90',1,'turbojpeg.h']]], ['tjbufsizeyuv2_116',['tjBufSizeYUV2',['../group___turbo_j_p_e_g.html#ga5e5aac9e8bcf17049279301e2466474c',1,'turbojpeg.h']]], ['tjcompress2_117',['tjCompress2',['../group___turbo_j_p_e_g.html#gafbdce0112fd78fd38efae841443a9bcf',1,'turbojpeg.h']]], ['tjcompressfromyuv_118',['tjCompressFromYUV',['../group___turbo_j_p_e_g.html#gab40f5096a72fd7e5bda9d6b58fa37e2e',1,'turbojpeg.h']]], ['tjcompressfromyuvplanes_119',['tjCompressFromYUVPlanes',['../group___turbo_j_p_e_g.html#ga29ec5dfbd2d84b8724e951d6fa0d5d9e',1,'turbojpeg.h']]], ['tjdecodeyuv_120',['tjDecodeYUV',['../group___turbo_j_p_e_g.html#ga97c2cedc1e2bade15a84164c94e503c1',1,'turbojpeg.h']]], ['tjdecodeyuvplanes_121',['tjDecodeYUVPlanes',['../group___turbo_j_p_e_g.html#ga10e837c07fa9d25770565b237d3898d9',1,'turbojpeg.h']]], ['tjdecompress2_122',['tjDecompress2',['../group___turbo_j_p_e_g.html#gae9eccef8b682a48f43a9117c231ed013',1,'turbojpeg.h']]], ['tjdecompressheader3_123',['tjDecompressHeader3',['../group___turbo_j_p_e_g.html#ga0595681096bba7199cc6f3533cb25f77',1,'turbojpeg.h']]], ['tjdecompresstoyuv2_124',['tjDecompressToYUV2',['../group___turbo_j_p_e_g.html#ga5a3093e325598c17a9f004323af6fafa',1,'turbojpeg.h']]], ['tjdecompresstoyuvplanes_125',['tjDecompressToYUVPlanes',['../group___turbo_j_p_e_g.html#gaa59f901a5258ada5bd0185ad59368540',1,'turbojpeg.h']]], ['tjdestroy_126',['tjDestroy',['../group___turbo_j_p_e_g.html#ga75f355fa27225ba1a4ee392c852394d2',1,'turbojpeg.h']]], ['tjencodeyuv3_127',['tjEncodeYUV3',['../group___turbo_j_p_e_g.html#ga5d619e0a02b71e05a8dffb764f6d7a64',1,'turbojpeg.h']]], ['tjencodeyuvplanes_128',['tjEncodeYUVPlanes',['../group___turbo_j_p_e_g.html#gae2d04c72457fe7f4d60cf78ab1b1feb1',1,'turbojpeg.h']]], ['tjfree_129',['tjFree',['../group___turbo_j_p_e_g.html#gaea863d2da0cdb609563aabdf9196514b',1,'turbojpeg.h']]], ['tjgeterrorcode_130',['tjGetErrorCode',['../group___turbo_j_p_e_g.html#ga414feeffbf860ebd31c745df203de410',1,'turbojpeg.h']]], ['tjgeterrorstr2_131',['tjGetErrorStr2',['../group___turbo_j_p_e_g.html#ga1ead8574f9f39fbafc6b497124e7aafa',1,'turbojpeg.h']]], ['tjgetscalingfactors_132',['tjGetScalingFactors',['../group___turbo_j_p_e_g.html#ga193d0977b3b9966d53a6c402e90899b1',1,'turbojpeg.h']]], ['tjinitcompress_133',['tjInitCompress',['../group___turbo_j_p_e_g.html#ga9d63a05fc6d813f4aae06107041a37e8',1,'turbojpeg.h']]], ['tjinitdecompress_134',['tjInitDecompress',['../group___turbo_j_p_e_g.html#ga52300eac3f3d9ef4bab303bc244f62d3',1,'turbojpeg.h']]], ['tjinittransform_135',['tjInitTransform',['../group___turbo_j_p_e_g.html#ga928beff6ac248ceadf01089fc6b41957',1,'turbojpeg.h']]], ['tjloadimage_136',['tjLoadImage',['../group___turbo_j_p_e_g.html#gaffbd83c375e79f5db4b5c5d8ad4466e7',1,'turbojpeg.h']]], ['tjplaneheight_137',['tjPlaneHeight',['../group___turbo_j_p_e_g.html#ga1a209696c6a80748f20e134b3c64789f',1,'turbojpeg.h']]], ['tjplanesizeyuv_138',['tjPlaneSizeYUV',['../group___turbo_j_p_e_g.html#gab4ab7b24f6e797d79abaaa670373961d',1,'turbojpeg.h']]], ['tjplanewidth_139',['tjPlaneWidth',['../group___turbo_j_p_e_g.html#ga63fb66bb1e36c74008c4634360becbb1',1,'turbojpeg.h']]], ['tjsaveimage_140',['tjSaveImage',['../group___turbo_j_p_e_g.html#ga6f445b22d8933ae4815b3370a538d879',1,'turbojpeg.h']]], ['tjtransform_141',['tjTransform',['../group___turbo_j_p_e_g.html#ga9cb8abf4cc91881e04a0329b2270be25',1,'turbojpeg.h']]] ]; libjpeg-turbo-2.1.5/doc/html/search/groups_0.html000066400000000000000000000026211436506551100216750ustar00rootroot00000000000000
    Loading...
    Searching...
    No Matches
    libjpeg-turbo-2.1.5/doc/html/search/groups_0.js000066400000000000000000000001361436506551100213440ustar00rootroot00000000000000var searchData= [ ['turbojpeg_201',['TurboJPEG',['../group___turbo_j_p_e_g.html',1,'']]] ]; libjpeg-turbo-2.1.5/doc/html/search/mag_sel.svg000066400000000000000000000045121436506551100214020ustar00rootroot00000000000000 image/svg+xml libjpeg-turbo-2.1.5/doc/html/search/nomatches.html000066400000000000000000000007161436506551100221230ustar00rootroot00000000000000
    No Matches
    libjpeg-turbo-2.1.5/doc/html/search/search.css000066400000000000000000000104111436506551100212240ustar00rootroot00000000000000/*---------------- Search Box */ #MSearchBox { white-space : nowrap; background: white; border-radius: 0.65em; box-shadow: inset 0.5px 0.5px 3px 0px #555; z-index: 102; } #MSearchBox .left { display: inline-block; vertical-align: middle; height: 1.4em; } #MSearchSelect { display: inline-block; vertical-align: middle; height: 1.4em; padding: 0 0 0 0.3em; margin: 0; } #MSearchField { display: inline-block; vertical-align: middle; width: 7.5em; height: 1.1em; margin: 0 0.15em; padding: 0; line-height: 1em; border:none; color: #909090; outline: none; font-family: Arial, Verdana, sans-serif; -webkit-border-radius: 0px; border-radius: 0px; background: none; } #MSearchBox .right { display: inline-block; vertical-align: middle; width: 1.4em; height: 1.4em; } #MSearchClose { display: none; font-size: inherit; background : none; border: none; margin: 0; padding: 0; outline: none; } #MSearchCloseImg { height: 1.4em; padding: 0.3em; margin: 0; } .MSearchBoxActive #MSearchField { color: #000000; } #main-menu > li:last-child { /* This
  • object is the parent of the search bar */ display: flex; justify-content: center; align-items: center; height: 36px; margin-right: 1em; } /*---------------- Search filter selection */ #MSearchSelectWindow { display: none; position: absolute; left: 0; top: 0; border: 1px solid #90A5CE; background-color: #F9FAFC; z-index: 10001; padding-top: 4px; padding-bottom: 4px; -moz-border-radius: 4px; -webkit-border-top-left-radius: 4px; -webkit-border-top-right-radius: 4px; -webkit-border-bottom-left-radius: 4px; -webkit-border-bottom-right-radius: 4px; -webkit-box-shadow: 5px 5px 5px rgba(0, 0, 0, 0.15); } .SelectItem { font: 8pt Arial, Verdana, sans-serif; padding-left: 2px; padding-right: 12px; border: 0px; } span.SelectionMark { margin-right: 4px; font-family: monospace; outline-style: none; text-decoration: none; } a.SelectItem { display: block; outline-style: none; color: #000000; text-decoration: none; padding-left: 6px; padding-right: 12px; } a.SelectItem:focus, a.SelectItem:active { color: #000000; outline-style: none; text-decoration: none; } a.SelectItem:hover { color: #FFFFFF; background-color: #3D578C; outline-style: none; text-decoration: none; cursor: pointer; display: block; } /*---------------- Search results window */ iframe#MSearchResults { width: 60ex; height: 15em; } #MSearchResultsWindow { display: none; position: absolute; left: 0; top: 0; border: 1px solid #000; background-color: #EEF1F7; z-index:10000; } /* ----------------------------------- */ #SRIndex { clear:both; padding-bottom: 15px; } .SREntry { font-size: 10pt; padding-left: 1ex; } .SRPage .SREntry { font-size: 8pt; padding: 1px 5px; } body.SRPage { margin: 5px 2px; } .SRChildren { padding-left: 3ex; padding-bottom: .5em } .SRPage .SRChildren { display: none; } .SRSymbol { font-weight: bold; color: #425E97; font-family: Arial, Verdana, sans-serif; text-decoration: none; outline: none; } a.SRScope { display: block; color: #425E97; font-family: Arial, Verdana, sans-serif; text-decoration: none; outline: none; } a.SRSymbol:focus, a.SRSymbol:active, a.SRScope:focus, a.SRScope:active { text-decoration: underline; } span.SRScope { padding-left: 4px; } .SRPage .SRStatus { padding: 2px 5px; font-size: 8pt; font-style: italic; } .SRResult { display: none; } DIV.searchresults { margin-left: 10px; margin-right: 10px; } /*---------------- External search page results */ .searchresult { background-color: #F0F3F8; } .pages b { color: white; padding: 5px 5px 3px 5px; background-image: url("../tab_a.png"); background-repeat: repeat-x; text-shadow: 0 1px 1px #000000; } .pages { line-height: 17px; margin-left: 4px; text-decoration: none; } .hl { font-weight: bold; } #searchresults { margin-bottom: 20px; } .searchpages { margin-top: 10px; } libjpeg-turbo-2.1.5/doc/html/search/search.js000066400000000000000000000554771436506551100210750ustar00rootroot00000000000000/* @licstart The following is the entire license notice for the JavaScript code in this file. The MIT License (MIT) Copyright (C) 1997-2020 by Dimitri van Heesch Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. @licend The above is the entire license notice for the JavaScript code in this file */ function convertToId(search) { var result = ''; for (i=0;i do a search { this.Search(); } } this.OnSearchSelectKey = function(evt) { var e = (evt) ? evt : window.event; // for IE if (e.keyCode==40 && this.searchIndex0) // Up { this.searchIndex--; this.OnSelectItem(this.searchIndex); } else if (e.keyCode==13 || e.keyCode==27) { this.OnSelectItem(this.searchIndex); this.CloseSelectionWindow(); this.DOMSearchField().focus(); } return false; } // --------- Actions // Closes the results window. this.CloseResultsWindow = function() { this.DOMPopupSearchResultsWindow().style.display = 'none'; this.DOMSearchClose().style.display = 'none'; this.Activate(false); } this.CloseSelectionWindow = function() { this.DOMSearchSelectWindow().style.display = 'none'; } // Performs a search. this.Search = function() { this.keyTimeout = 0; // strip leading whitespace var searchValue = this.DOMSearchField().value.replace(/^ +/, ""); var code = searchValue.toLowerCase().charCodeAt(0); var idxChar = searchValue.substr(0, 1).toLowerCase(); if ( 0xD800 <= code && code <= 0xDBFF && searchValue > 1) // surrogate pair { idxChar = searchValue.substr(0, 2); } var resultsPage; var resultsPageWithSearch; var hasResultsPage; var idx = indexSectionsWithContent[this.searchIndex].indexOf(idxChar); if (idx!=-1) { var hexCode=idx.toString(16); resultsPage = this.resultsPath + '/' + indexSectionNames[this.searchIndex] + '_' + hexCode + '.html'; resultsPageWithSearch = resultsPage+'?'+escape(searchValue); hasResultsPage = true; } else // nothing available for this search term { resultsPage = this.resultsPath + '/nomatches.html'; resultsPageWithSearch = resultsPage; hasResultsPage = false; } window.frames.MSearchResults.location = resultsPageWithSearch; var domPopupSearchResultsWindow = this.DOMPopupSearchResultsWindow(); if (domPopupSearchResultsWindow.style.display!='block') { var domSearchBox = this.DOMSearchBox(); this.DOMSearchClose().style.display = 'inline-block'; if (this.insideFrame) { var domPopupSearchResults = this.DOMPopupSearchResults(); domPopupSearchResultsWindow.style.position = 'relative'; domPopupSearchResultsWindow.style.display = 'block'; var width = document.body.clientWidth - 8; // the -8 is for IE :-( domPopupSearchResultsWindow.style.width = width + 'px'; domPopupSearchResults.style.width = width + 'px'; } else { var domPopupSearchResults = this.DOMPopupSearchResults(); var left = getXPos(domSearchBox) + 150; // domSearchBox.offsetWidth; var top = getYPos(domSearchBox) + 20; // domSearchBox.offsetHeight + 1; domPopupSearchResultsWindow.style.display = 'block'; left -= domPopupSearchResults.offsetWidth; domPopupSearchResultsWindow.style.top = top + 'px'; domPopupSearchResultsWindow.style.left = left + 'px'; } } this.lastSearchValue = searchValue; this.lastResultsPage = resultsPage; } // -------- Activation Functions // Activates or deactivates the search panel, resetting things to // their default values if necessary. this.Activate = function(isActive) { if (isActive || // open it this.DOMPopupSearchResultsWindow().style.display == 'block' ) { this.DOMSearchBox().className = 'MSearchBoxActive'; var searchField = this.DOMSearchField(); if (searchField.value == this.searchLabel) // clear "Search" term upon entry { searchField.value = ''; this.searchActive = true; } } else if (!isActive) // directly remove the panel { this.DOMSearchBox().className = 'MSearchBoxInactive'; this.DOMSearchField().value = this.searchLabel; this.searchActive = false; this.lastSearchValue = '' this.lastResultsPage = ''; } } } // ----------------------------------------------------------------------- // The class that handles everything on the search results page. function SearchResults(name) { // The number of matches from the last run of . this.lastMatchCount = 0; this.lastKey = 0; this.repeatOn = false; // Toggles the visibility of the passed element ID. this.FindChildElement = function(id) { var parentElement = document.getElementById(id); var element = parentElement.firstChild; while (element && element!=parentElement) { if (element.nodeName == 'DIV' && element.className == 'SRChildren') { return element; } if (element.nodeName == 'DIV' && element.hasChildNodes()) { element = element.firstChild; } else if (element.nextSibling) { element = element.nextSibling; } else { do { element = element.parentNode; } while (element && element!=parentElement && !element.nextSibling); if (element && element!=parentElement) { element = element.nextSibling; } } } } this.Toggle = function(id) { var element = this.FindChildElement(id); if (element) { if (element.style.display == 'block') { element.style.display = 'none'; } else { element.style.display = 'block'; } } } // Searches for the passed string. If there is no parameter, // it takes it from the URL query. // // Always returns true, since other documents may try to call it // and that may or may not be possible. this.Search = function(search) { if (!search) // get search word from URL { search = window.location.search; search = search.substring(1); // Remove the leading '?' search = unescape(search); } search = search.replace(/^ +/, ""); // strip leading spaces search = search.replace(/ +$/, ""); // strip trailing spaces search = search.toLowerCase(); search = convertToId(search); var resultRows = document.getElementsByTagName("div"); var matches = 0; var i = 0; while (i < resultRows.length) { var row = resultRows.item(i); if (row.className == "SRResult") { var rowMatchName = row.id.toLowerCase(); rowMatchName = rowMatchName.replace(/^sr\d*_/, ''); // strip 'sr123_' if (search.length<=rowMatchName.length && rowMatchName.substr(0, search.length)==search) { row.style.display = 'block'; matches++; } else { row.style.display = 'none'; } } i++; } document.getElementById("Searching").style.display='none'; if (matches == 0) // no results { document.getElementById("NoMatches").style.display='block'; } else // at least one result { document.getElementById("NoMatches").style.display='none'; } this.lastMatchCount = matches; return true; } // return the first item with index index or higher that is visible this.NavNext = function(index) { var focusItem; while (1) { var focusName = 'Item'+index; focusItem = document.getElementById(focusName); if (focusItem && focusItem.parentNode.parentNode.style.display=='block') { break; } else if (!focusItem) // last element { break; } focusItem=null; index++; } return focusItem; } this.NavPrev = function(index) { var focusItem; while (1) { var focusName = 'Item'+index; focusItem = document.getElementById(focusName); if (focusItem && focusItem.parentNode.parentNode.style.display=='block') { break; } else if (!focusItem) // last element { break; } focusItem=null; index--; } return focusItem; } this.ProcessKeys = function(e) { if (e.type == "keydown") { this.repeatOn = false; this.lastKey = e.keyCode; } else if (e.type == "keypress") { if (!this.repeatOn) { if (this.lastKey) this.repeatOn = true; return false; // ignore first keypress after keydown } } else if (e.type == "keyup") { this.lastKey = 0; this.repeatOn = false; } return this.lastKey!=0; } this.Nav = function(evt,itemIndex) { var e = (evt) ? evt : window.event; // for IE if (e.keyCode==13) return true; if (!this.ProcessKeys(e)) return false; if (this.lastKey==38) // Up { var newIndex = itemIndex-1; var focusItem = this.NavPrev(newIndex); if (focusItem) { var child = this.FindChildElement(focusItem.parentNode.parentNode.id); if (child && child.style.display == 'block') // children visible { var n=0; var tmpElem; while (1) // search for last child { tmpElem = document.getElementById('Item'+newIndex+'_c'+n); if (tmpElem) { focusItem = tmpElem; } else // found it! { break; } n++; } } } if (focusItem) { focusItem.focus(); } else // return focus to search field { parent.document.getElementById("MSearchField").focus(); } } else if (this.lastKey==40) // Down { var newIndex = itemIndex+1; var focusItem; var item = document.getElementById('Item'+itemIndex); var elem = this.FindChildElement(item.parentNode.parentNode.id); if (elem && elem.style.display == 'block') // children visible { focusItem = document.getElementById('Item'+itemIndex+'_c0'); } if (!focusItem) focusItem = this.NavNext(newIndex); if (focusItem) focusItem.focus(); } else if (this.lastKey==39) // Right { var item = document.getElementById('Item'+itemIndex); var elem = this.FindChildElement(item.parentNode.parentNode.id); if (elem) elem.style.display = 'block'; } else if (this.lastKey==37) // Left { var item = document.getElementById('Item'+itemIndex); var elem = this.FindChildElement(item.parentNode.parentNode.id); if (elem) elem.style.display = 'none'; } else if (this.lastKey==27) // Escape { parent.searchBox.CloseResultsWindow(); parent.document.getElementById("MSearchField").focus(); } else if (this.lastKey==13) // Enter { return true; } return false; } this.NavChild = function(evt,itemIndex,childIndex) { var e = (evt) ? evt : window.event; // for IE if (e.keyCode==13) return true; if (!this.ProcessKeys(e)) return false; if (this.lastKey==38) // Up { if (childIndex>0) { var newIndex = childIndex-1; document.getElementById('Item'+itemIndex+'_c'+newIndex).focus(); } else // already at first child, jump to parent { document.getElementById('Item'+itemIndex).focus(); } } else if (this.lastKey==40) // Down { var newIndex = childIndex+1; var elem = document.getElementById('Item'+itemIndex+'_c'+newIndex); if (!elem) // last child, jump to parent next parent { elem = this.NavNext(itemIndex+1); } if (elem) { elem.focus(); } } else if (this.lastKey==27) // Escape { parent.searchBox.CloseResultsWindow(); parent.document.getElementById("MSearchField").focus(); } else if (this.lastKey==13) // Enter { return true; } return false; } } function setKeyActions(elem,action) { elem.setAttribute('onkeydown',action); elem.setAttribute('onkeypress',action); elem.setAttribute('onkeyup',action); } function setClassAttr(elem,attr) { elem.setAttribute('class',attr); elem.setAttribute('className',attr); } function createResults() { var results = document.getElementById("SRResults"); for (var e=0; egAMA± üa cHRMm˜sŽà8‚ÕzÊ´3Dv„6*½bKGDÿ‡Ì¿ pHYs  šœtIMEâ  OíWß*IDAT(Ï’ÍJBQF÷&Š&ö ›ô>Ѥ|ƒ(‚ÀFAI õ–¢‘`šAP Õ ‘~ÀŸ&FzžÕ A튷oM6‡uß-È/iÃtyÝžÛæ «¬Ù¹6bSÞ%ÏÝž pA’476Iæìvܧäx£B•Ÿ6‰LîDüÿAxˆGüT¸%+ÍXùp§8;~ñóƒÉ'%u"÷óú !~\l:4¨‘‘ñt>ŠŒ)…¢O›7.œÄ^)2VòD‡6Ï$ZÚR Š> nܳ­ (:TUò\8’͇J%'N‡&éÝIÒär=tÒ—Ì®„,nóbfæB$‹Ê©6r§÷fn9à-Ë׻wÚ4Bx6êßïz|Ëûkmq$îH zXÔÝj«ÒyzÅÁe«X¸ZËE‡Éü°cû‘sÑÂ%tEXtdate:create2018-12-07T11:28:17+00:00-?CÛ%tEXtdate:modify2018-12-07T11:28:17+00:00\bûgIEND®B`‚libjpeg-turbo-2.1.5/doc/html/search/searchdata.js000066400000000000000000000007231436506551100217070ustar00rootroot00000000000000var indexSectionsWithContent = { 0: "cdhnortwxy", 1: "t", 2: "t", 3: "cdhnortwxy", 4: "t", 5: "t", 6: "t", 7: "t" }; var indexSectionNames = { 0: "all", 1: "classes", 2: "functions", 3: "variables", 4: "typedefs", 5: "enums", 6: "enumvalues", 7: "groups" }; var indexSectionLabels = { 0: "All", 1: "Data Structures", 2: "Functions", 3: "Variables", 4: "Typedefs", 5: "Enumerations", 6: "Enumerator", 7: "Modules" }; libjpeg-turbo-2.1.5/doc/html/search/typedefs_0.html000066400000000000000000000026231436506551100222030ustar00rootroot00000000000000
    Loading...
    Searching...
    No Matches
    libjpeg-turbo-2.1.5/doc/html/search/typedefs_0.js000066400000000000000000000004061436506551100216500ustar00rootroot00000000000000var searchData= [ ['tjhandle_160',['tjhandle',['../group___turbo_j_p_e_g.html#ga758d2634ecb4949de7815cba621f5763',1,'turbojpeg.h']]], ['tjtransform_161',['tjtransform',['../group___turbo_j_p_e_g.html#ga504805ec0161f1b505397ca0118bf8fd',1,'turbojpeg.h']]] ]; libjpeg-turbo-2.1.5/doc/html/search/variables_0.html000066400000000000000000000026241436506551100223310ustar00rootroot00000000000000
    Loading...
    Searching...
    No Matches
    libjpeg-turbo-2.1.5/doc/html/search/variables_0.js000066400000000000000000000002151436506551100217730ustar00rootroot00000000000000var searchData= [ ['customfilter_142',['customFilter',['../structtjtransform.html#afd7fc262df33f741e120ef4183202ef5',1,'tjtransform']]] ]; libjpeg-turbo-2.1.5/doc/html/search/variables_1.html000066400000000000000000000026241436506551100223320ustar00rootroot00000000000000
    Loading...
    Searching...
    No Matches
    libjpeg-turbo-2.1.5/doc/html/search/variables_1.js000066400000000000000000000003601436506551100217750ustar00rootroot00000000000000var searchData= [ ['data_143',['data',['../structtjtransform.html#a688fe8f1a8ecc12a538d9e561cf338e3',1,'tjtransform']]], ['denom_144',['denom',['../structtjscalingfactor.html#aefbcdf3e9e62274b2d312c695f133ce3',1,'tjscalingfactor']]] ]; libjpeg-turbo-2.1.5/doc/html/search/variables_2.html000066400000000000000000000026241436506551100223330ustar00rootroot00000000000000
    Loading...
    Searching...
    No Matches
    libjpeg-turbo-2.1.5/doc/html/search/variables_2.js000066400000000000000000000001611436506551100217750ustar00rootroot00000000000000var searchData= [ ['h_145',['h',['../structtjregion.html#aecefc45a26f4d8b60dd4d825c1710115',1,'tjregion']]] ]; libjpeg-turbo-2.1.5/doc/html/search/variables_3.html000066400000000000000000000026241436506551100223340ustar00rootroot00000000000000
    Loading...
    Searching...
    No Matches
    libjpeg-turbo-2.1.5/doc/html/search/variables_3.js000066400000000000000000000002031436506551100217730ustar00rootroot00000000000000var searchData= [ ['num_146',['num',['../structtjscalingfactor.html#a9b011e57f981ee23083e2c1aa5e640ec',1,'tjscalingfactor']]] ]; libjpeg-turbo-2.1.5/doc/html/search/variables_4.html000066400000000000000000000026241436506551100223350ustar00rootroot00000000000000
    Loading...
    Searching...
    No Matches
    libjpeg-turbo-2.1.5/doc/html/search/variables_4.js000066400000000000000000000003501436506551100217770ustar00rootroot00000000000000var searchData= [ ['op_147',['op',['../structtjtransform.html#a2525aab4ba6978a1c273f74fef50e498',1,'tjtransform']]], ['options_148',['options',['../structtjtransform.html#ac0e74655baa4402209a21e1ae481c8f6',1,'tjtransform']]] ]; libjpeg-turbo-2.1.5/doc/html/search/variables_5.html000066400000000000000000000026241436506551100223360ustar00rootroot00000000000000
    Loading...
    Searching...
    No Matches
    libjpeg-turbo-2.1.5/doc/html/search/variables_5.js000066400000000000000000000001671436506551100220060ustar00rootroot00000000000000var searchData= [ ['r_149',['r',['../structtjtransform.html#ac324e5e442abec8a961e5bf219db12cf',1,'tjtransform']]] ]; libjpeg-turbo-2.1.5/doc/html/search/variables_6.html000066400000000000000000000026241436506551100223370ustar00rootroot00000000000000
    Loading...
    Searching...
    No Matches
    libjpeg-turbo-2.1.5/doc/html/search/variables_6.js000066400000000000000000000016001436506551100220000ustar00rootroot00000000000000var searchData= [ ['tjalphaoffset_150',['tjAlphaOffset',['../group___turbo_j_p_e_g.html#ga5af0ab065feefd526debf1e20c43e837',1,'turbojpeg.h']]], ['tjblueoffset_151',['tjBlueOffset',['../group___turbo_j_p_e_g.html#ga84e2e35d3f08025f976ec1ec53693dea',1,'turbojpeg.h']]], ['tjgreenoffset_152',['tjGreenOffset',['../group___turbo_j_p_e_g.html#ga82d6e35da441112a411da41923c0ba2f',1,'turbojpeg.h']]], ['tjmcuheight_153',['tjMCUHeight',['../group___turbo_j_p_e_g.html#gabd247bb9fecb393eca57366feb8327bf',1,'turbojpeg.h']]], ['tjmcuwidth_154',['tjMCUWidth',['../group___turbo_j_p_e_g.html#ga9e61e7cd47a15a173283ba94e781308c',1,'turbojpeg.h']]], ['tjpixelsize_155',['tjPixelSize',['../group___turbo_j_p_e_g.html#gad77cf8fe5b2bfd3cb3f53098146abb4c',1,'turbojpeg.h']]], ['tjredoffset_156',['tjRedOffset',['../group___turbo_j_p_e_g.html#gadd9b446742ac8a3923f7992c7988fea8',1,'turbojpeg.h']]] ]; libjpeg-turbo-2.1.5/doc/html/search/variables_7.html000066400000000000000000000026241436506551100223400ustar00rootroot00000000000000
    Loading...
    Searching...
    No Matches
    libjpeg-turbo-2.1.5/doc/html/search/variables_7.js000066400000000000000000000001611436506551100220020ustar00rootroot00000000000000var searchData= [ ['w_157',['w',['../structtjregion.html#ab6eb73ceef584fc23c8c8097926dce42',1,'tjregion']]] ]; libjpeg-turbo-2.1.5/doc/html/search/variables_8.html000066400000000000000000000026241436506551100223410ustar00rootroot00000000000000
    Loading...
    Searching...
    No Matches
    libjpeg-turbo-2.1.5/doc/html/search/variables_8.js000066400000000000000000000001611436506551100220030ustar00rootroot00000000000000var searchData= [ ['x_158',['x',['../structtjregion.html#a4b6a37a93997091b26a75831fa291ad9',1,'tjregion']]] ]; libjpeg-turbo-2.1.5/doc/html/search/variables_9.html000066400000000000000000000026241436506551100223420ustar00rootroot00000000000000
    Loading...
    Searching...
    No Matches
    libjpeg-turbo-2.1.5/doc/html/search/variables_9.js000066400000000000000000000001611436506551100220040ustar00rootroot00000000000000var searchData= [ ['y_159',['y',['../structtjregion.html#a7b3e0c24cfe87acc80e334cafdcf22c2',1,'tjregion']]] ]; libjpeg-turbo-2.1.5/doc/html/splitbar.png000066400000000000000000000004721436506551100203340ustar00rootroot00000000000000‰PNG  IHDRM¸¿IDATxíÝ¡JCa‡ñç(˜ ëƒ%±Ø4 b±È˜Í¶3˜v^Á±˜…ãó–ŽELƒõ…¥•³ ,ÿb;íç{Ã/¼ðÞÀaYÕ¯åóøq:¼º¹›\òIIIIIIIIIIIIIIIIII-Òçl¹›«õ抢è_t/Ï»ã£ÑíYQVõðêäíã÷´×ùY¬Úÿµ§¦ivók¾_íåýÛ£I@$I@$I@$I@$I@$I@$I@$I@$I@$I@$I@$I@$I@$I@$I@$I@$I@$I@$ýC[Vì=ü[„fÆIEND®B`‚libjpeg-turbo-2.1.5/doc/html/structtjregion.html000066400000000000000000000205311436506551100217600ustar00rootroot00000000000000 TurboJPEG: tjregion Struct Reference
    TurboJPEG  2.1.4
    tjregion Struct Reference

    Cropping region. More...

    #include <turbojpeg.h>

    Data Fields

    int x
     The left boundary of the cropping region. More...
     
    int y
     The upper boundary of the cropping region. More...
     
    int w
     The width of the cropping region. More...
     
    int h
     The height of the cropping region. More...
     

    Detailed Description

    Cropping region.

    Field Documentation

    ◆ h

    int tjregion::h

    The height of the cropping region.

    Setting this to 0 is the equivalent of setting it to the height of the source JPEG image - y.

    ◆ w

    int tjregion::w

    The width of the cropping region.

    Setting this to 0 is the equivalent of setting it to the width of the source JPEG image - x.

    ◆ x

    int tjregion::x

    The left boundary of the cropping region.

    This must be evenly divisible by the MCU block width (see tjMCUWidth.)

    ◆ y

    int tjregion::y

    The upper boundary of the cropping region.

    This must be evenly divisible by the MCU block height (see tjMCUHeight.)


    The documentation for this struct was generated from the following file:
    • turbojpeg.h
    libjpeg-turbo-2.1.5/doc/html/structtjscalingfactor.html000066400000000000000000000131661436506551100233220ustar00rootroot00000000000000 TurboJPEG: tjscalingfactor Struct Reference
    TurboJPEG  2.1.4
    tjscalingfactor Struct Reference

    Scaling factor. More...

    #include <turbojpeg.h>

    Data Fields

    int num
     Numerator. More...
     
    int denom
     Denominator. More...
     

    Detailed Description

    Scaling factor.

    Field Documentation

    ◆ denom

    int tjscalingfactor::denom

    Denominator.

    ◆ num

    int tjscalingfactor::num

    Numerator.


    The documentation for this struct was generated from the following file:
    • turbojpeg.h
    libjpeg-turbo-2.1.5/doc/html/structtjtransform.html000066400000000000000000000302671436506551100225170ustar00rootroot00000000000000 TurboJPEG: tjtransform Struct Reference
    TurboJPEG  2.1.4
    tjtransform Struct Reference

    Lossless transform. More...

    #include <turbojpeg.h>

    Data Fields

    tjregion r
     Cropping region. More...
     
    int op
     One of the transform operations. More...
     
    int options
     The bitwise OR of one of more of the transform options. More...
     
    void * data
     Arbitrary data that can be accessed within the body of the callback function. More...
     
    int(* customFilter )(short *coeffs, tjregion arrayRegion, tjregion planeRegion, int componentIndex, int transformIndex, struct tjtransform *transform)
     A callback function that can be used to modify the DCT coefficients after they are losslessly transformed but before they are transcoded to a new JPEG image. More...
     

    Detailed Description

    Lossless transform.

    Field Documentation

    ◆ customFilter

    int(* tjtransform::customFilter) (short *coeffs, tjregion arrayRegion, tjregion planeRegion, int componentIndex, int transformIndex, struct tjtransform *transform)

    A callback function that can be used to modify the DCT coefficients after they are losslessly transformed but before they are transcoded to a new JPEG image.

    This allows for custom filters or other transformations to be applied in the frequency domain.

    Parameters
    coeffspointer to an array of transformed DCT coefficients. (NOTE: this pointer is not guaranteed to be valid once the callback returns, so applications wishing to hand off the DCT coefficients to another function or library should make a copy of them within the body of the callback.)
    arrayRegiontjregion structure containing the width and height of the array pointed to by coeffs as well as its offset relative to the component plane. TurboJPEG implementations may choose to split each component plane into multiple DCT coefficient arrays and call the callback function once for each array.
    planeRegiontjregion structure containing the width and height of the component plane to which coeffs belongs
    componentIDID number of the component plane to which coeffs belongs. (Y, Cb, and Cr have, respectively, ID's of 0, 1, and 2 in typical JPEG images.)
    transformIDID number of the transformed image to which coeffs belongs. This is the same as the index of the transform in the transforms array that was passed to tjTransform().
    transforma pointer to a tjtransform structure that specifies the parameters and/or cropping region for this transform
    Returns
    0 if the callback was successful, or -1 if an error occurred.

    ◆ data

    void* tjtransform::data

    Arbitrary data that can be accessed within the body of the callback function.

    ◆ op

    int tjtransform::op

    One of the transform operations.

    ◆ options

    int tjtransform::options

    The bitwise OR of one of more of the transform options.

    ◆ r

    tjregion tjtransform::r

    Cropping region.


    The documentation for this struct was generated from the following file:
    • turbojpeg.h
    libjpeg-turbo-2.1.5/doc/html/sync_off.png000066400000000000000000000015251436506551100203220ustar00rootroot00000000000000‰PNG  IHDRàw=øIDATxíÝKhTWÀñÿä1I&3™8M¦Iš™†I3Ú©b$cÌ I1V1±-(Tö±±Ð.* t!‚K[¥Ä¥ˆ„¨´f£`l(øl©"Y”¤6ÆgÌTú}·sgîܹ ±d{8?æÌ¹÷;çÜuíÚ`:!±F¬¢BäŠ?ŰÄm'yÊÅ>ÑlU¯½üý‰è_‹?€Œê ]€Y(ŠNñ±8fý1°Öqún-eâ¨øtºmâÈ Ó0}b›ù%·©µ×Œ®=Ÿ0´³?Š1sŸ‹0€¯8À‘;_ ‹W|%\ Zð— >舽ln¨p©.aÇ{ )t;Ú b nŸš¯›65°¢¡2çÅÔ?Žž>Oдàuönm¤¢Ì`×­Z¬WjC~>‘Ö¾0+á {{©fÝ×Mæ·æÅ•ìÙ¼˜` Ý›%uA6´½ÅÆö¨Á,]k¢ÄW¼™u±›]‹ˆ7§¯iòh€ ¶¶¬ÏÖu1 ló —Ҷ̺–:ÞÍ\ÄcãÏxøhR²Êè‡Qt$¿ß§¨ ª fdºü<4BÿÙ[•f¸d7=.Mé9/—éªÃëù/ÿO Üaàò}€,‘j?Ÿõ.5Úšm?œÿŸ®ŽXÿ2¬#¸d píæ(£?cÛú¼!½›a1¥Þ—ŽòØ©ܾ7dÔK:‚ùÒ‰ì)Ê3‚Ü™àÌà]€,±H€µ+køöäu<|`·LhC7¹ÔeÍ Ÿ×Ÿ˜tÜ‹ óH$^2%l.êaeÐäýE”ÌÉ|ÅÜìî‰Ýsä }¸ýDû^hzé~ðR›¦Ã¡¿]|#ü¯@×—Ö‡[k¹–<|š(Ç*€Ý¹dÇtMé:Ýñø«Ø,êÅû¢]”' øXÓ_nò¡Æ|Øý /c§fžâOIEND®B`‚libjpeg-turbo-2.1.5/doc/html/sync_on.png000066400000000000000000000015151436506551100201630ustar00rootroot00000000000000‰PNG  IHDRàw=øIDATxíÝ_HTYÀñï8ã¤ó§i§4-g6ÆËÕ&kQ)¨Ô!Š0ÒURKÚ…„ê¡/»PEÁ>ìK-+KÁ²Ñ.Y”¾dEPaA‰ø°¥¶›ZSÓïÜ;3wºŠ–¯—߯gfîïœsçœWKÇñ.€ÉøD­¨a‘'¬âq_ôˆk¢ÀŒ ÀDŽøQ´ÄïC¨¶åñÏÿgÅ ñ 0„Y‚:qZ¦Á)~õâ€èLý0HVñ× žz-¿‰C“%¨g¦˜6€é8%Úõ¬ëwêÙUÏ¿˜ª³Ä }? ?€·3ÀÀž©Š À”K• @hà a±ðaÇæUe‹ sù~ë2²ì“&Ú&B*AÄljæºììi*˨,Ëçí»÷oÆ£T”,d[˜¼3-*ÁÀ…>å‡Ë çLÉŸçfk˜Ò éw#*AEjKUy>ûšËÉõ&{µ¢8—m5Ki¬ jjƒD*¿NŽÖigwÃ7Dª’mz骹úKÛ¾±ˆ¶M!æ¤ÍkÐ?šoý¬_åÓlXí#Ò~–¸¬ê×ÒÑXŠÓ‘ùRÙ*Eû‚ՂדðEÜ;6«e"Q(²Ù=–¿Ezæ5Kؼָ_ 1òzBªJë ±XŒì96åªjL^7{ùãJÑ÷1½i@%8'7M©_\Qœ#ÓUŒËñýÿyõ Wo Éx8¼s¥v¯ªì|×SnÜ q_m Ýé î>bèÕí[JX,½4[Tú{R£ë¼ôˆ¾þa€tÝjjzzÅ'ÅìȶiIžŽòwÏs ¡€—ÕKøõâC^ŽŒ˜Y­¨µÉ%6¨´êˆº]vÛðhâ½iWv–hôëê°Ò¨¾'æÌ‚·ñ|[ßìúÅ^€YrD=<ýDû]äÇ÷s€Ïõ‹8™ºCì? À ¨—t4õᩎ¡Jã‡W‹É± îr¼cjMɘìx| šE©øNÔ‰œøA¢þ«–€Z¼ñ‡jó î#™§¢¢4gIEND®B`‚libjpeg-turbo-2.1.5/doc/html/tab_a.png000066400000000000000000000002161436506551100175560ustar00rootroot00000000000000‰PNG  IHDR$ÇÇ[UIDATxíK €0C'o¤(Šˆ[Žà%Üxÿ#Ù©­ç ùÁöó¦W¦e# 3t I 3+¼øEã~\D½9¯Ûàè’wM·¿öÿ}Yõ_êA4Yžã}IEND®B`‚libjpeg-turbo-2.1.5/doc/html/tab_b.png000066400000000000000000000002511436506551100175560ustar00rootroot00000000000000‰PNG  IHDR$ÇÇ[pIDATxíÝMƒ EáÇ»ÐÔ¸¸u`âÀ´V0РÆ}:t]DÁ²s¿ä®‚¶ýËu¥ø|’xùî½À>ÿ1»& mÄ8ÜSÙÑxÜLÀUûšÞ²ÄiE–ŠåOs„¢’nxàÒêÓKN²~jIEND®B`‚libjpeg-turbo-2.1.5/doc/html/tab_h.png000066400000000000000000000002611436506551100175650ustar00rootroot00000000000000‰PNG  IHDR$ÇÇ[xIDATxíÝMÁ@†áž~¥ÜÆÎ’Evˆ¿"!•²‘d*×rGq=Š{¼ßSݧçë­ÓÉHÇ uO^õø[À_‡¢ãXvyËþÒ±=·VCffææ{°öŠó´Rçœ%_õçÿŽ¢ö·°Çrug¶(?gh\i>|sIEND®B`‚libjpeg-turbo-2.1.5/doc/html/tab_s.png000066400000000000000000000002701436506551100176000ustar00rootroot00000000000000‰PNG  IHDR$ÇÇ[IDATxíÝ ‚@@Ñ£?Q…¤"š¢%¦I‘—Šf–6[´HÃäQƒ<Þâõþ]ždr Í’s?ˆO=Ñññw'ÌF‡Ž íðö-~rÃ[œèŠ­ì¬mƒÖ¬ƒݯнŠÕF)Yº% §`nÌ,9B ™’©!ÑŒ\ý<Å#üîî•IEND®B`‚libjpeg-turbo-2.1.5/doc/html/tabs.css000066400000000000000000000217401436506551100174520ustar00rootroot00000000000000.sm{position:relative;z-index:9999}.sm,.sm ul,.sm li{display:block;list-style:none;margin:0;padding:0;line-height:normal;direction:ltr;text-align:left;-webkit-tap-highlight-color:rgba(0,0,0,0)}.sm-rtl,.sm-rtl ul,.sm-rtl li{direction:rtl;text-align:right}.sm>li>h1,.sm>li>h2,.sm>li>h3,.sm>li>h4,.sm>li>h5,.sm>li>h6{margin:0;padding:0}.sm ul{display:none}.sm li,.sm a{position:relative}.sm a{display:block}.sm a.disabled{cursor:not-allowed}.sm:after{content:"\00a0";display:block;height:0;font:0/0 serif;clear:both;visibility:hidden;overflow:hidden}.sm,.sm *,.sm *:before,.sm *:after{-moz-box-sizing:border-box;-webkit-box-sizing:border-box;box-sizing:border-box}.sm-dox{background-image:url("tab_b.png")}.sm-dox a,.sm-dox a:focus,.sm-dox a:hover,.sm-dox a:active{padding:0 12px;padding-right:43px;font-family:"Lucida Grande","Geneva","Helvetica",Arial,sans-serif;font-size:13px;font-weight:bold;line-height:36px;text-decoration:none;text-shadow:0 1px 1px rgba(255,255,255,0.9);color:#283a5d;outline:0}.sm-dox a:hover{background-image:url("tab_a.png");background-repeat:repeat-x;color:white;text-shadow:0 1px 1px black}.sm-dox a.current{color:#d23600}.sm-dox a.disabled{color:#bbb}.sm-dox a span.sub-arrow{position:absolute;top:50%;margin-top:-14px;left:auto;right:3px;width:28px;height:28px;overflow:hidden;font:bold 12px/28px monospace!important;text-align:center;text-shadow:none;background:rgba(255,255,255,0.5);-moz-border-radius:5px;-webkit-border-radius:5px;border-radius:5px}.sm-dox a.highlighted span.sub-arrow:before{display:block;content:'-'}.sm-dox>li:first-child>a,.sm-dox>li:first-child>:not(ul) a{-moz-border-radius:5px 5px 0 0;-webkit-border-radius:5px;border-radius:5px 5px 0 0}.sm-dox>li:last-child>a,.sm-dox>li:last-child>*:not(ul) a,.sm-dox>li:last-child>ul,.sm-dox>li:last-child>ul>li:last-child>a,.sm-dox>li:last-child>ul>li:last-child>*:not(ul) a,.sm-dox>li:last-child>ul>li:last-child>ul,.sm-dox>li:last-child>ul>li:last-child>ul>li:last-child>a,.sm-dox>li:last-child>ul>li:last-child>ul>li:last-child>*:not(ul) a,.sm-dox>li:last-child>ul>li:last-child>ul>li:last-child>ul,.sm-dox>li:last-child>ul>li:last-child>ul>li:last-child>ul>li:last-child>a,.sm-dox>li:last-child>ul>li:last-child>ul>li:last-child>ul>li:last-child>*:not(ul) a,.sm-dox>li:last-child>ul>li:last-child>ul>li:last-child>ul>li:last-child>ul,.sm-dox>li:last-child>ul>li:last-child>ul>li:last-child>ul>li:last-child>ul>li:last-child>a,.sm-dox>li:last-child>ul>li:last-child>ul>li:last-child>ul>li:last-child>ul>li:last-child>*:not(ul) a,.sm-dox>li:last-child>ul>li:last-child>ul>li:last-child>ul>li:last-child>ul>li:last-child>ul{-moz-border-radius:0 0 5px 5px;-webkit-border-radius:0;border-radius:0 0 5px 5px}.sm-dox>li:last-child>a.highlighted,.sm-dox>li:last-child>*:not(ul) a.highlighted,.sm-dox>li:last-child>ul>li:last-child>a.highlighted,.sm-dox>li:last-child>ul>li:last-child>*:not(ul) a.highlighted,.sm-dox>li:last-child>ul>li:last-child>ul>li:last-child>a.highlighted,.sm-dox>li:last-child>ul>li:last-child>ul>li:last-child>*:not(ul) a.highlighted,.sm-dox>li:last-child>ul>li:last-child>ul>li:last-child>ul>li:last-child>a.highlighted,.sm-dox>li:last-child>ul>li:last-child>ul>li:last-child>ul>li:last-child>*:not(ul) a.highlighted,.sm-dox>li:last-child>ul>li:last-child>ul>li:last-child>ul>li:last-child>ul>li:last-child>a.highlighted,.sm-dox>li:last-child>ul>li:last-child>ul>li:last-child>ul>li:last-child>ul>li:last-child>*:not(ul) a.highlighted{-moz-border-radius:0;-webkit-border-radius:0;border-radius:0}.sm-dox ul{background:rgba(162,162,162,0.1)}.sm-dox ul a,.sm-dox ul a:focus,.sm-dox ul a:hover,.sm-dox ul a:active{font-size:12px;border-left:8px solid transparent;line-height:36px;text-shadow:none;background-color:white;background-image:none}.sm-dox ul a:hover{background-image:url("tab_a.png");background-repeat:repeat-x;color:white;text-shadow:0 1px 1px black}.sm-dox ul ul a,.sm-dox ul ul a:hover,.sm-dox ul ul a:focus,.sm-dox ul ul a:active{border-left:16px solid transparent}.sm-dox ul ul ul a,.sm-dox ul ul ul a:hover,.sm-dox ul ul ul a:focus,.sm-dox ul ul ul a:active{border-left:24px solid transparent}.sm-dox ul ul ul ul a,.sm-dox ul ul ul ul a:hover,.sm-dox ul ul ul ul a:focus,.sm-dox ul ul ul ul a:active{border-left:32px solid transparent}.sm-dox ul ul ul ul ul a,.sm-dox ul ul ul ul ul a:hover,.sm-dox ul ul ul ul ul a:focus,.sm-dox ul ul ul ul ul a:active{border-left:40px solid transparent}@media(min-width:768px){.sm-dox ul{position:absolute;width:12em}.sm-dox li{float:left}.sm-dox.sm-rtl li{float:right}.sm-dox ul li,.sm-dox.sm-rtl ul li,.sm-dox.sm-vertical li{float:none}.sm-dox a{white-space:nowrap}.sm-dox ul a,.sm-dox.sm-vertical a{white-space:normal}.sm-dox .sm-nowrap>li>a,.sm-dox .sm-nowrap>li>:not(ul) a{white-space:nowrap}.sm-dox{padding:0 10px;background-image:url("tab_b.png");line-height:36px}.sm-dox a span.sub-arrow{top:50%;margin-top:-2px;right:12px;width:0;height:0;border-width:4px;border-style:solid dashed dashed dashed;border-color:#283a5d transparent transparent transparent;background:transparent;-moz-border-radius:0;-webkit-border-radius:0;border-radius:0}.sm-dox a,.sm-dox a:focus,.sm-dox a:active,.sm-dox a:hover,.sm-dox a.highlighted{padding:0 12px;background-image:url("tab_s.png");background-repeat:no-repeat;background-position:right;-moz-border-radius:0!important;-webkit-border-radius:0;border-radius:0!important}.sm-dox a:hover{background-image:url("tab_a.png");background-repeat:repeat-x;color:white;text-shadow:0 1px 1px black}.sm-dox a:hover span.sub-arrow{border-color:white transparent transparent transparent}.sm-dox a.has-submenu{padding-right:24px}.sm-dox li{border-top:0}.sm-dox>li>ul:before,.sm-dox>li>ul:after{content:'';position:absolute;top:-18px;left:30px;width:0;height:0;overflow:hidden;border-width:9px;border-style:dashed dashed solid dashed;border-color:transparent transparent #bbb transparent}.sm-dox>li>ul:after{top:-16px;left:31px;border-width:8px;border-color:transparent transparent #fff transparent}.sm-dox ul{border:1px solid #bbb;padding:5px 0;background:#fff;-moz-border-radius:5px!important;-webkit-border-radius:5px;border-radius:5px!important;-moz-box-shadow:0 5px 9px rgba(0,0,0,0.2);-webkit-box-shadow:0 5px 9px rgba(0,0,0,0.2);box-shadow:0 5px 9px rgba(0,0,0,0.2)}.sm-dox ul a span.sub-arrow{right:8px;top:50%;margin-top:-5px;border-width:5px;border-color:transparent transparent transparent #555;border-style:dashed dashed dashed solid}.sm-dox ul a,.sm-dox ul a:hover,.sm-dox ul a:focus,.sm-dox ul a:active,.sm-dox ul a.highlighted{color:#555;background-image:none;border:0!important;color:#555;background-image:none}.sm-dox ul a:hover{background-image:url("tab_a.png");background-repeat:repeat-x;color:white;text-shadow:0 1px 1px black}.sm-dox ul a:hover span.sub-arrow{border-color:transparent transparent transparent white}.sm-dox span.scroll-up,.sm-dox span.scroll-down{position:absolute;display:none;visibility:hidden;overflow:hidden;background:#fff;height:36px}.sm-dox span.scroll-up:hover,.sm-dox span.scroll-down:hover{background:#eee}.sm-dox span.scroll-up:hover span.scroll-up-arrow,.sm-dox span.scroll-up:hover span.scroll-down-arrow{border-color:transparent transparent #d23600 transparent}.sm-dox span.scroll-down:hover span.scroll-down-arrow{border-color:#d23600 transparent transparent transparent}.sm-dox span.scroll-up-arrow,.sm-dox span.scroll-down-arrow{position:absolute;top:0;left:50%;margin-left:-6px;width:0;height:0;overflow:hidden;border-width:6px;border-style:dashed dashed solid dashed;border-color:transparent transparent #555 transparent}.sm-dox span.scroll-down-arrow{top:8px;border-style:solid dashed dashed dashed;border-color:#555 transparent transparent transparent}.sm-dox.sm-rtl a.has-submenu{padding-right:12px;padding-left:24px}.sm-dox.sm-rtl a span.sub-arrow{right:auto;left:12px}.sm-dox.sm-rtl.sm-vertical a.has-submenu{padding:10px 20px}.sm-dox.sm-rtl.sm-vertical a span.sub-arrow{right:auto;left:8px;border-style:dashed solid dashed dashed;border-color:transparent #555 transparent transparent}.sm-dox.sm-rtl>li>ul:before{left:auto;right:30px}.sm-dox.sm-rtl>li>ul:after{left:auto;right:31px}.sm-dox.sm-rtl ul a.has-submenu{padding:10px 20px!important}.sm-dox.sm-rtl ul a span.sub-arrow{right:auto;left:8px;border-style:dashed solid dashed dashed;border-color:transparent #555 transparent transparent}.sm-dox.sm-vertical{padding:10px 0;-moz-border-radius:5px;-webkit-border-radius:5px;border-radius:5px}.sm-dox.sm-vertical a{padding:10px 20px}.sm-dox.sm-vertical a:hover,.sm-dox.sm-vertical a:focus,.sm-dox.sm-vertical a:active,.sm-dox.sm-vertical a.highlighted{background:#fff}.sm-dox.sm-vertical a.disabled{background-image:url("tab_b.png")}.sm-dox.sm-vertical a span.sub-arrow{right:8px;top:50%;margin-top:-5px;border-width:5px;border-style:dashed dashed dashed solid;border-color:transparent transparent transparent #555}.sm-dox.sm-vertical>li>ul:before,.sm-dox.sm-vertical>li>ul:after{display:none}.sm-dox.sm-vertical ul a{padding:10px 20px}.sm-dox.sm-vertical ul a:hover,.sm-dox.sm-vertical ul a:focus,.sm-dox.sm-vertical ul a:active,.sm-dox.sm-vertical ul a.highlighted{background:#eee}.sm-dox.sm-vertical ul a.disabled{background:#fff}}libjpeg-turbo-2.1.5/doxygen-extra.css000066400000000000000000000000321436506551100175750ustar00rootroot00000000000000code { color: #4665A2; } libjpeg-turbo-2.1.5/doxygen.config000066400000000000000000000006231436506551100171370ustar00rootroot00000000000000PROJECT_NAME = TurboJPEG PROJECT_NUMBER = 2.1.4 OUTPUT_DIRECTORY = doc/ USE_WINDOWS_ENCODING = NO OPTIMIZE_OUTPUT_FOR_C = YES WARN_NO_PARAMDOC = YES GENERATE_LATEX = NO FILE_PATTERNS = turbojpeg.h HIDE_UNDOC_MEMBERS = YES VERBATIM_HEADERS = NO EXTRACT_STATIC = YES JAVADOC_AUTOBRIEF = YES MAX_INITIALIZER_LINES = 0 ALWAYS_DETAILED_SEC = YES HTML_TIMESTAMP = NO HTML_EXTRA_STYLESHEET = doxygen-extra.css libjpeg-turbo-2.1.5/example.txt000066400000000000000000000444131436506551100164740ustar00rootroot00000000000000/* * example.txt * * This file illustrates how to use the IJG code as a subroutine library * to read or write JPEG image files. You should look at this code in * conjunction with the documentation file libjpeg.txt. * * This code will not do anything useful as-is, but it may be helpful as a * skeleton for constructing routines that call the JPEG library. * * We present these routines in the same coding style used in the JPEG code * (ANSI function definitions, etc); but you are of course free to code your * routines in a different style if you prefer. */ /* This example was part of the original libjpeg documentation and has been * unchanged since 1994. It is, as described in libjpeg.txt, "heavily * commented skeleton code for calling the JPEG library." It is not meant to * be compiled as a standalone program, since it has no main() function and * does not compress from/decompress to a real image buffer (corollary: * put_scanline_someplace() is not a real function.) First-time users of * libjpeg-turbo would be better served by looking at tjexample.c, which uses * the more straightforward TurboJPEG API, or at cjpeg.c and djpeg.c, which are * examples of libjpeg API usage that can be (and are) compiled into standalone * programs. Note that this example, as well as the examples in cjpeg.c and * djpeg.c, interleave disk I/O with JPEG compression/decompression, so none of * these examples is suitable for benchmarking purposes. */ #include /* * Include file for users of JPEG library. * You will need to have included system headers that define at least * the typedefs FILE and size_t before you can include jpeglib.h. * (stdio.h is sufficient on ANSI-conforming systems.) * You may also wish to include "jerror.h". */ #include "jpeglib.h" /* * is used for the optional error recovery mechanism shown in * the second part of the example. */ #include /******************** JPEG COMPRESSION SAMPLE INTERFACE *******************/ /* This half of the example shows how to feed data into the JPEG compressor. * We present a minimal version that does not worry about refinements such * as error recovery (the JPEG code will just exit() if it gets an error). */ /* * IMAGE DATA FORMATS: * * The standard input image format is a rectangular array of pixels, with * each pixel having the same number of "component" values (color channels). * Each pixel row is an array of JSAMPLEs (which typically are unsigned chars). * If you are working with color data, then the color values for each pixel * must be adjacent in the row; for example, R,G,B,R,G,B,R,G,B,... for 24-bit * RGB color. * * For this example, we'll assume that this data structure matches the way * our application has stored the image in memory, so we can just pass a * pointer to our image buffer. In particular, let's say that the image is * RGB color and is described by: */ extern JSAMPLE *image_buffer; /* Points to large array of R,G,B-order data */ extern int image_height; /* Number of rows in image */ extern int image_width; /* Number of columns in image */ /* * Sample routine for JPEG compression. We assume that the target file name * and a compression quality factor are passed in. */ GLOBAL(void) write_JPEG_file(char *filename, int quality) { /* This struct contains the JPEG compression parameters and pointers to * working space (which is allocated as needed by the JPEG library). * It is possible to have several such structures, representing multiple * compression/decompression processes, in existence at once. We refer * to any one struct (and its associated working data) as a "JPEG object". */ struct jpeg_compress_struct cinfo; /* This struct represents a JPEG error handler. It is declared separately * because applications often want to supply a specialized error handler * (see the second half of this file for an example). But here we just * take the easy way out and use the standard error handler, which will * print a message on stderr and call exit() if compression fails. * Note that this struct must live as long as the main JPEG parameter * struct, to avoid dangling-pointer problems. */ struct jpeg_error_mgr jerr; /* More stuff */ FILE *outfile; /* target file */ JSAMPROW row_pointer[1]; /* pointer to JSAMPLE row[s] */ int row_stride; /* physical row width in image buffer */ /* Step 1: allocate and initialize JPEG compression object */ /* We have to set up the error handler first, in case the initialization * step fails. (Unlikely, but it could happen if you are out of memory.) * This routine fills in the contents of struct jerr, and returns jerr's * address which we place into the link field in cinfo. */ cinfo.err = jpeg_std_error(&jerr); /* Now we can initialize the JPEG compression object. */ jpeg_create_compress(&cinfo); /* Step 2: specify data destination (eg, a file) */ /* Note: steps 2 and 3 can be done in either order. */ /* Here we use the library-supplied code to send compressed data to a * stdio stream. You can also write your own code to do something else. * VERY IMPORTANT: use "b" option to fopen() if you are on a machine that * requires it in order to write binary files. */ if ((outfile = fopen(filename, "wb")) == NULL) { fprintf(stderr, "can't open %s\n", filename); exit(1); } jpeg_stdio_dest(&cinfo, outfile); /* Step 3: set parameters for compression */ /* First we supply a description of the input image. * Four fields of the cinfo struct must be filled in: */ cinfo.image_width = image_width; /* image width and height, in pixels */ cinfo.image_height = image_height; cinfo.input_components = 3; /* # of color components per pixel */ cinfo.in_color_space = JCS_RGB; /* colorspace of input image */ /* Now use the library's routine to set default compression parameters. * (You must set at least cinfo.in_color_space before calling this, * since the defaults depend on the source color space.) */ jpeg_set_defaults(&cinfo); /* Now you can set any non-default parameters you wish to. * Here we just illustrate the use of quality (quantization table) scaling: */ jpeg_set_quality(&cinfo, quality, TRUE /* limit to baseline-JPEG values */); /* Step 4: Start compressor */ /* TRUE ensures that we will write a complete interchange-JPEG file. * Pass TRUE unless you are very sure of what you're doing. */ jpeg_start_compress(&cinfo, TRUE); /* Step 5: while (scan lines remain to be written) */ /* jpeg_write_scanlines(...); */ /* Here we use the library's state variable cinfo.next_scanline as the * loop counter, so that we don't have to keep track ourselves. * To keep things simple, we pass one scanline per call; you can pass * more if you wish, though. */ row_stride = image_width * 3; /* JSAMPLEs per row in image_buffer */ while (cinfo.next_scanline < cinfo.image_height) { /* jpeg_write_scanlines expects an array of pointers to scanlines. * Here the array is only one element long, but you could pass * more than one scanline at a time if that's more convenient. */ row_pointer[0] = &image_buffer[cinfo.next_scanline * row_stride]; (void)jpeg_write_scanlines(&cinfo, row_pointer, 1); } /* Step 6: Finish compression */ jpeg_finish_compress(&cinfo); /* After finish_compress, we can close the output file. */ fclose(outfile); /* Step 7: release JPEG compression object */ /* This is an important step since it will release a good deal of memory. */ jpeg_destroy_compress(&cinfo); /* And we're done! */ } /* * SOME FINE POINTS: * * In the above loop, we ignored the return value of jpeg_write_scanlines, * which is the number of scanlines actually written. We could get away * with this because we were only relying on the value of cinfo.next_scanline, * which will be incremented correctly. If you maintain additional loop * variables then you should be careful to increment them properly. * Actually, for output to a stdio stream you needn't worry, because * then jpeg_write_scanlines will write all the lines passed (or else exit * with a fatal error). Partial writes can only occur if you use a data * destination module that can demand suspension of the compressor. * (If you don't know what that's for, you don't need it.) * * If the compressor requires full-image buffers (for entropy-coding * optimization or a multi-scan JPEG file), it will create temporary * files for anything that doesn't fit within the maximum-memory setting. * (Note that temp files are NOT needed if you use the default parameters.) * On some systems you may need to set up a signal handler to ensure that * temporary files are deleted if the program is interrupted. See libjpeg.txt. * * Scanlines MUST be supplied in top-to-bottom order if you want your JPEG * files to be compatible with everyone else's. If you cannot readily read * your data in that order, you'll need an intermediate array to hold the * image. See rdtarga.c or rdbmp.c for examples of handling bottom-to-top * source data using the JPEG code's internal virtual-array mechanisms. */ /******************** JPEG DECOMPRESSION SAMPLE INTERFACE *******************/ /* This half of the example shows how to read data from the JPEG decompressor. * It's a bit more refined than the above, in that we show: * (a) how to modify the JPEG library's standard error-reporting behavior; * (b) how to allocate workspace using the library's memory manager. * * Just to make this example a little different from the first one, we'll * assume that we do not intend to put the whole image into an in-memory * buffer, but to send it line-by-line someplace else. We need a one- * scanline-high JSAMPLE array as a work buffer, and we will let the JPEG * memory manager allocate it for us. This approach is actually quite useful * because we don't need to remember to deallocate the buffer separately: it * will go away automatically when the JPEG object is cleaned up. */ /* * ERROR HANDLING: * * The JPEG library's standard error handler (jerror.c) is divided into * several "methods" which you can override individually. This lets you * adjust the behavior without duplicating a lot of code, which you might * have to update with each future release. * * Our example here shows how to override the "error_exit" method so that * control is returned to the library's caller when a fatal error occurs, * rather than calling exit() as the standard error_exit method does. * * We use C's setjmp/longjmp facility to return control. This means that the * routine which calls the JPEG library must first execute a setjmp() call to * establish the return point. We want the replacement error_exit to do a * longjmp(). But we need to make the setjmp buffer accessible to the * error_exit routine. To do this, we make a private extension of the * standard JPEG error handler object. (If we were using C++, we'd say we * were making a subclass of the regular error handler.) * * Here's the extended error handler struct: */ struct my_error_mgr { struct jpeg_error_mgr pub; /* "public" fields */ jmp_buf setjmp_buffer; /* for return to caller */ }; typedef struct my_error_mgr *my_error_ptr; /* * Here's the routine that will replace the standard error_exit method: */ METHODDEF(void) my_error_exit(j_common_ptr cinfo) { /* cinfo->err really points to a my_error_mgr struct, so coerce pointer */ my_error_ptr myerr = (my_error_ptr)cinfo->err; /* Always display the message. */ /* We could postpone this until after returning, if we chose. */ (*cinfo->err->output_message) (cinfo); /* Return control to the setjmp point */ longjmp(myerr->setjmp_buffer, 1); } METHODDEF(int) do_read_JPEG_file(struct jpeg_decompress_struct *cinfo, char *filename); /* * Sample routine for JPEG decompression. We assume that the source file name * is passed in. We want to return 1 on success, 0 on error. */ GLOBAL(int) read_JPEG_file(char *filename) { /* This struct contains the JPEG decompression parameters and pointers to * working space (which is allocated as needed by the JPEG library). */ struct jpeg_decompress_struct cinfo; return do_read_JPEG_file(&cinfo, filename); } /* * We call the libjpeg API from within a separate function, because modifying * the local non-volatile jpeg_decompress_struct instance below the setjmp() * return point and then accessing the instance after setjmp() returns would * result in undefined behavior that may potentially overwrite all or part of * the structure. */ METHODDEF(int) do_read_JPEG_file(struct jpeg_decompress_struct *cinfo, char *filename) { /* We use our private extension JPEG error handler. * Note that this struct must live as long as the main JPEG parameter * struct, to avoid dangling-pointer problems. */ struct my_error_mgr jerr; /* More stuff */ FILE *infile; /* source file */ JSAMPARRAY buffer; /* Output row buffer */ int row_stride; /* physical row width in output buffer */ /* In this example we want to open the input file before doing anything else, * so that the setjmp() error recovery below can assume the file is open. * VERY IMPORTANT: use "b" option to fopen() if you are on a machine that * requires it in order to read binary files. */ if ((infile = fopen(filename, "rb")) == NULL) { fprintf(stderr, "can't open %s\n", filename); return 0; } /* Step 1: allocate and initialize JPEG decompression object */ /* We set up the normal JPEG error routines, then override error_exit. */ cinfo->err = jpeg_std_error(&jerr.pub); jerr.pub.error_exit = my_error_exit; /* Establish the setjmp return context for my_error_exit to use. */ if (setjmp(jerr.setjmp_buffer)) { /* If we get here, the JPEG code has signaled an error. * We need to clean up the JPEG object, close the input file, and return. */ jpeg_destroy_decompress(cinfo); fclose(infile); return 0; } /* Now we can initialize the JPEG decompression object. */ jpeg_create_decompress(cinfo); /* Step 2: specify data source (eg, a file) */ jpeg_stdio_src(cinfo, infile); /* Step 3: read file parameters with jpeg_read_header() */ (void)jpeg_read_header(cinfo, TRUE); /* We can ignore the return value from jpeg_read_header since * (a) suspension is not possible with the stdio data source, and * (b) we passed TRUE to reject a tables-only JPEG file as an error. * See libjpeg.txt for more info. */ /* Step 4: set parameters for decompression */ /* In this example, we don't need to change any of the defaults set by * jpeg_read_header(), so we do nothing here. */ /* Step 5: Start decompressor */ (void)jpeg_start_decompress(cinfo); /* We can ignore the return value since suspension is not possible * with the stdio data source. */ /* We may need to do some setup of our own at this point before reading * the data. After jpeg_start_decompress() we have the correct scaled * output image dimensions available, as well as the output colormap * if we asked for color quantization. * In this example, we need to make an output work buffer of the right size. */ /* JSAMPLEs per row in output buffer */ row_stride = cinfo->output_width * cinfo->output_components; /* Make a one-row-high sample array that will go away when done with image */ buffer = (*cinfo->mem->alloc_sarray) ((j_common_ptr)cinfo, JPOOL_IMAGE, row_stride, 1); /* Step 6: while (scan lines remain to be read) */ /* jpeg_read_scanlines(...); */ /* Here we use the library's state variable cinfo->output_scanline as the * loop counter, so that we don't have to keep track ourselves. */ while (cinfo->output_scanline < cinfo->output_height) { /* jpeg_read_scanlines expects an array of pointers to scanlines. * Here the array is only one element long, but you could ask for * more than one scanline at a time if that's more convenient. */ (void)jpeg_read_scanlines(cinfo, buffer, 1); /* Assume put_scanline_someplace wants a pointer and sample count. */ put_scanline_someplace(buffer[0], row_stride); } /* Step 7: Finish decompression */ (void)jpeg_finish_decompress(cinfo); /* We can ignore the return value since suspension is not possible * with the stdio data source. */ /* Step 8: Release JPEG decompression object */ /* This is an important step since it will release a good deal of memory. */ jpeg_destroy_decompress(cinfo); /* After finish_decompress, we can close the input file. * Here we postpone it until after no more JPEG errors are possible, * so as to simplify the setjmp error logic above. (Actually, I don't * think that jpeg_destroy can do an error exit, but why assume anything...) */ fclose(infile); /* At this point you may want to check to see whether any corrupt-data * warnings occurred (test whether jerr.pub.num_warnings is nonzero). */ /* And we're done! */ return 1; } /* * SOME FINE POINTS: * * In the above code, we ignored the return value of jpeg_read_scanlines, * which is the number of scanlines actually read. We could get away with * this because we asked for only one line at a time and we weren't using * a suspending data source. See libjpeg.txt for more info. * * We cheated a bit by calling alloc_sarray() after jpeg_start_decompress(); * we should have done it beforehand to ensure that the space would be * counted against the JPEG max_memory setting. In some systems the above * code would risk an out-of-memory error. However, in general we don't * know the output image dimensions before jpeg_start_decompress(), unless we * call jpeg_calc_output_dimensions(). See libjpeg.txt for more about this. * * Scanlines are returned in the same order as they appear in the JPEG file, * which is standardly top-to-bottom. If you must emit data bottom-to-top, * you can use one of the virtual arrays provided by the JPEG memory manager * to invert the data. See wrbmp.c for an example. * * As with compression, some operating modes may require temporary files. * On some systems you may need to set up a signal handler to ensure that * temporary files are deleted if the program is interrupted. See libjpeg.txt. */ libjpeg-turbo-2.1.5/fuzz/000077500000000000000000000000001436506551100152705ustar00rootroot00000000000000libjpeg-turbo-2.1.5/fuzz/CMakeLists.txt000066400000000000000000000036151436506551100200350ustar00rootroot00000000000000if(NOT ENABLE_STATIC) message(FATAL_ERROR "Fuzz targets require static libraries.") endif() if(NOT WITH_TURBOJPEG) message(FATAL_ERROR "Fuzz targets require the TurboJPEG API library.") endif() set(FUZZ_BINDIR "" CACHE PATH "Directory into which fuzz targets should be installed") if(NOT FUZZ_BINDIR) message(FATAL_ERROR "FUZZ_BINDIR must be specified.") endif() message(STATUS "FUZZ_BINDIR = ${FUZZ_BINDIR}") set(FUZZ_LIBRARY "" CACHE STRING "Path to fuzzer library or flags necessary to link with it") if(NOT FUZZ_LIBRARY) message(FATAL_ERROR "FUZZ_LIBRARY must be specified.") endif() message(STATUS "FUZZ_LIBRARY = ${FUZZ_LIBRARY}") enable_language(CXX) set(EFFECTIVE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${CMAKE_CXX_FLAGS_${CMAKE_BUILD_TYPE_UC}}") message(STATUS "C++ Compiler flags = ${EFFECTIVE_CXX_FLAGS}") add_executable(cjpeg_fuzzer${FUZZER_SUFFIX} cjpeg.cc ../cdjpeg.c ../rdbmp.c ../rdgif.c ../rdppm.c ../rdswitch.c ../rdtarga.c) set_property(TARGET cjpeg_fuzzer${FUZZER_SUFFIX} PROPERTY COMPILE_FLAGS ${COMPILE_FLAGS}) target_link_libraries(cjpeg_fuzzer${FUZZER_SUFFIX} ${FUZZ_LIBRARY} jpeg-static) install(TARGETS cjpeg_fuzzer${FUZZER_SUFFIX} RUNTIME DESTINATION ${FUZZ_BINDIR}) macro(add_fuzz_target target source_file) add_executable(${target}_fuzzer${FUZZER_SUFFIX} ${source_file}) target_link_libraries(${target}_fuzzer${FUZZER_SUFFIX} ${FUZZ_LIBRARY} turbojpeg-static) install(TARGETS ${target}_fuzzer${FUZZER_SUFFIX} RUNTIME DESTINATION ${FUZZ_BINDIR}) endmacro() add_fuzz_target(compress compress.cc) add_fuzz_target(compress_yuv compress_yuv.cc) # NOTE: This target is named libjpeg_turbo_fuzzer instead of decompress_fuzzer # in order to preserve the corpora from Google's OSS-Fuzz target for # libjpeg-turbo, which this target replaces. add_fuzz_target(libjpeg_turbo decompress.cc) add_fuzz_target(decompress_yuv decompress_yuv.cc) add_fuzz_target(transform transform.cc) libjpeg-turbo-2.1.5/fuzz/build.sh000066400000000000000000000020701436506551100167220ustar00rootroot00000000000000#!/bin/bash set -u set -e FUZZER_SUFFIX= if [ $# -ge 1 ]; then FUZZER_SUFFIX="$1" FUZZER_SUFFIX="`echo $1 | sed 's/\./_/g'`" fi cmake . -DCMAKE_BUILD_TYPE=RelWithDebInfo -DENABLE_STATIC=1 -DENABLE_SHARED=0 \ -DCMAKE_C_FLAGS_RELWITHDEBINFO="-g -DNDEBUG" \ -DCMAKE_CXX_FLAGS_RELWITHDEBINFO="-g -DNDEBUG" -DCMAKE_INSTALL_PREFIX=$WORK \ -DWITH_FUZZ=1 -DFUZZ_BINDIR=$OUT -DFUZZ_LIBRARY=$LIB_FUZZING_ENGINE \ -DFUZZER_SUFFIX="$FUZZER_SUFFIX" make "-j$(nproc)" "--load-average=$(nproc)" make install cp $SRC/compress_fuzzer_seed_corpus.zip $OUT/cjpeg_fuzzer${FUZZER_SUFFIX}_seed_corpus.zip cp $SRC/compress_fuzzer_seed_corpus.zip $OUT/compress_fuzzer${FUZZER_SUFFIX}_seed_corpus.zip cp $SRC/compress_fuzzer_seed_corpus.zip $OUT/compress_yuv_fuzzer${FUZZER_SUFFIX}_seed_corpus.zip cp $SRC/decompress_fuzzer_seed_corpus.zip $OUT/libjpeg_turbo_fuzzer${FUZZER_SUFFIX}_seed_corpus.zip cp $SRC/decompress_fuzzer_seed_corpus.zip $OUT/decompress_yuv_fuzzer${FUZZER_SUFFIX}_seed_corpus.zip cp $SRC/decompress_fuzzer_seed_corpus.zip $OUT/transform_fuzzer${FUZZER_SUFFIX}_seed_corpus.zip libjpeg-turbo-2.1.5/fuzz/cjpeg.cc000066400000000000000000000062351436506551100166750ustar00rootroot00000000000000/* * Copyright (C)2021 D. R. Commander. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* This fuzz target wraps cjpeg in order to test esoteric compression options as well as the GIF and Targa readers. */ #define main cjpeg_main #define CJPEG_FUZZER extern "C" { #include "../cjpeg.c" } #undef main #undef CJPEG_FUZZER #include #include extern "C" int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size) { char filename[FILENAME_MAX] = { 0 }; char *argv1[] = { (char *)"cjpeg", (char *)"-dct", (char *)"float", (char *)"-memdst", (char *)"-optimize", (char *)"-quality", (char *)"100,99,98", (char *)"-restart", (char *)"2", (char *)"-sample", (char *)"4x1,2x2,1x2", (char *)"-targa", NULL }; char *argv2[] = { (char *)"cjpeg", (char *)"-arithmetic", (char *)"-dct", (char *)"float", (char *)"-memdst", (char *)"-quality", (char *)"90,80,70", (char *)"-rgb", (char *)"-sample", (char *)"2x2", (char *)"-smooth", (char *)"50", (char *)"-targa", NULL }; int fd = -1; #if defined(__has_feature) && __has_feature(memory_sanitizer) char env[18] = "JSIMD_FORCENONE=1"; /* The libjpeg-turbo SIMD extensions produce false positives with MemorySanitizer. */ putenv(env); #endif snprintf(filename, FILENAME_MAX, "/tmp/libjpeg-turbo_cjpeg_fuzz.XXXXXX"); if ((fd = mkstemp(filename)) < 0 || write(fd, data, size) < 0) goto bailout; argv1[12] = argv2[13] = filename; cjpeg_main(13, argv1); cjpeg_main(14, argv2); argv1[12] = argv2[13] = NULL; argv1[11] = argv2[12] = filename; cjpeg_main(12, argv1); cjpeg_main(13, argv2); bailout: if (fd >= 0) { close(fd); if (strlen(filename) > 0) unlink(filename); } return 0; } libjpeg-turbo-2.1.5/fuzz/compress.cc000066400000000000000000000110031436506551100174250ustar00rootroot00000000000000/* * Copyright (C)2021 D. R. Commander. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #define NUMTESTS 7 /* Private flag that triggers different TurboJPEG API behavior when fuzzing */ #define TJFLAG_FUZZING (1 << 30) struct test { enum TJPF pf; enum TJSAMP subsamp; int quality; }; extern "C" int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size) { tjhandle handle = NULL; unsigned char *srcBuf = NULL, *dstBuf = NULL; int width = 0, height = 0, fd = -1, i, ti; char filename[FILENAME_MAX] = { 0 }; struct test tests[NUMTESTS] = { { TJPF_RGB, TJSAMP_444, 100 }, { TJPF_BGR, TJSAMP_422, 90 }, { TJPF_RGBX, TJSAMP_420, 80 }, { TJPF_BGRA, TJSAMP_411, 70 }, { TJPF_XRGB, TJSAMP_GRAY, 60 }, { TJPF_GRAY, TJSAMP_GRAY, 50 }, { TJPF_CMYK, TJSAMP_440, 40 } }; #if defined(__has_feature) && __has_feature(memory_sanitizer) char env[18] = "JSIMD_FORCENONE=1"; /* The libjpeg-turbo SIMD extensions produce false positives with MemorySanitizer. */ putenv(env); #endif snprintf(filename, FILENAME_MAX, "/tmp/libjpeg-turbo_compress_fuzz.XXXXXX"); if ((fd = mkstemp(filename)) < 0 || write(fd, data, size) < 0) goto bailout; if ((handle = tjInitCompress()) == NULL) goto bailout; for (ti = 0; ti < NUMTESTS; ti++) { int flags = TJFLAG_FUZZING, sum = 0, pf = tests[ti].pf; unsigned long dstSize = 0, maxBufSize; /* Test non-default compression options on specific iterations. */ if (ti == 0) flags |= TJFLAG_BOTTOMUP | TJFLAG_ACCURATEDCT; else if (ti == 1) flags |= TJFLAG_PROGRESSIVE; if (ti != 2) flags |= TJFLAG_NOREALLOC; /* tjLoadImage() refuses to load images larger than 1 Megapixel when FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION is defined (yes, that's a dirty hack), so we don't need to check the width and height here. */ if ((srcBuf = tjLoadImage(filename, &width, 1, &height, &pf, flags)) == NULL) continue; maxBufSize = tjBufSize(width, height, tests[ti].subsamp); if (flags & TJFLAG_NOREALLOC) { if ((dstBuf = (unsigned char *)malloc(maxBufSize)) == NULL) goto bailout; } else dstBuf = NULL; if (tjCompress2(handle, srcBuf, width, 0, height, pf, &dstBuf, &dstSize, tests[ti].subsamp, tests[ti].quality, flags) == 0) { /* Touch all of the output pixels in order to catch uninitialized reads when using MemorySanitizer. */ for (i = 0; i < dstSize; i++) sum += dstBuf[i]; } free(dstBuf); dstBuf = NULL; tjFree(srcBuf); srcBuf = NULL; /* Prevent the code above from being optimized out. This test should never be true, but the compiler doesn't know that. */ if (sum > 255 * maxBufSize) goto bailout; } bailout: free(dstBuf); tjFree(srcBuf); if (fd >= 0) { close(fd); if (strlen(filename) > 0) unlink(filename); } if (handle) tjDestroy(handle); return 0; } libjpeg-turbo-2.1.5/fuzz/compress_yuv.cc000066400000000000000000000120761436506551100203430ustar00rootroot00000000000000/* * Copyright (C)2021 D. R. Commander. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #define NUMTESTS 6 /* Private flag that triggers different TurboJPEG API behavior when fuzzing */ #define TJFLAG_FUZZING (1 << 30) struct test { enum TJPF pf; enum TJSAMP subsamp; int quality; }; extern "C" int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size) { tjhandle handle = NULL; unsigned char *srcBuf = NULL, *dstBuf = NULL, *yuvBuf = NULL; int width = 0, height = 0, fd = -1, i, ti; char filename[FILENAME_MAX] = { 0 }; struct test tests[NUMTESTS] = { { TJPF_XBGR, TJSAMP_444, 100 }, { TJPF_XRGB, TJSAMP_422, 90 }, { TJPF_BGR, TJSAMP_420, 80 }, { TJPF_RGB, TJSAMP_411, 70 }, { TJPF_BGR, TJSAMP_GRAY, 60 }, { TJPF_GRAY, TJSAMP_GRAY, 50 } }; char arithEnv[16] = "TJ_ARITHMETIC=0"; char restartEnv[13] = "TJ_RESTART=0"; #if defined(__has_feature) && __has_feature(memory_sanitizer) char simdEnv[18] = "JSIMD_FORCENONE=1"; /* The libjpeg-turbo SIMD extensions produce false positives with MemorySanitizer. */ putenv(simdEnv); #endif putenv(arithEnv); putenv(restartEnv); snprintf(filename, FILENAME_MAX, "/tmp/libjpeg-turbo_compress_yuv_fuzz.XXXXXX"); if ((fd = mkstemp(filename)) < 0 || write(fd, data, size) < 0) goto bailout; if ((handle = tjInitCompress()) == NULL) goto bailout; for (ti = 0; ti < NUMTESTS; ti++) { int flags = TJFLAG_FUZZING | TJFLAG_NOREALLOC, sum = 0, pf = tests[ti].pf; unsigned long dstSize = 0, maxBufSize; /* Test non-default compression options on specific iterations. */ if (ti == 0) flags |= TJFLAG_BOTTOMUP | TJFLAG_ACCURATEDCT; else if (ti == 1 || ti == 3) flags |= TJFLAG_PROGRESSIVE; if (ti == 2 || ti == 3) arithEnv[14] = '1'; else arithEnv[14] = '0'; if (ti == 1 || ti == 2) restartEnv[11] = '2'; else restartEnv[11] = '0'; /* tjLoadImage() refuses to load images larger than 1 Megapixel when FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION is defined (yes, that's a dirty hack), so we don't need to check the width and height here. */ if ((srcBuf = tjLoadImage(filename, &width, 1, &height, &pf, flags)) == NULL) continue; maxBufSize = tjBufSize(width, height, tests[ti].subsamp); if ((dstBuf = (unsigned char *)malloc(maxBufSize)) == NULL) goto bailout; if ((yuvBuf = (unsigned char *)malloc(tjBufSizeYUV2(width, 1, height, tests[ti].subsamp))) == NULL) goto bailout; if (tjEncodeYUV3(handle, srcBuf, width, 0, height, pf, yuvBuf, 1, tests[ti].subsamp, flags) == 0 && tjCompressFromYUV(handle, yuvBuf, width, 1, height, tests[ti].subsamp, &dstBuf, &dstSize, tests[ti].quality, flags) == 0) { /* Touch all of the output pixels in order to catch uninitialized reads when using MemorySanitizer. */ for (i = 0; i < dstSize; i++) sum += dstBuf[i]; } free(dstBuf); dstBuf = NULL; free(yuvBuf); yuvBuf = NULL; tjFree(srcBuf); srcBuf = NULL; /* Prevent the code above from being optimized out. This test should never be true, but the compiler doesn't know that. */ if (sum > 255 * maxBufSize) goto bailout; } bailout: free(dstBuf); free(yuvBuf); tjFree(srcBuf); if (fd >= 0) { close(fd); if (strlen(filename) > 0) unlink(filename); } if (handle) tjDestroy(handle); return 0; } libjpeg-turbo-2.1.5/fuzz/decompress.cc000066400000000000000000000101301436506551100177360ustar00rootroot00000000000000/* * Copyright (C)2021 D. R. Commander. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #define NUMPF 4 extern "C" int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size) { tjhandle handle = NULL; unsigned char *dstBuf = NULL; int width = 0, height = 0, jpegSubsamp, jpegColorspace, pfi; /* TJPF_RGB-TJPF_BGR share the same code paths, as do TJPF_RGBX-TJPF_XRGB and TJPF_RGBA-TJPF_ARGB. Thus, the pixel formats below should be the minimum necessary to achieve full coverage. */ enum TJPF pixelFormats[NUMPF] = { TJPF_RGB, TJPF_BGRX, TJPF_GRAY, TJPF_CMYK }; #if defined(__has_feature) && __has_feature(memory_sanitizer) char env[18] = "JSIMD_FORCENONE=1"; /* The libjpeg-turbo SIMD extensions produce false positives with MemorySanitizer. */ putenv(env); #endif if ((handle = tjInitDecompress()) == NULL) goto bailout; /* We ignore the return value of tjDecompressHeader3(), because some JPEG images may have unusual subsampling configurations that the TurboJPEG API cannot identify but can still decompress. */ tjDecompressHeader3(handle, data, size, &width, &height, &jpegSubsamp, &jpegColorspace); /* Ignore 0-pixel images and images larger than 1 Megapixel, as Google's OSS-Fuzz target for libjpeg-turbo did. Casting width to (uint64_t) prevents integer overflow if width * height > INT_MAX. */ if (width < 1 || height < 1 || (uint64_t)width * height > 1048576) goto bailout; for (pfi = 0; pfi < NUMPF; pfi++) { int pf = pixelFormats[pfi], flags = TJFLAG_LIMITSCANS, i, sum = 0; int w = width, h = height; /* Test non-default decompression options on the first iteration. */ if (pfi == 0) flags |= TJFLAG_BOTTOMUP | TJFLAG_FASTUPSAMPLE | TJFLAG_FASTDCT; /* Test IDCT scaling on the second iteration. */ else if (pfi == 1) { w = (width + 1) / 2; h = (height + 1) / 2; } if ((dstBuf = (unsigned char *)malloc(w * h * tjPixelSize[pf])) == NULL) goto bailout; if (tjDecompress2(handle, data, size, dstBuf, w, 0, h, pf, flags) == 0) { /* Touch all of the output pixels in order to catch uninitialized reads when using MemorySanitizer. */ for (i = 0; i < w * h * tjPixelSize[pf]; i++) sum += dstBuf[i]; } free(dstBuf); dstBuf = NULL; /* Prevent the code above from being optimized out. This test should never be true, but the compiler doesn't know that. */ if (sum > 255 * 1048576 * tjPixelSize[pf]) goto bailout; } bailout: free(dstBuf); if (handle) tjDestroy(handle); return 0; } libjpeg-turbo-2.1.5/fuzz/decompress_yuv.cc000066400000000000000000000102161436506551100206460ustar00rootroot00000000000000/* * Copyright (C)2021 D. R. Commander. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #define NUMPF 3 extern "C" int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size) { tjhandle handle = NULL; unsigned char *dstBuf = NULL, *yuvBuf = NULL; int width = 0, height = 0, jpegSubsamp, jpegColorspace, pfi; /* TJPF_RGB-TJPF_BGR share the same code paths, as do TJPF_RGBX-TJPF_XRGB and TJPF_RGBA-TJPF_ARGB. Thus, the pixel formats below should be the minimum necessary to achieve full coverage. */ enum TJPF pixelFormats[NUMPF] = { TJPF_BGR, TJPF_XRGB, TJPF_GRAY }; #if defined(__has_feature) && __has_feature(memory_sanitizer) char env[18] = "JSIMD_FORCENONE=1"; /* The libjpeg-turbo SIMD extensions produce false positives with MemorySanitizer. */ putenv(env); #endif if ((handle = tjInitDecompress()) == NULL) goto bailout; if (tjDecompressHeader3(handle, data, size, &width, &height, &jpegSubsamp, &jpegColorspace) < 0) goto bailout; /* Ignore 0-pixel images and images larger than 1 Megapixel. Casting width to (uint64_t) prevents integer overflow if width * height > INT_MAX. */ if (width < 1 || height < 1 || (uint64_t)width * height > 1048576) goto bailout; for (pfi = 0; pfi < NUMPF; pfi++) { int pf = pixelFormats[pfi], flags = TJFLAG_LIMITSCANS, i, sum = 0; int w = width, h = height; /* Test non-default decompression options on the first iteration. */ if (pfi == 0) flags |= TJFLAG_BOTTOMUP | TJFLAG_FASTUPSAMPLE | TJFLAG_FASTDCT; /* Test IDCT scaling on the second iteration. */ else if (pfi == 1) { w = (width + 3) / 4; h = (height + 3) / 4; } if ((dstBuf = (unsigned char *)malloc(w * h * tjPixelSize[pf])) == NULL) goto bailout; if ((yuvBuf = (unsigned char *)malloc(tjBufSizeYUV2(w, 1, h, jpegSubsamp))) == NULL) goto bailout; if (tjDecompressToYUV2(handle, data, size, yuvBuf, w, 1, h, flags) == 0 && tjDecodeYUV(handle, yuvBuf, 1, jpegSubsamp, dstBuf, w, 0, h, pf, flags) == 0) { /* Touch all of the output pixels in order to catch uninitialized reads when using MemorySanitizer. */ for (i = 0; i < w * h * tjPixelSize[pf]; i++) sum += dstBuf[i]; } free(dstBuf); dstBuf = NULL; free(yuvBuf); yuvBuf = NULL; /* Prevent the code above from being optimized out. This test should never be true, but the compiler doesn't know that. */ if (sum > 255 * 1048576 * tjPixelSize[pf]) goto bailout; } bailout: free(dstBuf); free(yuvBuf); if (handle) tjDestroy(handle); return 0; } libjpeg-turbo-2.1.5/fuzz/transform.cc000066400000000000000000000115101436506551100176100ustar00rootroot00000000000000/* * Copyright (C)2021 D. R. Commander. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #define NUMXFORMS 3 extern "C" int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size) { tjhandle handle = NULL; unsigned char *dstBufs[NUMXFORMS] = { NULL, NULL, NULL }; unsigned long dstSizes[NUMXFORMS] = { 0, 0, 0 }, maxBufSize; int width = 0, height = 0, jpegSubsamp, jpegColorspace, i, t; tjtransform transforms[NUMXFORMS]; #if defined(__has_feature) && __has_feature(memory_sanitizer) char env[18] = "JSIMD_FORCENONE=1"; /* The libjpeg-turbo SIMD extensions produce false positives with MemorySanitizer. */ putenv(env); #endif if ((handle = tjInitTransform()) == NULL) goto bailout; /* We ignore the return value of tjDecompressHeader3(), because some JPEG images may have unusual subsampling configurations that the TurboJPEG API cannot identify but can still transform. */ tjDecompressHeader3(handle, data, size, &width, &height, &jpegSubsamp, &jpegColorspace); /* Ignore 0-pixel images and images larger than 1 Megapixel. Casting width to (uint64_t) prevents integer overflow if width * height > INT_MAX. */ if (width < 1 || height < 1 || (uint64_t)width * height > 1048576) goto bailout; if (jpegSubsamp < 0 || jpegSubsamp >= TJ_NUMSAMP) jpegSubsamp = TJSAMP_444; for (t = 0; t < NUMXFORMS; t++) memset(&transforms[t], 0, sizeof(tjtransform)); transforms[0].op = TJXOP_NONE; transforms[0].options = TJXOPT_PROGRESSIVE | TJXOPT_COPYNONE; dstBufs[0] = (unsigned char *)malloc(tjBufSize(width, height, jpegSubsamp)); if (!dstBufs[0]) goto bailout; transforms[1].r.w = (width + 1) / 2; transforms[1].r.h = (height + 1) / 2; transforms[1].op = TJXOP_TRANSPOSE; transforms[1].options = TJXOPT_GRAY | TJXOPT_CROP | TJXOPT_COPYNONE; dstBufs[1] = (unsigned char *)malloc(tjBufSize((width + 1) / 2, (height + 1) / 2, TJSAMP_GRAY)); if (!dstBufs[1]) goto bailout; transforms[2].op = TJXOP_ROT90; transforms[2].options = TJXOPT_TRIM | TJXOPT_COPYNONE; dstBufs[2] = (unsigned char *)malloc(tjBufSize(height, width, jpegSubsamp)); if (!dstBufs[2]) goto bailout; maxBufSize = tjBufSize(width, height, jpegSubsamp); if (tjTransform(handle, data, size, NUMXFORMS, dstBufs, dstSizes, transforms, TJFLAG_LIMITSCANS | TJFLAG_NOREALLOC) == 0) { /* Touch all of the output pixels in order to catch uninitialized reads when using MemorySanitizer. */ for (t = 0; t < NUMXFORMS; t++) { int sum = 0; for (i = 0; i < dstSizes[t]; i++) sum += dstBufs[t][i]; /* Prevent the code above from being optimized out. This test should never be true, but the compiler doesn't know that. */ if (sum > 255 * maxBufSize) goto bailout; } } transforms[0].options &= ~TJXOPT_COPYNONE; free(dstBufs[0]); dstBufs[0] = NULL; dstSizes[0] = 0; if (tjTransform(handle, data, size, 1, dstBufs, dstSizes, transforms, TJFLAG_LIMITSCANS) == 0) { int sum = 0; for (i = 0; i < dstSizes[0]; i++) sum += dstBufs[0][i]; if (sum > 255 * maxBufSize) goto bailout; } bailout: for (t = 0; t < NUMXFORMS; t++) free(dstBufs[t]); if (handle) tjDestroy(handle); return 0; } libjpeg-turbo-2.1.5/jaricom.c000066400000000000000000000120141436506551100160600ustar00rootroot00000000000000/* * jaricom.c * * This file was part of the Independent JPEG Group's software: * Developed 1997-2009 by Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright (C) 2015, 2018, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains probability estimation tables for common use in * arithmetic entropy encoding and decoding routines. * * This data represents Table D.2 in * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994 and Table 24 in * Recommendation ITU-T T.82 (1993) | ISO/IEC 11544:1993. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" /* The following #define specifies the packing of the four components * into the compact JLONG representation. * Note that this formula must match the actual arithmetic encoder * and decoder implementation. The implementation has to be changed * if this formula is changed. * The current organization is leaned on Markus Kuhn's JBIG * implementation (jbig_tab.c). */ #define V(i, a, b, c, d) \ (((JLONG)a << 16) | ((JLONG)c << 8) | ((JLONG)d << 7) | b) const JLONG jpeg_aritab[113 + 1] = { /* * Index, Qe_Value, Next_Index_LPS, Next_Index_MPS, Switch_MPS */ V( 0, 0x5a1d, 1, 1, 1 ), V( 1, 0x2586, 14, 2, 0 ), V( 2, 0x1114, 16, 3, 0 ), V( 3, 0x080b, 18, 4, 0 ), V( 4, 0x03d8, 20, 5, 0 ), V( 5, 0x01da, 23, 6, 0 ), V( 6, 0x00e5, 25, 7, 0 ), V( 7, 0x006f, 28, 8, 0 ), V( 8, 0x0036, 30, 9, 0 ), V( 9, 0x001a, 33, 10, 0 ), V( 10, 0x000d, 35, 11, 0 ), V( 11, 0x0006, 9, 12, 0 ), V( 12, 0x0003, 10, 13, 0 ), V( 13, 0x0001, 12, 13, 0 ), V( 14, 0x5a7f, 15, 15, 1 ), V( 15, 0x3f25, 36, 16, 0 ), V( 16, 0x2cf2, 38, 17, 0 ), V( 17, 0x207c, 39, 18, 0 ), V( 18, 0x17b9, 40, 19, 0 ), V( 19, 0x1182, 42, 20, 0 ), V( 20, 0x0cef, 43, 21, 0 ), V( 21, 0x09a1, 45, 22, 0 ), V( 22, 0x072f, 46, 23, 0 ), V( 23, 0x055c, 48, 24, 0 ), V( 24, 0x0406, 49, 25, 0 ), V( 25, 0x0303, 51, 26, 0 ), V( 26, 0x0240, 52, 27, 0 ), V( 27, 0x01b1, 54, 28, 0 ), V( 28, 0x0144, 56, 29, 0 ), V( 29, 0x00f5, 57, 30, 0 ), V( 30, 0x00b7, 59, 31, 0 ), V( 31, 0x008a, 60, 32, 0 ), V( 32, 0x0068, 62, 33, 0 ), V( 33, 0x004e, 63, 34, 0 ), V( 34, 0x003b, 32, 35, 0 ), V( 35, 0x002c, 33, 9, 0 ), V( 36, 0x5ae1, 37, 37, 1 ), V( 37, 0x484c, 64, 38, 0 ), V( 38, 0x3a0d, 65, 39, 0 ), V( 39, 0x2ef1, 67, 40, 0 ), V( 40, 0x261f, 68, 41, 0 ), V( 41, 0x1f33, 69, 42, 0 ), V( 42, 0x19a8, 70, 43, 0 ), V( 43, 0x1518, 72, 44, 0 ), V( 44, 0x1177, 73, 45, 0 ), V( 45, 0x0e74, 74, 46, 0 ), V( 46, 0x0bfb, 75, 47, 0 ), V( 47, 0x09f8, 77, 48, 0 ), V( 48, 0x0861, 78, 49, 0 ), V( 49, 0x0706, 79, 50, 0 ), V( 50, 0x05cd, 48, 51, 0 ), V( 51, 0x04de, 50, 52, 0 ), V( 52, 0x040f, 50, 53, 0 ), V( 53, 0x0363, 51, 54, 0 ), V( 54, 0x02d4, 52, 55, 0 ), V( 55, 0x025c, 53, 56, 0 ), V( 56, 0x01f8, 54, 57, 0 ), V( 57, 0x01a4, 55, 58, 0 ), V( 58, 0x0160, 56, 59, 0 ), V( 59, 0x0125, 57, 60, 0 ), V( 60, 0x00f6, 58, 61, 0 ), V( 61, 0x00cb, 59, 62, 0 ), V( 62, 0x00ab, 61, 63, 0 ), V( 63, 0x008f, 61, 32, 0 ), V( 64, 0x5b12, 65, 65, 1 ), V( 65, 0x4d04, 80, 66, 0 ), V( 66, 0x412c, 81, 67, 0 ), V( 67, 0x37d8, 82, 68, 0 ), V( 68, 0x2fe8, 83, 69, 0 ), V( 69, 0x293c, 84, 70, 0 ), V( 70, 0x2379, 86, 71, 0 ), V( 71, 0x1edf, 87, 72, 0 ), V( 72, 0x1aa9, 87, 73, 0 ), V( 73, 0x174e, 72, 74, 0 ), V( 74, 0x1424, 72, 75, 0 ), V( 75, 0x119c, 74, 76, 0 ), V( 76, 0x0f6b, 74, 77, 0 ), V( 77, 0x0d51, 75, 78, 0 ), V( 78, 0x0bb6, 77, 79, 0 ), V( 79, 0x0a40, 77, 48, 0 ), V( 80, 0x5832, 80, 81, 1 ), V( 81, 0x4d1c, 88, 82, 0 ), V( 82, 0x438e, 89, 83, 0 ), V( 83, 0x3bdd, 90, 84, 0 ), V( 84, 0x34ee, 91, 85, 0 ), V( 85, 0x2eae, 92, 86, 0 ), V( 86, 0x299a, 93, 87, 0 ), V( 87, 0x2516, 86, 71, 0 ), V( 88, 0x5570, 88, 89, 1 ), V( 89, 0x4ca9, 95, 90, 0 ), V( 90, 0x44d9, 96, 91, 0 ), V( 91, 0x3e22, 97, 92, 0 ), V( 92, 0x3824, 99, 93, 0 ), V( 93, 0x32b4, 99, 94, 0 ), V( 94, 0x2e17, 93, 86, 0 ), V( 95, 0x56a8, 95, 96, 1 ), V( 96, 0x4f46, 101, 97, 0 ), V( 97, 0x47e5, 102, 98, 0 ), V( 98, 0x41cf, 103, 99, 0 ), V( 99, 0x3c3d, 104, 100, 0 ), V( 100, 0x375e, 99, 93, 0 ), V( 101, 0x5231, 105, 102, 0 ), V( 102, 0x4c0f, 106, 103, 0 ), V( 103, 0x4639, 107, 104, 0 ), V( 104, 0x415e, 103, 99, 0 ), V( 105, 0x5627, 105, 106, 1 ), V( 106, 0x50e7, 108, 107, 0 ), V( 107, 0x4b85, 109, 103, 0 ), V( 108, 0x5597, 110, 109, 0 ), V( 109, 0x504f, 111, 107, 0 ), V( 110, 0x5a10, 110, 111, 1 ), V( 111, 0x5522, 112, 109, 0 ), V( 112, 0x59eb, 112, 111, 1 ), /* * This last entry is used for fixed probability estimate of 0.5 * as recommended in Section 10.3 Table 5 of ITU-T Rec. T.851. */ V( 113, 0x5a1d, 113, 113, 0 ) }; libjpeg-turbo-2.1.5/java/000077500000000000000000000000001436506551100152135ustar00rootroot00000000000000libjpeg-turbo-2.1.5/java/CMakeLists.txt000066400000000000000000000075501436506551100177620ustar00rootroot00000000000000find_package(Java REQUIRED) find_package(JNI REQUIRED) # Allow the Java compiler flags to be set using an environment variable if(NOT DEFINED CMAKE_JAVA_COMPILE_FLAGS AND DEFINED ENV{JAVAFLAGS}) set(CMAKE_JAVA_COMPILE_FLAGS $ENV{JAVAFLAGS}) endif() include(UseJava) set(CMAKE_JAVA_COMPILE_FLAGS "${CMAKE_JAVA_COMPILE_FLAGS} -J-Dfile.encoding=UTF8") message(STATUS "CMAKE_JAVA_COMPILE_FLAGS = ${CMAKE_JAVA_COMPILE_FLAGS}") string(REGEX REPLACE " " ";" CMAKE_JAVA_COMPILE_FLAGS "${CMAKE_JAVA_COMPILE_FLAGS}") set(JAVAARGS "" CACHE STRING "Additional arguments to pass to java when running unit tests (example: -d32)") message(STATUS "JAVAARGS = ${JAVAARGS}") set(JAVA_SOURCES org/libjpegturbo/turbojpeg/TJ.java org/libjpegturbo/turbojpeg/TJCompressor.java org/libjpegturbo/turbojpeg/TJCustomFilter.java org/libjpegturbo/turbojpeg/TJDecompressor.java org/libjpegturbo/turbojpeg/TJException.java org/libjpegturbo/turbojpeg/TJScalingFactor.java org/libjpegturbo/turbojpeg/TJTransform.java org/libjpegturbo/turbojpeg/TJTransformer.java org/libjpegturbo/turbojpeg/YUVImage.java TJUnitTest.java TJExample.java TJBench.java) set(TURBOJPEG_DLL_NAME "turbojpeg") if(MINGW) set(TURBOJPEG_DLL_NAME "libturbojpeg") endif() if(WIN32) configure_file(org/libjpegturbo/turbojpeg/TJLoader-win.java.in ${CMAKE_CURRENT_BINARY_DIR}/org/libjpegturbo/turbojpeg/TJLoader.java) else() configure_file(org/libjpegturbo/turbojpeg/TJLoader-unix.java.in ${CMAKE_CURRENT_BINARY_DIR}/org/libjpegturbo/turbojpeg/TJLoader.java) endif() set(JAVA_SOURCES ${JAVA_SOURCES} ${CMAKE_CURRENT_BINARY_DIR}/org/libjpegturbo/turbojpeg/TJLoader.java) if(MSYS) # UGLY HACK ALERT: If we don't do this, then UseJava.cmake will separate # class path members with a semicolon, which is interpreted as a command # separator by the MSYS shell. set(CMAKE_HOST_SYSTEM_NAME_BAK ${CMAKE_HOST_SYSTEM_NAME}) set(CMAKE_HOST_SYSTEM_NAME "MSYS") endif() add_jar(turbojpeg-java ${JAVA_SOURCES} OUTPUT_NAME turbojpeg ENTRY_POINT TJExample) if(MSYS) set(CMAKE_HOST_SYSTEM_NAME ${CMAKE_HOST_SYSTEM_NAME_BAK}) endif() add_custom_target(javadoc COMMAND javadoc -notimestamp -d ${CMAKE_CURRENT_SOURCE_DIR}/doc -sourcepath ${CMAKE_CURRENT_SOURCE_DIR} org.libjpegturbo.turbojpeg) set(JAVACLASSPATH ${CMAKE_CURRENT_BINARY_DIR}/${CMAKE_FILES_DIRECTORY}/turbojpeg-java.dir) if(Java_VERSION_MAJOR GREATER 9) add_custom_target(javah COMMAND javac -h ${CMAKE_CURRENT_SOURCE_DIR} -classpath ${JAVACLASSPATH} -d ${CMAKE_CURRENT_BINARY_DIR}/__unused ${CMAKE_CURRENT_SOURCE_DIR}/org/libjpegturbo/turbojpeg/TJ.java ${CMAKE_CURRENT_SOURCE_DIR}/org/libjpegturbo/turbojpeg/TJCompressor.java ${CMAKE_CURRENT_SOURCE_DIR}/org/libjpegturbo/turbojpeg/TJDecompressor.java ${CMAKE_CURRENT_SOURCE_DIR}/org/libjpegturbo/turbojpeg/TJTransformer.java) else() add_custom_target(javah COMMAND javah -d ${CMAKE_CURRENT_SOURCE_DIR} -classpath ${JAVACLASSPATH} org.libjpegturbo.turbojpeg.TJ COMMAND javah -d ${CMAKE_CURRENT_SOURCE_DIR} -classpath ${JAVACLASSPATH} org.libjpegturbo.turbojpeg.TJCompressor COMMAND javah -d ${CMAKE_CURRENT_SOURCE_DIR} -classpath ${JAVACLASSPATH} org.libjpegturbo.turbojpeg.TJDecompressor COMMAND javah -d ${CMAKE_CURRENT_SOURCE_DIR} -classpath ${JAVACLASSPATH} org.libjpegturbo.turbojpeg.TJTransformer) endif() if(NOT DEFINED CMAKE_INSTALL_DEFAULT_JAVADIR) set(CMAKE_INSTALL_DEFAULT_JAVADIR "/java") endif() GNUInstallDirs_set_install_dir(JAVADIR "The directory into which Java classes should be installed") GNUInstallDirs_get_absolute_install_dir(CMAKE_INSTALL_FULL_JAVADIR CMAKE_INSTALL_JAVADIR) set(CMAKE_INSTALL_JAVADIR ${CMAKE_INSTALL_JAVADIR} PARENT_SCOPE) set(CMAKE_INSTALL_FULL_JAVADIR ${CMAKE_INSTALL_FULL_JAVADIR} PARENT_SCOPE) report_directory(JAVADIR) install_jar(turbojpeg-java ${CMAKE_INSTALL_JAVADIR}) mark_as_advanced(CLEAR CMAKE_INSTALL_JAVADIR) libjpeg-turbo-2.1.5/java/MANIFEST.MF000066400000000000000000000000541436506551100166440ustar00rootroot00000000000000Manifest-Version: 1.0 Main-Class: TJExample libjpeg-turbo-2.1.5/java/README000066400000000000000000000050521436506551100160750ustar00rootroot00000000000000TurboJPEG Java Wrapper ====================== The TurboJPEG shared library can optionally be built with a Java Native Interface wrapper, which allows the library to be loaded and used directly from Java applications. The Java front end for this is defined in several classes located under org/libjpegturbo/turbojpeg. The source code for these Java classes is licensed under a BSD-style license, so the files can be incorporated directly into both open source and proprietary projects without restriction. A Java archive (JAR) file containing these classes is also shipped with the "official" distribution packages of libjpeg-turbo. TJExample.java, which should also be located in the same directory as this README file, demonstrates how to use the TurboJPEG Java API to compress and decompress JPEG images in memory. Performance Pitfalls -------------------- The TurboJPEG Java API defines several convenience methods that can allocate image buffers or instantiate classes to hold the result of compress, decompress, or transform operations. However, if you use these methods, then be mindful of the amount of new data you are creating on the heap. It may be necessary to manually invoke the garbage collector to prevent heap exhaustion or to prevent performance degradation. Background garbage collection can kill performance, particularly in a multi-threaded environment (Java pauses all threads when the GC runs.) The TurboJPEG Java API always gives you the option of pre-allocating your own source and destination buffers, which allows you to re-use those buffers for compressing/decompressing multiple images. If the image sequence you are compressing or decompressing consists of images of the same size, then pre-allocating the buffers is recommended. Installation Directory ---------------------- The TurboJPEG Java Wrapper will look for the TurboJPEG JNI library (libturbojpeg.so, libturbojpeg.dylib, or turbojpeg.dll) in the system library paths or in any paths specified in LD_LIBRARY_PATH (Un*x), DYLD_LIBRARY_PATH (Mac), or PATH (Windows.) Failing this, on Un*x and Mac systems, the wrapper will look for the JNI library under the library directory configured when libjpeg-turbo was built. If that library directory is /opt/libjpeg-turbo/lib32, then /opt/libjpeg-turbo/lib64 is also searched, and vice versa. If you installed the JNI library into another directory, then you will need to pass an argument of -Djava.library.path={path_to_JNI_library} to java, or manipulate LD_LIBRARY_PATH, DYLD_LIBRARY_PATH, or PATH to include the directory containing the JNI library. libjpeg-turbo-2.1.5/java/TJBench.java000066400000000000000000001170071436506551100173410ustar00rootroot00000000000000/* * Copyright (C)2009-2014, 2016-2019, 2021, 2023 D. R. Commander. * All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ import java.io.*; import java.awt.image.*; import javax.imageio.*; import java.util.*; import org.libjpegturbo.turbojpeg.*; final class TJBench { private TJBench() {} private static int flags = 0, quiet = 0, pf = TJ.PF_BGR, yuvAlign = 1; private static boolean compOnly, decompOnly, doTile, doYUV, write = true; static final String[] PIXFORMATSTR = { "RGB", "BGR", "RGBX", "BGRX", "XBGR", "XRGB", "GRAY" }; static final String[] SUBNAME_LONG = { "4:4:4", "4:2:2", "4:2:0", "GRAY", "4:4:0", "4:1:1" }; static final String[] SUBNAME = { "444", "422", "420", "GRAY", "440", "411" }; static final String[] CSNAME = { "RGB", "YCbCr", "GRAY", "CMYK", "YCCK" }; private static TJScalingFactor sf; private static int xformOp = TJTransform.OP_NONE, xformOpt = 0; private static double benchTime = 5.0, warmup = 1.0; static double getTime() { return (double)System.nanoTime() / 1.0e9; } private static String tjErrorMsg; private static int tjErrorCode = -1; static void handleTJException(TJException e) throws TJException { String errorMsg = e.getMessage(); int errorCode = e.getErrorCode(); if ((flags & TJ.FLAG_STOPONWARNING) == 0 && errorCode == TJ.ERR_WARNING) { if (tjErrorMsg == null || !tjErrorMsg.equals(errorMsg) || tjErrorCode != errorCode) { tjErrorMsg = errorMsg; tjErrorCode = errorCode; System.out.println("WARNING: " + errorMsg); } } else throw e; } static String formatName(int subsamp, int cs) { if (cs == TJ.CS_YCbCr) return SUBNAME_LONG[subsamp]; else if (cs == TJ.CS_YCCK) return CSNAME[cs] + " " + SUBNAME_LONG[subsamp]; else return CSNAME[cs]; } static String sigFig(double val, int figs) { String format; int digitsAfterDecimal = figs - (int)Math.ceil(Math.log10(Math.abs(val))); if (digitsAfterDecimal < 1) format = new String("%.0f"); else format = new String("%." + digitsAfterDecimal + "f"); return String.format(format, val); } static byte[] loadImage(String fileName, int[] w, int[] h, int pixelFormat) throws Exception { BufferedImage img = ImageIO.read(new File(fileName)); if (img == null) throw new Exception("Could not read " + fileName); w[0] = img.getWidth(); h[0] = img.getHeight(); int[] rgb = img.getRGB(0, 0, w[0], h[0], null, 0, w[0]); int ps = TJ.getPixelSize(pixelFormat); int rindex = TJ.getRedOffset(pixelFormat); int gindex = TJ.getGreenOffset(pixelFormat); int bindex = TJ.getBlueOffset(pixelFormat); if ((long)w[0] * (long)h[0] * (long)ps > (long)Integer.MAX_VALUE) throw new Exception("Image is too large"); byte[] dstBuf = new byte[w[0] * h[0] * ps]; int pixels = w[0] * h[0], dstPtr = 0, rgbPtr = 0; while (pixels-- > 0) { dstBuf[dstPtr + rindex] = (byte)((rgb[rgbPtr] >> 16) & 0xff); dstBuf[dstPtr + gindex] = (byte)((rgb[rgbPtr] >> 8) & 0xff); dstBuf[dstPtr + bindex] = (byte)(rgb[rgbPtr] & 0xff); dstPtr += ps; rgbPtr++; } return dstBuf; } static void saveImage(String fileName, byte[] srcBuf, int w, int h, int pixelFormat) throws Exception { BufferedImage img = new BufferedImage(w, h, BufferedImage.TYPE_INT_RGB); int pixels = w * h, srcPtr = 0; int ps = TJ.getPixelSize(pixelFormat); int rindex = TJ.getRedOffset(pixelFormat); int gindex = TJ.getGreenOffset(pixelFormat); int bindex = TJ.getBlueOffset(pixelFormat); for (int y = 0; y < h; y++) { for (int x = 0; x < w; x++, srcPtr += ps) { int pixel = (srcBuf[srcPtr + rindex] & 0xff) << 16 | (srcBuf[srcPtr + gindex] & 0xff) << 8 | (srcBuf[srcPtr + bindex] & 0xff); img.setRGB(x, y, pixel); } } ImageIO.write(img, "bmp", new File(fileName)); } /* Decompression test */ static void decomp(byte[] srcBuf, byte[][] jpegBuf, int[] jpegSize, byte[] dstBuf, int w, int h, int subsamp, int jpegQual, String fileName, int tilew, int tileh) throws Exception { String qualStr = new String(""), sizeStr, tempStr; TJDecompressor tjd; double elapsed, elapsedDecode; int ps = TJ.getPixelSize(pf), i, iter = 0; int scaledw = sf.getScaled(w); int scaledh = sf.getScaled(h); int pitch = scaledw * ps; YUVImage yuvImage = null; if (jpegQual > 0) qualStr = new String("_Q" + jpegQual); tjd = new TJDecompressor(); if (dstBuf == null) { if ((long)pitch * (long)scaledh > (long)Integer.MAX_VALUE) throw new Exception("Image is too large"); dstBuf = new byte[pitch * scaledh]; } /* Set the destination buffer to gray so we know whether the decompressor attempted to write to it */ Arrays.fill(dstBuf, (byte)127); if (doYUV) { int width = doTile ? tilew : scaledw; int height = doTile ? tileh : scaledh; yuvImage = new YUVImage(width, yuvAlign, height, subsamp); Arrays.fill(yuvImage.getBuf(), (byte)127); } /* Benchmark */ iter = -1; elapsed = elapsedDecode = 0.0; while (true) { int tile = 0; double start = getTime(); for (int y = 0; y < h; y += tileh) { for (int x = 0; x < w; x += tilew, tile++) { int width = doTile ? Math.min(tilew, w - x) : scaledw; int height = doTile ? Math.min(tileh, h - y) : scaledh; try { tjd.setSourceImage(jpegBuf[tile], jpegSize[tile]); } catch (TJException e) { handleTJException(e); } if (doYUV) { yuvImage.setBuf(yuvImage.getBuf(), width, yuvAlign, height, subsamp); try { tjd.decompressToYUV(yuvImage, flags); } catch (TJException e) { handleTJException(e); } double startDecode = getTime(); tjd.setSourceImage(yuvImage); try { tjd.decompress(dstBuf, x, y, width, pitch, height, pf, flags); } catch (TJException e) { handleTJException(e); } if (iter >= 0) elapsedDecode += getTime() - startDecode; } else { try { tjd.decompress(dstBuf, x, y, width, pitch, height, pf, flags); } catch (TJException e) { handleTJException(e); } } } } elapsed += getTime() - start; if (iter >= 0) { iter++; if (elapsed >= benchTime) break; } else if (elapsed >= warmup) { iter = 0; elapsed = elapsedDecode = 0.0; } } if (doYUV) elapsed -= elapsedDecode; tjd = null; for (i = 0; i < jpegBuf.length; i++) jpegBuf[i] = null; jpegBuf = null; jpegSize = null; System.gc(); if (quiet != 0) { System.out.format("%-6s%s", sigFig((double)(w * h) / 1000000. * (double)iter / elapsed, 4), quiet == 2 ? "\n" : " "); if (doYUV) System.out.format("%s\n", sigFig((double)(w * h) / 1000000. * (double)iter / elapsedDecode, 4)); else if (quiet != 2) System.out.print("\n"); } else { System.out.format("%s --> Frame rate: %f fps\n", (doYUV ? "Decomp to YUV" : "Decompress "), (double)iter / elapsed); System.out.format(" Throughput: %f Megapixels/sec\n", (double)(w * h) / 1000000. * (double)iter / elapsed); if (doYUV) { System.out.format("YUV Decode --> Frame rate: %f fps\n", (double)iter / elapsedDecode); System.out.format(" Throughput: %f Megapixels/sec\n", (double)(w * h) / 1000000. * (double)iter / elapsedDecode); } } if (!write) return; if (sf.getNum() != 1 || sf.getDenom() != 1) sizeStr = new String(sf.getNum() + "_" + sf.getDenom()); else if (tilew != w || tileh != h) sizeStr = new String(tilew + "x" + tileh); else sizeStr = new String("full"); if (decompOnly) tempStr = new String(fileName + "_" + sizeStr + ".bmp"); else tempStr = new String(fileName + "_" + SUBNAME[subsamp] + qualStr + "_" + sizeStr + ".bmp"); saveImage(tempStr, dstBuf, scaledw, scaledh, pf); int ndx = tempStr.lastIndexOf('.'); tempStr = new String(tempStr.substring(0, ndx) + "-err.bmp"); if (srcBuf != null && sf.getNum() == 1 && sf.getDenom() == 1) { if (quiet == 0) System.out.println("Compression error written to " + tempStr + "."); if (subsamp == TJ.SAMP_GRAY) { for (int y = 0, index = 0; y < h; y++, index += pitch) { for (int x = 0, index2 = index; x < w; x++, index2 += ps) { int rindex = index2 + TJ.getRedOffset(pf); int gindex = index2 + TJ.getGreenOffset(pf); int bindex = index2 + TJ.getBlueOffset(pf); int lum = (int)((double)(srcBuf[rindex] & 0xff) * 0.299 + (double)(srcBuf[gindex] & 0xff) * 0.587 + (double)(srcBuf[bindex] & 0xff) * 0.114 + 0.5); if (lum > 255) lum = 255; if (lum < 0) lum = 0; dstBuf[rindex] = (byte)Math.abs((dstBuf[rindex] & 0xff) - lum); dstBuf[gindex] = (byte)Math.abs((dstBuf[gindex] & 0xff) - lum); dstBuf[bindex] = (byte)Math.abs((dstBuf[bindex] & 0xff) - lum); } } } else { for (int y = 0; y < h; y++) for (int x = 0; x < w * ps; x++) dstBuf[pitch * y + x] = (byte)Math.abs((dstBuf[pitch * y + x] & 0xff) - (srcBuf[pitch * y + x] & 0xff)); } saveImage(tempStr, dstBuf, w, h, pf); } } static void fullTest(byte[] srcBuf, int w, int h, int subsamp, int jpegQual, String fileName) throws Exception { TJCompressor tjc; byte[] tmpBuf; byte[][] jpegBuf; int[] jpegSize; double start, elapsed, elapsedEncode; int totalJpegSize = 0, tilew, tileh, i, iter; int ps = TJ.getPixelSize(pf); int ntilesw = 1, ntilesh = 1, pitch = w * ps; String pfStr = PIXFORMATSTR[pf]; YUVImage yuvImage = null; if ((long)pitch * (long)h > (long)Integer.MAX_VALUE) throw new Exception("Image is too large"); tmpBuf = new byte[pitch * h]; if (quiet == 0) System.out.format(">>>>> %s (%s) <--> JPEG %s Q%d <<<<<\n", pfStr, (flags & TJ.FLAG_BOTTOMUP) != 0 ? "Bottom-up" : "Top-down", SUBNAME_LONG[subsamp], jpegQual); tjc = new TJCompressor(); for (tilew = doTile ? 8 : w, tileh = doTile ? 8 : h; ; tilew *= 2, tileh *= 2) { if (tilew > w) tilew = w; if (tileh > h) tileh = h; ntilesw = (w + tilew - 1) / tilew; ntilesh = (h + tileh - 1) / tileh; jpegBuf = new byte[ntilesw * ntilesh][TJ.bufSize(tilew, tileh, subsamp)]; jpegSize = new int[ntilesw * ntilesh]; /* Compression test */ if (quiet == 1) System.out.format("%-4s (%s) %-5s %-3d ", pfStr, (flags & TJ.FLAG_BOTTOMUP) != 0 ? "BU" : "TD", SUBNAME_LONG[subsamp], jpegQual); for (i = 0; i < h; i++) System.arraycopy(srcBuf, w * ps * i, tmpBuf, pitch * i, w * ps); tjc.setJPEGQuality(jpegQual); tjc.setSubsamp(subsamp); if (doYUV) { yuvImage = new YUVImage(tilew, yuvAlign, tileh, subsamp); Arrays.fill(yuvImage.getBuf(), (byte)127); } /* Benchmark */ iter = -1; elapsed = elapsedEncode = 0.0; while (true) { int tile = 0; totalJpegSize = 0; start = getTime(); for (int y = 0; y < h; y += tileh) { for (int x = 0; x < w; x += tilew, tile++) { int width = Math.min(tilew, w - x); int height = Math.min(tileh, h - y); tjc.setSourceImage(srcBuf, x, y, width, pitch, height, pf); if (doYUV) { double startEncode = getTime(); yuvImage.setBuf(yuvImage.getBuf(), width, yuvAlign, height, subsamp); tjc.encodeYUV(yuvImage, flags); if (iter >= 0) elapsedEncode += getTime() - startEncode; tjc.setSourceImage(yuvImage); } tjc.compress(jpegBuf[tile], flags); jpegSize[tile] = tjc.getCompressedSize(); totalJpegSize += jpegSize[tile]; } } elapsed += getTime() - start; if (iter >= 0) { iter++; if (elapsed >= benchTime) break; } else if (elapsed >= warmup) { iter = 0; elapsed = elapsedEncode = 0.0; } } if (doYUV) elapsed -= elapsedEncode; if (quiet == 1) System.out.format("%-5d %-5d ", tilew, tileh); if (quiet != 0) { if (doYUV) System.out.format("%-6s%s", sigFig((double)(w * h) / 1000000. * (double)iter / elapsedEncode, 4), quiet == 2 ? "\n" : " "); System.out.format("%-6s%s", sigFig((double)(w * h) / 1000000. * (double)iter / elapsed, 4), quiet == 2 ? "\n" : " "); System.out.format("%-6s%s", sigFig((double)(w * h * ps) / (double)totalJpegSize, 4), quiet == 2 ? "\n" : " "); } else { System.out.format("\n%s size: %d x %d\n", doTile ? "Tile" : "Image", tilew, tileh); if (doYUV) { System.out.format("Encode YUV --> Frame rate: %f fps\n", (double)iter / elapsedEncode); System.out.format(" Output image size: %d bytes\n", yuvImage.getSize()); System.out.format(" Compression ratio: %f:1\n", (double)(w * h * ps) / (double)yuvImage.getSize()); System.out.format(" Throughput: %f Megapixels/sec\n", (double)(w * h) / 1000000. * (double)iter / elapsedEncode); System.out.format(" Output bit stream: %f Megabits/sec\n", (double)yuvImage.getSize() * 8. / 1000000. * (double)iter / elapsedEncode); } System.out.format("%s --> Frame rate: %f fps\n", doYUV ? "Comp from YUV" : "Compress ", (double)iter / elapsed); System.out.format(" Output image size: %d bytes\n", totalJpegSize); System.out.format(" Compression ratio: %f:1\n", (double)(w * h * ps) / (double)totalJpegSize); System.out.format(" Throughput: %f Megapixels/sec\n", (double)(w * h) / 1000000. * (double)iter / elapsed); System.out.format(" Output bit stream: %f Megabits/sec\n", (double)totalJpegSize * 8. / 1000000. * (double)iter / elapsed); } if (tilew == w && tileh == h && write) { String tempStr = fileName + "_" + SUBNAME[subsamp] + "_" + "Q" + jpegQual + ".jpg"; FileOutputStream fos = new FileOutputStream(tempStr); fos.write(jpegBuf[0], 0, jpegSize[0]); fos.close(); if (quiet == 0) System.out.println("Reference image written to " + tempStr); } /* Decompression test */ if (!compOnly) decomp(srcBuf, jpegBuf, jpegSize, tmpBuf, w, h, subsamp, jpegQual, fileName, tilew, tileh); else if (quiet == 1) System.out.println("N/A"); if (tilew == w && tileh == h) break; } } static void decompTest(String fileName) throws Exception { TJTransformer tjt; byte[][] jpegBuf = null; byte[] srcBuf; int[] jpegSize = null; int totalJpegSize; double start, elapsed; int ps = TJ.getPixelSize(pf), tile, x, y, iter; // Original image int w = 0, h = 0, ntilesw = 1, ntilesh = 1, subsamp = -1, cs = -1; // Transformed image int tw, th, ttilew, ttileh, tntilesw, tntilesh, tsubsamp; FileInputStream fis = new FileInputStream(fileName); if (fis.getChannel().size() > (long)Integer.MAX_VALUE) throw new Exception("Image is too large"); int srcSize = (int)fis.getChannel().size(); srcBuf = new byte[srcSize]; fis.read(srcBuf, 0, srcSize); fis.close(); int index = fileName.lastIndexOf('.'); if (index >= 0) fileName = new String(fileName.substring(0, index)); tjt = new TJTransformer(); try { tjt.setSourceImage(srcBuf, srcSize); } catch (TJException e) { handleTJException(e); } w = tjt.getWidth(); h = tjt.getHeight(); subsamp = tjt.getSubsamp(); cs = tjt.getColorspace(); if (quiet == 1) { System.out.println("All performance values in Mpixels/sec\n"); System.out.format("Pixel JPEG JPEG %s %s Xform Comp Decomp ", (doTile ? "Tile " : "Image"), (doTile ? "Tile " : "Image")); if (doYUV) System.out.print("Decode"); System.out.print("\n"); System.out.print("Format CS Subsamp Width Height Perf Ratio Perf "); if (doYUV) System.out.print("Perf"); System.out.println("\n"); } else if (quiet == 0) System.out.format(">>>>> JPEG %s --> %s (%s) <<<<<\n", formatName(subsamp, cs), PIXFORMATSTR[pf], (flags & TJ.FLAG_BOTTOMUP) != 0 ? "Bottom-up" : "Top-down"); for (int tilew = doTile ? 16 : w, tileh = doTile ? 16 : h; ; tilew *= 2, tileh *= 2) { if (tilew > w) tilew = w; if (tileh > h) tileh = h; ntilesw = (w + tilew - 1) / tilew; ntilesh = (h + tileh - 1) / tileh; tw = w; th = h; ttilew = tilew; ttileh = tileh; if (quiet == 0) { System.out.format("\n%s size: %d x %d", (doTile ? "Tile" : "Image"), ttilew, ttileh); if (sf.getNum() != 1 || sf.getDenom() != 1) System.out.format(" --> %d x %d", sf.getScaled(tw), sf.getScaled(th)); System.out.println(""); } else if (quiet == 1) { System.out.format("%-4s (%s) %-5s %-5s ", PIXFORMATSTR[pf], (flags & TJ.FLAG_BOTTOMUP) != 0 ? "BU" : "TD", CSNAME[cs], SUBNAME_LONG[subsamp]); System.out.format("%-5d %-5d ", tilew, tileh); } tsubsamp = subsamp; if (doTile || xformOp != TJTransform.OP_NONE || xformOpt != 0) { if (xformOp == TJTransform.OP_TRANSPOSE || xformOp == TJTransform.OP_TRANSVERSE || xformOp == TJTransform.OP_ROT90 || xformOp == TJTransform.OP_ROT270) { tw = h; th = w; ttilew = tileh; ttileh = tilew; } if ((xformOpt & TJTransform.OPT_GRAY) != 0) tsubsamp = TJ.SAMP_GRAY; if (xformOp == TJTransform.OP_HFLIP || xformOp == TJTransform.OP_ROT180) tw = tw - (tw % TJ.getMCUWidth(tsubsamp)); if (xformOp == TJTransform.OP_VFLIP || xformOp == TJTransform.OP_ROT180) th = th - (th % TJ.getMCUHeight(tsubsamp)); if (xformOp == TJTransform.OP_TRANSVERSE || xformOp == TJTransform.OP_ROT90) tw = tw - (tw % TJ.getMCUHeight(tsubsamp)); if (xformOp == TJTransform.OP_TRANSVERSE || xformOp == TJTransform.OP_ROT270) th = th - (th % TJ.getMCUWidth(tsubsamp)); tntilesw = (tw + ttilew - 1) / ttilew; tntilesh = (th + ttileh - 1) / ttileh; if (xformOp == TJTransform.OP_TRANSPOSE || xformOp == TJTransform.OP_TRANSVERSE || xformOp == TJTransform.OP_ROT90 || xformOp == TJTransform.OP_ROT270) { if (tsubsamp == TJ.SAMP_422) tsubsamp = TJ.SAMP_440; else if (tsubsamp == TJ.SAMP_440) tsubsamp = TJ.SAMP_422; } TJTransform[] t = new TJTransform[tntilesw * tntilesh]; jpegBuf = new byte[tntilesw * tntilesh][TJ.bufSize(ttilew, ttileh, subsamp)]; for (y = 0, tile = 0; y < th; y += ttileh) { for (x = 0; x < tw; x += ttilew, tile++) { t[tile] = new TJTransform(); t[tile].width = Math.min(ttilew, tw - x); t[tile].height = Math.min(ttileh, th - y); t[tile].x = x; t[tile].y = y; t[tile].op = xformOp; t[tile].options = xformOpt | TJTransform.OPT_TRIM; if ((t[tile].options & TJTransform.OPT_NOOUTPUT) != 0 && jpegBuf[tile] != null) jpegBuf[tile] = null; } } iter = -1; elapsed = 0.; while (true) { start = getTime(); try { tjt.transform(jpegBuf, t, flags); } catch (TJException e) { handleTJException(e); } jpegSize = tjt.getTransformedSizes(); elapsed += getTime() - start; if (iter >= 0) { iter++; if (elapsed >= benchTime) break; } else if (elapsed >= warmup) { iter = 0; elapsed = 0.0; } } t = null; for (tile = 0, totalJpegSize = 0; tile < tntilesw * tntilesh; tile++) totalJpegSize += jpegSize[tile]; if (quiet != 0) { System.out.format("%-6s%s%-6s%s", sigFig((double)(w * h) / 1000000. / elapsed, 4), quiet == 2 ? "\n" : " ", sigFig((double)(w * h * ps) / (double)totalJpegSize, 4), quiet == 2 ? "\n" : " "); } else { System.out.format("Transform --> Frame rate: %f fps\n", 1.0 / elapsed); System.out.format(" Output image size: %d bytes\n", totalJpegSize); System.out.format(" Compression ratio: %f:1\n", (double)(w * h * ps) / (double)totalJpegSize); System.out.format(" Throughput: %f Megapixels/sec\n", (double)(w * h) / 1000000. / elapsed); System.out.format(" Output bit stream: %f Megabits/sec\n", (double)totalJpegSize * 8. / 1000000. / elapsed); } } else { if (quiet == 1) System.out.print("N/A N/A "); jpegBuf = new byte[1][TJ.bufSize(ttilew, ttileh, subsamp)]; jpegSize = new int[1]; jpegBuf[0] = srcBuf; jpegSize[0] = srcSize; } if (w == tilew) ttilew = tw; if (h == tileh) ttileh = th; if ((xformOpt & TJTransform.OPT_NOOUTPUT) == 0) decomp(null, jpegBuf, jpegSize, null, tw, th, tsubsamp, 0, fileName, ttilew, ttileh); else if (quiet == 1) System.out.println("N/A"); jpegBuf = null; jpegSize = null; if (tilew == w && tileh == h) break; } } static void usage() throws Exception { int i; TJScalingFactor[] scalingFactors = TJ.getScalingFactors(); int nsf = scalingFactors.length; String className = new TJBench().getClass().getName(); System.out.println("\nUSAGE: java " + className); System.out.println(" [options]\n"); System.out.println(" java " + className); System.out.println(" [options]\n"); System.out.println("Options:\n"); System.out.println("-bottomup = Use bottom-up row order for packed-pixel source/destination buffers"); System.out.println("-tile = Compress/transform the input image into separate JPEG tiles of varying"); System.out.println(" sizes (useful for measuring JPEG overhead)"); System.out.println("-rgb, -bgr, -rgbx, -bgrx, -xbgr, -xrgb ="); System.out.println(" Use the specified pixel format for packed-pixel source/destination buffers"); System.out.println(" [default = BGR]"); System.out.println("-fastupsample = Use the fastest chrominance upsampling algorithm available"); System.out.println("-fastdct = Use the fastest DCT/IDCT algorithm available"); System.out.println("-accuratedct = Use the most accurate DCT/IDCT algorithm available"); System.out.println("-progressive = Use progressive entropy coding in JPEG images generated by"); System.out.println(" compression and transform operations"); System.out.println("-subsamp = When compressing, use the specified level of chrominance"); System.out.println(" subsampling ( = 444, 422, 440, 420, 411, or GRAY) [default = test"); System.out.println(" Grayscale, 4:2:0, 4:2:2, and 4:4:4 in sequence]"); System.out.println("-quiet = Output results in tabular rather than verbose format"); System.out.println("-yuv = Compress from/decompress to intermediate planar YUV images"); System.out.println("-yuvpad

    = The number of bytes by which each row in each plane of an"); System.out.println(" intermediate YUV image is evenly divisible (must be a power of 2)"); System.out.println(" [default = 1]"); System.out.println("-scale M/N = When decompressing, scale the width/height of the JPEG image by a"); System.out.print(" factor of M/N (M/N = "); for (i = 0; i < nsf; i++) { System.out.format("%d/%d", scalingFactors[i].getNum(), scalingFactors[i].getDenom()); if (nsf == 2 && i != nsf - 1) System.out.print(" or "); else if (nsf > 2) { if (i != nsf - 1) System.out.print(", "); if (i == nsf - 2) System.out.print("or "); } if (i % 8 == 0 && i != 0) System.out.print("\n "); } System.out.println(")"); System.out.println("-hflip, -vflip, -transpose, -transverse, -rot90, -rot180, -rot270 ="); System.out.println(" Perform the specified lossless transform operation on the input image"); System.out.println(" prior to decompression (these operations are mutually exclusive)"); System.out.println("-grayscale = Transform the input image into a grayscale JPEG image prior to"); System.out.println(" decompression (can be combined with the other transform operations above)"); System.out.println("-copynone = Do not copy any extra markers (including EXIF and ICC profile data)"); System.out.println(" when transforming the input image"); System.out.println("-benchtime = Run each benchmark for at least seconds [default = 5.0]"); System.out.println("-warmup = Run each benchmark for seconds [default = 1.0] prior to"); System.out.println(" starting the timer, in order to prime the caches and thus improve the"); System.out.println(" consistency of the benchmark results"); System.out.println("-componly = Stop after running compression tests. Do not test decompression."); System.out.println("-nowrite = Do not write reference or output images (improves consistency of"); System.out.println(" benchmark results)"); System.out.println("-limitscans = Refuse to decompress or transform progressive JPEG images that"); System.out.println(" have an unreasonably large number of scans"); System.out.println("-stoponwarning = Immediately discontinue the current"); System.out.println(" compression/decompression/transform operation if a warning (non-fatal"); System.out.println(" error) occurs\n"); System.out.println("NOTE: If the quality is specified as a range (e.g. 90-100), a separate"); System.out.println("test will be performed for all quality values in the range.\n"); System.exit(1); } public static void main(String[] argv) { byte[] srcBuf = null; int w = 0, h = 0, minQual = -1, maxQual = -1; int minArg = 1, retval = 0; int subsamp = -1; try { if (argv.length < minArg) usage(); String tempStr = argv[0].toLowerCase(); if (tempStr.endsWith(".jpg") || tempStr.endsWith(".jpeg")) decompOnly = true; System.out.println(""); if (!decompOnly) { minArg = 2; if (argv.length < minArg) usage(); String[] quals = argv[1].split("-", 2); try { minQual = Integer.parseInt(quals[0]); } catch (NumberFormatException e) {} if (minQual < 1 || minQual > 100) throw new Exception("Quality must be between 1 and 100."); if (quals.length > 1) { try { maxQual = Integer.parseInt(quals[1]); } catch (NumberFormatException e) {} } if (maxQual < 1 || maxQual > 100 || maxQual < minQual) maxQual = minQual; } if (argv.length > minArg) { for (int i = minArg; i < argv.length; i++) { if (argv[i].equalsIgnoreCase("-tile")) { doTile = true; xformOpt |= TJTransform.OPT_CROP; } else if (argv[i].equalsIgnoreCase("-fastupsample")) { System.out.println("Using fastest upsampling algorithm\n"); flags |= TJ.FLAG_FASTUPSAMPLE; } else if (argv[i].equalsIgnoreCase("-fastdct")) { System.out.println("Using fastest DCT/IDCT algorithm\n"); flags |= TJ.FLAG_FASTDCT; } else if (argv[i].equalsIgnoreCase("-accuratedct")) { System.out.println("Using most accurate DCT/IDCT algorithm\n"); flags |= TJ.FLAG_ACCURATEDCT; } else if (argv[i].equalsIgnoreCase("-progressive")) { System.out.println("Using progressive entropy coding\n"); flags |= TJ.FLAG_PROGRESSIVE; xformOpt |= TJTransform.OPT_PROGRESSIVE; } else if (argv[i].equalsIgnoreCase("-rgb")) pf = TJ.PF_RGB; else if (argv[i].equalsIgnoreCase("-rgbx")) pf = TJ.PF_RGBX; else if (argv[i].equalsIgnoreCase("-bgr")) pf = TJ.PF_BGR; else if (argv[i].equalsIgnoreCase("-bgrx")) pf = TJ.PF_BGRX; else if (argv[i].equalsIgnoreCase("-xbgr")) pf = TJ.PF_XBGR; else if (argv[i].equalsIgnoreCase("-xrgb")) pf = TJ.PF_XRGB; else if (argv[i].equalsIgnoreCase("-bottomup")) flags |= TJ.FLAG_BOTTOMUP; else if (argv[i].equalsIgnoreCase("-quiet")) quiet = 1; else if (argv[i].equalsIgnoreCase("-qq")) quiet = 2; else if (argv[i].equalsIgnoreCase("-scale") && i < argv.length - 1) { int temp1 = 0, temp2 = 0; boolean match = false, scanned = true; Scanner scanner = new Scanner(argv[++i]).useDelimiter("/"); try { temp1 = scanner.nextInt(); temp2 = scanner.nextInt(); } catch (Exception e) {} if (temp2 <= 0) temp2 = 1; if (temp1 > 0) { TJScalingFactor[] scalingFactors = TJ.getScalingFactors(); for (int j = 0; j < scalingFactors.length; j++) { if ((double)temp1 / (double)temp2 == (double)scalingFactors[j].getNum() / (double)scalingFactors[j].getDenom()) { sf = scalingFactors[j]; match = true; break; } } if (!match) usage(); } else usage(); } else if (argv[i].equalsIgnoreCase("-hflip")) xformOp = TJTransform.OP_HFLIP; else if (argv[i].equalsIgnoreCase("-vflip")) xformOp = TJTransform.OP_VFLIP; else if (argv[i].equalsIgnoreCase("-transpose")) xformOp = TJTransform.OP_TRANSPOSE; else if (argv[i].equalsIgnoreCase("-transverse")) xformOp = TJTransform.OP_TRANSVERSE; else if (argv[i].equalsIgnoreCase("-rot90")) xformOp = TJTransform.OP_ROT90; else if (argv[i].equalsIgnoreCase("-rot180")) xformOp = TJTransform.OP_ROT180; else if (argv[i].equalsIgnoreCase("-rot270")) xformOp = TJTransform.OP_ROT270; else if (argv[i].equalsIgnoreCase("-grayscale")) xformOpt |= TJTransform.OPT_GRAY; else if (argv[i].equalsIgnoreCase("-nooutput")) xformOpt |= TJTransform.OPT_NOOUTPUT; else if (argv[i].equalsIgnoreCase("-copynone")) xformOpt |= TJTransform.OPT_COPYNONE; else if (argv[i].equalsIgnoreCase("-benchtime") && i < argv.length - 1) { double temp = -1; try { temp = Double.parseDouble(argv[++i]); } catch (NumberFormatException e) {} if (temp > 0.0) benchTime = temp; else usage(); } else if (argv[i].equalsIgnoreCase("-warmup") && i < argv.length - 1) { double temp = -1; try { temp = Double.parseDouble(argv[++i]); } catch (NumberFormatException e) {} if (temp >= 0.0) { warmup = temp; System.out.format("Warmup time = %.1f seconds\n\n", warmup); } else usage(); } else if (argv[i].equalsIgnoreCase("-yuv")) { System.out.println("Testing planar YUV encoding/decoding\n"); doYUV = true; } else if (argv[i].equalsIgnoreCase("-yuvpad") && i < argv.length - 1) { int temp = 0; try { temp = Integer.parseInt(argv[++i]); } catch (NumberFormatException e) {} if (temp >= 1 && (temp & (temp - 1)) == 0) yuvAlign = temp; else usage(); } else if (argv[i].equalsIgnoreCase("-subsamp") && i < argv.length - 1) { i++; if (argv[i].toUpperCase().startsWith("G")) subsamp = TJ.SAMP_GRAY; else if (argv[i].equals("444")) subsamp = TJ.SAMP_444; else if (argv[i].equals("422")) subsamp = TJ.SAMP_422; else if (argv[i].equals("440")) subsamp = TJ.SAMP_440; else if (argv[i].equals("420")) subsamp = TJ.SAMP_420; else if (argv[i].equals("411")) subsamp = TJ.SAMP_411; else usage(); } else if (argv[i].equalsIgnoreCase("-componly")) compOnly = true; else if (argv[i].equalsIgnoreCase("-nowrite")) write = false; else if (argv[i].equalsIgnoreCase("-limitscans")) flags |= TJ.FLAG_LIMITSCANS; else if (argv[i].equalsIgnoreCase("-stoponwarning")) flags |= TJ.FLAG_STOPONWARNING; else usage(); } } if (sf == null) sf = new TJScalingFactor(1, 1); if ((sf.getNum() != 1 || sf.getDenom() != 1) && doTile) { System.out.println("Disabling tiled compression/decompression tests, because those tests do not"); System.out.println("work when scaled decompression is enabled.\n"); doTile = false; xformOpt &= (~TJTransform.OPT_CROP); } if (!decompOnly) { int[] width = new int[1], height = new int[1]; srcBuf = loadImage(argv[0], width, height, pf); w = width[0]; h = height[0]; int index = -1; if ((index = argv[0].lastIndexOf('.')) >= 0) argv[0] = argv[0].substring(0, index); } if (quiet == 1 && !decompOnly) { System.out.println("All performance values in Mpixels/sec\n"); System.out.format("Pixel JPEG JPEG %s %s ", (doTile ? "Tile " : "Image"), (doTile ? "Tile " : "Image")); if (doYUV) System.out.print("Encode "); System.out.print("Comp Comp Decomp "); if (doYUV) System.out.print("Decode"); System.out.print("\n"); System.out.print("Format Subsamp Qual Width Height "); if (doYUV) System.out.print("Perf "); System.out.print("Perf Ratio Perf "); if (doYUV) System.out.print("Perf"); System.out.println("\n"); } if (decompOnly) { decompTest(argv[0]); System.out.println(""); System.exit(retval); } System.gc(); if (subsamp >= 0 && subsamp < TJ.NUMSAMP) { for (int i = maxQual; i >= minQual; i--) fullTest(srcBuf, w, h, subsamp, i, argv[0]); System.out.println(""); } else { for (int i = maxQual; i >= minQual; i--) fullTest(srcBuf, w, h, TJ.SAMP_GRAY, i, argv[0]); System.out.println(""); System.gc(); for (int i = maxQual; i >= minQual; i--) fullTest(srcBuf, w, h, TJ.SAMP_420, i, argv[0]); System.out.println(""); System.gc(); for (int i = maxQual; i >= minQual; i--) fullTest(srcBuf, w, h, TJ.SAMP_422, i, argv[0]); System.out.println(""); System.gc(); for (int i = maxQual; i >= minQual; i--) fullTest(srcBuf, w, h, TJ.SAMP_444, i, argv[0]); System.out.println(""); } } catch (Exception e) { if (e instanceof TJException) { TJException tje = (TJException)e; System.out.println((tje.getErrorCode() == TJ.ERR_WARNING ? "WARNING: " : "ERROR: ") + tje.getMessage()); } else System.out.println("ERROR: " + e.getMessage()); e.printStackTrace(); retval = -1; } System.exit(retval); } } libjpeg-turbo-2.1.5/java/TJExample.java000066400000000000000000000407611436506551100177170ustar00rootroot00000000000000/* * Copyright (C)2011-2012, 2014-2015, 2017-2018, 2023 D. R. Commander. * All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * This program demonstrates how to compress, decompress, and transform JPEG * images using the TurboJPEG Java API */ import java.io.*; import java.awt.*; import java.awt.image.*; import java.nio.*; import javax.imageio.*; import javax.swing.*; import org.libjpegturbo.turbojpeg.*; @SuppressWarnings("checkstyle:JavadocType") class TJExample implements TJCustomFilter { static final String CLASS_NAME = new TJExample().getClass().getName(); static final int DEFAULT_SUBSAMP = TJ.SAMP_444; static final int DEFAULT_QUALITY = 95; static final String[] SUBSAMP_NAME = { "4:4:4", "4:2:2", "4:2:0", "Grayscale", "4:4:0", "4:1:1" }; static final String[] COLORSPACE_NAME = { "RGB", "YCbCr", "GRAY", "CMYK", "YCCK" }; /* DCT filter example. This produces a negative of the image. */ @SuppressWarnings("checkstyle:JavadocMethod") public void customFilter(ShortBuffer coeffBuffer, Rectangle bufferRegion, Rectangle planeRegion, int componentIndex, int transformIndex, TJTransform transform) throws TJException { for (int i = 0; i < bufferRegion.width * bufferRegion.height; i++) { coeffBuffer.put(i, (short)(-coeffBuffer.get(i))); } } static void usage() throws Exception { System.out.println("\nUSAGE: java [Java options] " + CLASS_NAME + " [options]\n"); System.out.println("Input and output images can be in any image format that the Java Image I/O"); System.out.println("extensions understand. If either filename ends in a .jpg extension, then"); System.out.println("the TurboJPEG API will be used to compress or decompress the image.\n"); System.out.println("Compression Options (used if the output image is a JPEG image)"); System.out.println("--------------------------------------------------------------\n"); System.out.println("-subsamp <444|422|420|gray> = Apply this level of chrominance subsampling when"); System.out.println(" compressing the output image. The default is to use the same level of"); System.out.println(" subsampling as in the input image, if the input image is also a JPEG"); System.out.println(" image, or to use grayscale if the input image is a grayscale non-JPEG"); System.out.println(" image, or to use " + SUBSAMP_NAME[DEFAULT_SUBSAMP] + " subsampling otherwise.\n"); System.out.println("-q <1-100> = Compress the output image with this JPEG quality level"); System.out.println(" (default = " + DEFAULT_QUALITY + ").\n"); System.out.println("Decompression Options (used if the input image is a JPEG image)"); System.out.println("---------------------------------------------------------------\n"); System.out.println("-scale M/N = Scale the input image by a factor of M/N when decompressing it."); System.out.print("(M/N = "); for (int i = 0; i < SCALING_FACTORS.length; i++) { System.out.print(SCALING_FACTORS[i].getNum() + "/" + SCALING_FACTORS[i].getDenom()); if (SCALING_FACTORS.length == 2 && i != SCALING_FACTORS.length - 1) System.out.print(" or "); else if (SCALING_FACTORS.length > 2) { if (i != SCALING_FACTORS.length - 1) System.out.print(", "); if (i == SCALING_FACTORS.length - 2) System.out.print("or "); } } System.out.println(")\n"); System.out.println("-hflip, -vflip, -transpose, -transverse, -rot90, -rot180, -rot270 ="); System.out.println(" Perform one of these lossless transform operations on the input image"); System.out.println(" prior to decompressing it (these options are mutually exclusive.)\n"); System.out.println("-grayscale = Perform lossless grayscale conversion on the input image prior"); System.out.println(" to decompressing it (can be combined with the other transform operations"); System.out.println(" above.)\n"); System.out.println("-crop WxH+X+Y = Perform lossless cropping on the input image prior to"); System.out.println(" decompressing it. X and Y specify the upper left corner of the cropping"); System.out.println(" region, and W and H specify the width and height of the cropping region."); System.out.println(" X and Y must be evenly divible by the MCU block size (8x8 if the input"); System.out.println(" image was compressed using no subsampling or grayscale, 16x8 if it was"); System.out.println(" compressed using 4:2:2 subsampling, or 16x16 if it was compressed using"); System.out.println(" 4:2:0 subsampling.)\n"); System.out.println("General Options"); System.out.println("---------------\n"); System.out.println("-display = Display output image (Output filename need not be specified in this"); System.out.println(" case.)\n"); System.out.println("-fastupsample = Use the fastest chrominance upsampling algorithm available\n"); System.out.println("-fastdct = Use the fastest DCT/IDCT algorithm available\n"); System.out.println("-accuratedct = Use the most accurate DCT/IDCT algorithm available\n"); System.exit(1); } public static void main(String[] argv) { try { TJScalingFactor scalingFactor = new TJScalingFactor(1, 1); int outSubsamp = -1, outQual = -1; TJTransform xform = new TJTransform(); boolean display = false; int flags = 0; int width, height; String inFormat = "jpg", outFormat = "jpg"; BufferedImage img = null; byte[] imgBuf = null; if (argv.length < 2) usage(); if (argv[1].substring(0, 2).equalsIgnoreCase("-d")) display = true; /* Parse arguments. */ for (int i = 2; i < argv.length; i++) { if (argv[i].length() < 2) continue; else if (argv[i].length() > 2 && argv[i].substring(0, 3).equalsIgnoreCase("-sc") && i < argv.length - 1) { int match = 0; String[] scaleArg = argv[++i].split("/"); if (scaleArg.length == 2) { TJScalingFactor tempsf = new TJScalingFactor(Integer.parseInt(scaleArg[0]), Integer.parseInt(scaleArg[1])); for (int j = 0; j < SCALING_FACTORS.length; j++) { if (tempsf.equals(SCALING_FACTORS[j])) { scalingFactor = SCALING_FACTORS[j]; match = 1; break; } } } if (match != 1) usage(); } else if (argv[i].length() > 2 && argv[i].substring(0, 3).equalsIgnoreCase("-su") && i < argv.length - 1) { i++; if (argv[i].substring(0, 1).equalsIgnoreCase("g")) outSubsamp = TJ.SAMP_GRAY; else if (argv[i].equals("444")) outSubsamp = TJ.SAMP_444; else if (argv[i].equals("422")) outSubsamp = TJ.SAMP_422; else if (argv[i].equals("420")) outSubsamp = TJ.SAMP_420; else usage(); } else if (argv[i].substring(0, 2).equalsIgnoreCase("-q") && i < argv.length - 1) { outQual = Integer.parseInt(argv[++i]); if (outQual < 1 || outQual > 100) usage(); } else if (argv[i].substring(0, 2).equalsIgnoreCase("-g")) xform.options |= TJTransform.OPT_GRAY; else if (argv[i].equalsIgnoreCase("-hflip")) xform.op = TJTransform.OP_HFLIP; else if (argv[i].equalsIgnoreCase("-vflip")) xform.op = TJTransform.OP_VFLIP; else if (argv[i].equalsIgnoreCase("-transpose")) xform.op = TJTransform.OP_TRANSPOSE; else if (argv[i].equalsIgnoreCase("-transverse")) xform.op = TJTransform.OP_TRANSVERSE; else if (argv[i].equalsIgnoreCase("-rot90")) xform.op = TJTransform.OP_ROT90; else if (argv[i].equalsIgnoreCase("-rot180")) xform.op = TJTransform.OP_ROT180; else if (argv[i].equalsIgnoreCase("-rot270")) xform.op = TJTransform.OP_ROT270; else if (argv[i].equalsIgnoreCase("-custom")) xform.cf = new TJExample(); else if (argv[i].length() > 2 && argv[i].substring(0, 2).equalsIgnoreCase("-c") && i < argv.length - 1) { String[] cropArg = argv[++i].split("[x\\+]"); if (cropArg.length != 4) usage(); xform.width = Integer.parseInt(cropArg[0]); xform.height = Integer.parseInt(cropArg[1]); xform.x = Integer.parseInt(cropArg[2]); xform.y = Integer.parseInt(cropArg[3]); if (xform.x < 0 || xform.y < 0 || xform.width < 1 || xform.height < 1) usage(); xform.options |= TJTransform.OPT_CROP; } else if (argv[i].substring(0, 2).equalsIgnoreCase("-d")) display = true; else if (argv[i].equalsIgnoreCase("-fastupsample")) { System.out.println("Using fast upsampling code"); flags |= TJ.FLAG_FASTUPSAMPLE; } else if (argv[i].equalsIgnoreCase("-fastdct")) { System.out.println("Using fastest DCT/IDCT algorithm"); flags |= TJ.FLAG_FASTDCT; } else if (argv[i].equalsIgnoreCase("-accuratedct")) { System.out.println("Using most accurate DCT/IDCT algorithm"); flags |= TJ.FLAG_ACCURATEDCT; } else usage(); } /* Determine input and output image formats based on file extensions. */ String[] inFileTokens = argv[0].split("\\."); if (inFileTokens.length > 1) inFormat = inFileTokens[inFileTokens.length - 1]; String[] outFileTokens; if (display) outFormat = "bmp"; else { outFileTokens = argv[1].split("\\."); if (outFileTokens.length > 1) outFormat = outFileTokens[outFileTokens.length - 1]; } if (inFormat.equalsIgnoreCase("jpg")) { /* Input image is a JPEG image. Decompress and/or transform it. */ boolean doTransform = (xform.op != TJTransform.OP_NONE || xform.options != 0 || xform.cf != null); /* Read the JPEG file into memory. */ File jpegFile = new File(argv[0]); FileInputStream fis = new FileInputStream(jpegFile); int jpegSize = fis.available(); if (jpegSize < 1) { System.out.println("Input file contains no data"); System.exit(1); } byte[] jpegBuf = new byte[jpegSize]; fis.read(jpegBuf); fis.close(); TJDecompressor tjd; if (doTransform) { /* Transform it. */ TJTransformer tjt = new TJTransformer(jpegBuf); TJTransform[] xforms = new TJTransform[1]; xforms[0] = xform; xforms[0].options |= TJTransform.OPT_TRIM; TJDecompressor[] tjds = tjt.transform(xforms, 0); tjd = tjds[0]; tjt.close(); } else tjd = new TJDecompressor(jpegBuf); width = tjd.getWidth(); height = tjd.getHeight(); int inSubsamp = tjd.getSubsamp(); int inColorspace = tjd.getColorspace(); System.out.println((doTransform ? "Transformed" : "Input") + " Image (jpg): " + width + " x " + height + " pixels, " + SUBSAMP_NAME[inSubsamp] + " subsampling, " + COLORSPACE_NAME[inColorspace]); if (outFormat.equalsIgnoreCase("jpg") && doTransform && scalingFactor.isOne() && outSubsamp < 0 && outQual < 0) { /* Input image has been transformed, and no re-compression options have been selected. Write the transformed image to disk and exit. */ File outFile = new File(argv[1]); FileOutputStream fos = new FileOutputStream(outFile); fos.write(tjd.getJPEGBuf(), 0, tjd.getJPEGSize()); fos.close(); System.exit(0); } /* Scaling and/or a non-JPEG output image format and/or compression options have been selected, so we need to decompress the input/transformed image. */ width = scalingFactor.getScaled(width); height = scalingFactor.getScaled(height); if (outSubsamp < 0) outSubsamp = inSubsamp; if (!outFormat.equalsIgnoreCase("jpg")) img = tjd.decompress(width, height, BufferedImage.TYPE_INT_RGB, flags); else imgBuf = tjd.decompress(width, 0, height, TJ.PF_BGRX, flags); tjd.close(); } else { /* Input image is not a JPEG image. Load it into memory. */ img = ImageIO.read(new File(argv[0])); if (img == null) throw new Exception("Input image type not supported."); width = img.getWidth(); height = img.getHeight(); if (outSubsamp < 0) { if (img.getType() == BufferedImage.TYPE_BYTE_GRAY) outSubsamp = TJ.SAMP_GRAY; else outSubsamp = DEFAULT_SUBSAMP; } System.out.println("Input Image: " + width + " x " + height + " pixels"); } System.gc(); if (!display) System.out.print("Output Image (" + outFormat + "): " + width + " x " + height + " pixels"); if (display) { /* Display the uncompressed image */ ImageIcon icon = new ImageIcon(img); JLabel label = new JLabel(icon, JLabel.CENTER); JOptionPane.showMessageDialog(null, label, "Output Image", JOptionPane.PLAIN_MESSAGE); } else if (outFormat.equalsIgnoreCase("jpg")) { /* Output image format is JPEG. Compress the uncompressed image. */ if (outQual < 0) outQual = DEFAULT_QUALITY; System.out.println(", " + SUBSAMP_NAME[outSubsamp] + " subsampling, quality = " + outQual); TJCompressor tjc = new TJCompressor(); tjc.setSubsamp(outSubsamp); tjc.setJPEGQuality(outQual); if (img != null) tjc.setSourceImage(img, 0, 0, 0, 0); else tjc.setSourceImage(imgBuf, 0, 0, width, 0, height, TJ.PF_BGRX); byte[] jpegBuf = tjc.compress(flags); int jpegSize = tjc.getCompressedSize(); tjc.close(); /* Write the JPEG image to disk. */ File outFile = new File(argv[1]); FileOutputStream fos = new FileOutputStream(outFile); fos.write(jpegBuf, 0, jpegSize); fos.close(); } else { /* Output image format is not JPEG. Save the uncompressed image directly to disk. */ System.out.print("\n"); File outFile = new File(argv[1]); ImageIO.write(img, outFormat, outFile); } } catch (Exception e) { e.printStackTrace(); System.exit(-1); } } static final TJScalingFactor[] SCALING_FACTORS = TJ.getScalingFactors(); }; libjpeg-turbo-2.1.5/java/TJUnitTest.java000066400000000000000000001052121436506551100200740ustar00rootroot00000000000000/* * Copyright (C)2011-2018, 2023 D. R. Commander. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * This program tests the various code paths in the TurboJPEG JNI Wrapper */ import java.io.*; import java.util.*; import java.awt.image.*; import javax.imageio.*; import java.nio.*; import org.libjpegturbo.turbojpeg.*; @SuppressWarnings("checkstyle:JavadocType") final class TJUnitTest { private TJUnitTest() {} static final String CLASS_NAME = new TJUnitTest().getClass().getName(); static void usage() { System.out.println("\nUSAGE: java " + CLASS_NAME + " [options]\n"); System.out.println("Options:"); System.out.println("-yuv = test YUV encoding/compression/decompression/decoding"); System.out.println("-noyuvpad = do not pad each row in each Y, U, and V plane to the nearest"); System.out.println(" multiple of 4 bytes"); System.out.println("-bi = test BufferedImage I/O\n"); System.exit(1); } static final String[] SUBNAME_LONG = { "4:4:4", "4:2:2", "4:2:0", "GRAY", "4:4:0", "4:1:1" }; static final String[] SUBNAME = { "444", "422", "420", "GRAY", "440", "411" }; static final String[] PIXFORMATSTR = { "RGB", "BGR", "RGBX", "BGRX", "XBGR", "XRGB", "Grayscale", "RGBA", "BGRA", "ABGR", "ARGB", "CMYK" }; static final int[] FORMATS_3BYTE = { TJ.PF_RGB, TJ.PF_BGR }; static final int[] FORMATS_3BYTEBI = { BufferedImage.TYPE_3BYTE_BGR }; static final int[] FORMATS_4BYTE = { TJ.PF_RGBX, TJ.PF_BGRX, TJ.PF_XBGR, TJ.PF_XRGB, TJ.PF_CMYK }; static final int[] FORMATS_4BYTEBI = { BufferedImage.TYPE_INT_BGR, BufferedImage.TYPE_INT_RGB, BufferedImage.TYPE_4BYTE_ABGR, BufferedImage.TYPE_4BYTE_ABGR_PRE, BufferedImage.TYPE_INT_ARGB, BufferedImage.TYPE_INT_ARGB_PRE }; static final int[] FORMATS_GRAY = { TJ.PF_GRAY }; static final int[] FORMATS_GRAYBI = { BufferedImage.TYPE_BYTE_GRAY }; static final int[] FORMATS_RGB = { TJ.PF_RGB }; private static boolean doYUV = false; private static int yuvAlign = 4; private static boolean bi = false; private static int exitStatus = 0; static int biTypePF(int biType) { ByteOrder byteOrder = ByteOrder.nativeOrder(); switch (biType) { case BufferedImage.TYPE_3BYTE_BGR: return TJ.PF_BGR; case BufferedImage.TYPE_4BYTE_ABGR: case BufferedImage.TYPE_4BYTE_ABGR_PRE: return TJ.PF_ABGR; case BufferedImage.TYPE_BYTE_GRAY: return TJ.PF_GRAY; case BufferedImage.TYPE_INT_BGR: return TJ.PF_RGBX; case BufferedImage.TYPE_INT_RGB: return TJ.PF_BGRX; case BufferedImage.TYPE_INT_ARGB: case BufferedImage.TYPE_INT_ARGB_PRE: return TJ.PF_BGRA; default: return 0; } } static String biTypeStr(int biType) { switch (biType) { case BufferedImage.TYPE_3BYTE_BGR: return "3BYTE_BGR"; case BufferedImage.TYPE_4BYTE_ABGR: return "4BYTE_ABGR"; case BufferedImage.TYPE_4BYTE_ABGR_PRE: return "4BYTE_ABGR_PRE"; case BufferedImage.TYPE_BYTE_GRAY: return "BYTE_GRAY"; case BufferedImage.TYPE_INT_BGR: return "INT_BGR"; case BufferedImage.TYPE_INT_RGB: return "INT_RGB"; case BufferedImage.TYPE_INT_ARGB: return "INT_ARGB"; case BufferedImage.TYPE_INT_ARGB_PRE: return "INT_ARGB_PRE"; default: return "Unknown"; } } static void initBuf(byte[] buf, int w, int pitch, int h, int pf, int flags) throws Exception { int roffset = TJ.getRedOffset(pf); int goffset = TJ.getGreenOffset(pf); int boffset = TJ.getBlueOffset(pf); int aoffset = TJ.getAlphaOffset(pf); int ps = TJ.getPixelSize(pf); int index, row, col, halfway = 16; if (pf == TJ.PF_GRAY) { Arrays.fill(buf, (byte)0); for (row = 0; row < h; row++) { for (col = 0; col < w; col++) { if ((flags & TJ.FLAG_BOTTOMUP) != 0) index = pitch * (h - row - 1) + col; else index = pitch * row + col; if (((row / 8) + (col / 8)) % 2 == 0) buf[index] = (row < halfway) ? (byte)255 : 0; else buf[index] = (row < halfway) ? 76 : (byte)226; } } return; } if (pf == TJ.PF_CMYK) { Arrays.fill(buf, (byte)255); for (row = 0; row < h; row++) { for (col = 0; col < w; col++) { if ((flags & TJ.FLAG_BOTTOMUP) != 0) index = (h - row - 1) * w + col; else index = row * w + col; if (((row / 8) + (col / 8)) % 2 == 0) { if (row >= halfway) buf[index * ps + 3] = 0; } else { buf[index * ps + 2] = 0; if (row < halfway) buf[index * ps + 1] = 0; } } } return; } Arrays.fill(buf, (byte)0); for (row = 0; row < h; row++) { for (col = 0; col < w; col++) { if ((flags & TJ.FLAG_BOTTOMUP) != 0) index = pitch * (h - row - 1) + col * ps; else index = pitch * row + col * ps; if (((row / 8) + (col / 8)) % 2 == 0) { if (row < halfway) { buf[index + roffset] = (byte)255; buf[index + goffset] = (byte)255; buf[index + boffset] = (byte)255; } } else { buf[index + roffset] = (byte)255; if (row >= halfway) buf[index + goffset] = (byte)255; } if (aoffset >= 0) buf[index + aoffset] = (byte)255; } } } static void initIntBuf(int[] buf, int w, int pitch, int h, int pf, int flags) throws Exception { int rshift = TJ.getRedOffset(pf) * 8; int gshift = TJ.getGreenOffset(pf) * 8; int bshift = TJ.getBlueOffset(pf) * 8; int ashift = TJ.getAlphaOffset(pf) * 8; int index, row, col, halfway = 16; Arrays.fill(buf, 0); for (row = 0; row < h; row++) { for (col = 0; col < w; col++) { if ((flags & TJ.FLAG_BOTTOMUP) != 0) index = pitch * (h - row - 1) + col; else index = pitch * row + col; if (((row / 8) + (col / 8)) % 2 == 0) { if (row < halfway) { buf[index] |= (255 << rshift); buf[index] |= (255 << gshift); buf[index] |= (255 << bshift); } } else { buf[index] |= (255 << rshift); if (row >= halfway) buf[index] |= (255 << gshift); } if (ashift >= 0) buf[index] |= (255 << ashift); } } } static void initImg(BufferedImage img, int pf, int flags) throws Exception { WritableRaster wr = img.getRaster(); int imgType = img.getType(); if (imgType == BufferedImage.TYPE_INT_RGB || imgType == BufferedImage.TYPE_INT_BGR || imgType == BufferedImage.TYPE_INT_ARGB || imgType == BufferedImage.TYPE_INT_ARGB_PRE) { SinglePixelPackedSampleModel sm = (SinglePixelPackedSampleModel)img.getSampleModel(); int pitch = sm.getScanlineStride(); DataBufferInt db = (DataBufferInt)wr.getDataBuffer(); int[] buf = db.getData(); initIntBuf(buf, img.getWidth(), pitch, img.getHeight(), pf, flags); } else { ComponentSampleModel sm = (ComponentSampleModel)img.getSampleModel(); int pitch = sm.getScanlineStride(); DataBufferByte db = (DataBufferByte)wr.getDataBuffer(); byte[] buf = db.getData(); initBuf(buf, img.getWidth(), pitch, img.getHeight(), pf, flags); } } static void checkVal(int row, int col, int v, String vname, int cv) throws Exception { v = (v < 0) ? v + 256 : v; if (v < cv - 1 || v > cv + 1) { throw new Exception("Comp. " + vname + " at " + row + "," + col + " should be " + cv + ", not " + v); } } static void checkVal0(int row, int col, int v, String vname) throws Exception { v = (v < 0) ? v + 256 : v; if (v > 1) { throw new Exception("Comp. " + vname + " at " + row + "," + col + " should be 0, not " + v); } } static void checkVal255(int row, int col, int v, String vname) throws Exception { v = (v < 0) ? v + 256 : v; if (v < 254) { throw new Exception("Comp. " + vname + " at " + row + "," + col + " should be 255, not " + v); } } static int checkBuf(byte[] buf, int w, int pitch, int h, int pf, int subsamp, TJScalingFactor sf, int flags) throws Exception { int roffset = TJ.getRedOffset(pf); int goffset = TJ.getGreenOffset(pf); int boffset = TJ.getBlueOffset(pf); int aoffset = TJ.getAlphaOffset(pf); int ps = TJ.getPixelSize(pf); int index, row, col, retval = 1; int halfway = 16 * sf.getNum() / sf.getDenom(); int blockSize = 8 * sf.getNum() / sf.getDenom(); try { if (pf == TJ.PF_GRAY) roffset = goffset = boffset = 0; if (pf == TJ.PF_CMYK) { for (row = 0; row < h; row++) { for (col = 0; col < w; col++) { if ((flags & TJ.FLAG_BOTTOMUP) != 0) index = (h - row - 1) * w + col; else index = row * w + col; byte c = buf[index * ps]; byte m = buf[index * ps + 1]; byte y = buf[index * ps + 2]; byte k = buf[index * ps + 3]; checkVal255(row, col, c, "C"); if (((row / blockSize) + (col / blockSize)) % 2 == 0) { checkVal255(row, col, m, "M"); checkVal255(row, col, y, "Y"); if (row < halfway) checkVal255(row, col, k, "K"); else checkVal0(row, col, k, "K"); } else { checkVal0(row, col, y, "Y"); checkVal255(row, col, k, "K"); if (row < halfway) checkVal0(row, col, m, "M"); else checkVal255(row, col, m, "M"); } } } return 1; } for (row = 0; row < halfway; row++) { for (col = 0; col < w; col++) { if ((flags & TJ.FLAG_BOTTOMUP) != 0) index = pitch * (h - row - 1) + col * ps; else index = pitch * row + col * ps; byte r = buf[index + roffset]; byte g = buf[index + goffset]; byte b = buf[index + boffset]; byte a = aoffset >= 0 ? buf[index + aoffset] : (byte)255; if (((row / blockSize) + (col / blockSize)) % 2 == 0) { if (row < halfway) { checkVal255(row, col, r, "R"); checkVal255(row, col, g, "G"); checkVal255(row, col, b, "B"); } else { checkVal0(row, col, r, "R"); checkVal0(row, col, g, "G"); checkVal0(row, col, b, "B"); } } else { if (subsamp == TJ.SAMP_GRAY) { if (row < halfway) { checkVal(row, col, r, "R", 76); checkVal(row, col, g, "G", 76); checkVal(row, col, b, "B", 76); } else { checkVal(row, col, r, "R", 226); checkVal(row, col, g, "G", 226); checkVal(row, col, b, "B", 226); } } else { checkVal255(row, col, r, "R"); if (row < halfway) { checkVal0(row, col, g, "G"); } else { checkVal255(row, col, g, "G"); } checkVal0(row, col, b, "B"); } } checkVal255(row, col, a, "A"); } } } catch (Exception e) { System.out.println("\n" + e.getMessage()); retval = 0; } if (retval == 0) { for (row = 0; row < h; row++) { for (col = 0; col < w; col++) { if (pf == TJ.PF_CMYK) { int c = buf[pitch * row + col * ps]; int m = buf[pitch * row + col * ps + 1]; int y = buf[pitch * row + col * ps + 2]; int k = buf[pitch * row + col * ps + 3]; if (c < 0) c += 256; if (m < 0) m += 256; if (y < 0) y += 256; if (k < 0) k += 256; System.out.format("%3d/%3d/%3d/%3d ", c, m, y, k); } else { int r = buf[pitch * row + col * ps + roffset]; int g = buf[pitch * row + col * ps + goffset]; int b = buf[pitch * row + col * ps + boffset]; if (r < 0) r += 256; if (g < 0) g += 256; if (b < 0) b += 256; System.out.format("%3d/%3d/%3d ", r, g, b); } } System.out.print("\n"); } } return retval; } static int checkIntBuf(int[] buf, int w, int pitch, int h, int pf, int subsamp, TJScalingFactor sf, int flags) throws Exception { int rshift = TJ.getRedOffset(pf) * 8; int gshift = TJ.getGreenOffset(pf) * 8; int bshift = TJ.getBlueOffset(pf) * 8; int ashift = TJ.getAlphaOffset(pf) * 8; int index, row, col, retval = 1; int halfway = 16 * sf.getNum() / sf.getDenom(); int blockSize = 8 * sf.getNum() / sf.getDenom(); try { for (row = 0; row < halfway; row++) { for (col = 0; col < w; col++) { if ((flags & TJ.FLAG_BOTTOMUP) != 0) index = pitch * (h - row - 1) + col; else index = pitch * row + col; int r = (buf[index] >> rshift) & 0xFF; int g = (buf[index] >> gshift) & 0xFF; int b = (buf[index] >> bshift) & 0xFF; int a = ashift >= 0 ? (buf[index] >> ashift) & 0xFF : 255; if (((row / blockSize) + (col / blockSize)) % 2 == 0) { if (row < halfway) { checkVal255(row, col, r, "R"); checkVal255(row, col, g, "G"); checkVal255(row, col, b, "B"); } else { checkVal0(row, col, r, "R"); checkVal0(row, col, g, "G"); checkVal0(row, col, b, "B"); } } else { if (subsamp == TJ.SAMP_GRAY) { if (row < halfway) { checkVal(row, col, r, "R", 76); checkVal(row, col, g, "G", 76); checkVal(row, col, b, "B", 76); } else { checkVal(row, col, r, "R", 226); checkVal(row, col, g, "G", 226); checkVal(row, col, b, "B", 226); } } else { checkVal255(row, col, r, "R"); if (row < halfway) { checkVal0(row, col, g, "G"); } else { checkVal255(row, col, g, "G"); } checkVal0(row, col, b, "B"); } } checkVal255(row, col, a, "A"); } } } catch (Exception e) { System.out.println("\n" + e.getMessage()); retval = 0; } if (retval == 0) { for (row = 0; row < h; row++) { for (col = 0; col < w; col++) { int r = (buf[pitch * row + col] >> rshift) & 0xFF; int g = (buf[pitch * row + col] >> gshift) & 0xFF; int b = (buf[pitch * row + col] >> bshift) & 0xFF; if (r < 0) r += 256; if (g < 0) g += 256; if (b < 0) b += 256; System.out.format("%3d/%3d/%3d ", r, g, b); } System.out.print("\n"); } } return retval; } static int checkImg(BufferedImage img, int pf, int subsamp, TJScalingFactor sf, int flags) throws Exception { WritableRaster wr = img.getRaster(); int imgType = img.getType(); if (imgType == BufferedImage.TYPE_INT_RGB || imgType == BufferedImage.TYPE_INT_BGR || imgType == BufferedImage.TYPE_INT_ARGB || imgType == BufferedImage.TYPE_INT_ARGB_PRE) { SinglePixelPackedSampleModel sm = (SinglePixelPackedSampleModel)img.getSampleModel(); int pitch = sm.getScanlineStride(); DataBufferInt db = (DataBufferInt)wr.getDataBuffer(); int[] buf = db.getData(); return checkIntBuf(buf, img.getWidth(), pitch, img.getHeight(), pf, subsamp, sf, flags); } else { ComponentSampleModel sm = (ComponentSampleModel)img.getSampleModel(); int pitch = sm.getScanlineStride(); DataBufferByte db = (DataBufferByte)wr.getDataBuffer(); byte[] buf = db.getData(); return checkBuf(buf, img.getWidth(), pitch, img.getHeight(), pf, subsamp, sf, flags); } } static int pad(int v, int p) { return ((v + (p) - 1) & (~((p) - 1))); } static int checkBufYUV(byte[] buf, int size, int w, int h, int subsamp, TJScalingFactor sf) throws Exception { int row, col; int hsf = TJ.getMCUWidth(subsamp) / 8, vsf = TJ.getMCUHeight(subsamp) / 8; int pw = pad(w, hsf), ph = pad(h, vsf); int cw = pw / hsf, ch = ph / vsf; int ypitch = pad(pw, yuvAlign), uvpitch = pad(cw, yuvAlign); int retval = 1; int correctsize = ypitch * ph + (subsamp == TJ.SAMP_GRAY ? 0 : uvpitch * ch * 2); int halfway = 16 * sf.getNum() / sf.getDenom(); int blockSize = 8 * sf.getNum() / sf.getDenom(); try { if (size != correctsize) throw new Exception("Incorrect size " + size + ". Should be " + correctsize); for (row = 0; row < ph; row++) { for (col = 0; col < pw; col++) { byte y = buf[ypitch * row + col]; if (((row / blockSize) + (col / blockSize)) % 2 == 0) { if (row < halfway) checkVal255(row, col, y, "Y"); else checkVal0(row, col, y, "Y"); } else { if (row < halfway) checkVal(row, col, y, "Y", 76); else checkVal(row, col, y, "Y", 226); } } } if (subsamp != TJ.SAMP_GRAY) { halfway = 16 / vsf * sf.getNum() / sf.getDenom(); for (row = 0; row < ch; row++) { for (col = 0; col < cw; col++) { byte u = buf[ypitch * ph + (uvpitch * row + col)], v = buf[ypitch * ph + uvpitch * ch + (uvpitch * row + col)]; if (((row * vsf / blockSize) + (col * hsf / blockSize)) % 2 == 0) { checkVal(row, col, u, "U", 128); checkVal(row, col, v, "V", 128); } else { if (row < halfway) { checkVal(row, col, u, "U", 85); checkVal255(row, col, v, "V"); } else { checkVal0(row, col, u, "U"); checkVal(row, col, v, "V", 149); } } } } } } catch (Exception e) { System.out.println("\n" + e.getMessage()); retval = 0; } if (retval == 0) { for (row = 0; row < ph; row++) { for (col = 0; col < pw; col++) { int y = buf[ypitch * row + col]; if (y < 0) y += 256; System.out.format("%3d ", y); } System.out.print("\n"); } System.out.print("\n"); for (row = 0; row < ch; row++) { for (col = 0; col < cw; col++) { int u = buf[ypitch * ph + (uvpitch * row + col)]; if (u < 0) u += 256; System.out.format("%3d ", u); } System.out.print("\n"); } System.out.print("\n"); for (row = 0; row < ch; row++) { for (col = 0; col < cw; col++) { int v = buf[ypitch * ph + uvpitch * ch + (uvpitch * row + col)]; if (v < 0) v += 256; System.out.format("%3d ", v); } System.out.print("\n"); } } return retval; } static void writeJPEG(byte[] jpegBuf, int jpegBufSize, String filename) throws Exception { File file = new File(filename); FileOutputStream fos = new FileOutputStream(file); fos.write(jpegBuf, 0, jpegBufSize); fos.close(); } static int compTest(TJCompressor tjc, byte[] dstBuf, int w, int h, int pf, String baseName, int subsamp, int jpegQual, int flags) throws Exception { String tempStr; byte[] srcBuf = null; BufferedImage img = null; String pfStr, pfStrLong; String buStr = (flags & TJ.FLAG_BOTTOMUP) != 0 ? "BU" : "TD"; String buStrLong = (flags & TJ.FLAG_BOTTOMUP) != 0 ? "Bottom-Up" : "Top-Down "; int size = 0, ps, imgType = pf; if (bi) { pf = biTypePF(imgType); pfStr = biTypeStr(imgType); pfStrLong = pfStr + " (" + PIXFORMATSTR[pf] + ")"; } else { pfStr = PIXFORMATSTR[pf]; pfStrLong = pfStr; } ps = TJ.getPixelSize(pf); if (bi) { img = new BufferedImage(w, h, imgType); initImg(img, pf, flags); tempStr = baseName + "_enc_" + pfStr + "_" + buStr + "_" + SUBNAME[subsamp] + "_Q" + jpegQual + ".png"; File file = new File(tempStr); ImageIO.write(img, "png", file); tjc.setSourceImage(img, 0, 0, 0, 0); } else { srcBuf = new byte[w * h * ps + 1]; initBuf(srcBuf, w, w * ps, h, pf, flags); tjc.setSourceImage(srcBuf, 0, 0, w, 0, h, pf); } Arrays.fill(dstBuf, (byte)0); tjc.setSubsamp(subsamp); tjc.setJPEGQuality(jpegQual); if (doYUV) { System.out.format("%s %s -> YUV %s ... ", pfStrLong, buStrLong, SUBNAME_LONG[subsamp]); YUVImage yuvImage = tjc.encodeYUV(yuvAlign, flags); if (checkBufYUV(yuvImage.getBuf(), yuvImage.getSize(), w, h, subsamp, new TJScalingFactor(1, 1)) == 1) System.out.print("Passed.\n"); else { System.out.print("FAILED!\n"); exitStatus = -1; } System.out.format("YUV %s %s -> JPEG Q%d ... ", SUBNAME_LONG[subsamp], buStrLong, jpegQual); tjc.setSourceImage(yuvImage); } else { System.out.format("%s %s -> %s Q%d ... ", pfStrLong, buStrLong, SUBNAME_LONG[subsamp], jpegQual); } tjc.compress(dstBuf, flags); size = tjc.getCompressedSize(); tempStr = baseName + "_enc_" + pfStr + "_" + buStr + "_" + SUBNAME[subsamp] + "_Q" + jpegQual + ".jpg"; writeJPEG(dstBuf, size, tempStr); System.out.println("Done.\n Result in " + tempStr); return size; } static void decompTest(TJDecompressor tjd, byte[] jpegBuf, int jpegSize, int w, int h, int pf, String baseName, int subsamp, int flags, TJScalingFactor sf) throws Exception { String pfStr, pfStrLong, tempStr; String buStrLong = (flags & TJ.FLAG_BOTTOMUP) != 0 ? "Bottom-Up" : "Top-Down "; int scaledWidth = sf.getScaled(w); int scaledHeight = sf.getScaled(h); int temp1, temp2, imgType = pf; BufferedImage img = null; byte[] dstBuf = null; if (bi) { pf = biTypePF(imgType); pfStr = biTypeStr(imgType); pfStrLong = pfStr + " (" + PIXFORMATSTR[pf] + ")"; } else { pfStr = PIXFORMATSTR[pf]; pfStrLong = pfStr; } tjd.setSourceImage(jpegBuf, jpegSize); if (tjd.getWidth() != w || tjd.getHeight() != h || tjd.getSubsamp() != subsamp) throw new Exception("Incorrect JPEG header"); temp1 = scaledWidth; temp2 = scaledHeight; temp1 = tjd.getScaledWidth(temp1, temp2); temp2 = tjd.getScaledHeight(temp1, temp2); if (temp1 != scaledWidth || temp2 != scaledHeight) throw new Exception("Scaled size mismatch"); if (doYUV) { System.out.format("JPEG -> YUV %s ", SUBNAME_LONG[subsamp]); if (!sf.isOne()) System.out.format("%d/%d ... ", sf.getNum(), sf.getDenom()); else System.out.print("... "); YUVImage yuvImage = tjd.decompressToYUV(scaledWidth, yuvAlign, scaledHeight, flags); if (checkBufYUV(yuvImage.getBuf(), yuvImage.getSize(), scaledWidth, scaledHeight, subsamp, sf) == 1) System.out.print("Passed.\n"); else { System.out.print("FAILED!\n"); exitStatus = -1; } System.out.format("YUV %s -> %s %s ... ", SUBNAME_LONG[subsamp], pfStrLong, buStrLong); tjd.setSourceImage(yuvImage); } else { System.out.format("JPEG -> %s %s ", pfStrLong, buStrLong); if (!sf.isOne()) System.out.format("%d/%d ... ", sf.getNum(), sf.getDenom()); else System.out.print("... "); } if (bi) img = tjd.decompress(scaledWidth, scaledHeight, imgType, flags); else dstBuf = tjd.decompress(scaledWidth, 0, scaledHeight, pf, flags); if (bi) { tempStr = baseName + "_dec_" + pfStr + "_" + (((flags & TJ.FLAG_BOTTOMUP) != 0) ? "BU" : "TD") + "_" + SUBNAME[subsamp] + "_" + (double)sf.getNum() / (double)sf.getDenom() + "x" + ".png"; File file = new File(tempStr); ImageIO.write(img, "png", file); } if ((bi && checkImg(img, pf, subsamp, sf, flags) == 1) || (!bi && checkBuf(dstBuf, scaledWidth, scaledWidth * TJ.getPixelSize(pf), scaledHeight, pf, subsamp, sf, flags) == 1)) System.out.print("Passed.\n"); else { System.out.print("FAILED!\n"); exitStatus = -1; } } static void decompTest(TJDecompressor tjd, byte[] jpegBuf, int jpegSize, int w, int h, int pf, String baseName, int subsamp, int flags) throws Exception { int i; TJScalingFactor[] sf = TJ.getScalingFactors(); for (i = 0; i < sf.length; i++) { int num = sf[i].getNum(); int denom = sf[i].getDenom(); if (subsamp == TJ.SAMP_444 || subsamp == TJ.SAMP_GRAY || (subsamp == TJ.SAMP_411 && num == 1 && (denom == 2 || denom == 1)) || (subsamp != TJ.SAMP_411 && num == 1 && (denom == 4 || denom == 2 || denom == 1))) decompTest(tjd, jpegBuf, jpegSize, w, h, pf, baseName, subsamp, flags, sf[i]); } } static void doTest(int w, int h, int[] formats, int subsamp, String baseName) throws Exception { TJCompressor tjc = null; TJDecompressor tjd = null; int size; byte[] dstBuf; dstBuf = new byte[TJ.bufSize(w, h, subsamp)]; try { tjc = new TJCompressor(); tjd = new TJDecompressor(); for (int pf : formats) { if (pf < 0) continue; for (int i = 0; i < 2; i++) { int flags = 0; if (subsamp == TJ.SAMP_422 || subsamp == TJ.SAMP_420 || subsamp == TJ.SAMP_440 || subsamp == TJ.SAMP_411) flags |= TJ.FLAG_FASTUPSAMPLE; if (i == 1) flags |= TJ.FLAG_BOTTOMUP; size = compTest(tjc, dstBuf, w, h, pf, baseName, subsamp, 100, flags); decompTest(tjd, dstBuf, size, w, h, pf, baseName, subsamp, flags); if (pf >= TJ.PF_RGBX && pf <= TJ.PF_XRGB && !bi) { System.out.print("\n"); decompTest(tjd, dstBuf, size, w, h, pf + (TJ.PF_RGBA - TJ.PF_RGBX), baseName, subsamp, flags); } System.out.print("\n"); } } System.out.print("--------------------\n\n"); } catch (Exception e) { if (tjc != null) tjc.close(); if (tjd != null) tjd.close(); throw e; } if (tjc != null) tjc.close(); if (tjd != null) tjd.close(); } static void overflowTest() throws Exception { /* Ensure that the various buffer size methods don't overflow */ int size = 0; boolean exception = false; try { exception = false; size = TJ.bufSize(18919, 18919, TJ.SAMP_444); } catch (Exception e) { exception = true; } if (!exception || size != 0) throw new Exception("TJ.bufSize() overflow"); try { exception = false; size = TJ.bufSizeYUV(26755, 1, 26755, TJ.SAMP_444); } catch (Exception e) { exception = true; } if (!exception || size != 0) throw new Exception("TJ.bufSizeYUV() overflow"); try { exception = false; size = TJ.bufSizeYUV(26754, 3, 26754, TJ.SAMP_444); } catch (Exception e) { exception = true; } if (!exception || size != 0) throw new Exception("TJ.bufSizeYUV() overflow"); try { exception = false; size = TJ.bufSizeYUV(26754, -1, 26754, TJ.SAMP_444); } catch (Exception e) { exception = true; } if (!exception || size != 0) throw new Exception("TJ.bufSizeYUV() overflow"); try { exception = false; size = TJ.planeSizeYUV(0, 46341, 0, 46341, TJ.SAMP_444); } catch (Exception e) { exception = true; } if (!exception || size != 0) throw new Exception("TJ.planeSizeYUV() overflow"); try { exception = false; size = TJ.planeWidth(0, Integer.MAX_VALUE, TJ.SAMP_420); } catch (Exception e) { exception = true; } if (!exception || size != 0) throw new Exception("TJ.planeWidth() overflow"); try { exception = false; size = TJ.planeHeight(0, Integer.MAX_VALUE, TJ.SAMP_420); } catch (Exception e) { exception = true; } if (!exception || size != 0) throw new Exception("TJ.planeHeight() overflow"); } static void bufSizeTest() throws Exception { int w, h, i, subsamp; byte[] srcBuf, dstBuf = null; YUVImage dstImage = null; TJCompressor tjc = null; Random r = new Random(); try { tjc = new TJCompressor(); System.out.println("Buffer size regression test"); for (subsamp = 0; subsamp < TJ.NUMSAMP; subsamp++) { for (w = 1; w < 48; w++) { int maxh = (w == 1) ? 2048 : 48; for (h = 1; h < maxh; h++) { if (h % 100 == 0) System.out.format("%04d x %04d\b\b\b\b\b\b\b\b\b\b\b", w, h); srcBuf = new byte[w * h * 4]; if (doYUV) dstImage = new YUVImage(w, yuvAlign, h, subsamp); else dstBuf = new byte[TJ.bufSize(w, h, subsamp)]; for (i = 0; i < w * h * 4; i++) { srcBuf[i] = (byte)(r.nextInt(2) * 255); } tjc.setSourceImage(srcBuf, 0, 0, w, 0, h, TJ.PF_BGRX); tjc.setSubsamp(subsamp); tjc.setJPEGQuality(100); if (doYUV) tjc.encodeYUV(dstImage, 0); else tjc.compress(dstBuf, 0); srcBuf = new byte[h * w * 4]; if (doYUV) dstImage = new YUVImage(h, yuvAlign, w, subsamp); else dstBuf = new byte[TJ.bufSize(h, w, subsamp)]; for (i = 0; i < h * w * 4; i++) { srcBuf[i] = (byte)(r.nextInt(2) * 255); } tjc.setSourceImage(srcBuf, 0, 0, h, 0, w, TJ.PF_BGRX); if (doYUV) tjc.encodeYUV(dstImage, 0); else tjc.compress(dstBuf, 0); } dstImage = null; dstBuf = null; System.gc(); } } System.out.println("Done. "); } catch (Exception e) { if (tjc != null) tjc.close(); throw e; } if (tjc != null) tjc.close(); } public static void main(String[] argv) { try { String testName = "javatest"; for (int i = 0; i < argv.length; i++) { if (argv[i].equalsIgnoreCase("-yuv")) doYUV = true; else if (argv[i].equalsIgnoreCase("-noyuvpad")) yuvAlign = 1; else if (argv[i].equalsIgnoreCase("-bi")) { bi = true; testName = "javabitest"; } else usage(); } if (doYUV) FORMATS_4BYTE[4] = -1; overflowTest(); doTest(35, 39, bi ? FORMATS_3BYTEBI : FORMATS_3BYTE, TJ.SAMP_444, testName); doTest(39, 41, bi ? FORMATS_4BYTEBI : FORMATS_4BYTE, TJ.SAMP_444, testName); doTest(41, 35, bi ? FORMATS_3BYTEBI : FORMATS_3BYTE, TJ.SAMP_422, testName); doTest(35, 39, bi ? FORMATS_4BYTEBI : FORMATS_4BYTE, TJ.SAMP_422, testName); doTest(39, 41, bi ? FORMATS_3BYTEBI : FORMATS_3BYTE, TJ.SAMP_420, testName); doTest(41, 35, bi ? FORMATS_4BYTEBI : FORMATS_4BYTE, TJ.SAMP_420, testName); doTest(35, 39, bi ? FORMATS_3BYTEBI : FORMATS_3BYTE, TJ.SAMP_440, testName); doTest(39, 41, bi ? FORMATS_4BYTEBI : FORMATS_4BYTE, TJ.SAMP_440, testName); doTest(41, 35, bi ? FORMATS_3BYTEBI : FORMATS_3BYTE, TJ.SAMP_411, testName); doTest(35, 39, bi ? FORMATS_4BYTEBI : FORMATS_4BYTE, TJ.SAMP_411, testName); doTest(39, 41, bi ? FORMATS_GRAYBI : FORMATS_GRAY, TJ.SAMP_GRAY, testName); doTest(41, 35, bi ? FORMATS_3BYTEBI : FORMATS_3BYTE, TJ.SAMP_GRAY, testName); FORMATS_4BYTE[4] = -1; doTest(35, 39, bi ? FORMATS_4BYTEBI : FORMATS_4BYTE, TJ.SAMP_GRAY, testName); if (!bi) bufSizeTest(); if (doYUV && !bi) { System.out.print("\n--------------------\n\n"); doTest(48, 48, FORMATS_RGB, TJ.SAMP_444, "javatest_yuv0"); doTest(48, 48, FORMATS_RGB, TJ.SAMP_422, "javatest_yuv0"); doTest(48, 48, FORMATS_RGB, TJ.SAMP_420, "javatest_yuv0"); doTest(48, 48, FORMATS_RGB, TJ.SAMP_440, "javatest_yuv0"); doTest(48, 48, FORMATS_RGB, TJ.SAMP_411, "javatest_yuv0"); doTest(48, 48, FORMATS_RGB, TJ.SAMP_GRAY, "javatest_yuv0"); doTest(48, 48, FORMATS_GRAY, TJ.SAMP_GRAY, "javatest_yuv0"); } } catch (Exception e) { e.printStackTrace(); exitStatus = -1; } System.exit(exitStatus); } } libjpeg-turbo-2.1.5/java/doc/000077500000000000000000000000001436506551100157605ustar00rootroot00000000000000libjpeg-turbo-2.1.5/java/doc/allclasses-frame.html000066400000000000000000000031721436506551100220670ustar00rootroot00000000000000 All Classes

    All Classes

    libjpeg-turbo-2.1.5/java/doc/allclasses-noframe.html000066400000000000000000000027061436506551100224260ustar00rootroot00000000000000 All Classes

    All Classes

    libjpeg-turbo-2.1.5/java/doc/constant-values.html000066400000000000000000000527031436506551100220030ustar00rootroot00000000000000 Constant Field Values

    Constant Field Values

    Contents

    org.libjpegturbo.*

    libjpeg-turbo-2.1.5/java/doc/deprecated-list.html000066400000000000000000000266751436506551100217370ustar00rootroot00000000000000 Deprecated List
    libjpeg-turbo-2.1.5/java/doc/help-doc.html000066400000000000000000000167761436506551100203620ustar00rootroot00000000000000 API Help

    How This API Document Is Organized

    This API (Application Programming Interface) document has pages corresponding to the items in the navigation bar, described as follows.
    • Package

      Each package has a page that contains a list of its classes and interfaces, with a summary for each. This page can contain six categories:

      • Interfaces (italic)
      • Classes
      • Enums
      • Exceptions
      • Errors
      • Annotation Types
    • Class/Interface

      Each class, interface, nested class and nested interface has its own separate page. Each of these pages has three sections consisting of a class/interface description, summary tables, and detailed member descriptions:

      • Class inheritance diagram
      • Direct Subclasses
      • All Known Subinterfaces
      • All Known Implementing Classes
      • Class/interface declaration
      • Class/interface description
      • Nested Class Summary
      • Field Summary
      • Constructor Summary
      • Method Summary
      • Field Detail
      • Constructor Detail
      • Method Detail

      Each summary entry contains the first sentence from the detailed description for that item. The summary entries are alphabetical, while the detailed descriptions are in the order they appear in the source code. This preserves the logical groupings established by the programmer.

    • Annotation Type

      Each annotation type has its own separate page with the following sections:

      • Annotation Type declaration
      • Annotation Type description
      • Required Element Summary
      • Optional Element Summary
      • Element Detail
    • Enum

      Each enum has its own separate page with the following sections:

      • Enum declaration
      • Enum description
      • Enum Constant Summary
      • Enum Constant Detail
    • Tree (Class Hierarchy)

      There is a Class Hierarchy page for all packages, plus a hierarchy for each package. Each hierarchy page contains a list of classes and a list of interfaces. The classes are organized by inheritance structure starting with java.lang.Object. The interfaces do not inherit from java.lang.Object.

      • When viewing the Overview page, clicking on "Tree" displays the hierarchy for all packages.
      • When viewing a particular package, class or interface page, clicking "Tree" displays the hierarchy for only that package.
    • Deprecated API

      The Deprecated API page lists all of the API that have been deprecated. A deprecated API is not recommended for use, generally due to improvements, and a replacement API is usually given. Deprecated APIs may be removed in future implementations.

    • Index

      The Index contains an alphabetic list of all classes, interfaces, constructors, methods, and fields.

    • Prev/Next

      These links take you to the next or previous class, interface, package, or related page.

    • Frames/No Frames

      These links show and hide the HTML frames. All pages are available with or without frames.

    • All Classes

      The All Classes link shows all classes and interfaces except non-static nested types.

    • Serialized Form

      Each serializable or externalizable class has a description of its serialization fields and methods. This information is of interest to re-implementors, not to developers using the API. While there is no link in the navigation bar, you can get to this information by going to any serialized class and clicking "Serialized Form" in the "See also" section of the class description.

    • Constant Field Values

      The Constant Field Values page lists the static final fields and their values.

    This help file applies to API documentation generated using the standard doclet.
    libjpeg-turbo-2.1.5/java/doc/index-all.html000066400000000000000000002456721436506551100205430ustar00rootroot00000000000000 Index
    B C D E F G H I J N O P S T Y 

    B

    bufSize(int, int, int) - Static method in class org.libjpegturbo.turbojpeg.TJ
    Returns the maximum size of the buffer (in bytes) required to hold a JPEG image with the given width, height, and level of chrominance subsampling.
    bufSizeYUV(int, int, int, int) - Static method in class org.libjpegturbo.turbojpeg.TJ
    Returns the size of the buffer (in bytes) required to hold a unified planar YUV image with the given width, height, and level of chrominance subsampling.
    bufSizeYUV(int, int, int) - Static method in class org.libjpegturbo.turbojpeg.TJ
    Deprecated.

    C

    cf - Variable in class org.libjpegturbo.turbojpeg.TJTransform
    Custom filter instance
    close() - Method in class org.libjpegturbo.turbojpeg.TJCompressor
    Free the native structures associated with this compressor instance.
    close() - Method in class org.libjpegturbo.turbojpeg.TJDecompressor
    Free the native structures associated with this decompressor instance.
    compress(byte[], int) - Method in class org.libjpegturbo.turbojpeg.TJCompressor
    Compress the packed-pixel or planar YUV source image associated with this compressor instance and output a JPEG image to the given destination buffer.
    compress(int) - Method in class org.libjpegturbo.turbojpeg.TJCompressor
    Compress the packed-pixel or planar YUV source image associated with this compressor instance and return a buffer containing a JPEG image.
    compress(BufferedImage, byte[], int) - Method in class org.libjpegturbo.turbojpeg.TJCompressor
    compress(BufferedImage, int) - Method in class org.libjpegturbo.turbojpeg.TJCompressor
    CS_CMYK - Static variable in class org.libjpegturbo.turbojpeg.TJ
    CMYK colorspace.
    CS_GRAY - Static variable in class org.libjpegturbo.turbojpeg.TJ
    Grayscale colorspace.
    CS_RGB - Static variable in class org.libjpegturbo.turbojpeg.TJ
    RGB colorspace.
    CS_YCbCr - Static variable in class org.libjpegturbo.turbojpeg.TJ
    YCbCr colorspace.
    CS_YCCK - Static variable in class org.libjpegturbo.turbojpeg.TJ
    YCCK colorspace.
    customFilter(ShortBuffer, Rectangle, Rectangle, int, int, TJTransform) - Method in interface org.libjpegturbo.turbojpeg.TJCustomFilter
    A callback function that can be used to modify the DCT coefficients after they are losslessly transformed but before they are transcoded to a new JPEG image.

    D

    decompress(byte[], int, int, int, int, int, int, int) - Method in class org.libjpegturbo.turbojpeg.TJDecompressor
    Decompress the JPEG source image or decode the planar YUV source image associated with this decompressor instance and output a packed-pixel grayscale, RGB, or CMYK image to the given destination buffer.
    decompress(byte[], int, int, int, int, int) - Method in class org.libjpegturbo.turbojpeg.TJDecompressor
    decompress(int, int, int, int, int) - Method in class org.libjpegturbo.turbojpeg.TJDecompressor
    Decompress the JPEG source image or decode the planar YUV source image associated with this decompressor instance and return a buffer containing the packed-pixel decompressed image.
    decompress(int[], int, int, int, int, int, int, int) - Method in class org.libjpegturbo.turbojpeg.TJDecompressor
    Decompress the JPEG source image or decode the planar YUV source image associated with this decompressor instance and output a packed-pixel grayscale, RGB, or CMYK image to the given destination buffer.
    decompress(BufferedImage, int) - Method in class org.libjpegturbo.turbojpeg.TJDecompressor
    Decompress the JPEG source image or decode the planar YUV source image associated with this decompressor instance and output a packed-pixel decompressed/decoded image to the given BufferedImage instance.
    decompress(int, int, int, int) - Method in class org.libjpegturbo.turbojpeg.TJDecompressor
    Decompress the JPEG source image or decode the planar YUV source image associated with this decompressor instance and return a BufferedImage instance containing the packed-pixel decompressed/decoded image.
    decompressToYUV(YUVImage, int) - Method in class org.libjpegturbo.turbojpeg.TJDecompressor
    Decompress the JPEG source image associated with this decompressor instance into a planar YUV image and store it in the given YUVImage instance.
    decompressToYUV(byte[], int) - Method in class org.libjpegturbo.turbojpeg.TJDecompressor
    decompressToYUV(int, int[], int, int) - Method in class org.libjpegturbo.turbojpeg.TJDecompressor
    Decompress the JPEG source image associated with this decompressor instance into a set of Y, U (Cb), and V (Cr) image planes and return a YUVImage instance containing the decompressed image planes.
    decompressToYUV(int, int, int, int) - Method in class org.libjpegturbo.turbojpeg.TJDecompressor
    Decompress the JPEG source image associated with this decompressor instance into a unified planar YUV image and return a YUVImage instance containing the decompressed image.
    decompressToYUV(int) - Method in class org.libjpegturbo.turbojpeg.TJDecompressor

    E

    encodeYUV(YUVImage, int) - Method in class org.libjpegturbo.turbojpeg.TJCompressor
    Encode the packed-pixel source image associated with this compressor instance into a planar YUV image and store it in the given YUVImage instance.
    encodeYUV(byte[], int) - Method in class org.libjpegturbo.turbojpeg.TJCompressor
    Deprecated.
    encodeYUV(int, int) - Method in class org.libjpegturbo.turbojpeg.TJCompressor
    Encode the packed-pixel source image associated with this compressor instance into a unified planar YUV image and return a YUVImage instance containing the encoded image.
    encodeYUV(int[], int) - Method in class org.libjpegturbo.turbojpeg.TJCompressor
    Encode the packed-pixel source image associated with this compressor instance into separate Y, U (Cb), and V (Cr) image planes and return a YUVImage instance containing the encoded image planes.
    encodeYUV(int) - Method in class org.libjpegturbo.turbojpeg.TJCompressor
    Deprecated.
    encodeYUV(BufferedImage, byte[], int) - Method in class org.libjpegturbo.turbojpeg.TJCompressor
    encodeYUV(BufferedImage, int) - Method in class org.libjpegturbo.turbojpeg.TJCompressor
    equals(TJScalingFactor) - Method in class org.libjpegturbo.turbojpeg.TJScalingFactor
    Returns true or false, depending on whether this instance and other have the same numerator and denominator.
    ERR_FATAL - Static variable in class org.libjpegturbo.turbojpeg.TJ
    The error was fatal and non-recoverable.
    ERR_WARNING - Static variable in class org.libjpegturbo.turbojpeg.TJ
    The error was non-fatal and recoverable, but the destination image may still be corrupt.

    F

    finalize() - Method in class org.libjpegturbo.turbojpeg.TJCompressor
     
    finalize() - Method in class org.libjpegturbo.turbojpeg.TJDecompressor
     
    FLAG_ACCURATEDCT - Static variable in class org.libjpegturbo.turbojpeg.TJ
    Use the most accurate DCT/IDCT algorithm available.
    FLAG_BOTTOMUP - Static variable in class org.libjpegturbo.turbojpeg.TJ
    Rows in the packed-pixel source/destination image are stored in bottom-up (Windows, OpenGL) order rather than in top-down (X11) order.
    FLAG_FASTDCT - Static variable in class org.libjpegturbo.turbojpeg.TJ
    Use the fastest DCT/IDCT algorithm available.
    FLAG_FASTUPSAMPLE - Static variable in class org.libjpegturbo.turbojpeg.TJ
    When decompressing an image that was compressed using chrominance subsampling, use the fastest chrominance upsampling algorithm available.
    FLAG_FORCEMMX - Static variable in class org.libjpegturbo.turbojpeg.TJ
    Deprecated.
    FLAG_FORCESSE - Static variable in class org.libjpegturbo.turbojpeg.TJ
    Deprecated.
    FLAG_FORCESSE2 - Static variable in class org.libjpegturbo.turbojpeg.TJ
    Deprecated.
    FLAG_FORCESSE3 - Static variable in class org.libjpegturbo.turbojpeg.TJ
    Deprecated.
    FLAG_LIMITSCANS - Static variable in class org.libjpegturbo.turbojpeg.TJ
    Limit the number of progressive JPEG scans that the decompression and transform operations will process.
    FLAG_PROGRESSIVE - Static variable in class org.libjpegturbo.turbojpeg.TJ
    Use progressive entropy coding in JPEG images generated by compression and transform operations.
    FLAG_STOPONWARNING - Static variable in class org.libjpegturbo.turbojpeg.TJ
    Immediately discontinue the current compression/decompression/transform operation if a warning (non-fatal error) occurs.

    G

    getAlphaOffset(int) - Static method in class org.libjpegturbo.turbojpeg.TJ
    For the given pixel format, returns the number of bytes that the alpha component is offset from the start of the pixel.
    getBlueOffset(int) - Static method in class org.libjpegturbo.turbojpeg.TJ
    For the given pixel format, returns the number of bytes that the blue component is offset from the start of the pixel.
    getBuf() - Method in class org.libjpegturbo.turbojpeg.YUVImage
    Returns the YUV buffer (if this image is stored in a unified buffer rather than separate image planes.)
    getColorspace() - Method in class org.libjpegturbo.turbojpeg.TJDecompressor
    Returns the colorspace used in the source image (JPEG or YUV) associated with this decompressor instance.
    getCompressedSize() - Method in class org.libjpegturbo.turbojpeg.TJCompressor
    Returns the size of the image (in bytes) generated by the most recent compress operation.
    getDenom() - Method in class org.libjpegturbo.turbojpeg.TJScalingFactor
    Returns denominator
    getErrorCode() - Method in exception org.libjpegturbo.turbojpeg.TJException
    Returns a code (one of TJ.ERR_*) indicating the severity of the last error.
    getGreenOffset(int) - Static method in class org.libjpegturbo.turbojpeg.TJ
    For the given pixel format, returns the number of bytes that the green component is offset from the start of the pixel.
    getHeight() - Method in class org.libjpegturbo.turbojpeg.TJDecompressor
    Returns the height of the source image (JPEG or YUV) associated with this decompressor instance.
    getHeight() - Method in class org.libjpegturbo.turbojpeg.YUVImage
    Returns the height of the YUV image (or subregion.)
    getJPEGBuf() - Method in class org.libjpegturbo.turbojpeg.TJDecompressor
    Returns the JPEG buffer associated with this decompressor instance.
    getJPEGSize() - Method in class org.libjpegturbo.turbojpeg.TJDecompressor
    Returns the size of the JPEG image (in bytes) associated with this decompressor instance.
    getMCUHeight(int) - Static method in class org.libjpegturbo.turbojpeg.TJ
    Returns the MCU block height for the given level of chrominance subsampling.
    getMCUWidth(int) - Static method in class org.libjpegturbo.turbojpeg.TJ
    Returns the MCU block width for the given level of chrominance subsampling.
    getNum() - Method in class org.libjpegturbo.turbojpeg.TJScalingFactor
    Returns numerator
    getOffsets() - Method in class org.libjpegturbo.turbojpeg.YUVImage
    Returns the offsets (in bytes) of each plane within the planes of a larger YUV image.
    getPad() - Method in class org.libjpegturbo.turbojpeg.YUVImage
    Returns the row alignment (in bytes) of the YUV buffer (if this image is stored in a unified buffer rather than separate image planes.)
    getPixelSize(int) - Static method in class org.libjpegturbo.turbojpeg.TJ
    Returns the pixel size (in bytes) for the given pixel format.
    getPlanes() - Method in class org.libjpegturbo.turbojpeg.YUVImage
    Returns the YUV image planes.
    getRedOffset(int) - Static method in class org.libjpegturbo.turbojpeg.TJ
    For the given pixel format, returns the number of bytes that the red component is offset from the start of the pixel.
    getScaled(int) - Method in class org.libjpegturbo.turbojpeg.TJScalingFactor
    Returns the scaled value of dimension.
    getScaledHeight(int, int) - Method in class org.libjpegturbo.turbojpeg.TJDecompressor
    Returns the height of the largest scaled-down image that the TurboJPEG decompressor can generate without exceeding the desired image width and height.
    getScaledWidth(int, int) - Method in class org.libjpegturbo.turbojpeg.TJDecompressor
    Returns the width of the largest scaled-down image that the TurboJPEG decompressor can generate without exceeding the desired image width and height.
    getScalingFactors() - Static method in class org.libjpegturbo.turbojpeg.TJ
    Returns a list of fractional scaling factors that the JPEG decompressor supports.
    getSize() - Method in class org.libjpegturbo.turbojpeg.YUVImage
    Returns the size (in bytes) of the YUV buffer (if this image is stored in a unified buffer rather than separate image planes.)
    getStrides() - Method in class org.libjpegturbo.turbojpeg.YUVImage
    Returns the number of bytes per row of each plane in the YUV image.
    getSubsamp() - Method in class org.libjpegturbo.turbojpeg.TJDecompressor
    Returns the level of chrominance subsampling used in the source image (JPEG or YUV) associated with this decompressor instance.
    getSubsamp() - Method in class org.libjpegturbo.turbojpeg.YUVImage
    Returns the level of chrominance subsampling used in the YUV image.
    getTransformedSizes() - Method in class org.libjpegturbo.turbojpeg.TJTransformer
    Returns an array containing the sizes of the transformed JPEG images (in bytes) generated by the most recent transform operation.
    getWidth() - Method in class org.libjpegturbo.turbojpeg.TJDecompressor
    Returns the width of the source image (JPEG or YUV) associated with this decompressor instance.
    getWidth() - Method in class org.libjpegturbo.turbojpeg.YUVImage
    Returns the width of the YUV image (or subregion.)

    H

    handle - Variable in class org.libjpegturbo.turbojpeg.TJDecompressor
     
    handle - Variable in class org.libjpegturbo.turbojpeg.YUVImage
     

    I

    isOne() - Method in class org.libjpegturbo.turbojpeg.TJScalingFactor
    Returns true or false, depending on whether this instance is equal to 1/1.

    J

    jpegBuf - Variable in class org.libjpegturbo.turbojpeg.TJDecompressor
     
    jpegBufSize - Variable in class org.libjpegturbo.turbojpeg.TJDecompressor
     
    jpegColorspace - Variable in class org.libjpegturbo.turbojpeg.TJDecompressor
     
    jpegHeight - Variable in class org.libjpegturbo.turbojpeg.TJDecompressor
     
    jpegSubsamp - Variable in class org.libjpegturbo.turbojpeg.TJDecompressor
     
    jpegWidth - Variable in class org.libjpegturbo.turbojpeg.TJDecompressor
     

    N

    NUMCS - Static variable in class org.libjpegturbo.turbojpeg.TJ
    The number of JPEG colorspaces
    NUMERR - Static variable in class org.libjpegturbo.turbojpeg.TJ
    The number of error codes
    NUMOP - Static variable in class org.libjpegturbo.turbojpeg.TJTransform
    The number of lossless transform operations
    NUMPF - Static variable in class org.libjpegturbo.turbojpeg.TJ
    The number of pixel formats
    NUMSAMP - Static variable in class org.libjpegturbo.turbojpeg.TJ
    The number of chrominance subsampling options

    O

    op - Variable in class org.libjpegturbo.turbojpeg.TJTransform
    Transform operation (one of OP_*)
    OP_HFLIP - Static variable in class org.libjpegturbo.turbojpeg.TJTransform
    Flip (mirror) image horizontally.
    OP_NONE - Static variable in class org.libjpegturbo.turbojpeg.TJTransform
    Do not transform the position of the image pixels.
    OP_ROT180 - Static variable in class org.libjpegturbo.turbojpeg.TJTransform
    Rotate image 180 degrees.
    OP_ROT270 - Static variable in class org.libjpegturbo.turbojpeg.TJTransform
    Rotate image counter-clockwise by 90 degrees.
    OP_ROT90 - Static variable in class org.libjpegturbo.turbojpeg.TJTransform
    Rotate image clockwise by 90 degrees.
    OP_TRANSPOSE - Static variable in class org.libjpegturbo.turbojpeg.TJTransform
    Transpose image (flip/mirror along upper left to lower right axis).
    OP_TRANSVERSE - Static variable in class org.libjpegturbo.turbojpeg.TJTransform
    Transverse transpose image (flip/mirror along upper right to lower left axis).
    OP_VFLIP - Static variable in class org.libjpegturbo.turbojpeg.TJTransform
    Flip (mirror) image vertically.
    OPT_COPYNONE - Static variable in class org.libjpegturbo.turbojpeg.TJTransform
    This option will prevent TJTransformer.transform() from copying any extra markers (including EXIF and ICC profile data) from the source image to the destination image.
    OPT_CROP - Static variable in class org.libjpegturbo.turbojpeg.TJTransform
    This option will enable lossless cropping.
    OPT_GRAY - Static variable in class org.libjpegturbo.turbojpeg.TJTransform
    This option will discard the color data in the source image and produce a grayscale destination image.
    OPT_NOOUTPUT - Static variable in class org.libjpegturbo.turbojpeg.TJTransform
    This option will prevent TJTransformer.transform() from outputting a JPEG image for this particular transform.
    OPT_PERFECT - Static variable in class org.libjpegturbo.turbojpeg.TJTransform
    This option will cause TJTransformer.transform() to throw an exception if the transform is not perfect.
    OPT_PROGRESSIVE - Static variable in class org.libjpegturbo.turbojpeg.TJTransform
    This option will enable progressive entropy coding in the JPEG image generated by this particular transform.
    OPT_TRIM - Static variable in class org.libjpegturbo.turbojpeg.TJTransform
    This option will discard any partial MCU blocks that cannot be transformed.
    options - Variable in class org.libjpegturbo.turbojpeg.TJTransform
    Transform options (bitwise OR of one or more of OPT_*)
    org.libjpegturbo.turbojpeg - package org.libjpegturbo.turbojpeg
     

    P

    PF_ABGR - Static variable in class org.libjpegturbo.turbojpeg.TJ
    ABGR pixel format.
    PF_ARGB - Static variable in class org.libjpegturbo.turbojpeg.TJ
    ARGB pixel format.
    PF_BGR - Static variable in class org.libjpegturbo.turbojpeg.TJ
    BGR pixel format.
    PF_BGRA - Static variable in class org.libjpegturbo.turbojpeg.TJ
    BGRA pixel format.
    PF_BGRX - Static variable in class org.libjpegturbo.turbojpeg.TJ
    BGRX pixel format.
    PF_CMYK - Static variable in class org.libjpegturbo.turbojpeg.TJ
    CMYK pixel format.
    PF_GRAY - Static variable in class org.libjpegturbo.turbojpeg.TJ
    Grayscale pixel format.
    PF_RGB - Static variable in class org.libjpegturbo.turbojpeg.TJ
    RGB pixel format.
    PF_RGBA - Static variable in class org.libjpegturbo.turbojpeg.TJ
    RGBA pixel format.
    PF_RGBX - Static variable in class org.libjpegturbo.turbojpeg.TJ
    RGBX pixel format.
    PF_XBGR - Static variable in class org.libjpegturbo.turbojpeg.TJ
    XBGR pixel format.
    PF_XRGB - Static variable in class org.libjpegturbo.turbojpeg.TJ
    XRGB pixel format.
    planeHeight(int, int, int) - Static method in class org.libjpegturbo.turbojpeg.TJ
    Returns the plane height of a YUV image plane with the given parameters.
    planeSizeYUV(int, int, int, int, int) - Static method in class org.libjpegturbo.turbojpeg.TJ
    Returns the size of the buffer (in bytes) required to hold a YUV image plane with the given parameters.
    planeWidth(int, int, int) - Static method in class org.libjpegturbo.turbojpeg.TJ
    Returns the plane width of a YUV image plane with the given parameters.

    S

    SAMP_411 - Static variable in class org.libjpegturbo.turbojpeg.TJ
    4:1:1 chrominance subsampling.
    SAMP_420 - Static variable in class org.libjpegturbo.turbojpeg.TJ
    4:2:0 chrominance subsampling.
    SAMP_422 - Static variable in class org.libjpegturbo.turbojpeg.TJ
    4:2:2 chrominance subsampling.
    SAMP_440 - Static variable in class org.libjpegturbo.turbojpeg.TJ
    4:4:0 chrominance subsampling.
    SAMP_444 - Static variable in class org.libjpegturbo.turbojpeg.TJ
    4:4:4 chrominance subsampling (no chrominance subsampling).
    SAMP_GRAY - Static variable in class org.libjpegturbo.turbojpeg.TJ
    Grayscale.
    setBuf(byte[][], int[], int, int[], int, int) - Method in class org.libjpegturbo.turbojpeg.YUVImage
    Assign a set of image planes to this YUVImage instance.
    setBuf(byte[], int, int, int, int) - Method in class org.libjpegturbo.turbojpeg.YUVImage
    Assign a unified buffer to this YUVImage instance.
    setJPEGImage(byte[], int) - Method in class org.libjpegturbo.turbojpeg.TJDecompressor
    setJPEGQuality(int) - Method in class org.libjpegturbo.turbojpeg.TJCompressor
    Set the JPEG image quality level for subsequent compress operations.
    setSourceImage(byte[], int, int, int, int, int, int) - Method in class org.libjpegturbo.turbojpeg.TJCompressor
    Associate a packed-pixel RGB, grayscale, or CMYK source image with this compressor instance.
    setSourceImage(byte[], int, int, int, int) - Method in class org.libjpegturbo.turbojpeg.TJCompressor
    setSourceImage(BufferedImage, int, int, int, int) - Method in class org.libjpegturbo.turbojpeg.TJCompressor
    Associate a packed-pixel RGB or grayscale source image with this compressor instance.
    setSourceImage(YUVImage) - Method in class org.libjpegturbo.turbojpeg.TJCompressor
    Associate a planar YUV source image with this compressor instance.
    setSourceImage(byte[], int) - Method in class org.libjpegturbo.turbojpeg.TJDecompressor
    Associate the JPEG image or "abbreviated table specification" (AKA "tables-only") datastream of length imageSize bytes stored in jpegImage with this decompressor instance.
    setSourceImage(YUVImage) - Method in class org.libjpegturbo.turbojpeg.TJDecompressor
    Associate the specified planar YUV source image with this decompressor instance.
    setSubsamp(int) - Method in class org.libjpegturbo.turbojpeg.TJCompressor
    Set the level of chrominance subsampling for subsequent compress/encode operations.

    T

    TJ - Class in org.libjpegturbo.turbojpeg
    TurboJPEG utility class (cannot be instantiated)
    TJCompressor - Class in org.libjpegturbo.turbojpeg
    TurboJPEG compressor
    TJCompressor() - Constructor for class org.libjpegturbo.turbojpeg.TJCompressor
    Create a TurboJPEG compressor instance.
    TJCompressor(byte[], int, int, int, int, int, int) - Constructor for class org.libjpegturbo.turbojpeg.TJCompressor
    Create a TurboJPEG compressor instance and associate the packed-pixel source image stored in srcImage with the newly created instance.
    TJCompressor(byte[], int, int, int, int) - Constructor for class org.libjpegturbo.turbojpeg.TJCompressor
    TJCompressor(BufferedImage, int, int, int, int) - Constructor for class org.libjpegturbo.turbojpeg.TJCompressor
    Create a TurboJPEG compressor instance and associate the packed-pixel source image stored in srcImage with the newly created instance.
    TJCustomFilter - Interface in org.libjpegturbo.turbojpeg
    Custom filter callback interface
    TJDecompressor - Class in org.libjpegturbo.turbojpeg
    TurboJPEG decompressor
    TJDecompressor() - Constructor for class org.libjpegturbo.turbojpeg.TJDecompressor
    Create a TurboJPEG decompresssor instance.
    TJDecompressor(byte[]) - Constructor for class org.libjpegturbo.turbojpeg.TJDecompressor
    Create a TurboJPEG decompressor instance and associate the JPEG source image or "abbreviated table specification" (AKA "tables-only") datastream stored in jpegImage with the newly created instance.
    TJDecompressor(byte[], int) - Constructor for class org.libjpegturbo.turbojpeg.TJDecompressor
    Create a TurboJPEG decompressor instance and associate the JPEG source image or "abbreviated table specification" (AKA "tables-only") datastream of length imageSize bytes stored in jpegImage with the newly created instance.
    TJDecompressor(YUVImage) - Constructor for class org.libjpegturbo.turbojpeg.TJDecompressor
    Create a TurboJPEG decompressor instance and associate the planar YUV source image stored in yuvImage with the newly created instance.
    TJException - Exception in org.libjpegturbo.turbojpeg
     
    TJException() - Constructor for exception org.libjpegturbo.turbojpeg.TJException
     
    TJException(String, Throwable) - Constructor for exception org.libjpegturbo.turbojpeg.TJException
     
    TJException(String) - Constructor for exception org.libjpegturbo.turbojpeg.TJException
     
    TJException(String, int) - Constructor for exception org.libjpegturbo.turbojpeg.TJException
     
    TJException(Throwable) - Constructor for exception org.libjpegturbo.turbojpeg.TJException
     
    TJScalingFactor - Class in org.libjpegturbo.turbojpeg
    Fractional scaling factor
    TJScalingFactor(int, int) - Constructor for class org.libjpegturbo.turbojpeg.TJScalingFactor
    Create a TurboJPEG scaling factor instance.
    TJTransform - Class in org.libjpegturbo.turbojpeg
    Lossless transform parameters
    TJTransform() - Constructor for class org.libjpegturbo.turbojpeg.TJTransform
    Create a new lossless transform instance.
    TJTransform(int, int, int, int, int, int, TJCustomFilter) - Constructor for class org.libjpegturbo.turbojpeg.TJTransform
    Create a new lossless transform instance with the given parameters.
    TJTransform(Rectangle, int, int, TJCustomFilter) - Constructor for class org.libjpegturbo.turbojpeg.TJTransform
    Create a new lossless transform instance with the given parameters.
    TJTransformer - Class in org.libjpegturbo.turbojpeg
    TurboJPEG lossless transformer
    TJTransformer() - Constructor for class org.libjpegturbo.turbojpeg.TJTransformer
    Create a TurboJPEG lossless transformer instance.
    TJTransformer(byte[]) - Constructor for class org.libjpegturbo.turbojpeg.TJTransformer
    Create a TurboJPEG lossless transformer instance and associate the JPEG source image stored in jpegImage with the newly created instance.
    TJTransformer(byte[], int) - Constructor for class org.libjpegturbo.turbojpeg.TJTransformer
    Create a TurboJPEG lossless transformer instance and associate the JPEG source image of length imageSize bytes stored in jpegImage with the newly created instance.
    transform(byte[][], TJTransform[], int) - Method in class org.libjpegturbo.turbojpeg.TJTransformer
    Losslessly transform the JPEG source image associated with this transformer instance into one or more JPEG images stored in the given destination buffers.
    transform(TJTransform[], int) - Method in class org.libjpegturbo.turbojpeg.TJTransformer
    Losslessly transform the JPEG source image associated with this transformer instance and return an array of TJDecompressor instances, each of which has a transformed JPEG image associated with it.

    Y

    yuvAlign - Variable in class org.libjpegturbo.turbojpeg.YUVImage
     
    yuvHeight - Variable in class org.libjpegturbo.turbojpeg.YUVImage
     
    yuvImage - Variable in class org.libjpegturbo.turbojpeg.TJDecompressor
     
    YUVImage - Class in org.libjpegturbo.turbojpeg
    This class encapsulates a planar YUV image and the metadata associated with it.
    YUVImage(int, int[], int, int) - Constructor for class org.libjpegturbo.turbojpeg.YUVImage
    Create a new YUVImage instance backed by separate image planes, and allocate memory for the image planes.
    YUVImage(int, int, int, int) - Constructor for class org.libjpegturbo.turbojpeg.YUVImage
    Create a new YUVImage instance backed by a unified buffer, and allocate memory for the buffer.
    YUVImage(byte[][], int[], int, int[], int, int) - Constructor for class org.libjpegturbo.turbojpeg.YUVImage
    Create a new YUVImage instance from a set of existing image planes.
    YUVImage(byte[], int, int, int, int) - Constructor for class org.libjpegturbo.turbojpeg.YUVImage
    Create a new YUVImage instance from an existing unified buffer.
    yuvOffsets - Variable in class org.libjpegturbo.turbojpeg.YUVImage
     
    yuvPlanes - Variable in class org.libjpegturbo.turbojpeg.YUVImage
     
    yuvStrides - Variable in class org.libjpegturbo.turbojpeg.YUVImage
     
    yuvSubsamp - Variable in class org.libjpegturbo.turbojpeg.YUVImage
     
    yuvWidth - Variable in class org.libjpegturbo.turbojpeg.YUVImage
     
    B C D E F G H I J N O P S T Y 
    libjpeg-turbo-2.1.5/java/doc/index.html000066400000000000000000000052621436506551100177620ustar00rootroot00000000000000 Generated Documentation (Untitled) <noscript> <div>JavaScript is disabled on your browser.</div> </noscript> <h2>Frame Alert</h2> <p>This document is designed to be viewed using the frames feature. If you see this message, you are using a non-frame-capable web client. Link to <a href="org/libjpegturbo/turbojpeg/package-summary.html">Non-frame version</a>.</p> libjpeg-turbo-2.1.5/java/doc/org/000077500000000000000000000000001436506551100165475ustar00rootroot00000000000000libjpeg-turbo-2.1.5/java/doc/org/libjpegturbo/000077500000000000000000000000001436506551100212375ustar00rootroot00000000000000libjpeg-turbo-2.1.5/java/doc/org/libjpegturbo/turbojpeg/000077500000000000000000000000001436506551100232405ustar00rootroot00000000000000libjpeg-turbo-2.1.5/java/doc/org/libjpegturbo/turbojpeg/TJ.html000066400000000000000000001702041436506551100244470ustar00rootroot00000000000000 TJ
    org.libjpegturbo.turbojpeg

    Class TJ

    • java.lang.Object
      • org.libjpegturbo.turbojpeg.TJ


    • public final class TJ
      extends java.lang.Object
      TurboJPEG utility class (cannot be instantiated)
      • Field Summary

        Fields 
        Modifier and Type Field and Description
        static int CS_CMYK
        CMYK colorspace.
        static int CS_GRAY
        Grayscale colorspace.
        static int CS_RGB
        RGB colorspace.
        static int CS_YCbCr
        YCbCr colorspace.
        static int CS_YCCK
        YCCK colorspace.
        static int ERR_FATAL
        The error was fatal and non-recoverable.
        static int ERR_WARNING
        The error was non-fatal and recoverable, but the destination image may still be corrupt.
        static int FLAG_ACCURATEDCT
        Use the most accurate DCT/IDCT algorithm available.
        static int FLAG_BOTTOMUP
        Rows in the packed-pixel source/destination image are stored in bottom-up (Windows, OpenGL) order rather than in top-down (X11) order.
        static int FLAG_FASTDCT
        Use the fastest DCT/IDCT algorithm available.
        static int FLAG_FASTUPSAMPLE
        When decompressing an image that was compressed using chrominance subsampling, use the fastest chrominance upsampling algorithm available.
        static int FLAG_FORCEMMX
        Deprecated. 
        static int FLAG_FORCESSE
        Deprecated. 
        static int FLAG_FORCESSE2
        Deprecated. 
        static int FLAG_FORCESSE3
        Deprecated. 
        static int FLAG_LIMITSCANS
        Limit the number of progressive JPEG scans that the decompression and transform operations will process.
        static int FLAG_PROGRESSIVE
        Use progressive entropy coding in JPEG images generated by compression and transform operations.
        static int FLAG_STOPONWARNING
        Immediately discontinue the current compression/decompression/transform operation if a warning (non-fatal error) occurs.
        static int NUMCS
        The number of JPEG colorspaces
        static int NUMERR
        The number of error codes
        static int NUMPF
        The number of pixel formats
        static int NUMSAMP
        The number of chrominance subsampling options
        static int PF_ABGR
        ABGR pixel format.
        static int PF_ARGB
        ARGB pixel format.
        static int PF_BGR
        BGR pixel format.
        static int PF_BGRA
        BGRA pixel format.
        static int PF_BGRX
        BGRX pixel format.
        static int PF_CMYK
        CMYK pixel format.
        static int PF_GRAY
        Grayscale pixel format.
        static int PF_RGB
        RGB pixel format.
        static int PF_RGBA
        RGBA pixel format.
        static int PF_RGBX
        RGBX pixel format.
        static int PF_XBGR
        XBGR pixel format.
        static int PF_XRGB
        XRGB pixel format.
        static int SAMP_411
        4:1:1 chrominance subsampling.
        static int SAMP_420
        4:2:0 chrominance subsampling.
        static int SAMP_422
        4:2:2 chrominance subsampling.
        static int SAMP_440
        4:4:0 chrominance subsampling.
        static int SAMP_444
        4:4:4 chrominance subsampling (no chrominance subsampling).
        static int SAMP_GRAY
        Grayscale.
      • Method Summary

        Methods 
        Modifier and Type Method and Description
        static int bufSize(int width, int height, int jpegSubsamp)
        Returns the maximum size of the buffer (in bytes) required to hold a JPEG image with the given width, height, and level of chrominance subsampling.
        static int bufSizeYUV(int width, int height, int subsamp)
        Deprecated. 
        static int bufSizeYUV(int width, int align, int height, int subsamp)
        Returns the size of the buffer (in bytes) required to hold a unified planar YUV image with the given width, height, and level of chrominance subsampling.
        static int getAlphaOffset(int pixelFormat)
        For the given pixel format, returns the number of bytes that the alpha component is offset from the start of the pixel.
        static int getBlueOffset(int pixelFormat)
        For the given pixel format, returns the number of bytes that the blue component is offset from the start of the pixel.
        static int getGreenOffset(int pixelFormat)
        For the given pixel format, returns the number of bytes that the green component is offset from the start of the pixel.
        static int getMCUHeight(int subsamp)
        Returns the MCU block height for the given level of chrominance subsampling.
        static int getMCUWidth(int subsamp)
        Returns the MCU block width for the given level of chrominance subsampling.
        static int getPixelSize(int pixelFormat)
        Returns the pixel size (in bytes) for the given pixel format.
        static int getRedOffset(int pixelFormat)
        For the given pixel format, returns the number of bytes that the red component is offset from the start of the pixel.
        static TJScalingFactor[] getScalingFactors()
        Returns a list of fractional scaling factors that the JPEG decompressor supports.
        static int planeHeight(int componentID, int height, int subsamp)
        Returns the plane height of a YUV image plane with the given parameters.
        static int planeSizeYUV(int componentID, int width, int stride, int height, int subsamp)
        Returns the size of the buffer (in bytes) required to hold a YUV image plane with the given parameters.
        static int planeWidth(int componentID, int width, int subsamp)
        Returns the plane width of a YUV image plane with the given parameters.
        • Methods inherited from class java.lang.Object

          clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
      • Field Detail

        • NUMSAMP

          public static final int NUMSAMP
          The number of chrominance subsampling options
          See Also:
          Constant Field Values
        • SAMP_444

          public static final int SAMP_444
          4:4:4 chrominance subsampling (no chrominance subsampling). The JPEG or YUV image will contain one chrominance component for every pixel in the source image.
          See Also:
          Constant Field Values
        • SAMP_422

          public static final int SAMP_422
          4:2:2 chrominance subsampling. The JPEG or YUV image will contain one chrominance component for every 2x1 block of pixels in the source image.
          See Also:
          Constant Field Values
        • SAMP_420

          public static final int SAMP_420
          4:2:0 chrominance subsampling. The JPEG or YUV image will contain one chrominance component for every 2x2 block of pixels in the source image.
          See Also:
          Constant Field Values
        • SAMP_GRAY

          public static final int SAMP_GRAY
          Grayscale. The JPEG or YUV image will contain no chrominance components.
          See Also:
          Constant Field Values
        • SAMP_440

          public static final int SAMP_440
          4:4:0 chrominance subsampling. The JPEG or YUV image will contain one chrominance component for every 1x2 block of pixels in the source image. Note that 4:4:0 subsampling is not fully accelerated in libjpeg-turbo.
          See Also:
          Constant Field Values
        • SAMP_411

          public static final int SAMP_411
          4:1:1 chrominance subsampling. The JPEG or YUV image will contain one chrominance component for every 4x1 block of pixels in the source image. JPEG images compressed with 4:1:1 subsampling will be almost exactly the same size as those compressed with 4:2:0 subsampling, and in the aggregate, both subsampling methods produce approximately the same perceptual quality. However, 4:1:1 is better able to reproduce sharp horizontal features. Note that 4:1:1 subsampling is not fully accelerated in libjpeg-turbo.
          See Also:
          Constant Field Values
        • PF_RGB

          public static final int PF_RGB
          RGB pixel format. The red, green, and blue components in the image are stored in 3-byte pixels in the order R, G, B from lowest to highest byte address within each pixel.
          See Also:
          Constant Field Values
        • PF_BGR

          public static final int PF_BGR
          BGR pixel format. The red, green, and blue components in the image are stored in 3-byte pixels in the order B, G, R from lowest to highest byte address within each pixel.
          See Also:
          Constant Field Values
        • PF_RGBX

          public static final int PF_RGBX
          RGBX pixel format. The red, green, and blue components in the image are stored in 4-byte pixels in the order R, G, B from lowest to highest byte address within each pixel. The X component is ignored when compressing and undefined when decompressing.
          See Also:
          Constant Field Values
        • PF_BGRX

          public static final int PF_BGRX
          BGRX pixel format. The red, green, and blue components in the image are stored in 4-byte pixels in the order B, G, R from lowest to highest byte address within each pixel. The X component is ignored when compressing and undefined when decompressing.
          See Also:
          Constant Field Values
        • PF_XBGR

          public static final int PF_XBGR
          XBGR pixel format. The red, green, and blue components in the image are stored in 4-byte pixels in the order R, G, B from highest to lowest byte address within each pixel. The X component is ignored when compressing and undefined when decompressing.
          See Also:
          Constant Field Values
        • PF_XRGB

          public static final int PF_XRGB
          XRGB pixel format. The red, green, and blue components in the image are stored in 4-byte pixels in the order B, G, R from highest to lowest byte address within each pixel. The X component is ignored when compressing and undefined when decompressing.
          See Also:
          Constant Field Values
        • PF_GRAY

          public static final int PF_GRAY
          Grayscale pixel format. Each 1-byte pixel represents a luminance (brightness) level from 0 to 255.
          See Also:
          Constant Field Values
        • PF_RGBA

          public static final int PF_RGBA
          RGBA pixel format. This is the same as PF_RGBX, except that when decompressing, the X byte is guaranteed to be 0xFF, which can be interpreted as an opaque alpha channel.
          See Also:
          Constant Field Values
        • PF_BGRA

          public static final int PF_BGRA
          BGRA pixel format. This is the same as PF_BGRX, except that when decompressing, the X byte is guaranteed to be 0xFF, which can be interpreted as an opaque alpha channel.
          See Also:
          Constant Field Values
        • PF_ABGR

          public static final int PF_ABGR
          ABGR pixel format. This is the same as PF_XBGR, except that when decompressing, the X byte is guaranteed to be 0xFF, which can be interpreted as an opaque alpha channel.
          See Also:
          Constant Field Values
        • PF_ARGB

          public static final int PF_ARGB
          ARGB pixel format. This is the same as PF_XRGB, except that when decompressing, the X byte is guaranteed to be 0xFF, which can be interpreted as an opaque alpha channel.
          See Also:
          Constant Field Values
        • PF_CMYK

          public static final int PF_CMYK
          CMYK pixel format. Unlike RGB, which is an additive color model used primarily for display, CMYK (Cyan/Magenta/Yellow/Key) is a subtractive color model used primarily for printing. In the CMYK color model, the value of each color component typically corresponds to an amount of cyan, magenta, yellow, or black ink that is applied to a white background. In order to convert between CMYK and RGB, it is necessary to use a color management system (CMS.) A CMS will attempt to map colors within the printer's gamut to perceptually similar colors in the display's gamut and vice versa, but the mapping is typically not 1:1 or reversible, nor can it be defined with a simple formula. Thus, such a conversion is out of scope for a codec library. However, the TurboJPEG API allows for compressing packed-pixel CMYK images into YCCK JPEG images (see CS_YCCK) and decompressing YCCK JPEG images into packed-pixel CMYK images.
          See Also:
          Constant Field Values
        • CS_RGB

          public static final int CS_RGB
          RGB colorspace. When compressing the JPEG image, the R, G, and B components in the source image are reordered into image planes, but no colorspace conversion or subsampling is performed. RGB JPEG images can be decompressed to packed-pixel images with any of the extended RGB or grayscale pixel formats, but they cannot be decompressed to planar YUV images.
          See Also:
          Constant Field Values
        • CS_YCbCr

          public static final int CS_YCbCr
          YCbCr colorspace. YCbCr is not an absolute colorspace but rather a mathematical transformation of RGB designed solely for storage and transmission. YCbCr images must be converted to RGB before they can actually be displayed. In the YCbCr colorspace, the Y (luminance) component represents the black & white portion of the original image, and the Cb and Cr (chrominance) components represent the color portion of the original image. Originally, the analog equivalent of this transformation allowed the same signal to drive both black & white and color televisions, but JPEG images use YCbCr primarily because it allows the color data to be optionally subsampled for the purposes of reducing network or disk usage. YCbCr is the most common JPEG colorspace, and YCbCr JPEG images can be compressed from and decompressed to packed-pixel images with any of the extended RGB or grayscale pixel formats. YCbCr JPEG images can also be compressed from and decompressed to planar YUV images.
          See Also:
          Constant Field Values
        • CS_GRAY

          public static final int CS_GRAY
          Grayscale colorspace. The JPEG image retains only the luminance data (Y component), and any color data from the source image is discarded. Grayscale JPEG images can be compressed from and decompressed to packed-pixel images with any of the extended RGB or grayscale pixel formats, or they can be compressed from and decompressed to planar YUV images.
          See Also:
          Constant Field Values
        • CS_CMYK

          public static final int CS_CMYK
          CMYK colorspace. When compressing the JPEG image, the C, M, Y, and K components in the source image are reordered into image planes, but no colorspace conversion or subsampling is performed. CMYK JPEG images can only be decompressed to packed-pixel images with the CMYK pixel format.
          See Also:
          Constant Field Values
        • CS_YCCK

          public static final int CS_YCCK
          YCCK colorspace. YCCK (AKA "YCbCrK") is not an absolute colorspace but rather a mathematical transformation of CMYK designed solely for storage and transmission. It is to CMYK as YCbCr is to RGB. CMYK pixels can be reversibly transformed into YCCK, and as with YCbCr, the chrominance components in the YCCK pixels can be subsampled without incurring major perceptual loss. YCCK JPEG images can only be compressed from and decompressed to packed-pixel images with the CMYK pixel format.
          See Also:
          Constant Field Values
        • FLAG_BOTTOMUP

          public static final int FLAG_BOTTOMUP
          Rows in the packed-pixel source/destination image are stored in bottom-up (Windows, OpenGL) order rather than in top-down (X11) order.
          See Also:
          Constant Field Values
        • FLAG_FORCEMMX

          @Deprecated
          public static final int FLAG_FORCEMMX
          Deprecated. 
          See Also:
          Constant Field Values
        • FLAG_FORCESSE

          @Deprecated
          public static final int FLAG_FORCESSE
          Deprecated. 
          See Also:
          Constant Field Values
        • FLAG_FORCESSE2

          @Deprecated
          public static final int FLAG_FORCESSE2
          Deprecated. 
          See Also:
          Constant Field Values
        • FLAG_FORCESSE3

          @Deprecated
          public static final int FLAG_FORCESSE3
          Deprecated. 
          See Also:
          Constant Field Values
        • FLAG_FASTUPSAMPLE

          public static final int FLAG_FASTUPSAMPLE
          When decompressing an image that was compressed using chrominance subsampling, use the fastest chrominance upsampling algorithm available. The default is to use smooth upsampling, which creates a smooth transition between neighboring chrominance components in order to reduce upsampling artifacts in the decompressed image.
          See Also:
          Constant Field Values
        • FLAG_FASTDCT

          public static final int FLAG_FASTDCT
          Use the fastest DCT/IDCT algorithm available. The default if this flag is not specified is implementation-specific. For example, the implementation of the TurboJPEG API in libjpeg-turbo uses the fast algorithm by default when compressing, because this has been shown to have only a very slight effect on accuracy, but it uses the accurate algorithm when decompressing, because this has been shown to have a larger effect.
          See Also:
          Constant Field Values
        • FLAG_ACCURATEDCT

          public static final int FLAG_ACCURATEDCT
          Use the most accurate DCT/IDCT algorithm available. The default if this flag is not specified is implementation-specific. For example, the implementation of the TurboJPEG API in libjpeg-turbo uses the fast algorithm by default when compressing, because this has been shown to have only a very slight effect on accuracy, but it uses the accurate algorithm when decompressing, because this has been shown to have a larger effect.
          See Also:
          Constant Field Values
        • FLAG_STOPONWARNING

          public static final int FLAG_STOPONWARNING
          Immediately discontinue the current compression/decompression/transform operation if a warning (non-fatal error) occurs. The default behavior is to allow the operation to complete unless a fatal error is encountered.

          NOTE: due to the design of the TurboJPEG Java API, only certain methods (specifically, TJDecompressor.decompress*() methods with a void return type) will complete and leave the destination image in a fully recoverable state after a non-fatal error occurs.

          See Also:
          Constant Field Values
        • FLAG_PROGRESSIVE

          public static final int FLAG_PROGRESSIVE
          Use progressive entropy coding in JPEG images generated by compression and transform operations. Progressive entropy coding will generally improve compression relative to baseline entropy coding (the default), but it will reduce compression and decompression performance considerably.
          See Also:
          Constant Field Values
        • FLAG_LIMITSCANS

          public static final int FLAG_LIMITSCANS
          Limit the number of progressive JPEG scans that the decompression and transform operations will process. If a progressive JPEG image contains an unreasonably large number of scans, then this flag will cause the decompression and transform operations to throw an error. The primary purpose of this is to allow security-critical applications to guard against an exploit of the progressive JPEG format described in this report.
          See Also:
          Constant Field Values
        • ERR_WARNING

          public static final int ERR_WARNING
          The error was non-fatal and recoverable, but the destination image may still be corrupt.

          NOTE: due to the design of the TurboJPEG Java API, only certain methods (specifically, TJDecompressor.decompress*() methods with a void return type) will complete and leave the destination image in a fully recoverable state after a non-fatal error occurs.

          See Also:
          Constant Field Values
        • ERR_FATAL

          public static final int ERR_FATAL
          The error was fatal and non-recoverable.
          See Also:
          Constant Field Values
      • Method Detail

        • getMCUWidth

          public static int getMCUWidth(int subsamp)
          Returns the MCU block width for the given level of chrominance subsampling.
          Parameters:
          subsamp - the level of chrominance subsampling (one of SAMP_*)
          Returns:
          the MCU block width for the given level of chrominance subsampling.
        • getMCUHeight

          public static int getMCUHeight(int subsamp)
          Returns the MCU block height for the given level of chrominance subsampling.
          Parameters:
          subsamp - the level of chrominance subsampling (one of SAMP_*)
          Returns:
          the MCU block height for the given level of chrominance subsampling.
        • getPixelSize

          public static int getPixelSize(int pixelFormat)
          Returns the pixel size (in bytes) for the given pixel format.
          Parameters:
          pixelFormat - the pixel format (one of PF_*)
          Returns:
          the pixel size (in bytes) for the given pixel format.
        • getRedOffset

          public static int getRedOffset(int pixelFormat)
          For the given pixel format, returns the number of bytes that the red component is offset from the start of the pixel. For instance, if a pixel of format TJ.PF_BGRX is stored in char pixel[], then the red component will be pixel[TJ.getRedOffset(TJ.PF_BGRX)].
          Parameters:
          pixelFormat - the pixel format (one of PF_*)
          Returns:
          the red offset for the given pixel format, or -1 if the pixel format does not have a red component.
        • getGreenOffset

          public static int getGreenOffset(int pixelFormat)
          For the given pixel format, returns the number of bytes that the green component is offset from the start of the pixel. For instance, if a pixel of format TJ.PF_BGRX is stored in char pixel[], then the green component will be pixel[TJ.getGreenOffset(TJ.PF_BGRX)].
          Parameters:
          pixelFormat - the pixel format (one of PF_*)
          Returns:
          the green offset for the given pixel format, or -1 if the pixel format does not have a green component.
        • getBlueOffset

          public static int getBlueOffset(int pixelFormat)
          For the given pixel format, returns the number of bytes that the blue component is offset from the start of the pixel. For instance, if a pixel of format TJ.PF_BGRX is stored in char pixel[], then the blue component will be pixel[TJ.getBlueOffset(TJ.PF_BGRX)].
          Parameters:
          pixelFormat - the pixel format (one of PF_*)
          Returns:
          the blue offset for the given pixel format, or -1 if the pixel format does not have a blue component.
        • getAlphaOffset

          public static int getAlphaOffset(int pixelFormat)
          For the given pixel format, returns the number of bytes that the alpha component is offset from the start of the pixel. For instance, if a pixel of format TJ.PF_BGRA is stored in char pixel[], then the alpha component will be pixel[TJ.getAlphaOffset(TJ.PF_BGRA)].
          Parameters:
          pixelFormat - the pixel format (one of PF_*)
          Returns:
          the alpha offset for the given pixel format, or -1 if the pixel format does not have a alpha component.
        • bufSize

          public static int bufSize(int width,
                    int height,
                    int jpegSubsamp)
          Returns the maximum size of the buffer (in bytes) required to hold a JPEG image with the given width, height, and level of chrominance subsampling.
          Parameters:
          width - the width (in pixels) of the JPEG image
          height - the height (in pixels) of the JPEG image
          jpegSubsamp - the level of chrominance subsampling to be used when generating the JPEG image (one of TJ.SAMP_*)
          Returns:
          the maximum size of the buffer (in bytes) required to hold a JPEG image with the given width, height, and level of chrominance subsampling.
        • bufSizeYUV

          public static int bufSizeYUV(int width,
                       int align,
                       int height,
                       int subsamp)
          Returns the size of the buffer (in bytes) required to hold a unified planar YUV image with the given width, height, and level of chrominance subsampling.
          Parameters:
          width - the width (in pixels) of the YUV image
          align - row alignment (in bytes) of the YUV image (must be a power of 2.) Setting this parameter to n specifies that each row in each plane of the YUV image will be padded to the nearest multiple of n bytes (1 = unpadded.)
          height - the height (in pixels) of the YUV image
          subsamp - the level of chrominance subsampling used in the YUV image (one of TJ.SAMP_*)
          Returns:
          the size of the buffer (in bytes) required to hold a unified planar YUV image with the given width, height, and level of chrominance subsampling.
        • bufSizeYUV

          @Deprecated
          public static int bufSizeYUV(int width,
                                  int height,
                                  int subsamp)
          Deprecated. Use bufSizeYUV(int, int, int, int) instead.
        • planeSizeYUV

          public static int planeSizeYUV(int componentID,
                         int width,
                         int stride,
                         int height,
                         int subsamp)
          Returns the size of the buffer (in bytes) required to hold a YUV image plane with the given parameters.
          Parameters:
          componentID - ID number of the image plane (0 = Y, 1 = U/Cb, 2 = V/Cr)
          width - width (in pixels) of the YUV image. NOTE: this is the width of the whole image, not the plane width.
          stride - bytes per row in the image plane.
          height - height (in pixels) of the YUV image. NOTE: this is the height of the whole image, not the plane height.
          subsamp - the level of chrominance subsampling used in the YUV image (one of TJ.SAMP_*)
          Returns:
          the size of the buffer (in bytes) required to hold a YUV image plane with the given parameters.
        • planeWidth

          public static int planeWidth(int componentID,
                       int width,
                       int subsamp)
          Returns the plane width of a YUV image plane with the given parameters. Refer to YUVImage for a description of plane width.
          Parameters:
          componentID - ID number of the image plane (0 = Y, 1 = U/Cb, 2 = V/Cr)
          width - width (in pixels) of the YUV image
          subsamp - the level of chrominance subsampling used in the YUV image (one of TJ.SAMP_*)
          Returns:
          the plane width of a YUV image plane with the given parameters.
        • planeHeight

          public static int planeHeight(int componentID,
                        int height,
                        int subsamp)
          Returns the plane height of a YUV image plane with the given parameters. Refer to YUVImage for a description of plane height.
          Parameters:
          componentID - ID number of the image plane (0 = Y, 1 = U/Cb, 2 = V/Cr)
          height - height (in pixels) of the YUV image
          subsamp - the level of chrominance subsampling used in the YUV image (one of TJ.SAMP_*)
          Returns:
          the plane height of a YUV image plane with the given parameters.
        • getScalingFactors

          public static TJScalingFactor[] getScalingFactors()
          Returns a list of fractional scaling factors that the JPEG decompressor supports.
          Returns:
          a list of fractional scaling factors that the JPEG decompressor supports.
    libjpeg-turbo-2.1.5/java/doc/org/libjpegturbo/turbojpeg/TJCompressor.html000066400000000000000000001442371436506551100265330ustar00rootroot00000000000000 TJCompressor
    org.libjpegturbo.turbojpeg

    Class TJCompressor

    • java.lang.Object
      • org.libjpegturbo.turbojpeg.TJCompressor
    • All Implemented Interfaces:
      java.io.Closeable, java.lang.AutoCloseable


      public class TJCompressor
      extends java.lang.Object
      implements java.io.Closeable
      TurboJPEG compressor
      • Constructor Summary

        Constructors 
        Constructor and Description
        TJCompressor()
        Create a TurboJPEG compressor instance.
        TJCompressor(java.awt.image.BufferedImage srcImage, int x, int y, int width, int height)
        Create a TurboJPEG compressor instance and associate the packed-pixel source image stored in srcImage with the newly created instance.
        TJCompressor(byte[] srcImage, int width, int pitch, int height, int pixelFormat)
        TJCompressor(byte[] srcImage, int x, int y, int width, int pitch, int height, int pixelFormat)
        Create a TurboJPEG compressor instance and associate the packed-pixel source image stored in srcImage with the newly created instance.
      • Method Summary

        Methods 
        Modifier and Type Method and Description
        void close()
        Free the native structures associated with this compressor instance.
        void compress(java.awt.image.BufferedImage srcImage, byte[] dstBuf, int flags)
        byte[] compress(java.awt.image.BufferedImage srcImage, int flags)
        void compress(byte[] dstBuf, int flags)
        Compress the packed-pixel or planar YUV source image associated with this compressor instance and output a JPEG image to the given destination buffer.
        byte[] compress(int flags)
        Compress the packed-pixel or planar YUV source image associated with this compressor instance and return a buffer containing a JPEG image.
        void encodeYUV(java.awt.image.BufferedImage srcImage, byte[] dstBuf, int flags)
        byte[] encodeYUV(java.awt.image.BufferedImage srcImage, int flags)
        void encodeYUV(byte[] dstBuf, int flags)
        Deprecated. 
        byte[] encodeYUV(int flags)
        Deprecated. 
        Use encodeYUV(int, int) instead.
        YUVImage encodeYUV(int[] strides, int flags)
        Encode the packed-pixel source image associated with this compressor instance into separate Y, U (Cb), and V (Cr) image planes and return a YUVImage instance containing the encoded image planes.
        YUVImage encodeYUV(int align, int flags)
        Encode the packed-pixel source image associated with this compressor instance into a unified planar YUV image and return a YUVImage instance containing the encoded image.
        void encodeYUV(YUVImage dstImage, int flags)
        Encode the packed-pixel source image associated with this compressor instance into a planar YUV image and store it in the given YUVImage instance.
        protected void finalize() 
        int getCompressedSize()
        Returns the size of the image (in bytes) generated by the most recent compress operation.
        void setJPEGQuality(int quality)
        Set the JPEG image quality level for subsequent compress operations.
        void setSourceImage(java.awt.image.BufferedImage srcImage, int x, int y, int width, int height)
        Associate a packed-pixel RGB or grayscale source image with this compressor instance.
        void setSourceImage(byte[] srcImage, int width, int pitch, int height, int pixelFormat)
        void setSourceImage(byte[] srcImage, int x, int y, int width, int pitch, int height, int pixelFormat)
        Associate a packed-pixel RGB, grayscale, or CMYK source image with this compressor instance.
        void setSourceImage(YUVImage srcImage)
        Associate a planar YUV source image with this compressor instance.
        void setSubsamp(int newSubsamp)
        Set the level of chrominance subsampling for subsequent compress/encode operations.
        • Methods inherited from class java.lang.Object

          clone, equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
      • Method Detail

        • setSourceImage

          public void setSourceImage(byte[] srcImage,
                            int x,
                            int y,
                            int width,
                            int pitch,
                            int height,
                            int pixelFormat)
                              throws TJException
          Associate a packed-pixel RGB, grayscale, or CMYK source image with this compressor instance.
          Parameters:
          srcImage - buffer containing a packed-pixel RGB, grayscale, or CMYK source image to be compressed or encoded. This buffer is not modified.
          x - x offset (in pixels) of the region in the source image from which the JPEG or YUV image should be compressed/encoded
          y - y offset (in pixels) of the region in the source image from which the JPEG or YUV image should be compressed/encoded
          width - width (in pixels) of the region in the source image from which the JPEG or YUV image should be compressed/encoded
          pitch - bytes per row in the source image. Normally this should be width * TJ.getPixelSize(pixelFormat), if the source image is unpadded. However, you can use this parameter to, for instance, specify that the rows in the source image are padded to the nearest multiple of 4 bytes or to compress/encode a JPEG or YUV image from a region of a larger source image. You can also be clever and use this parameter to skip rows, etc. Setting this parameter to 0 is the equivalent of setting it to width * TJ.getPixelSize(pixelFormat).
          height - height (in pixels) of the region in the source image from which the JPEG or YUV image should be compressed/encoded
          pixelFormat - pixel format of the source image (one of TJ.PF_*)
          Throws:
          TJException
        • setSourceImage

          public void setSourceImage(java.awt.image.BufferedImage srcImage,
                            int x,
                            int y,
                            int width,
                            int height)
                              throws TJException
          Associate a packed-pixel RGB or grayscale source image with this compressor instance.
          Parameters:
          srcImage - a BufferedImage instance containing a packed-pixel RGB or grayscale source image to be compressed or encoded. This image is not modified.
          x - x offset (in pixels) of the region in the source image from which the JPEG or YUV image should be compressed/encoded
          y - y offset (in pixels) of the region in the source image from which the JPEG or YUV image should be compressed/encoded
          width - width (in pixels) of the region in the source image from which the JPEG or YUV image should be compressed/encoded (0 = use the width of the source image)
          height - height (in pixels) of the region in the source image from which the JPEG or YUV image should be compressed/encoded (0 = use the height of the source image)
          Throws:
          TJException
        • setSourceImage

          public void setSourceImage(YUVImage srcImage)
                              throws TJException
          Associate a planar YUV source image with this compressor instance.
          Parameters:
          srcImage - planar YUV source image to be compressed. This image is not modified.
          Throws:
          TJException
        • setSubsamp

          public void setSubsamp(int newSubsamp)
          Set the level of chrominance subsampling for subsequent compress/encode operations. When pixels are converted from RGB to YCbCr (see TJ.CS_YCbCr) or from CMYK to YCCK (see TJ.CS_YCCK) as part of the JPEG compression process, some of the Cb and Cr (chrominance) components can be discarded or averaged together to produce a smaller image with little perceptible loss of image clarity. (The human eye is more sensitive to small changes in brightness than to small changes in color.) This is called "chrominance subsampling".

          NOTE: This method has no effect when compressing a JPEG image from a planar YUV source image. In that case, the level of chrominance subsampling in the JPEG image is determined by the source image. Furthermore, this method has no effect when encoding to a pre-allocated YUVImage instance. In that case, the level of chrominance subsampling is determined by the destination image.

          Parameters:
          newSubsamp - the level of chrominance subsampling to use in subsequent compress/encode oeprations (one of TJ.SAMP_*)
        • setJPEGQuality

          public void setJPEGQuality(int quality)
          Set the JPEG image quality level for subsequent compress operations.
          Parameters:
          quality - the new JPEG image quality level (1 to 100, 1 = worst, 100 = best)
        • compress

          public void compress(byte[] dstBuf,
                      int flags)
                        throws TJException
          Compress the packed-pixel or planar YUV source image associated with this compressor instance and output a JPEG image to the given destination buffer.
          Parameters:
          dstBuf - buffer that will receive the JPEG image. Use TJ.bufSize(int, int, int) to determine the maximum size for this buffer based on the source image's width and height and the desired level of chrominance subsampling.
          flags - the bitwise OR of one or more of TJ.FLAG_*
          Throws:
          TJException
        • compress

          public byte[] compress(int flags)
                          throws TJException
          Compress the packed-pixel or planar YUV source image associated with this compressor instance and return a buffer containing a JPEG image.
          Parameters:
          flags - the bitwise OR of one or more of TJ.FLAG_*
          Returns:
          a buffer containing a JPEG image. The length of this buffer will not be equal to the size of the JPEG image. Use getCompressedSize() to obtain the size of the JPEG image.
          Throws:
          TJException
        • encodeYUV

          public void encodeYUV(YUVImage dstImage,
                       int flags)
                         throws TJException
          Encode the packed-pixel source image associated with this compressor instance into a planar YUV image and store it in the given YUVImage instance. This method performs color conversion (which is accelerated in the libjpeg-turbo implementation) but does not execute any of the other steps in the JPEG compression process. Encoding CMYK source images into YUV images is not supported.
          Parameters:
          dstImage - YUVImage instance that will receive the planar YUV image
          flags - the bitwise OR of one or more of TJ.FLAG_*
          Throws:
          TJException
        • encodeYUV

          public YUVImage encodeYUV(int align,
                           int flags)
                             throws TJException
          Encode the packed-pixel source image associated with this compressor instance into a unified planar YUV image and return a YUVImage instance containing the encoded image. This method performs color conversion (which is accelerated in the libjpeg-turbo implementation) but does not execute any of the other steps in the JPEG compression process. Encoding CMYK source images into YUV images is not supported.
          Parameters:
          align - row alignment (in bytes) of the YUV image (must be a power of 2.) Setting this parameter to n will cause each row in each plane of the YUV image to be padded to the nearest multiple of n bytes (1 = unpadded.)
          flags - the bitwise OR of one or more of TJ.FLAG_*
          Returns:
          a YUVImage instance containing the unified planar YUV encoded image
          Throws:
          TJException
        • encodeYUV

          public YUVImage encodeYUV(int[] strides,
                           int flags)
                             throws TJException
          Encode the packed-pixel source image associated with this compressor instance into separate Y, U (Cb), and V (Cr) image planes and return a YUVImage instance containing the encoded image planes. This method performs color conversion (which is accelerated in the libjpeg-turbo implementation) but does not execute any of the other steps in the JPEG compression process. Encoding CMYK source images into YUV images is not supported.
          Parameters:
          strides - an array of integers, each specifying the number of bytes per row in the corresponding plane of the YUV source image. Setting the stride for any plane to 0 is the same as setting it to the plane width (see YUVImage.) If strides is null, then the strides for all planes will be set to their respective plane widths. You can adjust the strides in order to add an arbitrary amount of row padding to each plane.
          flags - the bitwise OR of one or more of TJ.FLAG_*
          Returns:
          a YUVImage instance containing the encoded image planes
          Throws:
          TJException
        • getCompressedSize

          public int getCompressedSize()
          Returns the size of the image (in bytes) generated by the most recent compress operation.
          Returns:
          the size of the image (in bytes) generated by the most recent compress operation.
        • close

          public void close()
                     throws TJException
          Free the native structures associated with this compressor instance.
          Specified by:
          close in interface java.io.Closeable
          Specified by:
          close in interface java.lang.AutoCloseable
          Throws:
          TJException
        • finalize

          protected void finalize()
                           throws java.lang.Throwable
          Overrides:
          finalize in class java.lang.Object
          Throws:
          java.lang.Throwable
    libjpeg-turbo-2.1.5/java/doc/org/libjpegturbo/turbojpeg/TJCustomFilter.html000066400000000000000000000232001436506551100270010ustar00rootroot00000000000000 TJCustomFilter
    org.libjpegturbo.turbojpeg

    Interface TJCustomFilter



    • public interface TJCustomFilter
      Custom filter callback interface
      • Method Summary

        Methods 
        Modifier and Type Method and Description
        void customFilter(java.nio.ShortBuffer coeffBuffer, java.awt.Rectangle bufferRegion, java.awt.Rectangle planeRegion, int componentID, int transformID, TJTransform transform)
        A callback function that can be used to modify the DCT coefficients after they are losslessly transformed but before they are transcoded to a new JPEG image.
      • Method Detail

        • customFilter

          void customFilter(java.nio.ShortBuffer coeffBuffer,
                          java.awt.Rectangle bufferRegion,
                          java.awt.Rectangle planeRegion,
                          int componentID,
                          int transformID,
                          TJTransform transform)
                            throws TJException
          A callback function that can be used to modify the DCT coefficients after they are losslessly transformed but before they are transcoded to a new JPEG image. This allows for custom filters or other transformations to be applied in the frequency domain.
          Parameters:
          coeffBuffer - a buffer containing transformed DCT coefficients. (NOTE: this buffer is not guaranteed to be valid once the callback returns, so applications wishing to hand off the DCT coefficients to another function or library should make a copy of them within the body of the callback.)
          bufferRegion - rectangle containing the width and height of coeffBuffer as well as its offset relative to the component plane. TurboJPEG implementations may choose to split each component plane into multiple DCT coefficient buffers and call the callback function once for each buffer.
          planeRegion - rectangle containing the width and height of the component plane to which coeffBuffer belongs
          componentID - ID number of the component plane to which coeffBuffer belongs. (Y, Cb, and Cr have, respectively, ID's of 0, 1, and 2 in typical JPEG images.)
          transformID - ID number of the transformed image to which coeffBuffer belongs. This is the same as the index of the transform in the transforms array that was passed to TJTransformer.transform().
          transform - a TJTransform instance that specifies the parameters and/or cropping region for this transform
          Throws:
          TJException
    libjpeg-turbo-2.1.5/java/doc/org/libjpegturbo/turbojpeg/TJDecompressor.html000066400000000000000000002072031436506551100270350ustar00rootroot00000000000000 TJDecompressor
    org.libjpegturbo.turbojpeg

    Class TJDecompressor

    • java.lang.Object
      • org.libjpegturbo.turbojpeg.TJDecompressor
    • All Implemented Interfaces:
      java.io.Closeable, java.lang.AutoCloseable
      Direct Known Subclasses:
      TJTransformer


      public class TJDecompressor
      extends java.lang.Object
      implements java.io.Closeable
      TurboJPEG decompressor
      • Constructor Summary

        Constructors 
        Constructor and Description
        TJDecompressor()
        Create a TurboJPEG decompresssor instance.
        TJDecompressor(byte[] jpegImage)
        Create a TurboJPEG decompressor instance and associate the JPEG source image or "abbreviated table specification" (AKA "tables-only") datastream stored in jpegImage with the newly created instance.
        TJDecompressor(byte[] jpegImage, int imageSize)
        Create a TurboJPEG decompressor instance and associate the JPEG source image or "abbreviated table specification" (AKA "tables-only") datastream of length imageSize bytes stored in jpegImage with the newly created instance.
        TJDecompressor(YUVImage yuvImage)
        Create a TurboJPEG decompressor instance and associate the planar YUV source image stored in yuvImage with the newly created instance.
      • Method Summary

        Methods 
        Modifier and Type Method and Description
        void close()
        Free the native structures associated with this decompressor instance.
        void decompress(java.awt.image.BufferedImage dstImage, int flags)
        Decompress the JPEG source image or decode the planar YUV source image associated with this decompressor instance and output a packed-pixel decompressed/decoded image to the given BufferedImage instance.
        void decompress(byte[] dstBuf, int desiredWidth, int pitch, int desiredHeight, int pixelFormat, int flags)
        void decompress(byte[] dstBuf, int x, int y, int desiredWidth, int pitch, int desiredHeight, int pixelFormat, int flags)
        Decompress the JPEG source image or decode the planar YUV source image associated with this decompressor instance and output a packed-pixel grayscale, RGB, or CMYK image to the given destination buffer.
        void decompress(int[] dstBuf, int x, int y, int desiredWidth, int stride, int desiredHeight, int pixelFormat, int flags)
        Decompress the JPEG source image or decode the planar YUV source image associated with this decompressor instance and output a packed-pixel grayscale, RGB, or CMYK image to the given destination buffer.
        java.awt.image.BufferedImage decompress(int desiredWidth, int desiredHeight, int bufferedImageType, int flags)
        Decompress the JPEG source image or decode the planar YUV source image associated with this decompressor instance and return a BufferedImage instance containing the packed-pixel decompressed/decoded image.
        byte[] decompress(int desiredWidth, int pitch, int desiredHeight, int pixelFormat, int flags)
        Decompress the JPEG source image or decode the planar YUV source image associated with this decompressor instance and return a buffer containing the packed-pixel decompressed image.
        void decompressToYUV(byte[] dstBuf, int flags)
        Deprecated. 
        byte[] decompressToYUV(int flags)
        Deprecated. 
        YUVImage decompressToYUV(int desiredWidth, int[] strides, int desiredHeight, int flags)
        Decompress the JPEG source image associated with this decompressor instance into a set of Y, U (Cb), and V (Cr) image planes and return a YUVImage instance containing the decompressed image planes.
        YUVImage decompressToYUV(int desiredWidth, int align, int desiredHeight, int flags)
        Decompress the JPEG source image associated with this decompressor instance into a unified planar YUV image and return a YUVImage instance containing the decompressed image.
        void decompressToYUV(YUVImage dstImage, int flags)
        Decompress the JPEG source image associated with this decompressor instance into a planar YUV image and store it in the given YUVImage instance.
        protected void finalize() 
        int getColorspace()
        Returns the colorspace used in the source image (JPEG or YUV) associated with this decompressor instance.
        int getHeight()
        Returns the height of the source image (JPEG or YUV) associated with this decompressor instance.
        byte[] getJPEGBuf()
        Returns the JPEG buffer associated with this decompressor instance.
        int getJPEGSize()
        Returns the size of the JPEG image (in bytes) associated with this decompressor instance.
        int getScaledHeight(int desiredWidth, int desiredHeight)
        Returns the height of the largest scaled-down image that the TurboJPEG decompressor can generate without exceeding the desired image width and height.
        int getScaledWidth(int desiredWidth, int desiredHeight)
        Returns the width of the largest scaled-down image that the TurboJPEG decompressor can generate without exceeding the desired image width and height.
        int getSubsamp()
        Returns the level of chrominance subsampling used in the source image (JPEG or YUV) associated with this decompressor instance.
        int getWidth()
        Returns the width of the source image (JPEG or YUV) associated with this decompressor instance.
        void setJPEGImage(byte[] jpegImage, int imageSize)
        Deprecated. 
        void setSourceImage(byte[] jpegImage, int imageSize)
        Associate the JPEG image or "abbreviated table specification" (AKA "tables-only") datastream of length imageSize bytes stored in jpegImage with this decompressor instance.
        void setSourceImage(YUVImage srcImage)
        Associate the specified planar YUV source image with this decompressor instance.
        • Methods inherited from class java.lang.Object

          clone, equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
      • Field Detail

        • handle

          protected long handle
        • jpegBuf

          protected byte[] jpegBuf
        • jpegBufSize

          protected int jpegBufSize
        • jpegWidth

          protected int jpegWidth
        • jpegHeight

          protected int jpegHeight
        • jpegSubsamp

          protected int jpegSubsamp
        • jpegColorspace

          protected int jpegColorspace
      • Constructor Detail

        • TJDecompressor

          public TJDecompressor()
                         throws TJException
          Create a TurboJPEG decompresssor instance.
          Throws:
          TJException
        • TJDecompressor

          public TJDecompressor(byte[] jpegImage)
                         throws TJException
          Create a TurboJPEG decompressor instance and associate the JPEG source image or "abbreviated table specification" (AKA "tables-only") datastream stored in jpegImage with the newly created instance.
          Parameters:
          jpegImage - buffer containing a JPEG source image or tables-only datastream. (The size of the JPEG image or datastream is assumed to be the length of the array.) This buffer is not modified.
          Throws:
          TJException
        • TJDecompressor

          public TJDecompressor(byte[] jpegImage,
                        int imageSize)
                         throws TJException
          Create a TurboJPEG decompressor instance and associate the JPEG source image or "abbreviated table specification" (AKA "tables-only") datastream of length imageSize bytes stored in jpegImage with the newly created instance.
          Parameters:
          jpegImage - buffer containing a JPEG source image or tables-only datastream. This buffer is not modified.
          imageSize - size of the JPEG source image or tables-only datastream (in bytes)
          Throws:
          TJException
        • TJDecompressor

          public TJDecompressor(YUVImage yuvImage)
                         throws TJException
          Create a TurboJPEG decompressor instance and associate the planar YUV source image stored in yuvImage with the newly created instance.
          Parameters:
          yuvImage - YUVImage instance containing a planar YUV source image to be decoded. This image is not modified.
          Throws:
          TJException
      • Method Detail

        • setSourceImage

          public void setSourceImage(byte[] jpegImage,
                            int imageSize)
                              throws TJException
          Associate the JPEG image or "abbreviated table specification" (AKA "tables-only") datastream of length imageSize bytes stored in jpegImage with this decompressor instance. If jpegImage contains a JPEG image, then this image will be used as the source image for subsequent decompression operations. Passing a tables-only datastream to this method primes the decompressor with quantization and Huffman tables that can be used when decompressing subsequent "abbreviated image" datastreams. This is useful, for instance, when decompressing video streams in which all frames share the same quantization and Huffman tables.
          Parameters:
          jpegImage - buffer containing a JPEG source image or tables-only datastream. This buffer is not modified.
          imageSize - size of the JPEG source image or tables-only datastream (in bytes)
          Throws:
          TJException
        • setSourceImage

          public void setSourceImage(YUVImage srcImage)
          Associate the specified planar YUV source image with this decompressor instance. Subsequent decompression operations will decode this image into a packed-pixel RGB or grayscale destination image.
          Parameters:
          srcImage - YUVImage instance containing a planar YUV source image to be decoded. This image is not modified.
        • getWidth

          public int getWidth()
          Returns the width of the source image (JPEG or YUV) associated with this decompressor instance.
          Returns:
          the width of the source image (JPEG or YUV) associated with this decompressor instance.
        • getHeight

          public int getHeight()
          Returns the height of the source image (JPEG or YUV) associated with this decompressor instance.
          Returns:
          the height of the source image (JPEG or YUV) associated with this decompressor instance.
        • getSubsamp

          public int getSubsamp()
          Returns the level of chrominance subsampling used in the source image (JPEG or YUV) associated with this decompressor instance. See TJ.SAMP_*.
          Returns:
          the level of chrominance subsampling used in the source image (JPEG or YUV) associated with this decompressor instance.
        • getColorspace

          public int getColorspace()
          Returns the colorspace used in the source image (JPEG or YUV) associated with this decompressor instance. See TJ.CS_*. If the source image is YUV, then this always returns TJ.CS_YCbCr.
          Returns:
          the colorspace used in the source image (JPEG or YUV) associated with this decompressor instance.
        • getJPEGBuf

          public byte[] getJPEGBuf()
          Returns the JPEG buffer associated with this decompressor instance.
          Returns:
          the JPEG buffer associated with this decompressor instance.
        • getJPEGSize

          public int getJPEGSize()
          Returns the size of the JPEG image (in bytes) associated with this decompressor instance.
          Returns:
          the size of the JPEG image (in bytes) associated with this decompressor instance.
        • getScaledWidth

          public int getScaledWidth(int desiredWidth,
                           int desiredHeight)
          Returns the width of the largest scaled-down image that the TurboJPEG decompressor can generate without exceeding the desired image width and height.
          Parameters:
          desiredWidth - desired width (in pixels) of the decompressed image. Setting this to 0 is the same as setting it to the width of the JPEG image. (In other words, the width will not be considered when determining the scaled image size.)
          desiredHeight - desired height (in pixels) of the decompressed image. Setting this to 0 is the same as setting it to the height of the JPEG image. (In other words, the height will not be considered when determining the scaled image size.)
          Returns:
          the width of the largest scaled-down image that the TurboJPEG decompressor can generate without exceeding the desired image width and height.
        • getScaledHeight

          public int getScaledHeight(int desiredWidth,
                            int desiredHeight)
          Returns the height of the largest scaled-down image that the TurboJPEG decompressor can generate without exceeding the desired image width and height.
          Parameters:
          desiredWidth - desired width (in pixels) of the decompressed image. Setting this to 0 is the same as setting it to the width of the JPEG image. (In other words, the width will not be considered when determining the scaled image size.)
          desiredHeight - desired height (in pixels) of the decompressed image. Setting this to 0 is the same as setting it to the height of the JPEG image. (In other words, the height will not be considered when determining the scaled image size.)
          Returns:
          the height of the largest scaled-down image that the TurboJPEG decompressor can generate without exceeding the desired image width and height.
        • decompress

          public void decompress(byte[] dstBuf,
                        int x,
                        int y,
                        int desiredWidth,
                        int pitch,
                        int desiredHeight,
                        int pixelFormat,
                        int flags)
                          throws TJException
          Decompress the JPEG source image or decode the planar YUV source image associated with this decompressor instance and output a packed-pixel grayscale, RGB, or CMYK image to the given destination buffer.

          NOTE: The destination image is fully recoverable if this method throws a non-fatal TJException (unless TJ.FLAG_STOPONWARNING is specified.)

          Parameters:
          dstBuf - buffer that will receive the packed-pixel decompressed/decoded image. If the source image is a JPEG image, then this buffer should normally be pitch * scaledHeight bytes in size, where scaledHeight can be determined by calling scalingFactor.getScaled(jpegHeight) with one of the scaling factors returned from TJ.getScalingFactors() or by calling getScaledHeight(int, int). If the source image is a YUV image, then this buffer should normally be pitch * height bytes in size, where height is the height of the YUV image. However, the buffer may also be larger than the dimensions of the source image, in which case the x, y, and pitch parameters can be used to specify the region into which the source image should be decompressed/decoded.
          x - x offset (in pixels) of the region in the destination image into which the source image should be decompressed/decoded
          y - y offset (in pixels) of the region in the destination image into which the source image should be decompressed/decoded
          desiredWidth - If the source image is a JPEG image, then this specifies the desired width (in pixels) of the decompressed image (or image region.) If the desired destination image dimensions are different than the source image dimensions, then TurboJPEG will use scaling in the JPEG decompressor to generate the largest possible image that will fit within the desired dimensions. Setting this to 0 is the same as setting it to the width of the JPEG image. (In other words, the width will not be considered when determining the scaled image size.) This parameter is ignored if the source image is a YUV image.
          pitch - bytes per row in the destination image. Normally this should be set to scaledWidth * TJ.getPixelSize(pixelFormat), if the destination image will be unpadded. However, you can use this to, for instance, pad each row of the destination image to the nearest multiple of 4 bytes or to decompress/decode the source image into a region of a larger image. NOTE: if the source image is a JPEG image, then scaledWidth can be determined by calling scalingFactor.getScaled(jpegWidth) or by calling getScaledWidth(int, int). If the source image is a YUV image, then scaledWidth is the width of the YUV image. Setting this parameter to 0 is the equivalent of setting it to scaledWidth * TJ.getPixelSize(pixelFormat).
          desiredHeight - If the source image is a JPEG image, then this specifies the desired height (in pixels) of the decompressed image (or image region.) If the desired destination image dimensions are different than the source image dimensions, then TurboJPEG will use scaling in the JPEG decompressor to generate the largest possible image that will fit within the desired dimensions. Setting this to 0 is the same as setting it to the height of the JPEG image. (In other words, the height will not be considered when determining the scaled image size.) This parameter is ignored if the source image is a YUV image.
          pixelFormat - pixel format of the decompressed/decoded image (one of TJ.PF_*)
          flags - the bitwise OR of one or more of TJ.FLAG_*
          Throws:
          TJException
        • decompressToYUV

          public void decompressToYUV(YUVImage dstImage,
                             int flags)
                               throws TJException
          Decompress the JPEG source image associated with this decompressor instance into a planar YUV image and store it in the given YUVImage instance. This method performs JPEG decompression but leaves out the color conversion step, so a planar YUV image is generated instead of a packed-pixel image. This method cannot be used to decompress JPEG source images with the CMYK or YCCK colorspace.

          NOTE: The planar YUV destination image is fully recoverable if this method throws a non-fatal TJException (unless TJ.FLAG_STOPONWARNING is specified.)

          Parameters:
          dstImage - YUVImage instance that will receive the planar YUV decompressed image. The level of subsampling specified in this YUVImage instance must match that of the JPEG image, and the width and height specified in the YUVImage instance must match one of the scaled image sizes that the decompressor is capable of generating from the JPEG source image.
          flags - the bitwise OR of one or more of TJ.FLAG_*
          Throws:
          TJException
        • decompressToYUV

          public YUVImage decompressToYUV(int desiredWidth,
                                 int[] strides,
                                 int desiredHeight,
                                 int flags)
                                   throws TJException
          Decompress the JPEG source image associated with this decompressor instance into a set of Y, U (Cb), and V (Cr) image planes and return a YUVImage instance containing the decompressed image planes. This method performs JPEG decompression but leaves out the color conversion step, so a planar YUV image is generated instead of a packed-pixel image. This method cannot be used to decompress JPEG source images with the CMYK or YCCK colorspace.
          Parameters:
          desiredWidth - desired width (in pixels) of the YUV image. If the desired image dimensions are different than the dimensions of the JPEG image being decompressed, then TurboJPEG will use scaling in the JPEG decompressor to generate the largest possible image that will fit within the desired dimensions. Setting this to 0 is the same as setting it to the width of the JPEG image. (In other words, the width will not be considered when determining the scaled image size.)
          strides - an array of integers, each specifying the number of bytes per row in the corresponding plane of the YUV image. Setting the stride for any plane to 0 is the same as setting it to the scaled plane width (see YUVImage.) If strides is null, then the strides for all planes will be set to their respective scaled plane widths. You can adjust the strides in order to add an arbitrary amount of row padding to each plane.
          desiredHeight - desired height (in pixels) of the YUV image. If the desired image dimensions are different than the dimensions of the JPEG image being decompressed, then TurboJPEG will use scaling in the JPEG decompressor to generate the largest possible image that will fit within the desired dimensions. Setting this to 0 is the same as setting it to the height of the JPEG image. (In other words, the height will not be considered when determining the scaled image size.)
          flags - the bitwise OR of one or more of TJ.FLAG_*
          Returns:
          a YUVImage instance containing the decompressed image planes
          Throws:
          TJException
        • decompressToYUV

          public YUVImage decompressToYUV(int desiredWidth,
                                 int align,
                                 int desiredHeight,
                                 int flags)
                                   throws TJException
          Decompress the JPEG source image associated with this decompressor instance into a unified planar YUV image and return a YUVImage instance containing the decompressed image. This method performs JPEG decompression but leaves out the color conversion step, so a planar YUV image is generated instead of a packed-pixel image. This method cannot be used to decompress JPEG source images with the CMYK or YCCK colorspace.
          Parameters:
          desiredWidth - desired width (in pixels) of the YUV image. If the desired image dimensions are different than the dimensions of the JPEG image being decompressed, then TurboJPEG will use scaling in the JPEG decompressor to generate the largest possible image that will fit within the desired dimensions. Setting this to 0 is the same as setting it to the width of the JPEG image. (In other words, the width will not be considered when determining the scaled image size.)
          align - row alignment (in bytes) of the YUV image (must be a power of 2.) Setting this parameter to n will cause each row in each plane of the YUV image to be padded to the nearest multiple of n bytes (1 = unpadded.)
          desiredHeight - desired height (in pixels) of the YUV image. If the desired image dimensions are different than the dimensions of the JPEG image being decompressed, then TurboJPEG will use scaling in the JPEG decompressor to generate the largest possible image that will fit within the desired dimensions. Setting this to 0 is the same as setting it to the height of the JPEG image. (In other words, the height will not be considered when determining the scaled image size.)
          flags - the bitwise OR of one or more of TJ.FLAG_*
          Returns:
          a YUVImage instance containing the unified planar YUV decompressed image
          Throws:
          TJException
        • decompress

          public void decompress(int[] dstBuf,
                        int x,
                        int y,
                        int desiredWidth,
                        int stride,
                        int desiredHeight,
                        int pixelFormat,
                        int flags)
                          throws TJException
          Decompress the JPEG source image or decode the planar YUV source image associated with this decompressor instance and output a packed-pixel grayscale, RGB, or CMYK image to the given destination buffer.

          NOTE: The destination image is fully recoverable if this method throws a non-fatal TJException (unless TJ.FLAG_STOPONWARNING is specified.)

          Parameters:
          dstBuf - buffer that will receive the packed-pixel decompressed/decoded image. If the source image is a JPEG image, then this buffer should normally be stride * scaledHeight pixels in size, where scaledHeight can be determined by calling scalingFactor.getScaled(jpegHeight) with one of the scaling factors returned from TJ.getScalingFactors() or by calling getScaledHeight(int, int). If the source image is a YUV image, then this buffer should normally be stride * height pixels in size, where height is the height of the YUV image. However, the buffer may also be larger than the dimensions of the JPEG image, in which case the x, y, and stride parameters can be used to specify the region into which the source image should be decompressed.
          x - x offset (in pixels) of the region in the destination image into which the source image should be decompressed/decoded
          y - y offset (in pixels) of the region in the destination image into which the source image should be decompressed/decoded
          desiredWidth - If the source image is a JPEG image, then this specifies the desired width (in pixels) of the decompressed image (or image region.) If the desired destination image dimensions are different than the source image dimensions, then TurboJPEG will use scaling in the JPEG decompressor to generate the largest possible image that will fit within the desired dimensions. Setting this to 0 is the same as setting it to the width of the JPEG image. (In other words, the width will not be considered when determining the scaled image size.) This parameter is ignored if the source image is a YUV image.
          stride - pixels per row in the destination image. Normally this should be set to scaledWidth, but you can use this to, for instance, decompress the JPEG image into a region of a larger image. NOTE: if the source image is a JPEG image, then scaledWidth can be determined by calling scalingFactor.getScaled(jpegWidth) or by calling getScaledWidth(int, int). If the source image is a YUV image, then scaledWidth is the width of the YUV image. Setting this parameter to 0 is the equivalent of setting it to scaledWidth.
          desiredHeight - If the source image is a JPEG image, then this specifies the desired height (in pixels) of the decompressed image (or image region.) If the desired destination image dimensions are different than the source image dimensions, then TurboJPEG will use scaling in the JPEG decompressor to generate the largest possible image that will fit within the desired dimensions. Setting this to 0 is the same as setting it to the height of the JPEG image. (In other words, the height will not be considered when determining the scaled image size.) This parameter is ignored if the source image is a YUV image.
          pixelFormat - pixel format of the decompressed image (one of TJ.PF_*)
          flags - the bitwise OR of one or more of TJ.FLAG_*
          Throws:
          TJException
        • decompress

          public void decompress(java.awt.image.BufferedImage dstImage,
                        int flags)
                          throws TJException
          Decompress the JPEG source image or decode the planar YUV source image associated with this decompressor instance and output a packed-pixel decompressed/decoded image to the given BufferedImage instance.

          NOTE: The destination image is fully recoverable if this method throws a non-fatal TJException (unless TJ.FLAG_STOPONWARNING is specified.)

          Parameters:
          dstImage - a BufferedImage instance that will receive the packed-pixel decompressed/decoded image. If the source image is a JPEG image, then the width and height of the BufferedImage instance must match one of the scaled image sizes that the decompressor is capable of generating from the JPEG image. If the source image is a YUV image, then the width and height of the BufferedImage instance must match the width and height of the YUV image.
          flags - the bitwise OR of one or more of TJ.FLAG_*
          Throws:
          TJException
        • decompress

          public java.awt.image.BufferedImage decompress(int desiredWidth,
                                                int desiredHeight,
                                                int bufferedImageType,
                                                int flags)
                                                  throws TJException
          Decompress the JPEG source image or decode the planar YUV source image associated with this decompressor instance and return a BufferedImage instance containing the packed-pixel decompressed/decoded image.
          Parameters:
          desiredWidth - see decompress(byte[], int, int, int, int, int, int, int) for description
          desiredHeight - see decompress(byte[], int, int, int, int, int, int, int) for description
          bufferedImageType - the image type of the BufferedImage instance that will be created (for instance, BufferedImage.TYPE_INT_RGB)
          flags - the bitwise OR of one or more of TJ.FLAG_*
          Returns:
          a BufferedImage instance containing the packed-pixel decompressed/decoded image.
          Throws:
          TJException
        • close

          public void close()
                     throws TJException
          Free the native structures associated with this decompressor instance.
          Specified by:
          close in interface java.io.Closeable
          Specified by:
          close in interface java.lang.AutoCloseable
          Throws:
          TJException
        • finalize

          protected void finalize()
                           throws java.lang.Throwable
          Overrides:
          finalize in class java.lang.Object
          Throws:
          java.lang.Throwable
    libjpeg-turbo-2.1.5/java/doc/org/libjpegturbo/turbojpeg/TJException.html000066400000000000000000000262011436506551100263230ustar00rootroot00000000000000 TJException
    org.libjpegturbo.turbojpeg

    Class TJException

    • java.lang.Object
      • java.lang.Throwable
        • java.lang.Exception
          • java.io.IOException
            • org.libjpegturbo.turbojpeg.TJException
    • All Implemented Interfaces:
      java.io.Serializable


      public class TJException
      extends java.io.IOException
      See Also:
      Serialized Form
      • Constructor Summary

        Constructors 
        Constructor and Description
        TJException() 
        TJException(java.lang.String message) 
        TJException(java.lang.String message, int code) 
        TJException(java.lang.String message, java.lang.Throwable cause) 
        TJException(java.lang.Throwable cause) 
      • Method Summary

        Methods 
        Modifier and Type Method and Description
        int getErrorCode()
        Returns a code (one of TJ.ERR_*) indicating the severity of the last error.
        • Methods inherited from class java.lang.Throwable

          addSuppressed, fillInStackTrace, getCause, getLocalizedMessage, getMessage, getStackTrace, getSuppressed, initCause, printStackTrace, printStackTrace, printStackTrace, setStackTrace, toString
        • Methods inherited from class java.lang.Object

          clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait
      • Constructor Detail

        • TJException

          public TJException()
        • TJException

          public TJException(java.lang.String message,
                     java.lang.Throwable cause)
        • TJException

          public TJException(java.lang.String message)
        • TJException

          public TJException(java.lang.String message,
                     int code)
        • TJException

          public TJException(java.lang.Throwable cause)
      • Method Detail

        • getErrorCode

          public int getErrorCode()
          Returns a code (one of TJ.ERR_*) indicating the severity of the last error.
          Returns:
          a code (one of TJ.ERR_*) indicating the severity of the last error.
    libjpeg-turbo-2.1.5/java/doc/org/libjpegturbo/turbojpeg/TJScalingFactor.html000066400000000000000000000274311436506551100271120ustar00rootroot00000000000000 TJScalingFactor
    org.libjpegturbo.turbojpeg

    Class TJScalingFactor

    • java.lang.Object
      • org.libjpegturbo.turbojpeg.TJScalingFactor


    • public class TJScalingFactor
      extends java.lang.Object
      Fractional scaling factor
      • Constructor Summary

        Constructors 
        Constructor and Description
        TJScalingFactor(int num, int denom)
        Create a TurboJPEG scaling factor instance.
      • Method Summary

        Methods 
        Modifier and Type Method and Description
        boolean equals(TJScalingFactor other)
        Returns true or false, depending on whether this instance and other have the same numerator and denominator.
        int getDenom()
        Returns denominator
        int getNum()
        Returns numerator
        int getScaled(int dimension)
        Returns the scaled value of dimension.
        boolean isOne()
        Returns true or false, depending on whether this instance is equal to 1/1.
        • Methods inherited from class java.lang.Object

          clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
      • Constructor Detail

        • TJScalingFactor

          public TJScalingFactor(int num,
                         int denom)
          Create a TurboJPEG scaling factor instance.
          Parameters:
          num - numerator
          denom - denominator
      • Method Detail

        • getNum

          public int getNum()
          Returns numerator
          Returns:
          numerator
        • getDenom

          public int getDenom()
          Returns denominator
          Returns:
          denominator
        • getScaled

          public int getScaled(int dimension)
          Returns the scaled value of dimension. This function performs the integer equivalent of ceil(dimension * scalingFactor).
          Parameters:
          dimension - width or height to multiply by this scaling factor
          Returns:
          the scaled value of dimension.
        • equals

          public boolean equals(TJScalingFactor other)
          Returns true or false, depending on whether this instance and other have the same numerator and denominator.
          Parameters:
          other - the scaling factor against which to compare this one
          Returns:
          true or false, depending on whether this instance and other have the same numerator and denominator.
        • isOne

          public boolean isOne()
          Returns true or false, depending on whether this instance is equal to 1/1.
          Returns:
          true or false, depending on whether this instance is equal to 1/1.
    libjpeg-turbo-2.1.5/java/doc/org/libjpegturbo/turbojpeg/TJTransform.html000066400000000000000000001016141436506551100263420ustar00rootroot00000000000000 TJTransform
    org.libjpegturbo.turbojpeg

    Class TJTransform

    • java.lang.Object
      • java.awt.geom.RectangularShape
        • java.awt.geom.Rectangle2D
          • java.awt.Rectangle
            • org.libjpegturbo.turbojpeg.TJTransform
    • All Implemented Interfaces:
      java.awt.Shape, java.io.Serializable, java.lang.Cloneable


      public class TJTransform
      extends java.awt.Rectangle
      Lossless transform parameters
      See Also:
      Serialized Form
      • Nested Class Summary

        • Nested classes/interfaces inherited from class java.awt.geom.Rectangle2D

          java.awt.geom.Rectangle2D.Double, java.awt.geom.Rectangle2D.Float
      • Field Summary

        Fields 
        Modifier and Type Field and Description
        TJCustomFilter cf
        Custom filter instance
        static int NUMOP
        The number of lossless transform operations
        int op
        Transform operation (one of OP_*)
        static int OP_HFLIP
        Flip (mirror) image horizontally.
        static int OP_NONE
        Do not transform the position of the image pixels.
        static int OP_ROT180
        Rotate image 180 degrees.
        static int OP_ROT270
        Rotate image counter-clockwise by 90 degrees.
        static int OP_ROT90
        Rotate image clockwise by 90 degrees.
        static int OP_TRANSPOSE
        Transpose image (flip/mirror along upper left to lower right axis).
        static int OP_TRANSVERSE
        Transverse transpose image (flip/mirror along upper right to lower left axis).
        static int OP_VFLIP
        Flip (mirror) image vertically.
        static int OPT_COPYNONE
        This option will prevent TJTransformer.transform() from copying any extra markers (including EXIF and ICC profile data) from the source image to the destination image.
        static int OPT_CROP
        This option will enable lossless cropping.
        static int OPT_GRAY
        This option will discard the color data in the source image and produce a grayscale destination image.
        static int OPT_NOOUTPUT
        This option will prevent TJTransformer.transform() from outputting a JPEG image for this particular transform.
        static int OPT_PERFECT
        This option will cause TJTransformer.transform() to throw an exception if the transform is not perfect.
        static int OPT_PROGRESSIVE
        This option will enable progressive entropy coding in the JPEG image generated by this particular transform.
        static int OPT_TRIM
        This option will discard any partial MCU blocks that cannot be transformed.
        int options
        Transform options (bitwise OR of one or more of OPT_*)
        • Fields inherited from class java.awt.Rectangle

          height, width, x, y
        • Fields inherited from class java.awt.geom.Rectangle2D

          OUT_BOTTOM, OUT_LEFT, OUT_RIGHT, OUT_TOP
      • Constructor Summary

        Constructors 
        Constructor and Description
        TJTransform()
        Create a new lossless transform instance.
        TJTransform(int x, int y, int w, int h, int op, int options, TJCustomFilter cf)
        Create a new lossless transform instance with the given parameters.
        TJTransform(java.awt.Rectangle r, int op, int options, TJCustomFilter cf)
        Create a new lossless transform instance with the given parameters.
      • Method Summary

        • Methods inherited from class java.awt.Rectangle

          add, add, add, contains, contains, contains, contains, createIntersection, createUnion, equals, getBounds, getBounds2D, getHeight, getLocation, getSize, getWidth, getX, getY, grow, inside, intersection, intersects, isEmpty, move, outcode, reshape, resize, setBounds, setBounds, setLocation, setLocation, setRect, setSize, setSize, toString, translate, union
        • Methods inherited from class java.awt.geom.Rectangle2D

          add, add, add, contains, contains, getPathIterator, getPathIterator, hashCode, intersect, intersects, intersectsLine, intersectsLine, outcode, setFrame, setRect, union
        • Methods inherited from class java.awt.geom.RectangularShape

          clone, contains, contains, getCenterX, getCenterY, getFrame, getMaxX, getMaxY, getMinX, getMinY, intersects, setFrame, setFrame, setFrameFromCenter, setFrameFromCenter, setFrameFromDiagonal, setFrameFromDiagonal
        • Methods inherited from class java.lang.Object

          finalize, getClass, notify, notifyAll, wait, wait, wait
        • Methods inherited from interface java.awt.Shape

          contains, contains, contains, contains, getPathIterator, getPathIterator, intersects, intersects
      • Field Detail

        • NUMOP

          public static final int NUMOP
          The number of lossless transform operations
          See Also:
          Constant Field Values
        • OP_NONE

          public static final int OP_NONE
          Do not transform the position of the image pixels.
          See Also:
          Constant Field Values
        • OP_HFLIP

          public static final int OP_HFLIP
          Flip (mirror) image horizontally. This transform is imperfect if there are any partial MCU blocks on the right edge.
          See Also:
          OPT_PERFECT, Constant Field Values
        • OP_VFLIP

          public static final int OP_VFLIP
          Flip (mirror) image vertically. This transform is imperfect if there are any partial MCU blocks on the bottom edge.
          See Also:
          OPT_PERFECT, Constant Field Values
        • OP_TRANSPOSE

          public static final int OP_TRANSPOSE
          Transpose image (flip/mirror along upper left to lower right axis). This transform is always perfect.
          See Also:
          OPT_PERFECT, Constant Field Values
        • OP_TRANSVERSE

          public static final int OP_TRANSVERSE
          Transverse transpose image (flip/mirror along upper right to lower left axis). This transform is imperfect if there are any partial MCU blocks in the image.
          See Also:
          OPT_PERFECT, Constant Field Values
        • OP_ROT90

          public static final int OP_ROT90
          Rotate image clockwise by 90 degrees. This transform is imperfect if there are any partial MCU blocks on the bottom edge.
          See Also:
          OPT_PERFECT, Constant Field Values
        • OP_ROT180

          public static final int OP_ROT180
          Rotate image 180 degrees. This transform is imperfect if there are any partial MCU blocks in the image.
          See Also:
          OPT_PERFECT, Constant Field Values
        • OP_ROT270

          public static final int OP_ROT270
          Rotate image counter-clockwise by 90 degrees. This transform is imperfect if there are any partial MCU blocks on the right edge.
          See Also:
          OPT_PERFECT, Constant Field Values
        • OPT_PERFECT

          public static final int OPT_PERFECT
          This option will cause TJTransformer.transform() to throw an exception if the transform is not perfect. Lossless transforms operate on MCU blocks, whose size depends on the level of chrominance subsampling used. If the image's width or height is not evenly divisible by the MCU block size (see TJ.getMCUWidth(int) and TJ.getMCUHeight(int)), then there will be partial MCU blocks on the right and/or bottom edges. It is not possible to move these partial MCU blocks to the top or left of the image, so any transform that would require that is "imperfect." If this option is not specified, then any partial MCU blocks that cannot be transformed will be left in place, which will create odd-looking strips on the right or bottom edge of the image.
          See Also:
          Constant Field Values
        • OPT_TRIM

          public static final int OPT_TRIM
          This option will discard any partial MCU blocks that cannot be transformed.
          See Also:
          Constant Field Values
        • OPT_CROP

          public static final int OPT_CROP
          This option will enable lossless cropping.
          See Also:
          Constant Field Values
        • OPT_GRAY

          public static final int OPT_GRAY
          This option will discard the color data in the source image and produce a grayscale destination image.
          See Also:
          Constant Field Values
        • OPT_NOOUTPUT

          public static final int OPT_NOOUTPUT
          This option will prevent TJTransformer.transform() from outputting a JPEG image for this particular transform. This can be used in conjunction with a custom filter to capture the transformed DCT coefficients without transcoding them.
          See Also:
          Constant Field Values
        • OPT_PROGRESSIVE

          public static final int OPT_PROGRESSIVE
          This option will enable progressive entropy coding in the JPEG image generated by this particular transform. Progressive entropy coding will generally improve compression relative to baseline entropy coding (the default), but it will reduce decompression performance considerably.
          See Also:
          Constant Field Values
        • OPT_COPYNONE

          public static final int OPT_COPYNONE
          This option will prevent TJTransformer.transform() from copying any extra markers (including EXIF and ICC profile data) from the source image to the destination image.
          See Also:
          Constant Field Values
        • op

          public int op
          Transform operation (one of OP_*)
        • options

          public int options
          Transform options (bitwise OR of one or more of OPT_*)
      • Constructor Detail

        • TJTransform

          public TJTransform()
          Create a new lossless transform instance.
        • TJTransform

          public TJTransform(int x,
                     int y,
                     int w,
                     int h,
                     int op,
                     int options,
                     TJCustomFilter cf)
          Create a new lossless transform instance with the given parameters.
          Parameters:
          x - the left boundary of the cropping region. This must be evenly divisible by the MCU block width (see TJ.getMCUWidth(int))
          y - the upper boundary of the cropping region. This must be evenly divisible by the MCU block height (see TJ.getMCUHeight(int))
          w - the width of the cropping region. Setting this to 0 is the equivalent of setting it to (width of the source JPEG image - x).
          h - the height of the cropping region. Setting this to 0 is the equivalent of setting it to (height of the source JPEG image - y).
          op - one of the transform operations (OP_*)
          options - the bitwise OR of one or more of the transform options (OPT_*)
          cf - an instance of an object that implements the TJCustomFilter interface, or null if no custom filter is needed
        • TJTransform

          public TJTransform(java.awt.Rectangle r,
                     int op,
                     int options,
                     TJCustomFilter cf)
          Create a new lossless transform instance with the given parameters.
          Parameters:
          r - a Rectangle instance that specifies the cropping region. See TJTransform(int, int, int, int, int, int, TJCustomFilter) for more detail.
          op - one of the transform operations (OP_*)
          options - the bitwise OR of one or more of the transform options (OPT_*)
          cf - an instance of an object that implements the TJCustomFilter interface, or null if no custom filter is needed
    libjpeg-turbo-2.1.5/java/doc/org/libjpegturbo/turbojpeg/TJTransformer.html000066400000000000000000000551031436506551100266720ustar00rootroot00000000000000 TJTransformer
    org.libjpegturbo.turbojpeg

    Class TJTransformer

    • All Implemented Interfaces:
      java.io.Closeable, java.lang.AutoCloseable


      public class TJTransformer
      extends TJDecompressor
      TurboJPEG lossless transformer
      • Constructor Detail

        • TJTransformer

          public TJTransformer()
                        throws TJException
          Create a TurboJPEG lossless transformer instance.
          Throws:
          TJException
        • TJTransformer

          public TJTransformer(byte[] jpegImage)
                        throws TJException
          Create a TurboJPEG lossless transformer instance and associate the JPEG source image stored in jpegImage with the newly created instance.
          Parameters:
          jpegImage - buffer containing the JPEG source image to transform. (The size of the JPEG image is assumed to be the length of the array.) This buffer is not modified.
          Throws:
          TJException
        • TJTransformer

          public TJTransformer(byte[] jpegImage,
                       int imageSize)
                        throws TJException
          Create a TurboJPEG lossless transformer instance and associate the JPEG source image of length imageSize bytes stored in jpegImage with the newly created instance.
          Parameters:
          jpegImage - buffer containing the JPEG source image to transform. This buffer is not modified.
          imageSize - size of the JPEG source image (in bytes)
          Throws:
          TJException
      • Method Detail

        • transform

          public void transform(byte[][] dstBufs,
                       TJTransform[] transforms,
                       int flags)
                         throws TJException
          Losslessly transform the JPEG source image associated with this transformer instance into one or more JPEG images stored in the given destination buffers. Lossless transforms work by moving the raw coefficients from one JPEG image structure to another without altering the values of the coefficients. While this is typically faster than decompressing the image, transforming it, and re-compressing it, lossless transforms are not free. Each lossless transform requires reading and performing Huffman decoding on all of the coefficients in the source image, regardless of the size of the destination image. Thus, this method provides a means of generating multiple transformed images from the same source or of applying multiple transformations simultaneously, in order to eliminate the need to read the source coefficients multiple times.
          Parameters:
          dstBufs - an array of JPEG destination buffers. dstbufs[i] will receive a JPEG image that has been transformed using the parameters in transforms[i]. Use TJ.bufSize(int, int, int) to determine the maximum size for each buffer based on the transformed or cropped width and height and the level of subsampling used in the source image.
          transforms - an array of TJTransform instances, each of which specifies the transform parameters and/or cropping region for the corresponding transformed JPEG image
          flags - the bitwise OR of one or more of TJ.FLAG_*
          Throws:
          TJException
        • transform

          public TJDecompressor[] transform(TJTransform[] transforms,
                                   int flags)
                                     throws TJException
          Losslessly transform the JPEG source image associated with this transformer instance and return an array of TJDecompressor instances, each of which has a transformed JPEG image associated with it.
          Parameters:
          transforms - an array of TJTransform instances, each of which specifies the transform parameters and/or cropping region for the corresponding transformed JPEG image
          flags - the bitwise OR of one or more of TJ.FLAG_*
          Returns:
          an array of TJDecompressor instances, each of which has a transformed JPEG image associated with it.
          Throws:
          TJException
        • getTransformedSizes

          public int[] getTransformedSizes()
          Returns an array containing the sizes of the transformed JPEG images (in bytes) generated by the most recent transform operation.
          Returns:
          an array containing the sizes of the transformed JPEG images (in bytes) generated by the most recent transform operation.
    libjpeg-turbo-2.1.5/java/doc/org/libjpegturbo/turbojpeg/YUVImage.html000066400000000000000000000773031436506551100255660ustar00rootroot00000000000000 YUVImage
    org.libjpegturbo.turbojpeg

    Class YUVImage

    • java.lang.Object
      • org.libjpegturbo.turbojpeg.YUVImage


    • public class YUVImage
      extends java.lang.Object
      This class encapsulates a planar YUV image and the metadata associated with it. The TurboJPEG API allows both the JPEG compression and decompression pipelines to be split into stages: YUV encode, compress from YUV, decompress to YUV, and YUV decode. A YUVImage instance serves as the destination image for YUV encode and decompress-to-YUV operations and as the source image for compress-from-YUV and YUV decode operations.

      Technically, the JPEG format uses the YCbCr colorspace (which is technically not a colorspace but a color transform), but per the convention of the digital video community, the TurboJPEG API uses "YUV" to refer to an image format consisting of Y, Cb, and Cr image planes.

      Each plane is simply a 2D array of bytes, each byte representing the value of one of the components (Y, Cb, or Cr) at a particular location in the image. The width and height of each plane are determined by the image width, height, and level of chrominance subsampling. The luminance plane width is the image width padded to the nearest multiple of the horizontal subsampling factor (1 in the case of 4:4:4, grayscale, or 4:4:0; 2 in the case of 4:2:2 or 4:2:0; 4 in the case of 4:1:1.) Similarly, the luminance plane height is the image height padded to the nearest multiple of the vertical subsampling factor (1 in the case of 4:4:4, 4:2:2, grayscale, or 4:1:1; 2 in the case of 4:2:0 or 4:4:0.) This is irrespective of any additional padding that may be specified as an argument to the various YUVImage methods. The chrominance plane width is equal to the luminance plane width divided by the horizontal subsampling factor, and the chrominance plane height is equal to the luminance plane height divided by the vertical subsampling factor.

      For example, if the source image is 35 x 35 pixels and 4:2:2 subsampling is used, then the luminance plane would be 36 x 35 bytes, and each of the chrominance planes would be 18 x 35 bytes. If you specify a row alignment of 4 bytes on top of this, then the luminance plane would be 36 x 35 bytes, and each of the chrominance planes would be 20 x 35 bytes.

      • Constructor Summary

        Constructors 
        Constructor and Description
        YUVImage(byte[][] planes, int[] offsets, int width, int[] strides, int height, int subsamp)
        Create a new YUVImage instance from a set of existing image planes.
        YUVImage(byte[] yuvImage, int width, int align, int height, int subsamp)
        Create a new YUVImage instance from an existing unified buffer.
        YUVImage(int width, int[] strides, int height, int subsamp)
        Create a new YUVImage instance backed by separate image planes, and allocate memory for the image planes.
        YUVImage(int width, int align, int height, int subsamp)
        Create a new YUVImage instance backed by a unified buffer, and allocate memory for the buffer.
      • Method Summary

        Methods 
        Modifier and Type Method and Description
        byte[] getBuf()
        Returns the YUV buffer (if this image is stored in a unified buffer rather than separate image planes.)
        int getHeight()
        Returns the height of the YUV image (or subregion.)
        int[] getOffsets()
        Returns the offsets (in bytes) of each plane within the planes of a larger YUV image.
        int getPad()
        Returns the row alignment (in bytes) of the YUV buffer (if this image is stored in a unified buffer rather than separate image planes.)
        byte[][] getPlanes()
        Returns the YUV image planes.
        int getSize()
        Returns the size (in bytes) of the YUV buffer (if this image is stored in a unified buffer rather than separate image planes.)
        int[] getStrides()
        Returns the number of bytes per row of each plane in the YUV image.
        int getSubsamp()
        Returns the level of chrominance subsampling used in the YUV image.
        int getWidth()
        Returns the width of the YUV image (or subregion.)
        void setBuf(byte[][] planes, int[] offsets, int width, int[] strides, int height, int subsamp)
        Assign a set of image planes to this YUVImage instance.
        void setBuf(byte[] yuvImage, int width, int align, int height, int subsamp)
        Assign a unified buffer to this YUVImage instance.
        • Methods inherited from class java.lang.Object

          clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
      • Field Detail

        • handle

          protected long handle
        • yuvPlanes

          protected byte[][] yuvPlanes
        • yuvOffsets

          protected int[] yuvOffsets
        • yuvStrides

          protected int[] yuvStrides
        • yuvAlign

          protected int yuvAlign
        • yuvWidth

          protected int yuvWidth
        • yuvHeight

          protected int yuvHeight
        • yuvSubsamp

          protected int yuvSubsamp
      • Constructor Detail

        • YUVImage

          public YUVImage(int width,
                  int[] strides,
                  int height,
                  int subsamp)
          Create a new YUVImage instance backed by separate image planes, and allocate memory for the image planes.
          Parameters:
          width - width (in pixels) of the YUV image
          strides - an array of integers, each specifying the number of bytes per row in the corresponding plane of the YUV image. Setting the stride for any plane to 0 is the same as setting it to the plane width (see above.) If strides is null, then the strides for all planes will be set to their respective plane widths. When using this constructor, the stride for each plane must be equal to or greater than the plane width.
          height - height (in pixels) of the YUV image
          subsamp - the level of chrominance subsampling to be used in the YUV image (one of TJ.SAMP_*)
        • YUVImage

          public YUVImage(int width,
                  int align,
                  int height,
                  int subsamp)
          Create a new YUVImage instance backed by a unified buffer, and allocate memory for the buffer.
          Parameters:
          width - width (in pixels) of the YUV image
          align - row alignment (in bytes) of the YUV image (must be a power of 2.) Setting this parameter to n specifies that each row in each plane of the YUV image will be padded to the nearest multiple of n bytes (1 = unpadded.)
          height - height (in pixels) of the YUV image
          subsamp - the level of chrominance subsampling to be used in the YUV image (one of TJ.SAMP_*)
        • YUVImage

          public YUVImage(byte[][] planes,
                  int[] offsets,
                  int width,
                  int[] strides,
                  int height,
                  int subsamp)
          Create a new YUVImage instance from a set of existing image planes.
          Parameters:
          planes - an array of buffers representing the Y, U (Cb), and V (Cr) image planes (or just the Y plane, if the image is grayscale.) These planes can be contiguous or non-contiguous in memory. Plane i should be at least offsets[i] + TJ.planeSizeYUV(i, width, strides[i], height, subsamp) bytes in size.
          offsets - If this YUVImage instance represents a subregion of a larger image, then offsets[i] specifies the offset (in bytes) of the subregion within plane i of the larger image. Setting this to null is the same as setting the offsets for all planes to 0.
          width - width (in pixels) of the new YUV image (or subregion)
          strides - an array of integers, each specifying the number of bytes per row in the corresponding plane of the YUV image. Setting the stride for any plane to 0 is the same as setting it to the plane width (see above.) If strides is null, then the strides for all planes will be set to their respective plane widths. You can adjust the strides in order to add an arbitrary amount of row padding to each plane or to specify that this YUVImage instance is a subregion of a larger image (in which case, strides[i] should be set to the plane width of plane i in the larger image.)
          height - height (in pixels) of the new YUV image (or subregion)
          subsamp - the level of chrominance subsampling used in the YUV image (one of TJ.SAMP_*)
        • YUVImage

          public YUVImage(byte[] yuvImage,
                  int width,
                  int align,
                  int height,
                  int subsamp)
          Create a new YUVImage instance from an existing unified buffer.
          Parameters:
          yuvImage - buffer that contains or will receive a unified planar YUV image. Use TJ.bufSizeYUV(int, int, int, int) to determine the minimum size for this buffer. The Y, U (Cb), and V (Cr) image planes are stored sequentially in the buffer. (See above for a description of the image format.)
          width - width (in pixels) of the YUV image
          align - row alignment (in bytes) of the YUV image (must be a power of 2.) Setting this parameter to n specifies that each row in each plane of the YUV image will be padded to the nearest multiple of n bytes (1 = unpadded.)
          height - height (in pixels) of the YUV image
          subsamp - the level of chrominance subsampling used in the YUV image (one of TJ.SAMP_*)
      • Method Detail

        • setBuf

          public void setBuf(byte[][] planes,
                    int[] offsets,
                    int width,
                    int[] strides,
                    int height,
                    int subsamp)
          Assign a set of image planes to this YUVImage instance.
          Parameters:
          planes - an array of buffers representing the Y, U (Cb), and V (Cr) image planes (or just the Y plane, if the image is grayscale.) These planes can be contiguous or non-contiguous in memory. Plane i should be at least offsets[i] + TJ.planeSizeYUV(i, width, strides[i], height, subsamp) bytes in size.
          offsets - If this YUVImage instance represents a subregion of a larger image, then offsets[i] specifies the offset (in bytes) of the subregion within plane i of the larger image. Setting this to null is the same as setting the offsets for all planes to 0.
          width - width (in pixels) of the YUV image (or subregion)
          strides - an array of integers, each specifying the number of bytes per row in the corresponding plane of the YUV image. Setting the stride for any plane to 0 is the same as setting it to the plane width (see above.) If strides is null, then the strides for all planes will be set to their respective plane widths. You can adjust the strides in order to add an arbitrary amount of row padding to each plane or to specify that this YUVImage instance is a subregion of a larger image (in which case, strides[i] should be set to the plane width of plane i in the larger image.)
          height - height (in pixels) of the YUV image (or subregion)
          subsamp - the level of chrominance subsampling used in the YUV image (one of TJ.SAMP_*)
        • setBuf

          public void setBuf(byte[] yuvImage,
                    int width,
                    int align,
                    int height,
                    int subsamp)
          Assign a unified buffer to this YUVImage instance.
          Parameters:
          yuvImage - buffer that contains or will receive a unified planar YUV image. Use TJ.bufSizeYUV(int, int, int, int) to determine the minimum size for this buffer. The Y, U (Cb), and V (Cr) image planes are stored sequentially in the buffer. (See above for a description of the image format.)
          width - width (in pixels) of the YUV image
          align - row alignment (in bytes) of the YUV image (must be a power of 2.) Setting this parameter to n specifies that each row in each plane of the YUV image will be padded to the nearest multiple of n bytes (1 = unpadded.)
          height - height (in pixels) of the YUV image
          subsamp - the level of chrominance subsampling used in the YUV image (one of TJ.SAMP_*)
        • getWidth

          public int getWidth()
          Returns the width of the YUV image (or subregion.)
          Returns:
          the width of the YUV image (or subregion)
        • getHeight

          public int getHeight()
          Returns the height of the YUV image (or subregion.)
          Returns:
          the height of the YUV image (or subregion)
        • getPad

          public int getPad()
          Returns the row alignment (in bytes) of the YUV buffer (if this image is stored in a unified buffer rather than separate image planes.)
          Returns:
          the row alignment of the YUV buffer
        • getStrides

          public int[] getStrides()
          Returns the number of bytes per row of each plane in the YUV image.
          Returns:
          the number of bytes per row of each plane in the YUV image
        • getOffsets

          public int[] getOffsets()
          Returns the offsets (in bytes) of each plane within the planes of a larger YUV image.
          Returns:
          the offsets (in bytes) of each plane within the planes of a larger YUV image
        • getSubsamp

          public int getSubsamp()
          Returns the level of chrominance subsampling used in the YUV image. See TJ.SAMP_*.
          Returns:
          the level of chrominance subsampling used in the YUV image
        • getPlanes

          public byte[][] getPlanes()
          Returns the YUV image planes. If the image is stored in a unified buffer, then all image planes will point to that buffer.
          Returns:
          the YUV image planes
        • getBuf

          public byte[] getBuf()
          Returns the YUV buffer (if this image is stored in a unified buffer rather than separate image planes.)
          Returns:
          the YUV buffer
        • getSize

          public int getSize()
          Returns the size (in bytes) of the YUV buffer (if this image is stored in a unified buffer rather than separate image planes.)
          Returns:
          the size (in bytes) of the YUV buffer
    libjpeg-turbo-2.1.5/java/doc/org/libjpegturbo/turbojpeg/package-frame.html000066400000000000000000000033041436506551100266110ustar00rootroot00000000000000 org.libjpegturbo.turbojpeg

    org.libjpegturbo.turbojpeg

    libjpeg-turbo-2.1.5/java/doc/org/libjpegturbo/turbojpeg/package-summary.html000066400000000000000000000155641436506551100272270ustar00rootroot00000000000000 org.libjpegturbo.turbojpeg

    Package org.libjpegturbo.turbojpeg

    • Interface Summary 
      Interface Description
      TJCustomFilter
      Custom filter callback interface
    • Class Summary 
      Class Description
      TJ
      TurboJPEG utility class (cannot be instantiated)
      TJCompressor
      TurboJPEG compressor
      TJDecompressor
      TurboJPEG decompressor
      TJScalingFactor
      Fractional scaling factor
      TJTransform
      Lossless transform parameters
      TJTransformer
      TurboJPEG lossless transformer
      YUVImage
      This class encapsulates a planar YUV image and the metadata associated with it.
    • Exception Summary 
      Exception Description
      TJException  
    libjpeg-turbo-2.1.5/java/doc/org/libjpegturbo/turbojpeg/package-tree.html000066400000000000000000000135571436506551100264710ustar00rootroot00000000000000 org.libjpegturbo.turbojpeg Class Hierarchy

    Hierarchy For Package org.libjpegturbo.turbojpeg

    Class Hierarchy

    • java.lang.Object
      • java.awt.geom.RectangularShape (implements java.lang.Cloneable, java.awt.Shape)
        • java.awt.geom.Rectangle2D
          • java.awt.Rectangle (implements java.io.Serializable, java.awt.Shape)
      • java.lang.Throwable (implements java.io.Serializable)
        • java.lang.Exception
          • java.io.IOException
      • org.libjpegturbo.turbojpeg.TJ
      • org.libjpegturbo.turbojpeg.TJCompressor (implements java.io.Closeable)
      • org.libjpegturbo.turbojpeg.TJDecompressor (implements java.io.Closeable)
      • org.libjpegturbo.turbojpeg.TJScalingFactor
      • org.libjpegturbo.turbojpeg.YUVImage

    Interface Hierarchy

    libjpeg-turbo-2.1.5/java/doc/overview-tree.html000066400000000000000000000133311436506551100214520ustar00rootroot00000000000000 Class Hierarchy

    Hierarchy For All Packages

    Package Hierarchies:

    Class Hierarchy

    • java.lang.Object
      • java.awt.geom.RectangularShape (implements java.lang.Cloneable, java.awt.Shape)
        • java.awt.geom.Rectangle2D
          • java.awt.Rectangle (implements java.io.Serializable, java.awt.Shape)
      • java.lang.Throwable (implements java.io.Serializable)
        • java.lang.Exception
          • java.io.IOException
      • org.libjpegturbo.turbojpeg.TJ
      • org.libjpegturbo.turbojpeg.TJCompressor (implements java.io.Closeable)
      • org.libjpegturbo.turbojpeg.TJDecompressor (implements java.io.Closeable)
      • org.libjpegturbo.turbojpeg.TJScalingFactor
      • org.libjpegturbo.turbojpeg.YUVImage

    Interface Hierarchy

    libjpeg-turbo-2.1.5/java/doc/package-list000066400000000000000000000000331436506551100202430ustar00rootroot00000000000000org.libjpegturbo.turbojpeg libjpeg-turbo-2.1.5/java/doc/resources/000077500000000000000000000000001436506551100177725ustar00rootroot00000000000000libjpeg-turbo-2.1.5/java/doc/resources/background.gif000066400000000000000000000044111436506551100226000ustar00rootroot00000000000000GIF89a2pæÿÿÿ=[q>\r?]sCby@^tDczA_uKm†Vz•<[q=\r<[p>]s=\q;YmBbyAaw?^t>]rX£’fš§cœÆIæ†s¦(ä–íÑ gŸxrIh–CN)§n¦¹§•ƒBšå¡!Ö9_˜<þø]£x>úc|bYéŸiŠÀ €7`«¯ÞÀêm±ÖÚª«°€«¬°¶ªk­½Ò𫬻îj«°ÆÎ ¬«É»ì³Ãþ k²ÍJË«¬¾F{+°ØâZí¶Ñ~[l¬¼2Ë­µ¯R{®±ê†{n¶×Î*nºï o³å¢;-´ùº»o®ÕΫ­½ÇÒ;°«ù̯Á÷ÖÚnÃ×+°¸ G¬¬ÿÅ;±ÄëÖëÆ½Ò[q¿$;l2À[/¸+{˱¿+‹œrÉú:û/Í6·ü²Î5Ë;sÁóœq°;Ÿó¯#3¬ôÍú&MôÁ÷̲Ñ@à ôÐæÂ¼tÒCç\µÆQSüóÓV?ݵ²^÷,pË ³m«ÌZ7ýóÙkƒqÑL“ÝöÒÝ:Ý-ÞKMpÞûšðØtS­vÔnß u´H#¾0ÓÔwâyû´ÝB.øÇ ‘@E1z騗>:é©«~:꯷¾:ë²Ç;ë¶ßNzî¶Ï޺鴟zî»>|ðÆÿN<ðÈ¿üêÊ7_<ïÐ×~üõÖ'¯ýí¿_»ô§?OüÿòÌ7ß{ðãÓ~~ôÝ‹þîï«_=öÛ§Ïýýôç¯{ûðóoþûÛãÞú¢@÷±ï€âóžîþ—?ûÕüÿ¸¿ìù‚Œàõ@×0~Ä^7ÈAæ…ð{T U˜Büïƒþ;aòFˆ¾®…¬¡ )èÁ Ђ"„¡ a籇ìûá SHBí5‘‡Pœßõ”xÄé ±ƒ&b¥(@jq†ò»ác7FЇ^DaËXÄ®Q‡dã¹è¼4nw@Œ€# }ÄA ýøÇ@ò…ä#)H>ú ŒùiÏ€¾sŸ—D'-ëOxB”šñ”¨3ѹP`v”žÕ¤ç@ÿùPŒ¦3¡ÑÄ%I۩Д®´¢mèHç P“N´£~ìg; Ó tœŒÄ'Mý¹Sºt¨ õéCg*Î’Šô¨EèD•*S JµžÿjSYJÐÖ4ªKµj,GÉQ¨ê4¡Z=+J_êÕ’‚µª1ÝjO0$ä IÈ+^óÊW¾îµ¯~ì_kWÀöu°Õ«a‹ØÂÖ±„}¬d#«ØÉZö²˜­lcKYÊ6¯›E¬h;ØÑv³=íb‹ÚÔrVµ¡í¬k+KÛÚ¾6³¶eìjS ZÒÊ6¶·®jW‹Ú½¶V¸ž%®m«ÜÙÞ6·´-.t{;ÜàúÖºÕ•-n»[äÂöºØí¬iµ Ýòr·¹ä…¬t]»^ðâV±Þ¯eåûÜò:—µÝuïd×K_êþ–¼¥0z³+Y昳üMïe½[_óÚ7¶ñpÿx·›ßë8½Mð{üàæ^˜Âµõï‚%¼\ý6ø¾ç51|õKßç7™ pŒŒá˜¶àA x°ø¸Ç;²Ìc!È=æq‘•Z¤@j¡ £AJ¤$š ?J¥º¤!J£BÚ£Z ¥MZžVú X ¢š¥a*¢gŠ¡LÊ¥Mê¢7ú£lj£Ú¦[š¢eú¤5*¥Š-:§iê¥(Ф]š§|*¤j ¦vª¤U ¨2j¤4:¦;J§zÚ¦º9A`˜jAp©™š©›Ê©ª©›Ú©£ª¢Zª¡ú©¦Zª¨Jª£Úª¢êª°«ž ª´êªµŠ«©j«¹ºª³«¿ªª»jª´ «ŸÊ«·š¬³Šª­º¬Èš¬µú¬¯*­ÎJ¬§Š¬Íj«ÕŠ©Ùê«Ä¬à ÿ­Üʬª«ãj®½ª¬ØJ­ß®àº®íz®ÞÚ­¾Ê®ïê­øê®ëº­òÚ¯éJ¯è𮲝÷:¬Öz¬øê¯ü °Û°ãj¯Ô ¯ù ±ë¯Ñš°õ*± «± k±{ª±Û«úŠ®k°›°+®,[®¸Z°[¬ë°š*°ü³.›«0­«®*«­=K³9{®;û±¬:³F{³B[²õ:²òJ®7»²äZ±áÚ´ó*²‹±R ªÍʳZ ´?KµìjµÃZ´-Ë©A0/"°¶!ðk ·ot+·vK·o·z›·s;·v·xû·~ë¶‚ë¶|+¸‡ ¸…›ÿ¸Œ»¸w[¸{¹€Û¸¹u+¹}K¹‹Ë·œû¸– ¹«¸¢ºƒ{¸—kº§{·¤k¸Ž»·¦Ûº«û¹£ º˜K¸–›º“K»ûº²»¼[ºº»¹›K¹«[¹¿«ºrK¼´{»Ê[»Æë¹¨›¼Âۻλ¼š;»Õ{»Ã;½Ä{½Çë½Ö ½µK½¹Ë¼Ü»½äÛ·Ò«½ã½æ›¾ðë»°Û¾â[¾¨Û¼Ý;¿ö‹¿á ¾ô;»òË¿“+À÷«¿êk»îÀ~Àç;À \ÀlÀý[¿þ{ÀœÀè{¼ûûÀº‹»Àk¿ªKÀ!,Á§ ¼<ÁØ{Â̺웿٫Á œÂ0ü¿àÿÃìÀ-œÁŒÀ!@#00ðÃ0Ä?\Ä@<ÄF\ÄCLÄBÌÄF¼ÄN¬ÄHœÄS<ÅTŒÄVÜÄO¼ÄI|Ä[üÅW,Å`<Æd,ÅQ¬ÅYlÆ]œÆZìÅ[ÌÆYÇglÅr¼ÆgìÆW|ÇX¬Çp|ÇGÜÇd Èm<ÈblÇ]üLJ¼Ç‰LÇ\Æ…Lȃ\ÇŽ<Éo¼Èx\É”\ÈlìÅ’œÇ–¼É\Æm ÊAÜÇ‚LȧÜÉ,ʈlȤ<Ç~üǰȳŒÊµœÉMÌÇ—¬Æ¸ìƤ|É¿lÇ·,ÌìʑìħÌÊ¡üůlÈÎü˪ ÅÎlËÓlÌ» ɹüÉ|<Ìš¬ËÖ ÿÄ«œÌ«ÌËaÜÌy\ÌÈ|ËÖÌžìÊÛ<Í` Íé¼È܌ͭ\ÎïÜËUÌÄÒLÉëÌÏó¬ÏùŒÏôLÏè,ÊŒüÄf|ÐãŒÇÿlɬÍ-ÐB¬$pÑpÑÑÀÑMM-ÒÒ#mÒ Ò ÍÑ)½Ò"íÑ!íÒ#ÑÑ(]Ó/­Ò7mÓ,-Ó<Ó?ÔBMÒ;Ó3]Ò=MÓ!]ÔF ÓIÓ.ÓàÓDÝÓ7]Ô&MÕXýÔTMÓ]ÓLýÕ7-ÕbmÕf Ô2­ÕOÍÔaÍÖCíÕS}Òe-Õg}ÔY}ÕkÍÕm­×oÔhíÖMMÒ.×hØJÝ׆ýÿÕQ ØY-×[M×m×NÙ“}ÔŠ­ØKÍÕs}Ԏה½Ùjý×|]ؘ؛Ò1ÍØuÚšýØœmÓ§Ú’]ÕŸØ{]Ø™MÚ®ÍÚ‰=Ø«­Óž}Ò¿Ô²]Ù¼mÙ¥}Ù»-Ø©=Ú„mÙÆÛ‡­ÛÎÝÚÝÙ¢ýÙ®]Ü´mÙ·íݦ½ÜÓÜÏÝÒâÝÛämÝÙ ÞMÖË]ÞÝÍݶ­ÞìýÝVÛðMÜcݳ-ܵÖùÜÈ­ÚÔ½Þ¼MpP&P'Àà Þà ~.áîàánþàÞáÎàâ^á!þáá.â*n(Þâ,.á/nÿá1áNâã^ã+^â:Žã#áîà?Þâ3nã.®âGÞã@®ã9Nã;žäPþäHâCNâK.åU®äF^äSäM®å=žãWîåCnáXÎåhnæcæNnâožæ_~ãoÎãbâu~ç7.çHNäQÞçp~ážâPžå|~ç‡Þáqžçn^èN>è~¾åk>é’nç‰Nç_æ^émŽé€néy藾扞åéîNîÄî·í¿®íêþíñ®î>(( ?ð) Oð(°ð ŸðoðÏðïð /ñðßð/ñOñ ßñßðñ ßñ&Oòñ'¯ñ*ò ò/ó!ïò?ñ)Ïò!Ÿó?ò,¿ò;óïóßò2Oóó_ô.ò?¿ô$/ô%¯òOôJôF?ðWðô6Oô"?õ=/õ_öVoõUŸõdßõ9õ^ÿóf_öhßõlŸóC?óßôT?ön/÷b¿÷C?÷uÏõõJŸ÷j¿ÿõN¯÷[Ÿöm¿ø|_öj/øßøoøƒÿòpö‘_øŒïðˆoù”Ÿø7ï÷Qùƒöœÿø›ù«õ<¯úŽû¥?ú²Oû“¿ù¨ÿö°ûlõß÷µOù¿Ÿú—÷_/ú²ü¾/ü¬ú™¯û_õt?ùË_óÑoú•ÿü¸ßùÃÿòxßùËôšý«¿ý­OüÇúáü-ÿý»¿þ³ü€ŸýçýñÏû€+€,,,‚…†„†‡‰ˆ‰ƒŽ‚ŒŠ‘”“…„’™‹’››–Ÿ•—ž¢œ¤Œ¢š«ž©°¦³£²¶©¨µ±¤¨¡·¦¾ªÂÓ¹À´³Á²Ê˜¿ÿº¸¥½•¬ÓºÆ¹ˆ×¯ÛÈÒÒÍÈ ¿ØÑÕÝ⥎à»éíìÎÝÙæÄ±åÉçÜáðøÃÌí ôFϵm]X‹¡¼‚§ <¨Ê¡­~¢û¦Ïß2rùêYÒ&òÒ=‹îJj$ip—‹ ßuÌxR"§~ÇUÃÓÚÌg½Ç‚B† G‘jØÀ´)Ò K2ÍÕiU©J¯J¥ÕjT­V«‚Uêu,Ù¦`ÍjMÛm[·XŸ¾ºÔ¬\¬v¯Ž…ª¶-[¼]ÿn{vkÞº„¹Ž›u®`º‹!Ã7ïáÂakèëµ3eÉ '6œqeΑ/?Î\Ù4^ÔŸU;Þ<ÛsÿhЫoë¾»ØrmÆ|‡†³hÖ½Ãö,Û¶s´Ë//¾Ö¯ðçS›¿¾>YûpÚ‘¿‡§^útyßᙟ·^ùxôÝŠ“›<ýhò­çËßž¾ûz켈Þ~¤õ'YuõaW‚åñG rÒ]‡ßpn%xnö ¨Üj8•4 â Œh"‰%6°À‰ ¤¸b.²£‰*ªØ"+ºc(Џ#‰4–øãŒ5ùâ1îˆ$Ž62Ùc‘+i$‹KBÙä• 9eJÉd’^Z9¤”/Fy£•RŽyf™[féc›[v)¦‰r²©¦“kÊgZV©e‘~Æù%žxÞ¹gž\ÿŠ¥žuR©¨šò¨ã£'¾i£‰fú§Š²ù¤§)B:(š–Žºé›sjŠ*§hŠÚꪎ¦ ꈆbjf¡¦V:ã¥a²šc¯tv묇Fz뢒Â*(¯€æj롸¾Zl®É"{ì³@þÚ¬¬z‚Zk´Q–Ê­ Ü>k¨·”¶j,–ßn‹î¸Ç¾K¬«¾v[bŸÔš¬»û+/£àzÉ쩪*‰ï¸úª ç¹Ã¬.µñ2@Áwð€XÜÆc¬1Çxœq"oœñÅ(|rÈ'›LòÊ-ƒìqÉÓŒ1ÍÛ3Î/k¬³Ê= 3ÐÇ<4ÏE´È"|³ÑAoü³ÐQOÿíòÒP'MuÊKóŒ³Ó)SmuÔ>·:Ð/Kþ¾ø×O½ãüãŽÿþÏãÞöâç¼ñ]lhÁ> @0p Tà(Á.‚ œàØ@ VÿpƒáChA z‚'¼` %®P…,Üà _ØÁÆÐ†&$¡?HÃRP‚Ô¡ [(Äqƒ7Da •C&:°‡3$!XD‘‡F´"›ÈA(ê°ƒ^œbµ(F,î0ƒUÄá¹hÁ'®qŒjáÁxE&öÐsd£—¸F<–0ˆ["Q˜Â:ž±‹oìãõE@š±Œh d!yÈ6æñŽ‹„£åGAƇšì¢ ÓIJ&Ñ“„T$(éEI惬4¤#S9HFN²”´ü¤cyIR"’“›D¥(OJK®ò•™Ä })ÌSò”ÆÜ%2[ùÈM.ñ—ÿͬä"9MnVó— \¦+)Êgn³—ÝD'gyÈlR†âü¦;oiKd³“ÞÌ¥5?@€ úÏ€5¨AšÐ‚6” ÀCŠPˆ´¡ý'CšÑ‰4£µ¨G-úχŽT¡%%iDQzP ”£*Ý(K]ŠQ‚:4¤3©NszÑ4¥,}iP+:T˜¤½)R}jÔŸâ¨7å©S…:U¢Vµ©ݨRUzÒ¨:Õ¤LíiQÓ„Òt©c¥jVÍVZu­X¥(Z¯ºRº>t«Rë\ŸW¨Â•¬c=+Wc Ó½òõ°~í*DiZVÆ"¶¥ƒMÿ«cKÑÆFvª…½¬^5KY¿V°vµl^?«ÖÏRö£š=ì^;ûØÒºu²¢ýjY […2Ö³†uklÿ*Ø…fv´¬«mS«[Ðòv·b¥«kWÊZ™Ê6­k­mUs[×âõ¹^í+_ƒ;[ãš¹×]lXW+Òð&w³yå.tåÚÝÞb÷¯Eàó)Jsv¾Iäæ ÈLs¾Ó”ç¼g0ñ`ÆSŸ\,g-¡ Ìú¦SÀ•õ{7 ßO‡Ö»ž-îr…ÚÜ·~Ø¢¦-«}RMÏú¼Uµ¯‹l—¾Z¼ºÖ®p³ maOûص†µ°¥«Ýa;ØÃuv¶ÏËkÒ~»¸•F7UÉkus;±ÏVî»™ÛjZÓû¶¹·§Ùkÿëp§;µ¼n·· þkƒw»ºË¾7dG»ð×F|ߪ¶îµ¡ð|÷šáÔv8®O+kÛŽ|¼%—¸´AnŒû[¾($ð•ãxç ‹p¿.ô’—œe#ÊdŽs ]K>¯¹À.ó¢ÙHtr"ºÏMNºwÙô½ž3ö¹›—®hLf“Î«ŽfóÜæ`¯9(Ù9ó£«ë=z2±,e9ûYël´’]a_ö\îaÇó”ùb¨·]îK4×o÷KžÎ‰W:”ÉNèÊÿ=ífü“ç~d´Ÿ3ðMvåwÎ÷¨ãÝÎf{ÙáîÂÑ—þñH?½ây~úSÙÈvn¹Q[mÜÿ×Ó®Ç>p‹Üå’µéÆM­rl7½Æo8òzòu“wÝòŽ7¿o½ü€kÛù߇þÄ¥Ïòìû>ä»§wôÁOZrWŸÛ×¾¾Ë¿}‘·¶û$G5ö“{¶ö>ùÇÇögm͆pÃçqîFÄÖoH~#eoáÇ|ìWqã‡~ô—q—løpæ¦~ø~èµkHº×rèo¨}+·~&È‚æQ è}ì6‚ÅW-hƒ1Øq&‡(§ò÷q.XÓ_sž×f˜¤v­„s®gx«W{RÇy]æC Ô„n×wt7f˜·xHd…¬wvZøy‰ä…W'f6{Z&vyS—ÿ†š÷sdøtWhz€§„¢¤z{&‡¬wyb˜y¡·†qÇ`7Ve¤ç„àD{¨Ç…º4xü¥s¯÷„±W‡~¸ˆ€8LØuQÈeq˜c`x†’熸y —u’¨ˆû$z‘Txs{˜({Ÿxzzf…˜A›øM(s¯¨M]g„aˆ„Ф„ú¥C¸w†x‹u††°¨yµhvxˆ™h‡C—ŠŽXŒÍȇ^7†ÒHŒ«x‰wWŠˆ¨†¢ˆ‹m˜Œ¡‡Ù(‹ÍhŒl(…d‹F†hSFŽ”Žt(ˆo„‡‡Æ‰Õx„ó¨‹o¸uV—dèÛ茮8ŽYŽ™I¬Ø[8yçøŽ©ŽˆˆÿŒ Y?ÇŽP˜Y`¨èއW†~ç?‹úXtz˜sÚø…ýØ‹ÿˆMöhç§€ÆÆX*X“Æ|9x€û·‚8(„'Ø€=ù“ìG]˜Aèj(|FÉq–”hqEùƒÄ'•ä·”(€Ú·€ÿ§\îǃ֗r„Aé•HXM k:øƒ „h9„í—‚´&—%–ðG–ÑV—6™~Q9j˜iø”ø‚ö—C –tYT…)€û†˜ëW•ey•]éiÙ€˜“âW‚ðÆ€Š)™{ •Wƒœ)”A¸–G铚ñW–oy––i—ÕÅ‹žøuª'“0©GÃXù’ž¨¸yÿŠU8‘#¹’%™››G´Œ‡d‘ÏØKÌéL¾)Ž Žù›ÕŒ¦LĹz$™…Ø9Šv”’NÇñh’É™‘Âi¤œwHé’牜©œ‡Èˆ,É›òyòx’êyŸ•XBy}(`ÑcÓyŒ¹èž% ÿÙŸéÉ Rv og†Ôvä9æI‹Ý™‡º‡èYŸ L4Išçfƒ8é™—FR8˜VIƒXiZI”x‚àG™¡™AÉ”¼Ç–ªéš$x¢:ªU5*ƒøF˜fYšCz¢È•9›‰I„Çšz‰”•é—£I¥>¤&ê¥Ù¤¹™Lª–=ššHŠ£ý‡¥7ÿo‹©¥"ˆ¤¯©¤P:£Šé¤Œi¤ŽÙ—¢vWEÚ–\£7ø¥[¦—9p9§;Š‚nz£0z¥{ªR¨)š/ºƒ‘º­š† ›j:³™@1§ ¶ ŸÊŒ[´›ñùGŸ iŸ "éÆ ž Š…©žØøªj‹ ºŽâ  ìy‘ ¢^&µŸé ¸v¢ «j¡ œÄJ…ÁŠ#z¬ÚžúÚ™ˆªŠû9­³:‰ëyo”­¸­(†­ÜH ×H®Àj®ð ¡"*¡|Ä®–¢«ª‹ڮĄ¯Îé‘¿M% ¨,˜¢_¹¢(Õ¢N9©n¤^:¦4Z©2xÿ©Vú¤›Úm‹:ƒp ±J Y{¤Û¥+¨˜i‚Žª™u*}!»]бš¥}ú£˜š¤BЍ&»²™É—tšU3{¦/›¦1»¦€¹³Áç£@Û±$;•‰z²¹/Õ˜@)§›Ú²Ûö§)ë™Rj§…j³{±0ø³‹µ0«}›oºšb;™A{˜8+±`I›¸ªâIªó•Ÿ§«·:®¦¬Û«Â*­Åô·ó‰«ÐÙ¡ûÈ«…Ë·ÜÊÛ c¹¬åj¬ˆ«’Ïzœ†Û·HFˆé¸Ï©¹uW­ôÚŽýZy«¬¬ºòJ¸ü©¯ ºÅúºGגɹ>Ǻâ­Ùé¸Þº»Úúÿ®°ëC¸ ­¾jc¥;‹„t¼»¸º;°$z{Këp[¨ i‚Ù°l«´kšM»²Vk¦D[¶ZKjk[³hê¶~ù½’ʩۻ¤`kn6ª§*»µ,[¾û—âû•>{¶=˜¶d+´ó;—\ëµQi¿UŠ¿<¾ãÖ¦¼¥5§7›±†ùo³%µ<«©C{´à›½#Û¾oû¾¬¿üµµ ì¿ì±L[šü;– êkÁbJÂYŠQr ªöu›pg·Ÿ:¼˜Ë¸’ë·•[žŠÛºª*»AìªÊk¹[¼‡««‰ËŒÌëÄÁ+t«¸¾;¹²ëòڼЈ·Åy¹]LÅ«‘ ÙŠ×:ÿÄZÄMŒÅλ½KxÓØ›SìÆ_ ÇhEèj­¶{F\¼·^<¯ª{Æwœ¹e|Š<…@Œ’ͺ«RÌ¡Pl¹lL¼v,ÈKT°•Ylli¢Å“'̨ڛµ"¼ÀäÛÂyùÂ%ü˜L\1Œ§SÁÚÊç«Ê,€!Œ¾›<ÁSúÉÛÁ¢ÜµÌV¦ëk¾mK˹lË <ÂlÊñ+²ÿ‹ËLÊ„ÊËΜÂÑ+£ÝK¿F{U2œ©T›Á²\Ìò«À7ÀQªÌ+ ·RΡœ¿öÇÌ®|”ììËî,›óF 0@@þÜÏüÐþ,Ðý Ðÿ<ÐÐÐнÐýÐÿÐ=Ð mÑ Ñ]ÑÝÑ ÑÑ!íÐ#MÑ Ò]Ñ"ýÏÍÐ$ýÒ Ó)ÍÑ.½Ò Ó-}Ò/ÒÐÒ4=Ó-Ñ Ô­Ó5½Ó3­ÒCÓKÔE-Ó?mÔJÓ=Õ.MÕ-ÕM]ÒGmÒ\Õ\mÓI}Ó^ÒNÔC}Ö<=ÑZ­Õ]}ÕoÖ­Ö2M×XmÕx×BýÖbÓeMÖmýÔ ]Õ` Õ{mÖÔ}­ØU؈=ØYýÕsM؇}ÖL-Ø—mÕŽMÖw]Ø€ÝÙ“ Ù(ÙR½ÙcýÕœMÚe­Ú[ýØŸ Ùq­×‚ýÚyMÔ°íÙlڒו*Ö ×¶ÍÚ¡½Ö‹ Ú¼ýÛ…ÝÚ£ÛÙÃ]׉}צí×·ÝÛ°ÝÏ;libjpeg-turbo-2.1.5/java/doc/resources/titlebar_end.gif000066400000000000000000000015211436506551100231140ustar00rootroot00000000000000GIF89a(æÿÿÿð 9îŸ8ß•5ð¡:ï 9â—6ñ¢;íŸ:ÚŽ0¾|*½{*½|*»z)ºz)¶v(¶w(Û1ÚŽ1Ú1Ì….̆.ȃ-À,À~+¿}+¿~+¾|+»z*¸w)¸x)¶w)ÒŠ0Ò‹0ψ/̆/É„.ȃ.È„.Æ‚-Å-Å‚-Â,€,¹x*¸x*Ò‹1ω0å˜6ã—6ß”5Ü‘4Ù3Õ2ð :êœ8è›8æ˜7æ™7å˜7â–6Ý’5Ú4Ù4ÕŽ3ñ¡;ð ;íž:ìž:ëœ9ë9êœ9çš8ó¢<Ý•?Ý—Aß›Hç³wèµzùíàûòêÿÿÿ!ùR,(ÿ€ „ †‚…MOQJ‘’“C:LPBž™œ™;N™7ª«§ªKE ¶E¸¹µ ¸¶D 8HGGF8ÅÆÁÄÆHHI9IÑÒÒÐÑ9Ð;<Û<Ú;ÞÜÚ1<=2==éèêçêæ=3ó3õóöø÷4>4ü7†‚küPˆpaÃ@€Ô `#ˆE3V ¢1È„/Bˆ 2DI“"LN£åˆ—0YÂx9s Hè´@ÂOœ;u’P`¢Ä‰%ŠšPj4i‰ '$¨@A5… «W§¢°ºÅXˆ;6¬X +0LØ !C† p®ã²}»ám 0`° A_¿yùæmÀAB‡<8Ü1âÅ"SøàâÇ—-c®Œù²‡ "@€"BiÓ¡I‡bråÌ7gö Z´êÓ§U›nMYólÙ±?§¾½:5nÞ¯1Çî|Boؾ9kn»4nã«‘û^.öpëÅEw½=úoê£Á£Ÿ<ôÌÝ[ '¾^7k÷ÊÍ7ÿ¾>÷xDˆL H€ (Á ;libjpeg-turbo-2.1.5/java/doc/script.js000066400000000000000000000014731436506551100176270ustar00rootroot00000000000000function show(type) { count = 0; for (var key in methods) { var row = document.getElementById(key); if ((methods[key] & type) != 0) { row.style.display = ''; row.className = (count++ % 2) ? rowColor : altColor; } else row.style.display = 'none'; } updateTabs(type); } function updateTabs(type) { for (var value in tabs) { var sNode = document.getElementById(tabs[value][0]); var spanNode = sNode.firstChild; if (value == type) { sNode.className = activeTableTab; spanNode.innerHTML = tabs[value][1]; } else { sNode.className = tableTab; spanNode.innerHTML = "" + tabs[value][1] + ""; } } } libjpeg-turbo-2.1.5/java/doc/serialized-form.html000066400000000000000000000122211436506551100217400ustar00rootroot00000000000000 Serialized Form

    Serialized Form

    libjpeg-turbo-2.1.5/java/doc/stylesheet.css000066400000000000000000000256031436506551100206710ustar00rootroot00000000000000/* Javadoc style sheet */ /* Overall document style */ body { background-color:#ffffff; color:#353833; font-family:Arial, Helvetica, sans-serif; font-size:76%; margin:0; } a:link, a:visited { text-decoration:none; color:#4c6b87; } a:hover, a:focus { text-decoration:none; color:#bb7a2a; } a:active { text-decoration:none; color:#4c6b87; } a[name] { color:#353833; } a[name]:hover { text-decoration:none; color:#353833; } pre { font-size:1.3em; } h1 { font-size:1.8em; } h2 { font-size:1.5em; } h3 { font-size:1.4em; } h4 { font-size:1.3em; } h5 { font-size:1.2em; } h6 { font-size:1.1em; } ul { list-style-type:disc; } code, tt { font-size:1.2em; } dt code { font-size:1.2em; } table tr td dt code { font-size:1.2em; vertical-align:top; } sup { font-size:.6em; } /* Document title and Copyright styles */ .clear { clear:both; height:0px; overflow:hidden; } .aboutLanguage { float:right; padding:0px 21px; font-size:.8em; z-index:200; margin-top:-7px; } .legalCopy { margin-left:.5em; } .bar a, .bar a:link, .bar a:visited, .bar a:active { color:#FFFFFF; text-decoration:none; } .bar a:hover, .bar a:focus { color:#bb7a2a; } .tab { background-color:#0066FF; background-image:url(resources/titlebar.gif); background-position:left top; background-repeat:no-repeat; color:#ffffff; padding:8px; width:5em; font-weight:bold; } /* Navigation bar styles */ .bar { background-image:url(resources/background.gif); background-repeat:repeat-x; color:#FFFFFF; padding:.8em .5em .4em .8em; height:auto;/*height:1.8em;*/ font-size:1em; margin:0; } .topNav { background-image:url(resources/background.gif); background-repeat:repeat-x; color:#FFFFFF; float:left; padding:0; width:100%; clear:right; height:2.8em; padding-top:10px; overflow:hidden; } .bottomNav { margin-top:10px; background-image:url(resources/background.gif); background-repeat:repeat-x; color:#FFFFFF; float:left; padding:0; width:100%; clear:right; height:2.8em; padding-top:10px; overflow:hidden; } .subNav { background-color:#dee3e9; border-bottom:1px solid #9eadc0; float:left; width:100%; overflow:hidden; } .subNav div { clear:left; float:left; padding:0 0 5px 6px; } ul.navList, ul.subNavList { float:left; margin:0 25px 0 0; padding:0; } ul.navList li{ list-style:none; float:left; padding:3px 6px; } ul.subNavList li{ list-style:none; float:left; font-size:90%; } .topNav a:link, .topNav a:active, .topNav a:visited, .bottomNav a:link, .bottomNav a:active, .bottomNav a:visited { color:#FFFFFF; text-decoration:none; } .topNav a:hover, .bottomNav a:hover { text-decoration:none; color:#bb7a2a; } .navBarCell1Rev { background-image:url(resources/tab.gif); background-color:#a88834; color:#FFFFFF; margin: auto 5px; border:1px solid #c9aa44; } /* Page header and footer styles */ .header, .footer { clear:both; margin:0 20px; padding:5px 0 0 0; } .indexHeader { margin:10px; position:relative; } .indexHeader h1 { font-size:1.3em; } .title { color:#2c4557; margin:10px 0; } .subTitle { margin:5px 0 0 0; } .header ul { margin:0 0 25px 0; padding:0; } .footer ul { margin:20px 0 5px 0; } .header ul li, .footer ul li { list-style:none; font-size:1.2em; } /* Heading styles */ div.details ul.blockList ul.blockList ul.blockList li.blockList h4, div.details ul.blockList ul.blockList ul.blockListLast li.blockList h4 { background-color:#dee3e9; border-top:1px solid #9eadc0; border-bottom:1px solid #9eadc0; margin:0 0 6px -8px; padding:2px 5px; } ul.blockList ul.blockList ul.blockList li.blockList h3 { background-color:#dee3e9; border-top:1px solid #9eadc0; border-bottom:1px solid #9eadc0; margin:0 0 6px -8px; padding:2px 5px; } ul.blockList ul.blockList li.blockList h3 { padding:0; margin:15px 0; } ul.blockList li.blockList h2 { padding:0px 0 20px 0; } /* Page layout container styles */ .contentContainer, .sourceContainer, .classUseContainer, .serializedFormContainer, .constantValuesContainer { clear:both; padding:10px 20px; position:relative; } .indexContainer { margin:10px; position:relative; font-size:1.0em; } .indexContainer h2 { font-size:1.1em; padding:0 0 3px 0; } .indexContainer ul { margin:0; padding:0; } .indexContainer ul li { list-style:none; } .contentContainer .description dl dt, .contentContainer .details dl dt, .serializedFormContainer dl dt { font-size:1.1em; font-weight:bold; margin:10px 0 0 0; color:#4E4E4E; } .contentContainer .description dl dd, .contentContainer .details dl dd, .serializedFormContainer dl dd { margin:10px 0 10px 20px; } .serializedFormContainer dl.nameValue dt { margin-left:1px; font-size:1.1em; display:inline; font-weight:bold; } .serializedFormContainer dl.nameValue dd { margin:0 0 0 1px; font-size:1.1em; display:inline; } /* List styles */ ul.horizontal li { display:inline; font-size:0.9em; } ul.inheritance { margin:0; padding:0; } ul.inheritance li { display:inline; list-style:none; } ul.inheritance li ul.inheritance { margin-left:15px; padding-left:15px; padding-top:1px; } ul.blockList, ul.blockListLast { margin:10px 0 10px 0; padding:0; } ul.blockList li.blockList, ul.blockListLast li.blockList { list-style:none; margin-bottom:25px; } ul.blockList ul.blockList li.blockList, ul.blockList ul.blockListLast li.blockList { padding:0px 20px 5px 10px; border:1px solid #9eadc0; background-color:#f9f9f9; } ul.blockList ul.blockList ul.blockList li.blockList, ul.blockList ul.blockList ul.blockListLast li.blockList { padding:0 0 5px 8px; background-color:#ffffff; border:1px solid #9eadc0; border-top:none; } ul.blockList ul.blockList ul.blockList ul.blockList li.blockList { margin-left:0; padding-left:0; padding-bottom:15px; border:none; border-bottom:1px solid #9eadc0; } ul.blockList ul.blockList ul.blockList ul.blockList li.blockListLast { list-style:none; border-bottom:none; padding-bottom:0; } table tr td dl, table tr td dl dt, table tr td dl dd { margin-top:0; margin-bottom:1px; } /* Table styles */ .contentContainer table, .classUseContainer table, .constantValuesContainer table { border-bottom:1px solid #9eadc0; width:100%; } .contentContainer ul li table, .classUseContainer ul li table, .constantValuesContainer ul li table { width:100%; } .contentContainer .description table, .contentContainer .details table { border-bottom:none; } .contentContainer ul li table th.colOne, .contentContainer ul li table th.colFirst, .contentContainer ul li table th.colLast, .classUseContainer ul li table th, .constantValuesContainer ul li table th, .contentContainer ul li table td.colOne, .contentContainer ul li table td.colFirst, .contentContainer ul li table td.colLast, .classUseContainer ul li table td, .constantValuesContainer ul li table td{ vertical-align:top; padding-right:20px; } .contentContainer ul li table th.colLast, .classUseContainer ul li table th.colLast,.constantValuesContainer ul li table th.colLast, .contentContainer ul li table td.colLast, .classUseContainer ul li table td.colLast,.constantValuesContainer ul li table td.colLast, .contentContainer ul li table th.colOne, .classUseContainer ul li table th.colOne, .contentContainer ul li table td.colOne, .classUseContainer ul li table td.colOne { padding-right:3px; } .overviewSummary caption, .packageSummary caption, .contentContainer ul.blockList li.blockList caption, .summary caption, .classUseContainer caption, .constantValuesContainer caption { position:relative; text-align:left; background-repeat:no-repeat; color:#FFFFFF; font-weight:bold; clear:none; overflow:hidden; padding:0px; margin:0px; } caption a:link, caption a:hover, caption a:active, caption a:visited { color:#FFFFFF; } .overviewSummary caption span, .packageSummary caption span, .contentContainer ul.blockList li.blockList caption span, .summary caption span, .classUseContainer caption span, .constantValuesContainer caption span { white-space:nowrap; padding-top:8px; padding-left:8px; display:block; float:left; background-image:url(resources/titlebar.gif); height:18px; } .overviewSummary .tabEnd, .packageSummary .tabEnd, .contentContainer ul.blockList li.blockList .tabEnd, .summary .tabEnd, .classUseContainer .tabEnd, .constantValuesContainer .tabEnd { width:10px; background-image:url(resources/titlebar_end.gif); background-repeat:no-repeat; background-position:top right; position:relative; float:left; } ul.blockList ul.blockList li.blockList table { margin:0 0 12px 0px; width:100%; } .tableSubHeadingColor { background-color: #EEEEFF; } .altColor { background-color:#eeeeef; } .rowColor { background-color:#ffffff; } .overviewSummary td, .packageSummary td, .contentContainer ul.blockList li.blockList td, .summary td, .classUseContainer td, .constantValuesContainer td { text-align:left; padding:3px 3px 3px 7px; } th.colFirst, th.colLast, th.colOne, .constantValuesContainer th { background:#dee3e9; border-top:1px solid #9eadc0; border-bottom:1px solid #9eadc0; text-align:left; padding:3px 3px 3px 7px; } td.colOne a:link, td.colOne a:active, td.colOne a:visited, td.colOne a:hover, td.colFirst a:link, td.colFirst a:active, td.colFirst a:visited, td.colFirst a:hover, td.colLast a:link, td.colLast a:active, td.colLast a:visited, td.colLast a:hover, .constantValuesContainer td a:link, .constantValuesContainer td a:active, .constantValuesContainer td a:visited, .constantValuesContainer td a:hover { font-weight:bold; } td.colFirst, th.colFirst { border-left:1px solid #9eadc0; white-space:nowrap; } td.colLast, th.colLast { border-right:1px solid #9eadc0; } td.colOne, th.colOne { border-right:1px solid #9eadc0; border-left:1px solid #9eadc0; } table.overviewSummary { padding:0px; margin-left:0px; } table.overviewSummary td.colFirst, table.overviewSummary th.colFirst, table.overviewSummary td.colOne, table.overviewSummary th.colOne { width:25%; vertical-align:middle; } table.packageSummary td.colFirst, table.overviewSummary th.colFirst { width:25%; vertical-align:middle; } /* Content styles */ .description pre { margin-top:0; } .deprecatedContent { margin:0; padding:10px 0; } .docSummary { padding:0; } /* Formatting effect styles */ .sourceLineNo { color:green; padding:0 30px 0 0; } h1.hidden { visibility:hidden; overflow:hidden; font-size:.9em; } .block { display:block; margin:3px 0 0 0; } .strong { font-weight:bold; } libjpeg-turbo-2.1.5/java/org/000077500000000000000000000000001436506551100160025ustar00rootroot00000000000000libjpeg-turbo-2.1.5/java/org/libjpegturbo/000077500000000000000000000000001436506551100204725ustar00rootroot00000000000000libjpeg-turbo-2.1.5/java/org/libjpegturbo/turbojpeg/000077500000000000000000000000001436506551100224735ustar00rootroot00000000000000libjpeg-turbo-2.1.5/java/org/libjpegturbo/turbojpeg/TJ.java000066400000000000000000000574071436506551100236700ustar00rootroot00000000000000/* * Copyright (C)2011-2013, 2017-2018, 2020-2021, 2023 D. R. Commander. * All Rights Reserved. * Copyright (C)2015 Viktor Szathmáry. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ package org.libjpegturbo.turbojpeg; /** * TurboJPEG utility class (cannot be instantiated) */ public final class TJ { private TJ() {} /** * The number of chrominance subsampling options */ public static final int NUMSAMP = 6; /** * 4:4:4 chrominance subsampling (no chrominance subsampling). The JPEG * or YUV image will contain one chrominance component for every pixel in the * source image. */ public static final int SAMP_444 = 0; /** * 4:2:2 chrominance subsampling. The JPEG or YUV image will contain one * chrominance component for every 2x1 block of pixels in the source image. */ public static final int SAMP_422 = 1; /** * 4:2:0 chrominance subsampling. The JPEG or YUV image will contain one * chrominance component for every 2x2 block of pixels in the source image. */ public static final int SAMP_420 = 2; /** * Grayscale. The JPEG or YUV image will contain no chrominance components. */ public static final int SAMP_GRAY = 3; /** * 4:4:0 chrominance subsampling. The JPEG or YUV image will contain one * chrominance component for every 1x2 block of pixels in the source image. * Note that 4:4:0 subsampling is not fully accelerated in libjpeg-turbo. */ public static final int SAMP_440 = 4; /** * 4:1:1 chrominance subsampling. The JPEG or YUV image will contain one * chrominance component for every 4x1 block of pixels in the source image. * JPEG images compressed with 4:1:1 subsampling will be almost exactly the * same size as those compressed with 4:2:0 subsampling, and in the * aggregate, both subsampling methods produce approximately the same * perceptual quality. However, 4:1:1 is better able to reproduce sharp * horizontal features. Note that 4:1:1 subsampling is not fully accelerated * in libjpeg-turbo. */ public static final int SAMP_411 = 5; /** * Returns the MCU block width for the given level of chrominance * subsampling. * * @param subsamp the level of chrominance subsampling (one of * {@link #SAMP_444 SAMP_*}) * * @return the MCU block width for the given level of chrominance * subsampling. */ public static int getMCUWidth(int subsamp) { checkSubsampling(subsamp); return MCU_WIDTH[subsamp]; } private static final int[] MCU_WIDTH = { 8, 16, 16, 8, 8, 32 }; /** * Returns the MCU block height for the given level of chrominance * subsampling. * * @param subsamp the level of chrominance subsampling (one of * {@link #SAMP_444 SAMP_*}) * * @return the MCU block height for the given level of chrominance * subsampling. */ public static int getMCUHeight(int subsamp) { checkSubsampling(subsamp); return MCU_HEIGHT[subsamp]; } private static final int[] MCU_HEIGHT = { 8, 8, 16, 8, 16, 8 }; /** * The number of pixel formats */ public static final int NUMPF = 12; /** * RGB pixel format. The red, green, and blue components in the image are * stored in 3-byte pixels in the order R, G, B from lowest to highest byte * address within each pixel. */ public static final int PF_RGB = 0; /** * BGR pixel format. The red, green, and blue components in the image are * stored in 3-byte pixels in the order B, G, R from lowest to highest byte * address within each pixel. */ public static final int PF_BGR = 1; /** * RGBX pixel format. The red, green, and blue components in the image are * stored in 4-byte pixels in the order R, G, B from lowest to highest byte * address within each pixel. The X component is ignored when compressing * and undefined when decompressing. */ public static final int PF_RGBX = 2; /** * BGRX pixel format. The red, green, and blue components in the image are * stored in 4-byte pixels in the order B, G, R from lowest to highest byte * address within each pixel. The X component is ignored when compressing * and undefined when decompressing. */ public static final int PF_BGRX = 3; /** * XBGR pixel format. The red, green, and blue components in the image are * stored in 4-byte pixels in the order R, G, B from highest to lowest byte * address within each pixel. The X component is ignored when compressing * and undefined when decompressing. */ public static final int PF_XBGR = 4; /** * XRGB pixel format. The red, green, and blue components in the image are * stored in 4-byte pixels in the order B, G, R from highest to lowest byte * address within each pixel. The X component is ignored when compressing * and undefined when decompressing. */ public static final int PF_XRGB = 5; /** * Grayscale pixel format. Each 1-byte pixel represents a luminance * (brightness) level from 0 to 255. */ public static final int PF_GRAY = 6; /** * RGBA pixel format. This is the same as {@link #PF_RGBX}, except that when * decompressing, the X byte is guaranteed to be 0xFF, which can be * interpreted as an opaque alpha channel. */ public static final int PF_RGBA = 7; /** * BGRA pixel format. This is the same as {@link #PF_BGRX}, except that when * decompressing, the X byte is guaranteed to be 0xFF, which can be * interpreted as an opaque alpha channel. */ public static final int PF_BGRA = 8; /** * ABGR pixel format. This is the same as {@link #PF_XBGR}, except that when * decompressing, the X byte is guaranteed to be 0xFF, which can be * interpreted as an opaque alpha channel. */ public static final int PF_ABGR = 9; /** * ARGB pixel format. This is the same as {@link #PF_XRGB}, except that when * decompressing, the X byte is guaranteed to be 0xFF, which can be * interpreted as an opaque alpha channel. */ public static final int PF_ARGB = 10; /** * CMYK pixel format. Unlike RGB, which is an additive color model used * primarily for display, CMYK (Cyan/Magenta/Yellow/Key) is a subtractive * color model used primarily for printing. In the CMYK color model, the * value of each color component typically corresponds to an amount of cyan, * magenta, yellow, or black ink that is applied to a white background. In * order to convert between CMYK and RGB, it is necessary to use a color * management system (CMS.) A CMS will attempt to map colors within the * printer's gamut to perceptually similar colors in the display's gamut and * vice versa, but the mapping is typically not 1:1 or reversible, nor can it * be defined with a simple formula. Thus, such a conversion is out of scope * for a codec library. However, the TurboJPEG API allows for compressing * packed-pixel CMYK images into YCCK JPEG images (see {@link #CS_YCCK}) and * decompressing YCCK JPEG images into packed-pixel CMYK images. */ public static final int PF_CMYK = 11; /** * Returns the pixel size (in bytes) for the given pixel format. * * @param pixelFormat the pixel format (one of {@link #PF_RGB PF_*}) * * @return the pixel size (in bytes) for the given pixel format. */ public static int getPixelSize(int pixelFormat) { checkPixelFormat(pixelFormat); return PIXEL_SIZE[pixelFormat]; } private static final int[] PIXEL_SIZE = { 3, 3, 4, 4, 4, 4, 1, 4, 4, 4, 4, 4 }; /** * For the given pixel format, returns the number of bytes that the red * component is offset from the start of the pixel. For instance, if a pixel * of format TJ.PF_BGRX is stored in char pixel[], * then the red component will be * pixel[TJ.getRedOffset(TJ.PF_BGRX)]. * * @param pixelFormat the pixel format (one of {@link #PF_RGB PF_*}) * * @return the red offset for the given pixel format, or -1 if the pixel * format does not have a red component. */ public static int getRedOffset(int pixelFormat) { checkPixelFormat(pixelFormat); return RED_OFFSET[pixelFormat]; } private static final int[] RED_OFFSET = { 0, 2, 0, 2, 3, 1, -1, 0, 2, 3, 1, -1 }; /** * For the given pixel format, returns the number of bytes that the green * component is offset from the start of the pixel. For instance, if a pixel * of format TJ.PF_BGRX is stored in char pixel[], * then the green component will be * pixel[TJ.getGreenOffset(TJ.PF_BGRX)]. * * @param pixelFormat the pixel format (one of {@link #PF_RGB PF_*}) * * @return the green offset for the given pixel format, or -1 if the pixel * format does not have a green component. */ public static int getGreenOffset(int pixelFormat) { checkPixelFormat(pixelFormat); return GREEN_OFFSET[pixelFormat]; } private static final int[] GREEN_OFFSET = { 1, 1, 1, 1, 2, 2, -1, 1, 1, 2, 2, -1 }; /** * For the given pixel format, returns the number of bytes that the blue * component is offset from the start of the pixel. For instance, if a pixel * of format TJ.PF_BGRX is stored in char pixel[], * then the blue component will be * pixel[TJ.getBlueOffset(TJ.PF_BGRX)]. * * @param pixelFormat the pixel format (one of {@link #PF_RGB PF_*}) * * @return the blue offset for the given pixel format, or -1 if the pixel * format does not have a blue component. */ public static int getBlueOffset(int pixelFormat) { checkPixelFormat(pixelFormat); return BLUE_OFFSET[pixelFormat]; } private static final int[] BLUE_OFFSET = { 2, 0, 2, 0, 1, 3, -1, 2, 0, 1, 3, -1 }; /** * For the given pixel format, returns the number of bytes that the alpha * component is offset from the start of the pixel. For instance, if a pixel * of format TJ.PF_BGRA is stored in char pixel[], * then the alpha component will be * pixel[TJ.getAlphaOffset(TJ.PF_BGRA)]. * * @param pixelFormat the pixel format (one of {@link #PF_RGB PF_*}) * * @return the alpha offset for the given pixel format, or -1 if the pixel * format does not have a alpha component. */ public static int getAlphaOffset(int pixelFormat) { checkPixelFormat(pixelFormat); return ALPHA_OFFSET[pixelFormat]; } private static final int[] ALPHA_OFFSET = { -1, -1, -1, -1, -1, -1, -1, 3, 3, 0, 0, -1 }; /** * The number of JPEG colorspaces */ public static final int NUMCS = 5; /** * RGB colorspace. When compressing the JPEG image, the R, G, and B * components in the source image are reordered into image planes, but no * colorspace conversion or subsampling is performed. RGB JPEG images can be * decompressed to packed-pixel images with any of the extended RGB or * grayscale pixel formats, but they cannot be decompressed to planar YUV * images. */ public static final int CS_RGB = 0; /** * YCbCr colorspace. YCbCr is not an absolute colorspace but rather a * mathematical transformation of RGB designed solely for storage and * transmission. YCbCr images must be converted to RGB before they can * actually be displayed. In the YCbCr colorspace, the Y (luminance) * component represents the black & white portion of the original image, * and the Cb and Cr (chrominance) components represent the color portion of * the original image. Originally, the analog equivalent of this * transformation allowed the same signal to drive both black & white and * color televisions, but JPEG images use YCbCr primarily because it allows * the color data to be optionally subsampled for the purposes of reducing * network or disk usage. YCbCr is the most common JPEG colorspace, and * YCbCr JPEG images can be compressed from and decompressed to packed-pixel * images with any of the extended RGB or grayscale pixel formats. YCbCr * JPEG images can also be compressed from and decompressed to planar YUV * images. */ @SuppressWarnings("checkstyle:ConstantName") public static final int CS_YCbCr = 1; /** * Grayscale colorspace. The JPEG image retains only the luminance data (Y * component), and any color data from the source image is discarded. * Grayscale JPEG images can be compressed from and decompressed to * packed-pixel images with any of the extended RGB or grayscale pixel * formats, or they can be compressed from and decompressed to planar YUV * images. */ public static final int CS_GRAY = 2; /** * CMYK colorspace. When compressing the JPEG image, the C, M, Y, and K * components in the source image are reordered into image planes, but no * colorspace conversion or subsampling is performed. CMYK JPEG images can * only be decompressed to packed-pixel images with the CMYK pixel format. */ public static final int CS_CMYK = 3; /** * YCCK colorspace. YCCK (AKA "YCbCrK") is not an absolute colorspace but * rather a mathematical transformation of CMYK designed solely for storage * and transmission. It is to CMYK as YCbCr is to RGB. CMYK pixels can be * reversibly transformed into YCCK, and as with YCbCr, the chrominance * components in the YCCK pixels can be subsampled without incurring major * perceptual loss. YCCK JPEG images can only be compressed from and * decompressed to packed-pixel images with the CMYK pixel format. */ public static final int CS_YCCK = 4; /** * Rows in the packed-pixel source/destination image are stored in bottom-up * (Windows, OpenGL) order rather than in top-down (X11) order. */ public static final int FLAG_BOTTOMUP = 2; @SuppressWarnings("checkstyle:JavadocVariable") @Deprecated public static final int FLAG_FORCEMMX = 8; @SuppressWarnings("checkstyle:JavadocVariable") @Deprecated public static final int FLAG_FORCESSE = 16; @SuppressWarnings("checkstyle:JavadocVariable") @Deprecated public static final int FLAG_FORCESSE2 = 32; @SuppressWarnings("checkstyle:JavadocVariable") @Deprecated public static final int FLAG_FORCESSE3 = 128; /** * When decompressing an image that was compressed using chrominance * subsampling, use the fastest chrominance upsampling algorithm available. * The default is to use smooth upsampling, which creates a smooth transition * between neighboring chrominance components in order to reduce upsampling * artifacts in the decompressed image. */ public static final int FLAG_FASTUPSAMPLE = 256; /** * Use the fastest DCT/IDCT algorithm available. The default if this flag is * not specified is implementation-specific. For example, the implementation * of the TurboJPEG API in libjpeg-turbo uses the fast algorithm by default * when compressing, because this has been shown to have only a very slight * effect on accuracy, but it uses the accurate algorithm when decompressing, * because this has been shown to have a larger effect. */ public static final int FLAG_FASTDCT = 2048; /** * Use the most accurate DCT/IDCT algorithm available. The default if this * flag is not specified is implementation-specific. For example, the * implementation of the TurboJPEG API in libjpeg-turbo uses the fast * algorithm by default when compressing, because this has been shown to have * only a very slight effect on accuracy, but it uses the accurate algorithm * when decompressing, because this has been shown to have a larger effect. */ public static final int FLAG_ACCURATEDCT = 4096; /** * Immediately discontinue the current compression/decompression/transform * operation if a warning (non-fatal error) occurs. The default behavior is * to allow the operation to complete unless a fatal error is encountered. *

    * NOTE: due to the design of the TurboJPEG Java API, only certain methods * (specifically, {@link TJDecompressor TJDecompressor.decompress*()} methods * with a void return type) will complete and leave the destination image in * a fully recoverable state after a non-fatal error occurs. */ public static final int FLAG_STOPONWARNING = 8192; /** * Use progressive entropy coding in JPEG images generated by compression and * transform operations. Progressive entropy coding will generally improve * compression relative to baseline entropy coding (the default), but it will * reduce compression and decompression performance considerably. */ public static final int FLAG_PROGRESSIVE = 16384; /** * Limit the number of progressive JPEG scans that the decompression and * transform operations will process. If a progressive JPEG image contains * an unreasonably large number of scans, then this flag will cause the * decompression and transform operations to throw an error. The primary * purpose of this is to allow security-critical applications to guard * against an exploit of the progressive JPEG format described in * this report. */ public static final int FLAG_LIMITSCANS = 32768; /** * The number of error codes */ public static final int NUMERR = 2; /** * The error was non-fatal and recoverable, but the destination image may * still be corrupt. *

    * NOTE: due to the design of the TurboJPEG Java API, only certain methods * (specifically, {@link TJDecompressor TJDecompressor.decompress*()} methods * with a void return type) will complete and leave the destination image in * a fully recoverable state after a non-fatal error occurs. */ public static final int ERR_WARNING = 0; /** * The error was fatal and non-recoverable. */ public static final int ERR_FATAL = 1; /** * Returns the maximum size of the buffer (in bytes) required to hold a JPEG * image with the given width, height, and level of chrominance subsampling. * * @param width the width (in pixels) of the JPEG image * * @param height the height (in pixels) of the JPEG image * * @param jpegSubsamp the level of chrominance subsampling to be used when * generating the JPEG image (one of {@link #SAMP_444 TJ.SAMP_*}) * * @return the maximum size of the buffer (in bytes) required to hold a JPEG * image with the given width, height, and level of chrominance subsampling. */ public static native int bufSize(int width, int height, int jpegSubsamp); /** * Returns the size of the buffer (in bytes) required to hold a unified * planar YUV image with the given width, height, and level of chrominance * subsampling. * * @param width the width (in pixels) of the YUV image * * @param align row alignment (in bytes) of the YUV image (must be a power of * 2.) Setting this parameter to n specifies that each row in each plane of * the YUV image will be padded to the nearest multiple of n bytes * (1 = unpadded.) * * @param height the height (in pixels) of the YUV image * * @param subsamp the level of chrominance subsampling used in the YUV * image (one of {@link #SAMP_444 TJ.SAMP_*}) * * @return the size of the buffer (in bytes) required to hold a unified * planar YUV image with the given width, height, and level of chrominance * subsampling. */ public static native int bufSizeYUV(int width, int align, int height, int subsamp); /** * @deprecated Use {@link #bufSizeYUV(int, int, int, int)} instead. */ @SuppressWarnings("checkstyle:JavadocMethod") @Deprecated public static native int bufSizeYUV(int width, int height, int subsamp); /** * Returns the size of the buffer (in bytes) required to hold a YUV image * plane with the given parameters. * * @param componentID ID number of the image plane (0 = Y, 1 = U/Cb, * 2 = V/Cr) * * @param width width (in pixels) of the YUV image. NOTE: this is the width * of the whole image, not the plane width. * * @param stride bytes per row in the image plane. * * @param height height (in pixels) of the YUV image. NOTE: this is the * height of the whole image, not the plane height. * * @param subsamp the level of chrominance subsampling used in the YUV * image (one of {@link #SAMP_444 TJ.SAMP_*}) * * @return the size of the buffer (in bytes) required to hold a YUV image * plane with the given parameters. */ public static native int planeSizeYUV(int componentID, int width, int stride, int height, int subsamp); /** * Returns the plane width of a YUV image plane with the given parameters. * Refer to {@link YUVImage YUVImage} for a description of plane width. * * @param componentID ID number of the image plane (0 = Y, 1 = U/Cb, * 2 = V/Cr) * * @param width width (in pixels) of the YUV image * * @param subsamp the level of chrominance subsampling used in the YUV image * (one of {@link #SAMP_444 TJ.SAMP_*}) * * @return the plane width of a YUV image plane with the given parameters. */ public static native int planeWidth(int componentID, int width, int subsamp); /** * Returns the plane height of a YUV image plane with the given parameters. * Refer to {@link YUVImage YUVImage} for a description of plane height. * * @param componentID ID number of the image plane (0 = Y, 1 = U/Cb, * 2 = V/Cr) * * @param height height (in pixels) of the YUV image * * @param subsamp the level of chrominance subsampling used in the YUV image * (one of {@link #SAMP_444 TJ.SAMP_*}) * * @return the plane height of a YUV image plane with the given parameters. */ public static native int planeHeight(int componentID, int height, int subsamp); /** * Returns a list of fractional scaling factors that the JPEG decompressor * supports. * * @return a list of fractional scaling factors that the JPEG decompressor * supports. */ public static native TJScalingFactor[] getScalingFactors(); static { TJLoader.load(); } private static void checkPixelFormat(int pixelFormat) { if (pixelFormat < 0 || pixelFormat >= NUMPF) throw new IllegalArgumentException("Invalid pixel format"); } private static void checkSubsampling(int subsamp) { if (subsamp < 0 || subsamp >= NUMSAMP) throw new IllegalArgumentException("Invalid subsampling type"); } } libjpeg-turbo-2.1.5/java/org/libjpegturbo/turbojpeg/TJCompressor.java000066400000000000000000000643461436506551100257450ustar00rootroot00000000000000/* * Copyright (C)2011-2015, 2018, 2020, 2023 D. R. Commander. * All Rights Reserved. * Copyright (C)2015 Viktor Szathmáry. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ package org.libjpegturbo.turbojpeg; import java.awt.image.*; import java.nio.*; import java.io.*; /** * TurboJPEG compressor */ public class TJCompressor implements Closeable { private static final String NO_ASSOC_ERROR = "No source image is associated with this instance"; /** * Create a TurboJPEG compressor instance. */ public TJCompressor() throws TJException { init(); } /** * Create a TurboJPEG compressor instance and associate the packed-pixel * source image stored in srcImage with the newly created * instance. * * @param srcImage see {@link #setSourceImage} for description * * @param x see {@link #setSourceImage} for description * * @param y see {@link #setSourceImage} for description * * @param width see {@link #setSourceImage} for description * * @param pitch see {@link #setSourceImage} for description * * @param height see {@link #setSourceImage} for description * * @param pixelFormat pixel format of the source image (one of * {@link TJ#PF_RGB TJ.PF_*}) */ public TJCompressor(byte[] srcImage, int x, int y, int width, int pitch, int height, int pixelFormat) throws TJException { setSourceImage(srcImage, x, y, width, pitch, height, pixelFormat); } /** * @deprecated Use * {@link #TJCompressor(byte[], int, int, int, int, int, int)} instead. */ @SuppressWarnings("checkstyle:JavadocMethod") @Deprecated public TJCompressor(byte[] srcImage, int width, int pitch, int height, int pixelFormat) throws TJException { setSourceImage(srcImage, width, pitch, height, pixelFormat); } /** * Create a TurboJPEG compressor instance and associate the packed-pixel * source image stored in srcImage with the newly created * instance. * * @param srcImage see * {@link #setSourceImage(BufferedImage, int, int, int, int)} for description * * @param x see * {@link #setSourceImage(BufferedImage, int, int, int, int)} for description * * @param y see * {@link #setSourceImage(BufferedImage, int, int, int, int)} for description * * @param width see * {@link #setSourceImage(BufferedImage, int, int, int, int)} for description * * @param height see * {@link #setSourceImage(BufferedImage, int, int, int, int)} for description */ public TJCompressor(BufferedImage srcImage, int x, int y, int width, int height) throws TJException { setSourceImage(srcImage, x, y, width, height); } /** * Associate a packed-pixel RGB, grayscale, or CMYK source image with this * compressor instance. * * @param srcImage buffer containing a packed-pixel RGB, grayscale, or CMYK * source image to be compressed or encoded. This buffer is not modified. * * @param x x offset (in pixels) of the region in the source image from which * the JPEG or YUV image should be compressed/encoded * * @param y y offset (in pixels) of the region in the source image from which * the JPEG or YUV image should be compressed/encoded * * @param width width (in pixels) of the region in the source image from * which the JPEG or YUV image should be compressed/encoded * * @param pitch bytes per row in the source image. Normally this should be * width * * {@link TJ#getPixelSize TJ.getPixelSize}(pixelFormat), * if the source image is unpadded. However, you can use this parameter to, * for instance, specify that the rows in the source image are padded to the * nearest multiple of 4 bytes or to compress/encode a JPEG or YUV image from * a region of a larger source image. You can also be clever and use this * parameter to skip rows, etc. Setting this parameter to 0 is the * equivalent of setting it to width * * {@link TJ#getPixelSize TJ.getPixelSize}(pixelFormat). * * @param height height (in pixels) of the region in the source image from * which the JPEG or YUV image should be compressed/encoded * * @param pixelFormat pixel format of the source image (one of * {@link TJ#PF_RGB TJ.PF_*}) */ public void setSourceImage(byte[] srcImage, int x, int y, int width, int pitch, int height, int pixelFormat) throws TJException { if (handle == 0) init(); if (srcImage == null || x < 0 || y < 0 || width < 1 || height < 1 || pitch < 0 || pixelFormat < 0 || pixelFormat >= TJ.NUMPF) throw new IllegalArgumentException("Invalid argument in setSourceImage()"); srcBuf = srcImage; srcWidth = width; if (pitch == 0) srcPitch = width * TJ.getPixelSize(pixelFormat); else srcPitch = pitch; srcHeight = height; srcPixelFormat = pixelFormat; srcX = x; srcY = y; srcBufInt = null; srcYUVImage = null; } /** * @deprecated Use * {@link #setSourceImage(byte[], int, int, int, int, int, int)} instead. */ @SuppressWarnings("checkstyle:JavadocMethod") @Deprecated public void setSourceImage(byte[] srcImage, int width, int pitch, int height, int pixelFormat) throws TJException { setSourceImage(srcImage, 0, 0, width, pitch, height, pixelFormat); srcX = srcY = -1; } /** * Associate a packed-pixel RGB or grayscale source image with this * compressor instance. * * @param srcImage a BufferedImage instance containing a * packed-pixel RGB or grayscale source image to be compressed or encoded. * This image is not modified. * * @param x x offset (in pixels) of the region in the source image from which * the JPEG or YUV image should be compressed/encoded * * @param y y offset (in pixels) of the region in the source image from which * the JPEG or YUV image should be compressed/encoded * * @param width width (in pixels) of the region in the source image from * which the JPEG or YUV image should be compressed/encoded (0 = use the * width of the source image) * * @param height height (in pixels) of the region in the source image from * which the JPEG or YUV image should be compressed/encoded (0 = use the * height of the source image) */ public void setSourceImage(BufferedImage srcImage, int x, int y, int width, int height) throws TJException { if (handle == 0) init(); if (srcImage == null || x < 0 || y < 0 || width < 0 || height < 0) throw new IllegalArgumentException("Invalid argument in setSourceImage()"); srcX = x; srcY = y; srcWidth = (width == 0) ? srcImage.getWidth() : width; srcHeight = (height == 0) ? srcImage.getHeight() : height; if (x + width > srcImage.getWidth() || y + height > srcImage.getHeight()) throw new IllegalArgumentException("Compression region exceeds the bounds of the source image"); int pixelFormat; boolean intPixels = false; if (byteOrder == null) byteOrder = ByteOrder.nativeOrder(); switch (srcImage.getType()) { case BufferedImage.TYPE_3BYTE_BGR: pixelFormat = TJ.PF_BGR; break; case BufferedImage.TYPE_4BYTE_ABGR: case BufferedImage.TYPE_4BYTE_ABGR_PRE: pixelFormat = TJ.PF_XBGR; break; case BufferedImage.TYPE_BYTE_GRAY: pixelFormat = TJ.PF_GRAY; break; case BufferedImage.TYPE_INT_BGR: if (byteOrder == ByteOrder.BIG_ENDIAN) pixelFormat = TJ.PF_XBGR; else pixelFormat = TJ.PF_RGBX; intPixels = true; break; case BufferedImage.TYPE_INT_RGB: case BufferedImage.TYPE_INT_ARGB: case BufferedImage.TYPE_INT_ARGB_PRE: if (byteOrder == ByteOrder.BIG_ENDIAN) pixelFormat = TJ.PF_XRGB; else pixelFormat = TJ.PF_BGRX; intPixels = true; break; default: throw new IllegalArgumentException("Unsupported BufferedImage format"); } srcPixelFormat = pixelFormat; WritableRaster wr = srcImage.getRaster(); if (intPixels) { SinglePixelPackedSampleModel sm = (SinglePixelPackedSampleModel)srcImage.getSampleModel(); srcStride = sm.getScanlineStride(); DataBufferInt db = (DataBufferInt)wr.getDataBuffer(); srcBufInt = db.getData(); srcBuf = null; } else { ComponentSampleModel sm = (ComponentSampleModel)srcImage.getSampleModel(); int pixelSize = sm.getPixelStride(); if (pixelSize != TJ.getPixelSize(pixelFormat)) throw new IllegalArgumentException("Inconsistency between pixel format and pixel size in BufferedImage"); srcPitch = sm.getScanlineStride(); DataBufferByte db = (DataBufferByte)wr.getDataBuffer(); srcBuf = db.getData(); srcBufInt = null; } srcYUVImage = null; } /** * Associate a planar YUV source image with this compressor instance. * * @param srcImage planar YUV source image to be compressed. This image is * not modified. */ public void setSourceImage(YUVImage srcImage) throws TJException { if (handle == 0) init(); if (srcImage == null) throw new IllegalArgumentException("Invalid argument in setSourceImage()"); srcYUVImage = srcImage; srcBuf = null; srcBufInt = null; } /** * Set the level of chrominance subsampling for subsequent compress/encode * operations. When pixels are converted from RGB to YCbCr (see * {@link TJ#CS_YCbCr}) or from CMYK to YCCK (see {@link TJ#CS_YCCK}) as part * of the JPEG compression process, some of the Cb and Cr (chrominance) * components can be discarded or averaged together to produce a smaller * image with little perceptible loss of image clarity. (The human eye is * more sensitive to small changes in brightness than to small changes in * color.) This is called "chrominance subsampling". *

    * NOTE: This method has no effect when compressing a JPEG image from a * planar YUV source image. In that case, the level of chrominance * subsampling in the JPEG image is determined by the source image. * Furthermore, this method has no effect when encoding to a pre-allocated * {@link YUVImage} instance. In that case, the level of chrominance * subsampling is determined by the destination image. * * @param newSubsamp the level of chrominance subsampling to use in * subsequent compress/encode oeprations (one of * {@link TJ#SAMP_444 TJ.SAMP_*}) */ public void setSubsamp(int newSubsamp) { if (newSubsamp < 0 || newSubsamp >= TJ.NUMSAMP) throw new IllegalArgumentException("Invalid argument in setSubsamp()"); subsamp = newSubsamp; } /** * Set the JPEG image quality level for subsequent compress operations. * * @param quality the new JPEG image quality level (1 to 100, 1 = worst, * 100 = best) */ public void setJPEGQuality(int quality) { if (quality < 1 || quality > 100) throw new IllegalArgumentException("Invalid argument in setJPEGQuality()"); jpegQuality = quality; } /** * Compress the packed-pixel or planar YUV source image associated with this * compressor instance and output a JPEG image to the given destination * buffer. * * @param dstBuf buffer that will receive the JPEG image. Use * {@link TJ#bufSize} to determine the maximum size for this buffer based on * the source image's width and height and the desired level of chrominance * subsampling. * * @param flags the bitwise OR of one or more of * {@link TJ#FLAG_BOTTOMUP TJ.FLAG_*} */ public void compress(byte[] dstBuf, int flags) throws TJException { if (dstBuf == null || flags < 0) throw new IllegalArgumentException("Invalid argument in compress()"); if (srcBuf == null && srcBufInt == null && srcYUVImage == null) throw new IllegalStateException(NO_ASSOC_ERROR); if (jpegQuality < 0) throw new IllegalStateException("JPEG Quality not set"); if (subsamp < 0 && srcYUVImage == null) throw new IllegalStateException("Subsampling level not set"); if (srcYUVImage != null) compressedSize = compressFromYUV(srcYUVImage.getPlanes(), srcYUVImage.getOffsets(), srcYUVImage.getWidth(), srcYUVImage.getStrides(), srcYUVImage.getHeight(), srcYUVImage.getSubsamp(), dstBuf, jpegQuality, flags); else if (srcBuf != null) { if (srcX >= 0 && srcY >= 0) compressedSize = compress(srcBuf, srcX, srcY, srcWidth, srcPitch, srcHeight, srcPixelFormat, dstBuf, subsamp, jpegQuality, flags); else compressedSize = compress(srcBuf, srcWidth, srcPitch, srcHeight, srcPixelFormat, dstBuf, subsamp, jpegQuality, flags); } else if (srcBufInt != null) { if (srcX >= 0 && srcY >= 0) compressedSize = compress(srcBufInt, srcX, srcY, srcWidth, srcStride, srcHeight, srcPixelFormat, dstBuf, subsamp, jpegQuality, flags); else compressedSize = compress(srcBufInt, srcWidth, srcStride, srcHeight, srcPixelFormat, dstBuf, subsamp, jpegQuality, flags); } } /** * Compress the packed-pixel or planar YUV source image associated with this * compressor instance and return a buffer containing a JPEG image. * * @param flags the bitwise OR of one or more of * {@link TJ#FLAG_BOTTOMUP TJ.FLAG_*} * * @return a buffer containing a JPEG image. The length of this buffer will * not be equal to the size of the JPEG image. Use {@link * #getCompressedSize} to obtain the size of the JPEG image. */ public byte[] compress(int flags) throws TJException { byte[] buf; if (srcYUVImage != null) { buf = new byte[TJ.bufSize(srcYUVImage.getWidth(), srcYUVImage.getHeight(), srcYUVImage.getSubsamp())]; } else { checkSourceImage(); buf = new byte[TJ.bufSize(srcWidth, srcHeight, subsamp)]; } compress(buf, flags); return buf; } /** * @deprecated Use * {@link #setSourceImage(BufferedImage, int, int, int, int)} and * {@link #compress(byte[], int)} instead. */ @SuppressWarnings("checkstyle:JavadocMethod") @Deprecated public void compress(BufferedImage srcImage, byte[] dstBuf, int flags) throws TJException { setSourceImage(srcImage, 0, 0, 0, 0); compress(dstBuf, flags); } /** * @deprecated Use * {@link #setSourceImage(BufferedImage, int, int, int, int)} and * {@link #compress(int)} instead. */ @SuppressWarnings("checkstyle:JavadocMethod") @Deprecated public byte[] compress(BufferedImage srcImage, int flags) throws TJException { setSourceImage(srcImage, 0, 0, 0, 0); return compress(flags); } /** * Encode the packed-pixel source image associated with this compressor * instance into a planar YUV image and store it in the given * {@link YUVImage} instance. This method performs color conversion (which * is accelerated in the libjpeg-turbo implementation) but does not execute * any of the other steps in the JPEG compression process. Encoding CMYK * source images into YUV images is not supported. * * @param dstImage {@link YUVImage} instance that will receive the planar YUV * image * * @param flags the bitwise OR of one or more of * {@link TJ#FLAG_BOTTOMUP TJ.FLAG_*} */ public void encodeYUV(YUVImage dstImage, int flags) throws TJException { if (dstImage == null || flags < 0) throw new IllegalArgumentException("Invalid argument in encodeYUV()"); if (srcBuf == null && srcBufInt == null) throw new IllegalStateException(NO_ASSOC_ERROR); if (srcYUVImage != null) throw new IllegalStateException("Source image is not correct type"); checkSubsampling(); if (srcWidth != dstImage.getWidth() || srcHeight != dstImage.getHeight()) throw new IllegalStateException("Destination image is the wrong size"); if (srcBufInt != null) { encodeYUV(srcBufInt, srcX, srcY, srcWidth, srcStride, srcHeight, srcPixelFormat, dstImage.getPlanes(), dstImage.getOffsets(), dstImage.getStrides(), dstImage.getSubsamp(), flags); } else { encodeYUV(srcBuf, srcX, srcY, srcWidth, srcPitch, srcHeight, srcPixelFormat, dstImage.getPlanes(), dstImage.getOffsets(), dstImage.getStrides(), dstImage.getSubsamp(), flags); } compressedSize = 0; } /** * @deprecated Use {@link #encodeYUV(YUVImage, int)} instead. */ @SuppressWarnings("checkstyle:JavadocMethod") @Deprecated public void encodeYUV(byte[] dstBuf, int flags) throws TJException { if (dstBuf == null) throw new IllegalArgumentException("Invalid argument in encodeYUV()"); checkSourceImage(); checkSubsampling(); YUVImage dstYUVImage = new YUVImage(dstBuf, srcWidth, 4, srcHeight, subsamp); encodeYUV(dstYUVImage, flags); } /** * Encode the packed-pixel source image associated with this compressor * instance into a unified planar YUV image and return a {@link YUVImage} * instance containing the encoded image. This method performs color * conversion (which is accelerated in the libjpeg-turbo implementation) but * does not execute any of the other steps in the JPEG compression process. * Encoding CMYK source images into YUV images is not supported. * * @param align row alignment (in bytes) of the YUV image (must be a power of * 2.) Setting this parameter to n will cause each row in each plane of the * YUV image to be padded to the nearest multiple of n bytes (1 = unpadded.) * * @param flags the bitwise OR of one or more of * {@link TJ#FLAG_BOTTOMUP TJ.FLAG_*} * * @return a {@link YUVImage} instance containing the unified planar YUV * encoded image */ public YUVImage encodeYUV(int align, int flags) throws TJException { checkSourceImage(); checkSubsampling(); if (align < 1 || ((align & (align - 1)) != 0)) throw new IllegalStateException("Invalid argument in encodeYUV()"); YUVImage dstYUVImage = new YUVImage(srcWidth, align, srcHeight, subsamp); encodeYUV(dstYUVImage, flags); return dstYUVImage; } /** * Encode the packed-pixel source image associated with this compressor * instance into separate Y, U (Cb), and V (Cr) image planes and return a * {@link YUVImage} instance containing the encoded image planes. This * method performs color conversion (which is accelerated in the * libjpeg-turbo implementation) but does not execute any of the other steps * in the JPEG compression process. Encoding CMYK source images into YUV * images is not supported. * * @param strides an array of integers, each specifying the number of bytes * per row in the corresponding plane of the YUV source image. Setting the * stride for any plane to 0 is the same as setting it to the plane width * (see {@link YUVImage}.) If strides is null, then the strides * for all planes will be set to their respective plane widths. You can * adjust the strides in order to add an arbitrary amount of row padding to * each plane. * * @param flags the bitwise OR of one or more of * {@link TJ#FLAG_BOTTOMUP TJ.FLAG_*} * * @return a {@link YUVImage} instance containing the encoded image planes */ public YUVImage encodeYUV(int[] strides, int flags) throws TJException { checkSourceImage(); checkSubsampling(); YUVImage dstYUVImage = new YUVImage(srcWidth, strides, srcHeight, subsamp); encodeYUV(dstYUVImage, flags); return dstYUVImage; } /** * @deprecated Use {@link #encodeYUV(int, int)} instead. */ @SuppressWarnings("checkstyle:JavadocMethod") @Deprecated public byte[] encodeYUV(int flags) throws TJException { checkSourceImage(); checkSubsampling(); YUVImage dstYUVImage = new YUVImage(srcWidth, 4, srcHeight, subsamp); encodeYUV(dstYUVImage, flags); return dstYUVImage.getBuf(); } /** * @deprecated Use * {@link #setSourceImage(BufferedImage, int, int, int, int)} and * {@link #encodeYUV(byte[], int)} instead. */ @SuppressWarnings("checkstyle:JavadocMethod") @Deprecated public void encodeYUV(BufferedImage srcImage, byte[] dstBuf, int flags) throws TJException { setSourceImage(srcImage, 0, 0, 0, 0); encodeYUV(dstBuf, flags); } /** * @deprecated Use * {@link #setSourceImage(BufferedImage, int, int, int, int)} and * {@link #encodeYUV(int, int)} instead. */ @SuppressWarnings("checkstyle:JavadocMethod") @Deprecated public byte[] encodeYUV(BufferedImage srcImage, int flags) throws TJException { setSourceImage(srcImage, 0, 0, 0, 0); return encodeYUV(flags); } /** * Returns the size of the image (in bytes) generated by the most recent * compress operation. * * @return the size of the image (in bytes) generated by the most recent * compress operation. */ public int getCompressedSize() { return compressedSize; } /** * Free the native structures associated with this compressor instance. */ @Override public void close() throws TJException { if (handle != 0) destroy(); } @SuppressWarnings("checkstyle:DesignForExtension") @Override protected void finalize() throws Throwable { try { close(); } catch (TJException e) { } finally { super.finalize(); } }; private native void init() throws TJException; private native void destroy() throws TJException; // JPEG size in bytes is returned @SuppressWarnings("checkstyle:HiddenField") @Deprecated private native int compress(byte[] srcBuf, int width, int pitch, int height, int pixelFormat, byte[] jpegBuf, int jpegSubsamp, int jpegQual, int flags) throws TJException; @SuppressWarnings("checkstyle:HiddenField") private native int compress(byte[] srcBuf, int x, int y, int width, int pitch, int height, int pixelFormat, byte[] jpegBuf, int jpegSubsamp, int jpegQual, int flags) throws TJException; @SuppressWarnings("checkstyle:HiddenField") @Deprecated private native int compress(int[] srcBuf, int width, int stride, int height, int pixelFormat, byte[] jpegBuf, int jpegSubsamp, int jpegQual, int flags) throws TJException; @SuppressWarnings("checkstyle:HiddenField") private native int compress(int[] srcBuf, int x, int y, int width, int stride, int height, int pixelFormat, byte[] jpegBuf, int jpegSubsamp, int jpegQual, int flags) throws TJException; @SuppressWarnings("checkstyle:HiddenField") private native int compressFromYUV(byte[][] srcPlanes, int[] srcOffsets, int width, int[] srcStrides, int height, int subsamp, byte[] jpegBuf, int jpegQual, int flags) throws TJException; @SuppressWarnings("checkstyle:HiddenField") @Deprecated private native void encodeYUV(byte[] srcBuf, int width, int pitch, int height, int pixelFormat, byte[] dstBuf, int subsamp, int flags) throws TJException; @SuppressWarnings("checkstyle:HiddenField") private native void encodeYUV(byte[] srcBuf, int x, int y, int width, int pitch, int height, int pixelFormat, byte[][] dstPlanes, int[] dstOffsets, int[] dstStrides, int subsamp, int flags) throws TJException; @SuppressWarnings("checkstyle:HiddenField") @Deprecated private native void encodeYUV(int[] srcBuf, int width, int stride, int height, int pixelFormat, byte[] dstBuf, int subsamp, int flags) throws TJException; @SuppressWarnings("checkstyle:HiddenField") private native void encodeYUV(int[] srcBuf, int x, int y, int width, int srcStride, int height, int pixelFormat, byte[][] dstPlanes, int[] dstOffsets, int[] dstStrides, int subsamp, int flags) throws TJException; static { TJLoader.load(); } private void checkSourceImage() { if (srcWidth < 1 || srcHeight < 1) throw new IllegalStateException(NO_ASSOC_ERROR); } private void checkSubsampling() { if (subsamp < 0) throw new IllegalStateException("Subsampling level not set"); } private long handle = 0; private byte[] srcBuf = null; private int[] srcBufInt = null; private int srcWidth = 0; private int srcHeight = 0; private int srcX = -1; private int srcY = -1; private int srcPitch = 0; private int srcStride = 0; private int srcPixelFormat = -1; private YUVImage srcYUVImage = null; private int subsamp = -1; private int jpegQuality = -1; private int compressedSize = 0; private ByteOrder byteOrder = null; } libjpeg-turbo-2.1.5/java/org/libjpegturbo/turbojpeg/TJCustomFilter.java000066400000000000000000000071161436506551100262210ustar00rootroot00000000000000/* * Copyright (C)2011, 2013, 2023 D. R. Commander. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ package org.libjpegturbo.turbojpeg; import java.awt.*; import java.nio.*; /** * Custom filter callback interface */ public interface TJCustomFilter { /** * A callback function that can be used to modify the DCT coefficients after * they are losslessly transformed but before they are transcoded to a new * JPEG image. This allows for custom filters or other transformations to be * applied in the frequency domain. * * @param coeffBuffer a buffer containing transformed DCT coefficients. * (NOTE: this buffer is not guaranteed to be valid once the callback * returns, so applications wishing to hand off the DCT coefficients to * another function or library should make a copy of them within the body of * the callback.) * * @param bufferRegion rectangle containing the width and height of * coeffBuffer as well as its offset relative to the component * plane. TurboJPEG implementations may choose to split each component plane * into multiple DCT coefficient buffers and call the callback function once * for each buffer. * * @param planeRegion rectangle containing the width and height of the * component plane to which coeffBuffer belongs * * @param componentID ID number of the component plane to which * coeffBuffer belongs. (Y, Cb, and Cr have, respectively, ID's * of 0, 1, and 2 in typical JPEG images.) * * @param transformID ID number of the transformed image to which * coeffBuffer belongs. This is the same as the index of the * transform in the transforms array that was passed to {@link * TJTransformer#transform TJTransformer.transform()}. * * @param transform a {@link TJTransform} instance that specifies the * parameters and/or cropping region for this transform */ void customFilter(ShortBuffer coeffBuffer, Rectangle bufferRegion, Rectangle planeRegion, int componentID, int transformID, TJTransform transform) throws TJException; } libjpeg-turbo-2.1.5/java/org/libjpegturbo/turbojpeg/TJDecompressor.java000066400000000000000000001235471436506551100262550ustar00rootroot00000000000000/* * Copyright (C)2011-2015, 2018, 2022-2023 D. R. Commander. * All Rights Reserved. * Copyright (C)2015 Viktor Szathmáry. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ package org.libjpegturbo.turbojpeg; import java.awt.image.*; import java.nio.*; import java.io.*; /** * TurboJPEG decompressor */ public class TJDecompressor implements Closeable { private static final String NO_ASSOC_ERROR = "No JPEG image is associated with this instance"; /** * Create a TurboJPEG decompresssor instance. */ public TJDecompressor() throws TJException { init(); } /** * Create a TurboJPEG decompressor instance and associate the JPEG source * image or "abbreviated table specification" (AKA "tables-only") datastream * stored in jpegImage with the newly created instance. * * @param jpegImage buffer containing a JPEG source image or tables-only * datastream. (The size of the JPEG image or datastream is assumed to be * the length of the array.) This buffer is not modified. */ public TJDecompressor(byte[] jpegImage) throws TJException { init(); setSourceImage(jpegImage, jpegImage.length); } /** * Create a TurboJPEG decompressor instance and associate the JPEG source * image or "abbreviated table specification" (AKA "tables-only") datastream * of length imageSize bytes stored in jpegImage * with the newly created instance. * * @param jpegImage buffer containing a JPEG source image or tables-only * datastream. This buffer is not modified. * * @param imageSize size of the JPEG source image or tables-only datastream * (in bytes) */ public TJDecompressor(byte[] jpegImage, int imageSize) throws TJException { init(); setSourceImage(jpegImage, imageSize); } /** * Create a TurboJPEG decompressor instance and associate the planar YUV * source image stored in yuvImage with the newly created * instance. * * @param yuvImage {@link YUVImage} instance containing a planar YUV source * image to be decoded. This image is not modified. */ @SuppressWarnings("checkstyle:HiddenField") public TJDecompressor(YUVImage yuvImage) throws TJException { init(); setSourceImage(yuvImage); } /** * Associate the JPEG image or "abbreviated table specification" (AKA * "tables-only") datastream of length imageSize bytes stored in * jpegImage with this decompressor instance. If * jpegImage contains a JPEG image, then this image will be used * as the source image for subsequent decompression operations. Passing a * tables-only datastream to this method primes the decompressor with * quantization and Huffman tables that can be used when decompressing * subsequent "abbreviated image" datastreams. This is useful, for instance, * when decompressing video streams in which all frames share the same * quantization and Huffman tables. * * @param jpegImage buffer containing a JPEG source image or tables-only * datastream. This buffer is not modified. * * @param imageSize size of the JPEG source image or tables-only datastream * (in bytes) */ public void setSourceImage(byte[] jpegImage, int imageSize) throws TJException { if (jpegImage == null || imageSize < 1) throw new IllegalArgumentException("Invalid argument in setSourceImage()"); jpegBuf = jpegImage; jpegBufSize = imageSize; decompressHeader(jpegBuf, jpegBufSize); yuvImage = null; } /** * @deprecated Use {@link #setSourceImage(byte[], int)} instead. */ @SuppressWarnings("checkstyle:JavadocMethod") @Deprecated public void setJPEGImage(byte[] jpegImage, int imageSize) throws TJException { setSourceImage(jpegImage, imageSize); } /** * Associate the specified planar YUV source image with this decompressor * instance. Subsequent decompression operations will decode this image into * a packed-pixel RGB or grayscale destination image. * * @param srcImage {@link YUVImage} instance containing a planar YUV source * image to be decoded. This image is not modified. */ public void setSourceImage(YUVImage srcImage) { if (srcImage == null) throw new IllegalArgumentException("Invalid argument in setSourceImage()"); yuvImage = srcImage; jpegBuf = null; jpegBufSize = 0; } /** * Returns the width of the source image (JPEG or YUV) associated with this * decompressor instance. * * @return the width of the source image (JPEG or YUV) associated with this * decompressor instance. */ public int getWidth() { if (yuvImage != null) return yuvImage.getWidth(); if (jpegWidth < 1) throw new IllegalStateException(NO_ASSOC_ERROR); return jpegWidth; } /** * Returns the height of the source image (JPEG or YUV) associated with this * decompressor instance. * * @return the height of the source image (JPEG or YUV) associated with this * decompressor instance. */ public int getHeight() { if (yuvImage != null) return yuvImage.getHeight(); if (jpegHeight < 1) throw new IllegalStateException(NO_ASSOC_ERROR); return jpegHeight; } /** * Returns the level of chrominance subsampling used in the source image * (JPEG or YUV) associated with this decompressor instance. See * {@link TJ#SAMP_444 TJ.SAMP_*}. * * @return the level of chrominance subsampling used in the source image * (JPEG or YUV) associated with this decompressor instance. */ public int getSubsamp() { if (yuvImage != null) return yuvImage.getSubsamp(); if (jpegSubsamp < 0) throw new IllegalStateException(NO_ASSOC_ERROR); if (jpegSubsamp >= TJ.NUMSAMP) throw new IllegalStateException("JPEG header information is invalid"); return jpegSubsamp; } /** * Returns the colorspace used in the source image (JPEG or YUV) associated * with this decompressor instance. See {@link TJ#CS_RGB TJ.CS_*}. If the * source image is YUV, then this always returns {@link TJ#CS_YCbCr}. * * @return the colorspace used in the source image (JPEG or YUV) associated * with this decompressor instance. */ public int getColorspace() { if (yuvImage != null) return TJ.CS_YCbCr; if (jpegColorspace < 0) throw new IllegalStateException(NO_ASSOC_ERROR); if (jpegColorspace >= TJ.NUMCS) throw new IllegalStateException("JPEG header information is invalid"); return jpegColorspace; } /** * Returns the JPEG buffer associated with this decompressor instance. * * @return the JPEG buffer associated with this decompressor instance. */ public byte[] getJPEGBuf() { if (jpegBuf == null) throw new IllegalStateException(NO_ASSOC_ERROR); return jpegBuf; } /** * Returns the size of the JPEG image (in bytes) associated with this * decompressor instance. * * @return the size of the JPEG image (in bytes) associated with this * decompressor instance. */ public int getJPEGSize() { if (jpegBufSize < 1) throw new IllegalStateException(NO_ASSOC_ERROR); return jpegBufSize; } /** * Returns the width of the largest scaled-down image that the TurboJPEG * decompressor can generate without exceeding the desired image width and * height. * * @param desiredWidth desired width (in pixels) of the decompressed image. * Setting this to 0 is the same as setting it to the width of the JPEG * image. (In other words, the width will not be considered when determining * the scaled image size.) * * @param desiredHeight desired height (in pixels) of the decompressed image. * Setting this to 0 is the same as setting it to the height of the JPEG * image. (In other words, the height will not be considered when * determining the scaled image size.) * * @return the width of the largest scaled-down image that the TurboJPEG * decompressor can generate without exceeding the desired image width and * height. */ public int getScaledWidth(int desiredWidth, int desiredHeight) { if (jpegWidth < 1 || jpegHeight < 1) throw new IllegalStateException(NO_ASSOC_ERROR); if (desiredWidth < 0 || desiredHeight < 0) throw new IllegalArgumentException("Invalid argument in getScaledWidth()"); TJScalingFactor[] sf = TJ.getScalingFactors(); if (desiredWidth == 0) desiredWidth = jpegWidth; if (desiredHeight == 0) desiredHeight = jpegHeight; int scaledWidth = jpegWidth, scaledHeight = jpegHeight; for (int i = 0; i < sf.length; i++) { scaledWidth = sf[i].getScaled(jpegWidth); scaledHeight = sf[i].getScaled(jpegHeight); if (scaledWidth <= desiredWidth && scaledHeight <= desiredHeight) break; } if (scaledWidth > desiredWidth || scaledHeight > desiredHeight) throw new IllegalArgumentException("Could not scale down to desired image dimensions"); return scaledWidth; } /** * Returns the height of the largest scaled-down image that the TurboJPEG * decompressor can generate without exceeding the desired image width and * height. * * @param desiredWidth desired width (in pixels) of the decompressed image. * Setting this to 0 is the same as setting it to the width of the JPEG * image. (In other words, the width will not be considered when determining * the scaled image size.) * * @param desiredHeight desired height (in pixels) of the decompressed image. * Setting this to 0 is the same as setting it to the height of the JPEG * image. (In other words, the height will not be considered when * determining the scaled image size.) * * @return the height of the largest scaled-down image that the TurboJPEG * decompressor can generate without exceeding the desired image width and * height. */ public int getScaledHeight(int desiredWidth, int desiredHeight) { if (jpegWidth < 1 || jpegHeight < 1) throw new IllegalStateException(NO_ASSOC_ERROR); if (desiredWidth < 0 || desiredHeight < 0) throw new IllegalArgumentException("Invalid argument in getScaledHeight()"); TJScalingFactor[] sf = TJ.getScalingFactors(); if (desiredWidth == 0) desiredWidth = jpegWidth; if (desiredHeight == 0) desiredHeight = jpegHeight; int scaledWidth = jpegWidth, scaledHeight = jpegHeight; for (int i = 0; i < sf.length; i++) { scaledWidth = sf[i].getScaled(jpegWidth); scaledHeight = sf[i].getScaled(jpegHeight); if (scaledWidth <= desiredWidth && scaledHeight <= desiredHeight) break; } if (scaledWidth > desiredWidth || scaledHeight > desiredHeight) throw new IllegalArgumentException("Could not scale down to desired image dimensions"); return scaledHeight; } /** * Decompress the JPEG source image or decode the planar YUV source image * associated with this decompressor instance and output a packed-pixel * grayscale, RGB, or CMYK image to the given destination buffer. *

    * NOTE: The destination image is fully recoverable if this method throws a * non-fatal {@link TJException} (unless * {@link TJ#FLAG_STOPONWARNING TJ.FLAG_STOPONWARNING} is specified.) * * @param dstBuf buffer that will receive the packed-pixel * decompressed/decoded image. If the source image is a JPEG image, then * this buffer should normally be pitch * scaledHeight bytes in * size, where scaledHeight can be determined by calling * scalingFactor.{@link TJScalingFactor#getScaled getScaled}(jpegHeight) * with one of the scaling factors returned from {@link TJ#getScalingFactors} * or by calling {@link #getScaledHeight}. If the source image is a YUV * image, then this buffer should normally be pitch * height * bytes in size, where height is the height of the YUV image. * However, the buffer may also be larger than the dimensions of the source * image, in which case the x, y, and * pitch parameters can be used to specify the region into which * the source image should be decompressed/decoded. * * @param x x offset (in pixels) of the region in the destination image into * which the source image should be decompressed/decoded * * @param y y offset (in pixels) of the region in the destination image into * which the source image should be decompressed/decoded * * @param desiredWidth If the source image is a JPEG image, then this * specifies the desired width (in pixels) of the decompressed image (or * image region.) If the desired destination image dimensions are different * than the source image dimensions, then TurboJPEG will use scaling in the * JPEG decompressor to generate the largest possible image that will fit * within the desired dimensions. Setting this to 0 is the same as setting * it to the width of the JPEG image. (In other words, the width will not be * considered when determining the scaled image size.) This parameter is * ignored if the source image is a YUV image. * * @param pitch bytes per row in the destination image. Normally this should * be set to scaledWidth * * {@link TJ#getPixelSize TJ.getPixelSize}(pixelFormat), * if the destination image will be unpadded. However, you can use this to, * for instance, pad each row of the destination image to the nearest * multiple of 4 bytes or to decompress/decode the source image into a region * of a larger image. NOTE: if the source image is a JPEG image, then * scaledWidth can be determined by calling * scalingFactor.{@link TJScalingFactor#getScaled getScaled}(jpegWidth) * or by calling {@link #getScaledWidth}. If the source image is a YUV * image, then scaledWidth is the width of the YUV image. * Setting this parameter to 0 is the equivalent of setting it to * scaledWidth * * {@link TJ#getPixelSize TJ.getPixelSize}(pixelFormat). * * @param desiredHeight If the source image is a JPEG image, then this * specifies the desired height (in pixels) of the decompressed image (or * image region.) If the desired destination image dimensions are different * than the source image dimensions, then TurboJPEG will use scaling in the * JPEG decompressor to generate the largest possible image that will fit * within the desired dimensions. Setting this to 0 is the same as setting * it to the height of the JPEG image. (In other words, the height will not * be considered when determining the scaled image size.) This parameter is * ignored if the source image is a YUV image. * * @param pixelFormat pixel format of the decompressed/decoded image (one of * {@link TJ#PF_RGB TJ.PF_*}) * * @param flags the bitwise OR of one or more of * {@link TJ#FLAG_BOTTOMUP TJ.FLAG_*} */ public void decompress(byte[] dstBuf, int x, int y, int desiredWidth, int pitch, int desiredHeight, int pixelFormat, int flags) throws TJException { if (jpegBuf == null && yuvImage == null) throw new IllegalStateException("No source image is associated with this instance"); if (dstBuf == null || x < 0 || y < 0 || pitch < 0 || (yuvImage != null && (desiredWidth < 0 || desiredHeight < 0)) || pixelFormat < 0 || pixelFormat >= TJ.NUMPF || flags < 0) throw new IllegalArgumentException("Invalid argument in decompress()"); if (yuvImage != null) decodeYUV(yuvImage.getPlanes(), yuvImage.getOffsets(), yuvImage.getStrides(), yuvImage.getSubsamp(), dstBuf, x, y, yuvImage.getWidth(), pitch, yuvImage.getHeight(), pixelFormat, flags); else { if (x > 0 || y > 0) decompress(jpegBuf, jpegBufSize, dstBuf, x, y, desiredWidth, pitch, desiredHeight, pixelFormat, flags); else decompress(jpegBuf, jpegBufSize, dstBuf, desiredWidth, pitch, desiredHeight, pixelFormat, flags); } } /** * @deprecated Use * {@link #decompress(byte[], int, int, int, int, int, int, int)} instead. */ @SuppressWarnings("checkstyle:JavadocMethod") @Deprecated public void decompress(byte[] dstBuf, int desiredWidth, int pitch, int desiredHeight, int pixelFormat, int flags) throws TJException { decompress(dstBuf, 0, 0, desiredWidth, pitch, desiredHeight, pixelFormat, flags); } /** * Decompress the JPEG source image or decode the planar YUV source image * associated with this decompressor instance and return a buffer containing * the packed-pixel decompressed image. * * @param desiredWidth see * {@link #decompress(byte[], int, int, int, int, int, int, int)} * for description * * @param pitch see * {@link #decompress(byte[], int, int, int, int, int, int, int)} * for description * * @param desiredHeight see * {@link #decompress(byte[], int, int, int, int, int, int, int)} * for description * * @param pixelFormat pixel format of the decompressed image (one of * {@link TJ#PF_RGB TJ.PF_*}) * * @param flags the bitwise OR of one or more of * {@link TJ#FLAG_BOTTOMUP TJ.FLAG_*} * * @return a buffer containing the packed-pixel decompressed image. */ public byte[] decompress(int desiredWidth, int pitch, int desiredHeight, int pixelFormat, int flags) throws TJException { if (pitch < 0 || (yuvImage == null && (desiredWidth < 0 || desiredHeight < 0)) || pixelFormat < 0 || pixelFormat >= TJ.NUMPF || flags < 0) throw new IllegalArgumentException("Invalid argument in decompress()"); int pixelSize = TJ.getPixelSize(pixelFormat); int scaledWidth = getScaledWidth(desiredWidth, desiredHeight); int scaledHeight = getScaledHeight(desiredWidth, desiredHeight); if (pitch == 0) pitch = scaledWidth * pixelSize; byte[] buf = new byte[pitch * scaledHeight]; decompress(buf, desiredWidth, pitch, desiredHeight, pixelFormat, flags); return buf; } /** * Decompress the JPEG source image associated with this decompressor * instance into a planar YUV image and store it in the given * {@link YUVImage} instance. This method performs JPEG decompression but * leaves out the color conversion step, so a planar YUV image is generated * instead of a packed-pixel image. This method cannot be used to decompress * JPEG source images with the CMYK or YCCK colorspace. *

    * NOTE: The planar YUV destination image is fully recoverable if this method * throws a non-fatal {@link TJException} (unless * {@link TJ#FLAG_STOPONWARNING TJ.FLAG_STOPONWARNING} is specified.) * * @param dstImage {@link YUVImage} instance that will receive the planar YUV * decompressed image. The level of subsampling specified in this * {@link YUVImage} instance must match that of the JPEG image, and the width * and height specified in the {@link YUVImage} instance must match one of * the scaled image sizes that the decompressor is capable of generating from * the JPEG source image. * * @param flags the bitwise OR of one or more of * {@link TJ#FLAG_BOTTOMUP TJ.FLAG_*} */ public void decompressToYUV(YUVImage dstImage, int flags) throws TJException { if (jpegBuf == null) throw new IllegalStateException(NO_ASSOC_ERROR); if (dstImage == null || flags < 0) throw new IllegalArgumentException("Invalid argument in decompressToYUV()"); int scaledWidth = getScaledWidth(dstImage.getWidth(), dstImage.getHeight()); int scaledHeight = getScaledHeight(dstImage.getWidth(), dstImage.getHeight()); if (scaledWidth != dstImage.getWidth() || scaledHeight != dstImage.getHeight()) throw new IllegalArgumentException("YUVImage dimensions do not match one of the scaled image sizes that the decompressor is capable of generating."); if (jpegSubsamp != dstImage.getSubsamp()) throw new IllegalArgumentException("YUVImage subsampling level does not match that of the JPEG image"); decompressToYUV(jpegBuf, jpegBufSize, dstImage.getPlanes(), dstImage.getOffsets(), dstImage.getWidth(), dstImage.getStrides(), dstImage.getHeight(), flags); } /** * @deprecated Use {@link #decompressToYUV(YUVImage, int)} instead. */ @SuppressWarnings("checkstyle:JavadocMethod") @Deprecated public void decompressToYUV(byte[] dstBuf, int flags) throws TJException { YUVImage dstYUVImage = new YUVImage(dstBuf, jpegWidth, 4, jpegHeight, jpegSubsamp); decompressToYUV(dstYUVImage, flags); } /** * Decompress the JPEG source image associated with this decompressor * instance into a set of Y, U (Cb), and V (Cr) image planes and return a * {@link YUVImage} instance containing the decompressed image planes. This * method performs JPEG decompression but leaves out the color conversion * step, so a planar YUV image is generated instead of a packed-pixel image. * This method cannot be used to decompress JPEG source images with the CMYK * or YCCK colorspace. * * @param desiredWidth desired width (in pixels) of the YUV image. If the * desired image dimensions are different than the dimensions of the JPEG * image being decompressed, then TurboJPEG will use scaling in the JPEG * decompressor to generate the largest possible image that will fit within * the desired dimensions. Setting this to 0 is the same as setting it to * the width of the JPEG image. (In other words, the width will not be * considered when determining the scaled image size.) * * @param strides an array of integers, each specifying the number of bytes * per row in the corresponding plane of the YUV image. Setting the stride * for any plane to 0 is the same as setting it to the scaled plane width * (see {@link YUVImage}.) If strides is null, then the strides * for all planes will be set to their respective scaled plane widths. You * can adjust the strides in order to add an arbitrary amount of row padding * to each plane. * * @param desiredHeight desired height (in pixels) of the YUV image. If the * desired image dimensions are different than the dimensions of the JPEG * image being decompressed, then TurboJPEG will use scaling in the JPEG * decompressor to generate the largest possible image that will fit within * the desired dimensions. Setting this to 0 is the same as setting it to * the height of the JPEG image. (In other words, the height will not be * considered when determining the scaled image size.) * * @param flags the bitwise OR of one or more of * {@link TJ#FLAG_BOTTOMUP TJ.FLAG_*} * * @return a {@link YUVImage} instance containing the decompressed image * planes */ public YUVImage decompressToYUV(int desiredWidth, int[] strides, int desiredHeight, int flags) throws TJException { if (flags < 0) throw new IllegalArgumentException("Invalid argument in decompressToYUV()"); if (jpegWidth < 1 || jpegHeight < 1 || jpegSubsamp < 0) throw new IllegalStateException(NO_ASSOC_ERROR); if (jpegSubsamp >= TJ.NUMSAMP) throw new IllegalStateException("JPEG header information is invalid"); if (yuvImage != null) throw new IllegalStateException("Source image is the wrong type"); int scaledWidth = getScaledWidth(desiredWidth, desiredHeight); int scaledHeight = getScaledHeight(desiredWidth, desiredHeight); YUVImage dstYUVImage = new YUVImage(scaledWidth, null, scaledHeight, jpegSubsamp); decompressToYUV(dstYUVImage, flags); return dstYUVImage; } /** * Decompress the JPEG source image associated with this decompressor * instance into a unified planar YUV image and return a {@link YUVImage} * instance containing the decompressed image. This method performs JPEG * decompression but leaves out the color conversion step, so a planar YUV * image is generated instead of a packed-pixel image. This method cannot be * used to decompress JPEG source images with the CMYK or YCCK colorspace. * * @param desiredWidth desired width (in pixels) of the YUV image. If the * desired image dimensions are different than the dimensions of the JPEG * image being decompressed, then TurboJPEG will use scaling in the JPEG * decompressor to generate the largest possible image that will fit within * the desired dimensions. Setting this to 0 is the same as setting it to * the width of the JPEG image. (In other words, the width will not be * considered when determining the scaled image size.) * * @param align row alignment (in bytes) of the YUV image (must be a power of * 2.) Setting this parameter to n will cause each row in each plane of the * YUV image to be padded to the nearest multiple of n bytes (1 = unpadded.) * * @param desiredHeight desired height (in pixels) of the YUV image. If the * desired image dimensions are different than the dimensions of the JPEG * image being decompressed, then TurboJPEG will use scaling in the JPEG * decompressor to generate the largest possible image that will fit within * the desired dimensions. Setting this to 0 is the same as setting it to * the height of the JPEG image. (In other words, the height will not be * considered when determining the scaled image size.) * * @param flags the bitwise OR of one or more of * {@link TJ#FLAG_BOTTOMUP TJ.FLAG_*} * * @return a {@link YUVImage} instance containing the unified planar YUV * decompressed image */ public YUVImage decompressToYUV(int desiredWidth, int align, int desiredHeight, int flags) throws TJException { if (flags < 0) throw new IllegalArgumentException("Invalid argument in decompressToYUV()"); if (jpegWidth < 1 || jpegHeight < 1 || jpegSubsamp < 0) throw new IllegalStateException(NO_ASSOC_ERROR); if (jpegSubsamp >= TJ.NUMSAMP) throw new IllegalStateException("JPEG header information is invalid"); if (yuvImage != null) throw new IllegalStateException("Source image is the wrong type"); int scaledWidth = getScaledWidth(desiredWidth, desiredHeight); int scaledHeight = getScaledHeight(desiredWidth, desiredHeight); YUVImage dstYUVImage = new YUVImage(scaledWidth, align, scaledHeight, jpegSubsamp); decompressToYUV(dstYUVImage, flags); return dstYUVImage; } /** * @deprecated Use {@link #decompressToYUV(int, int, int, int)} instead. */ @SuppressWarnings("checkstyle:JavadocMethod") @Deprecated public byte[] decompressToYUV(int flags) throws TJException { YUVImage dstYUVImage = new YUVImage(jpegWidth, 4, jpegHeight, jpegSubsamp); decompressToYUV(dstYUVImage, flags); return dstYUVImage.getBuf(); } /** * Decompress the JPEG source image or decode the planar YUV source image * associated with this decompressor instance and output a packed-pixel * grayscale, RGB, or CMYK image to the given destination buffer. *

    * NOTE: The destination image is fully recoverable if this method throws a * non-fatal {@link TJException} (unless * {@link TJ#FLAG_STOPONWARNING TJ.FLAG_STOPONWARNING} is specified.) * * @param dstBuf buffer that will receive the packed-pixel * decompressed/decoded image. If the source image is a JPEG image, then * this buffer should normally be stride * scaledHeight pixels * in size, where scaledHeight can be determined by calling * scalingFactor.{@link TJScalingFactor#getScaled getScaled}(jpegHeight) * with one of the scaling factors returned from {@link TJ#getScalingFactors} * or by calling {@link #getScaledHeight}. If the source image is a YUV * image, then this buffer should normally be stride * height * pixels in size, where height is the height of the YUV image. * However, the buffer may also be larger than the dimensions of the JPEG * image, in which case the x, y, and * stride parameters can be used to specify the region into * which the source image should be decompressed. * * @param x x offset (in pixels) of the region in the destination image into * which the source image should be decompressed/decoded * * @param y y offset (in pixels) of the region in the destination image into * which the source image should be decompressed/decoded * * @param desiredWidth If the source image is a JPEG image, then this * specifies the desired width (in pixels) of the decompressed image (or * image region.) If the desired destination image dimensions are different * than the source image dimensions, then TurboJPEG will use scaling in the * JPEG decompressor to generate the largest possible image that will fit * within the desired dimensions. Setting this to 0 is the same as setting * it to the width of the JPEG image. (In other words, the width will not be * considered when determining the scaled image size.) This parameter is * ignored if the source image is a YUV image. * * @param stride pixels per row in the destination image. Normally this * should be set to scaledWidth, but you can use this to, for * instance, decompress the JPEG image into a region of a larger image. * NOTE: if the source image is a JPEG image, then scaledWidth * can be determined by calling * scalingFactor.{@link TJScalingFactor#getScaled getScaled}(jpegWidth) * or by calling {@link #getScaledWidth}. If the source image is a YUV * image, then scaledWidth is the width of the YUV image. * Setting this parameter to 0 is the equivalent of setting it to * scaledWidth. * * @param desiredHeight If the source image is a JPEG image, then this * specifies the desired height (in pixels) of the decompressed image (or * image region.) If the desired destination image dimensions are different * than the source image dimensions, then TurboJPEG will use scaling in the * JPEG decompressor to generate the largest possible image that will fit * within the desired dimensions. Setting this to 0 is the same as setting * it to the height of the JPEG image. (In other words, the height will not * be considered when determining the scaled image size.) This parameter is * ignored if the source image is a YUV image. * * @param pixelFormat pixel format of the decompressed image (one of * {@link TJ#PF_RGB TJ.PF_*}) * * @param flags the bitwise OR of one or more of * {@link TJ#FLAG_BOTTOMUP TJ.FLAG_*} */ public void decompress(int[] dstBuf, int x, int y, int desiredWidth, int stride, int desiredHeight, int pixelFormat, int flags) throws TJException { if (jpegBuf == null && yuvImage == null) throw new IllegalStateException("No source image is associated with this instance"); if (dstBuf == null || x < 0 || y < 0 || stride < 0 || (yuvImage != null && (desiredWidth < 0 || desiredHeight < 0)) || pixelFormat < 0 || pixelFormat >= TJ.NUMPF || flags < 0) throw new IllegalArgumentException("Invalid argument in decompress()"); if (yuvImage != null) decodeYUV(yuvImage.getPlanes(), yuvImage.getOffsets(), yuvImage.getStrides(), yuvImage.getSubsamp(), dstBuf, x, y, yuvImage.getWidth(), stride, yuvImage.getHeight(), pixelFormat, flags); else decompress(jpegBuf, jpegBufSize, dstBuf, x, y, desiredWidth, stride, desiredHeight, pixelFormat, flags); } /** * Decompress the JPEG source image or decode the planar YUV source image * associated with this decompressor instance and output a packed-pixel * decompressed/decoded image to the given BufferedImage * instance. *

    * NOTE: The destination image is fully recoverable if this method throws a * non-fatal {@link TJException} (unless * {@link TJ#FLAG_STOPONWARNING TJ.FLAG_STOPONWARNING} is specified.) * * @param dstImage a BufferedImage instance that will receive * the packed-pixel decompressed/decoded image. If the source image is a * JPEG image, then the width and height of the BufferedImage * instance must match one of the scaled image sizes that the decompressor is * capable of generating from the JPEG image. If the source image is a YUV * image, then the width and height of the BufferedImage * instance must match the width and height of the YUV image. * * @param flags the bitwise OR of one or more of * {@link TJ#FLAG_BOTTOMUP TJ.FLAG_*} */ public void decompress(BufferedImage dstImage, int flags) throws TJException { if (dstImage == null || flags < 0) throw new IllegalArgumentException("Invalid argument in decompress()"); int desiredWidth = dstImage.getWidth(); int desiredHeight = dstImage.getHeight(); int scaledWidth, scaledHeight; if (yuvImage != null) { if (desiredWidth != yuvImage.getWidth() || desiredHeight != yuvImage.getHeight()) throw new IllegalArgumentException("BufferedImage dimensions do not match the dimensions of the source image."); scaledWidth = yuvImage.getWidth(); scaledHeight = yuvImage.getHeight(); } else { scaledWidth = getScaledWidth(desiredWidth, desiredHeight); scaledHeight = getScaledHeight(desiredWidth, desiredHeight); if (scaledWidth != desiredWidth || scaledHeight != desiredHeight) throw new IllegalArgumentException("BufferedImage dimensions do not match one of the scaled image sizes that the decompressor is capable of generating."); } int pixelFormat; boolean intPixels = false; if (byteOrder == null) byteOrder = ByteOrder.nativeOrder(); switch (dstImage.getType()) { case BufferedImage.TYPE_3BYTE_BGR: pixelFormat = TJ.PF_BGR; break; case BufferedImage.TYPE_4BYTE_ABGR: case BufferedImage.TYPE_4BYTE_ABGR_PRE: pixelFormat = TJ.PF_XBGR; break; case BufferedImage.TYPE_BYTE_GRAY: pixelFormat = TJ.PF_GRAY; break; case BufferedImage.TYPE_INT_BGR: if (byteOrder == ByteOrder.BIG_ENDIAN) pixelFormat = TJ.PF_XBGR; else pixelFormat = TJ.PF_RGBX; intPixels = true; break; case BufferedImage.TYPE_INT_RGB: if (byteOrder == ByteOrder.BIG_ENDIAN) pixelFormat = TJ.PF_XRGB; else pixelFormat = TJ.PF_BGRX; intPixels = true; break; case BufferedImage.TYPE_INT_ARGB: case BufferedImage.TYPE_INT_ARGB_PRE: if (byteOrder == ByteOrder.BIG_ENDIAN) pixelFormat = TJ.PF_ARGB; else pixelFormat = TJ.PF_BGRA; intPixels = true; break; default: throw new IllegalArgumentException("Unsupported BufferedImage format"); } WritableRaster wr = dstImage.getRaster(); if (intPixels) { SinglePixelPackedSampleModel sm = (SinglePixelPackedSampleModel)dstImage.getSampleModel(); int stride = sm.getScanlineStride(); DataBufferInt db = (DataBufferInt)wr.getDataBuffer(); int[] buf = db.getData(); if (yuvImage != null) decodeYUV(yuvImage.getPlanes(), yuvImage.getOffsets(), yuvImage.getStrides(), yuvImage.getSubsamp(), buf, 0, 0, yuvImage.getWidth(), stride, yuvImage.getHeight(), pixelFormat, flags); else { if (jpegBuf == null) throw new IllegalStateException(NO_ASSOC_ERROR); decompress(jpegBuf, jpegBufSize, buf, 0, 0, scaledWidth, stride, scaledHeight, pixelFormat, flags); } } else { ComponentSampleModel sm = (ComponentSampleModel)dstImage.getSampleModel(); int pixelSize = sm.getPixelStride(); if (pixelSize != TJ.getPixelSize(pixelFormat)) throw new IllegalArgumentException("Inconsistency between pixel format and pixel size in BufferedImage"); int pitch = sm.getScanlineStride(); DataBufferByte db = (DataBufferByte)wr.getDataBuffer(); byte[] buf = db.getData(); decompress(buf, 0, 0, scaledWidth, pitch, scaledHeight, pixelFormat, flags); } } /** * Decompress the JPEG source image or decode the planar YUV source image * associated with this decompressor instance and return a * BufferedImage instance containing the packed-pixel * decompressed/decoded image. * * @param desiredWidth see * {@link #decompress(byte[], int, int, int, int, int, int, int)} for * description * * @param desiredHeight see * {@link #decompress(byte[], int, int, int, int, int, int, int)} for * description * * @param bufferedImageType the image type of the BufferedImage * instance that will be created (for instance, * BufferedImage.TYPE_INT_RGB) * * @param flags the bitwise OR of one or more of * {@link TJ#FLAG_BOTTOMUP TJ.FLAG_*} * * @return a BufferedImage instance containing the packed-pixel * decompressed/decoded image. */ public BufferedImage decompress(int desiredWidth, int desiredHeight, int bufferedImageType, int flags) throws TJException { if ((yuvImage == null && (desiredWidth < 0 || desiredHeight < 0)) || flags < 0) throw new IllegalArgumentException("Invalid argument in decompress()"); int scaledWidth = getScaledWidth(desiredWidth, desiredHeight); int scaledHeight = getScaledHeight(desiredWidth, desiredHeight); BufferedImage img = new BufferedImage(scaledWidth, scaledHeight, bufferedImageType); decompress(img, flags); return img; } /** * Free the native structures associated with this decompressor instance. */ @Override public void close() throws TJException { if (handle != 0) destroy(); } @SuppressWarnings("checkstyle:DesignForExtension") @Override protected void finalize() throws Throwable { try { close(); } catch (TJException e) { } finally { super.finalize(); } }; private native void init() throws TJException; private native void destroy() throws TJException; private native void decompressHeader(byte[] srcBuf, int size) throws TJException; @Deprecated private native void decompress(byte[] srcBuf, int size, byte[] dstBuf, int desiredWidth, int pitch, int desiredHeight, int pixelFormat, int flags) throws TJException; private native void decompress(byte[] srcBuf, int size, byte[] dstBuf, int x, int y, int desiredWidth, int pitch, int desiredHeight, int pixelFormat, int flags) throws TJException; @Deprecated private native void decompress(byte[] srcBuf, int size, int[] dstBuf, int desiredWidth, int stride, int desiredHeight, int pixelFormat, int flags) throws TJException; private native void decompress(byte[] srcBuf, int size, int[] dstBuf, int x, int y, int desiredWidth, int stride, int desiredHeight, int pixelFormat, int flags) throws TJException; @Deprecated private native void decompressToYUV(byte[] srcBuf, int size, byte[] dstBuf, int flags) throws TJException; private native void decompressToYUV(byte[] srcBuf, int size, byte[][] dstPlanes, int[] dstOffsets, int desiredWidth, int[] dstStrides, int desiredheight, int flags) throws TJException; private native void decodeYUV(byte[][] srcPlanes, int[] srcOffsets, int[] srcStrides, int subsamp, byte[] dstBuf, int x, int y, int width, int pitch, int height, int pixelFormat, int flags) throws TJException; private native void decodeYUV(byte[][] srcPlanes, int[] srcOffsets, int[] srcStrides, int subsamp, int[] dstBuf, int x, int y, int width, int stride, int height, int pixelFormat, int flags) throws TJException; static { TJLoader.load(); } protected long handle = 0; protected byte[] jpegBuf = null; protected int jpegBufSize = 0; protected YUVImage yuvImage = null; protected int jpegWidth = 0; protected int jpegHeight = 0; protected int jpegSubsamp = -1; protected int jpegColorspace = -1; private ByteOrder byteOrder = null; } libjpeg-turbo-2.1.5/java/org/libjpegturbo/turbojpeg/TJException.java000066400000000000000000000053731436506551100255420ustar00rootroot00000000000000/* * Copyright (C)2015 Viktor Szathmáry. All Rights Reserved. * Copyright (C)2017-2018 D. R. Commander. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ package org.libjpegturbo.turbojpeg; import java.io.IOException; @SuppressWarnings("checkstyle:JavadocType") public class TJException extends IOException { private static final long serialVersionUID = 1L; @SuppressWarnings("checkstyle:JavadocMethod") public TJException() { super(); } @SuppressWarnings("checkstyle:JavadocMethod") public TJException(String message, Throwable cause) { super(message, cause); } @SuppressWarnings("checkstyle:JavadocMethod") public TJException(String message) { super(message); } @SuppressWarnings("checkstyle:JavadocMethod") public TJException(String message, int code) { super(message); if (errorCode >= 0 && errorCode < TJ.NUMERR) errorCode = code; } @SuppressWarnings("checkstyle:JavadocMethod") public TJException(Throwable cause) { super(cause); } /** * Returns a code (one of {@link TJ TJ.ERR_*}) indicating the severity of the * last error. * * @return a code (one of {@link TJ TJ.ERR_*}) indicating the severity of the * last error. */ public int getErrorCode() { return errorCode; } private int errorCode = TJ.ERR_FATAL; } libjpeg-turbo-2.1.5/java/org/libjpegturbo/turbojpeg/TJLoader-unix.java.in000066400000000000000000000051751436506551100264000ustar00rootroot00000000000000/* * Copyright (C)2011-2013, 2016, 2020 D. R. Commander. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ package org.libjpegturbo.turbojpeg; final class TJLoader { static void load() { try { System.loadLibrary("turbojpeg"); } catch (java.lang.UnsatisfiedLinkError e) { String os = System.getProperty("os.name").toLowerCase(); if (os.indexOf("mac") >= 0) { try { System.load("@CMAKE_INSTALL_FULL_LIBDIR@/libturbojpeg.dylib"); } catch (java.lang.UnsatisfiedLinkError e2) { System.load("/usr/lib/libturbojpeg.dylib"); } } else { try { System.load("@CMAKE_INSTALL_FULL_LIBDIR@/libturbojpeg.so"); } catch (java.lang.UnsatisfiedLinkError e3) { String libdir = "@CMAKE_INSTALL_FULL_LIBDIR@"; if (libdir.equals("@CMAKE_INSTALL_DEFAULT_PREFIX@/lib64")) { System.load("@CMAKE_INSTALL_DEFAULT_PREFIX@/lib32/libturbojpeg.so"); } else if (libdir.equals("@CMAKE_INSTALL_DEFAULT_PREFIX@/lib32")) { System.load("@CMAKE_INSTALL_DEFAULT_PREFIX@/lib64/libturbojpeg.so"); } else { throw e3; } } } } } } libjpeg-turbo-2.1.5/java/org/libjpegturbo/turbojpeg/TJLoader-win.java.in000066400000000000000000000032641436506551100262070ustar00rootroot00000000000000/* * Copyright (C)2011 D. R. Commander. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ package org.libjpegturbo.turbojpeg; final class TJLoader { static void load() { System.loadLibrary("@TURBOJPEG_DLL_NAME@"); } } libjpeg-turbo-2.1.5/java/org/libjpegturbo/turbojpeg/TJScalingFactor.java000066400000000000000000000070201436506551100263120ustar00rootroot00000000000000/* * Copyright (C)2011, 2018 D. R. Commander. All Rights Reserved. * Copyright (C)2015 Viktor Szathmáry. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ package org.libjpegturbo.turbojpeg; /** * Fractional scaling factor */ public class TJScalingFactor { /** * Create a TurboJPEG scaling factor instance. * * @param num numerator * @param denom denominator */ @SuppressWarnings("checkstyle:HiddenField") public TJScalingFactor(int num, int denom) { if (num < 1 || denom < 1) throw new IllegalArgumentException("Numerator and denominator must be >= 1"); this.num = num; this.denom = denom; } /** * Returns numerator * * @return numerator */ public int getNum() { return num; } /** * Returns denominator * * @return denominator */ public int getDenom() { return denom; } /** * Returns the scaled value of dimension. This function * performs the integer equivalent of * ceil(dimension * scalingFactor). * * @param dimension width or height to multiply by this scaling factor * * @return the scaled value of dimension. */ public int getScaled(int dimension) { return (dimension * num + denom - 1) / denom; } /** * Returns true or false, depending on whether this instance and * other have the same numerator and denominator. * * @param other the scaling factor against which to compare this one * * @return true or false, depending on whether this instance and * other have the same numerator and denominator. */ public boolean equals(TJScalingFactor other) { return this.num == other.num && this.denom == other.denom; } /** * Returns true or false, depending on whether this instance is equal to * 1/1. * * @return true or false, depending on whether this instance is equal to * 1/1. */ public boolean isOne() { return num == 1 && denom == 1; } /** * Numerator */ private int num = 1; /** * Denominator */ private int denom = 1; } libjpeg-turbo-2.1.5/java/org/libjpegturbo/turbojpeg/TJTransform.java000066400000000000000000000205071436506551100255530ustar00rootroot00000000000000/* * Copyright (C)2011, 2013, 2018, 2023 D. R. Commander. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ package org.libjpegturbo.turbojpeg; import java.awt.*; /** * Lossless transform parameters */ public class TJTransform extends Rectangle { private static final long serialVersionUID = -127367705761430371L; /** * The number of lossless transform operations */ public static final int NUMOP = 8; /** * Do not transform the position of the image pixels. */ public static final int OP_NONE = 0; /** * Flip (mirror) image horizontally. This transform is imperfect if there * are any partial MCU blocks on the right edge. * @see #OPT_PERFECT */ public static final int OP_HFLIP = 1; /** * Flip (mirror) image vertically. This transform is imperfect if there are * any partial MCU blocks on the bottom edge. * @see #OPT_PERFECT */ public static final int OP_VFLIP = 2; /** * Transpose image (flip/mirror along upper left to lower right axis). This * transform is always perfect. * @see #OPT_PERFECT */ public static final int OP_TRANSPOSE = 3; /** * Transverse transpose image (flip/mirror along upper right to lower left * axis). This transform is imperfect if there are any partial MCU blocks in * the image. * @see #OPT_PERFECT */ public static final int OP_TRANSVERSE = 4; /** * Rotate image clockwise by 90 degrees. This transform is imperfect if * there are any partial MCU blocks on the bottom edge. * @see #OPT_PERFECT */ public static final int OP_ROT90 = 5; /** * Rotate image 180 degrees. This transform is imperfect if there are any * partial MCU blocks in the image. * @see #OPT_PERFECT */ public static final int OP_ROT180 = 6; /** * Rotate image counter-clockwise by 90 degrees. This transform is imperfect * if there are any partial MCU blocks on the right edge. * @see #OPT_PERFECT */ public static final int OP_ROT270 = 7; /** * This option will cause {@link TJTransformer#transform * TJTransformer.transform()} to throw an exception if the transform is not * perfect. Lossless transforms operate on MCU blocks, whose size depends on * the level of chrominance subsampling used. If the image's width or height * is not evenly divisible by the MCU block size (see {@link TJ#getMCUWidth} * and {@link TJ#getMCUHeight}), then there will be partial MCU blocks on the * right and/or bottom edges. It is not possible to move these partial MCU * blocks to the top or left of the image, so any transform that would * require that is "imperfect." If this option is not specified, then any * partial MCU blocks that cannot be transformed will be left in place, which * will create odd-looking strips on the right or bottom edge of the image. */ public static final int OPT_PERFECT = 1; /** * This option will discard any partial MCU blocks that cannot be * transformed. */ public static final int OPT_TRIM = 2; /** * This option will enable lossless cropping. */ public static final int OPT_CROP = 4; /** * This option will discard the color data in the source image and produce a * grayscale destination image. */ public static final int OPT_GRAY = 8; /** * This option will prevent {@link TJTransformer#transform * TJTransformer.transform()} from outputting a JPEG image for this * particular transform. This can be used in conjunction with a custom * filter to capture the transformed DCT coefficients without transcoding * them. */ public static final int OPT_NOOUTPUT = 16; /** * This option will enable progressive entropy coding in the JPEG image * generated by this particular transform. Progressive entropy coding will * generally improve compression relative to baseline entropy coding (the * default), but it will reduce decompression performance considerably. */ public static final int OPT_PROGRESSIVE = 32; /** * This option will prevent {@link TJTransformer#transform * TJTransformer.transform()} from copying any extra markers (including EXIF * and ICC profile data) from the source image to the destination image. */ public static final int OPT_COPYNONE = 64; /** * Create a new lossless transform instance. */ public TJTransform() { } /** * Create a new lossless transform instance with the given parameters. * * @param x the left boundary of the cropping region. This must be evenly * divisible by the MCU block width (see {@link TJ#getMCUWidth}) * * @param y the upper boundary of the cropping region. This must be evenly * divisible by the MCU block height (see {@link TJ#getMCUHeight}) * * @param w the width of the cropping region. Setting this to 0 is the * equivalent of setting it to (width of the source JPEG image - * x). * * @param h the height of the cropping region. Setting this to 0 is the * equivalent of setting it to (height of the source JPEG image - * y). * * @param op one of the transform operations ({@link #OP_NONE OP_*}) * * @param options the bitwise OR of one or more of the transform options * ({@link #OPT_PERFECT OPT_*}) * * @param cf an instance of an object that implements the {@link * TJCustomFilter} interface, or null if no custom filter is needed */ @SuppressWarnings("checkstyle:HiddenField") public TJTransform(int x, int y, int w, int h, int op, int options, TJCustomFilter cf) { super(x, y, w, h); this.op = op; this.options = options; this.cf = cf; } /** * Create a new lossless transform instance with the given parameters. * * @param r a Rectangle instance that specifies the cropping * region. See {@link * #TJTransform(int, int, int, int, int, int, TJCustomFilter)} for more * detail. * * @param op one of the transform operations ({@link #OP_NONE OP_*}) * * @param options the bitwise OR of one or more of the transform options * ({@link #OPT_PERFECT OPT_*}) * * @param cf an instance of an object that implements the {@link * TJCustomFilter} interface, or null if no custom filter is needed */ @SuppressWarnings("checkstyle:HiddenField") public TJTransform(Rectangle r, int op, int options, TJCustomFilter cf) { super(r); this.op = op; this.options = options; this.cf = cf; } /** * Transform operation (one of {@link #OP_NONE OP_*}) */ @SuppressWarnings("checkstyle:VisibilityModifier") public int op = 0; /** * Transform options (bitwise OR of one or more of * {@link #OPT_PERFECT OPT_*}) */ @SuppressWarnings("checkstyle:VisibilityModifier") public int options = 0; /** * Custom filter instance */ @SuppressWarnings("checkstyle:VisibilityModifier") public TJCustomFilter cf = null; } libjpeg-turbo-2.1.5/java/org/libjpegturbo/turbojpeg/TJTransformer.java000066400000000000000000000160451436506551100261040ustar00rootroot00000000000000/* * Copyright (C)2011, 2013-2015, 2023 D. R. Commander. All Rights Reserved. * Copyright (C)2015 Viktor Szathmáry. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ package org.libjpegturbo.turbojpeg; /** * TurboJPEG lossless transformer */ public class TJTransformer extends TJDecompressor { /** * Create a TurboJPEG lossless transformer instance. */ public TJTransformer() throws TJException { init(); } /** * Create a TurboJPEG lossless transformer instance and associate the JPEG * source image stored in jpegImage with the newly created * instance. * * @param jpegImage buffer containing the JPEG source image to transform. * (The size of the JPEG image is assumed to be the length of the array.) * This buffer is not modified. */ public TJTransformer(byte[] jpegImage) throws TJException { init(); setSourceImage(jpegImage, jpegImage.length); } /** * Create a TurboJPEG lossless transformer instance and associate the JPEG * source image of length imageSize bytes stored in * jpegImage with the newly created instance. * * @param jpegImage buffer containing the JPEG source image to transform. * This buffer is not modified. * * @param imageSize size of the JPEG source image (in bytes) */ public TJTransformer(byte[] jpegImage, int imageSize) throws TJException { init(); setSourceImage(jpegImage, imageSize); } /** * Losslessly transform the JPEG source image associated with this * transformer instance into one or more JPEG images stored in the given * destination buffers. Lossless transforms work by moving the raw * coefficients from one JPEG image structure to another without altering the * values of the coefficients. While this is typically faster than * decompressing the image, transforming it, and re-compressing it, lossless * transforms are not free. Each lossless transform requires reading and * performing Huffman decoding on all of the coefficients in the source * image, regardless of the size of the destination image. Thus, this method * provides a means of generating multiple transformed images from the same * source or of applying multiple transformations simultaneously, in order to * eliminate the need to read the source coefficients multiple times. * * @param dstBufs an array of JPEG destination buffers. * dstbufs[i] will receive a JPEG image that has been * transformed using the parameters in transforms[i]. Use * {@link TJ#bufSize} to determine the maximum size for each buffer based on * the transformed or cropped width and height and the level of subsampling * used in the source image. * * @param transforms an array of {@link TJTransform} instances, each of * which specifies the transform parameters and/or cropping region for the * corresponding transformed JPEG image * * @param flags the bitwise OR of one or more of * {@link TJ#FLAG_BOTTOMUP TJ.FLAG_*} */ public void transform(byte[][] dstBufs, TJTransform[] transforms, int flags) throws TJException { if (jpegBuf == null) throw new IllegalStateException("JPEG buffer not initialized"); transformedSizes = transform(jpegBuf, jpegBufSize, dstBufs, transforms, flags); } /** * Losslessly transform the JPEG source image associated with this * transformer instance and return an array of {@link TJDecompressor} * instances, each of which has a transformed JPEG image associated with it. * * @param transforms an array of {@link TJTransform} instances, each of * which specifies the transform parameters and/or cropping region for the * corresponding transformed JPEG image * * @param flags the bitwise OR of one or more of * {@link TJ#FLAG_BOTTOMUP TJ.FLAG_*} * * @return an array of {@link TJDecompressor} instances, each of * which has a transformed JPEG image associated with it. */ public TJDecompressor[] transform(TJTransform[] transforms, int flags) throws TJException { byte[][] dstBufs = new byte[transforms.length][]; if (jpegWidth < 1 || jpegHeight < 1) throw new IllegalStateException("JPEG buffer not initialized"); for (int i = 0; i < transforms.length; i++) { int w = jpegWidth, h = jpegHeight; if ((transforms[i].options & TJTransform.OPT_CROP) != 0) { if (transforms[i].width != 0) w = transforms[i].width; if (transforms[i].height != 0) h = transforms[i].height; } dstBufs[i] = new byte[TJ.bufSize(w, h, jpegSubsamp)]; } TJDecompressor[] tjd = new TJDecompressor[transforms.length]; transform(dstBufs, transforms, flags); for (int i = 0; i < transforms.length; i++) tjd[i] = new TJDecompressor(dstBufs[i], transformedSizes[i]); return tjd; } /** * Returns an array containing the sizes of the transformed JPEG images * (in bytes) generated by the most recent transform operation. * * @return an array containing the sizes of the transformed JPEG images * (in bytes) generated by the most recent transform operation. */ public int[] getTransformedSizes() { if (transformedSizes == null) throw new IllegalStateException("No image has been transformed yet"); return transformedSizes; } private native void init() throws TJException; private native int[] transform(byte[] srcBuf, int srcSize, byte[][] dstBufs, TJTransform[] transforms, int flags) throws TJException; static { TJLoader.load(); } private int[] transformedSizes = null; } libjpeg-turbo-2.1.5/java/org/libjpegturbo/turbojpeg/YUVImage.java000066400000000000000000000452661436506551100250010ustar00rootroot00000000000000/* * Copyright (C)2014, 2017, 2023 D. R. Commander. All Rights Reserved. * Copyright (C)2015 Viktor Szathmáry. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ package org.libjpegturbo.turbojpeg; /** * This class encapsulates a planar YUV image and the metadata * associated with it. The TurboJPEG API allows both the JPEG compression and * decompression pipelines to be split into stages: YUV encode, compress from * YUV, decompress to YUV, and YUV decode. A YUVImage instance * serves as the destination image for YUV encode and decompress-to-YUV * operations and as the source image for compress-from-YUV and YUV decode * operations. *

    * Technically, the JPEG format uses the YCbCr colorspace (which is technically * not a colorspace but a color transform), but per the convention of the * digital video community, the TurboJPEG API uses "YUV" to refer to an image * format consisting of Y, Cb, and Cr image planes. *

    * Each plane is simply a 2D array of bytes, each byte representing the value * of one of the components (Y, Cb, or Cr) at a particular location in the * image. The width and height of each plane are determined by the image * width, height, and level of chrominance subsampling. The luminance plane * width is the image width padded to the nearest multiple of the horizontal * subsampling factor (1 in the case of 4:4:4, grayscale, or 4:4:0; 2 in the * case of 4:2:2 or 4:2:0; 4 in the case of 4:1:1.) Similarly, the luminance * plane height is the image height padded to the nearest multiple of the * vertical subsampling factor (1 in the case of 4:4:4, 4:2:2, grayscale, or * 4:1:1; 2 in the case of 4:2:0 or 4:4:0.) This is irrespective of any * additional padding that may be specified as an argument to the various * YUVImage methods. The chrominance plane width is equal to the luminance * plane width divided by the horizontal subsampling factor, and the * chrominance plane height is equal to the luminance plane height divided by * the vertical subsampling factor. *

    * For example, if the source image is 35 x 35 pixels and 4:2:2 subsampling is * used, then the luminance plane would be 36 x 35 bytes, and each of the * chrominance planes would be 18 x 35 bytes. If you specify a row alignment * of 4 bytes on top of this, then the luminance plane would be 36 x 35 bytes, * and each of the chrominance planes would be 20 x 35 bytes. */ public class YUVImage { private static final String NO_ASSOC_ERROR = "No image data is associated with this instance"; /** * Create a new YUVImage instance backed by separate image * planes, and allocate memory for the image planes. * * @param width width (in pixels) of the YUV image * * @param strides an array of integers, each specifying the number of bytes * per row in the corresponding plane of the YUV image. Setting the stride * for any plane to 0 is the same as setting it to the plane width (see * {@link YUVImage above}.) If strides is null, then the * strides for all planes will be set to their respective plane widths. When * using this constructor, the stride for each plane must be equal to or * greater than the plane width. * * @param height height (in pixels) of the YUV image * * @param subsamp the level of chrominance subsampling to be used in the YUV * image (one of {@link TJ#SAMP_444 TJ.SAMP_*}) */ public YUVImage(int width, int[] strides, int height, int subsamp) { setBuf(null, null, width, strides, height, subsamp, true); } /** * Create a new YUVImage instance backed by a unified buffer, * and allocate memory for the buffer. * * @param width width (in pixels) of the YUV image * * @param align row alignment (in bytes) of the YUV image (must be a power of * 2.) Setting this parameter to n specifies that each row in each plane of * the YUV image will be padded to the nearest multiple of n bytes * (1 = unpadded.) * * @param height height (in pixels) of the YUV image * * @param subsamp the level of chrominance subsampling to be used in the YUV * image (one of {@link TJ#SAMP_444 TJ.SAMP_*}) */ public YUVImage(int width, int align, int height, int subsamp) { setBuf(new byte[TJ.bufSizeYUV(width, align, height, subsamp)], width, align, height, subsamp); } /** * Create a new YUVImage instance from a set of existing image * planes. * * @param planes an array of buffers representing the Y, U (Cb), and V (Cr) * image planes (or just the Y plane, if the image is grayscale.) These * planes can be contiguous or non-contiguous in memory. Plane * i should be at least offsets[i] + * {@link TJ#planeSizeYUV TJ.planeSizeYUV}(i, width, strides[i], height, subsamp) * bytes in size. * * @param offsets If this YUVImage instance represents a * subregion of a larger image, then offsets[i] specifies the * offset (in bytes) of the subregion within plane i of the * larger image. Setting this to null is the same as setting the offsets for * all planes to 0. * * @param width width (in pixels) of the new YUV image (or subregion) * * @param strides an array of integers, each specifying the number of bytes * per row in the corresponding plane of the YUV image. Setting the stride * for any plane to 0 is the same as setting it to the plane width (see * {@link YUVImage above}.) If strides is null, then the * strides for all planes will be set to their respective plane widths. You * can adjust the strides in order to add an arbitrary amount of row padding * to each plane or to specify that this YUVImage instance is a * subregion of a larger image (in which case, strides[i] should * be set to the plane width of plane i in the larger image.) * * @param height height (in pixels) of the new YUV image (or subregion) * * @param subsamp the level of chrominance subsampling used in the YUV * image (one of {@link TJ#SAMP_444 TJ.SAMP_*}) */ public YUVImage(byte[][] planes, int[] offsets, int width, int[] strides, int height, int subsamp) { setBuf(planes, offsets, width, strides, height, subsamp, false); } /** * Create a new YUVImage instance from an existing unified * buffer. * * @param yuvImage buffer that contains or will receive a unified planar YUV * image. Use {@link TJ#bufSizeYUV} to determine the minimum size for this * buffer. The Y, U (Cb), and V (Cr) image planes are stored sequentially in * the buffer. (See {@link YUVImage above} for a description of the image * format.) * * @param width width (in pixels) of the YUV image * * @param align row alignment (in bytes) of the YUV image (must be a power of * 2.) Setting this parameter to n specifies that each row in each plane of * the YUV image will be padded to the nearest multiple of n bytes * (1 = unpadded.) * * @param height height (in pixels) of the YUV image * * @param subsamp the level of chrominance subsampling used in the YUV * image (one of {@link TJ#SAMP_444 TJ.SAMP_*}) */ public YUVImage(byte[] yuvImage, int width, int align, int height, int subsamp) { setBuf(yuvImage, width, align, height, subsamp); } /** * Assign a set of image planes to this YUVImage instance. * * @param planes an array of buffers representing the Y, U (Cb), and V (Cr) * image planes (or just the Y plane, if the image is grayscale.) These * planes can be contiguous or non-contiguous in memory. Plane * i should be at least offsets[i] + * {@link TJ#planeSizeYUV TJ.planeSizeYUV}(i, width, strides[i], height, subsamp) * bytes in size. * * @param offsets If this YUVImage instance represents a * subregion of a larger image, then offsets[i] specifies the * offset (in bytes) of the subregion within plane i of the * larger image. Setting this to null is the same as setting the offsets for * all planes to 0. * * @param width width (in pixels) of the YUV image (or subregion) * * @param strides an array of integers, each specifying the number of bytes * per row in the corresponding plane of the YUV image. Setting the stride * for any plane to 0 is the same as setting it to the plane width (see * {@link YUVImage above}.) If strides is null, then the * strides for all planes will be set to their respective plane widths. You * can adjust the strides in order to add an arbitrary amount of row padding * to each plane or to specify that this YUVImage instance is a * subregion of a larger image (in which case, strides[i] should * be set to the plane width of plane i in the larger image.) * * @param height height (in pixels) of the YUV image (or subregion) * * @param subsamp the level of chrominance subsampling used in the YUV * image (one of {@link TJ#SAMP_444 TJ.SAMP_*}) */ public void setBuf(byte[][] planes, int[] offsets, int width, int[] strides, int height, int subsamp) { setBuf(planes, offsets, width, strides, height, subsamp, false); } private void setBuf(byte[][] planes, int[] offsets, int width, int[] strides, int height, int subsamp, boolean alloc) { if ((planes == null && !alloc) || width < 1 || height < 1 || subsamp < 0 || subsamp >= TJ.NUMSAMP) throw new IllegalArgumentException("Invalid argument in YUVImage::setBuf()"); int nc = (subsamp == TJ.SAMP_GRAY ? 1 : 3); if ((planes != null && planes.length != nc) || (offsets != null && offsets.length != nc) || (strides != null && strides.length != nc)) throw new IllegalArgumentException("YUVImage::setBuf(): planes, offsets, or strides array is the wrong size"); if (planes == null) planes = new byte[nc][]; if (offsets == null) offsets = new int[nc]; if (strides == null) strides = new int[nc]; for (int i = 0; i < nc; i++) { int pw = TJ.planeWidth(i, width, subsamp); int ph = TJ.planeHeight(i, height, subsamp); int planeSize = TJ.planeSizeYUV(i, width, strides[i], height, subsamp); if (strides[i] == 0) strides[i] = pw; if (alloc) { if (strides[i] < pw) throw new IllegalArgumentException("Stride must be >= plane width when allocating a new YUV image"); planes[i] = new byte[strides[i] * ph]; } if (planes[i] == null || offsets[i] < 0) throw new IllegalArgumentException("Invalid argument in YUVImage::setBuf()"); if (strides[i] < 0 && offsets[i] - planeSize + pw < 0) throw new IllegalArgumentException("Stride for plane " + i + " would cause memory to be accessed below plane boundary"); if (planes[i].length < offsets[i] + planeSize) throw new IllegalArgumentException("Image plane " + i + " is not large enough"); } yuvPlanes = planes; yuvOffsets = offsets; yuvWidth = width; yuvStrides = strides; yuvHeight = height; yuvSubsamp = subsamp; } /** * Assign a unified buffer to this YUVImage instance. * * @param yuvImage buffer that contains or will receive a unified planar YUV * image. Use {@link TJ#bufSizeYUV} to determine the minimum size for this * buffer. The Y, U (Cb), and V (Cr) image planes are stored sequentially in * the buffer. (See {@link YUVImage above} for a description of the image * format.) * * @param width width (in pixels) of the YUV image * * @param align row alignment (in bytes) of the YUV image (must be a power of * 2.) Setting this parameter to n specifies that each row in each plane of * the YUV image will be padded to the nearest multiple of n bytes * (1 = unpadded.) * * @param height height (in pixels) of the YUV image * * @param subsamp the level of chrominance subsampling used in the YUV * image (one of {@link TJ#SAMP_444 TJ.SAMP_*}) */ public void setBuf(byte[] yuvImage, int width, int align, int height, int subsamp) { if (yuvImage == null || width < 1 || align < 1 || ((align & (align - 1)) != 0) || height < 1 || subsamp < 0 || subsamp >= TJ.NUMSAMP) throw new IllegalArgumentException("Invalid argument in YUVImage::setBuf()"); if (yuvImage.length < TJ.bufSizeYUV(width, align, height, subsamp)) throw new IllegalArgumentException("YUV buffer is not large enough"); int nc = (subsamp == TJ.SAMP_GRAY ? 1 : 3); byte[][] planes = new byte[nc][]; int[] strides = new int[nc]; int[] offsets = new int[nc]; planes[0] = yuvImage; strides[0] = pad(TJ.planeWidth(0, width, subsamp), align); if (subsamp != TJ.SAMP_GRAY) { strides[1] = strides[2] = pad(TJ.planeWidth(1, width, subsamp), align); planes[1] = planes[2] = yuvImage; offsets[1] = offsets[0] + strides[0] * TJ.planeHeight(0, height, subsamp); offsets[2] = offsets[1] + strides[1] * TJ.planeHeight(1, height, subsamp); } yuvAlign = align; setBuf(planes, offsets, width, strides, height, subsamp); } /** * Returns the width of the YUV image (or subregion.) * * @return the width of the YUV image (or subregion) */ public int getWidth() { if (yuvWidth < 1) throw new IllegalStateException(NO_ASSOC_ERROR); return yuvWidth; } /** * Returns the height of the YUV image (or subregion.) * * @return the height of the YUV image (or subregion) */ public int getHeight() { if (yuvHeight < 1) throw new IllegalStateException(NO_ASSOC_ERROR); return yuvHeight; } /** * Returns the row alignment (in bytes) of the YUV buffer (if this image is * stored in a unified buffer rather than separate image planes.) * * @return the row alignment of the YUV buffer */ public int getPad() { if (yuvPlanes == null) throw new IllegalStateException(NO_ASSOC_ERROR); if (yuvAlign < 1 || ((yuvAlign & (yuvAlign - 1)) != 0)) throw new IllegalStateException("Image is not stored in a unified buffer"); return yuvAlign; } /** * Returns the number of bytes per row of each plane in the YUV image. * * @return the number of bytes per row of each plane in the YUV image */ public int[] getStrides() { if (yuvStrides == null) throw new IllegalStateException(NO_ASSOC_ERROR); return yuvStrides; } /** * Returns the offsets (in bytes) of each plane within the planes of a larger * YUV image. * * @return the offsets (in bytes) of each plane within the planes of a larger * YUV image */ public int[] getOffsets() { if (yuvOffsets == null) throw new IllegalStateException(NO_ASSOC_ERROR); return yuvOffsets; } /** * Returns the level of chrominance subsampling used in the YUV image. See * {@link TJ#SAMP_444 TJ.SAMP_*}. * * @return the level of chrominance subsampling used in the YUV image */ public int getSubsamp() { if (yuvSubsamp < 0 || yuvSubsamp >= TJ.NUMSAMP) throw new IllegalStateException(NO_ASSOC_ERROR); return yuvSubsamp; } /** * Returns the YUV image planes. If the image is stored in a unified buffer, * then all image planes will point to that buffer. * * @return the YUV image planes */ public byte[][] getPlanes() { if (yuvPlanes == null) throw new IllegalStateException(NO_ASSOC_ERROR); return yuvPlanes; } /** * Returns the YUV buffer (if this image is stored in a unified buffer rather * than separate image planes.) * * @return the YUV buffer */ public byte[] getBuf() { if (yuvPlanes == null || yuvSubsamp < 0 || yuvSubsamp >= TJ.NUMSAMP) throw new IllegalStateException(NO_ASSOC_ERROR); int nc = (yuvSubsamp == TJ.SAMP_GRAY ? 1 : 3); for (int i = 1; i < nc; i++) { if (yuvPlanes[i] != yuvPlanes[0]) throw new IllegalStateException("Image is not stored in a unified buffer"); } return yuvPlanes[0]; } /** * Returns the size (in bytes) of the YUV buffer (if this image is stored in * a unified buffer rather than separate image planes.) * * @return the size (in bytes) of the YUV buffer */ public int getSize() { if (yuvPlanes == null || yuvSubsamp < 0 || yuvSubsamp >= TJ.NUMSAMP) throw new IllegalStateException(NO_ASSOC_ERROR); int nc = (yuvSubsamp == TJ.SAMP_GRAY ? 1 : 3); if (yuvAlign < 1) throw new IllegalStateException("Image is not stored in a unified buffer"); for (int i = 1; i < nc; i++) { if (yuvPlanes[i] != yuvPlanes[0]) throw new IllegalStateException("Image is not stored in a unified buffer"); } return TJ.bufSizeYUV(yuvWidth, yuvAlign, yuvHeight, yuvSubsamp); } private static int pad(int v, int p) { return (v + p - 1) & (~(p - 1)); } protected long handle = 0; protected byte[][] yuvPlanes = null; protected int[] yuvOffsets = null; protected int[] yuvStrides = null; protected int yuvAlign = 1; protected int yuvWidth = 0; protected int yuvHeight = 0; protected int yuvSubsamp = -1; } libjpeg-turbo-2.1.5/java/org_libjpegturbo_turbojpeg_TJ.h000066400000000000000000000132541436506551100234060ustar00rootroot00000000000000/* DO NOT EDIT THIS FILE - it is machine generated */ #include /* Header for class org_libjpegturbo_turbojpeg_TJ */ #ifndef _Included_org_libjpegturbo_turbojpeg_TJ #define _Included_org_libjpegturbo_turbojpeg_TJ #ifdef __cplusplus extern "C" { #endif #undef org_libjpegturbo_turbojpeg_TJ_NUMSAMP #define org_libjpegturbo_turbojpeg_TJ_NUMSAMP 6L #undef org_libjpegturbo_turbojpeg_TJ_SAMP_444 #define org_libjpegturbo_turbojpeg_TJ_SAMP_444 0L #undef org_libjpegturbo_turbojpeg_TJ_SAMP_422 #define org_libjpegturbo_turbojpeg_TJ_SAMP_422 1L #undef org_libjpegturbo_turbojpeg_TJ_SAMP_420 #define org_libjpegturbo_turbojpeg_TJ_SAMP_420 2L #undef org_libjpegturbo_turbojpeg_TJ_SAMP_GRAY #define org_libjpegturbo_turbojpeg_TJ_SAMP_GRAY 3L #undef org_libjpegturbo_turbojpeg_TJ_SAMP_440 #define org_libjpegturbo_turbojpeg_TJ_SAMP_440 4L #undef org_libjpegturbo_turbojpeg_TJ_SAMP_411 #define org_libjpegturbo_turbojpeg_TJ_SAMP_411 5L #undef org_libjpegturbo_turbojpeg_TJ_NUMPF #define org_libjpegturbo_turbojpeg_TJ_NUMPF 12L #undef org_libjpegturbo_turbojpeg_TJ_PF_RGB #define org_libjpegturbo_turbojpeg_TJ_PF_RGB 0L #undef org_libjpegturbo_turbojpeg_TJ_PF_BGR #define org_libjpegturbo_turbojpeg_TJ_PF_BGR 1L #undef org_libjpegturbo_turbojpeg_TJ_PF_RGBX #define org_libjpegturbo_turbojpeg_TJ_PF_RGBX 2L #undef org_libjpegturbo_turbojpeg_TJ_PF_BGRX #define org_libjpegturbo_turbojpeg_TJ_PF_BGRX 3L #undef org_libjpegturbo_turbojpeg_TJ_PF_XBGR #define org_libjpegturbo_turbojpeg_TJ_PF_XBGR 4L #undef org_libjpegturbo_turbojpeg_TJ_PF_XRGB #define org_libjpegturbo_turbojpeg_TJ_PF_XRGB 5L #undef org_libjpegturbo_turbojpeg_TJ_PF_GRAY #define org_libjpegturbo_turbojpeg_TJ_PF_GRAY 6L #undef org_libjpegturbo_turbojpeg_TJ_PF_RGBA #define org_libjpegturbo_turbojpeg_TJ_PF_RGBA 7L #undef org_libjpegturbo_turbojpeg_TJ_PF_BGRA #define org_libjpegturbo_turbojpeg_TJ_PF_BGRA 8L #undef org_libjpegturbo_turbojpeg_TJ_PF_ABGR #define org_libjpegturbo_turbojpeg_TJ_PF_ABGR 9L #undef org_libjpegturbo_turbojpeg_TJ_PF_ARGB #define org_libjpegturbo_turbojpeg_TJ_PF_ARGB 10L #undef org_libjpegturbo_turbojpeg_TJ_PF_CMYK #define org_libjpegturbo_turbojpeg_TJ_PF_CMYK 11L #undef org_libjpegturbo_turbojpeg_TJ_NUMCS #define org_libjpegturbo_turbojpeg_TJ_NUMCS 5L #undef org_libjpegturbo_turbojpeg_TJ_CS_RGB #define org_libjpegturbo_turbojpeg_TJ_CS_RGB 0L #undef org_libjpegturbo_turbojpeg_TJ_CS_YCbCr #define org_libjpegturbo_turbojpeg_TJ_CS_YCbCr 1L #undef org_libjpegturbo_turbojpeg_TJ_CS_GRAY #define org_libjpegturbo_turbojpeg_TJ_CS_GRAY 2L #undef org_libjpegturbo_turbojpeg_TJ_CS_CMYK #define org_libjpegturbo_turbojpeg_TJ_CS_CMYK 3L #undef org_libjpegturbo_turbojpeg_TJ_CS_YCCK #define org_libjpegturbo_turbojpeg_TJ_CS_YCCK 4L #undef org_libjpegturbo_turbojpeg_TJ_FLAG_BOTTOMUP #define org_libjpegturbo_turbojpeg_TJ_FLAG_BOTTOMUP 2L #undef org_libjpegturbo_turbojpeg_TJ_FLAG_FORCEMMX #define org_libjpegturbo_turbojpeg_TJ_FLAG_FORCEMMX 8L #undef org_libjpegturbo_turbojpeg_TJ_FLAG_FORCESSE #define org_libjpegturbo_turbojpeg_TJ_FLAG_FORCESSE 16L #undef org_libjpegturbo_turbojpeg_TJ_FLAG_FORCESSE2 #define org_libjpegturbo_turbojpeg_TJ_FLAG_FORCESSE2 32L #undef org_libjpegturbo_turbojpeg_TJ_FLAG_FORCESSE3 #define org_libjpegturbo_turbojpeg_TJ_FLAG_FORCESSE3 128L #undef org_libjpegturbo_turbojpeg_TJ_FLAG_FASTUPSAMPLE #define org_libjpegturbo_turbojpeg_TJ_FLAG_FASTUPSAMPLE 256L #undef org_libjpegturbo_turbojpeg_TJ_FLAG_FASTDCT #define org_libjpegturbo_turbojpeg_TJ_FLAG_FASTDCT 2048L #undef org_libjpegturbo_turbojpeg_TJ_FLAG_ACCURATEDCT #define org_libjpegturbo_turbojpeg_TJ_FLAG_ACCURATEDCT 4096L #undef org_libjpegturbo_turbojpeg_TJ_FLAG_STOPONWARNING #define org_libjpegturbo_turbojpeg_TJ_FLAG_STOPONWARNING 8192L #undef org_libjpegturbo_turbojpeg_TJ_FLAG_PROGRESSIVE #define org_libjpegturbo_turbojpeg_TJ_FLAG_PROGRESSIVE 16384L #undef org_libjpegturbo_turbojpeg_TJ_FLAG_LIMITSCANS #define org_libjpegturbo_turbojpeg_TJ_FLAG_LIMITSCANS 32768L #undef org_libjpegturbo_turbojpeg_TJ_NUMERR #define org_libjpegturbo_turbojpeg_TJ_NUMERR 2L #undef org_libjpegturbo_turbojpeg_TJ_ERR_WARNING #define org_libjpegturbo_turbojpeg_TJ_ERR_WARNING 0L #undef org_libjpegturbo_turbojpeg_TJ_ERR_FATAL #define org_libjpegturbo_turbojpeg_TJ_ERR_FATAL 1L /* * Class: org_libjpegturbo_turbojpeg_TJ * Method: bufSize * Signature: (III)I */ JNIEXPORT jint JNICALL Java_org_libjpegturbo_turbojpeg_TJ_bufSize (JNIEnv *, jclass, jint, jint, jint); /* * Class: org_libjpegturbo_turbojpeg_TJ * Method: bufSizeYUV * Signature: (IIII)I */ JNIEXPORT jint JNICALL Java_org_libjpegturbo_turbojpeg_TJ_bufSizeYUV__IIII (JNIEnv *, jclass, jint, jint, jint, jint); /* * Class: org_libjpegturbo_turbojpeg_TJ * Method: bufSizeYUV * Signature: (III)I */ JNIEXPORT jint JNICALL Java_org_libjpegturbo_turbojpeg_TJ_bufSizeYUV__III (JNIEnv *, jclass, jint, jint, jint); /* * Class: org_libjpegturbo_turbojpeg_TJ * Method: planeSizeYUV * Signature: (IIIII)I */ JNIEXPORT jint JNICALL Java_org_libjpegturbo_turbojpeg_TJ_planeSizeYUV__IIIII (JNIEnv *, jclass, jint, jint, jint, jint, jint); /* * Class: org_libjpegturbo_turbojpeg_TJ * Method: planeWidth * Signature: (III)I */ JNIEXPORT jint JNICALL Java_org_libjpegturbo_turbojpeg_TJ_planeWidth__III (JNIEnv *, jclass, jint, jint, jint); /* * Class: org_libjpegturbo_turbojpeg_TJ * Method: planeHeight * Signature: (III)I */ JNIEXPORT jint JNICALL Java_org_libjpegturbo_turbojpeg_TJ_planeHeight__III (JNIEnv *, jclass, jint, jint, jint); /* * Class: org_libjpegturbo_turbojpeg_TJ * Method: getScalingFactors * Signature: ()[Lorg/libjpegturbo/turbojpeg/TJScalingFactor; */ JNIEXPORT jobjectArray JNICALL Java_org_libjpegturbo_turbojpeg_TJ_getScalingFactors (JNIEnv *, jclass); #ifdef __cplusplus } #endif #endif libjpeg-turbo-2.1.5/java/org_libjpegturbo_turbojpeg_TJCompressor.h000066400000000000000000000067011436506551100254620ustar00rootroot00000000000000/* DO NOT EDIT THIS FILE - it is machine generated */ #include /* Header for class org_libjpegturbo_turbojpeg_TJCompressor */ #ifndef _Included_org_libjpegturbo_turbojpeg_TJCompressor #define _Included_org_libjpegturbo_turbojpeg_TJCompressor #ifdef __cplusplus extern "C" { #endif /* * Class: org_libjpegturbo_turbojpeg_TJCompressor * Method: init * Signature: ()V */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJCompressor_init (JNIEnv *, jobject); /* * Class: org_libjpegturbo_turbojpeg_TJCompressor * Method: destroy * Signature: ()V */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJCompressor_destroy (JNIEnv *, jobject); /* * Class: org_libjpegturbo_turbojpeg_TJCompressor * Method: compress * Signature: ([BIIII[BIII)I */ JNIEXPORT jint JNICALL Java_org_libjpegturbo_turbojpeg_TJCompressor_compress___3BIIII_3BIII (JNIEnv *, jobject, jbyteArray, jint, jint, jint, jint, jbyteArray, jint, jint, jint); /* * Class: org_libjpegturbo_turbojpeg_TJCompressor * Method: compress * Signature: ([BIIIIII[BIII)I */ JNIEXPORT jint JNICALL Java_org_libjpegturbo_turbojpeg_TJCompressor_compress___3BIIIIII_3BIII (JNIEnv *, jobject, jbyteArray, jint, jint, jint, jint, jint, jint, jbyteArray, jint, jint, jint); /* * Class: org_libjpegturbo_turbojpeg_TJCompressor * Method: compress * Signature: ([IIIII[BIII)I */ JNIEXPORT jint JNICALL Java_org_libjpegturbo_turbojpeg_TJCompressor_compress___3IIIII_3BIII (JNIEnv *, jobject, jintArray, jint, jint, jint, jint, jbyteArray, jint, jint, jint); /* * Class: org_libjpegturbo_turbojpeg_TJCompressor * Method: compress * Signature: ([IIIIIII[BIII)I */ JNIEXPORT jint JNICALL Java_org_libjpegturbo_turbojpeg_TJCompressor_compress___3IIIIIII_3BIII (JNIEnv *, jobject, jintArray, jint, jint, jint, jint, jint, jint, jbyteArray, jint, jint, jint); /* * Class: org_libjpegturbo_turbojpeg_TJCompressor * Method: compressFromYUV * Signature: ([[B[II[III[BII)I */ JNIEXPORT jint JNICALL Java_org_libjpegturbo_turbojpeg_TJCompressor_compressFromYUV___3_3B_3II_3III_3BII (JNIEnv *, jobject, jobjectArray, jintArray, jint, jintArray, jint, jint, jbyteArray, jint, jint); /* * Class: org_libjpegturbo_turbojpeg_TJCompressor * Method: encodeYUV * Signature: ([BIIII[BII)V */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJCompressor_encodeYUV___3BIIII_3BII (JNIEnv *, jobject, jbyteArray, jint, jint, jint, jint, jbyteArray, jint, jint); /* * Class: org_libjpegturbo_turbojpeg_TJCompressor * Method: encodeYUV * Signature: ([BIIIIII[[B[I[III)V */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJCompressor_encodeYUV___3BIIIIII_3_3B_3I_3III (JNIEnv *, jobject, jbyteArray, jint, jint, jint, jint, jint, jint, jobjectArray, jintArray, jintArray, jint, jint); /* * Class: org_libjpegturbo_turbojpeg_TJCompressor * Method: encodeYUV * Signature: ([IIIII[BII)V */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJCompressor_encodeYUV___3IIIII_3BII (JNIEnv *, jobject, jintArray, jint, jint, jint, jint, jbyteArray, jint, jint); /* * Class: org_libjpegturbo_turbojpeg_TJCompressor * Method: encodeYUV * Signature: ([IIIIIII[[B[I[III)V */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJCompressor_encodeYUV___3IIIIIII_3_3B_3I_3III (JNIEnv *, jobject, jintArray, jint, jint, jint, jint, jint, jint, jobjectArray, jintArray, jintArray, jint, jint); #ifdef __cplusplus } #endif #endif libjpeg-turbo-2.1.5/java/org_libjpegturbo_turbojpeg_TJDecompressor.h000066400000000000000000000066271436506551100260020ustar00rootroot00000000000000/* DO NOT EDIT THIS FILE - it is machine generated */ #include /* Header for class org_libjpegturbo_turbojpeg_TJDecompressor */ #ifndef _Included_org_libjpegturbo_turbojpeg_TJDecompressor #define _Included_org_libjpegturbo_turbojpeg_TJDecompressor #ifdef __cplusplus extern "C" { #endif /* * Class: org_libjpegturbo_turbojpeg_TJDecompressor * Method: init * Signature: ()V */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJDecompressor_init (JNIEnv *, jobject); /* * Class: org_libjpegturbo_turbojpeg_TJDecompressor * Method: destroy * Signature: ()V */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJDecompressor_destroy (JNIEnv *, jobject); /* * Class: org_libjpegturbo_turbojpeg_TJDecompressor * Method: decompressHeader * Signature: ([BI)V */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJDecompressor_decompressHeader (JNIEnv *, jobject, jbyteArray, jint); /* * Class: org_libjpegturbo_turbojpeg_TJDecompressor * Method: decompress * Signature: ([BI[BIIIII)V */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJDecompressor_decompress___3BI_3BIIIII (JNIEnv *, jobject, jbyteArray, jint, jbyteArray, jint, jint, jint, jint, jint); /* * Class: org_libjpegturbo_turbojpeg_TJDecompressor * Method: decompress * Signature: ([BI[BIIIIIII)V */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJDecompressor_decompress___3BI_3BIIIIIII (JNIEnv *, jobject, jbyteArray, jint, jbyteArray, jint, jint, jint, jint, jint, jint, jint); /* * Class: org_libjpegturbo_turbojpeg_TJDecompressor * Method: decompress * Signature: ([BI[IIIIII)V */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJDecompressor_decompress___3BI_3IIIIII (JNIEnv *, jobject, jbyteArray, jint, jintArray, jint, jint, jint, jint, jint); /* * Class: org_libjpegturbo_turbojpeg_TJDecompressor * Method: decompress * Signature: ([BI[IIIIIIII)V */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJDecompressor_decompress___3BI_3IIIIIIII (JNIEnv *, jobject, jbyteArray, jint, jintArray, jint, jint, jint, jint, jint, jint, jint); /* * Class: org_libjpegturbo_turbojpeg_TJDecompressor * Method: decompressToYUV * Signature: ([BI[BI)V */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJDecompressor_decompressToYUV___3BI_3BI (JNIEnv *, jobject, jbyteArray, jint, jbyteArray, jint); /* * Class: org_libjpegturbo_turbojpeg_TJDecompressor * Method: decompressToYUV * Signature: ([BI[[B[II[III)V */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJDecompressor_decompressToYUV___3BI_3_3B_3II_3III (JNIEnv *, jobject, jbyteArray, jint, jobjectArray, jintArray, jint, jintArray, jint, jint); /* * Class: org_libjpegturbo_turbojpeg_TJDecompressor * Method: decodeYUV * Signature: ([[B[I[II[BIIIIIII)V */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJDecompressor_decodeYUV___3_3B_3I_3II_3BIIIIIII (JNIEnv *, jobject, jobjectArray, jintArray, jintArray, jint, jbyteArray, jint, jint, jint, jint, jint, jint, jint); /* * Class: org_libjpegturbo_turbojpeg_TJDecompressor * Method: decodeYUV * Signature: ([[B[I[II[IIIIIIII)V */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJDecompressor_decodeYUV___3_3B_3I_3II_3IIIIIIII (JNIEnv *, jobject, jobjectArray, jintArray, jintArray, jint, jintArray, jint, jint, jint, jint, jint, jint, jint); #ifdef __cplusplus } #endif #endif libjpeg-turbo-2.1.5/java/org_libjpegturbo_turbojpeg_TJTransformer.h000066400000000000000000000015061436506551100256260ustar00rootroot00000000000000/* DO NOT EDIT THIS FILE - it is machine generated */ #include /* Header for class org_libjpegturbo_turbojpeg_TJTransformer */ #ifndef _Included_org_libjpegturbo_turbojpeg_TJTransformer #define _Included_org_libjpegturbo_turbojpeg_TJTransformer #ifdef __cplusplus extern "C" { #endif /* * Class: org_libjpegturbo_turbojpeg_TJTransformer * Method: init * Signature: ()V */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJTransformer_init (JNIEnv *, jobject); /* * Class: org_libjpegturbo_turbojpeg_TJTransformer * Method: transform * Signature: ([BI[[B[Lorg/libjpegturbo/turbojpeg/TJTransform;I)[I */ JNIEXPORT jintArray JNICALL Java_org_libjpegturbo_turbojpeg_TJTransformer_transform (JNIEnv *, jobject, jbyteArray, jint, jobjectArray, jobjectArray, jint); #ifdef __cplusplus } #endif #endif libjpeg-turbo-2.1.5/jcapimin.c000066400000000000000000000226731436506551100162420ustar00rootroot00000000000000/* * jcapimin.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1998, Thomas G. Lane. * Modified 2003-2010 by Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright (C) 2022, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains application interface code for the compression half * of the JPEG library. These are the "minimum" API routines that may be * needed in either the normal full-compression case or the transcoding-only * case. * * Most of the routines intended to be called directly by an application * are in this file or in jcapistd.c. But also see jcparam.c for * parameter-setup helper routines, jcomapi.c for routines shared by * compression and decompression, and jctrans.c for the transcoding case. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" /* * Initialization of a JPEG compression object. * The error manager must already be set up (in case memory manager fails). */ GLOBAL(void) jpeg_CreateCompress(j_compress_ptr cinfo, int version, size_t structsize) { int i; /* Guard against version mismatches between library and caller. */ cinfo->mem = NULL; /* so jpeg_destroy knows mem mgr not called */ if (version != JPEG_LIB_VERSION) ERREXIT2(cinfo, JERR_BAD_LIB_VERSION, JPEG_LIB_VERSION, version); if (structsize != sizeof(struct jpeg_compress_struct)) ERREXIT2(cinfo, JERR_BAD_STRUCT_SIZE, (int)sizeof(struct jpeg_compress_struct), (int)structsize); /* For debugging purposes, we zero the whole master structure. * But the application has already set the err pointer, and may have set * client_data, so we have to save and restore those fields. * Note: if application hasn't set client_data, tools like Purify may * complain here. */ { struct jpeg_error_mgr *err = cinfo->err; void *client_data = cinfo->client_data; /* ignore Purify complaint here */ memset(cinfo, 0, sizeof(struct jpeg_compress_struct)); cinfo->err = err; cinfo->client_data = client_data; } cinfo->is_decompressor = FALSE; /* Initialize a memory manager instance for this object */ jinit_memory_mgr((j_common_ptr)cinfo); /* Zero out pointers to permanent structures. */ cinfo->progress = NULL; cinfo->dest = NULL; cinfo->comp_info = NULL; for (i = 0; i < NUM_QUANT_TBLS; i++) { cinfo->quant_tbl_ptrs[i] = NULL; #if JPEG_LIB_VERSION >= 70 cinfo->q_scale_factor[i] = 100; #endif } for (i = 0; i < NUM_HUFF_TBLS; i++) { cinfo->dc_huff_tbl_ptrs[i] = NULL; cinfo->ac_huff_tbl_ptrs[i] = NULL; } #if JPEG_LIB_VERSION >= 80 /* Must do it here for emit_dqt in case jpeg_write_tables is used */ cinfo->block_size = DCTSIZE; cinfo->natural_order = jpeg_natural_order; cinfo->lim_Se = DCTSIZE2 - 1; #endif cinfo->script_space = NULL; cinfo->input_gamma = 1.0; /* in case application forgets */ /* OK, I'm ready */ cinfo->global_state = CSTATE_START; } /* * Destruction of a JPEG compression object */ GLOBAL(void) jpeg_destroy_compress(j_compress_ptr cinfo) { jpeg_destroy((j_common_ptr)cinfo); /* use common routine */ } /* * Abort processing of a JPEG compression operation, * but don't destroy the object itself. */ GLOBAL(void) jpeg_abort_compress(j_compress_ptr cinfo) { jpeg_abort((j_common_ptr)cinfo); /* use common routine */ } /* * Forcibly suppress or un-suppress all quantization and Huffman tables. * Marks all currently defined tables as already written (if suppress) * or not written (if !suppress). This will control whether they get emitted * by a subsequent jpeg_start_compress call. * * This routine is exported for use by applications that want to produce * abbreviated JPEG datastreams. It logically belongs in jcparam.c, but * since it is called by jpeg_start_compress, we put it here --- otherwise * jcparam.o would be linked whether the application used it or not. */ GLOBAL(void) jpeg_suppress_tables(j_compress_ptr cinfo, boolean suppress) { int i; JQUANT_TBL *qtbl; JHUFF_TBL *htbl; for (i = 0; i < NUM_QUANT_TBLS; i++) { if ((qtbl = cinfo->quant_tbl_ptrs[i]) != NULL) qtbl->sent_table = suppress; } for (i = 0; i < NUM_HUFF_TBLS; i++) { if ((htbl = cinfo->dc_huff_tbl_ptrs[i]) != NULL) htbl->sent_table = suppress; if ((htbl = cinfo->ac_huff_tbl_ptrs[i]) != NULL) htbl->sent_table = suppress; } } /* * Finish JPEG compression. * * If a multipass operating mode was selected, this may do a great deal of * work including most of the actual output. */ GLOBAL(void) jpeg_finish_compress(j_compress_ptr cinfo) { JDIMENSION iMCU_row; if (cinfo->global_state == CSTATE_SCANNING || cinfo->global_state == CSTATE_RAW_OK) { /* Terminate first pass */ if (cinfo->next_scanline < cinfo->image_height) ERREXIT(cinfo, JERR_TOO_LITTLE_DATA); (*cinfo->master->finish_pass) (cinfo); } else if (cinfo->global_state != CSTATE_WRCOEFS) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); /* Perform any remaining passes */ while (!cinfo->master->is_last_pass) { (*cinfo->master->prepare_for_pass) (cinfo); for (iMCU_row = 0; iMCU_row < cinfo->total_iMCU_rows; iMCU_row++) { if (cinfo->progress != NULL) { cinfo->progress->pass_counter = (long)iMCU_row; cinfo->progress->pass_limit = (long)cinfo->total_iMCU_rows; (*cinfo->progress->progress_monitor) ((j_common_ptr)cinfo); } /* We bypass the main controller and invoke coef controller directly; * all work is being done from the coefficient buffer. */ if (!(*cinfo->coef->compress_data) (cinfo, (JSAMPIMAGE)NULL)) ERREXIT(cinfo, JERR_CANT_SUSPEND); } (*cinfo->master->finish_pass) (cinfo); } /* Write EOI, do final cleanup */ (*cinfo->marker->write_file_trailer) (cinfo); (*cinfo->dest->term_destination) (cinfo); /* We can use jpeg_abort to release memory and reset global_state */ jpeg_abort((j_common_ptr)cinfo); } /* * Write a special marker. * This is only recommended for writing COM or APPn markers. * Must be called after jpeg_start_compress() and before * first call to jpeg_write_scanlines() or jpeg_write_raw_data(). */ GLOBAL(void) jpeg_write_marker(j_compress_ptr cinfo, int marker, const JOCTET *dataptr, unsigned int datalen) { void (*write_marker_byte) (j_compress_ptr info, int val); if (cinfo->next_scanline != 0 || (cinfo->global_state != CSTATE_SCANNING && cinfo->global_state != CSTATE_RAW_OK && cinfo->global_state != CSTATE_WRCOEFS)) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); (*cinfo->marker->write_marker_header) (cinfo, marker, datalen); write_marker_byte = cinfo->marker->write_marker_byte; /* copy for speed */ while (datalen--) { (*write_marker_byte) (cinfo, *dataptr); dataptr++; } } /* Same, but piecemeal. */ GLOBAL(void) jpeg_write_m_header(j_compress_ptr cinfo, int marker, unsigned int datalen) { if (cinfo->next_scanline != 0 || (cinfo->global_state != CSTATE_SCANNING && cinfo->global_state != CSTATE_RAW_OK && cinfo->global_state != CSTATE_WRCOEFS)) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); (*cinfo->marker->write_marker_header) (cinfo, marker, datalen); } GLOBAL(void) jpeg_write_m_byte(j_compress_ptr cinfo, int val) { (*cinfo->marker->write_marker_byte) (cinfo, val); } /* * Alternate compression function: just write an abbreviated table file. * Before calling this, all parameters and a data destination must be set up. * * To produce a pair of files containing abbreviated tables and abbreviated * image data, one would proceed as follows: * * initialize JPEG object * set JPEG parameters * set destination to table file * jpeg_write_tables(cinfo); * set destination to image file * jpeg_start_compress(cinfo, FALSE); * write data... * jpeg_finish_compress(cinfo); * * jpeg_write_tables has the side effect of marking all tables written * (same as jpeg_suppress_tables(..., TRUE)). Thus a subsequent start_compress * will not re-emit the tables unless it is passed write_all_tables=TRUE. */ GLOBAL(void) jpeg_write_tables(j_compress_ptr cinfo) { if (cinfo->global_state != CSTATE_START) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); /* (Re)initialize error mgr and destination modules */ (*cinfo->err->reset_error_mgr) ((j_common_ptr)cinfo); (*cinfo->dest->init_destination) (cinfo); /* Initialize the marker writer ... bit of a crock to do it here. */ jinit_marker_writer(cinfo); /* Write them tables! */ (*cinfo->marker->write_tables_only) (cinfo); /* And clean up. */ (*cinfo->dest->term_destination) (cinfo); /* * In library releases up through v6a, we called jpeg_abort() here to free * any working memory allocated by the destination manager and marker * writer. Some applications had a problem with that: they allocated space * of their own from the library memory manager, and didn't want it to go * away during write_tables. So now we do nothing. This will cause a * memory leak if an app calls write_tables repeatedly without doing a full * compression cycle or otherwise resetting the JPEG object. However, that * seems less bad than unexpectedly freeing memory in the normal case. * An app that prefers the old behavior can call jpeg_abort for itself after * each call to jpeg_write_tables(). */ } libjpeg-turbo-2.1.5/jcapistd.c000066400000000000000000000134171436506551100162450ustar00rootroot00000000000000/* * jcapistd.c * * Copyright (C) 1994-1996, Thomas G. Lane. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains application interface code for the compression half * of the JPEG library. These are the "standard" API routines that are * used in the normal full-compression case. They are not used by a * transcoding-only application. Note that if an application links in * jpeg_start_compress, it will end up linking in the entire compressor. * We thus must separate this file from jcapimin.c to avoid linking the * whole compression library into a transcoder. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" /* * Compression initialization. * Before calling this, all parameters and a data destination must be set up. * * We require a write_all_tables parameter as a failsafe check when writing * multiple datastreams from the same compression object. Since prior runs * will have left all the tables marked sent_table=TRUE, a subsequent run * would emit an abbreviated stream (no tables) by default. This may be what * is wanted, but for safety's sake it should not be the default behavior: * programmers should have to make a deliberate choice to emit abbreviated * images. Therefore the documentation and examples should encourage people * to pass write_all_tables=TRUE; then it will take active thought to do the * wrong thing. */ GLOBAL(void) jpeg_start_compress(j_compress_ptr cinfo, boolean write_all_tables) { if (cinfo->global_state != CSTATE_START) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); if (write_all_tables) jpeg_suppress_tables(cinfo, FALSE); /* mark all tables to be written */ /* (Re)initialize error mgr and destination modules */ (*cinfo->err->reset_error_mgr) ((j_common_ptr)cinfo); (*cinfo->dest->init_destination) (cinfo); /* Perform master selection of active modules */ jinit_compress_master(cinfo); /* Set up for the first pass */ (*cinfo->master->prepare_for_pass) (cinfo); /* Ready for application to drive first pass through jpeg_write_scanlines * or jpeg_write_raw_data. */ cinfo->next_scanline = 0; cinfo->global_state = (cinfo->raw_data_in ? CSTATE_RAW_OK : CSTATE_SCANNING); } /* * Write some scanlines of data to the JPEG compressor. * * The return value will be the number of lines actually written. * This should be less than the supplied num_lines only in case that * the data destination module has requested suspension of the compressor, * or if more than image_height scanlines are passed in. * * Note: we warn about excess calls to jpeg_write_scanlines() since * this likely signals an application programmer error. However, * excess scanlines passed in the last valid call are *silently* ignored, * so that the application need not adjust num_lines for end-of-image * when using a multiple-scanline buffer. */ GLOBAL(JDIMENSION) jpeg_write_scanlines(j_compress_ptr cinfo, JSAMPARRAY scanlines, JDIMENSION num_lines) { JDIMENSION row_ctr, rows_left; if (cinfo->global_state != CSTATE_SCANNING) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); if (cinfo->next_scanline >= cinfo->image_height) WARNMS(cinfo, JWRN_TOO_MUCH_DATA); /* Call progress monitor hook if present */ if (cinfo->progress != NULL) { cinfo->progress->pass_counter = (long)cinfo->next_scanline; cinfo->progress->pass_limit = (long)cinfo->image_height; (*cinfo->progress->progress_monitor) ((j_common_ptr)cinfo); } /* Give master control module another chance if this is first call to * jpeg_write_scanlines. This lets output of the frame/scan headers be * delayed so that application can write COM, etc, markers between * jpeg_start_compress and jpeg_write_scanlines. */ if (cinfo->master->call_pass_startup) (*cinfo->master->pass_startup) (cinfo); /* Ignore any extra scanlines at bottom of image. */ rows_left = cinfo->image_height - cinfo->next_scanline; if (num_lines > rows_left) num_lines = rows_left; row_ctr = 0; (*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, num_lines); cinfo->next_scanline += row_ctr; return row_ctr; } /* * Alternate entry point to write raw data. * Processes exactly one iMCU row per call, unless suspended. */ GLOBAL(JDIMENSION) jpeg_write_raw_data(j_compress_ptr cinfo, JSAMPIMAGE data, JDIMENSION num_lines) { JDIMENSION lines_per_iMCU_row; if (cinfo->global_state != CSTATE_RAW_OK) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); if (cinfo->next_scanline >= cinfo->image_height) { WARNMS(cinfo, JWRN_TOO_MUCH_DATA); return 0; } /* Call progress monitor hook if present */ if (cinfo->progress != NULL) { cinfo->progress->pass_counter = (long)cinfo->next_scanline; cinfo->progress->pass_limit = (long)cinfo->image_height; (*cinfo->progress->progress_monitor) ((j_common_ptr)cinfo); } /* Give master control module another chance if this is first call to * jpeg_write_raw_data. This lets output of the frame/scan headers be * delayed so that application can write COM, etc, markers between * jpeg_start_compress and jpeg_write_raw_data. */ if (cinfo->master->call_pass_startup) (*cinfo->master->pass_startup) (cinfo); /* Verify that at least one iMCU row has been passed. */ lines_per_iMCU_row = cinfo->max_v_samp_factor * DCTSIZE; if (num_lines < lines_per_iMCU_row) ERREXIT(cinfo, JERR_BUFFER_SIZE); /* Directly compress the row. */ if (!(*cinfo->coef->compress_data) (cinfo, data)) { /* If compressor did not consume the whole row, suspend processing. */ return 0; } /* OK, we processed one iMCU row. */ cinfo->next_scanline += lines_per_iMCU_row; return lines_per_iMCU_row; } libjpeg-turbo-2.1.5/jcarith.c000066400000000000000000000717441436506551100160770ustar00rootroot00000000000000/* * jcarith.c * * This file was part of the Independent JPEG Group's software: * Developed 1997-2009 by Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright (C) 2015, 2018, 2021-2022, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains portable arithmetic entropy encoding routines for JPEG * (implementing Recommendation ITU-T T.81 | ISO/IEC 10918-1). * * Both sequential and progressive modes are supported in this single module. * * Suspension is not currently supported in this module. * * NOTE: All referenced figures are from * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" /* Expanded entropy encoder object for arithmetic encoding. */ typedef struct { struct jpeg_entropy_encoder pub; /* public fields */ JLONG c; /* C register, base of coding interval, layout as in sec. D.1.3 */ JLONG a; /* A register, normalized size of coding interval */ JLONG sc; /* counter for stacked 0xFF values which might overflow */ JLONG zc; /* counter for pending 0x00 output values which might * * be discarded at the end ("Pacman" termination) */ int ct; /* bit shift counter, determines when next byte will be written */ int buffer; /* buffer for most recent output byte != 0xFF */ int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */ unsigned int restarts_to_go; /* MCUs left in this restart interval */ int next_restart_num; /* next restart number to write (0-7) */ /* Pointers to statistics areas (these workspaces have image lifespan) */ unsigned char *dc_stats[NUM_ARITH_TBLS]; unsigned char *ac_stats[NUM_ARITH_TBLS]; /* Statistics bin for coding with fixed probability 0.5 */ unsigned char fixed_bin[4]; } arith_entropy_encoder; typedef arith_entropy_encoder *arith_entropy_ptr; /* The following two definitions specify the allocation chunk size * for the statistics area. * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least * 49 statistics bins for DC, and 245 statistics bins for AC coding. * * We use a compact representation with 1 byte per statistics bin, * thus the numbers directly represent byte sizes. * This 1 byte per statistics bin contains the meaning of the MPS * (more probable symbol) in the highest bit (mask 0x80), and the * index into the probability estimation state machine table * in the lower bits (mask 0x7F). */ #define DC_STAT_BINS 64 #define AC_STAT_BINS 256 /* NOTE: Uncomment the following #define if you want to use the * given formula for calculating the AC conditioning parameter Kx * for spectral selection progressive coding in section G.1.3.2 * of the spec (Kx = Kmin + SRL (8 + Se - Kmin) 4). * Although the spec and P&M authors claim that this "has proven * to give good results for 8 bit precision samples", I'm not * convinced yet that this is really beneficial. * Early tests gave only very marginal compression enhancements * (a few - around 5 or so - bytes even for very large files), * which would turn out rather negative if we'd suppress the * DAC (Define Arithmetic Conditioning) marker segments for * the default parameters in the future. * Note that currently the marker writing module emits 12-byte * DAC segments for a full-component scan in a color image. * This is not worth worrying about IMHO. However, since the * spec defines the default values to be used if the tables * are omitted (unlike Huffman tables, which are required * anyway), one might optimize this behaviour in the future, * and then it would be disadvantageous to use custom tables if * they don't provide sufficient gain to exceed the DAC size. * * On the other hand, I'd consider it as a reasonable result * that the conditioning has no significant influence on the * compression performance. This means that the basic * statistical model is already rather stable. * * Thus, at the moment, we use the default conditioning values * anyway, and do not use the custom formula. * #define CALCULATE_SPECTRAL_CONDITIONING */ /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than JLONG. * We assume that int right shift is unsigned if JLONG right shift is, * which should be safe. */ #ifdef RIGHT_SHIFT_IS_UNSIGNED #define ISHIFT_TEMPS int ishift_temp; #define IRIGHT_SHIFT(x, shft) \ ((ishift_temp = (x)) < 0 ? \ (ishift_temp >> (shft)) | ((~0) << (16 - (shft))) : \ (ishift_temp >> (shft))) #else #define ISHIFT_TEMPS #define IRIGHT_SHIFT(x, shft) ((x) >> (shft)) #endif LOCAL(void) emit_byte(int val, j_compress_ptr cinfo) /* Write next output byte; we do not support suspension in this module. */ { struct jpeg_destination_mgr *dest = cinfo->dest; *dest->next_output_byte++ = (JOCTET)val; if (--dest->free_in_buffer == 0) if (!(*dest->empty_output_buffer) (cinfo)) ERREXIT(cinfo, JERR_CANT_SUSPEND); } /* * Finish up at the end of an arithmetic-compressed scan. */ METHODDEF(void) finish_pass(j_compress_ptr cinfo) { arith_entropy_ptr e = (arith_entropy_ptr)cinfo->entropy; JLONG temp; /* Section D.1.8: Termination of encoding */ /* Find the e->c in the coding interval with the largest * number of trailing zero bits */ if ((temp = (e->a - 1 + e->c) & 0xFFFF0000UL) < e->c) e->c = temp + 0x8000L; else e->c = temp; /* Send remaining bytes to output */ e->c <<= e->ct; if (e->c & 0xF8000000UL) { /* One final overflow has to be handled */ if (e->buffer >= 0) { if (e->zc) do emit_byte(0x00, cinfo); while (--e->zc); emit_byte(e->buffer + 1, cinfo); if (e->buffer + 1 == 0xFF) emit_byte(0x00, cinfo); } e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */ e->sc = 0; } else { if (e->buffer == 0) ++e->zc; else if (e->buffer >= 0) { if (e->zc) do emit_byte(0x00, cinfo); while (--e->zc); emit_byte(e->buffer, cinfo); } if (e->sc) { if (e->zc) do emit_byte(0x00, cinfo); while (--e->zc); do { emit_byte(0xFF, cinfo); emit_byte(0x00, cinfo); } while (--e->sc); } } /* Output final bytes only if they are not 0x00 */ if (e->c & 0x7FFF800L) { if (e->zc) /* output final pending zero bytes */ do emit_byte(0x00, cinfo); while (--e->zc); emit_byte((e->c >> 19) & 0xFF, cinfo); if (((e->c >> 19) & 0xFF) == 0xFF) emit_byte(0x00, cinfo); if (e->c & 0x7F800L) { emit_byte((e->c >> 11) & 0xFF, cinfo); if (((e->c >> 11) & 0xFF) == 0xFF) emit_byte(0x00, cinfo); } } } /* * The core arithmetic encoding routine (common in JPEG and JBIG). * This needs to go as fast as possible. * Machine-dependent optimization facilities * are not utilized in this portable implementation. * However, this code should be fairly efficient and * may be a good base for further optimizations anyway. * * Parameter 'val' to be encoded may be 0 or 1 (binary decision). * * Note: I've added full "Pacman" termination support to the * byte output routines, which is equivalent to the optional * Discard_final_zeros procedure (Figure D.15) in the spec. * Thus, we always produce the shortest possible output * stream compliant to the spec (no trailing zero bytes, * except for FF stuffing). * * I've also introduced a new scheme for accessing * the probability estimation state machine table, * derived from Markus Kuhn's JBIG implementation. */ LOCAL(void) arith_encode(j_compress_ptr cinfo, unsigned char *st, int val) { register arith_entropy_ptr e = (arith_entropy_ptr)cinfo->entropy; register unsigned char nl, nm; register JLONG qe, temp; register int sv; /* Fetch values from our compact representation of Table D.2: * Qe values and probability estimation state machine */ sv = *st; qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */ nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */ nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */ /* Encode & estimation procedures per sections D.1.4 & D.1.5 */ e->a -= qe; if (val != (sv >> 7)) { /* Encode the less probable symbol */ if (e->a >= qe) { /* If the interval size (qe) for the less probable symbol (LPS) * is larger than the interval size for the MPS, then exchange * the two symbols for coding efficiency, otherwise code the LPS * as usual: */ e->c += e->a; e->a = qe; } *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */ } else { /* Encode the more probable symbol */ if (e->a >= 0x8000L) return; /* A >= 0x8000 -> ready, no renormalization required */ if (e->a < qe) { /* If the interval size (qe) for the less probable symbol (LPS) * is larger than the interval size for the MPS, then exchange * the two symbols for coding efficiency: */ e->c += e->a; e->a = qe; } *st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */ } /* Renormalization & data output per section D.1.6 */ do { e->a <<= 1; e->c <<= 1; if (--e->ct == 0) { /* Another byte is ready for output */ temp = e->c >> 19; if (temp > 0xFF) { /* Handle overflow over all stacked 0xFF bytes */ if (e->buffer >= 0) { if (e->zc) do emit_byte(0x00, cinfo); while (--e->zc); emit_byte(e->buffer + 1, cinfo); if (e->buffer + 1 == 0xFF) emit_byte(0x00, cinfo); } e->zc += e->sc; /* carry-over converts stacked 0xFF bytes to 0x00 */ e->sc = 0; /* Note: The 3 spacer bits in the C register guarantee * that the new buffer byte can't be 0xFF here * (see page 160 in the P&M JPEG book). */ e->buffer = temp & 0xFF; /* new output byte, might overflow later */ } else if (temp == 0xFF) { ++e->sc; /* stack 0xFF byte (which might overflow later) */ } else { /* Output all stacked 0xFF bytes, they will not overflow any more */ if (e->buffer == 0) ++e->zc; else if (e->buffer >= 0) { if (e->zc) do emit_byte(0x00, cinfo); while (--e->zc); emit_byte(e->buffer, cinfo); } if (e->sc) { if (e->zc) do emit_byte(0x00, cinfo); while (--e->zc); do { emit_byte(0xFF, cinfo); emit_byte(0x00, cinfo); } while (--e->sc); } e->buffer = temp & 0xFF; /* new output byte (can still overflow) */ } e->c &= 0x7FFFFL; e->ct += 8; } } while (e->a < 0x8000L); } /* * Emit a restart marker & resynchronize predictions. */ LOCAL(void) emit_restart(j_compress_ptr cinfo, int restart_num) { arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy; int ci; jpeg_component_info *compptr; finish_pass(cinfo); emit_byte(0xFF, cinfo); emit_byte(JPEG_RST0 + restart_num, cinfo); /* Re-initialize statistics areas */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; /* DC needs no table for refinement scan */ if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) { memset(entropy->dc_stats[compptr->dc_tbl_no], 0, DC_STAT_BINS); /* Reset DC predictions to 0 */ entropy->last_dc_val[ci] = 0; entropy->dc_context[ci] = 0; } /* AC needs no table when not present */ if (cinfo->progressive_mode == 0 || cinfo->Se) { memset(entropy->ac_stats[compptr->ac_tbl_no], 0, AC_STAT_BINS); } } /* Reset arithmetic encoding variables */ entropy->c = 0; entropy->a = 0x10000L; entropy->sc = 0; entropy->zc = 0; entropy->ct = 11; entropy->buffer = -1; /* empty */ } /* * MCU encoding for DC initial scan (either spectral selection, * or first pass of successive approximation). */ METHODDEF(boolean) encode_mcu_DC_first(j_compress_ptr cinfo, JBLOCKROW *MCU_data) { arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy; JBLOCKROW block; unsigned char *st; int blkn, ci, tbl; int v, v2, m; ISHIFT_TEMPS /* Emit restart marker if needed */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) { emit_restart(cinfo, entropy->next_restart_num); entropy->restarts_to_go = cinfo->restart_interval; entropy->next_restart_num++; entropy->next_restart_num &= 7; } entropy->restarts_to_go--; } /* Encode the MCU data blocks */ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { block = MCU_data[blkn]; ci = cinfo->MCU_membership[blkn]; tbl = cinfo->cur_comp_info[ci]->dc_tbl_no; /* Compute the DC value after the required point transform by Al. * This is simply an arithmetic right shift. */ m = IRIGHT_SHIFT((int)((*block)[0]), cinfo->Al); /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */ /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; /* Figure F.4: Encode_DC_DIFF */ if ((v = m - entropy->last_dc_val[ci]) == 0) { arith_encode(cinfo, st, 0); entropy->dc_context[ci] = 0; /* zero diff category */ } else { entropy->last_dc_val[ci] = m; arith_encode(cinfo, st, 1); /* Figure F.6: Encoding nonzero value v */ /* Figure F.7: Encoding the sign of v */ if (v > 0) { arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */ st += 2; /* Table F.4: SP = S0 + 2 */ entropy->dc_context[ci] = 4; /* small positive diff category */ } else { v = -v; arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */ st += 3; /* Table F.4: SN = S0 + 3 */ entropy->dc_context[ci] = 8; /* small negative diff category */ } /* Figure F.8: Encoding the magnitude category of v */ m = 0; if (v -= 1) { arith_encode(cinfo, st, 1); m = 1; v2 = v; st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ while (v2 >>= 1) { arith_encode(cinfo, st, 1); m <<= 1; st += 1; } } arith_encode(cinfo, st, 0); /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ if (m < (int)((1L << cinfo->arith_dc_L[tbl]) >> 1)) entropy->dc_context[ci] = 0; /* zero diff category */ else if (m > (int)((1L << cinfo->arith_dc_U[tbl]) >> 1)) entropy->dc_context[ci] += 8; /* large diff category */ /* Figure F.9: Encoding the magnitude bit pattern of v */ st += 14; while (m >>= 1) arith_encode(cinfo, st, (m & v) ? 1 : 0); } } return TRUE; } /* * MCU encoding for AC initial scan (either spectral selection, * or first pass of successive approximation). */ METHODDEF(boolean) encode_mcu_AC_first(j_compress_ptr cinfo, JBLOCKROW *MCU_data) { arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy; JBLOCKROW block; unsigned char *st; int tbl, k, ke; int v, v2, m; /* Emit restart marker if needed */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) { emit_restart(cinfo, entropy->next_restart_num); entropy->restarts_to_go = cinfo->restart_interval; entropy->next_restart_num++; entropy->next_restart_num &= 7; } entropy->restarts_to_go--; } /* Encode the MCU data block */ block = MCU_data[0]; tbl = cinfo->cur_comp_info[0]->ac_tbl_no; /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */ /* Establish EOB (end-of-block) index */ for (ke = cinfo->Se; ke > 0; ke--) /* We must apply the point transform by Al. For AC coefficients this * is an integer division with rounding towards 0. To do this portably * in C, we shift after obtaining the absolute value. */ if ((v = (*block)[jpeg_natural_order[ke]]) >= 0) { if (v >>= cinfo->Al) break; } else { v = -v; if (v >>= cinfo->Al) break; } /* Figure F.5: Encode_AC_Coefficients */ for (k = cinfo->Ss; k <= ke; k++) { st = entropy->ac_stats[tbl] + 3 * (k - 1); arith_encode(cinfo, st, 0); /* EOB decision */ for (;;) { if ((v = (*block)[jpeg_natural_order[k]]) >= 0) { if (v >>= cinfo->Al) { arith_encode(cinfo, st + 1, 1); arith_encode(cinfo, entropy->fixed_bin, 0); break; } } else { v = -v; if (v >>= cinfo->Al) { arith_encode(cinfo, st + 1, 1); arith_encode(cinfo, entropy->fixed_bin, 1); break; } } arith_encode(cinfo, st + 1, 0); st += 3; k++; } st += 2; /* Figure F.8: Encoding the magnitude category of v */ m = 0; if (v -= 1) { arith_encode(cinfo, st, 1); m = 1; v2 = v; if (v2 >>= 1) { arith_encode(cinfo, st, 1); m <<= 1; st = entropy->ac_stats[tbl] + (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); while (v2 >>= 1) { arith_encode(cinfo, st, 1); m <<= 1; st += 1; } } } arith_encode(cinfo, st, 0); /* Figure F.9: Encoding the magnitude bit pattern of v */ st += 14; while (m >>= 1) arith_encode(cinfo, st, (m & v) ? 1 : 0); } /* Encode EOB decision only if k <= cinfo->Se */ if (k <= cinfo->Se) { st = entropy->ac_stats[tbl] + 3 * (k - 1); arith_encode(cinfo, st, 1); } return TRUE; } /* * MCU encoding for DC successive approximation refinement scan. */ METHODDEF(boolean) encode_mcu_DC_refine(j_compress_ptr cinfo, JBLOCKROW *MCU_data) { arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy; unsigned char *st; int Al, blkn; /* Emit restart marker if needed */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) { emit_restart(cinfo, entropy->next_restart_num); entropy->restarts_to_go = cinfo->restart_interval; entropy->next_restart_num++; entropy->next_restart_num &= 7; } entropy->restarts_to_go--; } st = entropy->fixed_bin; /* use fixed probability estimation */ Al = cinfo->Al; /* Encode the MCU data blocks */ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { /* We simply emit the Al'th bit of the DC coefficient value. */ arith_encode(cinfo, st, (MCU_data[blkn][0][0] >> Al) & 1); } return TRUE; } /* * MCU encoding for AC successive approximation refinement scan. */ METHODDEF(boolean) encode_mcu_AC_refine(j_compress_ptr cinfo, JBLOCKROW *MCU_data) { arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy; JBLOCKROW block; unsigned char *st; int tbl, k, ke, kex; int v; /* Emit restart marker if needed */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) { emit_restart(cinfo, entropy->next_restart_num); entropy->restarts_to_go = cinfo->restart_interval; entropy->next_restart_num++; entropy->next_restart_num &= 7; } entropy->restarts_to_go--; } /* Encode the MCU data block */ block = MCU_data[0]; tbl = cinfo->cur_comp_info[0]->ac_tbl_no; /* Section G.1.3.3: Encoding of AC coefficients */ /* Establish EOB (end-of-block) index */ for (ke = cinfo->Se; ke > 0; ke--) /* We must apply the point transform by Al. For AC coefficients this * is an integer division with rounding towards 0. To do this portably * in C, we shift after obtaining the absolute value. */ if ((v = (*block)[jpeg_natural_order[ke]]) >= 0) { if (v >>= cinfo->Al) break; } else { v = -v; if (v >>= cinfo->Al) break; } /* Establish EOBx (previous stage end-of-block) index */ for (kex = ke; kex > 0; kex--) if ((v = (*block)[jpeg_natural_order[kex]]) >= 0) { if (v >>= cinfo->Ah) break; } else { v = -v; if (v >>= cinfo->Ah) break; } /* Figure G.10: Encode_AC_Coefficients_SA */ for (k = cinfo->Ss; k <= ke; k++) { st = entropy->ac_stats[tbl] + 3 * (k - 1); if (k > kex) arith_encode(cinfo, st, 0); /* EOB decision */ for (;;) { if ((v = (*block)[jpeg_natural_order[k]]) >= 0) { if (v >>= cinfo->Al) { if (v >> 1) /* previously nonzero coef */ arith_encode(cinfo, st + 2, (v & 1)); else { /* newly nonzero coef */ arith_encode(cinfo, st + 1, 1); arith_encode(cinfo, entropy->fixed_bin, 0); } break; } } else { v = -v; if (v >>= cinfo->Al) { if (v >> 1) /* previously nonzero coef */ arith_encode(cinfo, st + 2, (v & 1)); else { /* newly nonzero coef */ arith_encode(cinfo, st + 1, 1); arith_encode(cinfo, entropy->fixed_bin, 1); } break; } } arith_encode(cinfo, st + 1, 0); st += 3; k++; } } /* Encode EOB decision only if k <= cinfo->Se */ if (k <= cinfo->Se) { st = entropy->ac_stats[tbl] + 3 * (k - 1); arith_encode(cinfo, st, 1); } return TRUE; } /* * Encode and output one MCU's worth of arithmetic-compressed coefficients. */ METHODDEF(boolean) encode_mcu(j_compress_ptr cinfo, JBLOCKROW *MCU_data) { arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy; jpeg_component_info *compptr; JBLOCKROW block; unsigned char *st; int blkn, ci, tbl, k, ke; int v, v2, m; /* Emit restart marker if needed */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) { emit_restart(cinfo, entropy->next_restart_num); entropy->restarts_to_go = cinfo->restart_interval; entropy->next_restart_num++; entropy->next_restart_num &= 7; } entropy->restarts_to_go--; } /* Encode the MCU data blocks */ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { block = MCU_data[blkn]; ci = cinfo->MCU_membership[blkn]; compptr = cinfo->cur_comp_info[ci]; /* Sections F.1.4.1 & F.1.4.4.1: Encoding of DC coefficients */ tbl = compptr->dc_tbl_no; /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; /* Figure F.4: Encode_DC_DIFF */ if ((v = (*block)[0] - entropy->last_dc_val[ci]) == 0) { arith_encode(cinfo, st, 0); entropy->dc_context[ci] = 0; /* zero diff category */ } else { entropy->last_dc_val[ci] = (*block)[0]; arith_encode(cinfo, st, 1); /* Figure F.6: Encoding nonzero value v */ /* Figure F.7: Encoding the sign of v */ if (v > 0) { arith_encode(cinfo, st + 1, 0); /* Table F.4: SS = S0 + 1 */ st += 2; /* Table F.4: SP = S0 + 2 */ entropy->dc_context[ci] = 4; /* small positive diff category */ } else { v = -v; arith_encode(cinfo, st + 1, 1); /* Table F.4: SS = S0 + 1 */ st += 3; /* Table F.4: SN = S0 + 3 */ entropy->dc_context[ci] = 8; /* small negative diff category */ } /* Figure F.8: Encoding the magnitude category of v */ m = 0; if (v -= 1) { arith_encode(cinfo, st, 1); m = 1; v2 = v; st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ while (v2 >>= 1) { arith_encode(cinfo, st, 1); m <<= 1; st += 1; } } arith_encode(cinfo, st, 0); /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ if (m < (int)((1L << cinfo->arith_dc_L[tbl]) >> 1)) entropy->dc_context[ci] = 0; /* zero diff category */ else if (m > (int)((1L << cinfo->arith_dc_U[tbl]) >> 1)) entropy->dc_context[ci] += 8; /* large diff category */ /* Figure F.9: Encoding the magnitude bit pattern of v */ st += 14; while (m >>= 1) arith_encode(cinfo, st, (m & v) ? 1 : 0); } /* Sections F.1.4.2 & F.1.4.4.2: Encoding of AC coefficients */ tbl = compptr->ac_tbl_no; /* Establish EOB (end-of-block) index */ for (ke = DCTSIZE2 - 1; ke > 0; ke--) if ((*block)[jpeg_natural_order[ke]]) break; /* Figure F.5: Encode_AC_Coefficients */ for (k = 1; k <= ke; k++) { st = entropy->ac_stats[tbl] + 3 * (k - 1); arith_encode(cinfo, st, 0); /* EOB decision */ while ((v = (*block)[jpeg_natural_order[k]]) == 0) { arith_encode(cinfo, st + 1, 0); st += 3; k++; } arith_encode(cinfo, st + 1, 1); /* Figure F.6: Encoding nonzero value v */ /* Figure F.7: Encoding the sign of v */ if (v > 0) { arith_encode(cinfo, entropy->fixed_bin, 0); } else { v = -v; arith_encode(cinfo, entropy->fixed_bin, 1); } st += 2; /* Figure F.8: Encoding the magnitude category of v */ m = 0; if (v -= 1) { arith_encode(cinfo, st, 1); m = 1; v2 = v; if (v2 >>= 1) { arith_encode(cinfo, st, 1); m <<= 1; st = entropy->ac_stats[tbl] + (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); while (v2 >>= 1) { arith_encode(cinfo, st, 1); m <<= 1; st += 1; } } } arith_encode(cinfo, st, 0); /* Figure F.9: Encoding the magnitude bit pattern of v */ st += 14; while (m >>= 1) arith_encode(cinfo, st, (m & v) ? 1 : 0); } /* Encode EOB decision only if k <= DCTSIZE2 - 1 */ if (k <= DCTSIZE2 - 1) { st = entropy->ac_stats[tbl] + 3 * (k - 1); arith_encode(cinfo, st, 1); } } return TRUE; } /* * Initialize for an arithmetic-compressed scan. */ METHODDEF(void) start_pass(j_compress_ptr cinfo, boolean gather_statistics) { arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy; int ci, tbl; jpeg_component_info *compptr; if (gather_statistics) /* Make sure to avoid that in the master control logic! * We are fully adaptive here and need no extra * statistics gathering pass! */ ERREXIT(cinfo, JERR_NOTIMPL); /* We assume jcmaster.c already validated the progressive scan parameters. */ /* Select execution routines */ if (cinfo->progressive_mode) { if (cinfo->Ah == 0) { if (cinfo->Ss == 0) entropy->pub.encode_mcu = encode_mcu_DC_first; else entropy->pub.encode_mcu = encode_mcu_AC_first; } else { if (cinfo->Ss == 0) entropy->pub.encode_mcu = encode_mcu_DC_refine; else entropy->pub.encode_mcu = encode_mcu_AC_refine; } } else entropy->pub.encode_mcu = encode_mcu; /* Allocate & initialize requested statistics areas */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; /* DC needs no table for refinement scan */ if (cinfo->progressive_mode == 0 || (cinfo->Ss == 0 && cinfo->Ah == 0)) { tbl = compptr->dc_tbl_no; if (tbl < 0 || tbl >= NUM_ARITH_TBLS) ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); if (entropy->dc_stats[tbl] == NULL) entropy->dc_stats[tbl] = (unsigned char *)(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, DC_STAT_BINS); memset(entropy->dc_stats[tbl], 0, DC_STAT_BINS); /* Initialize DC predictions to 0 */ entropy->last_dc_val[ci] = 0; entropy->dc_context[ci] = 0; } /* AC needs no table when not present */ if (cinfo->progressive_mode == 0 || cinfo->Se) { tbl = compptr->ac_tbl_no; if (tbl < 0 || tbl >= NUM_ARITH_TBLS) ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); if (entropy->ac_stats[tbl] == NULL) entropy->ac_stats[tbl] = (unsigned char *)(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, AC_STAT_BINS); memset(entropy->ac_stats[tbl], 0, AC_STAT_BINS); #ifdef CALCULATE_SPECTRAL_CONDITIONING if (cinfo->progressive_mode) /* Section G.1.3.2: Set appropriate arithmetic conditioning value Kx */ cinfo->arith_ac_K[tbl] = cinfo->Ss + ((8 + cinfo->Se - cinfo->Ss) >> 4); #endif } } /* Initialize arithmetic encoding variables */ entropy->c = 0; entropy->a = 0x10000L; entropy->sc = 0; entropy->zc = 0; entropy->ct = 11; entropy->buffer = -1; /* empty */ /* Initialize restart stuff */ entropy->restarts_to_go = cinfo->restart_interval; entropy->next_restart_num = 0; } /* * Module initialization routine for arithmetic entropy encoding. */ GLOBAL(void) jinit_arith_encoder(j_compress_ptr cinfo) { arith_entropy_ptr entropy; int i; entropy = (arith_entropy_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, sizeof(arith_entropy_encoder)); cinfo->entropy = (struct jpeg_entropy_encoder *)entropy; entropy->pub.start_pass = start_pass; entropy->pub.finish_pass = finish_pass; /* Mark tables unallocated */ for (i = 0; i < NUM_ARITH_TBLS; i++) { entropy->dc_stats[i] = NULL; entropy->ac_stats[i] = NULL; } /* Initialize index for fixed probability estimation */ entropy->fixed_bin[0] = 113; } libjpeg-turbo-2.1.5/jccoefct.c000066400000000000000000000415671436506551100162330ustar00rootroot00000000000000/* * jccoefct.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1997, Thomas G. Lane. * It was modified by The libjpeg-turbo Project to include only code and * information relevant to libjpeg-turbo. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains the coefficient buffer controller for compression. * This controller is the top level of the JPEG compressor proper. * The coefficient buffer lies between forward-DCT and entropy encoding steps. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" /* We use a full-image coefficient buffer when doing Huffman optimization, * and also for writing multiple-scan JPEG files. In all cases, the DCT * step is run during the first pass, and subsequent passes need only read * the buffered coefficients. */ #ifdef ENTROPY_OPT_SUPPORTED #define FULL_COEF_BUFFER_SUPPORTED #else #ifdef C_MULTISCAN_FILES_SUPPORTED #define FULL_COEF_BUFFER_SUPPORTED #endif #endif /* Private buffer controller object */ typedef struct { struct jpeg_c_coef_controller pub; /* public fields */ JDIMENSION iMCU_row_num; /* iMCU row # within image */ JDIMENSION mcu_ctr; /* counts MCUs processed in current row */ int MCU_vert_offset; /* counts MCU rows within iMCU row */ int MCU_rows_per_iMCU_row; /* number of such rows needed */ /* For single-pass compression, it's sufficient to buffer just one MCU * (although this may prove a bit slow in practice). We allocate a * workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each * MCU constructed and sent. In multi-pass modes, this array points to the * current MCU's blocks within the virtual arrays. */ JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU]; /* In multi-pass modes, we need a virtual block array for each component. */ jvirt_barray_ptr whole_image[MAX_COMPONENTS]; } my_coef_controller; typedef my_coef_controller *my_coef_ptr; /* Forward declarations */ METHODDEF(boolean) compress_data(j_compress_ptr cinfo, JSAMPIMAGE input_buf); #ifdef FULL_COEF_BUFFER_SUPPORTED METHODDEF(boolean) compress_first_pass(j_compress_ptr cinfo, JSAMPIMAGE input_buf); METHODDEF(boolean) compress_output(j_compress_ptr cinfo, JSAMPIMAGE input_buf); #endif LOCAL(void) start_iMCU_row(j_compress_ptr cinfo) /* Reset within-iMCU-row counters for a new row */ { my_coef_ptr coef = (my_coef_ptr)cinfo->coef; /* In an interleaved scan, an MCU row is the same as an iMCU row. * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. * But at the bottom of the image, process only what's left. */ if (cinfo->comps_in_scan > 1) { coef->MCU_rows_per_iMCU_row = 1; } else { if (coef->iMCU_row_num < (cinfo->total_iMCU_rows - 1)) coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; else coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; } coef->mcu_ctr = 0; coef->MCU_vert_offset = 0; } /* * Initialize for a processing pass. */ METHODDEF(void) start_pass_coef(j_compress_ptr cinfo, J_BUF_MODE pass_mode) { my_coef_ptr coef = (my_coef_ptr)cinfo->coef; coef->iMCU_row_num = 0; start_iMCU_row(cinfo); switch (pass_mode) { case JBUF_PASS_THRU: if (coef->whole_image[0] != NULL) ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); coef->pub.compress_data = compress_data; break; #ifdef FULL_COEF_BUFFER_SUPPORTED case JBUF_SAVE_AND_PASS: if (coef->whole_image[0] == NULL) ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); coef->pub.compress_data = compress_first_pass; break; case JBUF_CRANK_DEST: if (coef->whole_image[0] == NULL) ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); coef->pub.compress_data = compress_output; break; #endif default: ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); break; } } /* * Process some data in the single-pass case. * We process the equivalent of one fully interleaved MCU row ("iMCU" row) * per call, ie, v_samp_factor block rows for each component in the image. * Returns TRUE if the iMCU row is completed, FALSE if suspended. * * NB: input_buf contains a plane for each component in image, * which we index according to the component's SOF position. */ METHODDEF(boolean) compress_data(j_compress_ptr cinfo, JSAMPIMAGE input_buf) { my_coef_ptr coef = (my_coef_ptr)cinfo->coef; JDIMENSION MCU_col_num; /* index of current MCU within row */ JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; int blkn, bi, ci, yindex, yoffset, blockcnt; JDIMENSION ypos, xpos; jpeg_component_info *compptr; /* Loop to write as much as one whole iMCU row */ for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; yoffset++) { for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col; MCU_col_num++) { /* Determine where data comes from in input_buf and do the DCT thing. * Each call on forward_DCT processes a horizontal row of DCT blocks * as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks * sequentially. Dummy blocks at the right or bottom edge are filled in * specially. The data in them does not matter for image reconstruction, * so we fill them with values that will encode to the smallest amount of * data, viz: all zeroes in the AC entries, DC entries equal to previous * block's DC value. (Thanks to Thomas Kinsman for this idea.) */ blkn = 0; for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width : compptr->last_col_width; xpos = MCU_col_num * compptr->MCU_sample_width; ypos = yoffset * DCTSIZE; /* ypos == (yoffset+yindex) * DCTSIZE */ for (yindex = 0; yindex < compptr->MCU_height; yindex++) { if (coef->iMCU_row_num < last_iMCU_row || yoffset + yindex < compptr->last_row_height) { (*cinfo->fdct->forward_DCT) (cinfo, compptr, input_buf[compptr->component_index], coef->MCU_buffer[blkn], ypos, xpos, (JDIMENSION)blockcnt); if (blockcnt < compptr->MCU_width) { /* Create some dummy blocks at the right edge of the image. */ jzero_far((void *)coef->MCU_buffer[blkn + blockcnt], (compptr->MCU_width - blockcnt) * sizeof(JBLOCK)); for (bi = blockcnt; bi < compptr->MCU_width; bi++) { coef->MCU_buffer[blkn + bi][0][0] = coef->MCU_buffer[blkn + bi - 1][0][0]; } } } else { /* Create a row of dummy blocks at the bottom of the image. */ jzero_far((void *)coef->MCU_buffer[blkn], compptr->MCU_width * sizeof(JBLOCK)); for (bi = 0; bi < compptr->MCU_width; bi++) { coef->MCU_buffer[blkn + bi][0][0] = coef->MCU_buffer[blkn - 1][0][0]; } } blkn += compptr->MCU_width; ypos += DCTSIZE; } } /* Try to write the MCU. In event of a suspension failure, we will * re-DCT the MCU on restart (a bit inefficient, could be fixed...) */ if (!(*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) { /* Suspension forced; update state counters and exit */ coef->MCU_vert_offset = yoffset; coef->mcu_ctr = MCU_col_num; return FALSE; } } /* Completed an MCU row, but perhaps not an iMCU row */ coef->mcu_ctr = 0; } /* Completed the iMCU row, advance counters for next one */ coef->iMCU_row_num++; start_iMCU_row(cinfo); return TRUE; } #ifdef FULL_COEF_BUFFER_SUPPORTED /* * Process some data in the first pass of a multi-pass case. * We process the equivalent of one fully interleaved MCU row ("iMCU" row) * per call, ie, v_samp_factor block rows for each component in the image. * This amount of data is read from the source buffer, DCT'd and quantized, * and saved into the virtual arrays. We also generate suitable dummy blocks * as needed at the right and lower edges. (The dummy blocks are constructed * in the virtual arrays, which have been padded appropriately.) This makes * it possible for subsequent passes not to worry about real vs. dummy blocks. * * We must also emit the data to the entropy encoder. This is conveniently * done by calling compress_output() after we've loaded the current strip * of the virtual arrays. * * NB: input_buf contains a plane for each component in image. All * components are DCT'd and loaded into the virtual arrays in this pass. * However, it may be that only a subset of the components are emitted to * the entropy encoder during this first pass; be careful about looking * at the scan-dependent variables (MCU dimensions, etc). */ METHODDEF(boolean) compress_first_pass(j_compress_ptr cinfo, JSAMPIMAGE input_buf) { my_coef_ptr coef = (my_coef_ptr)cinfo->coef; JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; JDIMENSION blocks_across, MCUs_across, MCUindex; int bi, ci, h_samp_factor, block_row, block_rows, ndummy; JCOEF lastDC; jpeg_component_info *compptr; JBLOCKARRAY buffer; JBLOCKROW thisblockrow, lastblockrow; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { /* Align the virtual buffer for this component. */ buffer = (*cinfo->mem->access_virt_barray) ((j_common_ptr)cinfo, coef->whole_image[ci], coef->iMCU_row_num * compptr->v_samp_factor, (JDIMENSION)compptr->v_samp_factor, TRUE); /* Count non-dummy DCT block rows in this iMCU row. */ if (coef->iMCU_row_num < last_iMCU_row) block_rows = compptr->v_samp_factor; else { /* NB: can't use last_row_height here, since may not be set! */ block_rows = (int)(compptr->height_in_blocks % compptr->v_samp_factor); if (block_rows == 0) block_rows = compptr->v_samp_factor; } blocks_across = compptr->width_in_blocks; h_samp_factor = compptr->h_samp_factor; /* Count number of dummy blocks to be added at the right margin. */ ndummy = (int)(blocks_across % h_samp_factor); if (ndummy > 0) ndummy = h_samp_factor - ndummy; /* Perform DCT for all non-dummy blocks in this iMCU row. Each call * on forward_DCT processes a complete horizontal row of DCT blocks. */ for (block_row = 0; block_row < block_rows; block_row++) { thisblockrow = buffer[block_row]; (*cinfo->fdct->forward_DCT) (cinfo, compptr, input_buf[ci], thisblockrow, (JDIMENSION)(block_row * DCTSIZE), (JDIMENSION)0, blocks_across); if (ndummy > 0) { /* Create dummy blocks at the right edge of the image. */ thisblockrow += blocks_across; /* => first dummy block */ jzero_far((void *)thisblockrow, ndummy * sizeof(JBLOCK)); lastDC = thisblockrow[-1][0]; for (bi = 0; bi < ndummy; bi++) { thisblockrow[bi][0] = lastDC; } } } /* If at end of image, create dummy block rows as needed. * The tricky part here is that within each MCU, we want the DC values * of the dummy blocks to match the last real block's DC value. * This squeezes a few more bytes out of the resulting file... */ if (coef->iMCU_row_num == last_iMCU_row) { blocks_across += ndummy; /* include lower right corner */ MCUs_across = blocks_across / h_samp_factor; for (block_row = block_rows; block_row < compptr->v_samp_factor; block_row++) { thisblockrow = buffer[block_row]; lastblockrow = buffer[block_row - 1]; jzero_far((void *)thisblockrow, (size_t)(blocks_across * sizeof(JBLOCK))); for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) { lastDC = lastblockrow[h_samp_factor - 1][0]; for (bi = 0; bi < h_samp_factor; bi++) { thisblockrow[bi][0] = lastDC; } thisblockrow += h_samp_factor; /* advance to next MCU in row */ lastblockrow += h_samp_factor; } } } } /* NB: compress_output will increment iMCU_row_num if successful. * A suspension return will result in redoing all the work above next time. */ /* Emit data to the entropy encoder, sharing code with subsequent passes */ return compress_output(cinfo, input_buf); } /* * Process some data in subsequent passes of a multi-pass case. * We process the equivalent of one fully interleaved MCU row ("iMCU" row) * per call, ie, v_samp_factor block rows for each component in the scan. * The data is obtained from the virtual arrays and fed to the entropy coder. * Returns TRUE if the iMCU row is completed, FALSE if suspended. * * NB: input_buf is ignored; it is likely to be a NULL pointer. */ METHODDEF(boolean) compress_output(j_compress_ptr cinfo, JSAMPIMAGE input_buf) { my_coef_ptr coef = (my_coef_ptr)cinfo->coef; JDIMENSION MCU_col_num; /* index of current MCU within row */ int blkn, ci, xindex, yindex, yoffset; JDIMENSION start_col; JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; JBLOCKROW buffer_ptr; jpeg_component_info *compptr; /* Align the virtual buffers for the components used in this scan. * NB: during first pass, this is safe only because the buffers will * already be aligned properly, so jmemmgr.c won't need to do any I/O. */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; buffer[ci] = (*cinfo->mem->access_virt_barray) ((j_common_ptr)cinfo, coef->whole_image[compptr->component_index], coef->iMCU_row_num * compptr->v_samp_factor, (JDIMENSION)compptr->v_samp_factor, FALSE); } /* Loop to process one whole iMCU row */ for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; yoffset++) { for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row; MCU_col_num++) { /* Construct list of pointers to DCT blocks belonging to this MCU */ blkn = 0; /* index of current DCT block within MCU */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; start_col = MCU_col_num * compptr->MCU_width; for (yindex = 0; yindex < compptr->MCU_height; yindex++) { buffer_ptr = buffer[ci][yindex + yoffset] + start_col; for (xindex = 0; xindex < compptr->MCU_width; xindex++) { coef->MCU_buffer[blkn++] = buffer_ptr++; } } } /* Try to write the MCU. */ if (!(*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) { /* Suspension forced; update state counters and exit */ coef->MCU_vert_offset = yoffset; coef->mcu_ctr = MCU_col_num; return FALSE; } } /* Completed an MCU row, but perhaps not an iMCU row */ coef->mcu_ctr = 0; } /* Completed the iMCU row, advance counters for next one */ coef->iMCU_row_num++; start_iMCU_row(cinfo); return TRUE; } #endif /* FULL_COEF_BUFFER_SUPPORTED */ /* * Initialize coefficient buffer controller. */ GLOBAL(void) jinit_c_coef_controller(j_compress_ptr cinfo, boolean need_full_buffer) { my_coef_ptr coef; coef = (my_coef_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, sizeof(my_coef_controller)); cinfo->coef = (struct jpeg_c_coef_controller *)coef; coef->pub.start_pass = start_pass_coef; /* Create the coefficient buffer. */ if (need_full_buffer) { #ifdef FULL_COEF_BUFFER_SUPPORTED /* Allocate a full-image virtual array for each component, */ /* padded to a multiple of samp_factor DCT blocks in each direction. */ int ci; jpeg_component_info *compptr; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { coef->whole_image[ci] = (*cinfo->mem->request_virt_barray) ((j_common_ptr)cinfo, JPOOL_IMAGE, FALSE, (JDIMENSION)jround_up((long)compptr->width_in_blocks, (long)compptr->h_samp_factor), (JDIMENSION)jround_up((long)compptr->height_in_blocks, (long)compptr->v_samp_factor), (JDIMENSION)compptr->v_samp_factor); } #else ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); #endif } else { /* We only need a single-MCU buffer. */ JBLOCKROW buffer; int i; buffer = (JBLOCKROW) (*cinfo->mem->alloc_large) ((j_common_ptr)cinfo, JPOOL_IMAGE, C_MAX_BLOCKS_IN_MCU * sizeof(JBLOCK)); for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) { coef->MCU_buffer[i] = buffer + i; } coef->whole_image[0] = NULL; /* flag for no virtual arrays */ } } libjpeg-turbo-2.1.5/jccolext.c000066400000000000000000000107751436506551100162630ustar00rootroot00000000000000/* * jccolext.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1996, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2009-2012, 2015, 2022, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains input colorspace conversion routines. */ /* This file is included by jccolor.c */ /* * Convert some rows of samples to the JPEG colorspace. * * Note that we change from the application's interleaved-pixel format * to our internal noninterleaved, one-plane-per-component format. * The input buffer is therefore three times as wide as the output buffer. * * A starting row offset is provided only for the output buffer. The caller * can easily adjust the passed input_buf value to accommodate any row * offset required on that side. */ INLINE LOCAL(void) rgb_ycc_convert_internal(j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { my_cconvert_ptr cconvert = (my_cconvert_ptr)cinfo->cconvert; register int r, g, b; register JLONG *ctab = cconvert->rgb_ycc_tab; register JSAMPROW inptr; register JSAMPROW outptr0, outptr1, outptr2; register JDIMENSION col; JDIMENSION num_cols = cinfo->image_width; while (--num_rows >= 0) { inptr = *input_buf++; outptr0 = output_buf[0][output_row]; outptr1 = output_buf[1][output_row]; outptr2 = output_buf[2][output_row]; output_row++; for (col = 0; col < num_cols; col++) { r = RANGE_LIMIT(inptr[RGB_RED]); g = RANGE_LIMIT(inptr[RGB_GREEN]); b = RANGE_LIMIT(inptr[RGB_BLUE]); inptr += RGB_PIXELSIZE; /* If the inputs are 0..MAXJSAMPLE, the outputs of these equations * must be too; we do not need an explicit range-limiting operation. * Hence the value being shifted is never negative, and we don't * need the general RIGHT_SHIFT macro. */ /* Y */ outptr0[col] = (JSAMPLE)((ctab[r + R_Y_OFF] + ctab[g + G_Y_OFF] + ctab[b + B_Y_OFF]) >> SCALEBITS); /* Cb */ outptr1[col] = (JSAMPLE)((ctab[r + R_CB_OFF] + ctab[g + G_CB_OFF] + ctab[b + B_CB_OFF]) >> SCALEBITS); /* Cr */ outptr2[col] = (JSAMPLE)((ctab[r + R_CR_OFF] + ctab[g + G_CR_OFF] + ctab[b + B_CR_OFF]) >> SCALEBITS); } } } /**************** Cases other than RGB -> YCbCr **************/ /* * Convert some rows of samples to the JPEG colorspace. * This version handles RGB->grayscale conversion, which is the same * as the RGB->Y portion of RGB->YCbCr. * We assume rgb_ycc_start has been called (we only use the Y tables). */ INLINE LOCAL(void) rgb_gray_convert_internal(j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { my_cconvert_ptr cconvert = (my_cconvert_ptr)cinfo->cconvert; register int r, g, b; register JLONG *ctab = cconvert->rgb_ycc_tab; register JSAMPROW inptr; register JSAMPROW outptr; register JDIMENSION col; JDIMENSION num_cols = cinfo->image_width; while (--num_rows >= 0) { inptr = *input_buf++; outptr = output_buf[0][output_row]; output_row++; for (col = 0; col < num_cols; col++) { r = RANGE_LIMIT(inptr[RGB_RED]); g = RANGE_LIMIT(inptr[RGB_GREEN]); b = RANGE_LIMIT(inptr[RGB_BLUE]); inptr += RGB_PIXELSIZE; /* Y */ outptr[col] = (JSAMPLE)((ctab[r + R_Y_OFF] + ctab[g + G_Y_OFF] + ctab[b + B_Y_OFF]) >> SCALEBITS); } } } /* * Convert some rows of samples to the JPEG colorspace. * This version handles extended RGB->plain RGB conversion */ INLINE LOCAL(void) rgb_rgb_convert_internal(j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { register JSAMPROW inptr; register JSAMPROW outptr0, outptr1, outptr2; register JDIMENSION col; JDIMENSION num_cols = cinfo->image_width; while (--num_rows >= 0) { inptr = *input_buf++; outptr0 = output_buf[0][output_row]; outptr1 = output_buf[1][output_row]; outptr2 = output_buf[2][output_row]; output_row++; for (col = 0; col < num_cols; col++) { outptr0[col] = inptr[RGB_RED]; outptr1[col] = inptr[RGB_GREEN]; outptr2[col] = inptr[RGB_BLUE]; inptr += RGB_PIXELSIZE; } } } libjpeg-turbo-2.1.5/jccolor.c000066400000000000000000000566761436506551100161150ustar00rootroot00000000000000/* * jccolor.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1996, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright 2009 Pierre Ossman for Cendio AB * Copyright (C) 2009-2012, 2015, 2022, D. R. Commander. * Copyright (C) 2014, MIPS Technologies, Inc., California. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains input colorspace conversion routines. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jsimd.h" /* Private subobject */ typedef struct { struct jpeg_color_converter pub; /* public fields */ /* Private state for RGB->YCC conversion */ JLONG *rgb_ycc_tab; /* => table for RGB to YCbCr conversion */ } my_color_converter; typedef my_color_converter *my_cconvert_ptr; /**************** RGB -> YCbCr conversion: most common case **************/ /* * YCbCr is defined per CCIR 601-1, except that Cb and Cr are * normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5. * The conversion equations to be implemented are therefore * Y = 0.29900 * R + 0.58700 * G + 0.11400 * B * Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + CENTERJSAMPLE * Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + CENTERJSAMPLE * (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.) * Note: older versions of the IJG code used a zero offset of MAXJSAMPLE/2, * rather than CENTERJSAMPLE, for Cb and Cr. This gave equal positive and * negative swings for Cb/Cr, but meant that grayscale values (Cb=Cr=0) * were not represented exactly. Now we sacrifice exact representation of * maximum red and maximum blue in order to get exact grayscales. * * To avoid floating-point arithmetic, we represent the fractional constants * as integers scaled up by 2^16 (about 4 digits precision); we have to divide * the products by 2^16, with appropriate rounding, to get the correct answer. * * For even more speed, we avoid doing any multiplications in the inner loop * by precalculating the constants times R,G,B for all possible values. * For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table); * for 12-bit samples it is still acceptable. It's not very reasonable for * 16-bit samples, but if you want lossless storage you shouldn't be changing * colorspace anyway. * The CENTERJSAMPLE offsets and the rounding fudge-factor of 0.5 are included * in the tables to save adding them separately in the inner loop. */ #define SCALEBITS 16 /* speediest right-shift on some machines */ #define CBCR_OFFSET ((JLONG)CENTERJSAMPLE << SCALEBITS) #define ONE_HALF ((JLONG)1 << (SCALEBITS - 1)) #define FIX(x) ((JLONG)((x) * (1L << SCALEBITS) + 0.5)) /* We allocate one big table and divide it up into eight parts, instead of * doing eight alloc_small requests. This lets us use a single table base * address, which can be held in a register in the inner loops on many * machines (more than can hold all eight addresses, anyway). */ #define R_Y_OFF 0 /* offset to R => Y section */ #define G_Y_OFF (1 * (MAXJSAMPLE + 1)) /* offset to G => Y section */ #define B_Y_OFF (2 * (MAXJSAMPLE + 1)) /* etc. */ #define R_CB_OFF (3 * (MAXJSAMPLE + 1)) #define G_CB_OFF (4 * (MAXJSAMPLE + 1)) #define B_CB_OFF (5 * (MAXJSAMPLE + 1)) #define R_CR_OFF B_CB_OFF /* B=>Cb, R=>Cr are the same */ #define G_CR_OFF (6 * (MAXJSAMPLE + 1)) #define B_CR_OFF (7 * (MAXJSAMPLE + 1)) #define TABLE_SIZE (8 * (MAXJSAMPLE + 1)) /* 12-bit samples use a 16-bit data type, so it is possible to pass * out-of-range sample values (< 0 or > 4095) to jpeg_write_scanlines(). * Thus, we mask the incoming 12-bit samples to guard against overrunning * or underrunning the conversion tables. */ #if BITS_IN_JSAMPLE == 12 #define RANGE_LIMIT(value) ((value) & 0xFFF) #else #define RANGE_LIMIT(value) (value) #endif /* Include inline routines for colorspace extensions */ #include "jccolext.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #define RGB_RED EXT_RGB_RED #define RGB_GREEN EXT_RGB_GREEN #define RGB_BLUE EXT_RGB_BLUE #define RGB_PIXELSIZE EXT_RGB_PIXELSIZE #define rgb_ycc_convert_internal extrgb_ycc_convert_internal #define rgb_gray_convert_internal extrgb_gray_convert_internal #define rgb_rgb_convert_internal extrgb_rgb_convert_internal #include "jccolext.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef rgb_ycc_convert_internal #undef rgb_gray_convert_internal #undef rgb_rgb_convert_internal #define RGB_RED EXT_RGBX_RED #define RGB_GREEN EXT_RGBX_GREEN #define RGB_BLUE EXT_RGBX_BLUE #define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE #define rgb_ycc_convert_internal extrgbx_ycc_convert_internal #define rgb_gray_convert_internal extrgbx_gray_convert_internal #define rgb_rgb_convert_internal extrgbx_rgb_convert_internal #include "jccolext.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef rgb_ycc_convert_internal #undef rgb_gray_convert_internal #undef rgb_rgb_convert_internal #define RGB_RED EXT_BGR_RED #define RGB_GREEN EXT_BGR_GREEN #define RGB_BLUE EXT_BGR_BLUE #define RGB_PIXELSIZE EXT_BGR_PIXELSIZE #define rgb_ycc_convert_internal extbgr_ycc_convert_internal #define rgb_gray_convert_internal extbgr_gray_convert_internal #define rgb_rgb_convert_internal extbgr_rgb_convert_internal #include "jccolext.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef rgb_ycc_convert_internal #undef rgb_gray_convert_internal #undef rgb_rgb_convert_internal #define RGB_RED EXT_BGRX_RED #define RGB_GREEN EXT_BGRX_GREEN #define RGB_BLUE EXT_BGRX_BLUE #define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE #define rgb_ycc_convert_internal extbgrx_ycc_convert_internal #define rgb_gray_convert_internal extbgrx_gray_convert_internal #define rgb_rgb_convert_internal extbgrx_rgb_convert_internal #include "jccolext.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef rgb_ycc_convert_internal #undef rgb_gray_convert_internal #undef rgb_rgb_convert_internal #define RGB_RED EXT_XBGR_RED #define RGB_GREEN EXT_XBGR_GREEN #define RGB_BLUE EXT_XBGR_BLUE #define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE #define rgb_ycc_convert_internal extxbgr_ycc_convert_internal #define rgb_gray_convert_internal extxbgr_gray_convert_internal #define rgb_rgb_convert_internal extxbgr_rgb_convert_internal #include "jccolext.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef rgb_ycc_convert_internal #undef rgb_gray_convert_internal #undef rgb_rgb_convert_internal #define RGB_RED EXT_XRGB_RED #define RGB_GREEN EXT_XRGB_GREEN #define RGB_BLUE EXT_XRGB_BLUE #define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE #define rgb_ycc_convert_internal extxrgb_ycc_convert_internal #define rgb_gray_convert_internal extxrgb_gray_convert_internal #define rgb_rgb_convert_internal extxrgb_rgb_convert_internal #include "jccolext.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef rgb_ycc_convert_internal #undef rgb_gray_convert_internal #undef rgb_rgb_convert_internal /* * Initialize for RGB->YCC colorspace conversion. */ METHODDEF(void) rgb_ycc_start(j_compress_ptr cinfo) { my_cconvert_ptr cconvert = (my_cconvert_ptr)cinfo->cconvert; JLONG *rgb_ycc_tab; JLONG i; /* Allocate and fill in the conversion tables. */ cconvert->rgb_ycc_tab = rgb_ycc_tab = (JLONG *) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, (TABLE_SIZE * sizeof(JLONG))); for (i = 0; i <= MAXJSAMPLE; i++) { rgb_ycc_tab[i + R_Y_OFF] = FIX(0.29900) * i; rgb_ycc_tab[i + G_Y_OFF] = FIX(0.58700) * i; rgb_ycc_tab[i + B_Y_OFF] = FIX(0.11400) * i + ONE_HALF; rgb_ycc_tab[i + R_CB_OFF] = (-FIX(0.16874)) * i; rgb_ycc_tab[i + G_CB_OFF] = (-FIX(0.33126)) * i; /* We use a rounding fudge-factor of 0.5-epsilon for Cb and Cr. * This ensures that the maximum output will round to MAXJSAMPLE * not MAXJSAMPLE+1, and thus that we don't have to range-limit. */ rgb_ycc_tab[i + B_CB_OFF] = FIX(0.50000) * i + CBCR_OFFSET + ONE_HALF - 1; /* B=>Cb and R=>Cr tables are the same rgb_ycc_tab[i + R_CR_OFF] = FIX(0.50000) * i + CBCR_OFFSET + ONE_HALF - 1; */ rgb_ycc_tab[i + G_CR_OFF] = (-FIX(0.41869)) * i; rgb_ycc_tab[i + B_CR_OFF] = (-FIX(0.08131)) * i; } } /* * Convert some rows of samples to the JPEG colorspace. */ METHODDEF(void) rgb_ycc_convert(j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { switch (cinfo->in_color_space) { case JCS_EXT_RGB: extrgb_ycc_convert_internal(cinfo, input_buf, output_buf, output_row, num_rows); break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: extrgbx_ycc_convert_internal(cinfo, input_buf, output_buf, output_row, num_rows); break; case JCS_EXT_BGR: extbgr_ycc_convert_internal(cinfo, input_buf, output_buf, output_row, num_rows); break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: extbgrx_ycc_convert_internal(cinfo, input_buf, output_buf, output_row, num_rows); break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: extxbgr_ycc_convert_internal(cinfo, input_buf, output_buf, output_row, num_rows); break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: extxrgb_ycc_convert_internal(cinfo, input_buf, output_buf, output_row, num_rows); break; default: rgb_ycc_convert_internal(cinfo, input_buf, output_buf, output_row, num_rows); break; } } /**************** Cases other than RGB -> YCbCr **************/ /* * Convert some rows of samples to the JPEG colorspace. */ METHODDEF(void) rgb_gray_convert(j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { switch (cinfo->in_color_space) { case JCS_EXT_RGB: extrgb_gray_convert_internal(cinfo, input_buf, output_buf, output_row, num_rows); break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: extrgbx_gray_convert_internal(cinfo, input_buf, output_buf, output_row, num_rows); break; case JCS_EXT_BGR: extbgr_gray_convert_internal(cinfo, input_buf, output_buf, output_row, num_rows); break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: extbgrx_gray_convert_internal(cinfo, input_buf, output_buf, output_row, num_rows); break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: extxbgr_gray_convert_internal(cinfo, input_buf, output_buf, output_row, num_rows); break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: extxrgb_gray_convert_internal(cinfo, input_buf, output_buf, output_row, num_rows); break; default: rgb_gray_convert_internal(cinfo, input_buf, output_buf, output_row, num_rows); break; } } /* * Extended RGB to plain RGB conversion */ METHODDEF(void) rgb_rgb_convert(j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { switch (cinfo->in_color_space) { case JCS_EXT_RGB: extrgb_rgb_convert_internal(cinfo, input_buf, output_buf, output_row, num_rows); break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: extrgbx_rgb_convert_internal(cinfo, input_buf, output_buf, output_row, num_rows); break; case JCS_EXT_BGR: extbgr_rgb_convert_internal(cinfo, input_buf, output_buf, output_row, num_rows); break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: extbgrx_rgb_convert_internal(cinfo, input_buf, output_buf, output_row, num_rows); break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: extxbgr_rgb_convert_internal(cinfo, input_buf, output_buf, output_row, num_rows); break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: extxrgb_rgb_convert_internal(cinfo, input_buf, output_buf, output_row, num_rows); break; default: rgb_rgb_convert_internal(cinfo, input_buf, output_buf, output_row, num_rows); break; } } /* * Convert some rows of samples to the JPEG colorspace. * This version handles Adobe-style CMYK->YCCK conversion, * where we convert R=1-C, G=1-M, and B=1-Y to YCbCr using the same * conversion as above, while passing K (black) unchanged. * We assume rgb_ycc_start has been called. */ METHODDEF(void) cmyk_ycck_convert(j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { my_cconvert_ptr cconvert = (my_cconvert_ptr)cinfo->cconvert; register int r, g, b; register JLONG *ctab = cconvert->rgb_ycc_tab; register JSAMPROW inptr; register JSAMPROW outptr0, outptr1, outptr2, outptr3; register JDIMENSION col; JDIMENSION num_cols = cinfo->image_width; while (--num_rows >= 0) { inptr = *input_buf++; outptr0 = output_buf[0][output_row]; outptr1 = output_buf[1][output_row]; outptr2 = output_buf[2][output_row]; outptr3 = output_buf[3][output_row]; output_row++; for (col = 0; col < num_cols; col++) { r = MAXJSAMPLE - RANGE_LIMIT(inptr[0]); g = MAXJSAMPLE - RANGE_LIMIT(inptr[1]); b = MAXJSAMPLE - RANGE_LIMIT(inptr[2]); /* K passes through as-is */ outptr3[col] = inptr[3]; inptr += 4; /* If the inputs are 0..MAXJSAMPLE, the outputs of these equations * must be too; we do not need an explicit range-limiting operation. * Hence the value being shifted is never negative, and we don't * need the general RIGHT_SHIFT macro. */ /* Y */ outptr0[col] = (JSAMPLE)((ctab[r + R_Y_OFF] + ctab[g + G_Y_OFF] + ctab[b + B_Y_OFF]) >> SCALEBITS); /* Cb */ outptr1[col] = (JSAMPLE)((ctab[r + R_CB_OFF] + ctab[g + G_CB_OFF] + ctab[b + B_CB_OFF]) >> SCALEBITS); /* Cr */ outptr2[col] = (JSAMPLE)((ctab[r + R_CR_OFF] + ctab[g + G_CR_OFF] + ctab[b + B_CR_OFF]) >> SCALEBITS); } } } /* * Convert some rows of samples to the JPEG colorspace. * This version handles grayscale output with no conversion. * The source can be either plain grayscale or YCbCr (since Y == gray). */ METHODDEF(void) grayscale_convert(j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { register JSAMPROW inptr; register JSAMPROW outptr; register JDIMENSION col; JDIMENSION num_cols = cinfo->image_width; int instride = cinfo->input_components; while (--num_rows >= 0) { inptr = *input_buf++; outptr = output_buf[0][output_row]; output_row++; for (col = 0; col < num_cols; col++) { outptr[col] = inptr[0]; inptr += instride; } } } /* * Convert some rows of samples to the JPEG colorspace. * This version handles multi-component colorspaces without conversion. * We assume input_components == num_components. */ METHODDEF(void) null_convert(j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { register JSAMPROW inptr; register JSAMPROW outptr, outptr0, outptr1, outptr2, outptr3; register JDIMENSION col; register int ci; int nc = cinfo->num_components; JDIMENSION num_cols = cinfo->image_width; if (nc == 3) { while (--num_rows >= 0) { inptr = *input_buf++; outptr0 = output_buf[0][output_row]; outptr1 = output_buf[1][output_row]; outptr2 = output_buf[2][output_row]; output_row++; for (col = 0; col < num_cols; col++) { outptr0[col] = *inptr++; outptr1[col] = *inptr++; outptr2[col] = *inptr++; } } } else if (nc == 4) { while (--num_rows >= 0) { inptr = *input_buf++; outptr0 = output_buf[0][output_row]; outptr1 = output_buf[1][output_row]; outptr2 = output_buf[2][output_row]; outptr3 = output_buf[3][output_row]; output_row++; for (col = 0; col < num_cols; col++) { outptr0[col] = *inptr++; outptr1[col] = *inptr++; outptr2[col] = *inptr++; outptr3[col] = *inptr++; } } } else { while (--num_rows >= 0) { /* It seems fastest to make a separate pass for each component. */ for (ci = 0; ci < nc; ci++) { inptr = *input_buf; outptr = output_buf[ci][output_row]; for (col = 0; col < num_cols; col++) { outptr[col] = inptr[ci]; inptr += nc; } } input_buf++; output_row++; } } } /* * Empty method for start_pass. */ METHODDEF(void) null_method(j_compress_ptr cinfo) { /* no work needed */ } /* * Module initialization routine for input colorspace conversion. */ GLOBAL(void) jinit_color_converter(j_compress_ptr cinfo) { my_cconvert_ptr cconvert; cconvert = (my_cconvert_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, sizeof(my_color_converter)); cinfo->cconvert = (struct jpeg_color_converter *)cconvert; /* set start_pass to null method until we find out differently */ cconvert->pub.start_pass = null_method; /* Make sure input_components agrees with in_color_space */ switch (cinfo->in_color_space) { case JCS_GRAYSCALE: if (cinfo->input_components != 1) ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); break; case JCS_RGB: case JCS_EXT_RGB: case JCS_EXT_RGBX: case JCS_EXT_BGR: case JCS_EXT_BGRX: case JCS_EXT_XBGR: case JCS_EXT_XRGB: case JCS_EXT_RGBA: case JCS_EXT_BGRA: case JCS_EXT_ABGR: case JCS_EXT_ARGB: if (cinfo->input_components != rgb_pixelsize[cinfo->in_color_space]) ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); break; case JCS_YCbCr: if (cinfo->input_components != 3) ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); break; case JCS_CMYK: case JCS_YCCK: if (cinfo->input_components != 4) ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); break; default: /* JCS_UNKNOWN can be anything */ if (cinfo->input_components < 1) ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); break; } /* Check num_components, set conversion method based on requested space */ switch (cinfo->jpeg_color_space) { case JCS_GRAYSCALE: if (cinfo->num_components != 1) ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); if (cinfo->in_color_space == JCS_GRAYSCALE) cconvert->pub.color_convert = grayscale_convert; else if (cinfo->in_color_space == JCS_RGB || cinfo->in_color_space == JCS_EXT_RGB || cinfo->in_color_space == JCS_EXT_RGBX || cinfo->in_color_space == JCS_EXT_BGR || cinfo->in_color_space == JCS_EXT_BGRX || cinfo->in_color_space == JCS_EXT_XBGR || cinfo->in_color_space == JCS_EXT_XRGB || cinfo->in_color_space == JCS_EXT_RGBA || cinfo->in_color_space == JCS_EXT_BGRA || cinfo->in_color_space == JCS_EXT_ABGR || cinfo->in_color_space == JCS_EXT_ARGB) { if (jsimd_can_rgb_gray()) cconvert->pub.color_convert = jsimd_rgb_gray_convert; else { cconvert->pub.start_pass = rgb_ycc_start; cconvert->pub.color_convert = rgb_gray_convert; } } else if (cinfo->in_color_space == JCS_YCbCr) cconvert->pub.color_convert = grayscale_convert; else ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); break; case JCS_RGB: if (cinfo->num_components != 3) ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); if (rgb_red[cinfo->in_color_space] == 0 && rgb_green[cinfo->in_color_space] == 1 && rgb_blue[cinfo->in_color_space] == 2 && rgb_pixelsize[cinfo->in_color_space] == 3) { #if defined(__mips__) if (jsimd_c_can_null_convert()) cconvert->pub.color_convert = jsimd_c_null_convert; else #endif cconvert->pub.color_convert = null_convert; } else if (cinfo->in_color_space == JCS_RGB || cinfo->in_color_space == JCS_EXT_RGB || cinfo->in_color_space == JCS_EXT_RGBX || cinfo->in_color_space == JCS_EXT_BGR || cinfo->in_color_space == JCS_EXT_BGRX || cinfo->in_color_space == JCS_EXT_XBGR || cinfo->in_color_space == JCS_EXT_XRGB || cinfo->in_color_space == JCS_EXT_RGBA || cinfo->in_color_space == JCS_EXT_BGRA || cinfo->in_color_space == JCS_EXT_ABGR || cinfo->in_color_space == JCS_EXT_ARGB) cconvert->pub.color_convert = rgb_rgb_convert; else ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); break; case JCS_YCbCr: if (cinfo->num_components != 3) ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); if (cinfo->in_color_space == JCS_RGB || cinfo->in_color_space == JCS_EXT_RGB || cinfo->in_color_space == JCS_EXT_RGBX || cinfo->in_color_space == JCS_EXT_BGR || cinfo->in_color_space == JCS_EXT_BGRX || cinfo->in_color_space == JCS_EXT_XBGR || cinfo->in_color_space == JCS_EXT_XRGB || cinfo->in_color_space == JCS_EXT_RGBA || cinfo->in_color_space == JCS_EXT_BGRA || cinfo->in_color_space == JCS_EXT_ABGR || cinfo->in_color_space == JCS_EXT_ARGB) { if (jsimd_can_rgb_ycc()) cconvert->pub.color_convert = jsimd_rgb_ycc_convert; else { cconvert->pub.start_pass = rgb_ycc_start; cconvert->pub.color_convert = rgb_ycc_convert; } } else if (cinfo->in_color_space == JCS_YCbCr) { #if defined(__mips__) if (jsimd_c_can_null_convert()) cconvert->pub.color_convert = jsimd_c_null_convert; else #endif cconvert->pub.color_convert = null_convert; } else ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); break; case JCS_CMYK: if (cinfo->num_components != 4) ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); if (cinfo->in_color_space == JCS_CMYK) { #if defined(__mips__) if (jsimd_c_can_null_convert()) cconvert->pub.color_convert = jsimd_c_null_convert; else #endif cconvert->pub.color_convert = null_convert; } else ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); break; case JCS_YCCK: if (cinfo->num_components != 4) ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); if (cinfo->in_color_space == JCS_CMYK) { cconvert->pub.start_pass = rgb_ycc_start; cconvert->pub.color_convert = cmyk_ycck_convert; } else if (cinfo->in_color_space == JCS_YCCK) { #if defined(__mips__) if (jsimd_c_can_null_convert()) cconvert->pub.color_convert = jsimd_c_null_convert; else #endif cconvert->pub.color_convert = null_convert; } else ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); break; default: /* allow null conversion of JCS_UNKNOWN */ if (cinfo->jpeg_color_space != cinfo->in_color_space || cinfo->num_components != cinfo->input_components) ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); #if defined(__mips__) if (jsimd_c_can_null_convert()) cconvert->pub.color_convert = jsimd_c_null_convert; else #endif cconvert->pub.color_convert = null_convert; break; } } libjpeg-turbo-2.1.5/jcdctmgr.c000066400000000000000000000535341436506551100162450ustar00rootroot00000000000000/* * jcdctmgr.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1996, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 1999-2006, MIYASAKA Masaru. * Copyright 2009 Pierre Ossman for Cendio AB * Copyright (C) 2011, 2014-2015, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains the forward-DCT management logic. * This code selects a particular DCT implementation to be used, * and it performs related housekeeping chores including coefficient * quantization. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jdct.h" /* Private declarations for DCT subsystem */ #include "jsimddct.h" /* Private subobject for this module */ typedef void (*forward_DCT_method_ptr) (DCTELEM *data); typedef void (*float_DCT_method_ptr) (FAST_FLOAT *data); typedef void (*convsamp_method_ptr) (JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM *workspace); typedef void (*float_convsamp_method_ptr) (JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT *workspace); typedef void (*quantize_method_ptr) (JCOEFPTR coef_block, DCTELEM *divisors, DCTELEM *workspace); typedef void (*float_quantize_method_ptr) (JCOEFPTR coef_block, FAST_FLOAT *divisors, FAST_FLOAT *workspace); METHODDEF(void) quantize(JCOEFPTR, DCTELEM *, DCTELEM *); typedef struct { struct jpeg_forward_dct pub; /* public fields */ /* Pointer to the DCT routine actually in use */ forward_DCT_method_ptr dct; convsamp_method_ptr convsamp; quantize_method_ptr quantize; /* The actual post-DCT divisors --- not identical to the quant table * entries, because of scaling (especially for an unnormalized DCT). * Each table is given in normal array order. */ DCTELEM *divisors[NUM_QUANT_TBLS]; /* work area for FDCT subroutine */ DCTELEM *workspace; #ifdef DCT_FLOAT_SUPPORTED /* Same as above for the floating-point case. */ float_DCT_method_ptr float_dct; float_convsamp_method_ptr float_convsamp; float_quantize_method_ptr float_quantize; FAST_FLOAT *float_divisors[NUM_QUANT_TBLS]; FAST_FLOAT *float_workspace; #endif } my_fdct_controller; typedef my_fdct_controller *my_fdct_ptr; #if BITS_IN_JSAMPLE == 8 /* * Find the highest bit in an integer through binary search. */ LOCAL(int) flss(UINT16 val) { int bit; bit = 16; if (!val) return 0; if (!(val & 0xff00)) { bit -= 8; val <<= 8; } if (!(val & 0xf000)) { bit -= 4; val <<= 4; } if (!(val & 0xc000)) { bit -= 2; val <<= 2; } if (!(val & 0x8000)) { bit -= 1; val <<= 1; } return bit; } /* * Compute values to do a division using reciprocal. * * This implementation is based on an algorithm described in * "How to optimize for the Pentium family of microprocessors" * (http://www.agner.org/assem/). * More information about the basic algorithm can be found in * the paper "Integer Division Using Reciprocals" by Robert Alverson. * * The basic idea is to replace x/d by x * d^-1. In order to store * d^-1 with enough precision we shift it left a few places. It turns * out that this algoright gives just enough precision, and also fits * into DCTELEM: * * b = (the number of significant bits in divisor) - 1 * r = (word size) + b * f = 2^r / divisor * * f will not be an integer for most cases, so we need to compensate * for the rounding error introduced: * * no fractional part: * * result = input >> r * * fractional part of f < 0.5: * * round f down to nearest integer * result = ((input + 1) * f) >> r * * fractional part of f > 0.5: * * round f up to nearest integer * result = (input * f) >> r * * This is the original algorithm that gives truncated results. But we * want properly rounded results, so we replace "input" with * "input + divisor/2". * * In order to allow SIMD implementations we also tweak the values to * allow the same calculation to be made at all times: * * dctbl[0] = f rounded to nearest integer * dctbl[1] = divisor / 2 (+ 1 if fractional part of f < 0.5) * dctbl[2] = 1 << ((word size) * 2 - r) * dctbl[3] = r - (word size) * * dctbl[2] is for stupid instruction sets where the shift operation * isn't member wise (e.g. MMX). * * The reason dctbl[2] and dctbl[3] reduce the shift with (word size) * is that most SIMD implementations have a "multiply and store top * half" operation. * * Lastly, we store each of the values in their own table instead * of in a consecutive manner, yet again in order to allow SIMD * routines. */ LOCAL(int) compute_reciprocal(UINT16 divisor, DCTELEM *dtbl) { UDCTELEM2 fq, fr; UDCTELEM c; int b, r; if (divisor == 1) { /* divisor == 1 means unquantized, so these reciprocal/correction/shift * values will cause the C quantization algorithm to act like the * identity function. Since only the C quantization algorithm is used in * these cases, the scale value is irrelevant. */ dtbl[DCTSIZE2 * 0] = (DCTELEM)1; /* reciprocal */ dtbl[DCTSIZE2 * 1] = (DCTELEM)0; /* correction */ dtbl[DCTSIZE2 * 2] = (DCTELEM)1; /* scale */ dtbl[DCTSIZE2 * 3] = -(DCTELEM)(sizeof(DCTELEM) * 8); /* shift */ return 0; } b = flss(divisor) - 1; r = sizeof(DCTELEM) * 8 + b; fq = ((UDCTELEM2)1 << r) / divisor; fr = ((UDCTELEM2)1 << r) % divisor; c = divisor / 2; /* for rounding */ if (fr == 0) { /* divisor is power of two */ /* fq will be one bit too large to fit in DCTELEM, so adjust */ fq >>= 1; r--; } else if (fr <= (divisor / 2U)) { /* fractional part is < 0.5 */ c++; } else { /* fractional part is > 0.5 */ fq++; } dtbl[DCTSIZE2 * 0] = (DCTELEM)fq; /* reciprocal */ dtbl[DCTSIZE2 * 1] = (DCTELEM)c; /* correction + roundfactor */ #ifdef WITH_SIMD dtbl[DCTSIZE2 * 2] = (DCTELEM)(1 << (sizeof(DCTELEM) * 8 * 2 - r)); /* scale */ #else dtbl[DCTSIZE2 * 2] = 1; #endif dtbl[DCTSIZE2 * 3] = (DCTELEM)r - sizeof(DCTELEM) * 8; /* shift */ if (r <= 16) return 0; else return 1; } #endif /* * Initialize for a processing pass. * Verify that all referenced Q-tables are present, and set up * the divisor table for each one. * In the current implementation, DCT of all components is done during * the first pass, even if only some components will be output in the * first scan. Hence all components should be examined here. */ METHODDEF(void) start_pass_fdctmgr(j_compress_ptr cinfo) { my_fdct_ptr fdct = (my_fdct_ptr)cinfo->fdct; int ci, qtblno, i; jpeg_component_info *compptr; JQUANT_TBL *qtbl; DCTELEM *dtbl; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { qtblno = compptr->quant_tbl_no; /* Make sure specified quantization table is present */ if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS || cinfo->quant_tbl_ptrs[qtblno] == NULL) ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno); qtbl = cinfo->quant_tbl_ptrs[qtblno]; /* Compute divisors for this quant table */ /* We may do this more than once for same table, but it's not a big deal */ switch (cinfo->dct_method) { #ifdef DCT_ISLOW_SUPPORTED case JDCT_ISLOW: /* For LL&M IDCT method, divisors are equal to raw quantization * coefficients multiplied by 8 (to counteract scaling). */ if (fdct->divisors[qtblno] == NULL) { fdct->divisors[qtblno] = (DCTELEM *) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, (DCTSIZE2 * 4) * sizeof(DCTELEM)); } dtbl = fdct->divisors[qtblno]; for (i = 0; i < DCTSIZE2; i++) { #if BITS_IN_JSAMPLE == 8 if (!compute_reciprocal(qtbl->quantval[i] << 3, &dtbl[i]) && fdct->quantize == jsimd_quantize) fdct->quantize = quantize; #else dtbl[i] = ((DCTELEM)qtbl->quantval[i]) << 3; #endif } break; #endif #ifdef DCT_IFAST_SUPPORTED case JDCT_IFAST: { /* For AA&N IDCT method, divisors are equal to quantization * coefficients scaled by scalefactor[row]*scalefactor[col], where * scalefactor[0] = 1 * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 * We apply a further scale factor of 8. */ #define CONST_BITS 14 static const INT16 aanscales[DCTSIZE2] = { /* precomputed values scaled up by 14 bits */ 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 }; SHIFT_TEMPS if (fdct->divisors[qtblno] == NULL) { fdct->divisors[qtblno] = (DCTELEM *) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, (DCTSIZE2 * 4) * sizeof(DCTELEM)); } dtbl = fdct->divisors[qtblno]; for (i = 0; i < DCTSIZE2; i++) { #if BITS_IN_JSAMPLE == 8 if (!compute_reciprocal( DESCALE(MULTIPLY16V16((JLONG)qtbl->quantval[i], (JLONG)aanscales[i]), CONST_BITS - 3), &dtbl[i]) && fdct->quantize == jsimd_quantize) fdct->quantize = quantize; #else dtbl[i] = (DCTELEM) DESCALE(MULTIPLY16V16((JLONG)qtbl->quantval[i], (JLONG)aanscales[i]), CONST_BITS - 3); #endif } } break; #endif #ifdef DCT_FLOAT_SUPPORTED case JDCT_FLOAT: { /* For float AA&N IDCT method, divisors are equal to quantization * coefficients scaled by scalefactor[row]*scalefactor[col], where * scalefactor[0] = 1 * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 * We apply a further scale factor of 8. * What's actually stored is 1/divisor so that the inner loop can * use a multiplication rather than a division. */ FAST_FLOAT *fdtbl; int row, col; static const double aanscalefactor[DCTSIZE] = { 1.0, 1.387039845, 1.306562965, 1.175875602, 1.0, 0.785694958, 0.541196100, 0.275899379 }; if (fdct->float_divisors[qtblno] == NULL) { fdct->float_divisors[qtblno] = (FAST_FLOAT *) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, DCTSIZE2 * sizeof(FAST_FLOAT)); } fdtbl = fdct->float_divisors[qtblno]; i = 0; for (row = 0; row < DCTSIZE; row++) { for (col = 0; col < DCTSIZE; col++) { fdtbl[i] = (FAST_FLOAT) (1.0 / (((double)qtbl->quantval[i] * aanscalefactor[row] * aanscalefactor[col] * 8.0))); i++; } } } break; #endif default: ERREXIT(cinfo, JERR_NOT_COMPILED); break; } } } /* * Load data into workspace, applying unsigned->signed conversion. */ METHODDEF(void) convsamp(JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM *workspace) { register DCTELEM *workspaceptr; register JSAMPROW elemptr; register int elemr; workspaceptr = workspace; for (elemr = 0; elemr < DCTSIZE; elemr++) { elemptr = sample_data[elemr] + start_col; #if DCTSIZE == 8 /* unroll the inner loop */ *workspaceptr++ = (*elemptr++) - CENTERJSAMPLE; *workspaceptr++ = (*elemptr++) - CENTERJSAMPLE; *workspaceptr++ = (*elemptr++) - CENTERJSAMPLE; *workspaceptr++ = (*elemptr++) - CENTERJSAMPLE; *workspaceptr++ = (*elemptr++) - CENTERJSAMPLE; *workspaceptr++ = (*elemptr++) - CENTERJSAMPLE; *workspaceptr++ = (*elemptr++) - CENTERJSAMPLE; *workspaceptr++ = (*elemptr++) - CENTERJSAMPLE; #else { register int elemc; for (elemc = DCTSIZE; elemc > 0; elemc--) *workspaceptr++ = (*elemptr++) - CENTERJSAMPLE; } #endif } } /* * Quantize/descale the coefficients, and store into coef_blocks[]. */ METHODDEF(void) quantize(JCOEFPTR coef_block, DCTELEM *divisors, DCTELEM *workspace) { int i; DCTELEM temp; JCOEFPTR output_ptr = coef_block; #if BITS_IN_JSAMPLE == 8 UDCTELEM recip, corr; int shift; UDCTELEM2 product; for (i = 0; i < DCTSIZE2; i++) { temp = workspace[i]; recip = divisors[i + DCTSIZE2 * 0]; corr = divisors[i + DCTSIZE2 * 1]; shift = divisors[i + DCTSIZE2 * 3]; if (temp < 0) { temp = -temp; product = (UDCTELEM2)(temp + corr) * recip; product >>= shift + sizeof(DCTELEM) * 8; temp = (DCTELEM)product; temp = -temp; } else { product = (UDCTELEM2)(temp + corr) * recip; product >>= shift + sizeof(DCTELEM) * 8; temp = (DCTELEM)product; } output_ptr[i] = (JCOEF)temp; } #else register DCTELEM qval; for (i = 0; i < DCTSIZE2; i++) { qval = divisors[i]; temp = workspace[i]; /* Divide the coefficient value by qval, ensuring proper rounding. * Since C does not specify the direction of rounding for negative * quotients, we have to force the dividend positive for portability. * * In most files, at least half of the output values will be zero * (at default quantization settings, more like three-quarters...) * so we should ensure that this case is fast. On many machines, * a comparison is enough cheaper than a divide to make a special test * a win. Since both inputs will be nonnegative, we need only test * for a < b to discover whether a/b is 0. * If your machine's division is fast enough, define FAST_DIVIDE. */ #ifdef FAST_DIVIDE #define DIVIDE_BY(a, b) a /= b #else #define DIVIDE_BY(a, b) if (a >= b) a /= b; else a = 0 #endif if (temp < 0) { temp = -temp; temp += qval >> 1; /* for rounding */ DIVIDE_BY(temp, qval); temp = -temp; } else { temp += qval >> 1; /* for rounding */ DIVIDE_BY(temp, qval); } output_ptr[i] = (JCOEF)temp; } #endif } /* * Perform forward DCT on one or more blocks of a component. * * The input samples are taken from the sample_data[] array starting at * position start_row/start_col, and moving to the right for any additional * blocks. The quantized coefficients are returned in coef_blocks[]. */ METHODDEF(void) forward_DCT(j_compress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY sample_data, JBLOCKROW coef_blocks, JDIMENSION start_row, JDIMENSION start_col, JDIMENSION num_blocks) /* This version is used for integer DCT implementations. */ { /* This routine is heavily used, so it's worth coding it tightly. */ my_fdct_ptr fdct = (my_fdct_ptr)cinfo->fdct; DCTELEM *divisors = fdct->divisors[compptr->quant_tbl_no]; DCTELEM *workspace; JDIMENSION bi; /* Make sure the compiler doesn't look up these every pass */ forward_DCT_method_ptr do_dct = fdct->dct; convsamp_method_ptr do_convsamp = fdct->convsamp; quantize_method_ptr do_quantize = fdct->quantize; workspace = fdct->workspace; sample_data += start_row; /* fold in the vertical offset once */ for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) { /* Load data into workspace, applying unsigned->signed conversion */ (*do_convsamp) (sample_data, start_col, workspace); /* Perform the DCT */ (*do_dct) (workspace); /* Quantize/descale the coefficients, and store into coef_blocks[] */ (*do_quantize) (coef_blocks[bi], divisors, workspace); } } #ifdef DCT_FLOAT_SUPPORTED METHODDEF(void) convsamp_float(JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT *workspace) { register FAST_FLOAT *workspaceptr; register JSAMPROW elemptr; register int elemr; workspaceptr = workspace; for (elemr = 0; elemr < DCTSIZE; elemr++) { elemptr = sample_data[elemr] + start_col; #if DCTSIZE == 8 /* unroll the inner loop */ *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - CENTERJSAMPLE); *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - CENTERJSAMPLE); *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - CENTERJSAMPLE); *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - CENTERJSAMPLE); *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - CENTERJSAMPLE); *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - CENTERJSAMPLE); *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - CENTERJSAMPLE); *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - CENTERJSAMPLE); #else { register int elemc; for (elemc = DCTSIZE; elemc > 0; elemc--) *workspaceptr++ = (FAST_FLOAT)((*elemptr++) - CENTERJSAMPLE); } #endif } } METHODDEF(void) quantize_float(JCOEFPTR coef_block, FAST_FLOAT *divisors, FAST_FLOAT *workspace) { register FAST_FLOAT temp; register int i; register JCOEFPTR output_ptr = coef_block; for (i = 0; i < DCTSIZE2; i++) { /* Apply the quantization and scaling factor */ temp = workspace[i] * divisors[i]; /* Round to nearest integer. * Since C does not specify the direction of rounding for negative * quotients, we have to force the dividend positive for portability. * The maximum coefficient size is +-16K (for 12-bit data), so this * code should work for either 16-bit or 32-bit ints. */ output_ptr[i] = (JCOEF)((int)(temp + (FAST_FLOAT)16384.5) - 16384); } } METHODDEF(void) forward_DCT_float(j_compress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY sample_data, JBLOCKROW coef_blocks, JDIMENSION start_row, JDIMENSION start_col, JDIMENSION num_blocks) /* This version is used for floating-point DCT implementations. */ { /* This routine is heavily used, so it's worth coding it tightly. */ my_fdct_ptr fdct = (my_fdct_ptr)cinfo->fdct; FAST_FLOAT *divisors = fdct->float_divisors[compptr->quant_tbl_no]; FAST_FLOAT *workspace; JDIMENSION bi; /* Make sure the compiler doesn't look up these every pass */ float_DCT_method_ptr do_dct = fdct->float_dct; float_convsamp_method_ptr do_convsamp = fdct->float_convsamp; float_quantize_method_ptr do_quantize = fdct->float_quantize; workspace = fdct->float_workspace; sample_data += start_row; /* fold in the vertical offset once */ for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) { /* Load data into workspace, applying unsigned->signed conversion */ (*do_convsamp) (sample_data, start_col, workspace); /* Perform the DCT */ (*do_dct) (workspace); /* Quantize/descale the coefficients, and store into coef_blocks[] */ (*do_quantize) (coef_blocks[bi], divisors, workspace); } } #endif /* DCT_FLOAT_SUPPORTED */ /* * Initialize FDCT manager. */ GLOBAL(void) jinit_forward_dct(j_compress_ptr cinfo) { my_fdct_ptr fdct; int i; fdct = (my_fdct_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, sizeof(my_fdct_controller)); cinfo->fdct = (struct jpeg_forward_dct *)fdct; fdct->pub.start_pass = start_pass_fdctmgr; /* First determine the DCT... */ switch (cinfo->dct_method) { #ifdef DCT_ISLOW_SUPPORTED case JDCT_ISLOW: fdct->pub.forward_DCT = forward_DCT; if (jsimd_can_fdct_islow()) fdct->dct = jsimd_fdct_islow; else fdct->dct = jpeg_fdct_islow; break; #endif #ifdef DCT_IFAST_SUPPORTED case JDCT_IFAST: fdct->pub.forward_DCT = forward_DCT; if (jsimd_can_fdct_ifast()) fdct->dct = jsimd_fdct_ifast; else fdct->dct = jpeg_fdct_ifast; break; #endif #ifdef DCT_FLOAT_SUPPORTED case JDCT_FLOAT: fdct->pub.forward_DCT = forward_DCT_float; if (jsimd_can_fdct_float()) fdct->float_dct = jsimd_fdct_float; else fdct->float_dct = jpeg_fdct_float; break; #endif default: ERREXIT(cinfo, JERR_NOT_COMPILED); break; } /* ...then the supporting stages. */ switch (cinfo->dct_method) { #ifdef DCT_ISLOW_SUPPORTED case JDCT_ISLOW: #endif #ifdef DCT_IFAST_SUPPORTED case JDCT_IFAST: #endif #if defined(DCT_ISLOW_SUPPORTED) || defined(DCT_IFAST_SUPPORTED) if (jsimd_can_convsamp()) fdct->convsamp = jsimd_convsamp; else fdct->convsamp = convsamp; if (jsimd_can_quantize()) fdct->quantize = jsimd_quantize; else fdct->quantize = quantize; break; #endif #ifdef DCT_FLOAT_SUPPORTED case JDCT_FLOAT: if (jsimd_can_convsamp_float()) fdct->float_convsamp = jsimd_convsamp_float; else fdct->float_convsamp = convsamp_float; if (jsimd_can_quantize_float()) fdct->float_quantize = jsimd_quantize_float; else fdct->float_quantize = quantize_float; break; #endif default: ERREXIT(cinfo, JERR_NOT_COMPILED); break; } /* Allocate workspace memory */ #ifdef DCT_FLOAT_SUPPORTED if (cinfo->dct_method == JDCT_FLOAT) fdct->float_workspace = (FAST_FLOAT *) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, sizeof(FAST_FLOAT) * DCTSIZE2); else #endif fdct->workspace = (DCTELEM *) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, sizeof(DCTELEM) * DCTSIZE2); /* Mark divisor tables unallocated */ for (i = 0; i < NUM_QUANT_TBLS; i++) { fdct->divisors[i] = NULL; #ifdef DCT_FLOAT_SUPPORTED fdct->float_divisors[i] = NULL; #endif } } libjpeg-turbo-2.1.5/jchuff.c000066400000000000000000001074631436506551100157160ustar00rootroot00000000000000/* * jchuff.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1997, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2009-2011, 2014-2016, 2018-2022, D. R. Commander. * Copyright (C) 2015, Matthieu Darbois. * Copyright (C) 2018, Matthias Räncker. * Copyright (C) 2020, Arm Limited. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains Huffman entropy encoding routines. * * Much of the complexity here has to do with supporting output suspension. * If the data destination module demands suspension, we want to be able to * back up to the start of the current MCU. To do this, we copy state * variables into local working storage, and update them back to the * permanent JPEG objects only upon successful completion of an MCU. * * NOTE: All referenced figures are from * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jsimd.h" #include /* * NOTE: If USE_CLZ_INTRINSIC is defined, then clz/bsr instructions will be * used for bit counting rather than the lookup table. This will reduce the * memory footprint by 64k, which is important for some mobile applications * that create many isolated instances of libjpeg-turbo (web browsers, for * instance.) This may improve performance on some mobile platforms as well. * This feature is enabled by default only on Arm processors, because some x86 * chips have a slow implementation of bsr, and the use of clz/bsr cannot be * shown to have a significant performance impact even on the x86 chips that * have a fast implementation of it. When building for Armv6, you can * explicitly disable the use of clz/bsr by adding -mthumb to the compiler * flags (this defines __thumb__). */ /* NOTE: Both GCC and Clang define __GNUC__ */ #if (defined(__GNUC__) && (defined(__arm__) || defined(__aarch64__))) || \ defined(_M_ARM) || defined(_M_ARM64) #if !defined(__thumb__) || defined(__thumb2__) #define USE_CLZ_INTRINSIC #endif #endif #ifdef USE_CLZ_INTRINSIC #if defined(_MSC_VER) && !defined(__clang__) #define JPEG_NBITS_NONZERO(x) (32 - _CountLeadingZeros(x)) #else #define JPEG_NBITS_NONZERO(x) (32 - __builtin_clz(x)) #endif #define JPEG_NBITS(x) (x ? JPEG_NBITS_NONZERO(x) : 0) #else #include "jpeg_nbits_table.h" #define JPEG_NBITS(x) (jpeg_nbits_table[x]) #define JPEG_NBITS_NONZERO(x) JPEG_NBITS(x) #endif /* Expanded entropy encoder object for Huffman encoding. * * The savable_state subrecord contains fields that change within an MCU, * but must not be updated permanently until we complete the MCU. */ #if defined(__x86_64__) && defined(__ILP32__) typedef unsigned long long bit_buf_type; #else typedef size_t bit_buf_type; #endif /* NOTE: The more optimal Huffman encoding algorithm is only used by the * intrinsics implementation of the Arm Neon SIMD extensions, which is why we * retain the old Huffman encoder behavior when using the GAS implementation. */ #if defined(WITH_SIMD) && !(defined(__arm__) || defined(__aarch64__) || \ defined(_M_ARM) || defined(_M_ARM64)) typedef unsigned long long simd_bit_buf_type; #else typedef bit_buf_type simd_bit_buf_type; #endif #if (defined(SIZEOF_SIZE_T) && SIZEOF_SIZE_T == 8) || defined(_WIN64) || \ (defined(__x86_64__) && defined(__ILP32__)) #define BIT_BUF_SIZE 64 #elif (defined(SIZEOF_SIZE_T) && SIZEOF_SIZE_T == 4) || defined(_WIN32) #define BIT_BUF_SIZE 32 #else #error Cannot determine word size #endif #define SIMD_BIT_BUF_SIZE (sizeof(simd_bit_buf_type) * 8) typedef struct { union { bit_buf_type c; simd_bit_buf_type simd; } put_buffer; /* current bit accumulation buffer */ int free_bits; /* # of bits available in it */ /* (Neon GAS: # of bits now in it) */ int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ } savable_state; typedef struct { struct jpeg_entropy_encoder pub; /* public fields */ savable_state saved; /* Bit buffer & DC state at start of MCU */ /* These fields are NOT loaded into local working state. */ unsigned int restarts_to_go; /* MCUs left in this restart interval */ int next_restart_num; /* next restart number to write (0-7) */ /* Pointers to derived tables (these workspaces have image lifespan) */ c_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS]; c_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS]; #ifdef ENTROPY_OPT_SUPPORTED /* Statistics tables for optimization */ long *dc_count_ptrs[NUM_HUFF_TBLS]; long *ac_count_ptrs[NUM_HUFF_TBLS]; #endif int simd; } huff_entropy_encoder; typedef huff_entropy_encoder *huff_entropy_ptr; /* Working state while writing an MCU. * This struct contains all the fields that are needed by subroutines. */ typedef struct { JOCTET *next_output_byte; /* => next byte to write in buffer */ size_t free_in_buffer; /* # of byte spaces remaining in buffer */ savable_state cur; /* Current bit buffer & DC state */ j_compress_ptr cinfo; /* dump_buffer needs access to this */ int simd; } working_state; /* Forward declarations */ METHODDEF(boolean) encode_mcu_huff(j_compress_ptr cinfo, JBLOCKROW *MCU_data); METHODDEF(void) finish_pass_huff(j_compress_ptr cinfo); #ifdef ENTROPY_OPT_SUPPORTED METHODDEF(boolean) encode_mcu_gather(j_compress_ptr cinfo, JBLOCKROW *MCU_data); METHODDEF(void) finish_pass_gather(j_compress_ptr cinfo); #endif /* * Initialize for a Huffman-compressed scan. * If gather_statistics is TRUE, we do not output anything during the scan, * just count the Huffman symbols used and generate Huffman code tables. */ METHODDEF(void) start_pass_huff(j_compress_ptr cinfo, boolean gather_statistics) { huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy; int ci, dctbl, actbl; jpeg_component_info *compptr; if (gather_statistics) { #ifdef ENTROPY_OPT_SUPPORTED entropy->pub.encode_mcu = encode_mcu_gather; entropy->pub.finish_pass = finish_pass_gather; #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif } else { entropy->pub.encode_mcu = encode_mcu_huff; entropy->pub.finish_pass = finish_pass_huff; } entropy->simd = jsimd_can_huff_encode_one_block(); for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; dctbl = compptr->dc_tbl_no; actbl = compptr->ac_tbl_no; if (gather_statistics) { #ifdef ENTROPY_OPT_SUPPORTED /* Check for invalid table indexes */ /* (make_c_derived_tbl does this in the other path) */ if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS) ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl); if (actbl < 0 || actbl >= NUM_HUFF_TBLS) ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl); /* Allocate and zero the statistics tables */ /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */ if (entropy->dc_count_ptrs[dctbl] == NULL) entropy->dc_count_ptrs[dctbl] = (long *) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, 257 * sizeof(long)); memset(entropy->dc_count_ptrs[dctbl], 0, 257 * sizeof(long)); if (entropy->ac_count_ptrs[actbl] == NULL) entropy->ac_count_ptrs[actbl] = (long *) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, 257 * sizeof(long)); memset(entropy->ac_count_ptrs[actbl], 0, 257 * sizeof(long)); #endif } else { /* Compute derived values for Huffman tables */ /* We may do this more than once for a table, but it's not expensive */ jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl, &entropy->dc_derived_tbls[dctbl]); jpeg_make_c_derived_tbl(cinfo, FALSE, actbl, &entropy->ac_derived_tbls[actbl]); } /* Initialize DC predictions to 0 */ entropy->saved.last_dc_val[ci] = 0; } /* Initialize bit buffer to empty */ if (entropy->simd) { entropy->saved.put_buffer.simd = 0; #if defined(__aarch64__) && !defined(NEON_INTRINSICS) entropy->saved.free_bits = 0; #else entropy->saved.free_bits = SIMD_BIT_BUF_SIZE; #endif } else { entropy->saved.put_buffer.c = 0; entropy->saved.free_bits = BIT_BUF_SIZE; } /* Initialize restart stuff */ entropy->restarts_to_go = cinfo->restart_interval; entropy->next_restart_num = 0; } /* * Compute the derived values for a Huffman table. * This routine also performs some validation checks on the table. * * Note this is also used by jcphuff.c. */ GLOBAL(void) jpeg_make_c_derived_tbl(j_compress_ptr cinfo, boolean isDC, int tblno, c_derived_tbl **pdtbl) { JHUFF_TBL *htbl; c_derived_tbl *dtbl; int p, i, l, lastp, si, maxsymbol; char huffsize[257]; unsigned int huffcode[257]; unsigned int code; /* Note that huffsize[] and huffcode[] are filled in code-length order, * paralleling the order of the symbols themselves in htbl->huffval[]. */ /* Find the input Huffman table */ if (tblno < 0 || tblno >= NUM_HUFF_TBLS) ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); htbl = isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; if (htbl == NULL) ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); /* Allocate a workspace if we haven't already done so. */ if (*pdtbl == NULL) *pdtbl = (c_derived_tbl *) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, sizeof(c_derived_tbl)); dtbl = *pdtbl; /* Figure C.1: make table of Huffman code length for each symbol */ p = 0; for (l = 1; l <= 16; l++) { i = (int)htbl->bits[l]; if (i < 0 || p + i > 256) /* protect against table overrun */ ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); while (i--) huffsize[p++] = (char)l; } huffsize[p] = 0; lastp = p; /* Figure C.2: generate the codes themselves */ /* We also validate that the counts represent a legal Huffman code tree. */ code = 0; si = huffsize[0]; p = 0; while (huffsize[p]) { while (((int)huffsize[p]) == si) { huffcode[p++] = code; code++; } /* code is now 1 more than the last code used for codelength si; but * it must still fit in si bits, since no code is allowed to be all ones. */ if (((JLONG)code) >= (((JLONG)1) << si)) ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); code <<= 1; si++; } /* Figure C.3: generate encoding tables */ /* These are code and size indexed by symbol value */ /* Set all codeless symbols to have code length 0; * this lets us detect duplicate VAL entries here, and later * allows emit_bits to detect any attempt to emit such symbols. */ memset(dtbl->ehufco, 0, sizeof(dtbl->ehufco)); memset(dtbl->ehufsi, 0, sizeof(dtbl->ehufsi)); /* This is also a convenient place to check for out-of-range * and duplicated VAL entries. We allow 0..255 for AC symbols * but only 0..15 for DC. (We could constrain them further * based on data depth and mode, but this seems enough.) */ maxsymbol = isDC ? 15 : 255; for (p = 0; p < lastp; p++) { i = htbl->huffval[p]; if (i < 0 || i > maxsymbol || dtbl->ehufsi[i]) ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); dtbl->ehufco[i] = huffcode[p]; dtbl->ehufsi[i] = huffsize[p]; } } /* Outputting bytes to the file */ /* Emit a byte, taking 'action' if must suspend. */ #define emit_byte(state, val, action) { \ *(state)->next_output_byte++ = (JOCTET)(val); \ if (--(state)->free_in_buffer == 0) \ if (!dump_buffer(state)) \ { action; } \ } LOCAL(boolean) dump_buffer(working_state *state) /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */ { struct jpeg_destination_mgr *dest = state->cinfo->dest; if (!(*dest->empty_output_buffer) (state->cinfo)) return FALSE; /* After a successful buffer dump, must reset buffer pointers */ state->next_output_byte = dest->next_output_byte; state->free_in_buffer = dest->free_in_buffer; return TRUE; } /* Outputting bits to the file */ /* Output byte b and, speculatively, an additional 0 byte. 0xFF must be * encoded as 0xFF 0x00, so the output buffer pointer is advanced by 2 if the * byte is 0xFF. Otherwise, the output buffer pointer is advanced by 1, and * the speculative 0 byte will be overwritten by the next byte. */ #define EMIT_BYTE(b) { \ buffer[0] = (JOCTET)(b); \ buffer[1] = 0; \ buffer -= -2 + ((JOCTET)(b) < 0xFF); \ } /* Output the entire bit buffer. If there are no 0xFF bytes in it, then write * directly to the output buffer. Otherwise, use the EMIT_BYTE() macro to * encode 0xFF as 0xFF 0x00. */ #if BIT_BUF_SIZE == 64 #define FLUSH() { \ if (put_buffer & 0x8080808080808080 & ~(put_buffer + 0x0101010101010101)) { \ EMIT_BYTE(put_buffer >> 56) \ EMIT_BYTE(put_buffer >> 48) \ EMIT_BYTE(put_buffer >> 40) \ EMIT_BYTE(put_buffer >> 32) \ EMIT_BYTE(put_buffer >> 24) \ EMIT_BYTE(put_buffer >> 16) \ EMIT_BYTE(put_buffer >> 8) \ EMIT_BYTE(put_buffer ) \ } else { \ buffer[0] = (JOCTET)(put_buffer >> 56); \ buffer[1] = (JOCTET)(put_buffer >> 48); \ buffer[2] = (JOCTET)(put_buffer >> 40); \ buffer[3] = (JOCTET)(put_buffer >> 32); \ buffer[4] = (JOCTET)(put_buffer >> 24); \ buffer[5] = (JOCTET)(put_buffer >> 16); \ buffer[6] = (JOCTET)(put_buffer >> 8); \ buffer[7] = (JOCTET)(put_buffer); \ buffer += 8; \ } \ } #else #define FLUSH() { \ if (put_buffer & 0x80808080 & ~(put_buffer + 0x01010101)) { \ EMIT_BYTE(put_buffer >> 24) \ EMIT_BYTE(put_buffer >> 16) \ EMIT_BYTE(put_buffer >> 8) \ EMIT_BYTE(put_buffer ) \ } else { \ buffer[0] = (JOCTET)(put_buffer >> 24); \ buffer[1] = (JOCTET)(put_buffer >> 16); \ buffer[2] = (JOCTET)(put_buffer >> 8); \ buffer[3] = (JOCTET)(put_buffer); \ buffer += 4; \ } \ } #endif /* Fill the bit buffer to capacity with the leading bits from code, then output * the bit buffer and put the remaining bits from code into the bit buffer. */ #define PUT_AND_FLUSH(code, size) { \ put_buffer = (put_buffer << (size + free_bits)) | (code >> -free_bits); \ FLUSH() \ free_bits += BIT_BUF_SIZE; \ put_buffer = code; \ } /* Insert code into the bit buffer and output the bit buffer if needed. * NOTE: We can't flush with free_bits == 0, since the left shift in * PUT_AND_FLUSH() would have undefined behavior. */ #define PUT_BITS(code, size) { \ free_bits -= size; \ if (free_bits < 0) \ PUT_AND_FLUSH(code, size) \ else \ put_buffer = (put_buffer << size) | code; \ } #define PUT_CODE(code, size) { \ temp &= (((JLONG)1) << nbits) - 1; \ temp |= code << nbits; \ nbits += size; \ PUT_BITS(temp, nbits) \ } /* Although it is exceedingly rare, it is possible for a Huffman-encoded * coefficient block to be larger than the 128-byte unencoded block. For each * of the 64 coefficients, PUT_BITS is invoked twice, and each invocation can * theoretically store 16 bits (for a maximum of 2048 bits or 256 bytes per * encoded block.) If, for instance, one artificially sets the AC * coefficients to alternating values of 32767 and -32768 (using the JPEG * scanning order-- 1, 8, 16, etc.), then this will produce an encoded block * larger than 200 bytes. */ #define BUFSIZE (DCTSIZE2 * 8) #define LOAD_BUFFER() { \ if (state->free_in_buffer < BUFSIZE) { \ localbuf = 1; \ buffer = _buffer; \ } else \ buffer = state->next_output_byte; \ } #define STORE_BUFFER() { \ if (localbuf) { \ size_t bytes, bytestocopy; \ bytes = buffer - _buffer; \ buffer = _buffer; \ while (bytes > 0) { \ bytestocopy = MIN(bytes, state->free_in_buffer); \ memcpy(state->next_output_byte, buffer, bytestocopy); \ state->next_output_byte += bytestocopy; \ buffer += bytestocopy; \ state->free_in_buffer -= bytestocopy; \ if (state->free_in_buffer == 0) \ if (!dump_buffer(state)) return FALSE; \ bytes -= bytestocopy; \ } \ } else { \ state->free_in_buffer -= (buffer - state->next_output_byte); \ state->next_output_byte = buffer; \ } \ } LOCAL(boolean) flush_bits(working_state *state) { JOCTET _buffer[BUFSIZE], *buffer, temp; simd_bit_buf_type put_buffer; int put_bits; int localbuf = 0; if (state->simd) { #if defined(__aarch64__) && !defined(NEON_INTRINSICS) put_bits = state->cur.free_bits; #else put_bits = SIMD_BIT_BUF_SIZE - state->cur.free_bits; #endif put_buffer = state->cur.put_buffer.simd; } else { put_bits = BIT_BUF_SIZE - state->cur.free_bits; put_buffer = state->cur.put_buffer.c; } LOAD_BUFFER() while (put_bits >= 8) { put_bits -= 8; temp = (JOCTET)(put_buffer >> put_bits); EMIT_BYTE(temp) } if (put_bits) { /* fill partial byte with ones */ temp = (JOCTET)((put_buffer << (8 - put_bits)) | (0xFF >> put_bits)); EMIT_BYTE(temp) } if (state->simd) { /* and reset bit buffer to empty */ state->cur.put_buffer.simd = 0; #if defined(__aarch64__) && !defined(NEON_INTRINSICS) state->cur.free_bits = 0; #else state->cur.free_bits = SIMD_BIT_BUF_SIZE; #endif } else { state->cur.put_buffer.c = 0; state->cur.free_bits = BIT_BUF_SIZE; } STORE_BUFFER() return TRUE; } /* Encode a single block's worth of coefficients */ LOCAL(boolean) encode_one_block_simd(working_state *state, JCOEFPTR block, int last_dc_val, c_derived_tbl *dctbl, c_derived_tbl *actbl) { JOCTET _buffer[BUFSIZE], *buffer; int localbuf = 0; LOAD_BUFFER() buffer = jsimd_huff_encode_one_block(state, buffer, block, last_dc_val, dctbl, actbl); STORE_BUFFER() return TRUE; } LOCAL(boolean) encode_one_block(working_state *state, JCOEFPTR block, int last_dc_val, c_derived_tbl *dctbl, c_derived_tbl *actbl) { int temp, nbits, free_bits; bit_buf_type put_buffer; JOCTET _buffer[BUFSIZE], *buffer; int localbuf = 0; free_bits = state->cur.free_bits; put_buffer = state->cur.put_buffer.c; LOAD_BUFFER() /* Encode the DC coefficient difference per section F.1.2.1 */ temp = block[0] - last_dc_val; /* This is a well-known technique for obtaining the absolute value without a * branch. It is derived from an assembly language technique presented in * "How to Optimize for the Pentium Processors", Copyright (c) 1996, 1997 by * Agner Fog. This code assumes we are on a two's complement machine. */ nbits = temp >> (CHAR_BIT * sizeof(int) - 1); temp += nbits; nbits ^= temp; /* Find the number of bits needed for the magnitude of the coefficient */ nbits = JPEG_NBITS(nbits); /* Emit the Huffman-coded symbol for the number of bits. * Emit that number of bits of the value, if positive, * or the complement of its magnitude, if negative. */ PUT_CODE(dctbl->ehufco[nbits], dctbl->ehufsi[nbits]) /* Encode the AC coefficients per section F.1.2.2 */ { int r = 0; /* r = run length of zeros */ /* Manually unroll the k loop to eliminate the counter variable. This * improves performance greatly on systems with a limited number of * registers (such as x86.) */ #define kloop(jpeg_natural_order_of_k) { \ if ((temp = block[jpeg_natural_order_of_k]) == 0) { \ r += 16; \ } else { \ /* Branch-less absolute value, bitwise complement, etc., same as above */ \ nbits = temp >> (CHAR_BIT * sizeof(int) - 1); \ temp += nbits; \ nbits ^= temp; \ nbits = JPEG_NBITS_NONZERO(nbits); \ /* if run length > 15, must emit special run-length-16 codes (0xF0) */ \ while (r >= 16 * 16) { \ r -= 16 * 16; \ PUT_BITS(actbl->ehufco[0xf0], actbl->ehufsi[0xf0]) \ } \ /* Emit Huffman symbol for run length / number of bits */ \ r += nbits; \ PUT_CODE(actbl->ehufco[r], actbl->ehufsi[r]) \ r = 0; \ } \ } /* One iteration for each value in jpeg_natural_order[] */ kloop(1); kloop(8); kloop(16); kloop(9); kloop(2); kloop(3); kloop(10); kloop(17); kloop(24); kloop(32); kloop(25); kloop(18); kloop(11); kloop(4); kloop(5); kloop(12); kloop(19); kloop(26); kloop(33); kloop(40); kloop(48); kloop(41); kloop(34); kloop(27); kloop(20); kloop(13); kloop(6); kloop(7); kloop(14); kloop(21); kloop(28); kloop(35); kloop(42); kloop(49); kloop(56); kloop(57); kloop(50); kloop(43); kloop(36); kloop(29); kloop(22); kloop(15); kloop(23); kloop(30); kloop(37); kloop(44); kloop(51); kloop(58); kloop(59); kloop(52); kloop(45); kloop(38); kloop(31); kloop(39); kloop(46); kloop(53); kloop(60); kloop(61); kloop(54); kloop(47); kloop(55); kloop(62); kloop(63); /* If the last coef(s) were zero, emit an end-of-block code */ if (r > 0) { PUT_BITS(actbl->ehufco[0], actbl->ehufsi[0]) } } state->cur.put_buffer.c = put_buffer; state->cur.free_bits = free_bits; STORE_BUFFER() return TRUE; } /* * Emit a restart marker & resynchronize predictions. */ LOCAL(boolean) emit_restart(working_state *state, int restart_num) { int ci; if (!flush_bits(state)) return FALSE; emit_byte(state, 0xFF, return FALSE); emit_byte(state, JPEG_RST0 + restart_num, return FALSE); /* Re-initialize DC predictions to 0 */ for (ci = 0; ci < state->cinfo->comps_in_scan; ci++) state->cur.last_dc_val[ci] = 0; /* The restart counter is not updated until we successfully write the MCU. */ return TRUE; } /* * Encode and output one MCU's worth of Huffman-compressed coefficients. */ METHODDEF(boolean) encode_mcu_huff(j_compress_ptr cinfo, JBLOCKROW *MCU_data) { huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy; working_state state; int blkn, ci; jpeg_component_info *compptr; /* Load up working state */ state.next_output_byte = cinfo->dest->next_output_byte; state.free_in_buffer = cinfo->dest->free_in_buffer; state.cur = entropy->saved; state.cinfo = cinfo; state.simd = entropy->simd; /* Emit restart marker if needed */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) if (!emit_restart(&state, entropy->next_restart_num)) return FALSE; } /* Encode the MCU data blocks */ if (entropy->simd) { for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { ci = cinfo->MCU_membership[blkn]; compptr = cinfo->cur_comp_info[ci]; if (!encode_one_block_simd(&state, MCU_data[blkn][0], state.cur.last_dc_val[ci], entropy->dc_derived_tbls[compptr->dc_tbl_no], entropy->ac_derived_tbls[compptr->ac_tbl_no])) return FALSE; /* Update last_dc_val */ state.cur.last_dc_val[ci] = MCU_data[blkn][0][0]; } } else { for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { ci = cinfo->MCU_membership[blkn]; compptr = cinfo->cur_comp_info[ci]; if (!encode_one_block(&state, MCU_data[blkn][0], state.cur.last_dc_val[ci], entropy->dc_derived_tbls[compptr->dc_tbl_no], entropy->ac_derived_tbls[compptr->ac_tbl_no])) return FALSE; /* Update last_dc_val */ state.cur.last_dc_val[ci] = MCU_data[blkn][0][0]; } } /* Completed MCU, so update state */ cinfo->dest->next_output_byte = state.next_output_byte; cinfo->dest->free_in_buffer = state.free_in_buffer; entropy->saved = state.cur; /* Update restart-interval state too */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) { entropy->restarts_to_go = cinfo->restart_interval; entropy->next_restart_num++; entropy->next_restart_num &= 7; } entropy->restarts_to_go--; } return TRUE; } /* * Finish up at the end of a Huffman-compressed scan. */ METHODDEF(void) finish_pass_huff(j_compress_ptr cinfo) { huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy; working_state state; /* Load up working state ... flush_bits needs it */ state.next_output_byte = cinfo->dest->next_output_byte; state.free_in_buffer = cinfo->dest->free_in_buffer; state.cur = entropy->saved; state.cinfo = cinfo; state.simd = entropy->simd; /* Flush out the last data */ if (!flush_bits(&state)) ERREXIT(cinfo, JERR_CANT_SUSPEND); /* Update state */ cinfo->dest->next_output_byte = state.next_output_byte; cinfo->dest->free_in_buffer = state.free_in_buffer; entropy->saved = state.cur; } /* * Huffman coding optimization. * * We first scan the supplied data and count the number of uses of each symbol * that is to be Huffman-coded. (This process MUST agree with the code above.) * Then we build a Huffman coding tree for the observed counts. * Symbols which are not needed at all for the particular image are not * assigned any code, which saves space in the DHT marker as well as in * the compressed data. */ #ifdef ENTROPY_OPT_SUPPORTED /* Process a single block's worth of coefficients */ LOCAL(void) htest_one_block(j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val, long dc_counts[], long ac_counts[]) { register int temp; register int nbits; register int k, r; /* Encode the DC coefficient difference per section F.1.2.1 */ temp = block[0] - last_dc_val; if (temp < 0) temp = -temp; /* Find the number of bits needed for the magnitude of the coefficient */ nbits = 0; while (temp) { nbits++; temp >>= 1; } /* Check for out-of-range coefficient values. * Since we're encoding a difference, the range limit is twice as much. */ if (nbits > MAX_COEF_BITS + 1) ERREXIT(cinfo, JERR_BAD_DCT_COEF); /* Count the Huffman symbol for the number of bits */ dc_counts[nbits]++; /* Encode the AC coefficients per section F.1.2.2 */ r = 0; /* r = run length of zeros */ for (k = 1; k < DCTSIZE2; k++) { if ((temp = block[jpeg_natural_order[k]]) == 0) { r++; } else { /* if run length > 15, must emit special run-length-16 codes (0xF0) */ while (r > 15) { ac_counts[0xF0]++; r -= 16; } /* Find the number of bits needed for the magnitude of the coefficient */ if (temp < 0) temp = -temp; /* Find the number of bits needed for the magnitude of the coefficient */ nbits = 1; /* there must be at least one 1 bit */ while ((temp >>= 1)) nbits++; /* Check for out-of-range coefficient values */ if (nbits > MAX_COEF_BITS) ERREXIT(cinfo, JERR_BAD_DCT_COEF); /* Count Huffman symbol for run length / number of bits */ ac_counts[(r << 4) + nbits]++; r = 0; } } /* If the last coef(s) were zero, emit an end-of-block code */ if (r > 0) ac_counts[0]++; } /* * Trial-encode one MCU's worth of Huffman-compressed coefficients. * No data is actually output, so no suspension return is possible. */ METHODDEF(boolean) encode_mcu_gather(j_compress_ptr cinfo, JBLOCKROW *MCU_data) { huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy; int blkn, ci; jpeg_component_info *compptr; /* Take care of restart intervals if needed */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) { /* Re-initialize DC predictions to 0 */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) entropy->saved.last_dc_val[ci] = 0; /* Update restart state */ entropy->restarts_to_go = cinfo->restart_interval; } entropy->restarts_to_go--; } for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { ci = cinfo->MCU_membership[blkn]; compptr = cinfo->cur_comp_info[ci]; htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci], entropy->dc_count_ptrs[compptr->dc_tbl_no], entropy->ac_count_ptrs[compptr->ac_tbl_no]); entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0]; } return TRUE; } /* * Generate the best Huffman code table for the given counts, fill htbl. * Note this is also used by jcphuff.c. * * The JPEG standard requires that no symbol be assigned a codeword of all * one bits (so that padding bits added at the end of a compressed segment * can't look like a valid code). Because of the canonical ordering of * codewords, this just means that there must be an unused slot in the * longest codeword length category. Annex K (Clause K.2) of * Rec. ITU-T T.81 (1992) | ISO/IEC 10918-1:1994 suggests reserving such a slot * by pretending that symbol 256 is a valid symbol with count 1. In theory * that's not optimal; giving it count zero but including it in the symbol set * anyway should give a better Huffman code. But the theoretically better code * actually seems to come out worse in practice, because it produces more * all-ones bytes (which incur stuffed zero bytes in the final file). In any * case the difference is tiny. * * The JPEG standard requires Huffman codes to be no more than 16 bits long. * If some symbols have a very small but nonzero probability, the Huffman tree * must be adjusted to meet the code length restriction. We currently use * the adjustment method suggested in JPEG section K.2. This method is *not* * optimal; it may not choose the best possible limited-length code. But * typically only very-low-frequency symbols will be given less-than-optimal * lengths, so the code is almost optimal. Experimental comparisons against * an optimal limited-length-code algorithm indicate that the difference is * microscopic --- usually less than a hundredth of a percent of total size. * So the extra complexity of an optimal algorithm doesn't seem worthwhile. */ GLOBAL(void) jpeg_gen_optimal_table(j_compress_ptr cinfo, JHUFF_TBL *htbl, long freq[]) { #define MAX_CLEN 32 /* assumed maximum initial code length */ UINT8 bits[MAX_CLEN + 1]; /* bits[k] = # of symbols with code length k */ int codesize[257]; /* codesize[k] = code length of symbol k */ int others[257]; /* next symbol in current branch of tree */ int c1, c2; int p, i, j; long v; /* This algorithm is explained in section K.2 of the JPEG standard */ memset(bits, 0, sizeof(bits)); memset(codesize, 0, sizeof(codesize)); for (i = 0; i < 257; i++) others[i] = -1; /* init links to empty */ freq[256] = 1; /* make sure 256 has a nonzero count */ /* Including the pseudo-symbol 256 in the Huffman procedure guarantees * that no real symbol is given code-value of all ones, because 256 * will be placed last in the largest codeword category. */ /* Huffman's basic algorithm to assign optimal code lengths to symbols */ for (;;) { /* Find the smallest nonzero frequency, set c1 = its symbol */ /* In case of ties, take the larger symbol number */ c1 = -1; v = 1000000000L; for (i = 0; i <= 256; i++) { if (freq[i] && freq[i] <= v) { v = freq[i]; c1 = i; } } /* Find the next smallest nonzero frequency, set c2 = its symbol */ /* In case of ties, take the larger symbol number */ c2 = -1; v = 1000000000L; for (i = 0; i <= 256; i++) { if (freq[i] && freq[i] <= v && i != c1) { v = freq[i]; c2 = i; } } /* Done if we've merged everything into one frequency */ if (c2 < 0) break; /* Else merge the two counts/trees */ freq[c1] += freq[c2]; freq[c2] = 0; /* Increment the codesize of everything in c1's tree branch */ codesize[c1]++; while (others[c1] >= 0) { c1 = others[c1]; codesize[c1]++; } others[c1] = c2; /* chain c2 onto c1's tree branch */ /* Increment the codesize of everything in c2's tree branch */ codesize[c2]++; while (others[c2] >= 0) { c2 = others[c2]; codesize[c2]++; } } /* Now count the number of symbols of each code length */ for (i = 0; i <= 256; i++) { if (codesize[i]) { /* The JPEG standard seems to think that this can't happen, */ /* but I'm paranoid... */ if (codesize[i] > MAX_CLEN) ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW); bits[codesize[i]]++; } } /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure * Huffman procedure assigned any such lengths, we must adjust the coding. * Here is what Rec. ITU-T T.81 | ISO/IEC 10918-1 says about how this next * bit works: Since symbols are paired for the longest Huffman code, the * symbols are removed from this length category two at a time. The prefix * for the pair (which is one bit shorter) is allocated to one of the pair; * then, skipping the BITS entry for that prefix length, a code word from the * next shortest nonzero BITS entry is converted into a prefix for two code * words one bit longer. */ for (i = MAX_CLEN; i > 16; i--) { while (bits[i] > 0) { j = i - 2; /* find length of new prefix to be used */ while (bits[j] == 0) j--; bits[i] -= 2; /* remove two symbols */ bits[i - 1]++; /* one goes in this length */ bits[j + 1] += 2; /* two new symbols in this length */ bits[j]--; /* symbol of this length is now a prefix */ } } /* Remove the count for the pseudo-symbol 256 from the largest codelength */ while (bits[i] == 0) /* find largest codelength still in use */ i--; bits[i]--; /* Return final symbol counts (only for lengths 0..16) */ memcpy(htbl->bits, bits, sizeof(htbl->bits)); /* Return a list of the symbols sorted by code length */ /* It's not real clear to me why we don't need to consider the codelength * changes made above, but Rec. ITU-T T.81 | ISO/IEC 10918-1 seems to think * this works. */ p = 0; for (i = 1; i <= MAX_CLEN; i++) { for (j = 0; j <= 255; j++) { if (codesize[j] == i) { htbl->huffval[p] = (UINT8)j; p++; } } } /* Set sent_table FALSE so updated table will be written to JPEG file. */ htbl->sent_table = FALSE; } /* * Finish up a statistics-gathering pass and create the new Huffman tables. */ METHODDEF(void) finish_pass_gather(j_compress_ptr cinfo) { huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy; int ci, dctbl, actbl; jpeg_component_info *compptr; JHUFF_TBL **htblptr; boolean did_dc[NUM_HUFF_TBLS]; boolean did_ac[NUM_HUFF_TBLS]; /* It's important not to apply jpeg_gen_optimal_table more than once * per table, because it clobbers the input frequency counts! */ memset(did_dc, 0, sizeof(did_dc)); memset(did_ac, 0, sizeof(did_ac)); for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; dctbl = compptr->dc_tbl_no; actbl = compptr->ac_tbl_no; if (!did_dc[dctbl]) { htblptr = &cinfo->dc_huff_tbl_ptrs[dctbl]; if (*htblptr == NULL) *htblptr = jpeg_alloc_huff_table((j_common_ptr)cinfo); jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]); did_dc[dctbl] = TRUE; } if (!did_ac[actbl]) { htblptr = &cinfo->ac_huff_tbl_ptrs[actbl]; if (*htblptr == NULL) *htblptr = jpeg_alloc_huff_table((j_common_ptr)cinfo); jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]); did_ac[actbl] = TRUE; } } } #endif /* ENTROPY_OPT_SUPPORTED */ /* * Module initialization routine for Huffman entropy encoding. */ GLOBAL(void) jinit_huff_encoder(j_compress_ptr cinfo) { huff_entropy_ptr entropy; int i; entropy = (huff_entropy_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, sizeof(huff_entropy_encoder)); cinfo->entropy = (struct jpeg_entropy_encoder *)entropy; entropy->pub.start_pass = start_pass_huff; /* Mark tables unallocated */ for (i = 0; i < NUM_HUFF_TBLS; i++) { entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; #ifdef ENTROPY_OPT_SUPPORTED entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL; #endif } } libjpeg-turbo-2.1.5/jchuff.h000066400000000000000000000035011436506551100157070ustar00rootroot00000000000000/* * jchuff.h * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1997, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2022, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains declarations for Huffman entropy encoding routines * that are shared between the sequential encoder (jchuff.c) and the * progressive encoder (jcphuff.c). No other modules need to see these. */ /* The legal range of a DCT coefficient is * -1024 .. +1023 for 8-bit data; * -16384 .. +16383 for 12-bit data. * Hence the magnitude should always fit in 10 or 14 bits respectively. */ #if BITS_IN_JSAMPLE == 8 #define MAX_COEF_BITS 10 #else #define MAX_COEF_BITS 14 #endif /* The progressive Huffman encoder uses an unsigned 16-bit data type to store * absolute values of coefficients, because it is possible to inject a * coefficient value of -32768 into the encoder by attempting to transform a * malformed 12-bit JPEG image, and the absolute value of -32768 would overflow * a signed 16-bit integer. */ typedef unsigned short UJCOEF; /* Derived data constructed for each Huffman table */ typedef struct { unsigned int ehufco[256]; /* code for each symbol */ char ehufsi[256]; /* length of code for each symbol */ /* If no code has been allocated for a symbol S, ehufsi[S] contains 0 */ } c_derived_tbl; /* Expand a Huffman table definition into the derived format */ EXTERN(void) jpeg_make_c_derived_tbl(j_compress_ptr cinfo, boolean isDC, int tblno, c_derived_tbl **pdtbl); /* Generate an optimal table definition given the specified counts */ EXTERN(void) jpeg_gen_optimal_table(j_compress_ptr cinfo, JHUFF_TBL *htbl, long freq[]); libjpeg-turbo-2.1.5/jcicc.c000066400000000000000000000077501436506551100155220ustar00rootroot00000000000000/* * jcicc.c * * Copyright (C) 1997-1998, Thomas G. Lane, Todd Newman. * Copyright (C) 2017, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file provides code to write International Color Consortium (ICC) device * profiles embedded in JFIF JPEG image files. The ICC has defined a standard * for including such data in JPEG "APP2" markers. The code given here does * not know anything about the internal structure of the ICC profile data; it * just knows how to embed the profile data in a JPEG file while writing it. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jerror.h" /* * Since an ICC profile can be larger than the maximum size of a JPEG marker * (64K), we need provisions to split it into multiple markers. The format * defined by the ICC specifies one or more APP2 markers containing the * following data: * Identifying string ASCII "ICC_PROFILE\0" (12 bytes) * Marker sequence number 1 for first APP2, 2 for next, etc (1 byte) * Number of markers Total number of APP2's used (1 byte) * Profile data (remainder of APP2 data) * Decoders should use the marker sequence numbers to reassemble the profile, * rather than assuming that the APP2 markers appear in the correct sequence. */ #define ICC_MARKER (JPEG_APP0 + 2) /* JPEG marker code for ICC */ #define ICC_OVERHEAD_LEN 14 /* size of non-profile data in APP2 */ #define MAX_BYTES_IN_MARKER 65533 /* maximum data len of a JPEG marker */ #define MAX_DATA_BYTES_IN_MARKER (MAX_BYTES_IN_MARKER - ICC_OVERHEAD_LEN) /* * This routine writes the given ICC profile data into a JPEG file. It *must* * be called AFTER calling jpeg_start_compress() and BEFORE the first call to * jpeg_write_scanlines(). (This ordering ensures that the APP2 marker(s) will * appear after the SOI and JFIF or Adobe markers, but before all else.) */ GLOBAL(void) jpeg_write_icc_profile(j_compress_ptr cinfo, const JOCTET *icc_data_ptr, unsigned int icc_data_len) { unsigned int num_markers; /* total number of markers we'll write */ int cur_marker = 1; /* per spec, counting starts at 1 */ unsigned int length; /* number of bytes to write in this marker */ if (icc_data_ptr == NULL || icc_data_len == 0) ERREXIT(cinfo, JERR_BUFFER_SIZE); if (cinfo->global_state < CSTATE_SCANNING) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); /* Calculate the number of markers we'll need, rounding up of course */ num_markers = icc_data_len / MAX_DATA_BYTES_IN_MARKER; if (num_markers * MAX_DATA_BYTES_IN_MARKER != icc_data_len) num_markers++; while (icc_data_len > 0) { /* length of profile to put in this marker */ length = icc_data_len; if (length > MAX_DATA_BYTES_IN_MARKER) length = MAX_DATA_BYTES_IN_MARKER; icc_data_len -= length; /* Write the JPEG marker header (APP2 code and marker length) */ jpeg_write_m_header(cinfo, ICC_MARKER, (unsigned int)(length + ICC_OVERHEAD_LEN)); /* Write the marker identifying string "ICC_PROFILE" (null-terminated). We * code it in this less-than-transparent way so that the code works even if * the local character set is not ASCII. */ jpeg_write_m_byte(cinfo, 0x49); jpeg_write_m_byte(cinfo, 0x43); jpeg_write_m_byte(cinfo, 0x43); jpeg_write_m_byte(cinfo, 0x5F); jpeg_write_m_byte(cinfo, 0x50); jpeg_write_m_byte(cinfo, 0x52); jpeg_write_m_byte(cinfo, 0x4F); jpeg_write_m_byte(cinfo, 0x46); jpeg_write_m_byte(cinfo, 0x49); jpeg_write_m_byte(cinfo, 0x4C); jpeg_write_m_byte(cinfo, 0x45); jpeg_write_m_byte(cinfo, 0x0); /* Add the sequencing info */ jpeg_write_m_byte(cinfo, cur_marker); jpeg_write_m_byte(cinfo, (int)num_markers); /* Add the profile data */ while (length--) { jpeg_write_m_byte(cinfo, *icc_data_ptr); icc_data_ptr++; } cur_marker++; } } libjpeg-turbo-2.1.5/jcinit.c000066400000000000000000000050051436506551100157160ustar00rootroot00000000000000/* * jcinit.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1997, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2020, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains initialization logic for the JPEG compressor. * This routine is in charge of selecting the modules to be executed and * making an initialization call to each one. * * Logically, this code belongs in jcmaster.c. It's split out because * linking this routine implies linking the entire compression library. * For a transcoding-only application, we want to be able to use jcmaster.c * without linking in the whole library. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jpegcomp.h" /* * Master selection of compression modules. * This is done once at the start of processing an image. We determine * which modules will be used and give them appropriate initialization calls. */ GLOBAL(void) jinit_compress_master(j_compress_ptr cinfo) { /* Initialize master control (includes parameter checking/processing) */ jinit_c_master_control(cinfo, FALSE /* full compression */); /* Preprocessing */ if (!cinfo->raw_data_in) { jinit_color_converter(cinfo); jinit_downsampler(cinfo); jinit_c_prep_controller(cinfo, FALSE /* never need full buffer here */); } /* Forward DCT */ jinit_forward_dct(cinfo); /* Entropy encoding: either Huffman or arithmetic coding. */ if (cinfo->arith_code) { #ifdef C_ARITH_CODING_SUPPORTED jinit_arith_encoder(cinfo); #else ERREXIT(cinfo, JERR_ARITH_NOTIMPL); #endif } else { if (cinfo->progressive_mode) { #ifdef C_PROGRESSIVE_SUPPORTED jinit_phuff_encoder(cinfo); #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif } else jinit_huff_encoder(cinfo); } /* Need a full-image coefficient buffer in any multi-pass mode. */ jinit_c_coef_controller(cinfo, (boolean)(cinfo->num_scans > 1 || cinfo->optimize_coding)); jinit_c_main_controller(cinfo, FALSE /* never need full buffer here */); jinit_marker_writer(cinfo); /* We can now tell the memory manager to allocate virtual arrays. */ (*cinfo->mem->realize_virt_arrays) ((j_common_ptr)cinfo); /* Write the datastream header (SOI) immediately. * Frame and scan headers are postponed till later. * This lets application insert special markers after the SOI. */ (*cinfo->marker->write_file_header) (cinfo); } libjpeg-turbo-2.1.5/jcmainct.c000066400000000000000000000121451436506551100162310ustar00rootroot00000000000000/* * jcmainct.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1996, Thomas G. Lane. * It was modified by The libjpeg-turbo Project to include only code relevant * to libjpeg-turbo. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains the main buffer controller for compression. * The main buffer lies between the pre-processor and the JPEG * compressor proper; it holds downsampled data in the JPEG colorspace. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" /* Private buffer controller object */ typedef struct { struct jpeg_c_main_controller pub; /* public fields */ JDIMENSION cur_iMCU_row; /* number of current iMCU row */ JDIMENSION rowgroup_ctr; /* counts row groups received in iMCU row */ boolean suspended; /* remember if we suspended output */ J_BUF_MODE pass_mode; /* current operating mode */ /* If using just a strip buffer, this points to the entire set of buffers * (we allocate one for each component). In the full-image case, this * points to the currently accessible strips of the virtual arrays. */ JSAMPARRAY buffer[MAX_COMPONENTS]; } my_main_controller; typedef my_main_controller *my_main_ptr; /* Forward declarations */ METHODDEF(void) process_data_simple_main(j_compress_ptr cinfo, JSAMPARRAY input_buf, JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail); /* * Initialize for a processing pass. */ METHODDEF(void) start_pass_main(j_compress_ptr cinfo, J_BUF_MODE pass_mode) { my_main_ptr main_ptr = (my_main_ptr)cinfo->main; /* Do nothing in raw-data mode. */ if (cinfo->raw_data_in) return; if (pass_mode != JBUF_PASS_THRU) ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); main_ptr->cur_iMCU_row = 0; /* initialize counters */ main_ptr->rowgroup_ctr = 0; main_ptr->suspended = FALSE; main_ptr->pass_mode = pass_mode; /* save mode for use by process_data */ main_ptr->pub.process_data = process_data_simple_main; } /* * Process some data. * This routine handles the simple pass-through mode, * where we have only a strip buffer. */ METHODDEF(void) process_data_simple_main(j_compress_ptr cinfo, JSAMPARRAY input_buf, JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail) { my_main_ptr main_ptr = (my_main_ptr)cinfo->main; while (main_ptr->cur_iMCU_row < cinfo->total_iMCU_rows) { /* Read input data if we haven't filled the main buffer yet */ if (main_ptr->rowgroup_ctr < DCTSIZE) (*cinfo->prep->pre_process_data) (cinfo, input_buf, in_row_ctr, in_rows_avail, main_ptr->buffer, &main_ptr->rowgroup_ctr, (JDIMENSION)DCTSIZE); /* If we don't have a full iMCU row buffered, return to application for * more data. Note that preprocessor will always pad to fill the iMCU row * at the bottom of the image. */ if (main_ptr->rowgroup_ctr != DCTSIZE) return; /* Send the completed row to the compressor */ if (!(*cinfo->coef->compress_data) (cinfo, main_ptr->buffer)) { /* If compressor did not consume the whole row, then we must need to * suspend processing and return to the application. In this situation * we pretend we didn't yet consume the last input row; otherwise, if * it happened to be the last row of the image, the application would * think we were done. */ if (!main_ptr->suspended) { (*in_row_ctr)--; main_ptr->suspended = TRUE; } return; } /* We did finish the row. Undo our little suspension hack if a previous * call suspended; then mark the main buffer empty. */ if (main_ptr->suspended) { (*in_row_ctr)++; main_ptr->suspended = FALSE; } main_ptr->rowgroup_ctr = 0; main_ptr->cur_iMCU_row++; } } /* * Initialize main buffer controller. */ GLOBAL(void) jinit_c_main_controller(j_compress_ptr cinfo, boolean need_full_buffer) { my_main_ptr main_ptr; int ci; jpeg_component_info *compptr; main_ptr = (my_main_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, sizeof(my_main_controller)); cinfo->main = (struct jpeg_c_main_controller *)main_ptr; main_ptr->pub.start_pass = start_pass_main; /* We don't need to create a buffer in raw-data mode. */ if (cinfo->raw_data_in) return; /* Create the buffer. It holds downsampled data, so each component * may be of a different size. */ if (need_full_buffer) { ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); } else { /* Allocate a strip buffer for each component */ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { main_ptr->buffer[ci] = (*cinfo->mem->alloc_sarray) ((j_common_ptr)cinfo, JPOOL_IMAGE, compptr->width_in_blocks * DCTSIZE, (JDIMENSION)(compptr->v_samp_factor * DCTSIZE)); } } } libjpeg-turbo-2.1.5/jcmarker.c000066400000000000000000000421741436506551100162440ustar00rootroot00000000000000/* * jcmarker.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1998, Thomas G. Lane. * Modified 2003-2010 by Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright (C) 2010, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains routines to write JPEG datastream markers. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jpegcomp.h" typedef enum { /* JPEG marker codes */ M_SOF0 = 0xc0, M_SOF1 = 0xc1, M_SOF2 = 0xc2, M_SOF3 = 0xc3, M_SOF5 = 0xc5, M_SOF6 = 0xc6, M_SOF7 = 0xc7, M_JPG = 0xc8, M_SOF9 = 0xc9, M_SOF10 = 0xca, M_SOF11 = 0xcb, M_SOF13 = 0xcd, M_SOF14 = 0xce, M_SOF15 = 0xcf, M_DHT = 0xc4, M_DAC = 0xcc, M_RST0 = 0xd0, M_RST1 = 0xd1, M_RST2 = 0xd2, M_RST3 = 0xd3, M_RST4 = 0xd4, M_RST5 = 0xd5, M_RST6 = 0xd6, M_RST7 = 0xd7, M_SOI = 0xd8, M_EOI = 0xd9, M_SOS = 0xda, M_DQT = 0xdb, M_DNL = 0xdc, M_DRI = 0xdd, M_DHP = 0xde, M_EXP = 0xdf, M_APP0 = 0xe0, M_APP1 = 0xe1, M_APP2 = 0xe2, M_APP3 = 0xe3, M_APP4 = 0xe4, M_APP5 = 0xe5, M_APP6 = 0xe6, M_APP7 = 0xe7, M_APP8 = 0xe8, M_APP9 = 0xe9, M_APP10 = 0xea, M_APP11 = 0xeb, M_APP12 = 0xec, M_APP13 = 0xed, M_APP14 = 0xee, M_APP15 = 0xef, M_JPG0 = 0xf0, M_JPG13 = 0xfd, M_COM = 0xfe, M_TEM = 0x01, M_ERROR = 0x100 } JPEG_MARKER; /* Private state */ typedef struct { struct jpeg_marker_writer pub; /* public fields */ unsigned int last_restart_interval; /* last DRI value emitted; 0 after SOI */ } my_marker_writer; typedef my_marker_writer *my_marker_ptr; /* * Basic output routines. * * Note that we do not support suspension while writing a marker. * Therefore, an application using suspension must ensure that there is * enough buffer space for the initial markers (typ. 600-700 bytes) before * calling jpeg_start_compress, and enough space to write the trailing EOI * (a few bytes) before calling jpeg_finish_compress. Multipass compression * modes are not supported at all with suspension, so those two are the only * points where markers will be written. */ LOCAL(void) emit_byte(j_compress_ptr cinfo, int val) /* Emit a byte */ { struct jpeg_destination_mgr *dest = cinfo->dest; *(dest->next_output_byte)++ = (JOCTET)val; if (--dest->free_in_buffer == 0) { if (!(*dest->empty_output_buffer) (cinfo)) ERREXIT(cinfo, JERR_CANT_SUSPEND); } } LOCAL(void) emit_marker(j_compress_ptr cinfo, JPEG_MARKER mark) /* Emit a marker code */ { emit_byte(cinfo, 0xFF); emit_byte(cinfo, (int)mark); } LOCAL(void) emit_2bytes(j_compress_ptr cinfo, int value) /* Emit a 2-byte integer; these are always MSB first in JPEG files */ { emit_byte(cinfo, (value >> 8) & 0xFF); emit_byte(cinfo, value & 0xFF); } /* * Routines to write specific marker types. */ LOCAL(int) emit_dqt(j_compress_ptr cinfo, int index) /* Emit a DQT marker */ /* Returns the precision used (0 = 8bits, 1 = 16bits) for baseline checking */ { JQUANT_TBL *qtbl = cinfo->quant_tbl_ptrs[index]; int prec; int i; if (qtbl == NULL) ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, index); prec = 0; for (i = 0; i < DCTSIZE2; i++) { if (qtbl->quantval[i] > 255) prec = 1; } if (!qtbl->sent_table) { emit_marker(cinfo, M_DQT); emit_2bytes(cinfo, prec ? DCTSIZE2 * 2 + 1 + 2 : DCTSIZE2 + 1 + 2); emit_byte(cinfo, index + (prec << 4)); for (i = 0; i < DCTSIZE2; i++) { /* The table entries must be emitted in zigzag order. */ unsigned int qval = qtbl->quantval[jpeg_natural_order[i]]; if (prec) emit_byte(cinfo, (int)(qval >> 8)); emit_byte(cinfo, (int)(qval & 0xFF)); } qtbl->sent_table = TRUE; } return prec; } LOCAL(void) emit_dht(j_compress_ptr cinfo, int index, boolean is_ac) /* Emit a DHT marker */ { JHUFF_TBL *htbl; int length, i; if (is_ac) { htbl = cinfo->ac_huff_tbl_ptrs[index]; index += 0x10; /* output index has AC bit set */ } else { htbl = cinfo->dc_huff_tbl_ptrs[index]; } if (htbl == NULL) ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, index); if (!htbl->sent_table) { emit_marker(cinfo, M_DHT); length = 0; for (i = 1; i <= 16; i++) length += htbl->bits[i]; emit_2bytes(cinfo, length + 2 + 1 + 16); emit_byte(cinfo, index); for (i = 1; i <= 16; i++) emit_byte(cinfo, htbl->bits[i]); for (i = 0; i < length; i++) emit_byte(cinfo, htbl->huffval[i]); htbl->sent_table = TRUE; } } LOCAL(void) emit_dac(j_compress_ptr cinfo) /* Emit a DAC marker */ /* Since the useful info is so small, we want to emit all the tables in */ /* one DAC marker. Therefore this routine does its own scan of the table. */ { #ifdef C_ARITH_CODING_SUPPORTED char dc_in_use[NUM_ARITH_TBLS]; char ac_in_use[NUM_ARITH_TBLS]; int length, i; jpeg_component_info *compptr; for (i = 0; i < NUM_ARITH_TBLS; i++) dc_in_use[i] = ac_in_use[i] = 0; for (i = 0; i < cinfo->comps_in_scan; i++) { compptr = cinfo->cur_comp_info[i]; /* DC needs no table for refinement scan */ if (cinfo->Ss == 0 && cinfo->Ah == 0) dc_in_use[compptr->dc_tbl_no] = 1; /* AC needs no table when not present */ if (cinfo->Se) ac_in_use[compptr->ac_tbl_no] = 1; } length = 0; for (i = 0; i < NUM_ARITH_TBLS; i++) length += dc_in_use[i] + ac_in_use[i]; if (length) { emit_marker(cinfo, M_DAC); emit_2bytes(cinfo, length * 2 + 2); for (i = 0; i < NUM_ARITH_TBLS; i++) { if (dc_in_use[i]) { emit_byte(cinfo, i); emit_byte(cinfo, cinfo->arith_dc_L[i] + (cinfo->arith_dc_U[i] << 4)); } if (ac_in_use[i]) { emit_byte(cinfo, i + 0x10); emit_byte(cinfo, cinfo->arith_ac_K[i]); } } } #endif /* C_ARITH_CODING_SUPPORTED */ } LOCAL(void) emit_dri(j_compress_ptr cinfo) /* Emit a DRI marker */ { emit_marker(cinfo, M_DRI); emit_2bytes(cinfo, 4); /* fixed length */ emit_2bytes(cinfo, (int)cinfo->restart_interval); } LOCAL(void) emit_sof(j_compress_ptr cinfo, JPEG_MARKER code) /* Emit a SOF marker */ { int ci; jpeg_component_info *compptr; emit_marker(cinfo, code); emit_2bytes(cinfo, 3 * cinfo->num_components + 2 + 5 + 1); /* length */ /* Make sure image isn't bigger than SOF field can handle */ if ((long)cinfo->_jpeg_height > 65535L || (long)cinfo->_jpeg_width > 65535L) ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int)65535); emit_byte(cinfo, cinfo->data_precision); emit_2bytes(cinfo, (int)cinfo->_jpeg_height); emit_2bytes(cinfo, (int)cinfo->_jpeg_width); emit_byte(cinfo, cinfo->num_components); for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { emit_byte(cinfo, compptr->component_id); emit_byte(cinfo, (compptr->h_samp_factor << 4) + compptr->v_samp_factor); emit_byte(cinfo, compptr->quant_tbl_no); } } LOCAL(void) emit_sos(j_compress_ptr cinfo) /* Emit a SOS marker */ { int i, td, ta; jpeg_component_info *compptr; emit_marker(cinfo, M_SOS); emit_2bytes(cinfo, 2 * cinfo->comps_in_scan + 2 + 1 + 3); /* length */ emit_byte(cinfo, cinfo->comps_in_scan); for (i = 0; i < cinfo->comps_in_scan; i++) { compptr = cinfo->cur_comp_info[i]; emit_byte(cinfo, compptr->component_id); /* We emit 0 for unused field(s); this is recommended by the P&M text * but does not seem to be specified in the standard. */ /* DC needs no table for refinement scan */ td = cinfo->Ss == 0 && cinfo->Ah == 0 ? compptr->dc_tbl_no : 0; /* AC needs no table when not present */ ta = cinfo->Se ? compptr->ac_tbl_no : 0; emit_byte(cinfo, (td << 4) + ta); } emit_byte(cinfo, cinfo->Ss); emit_byte(cinfo, cinfo->Se); emit_byte(cinfo, (cinfo->Ah << 4) + cinfo->Al); } LOCAL(void) emit_jfif_app0(j_compress_ptr cinfo) /* Emit a JFIF-compliant APP0 marker */ { /* * Length of APP0 block (2 bytes) * Block ID (4 bytes - ASCII "JFIF") * Zero byte (1 byte to terminate the ID string) * Version Major, Minor (2 bytes - major first) * Units (1 byte - 0x00 = none, 0x01 = inch, 0x02 = cm) * Xdpu (2 bytes - dots per unit horizontal) * Ydpu (2 bytes - dots per unit vertical) * Thumbnail X size (1 byte) * Thumbnail Y size (1 byte) */ emit_marker(cinfo, M_APP0); emit_2bytes(cinfo, 2 + 4 + 1 + 2 + 1 + 2 + 2 + 1 + 1); /* length */ emit_byte(cinfo, 0x4A); /* Identifier: ASCII "JFIF" */ emit_byte(cinfo, 0x46); emit_byte(cinfo, 0x49); emit_byte(cinfo, 0x46); emit_byte(cinfo, 0); emit_byte(cinfo, cinfo->JFIF_major_version); /* Version fields */ emit_byte(cinfo, cinfo->JFIF_minor_version); emit_byte(cinfo, cinfo->density_unit); /* Pixel size information */ emit_2bytes(cinfo, (int)cinfo->X_density); emit_2bytes(cinfo, (int)cinfo->Y_density); emit_byte(cinfo, 0); /* No thumbnail image */ emit_byte(cinfo, 0); } LOCAL(void) emit_adobe_app14(j_compress_ptr cinfo) /* Emit an Adobe APP14 marker */ { /* * Length of APP14 block (2 bytes) * Block ID (5 bytes - ASCII "Adobe") * Version Number (2 bytes - currently 100) * Flags0 (2 bytes - currently 0) * Flags1 (2 bytes - currently 0) * Color transform (1 byte) * * Although Adobe TN 5116 mentions Version = 101, all the Adobe files * now in circulation seem to use Version = 100, so that's what we write. * * We write the color transform byte as 1 if the JPEG color space is * YCbCr, 2 if it's YCCK, 0 otherwise. Adobe's definition has to do with * whether the encoder performed a transformation, which is pretty useless. */ emit_marker(cinfo, M_APP14); emit_2bytes(cinfo, 2 + 5 + 2 + 2 + 2 + 1); /* length */ emit_byte(cinfo, 0x41); /* Identifier: ASCII "Adobe" */ emit_byte(cinfo, 0x64); emit_byte(cinfo, 0x6F); emit_byte(cinfo, 0x62); emit_byte(cinfo, 0x65); emit_2bytes(cinfo, 100); /* Version */ emit_2bytes(cinfo, 0); /* Flags0 */ emit_2bytes(cinfo, 0); /* Flags1 */ switch (cinfo->jpeg_color_space) { case JCS_YCbCr: emit_byte(cinfo, 1); /* Color transform = 1 */ break; case JCS_YCCK: emit_byte(cinfo, 2); /* Color transform = 2 */ break; default: emit_byte(cinfo, 0); /* Color transform = 0 */ break; } } /* * These routines allow writing an arbitrary marker with parameters. * The only intended use is to emit COM or APPn markers after calling * write_file_header and before calling write_frame_header. * Other uses are not guaranteed to produce desirable results. * Counting the parameter bytes properly is the caller's responsibility. */ METHODDEF(void) write_marker_header(j_compress_ptr cinfo, int marker, unsigned int datalen) /* Emit an arbitrary marker header */ { if (datalen > (unsigned int)65533) /* safety check */ ERREXIT(cinfo, JERR_BAD_LENGTH); emit_marker(cinfo, (JPEG_MARKER)marker); emit_2bytes(cinfo, (int)(datalen + 2)); /* total length */ } METHODDEF(void) write_marker_byte(j_compress_ptr cinfo, int val) /* Emit one byte of marker parameters following write_marker_header */ { emit_byte(cinfo, val); } /* * Write datastream header. * This consists of an SOI and optional APPn markers. * We recommend use of the JFIF marker, but not the Adobe marker, * when using YCbCr or grayscale data. The JFIF marker should NOT * be used for any other JPEG colorspace. The Adobe marker is helpful * to distinguish RGB, CMYK, and YCCK colorspaces. * Note that an application can write additional header markers after * jpeg_start_compress returns. */ METHODDEF(void) write_file_header(j_compress_ptr cinfo) { my_marker_ptr marker = (my_marker_ptr)cinfo->marker; emit_marker(cinfo, M_SOI); /* first the SOI */ /* SOI is defined to reset restart interval to 0 */ marker->last_restart_interval = 0; if (cinfo->write_JFIF_header) /* next an optional JFIF APP0 */ emit_jfif_app0(cinfo); if (cinfo->write_Adobe_marker) /* next an optional Adobe APP14 */ emit_adobe_app14(cinfo); } /* * Write frame header. * This consists of DQT and SOFn markers. * Note that we do not emit the SOF until we have emitted the DQT(s). * This avoids compatibility problems with incorrect implementations that * try to error-check the quant table numbers as soon as they see the SOF. */ METHODDEF(void) write_frame_header(j_compress_ptr cinfo) { int ci, prec; boolean is_baseline; jpeg_component_info *compptr; /* Emit DQT for each quantization table. * Note that emit_dqt() suppresses any duplicate tables. */ prec = 0; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { prec += emit_dqt(cinfo, compptr->quant_tbl_no); } /* now prec is nonzero iff there are any 16-bit quant tables. */ /* Check for a non-baseline specification. * Note we assume that Huffman table numbers won't be changed later. */ if (cinfo->arith_code || cinfo->progressive_mode || cinfo->data_precision != 8) { is_baseline = FALSE; } else { is_baseline = TRUE; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { if (compptr->dc_tbl_no > 1 || compptr->ac_tbl_no > 1) is_baseline = FALSE; } if (prec && is_baseline) { is_baseline = FALSE; /* If it's baseline except for quantizer size, warn the user */ TRACEMS(cinfo, 0, JTRC_16BIT_TABLES); } } /* Emit the proper SOF marker */ if (cinfo->arith_code) { if (cinfo->progressive_mode) emit_sof(cinfo, M_SOF10); /* SOF code for progressive arithmetic */ else emit_sof(cinfo, M_SOF9); /* SOF code for sequential arithmetic */ } else { if (cinfo->progressive_mode) emit_sof(cinfo, M_SOF2); /* SOF code for progressive Huffman */ else if (is_baseline) emit_sof(cinfo, M_SOF0); /* SOF code for baseline implementation */ else emit_sof(cinfo, M_SOF1); /* SOF code for non-baseline Huffman file */ } } /* * Write scan header. * This consists of DHT or DAC markers, optional DRI, and SOS. * Compressed data will be written following the SOS. */ METHODDEF(void) write_scan_header(j_compress_ptr cinfo) { my_marker_ptr marker = (my_marker_ptr)cinfo->marker; int i; jpeg_component_info *compptr; if (cinfo->arith_code) { /* Emit arith conditioning info. We may have some duplication * if the file has multiple scans, but it's so small it's hardly * worth worrying about. */ emit_dac(cinfo); } else { /* Emit Huffman tables. * Note that emit_dht() suppresses any duplicate tables. */ for (i = 0; i < cinfo->comps_in_scan; i++) { compptr = cinfo->cur_comp_info[i]; /* DC needs no table for refinement scan */ if (cinfo->Ss == 0 && cinfo->Ah == 0) emit_dht(cinfo, compptr->dc_tbl_no, FALSE); /* AC needs no table when not present */ if (cinfo->Se) emit_dht(cinfo, compptr->ac_tbl_no, TRUE); } } /* Emit DRI if required --- note that DRI value could change for each scan. * We avoid wasting space with unnecessary DRIs, however. */ if (cinfo->restart_interval != marker->last_restart_interval) { emit_dri(cinfo); marker->last_restart_interval = cinfo->restart_interval; } emit_sos(cinfo); } /* * Write datastream trailer. */ METHODDEF(void) write_file_trailer(j_compress_ptr cinfo) { emit_marker(cinfo, M_EOI); } /* * Write an abbreviated table-specification datastream. * This consists of SOI, DQT and DHT tables, and EOI. * Any table that is defined and not marked sent_table = TRUE will be * emitted. Note that all tables will be marked sent_table = TRUE at exit. */ METHODDEF(void) write_tables_only(j_compress_ptr cinfo) { int i; emit_marker(cinfo, M_SOI); for (i = 0; i < NUM_QUANT_TBLS; i++) { if (cinfo->quant_tbl_ptrs[i] != NULL) (void)emit_dqt(cinfo, i); } if (!cinfo->arith_code) { for (i = 0; i < NUM_HUFF_TBLS; i++) { if (cinfo->dc_huff_tbl_ptrs[i] != NULL) emit_dht(cinfo, i, FALSE); if (cinfo->ac_huff_tbl_ptrs[i] != NULL) emit_dht(cinfo, i, TRUE); } } emit_marker(cinfo, M_EOI); } /* * Initialize the marker writer module. */ GLOBAL(void) jinit_marker_writer(j_compress_ptr cinfo) { my_marker_ptr marker; /* Create the subobject */ marker = (my_marker_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, sizeof(my_marker_writer)); cinfo->marker = (struct jpeg_marker_writer *)marker; /* Initialize method pointers */ marker->pub.write_file_header = write_file_header; marker->pub.write_frame_header = write_frame_header; marker->pub.write_scan_header = write_scan_header; marker->pub.write_file_trailer = write_file_trailer; marker->pub.write_tables_only = write_tables_only; marker->pub.write_marker_header = write_marker_header; marker->pub.write_marker_byte = write_marker_byte; /* Initialize private state */ marker->last_restart_interval = 0; } libjpeg-turbo-2.1.5/jcmaster.c000066400000000000000000000527071436506551100162610ustar00rootroot00000000000000/* * jcmaster.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1997, Thomas G. Lane. * Modified 2003-2010 by Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright (C) 2010, 2016, 2018, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains master control logic for the JPEG compressor. * These routines are concerned with parameter validation, initial setup, * and inter-pass control (determining the number of passes and the work * to be done in each pass). */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jpegcomp.h" /* Private state */ typedef enum { main_pass, /* input data, also do first output step */ huff_opt_pass, /* Huffman code optimization pass */ output_pass /* data output pass */ } c_pass_type; typedef struct { struct jpeg_comp_master pub; /* public fields */ c_pass_type pass_type; /* the type of the current pass */ int pass_number; /* # of passes completed */ int total_passes; /* total # of passes needed */ int scan_number; /* current index in scan_info[] */ /* * This is here so we can add libjpeg-turbo version/build information to the * global string table without introducing a new global symbol. Adding this * information to the global string table allows one to examine a binary * object and determine which version of libjpeg-turbo it was built from or * linked against. */ const char *jpeg_version; } my_comp_master; typedef my_comp_master *my_master_ptr; /* * Support routines that do various essential calculations. */ #if JPEG_LIB_VERSION >= 70 /* * Compute JPEG image dimensions and related values. * NOTE: this is exported for possible use by application. * Hence it mustn't do anything that can't be done twice. */ GLOBAL(void) jpeg_calc_jpeg_dimensions(j_compress_ptr cinfo) /* Do computations that are needed before master selection phase */ { /* Hardwire it to "no scaling" */ cinfo->jpeg_width = cinfo->image_width; cinfo->jpeg_height = cinfo->image_height; cinfo->min_DCT_h_scaled_size = DCTSIZE; cinfo->min_DCT_v_scaled_size = DCTSIZE; } #endif LOCAL(void) initial_setup(j_compress_ptr cinfo, boolean transcode_only) /* Do computations that are needed before master selection phase */ { int ci; jpeg_component_info *compptr; long samplesperrow; JDIMENSION jd_samplesperrow; #if JPEG_LIB_VERSION >= 70 #if JPEG_LIB_VERSION >= 80 if (!transcode_only) #endif jpeg_calc_jpeg_dimensions(cinfo); #endif /* Sanity check on image dimensions */ if (cinfo->_jpeg_height <= 0 || cinfo->_jpeg_width <= 0 || cinfo->num_components <= 0 || cinfo->input_components <= 0) ERREXIT(cinfo, JERR_EMPTY_IMAGE); /* Make sure image isn't bigger than I can handle */ if ((long)cinfo->_jpeg_height > (long)JPEG_MAX_DIMENSION || (long)cinfo->_jpeg_width > (long)JPEG_MAX_DIMENSION) ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int)JPEG_MAX_DIMENSION); /* Width of an input scanline must be representable as JDIMENSION. */ samplesperrow = (long)cinfo->image_width * (long)cinfo->input_components; jd_samplesperrow = (JDIMENSION)samplesperrow; if ((long)jd_samplesperrow != samplesperrow) ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); /* For now, precision must match compiled-in value... */ if (cinfo->data_precision != BITS_IN_JSAMPLE) ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision); /* Check that number of components won't exceed internal array sizes */ if (cinfo->num_components > MAX_COMPONENTS) ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components, MAX_COMPONENTS); /* Compute maximum sampling factors; check factor validity */ cinfo->max_h_samp_factor = 1; cinfo->max_v_samp_factor = 1; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { if (compptr->h_samp_factor <= 0 || compptr->h_samp_factor > MAX_SAMP_FACTOR || compptr->v_samp_factor <= 0 || compptr->v_samp_factor > MAX_SAMP_FACTOR) ERREXIT(cinfo, JERR_BAD_SAMPLING); cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor, compptr->h_samp_factor); cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor, compptr->v_samp_factor); } /* Compute dimensions of components */ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { /* Fill in the correct component_index value; don't rely on application */ compptr->component_index = ci; /* For compression, we never do DCT scaling. */ #if JPEG_LIB_VERSION >= 70 compptr->DCT_h_scaled_size = compptr->DCT_v_scaled_size = DCTSIZE; #else compptr->DCT_scaled_size = DCTSIZE; #endif /* Size in DCT blocks */ compptr->width_in_blocks = (JDIMENSION) jdiv_round_up((long)cinfo->_jpeg_width * (long)compptr->h_samp_factor, (long)(cinfo->max_h_samp_factor * DCTSIZE)); compptr->height_in_blocks = (JDIMENSION) jdiv_round_up((long)cinfo->_jpeg_height * (long)compptr->v_samp_factor, (long)(cinfo->max_v_samp_factor * DCTSIZE)); /* Size in samples */ compptr->downsampled_width = (JDIMENSION) jdiv_round_up((long)cinfo->_jpeg_width * (long)compptr->h_samp_factor, (long)cinfo->max_h_samp_factor); compptr->downsampled_height = (JDIMENSION) jdiv_round_up((long)cinfo->_jpeg_height * (long)compptr->v_samp_factor, (long)cinfo->max_v_samp_factor); /* Mark component needed (this flag isn't actually used for compression) */ compptr->component_needed = TRUE; } /* Compute number of fully interleaved MCU rows (number of times that * main controller will call coefficient controller). */ cinfo->total_iMCU_rows = (JDIMENSION) jdiv_round_up((long)cinfo->_jpeg_height, (long)(cinfo->max_v_samp_factor * DCTSIZE)); } #ifdef C_MULTISCAN_FILES_SUPPORTED LOCAL(void) validate_script(j_compress_ptr cinfo) /* Verify that the scan script in cinfo->scan_info[] is valid; also * determine whether it uses progressive JPEG, and set cinfo->progressive_mode. */ { const jpeg_scan_info *scanptr; int scanno, ncomps, ci, coefi, thisi; int Ss, Se, Ah, Al; boolean component_sent[MAX_COMPONENTS]; #ifdef C_PROGRESSIVE_SUPPORTED int *last_bitpos_ptr; int last_bitpos[MAX_COMPONENTS][DCTSIZE2]; /* -1 until that coefficient has been seen; then last Al for it */ #endif if (cinfo->num_scans <= 0) ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, 0); /* For sequential JPEG, all scans must have Ss=0, Se=DCTSIZE2-1; * for progressive JPEG, no scan can have this. */ scanptr = cinfo->scan_info; if (scanptr->Ss != 0 || scanptr->Se != DCTSIZE2 - 1) { #ifdef C_PROGRESSIVE_SUPPORTED cinfo->progressive_mode = TRUE; last_bitpos_ptr = &last_bitpos[0][0]; for (ci = 0; ci < cinfo->num_components; ci++) for (coefi = 0; coefi < DCTSIZE2; coefi++) *last_bitpos_ptr++ = -1; #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif } else { cinfo->progressive_mode = FALSE; for (ci = 0; ci < cinfo->num_components; ci++) component_sent[ci] = FALSE; } for (scanno = 1; scanno <= cinfo->num_scans; scanptr++, scanno++) { /* Validate component indexes */ ncomps = scanptr->comps_in_scan; if (ncomps <= 0 || ncomps > MAX_COMPS_IN_SCAN) ERREXIT2(cinfo, JERR_COMPONENT_COUNT, ncomps, MAX_COMPS_IN_SCAN); for (ci = 0; ci < ncomps; ci++) { thisi = scanptr->component_index[ci]; if (thisi < 0 || thisi >= cinfo->num_components) ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno); /* Components must appear in SOF order within each scan */ if (ci > 0 && thisi <= scanptr->component_index[ci - 1]) ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno); } /* Validate progression parameters */ Ss = scanptr->Ss; Se = scanptr->Se; Ah = scanptr->Ah; Al = scanptr->Al; if (cinfo->progressive_mode) { #ifdef C_PROGRESSIVE_SUPPORTED /* Rec. ITU-T T.81 | ISO/IEC 10918-1 simply gives the ranges 0..13 for Ah * and Al, but that seems wrong: the upper bound ought to depend on data * precision. Perhaps they really meant 0..N+1 for N-bit precision. * Here we allow 0..10 for 8-bit data; Al larger than 10 results in * out-of-range reconstructed DC values during the first DC scan, * which might cause problems for some decoders. */ #if BITS_IN_JSAMPLE == 8 #define MAX_AH_AL 10 #else #define MAX_AH_AL 13 #endif if (Ss < 0 || Ss >= DCTSIZE2 || Se < Ss || Se >= DCTSIZE2 || Ah < 0 || Ah > MAX_AH_AL || Al < 0 || Al > MAX_AH_AL) ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); if (Ss == 0) { if (Se != 0) /* DC and AC together not OK */ ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); } else { if (ncomps != 1) /* AC scans must be for only one component */ ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); } for (ci = 0; ci < ncomps; ci++) { last_bitpos_ptr = &last_bitpos[scanptr->component_index[ci]][0]; if (Ss != 0 && last_bitpos_ptr[0] < 0) /* AC without prior DC scan */ ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); for (coefi = Ss; coefi <= Se; coefi++) { if (last_bitpos_ptr[coefi] < 0) { /* first scan of this coefficient */ if (Ah != 0) ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); } else { /* not first scan */ if (Ah != last_bitpos_ptr[coefi] || Al != Ah - 1) ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); } last_bitpos_ptr[coefi] = Al; } } #endif } else { /* For sequential JPEG, all progression parameters must be these: */ if (Ss != 0 || Se != DCTSIZE2 - 1 || Ah != 0 || Al != 0) ERREXIT1(cinfo, JERR_BAD_PROG_SCRIPT, scanno); /* Make sure components are not sent twice */ for (ci = 0; ci < ncomps; ci++) { thisi = scanptr->component_index[ci]; if (component_sent[thisi]) ERREXIT1(cinfo, JERR_BAD_SCAN_SCRIPT, scanno); component_sent[thisi] = TRUE; } } } /* Now verify that everything got sent. */ if (cinfo->progressive_mode) { #ifdef C_PROGRESSIVE_SUPPORTED /* For progressive mode, we only check that at least some DC data * got sent for each component; the spec does not require that all bits * of all coefficients be transmitted. Would it be wiser to enforce * transmission of all coefficient bits?? */ for (ci = 0; ci < cinfo->num_components; ci++) { if (last_bitpos[ci][0] < 0) ERREXIT(cinfo, JERR_MISSING_DATA); } #endif } else { for (ci = 0; ci < cinfo->num_components; ci++) { if (!component_sent[ci]) ERREXIT(cinfo, JERR_MISSING_DATA); } } } #endif /* C_MULTISCAN_FILES_SUPPORTED */ LOCAL(void) select_scan_parameters(j_compress_ptr cinfo) /* Set up the scan parameters for the current scan */ { int ci; #ifdef C_MULTISCAN_FILES_SUPPORTED if (cinfo->scan_info != NULL) { /* Prepare for current scan --- the script is already validated */ my_master_ptr master = (my_master_ptr)cinfo->master; const jpeg_scan_info *scanptr = cinfo->scan_info + master->scan_number; cinfo->comps_in_scan = scanptr->comps_in_scan; for (ci = 0; ci < scanptr->comps_in_scan; ci++) { cinfo->cur_comp_info[ci] = &cinfo->comp_info[scanptr->component_index[ci]]; } cinfo->Ss = scanptr->Ss; cinfo->Se = scanptr->Se; cinfo->Ah = scanptr->Ah; cinfo->Al = scanptr->Al; } else #endif { /* Prepare for single sequential-JPEG scan containing all components */ if (cinfo->num_components > MAX_COMPS_IN_SCAN) ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components, MAX_COMPS_IN_SCAN); cinfo->comps_in_scan = cinfo->num_components; for (ci = 0; ci < cinfo->num_components; ci++) { cinfo->cur_comp_info[ci] = &cinfo->comp_info[ci]; } cinfo->Ss = 0; cinfo->Se = DCTSIZE2 - 1; cinfo->Ah = 0; cinfo->Al = 0; } } LOCAL(void) per_scan_setup(j_compress_ptr cinfo) /* Do computations that are needed before processing a JPEG scan */ /* cinfo->comps_in_scan and cinfo->cur_comp_info[] are already set */ { int ci, mcublks, tmp; jpeg_component_info *compptr; if (cinfo->comps_in_scan == 1) { /* Noninterleaved (single-component) scan */ compptr = cinfo->cur_comp_info[0]; /* Overall image size in MCUs */ cinfo->MCUs_per_row = compptr->width_in_blocks; cinfo->MCU_rows_in_scan = compptr->height_in_blocks; /* For noninterleaved scan, always one block per MCU */ compptr->MCU_width = 1; compptr->MCU_height = 1; compptr->MCU_blocks = 1; compptr->MCU_sample_width = DCTSIZE; compptr->last_col_width = 1; /* For noninterleaved scans, it is convenient to define last_row_height * as the number of block rows present in the last iMCU row. */ tmp = (int)(compptr->height_in_blocks % compptr->v_samp_factor); if (tmp == 0) tmp = compptr->v_samp_factor; compptr->last_row_height = tmp; /* Prepare array describing MCU composition */ cinfo->blocks_in_MCU = 1; cinfo->MCU_membership[0] = 0; } else { /* Interleaved (multi-component) scan */ if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN) ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan, MAX_COMPS_IN_SCAN); /* Overall image size in MCUs */ cinfo->MCUs_per_row = (JDIMENSION) jdiv_round_up((long)cinfo->_jpeg_width, (long)(cinfo->max_h_samp_factor * DCTSIZE)); cinfo->MCU_rows_in_scan = (JDIMENSION) jdiv_round_up((long)cinfo->_jpeg_height, (long)(cinfo->max_v_samp_factor * DCTSIZE)); cinfo->blocks_in_MCU = 0; for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; /* Sampling factors give # of blocks of component in each MCU */ compptr->MCU_width = compptr->h_samp_factor; compptr->MCU_height = compptr->v_samp_factor; compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height; compptr->MCU_sample_width = compptr->MCU_width * DCTSIZE; /* Figure number of non-dummy blocks in last MCU column & row */ tmp = (int)(compptr->width_in_blocks % compptr->MCU_width); if (tmp == 0) tmp = compptr->MCU_width; compptr->last_col_width = tmp; tmp = (int)(compptr->height_in_blocks % compptr->MCU_height); if (tmp == 0) tmp = compptr->MCU_height; compptr->last_row_height = tmp; /* Prepare array describing MCU composition */ mcublks = compptr->MCU_blocks; if (cinfo->blocks_in_MCU + mcublks > C_MAX_BLOCKS_IN_MCU) ERREXIT(cinfo, JERR_BAD_MCU_SIZE); while (mcublks-- > 0) { cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci; } } } /* Convert restart specified in rows to actual MCU count. */ /* Note that count must fit in 16 bits, so we provide limiting. */ if (cinfo->restart_in_rows > 0) { long nominal = (long)cinfo->restart_in_rows * (long)cinfo->MCUs_per_row; cinfo->restart_interval = (unsigned int)MIN(nominal, 65535L); } } /* * Per-pass setup. * This is called at the beginning of each pass. We determine which modules * will be active during this pass and give them appropriate start_pass calls. * We also set is_last_pass to indicate whether any more passes will be * required. */ METHODDEF(void) prepare_for_pass(j_compress_ptr cinfo) { my_master_ptr master = (my_master_ptr)cinfo->master; switch (master->pass_type) { case main_pass: /* Initial pass: will collect input data, and do either Huffman * optimization or data output for the first scan. */ select_scan_parameters(cinfo); per_scan_setup(cinfo); if (!cinfo->raw_data_in) { (*cinfo->cconvert->start_pass) (cinfo); (*cinfo->downsample->start_pass) (cinfo); (*cinfo->prep->start_pass) (cinfo, JBUF_PASS_THRU); } (*cinfo->fdct->start_pass) (cinfo); (*cinfo->entropy->start_pass) (cinfo, cinfo->optimize_coding); (*cinfo->coef->start_pass) (cinfo, (master->total_passes > 1 ? JBUF_SAVE_AND_PASS : JBUF_PASS_THRU)); (*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU); if (cinfo->optimize_coding) { /* No immediate data output; postpone writing frame/scan headers */ master->pub.call_pass_startup = FALSE; } else { /* Will write frame/scan headers at first jpeg_write_scanlines call */ master->pub.call_pass_startup = TRUE; } break; #ifdef ENTROPY_OPT_SUPPORTED case huff_opt_pass: /* Do Huffman optimization for a scan after the first one. */ select_scan_parameters(cinfo); per_scan_setup(cinfo); if (cinfo->Ss != 0 || cinfo->Ah == 0 || cinfo->arith_code) { (*cinfo->entropy->start_pass) (cinfo, TRUE); (*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST); master->pub.call_pass_startup = FALSE; break; } /* Special case: Huffman DC refinement scans need no Huffman table * and therefore we can skip the optimization pass for them. */ master->pass_type = output_pass; master->pass_number++; #endif FALLTHROUGH /*FALLTHROUGH*/ case output_pass: /* Do a data-output pass. */ /* We need not repeat per-scan setup if prior optimization pass did it. */ if (!cinfo->optimize_coding) { select_scan_parameters(cinfo); per_scan_setup(cinfo); } (*cinfo->entropy->start_pass) (cinfo, FALSE); (*cinfo->coef->start_pass) (cinfo, JBUF_CRANK_DEST); /* We emit frame/scan headers now */ if (master->scan_number == 0) (*cinfo->marker->write_frame_header) (cinfo); (*cinfo->marker->write_scan_header) (cinfo); master->pub.call_pass_startup = FALSE; break; default: ERREXIT(cinfo, JERR_NOT_COMPILED); } master->pub.is_last_pass = (master->pass_number == master->total_passes - 1); /* Set up progress monitor's pass info if present */ if (cinfo->progress != NULL) { cinfo->progress->completed_passes = master->pass_number; cinfo->progress->total_passes = master->total_passes; } } /* * Special start-of-pass hook. * This is called by jpeg_write_scanlines if call_pass_startup is TRUE. * In single-pass processing, we need this hook because we don't want to * write frame/scan headers during jpeg_start_compress; we want to let the * application write COM markers etc. between jpeg_start_compress and the * jpeg_write_scanlines loop. * In multi-pass processing, this routine is not used. */ METHODDEF(void) pass_startup(j_compress_ptr cinfo) { cinfo->master->call_pass_startup = FALSE; /* reset flag so call only once */ (*cinfo->marker->write_frame_header) (cinfo); (*cinfo->marker->write_scan_header) (cinfo); } /* * Finish up at end of pass. */ METHODDEF(void) finish_pass_master(j_compress_ptr cinfo) { my_master_ptr master = (my_master_ptr)cinfo->master; /* The entropy coder always needs an end-of-pass call, * either to analyze statistics or to flush its output buffer. */ (*cinfo->entropy->finish_pass) (cinfo); /* Update state for next pass */ switch (master->pass_type) { case main_pass: /* next pass is either output of scan 0 (after optimization) * or output of scan 1 (if no optimization). */ master->pass_type = output_pass; if (!cinfo->optimize_coding) master->scan_number++; break; case huff_opt_pass: /* next pass is always output of current scan */ master->pass_type = output_pass; break; case output_pass: /* next pass is either optimization or output of next scan */ if (cinfo->optimize_coding) master->pass_type = huff_opt_pass; master->scan_number++; break; } master->pass_number++; } /* * Initialize master compression control. */ GLOBAL(void) jinit_c_master_control(j_compress_ptr cinfo, boolean transcode_only) { my_master_ptr master; master = (my_master_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, sizeof(my_comp_master)); cinfo->master = (struct jpeg_comp_master *)master; master->pub.prepare_for_pass = prepare_for_pass; master->pub.pass_startup = pass_startup; master->pub.finish_pass = finish_pass_master; master->pub.is_last_pass = FALSE; /* Validate parameters, determine derived values */ initial_setup(cinfo, transcode_only); if (cinfo->scan_info != NULL) { #ifdef C_MULTISCAN_FILES_SUPPORTED validate_script(cinfo); #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif } else { cinfo->progressive_mode = FALSE; cinfo->num_scans = 1; } if (cinfo->progressive_mode && !cinfo->arith_code) /* TEMPORARY HACK ??? */ cinfo->optimize_coding = TRUE; /* assume default tables no good for progressive mode */ /* Initialize my private state */ if (transcode_only) { /* no main pass in transcoding */ if (cinfo->optimize_coding) master->pass_type = huff_opt_pass; else master->pass_type = output_pass; } else { /* for normal compression, first pass is always this type: */ master->pass_type = main_pass; } master->scan_number = 0; master->pass_number = 0; if (cinfo->optimize_coding) master->total_passes = cinfo->num_scans * 2; else master->total_passes = cinfo->num_scans; master->jpeg_version = PACKAGE_NAME " version " VERSION " (build " BUILD ")"; } libjpeg-turbo-2.1.5/jcomapi.c000066400000000000000000000062471436506551100160710ustar00rootroot00000000000000/* * jcomapi.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1997, Thomas G. Lane. * It was modified by The libjpeg-turbo Project to include only code relevant * to libjpeg-turbo. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains application interface routines that are used for both * compression and decompression. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" /* * Abort processing of a JPEG compression or decompression operation, * but don't destroy the object itself. * * For this, we merely clean up all the nonpermanent memory pools. * Note that temp files (virtual arrays) are not allowed to belong to * the permanent pool, so we will be able to close all temp files here. * Closing a data source or destination, if necessary, is the application's * responsibility. */ GLOBAL(void) jpeg_abort(j_common_ptr cinfo) { int pool; /* Do nothing if called on a not-initialized or destroyed JPEG object. */ if (cinfo->mem == NULL) return; /* Releasing pools in reverse order might help avoid fragmentation * with some (brain-damaged) malloc libraries. */ for (pool = JPOOL_NUMPOOLS - 1; pool > JPOOL_PERMANENT; pool--) { (*cinfo->mem->free_pool) (cinfo, pool); } /* Reset overall state for possible reuse of object */ if (cinfo->is_decompressor) { cinfo->global_state = DSTATE_START; /* Try to keep application from accessing now-deleted marker list. * A bit kludgy to do it here, but this is the most central place. */ ((j_decompress_ptr)cinfo)->marker_list = NULL; } else { cinfo->global_state = CSTATE_START; } } /* * Destruction of a JPEG object. * * Everything gets deallocated except the master jpeg_compress_struct itself * and the error manager struct. Both of these are supplied by the application * and must be freed, if necessary, by the application. (Often they are on * the stack and so don't need to be freed anyway.) * Closing a data source or destination, if necessary, is the application's * responsibility. */ GLOBAL(void) jpeg_destroy(j_common_ptr cinfo) { /* We need only tell the memory manager to release everything. */ /* NB: mem pointer is NULL if memory mgr failed to initialize. */ if (cinfo->mem != NULL) (*cinfo->mem->self_destruct) (cinfo); cinfo->mem = NULL; /* be safe if jpeg_destroy is called twice */ cinfo->global_state = 0; /* mark it destroyed */ } /* * Convenience routines for allocating quantization and Huffman tables. * (Would jutils.c be a more reasonable place to put these?) */ GLOBAL(JQUANT_TBL *) jpeg_alloc_quant_table(j_common_ptr cinfo) { JQUANT_TBL *tbl; tbl = (JQUANT_TBL *) (*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, sizeof(JQUANT_TBL)); tbl->sent_table = FALSE; /* make sure this is false in any new table */ return tbl; } GLOBAL(JHUFF_TBL *) jpeg_alloc_huff_table(j_common_ptr cinfo) { JHUFF_TBL *tbl; tbl = (JHUFF_TBL *) (*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, sizeof(JHUFF_TBL)); tbl->sent_table = FALSE; /* make sure this is false in any new table */ return tbl; } libjpeg-turbo-2.1.5/jconfig.h.in000066400000000000000000000022221436506551100164650ustar00rootroot00000000000000/* Version ID for the JPEG library. * Might be useful for tests like "#if JPEG_LIB_VERSION >= 60". */ #define JPEG_LIB_VERSION @JPEG_LIB_VERSION@ /* libjpeg-turbo version */ #define LIBJPEG_TURBO_VERSION @VERSION@ /* libjpeg-turbo version in integer form */ #define LIBJPEG_TURBO_VERSION_NUMBER @LIBJPEG_TURBO_VERSION_NUMBER@ /* Support arithmetic encoding */ #cmakedefine C_ARITH_CODING_SUPPORTED 1 /* Support arithmetic decoding */ #cmakedefine D_ARITH_CODING_SUPPORTED 1 /* Support in-memory source/destination managers */ #cmakedefine MEM_SRCDST_SUPPORTED 1 /* Use accelerated SIMD routines. */ #cmakedefine WITH_SIMD 1 /* * Define BITS_IN_JSAMPLE as either * 8 for 8-bit sample values (the usual setting) * 12 for 12-bit sample values * Only 8 and 12 are legal data precisions for lossy JPEG according to the * JPEG standard, and the IJG code does not support anything else! * We do not support run-time selection of data precision, sorry. */ #define BITS_IN_JSAMPLE @BITS_IN_JSAMPLE@ /* use 8 or 12 */ /* Define if your (broken) compiler shifts signed values as if they were unsigned. */ #cmakedefine RIGHT_SHIFT_IS_UNSIGNED 1 libjpeg-turbo-2.1.5/jconfig.txt000066400000000000000000000060671436506551100164630ustar00rootroot00000000000000/* * jconfig.txt * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1994, Thomas G. Lane. * It was modified by The libjpeg-turbo Project to include only code relevant * to libjpeg-turbo. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file documents the configuration options that are required to * customize the JPEG software for a particular system. * * The actual configuration options for a particular installation are stored * in jconfig.h. On many machines, jconfig.h can be generated automatically * or copied from one of the "canned" jconfig files that we supply. But if * you need to generate a jconfig.h file by hand, this file tells you how. * * DO NOT EDIT THIS FILE --- IT WON'T ACCOMPLISH ANYTHING. * EDIT A COPY NAMED JCONFIG.H. */ /* * These symbols indicate the properties of your machine or compiler. * #define the symbol if yes, #undef it if no. */ /* Define "boolean" as unsigned char, not int, on Windows systems. */ #ifdef _WIN32 #ifndef __RPCNDR_H__ /* don't conflict if rpcndr.h already read */ typedef unsigned char boolean; #endif #define HAVE_BOOLEAN /* prevent jmorecfg.h from redefining it */ #endif /* * The following options affect code selection within the JPEG library, * but they don't need to be visible to applications using the library. * To minimize application namespace pollution, the symbols won't be * defined unless JPEG_INTERNALS has been defined. */ #ifdef JPEG_INTERNALS /* Define this if your compiler implements ">>" on signed values as a logical * (unsigned) shift; leave it undefined if ">>" is a signed (arithmetic) shift, * which is the normal and rational definition. */ #undef RIGHT_SHIFT_IS_UNSIGNED #endif /* JPEG_INTERNALS */ /* * The remaining options do not affect the JPEG library proper, * but only the sample applications cjpeg/djpeg (see cjpeg.c, djpeg.c). * Other applications can ignore these. */ #ifdef JPEG_CJPEG_DJPEG /* These defines indicate which image (non-JPEG) file formats are allowed. */ #define BMP_SUPPORTED /* BMP image file format */ #define GIF_SUPPORTED /* GIF image file format */ #define PPM_SUPPORTED /* PBMPLUS PPM/PGM image file format */ #define TARGA_SUPPORTED /* Targa image file format */ /* Define this if you want to name both input and output files on the command * line, rather than using stdout and optionally stdin. You MUST do this if * your system can't cope with binary I/O to stdin/stdout. See comments at * head of cjpeg.c or djpeg.c. */ #undef TWO_FILE_COMMANDLINE /* By default, we open image files with fopen(..., "rb") or fopen(..., "wb"). * This is necessary on systems that distinguish text files from binary files, * and is harmless on most systems that don't. If you have one of the rare * systems that complains about the "b" spec, define this symbol. */ #undef DONT_USE_B_MODE /* Define this if you want percent-done progress reports from cjpeg/djpeg. */ #undef PROGRESS_REPORT #endif /* JPEG_CJPEG_DJPEG */ libjpeg-turbo-2.1.5/jconfigint.h.in000066400000000000000000000020371436506551100172040ustar00rootroot00000000000000/* libjpeg-turbo build number */ #define BUILD "@BUILD@" /* Compiler's inline keyword */ #undef inline /* How to obtain function inlining. */ #define INLINE @INLINE@ /* How to obtain thread-local storage */ #define THREAD_LOCAL @THREAD_LOCAL@ /* Define to the full name of this package. */ #define PACKAGE_NAME "@CMAKE_PROJECT_NAME@" /* Version number of package */ #define VERSION "@VERSION@" /* The size of `size_t', as computed by sizeof. */ #define SIZEOF_SIZE_T @SIZE_T@ /* Define if your compiler has __builtin_ctzl() and sizeof(unsigned long) == sizeof(size_t). */ #cmakedefine HAVE_BUILTIN_CTZL /* Define to 1 if you have the header file. */ #cmakedefine HAVE_INTRIN_H #if defined(_MSC_VER) && defined(HAVE_INTRIN_H) #if (SIZEOF_SIZE_T == 8) #define HAVE_BITSCANFORWARD64 #elif (SIZEOF_SIZE_T == 4) #define HAVE_BITSCANFORWARD #endif #endif #if defined(__has_attribute) #if __has_attribute(fallthrough) #define FALLTHROUGH __attribute__((fallthrough)); #else #define FALLTHROUGH #endif #else #define FALLTHROUGH #endif libjpeg-turbo-2.1.5/jcparam.c000066400000000000000000000434331436506551100160620ustar00rootroot00000000000000/* * jcparam.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1998, Thomas G. Lane. * Modified 2003-2008 by Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright (C) 2009-2011, 2018, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains optional default-setting code for the JPEG compressor. * Applications do not have to use this file, but those that don't use it * must know a lot more about the innards of the JPEG code. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jstdhuff.c" /* * Quantization table setup routines */ GLOBAL(void) jpeg_add_quant_table(j_compress_ptr cinfo, int which_tbl, const unsigned int *basic_table, int scale_factor, boolean force_baseline) /* Define a quantization table equal to the basic_table times * a scale factor (given as a percentage). * If force_baseline is TRUE, the computed quantization table entries * are limited to 1..255 for JPEG baseline compatibility. */ { JQUANT_TBL **qtblptr; int i; long temp; /* Safety check to ensure start_compress not called yet. */ if (cinfo->global_state != CSTATE_START) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); if (which_tbl < 0 || which_tbl >= NUM_QUANT_TBLS) ERREXIT1(cinfo, JERR_DQT_INDEX, which_tbl); qtblptr = &cinfo->quant_tbl_ptrs[which_tbl]; if (*qtblptr == NULL) *qtblptr = jpeg_alloc_quant_table((j_common_ptr)cinfo); for (i = 0; i < DCTSIZE2; i++) { temp = ((long)basic_table[i] * scale_factor + 50L) / 100L; /* limit the values to the valid range */ if (temp <= 0L) temp = 1L; if (temp > 32767L) temp = 32767L; /* max quantizer needed for 12 bits */ if (force_baseline && temp > 255L) temp = 255L; /* limit to baseline range if requested */ (*qtblptr)->quantval[i] = (UINT16)temp; } /* Initialize sent_table FALSE so table will be written to JPEG file. */ (*qtblptr)->sent_table = FALSE; } /* These are the sample quantization tables given in Annex K (Clause K.1) of * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994. * The spec says that the values given produce "good" quality, and * when divided by 2, "very good" quality. */ static const unsigned int std_luminance_quant_tbl[DCTSIZE2] = { 16, 11, 10, 16, 24, 40, 51, 61, 12, 12, 14, 19, 26, 58, 60, 55, 14, 13, 16, 24, 40, 57, 69, 56, 14, 17, 22, 29, 51, 87, 80, 62, 18, 22, 37, 56, 68, 109, 103, 77, 24, 35, 55, 64, 81, 104, 113, 92, 49, 64, 78, 87, 103, 121, 120, 101, 72, 92, 95, 98, 112, 100, 103, 99 }; static const unsigned int std_chrominance_quant_tbl[DCTSIZE2] = { 17, 18, 24, 47, 99, 99, 99, 99, 18, 21, 26, 66, 99, 99, 99, 99, 24, 26, 56, 99, 99, 99, 99, 99, 47, 66, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99 }; #if JPEG_LIB_VERSION >= 70 GLOBAL(void) jpeg_default_qtables(j_compress_ptr cinfo, boolean force_baseline) /* Set or change the 'quality' (quantization) setting, using default tables * and straight percentage-scaling quality scales. * This entry point allows different scalings for luminance and chrominance. */ { /* Set up two quantization tables using the specified scaling */ jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl, cinfo->q_scale_factor[0], force_baseline); jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl, cinfo->q_scale_factor[1], force_baseline); } #endif GLOBAL(void) jpeg_set_linear_quality(j_compress_ptr cinfo, int scale_factor, boolean force_baseline) /* Set or change the 'quality' (quantization) setting, using default tables * and a straight percentage-scaling quality scale. In most cases it's better * to use jpeg_set_quality (below); this entry point is provided for * applications that insist on a linear percentage scaling. */ { /* Set up two quantization tables using the specified scaling */ jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl, scale_factor, force_baseline); jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl, scale_factor, force_baseline); } GLOBAL(int) jpeg_quality_scaling(int quality) /* Convert a user-specified quality rating to a percentage scaling factor * for an underlying quantization table, using our recommended scaling curve. * The input 'quality' factor should be 0 (terrible) to 100 (very good). */ { /* Safety limit on quality factor. Convert 0 to 1 to avoid zero divide. */ if (quality <= 0) quality = 1; if (quality > 100) quality = 100; /* The basic table is used as-is (scaling 100) for a quality of 50. * Qualities 50..100 are converted to scaling percentage 200 - 2*Q; * note that at Q=100 the scaling is 0, which will cause jpeg_add_quant_table * to make all the table entries 1 (hence, minimum quantization loss). * Qualities 1..50 are converted to scaling percentage 5000/Q. */ if (quality < 50) quality = 5000 / quality; else quality = 200 - quality * 2; return quality; } GLOBAL(void) jpeg_set_quality(j_compress_ptr cinfo, int quality, boolean force_baseline) /* Set or change the 'quality' (quantization) setting, using default tables. * This is the standard quality-adjusting entry point for typical user * interfaces; only those who want detailed control over quantization tables * would use the preceding three routines directly. */ { /* Convert user 0-100 rating to percentage scaling */ quality = jpeg_quality_scaling(quality); /* Set up standard quality tables */ jpeg_set_linear_quality(cinfo, quality, force_baseline); } /* * Default parameter setup for compression. * * Applications that don't choose to use this routine must do their * own setup of all these parameters. Alternately, you can call this * to establish defaults and then alter parameters selectively. This * is the recommended approach since, if we add any new parameters, * your code will still work (they'll be set to reasonable defaults). */ GLOBAL(void) jpeg_set_defaults(j_compress_ptr cinfo) { int i; /* Safety check to ensure start_compress not called yet. */ if (cinfo->global_state != CSTATE_START) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); /* Allocate comp_info array large enough for maximum component count. * Array is made permanent in case application wants to compress * multiple images at same param settings. */ if (cinfo->comp_info == NULL) cinfo->comp_info = (jpeg_component_info *) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_PERMANENT, MAX_COMPONENTS * sizeof(jpeg_component_info)); /* Initialize everything not dependent on the color space */ #if JPEG_LIB_VERSION >= 70 cinfo->scale_num = 1; /* 1:1 scaling */ cinfo->scale_denom = 1; #endif cinfo->data_precision = BITS_IN_JSAMPLE; /* Set up two quantization tables using default quality of 75 */ jpeg_set_quality(cinfo, 75, TRUE); /* Set up two Huffman tables */ std_huff_tables((j_common_ptr)cinfo); /* Initialize default arithmetic coding conditioning */ for (i = 0; i < NUM_ARITH_TBLS; i++) { cinfo->arith_dc_L[i] = 0; cinfo->arith_dc_U[i] = 1; cinfo->arith_ac_K[i] = 5; } /* Default is no multiple-scan output */ cinfo->scan_info = NULL; cinfo->num_scans = 0; /* Expect normal source image, not raw downsampled data */ cinfo->raw_data_in = FALSE; /* Use Huffman coding, not arithmetic coding, by default */ cinfo->arith_code = FALSE; /* By default, don't do extra passes to optimize entropy coding */ cinfo->optimize_coding = FALSE; /* The standard Huffman tables are only valid for 8-bit data precision. * If the precision is higher, force optimization on so that usable * tables will be computed. This test can be removed if default tables * are supplied that are valid for the desired precision. */ if (cinfo->data_precision > 8) cinfo->optimize_coding = TRUE; /* By default, use the simpler non-cosited sampling alignment */ cinfo->CCIR601_sampling = FALSE; #if JPEG_LIB_VERSION >= 70 /* By default, apply fancy downsampling */ cinfo->do_fancy_downsampling = TRUE; #endif /* No input smoothing */ cinfo->smoothing_factor = 0; /* DCT algorithm preference */ cinfo->dct_method = JDCT_DEFAULT; /* No restart markers */ cinfo->restart_interval = 0; cinfo->restart_in_rows = 0; /* Fill in default JFIF marker parameters. Note that whether the marker * will actually be written is determined by jpeg_set_colorspace. * * By default, the library emits JFIF version code 1.01. * An application that wants to emit JFIF 1.02 extension markers should set * JFIF_minor_version to 2. We could probably get away with just defaulting * to 1.02, but there may still be some decoders in use that will complain * about that; saying 1.01 should minimize compatibility problems. */ cinfo->JFIF_major_version = 1; /* Default JFIF version = 1.01 */ cinfo->JFIF_minor_version = 1; cinfo->density_unit = 0; /* Pixel size is unknown by default */ cinfo->X_density = 1; /* Pixel aspect ratio is square by default */ cinfo->Y_density = 1; /* Choose JPEG colorspace based on input space, set defaults accordingly */ jpeg_default_colorspace(cinfo); } /* * Select an appropriate JPEG colorspace for in_color_space. */ GLOBAL(void) jpeg_default_colorspace(j_compress_ptr cinfo) { switch (cinfo->in_color_space) { case JCS_GRAYSCALE: jpeg_set_colorspace(cinfo, JCS_GRAYSCALE); break; case JCS_RGB: case JCS_EXT_RGB: case JCS_EXT_RGBX: case JCS_EXT_BGR: case JCS_EXT_BGRX: case JCS_EXT_XBGR: case JCS_EXT_XRGB: case JCS_EXT_RGBA: case JCS_EXT_BGRA: case JCS_EXT_ABGR: case JCS_EXT_ARGB: jpeg_set_colorspace(cinfo, JCS_YCbCr); break; case JCS_YCbCr: jpeg_set_colorspace(cinfo, JCS_YCbCr); break; case JCS_CMYK: jpeg_set_colorspace(cinfo, JCS_CMYK); /* By default, no translation */ break; case JCS_YCCK: jpeg_set_colorspace(cinfo, JCS_YCCK); break; case JCS_UNKNOWN: jpeg_set_colorspace(cinfo, JCS_UNKNOWN); break; default: ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); } } /* * Set the JPEG colorspace, and choose colorspace-dependent default values. */ GLOBAL(void) jpeg_set_colorspace(j_compress_ptr cinfo, J_COLOR_SPACE colorspace) { jpeg_component_info *compptr; int ci; #define SET_COMP(index, id, hsamp, vsamp, quant, dctbl, actbl) \ (compptr = &cinfo->comp_info[index], \ compptr->component_id = (id), \ compptr->h_samp_factor = (hsamp), \ compptr->v_samp_factor = (vsamp), \ compptr->quant_tbl_no = (quant), \ compptr->dc_tbl_no = (dctbl), \ compptr->ac_tbl_no = (actbl) ) /* Safety check to ensure start_compress not called yet. */ if (cinfo->global_state != CSTATE_START) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); /* For all colorspaces, we use Q and Huff tables 0 for luminance components, * tables 1 for chrominance components. */ cinfo->jpeg_color_space = colorspace; cinfo->write_JFIF_header = FALSE; /* No marker for non-JFIF colorspaces */ cinfo->write_Adobe_marker = FALSE; /* write no Adobe marker by default */ switch (colorspace) { case JCS_GRAYSCALE: cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */ cinfo->num_components = 1; /* JFIF specifies component ID 1 */ SET_COMP(0, 1, 1, 1, 0, 0, 0); break; case JCS_RGB: cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag RGB */ cinfo->num_components = 3; SET_COMP(0, 0x52 /* 'R' */, 1, 1, 0, 0, 0); SET_COMP(1, 0x47 /* 'G' */, 1, 1, 0, 0, 0); SET_COMP(2, 0x42 /* 'B' */, 1, 1, 0, 0, 0); break; case JCS_YCbCr: cinfo->write_JFIF_header = TRUE; /* Write a JFIF marker */ cinfo->num_components = 3; /* JFIF specifies component IDs 1,2,3 */ /* We default to 2x2 subsamples of chrominance */ SET_COMP(0, 1, 2, 2, 0, 0, 0); SET_COMP(1, 2, 1, 1, 1, 1, 1); SET_COMP(2, 3, 1, 1, 1, 1, 1); break; case JCS_CMYK: cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag CMYK */ cinfo->num_components = 4; SET_COMP(0, 0x43 /* 'C' */, 1, 1, 0, 0, 0); SET_COMP(1, 0x4D /* 'M' */, 1, 1, 0, 0, 0); SET_COMP(2, 0x59 /* 'Y' */, 1, 1, 0, 0, 0); SET_COMP(3, 0x4B /* 'K' */, 1, 1, 0, 0, 0); break; case JCS_YCCK: cinfo->write_Adobe_marker = TRUE; /* write Adobe marker to flag YCCK */ cinfo->num_components = 4; SET_COMP(0, 1, 2, 2, 0, 0, 0); SET_COMP(1, 2, 1, 1, 1, 1, 1); SET_COMP(2, 3, 1, 1, 1, 1, 1); SET_COMP(3, 4, 2, 2, 0, 0, 0); break; case JCS_UNKNOWN: cinfo->num_components = cinfo->input_components; if (cinfo->num_components < 1 || cinfo->num_components > MAX_COMPONENTS) ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components, MAX_COMPONENTS); for (ci = 0; ci < cinfo->num_components; ci++) { SET_COMP(ci, ci, 1, 1, 0, 0, 0); } break; default: ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); } } #ifdef C_PROGRESSIVE_SUPPORTED LOCAL(jpeg_scan_info *) fill_a_scan(jpeg_scan_info *scanptr, int ci, int Ss, int Se, int Ah, int Al) /* Support routine: generate one scan for specified component */ { scanptr->comps_in_scan = 1; scanptr->component_index[0] = ci; scanptr->Ss = Ss; scanptr->Se = Se; scanptr->Ah = Ah; scanptr->Al = Al; scanptr++; return scanptr; } LOCAL(jpeg_scan_info *) fill_scans(jpeg_scan_info *scanptr, int ncomps, int Ss, int Se, int Ah, int Al) /* Support routine: generate one scan for each component */ { int ci; for (ci = 0; ci < ncomps; ci++) { scanptr->comps_in_scan = 1; scanptr->component_index[0] = ci; scanptr->Ss = Ss; scanptr->Se = Se; scanptr->Ah = Ah; scanptr->Al = Al; scanptr++; } return scanptr; } LOCAL(jpeg_scan_info *) fill_dc_scans(jpeg_scan_info *scanptr, int ncomps, int Ah, int Al) /* Support routine: generate interleaved DC scan if possible, else N scans */ { int ci; if (ncomps <= MAX_COMPS_IN_SCAN) { /* Single interleaved DC scan */ scanptr->comps_in_scan = ncomps; for (ci = 0; ci < ncomps; ci++) scanptr->component_index[ci] = ci; scanptr->Ss = scanptr->Se = 0; scanptr->Ah = Ah; scanptr->Al = Al; scanptr++; } else { /* Noninterleaved DC scan for each component */ scanptr = fill_scans(scanptr, ncomps, 0, 0, Ah, Al); } return scanptr; } /* * Create a recommended progressive-JPEG script. * cinfo->num_components and cinfo->jpeg_color_space must be correct. */ GLOBAL(void) jpeg_simple_progression(j_compress_ptr cinfo) { int ncomps = cinfo->num_components; int nscans; jpeg_scan_info *scanptr; /* Safety check to ensure start_compress not called yet. */ if (cinfo->global_state != CSTATE_START) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); /* Figure space needed for script. Calculation must match code below! */ if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) { /* Custom script for YCbCr color images. */ nscans = 10; } else { /* All-purpose script for other color spaces. */ if (ncomps > MAX_COMPS_IN_SCAN) nscans = 6 * ncomps; /* 2 DC + 4 AC scans per component */ else nscans = 2 + 4 * ncomps; /* 2 DC scans; 4 AC scans per component */ } /* Allocate space for script. * We need to put it in the permanent pool in case the application performs * multiple compressions without changing the settings. To avoid a memory * leak if jpeg_simple_progression is called repeatedly for the same JPEG * object, we try to re-use previously allocated space, and we allocate * enough space to handle YCbCr even if initially asked for grayscale. */ if (cinfo->script_space == NULL || cinfo->script_space_size < nscans) { cinfo->script_space_size = MAX(nscans, 10); cinfo->script_space = (jpeg_scan_info *) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_PERMANENT, cinfo->script_space_size * sizeof(jpeg_scan_info)); } scanptr = cinfo->script_space; cinfo->scan_info = scanptr; cinfo->num_scans = nscans; if (ncomps == 3 && cinfo->jpeg_color_space == JCS_YCbCr) { /* Custom script for YCbCr color images. */ /* Initial DC scan */ scanptr = fill_dc_scans(scanptr, ncomps, 0, 1); /* Initial AC scan: get some luma data out in a hurry */ scanptr = fill_a_scan(scanptr, 0, 1, 5, 0, 2); /* Chroma data is too small to be worth expending many scans on */ scanptr = fill_a_scan(scanptr, 2, 1, 63, 0, 1); scanptr = fill_a_scan(scanptr, 1, 1, 63, 0, 1); /* Complete spectral selection for luma AC */ scanptr = fill_a_scan(scanptr, 0, 6, 63, 0, 2); /* Refine next bit of luma AC */ scanptr = fill_a_scan(scanptr, 0, 1, 63, 2, 1); /* Finish DC successive approximation */ scanptr = fill_dc_scans(scanptr, ncomps, 1, 0); /* Finish AC successive approximation */ scanptr = fill_a_scan(scanptr, 2, 1, 63, 1, 0); scanptr = fill_a_scan(scanptr, 1, 1, 63, 1, 0); /* Luma bottom bit comes last since it's usually largest scan */ scanptr = fill_a_scan(scanptr, 0, 1, 63, 1, 0); } else { /* All-purpose script for other color spaces. */ /* Successive approximation first pass */ scanptr = fill_dc_scans(scanptr, ncomps, 0, 1); scanptr = fill_scans(scanptr, ncomps, 1, 5, 0, 2); scanptr = fill_scans(scanptr, ncomps, 6, 63, 0, 2); /* Successive approximation second pass */ scanptr = fill_scans(scanptr, ncomps, 1, 63, 2, 1); /* Successive approximation final pass */ scanptr = fill_dc_scans(scanptr, ncomps, 1, 0); scanptr = fill_scans(scanptr, ncomps, 1, 63, 1, 0); } } #endif /* C_PROGRESSIVE_SUPPORTED */ libjpeg-turbo-2.1.5/jcphuff.c000066400000000000000000001015701436506551100160670ustar00rootroot00000000000000/* * jcphuff.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1995-1997, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2011, 2015, 2018, 2021-2022, D. R. Commander. * Copyright (C) 2016, 2018, 2022, Matthieu Darbois. * Copyright (C) 2020, Arm Limited. * Copyright (C) 2021, Alex Richardson. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains Huffman entropy encoding routines for progressive JPEG. * * We do not support output suspension in this module, since the library * currently does not allow multiple-scan files to be written with output * suspension. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jsimd.h" #include #ifdef HAVE_INTRIN_H #include #ifdef _MSC_VER #ifdef HAVE_BITSCANFORWARD64 #pragma intrinsic(_BitScanForward64) #endif #ifdef HAVE_BITSCANFORWARD #pragma intrinsic(_BitScanForward) #endif #endif #endif #ifdef C_PROGRESSIVE_SUPPORTED /* * NOTE: If USE_CLZ_INTRINSIC is defined, then clz/bsr instructions will be * used for bit counting rather than the lookup table. This will reduce the * memory footprint by 64k, which is important for some mobile applications * that create many isolated instances of libjpeg-turbo (web browsers, for * instance.) This may improve performance on some mobile platforms as well. * This feature is enabled by default only on Arm processors, because some x86 * chips have a slow implementation of bsr, and the use of clz/bsr cannot be * shown to have a significant performance impact even on the x86 chips that * have a fast implementation of it. When building for Armv6, you can * explicitly disable the use of clz/bsr by adding -mthumb to the compiler * flags (this defines __thumb__). */ /* NOTE: Both GCC and Clang define __GNUC__ */ #if (defined(__GNUC__) && (defined(__arm__) || defined(__aarch64__))) || \ defined(_M_ARM) || defined(_M_ARM64) #if !defined(__thumb__) || defined(__thumb2__) #define USE_CLZ_INTRINSIC #endif #endif #ifdef USE_CLZ_INTRINSIC #if defined(_MSC_VER) && !defined(__clang__) #define JPEG_NBITS_NONZERO(x) (32 - _CountLeadingZeros(x)) #else #define JPEG_NBITS_NONZERO(x) (32 - __builtin_clz(x)) #endif #define JPEG_NBITS(x) (x ? JPEG_NBITS_NONZERO(x) : 0) #else #include "jpeg_nbits_table.h" #define JPEG_NBITS(x) (jpeg_nbits_table[x]) #define JPEG_NBITS_NONZERO(x) JPEG_NBITS(x) #endif /* Expanded entropy encoder object for progressive Huffman encoding. */ typedef struct { struct jpeg_entropy_encoder pub; /* public fields */ /* Pointer to routine to prepare data for encode_mcu_AC_first() */ void (*AC_first_prepare) (const JCOEF *block, const int *jpeg_natural_order_start, int Sl, int Al, UJCOEF *values, size_t *zerobits); /* Pointer to routine to prepare data for encode_mcu_AC_refine() */ int (*AC_refine_prepare) (const JCOEF *block, const int *jpeg_natural_order_start, int Sl, int Al, UJCOEF *absvalues, size_t *bits); /* Mode flag: TRUE for optimization, FALSE for actual data output */ boolean gather_statistics; /* Bit-level coding status. * next_output_byte/free_in_buffer are local copies of cinfo->dest fields. */ JOCTET *next_output_byte; /* => next byte to write in buffer */ size_t free_in_buffer; /* # of byte spaces remaining in buffer */ size_t put_buffer; /* current bit-accumulation buffer */ int put_bits; /* # of bits now in it */ j_compress_ptr cinfo; /* link to cinfo (needed for dump_buffer) */ /* Coding status for DC components */ int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ /* Coding status for AC components */ int ac_tbl_no; /* the table number of the single component */ unsigned int EOBRUN; /* run length of EOBs */ unsigned int BE; /* # of buffered correction bits before MCU */ char *bit_buffer; /* buffer for correction bits (1 per char) */ /* packing correction bits tightly would save some space but cost time... */ unsigned int restarts_to_go; /* MCUs left in this restart interval */ int next_restart_num; /* next restart number to write (0-7) */ /* Pointers to derived tables (these workspaces have image lifespan). * Since any one scan codes only DC or only AC, we only need one set * of tables, not one for DC and one for AC. */ c_derived_tbl *derived_tbls[NUM_HUFF_TBLS]; /* Statistics tables for optimization; again, one set is enough */ long *count_ptrs[NUM_HUFF_TBLS]; } phuff_entropy_encoder; typedef phuff_entropy_encoder *phuff_entropy_ptr; /* MAX_CORR_BITS is the number of bits the AC refinement correction-bit * buffer can hold. Larger sizes may slightly improve compression, but * 1000 is already well into the realm of overkill. * The minimum safe size is 64 bits. */ #define MAX_CORR_BITS 1000 /* Max # of correction bits I can buffer */ /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than JLONG. * We assume that int right shift is unsigned if JLONG right shift is, * which should be safe. */ #ifdef RIGHT_SHIFT_IS_UNSIGNED #define ISHIFT_TEMPS int ishift_temp; #define IRIGHT_SHIFT(x, shft) \ ((ishift_temp = (x)) < 0 ? \ (ishift_temp >> (shft)) | ((~0) << (16 - (shft))) : \ (ishift_temp >> (shft))) #else #define ISHIFT_TEMPS #define IRIGHT_SHIFT(x, shft) ((x) >> (shft)) #endif #define PAD(v, p) ((v + (p) - 1) & (~((p) - 1))) /* Forward declarations */ METHODDEF(boolean) encode_mcu_DC_first(j_compress_ptr cinfo, JBLOCKROW *MCU_data); METHODDEF(void) encode_mcu_AC_first_prepare (const JCOEF *block, const int *jpeg_natural_order_start, int Sl, int Al, UJCOEF *values, size_t *zerobits); METHODDEF(boolean) encode_mcu_AC_first(j_compress_ptr cinfo, JBLOCKROW *MCU_data); METHODDEF(boolean) encode_mcu_DC_refine(j_compress_ptr cinfo, JBLOCKROW *MCU_data); METHODDEF(int) encode_mcu_AC_refine_prepare (const JCOEF *block, const int *jpeg_natural_order_start, int Sl, int Al, UJCOEF *absvalues, size_t *bits); METHODDEF(boolean) encode_mcu_AC_refine(j_compress_ptr cinfo, JBLOCKROW *MCU_data); METHODDEF(void) finish_pass_phuff(j_compress_ptr cinfo); METHODDEF(void) finish_pass_gather_phuff(j_compress_ptr cinfo); /* Count bit loop zeroes */ INLINE METHODDEF(int) count_zeroes(size_t *x) { #if defined(HAVE_BUILTIN_CTZL) int result; result = __builtin_ctzl(*x); *x >>= result; #elif defined(HAVE_BITSCANFORWARD64) unsigned long result; _BitScanForward64(&result, *x); *x >>= result; #elif defined(HAVE_BITSCANFORWARD) unsigned long result; _BitScanForward(&result, *x); *x >>= result; #else int result = 0; while ((*x & 1) == 0) { ++result; *x >>= 1; } #endif return (int)result; } /* * Initialize for a Huffman-compressed scan using progressive JPEG. */ METHODDEF(void) start_pass_phuff(j_compress_ptr cinfo, boolean gather_statistics) { phuff_entropy_ptr entropy = (phuff_entropy_ptr)cinfo->entropy; boolean is_DC_band; int ci, tbl; jpeg_component_info *compptr; entropy->cinfo = cinfo; entropy->gather_statistics = gather_statistics; is_DC_band = (cinfo->Ss == 0); /* We assume jcmaster.c already validated the scan parameters. */ /* Select execution routines */ if (cinfo->Ah == 0) { if (is_DC_band) entropy->pub.encode_mcu = encode_mcu_DC_first; else entropy->pub.encode_mcu = encode_mcu_AC_first; if (jsimd_can_encode_mcu_AC_first_prepare()) entropy->AC_first_prepare = jsimd_encode_mcu_AC_first_prepare; else entropy->AC_first_prepare = encode_mcu_AC_first_prepare; } else { if (is_DC_band) entropy->pub.encode_mcu = encode_mcu_DC_refine; else { entropy->pub.encode_mcu = encode_mcu_AC_refine; if (jsimd_can_encode_mcu_AC_refine_prepare()) entropy->AC_refine_prepare = jsimd_encode_mcu_AC_refine_prepare; else entropy->AC_refine_prepare = encode_mcu_AC_refine_prepare; /* AC refinement needs a correction bit buffer */ if (entropy->bit_buffer == NULL) entropy->bit_buffer = (char *) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, MAX_CORR_BITS * sizeof(char)); } } if (gather_statistics) entropy->pub.finish_pass = finish_pass_gather_phuff; else entropy->pub.finish_pass = finish_pass_phuff; /* Only DC coefficients may be interleaved, so cinfo->comps_in_scan = 1 * for AC coefficients. */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; /* Initialize DC predictions to 0 */ entropy->last_dc_val[ci] = 0; /* Get table index */ if (is_DC_band) { if (cinfo->Ah != 0) /* DC refinement needs no table */ continue; tbl = compptr->dc_tbl_no; } else { entropy->ac_tbl_no = tbl = compptr->ac_tbl_no; } if (gather_statistics) { /* Check for invalid table index */ /* (make_c_derived_tbl does this in the other path) */ if (tbl < 0 || tbl >= NUM_HUFF_TBLS) ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl); /* Allocate and zero the statistics tables */ /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */ if (entropy->count_ptrs[tbl] == NULL) entropy->count_ptrs[tbl] = (long *) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, 257 * sizeof(long)); memset(entropy->count_ptrs[tbl], 0, 257 * sizeof(long)); } else { /* Compute derived values for Huffman table */ /* We may do this more than once for a table, but it's not expensive */ jpeg_make_c_derived_tbl(cinfo, is_DC_band, tbl, &entropy->derived_tbls[tbl]); } } /* Initialize AC stuff */ entropy->EOBRUN = 0; entropy->BE = 0; /* Initialize bit buffer to empty */ entropy->put_buffer = 0; entropy->put_bits = 0; /* Initialize restart stuff */ entropy->restarts_to_go = cinfo->restart_interval; entropy->next_restart_num = 0; } /* Outputting bytes to the file. * NB: these must be called only when actually outputting, * that is, entropy->gather_statistics == FALSE. */ /* Emit a byte */ #define emit_byte(entropy, val) { \ *(entropy)->next_output_byte++ = (JOCTET)(val); \ if (--(entropy)->free_in_buffer == 0) \ dump_buffer(entropy); \ } LOCAL(void) dump_buffer(phuff_entropy_ptr entropy) /* Empty the output buffer; we do not support suspension in this module. */ { struct jpeg_destination_mgr *dest = entropy->cinfo->dest; if (!(*dest->empty_output_buffer) (entropy->cinfo)) ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND); /* After a successful buffer dump, must reset buffer pointers */ entropy->next_output_byte = dest->next_output_byte; entropy->free_in_buffer = dest->free_in_buffer; } /* Outputting bits to the file */ /* Only the right 24 bits of put_buffer are used; the valid bits are * left-justified in this part. At most 16 bits can be passed to emit_bits * in one call, and we never retain more than 7 bits in put_buffer * between calls, so 24 bits are sufficient. */ LOCAL(void) emit_bits(phuff_entropy_ptr entropy, unsigned int code, int size) /* Emit some bits, unless we are in gather mode */ { /* This routine is heavily used, so it's worth coding tightly. */ register size_t put_buffer = (size_t)code; register int put_bits = entropy->put_bits; /* if size is 0, caller used an invalid Huffman table entry */ if (size == 0) ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); if (entropy->gather_statistics) return; /* do nothing if we're only getting stats */ put_buffer &= (((size_t)1) << size) - 1; /* mask off any extra bits in code */ put_bits += size; /* new number of bits in buffer */ put_buffer <<= 24 - put_bits; /* align incoming bits */ put_buffer |= entropy->put_buffer; /* and merge with old buffer contents */ while (put_bits >= 8) { int c = (int)((put_buffer >> 16) & 0xFF); emit_byte(entropy, c); if (c == 0xFF) { /* need to stuff a zero byte? */ emit_byte(entropy, 0); } put_buffer <<= 8; put_bits -= 8; } entropy->put_buffer = put_buffer; /* update variables */ entropy->put_bits = put_bits; } LOCAL(void) flush_bits(phuff_entropy_ptr entropy) { emit_bits(entropy, 0x7F, 7); /* fill any partial byte with ones */ entropy->put_buffer = 0; /* and reset bit-buffer to empty */ entropy->put_bits = 0; } /* * Emit (or just count) a Huffman symbol. */ LOCAL(void) emit_symbol(phuff_entropy_ptr entropy, int tbl_no, int symbol) { if (entropy->gather_statistics) entropy->count_ptrs[tbl_no][symbol]++; else { c_derived_tbl *tbl = entropy->derived_tbls[tbl_no]; emit_bits(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]); } } /* * Emit bits from a correction bit buffer. */ LOCAL(void) emit_buffered_bits(phuff_entropy_ptr entropy, char *bufstart, unsigned int nbits) { if (entropy->gather_statistics) return; /* no real work */ while (nbits > 0) { emit_bits(entropy, (unsigned int)(*bufstart), 1); bufstart++; nbits--; } } /* * Emit any pending EOBRUN symbol. */ LOCAL(void) emit_eobrun(phuff_entropy_ptr entropy) { register int temp, nbits; if (entropy->EOBRUN > 0) { /* if there is any pending EOBRUN */ temp = entropy->EOBRUN; nbits = JPEG_NBITS_NONZERO(temp) - 1; /* safety check: shouldn't happen given limited correction-bit buffer */ if (nbits > 14) ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); emit_symbol(entropy, entropy->ac_tbl_no, nbits << 4); if (nbits) emit_bits(entropy, entropy->EOBRUN, nbits); entropy->EOBRUN = 0; /* Emit any buffered correction bits */ emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE); entropy->BE = 0; } } /* * Emit a restart marker & resynchronize predictions. */ LOCAL(void) emit_restart(phuff_entropy_ptr entropy, int restart_num) { int ci; emit_eobrun(entropy); if (!entropy->gather_statistics) { flush_bits(entropy); emit_byte(entropy, 0xFF); emit_byte(entropy, JPEG_RST0 + restart_num); } if (entropy->cinfo->Ss == 0) { /* Re-initialize DC predictions to 0 */ for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++) entropy->last_dc_val[ci] = 0; } else { /* Re-initialize all AC-related fields to 0 */ entropy->EOBRUN = 0; entropy->BE = 0; } } /* * MCU encoding for DC initial scan (either spectral selection, * or first pass of successive approximation). */ METHODDEF(boolean) encode_mcu_DC_first(j_compress_ptr cinfo, JBLOCKROW *MCU_data) { phuff_entropy_ptr entropy = (phuff_entropy_ptr)cinfo->entropy; register int temp, temp2, temp3; register int nbits; int blkn, ci; int Al = cinfo->Al; JBLOCKROW block; jpeg_component_info *compptr; ISHIFT_TEMPS entropy->next_output_byte = cinfo->dest->next_output_byte; entropy->free_in_buffer = cinfo->dest->free_in_buffer; /* Emit restart marker if needed */ if (cinfo->restart_interval) if (entropy->restarts_to_go == 0) emit_restart(entropy, entropy->next_restart_num); /* Encode the MCU data blocks */ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { block = MCU_data[blkn]; ci = cinfo->MCU_membership[blkn]; compptr = cinfo->cur_comp_info[ci]; /* Compute the DC value after the required point transform by Al. * This is simply an arithmetic right shift. */ temp2 = IRIGHT_SHIFT((int)((*block)[0]), Al); /* DC differences are figured on the point-transformed values. */ temp = temp2 - entropy->last_dc_val[ci]; entropy->last_dc_val[ci] = temp2; /* Encode the DC coefficient difference per section G.1.2.1 */ /* This is a well-known technique for obtaining the absolute value without * a branch. It is derived from an assembly language technique presented * in "How to Optimize for the Pentium Processors", Copyright (c) 1996, * 1997 by Agner Fog. */ temp3 = temp >> (CHAR_BIT * sizeof(int) - 1); temp ^= temp3; temp -= temp3; /* temp is abs value of input */ /* For a negative input, want temp2 = bitwise complement of abs(input) */ temp2 = temp ^ temp3; /* Find the number of bits needed for the magnitude of the coefficient */ nbits = JPEG_NBITS(temp); /* Check for out-of-range coefficient values. * Since we're encoding a difference, the range limit is twice as much. */ if (nbits > MAX_COEF_BITS + 1) ERREXIT(cinfo, JERR_BAD_DCT_COEF); /* Count/emit the Huffman-coded symbol for the number of bits */ emit_symbol(entropy, compptr->dc_tbl_no, nbits); /* Emit that number of bits of the value, if positive, */ /* or the complement of its magnitude, if negative. */ if (nbits) /* emit_bits rejects calls with size 0 */ emit_bits(entropy, (unsigned int)temp2, nbits); } cinfo->dest->next_output_byte = entropy->next_output_byte; cinfo->dest->free_in_buffer = entropy->free_in_buffer; /* Update restart-interval state too */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) { entropy->restarts_to_go = cinfo->restart_interval; entropy->next_restart_num++; entropy->next_restart_num &= 7; } entropy->restarts_to_go--; } return TRUE; } /* * Data preparation for encode_mcu_AC_first(). */ #define COMPUTE_ABSVALUES_AC_FIRST(Sl) { \ for (k = 0; k < Sl; k++) { \ temp = block[jpeg_natural_order_start[k]]; \ if (temp == 0) \ continue; \ /* We must apply the point transform by Al. For AC coefficients this \ * is an integer division with rounding towards 0. To do this portably \ * in C, we shift after obtaining the absolute value; so the code is \ * interwoven with finding the abs value (temp) and output bits (temp2). \ */ \ temp2 = temp >> (CHAR_BIT * sizeof(int) - 1); \ temp ^= temp2; \ temp -= temp2; /* temp is abs value of input */ \ temp >>= Al; /* apply the point transform */ \ /* Watch out for case that nonzero coef is zero after point transform */ \ if (temp == 0) \ continue; \ /* For a negative coef, want temp2 = bitwise complement of abs(coef) */ \ temp2 ^= temp; \ values[k] = (UJCOEF)temp; \ values[k + DCTSIZE2] = (UJCOEF)temp2; \ zerobits |= ((size_t)1U) << k; \ } \ } METHODDEF(void) encode_mcu_AC_first_prepare(const JCOEF *block, const int *jpeg_natural_order_start, int Sl, int Al, UJCOEF *values, size_t *bits) { register int k, temp, temp2; size_t zerobits = 0U; int Sl0 = Sl; #if SIZEOF_SIZE_T == 4 if (Sl0 > 32) Sl0 = 32; #endif COMPUTE_ABSVALUES_AC_FIRST(Sl0); bits[0] = zerobits; #if SIZEOF_SIZE_T == 4 zerobits = 0U; if (Sl > 32) { Sl -= 32; jpeg_natural_order_start += 32; values += 32; COMPUTE_ABSVALUES_AC_FIRST(Sl); } bits[1] = zerobits; #endif } /* * MCU encoding for AC initial scan (either spectral selection, * or first pass of successive approximation). */ #define ENCODE_COEFS_AC_FIRST(label) { \ while (zerobits) { \ r = count_zeroes(&zerobits); \ cvalue += r; \ label \ temp = cvalue[0]; \ temp2 = cvalue[DCTSIZE2]; \ \ /* if run length > 15, must emit special run-length-16 codes (0xF0) */ \ while (r > 15) { \ emit_symbol(entropy, entropy->ac_tbl_no, 0xF0); \ r -= 16; \ } \ \ /* Find the number of bits needed for the magnitude of the coefficient */ \ nbits = JPEG_NBITS_NONZERO(temp); /* there must be at least one 1 bit */ \ /* Check for out-of-range coefficient values */ \ if (nbits > MAX_COEF_BITS) \ ERREXIT(cinfo, JERR_BAD_DCT_COEF); \ \ /* Count/emit Huffman symbol for run length / number of bits */ \ emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits); \ \ /* Emit that number of bits of the value, if positive, */ \ /* or the complement of its magnitude, if negative. */ \ emit_bits(entropy, (unsigned int)temp2, nbits); \ \ cvalue++; \ zerobits >>= 1; \ } \ } METHODDEF(boolean) encode_mcu_AC_first(j_compress_ptr cinfo, JBLOCKROW *MCU_data) { phuff_entropy_ptr entropy = (phuff_entropy_ptr)cinfo->entropy; register int temp, temp2; register int nbits, r; int Sl = cinfo->Se - cinfo->Ss + 1; int Al = cinfo->Al; UJCOEF values_unaligned[2 * DCTSIZE2 + 15]; UJCOEF *values; const UJCOEF *cvalue; size_t zerobits; size_t bits[8 / SIZEOF_SIZE_T]; entropy->next_output_byte = cinfo->dest->next_output_byte; entropy->free_in_buffer = cinfo->dest->free_in_buffer; /* Emit restart marker if needed */ if (cinfo->restart_interval) if (entropy->restarts_to_go == 0) emit_restart(entropy, entropy->next_restart_num); #ifdef WITH_SIMD cvalue = values = (UJCOEF *)PAD((JUINTPTR)values_unaligned, 16); #else /* Not using SIMD, so alignment is not needed */ cvalue = values = values_unaligned; #endif /* Prepare data */ entropy->AC_first_prepare(MCU_data[0][0], jpeg_natural_order + cinfo->Ss, Sl, Al, values, bits); zerobits = bits[0]; #if SIZEOF_SIZE_T == 4 zerobits |= bits[1]; #endif /* Emit any pending EOBRUN */ if (zerobits && (entropy->EOBRUN > 0)) emit_eobrun(entropy); #if SIZEOF_SIZE_T == 4 zerobits = bits[0]; #endif /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */ ENCODE_COEFS_AC_FIRST((void)0;); #if SIZEOF_SIZE_T == 4 zerobits = bits[1]; if (zerobits) { int diff = ((values + DCTSIZE2 / 2) - cvalue); r = count_zeroes(&zerobits); r += diff; cvalue += r; goto first_iter_ac_first; } ENCODE_COEFS_AC_FIRST(first_iter_ac_first:); #endif if (cvalue < (values + Sl)) { /* If there are trailing zeroes, */ entropy->EOBRUN++; /* count an EOB */ if (entropy->EOBRUN == 0x7FFF) emit_eobrun(entropy); /* force it out to avoid overflow */ } cinfo->dest->next_output_byte = entropy->next_output_byte; cinfo->dest->free_in_buffer = entropy->free_in_buffer; /* Update restart-interval state too */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) { entropy->restarts_to_go = cinfo->restart_interval; entropy->next_restart_num++; entropy->next_restart_num &= 7; } entropy->restarts_to_go--; } return TRUE; } /* * MCU encoding for DC successive approximation refinement scan. * Note: we assume such scans can be multi-component, although the spec * is not very clear on the point. */ METHODDEF(boolean) encode_mcu_DC_refine(j_compress_ptr cinfo, JBLOCKROW *MCU_data) { phuff_entropy_ptr entropy = (phuff_entropy_ptr)cinfo->entropy; register int temp; int blkn; int Al = cinfo->Al; JBLOCKROW block; entropy->next_output_byte = cinfo->dest->next_output_byte; entropy->free_in_buffer = cinfo->dest->free_in_buffer; /* Emit restart marker if needed */ if (cinfo->restart_interval) if (entropy->restarts_to_go == 0) emit_restart(entropy, entropy->next_restart_num); /* Encode the MCU data blocks */ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { block = MCU_data[blkn]; /* We simply emit the Al'th bit of the DC coefficient value. */ temp = (*block)[0]; emit_bits(entropy, (unsigned int)(temp >> Al), 1); } cinfo->dest->next_output_byte = entropy->next_output_byte; cinfo->dest->free_in_buffer = entropy->free_in_buffer; /* Update restart-interval state too */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) { entropy->restarts_to_go = cinfo->restart_interval; entropy->next_restart_num++; entropy->next_restart_num &= 7; } entropy->restarts_to_go--; } return TRUE; } /* * Data preparation for encode_mcu_AC_refine(). */ #define COMPUTE_ABSVALUES_AC_REFINE(Sl, koffset) { \ /* It is convenient to make a pre-pass to determine the transformed \ * coefficients' absolute values and the EOB position. \ */ \ for (k = 0; k < Sl; k++) { \ temp = block[jpeg_natural_order_start[k]]; \ /* We must apply the point transform by Al. For AC coefficients this \ * is an integer division with rounding towards 0. To do this portably \ * in C, we shift after obtaining the absolute value. \ */ \ temp2 = temp >> (CHAR_BIT * sizeof(int) - 1); \ temp ^= temp2; \ temp -= temp2; /* temp is abs value of input */ \ temp >>= Al; /* apply the point transform */ \ if (temp != 0) { \ zerobits |= ((size_t)1U) << k; \ signbits |= ((size_t)(temp2 + 1)) << k; \ } \ absvalues[k] = (UJCOEF)temp; /* save abs value for main pass */ \ if (temp == 1) \ EOB = k + koffset; /* EOB = index of last newly-nonzero coef */ \ } \ } METHODDEF(int) encode_mcu_AC_refine_prepare(const JCOEF *block, const int *jpeg_natural_order_start, int Sl, int Al, UJCOEF *absvalues, size_t *bits) { register int k, temp, temp2; int EOB = 0; size_t zerobits = 0U, signbits = 0U; int Sl0 = Sl; #if SIZEOF_SIZE_T == 4 if (Sl0 > 32) Sl0 = 32; #endif COMPUTE_ABSVALUES_AC_REFINE(Sl0, 0); bits[0] = zerobits; #if SIZEOF_SIZE_T == 8 bits[1] = signbits; #else bits[2] = signbits; zerobits = 0U; signbits = 0U; if (Sl > 32) { Sl -= 32; jpeg_natural_order_start += 32; absvalues += 32; COMPUTE_ABSVALUES_AC_REFINE(Sl, 32); } bits[1] = zerobits; bits[3] = signbits; #endif return EOB; } /* * MCU encoding for AC successive approximation refinement scan. */ #define ENCODE_COEFS_AC_REFINE(label) { \ while (zerobits) { \ idx = count_zeroes(&zerobits); \ r += idx; \ cabsvalue += idx; \ signbits >>= idx; \ label \ /* Emit any required ZRLs, but not if they can be folded into EOB */ \ while (r > 15 && (cabsvalue <= EOBPTR)) { \ /* emit any pending EOBRUN and the BE correction bits */ \ emit_eobrun(entropy); \ /* Emit ZRL */ \ emit_symbol(entropy, entropy->ac_tbl_no, 0xF0); \ r -= 16; \ /* Emit buffered correction bits that must be associated with ZRL */ \ emit_buffered_bits(entropy, BR_buffer, BR); \ BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ \ BR = 0; \ } \ \ temp = *cabsvalue++; \ \ /* If the coef was previously nonzero, it only needs a correction bit. \ * NOTE: a straight translation of the spec's figure G.7 would suggest \ * that we also need to test r > 15. But if r > 15, we can only get here \ * if k > EOB, which implies that this coefficient is not 1. \ */ \ if (temp > 1) { \ /* The correction bit is the next bit of the absolute value. */ \ BR_buffer[BR++] = (char)(temp & 1); \ signbits >>= 1; \ zerobits >>= 1; \ continue; \ } \ \ /* Emit any pending EOBRUN and the BE correction bits */ \ emit_eobrun(entropy); \ \ /* Count/emit Huffman symbol for run length / number of bits */ \ emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1); \ \ /* Emit output bit for newly-nonzero coef */ \ temp = signbits & 1; /* ((*block)[jpeg_natural_order_start[k]] < 0) ? 0 : 1 */ \ emit_bits(entropy, (unsigned int)temp, 1); \ \ /* Emit buffered correction bits that must be associated with this code */ \ emit_buffered_bits(entropy, BR_buffer, BR); \ BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ \ BR = 0; \ r = 0; /* reset zero run length */ \ signbits >>= 1; \ zerobits >>= 1; \ } \ } METHODDEF(boolean) encode_mcu_AC_refine(j_compress_ptr cinfo, JBLOCKROW *MCU_data) { phuff_entropy_ptr entropy = (phuff_entropy_ptr)cinfo->entropy; register int temp, r, idx; char *BR_buffer; unsigned int BR; int Sl = cinfo->Se - cinfo->Ss + 1; int Al = cinfo->Al; UJCOEF absvalues_unaligned[DCTSIZE2 + 15]; UJCOEF *absvalues; const UJCOEF *cabsvalue, *EOBPTR; size_t zerobits, signbits; size_t bits[16 / SIZEOF_SIZE_T]; entropy->next_output_byte = cinfo->dest->next_output_byte; entropy->free_in_buffer = cinfo->dest->free_in_buffer; /* Emit restart marker if needed */ if (cinfo->restart_interval) if (entropy->restarts_to_go == 0) emit_restart(entropy, entropy->next_restart_num); #ifdef WITH_SIMD cabsvalue = absvalues = (UJCOEF *)PAD((JUINTPTR)absvalues_unaligned, 16); #else /* Not using SIMD, so alignment is not needed */ cabsvalue = absvalues = absvalues_unaligned; #endif /* Prepare data */ EOBPTR = absvalues + entropy->AC_refine_prepare(MCU_data[0][0], jpeg_natural_order + cinfo->Ss, Sl, Al, absvalues, bits); /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */ r = 0; /* r = run length of zeros */ BR = 0; /* BR = count of buffered bits added now */ BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */ zerobits = bits[0]; #if SIZEOF_SIZE_T == 8 signbits = bits[1]; #else signbits = bits[2]; #endif ENCODE_COEFS_AC_REFINE((void)0;); #if SIZEOF_SIZE_T == 4 zerobits = bits[1]; signbits = bits[3]; if (zerobits) { int diff = ((absvalues + DCTSIZE2 / 2) - cabsvalue); idx = count_zeroes(&zerobits); signbits >>= idx; idx += diff; r += idx; cabsvalue += idx; goto first_iter_ac_refine; } ENCODE_COEFS_AC_REFINE(first_iter_ac_refine:); #endif r |= (int)((absvalues + Sl) - cabsvalue); if (r > 0 || BR > 0) { /* If there are trailing zeroes, */ entropy->EOBRUN++; /* count an EOB */ entropy->BE += BR; /* concat my correction bits to older ones */ /* We force out the EOB if we risk either: * 1. overflow of the EOB counter; * 2. overflow of the correction bit buffer during the next MCU. */ if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS - DCTSIZE2 + 1)) emit_eobrun(entropy); } cinfo->dest->next_output_byte = entropy->next_output_byte; cinfo->dest->free_in_buffer = entropy->free_in_buffer; /* Update restart-interval state too */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) { entropy->restarts_to_go = cinfo->restart_interval; entropy->next_restart_num++; entropy->next_restart_num &= 7; } entropy->restarts_to_go--; } return TRUE; } /* * Finish up at the end of a Huffman-compressed progressive scan. */ METHODDEF(void) finish_pass_phuff(j_compress_ptr cinfo) { phuff_entropy_ptr entropy = (phuff_entropy_ptr)cinfo->entropy; entropy->next_output_byte = cinfo->dest->next_output_byte; entropy->free_in_buffer = cinfo->dest->free_in_buffer; /* Flush out any buffered data */ emit_eobrun(entropy); flush_bits(entropy); cinfo->dest->next_output_byte = entropy->next_output_byte; cinfo->dest->free_in_buffer = entropy->free_in_buffer; } /* * Finish up a statistics-gathering pass and create the new Huffman tables. */ METHODDEF(void) finish_pass_gather_phuff(j_compress_ptr cinfo) { phuff_entropy_ptr entropy = (phuff_entropy_ptr)cinfo->entropy; boolean is_DC_band; int ci, tbl; jpeg_component_info *compptr; JHUFF_TBL **htblptr; boolean did[NUM_HUFF_TBLS]; /* Flush out buffered data (all we care about is counting the EOB symbol) */ emit_eobrun(entropy); is_DC_band = (cinfo->Ss == 0); /* It's important not to apply jpeg_gen_optimal_table more than once * per table, because it clobbers the input frequency counts! */ memset(did, 0, sizeof(did)); for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; if (is_DC_band) { if (cinfo->Ah != 0) /* DC refinement needs no table */ continue; tbl = compptr->dc_tbl_no; } else { tbl = compptr->ac_tbl_no; } if (!did[tbl]) { if (is_DC_band) htblptr = &cinfo->dc_huff_tbl_ptrs[tbl]; else htblptr = &cinfo->ac_huff_tbl_ptrs[tbl]; if (*htblptr == NULL) *htblptr = jpeg_alloc_huff_table((j_common_ptr)cinfo); jpeg_gen_optimal_table(cinfo, *htblptr, entropy->count_ptrs[tbl]); did[tbl] = TRUE; } } } /* * Module initialization routine for progressive Huffman entropy encoding. */ GLOBAL(void) jinit_phuff_encoder(j_compress_ptr cinfo) { phuff_entropy_ptr entropy; int i; entropy = (phuff_entropy_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, sizeof(phuff_entropy_encoder)); cinfo->entropy = (struct jpeg_entropy_encoder *)entropy; entropy->pub.start_pass = start_pass_phuff; /* Mark tables unallocated */ for (i = 0; i < NUM_HUFF_TBLS; i++) { entropy->derived_tbls[i] = NULL; entropy->count_ptrs[i] = NULL; } entropy->bit_buffer = NULL; /* needed only in AC refinement scan */ } #endif /* C_PROGRESSIVE_SUPPORTED */ libjpeg-turbo-2.1.5/jcprepct.c000066400000000000000000000312451436506551100162550ustar00rootroot00000000000000/* * jcprepct.c * * This file is part of the Independent JPEG Group's software: * Copyright (C) 1994-1996, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2022, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains the compression preprocessing controller. * This controller manages the color conversion, downsampling, * and edge expansion steps. * * Most of the complexity here is associated with buffering input rows * as required by the downsampler. See the comments at the head of * jcsample.c for the downsampler's needs. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" /* At present, jcsample.c can request context rows only for smoothing. * In the future, we might also need context rows for CCIR601 sampling * or other more-complex downsampling procedures. The code to support * context rows should be compiled only if needed. */ #ifdef INPUT_SMOOTHING_SUPPORTED #define CONTEXT_ROWS_SUPPORTED #endif /* * For the simple (no-context-row) case, we just need to buffer one * row group's worth of pixels for the downsampling step. At the bottom of * the image, we pad to a full row group by replicating the last pixel row. * The downsampler's last output row is then replicated if needed to pad * out to a full iMCU row. * * When providing context rows, we must buffer three row groups' worth of * pixels. Three row groups are physically allocated, but the row pointer * arrays are made five row groups high, with the extra pointers above and * below "wrapping around" to point to the last and first real row groups. * This allows the downsampler to access the proper context rows. * At the top and bottom of the image, we create dummy context rows by * copying the first or last real pixel row. This copying could be avoided * by pointer hacking as is done in jdmainct.c, but it doesn't seem worth the * trouble on the compression side. */ /* Private buffer controller object */ typedef struct { struct jpeg_c_prep_controller pub; /* public fields */ /* Downsampling input buffer. This buffer holds color-converted data * until we have enough to do a downsample step. */ JSAMPARRAY color_buf[MAX_COMPONENTS]; JDIMENSION rows_to_go; /* counts rows remaining in source image */ int next_buf_row; /* index of next row to store in color_buf */ #ifdef CONTEXT_ROWS_SUPPORTED /* only needed for context case */ int this_row_group; /* starting row index of group to process */ int next_buf_stop; /* downsample when we reach this index */ #endif } my_prep_controller; typedef my_prep_controller *my_prep_ptr; /* * Initialize for a processing pass. */ METHODDEF(void) start_pass_prep(j_compress_ptr cinfo, J_BUF_MODE pass_mode) { my_prep_ptr prep = (my_prep_ptr)cinfo->prep; if (pass_mode != JBUF_PASS_THRU) ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); /* Initialize total-height counter for detecting bottom of image */ prep->rows_to_go = cinfo->image_height; /* Mark the conversion buffer empty */ prep->next_buf_row = 0; #ifdef CONTEXT_ROWS_SUPPORTED /* Preset additional state variables for context mode. * These aren't used in non-context mode, so we needn't test which mode. */ prep->this_row_group = 0; /* Set next_buf_stop to stop after two row groups have been read in. */ prep->next_buf_stop = 2 * cinfo->max_v_samp_factor; #endif } /* * Expand an image vertically from height input_rows to height output_rows, * by duplicating the bottom row. */ LOCAL(void) expand_bottom_edge(JSAMPARRAY image_data, JDIMENSION num_cols, int input_rows, int output_rows) { register int row; for (row = input_rows; row < output_rows; row++) { jcopy_sample_rows(image_data, input_rows - 1, image_data, row, 1, num_cols); } } /* * Process some data in the simple no-context case. * * Preprocessor output data is counted in "row groups". A row group * is defined to be v_samp_factor sample rows of each component. * Downsampling will produce this much data from each max_v_samp_factor * input rows. */ METHODDEF(void) pre_process_data(j_compress_ptr cinfo, JSAMPARRAY input_buf, JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail, JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr, JDIMENSION out_row_groups_avail) { my_prep_ptr prep = (my_prep_ptr)cinfo->prep; int numrows, ci; JDIMENSION inrows; jpeg_component_info *compptr; while (*in_row_ctr < in_rows_avail && *out_row_group_ctr < out_row_groups_avail) { /* Do color conversion to fill the conversion buffer. */ inrows = in_rows_avail - *in_row_ctr; numrows = cinfo->max_v_samp_factor - prep->next_buf_row; numrows = (int)MIN((JDIMENSION)numrows, inrows); (*cinfo->cconvert->color_convert) (cinfo, input_buf + *in_row_ctr, prep->color_buf, (JDIMENSION)prep->next_buf_row, numrows); *in_row_ctr += numrows; prep->next_buf_row += numrows; prep->rows_to_go -= numrows; /* If at bottom of image, pad to fill the conversion buffer. */ if (prep->rows_to_go == 0 && prep->next_buf_row < cinfo->max_v_samp_factor) { for (ci = 0; ci < cinfo->num_components; ci++) { expand_bottom_edge(prep->color_buf[ci], cinfo->image_width, prep->next_buf_row, cinfo->max_v_samp_factor); } prep->next_buf_row = cinfo->max_v_samp_factor; } /* If we've filled the conversion buffer, empty it. */ if (prep->next_buf_row == cinfo->max_v_samp_factor) { (*cinfo->downsample->downsample) (cinfo, prep->color_buf, (JDIMENSION)0, output_buf, *out_row_group_ctr); prep->next_buf_row = 0; (*out_row_group_ctr)++; } /* If at bottom of image, pad the output to a full iMCU height. * Note we assume the caller is providing a one-iMCU-height output buffer! */ if (prep->rows_to_go == 0 && *out_row_group_ctr < out_row_groups_avail) { for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { expand_bottom_edge(output_buf[ci], compptr->width_in_blocks * DCTSIZE, (int)(*out_row_group_ctr * compptr->v_samp_factor), (int)(out_row_groups_avail * compptr->v_samp_factor)); } *out_row_group_ctr = out_row_groups_avail; break; /* can exit outer loop without test */ } } } #ifdef CONTEXT_ROWS_SUPPORTED /* * Process some data in the context case. */ METHODDEF(void) pre_process_context(j_compress_ptr cinfo, JSAMPARRAY input_buf, JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail, JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr, JDIMENSION out_row_groups_avail) { my_prep_ptr prep = (my_prep_ptr)cinfo->prep; int numrows, ci; int buf_height = cinfo->max_v_samp_factor * 3; JDIMENSION inrows; while (*out_row_group_ctr < out_row_groups_avail) { if (*in_row_ctr < in_rows_avail) { /* Do color conversion to fill the conversion buffer. */ inrows = in_rows_avail - *in_row_ctr; numrows = prep->next_buf_stop - prep->next_buf_row; numrows = (int)MIN((JDIMENSION)numrows, inrows); (*cinfo->cconvert->color_convert) (cinfo, input_buf + *in_row_ctr, prep->color_buf, (JDIMENSION)prep->next_buf_row, numrows); /* Pad at top of image, if first time through */ if (prep->rows_to_go == cinfo->image_height) { for (ci = 0; ci < cinfo->num_components; ci++) { int row; for (row = 1; row <= cinfo->max_v_samp_factor; row++) { jcopy_sample_rows(prep->color_buf[ci], 0, prep->color_buf[ci], -row, 1, cinfo->image_width); } } } *in_row_ctr += numrows; prep->next_buf_row += numrows; prep->rows_to_go -= numrows; } else { /* Return for more data, unless we are at the bottom of the image. */ if (prep->rows_to_go != 0) break; /* When at bottom of image, pad to fill the conversion buffer. */ if (prep->next_buf_row < prep->next_buf_stop) { for (ci = 0; ci < cinfo->num_components; ci++) { expand_bottom_edge(prep->color_buf[ci], cinfo->image_width, prep->next_buf_row, prep->next_buf_stop); } prep->next_buf_row = prep->next_buf_stop; } } /* If we've gotten enough data, downsample a row group. */ if (prep->next_buf_row == prep->next_buf_stop) { (*cinfo->downsample->downsample) (cinfo, prep->color_buf, (JDIMENSION)prep->this_row_group, output_buf, *out_row_group_ctr); (*out_row_group_ctr)++; /* Advance pointers with wraparound as necessary. */ prep->this_row_group += cinfo->max_v_samp_factor; if (prep->this_row_group >= buf_height) prep->this_row_group = 0; if (prep->next_buf_row >= buf_height) prep->next_buf_row = 0; prep->next_buf_stop = prep->next_buf_row + cinfo->max_v_samp_factor; } } } /* * Create the wrapped-around downsampling input buffer needed for context mode. */ LOCAL(void) create_context_buffer(j_compress_ptr cinfo) { my_prep_ptr prep = (my_prep_ptr)cinfo->prep; int rgroup_height = cinfo->max_v_samp_factor; int ci, i; jpeg_component_info *compptr; JSAMPARRAY true_buffer, fake_buffer; /* Grab enough space for fake row pointers for all the components; * we need five row groups' worth of pointers for each component. */ fake_buffer = (JSAMPARRAY) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, (cinfo->num_components * 5 * rgroup_height) * sizeof(JSAMPROW)); for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { /* Allocate the actual buffer space (3 row groups) for this component. * We make the buffer wide enough to allow the downsampler to edge-expand * horizontally within the buffer, if it so chooses. */ true_buffer = (*cinfo->mem->alloc_sarray) ((j_common_ptr)cinfo, JPOOL_IMAGE, (JDIMENSION)(((long)compptr->width_in_blocks * DCTSIZE * cinfo->max_h_samp_factor) / compptr->h_samp_factor), (JDIMENSION)(3 * rgroup_height)); /* Copy true buffer row pointers into the middle of the fake row array */ memcpy(fake_buffer + rgroup_height, true_buffer, 3 * rgroup_height * sizeof(JSAMPROW)); /* Fill in the above and below wraparound pointers */ for (i = 0; i < rgroup_height; i++) { fake_buffer[i] = true_buffer[2 * rgroup_height + i]; fake_buffer[4 * rgroup_height + i] = true_buffer[i]; } prep->color_buf[ci] = fake_buffer + rgroup_height; fake_buffer += 5 * rgroup_height; /* point to space for next component */ } } #endif /* CONTEXT_ROWS_SUPPORTED */ /* * Initialize preprocessing controller. */ GLOBAL(void) jinit_c_prep_controller(j_compress_ptr cinfo, boolean need_full_buffer) { my_prep_ptr prep; int ci; jpeg_component_info *compptr; if (need_full_buffer) /* safety check */ ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); prep = (my_prep_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, sizeof(my_prep_controller)); cinfo->prep = (struct jpeg_c_prep_controller *)prep; prep->pub.start_pass = start_pass_prep; /* Allocate the color conversion buffer. * We make the buffer wide enough to allow the downsampler to edge-expand * horizontally within the buffer, if it so chooses. */ if (cinfo->downsample->need_context_rows) { /* Set up to provide context rows */ #ifdef CONTEXT_ROWS_SUPPORTED prep->pub.pre_process_data = pre_process_context; create_context_buffer(cinfo); #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif } else { /* No context, just make it tall enough for one row group */ prep->pub.pre_process_data = pre_process_data; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { prep->color_buf[ci] = (*cinfo->mem->alloc_sarray) ((j_common_ptr)cinfo, JPOOL_IMAGE, (JDIMENSION)(((long)compptr->width_in_blocks * DCTSIZE * cinfo->max_h_samp_factor) / compptr->h_samp_factor), (JDIMENSION)cinfo->max_v_samp_factor); } } } libjpeg-turbo-2.1.5/jcsample.c000066400000000000000000000453241436506551100162440ustar00rootroot00000000000000/* * jcsample.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1996, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright 2009 Pierre Ossman for Cendio AB * Copyright (C) 2014, MIPS Technologies, Inc., California. * Copyright (C) 2015, 2019, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains downsampling routines. * * Downsampling input data is counted in "row groups". A row group * is defined to be max_v_samp_factor pixel rows of each component, * from which the downsampler produces v_samp_factor sample rows. * A single row group is processed in each call to the downsampler module. * * The downsampler is responsible for edge-expansion of its output data * to fill an integral number of DCT blocks horizontally. The source buffer * may be modified if it is helpful for this purpose (the source buffer is * allocated wide enough to correspond to the desired output width). * The caller (the prep controller) is responsible for vertical padding. * * The downsampler may request "context rows" by setting need_context_rows * during startup. In this case, the input arrays will contain at least * one row group's worth of pixels above and below the passed-in data; * the caller will create dummy rows at image top and bottom by replicating * the first or last real pixel row. * * An excellent reference for image resampling is * Digital Image Warping, George Wolberg, 1990. * Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7. * * The downsampling algorithm used here is a simple average of the source * pixels covered by the output pixel. The hi-falutin sampling literature * refers to this as a "box filter". In general the characteristics of a box * filter are not very good, but for the specific cases we normally use (1:1 * and 2:1 ratios) the box is equivalent to a "triangle filter" which is not * nearly so bad. If you intend to use other sampling ratios, you'd be well * advised to improve this code. * * A simple input-smoothing capability is provided. This is mainly intended * for cleaning up color-dithered GIF input files (if you find it inadequate, * we suggest using an external filtering program such as pnmconvol). When * enabled, each input pixel P is replaced by a weighted sum of itself and its * eight neighbors. P's weight is 1-8*SF and each neighbor's weight is SF, * where SF = (smoothing_factor / 1024). * Currently, smoothing is only supported for 2h2v sampling factors. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jsimd.h" /* Pointer to routine to downsample a single component */ typedef void (*downsample1_ptr) (j_compress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY output_data); /* Private subobject */ typedef struct { struct jpeg_downsampler pub; /* public fields */ /* Downsampling method pointers, one per component */ downsample1_ptr methods[MAX_COMPONENTS]; } my_downsampler; typedef my_downsampler *my_downsample_ptr; /* * Initialize for a downsampling pass. */ METHODDEF(void) start_pass_downsample(j_compress_ptr cinfo) { /* no work for now */ } /* * Expand a component horizontally from width input_cols to width output_cols, * by duplicating the rightmost samples. */ LOCAL(void) expand_right_edge(JSAMPARRAY image_data, int num_rows, JDIMENSION input_cols, JDIMENSION output_cols) { register JSAMPROW ptr; register JSAMPLE pixval; register int count; int row; int numcols = (int)(output_cols - input_cols); if (numcols > 0) { for (row = 0; row < num_rows; row++) { ptr = image_data[row] + input_cols; pixval = ptr[-1]; for (count = numcols; count > 0; count--) *ptr++ = pixval; } } } /* * Do downsampling for a whole row group (all components). * * In this version we simply downsample each component independently. */ METHODDEF(void) sep_downsample(j_compress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_index, JSAMPIMAGE output_buf, JDIMENSION out_row_group_index) { my_downsample_ptr downsample = (my_downsample_ptr)cinfo->downsample; int ci; jpeg_component_info *compptr; JSAMPARRAY in_ptr, out_ptr; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { in_ptr = input_buf[ci] + in_row_index; out_ptr = output_buf[ci] + (out_row_group_index * compptr->v_samp_factor); (*downsample->methods[ci]) (cinfo, compptr, in_ptr, out_ptr); } } /* * Downsample pixel values of a single component. * One row group is processed per call. * This version handles arbitrary integral sampling ratios, without smoothing. * Note that this version is not actually used for customary sampling ratios. */ METHODDEF(void) int_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY output_data) { int inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v; JDIMENSION outcol, outcol_h; /* outcol_h == outcol*h_expand */ JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; JSAMPROW inptr, outptr; JLONG outvalue; h_expand = cinfo->max_h_samp_factor / compptr->h_samp_factor; v_expand = cinfo->max_v_samp_factor / compptr->v_samp_factor; numpix = h_expand * v_expand; numpix2 = numpix / 2; /* Expand input data enough to let all the output samples be generated * by the standard loop. Special-casing padded output would be more * efficient. */ expand_right_edge(input_data, cinfo->max_v_samp_factor, cinfo->image_width, output_cols * h_expand); inrow = 0; for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { outptr = output_data[outrow]; for (outcol = 0, outcol_h = 0; outcol < output_cols; outcol++, outcol_h += h_expand) { outvalue = 0; for (v = 0; v < v_expand; v++) { inptr = input_data[inrow + v] + outcol_h; for (h = 0; h < h_expand; h++) { outvalue += (JLONG)(*inptr++); } } *outptr++ = (JSAMPLE)((outvalue + numpix2) / numpix); } inrow += v_expand; } } /* * Downsample pixel values of a single component. * This version handles the special case of a full-size component, * without smoothing. */ METHODDEF(void) fullsize_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY output_data) { /* Copy the data */ jcopy_sample_rows(input_data, 0, output_data, 0, cinfo->max_v_samp_factor, cinfo->image_width); /* Edge-expand */ expand_right_edge(output_data, cinfo->max_v_samp_factor, cinfo->image_width, compptr->width_in_blocks * DCTSIZE); } /* * Downsample pixel values of a single component. * This version handles the common case of 2:1 horizontal and 1:1 vertical, * without smoothing. * * A note about the "bias" calculations: when rounding fractional values to * integer, we do not want to always round 0.5 up to the next integer. * If we did that, we'd introduce a noticeable bias towards larger values. * Instead, this code is arranged so that 0.5 will be rounded up or down at * alternate pixel locations (a simple ordered dither pattern). */ METHODDEF(void) h2v1_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY output_data) { int outrow; JDIMENSION outcol; JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; register JSAMPROW inptr, outptr; register int bias; /* Expand input data enough to let all the output samples be generated * by the standard loop. Special-casing padded output would be more * efficient. */ expand_right_edge(input_data, cinfo->max_v_samp_factor, cinfo->image_width, output_cols * 2); for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { outptr = output_data[outrow]; inptr = input_data[outrow]; bias = 0; /* bias = 0,1,0,1,... for successive samples */ for (outcol = 0; outcol < output_cols; outcol++) { *outptr++ = (JSAMPLE)((inptr[0] + inptr[1] + bias) >> 1); bias ^= 1; /* 0=>1, 1=>0 */ inptr += 2; } } } /* * Downsample pixel values of a single component. * This version handles the standard case of 2:1 horizontal and 2:1 vertical, * without smoothing. */ METHODDEF(void) h2v2_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY output_data) { int inrow, outrow; JDIMENSION outcol; JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; register JSAMPROW inptr0, inptr1, outptr; register int bias; /* Expand input data enough to let all the output samples be generated * by the standard loop. Special-casing padded output would be more * efficient. */ expand_right_edge(input_data, cinfo->max_v_samp_factor, cinfo->image_width, output_cols * 2); inrow = 0; for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { outptr = output_data[outrow]; inptr0 = input_data[inrow]; inptr1 = input_data[inrow + 1]; bias = 1; /* bias = 1,2,1,2,... for successive samples */ for (outcol = 0; outcol < output_cols; outcol++) { *outptr++ = (JSAMPLE)((inptr0[0] + inptr0[1] + inptr1[0] + inptr1[1] + bias) >> 2); bias ^= 3; /* 1=>2, 2=>1 */ inptr0 += 2; inptr1 += 2; } inrow += 2; } } #ifdef INPUT_SMOOTHING_SUPPORTED /* * Downsample pixel values of a single component. * This version handles the standard case of 2:1 horizontal and 2:1 vertical, * with smoothing. One row of context is required. */ METHODDEF(void) h2v2_smooth_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY output_data) { int inrow, outrow; JDIMENSION colctr; JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; register JSAMPROW inptr0, inptr1, above_ptr, below_ptr, outptr; JLONG membersum, neighsum, memberscale, neighscale; /* Expand input data enough to let all the output samples be generated * by the standard loop. Special-casing padded output would be more * efficient. */ expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2, cinfo->image_width, output_cols * 2); /* We don't bother to form the individual "smoothed" input pixel values; * we can directly compute the output which is the average of the four * smoothed values. Each of the four member pixels contributes a fraction * (1-8*SF) to its own smoothed image and a fraction SF to each of the three * other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final * output. The four corner-adjacent neighbor pixels contribute a fraction * SF to just one smoothed pixel, or SF/4 to the final output; while the * eight edge-adjacent neighbors contribute SF to each of two smoothed * pixels, or SF/2 overall. In order to use integer arithmetic, these * factors are scaled by 2^16 = 65536. * Also recall that SF = smoothing_factor / 1024. */ memberscale = 16384 - cinfo->smoothing_factor * 80; /* scaled (1-5*SF)/4 */ neighscale = cinfo->smoothing_factor * 16; /* scaled SF/4 */ inrow = 0; for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { outptr = output_data[outrow]; inptr0 = input_data[inrow]; inptr1 = input_data[inrow + 1]; above_ptr = input_data[inrow - 1]; below_ptr = input_data[inrow + 2]; /* Special case for first column: pretend column -1 is same as column 0 */ membersum = inptr0[0] + inptr0[1] + inptr1[0] + inptr1[1]; neighsum = above_ptr[0] + above_ptr[1] + below_ptr[0] + below_ptr[1] + inptr0[0] + inptr0[2] + inptr1[0] + inptr1[2]; neighsum += neighsum; neighsum += above_ptr[0] + above_ptr[2] + below_ptr[0] + below_ptr[2]; membersum = membersum * memberscale + neighsum * neighscale; *outptr++ = (JSAMPLE)((membersum + 32768) >> 16); inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2; for (colctr = output_cols - 2; colctr > 0; colctr--) { /* sum of pixels directly mapped to this output element */ membersum = inptr0[0] + inptr0[1] + inptr1[0] + inptr1[1]; /* sum of edge-neighbor pixels */ neighsum = above_ptr[0] + above_ptr[1] + below_ptr[0] + below_ptr[1] + inptr0[-1] + inptr0[2] + inptr1[-1] + inptr1[2]; /* The edge-neighbors count twice as much as corner-neighbors */ neighsum += neighsum; /* Add in the corner-neighbors */ neighsum += above_ptr[-1] + above_ptr[2] + below_ptr[-1] + below_ptr[2]; /* form final output scaled up by 2^16 */ membersum = membersum * memberscale + neighsum * neighscale; /* round, descale and output it */ *outptr++ = (JSAMPLE)((membersum + 32768) >> 16); inptr0 += 2; inptr1 += 2; above_ptr += 2; below_ptr += 2; } /* Special case for last column */ membersum = inptr0[0] + inptr0[1] + inptr1[0] + inptr1[1]; neighsum = above_ptr[0] + above_ptr[1] + below_ptr[0] + below_ptr[1] + inptr0[-1] + inptr0[1] + inptr1[-1] + inptr1[1]; neighsum += neighsum; neighsum += above_ptr[-1] + above_ptr[1] + below_ptr[-1] + below_ptr[1]; membersum = membersum * memberscale + neighsum * neighscale; *outptr = (JSAMPLE)((membersum + 32768) >> 16); inrow += 2; } } /* * Downsample pixel values of a single component. * This version handles the special case of a full-size component, * with smoothing. One row of context is required. */ METHODDEF(void) fullsize_smooth_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY output_data) { int outrow; JDIMENSION colctr; JDIMENSION output_cols = compptr->width_in_blocks * DCTSIZE; register JSAMPROW inptr, above_ptr, below_ptr, outptr; JLONG membersum, neighsum, memberscale, neighscale; int colsum, lastcolsum, nextcolsum; /* Expand input data enough to let all the output samples be generated * by the standard loop. Special-casing padded output would be more * efficient. */ expand_right_edge(input_data - 1, cinfo->max_v_samp_factor + 2, cinfo->image_width, output_cols); /* Each of the eight neighbor pixels contributes a fraction SF to the * smoothed pixel, while the main pixel contributes (1-8*SF). In order * to use integer arithmetic, these factors are multiplied by 2^16 = 65536. * Also recall that SF = smoothing_factor / 1024. */ memberscale = 65536L - cinfo->smoothing_factor * 512L; /* scaled 1-8*SF */ neighscale = cinfo->smoothing_factor * 64; /* scaled SF */ for (outrow = 0; outrow < compptr->v_samp_factor; outrow++) { outptr = output_data[outrow]; inptr = input_data[outrow]; above_ptr = input_data[outrow - 1]; below_ptr = input_data[outrow + 1]; /* Special case for first column */ colsum = (*above_ptr++) + (*below_ptr++) + inptr[0]; membersum = *inptr++; nextcolsum = above_ptr[0] + below_ptr[0] + inptr[0]; neighsum = colsum + (colsum - membersum) + nextcolsum; membersum = membersum * memberscale + neighsum * neighscale; *outptr++ = (JSAMPLE)((membersum + 32768) >> 16); lastcolsum = colsum; colsum = nextcolsum; for (colctr = output_cols - 2; colctr > 0; colctr--) { membersum = *inptr++; above_ptr++; below_ptr++; nextcolsum = above_ptr[0] + below_ptr[0] + inptr[0]; neighsum = lastcolsum + (colsum - membersum) + nextcolsum; membersum = membersum * memberscale + neighsum * neighscale; *outptr++ = (JSAMPLE)((membersum + 32768) >> 16); lastcolsum = colsum; colsum = nextcolsum; } /* Special case for last column */ membersum = *inptr; neighsum = lastcolsum + (colsum - membersum) + colsum; membersum = membersum * memberscale + neighsum * neighscale; *outptr = (JSAMPLE)((membersum + 32768) >> 16); } } #endif /* INPUT_SMOOTHING_SUPPORTED */ /* * Module initialization routine for downsampling. * Note that we must select a routine for each component. */ GLOBAL(void) jinit_downsampler(j_compress_ptr cinfo) { my_downsample_ptr downsample; int ci; jpeg_component_info *compptr; boolean smoothok = TRUE; downsample = (my_downsample_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, sizeof(my_downsampler)); cinfo->downsample = (struct jpeg_downsampler *)downsample; downsample->pub.start_pass = start_pass_downsample; downsample->pub.downsample = sep_downsample; downsample->pub.need_context_rows = FALSE; if (cinfo->CCIR601_sampling) ERREXIT(cinfo, JERR_CCIR601_NOTIMPL); /* Verify we can handle the sampling factors, and set up method pointers */ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { if (compptr->h_samp_factor == cinfo->max_h_samp_factor && compptr->v_samp_factor == cinfo->max_v_samp_factor) { #ifdef INPUT_SMOOTHING_SUPPORTED if (cinfo->smoothing_factor) { downsample->methods[ci] = fullsize_smooth_downsample; downsample->pub.need_context_rows = TRUE; } else #endif downsample->methods[ci] = fullsize_downsample; } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor && compptr->v_samp_factor == cinfo->max_v_samp_factor) { smoothok = FALSE; if (jsimd_can_h2v1_downsample()) downsample->methods[ci] = jsimd_h2v1_downsample; else downsample->methods[ci] = h2v1_downsample; } else if (compptr->h_samp_factor * 2 == cinfo->max_h_samp_factor && compptr->v_samp_factor * 2 == cinfo->max_v_samp_factor) { #ifdef INPUT_SMOOTHING_SUPPORTED if (cinfo->smoothing_factor) { #if defined(__mips__) if (jsimd_can_h2v2_smooth_downsample()) downsample->methods[ci] = jsimd_h2v2_smooth_downsample; else #endif downsample->methods[ci] = h2v2_smooth_downsample; downsample->pub.need_context_rows = TRUE; } else #endif { if (jsimd_can_h2v2_downsample()) downsample->methods[ci] = jsimd_h2v2_downsample; else downsample->methods[ci] = h2v2_downsample; } } else if ((cinfo->max_h_samp_factor % compptr->h_samp_factor) == 0 && (cinfo->max_v_samp_factor % compptr->v_samp_factor) == 0) { smoothok = FALSE; downsample->methods[ci] = int_downsample; } else ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL); } #ifdef INPUT_SMOOTHING_SUPPORTED if (cinfo->smoothing_factor && !smoothok) TRACEMS(cinfo, 0, JTRC_SMOOTH_NOTIMPL); #endif } libjpeg-turbo-2.1.5/jcstest.c000066400000000000000000000074131436506551100161220ustar00rootroot00000000000000/* * Copyright (C)2011 D. R. Commander. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* This program demonstrates how to check for the colorspace extension capabilities of libjpeg-turbo at both compile time and run time. */ #include #include #include #include #ifndef JCS_EXTENSIONS #define JCS_EXT_RGB 6 #endif #if !defined(JCS_EXTENSIONS) || !defined(JCS_ALPHA_EXTENSIONS) #define JCS_EXT_RGBA 12 #endif static char lasterror[JMSG_LENGTH_MAX] = "No error"; typedef struct _error_mgr { struct jpeg_error_mgr pub; jmp_buf jb; } error_mgr; static void my_error_exit(j_common_ptr cinfo) { error_mgr *myerr = (error_mgr *)cinfo->err; (*cinfo->err->output_message) (cinfo); longjmp(myerr->jb, 1); } static void my_output_message(j_common_ptr cinfo) { (*cinfo->err->format_message) (cinfo, lasterror); } int main(void) { int jcs_valid = -1, jcs_alpha_valid = -1; struct jpeg_compress_struct cinfo; error_mgr jerr; printf("libjpeg-turbo colorspace extensions:\n"); #if JCS_EXTENSIONS printf(" Present at compile time\n"); #else printf(" Not present at compile time\n"); #endif cinfo.err = jpeg_std_error(&jerr.pub); jerr.pub.error_exit = my_error_exit; jerr.pub.output_message = my_output_message; if (setjmp(jerr.jb)) { /* this will execute if libjpeg has an error */ jcs_valid = 0; goto done; } jpeg_create_compress(&cinfo); cinfo.input_components = 3; jpeg_set_defaults(&cinfo); cinfo.in_color_space = JCS_EXT_RGB; jpeg_default_colorspace(&cinfo); jcs_valid = 1; done: if (jcs_valid) printf(" Working properly\n"); else printf(" Not working properly. Error returned was:\n %s\n", lasterror); printf("libjpeg-turbo alpha colorspace extensions:\n"); #if JCS_ALPHA_EXTENSIONS printf(" Present at compile time\n"); #else printf(" Not present at compile time\n"); #endif if (setjmp(jerr.jb)) { /* this will execute if libjpeg has an error */ jcs_alpha_valid = 0; goto done2; } cinfo.in_color_space = JCS_EXT_RGBA; jpeg_default_colorspace(&cinfo); jcs_alpha_valid = 1; done2: if (jcs_alpha_valid) printf(" Working properly\n"); else printf(" Not working properly. Error returned was:\n %s\n", lasterror); jpeg_destroy_compress(&cinfo); return 0; } libjpeg-turbo-2.1.5/jctrans.c000066400000000000000000000351341436506551100161100ustar00rootroot00000000000000/* * jctrans.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1995-1998, Thomas G. Lane. * Modified 2000-2009 by Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright (C) 2020, 2022, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains library routines for transcoding compression, * that is, writing raw DCT coefficient arrays to an output JPEG file. * The routines in jcapimin.c will also be needed by a transcoder. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jpegcomp.h" /* Forward declarations */ LOCAL(void) transencode_master_selection(j_compress_ptr cinfo, jvirt_barray_ptr *coef_arrays); LOCAL(void) transencode_coef_controller(j_compress_ptr cinfo, jvirt_barray_ptr *coef_arrays); /* * Compression initialization for writing raw-coefficient data. * Before calling this, all parameters and a data destination must be set up. * Call jpeg_finish_compress() to actually write the data. * * The number of passed virtual arrays must match cinfo->num_components. * Note that the virtual arrays need not be filled or even realized at * the time write_coefficients is called; indeed, if the virtual arrays * were requested from this compression object's memory manager, they * typically will be realized during this routine and filled afterwards. */ GLOBAL(void) jpeg_write_coefficients(j_compress_ptr cinfo, jvirt_barray_ptr *coef_arrays) { if (cinfo->global_state != CSTATE_START) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); /* Mark all tables to be written */ jpeg_suppress_tables(cinfo, FALSE); /* (Re)initialize error mgr and destination modules */ (*cinfo->err->reset_error_mgr) ((j_common_ptr)cinfo); (*cinfo->dest->init_destination) (cinfo); /* Perform master selection of active modules */ transencode_master_selection(cinfo, coef_arrays); /* Wait for jpeg_finish_compress() call */ cinfo->next_scanline = 0; /* so jpeg_write_marker works */ cinfo->global_state = CSTATE_WRCOEFS; } /* * Initialize the compression object with default parameters, * then copy from the source object all parameters needed for lossless * transcoding. Parameters that can be varied without loss (such as * scan script and Huffman optimization) are left in their default states. */ GLOBAL(void) jpeg_copy_critical_parameters(j_decompress_ptr srcinfo, j_compress_ptr dstinfo) { JQUANT_TBL **qtblptr; jpeg_component_info *incomp, *outcomp; JQUANT_TBL *c_quant, *slot_quant; int tblno, ci, coefi; /* Safety check to ensure start_compress not called yet. */ if (dstinfo->global_state != CSTATE_START) ERREXIT1(dstinfo, JERR_BAD_STATE, dstinfo->global_state); /* Copy fundamental image dimensions */ dstinfo->image_width = srcinfo->image_width; dstinfo->image_height = srcinfo->image_height; dstinfo->input_components = srcinfo->num_components; dstinfo->in_color_space = srcinfo->jpeg_color_space; #if JPEG_LIB_VERSION >= 70 dstinfo->jpeg_width = srcinfo->output_width; dstinfo->jpeg_height = srcinfo->output_height; dstinfo->min_DCT_h_scaled_size = srcinfo->min_DCT_h_scaled_size; dstinfo->min_DCT_v_scaled_size = srcinfo->min_DCT_v_scaled_size; #endif /* Initialize all parameters to default values */ jpeg_set_defaults(dstinfo); /* jpeg_set_defaults may choose wrong colorspace, eg YCbCr if input is RGB. * Fix it to get the right header markers for the image colorspace. */ jpeg_set_colorspace(dstinfo, srcinfo->jpeg_color_space); dstinfo->data_precision = srcinfo->data_precision; dstinfo->CCIR601_sampling = srcinfo->CCIR601_sampling; /* Copy the source's quantization tables. */ for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) { if (srcinfo->quant_tbl_ptrs[tblno] != NULL) { qtblptr = &dstinfo->quant_tbl_ptrs[tblno]; if (*qtblptr == NULL) *qtblptr = jpeg_alloc_quant_table((j_common_ptr)dstinfo); memcpy((*qtblptr)->quantval, srcinfo->quant_tbl_ptrs[tblno]->quantval, sizeof((*qtblptr)->quantval)); (*qtblptr)->sent_table = FALSE; } } /* Copy the source's per-component info. * Note we assume jpeg_set_defaults has allocated the dest comp_info array. */ dstinfo->num_components = srcinfo->num_components; if (dstinfo->num_components < 1 || dstinfo->num_components > MAX_COMPONENTS) ERREXIT2(dstinfo, JERR_COMPONENT_COUNT, dstinfo->num_components, MAX_COMPONENTS); for (ci = 0, incomp = srcinfo->comp_info, outcomp = dstinfo->comp_info; ci < dstinfo->num_components; ci++, incomp++, outcomp++) { outcomp->component_id = incomp->component_id; outcomp->h_samp_factor = incomp->h_samp_factor; outcomp->v_samp_factor = incomp->v_samp_factor; outcomp->quant_tbl_no = incomp->quant_tbl_no; /* Make sure saved quantization table for component matches the qtable * slot. If not, the input file re-used this qtable slot. * IJG encoder currently cannot duplicate this. */ tblno = outcomp->quant_tbl_no; if (tblno < 0 || tblno >= NUM_QUANT_TBLS || srcinfo->quant_tbl_ptrs[tblno] == NULL) ERREXIT1(dstinfo, JERR_NO_QUANT_TABLE, tblno); slot_quant = srcinfo->quant_tbl_ptrs[tblno]; c_quant = incomp->quant_table; if (c_quant != NULL) { for (coefi = 0; coefi < DCTSIZE2; coefi++) { if (c_quant->quantval[coefi] != slot_quant->quantval[coefi]) ERREXIT1(dstinfo, JERR_MISMATCHED_QUANT_TABLE, tblno); } } /* Note: we do not copy the source's Huffman table assignments; * instead we rely on jpeg_set_colorspace to have made a suitable choice. */ } /* Also copy JFIF version and resolution information, if available. * Strictly speaking this isn't "critical" info, but it's nearly * always appropriate to copy it if available. In particular, * if the application chooses to copy JFIF 1.02 extension markers from * the source file, we need to copy the version to make sure we don't * emit a file that has 1.02 extensions but a claimed version of 1.01. * We will *not*, however, copy version info from mislabeled "2.01" files. */ if (srcinfo->saw_JFIF_marker) { if (srcinfo->JFIF_major_version == 1) { dstinfo->JFIF_major_version = srcinfo->JFIF_major_version; dstinfo->JFIF_minor_version = srcinfo->JFIF_minor_version; } dstinfo->density_unit = srcinfo->density_unit; dstinfo->X_density = srcinfo->X_density; dstinfo->Y_density = srcinfo->Y_density; } } /* * Master selection of compression modules for transcoding. * This substitutes for jcinit.c's initialization of the full compressor. */ LOCAL(void) transencode_master_selection(j_compress_ptr cinfo, jvirt_barray_ptr *coef_arrays) { /* Although we don't actually use input_components for transcoding, * jcmaster.c's initial_setup will complain if input_components is 0. */ cinfo->input_components = 1; /* Initialize master control (includes parameter checking/processing) */ jinit_c_master_control(cinfo, TRUE /* transcode only */); /* Entropy encoding: either Huffman or arithmetic coding. */ if (cinfo->arith_code) { #ifdef C_ARITH_CODING_SUPPORTED jinit_arith_encoder(cinfo); #else ERREXIT(cinfo, JERR_ARITH_NOTIMPL); #endif } else { if (cinfo->progressive_mode) { #ifdef C_PROGRESSIVE_SUPPORTED jinit_phuff_encoder(cinfo); #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif } else jinit_huff_encoder(cinfo); } /* We need a special coefficient buffer controller. */ transencode_coef_controller(cinfo, coef_arrays); jinit_marker_writer(cinfo); /* We can now tell the memory manager to allocate virtual arrays. */ (*cinfo->mem->realize_virt_arrays) ((j_common_ptr)cinfo); /* Write the datastream header (SOI, JFIF) immediately. * Frame and scan headers are postponed till later. * This lets application insert special markers after the SOI. */ (*cinfo->marker->write_file_header) (cinfo); } /* * The rest of this file is a special implementation of the coefficient * buffer controller. This is similar to jccoefct.c, but it handles only * output from presupplied virtual arrays. Furthermore, we generate any * dummy padding blocks on-the-fly rather than expecting them to be present * in the arrays. */ /* Private buffer controller object */ typedef struct { struct jpeg_c_coef_controller pub; /* public fields */ JDIMENSION iMCU_row_num; /* iMCU row # within image */ JDIMENSION mcu_ctr; /* counts MCUs processed in current row */ int MCU_vert_offset; /* counts MCU rows within iMCU row */ int MCU_rows_per_iMCU_row; /* number of such rows needed */ /* Virtual block array for each component. */ jvirt_barray_ptr *whole_image; /* Workspace for constructing dummy blocks at right/bottom edges. */ JBLOCKROW dummy_buffer[C_MAX_BLOCKS_IN_MCU]; } my_coef_controller; typedef my_coef_controller *my_coef_ptr; LOCAL(void) start_iMCU_row(j_compress_ptr cinfo) /* Reset within-iMCU-row counters for a new row */ { my_coef_ptr coef = (my_coef_ptr)cinfo->coef; /* In an interleaved scan, an MCU row is the same as an iMCU row. * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. * But at the bottom of the image, process only what's left. */ if (cinfo->comps_in_scan > 1) { coef->MCU_rows_per_iMCU_row = 1; } else { if (coef->iMCU_row_num < (cinfo->total_iMCU_rows - 1)) coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; else coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; } coef->mcu_ctr = 0; coef->MCU_vert_offset = 0; } /* * Initialize for a processing pass. */ METHODDEF(void) start_pass_coef(j_compress_ptr cinfo, J_BUF_MODE pass_mode) { my_coef_ptr coef = (my_coef_ptr)cinfo->coef; if (pass_mode != JBUF_CRANK_DEST) ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); coef->iMCU_row_num = 0; start_iMCU_row(cinfo); } /* * Process some data. * We process the equivalent of one fully interleaved MCU row ("iMCU" row) * per call, ie, v_samp_factor block rows for each component in the scan. * The data is obtained from the virtual arrays and fed to the entropy coder. * Returns TRUE if the iMCU row is completed, FALSE if suspended. * * NB: input_buf is ignored; it is likely to be a NULL pointer. */ METHODDEF(boolean) compress_output(j_compress_ptr cinfo, JSAMPIMAGE input_buf) { my_coef_ptr coef = (my_coef_ptr)cinfo->coef; JDIMENSION MCU_col_num; /* index of current MCU within row */ JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; int blkn, ci, xindex, yindex, yoffset, blockcnt; JDIMENSION start_col; JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU]; JBLOCKROW buffer_ptr; jpeg_component_info *compptr; /* Align the virtual buffers for the components used in this scan. */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; buffer[ci] = (*cinfo->mem->access_virt_barray) ((j_common_ptr)cinfo, coef->whole_image[compptr->component_index], coef->iMCU_row_num * compptr->v_samp_factor, (JDIMENSION)compptr->v_samp_factor, FALSE); } /* Loop to process one whole iMCU row */ for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; yoffset++) { for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row; MCU_col_num++) { /* Construct list of pointers to DCT blocks belonging to this MCU */ blkn = 0; /* index of current DCT block within MCU */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; start_col = MCU_col_num * compptr->MCU_width; blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width : compptr->last_col_width; for (yindex = 0; yindex < compptr->MCU_height; yindex++) { if (coef->iMCU_row_num < last_iMCU_row || yindex + yoffset < compptr->last_row_height) { /* Fill in pointers to real blocks in this row */ buffer_ptr = buffer[ci][yindex + yoffset] + start_col; for (xindex = 0; xindex < blockcnt; xindex++) MCU_buffer[blkn++] = buffer_ptr++; } else { /* At bottom of image, need a whole row of dummy blocks */ xindex = 0; } /* Fill in any dummy blocks needed in this row. * Dummy blocks are filled in the same way as in jccoefct.c: * all zeroes in the AC entries, DC entries equal to previous * block's DC value. The init routine has already zeroed the * AC entries, so we need only set the DC entries correctly. */ for (; xindex < compptr->MCU_width; xindex++) { MCU_buffer[blkn] = coef->dummy_buffer[blkn]; MCU_buffer[blkn][0][0] = MCU_buffer[blkn - 1][0][0]; blkn++; } } } /* Try to write the MCU. */ if (!(*cinfo->entropy->encode_mcu) (cinfo, MCU_buffer)) { /* Suspension forced; update state counters and exit */ coef->MCU_vert_offset = yoffset; coef->mcu_ctr = MCU_col_num; return FALSE; } } /* Completed an MCU row, but perhaps not an iMCU row */ coef->mcu_ctr = 0; } /* Completed the iMCU row, advance counters for next one */ coef->iMCU_row_num++; start_iMCU_row(cinfo); return TRUE; } /* * Initialize coefficient buffer controller. * * Each passed coefficient array must be the right size for that * coefficient: width_in_blocks wide and height_in_blocks high, * with unitheight at least v_samp_factor. */ LOCAL(void) transencode_coef_controller(j_compress_ptr cinfo, jvirt_barray_ptr *coef_arrays) { my_coef_ptr coef; JBLOCKROW buffer; int i; coef = (my_coef_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, sizeof(my_coef_controller)); cinfo->coef = (struct jpeg_c_coef_controller *)coef; coef->pub.start_pass = start_pass_coef; coef->pub.compress_data = compress_output; /* Save pointer to virtual arrays */ coef->whole_image = coef_arrays; /* Allocate and pre-zero space for dummy DCT blocks. */ buffer = (JBLOCKROW) (*cinfo->mem->alloc_large) ((j_common_ptr)cinfo, JPOOL_IMAGE, C_MAX_BLOCKS_IN_MCU * sizeof(JBLOCK)); jzero_far((void *)buffer, C_MAX_BLOCKS_IN_MCU * sizeof(JBLOCK)); for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) { coef->dummy_buffer[i] = buffer + i; } } libjpeg-turbo-2.1.5/jdapimin.c000066400000000000000000000316701436506551100162400ustar00rootroot00000000000000/* * jdapimin.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1998, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2016, 2022, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains application interface code for the decompression half * of the JPEG library. These are the "minimum" API routines that may be * needed in either the normal full-decompression case or the * transcoding-only case. * * Most of the routines intended to be called directly by an application * are in this file or in jdapistd.c. But also see jcomapi.c for routines * shared by compression and decompression, and jdtrans.c for the transcoding * case. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jdmaster.h" /* * Initialization of a JPEG decompression object. * The error manager must already be set up (in case memory manager fails). */ GLOBAL(void) jpeg_CreateDecompress(j_decompress_ptr cinfo, int version, size_t structsize) { int i; /* Guard against version mismatches between library and caller. */ cinfo->mem = NULL; /* so jpeg_destroy knows mem mgr not called */ if (version != JPEG_LIB_VERSION) ERREXIT2(cinfo, JERR_BAD_LIB_VERSION, JPEG_LIB_VERSION, version); if (structsize != sizeof(struct jpeg_decompress_struct)) ERREXIT2(cinfo, JERR_BAD_STRUCT_SIZE, (int)sizeof(struct jpeg_decompress_struct), (int)structsize); /* For debugging purposes, we zero the whole master structure. * But the application has already set the err pointer, and may have set * client_data, so we have to save and restore those fields. * Note: if application hasn't set client_data, tools like Purify may * complain here. */ { struct jpeg_error_mgr *err = cinfo->err; void *client_data = cinfo->client_data; /* ignore Purify complaint here */ memset(cinfo, 0, sizeof(struct jpeg_decompress_struct)); cinfo->err = err; cinfo->client_data = client_data; } cinfo->is_decompressor = TRUE; /* Initialize a memory manager instance for this object */ jinit_memory_mgr((j_common_ptr)cinfo); /* Zero out pointers to permanent structures. */ cinfo->progress = NULL; cinfo->src = NULL; for (i = 0; i < NUM_QUANT_TBLS; i++) cinfo->quant_tbl_ptrs[i] = NULL; for (i = 0; i < NUM_HUFF_TBLS; i++) { cinfo->dc_huff_tbl_ptrs[i] = NULL; cinfo->ac_huff_tbl_ptrs[i] = NULL; } /* Initialize marker processor so application can override methods * for COM, APPn markers before calling jpeg_read_header. */ cinfo->marker_list = NULL; jinit_marker_reader(cinfo); /* And initialize the overall input controller. */ jinit_input_controller(cinfo); /* OK, I'm ready */ cinfo->global_state = DSTATE_START; /* The master struct is used to store extension parameters, so we allocate it * here. */ cinfo->master = (struct jpeg_decomp_master *) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_PERMANENT, sizeof(my_decomp_master)); memset(cinfo->master, 0, sizeof(my_decomp_master)); } /* * Destruction of a JPEG decompression object */ GLOBAL(void) jpeg_destroy_decompress(j_decompress_ptr cinfo) { jpeg_destroy((j_common_ptr)cinfo); /* use common routine */ } /* * Abort processing of a JPEG decompression operation, * but don't destroy the object itself. */ GLOBAL(void) jpeg_abort_decompress(j_decompress_ptr cinfo) { jpeg_abort((j_common_ptr)cinfo); /* use common routine */ } /* * Set default decompression parameters. */ LOCAL(void) default_decompress_parms(j_decompress_ptr cinfo) { /* Guess the input colorspace, and set output colorspace accordingly. */ /* (Wish JPEG committee had provided a real way to specify this...) */ /* Note application may override our guesses. */ switch (cinfo->num_components) { case 1: cinfo->jpeg_color_space = JCS_GRAYSCALE; cinfo->out_color_space = JCS_GRAYSCALE; break; case 3: if (cinfo->saw_JFIF_marker) { cinfo->jpeg_color_space = JCS_YCbCr; /* JFIF implies YCbCr */ } else if (cinfo->saw_Adobe_marker) { switch (cinfo->Adobe_transform) { case 0: cinfo->jpeg_color_space = JCS_RGB; break; case 1: cinfo->jpeg_color_space = JCS_YCbCr; break; default: WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform); cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */ break; } } else { /* Saw no special markers, try to guess from the component IDs */ int cid0 = cinfo->comp_info[0].component_id; int cid1 = cinfo->comp_info[1].component_id; int cid2 = cinfo->comp_info[2].component_id; if (cid0 == 1 && cid1 == 2 && cid2 == 3) cinfo->jpeg_color_space = JCS_YCbCr; /* assume JFIF w/out marker */ else if (cid0 == 82 && cid1 == 71 && cid2 == 66) cinfo->jpeg_color_space = JCS_RGB; /* ASCII 'R', 'G', 'B' */ else { TRACEMS3(cinfo, 1, JTRC_UNKNOWN_IDS, cid0, cid1, cid2); cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */ } } /* Always guess RGB is proper output colorspace. */ cinfo->out_color_space = JCS_RGB; break; case 4: if (cinfo->saw_Adobe_marker) { switch (cinfo->Adobe_transform) { case 0: cinfo->jpeg_color_space = JCS_CMYK; break; case 2: cinfo->jpeg_color_space = JCS_YCCK; break; default: WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform); cinfo->jpeg_color_space = JCS_YCCK; /* assume it's YCCK */ break; } } else { /* No special markers, assume straight CMYK. */ cinfo->jpeg_color_space = JCS_CMYK; } cinfo->out_color_space = JCS_CMYK; break; default: cinfo->jpeg_color_space = JCS_UNKNOWN; cinfo->out_color_space = JCS_UNKNOWN; break; } /* Set defaults for other decompression parameters. */ cinfo->scale_num = 1; /* 1:1 scaling */ cinfo->scale_denom = 1; cinfo->output_gamma = 1.0; cinfo->buffered_image = FALSE; cinfo->raw_data_out = FALSE; cinfo->dct_method = JDCT_DEFAULT; cinfo->do_fancy_upsampling = TRUE; cinfo->do_block_smoothing = TRUE; cinfo->quantize_colors = FALSE; /* We set these in case application only sets quantize_colors. */ cinfo->dither_mode = JDITHER_FS; #ifdef QUANT_2PASS_SUPPORTED cinfo->two_pass_quantize = TRUE; #else cinfo->two_pass_quantize = FALSE; #endif cinfo->desired_number_of_colors = 256; cinfo->colormap = NULL; /* Initialize for no mode change in buffered-image mode. */ cinfo->enable_1pass_quant = FALSE; cinfo->enable_external_quant = FALSE; cinfo->enable_2pass_quant = FALSE; } /* * Decompression startup: read start of JPEG datastream to see what's there. * Need only initialize JPEG object and supply a data source before calling. * * This routine will read as far as the first SOS marker (ie, actual start of * compressed data), and will save all tables and parameters in the JPEG * object. It will also initialize the decompression parameters to default * values, and finally return JPEG_HEADER_OK. On return, the application may * adjust the decompression parameters and then call jpeg_start_decompress. * (Or, if the application only wanted to determine the image parameters, * the data need not be decompressed. In that case, call jpeg_abort or * jpeg_destroy to release any temporary space.) * If an abbreviated (tables only) datastream is presented, the routine will * return JPEG_HEADER_TABLES_ONLY upon reaching EOI. The application may then * re-use the JPEG object to read the abbreviated image datastream(s). * It is unnecessary (but OK) to call jpeg_abort in this case. * The JPEG_SUSPENDED return code only occurs if the data source module * requests suspension of the decompressor. In this case the application * should load more source data and then re-call jpeg_read_header to resume * processing. * If a non-suspending data source is used and require_image is TRUE, then the * return code need not be inspected since only JPEG_HEADER_OK is possible. * * This routine is now just a front end to jpeg_consume_input, with some * extra error checking. */ GLOBAL(int) jpeg_read_header(j_decompress_ptr cinfo, boolean require_image) { int retcode; if (cinfo->global_state != DSTATE_START && cinfo->global_state != DSTATE_INHEADER) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); retcode = jpeg_consume_input(cinfo); switch (retcode) { case JPEG_REACHED_SOS: retcode = JPEG_HEADER_OK; break; case JPEG_REACHED_EOI: if (require_image) /* Complain if application wanted an image */ ERREXIT(cinfo, JERR_NO_IMAGE); /* Reset to start state; it would be safer to require the application to * call jpeg_abort, but we can't change it now for compatibility reasons. * A side effect is to free any temporary memory (there shouldn't be any). */ jpeg_abort((j_common_ptr)cinfo); /* sets state = DSTATE_START */ retcode = JPEG_HEADER_TABLES_ONLY; break; case JPEG_SUSPENDED: /* no work */ break; } return retcode; } /* * Consume data in advance of what the decompressor requires. * This can be called at any time once the decompressor object has * been created and a data source has been set up. * * This routine is essentially a state machine that handles a couple * of critical state-transition actions, namely initial setup and * transition from header scanning to ready-for-start_decompress. * All the actual input is done via the input controller's consume_input * method. */ GLOBAL(int) jpeg_consume_input(j_decompress_ptr cinfo) { int retcode = JPEG_SUSPENDED; /* NB: every possible DSTATE value should be listed in this switch */ switch (cinfo->global_state) { case DSTATE_START: /* Start-of-datastream actions: reset appropriate modules */ (*cinfo->inputctl->reset_input_controller) (cinfo); /* Initialize application's data source module */ (*cinfo->src->init_source) (cinfo); cinfo->global_state = DSTATE_INHEADER; FALLTHROUGH /*FALLTHROUGH*/ case DSTATE_INHEADER: retcode = (*cinfo->inputctl->consume_input) (cinfo); if (retcode == JPEG_REACHED_SOS) { /* Found SOS, prepare to decompress */ /* Set up default parameters based on header data */ default_decompress_parms(cinfo); /* Set global state: ready for start_decompress */ cinfo->global_state = DSTATE_READY; } break; case DSTATE_READY: /* Can't advance past first SOS until start_decompress is called */ retcode = JPEG_REACHED_SOS; break; case DSTATE_PRELOAD: case DSTATE_PRESCAN: case DSTATE_SCANNING: case DSTATE_RAW_OK: case DSTATE_BUFIMAGE: case DSTATE_BUFPOST: case DSTATE_STOPPING: retcode = (*cinfo->inputctl->consume_input) (cinfo); break; default: ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); } return retcode; } /* * Have we finished reading the input file? */ GLOBAL(boolean) jpeg_input_complete(j_decompress_ptr cinfo) { /* Check for valid jpeg object */ if (cinfo->global_state < DSTATE_START || cinfo->global_state > DSTATE_STOPPING) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); return cinfo->inputctl->eoi_reached; } /* * Is there more than one scan? */ GLOBAL(boolean) jpeg_has_multiple_scans(j_decompress_ptr cinfo) { /* Only valid after jpeg_read_header completes */ if (cinfo->global_state < DSTATE_READY || cinfo->global_state > DSTATE_STOPPING) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); return cinfo->inputctl->has_multiple_scans; } /* * Finish JPEG decompression. * * This will normally just verify the file trailer and release temp storage. * * Returns FALSE if suspended. The return value need be inspected only if * a suspending data source is used. */ GLOBAL(boolean) jpeg_finish_decompress(j_decompress_ptr cinfo) { if ((cinfo->global_state == DSTATE_SCANNING || cinfo->global_state == DSTATE_RAW_OK) && !cinfo->buffered_image) { /* Terminate final pass of non-buffered mode */ if (cinfo->output_scanline < cinfo->output_height) ERREXIT(cinfo, JERR_TOO_LITTLE_DATA); (*cinfo->master->finish_output_pass) (cinfo); cinfo->global_state = DSTATE_STOPPING; } else if (cinfo->global_state == DSTATE_BUFIMAGE) { /* Finishing after a buffered-image operation */ cinfo->global_state = DSTATE_STOPPING; } else if (cinfo->global_state != DSTATE_STOPPING) { /* STOPPING = repeat call after a suspension, anything else is error */ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); } /* Read until EOI */ while (!cinfo->inputctl->eoi_reached) { if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED) return FALSE; /* Suspend, come back later */ } /* Do final cleanup */ (*cinfo->src->term_source) (cinfo); /* We can use jpeg_abort to release memory and reset global_state */ jpeg_abort((j_common_ptr)cinfo); return TRUE; } libjpeg-turbo-2.1.5/jdapistd.c000066400000000000000000000616561436506551100162560ustar00rootroot00000000000000/* * jdapistd.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1996, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2010, 2015-2020, 2022, D. R. Commander. * Copyright (C) 2015, Google, Inc. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains application interface code for the decompression half * of the JPEG library. These are the "standard" API routines that are * used in the normal full-decompression case. They are not used by a * transcoding-only application. Note that if an application links in * jpeg_start_decompress, it will end up linking in the entire decompressor. * We thus must separate this file from jdapimin.c to avoid linking the * whole decompression library into a transcoder. */ #include "jinclude.h" #include "jdmainct.h" #include "jdcoefct.h" #include "jdmaster.h" #include "jdmerge.h" #include "jdsample.h" #include "jmemsys.h" /* Forward declarations */ LOCAL(boolean) output_pass_setup(j_decompress_ptr cinfo); /* * Decompression initialization. * jpeg_read_header must be completed before calling this. * * If a multipass operating mode was selected, this will do all but the * last pass, and thus may take a great deal of time. * * Returns FALSE if suspended. The return value need be inspected only if * a suspending data source is used. */ GLOBAL(boolean) jpeg_start_decompress(j_decompress_ptr cinfo) { if (cinfo->global_state == DSTATE_READY) { /* First call: initialize master control, select active modules */ jinit_master_decompress(cinfo); if (cinfo->buffered_image) { /* No more work here; expecting jpeg_start_output next */ cinfo->global_state = DSTATE_BUFIMAGE; return TRUE; } cinfo->global_state = DSTATE_PRELOAD; } if (cinfo->global_state == DSTATE_PRELOAD) { /* If file has multiple scans, absorb them all into the coef buffer */ if (cinfo->inputctl->has_multiple_scans) { #ifdef D_MULTISCAN_FILES_SUPPORTED for (;;) { int retcode; /* Call progress monitor hook if present */ if (cinfo->progress != NULL) (*cinfo->progress->progress_monitor) ((j_common_ptr)cinfo); /* Absorb some more input */ retcode = (*cinfo->inputctl->consume_input) (cinfo); if (retcode == JPEG_SUSPENDED) return FALSE; if (retcode == JPEG_REACHED_EOI) break; /* Advance progress counter if appropriate */ if (cinfo->progress != NULL && (retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) { if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) { /* jdmaster underestimated number of scans; ratchet up one scan */ cinfo->progress->pass_limit += (long)cinfo->total_iMCU_rows; } } } #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif /* D_MULTISCAN_FILES_SUPPORTED */ } cinfo->output_scan_number = cinfo->input_scan_number; } else if (cinfo->global_state != DSTATE_PRESCAN) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); /* Perform any dummy output passes, and set up for the final pass */ return output_pass_setup(cinfo); } /* * Set up for an output pass, and perform any dummy pass(es) needed. * Common subroutine for jpeg_start_decompress and jpeg_start_output. * Entry: global_state = DSTATE_PRESCAN only if previously suspended. * Exit: If done, returns TRUE and sets global_state for proper output mode. * If suspended, returns FALSE and sets global_state = DSTATE_PRESCAN. */ LOCAL(boolean) output_pass_setup(j_decompress_ptr cinfo) { if (cinfo->global_state != DSTATE_PRESCAN) { /* First call: do pass setup */ (*cinfo->master->prepare_for_output_pass) (cinfo); cinfo->output_scanline = 0; cinfo->global_state = DSTATE_PRESCAN; } /* Loop over any required dummy passes */ while (cinfo->master->is_dummy_pass) { #ifdef QUANT_2PASS_SUPPORTED /* Crank through the dummy pass */ while (cinfo->output_scanline < cinfo->output_height) { JDIMENSION last_scanline; /* Call progress monitor hook if present */ if (cinfo->progress != NULL) { cinfo->progress->pass_counter = (long)cinfo->output_scanline; cinfo->progress->pass_limit = (long)cinfo->output_height; (*cinfo->progress->progress_monitor) ((j_common_ptr)cinfo); } /* Process some data */ last_scanline = cinfo->output_scanline; (*cinfo->main->process_data) (cinfo, (JSAMPARRAY)NULL, &cinfo->output_scanline, (JDIMENSION)0); if (cinfo->output_scanline == last_scanline) return FALSE; /* No progress made, must suspend */ } /* Finish up dummy pass, and set up for another one */ (*cinfo->master->finish_output_pass) (cinfo); (*cinfo->master->prepare_for_output_pass) (cinfo); cinfo->output_scanline = 0; #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif /* QUANT_2PASS_SUPPORTED */ } /* Ready for application to drive output pass through * jpeg_read_scanlines or jpeg_read_raw_data. */ cinfo->global_state = cinfo->raw_data_out ? DSTATE_RAW_OK : DSTATE_SCANNING; return TRUE; } /* * Enable partial scanline decompression * * Must be called after jpeg_start_decompress() and before any calls to * jpeg_read_scanlines() or jpeg_skip_scanlines(). * * Refer to libjpeg.txt for more information. */ GLOBAL(void) jpeg_crop_scanline(j_decompress_ptr cinfo, JDIMENSION *xoffset, JDIMENSION *width) { int ci, align, orig_downsampled_width; JDIMENSION input_xoffset; boolean reinit_upsampler = FALSE; jpeg_component_info *compptr; #ifdef UPSAMPLE_MERGING_SUPPORTED my_master_ptr master = (my_master_ptr)cinfo->master; #endif if ((cinfo->global_state != DSTATE_SCANNING && cinfo->global_state != DSTATE_BUFIMAGE) || cinfo->output_scanline != 0) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); if (!xoffset || !width) ERREXIT(cinfo, JERR_BAD_CROP_SPEC); /* xoffset and width must fall within the output image dimensions. */ if (*width == 0 || *xoffset + *width > cinfo->output_width) ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); /* No need to do anything if the caller wants the entire width. */ if (*width == cinfo->output_width) return; /* Ensuring the proper alignment of xoffset is tricky. At minimum, it * must align with an MCU boundary, because: * * (1) The IDCT is performed in blocks, and it is not feasible to modify * the algorithm so that it can transform partial blocks. * (2) Because of the SIMD extensions, any input buffer passed to the * upsampling and color conversion routines must be aligned to the * SIMD word size (for instance, 128-bit in the case of SSE2.) The * easiest way to accomplish this without copying data is to ensure * that upsampling and color conversion begin at the start of the * first MCU column that will be inverse transformed. * * In practice, we actually impose a stricter alignment requirement. We * require that xoffset be a multiple of the maximum MCU column width of all * of the components (the "iMCU column width.") This is to simplify the * single-pass decompression case, allowing us to use the same MCU column * width for all of the components. */ if (cinfo->comps_in_scan == 1 && cinfo->num_components == 1) align = cinfo->_min_DCT_scaled_size; else align = cinfo->_min_DCT_scaled_size * cinfo->max_h_samp_factor; /* Adjust xoffset to the nearest iMCU boundary <= the requested value */ input_xoffset = *xoffset; *xoffset = (input_xoffset / align) * align; /* Adjust the width so that the right edge of the output image is as * requested (only the left edge is altered.) It is important that calling * programs check this value after this function returns, so that they can * allocate an output buffer with the appropriate size. */ *width = *width + input_xoffset - *xoffset; cinfo->output_width = *width; #ifdef UPSAMPLE_MERGING_SUPPORTED if (master->using_merged_upsample && cinfo->max_v_samp_factor == 2) { my_merged_upsample_ptr upsample = (my_merged_upsample_ptr)cinfo->upsample; upsample->out_row_width = cinfo->output_width * cinfo->out_color_components; } #endif /* Set the first and last iMCU columns that we must decompress. These values * will be used in single-scan decompressions. */ cinfo->master->first_iMCU_col = (JDIMENSION)(long)(*xoffset) / (long)align; cinfo->master->last_iMCU_col = (JDIMENSION)jdiv_round_up((long)(*xoffset + cinfo->output_width), (long)align) - 1; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { int hsf = (cinfo->comps_in_scan == 1 && cinfo->num_components == 1) ? 1 : compptr->h_samp_factor; /* Set downsampled_width to the new output width. */ orig_downsampled_width = compptr->downsampled_width; compptr->downsampled_width = (JDIMENSION)jdiv_round_up((long)(cinfo->output_width * compptr->h_samp_factor), (long)cinfo->max_h_samp_factor); if (compptr->downsampled_width < 2 && orig_downsampled_width >= 2) reinit_upsampler = TRUE; /* Set the first and last iMCU columns that we must decompress. These * values will be used in multi-scan decompressions. */ cinfo->master->first_MCU_col[ci] = (JDIMENSION)(long)(*xoffset * hsf) / (long)align; cinfo->master->last_MCU_col[ci] = (JDIMENSION)jdiv_round_up((long)((*xoffset + cinfo->output_width) * hsf), (long)align) - 1; } if (reinit_upsampler) { cinfo->master->jinit_upsampler_no_alloc = TRUE; jinit_upsampler(cinfo); cinfo->master->jinit_upsampler_no_alloc = FALSE; } } /* * Read some scanlines of data from the JPEG decompressor. * * The return value will be the number of lines actually read. * This may be less than the number requested in several cases, * including bottom of image, data source suspension, and operating * modes that emit multiple scanlines at a time. * * Note: we warn about excess calls to jpeg_read_scanlines() since * this likely signals an application programmer error. However, * an oversize buffer (max_lines > scanlines remaining) is not an error. */ GLOBAL(JDIMENSION) jpeg_read_scanlines(j_decompress_ptr cinfo, JSAMPARRAY scanlines, JDIMENSION max_lines) { JDIMENSION row_ctr; if (cinfo->global_state != DSTATE_SCANNING) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); if (cinfo->output_scanline >= cinfo->output_height) { WARNMS(cinfo, JWRN_TOO_MUCH_DATA); return 0; } /* Call progress monitor hook if present */ if (cinfo->progress != NULL) { cinfo->progress->pass_counter = (long)cinfo->output_scanline; cinfo->progress->pass_limit = (long)cinfo->output_height; (*cinfo->progress->progress_monitor) ((j_common_ptr)cinfo); } /* Process some data */ row_ctr = 0; (*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, max_lines); cinfo->output_scanline += row_ctr; return row_ctr; } /* Dummy color convert function used by jpeg_skip_scanlines() */ LOCAL(void) noop_convert(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { } /* Dummy quantize function used by jpeg_skip_scanlines() */ LOCAL(void) noop_quantize(j_decompress_ptr cinfo, JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) { } /* * In some cases, it is best to call jpeg_read_scanlines() and discard the * output, rather than skipping the scanlines, because this allows us to * maintain the internal state of the context-based upsampler. In these cases, * we set up and tear down a dummy color converter in order to avoid valgrind * errors and to achieve the best possible performance. */ LOCAL(void) read_and_discard_scanlines(j_decompress_ptr cinfo, JDIMENSION num_lines) { JDIMENSION n; #ifdef UPSAMPLE_MERGING_SUPPORTED my_master_ptr master = (my_master_ptr)cinfo->master; #endif JSAMPLE dummy_sample[1] = { 0 }; JSAMPROW dummy_row = dummy_sample; JSAMPARRAY scanlines = NULL; void (*color_convert) (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) = NULL; void (*color_quantize) (j_decompress_ptr cinfo, JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) = NULL; if (cinfo->cconvert && cinfo->cconvert->color_convert) { color_convert = cinfo->cconvert->color_convert; cinfo->cconvert->color_convert = noop_convert; /* This just prevents UBSan from complaining about adding 0 to a NULL * pointer. The pointer isn't actually used. */ scanlines = &dummy_row; } if (cinfo->cquantize && cinfo->cquantize->color_quantize) { color_quantize = cinfo->cquantize->color_quantize; cinfo->cquantize->color_quantize = noop_quantize; } #ifdef UPSAMPLE_MERGING_SUPPORTED if (master->using_merged_upsample && cinfo->max_v_samp_factor == 2) { my_merged_upsample_ptr upsample = (my_merged_upsample_ptr)cinfo->upsample; scanlines = &upsample->spare_row; } #endif for (n = 0; n < num_lines; n++) jpeg_read_scanlines(cinfo, scanlines, 1); if (color_convert) cinfo->cconvert->color_convert = color_convert; if (color_quantize) cinfo->cquantize->color_quantize = color_quantize; } /* * Called by jpeg_skip_scanlines(). This partially skips a decompress block by * incrementing the rowgroup counter. */ LOCAL(void) increment_simple_rowgroup_ctr(j_decompress_ptr cinfo, JDIMENSION rows) { JDIMENSION rows_left; my_main_ptr main_ptr = (my_main_ptr)cinfo->main; my_master_ptr master = (my_master_ptr)cinfo->master; if (master->using_merged_upsample && cinfo->max_v_samp_factor == 2) { read_and_discard_scanlines(cinfo, rows); return; } /* Increment the counter to the next row group after the skipped rows. */ main_ptr->rowgroup_ctr += rows / cinfo->max_v_samp_factor; /* Partially skipping a row group would involve modifying the internal state * of the upsampler, so read the remaining rows into a dummy buffer instead. */ rows_left = rows % cinfo->max_v_samp_factor; cinfo->output_scanline += rows - rows_left; read_and_discard_scanlines(cinfo, rows_left); } /* * Skips some scanlines of data from the JPEG decompressor. * * The return value will be the number of lines actually skipped. If skipping * num_lines would move beyond the end of the image, then the actual number of * lines remaining in the image is returned. Otherwise, the return value will * be equal to num_lines. * * Refer to libjpeg.txt for more information. */ GLOBAL(JDIMENSION) jpeg_skip_scanlines(j_decompress_ptr cinfo, JDIMENSION num_lines) { my_main_ptr main_ptr = (my_main_ptr)cinfo->main; my_coef_ptr coef = (my_coef_ptr)cinfo->coef; my_master_ptr master = (my_master_ptr)cinfo->master; my_upsample_ptr upsample = (my_upsample_ptr)cinfo->upsample; JDIMENSION i, x; int y; JDIMENSION lines_per_iMCU_row, lines_left_in_iMCU_row, lines_after_iMCU_row; JDIMENSION lines_to_skip, lines_to_read; /* Two-pass color quantization is not supported. */ if (cinfo->quantize_colors && cinfo->two_pass_quantize) ERREXIT(cinfo, JERR_NOTIMPL); if (cinfo->global_state != DSTATE_SCANNING) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); /* Do not skip past the bottom of the image. */ if (cinfo->output_scanline + num_lines >= cinfo->output_height) { num_lines = cinfo->output_height - cinfo->output_scanline; cinfo->output_scanline = cinfo->output_height; (*cinfo->inputctl->finish_input_pass) (cinfo); cinfo->inputctl->eoi_reached = TRUE; return num_lines; } if (num_lines == 0) return 0; lines_per_iMCU_row = cinfo->_min_DCT_scaled_size * cinfo->max_v_samp_factor; lines_left_in_iMCU_row = (lines_per_iMCU_row - (cinfo->output_scanline % lines_per_iMCU_row)) % lines_per_iMCU_row; lines_after_iMCU_row = num_lines - lines_left_in_iMCU_row; /* Skip the lines remaining in the current iMCU row. When upsampling * requires context rows, we need the previous and next rows in order to read * the current row. This adds some complexity. */ if (cinfo->upsample->need_context_rows) { /* If the skipped lines would not move us past the current iMCU row, we * read the lines and ignore them. There might be a faster way of doing * this, but we are facing increasing complexity for diminishing returns. * The increasing complexity would be a by-product of meddling with the * state machine used to skip context rows. Near the end of an iMCU row, * the next iMCU row may have already been entropy-decoded. In this unique * case, we will read the next iMCU row if we cannot skip past it as well. */ if ((num_lines < lines_left_in_iMCU_row + 1) || (lines_left_in_iMCU_row <= 1 && main_ptr->buffer_full && lines_after_iMCU_row < lines_per_iMCU_row + 1)) { read_and_discard_scanlines(cinfo, num_lines); return num_lines; } /* If the next iMCU row has already been entropy-decoded, make sure that * we do not skip too far. */ if (lines_left_in_iMCU_row <= 1 && main_ptr->buffer_full) { cinfo->output_scanline += lines_left_in_iMCU_row + lines_per_iMCU_row; lines_after_iMCU_row -= lines_per_iMCU_row; } else { cinfo->output_scanline += lines_left_in_iMCU_row; } /* If we have just completed the first block, adjust the buffer pointers */ if (main_ptr->iMCU_row_ctr == 0 || (main_ptr->iMCU_row_ctr == 1 && lines_left_in_iMCU_row > 2)) set_wraparound_pointers(cinfo); main_ptr->buffer_full = FALSE; main_ptr->rowgroup_ctr = 0; main_ptr->context_state = CTX_PREPARE_FOR_IMCU; if (!master->using_merged_upsample) { upsample->next_row_out = cinfo->max_v_samp_factor; upsample->rows_to_go = cinfo->output_height - cinfo->output_scanline; } } /* Skipping is much simpler when context rows are not required. */ else { if (num_lines < lines_left_in_iMCU_row) { increment_simple_rowgroup_ctr(cinfo, num_lines); return num_lines; } else { cinfo->output_scanline += lines_left_in_iMCU_row; main_ptr->buffer_full = FALSE; main_ptr->rowgroup_ctr = 0; if (!master->using_merged_upsample) { upsample->next_row_out = cinfo->max_v_samp_factor; upsample->rows_to_go = cinfo->output_height - cinfo->output_scanline; } } } /* Calculate how many full iMCU rows we can skip. */ if (cinfo->upsample->need_context_rows) lines_to_skip = ((lines_after_iMCU_row - 1) / lines_per_iMCU_row) * lines_per_iMCU_row; else lines_to_skip = (lines_after_iMCU_row / lines_per_iMCU_row) * lines_per_iMCU_row; /* Calculate the number of lines that remain to be skipped after skipping all * of the full iMCU rows that we can. We will not read these lines unless we * have to. */ lines_to_read = lines_after_iMCU_row - lines_to_skip; /* For images requiring multiple scans (progressive, non-interleaved, etc.), * all of the entropy decoding occurs in jpeg_start_decompress(), assuming * that the input data source is non-suspending. This makes skipping easy. */ if (cinfo->inputctl->has_multiple_scans || cinfo->buffered_image) { if (cinfo->upsample->need_context_rows) { cinfo->output_scanline += lines_to_skip; cinfo->output_iMCU_row += lines_to_skip / lines_per_iMCU_row; main_ptr->iMCU_row_ctr += lines_to_skip / lines_per_iMCU_row; /* It is complex to properly move to the middle of a context block, so * read the remaining lines instead of skipping them. */ read_and_discard_scanlines(cinfo, lines_to_read); } else { cinfo->output_scanline += lines_to_skip; cinfo->output_iMCU_row += lines_to_skip / lines_per_iMCU_row; increment_simple_rowgroup_ctr(cinfo, lines_to_read); } if (!master->using_merged_upsample) upsample->rows_to_go = cinfo->output_height - cinfo->output_scanline; return num_lines; } /* Skip the iMCU rows that we can safely skip. */ for (i = 0; i < lines_to_skip; i += lines_per_iMCU_row) { for (y = 0; y < coef->MCU_rows_per_iMCU_row; y++) { for (x = 0; x < cinfo->MCUs_per_row; x++) { /* Calling decode_mcu() with a NULL pointer causes it to discard the * decoded coefficients. This is ~5% faster for large subsets, but * it's tough to tell a difference for smaller images. */ if (!cinfo->entropy->insufficient_data) cinfo->master->last_good_iMCU_row = cinfo->input_iMCU_row; (*cinfo->entropy->decode_mcu) (cinfo, NULL); } } cinfo->input_iMCU_row++; cinfo->output_iMCU_row++; if (cinfo->input_iMCU_row < cinfo->total_iMCU_rows) start_iMCU_row(cinfo); else (*cinfo->inputctl->finish_input_pass) (cinfo); } cinfo->output_scanline += lines_to_skip; if (cinfo->upsample->need_context_rows) { /* Context-based upsampling keeps track of iMCU rows. */ main_ptr->iMCU_row_ctr += lines_to_skip / lines_per_iMCU_row; /* It is complex to properly move to the middle of a context block, so * read the remaining lines instead of skipping them. */ read_and_discard_scanlines(cinfo, lines_to_read); } else { increment_simple_rowgroup_ctr(cinfo, lines_to_read); } /* Since skipping lines involves skipping the upsampling step, the value of * "rows_to_go" will become invalid unless we set it here. NOTE: This is a * bit odd, since "rows_to_go" seems to be redundantly keeping track of * output_scanline. */ if (!master->using_merged_upsample) upsample->rows_to_go = cinfo->output_height - cinfo->output_scanline; /* Always skip the requested number of lines. */ return num_lines; } /* * Alternate entry point to read raw data. * Processes exactly one iMCU row per call, unless suspended. */ GLOBAL(JDIMENSION) jpeg_read_raw_data(j_decompress_ptr cinfo, JSAMPIMAGE data, JDIMENSION max_lines) { JDIMENSION lines_per_iMCU_row; if (cinfo->global_state != DSTATE_RAW_OK) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); if (cinfo->output_scanline >= cinfo->output_height) { WARNMS(cinfo, JWRN_TOO_MUCH_DATA); return 0; } /* Call progress monitor hook if present */ if (cinfo->progress != NULL) { cinfo->progress->pass_counter = (long)cinfo->output_scanline; cinfo->progress->pass_limit = (long)cinfo->output_height; (*cinfo->progress->progress_monitor) ((j_common_ptr)cinfo); } /* Verify that at least one iMCU row can be returned. */ lines_per_iMCU_row = cinfo->max_v_samp_factor * cinfo->_min_DCT_scaled_size; if (max_lines < lines_per_iMCU_row) ERREXIT(cinfo, JERR_BUFFER_SIZE); /* Decompress directly into user's buffer. */ if (!(*cinfo->coef->decompress_data) (cinfo, data)) return 0; /* suspension forced, can do nothing more */ /* OK, we processed one iMCU row. */ cinfo->output_scanline += lines_per_iMCU_row; return lines_per_iMCU_row; } /* Additional entry points for buffered-image mode. */ #ifdef D_MULTISCAN_FILES_SUPPORTED /* * Initialize for an output pass in buffered-image mode. */ GLOBAL(boolean) jpeg_start_output(j_decompress_ptr cinfo, int scan_number) { if (cinfo->global_state != DSTATE_BUFIMAGE && cinfo->global_state != DSTATE_PRESCAN) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); /* Limit scan number to valid range */ if (scan_number <= 0) scan_number = 1; if (cinfo->inputctl->eoi_reached && scan_number > cinfo->input_scan_number) scan_number = cinfo->input_scan_number; cinfo->output_scan_number = scan_number; /* Perform any dummy output passes, and set up for the real pass */ return output_pass_setup(cinfo); } /* * Finish up after an output pass in buffered-image mode. * * Returns FALSE if suspended. The return value need be inspected only if * a suspending data source is used. */ GLOBAL(boolean) jpeg_finish_output(j_decompress_ptr cinfo) { if ((cinfo->global_state == DSTATE_SCANNING || cinfo->global_state == DSTATE_RAW_OK) && cinfo->buffered_image) { /* Terminate this pass. */ /* We do not require the whole pass to have been completed. */ (*cinfo->master->finish_output_pass) (cinfo); cinfo->global_state = DSTATE_BUFPOST; } else if (cinfo->global_state != DSTATE_BUFPOST) { /* BUFPOST = repeat call after a suspension, anything else is error */ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); } /* Read markers looking for SOS or EOI */ while (cinfo->input_scan_number <= cinfo->output_scan_number && !cinfo->inputctl->eoi_reached) { if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED) return FALSE; /* Suspend, come back later */ } cinfo->global_state = DSTATE_BUFIMAGE; return TRUE; } #endif /* D_MULTISCAN_FILES_SUPPORTED */ libjpeg-turbo-2.1.5/jdarith.c000066400000000000000000000617031436506551100160720ustar00rootroot00000000000000/* * jdarith.c * * This file was part of the Independent JPEG Group's software: * Developed 1997-2015 by Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright (C) 2015-2020, 2022, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains portable arithmetic entropy encoding routines for JPEG * (implementing Recommendation ITU-T T.81 | ISO/IEC 10918-1). * * Both sequential and progressive modes are supported in this single module. * * Suspension is not currently supported in this module. * * NOTE: All referenced figures are from * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #define NEG_1 ((unsigned int)-1) /* Expanded entropy decoder object for arithmetic decoding. */ typedef struct { struct jpeg_entropy_decoder pub; /* public fields */ JLONG c; /* C register, base of coding interval + input bit buffer */ JLONG a; /* A register, normalized size of coding interval */ int ct; /* bit shift counter, # of bits left in bit buffer part of C */ /* init: ct = -16 */ /* run: ct = 0..7 */ /* error: ct = -1 */ int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ int dc_context[MAX_COMPS_IN_SCAN]; /* context index for DC conditioning */ unsigned int restarts_to_go; /* MCUs left in this restart interval */ /* Pointers to statistics areas (these workspaces have image lifespan) */ unsigned char *dc_stats[NUM_ARITH_TBLS]; unsigned char *ac_stats[NUM_ARITH_TBLS]; /* Statistics bin for coding with fixed probability 0.5 */ unsigned char fixed_bin[4]; } arith_entropy_decoder; typedef arith_entropy_decoder *arith_entropy_ptr; /* The following two definitions specify the allocation chunk size * for the statistics area. * According to sections F.1.4.4.1.3 and F.1.4.4.2, we need at least * 49 statistics bins for DC, and 245 statistics bins for AC coding. * * We use a compact representation with 1 byte per statistics bin, * thus the numbers directly represent byte sizes. * This 1 byte per statistics bin contains the meaning of the MPS * (more probable symbol) in the highest bit (mask 0x80), and the * index into the probability estimation state machine table * in the lower bits (mask 0x7F). */ #define DC_STAT_BINS 64 #define AC_STAT_BINS 256 LOCAL(int) get_byte(j_decompress_ptr cinfo) /* Read next input byte; we do not support suspension in this module. */ { struct jpeg_source_mgr *src = cinfo->src; if (src->bytes_in_buffer == 0) if (!(*src->fill_input_buffer) (cinfo)) ERREXIT(cinfo, JERR_CANT_SUSPEND); src->bytes_in_buffer--; return *src->next_input_byte++; } /* * The core arithmetic decoding routine (common in JPEG and JBIG). * This needs to go as fast as possible. * Machine-dependent optimization facilities * are not utilized in this portable implementation. * However, this code should be fairly efficient and * may be a good base for further optimizations anyway. * * Return value is 0 or 1 (binary decision). * * Note: I've changed the handling of the code base & bit * buffer register C compared to other implementations * based on the standards layout & procedures. * While it also contains both the actual base of the * coding interval (16 bits) and the next-bits buffer, * the cut-point between these two parts is floating * (instead of fixed) with the bit shift counter CT. * Thus, we also need only one (variable instead of * fixed size) shift for the LPS/MPS decision, and * we can do away with any renormalization update * of C (except for new data insertion, of course). * * I've also introduced a new scheme for accessing * the probability estimation state machine table, * derived from Markus Kuhn's JBIG implementation. */ LOCAL(int) arith_decode(j_decompress_ptr cinfo, unsigned char *st) { register arith_entropy_ptr e = (arith_entropy_ptr)cinfo->entropy; register unsigned char nl, nm; register JLONG qe, temp; register int sv, data; /* Renormalization & data input per section D.2.6 */ while (e->a < 0x8000L) { if (--e->ct < 0) { /* Need to fetch next data byte */ if (cinfo->unread_marker) data = 0; /* stuff zero data */ else { data = get_byte(cinfo); /* read next input byte */ if (data == 0xFF) { /* zero stuff or marker code */ do data = get_byte(cinfo); while (data == 0xFF); /* swallow extra 0xFF bytes */ if (data == 0) data = 0xFF; /* discard stuffed zero byte */ else { /* Note: Different from the Huffman decoder, hitting * a marker while processing the compressed data * segment is legal in arithmetic coding. * The convention is to supply zero data * then until decoding is complete. */ cinfo->unread_marker = data; data = 0; } } } e->c = (e->c << 8) | data; /* insert data into C register */ if ((e->ct += 8) < 0) /* update bit shift counter */ /* Need more initial bytes */ if (++e->ct == 0) /* Got 2 initial bytes -> re-init A and exit loop */ e->a = 0x8000L; /* => e->a = 0x10000L after loop exit */ } e->a <<= 1; } /* Fetch values from our compact representation of Table D.2: * Qe values and probability estimation state machine */ sv = *st; qe = jpeg_aritab[sv & 0x7F]; /* => Qe_Value */ nl = qe & 0xFF; qe >>= 8; /* Next_Index_LPS + Switch_MPS */ nm = qe & 0xFF; qe >>= 8; /* Next_Index_MPS */ /* Decode & estimation procedures per sections D.2.4 & D.2.5 */ temp = e->a - qe; e->a = temp; temp <<= e->ct; if (e->c >= temp) { e->c -= temp; /* Conditional LPS (less probable symbol) exchange */ if (e->a < qe) { e->a = qe; *st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */ } else { e->a = qe; *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */ sv ^= 0x80; /* Exchange LPS/MPS */ } } else if (e->a < 0x8000L) { /* Conditional MPS (more probable symbol) exchange */ if (e->a < qe) { *st = (sv & 0x80) ^ nl; /* Estimate_after_LPS */ sv ^= 0x80; /* Exchange LPS/MPS */ } else { *st = (sv & 0x80) ^ nm; /* Estimate_after_MPS */ } } return sv >> 7; } /* * Check for a restart marker & resynchronize decoder. */ LOCAL(void) process_restart(j_decompress_ptr cinfo) { arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy; int ci; jpeg_component_info *compptr; /* Advance past the RSTn marker */ if (!(*cinfo->marker->read_restart_marker) (cinfo)) ERREXIT(cinfo, JERR_CANT_SUSPEND); /* Re-initialize statistics areas */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; if (!cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) { memset(entropy->dc_stats[compptr->dc_tbl_no], 0, DC_STAT_BINS); /* Reset DC predictions to 0 */ entropy->last_dc_val[ci] = 0; entropy->dc_context[ci] = 0; } if (!cinfo->progressive_mode || cinfo->Ss) { memset(entropy->ac_stats[compptr->ac_tbl_no], 0, AC_STAT_BINS); } } /* Reset arithmetic decoding variables */ entropy->c = 0; entropy->a = 0; entropy->ct = -16; /* force reading 2 initial bytes to fill C */ /* Reset restart counter */ entropy->restarts_to_go = cinfo->restart_interval; } /* * Arithmetic MCU decoding. * Each of these routines decodes and returns one MCU's worth of * arithmetic-compressed coefficients. * The coefficients are reordered from zigzag order into natural array order, * but are not dequantized. * * The i'th block of the MCU is stored into the block pointed to by * MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER. */ /* * MCU decoding for DC initial scan (either spectral selection, * or first pass of successive approximation). */ METHODDEF(boolean) decode_mcu_DC_first(j_decompress_ptr cinfo, JBLOCKROW *MCU_data) { arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy; JBLOCKROW block; unsigned char *st; int blkn, ci, tbl, sign; int v, m; /* Process restart marker if needed */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) process_restart(cinfo); entropy->restarts_to_go--; } if (entropy->ct == -1) return TRUE; /* if error do nothing */ /* Outer loop handles each block in the MCU */ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { block = MCU_data[blkn]; ci = cinfo->MCU_membership[blkn]; tbl = cinfo->cur_comp_info[ci]->dc_tbl_no; /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */ /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; /* Figure F.19: Decode_DC_DIFF */ if (arith_decode(cinfo, st) == 0) entropy->dc_context[ci] = 0; else { /* Figure F.21: Decoding nonzero value v */ /* Figure F.22: Decoding the sign of v */ sign = arith_decode(cinfo, st + 1); st += 2; st += sign; /* Figure F.23: Decoding the magnitude category of v */ if ((m = arith_decode(cinfo, st)) != 0) { st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ while (arith_decode(cinfo, st)) { if ((m <<= 1) == 0x8000) { WARNMS(cinfo, JWRN_ARITH_BAD_CODE); entropy->ct = -1; /* magnitude overflow */ return TRUE; } st += 1; } } /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ if (m < (int)((1L << cinfo->arith_dc_L[tbl]) >> 1)) entropy->dc_context[ci] = 0; /* zero diff category */ else if (m > (int)((1L << cinfo->arith_dc_U[tbl]) >> 1)) entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */ else entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */ v = m; /* Figure F.24: Decoding the magnitude bit pattern of v */ st += 14; while (m >>= 1) if (arith_decode(cinfo, st)) v |= m; v += 1; if (sign) v = -v; entropy->last_dc_val[ci] = (entropy->last_dc_val[ci] + v) & 0xffff; } /* Scale and output the DC coefficient (assumes jpeg_natural_order[0]=0) */ (*block)[0] = (JCOEF)LEFT_SHIFT(entropy->last_dc_val[ci], cinfo->Al); } return TRUE; } /* * MCU decoding for AC initial scan (either spectral selection, * or first pass of successive approximation). */ METHODDEF(boolean) decode_mcu_AC_first(j_decompress_ptr cinfo, JBLOCKROW *MCU_data) { arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy; JBLOCKROW block; unsigned char *st; int tbl, sign, k; int v, m; /* Process restart marker if needed */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) process_restart(cinfo); entropy->restarts_to_go--; } if (entropy->ct == -1) return TRUE; /* if error do nothing */ /* There is always only one block per MCU */ block = MCU_data[0]; tbl = cinfo->cur_comp_info[0]->ac_tbl_no; /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */ /* Figure F.20: Decode_AC_coefficients */ for (k = cinfo->Ss; k <= cinfo->Se; k++) { st = entropy->ac_stats[tbl] + 3 * (k - 1); if (arith_decode(cinfo, st)) break; /* EOB flag */ while (arith_decode(cinfo, st + 1) == 0) { st += 3; k++; if (k > cinfo->Se) { WARNMS(cinfo, JWRN_ARITH_BAD_CODE); entropy->ct = -1; /* spectral overflow */ return TRUE; } } /* Figure F.21: Decoding nonzero value v */ /* Figure F.22: Decoding the sign of v */ sign = arith_decode(cinfo, entropy->fixed_bin); st += 2; /* Figure F.23: Decoding the magnitude category of v */ if ((m = arith_decode(cinfo, st)) != 0) { if (arith_decode(cinfo, st)) { m <<= 1; st = entropy->ac_stats[tbl] + (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); while (arith_decode(cinfo, st)) { if ((m <<= 1) == 0x8000) { WARNMS(cinfo, JWRN_ARITH_BAD_CODE); entropy->ct = -1; /* magnitude overflow */ return TRUE; } st += 1; } } } v = m; /* Figure F.24: Decoding the magnitude bit pattern of v */ st += 14; while (m >>= 1) if (arith_decode(cinfo, st)) v |= m; v += 1; if (sign) v = -v; /* Scale and output coefficient in natural (dezigzagged) order */ (*block)[jpeg_natural_order[k]] = (JCOEF)((unsigned)v << cinfo->Al); } return TRUE; } /* * MCU decoding for DC successive approximation refinement scan. */ METHODDEF(boolean) decode_mcu_DC_refine(j_decompress_ptr cinfo, JBLOCKROW *MCU_data) { arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy; unsigned char *st; int p1, blkn; /* Process restart marker if needed */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) process_restart(cinfo); entropy->restarts_to_go--; } st = entropy->fixed_bin; /* use fixed probability estimation */ p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ /* Outer loop handles each block in the MCU */ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { /* Encoded data is simply the next bit of the two's-complement DC value */ if (arith_decode(cinfo, st)) MCU_data[blkn][0][0] |= p1; } return TRUE; } /* * MCU decoding for AC successive approximation refinement scan. */ METHODDEF(boolean) decode_mcu_AC_refine(j_decompress_ptr cinfo, JBLOCKROW *MCU_data) { arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy; JBLOCKROW block; JCOEFPTR thiscoef; unsigned char *st; int tbl, k, kex; int p1, m1; /* Process restart marker if needed */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) process_restart(cinfo); entropy->restarts_to_go--; } if (entropy->ct == -1) return TRUE; /* if error do nothing */ /* There is always only one block per MCU */ block = MCU_data[0]; tbl = cinfo->cur_comp_info[0]->ac_tbl_no; p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ m1 = (NEG_1) << cinfo->Al; /* -1 in the bit position being coded */ /* Establish EOBx (previous stage end-of-block) index */ for (kex = cinfo->Se; kex > 0; kex--) if ((*block)[jpeg_natural_order[kex]]) break; for (k = cinfo->Ss; k <= cinfo->Se; k++) { st = entropy->ac_stats[tbl] + 3 * (k - 1); if (k > kex) if (arith_decode(cinfo, st)) break; /* EOB flag */ for (;;) { thiscoef = *block + jpeg_natural_order[k]; if (*thiscoef) { /* previously nonzero coef */ if (arith_decode(cinfo, st + 2)) { if (*thiscoef < 0) *thiscoef += (JCOEF)m1; else *thiscoef += (JCOEF)p1; } break; } if (arith_decode(cinfo, st + 1)) { /* newly nonzero coef */ if (arith_decode(cinfo, entropy->fixed_bin)) *thiscoef = (JCOEF)m1; else *thiscoef = (JCOEF)p1; break; } st += 3; k++; if (k > cinfo->Se) { WARNMS(cinfo, JWRN_ARITH_BAD_CODE); entropy->ct = -1; /* spectral overflow */ return TRUE; } } } return TRUE; } /* * Decode one MCU's worth of arithmetic-compressed coefficients. */ METHODDEF(boolean) decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data) { arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy; jpeg_component_info *compptr; JBLOCKROW block; unsigned char *st; int blkn, ci, tbl, sign, k; int v, m; /* Process restart marker if needed */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) process_restart(cinfo); entropy->restarts_to_go--; } if (entropy->ct == -1) return TRUE; /* if error do nothing */ /* Outer loop handles each block in the MCU */ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { block = MCU_data ? MCU_data[blkn] : NULL; ci = cinfo->MCU_membership[blkn]; compptr = cinfo->cur_comp_info[ci]; /* Sections F.2.4.1 & F.1.4.4.1: Decoding of DC coefficients */ tbl = compptr->dc_tbl_no; /* Table F.4: Point to statistics bin S0 for DC coefficient coding */ st = entropy->dc_stats[tbl] + entropy->dc_context[ci]; /* Figure F.19: Decode_DC_DIFF */ if (arith_decode(cinfo, st) == 0) entropy->dc_context[ci] = 0; else { /* Figure F.21: Decoding nonzero value v */ /* Figure F.22: Decoding the sign of v */ sign = arith_decode(cinfo, st + 1); st += 2; st += sign; /* Figure F.23: Decoding the magnitude category of v */ if ((m = arith_decode(cinfo, st)) != 0) { st = entropy->dc_stats[tbl] + 20; /* Table F.4: X1 = 20 */ while (arith_decode(cinfo, st)) { if ((m <<= 1) == 0x8000) { WARNMS(cinfo, JWRN_ARITH_BAD_CODE); entropy->ct = -1; /* magnitude overflow */ return TRUE; } st += 1; } } /* Section F.1.4.4.1.2: Establish dc_context conditioning category */ if (m < (int)((1L << cinfo->arith_dc_L[tbl]) >> 1)) entropy->dc_context[ci] = 0; /* zero diff category */ else if (m > (int)((1L << cinfo->arith_dc_U[tbl]) >> 1)) entropy->dc_context[ci] = 12 + (sign * 4); /* large diff category */ else entropy->dc_context[ci] = 4 + (sign * 4); /* small diff category */ v = m; /* Figure F.24: Decoding the magnitude bit pattern of v */ st += 14; while (m >>= 1) if (arith_decode(cinfo, st)) v |= m; v += 1; if (sign) v = -v; entropy->last_dc_val[ci] = (entropy->last_dc_val[ci] + v) & 0xffff; } if (block) (*block)[0] = (JCOEF)entropy->last_dc_val[ci]; /* Sections F.2.4.2 & F.1.4.4.2: Decoding of AC coefficients */ tbl = compptr->ac_tbl_no; /* Figure F.20: Decode_AC_coefficients */ for (k = 1; k <= DCTSIZE2 - 1; k++) { st = entropy->ac_stats[tbl] + 3 * (k - 1); if (arith_decode(cinfo, st)) break; /* EOB flag */ while (arith_decode(cinfo, st + 1) == 0) { st += 3; k++; if (k > DCTSIZE2 - 1) { WARNMS(cinfo, JWRN_ARITH_BAD_CODE); entropy->ct = -1; /* spectral overflow */ return TRUE; } } /* Figure F.21: Decoding nonzero value v */ /* Figure F.22: Decoding the sign of v */ sign = arith_decode(cinfo, entropy->fixed_bin); st += 2; /* Figure F.23: Decoding the magnitude category of v */ if ((m = arith_decode(cinfo, st)) != 0) { if (arith_decode(cinfo, st)) { m <<= 1; st = entropy->ac_stats[tbl] + (k <= cinfo->arith_ac_K[tbl] ? 189 : 217); while (arith_decode(cinfo, st)) { if ((m <<= 1) == 0x8000) { WARNMS(cinfo, JWRN_ARITH_BAD_CODE); entropy->ct = -1; /* magnitude overflow */ return TRUE; } st += 1; } } } v = m; /* Figure F.24: Decoding the magnitude bit pattern of v */ st += 14; while (m >>= 1) if (arith_decode(cinfo, st)) v |= m; v += 1; if (sign) v = -v; if (block) (*block)[jpeg_natural_order[k]] = (JCOEF)v; } } return TRUE; } /* * Initialize for an arithmetic-compressed scan. */ METHODDEF(void) start_pass(j_decompress_ptr cinfo) { arith_entropy_ptr entropy = (arith_entropy_ptr)cinfo->entropy; int ci, tbl; jpeg_component_info *compptr; if (cinfo->progressive_mode) { /* Validate progressive scan parameters */ if (cinfo->Ss == 0) { if (cinfo->Se != 0) goto bad; } else { /* need not check Ss/Se < 0 since they came from unsigned bytes */ if (cinfo->Se < cinfo->Ss || cinfo->Se > DCTSIZE2 - 1) goto bad; /* AC scans may have only one component */ if (cinfo->comps_in_scan != 1) goto bad; } if (cinfo->Ah != 0) { /* Successive approximation refinement scan: must have Al = Ah-1. */ if (cinfo->Ah - 1 != cinfo->Al) goto bad; } if (cinfo->Al > 13) { /* need not check for < 0 */ bad: ERREXIT4(cinfo, JERR_BAD_PROGRESSION, cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al); } /* Update progression status, and verify that scan order is legal. * Note that inter-scan inconsistencies are treated as warnings * not fatal errors ... not clear if this is right way to behave. */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) { int coefi, cindex = cinfo->cur_comp_info[ci]->component_index; int *coef_bit_ptr = &cinfo->coef_bits[cindex][0]; int *prev_coef_bit_ptr = &cinfo->coef_bits[cindex + cinfo->num_components][0]; if (cinfo->Ss && coef_bit_ptr[0] < 0) /* AC without prior DC scan */ WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0); for (coefi = MIN(cinfo->Ss, 1); coefi <= MAX(cinfo->Se, 9); coefi++) { if (cinfo->input_scan_number > 1) prev_coef_bit_ptr[coefi] = coef_bit_ptr[coefi]; else prev_coef_bit_ptr[coefi] = 0; } for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) { int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi]; if (cinfo->Ah != expected) WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi); coef_bit_ptr[coefi] = cinfo->Al; } } /* Select MCU decoding routine */ if (cinfo->Ah == 0) { if (cinfo->Ss == 0) entropy->pub.decode_mcu = decode_mcu_DC_first; else entropy->pub.decode_mcu = decode_mcu_AC_first; } else { if (cinfo->Ss == 0) entropy->pub.decode_mcu = decode_mcu_DC_refine; else entropy->pub.decode_mcu = decode_mcu_AC_refine; } } else { /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG. * This ought to be an error condition, but we make it a warning. */ if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 || cinfo->Ah != 0 || cinfo->Al != 0) WARNMS(cinfo, JWRN_NOT_SEQUENTIAL); /* Select MCU decoding routine */ entropy->pub.decode_mcu = decode_mcu; } /* Allocate & initialize requested statistics areas */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; if (!cinfo->progressive_mode || (cinfo->Ss == 0 && cinfo->Ah == 0)) { tbl = compptr->dc_tbl_no; if (tbl < 0 || tbl >= NUM_ARITH_TBLS) ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); if (entropy->dc_stats[tbl] == NULL) entropy->dc_stats[tbl] = (unsigned char *)(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, DC_STAT_BINS); memset(entropy->dc_stats[tbl], 0, DC_STAT_BINS); /* Initialize DC predictions to 0 */ entropy->last_dc_val[ci] = 0; entropy->dc_context[ci] = 0; } if (!cinfo->progressive_mode || cinfo->Ss) { tbl = compptr->ac_tbl_no; if (tbl < 0 || tbl >= NUM_ARITH_TBLS) ERREXIT1(cinfo, JERR_NO_ARITH_TABLE, tbl); if (entropy->ac_stats[tbl] == NULL) entropy->ac_stats[tbl] = (unsigned char *)(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, AC_STAT_BINS); memset(entropy->ac_stats[tbl], 0, AC_STAT_BINS); } } /* Initialize arithmetic decoding variables */ entropy->c = 0; entropy->a = 0; entropy->ct = -16; /* force reading 2 initial bytes to fill C */ entropy->pub.insufficient_data = FALSE; /* Initialize restart counter */ entropy->restarts_to_go = cinfo->restart_interval; } /* * Module initialization routine for arithmetic entropy decoding. */ GLOBAL(void) jinit_arith_decoder(j_decompress_ptr cinfo) { arith_entropy_ptr entropy; int i; entropy = (arith_entropy_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, sizeof(arith_entropy_decoder)); cinfo->entropy = (struct jpeg_entropy_decoder *)entropy; entropy->pub.start_pass = start_pass; /* Mark tables unallocated */ for (i = 0; i < NUM_ARITH_TBLS; i++) { entropy->dc_stats[i] = NULL; entropy->ac_stats[i] = NULL; } /* Initialize index for fixed probability estimation */ entropy->fixed_bin[0] = 113; if (cinfo->progressive_mode) { /* Create progression status table */ int *coef_bit_ptr, ci; cinfo->coef_bits = (int (*)[DCTSIZE2]) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, cinfo->num_components * 2 * DCTSIZE2 * sizeof(int)); coef_bit_ptr = &cinfo->coef_bits[0][0]; for (ci = 0; ci < cinfo->num_components; ci++) for (i = 0; i < DCTSIZE2; i++) *coef_bit_ptr++ = -1; } } libjpeg-turbo-2.1.5/jdatadst-tj.c000066400000000000000000000150331436506551100166510ustar00rootroot00000000000000/* * jdatadst-tj.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1996, Thomas G. Lane. * Modified 2009-2012 by Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright (C) 2011, 2014, 2016, 2019, 2022, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains compression data destination routines for the case of * emitting JPEG data to memory or to a file (or any stdio stream). * While these routines are sufficient for most applications, * some will want to use a different destination manager. * IMPORTANT: we assume that fwrite() will correctly transcribe an array of * JOCTETs into 8-bit-wide elements on external storage. If char is wider * than 8 bits on your machine, you may need to do some tweaking. */ /* this is not a core library module, so it doesn't define JPEG_INTERNALS */ #include "jinclude.h" #include "jpeglib.h" #include "jerror.h" void jpeg_mem_dest_tj(j_compress_ptr cinfo, unsigned char **outbuffer, unsigned long *outsize, boolean alloc); #define OUTPUT_BUF_SIZE 4096 /* choose an efficiently fwrite'able size */ /* Expanded data destination object for memory output */ typedef struct { struct jpeg_destination_mgr pub; /* public fields */ unsigned char **outbuffer; /* target buffer */ unsigned long *outsize; unsigned char *newbuffer; /* newly allocated buffer */ JOCTET *buffer; /* start of buffer */ size_t bufsize; boolean alloc; } my_mem_destination_mgr; typedef my_mem_destination_mgr *my_mem_dest_ptr; /* * Initialize destination --- called by jpeg_start_compress * before any data is actually written. */ METHODDEF(void) init_mem_destination(j_compress_ptr cinfo) { /* no work necessary here */ } /* * Empty the output buffer --- called whenever buffer fills up. * * In typical applications, this should write the entire output buffer * (ignoring the current state of next_output_byte & free_in_buffer), * reset the pointer & count to the start of the buffer, and return TRUE * indicating that the buffer has been dumped. * * In applications that need to be able to suspend compression due to output * overrun, a FALSE return indicates that the buffer cannot be emptied now. * In this situation, the compressor will return to its caller (possibly with * an indication that it has not accepted all the supplied scanlines). The * application should resume compression after it has made more room in the * output buffer. Note that there are substantial restrictions on the use of * suspension --- see the documentation. * * When suspending, the compressor will back up to a convenient restart point * (typically the start of the current MCU). next_output_byte & free_in_buffer * indicate where the restart point will be if the current call returns FALSE. * Data beyond this point will be regenerated after resumption, so do not * write it out when emptying the buffer externally. */ METHODDEF(boolean) empty_mem_output_buffer(j_compress_ptr cinfo) { size_t nextsize; JOCTET *nextbuffer; my_mem_dest_ptr dest = (my_mem_dest_ptr)cinfo->dest; if (!dest->alloc) ERREXIT(cinfo, JERR_BUFFER_SIZE); /* Try to allocate new buffer with double size */ nextsize = dest->bufsize * 2; nextbuffer = (JOCTET *)malloc(nextsize); if (nextbuffer == NULL) ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 10); memcpy(nextbuffer, dest->buffer, dest->bufsize); free(dest->newbuffer); dest->newbuffer = nextbuffer; dest->pub.next_output_byte = nextbuffer + dest->bufsize; dest->pub.free_in_buffer = dest->bufsize; dest->buffer = nextbuffer; dest->bufsize = nextsize; return TRUE; } /* * Terminate destination --- called by jpeg_finish_compress * after all data has been written. Usually needs to flush buffer. * * NB: *not* called by jpeg_abort or jpeg_destroy; surrounding * application must deal with any cleanup that should happen even * for error exit. */ METHODDEF(void) term_mem_destination(j_compress_ptr cinfo) { my_mem_dest_ptr dest = (my_mem_dest_ptr)cinfo->dest; if (dest->alloc) *dest->outbuffer = dest->buffer; *dest->outsize = (unsigned long)(dest->bufsize - dest->pub.free_in_buffer); } /* * Prepare for output to a memory buffer. * The caller may supply an own initial buffer with appropriate size. * Otherwise, or when the actual data output exceeds the given size, * the library adapts the buffer size as necessary. * The standard library functions malloc/free are used for allocating * larger memory, so the buffer is available to the application after * finishing compression, and then the application is responsible for * freeing the requested memory. */ GLOBAL(void) jpeg_mem_dest_tj(j_compress_ptr cinfo, unsigned char **outbuffer, unsigned long *outsize, boolean alloc) { boolean reused = FALSE; my_mem_dest_ptr dest; if (outbuffer == NULL || outsize == NULL) /* sanity check */ ERREXIT(cinfo, JERR_BUFFER_SIZE); /* The destination object is made permanent so that multiple JPEG images * can be written to the same buffer without re-executing jpeg_mem_dest. */ if (cinfo->dest == NULL) { /* first time for this JPEG object? */ cinfo->dest = (struct jpeg_destination_mgr *) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_PERMANENT, sizeof(my_mem_destination_mgr)); dest = (my_mem_dest_ptr)cinfo->dest; dest->newbuffer = NULL; dest->buffer = NULL; } else if (cinfo->dest->init_destination != init_mem_destination) { /* It is unsafe to reuse the existing destination manager unless it was * created by this function. */ ERREXIT(cinfo, JERR_BUFFER_SIZE); } dest = (my_mem_dest_ptr)cinfo->dest; dest->pub.init_destination = init_mem_destination; dest->pub.empty_output_buffer = empty_mem_output_buffer; dest->pub.term_destination = term_mem_destination; if (dest->buffer == *outbuffer && *outbuffer != NULL && alloc) reused = TRUE; dest->outbuffer = outbuffer; dest->outsize = outsize; dest->alloc = alloc; if (*outbuffer == NULL || *outsize == 0) { if (alloc) { /* Allocate initial buffer */ dest->newbuffer = *outbuffer = (unsigned char *)malloc(OUTPUT_BUF_SIZE); if (dest->newbuffer == NULL) ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 10); *outsize = OUTPUT_BUF_SIZE; } else ERREXIT(cinfo, JERR_BUFFER_SIZE); } dest->pub.next_output_byte = dest->buffer = *outbuffer; if (!reused) dest->bufsize = *outsize; dest->pub.free_in_buffer = dest->bufsize; } libjpeg-turbo-2.1.5/jdatadst.c000066400000000000000000000225251436506551100162420ustar00rootroot00000000000000/* * jdatadst.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1996, Thomas G. Lane. * Modified 2009-2012 by Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright (C) 2013, 2016, 2022, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains compression data destination routines for the case of * emitting JPEG data to memory or to a file (or any stdio stream). * While these routines are sufficient for most applications, * some will want to use a different destination manager. * IMPORTANT: we assume that fwrite() will correctly transcribe an array of * JOCTETs into 8-bit-wide elements on external storage. If char is wider * than 8 bits on your machine, you may need to do some tweaking. */ /* this is not a core library module, so it doesn't define JPEG_INTERNALS */ #include "jinclude.h" #include "jpeglib.h" #include "jerror.h" /* Expanded data destination object for stdio output */ typedef struct { struct jpeg_destination_mgr pub; /* public fields */ FILE *outfile; /* target stream */ JOCTET *buffer; /* start of buffer */ } my_destination_mgr; typedef my_destination_mgr *my_dest_ptr; #define OUTPUT_BUF_SIZE 4096 /* choose an efficiently fwrite'able size */ #if JPEG_LIB_VERSION >= 80 || defined(MEM_SRCDST_SUPPORTED) /* Expanded data destination object for memory output */ typedef struct { struct jpeg_destination_mgr pub; /* public fields */ unsigned char **outbuffer; /* target buffer */ unsigned long *outsize; unsigned char *newbuffer; /* newly allocated buffer */ JOCTET *buffer; /* start of buffer */ size_t bufsize; } my_mem_destination_mgr; typedef my_mem_destination_mgr *my_mem_dest_ptr; #endif /* * Initialize destination --- called by jpeg_start_compress * before any data is actually written. */ METHODDEF(void) init_destination(j_compress_ptr cinfo) { my_dest_ptr dest = (my_dest_ptr)cinfo->dest; /* Allocate the output buffer --- it will be released when done with image */ dest->buffer = (JOCTET *) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, OUTPUT_BUF_SIZE * sizeof(JOCTET)); dest->pub.next_output_byte = dest->buffer; dest->pub.free_in_buffer = OUTPUT_BUF_SIZE; } #if JPEG_LIB_VERSION >= 80 || defined(MEM_SRCDST_SUPPORTED) METHODDEF(void) init_mem_destination(j_compress_ptr cinfo) { /* no work necessary here */ } #endif /* * Empty the output buffer --- called whenever buffer fills up. * * In typical applications, this should write the entire output buffer * (ignoring the current state of next_output_byte & free_in_buffer), * reset the pointer & count to the start of the buffer, and return TRUE * indicating that the buffer has been dumped. * * In applications that need to be able to suspend compression due to output * overrun, a FALSE return indicates that the buffer cannot be emptied now. * In this situation, the compressor will return to its caller (possibly with * an indication that it has not accepted all the supplied scanlines). The * application should resume compression after it has made more room in the * output buffer. Note that there are substantial restrictions on the use of * suspension --- see the documentation. * * When suspending, the compressor will back up to a convenient restart point * (typically the start of the current MCU). next_output_byte & free_in_buffer * indicate where the restart point will be if the current call returns FALSE. * Data beyond this point will be regenerated after resumption, so do not * write it out when emptying the buffer externally. */ METHODDEF(boolean) empty_output_buffer(j_compress_ptr cinfo) { my_dest_ptr dest = (my_dest_ptr)cinfo->dest; if (fwrite(dest->buffer, 1, OUTPUT_BUF_SIZE, dest->outfile) != (size_t)OUTPUT_BUF_SIZE) ERREXIT(cinfo, JERR_FILE_WRITE); dest->pub.next_output_byte = dest->buffer; dest->pub.free_in_buffer = OUTPUT_BUF_SIZE; return TRUE; } #if JPEG_LIB_VERSION >= 80 || defined(MEM_SRCDST_SUPPORTED) METHODDEF(boolean) empty_mem_output_buffer(j_compress_ptr cinfo) { size_t nextsize; JOCTET *nextbuffer; my_mem_dest_ptr dest = (my_mem_dest_ptr)cinfo->dest; /* Try to allocate new buffer with double size */ nextsize = dest->bufsize * 2; nextbuffer = (JOCTET *)malloc(nextsize); if (nextbuffer == NULL) ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 10); memcpy(nextbuffer, dest->buffer, dest->bufsize); free(dest->newbuffer); dest->newbuffer = nextbuffer; dest->pub.next_output_byte = nextbuffer + dest->bufsize; dest->pub.free_in_buffer = dest->bufsize; dest->buffer = nextbuffer; dest->bufsize = nextsize; return TRUE; } #endif /* * Terminate destination --- called by jpeg_finish_compress * after all data has been written. Usually needs to flush buffer. * * NB: *not* called by jpeg_abort or jpeg_destroy; surrounding * application must deal with any cleanup that should happen even * for error exit. */ METHODDEF(void) term_destination(j_compress_ptr cinfo) { my_dest_ptr dest = (my_dest_ptr)cinfo->dest; size_t datacount = OUTPUT_BUF_SIZE - dest->pub.free_in_buffer; /* Write any data remaining in the buffer */ if (datacount > 0) { if (fwrite(dest->buffer, 1, datacount, dest->outfile) != datacount) ERREXIT(cinfo, JERR_FILE_WRITE); } fflush(dest->outfile); /* Make sure we wrote the output file OK */ if (ferror(dest->outfile)) ERREXIT(cinfo, JERR_FILE_WRITE); } #if JPEG_LIB_VERSION >= 80 || defined(MEM_SRCDST_SUPPORTED) METHODDEF(void) term_mem_destination(j_compress_ptr cinfo) { my_mem_dest_ptr dest = (my_mem_dest_ptr)cinfo->dest; *dest->outbuffer = dest->buffer; *dest->outsize = (unsigned long)(dest->bufsize - dest->pub.free_in_buffer); } #endif /* * Prepare for output to a stdio stream. * The caller must have already opened the stream, and is responsible * for closing it after finishing compression. */ GLOBAL(void) jpeg_stdio_dest(j_compress_ptr cinfo, FILE *outfile) { my_dest_ptr dest; /* The destination object is made permanent so that multiple JPEG images * can be written to the same file without re-executing jpeg_stdio_dest. */ if (cinfo->dest == NULL) { /* first time for this JPEG object? */ cinfo->dest = (struct jpeg_destination_mgr *) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_PERMANENT, sizeof(my_destination_mgr)); } else if (cinfo->dest->init_destination != init_destination) { /* It is unsafe to reuse the existing destination manager unless it was * created by this function. Otherwise, there is no guarantee that the * opaque structure is the right size. Note that we could just create a * new structure, but the old structure would not be freed until * jpeg_destroy_compress() was called. */ ERREXIT(cinfo, JERR_BUFFER_SIZE); } dest = (my_dest_ptr)cinfo->dest; dest->pub.init_destination = init_destination; dest->pub.empty_output_buffer = empty_output_buffer; dest->pub.term_destination = term_destination; dest->outfile = outfile; } #if JPEG_LIB_VERSION >= 80 || defined(MEM_SRCDST_SUPPORTED) /* * Prepare for output to a memory buffer. * The caller may supply an own initial buffer with appropriate size. * Otherwise, or when the actual data output exceeds the given size, * the library adapts the buffer size as necessary. * The standard library functions malloc/free are used for allocating * larger memory, so the buffer is available to the application after * finishing compression, and then the application is responsible for * freeing the requested memory. * Note: An initial buffer supplied by the caller is expected to be * managed by the application. The library does not free such buffer * when allocating a larger buffer. */ GLOBAL(void) jpeg_mem_dest(j_compress_ptr cinfo, unsigned char **outbuffer, unsigned long *outsize) { my_mem_dest_ptr dest; if (outbuffer == NULL || outsize == NULL) /* sanity check */ ERREXIT(cinfo, JERR_BUFFER_SIZE); /* The destination object is made permanent so that multiple JPEG images * can be written to the same buffer without re-executing jpeg_mem_dest. */ if (cinfo->dest == NULL) { /* first time for this JPEG object? */ cinfo->dest = (struct jpeg_destination_mgr *) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_PERMANENT, sizeof(my_mem_destination_mgr)); } else if (cinfo->dest->init_destination != init_mem_destination) { /* It is unsafe to reuse the existing destination manager unless it was * created by this function. */ ERREXIT(cinfo, JERR_BUFFER_SIZE); } dest = (my_mem_dest_ptr)cinfo->dest; dest->pub.init_destination = init_mem_destination; dest->pub.empty_output_buffer = empty_mem_output_buffer; dest->pub.term_destination = term_mem_destination; dest->outbuffer = outbuffer; dest->outsize = outsize; dest->newbuffer = NULL; if (*outbuffer == NULL || *outsize == 0) { /* Allocate initial buffer */ dest->newbuffer = *outbuffer = (unsigned char *)malloc(OUTPUT_BUF_SIZE); if (dest->newbuffer == NULL) ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 10); *outsize = OUTPUT_BUF_SIZE; } dest->pub.next_output_byte = dest->buffer = *outbuffer; dest->pub.free_in_buffer = dest->bufsize = *outsize; } #endif libjpeg-turbo-2.1.5/jdatasrc-tj.c000066400000000000000000000154711436506551100166540ustar00rootroot00000000000000/* * jdatasrc-tj.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1996, Thomas G. Lane. * Modified 2009-2011 by Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright (C) 2011, 2016, 2019, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains decompression data source routines for the case of * reading JPEG data from memory or from a file (or any stdio stream). * While these routines are sufficient for most applications, * some will want to use a different source manager. * IMPORTANT: we assume that fread() will correctly transcribe an array of * JOCTETs from 8-bit-wide elements on external storage. If char is wider * than 8 bits on your machine, you may need to do some tweaking. */ /* this is not a core library module, so it doesn't define JPEG_INTERNALS */ #include "jinclude.h" #include "jpeglib.h" #include "jerror.h" void jpeg_mem_src_tj(j_decompress_ptr cinfo, const unsigned char *inbuffer, unsigned long insize); /* * Initialize source --- called by jpeg_read_header * before any data is actually read. */ METHODDEF(void) init_mem_source(j_decompress_ptr cinfo) { /* no work necessary here */ } /* * Fill the input buffer --- called whenever buffer is emptied. * * In typical applications, this should read fresh data into the buffer * (ignoring the current state of next_input_byte & bytes_in_buffer), * reset the pointer & count to the start of the buffer, and return TRUE * indicating that the buffer has been reloaded. It is not necessary to * fill the buffer entirely, only to obtain at least one more byte. * * There is no such thing as an EOF return. If the end of the file has been * reached, the routine has a choice of ERREXIT() or inserting fake data into * the buffer. In most cases, generating a warning message and inserting a * fake EOI marker is the best course of action --- this will allow the * decompressor to output however much of the image is there. However, * the resulting error message is misleading if the real problem is an empty * input file, so we handle that case specially. * * In applications that need to be able to suspend compression due to input * not being available yet, a FALSE return indicates that no more data can be * obtained right now, but more may be forthcoming later. In this situation, * the decompressor will return to its caller (with an indication of the * number of scanlines it has read, if any). The application should resume * decompression after it has loaded more data into the input buffer. Note * that there are substantial restrictions on the use of suspension --- see * the documentation. * * When suspending, the decompressor will back up to a convenient restart point * (typically the start of the current MCU). next_input_byte & bytes_in_buffer * indicate where the restart point will be if the current call returns FALSE. * Data beyond this point must be rescanned after resumption, so move it to * the front of the buffer rather than discarding it. */ METHODDEF(boolean) fill_mem_input_buffer(j_decompress_ptr cinfo) { static const JOCTET mybuffer[4] = { (JOCTET)0xFF, (JOCTET)JPEG_EOI, 0, 0 }; /* The whole JPEG data is expected to reside in the supplied memory * buffer, so any request for more data beyond the given buffer size * is treated as an error. */ WARNMS(cinfo, JWRN_JPEG_EOF); /* Insert a fake EOI marker */ cinfo->src->next_input_byte = mybuffer; cinfo->src->bytes_in_buffer = 2; return TRUE; } /* * Skip data --- used to skip over a potentially large amount of * uninteresting data (such as an APPn marker). * * Writers of suspendable-input applications must note that skip_input_data * is not granted the right to give a suspension return. If the skip extends * beyond the data currently in the buffer, the buffer can be marked empty so * that the next read will cause a fill_input_buffer call that can suspend. * Arranging for additional bytes to be discarded before reloading the input * buffer is the application writer's problem. */ METHODDEF(void) skip_input_data(j_decompress_ptr cinfo, long num_bytes) { struct jpeg_source_mgr *src = cinfo->src; /* Just a dumb implementation for now. Could use fseek() except * it doesn't work on pipes. Not clear that being smart is worth * any trouble anyway --- large skips are infrequent. */ if (num_bytes > 0) { while (num_bytes > (long)src->bytes_in_buffer) { num_bytes -= (long)src->bytes_in_buffer; (void)(*src->fill_input_buffer) (cinfo); /* note we assume that fill_input_buffer will never return FALSE, * so suspension need not be handled. */ } src->next_input_byte += (size_t)num_bytes; src->bytes_in_buffer -= (size_t)num_bytes; } } /* * An additional method that can be provided by data source modules is the * resync_to_restart method for error recovery in the presence of RST markers. * For the moment, this source module just uses the default resync method * provided by the JPEG library. That method assumes that no backtracking * is possible. */ /* * Terminate source --- called by jpeg_finish_decompress * after all data has been read. Often a no-op. * * NB: *not* called by jpeg_abort or jpeg_destroy; surrounding * application must deal with any cleanup that should happen even * for error exit. */ METHODDEF(void) term_source(j_decompress_ptr cinfo) { /* no work necessary here */ } /* * Prepare for input from a supplied memory buffer. * The buffer must contain the whole JPEG data. */ GLOBAL(void) jpeg_mem_src_tj(j_decompress_ptr cinfo, const unsigned char *inbuffer, unsigned long insize) { struct jpeg_source_mgr *src; if (inbuffer == NULL || insize == 0) /* Treat empty input as fatal error */ ERREXIT(cinfo, JERR_INPUT_EMPTY); /* The source object is made permanent so that a series of JPEG images * can be read from the same buffer by calling jpeg_mem_src only before * the first one. */ if (cinfo->src == NULL) { /* first time for this JPEG object? */ cinfo->src = (struct jpeg_source_mgr *) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_PERMANENT, sizeof(struct jpeg_source_mgr)); } else if (cinfo->src->init_source != init_mem_source) { /* It is unsafe to reuse the existing source manager unless it was created * by this function. */ ERREXIT(cinfo, JERR_BUFFER_SIZE); } src = cinfo->src; src->init_source = init_mem_source; src->fill_input_buffer = fill_mem_input_buffer; src->skip_input_data = skip_input_data; src->resync_to_restart = jpeg_resync_to_restart; /* use default method */ src->term_source = term_source; src->bytes_in_buffer = (size_t)insize; src->next_input_byte = (const JOCTET *)inbuffer; } libjpeg-turbo-2.1.5/jdatasrc.c000066400000000000000000000240601436506551100162330ustar00rootroot00000000000000/* * jdatasrc.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1996, Thomas G. Lane. * Modified 2009-2011 by Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright (C) 2013, 2016, 2022, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains decompression data source routines for the case of * reading JPEG data from memory or from a file (or any stdio stream). * While these routines are sufficient for most applications, * some will want to use a different source manager. * IMPORTANT: we assume that fread() will correctly transcribe an array of * JOCTETs from 8-bit-wide elements on external storage. If char is wider * than 8 bits on your machine, you may need to do some tweaking. */ /* this is not a core library module, so it doesn't define JPEG_INTERNALS */ #include "jinclude.h" #include "jpeglib.h" #include "jerror.h" /* Expanded data source object for stdio input */ typedef struct { struct jpeg_source_mgr pub; /* public fields */ FILE *infile; /* source stream */ JOCTET *buffer; /* start of buffer */ boolean start_of_file; /* have we gotten any data yet? */ } my_source_mgr; typedef my_source_mgr *my_src_ptr; #define INPUT_BUF_SIZE 4096 /* choose an efficiently fread'able size */ /* * Initialize source --- called by jpeg_read_header * before any data is actually read. */ METHODDEF(void) init_source(j_decompress_ptr cinfo) { my_src_ptr src = (my_src_ptr)cinfo->src; /* We reset the empty-input-file flag for each image, * but we don't clear the input buffer. * This is correct behavior for reading a series of images from one source. */ src->start_of_file = TRUE; } #if JPEG_LIB_VERSION >= 80 || defined(MEM_SRCDST_SUPPORTED) METHODDEF(void) init_mem_source(j_decompress_ptr cinfo) { /* no work necessary here */ } #endif /* * Fill the input buffer --- called whenever buffer is emptied. * * In typical applications, this should read fresh data into the buffer * (ignoring the current state of next_input_byte & bytes_in_buffer), * reset the pointer & count to the start of the buffer, and return TRUE * indicating that the buffer has been reloaded. It is not necessary to * fill the buffer entirely, only to obtain at least one more byte. * * There is no such thing as an EOF return. If the end of the file has been * reached, the routine has a choice of ERREXIT() or inserting fake data into * the buffer. In most cases, generating a warning message and inserting a * fake EOI marker is the best course of action --- this will allow the * decompressor to output however much of the image is there. However, * the resulting error message is misleading if the real problem is an empty * input file, so we handle that case specially. * * In applications that need to be able to suspend compression due to input * not being available yet, a FALSE return indicates that no more data can be * obtained right now, but more may be forthcoming later. In this situation, * the decompressor will return to its caller (with an indication of the * number of scanlines it has read, if any). The application should resume * decompression after it has loaded more data into the input buffer. Note * that there are substantial restrictions on the use of suspension --- see * the documentation. * * When suspending, the decompressor will back up to a convenient restart point * (typically the start of the current MCU). next_input_byte & bytes_in_buffer * indicate where the restart point will be if the current call returns FALSE. * Data beyond this point must be rescanned after resumption, so move it to * the front of the buffer rather than discarding it. */ METHODDEF(boolean) fill_input_buffer(j_decompress_ptr cinfo) { my_src_ptr src = (my_src_ptr)cinfo->src; size_t nbytes; nbytes = fread(src->buffer, 1, INPUT_BUF_SIZE, src->infile); if (nbytes <= 0) { if (src->start_of_file) /* Treat empty input file as fatal error */ ERREXIT(cinfo, JERR_INPUT_EMPTY); WARNMS(cinfo, JWRN_JPEG_EOF); /* Insert a fake EOI marker */ src->buffer[0] = (JOCTET)0xFF; src->buffer[1] = (JOCTET)JPEG_EOI; nbytes = 2; } src->pub.next_input_byte = src->buffer; src->pub.bytes_in_buffer = nbytes; src->start_of_file = FALSE; return TRUE; } #if JPEG_LIB_VERSION >= 80 || defined(MEM_SRCDST_SUPPORTED) METHODDEF(boolean) fill_mem_input_buffer(j_decompress_ptr cinfo) { static const JOCTET mybuffer[4] = { (JOCTET)0xFF, (JOCTET)JPEG_EOI, 0, 0 }; /* The whole JPEG data is expected to reside in the supplied memory * buffer, so any request for more data beyond the given buffer size * is treated as an error. */ WARNMS(cinfo, JWRN_JPEG_EOF); /* Insert a fake EOI marker */ cinfo->src->next_input_byte = mybuffer; cinfo->src->bytes_in_buffer = 2; return TRUE; } #endif /* * Skip data --- used to skip over a potentially large amount of * uninteresting data (such as an APPn marker). * * Writers of suspendable-input applications must note that skip_input_data * is not granted the right to give a suspension return. If the skip extends * beyond the data currently in the buffer, the buffer can be marked empty so * that the next read will cause a fill_input_buffer call that can suspend. * Arranging for additional bytes to be discarded before reloading the input * buffer is the application writer's problem. */ METHODDEF(void) skip_input_data(j_decompress_ptr cinfo, long num_bytes) { struct jpeg_source_mgr *src = cinfo->src; /* Just a dumb implementation for now. Could use fseek() except * it doesn't work on pipes. Not clear that being smart is worth * any trouble anyway --- large skips are infrequent. */ if (num_bytes > 0) { while (num_bytes > (long)src->bytes_in_buffer) { num_bytes -= (long)src->bytes_in_buffer; (void)(*src->fill_input_buffer) (cinfo); /* note we assume that fill_input_buffer will never return FALSE, * so suspension need not be handled. */ } src->next_input_byte += (size_t)num_bytes; src->bytes_in_buffer -= (size_t)num_bytes; } } /* * An additional method that can be provided by data source modules is the * resync_to_restart method for error recovery in the presence of RST markers. * For the moment, this source module just uses the default resync method * provided by the JPEG library. That method assumes that no backtracking * is possible. */ /* * Terminate source --- called by jpeg_finish_decompress * after all data has been read. Often a no-op. * * NB: *not* called by jpeg_abort or jpeg_destroy; surrounding * application must deal with any cleanup that should happen even * for error exit. */ METHODDEF(void) term_source(j_decompress_ptr cinfo) { /* no work necessary here */ } /* * Prepare for input from a stdio stream. * The caller must have already opened the stream, and is responsible * for closing it after finishing decompression. */ GLOBAL(void) jpeg_stdio_src(j_decompress_ptr cinfo, FILE *infile) { my_src_ptr src; /* The source object and input buffer are made permanent so that a series * of JPEG images can be read from the same file by calling jpeg_stdio_src * only before the first one. (If we discarded the buffer at the end of * one image, we'd likely lose the start of the next one.) */ if (cinfo->src == NULL) { /* first time for this JPEG object? */ cinfo->src = (struct jpeg_source_mgr *) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_PERMANENT, sizeof(my_source_mgr)); src = (my_src_ptr)cinfo->src; src->buffer = (JOCTET *) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_PERMANENT, INPUT_BUF_SIZE * sizeof(JOCTET)); } else if (cinfo->src->init_source != init_source) { /* It is unsafe to reuse the existing source manager unless it was created * by this function. Otherwise, there is no guarantee that the opaque * structure is the right size. Note that we could just create a new * structure, but the old structure would not be freed until * jpeg_destroy_decompress() was called. */ ERREXIT(cinfo, JERR_BUFFER_SIZE); } src = (my_src_ptr)cinfo->src; src->pub.init_source = init_source; src->pub.fill_input_buffer = fill_input_buffer; src->pub.skip_input_data = skip_input_data; src->pub.resync_to_restart = jpeg_resync_to_restart; /* use default method */ src->pub.term_source = term_source; src->infile = infile; src->pub.bytes_in_buffer = 0; /* forces fill_input_buffer on first read */ src->pub.next_input_byte = NULL; /* until buffer loaded */ } #if JPEG_LIB_VERSION >= 80 || defined(MEM_SRCDST_SUPPORTED) /* * Prepare for input from a supplied memory buffer. * The buffer must contain the whole JPEG data. */ GLOBAL(void) jpeg_mem_src(j_decompress_ptr cinfo, const unsigned char *inbuffer, unsigned long insize) { struct jpeg_source_mgr *src; if (inbuffer == NULL || insize == 0) /* Treat empty input as fatal error */ ERREXIT(cinfo, JERR_INPUT_EMPTY); /* The source object is made permanent so that a series of JPEG images * can be read from the same buffer by calling jpeg_mem_src only before * the first one. */ if (cinfo->src == NULL) { /* first time for this JPEG object? */ cinfo->src = (struct jpeg_source_mgr *) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_PERMANENT, sizeof(struct jpeg_source_mgr)); } else if (cinfo->src->init_source != init_mem_source) { /* It is unsafe to reuse the existing source manager unless it was created * by this function. */ ERREXIT(cinfo, JERR_BUFFER_SIZE); } src = cinfo->src; src->init_source = init_mem_source; src->fill_input_buffer = fill_mem_input_buffer; src->skip_input_data = skip_input_data; src->resync_to_restart = jpeg_resync_to_restart; /* use default method */ src->term_source = term_source; src->bytes_in_buffer = (size_t)insize; src->next_input_byte = (const JOCTET *)inbuffer; } #endif libjpeg-turbo-2.1.5/jdcoefct.c000066400000000000000000001023611436506551100162220ustar00rootroot00000000000000/* * jdcoefct.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1997, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright 2009 Pierre Ossman for Cendio AB * Copyright (C) 2010, 2015-2016, 2019-2020, 2022, D. R. Commander. * Copyright (C) 2015, 2020, Google, Inc. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains the coefficient buffer controller for decompression. * This controller is the top level of the JPEG decompressor proper. * The coefficient buffer lies between entropy decoding and inverse-DCT steps. * * In buffered-image mode, this controller is the interface between * input-oriented processing and output-oriented processing. * Also, the input side (only) is used when reading a file for transcoding. */ #include "jinclude.h" #include "jdcoefct.h" #include "jpegcomp.h" /* Forward declarations */ METHODDEF(int) decompress_onepass(j_decompress_ptr cinfo, JSAMPIMAGE output_buf); #ifdef D_MULTISCAN_FILES_SUPPORTED METHODDEF(int) decompress_data(j_decompress_ptr cinfo, JSAMPIMAGE output_buf); #endif #ifdef BLOCK_SMOOTHING_SUPPORTED LOCAL(boolean) smoothing_ok(j_decompress_ptr cinfo); METHODDEF(int) decompress_smooth_data(j_decompress_ptr cinfo, JSAMPIMAGE output_buf); #endif /* * Initialize for an input processing pass. */ METHODDEF(void) start_input_pass(j_decompress_ptr cinfo) { cinfo->input_iMCU_row = 0; start_iMCU_row(cinfo); } /* * Initialize for an output processing pass. */ METHODDEF(void) start_output_pass(j_decompress_ptr cinfo) { #ifdef BLOCK_SMOOTHING_SUPPORTED my_coef_ptr coef = (my_coef_ptr)cinfo->coef; /* If multipass, check to see whether to use block smoothing on this pass */ if (coef->pub.coef_arrays != NULL) { if (cinfo->do_block_smoothing && smoothing_ok(cinfo)) coef->pub.decompress_data = decompress_smooth_data; else coef->pub.decompress_data = decompress_data; } #endif cinfo->output_iMCU_row = 0; } /* * Decompress and return some data in the single-pass case. * Always attempts to emit one fully interleaved MCU row ("iMCU" row). * Input and output must run in lockstep since we have only a one-MCU buffer. * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. * * NB: output_buf contains a plane for each component in image, * which we index according to the component's SOF position. */ METHODDEF(int) decompress_onepass(j_decompress_ptr cinfo, JSAMPIMAGE output_buf) { my_coef_ptr coef = (my_coef_ptr)cinfo->coef; JDIMENSION MCU_col_num; /* index of current MCU within row */ JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; int blkn, ci, xindex, yindex, yoffset, useful_width; JSAMPARRAY output_ptr; JDIMENSION start_col, output_col; jpeg_component_info *compptr; inverse_DCT_method_ptr inverse_DCT; /* Loop to process as much as one whole iMCU row */ for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; yoffset++) { for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col; MCU_col_num++) { /* Try to fetch an MCU. Entropy decoder expects buffer to be zeroed. */ jzero_far((void *)coef->MCU_buffer[0], (size_t)(cinfo->blocks_in_MCU * sizeof(JBLOCK))); if (!cinfo->entropy->insufficient_data) cinfo->master->last_good_iMCU_row = cinfo->input_iMCU_row; if (!(*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { /* Suspension forced; update state counters and exit */ coef->MCU_vert_offset = yoffset; coef->MCU_ctr = MCU_col_num; return JPEG_SUSPENDED; } /* Only perform the IDCT on blocks that are contained within the desired * cropping region. */ if (MCU_col_num >= cinfo->master->first_iMCU_col && MCU_col_num <= cinfo->master->last_iMCU_col) { /* Determine where data should go in output_buf and do the IDCT thing. * We skip dummy blocks at the right and bottom edges (but blkn gets * incremented past them!). Note the inner loop relies on having * allocated the MCU_buffer[] blocks sequentially. */ blkn = 0; /* index of current DCT block within MCU */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; /* Don't bother to IDCT an uninteresting component. */ if (!compptr->component_needed) { blkn += compptr->MCU_blocks; continue; } inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index]; useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width : compptr->last_col_width; output_ptr = output_buf[compptr->component_index] + yoffset * compptr->_DCT_scaled_size; start_col = (MCU_col_num - cinfo->master->first_iMCU_col) * compptr->MCU_sample_width; for (yindex = 0; yindex < compptr->MCU_height; yindex++) { if (cinfo->input_iMCU_row < last_iMCU_row || yoffset + yindex < compptr->last_row_height) { output_col = start_col; for (xindex = 0; xindex < useful_width; xindex++) { (*inverse_DCT) (cinfo, compptr, (JCOEFPTR)coef->MCU_buffer[blkn + xindex], output_ptr, output_col); output_col += compptr->_DCT_scaled_size; } } blkn += compptr->MCU_width; output_ptr += compptr->_DCT_scaled_size; } } } } /* Completed an MCU row, but perhaps not an iMCU row */ coef->MCU_ctr = 0; } /* Completed the iMCU row, advance counters for next one */ cinfo->output_iMCU_row++; if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { start_iMCU_row(cinfo); return JPEG_ROW_COMPLETED; } /* Completed the scan */ (*cinfo->inputctl->finish_input_pass) (cinfo); return JPEG_SCAN_COMPLETED; } /* * Dummy consume-input routine for single-pass operation. */ METHODDEF(int) dummy_consume_data(j_decompress_ptr cinfo) { return JPEG_SUSPENDED; /* Always indicate nothing was done */ } #ifdef D_MULTISCAN_FILES_SUPPORTED /* * Consume input data and store it in the full-image coefficient buffer. * We read as much as one fully interleaved MCU row ("iMCU" row) per call, * ie, v_samp_factor block rows for each component in the scan. * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. */ METHODDEF(int) consume_data(j_decompress_ptr cinfo) { my_coef_ptr coef = (my_coef_ptr)cinfo->coef; JDIMENSION MCU_col_num; /* index of current MCU within row */ int blkn, ci, xindex, yindex, yoffset; JDIMENSION start_col; JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; JBLOCKROW buffer_ptr; jpeg_component_info *compptr; /* Align the virtual buffers for the components used in this scan. */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; buffer[ci] = (*cinfo->mem->access_virt_barray) ((j_common_ptr)cinfo, coef->whole_image[compptr->component_index], cinfo->input_iMCU_row * compptr->v_samp_factor, (JDIMENSION)compptr->v_samp_factor, TRUE); /* Note: entropy decoder expects buffer to be zeroed, * but this is handled automatically by the memory manager * because we requested a pre-zeroed array. */ } /* Loop to process one whole iMCU row */ for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; yoffset++) { for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row; MCU_col_num++) { /* Construct list of pointers to DCT blocks belonging to this MCU */ blkn = 0; /* index of current DCT block within MCU */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; start_col = MCU_col_num * compptr->MCU_width; for (yindex = 0; yindex < compptr->MCU_height; yindex++) { buffer_ptr = buffer[ci][yindex + yoffset] + start_col; for (xindex = 0; xindex < compptr->MCU_width; xindex++) { coef->MCU_buffer[blkn++] = buffer_ptr++; } } } if (!cinfo->entropy->insufficient_data) cinfo->master->last_good_iMCU_row = cinfo->input_iMCU_row; /* Try to fetch the MCU. */ if (!(*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) { /* Suspension forced; update state counters and exit */ coef->MCU_vert_offset = yoffset; coef->MCU_ctr = MCU_col_num; return JPEG_SUSPENDED; } } /* Completed an MCU row, but perhaps not an iMCU row */ coef->MCU_ctr = 0; } /* Completed the iMCU row, advance counters for next one */ if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) { start_iMCU_row(cinfo); return JPEG_ROW_COMPLETED; } /* Completed the scan */ (*cinfo->inputctl->finish_input_pass) (cinfo); return JPEG_SCAN_COMPLETED; } /* * Decompress and return some data in the multi-pass case. * Always attempts to emit one fully interleaved MCU row ("iMCU" row). * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED. * * NB: output_buf contains a plane for each component in image. */ METHODDEF(int) decompress_data(j_decompress_ptr cinfo, JSAMPIMAGE output_buf) { my_coef_ptr coef = (my_coef_ptr)cinfo->coef; JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; JDIMENSION block_num; int ci, block_row, block_rows; JBLOCKARRAY buffer; JBLOCKROW buffer_ptr; JSAMPARRAY output_ptr; JDIMENSION output_col; jpeg_component_info *compptr; inverse_DCT_method_ptr inverse_DCT; /* Force some input to be done if we are getting ahead of the input. */ while (cinfo->input_scan_number < cinfo->output_scan_number || (cinfo->input_scan_number == cinfo->output_scan_number && cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) { if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED) return JPEG_SUSPENDED; } /* OK, output from the virtual arrays. */ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { /* Don't bother to IDCT an uninteresting component. */ if (!compptr->component_needed) continue; /* Align the virtual buffer for this component. */ buffer = (*cinfo->mem->access_virt_barray) ((j_common_ptr)cinfo, coef->whole_image[ci], cinfo->output_iMCU_row * compptr->v_samp_factor, (JDIMENSION)compptr->v_samp_factor, FALSE); /* Count non-dummy DCT block rows in this iMCU row. */ if (cinfo->output_iMCU_row < last_iMCU_row) block_rows = compptr->v_samp_factor; else { /* NB: can't use last_row_height here; it is input-side-dependent! */ block_rows = (int)(compptr->height_in_blocks % compptr->v_samp_factor); if (block_rows == 0) block_rows = compptr->v_samp_factor; } inverse_DCT = cinfo->idct->inverse_DCT[ci]; output_ptr = output_buf[ci]; /* Loop over all DCT blocks to be processed. */ for (block_row = 0; block_row < block_rows; block_row++) { buffer_ptr = buffer[block_row] + cinfo->master->first_MCU_col[ci]; output_col = 0; for (block_num = cinfo->master->first_MCU_col[ci]; block_num <= cinfo->master->last_MCU_col[ci]; block_num++) { (*inverse_DCT) (cinfo, compptr, (JCOEFPTR)buffer_ptr, output_ptr, output_col); buffer_ptr++; output_col += compptr->_DCT_scaled_size; } output_ptr += compptr->_DCT_scaled_size; } } if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows) return JPEG_ROW_COMPLETED; return JPEG_SCAN_COMPLETED; } #endif /* D_MULTISCAN_FILES_SUPPORTED */ #ifdef BLOCK_SMOOTHING_SUPPORTED /* * This code applies interblock smoothing; the first 9 AC coefficients are * estimated from the DC values of a DCT block and its 24 neighboring blocks. * We apply smoothing only for progressive JPEG decoding, and only if * the coefficients it can estimate are not yet known to full precision. */ /* Natural-order array positions of the first 9 zigzag-order coefficients */ #define Q01_POS 1 #define Q10_POS 8 #define Q20_POS 16 #define Q11_POS 9 #define Q02_POS 2 #define Q03_POS 3 #define Q12_POS 10 #define Q21_POS 17 #define Q30_POS 24 /* * Determine whether block smoothing is applicable and safe. * We also latch the current states of the coef_bits[] entries for the * AC coefficients; otherwise, if the input side of the decompressor * advances into a new scan, we might think the coefficients are known * more accurately than they really are. */ LOCAL(boolean) smoothing_ok(j_decompress_ptr cinfo) { my_coef_ptr coef = (my_coef_ptr)cinfo->coef; boolean smoothing_useful = FALSE; int ci, coefi; jpeg_component_info *compptr; JQUANT_TBL *qtable; int *coef_bits, *prev_coef_bits; int *coef_bits_latch, *prev_coef_bits_latch; if (!cinfo->progressive_mode || cinfo->coef_bits == NULL) return FALSE; /* Allocate latch area if not already done */ if (coef->coef_bits_latch == NULL) coef->coef_bits_latch = (int *) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, cinfo->num_components * 2 * (SAVED_COEFS * sizeof(int))); coef_bits_latch = coef->coef_bits_latch; prev_coef_bits_latch = &coef->coef_bits_latch[cinfo->num_components * SAVED_COEFS]; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { /* All components' quantization values must already be latched. */ if ((qtable = compptr->quant_table) == NULL) return FALSE; /* Verify DC & first 9 AC quantizers are nonzero to avoid zero-divide. */ if (qtable->quantval[0] == 0 || qtable->quantval[Q01_POS] == 0 || qtable->quantval[Q10_POS] == 0 || qtable->quantval[Q20_POS] == 0 || qtable->quantval[Q11_POS] == 0 || qtable->quantval[Q02_POS] == 0 || qtable->quantval[Q03_POS] == 0 || qtable->quantval[Q12_POS] == 0 || qtable->quantval[Q21_POS] == 0 || qtable->quantval[Q30_POS] == 0) return FALSE; /* DC values must be at least partly known for all components. */ coef_bits = cinfo->coef_bits[ci]; prev_coef_bits = cinfo->coef_bits[ci + cinfo->num_components]; if (coef_bits[0] < 0) return FALSE; coef_bits_latch[0] = coef_bits[0]; /* Block smoothing is helpful if some AC coefficients remain inaccurate. */ for (coefi = 1; coefi < SAVED_COEFS; coefi++) { if (cinfo->input_scan_number > 1) prev_coef_bits_latch[coefi] = prev_coef_bits[coefi]; else prev_coef_bits_latch[coefi] = -1; coef_bits_latch[coefi] = coef_bits[coefi]; if (coef_bits[coefi] != 0) smoothing_useful = TRUE; } coef_bits_latch += SAVED_COEFS; prev_coef_bits_latch += SAVED_COEFS; } return smoothing_useful; } /* * Variant of decompress_data for use when doing block smoothing. */ METHODDEF(int) decompress_smooth_data(j_decompress_ptr cinfo, JSAMPIMAGE output_buf) { my_coef_ptr coef = (my_coef_ptr)cinfo->coef; JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; JDIMENSION block_num, last_block_column; int ci, block_row, block_rows, access_rows; JBLOCKARRAY buffer; JBLOCKROW buffer_ptr, prev_prev_block_row, prev_block_row; JBLOCKROW next_block_row, next_next_block_row; JSAMPARRAY output_ptr; JDIMENSION output_col; jpeg_component_info *compptr; inverse_DCT_method_ptr inverse_DCT; boolean change_dc; JCOEF *workspace; int *coef_bits; JQUANT_TBL *quanttbl; JLONG Q00, Q01, Q02, Q03 = 0, Q10, Q11, Q12 = 0, Q20, Q21 = 0, Q30 = 0, num; int DC01, DC02, DC03, DC04, DC05, DC06, DC07, DC08, DC09, DC10, DC11, DC12, DC13, DC14, DC15, DC16, DC17, DC18, DC19, DC20, DC21, DC22, DC23, DC24, DC25; int Al, pred; /* Keep a local variable to avoid looking it up more than once */ workspace = coef->workspace; /* Force some input to be done if we are getting ahead of the input. */ while (cinfo->input_scan_number <= cinfo->output_scan_number && !cinfo->inputctl->eoi_reached) { if (cinfo->input_scan_number == cinfo->output_scan_number) { /* If input is working on current scan, we ordinarily want it to * have completed the current row. But if input scan is DC, * we want it to keep two rows ahead so that next two block rows' DC * values are up to date. */ JDIMENSION delta = (cinfo->Ss == 0) ? 2 : 0; if (cinfo->input_iMCU_row > cinfo->output_iMCU_row + delta) break; } if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED) return JPEG_SUSPENDED; } /* OK, output from the virtual arrays. */ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { /* Don't bother to IDCT an uninteresting component. */ if (!compptr->component_needed) continue; /* Count non-dummy DCT block rows in this iMCU row. */ if (cinfo->output_iMCU_row + 1 < last_iMCU_row) { block_rows = compptr->v_samp_factor; access_rows = block_rows * 3; /* this and next two iMCU rows */ } else if (cinfo->output_iMCU_row < last_iMCU_row) { block_rows = compptr->v_samp_factor; access_rows = block_rows * 2; /* this and next iMCU row */ } else { /* NB: can't use last_row_height here; it is input-side-dependent! */ block_rows = (int)(compptr->height_in_blocks % compptr->v_samp_factor); if (block_rows == 0) block_rows = compptr->v_samp_factor; access_rows = block_rows; /* this iMCU row only */ } /* Align the virtual buffer for this component. */ if (cinfo->output_iMCU_row > 1) { access_rows += 2 * compptr->v_samp_factor; /* prior two iMCU rows too */ buffer = (*cinfo->mem->access_virt_barray) ((j_common_ptr)cinfo, coef->whole_image[ci], (cinfo->output_iMCU_row - 2) * compptr->v_samp_factor, (JDIMENSION)access_rows, FALSE); buffer += 2 * compptr->v_samp_factor; /* point to current iMCU row */ } else if (cinfo->output_iMCU_row > 0) { buffer = (*cinfo->mem->access_virt_barray) ((j_common_ptr)cinfo, coef->whole_image[ci], (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor, (JDIMENSION)access_rows, FALSE); buffer += compptr->v_samp_factor; /* point to current iMCU row */ } else { buffer = (*cinfo->mem->access_virt_barray) ((j_common_ptr)cinfo, coef->whole_image[ci], (JDIMENSION)0, (JDIMENSION)access_rows, FALSE); } /* Fetch component-dependent info. * If the current scan is incomplete, then we use the component-dependent * info from the previous scan. */ if (cinfo->output_iMCU_row > cinfo->master->last_good_iMCU_row) coef_bits = coef->coef_bits_latch + ((ci + cinfo->num_components) * SAVED_COEFS); else coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS); /* We only do DC interpolation if no AC coefficient data is available. */ change_dc = coef_bits[1] == -1 && coef_bits[2] == -1 && coef_bits[3] == -1 && coef_bits[4] == -1 && coef_bits[5] == -1 && coef_bits[6] == -1 && coef_bits[7] == -1 && coef_bits[8] == -1 && coef_bits[9] == -1; quanttbl = compptr->quant_table; Q00 = quanttbl->quantval[0]; Q01 = quanttbl->quantval[Q01_POS]; Q10 = quanttbl->quantval[Q10_POS]; Q20 = quanttbl->quantval[Q20_POS]; Q11 = quanttbl->quantval[Q11_POS]; Q02 = quanttbl->quantval[Q02_POS]; if (change_dc) { Q03 = quanttbl->quantval[Q03_POS]; Q12 = quanttbl->quantval[Q12_POS]; Q21 = quanttbl->quantval[Q21_POS]; Q30 = quanttbl->quantval[Q30_POS]; } inverse_DCT = cinfo->idct->inverse_DCT[ci]; output_ptr = output_buf[ci]; /* Loop over all DCT blocks to be processed. */ for (block_row = 0; block_row < block_rows; block_row++) { buffer_ptr = buffer[block_row] + cinfo->master->first_MCU_col[ci]; if (block_row > 0 || cinfo->output_iMCU_row > 0) prev_block_row = buffer[block_row - 1] + cinfo->master->first_MCU_col[ci]; else prev_block_row = buffer_ptr; if (block_row > 1 || cinfo->output_iMCU_row > 1) prev_prev_block_row = buffer[block_row - 2] + cinfo->master->first_MCU_col[ci]; else prev_prev_block_row = prev_block_row; if (block_row < block_rows - 1 || cinfo->output_iMCU_row < last_iMCU_row) next_block_row = buffer[block_row + 1] + cinfo->master->first_MCU_col[ci]; else next_block_row = buffer_ptr; if (block_row < block_rows - 2 || cinfo->output_iMCU_row + 1 < last_iMCU_row) next_next_block_row = buffer[block_row + 2] + cinfo->master->first_MCU_col[ci]; else next_next_block_row = next_block_row; /* We fetch the surrounding DC values using a sliding-register approach. * Initialize all 25 here so as to do the right thing on narrow pics. */ DC01 = DC02 = DC03 = DC04 = DC05 = (int)prev_prev_block_row[0][0]; DC06 = DC07 = DC08 = DC09 = DC10 = (int)prev_block_row[0][0]; DC11 = DC12 = DC13 = DC14 = DC15 = (int)buffer_ptr[0][0]; DC16 = DC17 = DC18 = DC19 = DC20 = (int)next_block_row[0][0]; DC21 = DC22 = DC23 = DC24 = DC25 = (int)next_next_block_row[0][0]; output_col = 0; last_block_column = compptr->width_in_blocks - 1; for (block_num = cinfo->master->first_MCU_col[ci]; block_num <= cinfo->master->last_MCU_col[ci]; block_num++) { /* Fetch current DCT block into workspace so we can modify it. */ jcopy_block_row(buffer_ptr, (JBLOCKROW)workspace, (JDIMENSION)1); /* Update DC values */ if (block_num == cinfo->master->first_MCU_col[ci] && block_num < last_block_column) { DC04 = (int)prev_prev_block_row[1][0]; DC09 = (int)prev_block_row[1][0]; DC14 = (int)buffer_ptr[1][0]; DC19 = (int)next_block_row[1][0]; DC24 = (int)next_next_block_row[1][0]; } if (block_num + 1 < last_block_column) { DC05 = (int)prev_prev_block_row[2][0]; DC10 = (int)prev_block_row[2][0]; DC15 = (int)buffer_ptr[2][0]; DC20 = (int)next_block_row[2][0]; DC25 = (int)next_next_block_row[2][0]; } /* If DC interpolation is enabled, compute coefficient estimates using * a Gaussian-like kernel, keeping the averages of the DC values. * * If DC interpolation is disabled, compute coefficient estimates using * an algorithm similar to the one described in Section K.8 of the JPEG * standard, except applied to a 5x5 window rather than a 3x3 window. * * An estimate is applied only if the coefficient is still zero and is * not known to be fully accurate. */ /* AC01 */ if ((Al = coef_bits[1]) != 0 && workspace[1] == 0) { num = Q00 * (change_dc ? (-DC01 - DC02 + DC04 + DC05 - 3 * DC06 + 13 * DC07 - 13 * DC09 + 3 * DC10 - 3 * DC11 + 38 * DC12 - 38 * DC14 + 3 * DC15 - 3 * DC16 + 13 * DC17 - 13 * DC19 + 3 * DC20 - DC21 - DC22 + DC24 + DC25) : (-7 * DC11 + 50 * DC12 - 50 * DC14 + 7 * DC15)); if (num >= 0) { pred = (int)(((Q01 << 7) + num) / (Q01 << 8)); if (Al > 0 && pred >= (1 << Al)) pred = (1 << Al) - 1; } else { pred = (int)(((Q01 << 7) - num) / (Q01 << 8)); if (Al > 0 && pred >= (1 << Al)) pred = (1 << Al) - 1; pred = -pred; } workspace[1] = (JCOEF)pred; } /* AC10 */ if ((Al = coef_bits[2]) != 0 && workspace[8] == 0) { num = Q00 * (change_dc ? (-DC01 - 3 * DC02 - 3 * DC03 - 3 * DC04 - DC05 - DC06 + 13 * DC07 + 38 * DC08 + 13 * DC09 - DC10 + DC16 - 13 * DC17 - 38 * DC18 - 13 * DC19 + DC20 + DC21 + 3 * DC22 + 3 * DC23 + 3 * DC24 + DC25) : (-7 * DC03 + 50 * DC08 - 50 * DC18 + 7 * DC23)); if (num >= 0) { pred = (int)(((Q10 << 7) + num) / (Q10 << 8)); if (Al > 0 && pred >= (1 << Al)) pred = (1 << Al) - 1; } else { pred = (int)(((Q10 << 7) - num) / (Q10 << 8)); if (Al > 0 && pred >= (1 << Al)) pred = (1 << Al) - 1; pred = -pred; } workspace[8] = (JCOEF)pred; } /* AC20 */ if ((Al = coef_bits[3]) != 0 && workspace[16] == 0) { num = Q00 * (change_dc ? (DC03 + 2 * DC07 + 7 * DC08 + 2 * DC09 - 5 * DC12 - 14 * DC13 - 5 * DC14 + 2 * DC17 + 7 * DC18 + 2 * DC19 + DC23) : (-DC03 + 13 * DC08 - 24 * DC13 + 13 * DC18 - DC23)); if (num >= 0) { pred = (int)(((Q20 << 7) + num) / (Q20 << 8)); if (Al > 0 && pred >= (1 << Al)) pred = (1 << Al) - 1; } else { pred = (int)(((Q20 << 7) - num) / (Q20 << 8)); if (Al > 0 && pred >= (1 << Al)) pred = (1 << Al) - 1; pred = -pred; } workspace[16] = (JCOEF)pred; } /* AC11 */ if ((Al = coef_bits[4]) != 0 && workspace[9] == 0) { num = Q00 * (change_dc ? (-DC01 + DC05 + 9 * DC07 - 9 * DC09 - 9 * DC17 + 9 * DC19 + DC21 - DC25) : (DC10 + DC16 - 10 * DC17 + 10 * DC19 - DC02 - DC20 + DC22 - DC24 + DC04 - DC06 + 10 * DC07 - 10 * DC09)); if (num >= 0) { pred = (int)(((Q11 << 7) + num) / (Q11 << 8)); if (Al > 0 && pred >= (1 << Al)) pred = (1 << Al) - 1; } else { pred = (int)(((Q11 << 7) - num) / (Q11 << 8)); if (Al > 0 && pred >= (1 << Al)) pred = (1 << Al) - 1; pred = -pred; } workspace[9] = (JCOEF)pred; } /* AC02 */ if ((Al = coef_bits[5]) != 0 && workspace[2] == 0) { num = Q00 * (change_dc ? (2 * DC07 - 5 * DC08 + 2 * DC09 + DC11 + 7 * DC12 - 14 * DC13 + 7 * DC14 + DC15 + 2 * DC17 - 5 * DC18 + 2 * DC19) : (-DC11 + 13 * DC12 - 24 * DC13 + 13 * DC14 - DC15)); if (num >= 0) { pred = (int)(((Q02 << 7) + num) / (Q02 << 8)); if (Al > 0 && pred >= (1 << Al)) pred = (1 << Al) - 1; } else { pred = (int)(((Q02 << 7) - num) / (Q02 << 8)); if (Al > 0 && pred >= (1 << Al)) pred = (1 << Al) - 1; pred = -pred; } workspace[2] = (JCOEF)pred; } if (change_dc) { /* AC03 */ if ((Al = coef_bits[6]) != 0 && workspace[3] == 0) { num = Q00 * (DC07 - DC09 + 2 * DC12 - 2 * DC14 + DC17 - DC19); if (num >= 0) { pred = (int)(((Q03 << 7) + num) / (Q03 << 8)); if (Al > 0 && pred >= (1 << Al)) pred = (1 << Al) - 1; } else { pred = (int)(((Q03 << 7) - num) / (Q03 << 8)); if (Al > 0 && pred >= (1 << Al)) pred = (1 << Al) - 1; pred = -pred; } workspace[3] = (JCOEF)pred; } /* AC12 */ if ((Al = coef_bits[7]) != 0 && workspace[10] == 0) { num = Q00 * (DC07 - 3 * DC08 + DC09 - DC17 + 3 * DC18 - DC19); if (num >= 0) { pred = (int)(((Q12 << 7) + num) / (Q12 << 8)); if (Al > 0 && pred >= (1 << Al)) pred = (1 << Al) - 1; } else { pred = (int)(((Q12 << 7) - num) / (Q12 << 8)); if (Al > 0 && pred >= (1 << Al)) pred = (1 << Al) - 1; pred = -pred; } workspace[10] = (JCOEF)pred; } /* AC21 */ if ((Al = coef_bits[8]) != 0 && workspace[17] == 0) { num = Q00 * (DC07 - DC09 - 3 * DC12 + 3 * DC14 + DC17 - DC19); if (num >= 0) { pred = (int)(((Q21 << 7) + num) / (Q21 << 8)); if (Al > 0 && pred >= (1 << Al)) pred = (1 << Al) - 1; } else { pred = (int)(((Q21 << 7) - num) / (Q21 << 8)); if (Al > 0 && pred >= (1 << Al)) pred = (1 << Al) - 1; pred = -pred; } workspace[17] = (JCOEF)pred; } /* AC30 */ if ((Al = coef_bits[9]) != 0 && workspace[24] == 0) { num = Q00 * (DC07 + 2 * DC08 + DC09 - DC17 - 2 * DC18 - DC19); if (num >= 0) { pred = (int)(((Q30 << 7) + num) / (Q30 << 8)); if (Al > 0 && pred >= (1 << Al)) pred = (1 << Al) - 1; } else { pred = (int)(((Q30 << 7) - num) / (Q30 << 8)); if (Al > 0 && pred >= (1 << Al)) pred = (1 << Al) - 1; pred = -pred; } workspace[24] = (JCOEF)pred; } /* coef_bits[0] is non-negative. Otherwise this function would not * be called. */ num = Q00 * (-2 * DC01 - 6 * DC02 - 8 * DC03 - 6 * DC04 - 2 * DC05 - 6 * DC06 + 6 * DC07 + 42 * DC08 + 6 * DC09 - 6 * DC10 - 8 * DC11 + 42 * DC12 + 152 * DC13 + 42 * DC14 - 8 * DC15 - 6 * DC16 + 6 * DC17 + 42 * DC18 + 6 * DC19 - 6 * DC20 - 2 * DC21 - 6 * DC22 - 8 * DC23 - 6 * DC24 - 2 * DC25); if (num >= 0) { pred = (int)(((Q00 << 7) + num) / (Q00 << 8)); } else { pred = (int)(((Q00 << 7) - num) / (Q00 << 8)); pred = -pred; } workspace[0] = (JCOEF)pred; } /* change_dc */ /* OK, do the IDCT */ (*inverse_DCT) (cinfo, compptr, (JCOEFPTR)workspace, output_ptr, output_col); /* Advance for next column */ DC01 = DC02; DC02 = DC03; DC03 = DC04; DC04 = DC05; DC06 = DC07; DC07 = DC08; DC08 = DC09; DC09 = DC10; DC11 = DC12; DC12 = DC13; DC13 = DC14; DC14 = DC15; DC16 = DC17; DC17 = DC18; DC18 = DC19; DC19 = DC20; DC21 = DC22; DC22 = DC23; DC23 = DC24; DC24 = DC25; buffer_ptr++, prev_block_row++, next_block_row++, prev_prev_block_row++, next_next_block_row++; output_col += compptr->_DCT_scaled_size; } output_ptr += compptr->_DCT_scaled_size; } } if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows) return JPEG_ROW_COMPLETED; return JPEG_SCAN_COMPLETED; } #endif /* BLOCK_SMOOTHING_SUPPORTED */ /* * Initialize coefficient buffer controller. */ GLOBAL(void) jinit_d_coef_controller(j_decompress_ptr cinfo, boolean need_full_buffer) { my_coef_ptr coef; coef = (my_coef_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, sizeof(my_coef_controller)); cinfo->coef = (struct jpeg_d_coef_controller *)coef; coef->pub.start_input_pass = start_input_pass; coef->pub.start_output_pass = start_output_pass; #ifdef BLOCK_SMOOTHING_SUPPORTED coef->coef_bits_latch = NULL; #endif /* Create the coefficient buffer. */ if (need_full_buffer) { #ifdef D_MULTISCAN_FILES_SUPPORTED /* Allocate a full-image virtual array for each component, */ /* padded to a multiple of samp_factor DCT blocks in each direction. */ /* Note we ask for a pre-zeroed array. */ int ci, access_rows; jpeg_component_info *compptr; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { access_rows = compptr->v_samp_factor; #ifdef BLOCK_SMOOTHING_SUPPORTED /* If block smoothing could be used, need a bigger window */ if (cinfo->progressive_mode) access_rows *= 5; #endif coef->whole_image[ci] = (*cinfo->mem->request_virt_barray) ((j_common_ptr)cinfo, JPOOL_IMAGE, TRUE, (JDIMENSION)jround_up((long)compptr->width_in_blocks, (long)compptr->h_samp_factor), (JDIMENSION)jround_up((long)compptr->height_in_blocks, (long)compptr->v_samp_factor), (JDIMENSION)access_rows); } coef->pub.consume_data = consume_data; coef->pub.decompress_data = decompress_data; coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */ #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif } else { /* We only need a single-MCU buffer. */ JBLOCKROW buffer; int i; buffer = (JBLOCKROW) (*cinfo->mem->alloc_large) ((j_common_ptr)cinfo, JPOOL_IMAGE, D_MAX_BLOCKS_IN_MCU * sizeof(JBLOCK)); for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) { coef->MCU_buffer[i] = buffer + i; } coef->pub.consume_data = dummy_consume_data; coef->pub.decompress_data = decompress_onepass; coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */ } /* Allocate the workspace buffer */ coef->workspace = (JCOEF *) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, sizeof(JCOEF) * DCTSIZE2); } libjpeg-turbo-2.1.5/jdcoefct.h000066400000000000000000000052201436506551100162230ustar00rootroot00000000000000/* * jdcoefct.h * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1997, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright 2009 Pierre Ossman for Cendio AB * Copyright (C) 2020, Google, Inc. * For conditions of distribution and use, see the accompanying README.ijg * file. */ #define JPEG_INTERNALS #include "jpeglib.h" /* Block smoothing is only applicable for progressive JPEG, so: */ #ifndef D_PROGRESSIVE_SUPPORTED #undef BLOCK_SMOOTHING_SUPPORTED #endif /* Private buffer controller object */ typedef struct { struct jpeg_d_coef_controller pub; /* public fields */ /* These variables keep track of the current location of the input side. */ /* cinfo->input_iMCU_row is also used for this. */ JDIMENSION MCU_ctr; /* counts MCUs processed in current row */ int MCU_vert_offset; /* counts MCU rows within iMCU row */ int MCU_rows_per_iMCU_row; /* number of such rows needed */ /* The output side's location is represented by cinfo->output_iMCU_row. */ /* In single-pass modes, it's sufficient to buffer just one MCU. * We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks, * and let the entropy decoder write into that workspace each time. * In multi-pass modes, this array points to the current MCU's blocks * within the virtual arrays; it is used only by the input side. */ JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU]; /* Temporary workspace for one MCU */ JCOEF *workspace; #ifdef D_MULTISCAN_FILES_SUPPORTED /* In multi-pass modes, we need a virtual block array for each component. */ jvirt_barray_ptr whole_image[MAX_COMPONENTS]; #endif #ifdef BLOCK_SMOOTHING_SUPPORTED /* When doing block smoothing, we latch coefficient Al values here */ int *coef_bits_latch; #define SAVED_COEFS 10 /* we save coef_bits[0..9] */ #endif } my_coef_controller; typedef my_coef_controller *my_coef_ptr; LOCAL(void) start_iMCU_row(j_decompress_ptr cinfo) /* Reset within-iMCU-row counters for a new row (input side) */ { my_coef_ptr coef = (my_coef_ptr)cinfo->coef; /* In an interleaved scan, an MCU row is the same as an iMCU row. * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. * But at the bottom of the image, process only what's left. */ if (cinfo->comps_in_scan > 1) { coef->MCU_rows_per_iMCU_row = 1; } else { if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows - 1)) coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; else coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; } coef->MCU_ctr = 0; coef->MCU_vert_offset = 0; } libjpeg-turbo-2.1.5/jdcol565.c000066400000000000000000000266211436506551100160000ustar00rootroot00000000000000/* * jdcol565.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1997, Thomas G. Lane. * Modifications: * Copyright (C) 2013, Linaro Limited. * Copyright (C) 2014-2015, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains output colorspace conversion routines. */ /* This file is included by jdcolor.c */ INLINE LOCAL(void) ycc_rgb565_convert_internal(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { my_cconvert_ptr cconvert = (my_cconvert_ptr)cinfo->cconvert; register int y, cb, cr; register JSAMPROW outptr; register JSAMPROW inptr0, inptr1, inptr2; register JDIMENSION col; JDIMENSION num_cols = cinfo->output_width; /* copy these pointers into registers if possible */ register JSAMPLE *range_limit = cinfo->sample_range_limit; register int *Crrtab = cconvert->Cr_r_tab; register int *Cbbtab = cconvert->Cb_b_tab; register JLONG *Crgtab = cconvert->Cr_g_tab; register JLONG *Cbgtab = cconvert->Cb_g_tab; SHIFT_TEMPS while (--num_rows >= 0) { JLONG rgb; unsigned int r, g, b; inptr0 = input_buf[0][input_row]; inptr1 = input_buf[1][input_row]; inptr2 = input_buf[2][input_row]; input_row++; outptr = *output_buf++; if (PACK_NEED_ALIGNMENT(outptr)) { y = *inptr0++; cb = *inptr1++; cr = *inptr2++; r = range_limit[y + Crrtab[cr]]; g = range_limit[y + ((int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS))]; b = range_limit[y + Cbbtab[cb]]; rgb = PACK_SHORT_565(r, g, b); *(INT16 *)outptr = (INT16)rgb; outptr += 2; num_cols--; } for (col = 0; col < (num_cols >> 1); col++) { y = *inptr0++; cb = *inptr1++; cr = *inptr2++; r = range_limit[y + Crrtab[cr]]; g = range_limit[y + ((int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS))]; b = range_limit[y + Cbbtab[cb]]; rgb = PACK_SHORT_565(r, g, b); y = *inptr0++; cb = *inptr1++; cr = *inptr2++; r = range_limit[y + Crrtab[cr]]; g = range_limit[y + ((int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS))]; b = range_limit[y + Cbbtab[cb]]; rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r, g, b)); WRITE_TWO_ALIGNED_PIXELS(outptr, rgb); outptr += 4; } if (num_cols & 1) { y = *inptr0; cb = *inptr1; cr = *inptr2; r = range_limit[y + Crrtab[cr]]; g = range_limit[y + ((int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS))]; b = range_limit[y + Cbbtab[cb]]; rgb = PACK_SHORT_565(r, g, b); *(INT16 *)outptr = (INT16)rgb; } } } INLINE LOCAL(void) ycc_rgb565D_convert_internal(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { my_cconvert_ptr cconvert = (my_cconvert_ptr)cinfo->cconvert; register int y, cb, cr; register JSAMPROW outptr; register JSAMPROW inptr0, inptr1, inptr2; register JDIMENSION col; JDIMENSION num_cols = cinfo->output_width; /* copy these pointers into registers if possible */ register JSAMPLE *range_limit = cinfo->sample_range_limit; register int *Crrtab = cconvert->Cr_r_tab; register int *Cbbtab = cconvert->Cb_b_tab; register JLONG *Crgtab = cconvert->Cr_g_tab; register JLONG *Cbgtab = cconvert->Cb_g_tab; JLONG d0 = dither_matrix[cinfo->output_scanline & DITHER_MASK]; SHIFT_TEMPS while (--num_rows >= 0) { JLONG rgb; unsigned int r, g, b; inptr0 = input_buf[0][input_row]; inptr1 = input_buf[1][input_row]; inptr2 = input_buf[2][input_row]; input_row++; outptr = *output_buf++; if (PACK_NEED_ALIGNMENT(outptr)) { y = *inptr0++; cb = *inptr1++; cr = *inptr2++; r = range_limit[DITHER_565_R(y + Crrtab[cr], d0)]; g = range_limit[DITHER_565_G(y + ((int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS)), d0)]; b = range_limit[DITHER_565_B(y + Cbbtab[cb], d0)]; rgb = PACK_SHORT_565(r, g, b); *(INT16 *)outptr = (INT16)rgb; outptr += 2; num_cols--; } for (col = 0; col < (num_cols >> 1); col++) { y = *inptr0++; cb = *inptr1++; cr = *inptr2++; r = range_limit[DITHER_565_R(y + Crrtab[cr], d0)]; g = range_limit[DITHER_565_G(y + ((int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS)), d0)]; b = range_limit[DITHER_565_B(y + Cbbtab[cb], d0)]; d0 = DITHER_ROTATE(d0); rgb = PACK_SHORT_565(r, g, b); y = *inptr0++; cb = *inptr1++; cr = *inptr2++; r = range_limit[DITHER_565_R(y + Crrtab[cr], d0)]; g = range_limit[DITHER_565_G(y + ((int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS)), d0)]; b = range_limit[DITHER_565_B(y + Cbbtab[cb], d0)]; d0 = DITHER_ROTATE(d0); rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r, g, b)); WRITE_TWO_ALIGNED_PIXELS(outptr, rgb); outptr += 4; } if (num_cols & 1) { y = *inptr0; cb = *inptr1; cr = *inptr2; r = range_limit[DITHER_565_R(y + Crrtab[cr], d0)]; g = range_limit[DITHER_565_G(y + ((int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS)), d0)]; b = range_limit[DITHER_565_B(y + Cbbtab[cb], d0)]; rgb = PACK_SHORT_565(r, g, b); *(INT16 *)outptr = (INT16)rgb; } } } INLINE LOCAL(void) rgb_rgb565_convert_internal(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { register JSAMPROW outptr; register JSAMPROW inptr0, inptr1, inptr2; register JDIMENSION col; JDIMENSION num_cols = cinfo->output_width; SHIFT_TEMPS while (--num_rows >= 0) { JLONG rgb; unsigned int r, g, b; inptr0 = input_buf[0][input_row]; inptr1 = input_buf[1][input_row]; inptr2 = input_buf[2][input_row]; input_row++; outptr = *output_buf++; if (PACK_NEED_ALIGNMENT(outptr)) { r = *inptr0++; g = *inptr1++; b = *inptr2++; rgb = PACK_SHORT_565(r, g, b); *(INT16 *)outptr = (INT16)rgb; outptr += 2; num_cols--; } for (col = 0; col < (num_cols >> 1); col++) { r = *inptr0++; g = *inptr1++; b = *inptr2++; rgb = PACK_SHORT_565(r, g, b); r = *inptr0++; g = *inptr1++; b = *inptr2++; rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r, g, b)); WRITE_TWO_ALIGNED_PIXELS(outptr, rgb); outptr += 4; } if (num_cols & 1) { r = *inptr0; g = *inptr1; b = *inptr2; rgb = PACK_SHORT_565(r, g, b); *(INT16 *)outptr = (INT16)rgb; } } } INLINE LOCAL(void) rgb_rgb565D_convert_internal(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { register JSAMPROW outptr; register JSAMPROW inptr0, inptr1, inptr2; register JDIMENSION col; register JSAMPLE *range_limit = cinfo->sample_range_limit; JDIMENSION num_cols = cinfo->output_width; JLONG d0 = dither_matrix[cinfo->output_scanline & DITHER_MASK]; SHIFT_TEMPS while (--num_rows >= 0) { JLONG rgb; unsigned int r, g, b; inptr0 = input_buf[0][input_row]; inptr1 = input_buf[1][input_row]; inptr2 = input_buf[2][input_row]; input_row++; outptr = *output_buf++; if (PACK_NEED_ALIGNMENT(outptr)) { r = range_limit[DITHER_565_R(*inptr0++, d0)]; g = range_limit[DITHER_565_G(*inptr1++, d0)]; b = range_limit[DITHER_565_B(*inptr2++, d0)]; rgb = PACK_SHORT_565(r, g, b); *(INT16 *)outptr = (INT16)rgb; outptr += 2; num_cols--; } for (col = 0; col < (num_cols >> 1); col++) { r = range_limit[DITHER_565_R(*inptr0++, d0)]; g = range_limit[DITHER_565_G(*inptr1++, d0)]; b = range_limit[DITHER_565_B(*inptr2++, d0)]; d0 = DITHER_ROTATE(d0); rgb = PACK_SHORT_565(r, g, b); r = range_limit[DITHER_565_R(*inptr0++, d0)]; g = range_limit[DITHER_565_G(*inptr1++, d0)]; b = range_limit[DITHER_565_B(*inptr2++, d0)]; d0 = DITHER_ROTATE(d0); rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r, g, b)); WRITE_TWO_ALIGNED_PIXELS(outptr, rgb); outptr += 4; } if (num_cols & 1) { r = range_limit[DITHER_565_R(*inptr0, d0)]; g = range_limit[DITHER_565_G(*inptr1, d0)]; b = range_limit[DITHER_565_B(*inptr2, d0)]; rgb = PACK_SHORT_565(r, g, b); *(INT16 *)outptr = (INT16)rgb; } } } INLINE LOCAL(void) gray_rgb565_convert_internal(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { register JSAMPROW inptr, outptr; register JDIMENSION col; JDIMENSION num_cols = cinfo->output_width; while (--num_rows >= 0) { JLONG rgb; unsigned int g; inptr = input_buf[0][input_row++]; outptr = *output_buf++; if (PACK_NEED_ALIGNMENT(outptr)) { g = *inptr++; rgb = PACK_SHORT_565(g, g, g); *(INT16 *)outptr = (INT16)rgb; outptr += 2; num_cols--; } for (col = 0; col < (num_cols >> 1); col++) { g = *inptr++; rgb = PACK_SHORT_565(g, g, g); g = *inptr++; rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(g, g, g)); WRITE_TWO_ALIGNED_PIXELS(outptr, rgb); outptr += 4; } if (num_cols & 1) { g = *inptr; rgb = PACK_SHORT_565(g, g, g); *(INT16 *)outptr = (INT16)rgb; } } } INLINE LOCAL(void) gray_rgb565D_convert_internal(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { register JSAMPROW inptr, outptr; register JDIMENSION col; register JSAMPLE *range_limit = cinfo->sample_range_limit; JDIMENSION num_cols = cinfo->output_width; JLONG d0 = dither_matrix[cinfo->output_scanline & DITHER_MASK]; while (--num_rows >= 0) { JLONG rgb; unsigned int g; inptr = input_buf[0][input_row++]; outptr = *output_buf++; if (PACK_NEED_ALIGNMENT(outptr)) { g = *inptr++; g = range_limit[DITHER_565_R(g, d0)]; rgb = PACK_SHORT_565(g, g, g); *(INT16 *)outptr = (INT16)rgb; outptr += 2; num_cols--; } for (col = 0; col < (num_cols >> 1); col++) { g = *inptr++; g = range_limit[DITHER_565_R(g, d0)]; rgb = PACK_SHORT_565(g, g, g); d0 = DITHER_ROTATE(d0); g = *inptr++; g = range_limit[DITHER_565_R(g, d0)]; rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(g, g, g)); d0 = DITHER_ROTATE(d0); WRITE_TWO_ALIGNED_PIXELS(outptr, rgb); outptr += 4; } if (num_cols & 1) { g = *inptr; g = range_limit[DITHER_565_R(g, d0)]; rgb = PACK_SHORT_565(g, g, g); *(INT16 *)outptr = (INT16)rgb; } } } libjpeg-turbo-2.1.5/jdcolext.c000066400000000000000000000104551436506551100162570ustar00rootroot00000000000000/* * jdcolext.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1997, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2009, 2011, 2015, 2023, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains output colorspace conversion routines. */ /* This file is included by jdcolor.c */ /* * Convert some rows of samples to the output colorspace. * * Note that we change from noninterleaved, one-plane-per-component format * to interleaved-pixel format. The output buffer is therefore three times * as wide as the input buffer. * A starting row offset is provided only for the input buffer. The caller * can easily adjust the passed output_buf value to accommodate any row * offset required on that side. */ INLINE LOCAL(void) ycc_rgb_convert_internal(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { my_cconvert_ptr cconvert = (my_cconvert_ptr)cinfo->cconvert; register int y, cb, cr; register JSAMPROW outptr; register JSAMPROW inptr0, inptr1, inptr2; register JDIMENSION col; JDIMENSION num_cols = cinfo->output_width; /* copy these pointers into registers if possible */ register JSAMPLE *range_limit = cinfo->sample_range_limit; register int *Crrtab = cconvert->Cr_r_tab; register int *Cbbtab = cconvert->Cb_b_tab; register JLONG *Crgtab = cconvert->Cr_g_tab; register JLONG *Cbgtab = cconvert->Cb_g_tab; SHIFT_TEMPS while (--num_rows >= 0) { inptr0 = input_buf[0][input_row]; inptr1 = input_buf[1][input_row]; inptr2 = input_buf[2][input_row]; input_row++; outptr = *output_buf++; for (col = 0; col < num_cols; col++) { y = inptr0[col]; cb = inptr1[col]; cr = inptr2[col]; /* Range-limiting is essential due to noise introduced by DCT losses. */ outptr[RGB_RED] = range_limit[y + Crrtab[cr]]; outptr[RGB_GREEN] = range_limit[y + ((int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS))]; outptr[RGB_BLUE] = range_limit[y + Cbbtab[cb]]; /* Set unused byte to MAXJSAMPLE so it can be interpreted as an opaque */ /* alpha channel value */ #ifdef RGB_ALPHA outptr[RGB_ALPHA] = MAXJSAMPLE; #endif outptr += RGB_PIXELSIZE; } } } /* * Convert grayscale to RGB: just duplicate the graylevel three times. * This is provided to support applications that don't want to cope * with grayscale as a separate case. */ INLINE LOCAL(void) gray_rgb_convert_internal(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { register JSAMPROW inptr, outptr; register JDIMENSION col; JDIMENSION num_cols = cinfo->output_width; while (--num_rows >= 0) { inptr = input_buf[0][input_row++]; outptr = *output_buf++; for (col = 0; col < num_cols; col++) { outptr[RGB_RED] = outptr[RGB_GREEN] = outptr[RGB_BLUE] = inptr[col]; /* Set unused byte to MAXJSAMPLE so it can be interpreted as an opaque */ /* alpha channel value */ #ifdef RGB_ALPHA outptr[RGB_ALPHA] = MAXJSAMPLE; #endif outptr += RGB_PIXELSIZE; } } } /* * Convert RGB to extended RGB: just swap the order of source pixels */ INLINE LOCAL(void) rgb_rgb_convert_internal(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { register JSAMPROW inptr0, inptr1, inptr2; register JSAMPROW outptr; register JDIMENSION col; JDIMENSION num_cols = cinfo->output_width; while (--num_rows >= 0) { inptr0 = input_buf[0][input_row]; inptr1 = input_buf[1][input_row]; inptr2 = input_buf[2][input_row]; input_row++; outptr = *output_buf++; for (col = 0; col < num_cols; col++) { outptr[RGB_RED] = inptr0[col]; outptr[RGB_GREEN] = inptr1[col]; outptr[RGB_BLUE] = inptr2[col]; /* Set unused byte to MAXJSAMPLE so it can be interpreted as an opaque */ /* alpha channel value */ #ifdef RGB_ALPHA outptr[RGB_ALPHA] = MAXJSAMPLE; #endif outptr += RGB_PIXELSIZE; } } } libjpeg-turbo-2.1.5/jdcolor.c000066400000000000000000000675551436506551100161140ustar00rootroot00000000000000/* * jdcolor.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1997, Thomas G. Lane. * Modified 2011 by Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright 2009 Pierre Ossman for Cendio AB * Copyright (C) 2009, 2011-2012, 2014-2015, D. R. Commander. * Copyright (C) 2013, Linaro Limited. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains output colorspace conversion routines. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jsimd.h" /* Private subobject */ typedef struct { struct jpeg_color_deconverter pub; /* public fields */ /* Private state for YCC->RGB conversion */ int *Cr_r_tab; /* => table for Cr to R conversion */ int *Cb_b_tab; /* => table for Cb to B conversion */ JLONG *Cr_g_tab; /* => table for Cr to G conversion */ JLONG *Cb_g_tab; /* => table for Cb to G conversion */ /* Private state for RGB->Y conversion */ JLONG *rgb_y_tab; /* => table for RGB to Y conversion */ } my_color_deconverter; typedef my_color_deconverter *my_cconvert_ptr; /**************** YCbCr -> RGB conversion: most common case **************/ /**************** RGB -> Y conversion: less common case **************/ /* * YCbCr is defined per CCIR 601-1, except that Cb and Cr are * normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5. * The conversion equations to be implemented are therefore * * R = Y + 1.40200 * Cr * G = Y - 0.34414 * Cb - 0.71414 * Cr * B = Y + 1.77200 * Cb * * Y = 0.29900 * R + 0.58700 * G + 0.11400 * B * * where Cb and Cr represent the incoming values less CENTERJSAMPLE. * (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.) * * To avoid floating-point arithmetic, we represent the fractional constants * as integers scaled up by 2^16 (about 4 digits precision); we have to divide * the products by 2^16, with appropriate rounding, to get the correct answer. * Notice that Y, being an integral input, does not contribute any fraction * so it need not participate in the rounding. * * For even more speed, we avoid doing any multiplications in the inner loop * by precalculating the constants times Cb and Cr for all possible values. * For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table); * for 12-bit samples it is still acceptable. It's not very reasonable for * 16-bit samples, but if you want lossless storage you shouldn't be changing * colorspace anyway. * The Cr=>R and Cb=>B values can be rounded to integers in advance; the * values for the G calculation are left scaled up, since we must add them * together before rounding. */ #define SCALEBITS 16 /* speediest right-shift on some machines */ #define ONE_HALF ((JLONG)1 << (SCALEBITS - 1)) #define FIX(x) ((JLONG)((x) * (1L << SCALEBITS) + 0.5)) /* We allocate one big table for RGB->Y conversion and divide it up into * three parts, instead of doing three alloc_small requests. This lets us * use a single table base address, which can be held in a register in the * inner loops on many machines (more than can hold all three addresses, * anyway). */ #define R_Y_OFF 0 /* offset to R => Y section */ #define G_Y_OFF (1 * (MAXJSAMPLE + 1)) /* offset to G => Y section */ #define B_Y_OFF (2 * (MAXJSAMPLE + 1)) /* etc. */ #define TABLE_SIZE (3 * (MAXJSAMPLE + 1)) /* Include inline routines for colorspace extensions */ #include "jdcolext.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #define RGB_RED EXT_RGB_RED #define RGB_GREEN EXT_RGB_GREEN #define RGB_BLUE EXT_RGB_BLUE #define RGB_PIXELSIZE EXT_RGB_PIXELSIZE #define ycc_rgb_convert_internal ycc_extrgb_convert_internal #define gray_rgb_convert_internal gray_extrgb_convert_internal #define rgb_rgb_convert_internal rgb_extrgb_convert_internal #include "jdcolext.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef ycc_rgb_convert_internal #undef gray_rgb_convert_internal #undef rgb_rgb_convert_internal #define RGB_RED EXT_RGBX_RED #define RGB_GREEN EXT_RGBX_GREEN #define RGB_BLUE EXT_RGBX_BLUE #define RGB_ALPHA 3 #define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE #define ycc_rgb_convert_internal ycc_extrgbx_convert_internal #define gray_rgb_convert_internal gray_extrgbx_convert_internal #define rgb_rgb_convert_internal rgb_extrgbx_convert_internal #include "jdcolext.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_ALPHA #undef RGB_PIXELSIZE #undef ycc_rgb_convert_internal #undef gray_rgb_convert_internal #undef rgb_rgb_convert_internal #define RGB_RED EXT_BGR_RED #define RGB_GREEN EXT_BGR_GREEN #define RGB_BLUE EXT_BGR_BLUE #define RGB_PIXELSIZE EXT_BGR_PIXELSIZE #define ycc_rgb_convert_internal ycc_extbgr_convert_internal #define gray_rgb_convert_internal gray_extbgr_convert_internal #define rgb_rgb_convert_internal rgb_extbgr_convert_internal #include "jdcolext.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef ycc_rgb_convert_internal #undef gray_rgb_convert_internal #undef rgb_rgb_convert_internal #define RGB_RED EXT_BGRX_RED #define RGB_GREEN EXT_BGRX_GREEN #define RGB_BLUE EXT_BGRX_BLUE #define RGB_ALPHA 3 #define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE #define ycc_rgb_convert_internal ycc_extbgrx_convert_internal #define gray_rgb_convert_internal gray_extbgrx_convert_internal #define rgb_rgb_convert_internal rgb_extbgrx_convert_internal #include "jdcolext.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_ALPHA #undef RGB_PIXELSIZE #undef ycc_rgb_convert_internal #undef gray_rgb_convert_internal #undef rgb_rgb_convert_internal #define RGB_RED EXT_XBGR_RED #define RGB_GREEN EXT_XBGR_GREEN #define RGB_BLUE EXT_XBGR_BLUE #define RGB_ALPHA 0 #define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE #define ycc_rgb_convert_internal ycc_extxbgr_convert_internal #define gray_rgb_convert_internal gray_extxbgr_convert_internal #define rgb_rgb_convert_internal rgb_extxbgr_convert_internal #include "jdcolext.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_ALPHA #undef RGB_PIXELSIZE #undef ycc_rgb_convert_internal #undef gray_rgb_convert_internal #undef rgb_rgb_convert_internal #define RGB_RED EXT_XRGB_RED #define RGB_GREEN EXT_XRGB_GREEN #define RGB_BLUE EXT_XRGB_BLUE #define RGB_ALPHA 0 #define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE #define ycc_rgb_convert_internal ycc_extxrgb_convert_internal #define gray_rgb_convert_internal gray_extxrgb_convert_internal #define rgb_rgb_convert_internal rgb_extxrgb_convert_internal #include "jdcolext.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_ALPHA #undef RGB_PIXELSIZE #undef ycc_rgb_convert_internal #undef gray_rgb_convert_internal #undef rgb_rgb_convert_internal /* * Initialize tables for YCC->RGB colorspace conversion. */ LOCAL(void) build_ycc_rgb_table(j_decompress_ptr cinfo) { my_cconvert_ptr cconvert = (my_cconvert_ptr)cinfo->cconvert; int i; JLONG x; SHIFT_TEMPS cconvert->Cr_r_tab = (int *) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, (MAXJSAMPLE + 1) * sizeof(int)); cconvert->Cb_b_tab = (int *) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, (MAXJSAMPLE + 1) * sizeof(int)); cconvert->Cr_g_tab = (JLONG *) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, (MAXJSAMPLE + 1) * sizeof(JLONG)); cconvert->Cb_g_tab = (JLONG *) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, (MAXJSAMPLE + 1) * sizeof(JLONG)); for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) { /* i is the actual input pixel value, in the range 0..MAXJSAMPLE */ /* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */ /* Cr=>R value is nearest int to 1.40200 * x */ cconvert->Cr_r_tab[i] = (int) RIGHT_SHIFT(FIX(1.40200) * x + ONE_HALF, SCALEBITS); /* Cb=>B value is nearest int to 1.77200 * x */ cconvert->Cb_b_tab[i] = (int) RIGHT_SHIFT(FIX(1.77200) * x + ONE_HALF, SCALEBITS); /* Cr=>G value is scaled-up -0.71414 * x */ cconvert->Cr_g_tab[i] = (-FIX(0.71414)) * x; /* Cb=>G value is scaled-up -0.34414 * x */ /* We also add in ONE_HALF so that need not do it in inner loop */ cconvert->Cb_g_tab[i] = (-FIX(0.34414)) * x + ONE_HALF; } } /* * Convert some rows of samples to the output colorspace. */ METHODDEF(void) ycc_rgb_convert(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { switch (cinfo->out_color_space) { case JCS_EXT_RGB: ycc_extrgb_convert_internal(cinfo, input_buf, input_row, output_buf, num_rows); break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: ycc_extrgbx_convert_internal(cinfo, input_buf, input_row, output_buf, num_rows); break; case JCS_EXT_BGR: ycc_extbgr_convert_internal(cinfo, input_buf, input_row, output_buf, num_rows); break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: ycc_extbgrx_convert_internal(cinfo, input_buf, input_row, output_buf, num_rows); break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: ycc_extxbgr_convert_internal(cinfo, input_buf, input_row, output_buf, num_rows); break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: ycc_extxrgb_convert_internal(cinfo, input_buf, input_row, output_buf, num_rows); break; default: ycc_rgb_convert_internal(cinfo, input_buf, input_row, output_buf, num_rows); break; } } /**************** Cases other than YCbCr -> RGB **************/ /* * Initialize for RGB->grayscale colorspace conversion. */ LOCAL(void) build_rgb_y_table(j_decompress_ptr cinfo) { my_cconvert_ptr cconvert = (my_cconvert_ptr)cinfo->cconvert; JLONG *rgb_y_tab; JLONG i; /* Allocate and fill in the conversion tables. */ cconvert->rgb_y_tab = rgb_y_tab = (JLONG *) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, (TABLE_SIZE * sizeof(JLONG))); for (i = 0; i <= MAXJSAMPLE; i++) { rgb_y_tab[i + R_Y_OFF] = FIX(0.29900) * i; rgb_y_tab[i + G_Y_OFF] = FIX(0.58700) * i; rgb_y_tab[i + B_Y_OFF] = FIX(0.11400) * i + ONE_HALF; } } /* * Convert RGB to grayscale. */ METHODDEF(void) rgb_gray_convert(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { my_cconvert_ptr cconvert = (my_cconvert_ptr)cinfo->cconvert; register int r, g, b; register JLONG *ctab = cconvert->rgb_y_tab; register JSAMPROW outptr; register JSAMPROW inptr0, inptr1, inptr2; register JDIMENSION col; JDIMENSION num_cols = cinfo->output_width; while (--num_rows >= 0) { inptr0 = input_buf[0][input_row]; inptr1 = input_buf[1][input_row]; inptr2 = input_buf[2][input_row]; input_row++; outptr = *output_buf++; for (col = 0; col < num_cols; col++) { r = inptr0[col]; g = inptr1[col]; b = inptr2[col]; /* Y */ outptr[col] = (JSAMPLE)((ctab[r + R_Y_OFF] + ctab[g + G_Y_OFF] + ctab[b + B_Y_OFF]) >> SCALEBITS); } } } /* * Color conversion for no colorspace change: just copy the data, * converting from separate-planes to interleaved representation. */ METHODDEF(void) null_convert(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { register JSAMPROW inptr, inptr0, inptr1, inptr2, inptr3, outptr; register JDIMENSION col; register int num_components = cinfo->num_components; JDIMENSION num_cols = cinfo->output_width; int ci; if (num_components == 3) { while (--num_rows >= 0) { inptr0 = input_buf[0][input_row]; inptr1 = input_buf[1][input_row]; inptr2 = input_buf[2][input_row]; input_row++; outptr = *output_buf++; for (col = 0; col < num_cols; col++) { *outptr++ = inptr0[col]; *outptr++ = inptr1[col]; *outptr++ = inptr2[col]; } } } else if (num_components == 4) { while (--num_rows >= 0) { inptr0 = input_buf[0][input_row]; inptr1 = input_buf[1][input_row]; inptr2 = input_buf[2][input_row]; inptr3 = input_buf[3][input_row]; input_row++; outptr = *output_buf++; for (col = 0; col < num_cols; col++) { *outptr++ = inptr0[col]; *outptr++ = inptr1[col]; *outptr++ = inptr2[col]; *outptr++ = inptr3[col]; } } } else { while (--num_rows >= 0) { for (ci = 0; ci < num_components; ci++) { inptr = input_buf[ci][input_row]; outptr = *output_buf; for (col = 0; col < num_cols; col++) { outptr[ci] = inptr[col]; outptr += num_components; } } output_buf++; input_row++; } } } /* * Color conversion for grayscale: just copy the data. * This also works for YCbCr -> grayscale conversion, in which * we just copy the Y (luminance) component and ignore chrominance. */ METHODDEF(void) grayscale_convert(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { jcopy_sample_rows(input_buf[0], (int)input_row, output_buf, 0, num_rows, cinfo->output_width); } /* * Convert grayscale to RGB */ METHODDEF(void) gray_rgb_convert(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { switch (cinfo->out_color_space) { case JCS_EXT_RGB: gray_extrgb_convert_internal(cinfo, input_buf, input_row, output_buf, num_rows); break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: gray_extrgbx_convert_internal(cinfo, input_buf, input_row, output_buf, num_rows); break; case JCS_EXT_BGR: gray_extbgr_convert_internal(cinfo, input_buf, input_row, output_buf, num_rows); break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: gray_extbgrx_convert_internal(cinfo, input_buf, input_row, output_buf, num_rows); break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: gray_extxbgr_convert_internal(cinfo, input_buf, input_row, output_buf, num_rows); break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: gray_extxrgb_convert_internal(cinfo, input_buf, input_row, output_buf, num_rows); break; default: gray_rgb_convert_internal(cinfo, input_buf, input_row, output_buf, num_rows); break; } } /* * Convert plain RGB to extended RGB */ METHODDEF(void) rgb_rgb_convert(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { switch (cinfo->out_color_space) { case JCS_EXT_RGB: rgb_extrgb_convert_internal(cinfo, input_buf, input_row, output_buf, num_rows); break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: rgb_extrgbx_convert_internal(cinfo, input_buf, input_row, output_buf, num_rows); break; case JCS_EXT_BGR: rgb_extbgr_convert_internal(cinfo, input_buf, input_row, output_buf, num_rows); break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: rgb_extbgrx_convert_internal(cinfo, input_buf, input_row, output_buf, num_rows); break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: rgb_extxbgr_convert_internal(cinfo, input_buf, input_row, output_buf, num_rows); break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: rgb_extxrgb_convert_internal(cinfo, input_buf, input_row, output_buf, num_rows); break; default: rgb_rgb_convert_internal(cinfo, input_buf, input_row, output_buf, num_rows); break; } } /* * Adobe-style YCCK->CMYK conversion. * We convert YCbCr to R=1-C, G=1-M, and B=1-Y using the same * conversion as above, while passing K (black) unchanged. * We assume build_ycc_rgb_table has been called. */ METHODDEF(void) ycck_cmyk_convert(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { my_cconvert_ptr cconvert = (my_cconvert_ptr)cinfo->cconvert; register int y, cb, cr; register JSAMPROW outptr; register JSAMPROW inptr0, inptr1, inptr2, inptr3; register JDIMENSION col; JDIMENSION num_cols = cinfo->output_width; /* copy these pointers into registers if possible */ register JSAMPLE *range_limit = cinfo->sample_range_limit; register int *Crrtab = cconvert->Cr_r_tab; register int *Cbbtab = cconvert->Cb_b_tab; register JLONG *Crgtab = cconvert->Cr_g_tab; register JLONG *Cbgtab = cconvert->Cb_g_tab; SHIFT_TEMPS while (--num_rows >= 0) { inptr0 = input_buf[0][input_row]; inptr1 = input_buf[1][input_row]; inptr2 = input_buf[2][input_row]; inptr3 = input_buf[3][input_row]; input_row++; outptr = *output_buf++; for (col = 0; col < num_cols; col++) { y = inptr0[col]; cb = inptr1[col]; cr = inptr2[col]; /* Range-limiting is essential due to noise introduced by DCT losses. */ outptr[0] = range_limit[MAXJSAMPLE - (y + Crrtab[cr])]; /* red */ outptr[1] = range_limit[MAXJSAMPLE - (y + /* green */ ((int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS)))]; outptr[2] = range_limit[MAXJSAMPLE - (y + Cbbtab[cb])]; /* blue */ /* K passes through unchanged */ outptr[3] = inptr3[col]; outptr += 4; } } } /* * RGB565 conversion */ #define PACK_SHORT_565_LE(r, g, b) \ ((((r) << 8) & 0xF800) | (((g) << 3) & 0x7E0) | ((b) >> 3)) #define PACK_SHORT_565_BE(r, g, b) \ (((r) & 0xF8) | ((g) >> 5) | (((g) << 11) & 0xE000) | (((b) << 5) & 0x1F00)) #define PACK_TWO_PIXELS_LE(l, r) ((r << 16) | l) #define PACK_TWO_PIXELS_BE(l, r) ((l << 16) | r) #define PACK_NEED_ALIGNMENT(ptr) (((size_t)(ptr)) & 3) #define WRITE_TWO_ALIGNED_PIXELS(addr, pixels) ((*(int *)(addr)) = pixels) #define DITHER_565_R(r, dither) ((r) + ((dither) & 0xFF)) #define DITHER_565_G(g, dither) ((g) + (((dither) & 0xFF) >> 1)) #define DITHER_565_B(b, dither) ((b) + ((dither) & 0xFF)) /* Declarations for ordered dithering * * We use a 4x4 ordered dither array packed into 32 bits. This array is * sufficient for dithering RGB888 to RGB565. */ #define DITHER_MASK 0x3 #define DITHER_ROTATE(x) ((((x) & 0xFF) << 24) | (((x) >> 8) & 0x00FFFFFF)) static const JLONG dither_matrix[4] = { 0x0008020A, 0x0C040E06, 0x030B0109, 0x0F070D05 }; static INLINE boolean is_big_endian(void) { int test_value = 1; if (*(char *)&test_value != 1) return TRUE; return FALSE; } /* Include inline routines for RGB565 conversion */ #define PACK_SHORT_565 PACK_SHORT_565_LE #define PACK_TWO_PIXELS PACK_TWO_PIXELS_LE #define ycc_rgb565_convert_internal ycc_rgb565_convert_le #define ycc_rgb565D_convert_internal ycc_rgb565D_convert_le #define rgb_rgb565_convert_internal rgb_rgb565_convert_le #define rgb_rgb565D_convert_internal rgb_rgb565D_convert_le #define gray_rgb565_convert_internal gray_rgb565_convert_le #define gray_rgb565D_convert_internal gray_rgb565D_convert_le #include "jdcol565.c" #undef PACK_SHORT_565 #undef PACK_TWO_PIXELS #undef ycc_rgb565_convert_internal #undef ycc_rgb565D_convert_internal #undef rgb_rgb565_convert_internal #undef rgb_rgb565D_convert_internal #undef gray_rgb565_convert_internal #undef gray_rgb565D_convert_internal #define PACK_SHORT_565 PACK_SHORT_565_BE #define PACK_TWO_PIXELS PACK_TWO_PIXELS_BE #define ycc_rgb565_convert_internal ycc_rgb565_convert_be #define ycc_rgb565D_convert_internal ycc_rgb565D_convert_be #define rgb_rgb565_convert_internal rgb_rgb565_convert_be #define rgb_rgb565D_convert_internal rgb_rgb565D_convert_be #define gray_rgb565_convert_internal gray_rgb565_convert_be #define gray_rgb565D_convert_internal gray_rgb565D_convert_be #include "jdcol565.c" #undef PACK_SHORT_565 #undef PACK_TWO_PIXELS #undef ycc_rgb565_convert_internal #undef ycc_rgb565D_convert_internal #undef rgb_rgb565_convert_internal #undef rgb_rgb565D_convert_internal #undef gray_rgb565_convert_internal #undef gray_rgb565D_convert_internal METHODDEF(void) ycc_rgb565_convert(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { if (is_big_endian()) ycc_rgb565_convert_be(cinfo, input_buf, input_row, output_buf, num_rows); else ycc_rgb565_convert_le(cinfo, input_buf, input_row, output_buf, num_rows); } METHODDEF(void) ycc_rgb565D_convert(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { if (is_big_endian()) ycc_rgb565D_convert_be(cinfo, input_buf, input_row, output_buf, num_rows); else ycc_rgb565D_convert_le(cinfo, input_buf, input_row, output_buf, num_rows); } METHODDEF(void) rgb_rgb565_convert(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { if (is_big_endian()) rgb_rgb565_convert_be(cinfo, input_buf, input_row, output_buf, num_rows); else rgb_rgb565_convert_le(cinfo, input_buf, input_row, output_buf, num_rows); } METHODDEF(void) rgb_rgb565D_convert(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { if (is_big_endian()) rgb_rgb565D_convert_be(cinfo, input_buf, input_row, output_buf, num_rows); else rgb_rgb565D_convert_le(cinfo, input_buf, input_row, output_buf, num_rows); } METHODDEF(void) gray_rgb565_convert(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { if (is_big_endian()) gray_rgb565_convert_be(cinfo, input_buf, input_row, output_buf, num_rows); else gray_rgb565_convert_le(cinfo, input_buf, input_row, output_buf, num_rows); } METHODDEF(void) gray_rgb565D_convert(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { if (is_big_endian()) gray_rgb565D_convert_be(cinfo, input_buf, input_row, output_buf, num_rows); else gray_rgb565D_convert_le(cinfo, input_buf, input_row, output_buf, num_rows); } /* * Empty method for start_pass. */ METHODDEF(void) start_pass_dcolor(j_decompress_ptr cinfo) { /* no work needed */ } /* * Module initialization routine for output colorspace conversion. */ GLOBAL(void) jinit_color_deconverter(j_decompress_ptr cinfo) { my_cconvert_ptr cconvert; int ci; cconvert = (my_cconvert_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, sizeof(my_color_deconverter)); cinfo->cconvert = (struct jpeg_color_deconverter *)cconvert; cconvert->pub.start_pass = start_pass_dcolor; /* Make sure num_components agrees with jpeg_color_space */ switch (cinfo->jpeg_color_space) { case JCS_GRAYSCALE: if (cinfo->num_components != 1) ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); break; case JCS_RGB: case JCS_YCbCr: if (cinfo->num_components != 3) ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); break; case JCS_CMYK: case JCS_YCCK: if (cinfo->num_components != 4) ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); break; default: /* JCS_UNKNOWN can be anything */ if (cinfo->num_components < 1) ERREXIT(cinfo, JERR_BAD_J_COLORSPACE); break; } /* Set out_color_components and conversion method based on requested space. * Also clear the component_needed flags for any unused components, * so that earlier pipeline stages can avoid useless computation. */ switch (cinfo->out_color_space) { case JCS_GRAYSCALE: cinfo->out_color_components = 1; if (cinfo->jpeg_color_space == JCS_GRAYSCALE || cinfo->jpeg_color_space == JCS_YCbCr) { cconvert->pub.color_convert = grayscale_convert; /* For color->grayscale conversion, only the Y (0) component is needed */ for (ci = 1; ci < cinfo->num_components; ci++) cinfo->comp_info[ci].component_needed = FALSE; } else if (cinfo->jpeg_color_space == JCS_RGB) { cconvert->pub.color_convert = rgb_gray_convert; build_rgb_y_table(cinfo); } else ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); break; case JCS_RGB: case JCS_EXT_RGB: case JCS_EXT_RGBX: case JCS_EXT_BGR: case JCS_EXT_BGRX: case JCS_EXT_XBGR: case JCS_EXT_XRGB: case JCS_EXT_RGBA: case JCS_EXT_BGRA: case JCS_EXT_ABGR: case JCS_EXT_ARGB: cinfo->out_color_components = rgb_pixelsize[cinfo->out_color_space]; if (cinfo->jpeg_color_space == JCS_YCbCr) { if (jsimd_can_ycc_rgb()) cconvert->pub.color_convert = jsimd_ycc_rgb_convert; else { cconvert->pub.color_convert = ycc_rgb_convert; build_ycc_rgb_table(cinfo); } } else if (cinfo->jpeg_color_space == JCS_GRAYSCALE) { cconvert->pub.color_convert = gray_rgb_convert; } else if (cinfo->jpeg_color_space == JCS_RGB) { if (rgb_red[cinfo->out_color_space] == 0 && rgb_green[cinfo->out_color_space] == 1 && rgb_blue[cinfo->out_color_space] == 2 && rgb_pixelsize[cinfo->out_color_space] == 3) cconvert->pub.color_convert = null_convert; else cconvert->pub.color_convert = rgb_rgb_convert; } else ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); break; case JCS_RGB565: cinfo->out_color_components = 3; if (cinfo->dither_mode == JDITHER_NONE) { if (cinfo->jpeg_color_space == JCS_YCbCr) { if (jsimd_can_ycc_rgb565()) cconvert->pub.color_convert = jsimd_ycc_rgb565_convert; else { cconvert->pub.color_convert = ycc_rgb565_convert; build_ycc_rgb_table(cinfo); } } else if (cinfo->jpeg_color_space == JCS_GRAYSCALE) { cconvert->pub.color_convert = gray_rgb565_convert; } else if (cinfo->jpeg_color_space == JCS_RGB) { cconvert->pub.color_convert = rgb_rgb565_convert; } else ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); } else { /* only ordered dithering is supported */ if (cinfo->jpeg_color_space == JCS_YCbCr) { cconvert->pub.color_convert = ycc_rgb565D_convert; build_ycc_rgb_table(cinfo); } else if (cinfo->jpeg_color_space == JCS_GRAYSCALE) { cconvert->pub.color_convert = gray_rgb565D_convert; } else if (cinfo->jpeg_color_space == JCS_RGB) { cconvert->pub.color_convert = rgb_rgb565D_convert; } else ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); } break; case JCS_CMYK: cinfo->out_color_components = 4; if (cinfo->jpeg_color_space == JCS_YCCK) { cconvert->pub.color_convert = ycck_cmyk_convert; build_ycc_rgb_table(cinfo); } else if (cinfo->jpeg_color_space == JCS_CMYK) { cconvert->pub.color_convert = null_convert; } else ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); break; default: /* Permit null conversion to same output space */ if (cinfo->out_color_space == cinfo->jpeg_color_space) { cinfo->out_color_components = cinfo->num_components; cconvert->pub.color_convert = null_convert; } else /* unsupported non-null conversion */ ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL); break; } if (cinfo->quantize_colors) cinfo->output_components = 1; /* single colormapped output component */ else cinfo->output_components = cinfo->out_color_components; } libjpeg-turbo-2.1.5/jdct.h000066400000000000000000000227541436506551100154010ustar00rootroot00000000000000/* * jdct.h * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1996, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2015, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This include file contains common declarations for the forward and * inverse DCT modules. These declarations are private to the DCT managers * (jcdctmgr.c, jddctmgr.c) and the individual DCT algorithms. * The individual DCT algorithms are kept in separate files to ease * machine-dependent tuning (e.g., assembly coding). */ /* * A forward DCT routine is given a pointer to a work area of type DCTELEM[]; * the DCT is to be performed in-place in that buffer. Type DCTELEM is int * for 8-bit samples, JLONG for 12-bit samples. (NOTE: Floating-point DCT * implementations use an array of type FAST_FLOAT, instead.) * The DCT inputs are expected to be signed (range +-CENTERJSAMPLE). * The DCT outputs are returned scaled up by a factor of 8; they therefore * have a range of +-8K for 8-bit data, +-128K for 12-bit data. This * convention improves accuracy in integer implementations and saves some * work in floating-point ones. * Quantization of the output coefficients is done by jcdctmgr.c. This * step requires an unsigned type and also one with twice the bits. */ #if BITS_IN_JSAMPLE == 8 #ifndef WITH_SIMD typedef int DCTELEM; /* 16 or 32 bits is fine */ typedef unsigned int UDCTELEM; typedef unsigned long long UDCTELEM2; #else typedef short DCTELEM; /* prefer 16 bit with SIMD for parellelism */ typedef unsigned short UDCTELEM; typedef unsigned int UDCTELEM2; #endif #else typedef JLONG DCTELEM; /* must have 32 bits */ typedef unsigned long long UDCTELEM2; #endif /* * An inverse DCT routine is given a pointer to the input JBLOCK and a pointer * to an output sample array. The routine must dequantize the input data as * well as perform the IDCT; for dequantization, it uses the multiplier table * pointed to by compptr->dct_table. The output data is to be placed into the * sample array starting at a specified column. (Any row offset needed will * be applied to the array pointer before it is passed to the IDCT code.) * Note that the number of samples emitted by the IDCT routine is * DCT_scaled_size * DCT_scaled_size. */ /* typedef inverse_DCT_method_ptr is declared in jpegint.h */ /* * Each IDCT routine has its own ideas about the best dct_table element type. */ typedef MULTIPLIER ISLOW_MULT_TYPE; /* short or int, whichever is faster */ #if BITS_IN_JSAMPLE == 8 typedef MULTIPLIER IFAST_MULT_TYPE; /* 16 bits is OK, use short if faster */ #define IFAST_SCALE_BITS 2 /* fractional bits in scale factors */ #else typedef JLONG IFAST_MULT_TYPE; /* need 32 bits for scaled quantizers */ #define IFAST_SCALE_BITS 13 /* fractional bits in scale factors */ #endif typedef FAST_FLOAT FLOAT_MULT_TYPE; /* preferred floating type */ /* * Each IDCT routine is responsible for range-limiting its results and * converting them to unsigned form (0..MAXJSAMPLE). The raw outputs could * be quite far out of range if the input data is corrupt, so a bulletproof * range-limiting step is required. We use a mask-and-table-lookup method * to do the combined operations quickly. See the comments with * prepare_range_limit_table (in jdmaster.c) for more info. */ #define IDCT_range_limit(cinfo) ((cinfo)->sample_range_limit + CENTERJSAMPLE) #define RANGE_MASK (MAXJSAMPLE * 4 + 3) /* 2 bits wider than legal samples */ /* Extern declarations for the forward and inverse DCT routines. */ EXTERN(void) jpeg_fdct_islow(DCTELEM *data); EXTERN(void) jpeg_fdct_ifast(DCTELEM *data); EXTERN(void) jpeg_fdct_float(FAST_FLOAT *data); EXTERN(void) jpeg_idct_islow(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jpeg_idct_ifast(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jpeg_idct_float(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jpeg_idct_7x7(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jpeg_idct_6x6(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jpeg_idct_5x5(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jpeg_idct_4x4(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jpeg_idct_3x3(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jpeg_idct_2x2(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jpeg_idct_1x1(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jpeg_idct_9x9(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jpeg_idct_10x10(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jpeg_idct_11x11(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jpeg_idct_12x12(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jpeg_idct_13x13(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jpeg_idct_14x14(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jpeg_idct_15x15(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jpeg_idct_16x16(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); /* * Macros for handling fixed-point arithmetic; these are used by many * but not all of the DCT/IDCT modules. * * All values are expected to be of type JLONG. * Fractional constants are scaled left by CONST_BITS bits. * CONST_BITS is defined within each module using these macros, * and may differ from one module to the next. */ #define ONE ((JLONG)1) #define CONST_SCALE (ONE << CONST_BITS) /* Convert a positive real constant to an integer scaled by CONST_SCALE. * Caution: some C compilers fail to reduce "FIX(constant)" at compile time, * thus causing a lot of useless floating-point operations at run time. */ #define FIX(x) ((JLONG)((x) * CONST_SCALE + 0.5)) /* Descale and correctly round a JLONG value that's scaled by N bits. * We assume RIGHT_SHIFT rounds towards minus infinity, so adding * the fudge factor is correct for either sign of X. */ #define DESCALE(x, n) RIGHT_SHIFT((x) + (ONE << ((n) - 1)), n) /* Multiply a JLONG variable by a JLONG constant to yield a JLONG result. * This macro is used only when the two inputs will actually be no more than * 16 bits wide, so that a 16x16->32 bit multiply can be used instead of a * full 32x32 multiply. This provides a useful speedup on many machines. * Unfortunately there is no way to specify a 16x16->32 multiply portably * in C, but some C compilers will do the right thing if you provide the * correct combination of casts. */ #ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */ #define MULTIPLY16C16(var, const) (((INT16)(var)) * ((INT16)(const))) #endif #ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */ #define MULTIPLY16C16(var, const) (((INT16)(var)) * ((JLONG)(const))) #endif #ifndef MULTIPLY16C16 /* default definition */ #define MULTIPLY16C16(var, const) ((var) * (const)) #endif /* Same except both inputs are variables. */ #ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */ #define MULTIPLY16V16(var1, var2) (((INT16)(var1)) * ((INT16)(var2))) #endif #ifndef MULTIPLY16V16 /* default definition */ #define MULTIPLY16V16(var1, var2) ((var1) * (var2)) #endif libjpeg-turbo-2.1.5/jddctmgr.c000066400000000000000000000262371436506551100162460ustar00rootroot00000000000000/* * jddctmgr.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1996, Thomas G. Lane. * Modified 2002-2010 by Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright 2009 Pierre Ossman for Cendio AB * Copyright (C) 2010, 2015, 2022, D. R. Commander. * Copyright (C) 2013, MIPS Technologies, Inc., California. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains the inverse-DCT management logic. * This code selects a particular IDCT implementation to be used, * and it performs related housekeeping chores. No code in this file * is executed per IDCT step, only during output pass setup. * * Note that the IDCT routines are responsible for performing coefficient * dequantization as well as the IDCT proper. This module sets up the * dequantization multiplier table needed by the IDCT routine. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jdct.h" /* Private declarations for DCT subsystem */ #include "jsimddct.h" #include "jpegcomp.h" /* * The decompressor input side (jdinput.c) saves away the appropriate * quantization table for each component at the start of the first scan * involving that component. (This is necessary in order to correctly * decode files that reuse Q-table slots.) * When we are ready to make an output pass, the saved Q-table is converted * to a multiplier table that will actually be used by the IDCT routine. * The multiplier table contents are IDCT-method-dependent. To support * application changes in IDCT method between scans, we can remake the * multiplier tables if necessary. * In buffered-image mode, the first output pass may occur before any data * has been seen for some components, and thus before their Q-tables have * been saved away. To handle this case, multiplier tables are preset * to zeroes; the result of the IDCT will be a neutral gray level. */ /* Private subobject for this module */ typedef struct { struct jpeg_inverse_dct pub; /* public fields */ /* This array contains the IDCT method code that each multiplier table * is currently set up for, or -1 if it's not yet set up. * The actual multiplier tables are pointed to by dct_table in the * per-component comp_info structures. */ int cur_method[MAX_COMPONENTS]; } my_idct_controller; typedef my_idct_controller *my_idct_ptr; /* Allocated multiplier tables: big enough for any supported variant */ typedef union { ISLOW_MULT_TYPE islow_array[DCTSIZE2]; #ifdef DCT_IFAST_SUPPORTED IFAST_MULT_TYPE ifast_array[DCTSIZE2]; #endif #ifdef DCT_FLOAT_SUPPORTED FLOAT_MULT_TYPE float_array[DCTSIZE2]; #endif } multiplier_table; /* The current scaled-IDCT routines require ISLOW-style multiplier tables, * so be sure to compile that code if either ISLOW or SCALING is requested. */ #ifdef DCT_ISLOW_SUPPORTED #define PROVIDE_ISLOW_TABLES #else #ifdef IDCT_SCALING_SUPPORTED #define PROVIDE_ISLOW_TABLES #endif #endif /* * Prepare for an output pass. * Here we select the proper IDCT routine for each component and build * a matching multiplier table. */ METHODDEF(void) start_pass(j_decompress_ptr cinfo) { my_idct_ptr idct = (my_idct_ptr)cinfo->idct; int ci, i; jpeg_component_info *compptr; int method = 0; inverse_DCT_method_ptr method_ptr = NULL; JQUANT_TBL *qtbl; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { /* Select the proper IDCT routine for this component's scaling */ switch (compptr->_DCT_scaled_size) { #ifdef IDCT_SCALING_SUPPORTED case 1: method_ptr = jpeg_idct_1x1; method = JDCT_ISLOW; /* jidctred uses islow-style table */ break; case 2: if (jsimd_can_idct_2x2()) method_ptr = jsimd_idct_2x2; else method_ptr = jpeg_idct_2x2; method = JDCT_ISLOW; /* jidctred uses islow-style table */ break; case 3: method_ptr = jpeg_idct_3x3; method = JDCT_ISLOW; /* jidctint uses islow-style table */ break; case 4: if (jsimd_can_idct_4x4()) method_ptr = jsimd_idct_4x4; else method_ptr = jpeg_idct_4x4; method = JDCT_ISLOW; /* jidctred uses islow-style table */ break; case 5: method_ptr = jpeg_idct_5x5; method = JDCT_ISLOW; /* jidctint uses islow-style table */ break; case 6: #if defined(__mips__) if (jsimd_can_idct_6x6()) method_ptr = jsimd_idct_6x6; else #endif method_ptr = jpeg_idct_6x6; method = JDCT_ISLOW; /* jidctint uses islow-style table */ break; case 7: method_ptr = jpeg_idct_7x7; method = JDCT_ISLOW; /* jidctint uses islow-style table */ break; #endif case DCTSIZE: switch (cinfo->dct_method) { #ifdef DCT_ISLOW_SUPPORTED case JDCT_ISLOW: if (jsimd_can_idct_islow()) method_ptr = jsimd_idct_islow; else method_ptr = jpeg_idct_islow; method = JDCT_ISLOW; break; #endif #ifdef DCT_IFAST_SUPPORTED case JDCT_IFAST: if (jsimd_can_idct_ifast()) method_ptr = jsimd_idct_ifast; else method_ptr = jpeg_idct_ifast; method = JDCT_IFAST; break; #endif #ifdef DCT_FLOAT_SUPPORTED case JDCT_FLOAT: if (jsimd_can_idct_float()) method_ptr = jsimd_idct_float; else method_ptr = jpeg_idct_float; method = JDCT_FLOAT; break; #endif default: ERREXIT(cinfo, JERR_NOT_COMPILED); break; } break; #ifdef IDCT_SCALING_SUPPORTED case 9: method_ptr = jpeg_idct_9x9; method = JDCT_ISLOW; /* jidctint uses islow-style table */ break; case 10: method_ptr = jpeg_idct_10x10; method = JDCT_ISLOW; /* jidctint uses islow-style table */ break; case 11: method_ptr = jpeg_idct_11x11; method = JDCT_ISLOW; /* jidctint uses islow-style table */ break; case 12: #if defined(__mips__) if (jsimd_can_idct_12x12()) method_ptr = jsimd_idct_12x12; else #endif method_ptr = jpeg_idct_12x12; method = JDCT_ISLOW; /* jidctint uses islow-style table */ break; case 13: method_ptr = jpeg_idct_13x13; method = JDCT_ISLOW; /* jidctint uses islow-style table */ break; case 14: method_ptr = jpeg_idct_14x14; method = JDCT_ISLOW; /* jidctint uses islow-style table */ break; case 15: method_ptr = jpeg_idct_15x15; method = JDCT_ISLOW; /* jidctint uses islow-style table */ break; case 16: method_ptr = jpeg_idct_16x16; method = JDCT_ISLOW; /* jidctint uses islow-style table */ break; #endif default: ERREXIT1(cinfo, JERR_BAD_DCTSIZE, compptr->_DCT_scaled_size); break; } idct->pub.inverse_DCT[ci] = method_ptr; /* Create multiplier table from quant table. * However, we can skip this if the component is uninteresting * or if we already built the table. Also, if no quant table * has yet been saved for the component, we leave the * multiplier table all-zero; we'll be reading zeroes from the * coefficient controller's buffer anyway. */ if (!compptr->component_needed || idct->cur_method[ci] == method) continue; qtbl = compptr->quant_table; if (qtbl == NULL) /* happens if no data yet for component */ continue; idct->cur_method[ci] = method; switch (method) { #ifdef PROVIDE_ISLOW_TABLES case JDCT_ISLOW: { /* For LL&M IDCT method, multipliers are equal to raw quantization * coefficients, but are stored as ints to ensure access efficiency. */ ISLOW_MULT_TYPE *ismtbl = (ISLOW_MULT_TYPE *)compptr->dct_table; for (i = 0; i < DCTSIZE2; i++) { ismtbl[i] = (ISLOW_MULT_TYPE)qtbl->quantval[i]; } } break; #endif #ifdef DCT_IFAST_SUPPORTED case JDCT_IFAST: { /* For AA&N IDCT method, multipliers are equal to quantization * coefficients scaled by scalefactor[row]*scalefactor[col], where * scalefactor[0] = 1 * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 * For integer operation, the multiplier table is to be scaled by * IFAST_SCALE_BITS. */ IFAST_MULT_TYPE *ifmtbl = (IFAST_MULT_TYPE *)compptr->dct_table; #define CONST_BITS 14 static const INT16 aanscales[DCTSIZE2] = { /* precomputed values scaled up by 14 bits */ 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270, 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906, 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315, 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520, 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552, 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446, 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247 }; SHIFT_TEMPS for (i = 0; i < DCTSIZE2; i++) { ifmtbl[i] = (IFAST_MULT_TYPE) DESCALE(MULTIPLY16V16((JLONG)qtbl->quantval[i], (JLONG)aanscales[i]), CONST_BITS - IFAST_SCALE_BITS); } } break; #endif #ifdef DCT_FLOAT_SUPPORTED case JDCT_FLOAT: { /* For float AA&N IDCT method, multipliers are equal to quantization * coefficients scaled by scalefactor[row]*scalefactor[col], where * scalefactor[0] = 1 * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7 */ FLOAT_MULT_TYPE *fmtbl = (FLOAT_MULT_TYPE *)compptr->dct_table; int row, col; static const double aanscalefactor[DCTSIZE] = { 1.0, 1.387039845, 1.306562965, 1.175875602, 1.0, 0.785694958, 0.541196100, 0.275899379 }; i = 0; for (row = 0; row < DCTSIZE; row++) { for (col = 0; col < DCTSIZE; col++) { fmtbl[i] = (FLOAT_MULT_TYPE) ((double)qtbl->quantval[i] * aanscalefactor[row] * aanscalefactor[col]); i++; } } } break; #endif default: ERREXIT(cinfo, JERR_NOT_COMPILED); break; } } } /* * Initialize IDCT manager. */ GLOBAL(void) jinit_inverse_dct(j_decompress_ptr cinfo) { my_idct_ptr idct; int ci; jpeg_component_info *compptr; idct = (my_idct_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, sizeof(my_idct_controller)); cinfo->idct = (struct jpeg_inverse_dct *)idct; idct->pub.start_pass = start_pass; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { /* Allocate and pre-zero a multiplier table for each component */ compptr->dct_table = (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, sizeof(multiplier_table)); memset(compptr->dct_table, 0, sizeof(multiplier_table)); /* Mark multiplier table not yet set up for any method */ idct->cur_method[ci] = -1; } } libjpeg-turbo-2.1.5/jdhuff.c000066400000000000000000000640241436506551100157120ustar00rootroot00000000000000/* * jdhuff.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1997, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2009-2011, 2016, 2018-2019, D. R. Commander. * Copyright (C) 2018, Matthias Räncker. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains Huffman entropy decoding routines. * * Much of the complexity here has to do with supporting input suspension. * If the data source module demands suspension, we want to be able to back * up to the start of the current MCU. To do this, we copy state variables * into local working storage, and update them back to the permanent * storage only upon successful completion of an MCU. * * NOTE: All referenced figures are from * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jdhuff.h" /* Declarations shared with jdphuff.c */ #include "jpegcomp.h" #include "jstdhuff.c" /* * Expanded entropy decoder object for Huffman decoding. * * The savable_state subrecord contains fields that change within an MCU, * but must not be updated permanently until we complete the MCU. */ typedef struct { int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ } savable_state; typedef struct { struct jpeg_entropy_decoder pub; /* public fields */ /* These fields are loaded into local variables at start of each MCU. * In case of suspension, we exit WITHOUT updating them. */ bitread_perm_state bitstate; /* Bit buffer at start of MCU */ savable_state saved; /* Other state at start of MCU */ /* These fields are NOT loaded into local working state. */ unsigned int restarts_to_go; /* MCUs left in this restart interval */ /* Pointers to derived tables (these workspaces have image lifespan) */ d_derived_tbl *dc_derived_tbls[NUM_HUFF_TBLS]; d_derived_tbl *ac_derived_tbls[NUM_HUFF_TBLS]; /* Precalculated info set up by start_pass for use in decode_mcu: */ /* Pointers to derived tables to be used for each block within an MCU */ d_derived_tbl *dc_cur_tbls[D_MAX_BLOCKS_IN_MCU]; d_derived_tbl *ac_cur_tbls[D_MAX_BLOCKS_IN_MCU]; /* Whether we care about the DC and AC coefficient values for each block */ boolean dc_needed[D_MAX_BLOCKS_IN_MCU]; boolean ac_needed[D_MAX_BLOCKS_IN_MCU]; } huff_entropy_decoder; typedef huff_entropy_decoder *huff_entropy_ptr; /* * Initialize for a Huffman-compressed scan. */ METHODDEF(void) start_pass_huff_decoder(j_decompress_ptr cinfo) { huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy; int ci, blkn, dctbl, actbl; d_derived_tbl **pdtbl; jpeg_component_info *compptr; /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG. * This ought to be an error condition, but we make it a warning because * there are some baseline files out there with all zeroes in these bytes. */ if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2 - 1 || cinfo->Ah != 0 || cinfo->Al != 0) WARNMS(cinfo, JWRN_NOT_SEQUENTIAL); for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; dctbl = compptr->dc_tbl_no; actbl = compptr->ac_tbl_no; /* Compute derived values for Huffman tables */ /* We may do this more than once for a table, but it's not expensive */ pdtbl = (d_derived_tbl **)(entropy->dc_derived_tbls) + dctbl; jpeg_make_d_derived_tbl(cinfo, TRUE, dctbl, pdtbl); pdtbl = (d_derived_tbl **)(entropy->ac_derived_tbls) + actbl; jpeg_make_d_derived_tbl(cinfo, FALSE, actbl, pdtbl); /* Initialize DC predictions to 0 */ entropy->saved.last_dc_val[ci] = 0; } /* Precalculate decoding info for each block in an MCU of this scan */ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { ci = cinfo->MCU_membership[blkn]; compptr = cinfo->cur_comp_info[ci]; /* Precalculate which table to use for each block */ entropy->dc_cur_tbls[blkn] = entropy->dc_derived_tbls[compptr->dc_tbl_no]; entropy->ac_cur_tbls[blkn] = entropy->ac_derived_tbls[compptr->ac_tbl_no]; /* Decide whether we really care about the coefficient values */ if (compptr->component_needed) { entropy->dc_needed[blkn] = TRUE; /* we don't need the ACs if producing a 1/8th-size image */ entropy->ac_needed[blkn] = (compptr->_DCT_scaled_size > 1); } else { entropy->dc_needed[blkn] = entropy->ac_needed[blkn] = FALSE; } } /* Initialize bitread state variables */ entropy->bitstate.bits_left = 0; entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */ entropy->pub.insufficient_data = FALSE; /* Initialize restart counter */ entropy->restarts_to_go = cinfo->restart_interval; } /* * Compute the derived values for a Huffman table. * This routine also performs some validation checks on the table. * * Note this is also used by jdphuff.c. */ GLOBAL(void) jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno, d_derived_tbl **pdtbl) { JHUFF_TBL *htbl; d_derived_tbl *dtbl; int p, i, l, si, numsymbols; int lookbits, ctr; char huffsize[257]; unsigned int huffcode[257]; unsigned int code; /* Note that huffsize[] and huffcode[] are filled in code-length order, * paralleling the order of the symbols themselves in htbl->huffval[]. */ /* Find the input Huffman table */ if (tblno < 0 || tblno >= NUM_HUFF_TBLS) ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); htbl = isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; if (htbl == NULL) ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); /* Allocate a workspace if we haven't already done so. */ if (*pdtbl == NULL) *pdtbl = (d_derived_tbl *) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, sizeof(d_derived_tbl)); dtbl = *pdtbl; dtbl->pub = htbl; /* fill in back link */ /* Figure C.1: make table of Huffman code length for each symbol */ p = 0; for (l = 1; l <= 16; l++) { i = (int)htbl->bits[l]; if (i < 0 || p + i > 256) /* protect against table overrun */ ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); while (i--) huffsize[p++] = (char)l; } huffsize[p] = 0; numsymbols = p; /* Figure C.2: generate the codes themselves */ /* We also validate that the counts represent a legal Huffman code tree. */ code = 0; si = huffsize[0]; p = 0; while (huffsize[p]) { while (((int)huffsize[p]) == si) { huffcode[p++] = code; code++; } /* code is now 1 more than the last code used for codelength si; but * it must still fit in si bits, since no code is allowed to be all ones. */ if (((JLONG)code) >= (((JLONG)1) << si)) ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); code <<= 1; si++; } /* Figure F.15: generate decoding tables for bit-sequential decoding */ p = 0; for (l = 1; l <= 16; l++) { if (htbl->bits[l]) { /* valoffset[l] = huffval[] index of 1st symbol of code length l, * minus the minimum code of length l */ dtbl->valoffset[l] = (JLONG)p - (JLONG)huffcode[p]; p += htbl->bits[l]; dtbl->maxcode[l] = huffcode[p - 1]; /* maximum code of length l */ } else { dtbl->maxcode[l] = -1; /* -1 if no codes of this length */ } } dtbl->valoffset[17] = 0; dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */ /* Compute lookahead tables to speed up decoding. * First we set all the table entries to 0, indicating "too long"; * then we iterate through the Huffman codes that are short enough and * fill in all the entries that correspond to bit sequences starting * with that code. */ for (i = 0; i < (1 << HUFF_LOOKAHEAD); i++) dtbl->lookup[i] = (HUFF_LOOKAHEAD + 1) << HUFF_LOOKAHEAD; p = 0; for (l = 1; l <= HUFF_LOOKAHEAD; l++) { for (i = 1; i <= (int)htbl->bits[l]; i++, p++) { /* l = current code's length, p = its index in huffcode[] & huffval[]. */ /* Generate left-justified code followed by all possible bit sequences */ lookbits = huffcode[p] << (HUFF_LOOKAHEAD - l); for (ctr = 1 << (HUFF_LOOKAHEAD - l); ctr > 0; ctr--) { dtbl->lookup[lookbits] = (l << HUFF_LOOKAHEAD) | htbl->huffval[p]; lookbits++; } } } /* Validate symbols as being reasonable. * For AC tables, we make no check, but accept all byte values 0..255. * For DC tables, we require the symbols to be in range 0..15. * (Tighter bounds could be applied depending on the data depth and mode, * but this is sufficient to ensure safe decoding.) */ if (isDC) { for (i = 0; i < numsymbols; i++) { int sym = htbl->huffval[i]; if (sym < 0 || sym > 15) ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); } } } /* * Out-of-line code for bit fetching (shared with jdphuff.c). * See jdhuff.h for info about usage. * Note: current values of get_buffer and bits_left are passed as parameters, * but are returned in the corresponding fields of the state struct. * * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width * of get_buffer to be used. (On machines with wider words, an even larger * buffer could be used.) However, on some machines 32-bit shifts are * quite slow and take time proportional to the number of places shifted. * (This is true with most PC compilers, for instance.) In this case it may * be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the * average shift distance at the cost of more calls to jpeg_fill_bit_buffer. */ #ifdef SLOW_SHIFT_32 #define MIN_GET_BITS 15 /* minimum allowable value */ #else #define MIN_GET_BITS (BIT_BUF_SIZE - 7) #endif GLOBAL(boolean) jpeg_fill_bit_buffer(bitread_working_state *state, register bit_buf_type get_buffer, register int bits_left, int nbits) /* Load up the bit buffer to a depth of at least nbits */ { /* Copy heavily used state fields into locals (hopefully registers) */ register const JOCTET *next_input_byte = state->next_input_byte; register size_t bytes_in_buffer = state->bytes_in_buffer; j_decompress_ptr cinfo = state->cinfo; /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */ /* (It is assumed that no request will be for more than that many bits.) */ /* We fail to do so only if we hit a marker or are forced to suspend. */ if (cinfo->unread_marker == 0) { /* cannot advance past a marker */ while (bits_left < MIN_GET_BITS) { register int c; /* Attempt to read a byte */ if (bytes_in_buffer == 0) { if (!(*cinfo->src->fill_input_buffer) (cinfo)) return FALSE; next_input_byte = cinfo->src->next_input_byte; bytes_in_buffer = cinfo->src->bytes_in_buffer; } bytes_in_buffer--; c = *next_input_byte++; /* If it's 0xFF, check and discard stuffed zero byte */ if (c == 0xFF) { /* Loop here to discard any padding FF's on terminating marker, * so that we can save a valid unread_marker value. NOTE: we will * accept multiple FF's followed by a 0 as meaning a single FF data * byte. This data pattern is not valid according to the standard. */ do { if (bytes_in_buffer == 0) { if (!(*cinfo->src->fill_input_buffer) (cinfo)) return FALSE; next_input_byte = cinfo->src->next_input_byte; bytes_in_buffer = cinfo->src->bytes_in_buffer; } bytes_in_buffer--; c = *next_input_byte++; } while (c == 0xFF); if (c == 0) { /* Found FF/00, which represents an FF data byte */ c = 0xFF; } else { /* Oops, it's actually a marker indicating end of compressed data. * Save the marker code for later use. * Fine point: it might appear that we should save the marker into * bitread working state, not straight into permanent state. But * once we have hit a marker, we cannot need to suspend within the * current MCU, because we will read no more bytes from the data * source. So it is OK to update permanent state right away. */ cinfo->unread_marker = c; /* See if we need to insert some fake zero bits. */ goto no_more_bytes; } } /* OK, load c into get_buffer */ get_buffer = (get_buffer << 8) | c; bits_left += 8; } /* end while */ } else { no_more_bytes: /* We get here if we've read the marker that terminates the compressed * data segment. There should be enough bits in the buffer register * to satisfy the request; if so, no problem. */ if (nbits > bits_left) { /* Uh-oh. Report corrupted data to user and stuff zeroes into * the data stream, so that we can produce some kind of image. * We use a nonvolatile flag to ensure that only one warning message * appears per data segment. */ if (!cinfo->entropy->insufficient_data) { WARNMS(cinfo, JWRN_HIT_MARKER); cinfo->entropy->insufficient_data = TRUE; } /* Fill the buffer with zero bits */ get_buffer <<= MIN_GET_BITS - bits_left; bits_left = MIN_GET_BITS; } } /* Unload the local registers */ state->next_input_byte = next_input_byte; state->bytes_in_buffer = bytes_in_buffer; state->get_buffer = get_buffer; state->bits_left = bits_left; return TRUE; } /* Macro version of the above, which performs much better but does not handle markers. We have to hand off any blocks with markers to the slower routines. */ #define GET_BYTE { \ register int c0, c1; \ c0 = *buffer++; \ c1 = *buffer; \ /* Pre-execute most common case */ \ get_buffer = (get_buffer << 8) | c0; \ bits_left += 8; \ if (c0 == 0xFF) { \ /* Pre-execute case of FF/00, which represents an FF data byte */ \ buffer++; \ if (c1 != 0) { \ /* Oops, it's actually a marker indicating end of compressed data. */ \ cinfo->unread_marker = c1; \ /* Back out pre-execution and fill the buffer with zero bits */ \ buffer -= 2; \ get_buffer &= ~0xFF; \ } \ } \ } #if SIZEOF_SIZE_T == 8 || defined(_WIN64) || (defined(__x86_64__) && defined(__ILP32__)) /* Pre-fetch 48 bytes, because the holding register is 64-bit */ #define FILL_BIT_BUFFER_FAST \ if (bits_left <= 16) { \ GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE GET_BYTE \ } #else /* Pre-fetch 16 bytes, because the holding register is 32-bit */ #define FILL_BIT_BUFFER_FAST \ if (bits_left <= 16) { \ GET_BYTE GET_BYTE \ } #endif /* * Out-of-line code for Huffman code decoding. * See jdhuff.h for info about usage. */ GLOBAL(int) jpeg_huff_decode(bitread_working_state *state, register bit_buf_type get_buffer, register int bits_left, d_derived_tbl *htbl, int min_bits) { register int l = min_bits; register JLONG code; /* HUFF_DECODE has determined that the code is at least min_bits */ /* bits long, so fetch that many bits in one swoop. */ CHECK_BIT_BUFFER(*state, l, return -1); code = GET_BITS(l); /* Collect the rest of the Huffman code one bit at a time. */ /* This is per Figure F.16. */ while (code > htbl->maxcode[l]) { code <<= 1; CHECK_BIT_BUFFER(*state, 1, return -1); code |= GET_BITS(1); l++; } /* Unload the local registers */ state->get_buffer = get_buffer; state->bits_left = bits_left; /* With garbage input we may reach the sentinel value l = 17. */ if (l > 16) { WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE); return 0; /* fake a zero as the safest result */ } return htbl->pub->huffval[(int)(code + htbl->valoffset[l])]; } /* * Figure F.12: extend sign bit. * On some machines, a shift and add will be faster than a table lookup. */ #define AVOID_TABLES #ifdef AVOID_TABLES #define NEG_1 ((unsigned int)-1) #define HUFF_EXTEND(x, s) \ ((x) + ((((x) - (1 << ((s) - 1))) >> 31) & (((NEG_1) << (s)) + 1))) #else #define HUFF_EXTEND(x, s) \ ((x) < extend_test[s] ? (x) + extend_offset[s] : (x)) static const int extend_test[16] = { /* entry n is 2**(n-1) */ 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 }; static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */ 0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1, ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1, ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1, ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1 }; #endif /* AVOID_TABLES */ /* * Check for a restart marker & resynchronize decoder. * Returns FALSE if must suspend. */ LOCAL(boolean) process_restart(j_decompress_ptr cinfo) { huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy; int ci; /* Throw away any unused bits remaining in bit buffer; */ /* include any full bytes in next_marker's count of discarded bytes */ cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8; entropy->bitstate.bits_left = 0; /* Advance past the RSTn marker */ if (!(*cinfo->marker->read_restart_marker) (cinfo)) return FALSE; /* Re-initialize DC predictions to 0 */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) entropy->saved.last_dc_val[ci] = 0; /* Reset restart counter */ entropy->restarts_to_go = cinfo->restart_interval; /* Reset out-of-data flag, unless read_restart_marker left us smack up * against a marker. In that case we will end up treating the next data * segment as empty, and we can avoid producing bogus output pixels by * leaving the flag set. */ if (cinfo->unread_marker == 0) entropy->pub.insufficient_data = FALSE; return TRUE; } #if defined(__has_feature) #if __has_feature(undefined_behavior_sanitizer) __attribute__((no_sanitize("signed-integer-overflow"), no_sanitize("unsigned-integer-overflow"))) #endif #endif LOCAL(boolean) decode_mcu_slow(j_decompress_ptr cinfo, JBLOCKROW *MCU_data) { huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy; BITREAD_STATE_VARS; int blkn; savable_state state; /* Outer loop handles each block in the MCU */ /* Load up working state */ BITREAD_LOAD_STATE(cinfo, entropy->bitstate); state = entropy->saved; for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL; d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn]; d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn]; register int s, k, r; /* Decode a single block's worth of coefficients */ /* Section F.2.2.1: decode the DC coefficient difference */ HUFF_DECODE(s, br_state, dctbl, return FALSE, label1); if (s) { CHECK_BIT_BUFFER(br_state, s, return FALSE); r = GET_BITS(s); s = HUFF_EXTEND(r, s); } if (entropy->dc_needed[blkn]) { /* Convert DC difference to actual value, update last_dc_val */ int ci = cinfo->MCU_membership[blkn]; /* Certain malformed JPEG images produce repeated DC coefficient * differences of 2047 or -2047, which causes state.last_dc_val[ci] to * grow until it overflows or underflows a 32-bit signed integer. This * behavior is, to the best of our understanding, innocuous, and it is * unclear how to work around it without potentially affecting * performance. Thus, we (hopefully temporarily) suppress UBSan integer * overflow errors for this function and decode_mcu_fast(). */ s += state.last_dc_val[ci]; state.last_dc_val[ci] = s; if (block) { /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */ (*block)[0] = (JCOEF)s; } } if (entropy->ac_needed[blkn] && block) { /* Section F.2.2.2: decode the AC coefficients */ /* Since zeroes are skipped, output area must be cleared beforehand */ for (k = 1; k < DCTSIZE2; k++) { HUFF_DECODE(s, br_state, actbl, return FALSE, label2); r = s >> 4; s &= 15; if (s) { k += r; CHECK_BIT_BUFFER(br_state, s, return FALSE); r = GET_BITS(s); s = HUFF_EXTEND(r, s); /* Output coefficient in natural (dezigzagged) order. * Note: the extra entries in jpeg_natural_order[] will save us * if k >= DCTSIZE2, which could happen if the data is corrupted. */ (*block)[jpeg_natural_order[k]] = (JCOEF)s; } else { if (r != 15) break; k += 15; } } } else { /* Section F.2.2.2: decode the AC coefficients */ /* In this path we just discard the values */ for (k = 1; k < DCTSIZE2; k++) { HUFF_DECODE(s, br_state, actbl, return FALSE, label3); r = s >> 4; s &= 15; if (s) { k += r; CHECK_BIT_BUFFER(br_state, s, return FALSE); DROP_BITS(s); } else { if (r != 15) break; k += 15; } } } } /* Completed MCU, so update state */ BITREAD_SAVE_STATE(cinfo, entropy->bitstate); entropy->saved = state; return TRUE; } #if defined(__has_feature) #if __has_feature(undefined_behavior_sanitizer) __attribute__((no_sanitize("signed-integer-overflow"), no_sanitize("unsigned-integer-overflow"))) #endif #endif LOCAL(boolean) decode_mcu_fast(j_decompress_ptr cinfo, JBLOCKROW *MCU_data) { huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy; BITREAD_STATE_VARS; JOCTET *buffer; int blkn; savable_state state; /* Outer loop handles each block in the MCU */ /* Load up working state */ BITREAD_LOAD_STATE(cinfo, entropy->bitstate); buffer = (JOCTET *)br_state.next_input_byte; state = entropy->saved; for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { JBLOCKROW block = MCU_data ? MCU_data[blkn] : NULL; d_derived_tbl *dctbl = entropy->dc_cur_tbls[blkn]; d_derived_tbl *actbl = entropy->ac_cur_tbls[blkn]; register int s, k, r, l; HUFF_DECODE_FAST(s, l, dctbl); if (s) { FILL_BIT_BUFFER_FAST r = GET_BITS(s); s = HUFF_EXTEND(r, s); } if (entropy->dc_needed[blkn]) { int ci = cinfo->MCU_membership[blkn]; /* Refer to the comment in decode_mcu_slow() regarding the supression of * a UBSan integer overflow error in this line of code. */ s += state.last_dc_val[ci]; state.last_dc_val[ci] = s; if (block) (*block)[0] = (JCOEF)s; } if (entropy->ac_needed[blkn] && block) { for (k = 1; k < DCTSIZE2; k++) { HUFF_DECODE_FAST(s, l, actbl); r = s >> 4; s &= 15; if (s) { k += r; FILL_BIT_BUFFER_FAST r = GET_BITS(s); s = HUFF_EXTEND(r, s); (*block)[jpeg_natural_order[k]] = (JCOEF)s; } else { if (r != 15) break; k += 15; } } } else { for (k = 1; k < DCTSIZE2; k++) { HUFF_DECODE_FAST(s, l, actbl); r = s >> 4; s &= 15; if (s) { k += r; FILL_BIT_BUFFER_FAST DROP_BITS(s); } else { if (r != 15) break; k += 15; } } } } if (cinfo->unread_marker != 0) { cinfo->unread_marker = 0; return FALSE; } br_state.bytes_in_buffer -= (buffer - br_state.next_input_byte); br_state.next_input_byte = buffer; BITREAD_SAVE_STATE(cinfo, entropy->bitstate); entropy->saved = state; return TRUE; } /* * Decode and return one MCU's worth of Huffman-compressed coefficients. * The coefficients are reordered from zigzag order into natural array order, * but are not dequantized. * * The i'th block of the MCU is stored into the block pointed to by * MCU_data[i]. WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER. * (Wholesale zeroing is usually a little faster than retail...) * * Returns FALSE if data source requested suspension. In that case no * changes have been made to permanent state. (Exception: some output * coefficients may already have been assigned. This is harmless for * this module, since we'll just re-assign them on the next call.) */ #define BUFSIZE (DCTSIZE2 * 8) METHODDEF(boolean) decode_mcu(j_decompress_ptr cinfo, JBLOCKROW *MCU_data) { huff_entropy_ptr entropy = (huff_entropy_ptr)cinfo->entropy; int usefast = 1; /* Process restart marker if needed; may have to suspend */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) if (!process_restart(cinfo)) return FALSE; usefast = 0; } if (cinfo->src->bytes_in_buffer < BUFSIZE * (size_t)cinfo->blocks_in_MCU || cinfo->unread_marker != 0) usefast = 0; /* If we've run out of data, just leave the MCU set to zeroes. * This way, we return uniform gray for the remainder of the segment. */ if (!entropy->pub.insufficient_data) { if (usefast) { if (!decode_mcu_fast(cinfo, MCU_data)) goto use_slow; } else { use_slow: if (!decode_mcu_slow(cinfo, MCU_data)) return FALSE; } } /* Account for restart interval (no-op if not using restarts) */ if (cinfo->restart_interval) entropy->restarts_to_go--; return TRUE; } /* * Module initialization routine for Huffman entropy decoding. */ GLOBAL(void) jinit_huff_decoder(j_decompress_ptr cinfo) { huff_entropy_ptr entropy; int i; /* Motion JPEG frames typically do not include the Huffman tables if they are the default tables. Thus, if the tables are not set by the time the Huffman decoder is initialized (usually within the body of jpeg_start_decompress()), we set them to default values. */ std_huff_tables((j_common_ptr)cinfo); entropy = (huff_entropy_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, sizeof(huff_entropy_decoder)); cinfo->entropy = (struct jpeg_entropy_decoder *)entropy; entropy->pub.start_pass = start_pass_huff_decoder; entropy->pub.decode_mcu = decode_mcu; /* Mark tables unallocated */ for (i = 0; i < NUM_HUFF_TBLS; i++) { entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; } } libjpeg-turbo-2.1.5/jdhuff.h000066400000000000000000000231031436506551100157100ustar00rootroot00000000000000/* * jdhuff.h * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1997, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2010-2011, 2015-2016, 2021, D. R. Commander. * Copyright (C) 2018, Matthias Räncker. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains declarations for Huffman entropy decoding routines * that are shared between the sequential decoder (jdhuff.c) and the * progressive decoder (jdphuff.c). No other modules need to see these. */ #include "jconfigint.h" /* Derived data constructed for each Huffman table */ #define HUFF_LOOKAHEAD 8 /* # of bits of lookahead */ typedef struct { /* Basic tables: (element [0] of each array is unused) */ JLONG maxcode[18]; /* largest code of length k (-1 if none) */ /* (maxcode[17] is a sentinel to ensure jpeg_huff_decode terminates) */ JLONG valoffset[18]; /* huffval[] offset for codes of length k */ /* valoffset[k] = huffval[] index of 1st symbol of code length k, less * the smallest code of length k; so given a code of length k, the * corresponding symbol is huffval[code + valoffset[k]] */ /* Link to public Huffman table (needed only in jpeg_huff_decode) */ JHUFF_TBL *pub; /* Lookahead table: indexed by the next HUFF_LOOKAHEAD bits of * the input data stream. If the next Huffman code is no more * than HUFF_LOOKAHEAD bits long, we can obtain its length and * the corresponding symbol directly from this tables. * * The lower 8 bits of each table entry contain the number of * bits in the corresponding Huffman code, or HUFF_LOOKAHEAD + 1 * if too long. The next 8 bits of each entry contain the * symbol. */ int lookup[1 << HUFF_LOOKAHEAD]; } d_derived_tbl; /* Expand a Huffman table definition into the derived format */ EXTERN(void) jpeg_make_d_derived_tbl(j_decompress_ptr cinfo, boolean isDC, int tblno, d_derived_tbl **pdtbl); /* * Fetching the next N bits from the input stream is a time-critical operation * for the Huffman decoders. We implement it with a combination of inline * macros and out-of-line subroutines. Note that N (the number of bits * demanded at one time) never exceeds 15 for JPEG use. * * We read source bytes into get_buffer and dole out bits as needed. * If get_buffer already contains enough bits, they are fetched in-line * by the macros CHECK_BIT_BUFFER and GET_BITS. When there aren't enough * bits, jpeg_fill_bit_buffer is called; it will attempt to fill get_buffer * as full as possible (not just to the number of bits needed; this * prefetching reduces the overhead cost of calling jpeg_fill_bit_buffer). * Note that jpeg_fill_bit_buffer may return FALSE to indicate suspension. * On TRUE return, jpeg_fill_bit_buffer guarantees that get_buffer contains * at least the requested number of bits --- dummy zeroes are inserted if * necessary. */ #if !defined(_WIN32) && !defined(SIZEOF_SIZE_T) #error Cannot determine word size #endif #if SIZEOF_SIZE_T == 8 || defined(_WIN64) typedef size_t bit_buf_type; /* type of bit-extraction buffer */ #define BIT_BUF_SIZE 64 /* size of buffer in bits */ #elif defined(__x86_64__) && defined(__ILP32__) typedef unsigned long long bit_buf_type; /* type of bit-extraction buffer */ #define BIT_BUF_SIZE 64 /* size of buffer in bits */ #else typedef unsigned long bit_buf_type; /* type of bit-extraction buffer */ #define BIT_BUF_SIZE 32 /* size of buffer in bits */ #endif /* If long is > 32 bits on your machine, and shifting/masking longs is * reasonably fast, making bit_buf_type be long and setting BIT_BUF_SIZE * appropriately should be a win. Unfortunately we can't define the size * with something like #define BIT_BUF_SIZE (sizeof(bit_buf_type)*8) * because not all machines measure sizeof in 8-bit bytes. */ typedef struct { /* Bitreading state saved across MCUs */ bit_buf_type get_buffer; /* current bit-extraction buffer */ int bits_left; /* # of unused bits in it */ } bitread_perm_state; typedef struct { /* Bitreading working state within an MCU */ /* Current data source location */ /* We need a copy, rather than munging the original, in case of suspension */ const JOCTET *next_input_byte; /* => next byte to read from source */ size_t bytes_in_buffer; /* # of bytes remaining in source buffer */ /* Bit input buffer --- note these values are kept in register variables, * not in this struct, inside the inner loops. */ bit_buf_type get_buffer; /* current bit-extraction buffer */ int bits_left; /* # of unused bits in it */ /* Pointer needed by jpeg_fill_bit_buffer. */ j_decompress_ptr cinfo; /* back link to decompress master record */ } bitread_working_state; /* Macros to declare and load/save bitread local variables. */ #define BITREAD_STATE_VARS \ register bit_buf_type get_buffer; \ register int bits_left; \ bitread_working_state br_state #define BITREAD_LOAD_STATE(cinfop, permstate) \ br_state.cinfo = cinfop; \ br_state.next_input_byte = cinfop->src->next_input_byte; \ br_state.bytes_in_buffer = cinfop->src->bytes_in_buffer; \ get_buffer = permstate.get_buffer; \ bits_left = permstate.bits_left; #define BITREAD_SAVE_STATE(cinfop, permstate) \ cinfop->src->next_input_byte = br_state.next_input_byte; \ cinfop->src->bytes_in_buffer = br_state.bytes_in_buffer; \ permstate.get_buffer = get_buffer; \ permstate.bits_left = bits_left /* * These macros provide the in-line portion of bit fetching. * Use CHECK_BIT_BUFFER to ensure there are N bits in get_buffer * before using GET_BITS, PEEK_BITS, or DROP_BITS. * The variables get_buffer and bits_left are assumed to be locals, * but the state struct might not be (jpeg_huff_decode needs this). * CHECK_BIT_BUFFER(state, n, action); * Ensure there are N bits in get_buffer; if suspend, take action. * val = GET_BITS(n); * Fetch next N bits. * val = PEEK_BITS(n); * Fetch next N bits without removing them from the buffer. * DROP_BITS(n); * Discard next N bits. * The value N should be a simple variable, not an expression, because it * is evaluated multiple times. */ #define CHECK_BIT_BUFFER(state, nbits, action) { \ if (bits_left < (nbits)) { \ if (!jpeg_fill_bit_buffer(&(state), get_buffer, bits_left, nbits)) \ { action; } \ get_buffer = (state).get_buffer; bits_left = (state).bits_left; \ } \ } #define GET_BITS(nbits) \ (((int)(get_buffer >> (bits_left -= (nbits)))) & ((1 << (nbits)) - 1)) #define PEEK_BITS(nbits) \ (((int)(get_buffer >> (bits_left - (nbits)))) & ((1 << (nbits)) - 1)) #define DROP_BITS(nbits) \ (bits_left -= (nbits)) /* Load up the bit buffer to a depth of at least nbits */ EXTERN(boolean) jpeg_fill_bit_buffer(bitread_working_state *state, register bit_buf_type get_buffer, register int bits_left, int nbits); /* * Code for extracting next Huffman-coded symbol from input bit stream. * Again, this is time-critical and we make the main paths be macros. * * We use a lookahead table to process codes of up to HUFF_LOOKAHEAD bits * without looping. Usually, more than 95% of the Huffman codes will be 8 * or fewer bits long. The few overlength codes are handled with a loop, * which need not be inline code. * * Notes about the HUFF_DECODE macro: * 1. Near the end of the data segment, we may fail to get enough bits * for a lookahead. In that case, we do it the hard way. * 2. If the lookahead table contains no entry, the next code must be * more than HUFF_LOOKAHEAD bits long. * 3. jpeg_huff_decode returns -1 if forced to suspend. */ #define HUFF_DECODE(result, state, htbl, failaction, slowlabel) { \ register int nb, look; \ if (bits_left < HUFF_LOOKAHEAD) { \ if (!jpeg_fill_bit_buffer(&state, get_buffer, bits_left, 0)) \ { failaction; } \ get_buffer = state.get_buffer; bits_left = state.bits_left; \ if (bits_left < HUFF_LOOKAHEAD) { \ nb = 1; goto slowlabel; \ } \ } \ look = PEEK_BITS(HUFF_LOOKAHEAD); \ if ((nb = (htbl->lookup[look] >> HUFF_LOOKAHEAD)) <= HUFF_LOOKAHEAD) { \ DROP_BITS(nb); \ result = htbl->lookup[look] & ((1 << HUFF_LOOKAHEAD) - 1); \ } else { \ slowlabel: \ if ((result = \ jpeg_huff_decode(&state, get_buffer, bits_left, htbl, nb)) < 0) \ { failaction; } \ get_buffer = state.get_buffer; bits_left = state.bits_left; \ } \ } #define HUFF_DECODE_FAST(s, nb, htbl) \ FILL_BIT_BUFFER_FAST; \ s = PEEK_BITS(HUFF_LOOKAHEAD); \ s = htbl->lookup[s]; \ nb = s >> HUFF_LOOKAHEAD; \ /* Pre-execute the common case of nb <= HUFF_LOOKAHEAD */ \ DROP_BITS(nb); \ s = s & ((1 << HUFF_LOOKAHEAD) - 1); \ if (nb > HUFF_LOOKAHEAD) { \ /* Equivalent of jpeg_huff_decode() */ \ /* Don't use GET_BITS() here because we don't want to modify bits_left */ \ s = (get_buffer >> bits_left) & ((1 << (nb)) - 1); \ while (s > htbl->maxcode[nb]) { \ s <<= 1; \ s |= GET_BITS(1); \ nb++; \ } \ if (nb > 16) \ s = 0; \ else \ s = htbl->pub->huffval[(int)(s + htbl->valoffset[nb]) & 0xFF]; \ } /* Out-of-line case for Huffman code fetching */ EXTERN(int) jpeg_huff_decode(bitread_working_state *state, register bit_buf_type get_buffer, register int bits_left, d_derived_tbl *htbl, int min_bits); libjpeg-turbo-2.1.5/jdicc.c000066400000000000000000000124411436506551100155140ustar00rootroot00000000000000/* * jdicc.c * * Copyright (C) 1997-1998, Thomas G. Lane, Todd Newman. * Copyright (C) 2017, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file provides code to read International Color Consortium (ICC) device * profiles embedded in JFIF JPEG image files. The ICC has defined a standard * for including such data in JPEG "APP2" markers. The code given here does * not know anything about the internal structure of the ICC profile data; it * just knows how to get the profile data from a JPEG file while reading it. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jerror.h" #define ICC_MARKER (JPEG_APP0 + 2) /* JPEG marker code for ICC */ #define ICC_OVERHEAD_LEN 14 /* size of non-profile data in APP2 */ /* * Handy subroutine to test whether a saved marker is an ICC profile marker. */ LOCAL(boolean) marker_is_icc(jpeg_saved_marker_ptr marker) { return marker->marker == ICC_MARKER && marker->data_length >= ICC_OVERHEAD_LEN && /* verify the identifying string */ marker->data[0] == 0x49 && marker->data[1] == 0x43 && marker->data[2] == 0x43 && marker->data[3] == 0x5F && marker->data[4] == 0x50 && marker->data[5] == 0x52 && marker->data[6] == 0x4F && marker->data[7] == 0x46 && marker->data[8] == 0x49 && marker->data[9] == 0x4C && marker->data[10] == 0x45 && marker->data[11] == 0x0; } /* * See if there was an ICC profile in the JPEG file being read; if so, * reassemble and return the profile data. * * TRUE is returned if an ICC profile was found, FALSE if not. If TRUE is * returned, *icc_data_ptr is set to point to the returned data, and * *icc_data_len is set to its length. * * IMPORTANT: the data at *icc_data_ptr is allocated with malloc() and must be * freed by the caller with free() when the caller no longer needs it. * (Alternatively, we could write this routine to use the IJG library's memory * allocator, so that the data would be freed implicitly when * jpeg_finish_decompress() is called. But it seems likely that many * applications will prefer to have the data stick around after decompression * finishes.) */ GLOBAL(boolean) jpeg_read_icc_profile(j_decompress_ptr cinfo, JOCTET **icc_data_ptr, unsigned int *icc_data_len) { jpeg_saved_marker_ptr marker; int num_markers = 0; int seq_no; JOCTET *icc_data; unsigned int total_length; #define MAX_SEQ_NO 255 /* sufficient since marker numbers are bytes */ char marker_present[MAX_SEQ_NO + 1]; /* 1 if marker found */ unsigned int data_length[MAX_SEQ_NO + 1]; /* size of profile data in marker */ unsigned int data_offset[MAX_SEQ_NO + 1]; /* offset for data in marker */ if (icc_data_ptr == NULL || icc_data_len == NULL) ERREXIT(cinfo, JERR_BUFFER_SIZE); if (cinfo->global_state < DSTATE_READY) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); *icc_data_ptr = NULL; /* avoid confusion if FALSE return */ *icc_data_len = 0; /* This first pass over the saved markers discovers whether there are * any ICC markers and verifies the consistency of the marker numbering. */ for (seq_no = 1; seq_no <= MAX_SEQ_NO; seq_no++) marker_present[seq_no] = 0; for (marker = cinfo->marker_list; marker != NULL; marker = marker->next) { if (marker_is_icc(marker)) { if (num_markers == 0) num_markers = marker->data[13]; else if (num_markers != marker->data[13]) { WARNMS(cinfo, JWRN_BOGUS_ICC); /* inconsistent num_markers fields */ return FALSE; } seq_no = marker->data[12]; if (seq_no <= 0 || seq_no > num_markers) { WARNMS(cinfo, JWRN_BOGUS_ICC); /* bogus sequence number */ return FALSE; } if (marker_present[seq_no]) { WARNMS(cinfo, JWRN_BOGUS_ICC); /* duplicate sequence numbers */ return FALSE; } marker_present[seq_no] = 1; data_length[seq_no] = marker->data_length - ICC_OVERHEAD_LEN; } } if (num_markers == 0) return FALSE; /* Check for missing markers, count total space needed, * compute offset of each marker's part of the data. */ total_length = 0; for (seq_no = 1; seq_no <= num_markers; seq_no++) { if (marker_present[seq_no] == 0) { WARNMS(cinfo, JWRN_BOGUS_ICC); /* missing sequence number */ return FALSE; } data_offset[seq_no] = total_length; total_length += data_length[seq_no]; } if (total_length == 0) { WARNMS(cinfo, JWRN_BOGUS_ICC); /* found only empty markers? */ return FALSE; } /* Allocate space for assembled data */ icc_data = (JOCTET *)malloc(total_length * sizeof(JOCTET)); if (icc_data == NULL) ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 11); /* oops, out of memory */ /* and fill it in */ for (marker = cinfo->marker_list; marker != NULL; marker = marker->next) { if (marker_is_icc(marker)) { JOCTET FAR *src_ptr; JOCTET *dst_ptr; unsigned int length; seq_no = marker->data[12]; dst_ptr = icc_data + data_offset[seq_no]; src_ptr = marker->data + ICC_OVERHEAD_LEN; length = data_length[seq_no]; while (length--) { *dst_ptr++ = *src_ptr++; } } } *icc_data_ptr = icc_data; *icc_data_len = total_length; return TRUE; } libjpeg-turbo-2.1.5/jdinput.c000066400000000000000000000343711436506551100161230ustar00rootroot00000000000000/* * jdinput.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1997, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2010, 2016, 2018, 2022, D. R. Commander. * Copyright (C) 2015, Google, Inc. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains input control logic for the JPEG decompressor. * These routines are concerned with controlling the decompressor's input * processing (marker reading and coefficient decoding). The actual input * reading is done in jdmarker.c, jdhuff.c, and jdphuff.c. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jpegcomp.h" /* Private state */ typedef struct { struct jpeg_input_controller pub; /* public fields */ boolean inheaders; /* TRUE until first SOS is reached */ } my_input_controller; typedef my_input_controller *my_inputctl_ptr; /* Forward declarations */ METHODDEF(int) consume_markers(j_decompress_ptr cinfo); /* * Routines to calculate various quantities related to the size of the image. */ LOCAL(void) initial_setup(j_decompress_ptr cinfo) /* Called once, when first SOS marker is reached */ { int ci; jpeg_component_info *compptr; /* Make sure image isn't bigger than I can handle */ if ((long)cinfo->image_height > (long)JPEG_MAX_DIMENSION || (long)cinfo->image_width > (long)JPEG_MAX_DIMENSION) ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int)JPEG_MAX_DIMENSION); /* For now, precision must match compiled-in value... */ if (cinfo->data_precision != BITS_IN_JSAMPLE) ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision); /* Check that number of components won't exceed internal array sizes */ if (cinfo->num_components > MAX_COMPONENTS) ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components, MAX_COMPONENTS); /* Compute maximum sampling factors; check factor validity */ cinfo->max_h_samp_factor = 1; cinfo->max_v_samp_factor = 1; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { if (compptr->h_samp_factor <= 0 || compptr->h_samp_factor > MAX_SAMP_FACTOR || compptr->v_samp_factor <= 0 || compptr->v_samp_factor > MAX_SAMP_FACTOR) ERREXIT(cinfo, JERR_BAD_SAMPLING); cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor, compptr->h_samp_factor); cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor, compptr->v_samp_factor); } #if JPEG_LIB_VERSION >= 80 cinfo->block_size = DCTSIZE; cinfo->natural_order = jpeg_natural_order; cinfo->lim_Se = DCTSIZE2 - 1; #endif /* We initialize DCT_scaled_size and min_DCT_scaled_size to DCTSIZE. * In the full decompressor, this will be overridden by jdmaster.c; * but in the transcoder, jdmaster.c is not used, so we must do it here. */ #if JPEG_LIB_VERSION >= 70 cinfo->min_DCT_h_scaled_size = cinfo->min_DCT_v_scaled_size = DCTSIZE; #else cinfo->min_DCT_scaled_size = DCTSIZE; #endif /* Compute dimensions of components */ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { #if JPEG_LIB_VERSION >= 70 compptr->DCT_h_scaled_size = compptr->DCT_v_scaled_size = DCTSIZE; #else compptr->DCT_scaled_size = DCTSIZE; #endif /* Size in DCT blocks */ compptr->width_in_blocks = (JDIMENSION) jdiv_round_up((long)cinfo->image_width * (long)compptr->h_samp_factor, (long)(cinfo->max_h_samp_factor * DCTSIZE)); compptr->height_in_blocks = (JDIMENSION) jdiv_round_up((long)cinfo->image_height * (long)compptr->v_samp_factor, (long)(cinfo->max_v_samp_factor * DCTSIZE)); /* Set the first and last MCU columns to decompress from multi-scan images. * By default, decompress all of the MCU columns. */ cinfo->master->first_MCU_col[ci] = 0; cinfo->master->last_MCU_col[ci] = compptr->width_in_blocks - 1; /* downsampled_width and downsampled_height will also be overridden by * jdmaster.c if we are doing full decompression. The transcoder library * doesn't use these values, but the calling application might. */ /* Size in samples */ compptr->downsampled_width = (JDIMENSION) jdiv_round_up((long)cinfo->image_width * (long)compptr->h_samp_factor, (long)cinfo->max_h_samp_factor); compptr->downsampled_height = (JDIMENSION) jdiv_round_up((long)cinfo->image_height * (long)compptr->v_samp_factor, (long)cinfo->max_v_samp_factor); /* Mark component needed, until color conversion says otherwise */ compptr->component_needed = TRUE; /* Mark no quantization table yet saved for component */ compptr->quant_table = NULL; } /* Compute number of fully interleaved MCU rows. */ cinfo->total_iMCU_rows = (JDIMENSION) jdiv_round_up((long)cinfo->image_height, (long)(cinfo->max_v_samp_factor * DCTSIZE)); /* Decide whether file contains multiple scans */ if (cinfo->comps_in_scan < cinfo->num_components || cinfo->progressive_mode) cinfo->inputctl->has_multiple_scans = TRUE; else cinfo->inputctl->has_multiple_scans = FALSE; } LOCAL(void) per_scan_setup(j_decompress_ptr cinfo) /* Do computations that are needed before processing a JPEG scan */ /* cinfo->comps_in_scan and cinfo->cur_comp_info[] were set from SOS marker */ { int ci, mcublks, tmp; jpeg_component_info *compptr; if (cinfo->comps_in_scan == 1) { /* Noninterleaved (single-component) scan */ compptr = cinfo->cur_comp_info[0]; /* Overall image size in MCUs */ cinfo->MCUs_per_row = compptr->width_in_blocks; cinfo->MCU_rows_in_scan = compptr->height_in_blocks; /* For noninterleaved scan, always one block per MCU */ compptr->MCU_width = 1; compptr->MCU_height = 1; compptr->MCU_blocks = 1; compptr->MCU_sample_width = compptr->_DCT_scaled_size; compptr->last_col_width = 1; /* For noninterleaved scans, it is convenient to define last_row_height * as the number of block rows present in the last iMCU row. */ tmp = (int)(compptr->height_in_blocks % compptr->v_samp_factor); if (tmp == 0) tmp = compptr->v_samp_factor; compptr->last_row_height = tmp; /* Prepare array describing MCU composition */ cinfo->blocks_in_MCU = 1; cinfo->MCU_membership[0] = 0; } else { /* Interleaved (multi-component) scan */ if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN) ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan, MAX_COMPS_IN_SCAN); /* Overall image size in MCUs */ cinfo->MCUs_per_row = (JDIMENSION) jdiv_round_up((long)cinfo->image_width, (long)(cinfo->max_h_samp_factor * DCTSIZE)); cinfo->MCU_rows_in_scan = (JDIMENSION) jdiv_round_up((long)cinfo->image_height, (long)(cinfo->max_v_samp_factor * DCTSIZE)); cinfo->blocks_in_MCU = 0; for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; /* Sampling factors give # of blocks of component in each MCU */ compptr->MCU_width = compptr->h_samp_factor; compptr->MCU_height = compptr->v_samp_factor; compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height; compptr->MCU_sample_width = compptr->MCU_width * compptr->_DCT_scaled_size; /* Figure number of non-dummy blocks in last MCU column & row */ tmp = (int)(compptr->width_in_blocks % compptr->MCU_width); if (tmp == 0) tmp = compptr->MCU_width; compptr->last_col_width = tmp; tmp = (int)(compptr->height_in_blocks % compptr->MCU_height); if (tmp == 0) tmp = compptr->MCU_height; compptr->last_row_height = tmp; /* Prepare array describing MCU composition */ mcublks = compptr->MCU_blocks; if (cinfo->blocks_in_MCU + mcublks > D_MAX_BLOCKS_IN_MCU) ERREXIT(cinfo, JERR_BAD_MCU_SIZE); while (mcublks-- > 0) { cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci; } } } } /* * Save away a copy of the Q-table referenced by each component present * in the current scan, unless already saved during a prior scan. * * In a multiple-scan JPEG file, the encoder could assign different components * the same Q-table slot number, but change table definitions between scans * so that each component uses a different Q-table. (The IJG encoder is not * currently capable of doing this, but other encoders might.) Since we want * to be able to dequantize all the components at the end of the file, this * means that we have to save away the table actually used for each component. * We do this by copying the table at the start of the first scan containing * the component. * Rec. ITU-T T.81 | ISO/IEC 10918-1 prohibits the encoder from changing the * contents of a Q-table slot between scans of a component using that slot. If * the encoder does so anyway, this decoder will simply use the Q-table values * that were current at the start of the first scan for the component. * * The decompressor output side looks only at the saved quant tables, * not at the current Q-table slots. */ LOCAL(void) latch_quant_tables(j_decompress_ptr cinfo) { int ci, qtblno; jpeg_component_info *compptr; JQUANT_TBL *qtbl; for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; /* No work if we already saved Q-table for this component */ if (compptr->quant_table != NULL) continue; /* Make sure specified quantization table is present */ qtblno = compptr->quant_tbl_no; if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS || cinfo->quant_tbl_ptrs[qtblno] == NULL) ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno); /* OK, save away the quantization table */ qtbl = (JQUANT_TBL *) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, sizeof(JQUANT_TBL)); memcpy(qtbl, cinfo->quant_tbl_ptrs[qtblno], sizeof(JQUANT_TBL)); compptr->quant_table = qtbl; } } /* * Initialize the input modules to read a scan of compressed data. * The first call to this is done by jdmaster.c after initializing * the entire decompressor (during jpeg_start_decompress). * Subsequent calls come from consume_markers, below. */ METHODDEF(void) start_input_pass(j_decompress_ptr cinfo) { per_scan_setup(cinfo); latch_quant_tables(cinfo); (*cinfo->entropy->start_pass) (cinfo); (*cinfo->coef->start_input_pass) (cinfo); cinfo->inputctl->consume_input = cinfo->coef->consume_data; } /* * Finish up after inputting a compressed-data scan. * This is called by the coefficient controller after it's read all * the expected data of the scan. */ METHODDEF(void) finish_input_pass(j_decompress_ptr cinfo) { cinfo->inputctl->consume_input = consume_markers; } /* * Read JPEG markers before, between, or after compressed-data scans. * Change state as necessary when a new scan is reached. * Return value is JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI. * * The consume_input method pointer points either here or to the * coefficient controller's consume_data routine, depending on whether * we are reading a compressed data segment or inter-segment markers. */ METHODDEF(int) consume_markers(j_decompress_ptr cinfo) { my_inputctl_ptr inputctl = (my_inputctl_ptr)cinfo->inputctl; int val; if (inputctl->pub.eoi_reached) /* After hitting EOI, read no further */ return JPEG_REACHED_EOI; val = (*cinfo->marker->read_markers) (cinfo); switch (val) { case JPEG_REACHED_SOS: /* Found SOS */ if (inputctl->inheaders) { /* 1st SOS */ initial_setup(cinfo); inputctl->inheaders = FALSE; /* Note: start_input_pass must be called by jdmaster.c * before any more input can be consumed. jdapimin.c is * responsible for enforcing this sequencing. */ } else { /* 2nd or later SOS marker */ if (!inputctl->pub.has_multiple_scans) ERREXIT(cinfo, JERR_EOI_EXPECTED); /* Oops, I wasn't expecting this! */ start_input_pass(cinfo); } break; case JPEG_REACHED_EOI: /* Found EOI */ inputctl->pub.eoi_reached = TRUE; if (inputctl->inheaders) { /* Tables-only datastream, apparently */ if (cinfo->marker->saw_SOF) ERREXIT(cinfo, JERR_SOF_NO_SOS); } else { /* Prevent infinite loop in coef ctlr's decompress_data routine * if user set output_scan_number larger than number of scans. */ if (cinfo->output_scan_number > cinfo->input_scan_number) cinfo->output_scan_number = cinfo->input_scan_number; } break; case JPEG_SUSPENDED: break; } return val; } /* * Reset state to begin a fresh datastream. */ METHODDEF(void) reset_input_controller(j_decompress_ptr cinfo) { my_inputctl_ptr inputctl = (my_inputctl_ptr)cinfo->inputctl; inputctl->pub.consume_input = consume_markers; inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */ inputctl->pub.eoi_reached = FALSE; inputctl->inheaders = TRUE; /* Reset other modules */ (*cinfo->err->reset_error_mgr) ((j_common_ptr)cinfo); (*cinfo->marker->reset_marker_reader) (cinfo); /* Reset progression state -- would be cleaner if entropy decoder did this */ cinfo->coef_bits = NULL; } /* * Initialize the input controller module. * This is called only once, when the decompression object is created. */ GLOBAL(void) jinit_input_controller(j_decompress_ptr cinfo) { my_inputctl_ptr inputctl; /* Create subobject in permanent pool */ inputctl = (my_inputctl_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_PERMANENT, sizeof(my_input_controller)); cinfo->inputctl = (struct jpeg_input_controller *)inputctl; /* Initialize method pointers */ inputctl->pub.consume_input = consume_markers; inputctl->pub.reset_input_controller = reset_input_controller; inputctl->pub.start_input_pass = start_input_pass; inputctl->pub.finish_input_pass = finish_input_pass; /* Initialize state: can't use reset_input_controller since we don't * want to try to reset other modules yet. */ inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */ inputctl->pub.eoi_reached = FALSE; inputctl->inheaders = TRUE; } libjpeg-turbo-2.1.5/jdmainct.c000066400000000000000000000465251436506551100162430ustar00rootroot00000000000000/* * jdmainct.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1996, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2010, 2016, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains the main buffer controller for decompression. * The main buffer lies between the JPEG decompressor proper and the * post-processor; it holds downsampled data in the JPEG colorspace. * * Note that this code is bypassed in raw-data mode, since the application * supplies the equivalent of the main buffer in that case. */ #include "jinclude.h" #include "jdmainct.h" /* * In the current system design, the main buffer need never be a full-image * buffer; any full-height buffers will be found inside the coefficient or * postprocessing controllers. Nonetheless, the main controller is not * trivial. Its responsibility is to provide context rows for upsampling/ * rescaling, and doing this in an efficient fashion is a bit tricky. * * Postprocessor input data is counted in "row groups". A row group * is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size) * sample rows of each component. (We require DCT_scaled_size values to be * chosen such that these numbers are integers. In practice DCT_scaled_size * values will likely be powers of two, so we actually have the stronger * condition that DCT_scaled_size / min_DCT_scaled_size is an integer.) * Upsampling will typically produce max_v_samp_factor pixel rows from each * row group (times any additional scale factor that the upsampler is * applying). * * The coefficient controller will deliver data to us one iMCU row at a time; * each iMCU row contains v_samp_factor * DCT_scaled_size sample rows, or * exactly min_DCT_scaled_size row groups. (This amount of data corresponds * to one row of MCUs when the image is fully interleaved.) Note that the * number of sample rows varies across components, but the number of row * groups does not. Some garbage sample rows may be included in the last iMCU * row at the bottom of the image. * * Depending on the vertical scaling algorithm used, the upsampler may need * access to the sample row(s) above and below its current input row group. * The upsampler is required to set need_context_rows TRUE at global selection * time if so. When need_context_rows is FALSE, this controller can simply * obtain one iMCU row at a time from the coefficient controller and dole it * out as row groups to the postprocessor. * * When need_context_rows is TRUE, this controller guarantees that the buffer * passed to postprocessing contains at least one row group's worth of samples * above and below the row group(s) being processed. Note that the context * rows "above" the first passed row group appear at negative row offsets in * the passed buffer. At the top and bottom of the image, the required * context rows are manufactured by duplicating the first or last real sample * row; this avoids having special cases in the upsampling inner loops. * * The amount of context is fixed at one row group just because that's a * convenient number for this controller to work with. The existing * upsamplers really only need one sample row of context. An upsampler * supporting arbitrary output rescaling might wish for more than one row * group of context when shrinking the image; tough, we don't handle that. * (This is justified by the assumption that downsizing will be handled mostly * by adjusting the DCT_scaled_size values, so that the actual scale factor at * the upsample step needn't be much less than one.) * * To provide the desired context, we have to retain the last two row groups * of one iMCU row while reading in the next iMCU row. (The last row group * can't be processed until we have another row group for its below-context, * and so we have to save the next-to-last group too for its above-context.) * We could do this most simply by copying data around in our buffer, but * that'd be very slow. We can avoid copying any data by creating a rather * strange pointer structure. Here's how it works. We allocate a workspace * consisting of M+2 row groups (where M = min_DCT_scaled_size is the number * of row groups per iMCU row). We create two sets of redundant pointers to * the workspace. Labeling the physical row groups 0 to M+1, the synthesized * pointer lists look like this: * M+1 M-1 * master pointer --> 0 master pointer --> 0 * 1 1 * ... ... * M-3 M-3 * M-2 M * M-1 M+1 * M M-2 * M+1 M-1 * 0 0 * We read alternate iMCU rows using each master pointer; thus the last two * row groups of the previous iMCU row remain un-overwritten in the workspace. * The pointer lists are set up so that the required context rows appear to * be adjacent to the proper places when we pass the pointer lists to the * upsampler. * * The above pictures describe the normal state of the pointer lists. * At top and bottom of the image, we diddle the pointer lists to duplicate * the first or last sample row as necessary (this is cheaper than copying * sample rows around). * * This scheme breaks down if M < 2, ie, min_DCT_scaled_size is 1. In that * situation each iMCU row provides only one row group so the buffering logic * must be different (eg, we must read two iMCU rows before we can emit the * first row group). For now, we simply do not support providing context * rows when min_DCT_scaled_size is 1. That combination seems unlikely to * be worth providing --- if someone wants a 1/8th-size preview, they probably * want it quick and dirty, so a context-free upsampler is sufficient. */ /* Forward declarations */ METHODDEF(void) process_data_simple_main(j_decompress_ptr cinfo, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail); METHODDEF(void) process_data_context_main(j_decompress_ptr cinfo, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail); #ifdef QUANT_2PASS_SUPPORTED METHODDEF(void) process_data_crank_post(j_decompress_ptr cinfo, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail); #endif LOCAL(void) alloc_funny_pointers(j_decompress_ptr cinfo) /* Allocate space for the funny pointer lists. * This is done only once, not once per pass. */ { my_main_ptr main_ptr = (my_main_ptr)cinfo->main; int ci, rgroup; int M = cinfo->_min_DCT_scaled_size; jpeg_component_info *compptr; JSAMPARRAY xbuf; /* Get top-level space for component array pointers. * We alloc both arrays with one call to save a few cycles. */ main_ptr->xbuffer[0] = (JSAMPIMAGE) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, cinfo->num_components * 2 * sizeof(JSAMPARRAY)); main_ptr->xbuffer[1] = main_ptr->xbuffer[0] + cinfo->num_components; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { rgroup = (compptr->v_samp_factor * compptr->_DCT_scaled_size) / cinfo->_min_DCT_scaled_size; /* height of a row group of component */ /* Get space for pointer lists --- M+4 row groups in each list. * We alloc both pointer lists with one call to save a few cycles. */ xbuf = (JSAMPARRAY) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, 2 * (rgroup * (M + 4)) * sizeof(JSAMPROW)); xbuf += rgroup; /* want one row group at negative offsets */ main_ptr->xbuffer[0][ci] = xbuf; xbuf += rgroup * (M + 4); main_ptr->xbuffer[1][ci] = xbuf; } } LOCAL(void) make_funny_pointers(j_decompress_ptr cinfo) /* Create the funny pointer lists discussed in the comments above. * The actual workspace is already allocated (in main_ptr->buffer), * and the space for the pointer lists is allocated too. * This routine just fills in the curiously ordered lists. * This will be repeated at the beginning of each pass. */ { my_main_ptr main_ptr = (my_main_ptr)cinfo->main; int ci, i, rgroup; int M = cinfo->_min_DCT_scaled_size; jpeg_component_info *compptr; JSAMPARRAY buf, xbuf0, xbuf1; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { rgroup = (compptr->v_samp_factor * compptr->_DCT_scaled_size) / cinfo->_min_DCT_scaled_size; /* height of a row group of component */ xbuf0 = main_ptr->xbuffer[0][ci]; xbuf1 = main_ptr->xbuffer[1][ci]; /* First copy the workspace pointers as-is */ buf = main_ptr->buffer[ci]; for (i = 0; i < rgroup * (M + 2); i++) { xbuf0[i] = xbuf1[i] = buf[i]; } /* In the second list, put the last four row groups in swapped order */ for (i = 0; i < rgroup * 2; i++) { xbuf1[rgroup * (M - 2) + i] = buf[rgroup * M + i]; xbuf1[rgroup * M + i] = buf[rgroup * (M - 2) + i]; } /* The wraparound pointers at top and bottom will be filled later * (see set_wraparound_pointers, below). Initially we want the "above" * pointers to duplicate the first actual data line. This only needs * to happen in xbuffer[0]. */ for (i = 0; i < rgroup; i++) { xbuf0[i - rgroup] = xbuf0[0]; } } } LOCAL(void) set_bottom_pointers(j_decompress_ptr cinfo) /* Change the pointer lists to duplicate the last sample row at the bottom * of the image. whichptr indicates which xbuffer holds the final iMCU row. * Also sets rowgroups_avail to indicate number of nondummy row groups in row. */ { my_main_ptr main_ptr = (my_main_ptr)cinfo->main; int ci, i, rgroup, iMCUheight, rows_left; jpeg_component_info *compptr; JSAMPARRAY xbuf; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { /* Count sample rows in one iMCU row and in one row group */ iMCUheight = compptr->v_samp_factor * compptr->_DCT_scaled_size; rgroup = iMCUheight / cinfo->_min_DCT_scaled_size; /* Count nondummy sample rows remaining for this component */ rows_left = (int)(compptr->downsampled_height % (JDIMENSION)iMCUheight); if (rows_left == 0) rows_left = iMCUheight; /* Count nondummy row groups. Should get same answer for each component, * so we need only do it once. */ if (ci == 0) { main_ptr->rowgroups_avail = (JDIMENSION)((rows_left - 1) / rgroup + 1); } /* Duplicate the last real sample row rgroup*2 times; this pads out the * last partial rowgroup and ensures at least one full rowgroup of context. */ xbuf = main_ptr->xbuffer[main_ptr->whichptr][ci]; for (i = 0; i < rgroup * 2; i++) { xbuf[rows_left + i] = xbuf[rows_left - 1]; } } } /* * Initialize for a processing pass. */ METHODDEF(void) start_pass_main(j_decompress_ptr cinfo, J_BUF_MODE pass_mode) { my_main_ptr main_ptr = (my_main_ptr)cinfo->main; switch (pass_mode) { case JBUF_PASS_THRU: if (cinfo->upsample->need_context_rows) { main_ptr->pub.process_data = process_data_context_main; make_funny_pointers(cinfo); /* Create the xbuffer[] lists */ main_ptr->whichptr = 0; /* Read first iMCU row into xbuffer[0] */ main_ptr->context_state = CTX_PREPARE_FOR_IMCU; main_ptr->iMCU_row_ctr = 0; } else { /* Simple case with no context needed */ main_ptr->pub.process_data = process_data_simple_main; } main_ptr->buffer_full = FALSE; /* Mark buffer empty */ main_ptr->rowgroup_ctr = 0; break; #ifdef QUANT_2PASS_SUPPORTED case JBUF_CRANK_DEST: /* For last pass of 2-pass quantization, just crank the postprocessor */ main_ptr->pub.process_data = process_data_crank_post; break; #endif default: ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); break; } } /* * Process some data. * This handles the simple case where no context is required. */ METHODDEF(void) process_data_simple_main(j_decompress_ptr cinfo, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail) { my_main_ptr main_ptr = (my_main_ptr)cinfo->main; JDIMENSION rowgroups_avail; /* Read input data if we haven't filled the main buffer yet */ if (!main_ptr->buffer_full) { if (!(*cinfo->coef->decompress_data) (cinfo, main_ptr->buffer)) return; /* suspension forced, can do nothing more */ main_ptr->buffer_full = TRUE; /* OK, we have an iMCU row to work with */ } /* There are always min_DCT_scaled_size row groups in an iMCU row. */ rowgroups_avail = (JDIMENSION)cinfo->_min_DCT_scaled_size; /* Note: at the bottom of the image, we may pass extra garbage row groups * to the postprocessor. The postprocessor has to check for bottom * of image anyway (at row resolution), so no point in us doing it too. */ /* Feed the postprocessor */ (*cinfo->post->post_process_data) (cinfo, main_ptr->buffer, &main_ptr->rowgroup_ctr, rowgroups_avail, output_buf, out_row_ctr, out_rows_avail); /* Has postprocessor consumed all the data yet? If so, mark buffer empty */ if (main_ptr->rowgroup_ctr >= rowgroups_avail) { main_ptr->buffer_full = FALSE; main_ptr->rowgroup_ctr = 0; } } /* * Process some data. * This handles the case where context rows must be provided. */ METHODDEF(void) process_data_context_main(j_decompress_ptr cinfo, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail) { my_main_ptr main_ptr = (my_main_ptr)cinfo->main; /* Read input data if we haven't filled the main buffer yet */ if (!main_ptr->buffer_full) { if (!(*cinfo->coef->decompress_data) (cinfo, main_ptr->xbuffer[main_ptr->whichptr])) return; /* suspension forced, can do nothing more */ main_ptr->buffer_full = TRUE; /* OK, we have an iMCU row to work with */ main_ptr->iMCU_row_ctr++; /* count rows received */ } /* Postprocessor typically will not swallow all the input data it is handed * in one call (due to filling the output buffer first). Must be prepared * to exit and restart. This switch lets us keep track of how far we got. * Note that each case falls through to the next on successful completion. */ switch (main_ptr->context_state) { case CTX_POSTPONED_ROW: /* Call postprocessor using previously set pointers for postponed row */ (*cinfo->post->post_process_data) (cinfo, main_ptr->xbuffer[main_ptr->whichptr], &main_ptr->rowgroup_ctr, main_ptr->rowgroups_avail, output_buf, out_row_ctr, out_rows_avail); if (main_ptr->rowgroup_ctr < main_ptr->rowgroups_avail) return; /* Need to suspend */ main_ptr->context_state = CTX_PREPARE_FOR_IMCU; if (*out_row_ctr >= out_rows_avail) return; /* Postprocessor exactly filled output buf */ FALLTHROUGH /*FALLTHROUGH*/ case CTX_PREPARE_FOR_IMCU: /* Prepare to process first M-1 row groups of this iMCU row */ main_ptr->rowgroup_ctr = 0; main_ptr->rowgroups_avail = (JDIMENSION)(cinfo->_min_DCT_scaled_size - 1); /* Check for bottom of image: if so, tweak pointers to "duplicate" * the last sample row, and adjust rowgroups_avail to ignore padding rows. */ if (main_ptr->iMCU_row_ctr == cinfo->total_iMCU_rows) set_bottom_pointers(cinfo); main_ptr->context_state = CTX_PROCESS_IMCU; FALLTHROUGH /*FALLTHROUGH*/ case CTX_PROCESS_IMCU: /* Call postprocessor using previously set pointers */ (*cinfo->post->post_process_data) (cinfo, main_ptr->xbuffer[main_ptr->whichptr], &main_ptr->rowgroup_ctr, main_ptr->rowgroups_avail, output_buf, out_row_ctr, out_rows_avail); if (main_ptr->rowgroup_ctr < main_ptr->rowgroups_avail) return; /* Need to suspend */ /* After the first iMCU, change wraparound pointers to normal state */ if (main_ptr->iMCU_row_ctr == 1) set_wraparound_pointers(cinfo); /* Prepare to load new iMCU row using other xbuffer list */ main_ptr->whichptr ^= 1; /* 0=>1 or 1=>0 */ main_ptr->buffer_full = FALSE; /* Still need to process last row group of this iMCU row, */ /* which is saved at index M+1 of the other xbuffer */ main_ptr->rowgroup_ctr = (JDIMENSION)(cinfo->_min_DCT_scaled_size + 1); main_ptr->rowgroups_avail = (JDIMENSION)(cinfo->_min_DCT_scaled_size + 2); main_ptr->context_state = CTX_POSTPONED_ROW; } } /* * Process some data. * Final pass of two-pass quantization: just call the postprocessor. * Source data will be the postprocessor controller's internal buffer. */ #ifdef QUANT_2PASS_SUPPORTED METHODDEF(void) process_data_crank_post(j_decompress_ptr cinfo, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail) { (*cinfo->post->post_process_data) (cinfo, (JSAMPIMAGE)NULL, (JDIMENSION *)NULL, (JDIMENSION)0, output_buf, out_row_ctr, out_rows_avail); } #endif /* QUANT_2PASS_SUPPORTED */ /* * Initialize main buffer controller. */ GLOBAL(void) jinit_d_main_controller(j_decompress_ptr cinfo, boolean need_full_buffer) { my_main_ptr main_ptr; int ci, rgroup, ngroups; jpeg_component_info *compptr; main_ptr = (my_main_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, sizeof(my_main_controller)); cinfo->main = (struct jpeg_d_main_controller *)main_ptr; main_ptr->pub.start_pass = start_pass_main; if (need_full_buffer) /* shouldn't happen */ ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); /* Allocate the workspace. * ngroups is the number of row groups we need. */ if (cinfo->upsample->need_context_rows) { if (cinfo->_min_DCT_scaled_size < 2) /* unsupported, see comments above */ ERREXIT(cinfo, JERR_NOTIMPL); alloc_funny_pointers(cinfo); /* Alloc space for xbuffer[] lists */ ngroups = cinfo->_min_DCT_scaled_size + 2; } else { ngroups = cinfo->_min_DCT_scaled_size; } for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { rgroup = (compptr->v_samp_factor * compptr->_DCT_scaled_size) / cinfo->_min_DCT_scaled_size; /* height of a row group of component */ main_ptr->buffer[ci] = (*cinfo->mem->alloc_sarray) ((j_common_ptr)cinfo, JPOOL_IMAGE, compptr->width_in_blocks * compptr->_DCT_scaled_size, (JDIMENSION)(rgroup * ngroups)); } } libjpeg-turbo-2.1.5/jdmainct.h000066400000000000000000000046201436506551100162360ustar00rootroot00000000000000/* * jdmainct.h * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1996, Thomas G. Lane. * For conditions of distribution and use, see the accompanying README.ijg * file. */ #define JPEG_INTERNALS #include "jpeglib.h" #include "jpegcomp.h" /* Private buffer controller object */ typedef struct { struct jpeg_d_main_controller pub; /* public fields */ /* Pointer to allocated workspace (M or M+2 row groups). */ JSAMPARRAY buffer[MAX_COMPONENTS]; boolean buffer_full; /* Have we gotten an iMCU row from decoder? */ JDIMENSION rowgroup_ctr; /* counts row groups output to postprocessor */ /* Remaining fields are only used in the context case. */ /* These are the master pointers to the funny-order pointer lists. */ JSAMPIMAGE xbuffer[2]; /* pointers to weird pointer lists */ int whichptr; /* indicates which pointer set is now in use */ int context_state; /* process_data state machine status */ JDIMENSION rowgroups_avail; /* row groups available to postprocessor */ JDIMENSION iMCU_row_ctr; /* counts iMCU rows to detect image top/bot */ } my_main_controller; typedef my_main_controller *my_main_ptr; /* context_state values: */ #define CTX_PREPARE_FOR_IMCU 0 /* need to prepare for MCU row */ #define CTX_PROCESS_IMCU 1 /* feeding iMCU to postprocessor */ #define CTX_POSTPONED_ROW 2 /* feeding postponed row group */ LOCAL(void) set_wraparound_pointers(j_decompress_ptr cinfo) /* Set up the "wraparound" pointers at top and bottom of the pointer lists. * This changes the pointer list state from top-of-image to the normal state. */ { my_main_ptr main_ptr = (my_main_ptr)cinfo->main; int ci, i, rgroup; int M = cinfo->_min_DCT_scaled_size; jpeg_component_info *compptr; JSAMPARRAY xbuf0, xbuf1; for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { rgroup = (compptr->v_samp_factor * compptr->_DCT_scaled_size) / cinfo->_min_DCT_scaled_size; /* height of a row group of component */ xbuf0 = main_ptr->xbuffer[0][ci]; xbuf1 = main_ptr->xbuffer[1][ci]; for (i = 0; i < rgroup; i++) { xbuf0[i - rgroup] = xbuf0[rgroup * (M + 1) + i]; xbuf1[i - rgroup] = xbuf1[rgroup * (M + 1) + i]; xbuf0[rgroup * (M + 2) + i] = xbuf0[i]; xbuf1[rgroup * (M + 2) + i] = xbuf1[i]; } } } libjpeg-turbo-2.1.5/jdmarker.c000066400000000000000000001223501436506551100162400ustar00rootroot00000000000000/* * jdmarker.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1998, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2012, 2015, 2022, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains routines to decode JPEG datastream markers. * Most of the complexity arises from our desire to support input * suspension: if not all of the data for a marker is available, * we must exit back to the application. On resumption, we reprocess * the marker. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" typedef enum { /* JPEG marker codes */ M_SOF0 = 0xc0, M_SOF1 = 0xc1, M_SOF2 = 0xc2, M_SOF3 = 0xc3, M_SOF5 = 0xc5, M_SOF6 = 0xc6, M_SOF7 = 0xc7, M_JPG = 0xc8, M_SOF9 = 0xc9, M_SOF10 = 0xca, M_SOF11 = 0xcb, M_SOF13 = 0xcd, M_SOF14 = 0xce, M_SOF15 = 0xcf, M_DHT = 0xc4, M_DAC = 0xcc, M_RST0 = 0xd0, M_RST1 = 0xd1, M_RST2 = 0xd2, M_RST3 = 0xd3, M_RST4 = 0xd4, M_RST5 = 0xd5, M_RST6 = 0xd6, M_RST7 = 0xd7, M_SOI = 0xd8, M_EOI = 0xd9, M_SOS = 0xda, M_DQT = 0xdb, M_DNL = 0xdc, M_DRI = 0xdd, M_DHP = 0xde, M_EXP = 0xdf, M_APP0 = 0xe0, M_APP1 = 0xe1, M_APP2 = 0xe2, M_APP3 = 0xe3, M_APP4 = 0xe4, M_APP5 = 0xe5, M_APP6 = 0xe6, M_APP7 = 0xe7, M_APP8 = 0xe8, M_APP9 = 0xe9, M_APP10 = 0xea, M_APP11 = 0xeb, M_APP12 = 0xec, M_APP13 = 0xed, M_APP14 = 0xee, M_APP15 = 0xef, M_JPG0 = 0xf0, M_JPG13 = 0xfd, M_COM = 0xfe, M_TEM = 0x01, M_ERROR = 0x100 } JPEG_MARKER; /* Private state */ typedef struct { struct jpeg_marker_reader pub; /* public fields */ /* Application-overridable marker processing methods */ jpeg_marker_parser_method process_COM; jpeg_marker_parser_method process_APPn[16]; /* Limit on marker data length to save for each marker type */ unsigned int length_limit_COM; unsigned int length_limit_APPn[16]; /* Status of COM/APPn marker saving */ jpeg_saved_marker_ptr cur_marker; /* NULL if not processing a marker */ unsigned int bytes_read; /* data bytes read so far in marker */ /* Note: cur_marker is not linked into marker_list until it's all read. */ } my_marker_reader; typedef my_marker_reader *my_marker_ptr; /* * Macros for fetching data from the data source module. * * At all times, cinfo->src->next_input_byte and ->bytes_in_buffer reflect * the current restart point; we update them only when we have reached a * suitable place to restart if a suspension occurs. */ /* Declare and initialize local copies of input pointer/count */ #define INPUT_VARS(cinfo) \ struct jpeg_source_mgr *datasrc = (cinfo)->src; \ const JOCTET *next_input_byte = datasrc->next_input_byte; \ size_t bytes_in_buffer = datasrc->bytes_in_buffer /* Unload the local copies --- do this only at a restart boundary */ #define INPUT_SYNC(cinfo) \ ( datasrc->next_input_byte = next_input_byte, \ datasrc->bytes_in_buffer = bytes_in_buffer ) /* Reload the local copies --- used only in MAKE_BYTE_AVAIL */ #define INPUT_RELOAD(cinfo) \ ( next_input_byte = datasrc->next_input_byte, \ bytes_in_buffer = datasrc->bytes_in_buffer ) /* Internal macro for INPUT_BYTE and INPUT_2BYTES: make a byte available. * Note we do *not* do INPUT_SYNC before calling fill_input_buffer, * but we must reload the local copies after a successful fill. */ #define MAKE_BYTE_AVAIL(cinfo, action) \ if (bytes_in_buffer == 0) { \ if (!(*datasrc->fill_input_buffer) (cinfo)) \ { action; } \ INPUT_RELOAD(cinfo); \ } /* Read a byte into variable V. * If must suspend, take the specified action (typically "return FALSE"). */ #define INPUT_BYTE(cinfo, V, action) \ MAKESTMT( MAKE_BYTE_AVAIL(cinfo, action); \ bytes_in_buffer--; \ V = *next_input_byte++; ) /* As above, but read two bytes interpreted as an unsigned 16-bit integer. * V should be declared unsigned int or perhaps JLONG. */ #define INPUT_2BYTES(cinfo, V, action) \ MAKESTMT( MAKE_BYTE_AVAIL(cinfo, action); \ bytes_in_buffer--; \ V = ((unsigned int)(*next_input_byte++)) << 8; \ MAKE_BYTE_AVAIL(cinfo, action); \ bytes_in_buffer--; \ V += *next_input_byte++; ) /* * Routines to process JPEG markers. * * Entry condition: JPEG marker itself has been read and its code saved * in cinfo->unread_marker; input restart point is just after the marker. * * Exit: if return TRUE, have read and processed any parameters, and have * updated the restart point to point after the parameters. * If return FALSE, was forced to suspend before reaching end of * marker parameters; restart point has not been moved. Same routine * will be called again after application supplies more input data. * * This approach to suspension assumes that all of a marker's parameters * can fit into a single input bufferload. This should hold for "normal" * markers. Some COM/APPn markers might have large parameter segments * that might not fit. If we are simply dropping such a marker, we use * skip_input_data to get past it, and thereby put the problem on the * source manager's shoulders. If we are saving the marker's contents * into memory, we use a slightly different convention: when forced to * suspend, the marker processor updates the restart point to the end of * what it's consumed (ie, the end of the buffer) before returning FALSE. * On resumption, cinfo->unread_marker still contains the marker code, * but the data source will point to the next chunk of marker data. * The marker processor must retain internal state to deal with this. * * Note that we don't bother to avoid duplicate trace messages if a * suspension occurs within marker parameters. Other side effects * require more care. */ LOCAL(boolean) get_soi(j_decompress_ptr cinfo) /* Process an SOI marker */ { int i; TRACEMS(cinfo, 1, JTRC_SOI); if (cinfo->marker->saw_SOI) ERREXIT(cinfo, JERR_SOI_DUPLICATE); /* Reset all parameters that are defined to be reset by SOI */ for (i = 0; i < NUM_ARITH_TBLS; i++) { cinfo->arith_dc_L[i] = 0; cinfo->arith_dc_U[i] = 1; cinfo->arith_ac_K[i] = 5; } cinfo->restart_interval = 0; /* Set initial assumptions for colorspace etc */ cinfo->jpeg_color_space = JCS_UNKNOWN; cinfo->CCIR601_sampling = FALSE; /* Assume non-CCIR sampling??? */ cinfo->saw_JFIF_marker = FALSE; cinfo->JFIF_major_version = 1; /* set default JFIF APP0 values */ cinfo->JFIF_minor_version = 1; cinfo->density_unit = 0; cinfo->X_density = 1; cinfo->Y_density = 1; cinfo->saw_Adobe_marker = FALSE; cinfo->Adobe_transform = 0; cinfo->marker->saw_SOI = TRUE; return TRUE; } LOCAL(boolean) get_sof(j_decompress_ptr cinfo, boolean is_prog, boolean is_arith) /* Process a SOFn marker */ { JLONG length; int c, ci; jpeg_component_info *compptr; INPUT_VARS(cinfo); cinfo->progressive_mode = is_prog; cinfo->arith_code = is_arith; INPUT_2BYTES(cinfo, length, return FALSE); INPUT_BYTE(cinfo, cinfo->data_precision, return FALSE); INPUT_2BYTES(cinfo, cinfo->image_height, return FALSE); INPUT_2BYTES(cinfo, cinfo->image_width, return FALSE); INPUT_BYTE(cinfo, cinfo->num_components, return FALSE); length -= 8; TRACEMS4(cinfo, 1, JTRC_SOF, cinfo->unread_marker, (int)cinfo->image_width, (int)cinfo->image_height, cinfo->num_components); if (cinfo->marker->saw_SOF) ERREXIT(cinfo, JERR_SOF_DUPLICATE); /* We don't support files in which the image height is initially specified */ /* as 0 and is later redefined by DNL. As long as we have to check that, */ /* might as well have a general sanity check. */ if (cinfo->image_height <= 0 || cinfo->image_width <= 0 || cinfo->num_components <= 0) ERREXIT(cinfo, JERR_EMPTY_IMAGE); if (length != (cinfo->num_components * 3)) ERREXIT(cinfo, JERR_BAD_LENGTH); if (cinfo->comp_info == NULL) /* do only once, even if suspend */ cinfo->comp_info = (jpeg_component_info *)(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, cinfo->num_components * sizeof(jpeg_component_info)); for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { compptr->component_index = ci; INPUT_BYTE(cinfo, compptr->component_id, return FALSE); INPUT_BYTE(cinfo, c, return FALSE); compptr->h_samp_factor = (c >> 4) & 15; compptr->v_samp_factor = (c ) & 15; INPUT_BYTE(cinfo, compptr->quant_tbl_no, return FALSE); TRACEMS4(cinfo, 1, JTRC_SOF_COMPONENT, compptr->component_id, compptr->h_samp_factor, compptr->v_samp_factor, compptr->quant_tbl_no); } cinfo->marker->saw_SOF = TRUE; INPUT_SYNC(cinfo); return TRUE; } LOCAL(boolean) get_sos(j_decompress_ptr cinfo) /* Process a SOS marker */ { JLONG length; int i, ci, n, c, cc, pi; jpeg_component_info *compptr; INPUT_VARS(cinfo); if (!cinfo->marker->saw_SOF) ERREXIT(cinfo, JERR_SOS_NO_SOF); INPUT_2BYTES(cinfo, length, return FALSE); INPUT_BYTE(cinfo, n, return FALSE); /* Number of components */ TRACEMS1(cinfo, 1, JTRC_SOS, n); if (length != (n * 2 + 6) || n < 1 || n > MAX_COMPS_IN_SCAN) ERREXIT(cinfo, JERR_BAD_LENGTH); cinfo->comps_in_scan = n; /* Collect the component-spec parameters */ for (i = 0; i < MAX_COMPS_IN_SCAN; i++) cinfo->cur_comp_info[i] = NULL; for (i = 0; i < n; i++) { INPUT_BYTE(cinfo, cc, return FALSE); INPUT_BYTE(cinfo, c, return FALSE); for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components && ci < MAX_COMPS_IN_SCAN; ci++, compptr++) { if (cc == compptr->component_id && !cinfo->cur_comp_info[ci]) goto id_found; } ERREXIT1(cinfo, JERR_BAD_COMPONENT_ID, cc); id_found: cinfo->cur_comp_info[i] = compptr; compptr->dc_tbl_no = (c >> 4) & 15; compptr->ac_tbl_no = (c ) & 15; TRACEMS3(cinfo, 1, JTRC_SOS_COMPONENT, cc, compptr->dc_tbl_no, compptr->ac_tbl_no); /* This CSi (cc) should differ from the previous CSi */ for (pi = 0; pi < i; pi++) { if (cinfo->cur_comp_info[pi] == compptr) { ERREXIT1(cinfo, JERR_BAD_COMPONENT_ID, cc); } } } /* Collect the additional scan parameters Ss, Se, Ah/Al. */ INPUT_BYTE(cinfo, c, return FALSE); cinfo->Ss = c; INPUT_BYTE(cinfo, c, return FALSE); cinfo->Se = c; INPUT_BYTE(cinfo, c, return FALSE); cinfo->Ah = (c >> 4) & 15; cinfo->Al = (c ) & 15; TRACEMS4(cinfo, 1, JTRC_SOS_PARAMS, cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al); /* Prepare to scan data & restart markers */ cinfo->marker->next_restart_num = 0; /* Count another SOS marker */ cinfo->input_scan_number++; INPUT_SYNC(cinfo); return TRUE; } #ifdef D_ARITH_CODING_SUPPORTED LOCAL(boolean) get_dac(j_decompress_ptr cinfo) /* Process a DAC marker */ { JLONG length; int index, val; INPUT_VARS(cinfo); INPUT_2BYTES(cinfo, length, return FALSE); length -= 2; while (length > 0) { INPUT_BYTE(cinfo, index, return FALSE); INPUT_BYTE(cinfo, val, return FALSE); length -= 2; TRACEMS2(cinfo, 1, JTRC_DAC, index, val); if (index < 0 || index >= (2 * NUM_ARITH_TBLS)) ERREXIT1(cinfo, JERR_DAC_INDEX, index); if (index >= NUM_ARITH_TBLS) { /* define AC table */ cinfo->arith_ac_K[index - NUM_ARITH_TBLS] = (UINT8)val; } else { /* define DC table */ cinfo->arith_dc_L[index] = (UINT8)(val & 0x0F); cinfo->arith_dc_U[index] = (UINT8)(val >> 4); if (cinfo->arith_dc_L[index] > cinfo->arith_dc_U[index]) ERREXIT1(cinfo, JERR_DAC_VALUE, val); } } if (length != 0) ERREXIT(cinfo, JERR_BAD_LENGTH); INPUT_SYNC(cinfo); return TRUE; } #else /* !D_ARITH_CODING_SUPPORTED */ #define get_dac(cinfo) skip_variable(cinfo) #endif /* D_ARITH_CODING_SUPPORTED */ LOCAL(boolean) get_dht(j_decompress_ptr cinfo) /* Process a DHT marker */ { JLONG length; UINT8 bits[17]; UINT8 huffval[256]; int i, index, count; JHUFF_TBL **htblptr; INPUT_VARS(cinfo); INPUT_2BYTES(cinfo, length, return FALSE); length -= 2; while (length > 16) { INPUT_BYTE(cinfo, index, return FALSE); TRACEMS1(cinfo, 1, JTRC_DHT, index); bits[0] = 0; count = 0; for (i = 1; i <= 16; i++) { INPUT_BYTE(cinfo, bits[i], return FALSE); count += bits[i]; } length -= 1 + 16; TRACEMS8(cinfo, 2, JTRC_HUFFBITS, bits[1], bits[2], bits[3], bits[4], bits[5], bits[6], bits[7], bits[8]); TRACEMS8(cinfo, 2, JTRC_HUFFBITS, bits[9], bits[10], bits[11], bits[12], bits[13], bits[14], bits[15], bits[16]); /* Here we just do minimal validation of the counts to avoid walking * off the end of our table space. jdhuff.c will check more carefully. */ if (count > 256 || ((JLONG)count) > length) ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); for (i = 0; i < count; i++) INPUT_BYTE(cinfo, huffval[i], return FALSE); memset(&huffval[count], 0, (256 - count) * sizeof(UINT8)); length -= count; if (index & 0x10) { /* AC table definition */ index -= 0x10; if (index < 0 || index >= NUM_HUFF_TBLS) ERREXIT1(cinfo, JERR_DHT_INDEX, index); htblptr = &cinfo->ac_huff_tbl_ptrs[index]; } else { /* DC table definition */ if (index < 0 || index >= NUM_HUFF_TBLS) ERREXIT1(cinfo, JERR_DHT_INDEX, index); htblptr = &cinfo->dc_huff_tbl_ptrs[index]; } if (*htblptr == NULL) *htblptr = jpeg_alloc_huff_table((j_common_ptr)cinfo); memcpy((*htblptr)->bits, bits, sizeof((*htblptr)->bits)); memcpy((*htblptr)->huffval, huffval, sizeof((*htblptr)->huffval)); } if (length != 0) ERREXIT(cinfo, JERR_BAD_LENGTH); INPUT_SYNC(cinfo); return TRUE; } LOCAL(boolean) get_dqt(j_decompress_ptr cinfo) /* Process a DQT marker */ { JLONG length; int n, i, prec; unsigned int tmp; JQUANT_TBL *quant_ptr; INPUT_VARS(cinfo); INPUT_2BYTES(cinfo, length, return FALSE); length -= 2; while (length > 0) { INPUT_BYTE(cinfo, n, return FALSE); prec = n >> 4; n &= 0x0F; TRACEMS2(cinfo, 1, JTRC_DQT, n, prec); if (n >= NUM_QUANT_TBLS) ERREXIT1(cinfo, JERR_DQT_INDEX, n); if (cinfo->quant_tbl_ptrs[n] == NULL) cinfo->quant_tbl_ptrs[n] = jpeg_alloc_quant_table((j_common_ptr)cinfo); quant_ptr = cinfo->quant_tbl_ptrs[n]; for (i = 0; i < DCTSIZE2; i++) { if (prec) INPUT_2BYTES(cinfo, tmp, return FALSE); else INPUT_BYTE(cinfo, tmp, return FALSE); /* We convert the zigzag-order table to natural array order. */ quant_ptr->quantval[jpeg_natural_order[i]] = (UINT16)tmp; } if (cinfo->err->trace_level >= 2) { for (i = 0; i < DCTSIZE2; i += 8) { TRACEMS8(cinfo, 2, JTRC_QUANTVALS, quant_ptr->quantval[i], quant_ptr->quantval[i + 1], quant_ptr->quantval[i + 2], quant_ptr->quantval[i + 3], quant_ptr->quantval[i + 4], quant_ptr->quantval[i + 5], quant_ptr->quantval[i + 6], quant_ptr->quantval[i + 7]); } } length -= DCTSIZE2 + 1; if (prec) length -= DCTSIZE2; } if (length != 0) ERREXIT(cinfo, JERR_BAD_LENGTH); INPUT_SYNC(cinfo); return TRUE; } LOCAL(boolean) get_dri(j_decompress_ptr cinfo) /* Process a DRI marker */ { JLONG length; unsigned int tmp; INPUT_VARS(cinfo); INPUT_2BYTES(cinfo, length, return FALSE); if (length != 4) ERREXIT(cinfo, JERR_BAD_LENGTH); INPUT_2BYTES(cinfo, tmp, return FALSE); TRACEMS1(cinfo, 1, JTRC_DRI, tmp); cinfo->restart_interval = tmp; INPUT_SYNC(cinfo); return TRUE; } /* * Routines for processing APPn and COM markers. * These are either saved in memory or discarded, per application request. * APP0 and APP14 are specially checked to see if they are * JFIF and Adobe markers, respectively. */ #define APP0_DATA_LEN 14 /* Length of interesting data in APP0 */ #define APP14_DATA_LEN 12 /* Length of interesting data in APP14 */ #define APPN_DATA_LEN 14 /* Must be the largest of the above!! */ LOCAL(void) examine_app0(j_decompress_ptr cinfo, JOCTET *data, unsigned int datalen, JLONG remaining) /* Examine first few bytes from an APP0. * Take appropriate action if it is a JFIF marker. * datalen is # of bytes at data[], remaining is length of rest of marker data. */ { JLONG totallen = (JLONG)datalen + remaining; if (datalen >= APP0_DATA_LEN && data[0] == 0x4A && data[1] == 0x46 && data[2] == 0x49 && data[3] == 0x46 && data[4] == 0) { /* Found JFIF APP0 marker: save info */ cinfo->saw_JFIF_marker = TRUE; cinfo->JFIF_major_version = data[5]; cinfo->JFIF_minor_version = data[6]; cinfo->density_unit = data[7]; cinfo->X_density = (data[8] << 8) + data[9]; cinfo->Y_density = (data[10] << 8) + data[11]; /* Check version. * Major version must be 1, anything else signals an incompatible change. * (We used to treat this as an error, but now it's a nonfatal warning, * because some bozo at Hijaak couldn't read the spec.) * Minor version should be 0..2, but process anyway if newer. */ if (cinfo->JFIF_major_version != 1) WARNMS2(cinfo, JWRN_JFIF_MAJOR, cinfo->JFIF_major_version, cinfo->JFIF_minor_version); /* Generate trace messages */ TRACEMS5(cinfo, 1, JTRC_JFIF, cinfo->JFIF_major_version, cinfo->JFIF_minor_version, cinfo->X_density, cinfo->Y_density, cinfo->density_unit); /* Validate thumbnail dimensions and issue appropriate messages */ if (data[12] | data[13]) TRACEMS2(cinfo, 1, JTRC_JFIF_THUMBNAIL, data[12], data[13]); totallen -= APP0_DATA_LEN; if (totallen != ((JLONG)data[12] * (JLONG)data[13] * (JLONG)3)) TRACEMS1(cinfo, 1, JTRC_JFIF_BADTHUMBNAILSIZE, (int)totallen); } else if (datalen >= 6 && data[0] == 0x4A && data[1] == 0x46 && data[2] == 0x58 && data[3] == 0x58 && data[4] == 0) { /* Found JFIF "JFXX" extension APP0 marker */ /* The library doesn't actually do anything with these, * but we try to produce a helpful trace message. */ switch (data[5]) { case 0x10: TRACEMS1(cinfo, 1, JTRC_THUMB_JPEG, (int)totallen); break; case 0x11: TRACEMS1(cinfo, 1, JTRC_THUMB_PALETTE, (int)totallen); break; case 0x13: TRACEMS1(cinfo, 1, JTRC_THUMB_RGB, (int)totallen); break; default: TRACEMS2(cinfo, 1, JTRC_JFIF_EXTENSION, data[5], (int)totallen); break; } } else { /* Start of APP0 does not match "JFIF" or "JFXX", or too short */ TRACEMS1(cinfo, 1, JTRC_APP0, (int)totallen); } } LOCAL(void) examine_app14(j_decompress_ptr cinfo, JOCTET *data, unsigned int datalen, JLONG remaining) /* Examine first few bytes from an APP14. * Take appropriate action if it is an Adobe marker. * datalen is # of bytes at data[], remaining is length of rest of marker data. */ { unsigned int version, flags0, flags1, transform; if (datalen >= APP14_DATA_LEN && data[0] == 0x41 && data[1] == 0x64 && data[2] == 0x6F && data[3] == 0x62 && data[4] == 0x65) { /* Found Adobe APP14 marker */ version = (data[5] << 8) + data[6]; flags0 = (data[7] << 8) + data[8]; flags1 = (data[9] << 8) + data[10]; transform = data[11]; TRACEMS4(cinfo, 1, JTRC_ADOBE, version, flags0, flags1, transform); cinfo->saw_Adobe_marker = TRUE; cinfo->Adobe_transform = (UINT8)transform; } else { /* Start of APP14 does not match "Adobe", or too short */ TRACEMS1(cinfo, 1, JTRC_APP14, (int)(datalen + remaining)); } } METHODDEF(boolean) get_interesting_appn(j_decompress_ptr cinfo) /* Process an APP0 or APP14 marker without saving it */ { JLONG length; JOCTET b[APPN_DATA_LEN]; unsigned int i, numtoread; INPUT_VARS(cinfo); INPUT_2BYTES(cinfo, length, return FALSE); length -= 2; /* get the interesting part of the marker data */ if (length >= APPN_DATA_LEN) numtoread = APPN_DATA_LEN; else if (length > 0) numtoread = (unsigned int)length; else numtoread = 0; for (i = 0; i < numtoread; i++) INPUT_BYTE(cinfo, b[i], return FALSE); length -= numtoread; /* process it */ switch (cinfo->unread_marker) { case M_APP0: examine_app0(cinfo, (JOCTET *)b, numtoread, length); break; case M_APP14: examine_app14(cinfo, (JOCTET *)b, numtoread, length); break; default: /* can't get here unless jpeg_save_markers chooses wrong processor */ ERREXIT1(cinfo, JERR_UNKNOWN_MARKER, cinfo->unread_marker); break; } /* skip any remaining data -- could be lots */ INPUT_SYNC(cinfo); if (length > 0) (*cinfo->src->skip_input_data) (cinfo, (long)length); return TRUE; } #ifdef SAVE_MARKERS_SUPPORTED METHODDEF(boolean) save_marker(j_decompress_ptr cinfo) /* Save an APPn or COM marker into the marker list */ { my_marker_ptr marker = (my_marker_ptr)cinfo->marker; jpeg_saved_marker_ptr cur_marker = marker->cur_marker; unsigned int bytes_read, data_length; JOCTET *data; JLONG length = 0; INPUT_VARS(cinfo); if (cur_marker == NULL) { /* begin reading a marker */ INPUT_2BYTES(cinfo, length, return FALSE); length -= 2; if (length >= 0) { /* watch out for bogus length word */ /* figure out how much we want to save */ unsigned int limit; if (cinfo->unread_marker == (int)M_COM) limit = marker->length_limit_COM; else limit = marker->length_limit_APPn[cinfo->unread_marker - (int)M_APP0]; if ((unsigned int)length < limit) limit = (unsigned int)length; /* allocate and initialize the marker item */ cur_marker = (jpeg_saved_marker_ptr) (*cinfo->mem->alloc_large) ((j_common_ptr)cinfo, JPOOL_IMAGE, sizeof(struct jpeg_marker_struct) + limit); cur_marker->next = NULL; cur_marker->marker = (UINT8)cinfo->unread_marker; cur_marker->original_length = (unsigned int)length; cur_marker->data_length = limit; /* data area is just beyond the jpeg_marker_struct */ data = cur_marker->data = (JOCTET *)(cur_marker + 1); marker->cur_marker = cur_marker; marker->bytes_read = 0; bytes_read = 0; data_length = limit; } else { /* deal with bogus length word */ bytes_read = data_length = 0; data = NULL; } } else { /* resume reading a marker */ bytes_read = marker->bytes_read; data_length = cur_marker->data_length; data = cur_marker->data + bytes_read; } while (bytes_read < data_length) { INPUT_SYNC(cinfo); /* move the restart point to here */ marker->bytes_read = bytes_read; /* If there's not at least one byte in buffer, suspend */ MAKE_BYTE_AVAIL(cinfo, return FALSE); /* Copy bytes with reasonable rapidity */ while (bytes_read < data_length && bytes_in_buffer > 0) { *data++ = *next_input_byte++; bytes_in_buffer--; bytes_read++; } } /* Done reading what we want to read */ if (cur_marker != NULL) { /* will be NULL if bogus length word */ /* Add new marker to end of list */ if (cinfo->marker_list == NULL) { cinfo->marker_list = cur_marker; } else { jpeg_saved_marker_ptr prev = cinfo->marker_list; while (prev->next != NULL) prev = prev->next; prev->next = cur_marker; } /* Reset pointer & calc remaining data length */ data = cur_marker->data; length = cur_marker->original_length - data_length; } /* Reset to initial state for next marker */ marker->cur_marker = NULL; /* Process the marker if interesting; else just make a generic trace msg */ switch (cinfo->unread_marker) { case M_APP0: examine_app0(cinfo, data, data_length, length); break; case M_APP14: examine_app14(cinfo, data, data_length, length); break; default: TRACEMS2(cinfo, 1, JTRC_MISC_MARKER, cinfo->unread_marker, (int)(data_length + length)); break; } /* skip any remaining data -- could be lots */ INPUT_SYNC(cinfo); /* do before skip_input_data */ if (length > 0) (*cinfo->src->skip_input_data) (cinfo, (long)length); return TRUE; } #endif /* SAVE_MARKERS_SUPPORTED */ METHODDEF(boolean) skip_variable(j_decompress_ptr cinfo) /* Skip over an unknown or uninteresting variable-length marker */ { JLONG length; INPUT_VARS(cinfo); INPUT_2BYTES(cinfo, length, return FALSE); length -= 2; TRACEMS2(cinfo, 1, JTRC_MISC_MARKER, cinfo->unread_marker, (int)length); INPUT_SYNC(cinfo); /* do before skip_input_data */ if (length > 0) (*cinfo->src->skip_input_data) (cinfo, (long)length); return TRUE; } /* * Find the next JPEG marker, save it in cinfo->unread_marker. * Returns FALSE if had to suspend before reaching a marker; * in that case cinfo->unread_marker is unchanged. * * Note that the result might not be a valid marker code, * but it will never be 0 or FF. */ LOCAL(boolean) next_marker(j_decompress_ptr cinfo) { int c; INPUT_VARS(cinfo); for (;;) { INPUT_BYTE(cinfo, c, return FALSE); /* Skip any non-FF bytes. * This may look a bit inefficient, but it will not occur in a valid file. * We sync after each discarded byte so that a suspending data source * can discard the byte from its buffer. */ while (c != 0xFF) { cinfo->marker->discarded_bytes++; INPUT_SYNC(cinfo); INPUT_BYTE(cinfo, c, return FALSE); } /* This loop swallows any duplicate FF bytes. Extra FFs are legal as * pad bytes, so don't count them in discarded_bytes. We assume there * will not be so many consecutive FF bytes as to overflow a suspending * data source's input buffer. */ do { INPUT_BYTE(cinfo, c, return FALSE); } while (c == 0xFF); if (c != 0) break; /* found a valid marker, exit loop */ /* Reach here if we found a stuffed-zero data sequence (FF/00). * Discard it and loop back to try again. */ cinfo->marker->discarded_bytes += 2; INPUT_SYNC(cinfo); } if (cinfo->marker->discarded_bytes != 0) { WARNMS2(cinfo, JWRN_EXTRANEOUS_DATA, cinfo->marker->discarded_bytes, c); cinfo->marker->discarded_bytes = 0; } cinfo->unread_marker = c; INPUT_SYNC(cinfo); return TRUE; } LOCAL(boolean) first_marker(j_decompress_ptr cinfo) /* Like next_marker, but used to obtain the initial SOI marker. */ /* For this marker, we do not allow preceding garbage or fill; otherwise, * we might well scan an entire input file before realizing it ain't JPEG. * If an application wants to process non-JFIF files, it must seek to the * SOI before calling the JPEG library. */ { int c, c2; INPUT_VARS(cinfo); INPUT_BYTE(cinfo, c, return FALSE); INPUT_BYTE(cinfo, c2, return FALSE); if (c != 0xFF || c2 != (int)M_SOI) ERREXIT2(cinfo, JERR_NO_SOI, c, c2); cinfo->unread_marker = c2; INPUT_SYNC(cinfo); return TRUE; } /* * Read markers until SOS or EOI. * * Returns same codes as are defined for jpeg_consume_input: * JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI. */ METHODDEF(int) read_markers(j_decompress_ptr cinfo) { /* Outer loop repeats once for each marker. */ for (;;) { /* Collect the marker proper, unless we already did. */ /* NB: first_marker() enforces the requirement that SOI appear first. */ if (cinfo->unread_marker == 0) { if (!cinfo->marker->saw_SOI) { if (!first_marker(cinfo)) return JPEG_SUSPENDED; } else { if (!next_marker(cinfo)) return JPEG_SUSPENDED; } } /* At this point cinfo->unread_marker contains the marker code and the * input point is just past the marker proper, but before any parameters. * A suspension will cause us to return with this state still true. */ switch (cinfo->unread_marker) { case M_SOI: if (!get_soi(cinfo)) return JPEG_SUSPENDED; break; case M_SOF0: /* Baseline */ case M_SOF1: /* Extended sequential, Huffman */ if (!get_sof(cinfo, FALSE, FALSE)) return JPEG_SUSPENDED; break; case M_SOF2: /* Progressive, Huffman */ if (!get_sof(cinfo, TRUE, FALSE)) return JPEG_SUSPENDED; break; case M_SOF9: /* Extended sequential, arithmetic */ if (!get_sof(cinfo, FALSE, TRUE)) return JPEG_SUSPENDED; break; case M_SOF10: /* Progressive, arithmetic */ if (!get_sof(cinfo, TRUE, TRUE)) return JPEG_SUSPENDED; break; /* Currently unsupported SOFn types */ case M_SOF3: /* Lossless, Huffman */ case M_SOF5: /* Differential sequential, Huffman */ case M_SOF6: /* Differential progressive, Huffman */ case M_SOF7: /* Differential lossless, Huffman */ case M_JPG: /* Reserved for JPEG extensions */ case M_SOF11: /* Lossless, arithmetic */ case M_SOF13: /* Differential sequential, arithmetic */ case M_SOF14: /* Differential progressive, arithmetic */ case M_SOF15: /* Differential lossless, arithmetic */ ERREXIT1(cinfo, JERR_SOF_UNSUPPORTED, cinfo->unread_marker); break; case M_SOS: if (!get_sos(cinfo)) return JPEG_SUSPENDED; cinfo->unread_marker = 0; /* processed the marker */ return JPEG_REACHED_SOS; case M_EOI: TRACEMS(cinfo, 1, JTRC_EOI); cinfo->unread_marker = 0; /* processed the marker */ return JPEG_REACHED_EOI; case M_DAC: if (!get_dac(cinfo)) return JPEG_SUSPENDED; break; case M_DHT: if (!get_dht(cinfo)) return JPEG_SUSPENDED; break; case M_DQT: if (!get_dqt(cinfo)) return JPEG_SUSPENDED; break; case M_DRI: if (!get_dri(cinfo)) return JPEG_SUSPENDED; break; case M_APP0: case M_APP1: case M_APP2: case M_APP3: case M_APP4: case M_APP5: case M_APP6: case M_APP7: case M_APP8: case M_APP9: case M_APP10: case M_APP11: case M_APP12: case M_APP13: case M_APP14: case M_APP15: if (!(*((my_marker_ptr)cinfo->marker)->process_APPn[ cinfo->unread_marker - (int)M_APP0]) (cinfo)) return JPEG_SUSPENDED; break; case M_COM: if (!(*((my_marker_ptr)cinfo->marker)->process_COM) (cinfo)) return JPEG_SUSPENDED; break; case M_RST0: /* these are all parameterless */ case M_RST1: case M_RST2: case M_RST3: case M_RST4: case M_RST5: case M_RST6: case M_RST7: case M_TEM: TRACEMS1(cinfo, 1, JTRC_PARMLESS_MARKER, cinfo->unread_marker); break; case M_DNL: /* Ignore DNL ... perhaps the wrong thing */ if (!skip_variable(cinfo)) return JPEG_SUSPENDED; break; default: /* must be DHP, EXP, JPGn, or RESn */ /* For now, we treat the reserved markers as fatal errors since they are * likely to be used to signal incompatible JPEG Part 3 extensions. * Once the JPEG 3 version-number marker is well defined, this code * ought to change! */ ERREXIT1(cinfo, JERR_UNKNOWN_MARKER, cinfo->unread_marker); break; } /* Successfully processed marker, so reset state variable */ cinfo->unread_marker = 0; } /* end loop */ } /* * Read a restart marker, which is expected to appear next in the datastream; * if the marker is not there, take appropriate recovery action. * Returns FALSE if suspension is required. * * This is called by the entropy decoder after it has read an appropriate * number of MCUs. cinfo->unread_marker may be nonzero if the entropy decoder * has already read a marker from the data source. Under normal conditions * cinfo->unread_marker will be reset to 0 before returning; if not reset, * it holds a marker which the decoder will be unable to read past. */ METHODDEF(boolean) read_restart_marker(j_decompress_ptr cinfo) { /* Obtain a marker unless we already did. */ /* Note that next_marker will complain if it skips any data. */ if (cinfo->unread_marker == 0) { if (!next_marker(cinfo)) return FALSE; } if (cinfo->unread_marker == ((int)M_RST0 + cinfo->marker->next_restart_num)) { /* Normal case --- swallow the marker and let entropy decoder continue */ TRACEMS1(cinfo, 3, JTRC_RST, cinfo->marker->next_restart_num); cinfo->unread_marker = 0; } else { /* Uh-oh, the restart markers have been messed up. */ /* Let the data source manager determine how to resync. */ if (!(*cinfo->src->resync_to_restart) (cinfo, cinfo->marker->next_restart_num)) return FALSE; } /* Update next-restart state */ cinfo->marker->next_restart_num = (cinfo->marker->next_restart_num + 1) & 7; return TRUE; } /* * This is the default resync_to_restart method for data source managers * to use if they don't have any better approach. Some data source managers * may be able to back up, or may have additional knowledge about the data * which permits a more intelligent recovery strategy; such managers would * presumably supply their own resync method. * * read_restart_marker calls resync_to_restart if it finds a marker other than * the restart marker it was expecting. (This code is *not* used unless * a nonzero restart interval has been declared.) cinfo->unread_marker is * the marker code actually found (might be anything, except 0 or FF). * The desired restart marker number (0..7) is passed as a parameter. * This routine is supposed to apply whatever error recovery strategy seems * appropriate in order to position the input stream to the next data segment. * Note that cinfo->unread_marker is treated as a marker appearing before * the current data-source input point; usually it should be reset to zero * before returning. * Returns FALSE if suspension is required. * * This implementation is substantially constrained by wanting to treat the * input as a data stream; this means we can't back up. Therefore, we have * only the following actions to work with: * 1. Simply discard the marker and let the entropy decoder resume at next * byte of file. * 2. Read forward until we find another marker, discarding intervening * data. (In theory we could look ahead within the current bufferload, * without having to discard data if we don't find the desired marker. * This idea is not implemented here, in part because it makes behavior * dependent on buffer size and chance buffer-boundary positions.) * 3. Leave the marker unread (by failing to zero cinfo->unread_marker). * This will cause the entropy decoder to process an empty data segment, * inserting dummy zeroes, and then we will reprocess the marker. * * #2 is appropriate if we think the desired marker lies ahead, while #3 is * appropriate if the found marker is a future restart marker (indicating * that we have missed the desired restart marker, probably because it got * corrupted). * We apply #2 or #3 if the found marker is a restart marker no more than * two counts behind or ahead of the expected one. We also apply #2 if the * found marker is not a legal JPEG marker code (it's certainly bogus data). * If the found marker is a restart marker more than 2 counts away, we do #1 * (too much risk that the marker is erroneous; with luck we will be able to * resync at some future point). * For any valid non-restart JPEG marker, we apply #3. This keeps us from * overrunning the end of a scan. An implementation limited to single-scan * files might find it better to apply #2 for markers other than EOI, since * any other marker would have to be bogus data in that case. */ GLOBAL(boolean) jpeg_resync_to_restart(j_decompress_ptr cinfo, int desired) { int marker = cinfo->unread_marker; int action = 1; /* Always put up a warning. */ WARNMS2(cinfo, JWRN_MUST_RESYNC, marker, desired); /* Outer loop handles repeated decision after scanning forward. */ for (;;) { if (marker < (int)M_SOF0) action = 2; /* invalid marker */ else if (marker < (int)M_RST0 || marker > (int)M_RST7) action = 3; /* valid non-restart marker */ else { if (marker == ((int)M_RST0 + ((desired + 1) & 7)) || marker == ((int)M_RST0 + ((desired + 2) & 7))) action = 3; /* one of the next two expected restarts */ else if (marker == ((int)M_RST0 + ((desired - 1) & 7)) || marker == ((int)M_RST0 + ((desired - 2) & 7))) action = 2; /* a prior restart, so advance */ else action = 1; /* desired restart or too far away */ } TRACEMS2(cinfo, 4, JTRC_RECOVERY_ACTION, marker, action); switch (action) { case 1: /* Discard marker and let entropy decoder resume processing. */ cinfo->unread_marker = 0; return TRUE; case 2: /* Scan to the next marker, and repeat the decision loop. */ if (!next_marker(cinfo)) return FALSE; marker = cinfo->unread_marker; break; case 3: /* Return without advancing past this marker. */ /* Entropy decoder will be forced to process an empty segment. */ return TRUE; } } /* end loop */ } /* * Reset marker processing state to begin a fresh datastream. */ METHODDEF(void) reset_marker_reader(j_decompress_ptr cinfo) { my_marker_ptr marker = (my_marker_ptr)cinfo->marker; cinfo->comp_info = NULL; /* until allocated by get_sof */ cinfo->input_scan_number = 0; /* no SOS seen yet */ cinfo->unread_marker = 0; /* no pending marker */ marker->pub.saw_SOI = FALSE; /* set internal state too */ marker->pub.saw_SOF = FALSE; marker->pub.discarded_bytes = 0; marker->cur_marker = NULL; } /* * Initialize the marker reader module. * This is called only once, when the decompression object is created. */ GLOBAL(void) jinit_marker_reader(j_decompress_ptr cinfo) { my_marker_ptr marker; int i; /* Create subobject in permanent pool */ marker = (my_marker_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_PERMANENT, sizeof(my_marker_reader)); cinfo->marker = (struct jpeg_marker_reader *)marker; /* Initialize public method pointers */ marker->pub.reset_marker_reader = reset_marker_reader; marker->pub.read_markers = read_markers; marker->pub.read_restart_marker = read_restart_marker; /* Initialize COM/APPn processing. * By default, we examine and then discard APP0 and APP14, * but simply discard COM and all other APPn. */ marker->process_COM = skip_variable; marker->length_limit_COM = 0; for (i = 0; i < 16; i++) { marker->process_APPn[i] = skip_variable; marker->length_limit_APPn[i] = 0; } marker->process_APPn[0] = get_interesting_appn; marker->process_APPn[14] = get_interesting_appn; /* Reset marker processing state */ reset_marker_reader(cinfo); } /* * Control saving of COM and APPn markers into marker_list. */ #ifdef SAVE_MARKERS_SUPPORTED GLOBAL(void) jpeg_save_markers(j_decompress_ptr cinfo, int marker_code, unsigned int length_limit) { my_marker_ptr marker = (my_marker_ptr)cinfo->marker; long maxlength; jpeg_marker_parser_method processor; /* Length limit mustn't be larger than what we can allocate * (should only be a concern in a 16-bit environment). */ maxlength = cinfo->mem->max_alloc_chunk - sizeof(struct jpeg_marker_struct); if (((long)length_limit) > maxlength) length_limit = (unsigned int)maxlength; /* Choose processor routine to use. * APP0/APP14 have special requirements. */ if (length_limit) { processor = save_marker; /* If saving APP0/APP14, save at least enough for our internal use. */ if (marker_code == (int)M_APP0 && length_limit < APP0_DATA_LEN) length_limit = APP0_DATA_LEN; else if (marker_code == (int)M_APP14 && length_limit < APP14_DATA_LEN) length_limit = APP14_DATA_LEN; } else { processor = skip_variable; /* If discarding APP0/APP14, use our regular on-the-fly processor. */ if (marker_code == (int)M_APP0 || marker_code == (int)M_APP14) processor = get_interesting_appn; } if (marker_code == (int)M_COM) { marker->process_COM = processor; marker->length_limit_COM = length_limit; } else if (marker_code >= (int)M_APP0 && marker_code <= (int)M_APP15) { marker->process_APPn[marker_code - (int)M_APP0] = processor; marker->length_limit_APPn[marker_code - (int)M_APP0] = length_limit; } else ERREXIT1(cinfo, JERR_UNKNOWN_MARKER, marker_code); } #endif /* SAVE_MARKERS_SUPPORTED */ /* * Install a special processing method for COM or APPn markers. */ GLOBAL(void) jpeg_set_marker_processor(j_decompress_ptr cinfo, int marker_code, jpeg_marker_parser_method routine) { my_marker_ptr marker = (my_marker_ptr)cinfo->marker; if (marker_code == (int)M_COM) marker->process_COM = routine; else if (marker_code >= (int)M_APP0 && marker_code <= (int)M_APP15) marker->process_APPn[marker_code - (int)M_APP0] = routine; else ERREXIT1(cinfo, JERR_UNKNOWN_MARKER, marker_code); } libjpeg-turbo-2.1.5/jdmaster.c000066400000000000000000000655041436506551100162610ustar00rootroot00000000000000/* * jdmaster.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1997, Thomas G. Lane. * Modified 2002-2009 by Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright (C) 2009-2011, 2016, 2019, 2022, D. R. Commander. * Copyright (C) 2013, Linaro Limited. * Copyright (C) 2015, Google, Inc. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains master control logic for the JPEG decompressor. * These routines are concerned with selecting the modules to be executed * and with determining the number of passes and the work to be done in each * pass. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jpegcomp.h" #include "jdmaster.h" /* * Determine whether merged upsample/color conversion should be used. * CRUCIAL: this must match the actual capabilities of jdmerge.c! */ LOCAL(boolean) use_merged_upsample(j_decompress_ptr cinfo) { #ifdef UPSAMPLE_MERGING_SUPPORTED /* Merging is the equivalent of plain box-filter upsampling */ if (cinfo->do_fancy_upsampling || cinfo->CCIR601_sampling) return FALSE; /* jdmerge.c only supports YCC=>RGB and YCC=>RGB565 color conversion */ if (cinfo->jpeg_color_space != JCS_YCbCr || cinfo->num_components != 3 || (cinfo->out_color_space != JCS_RGB && cinfo->out_color_space != JCS_RGB565 && cinfo->out_color_space != JCS_EXT_RGB && cinfo->out_color_space != JCS_EXT_RGBX && cinfo->out_color_space != JCS_EXT_BGR && cinfo->out_color_space != JCS_EXT_BGRX && cinfo->out_color_space != JCS_EXT_XBGR && cinfo->out_color_space != JCS_EXT_XRGB && cinfo->out_color_space != JCS_EXT_RGBA && cinfo->out_color_space != JCS_EXT_BGRA && cinfo->out_color_space != JCS_EXT_ABGR && cinfo->out_color_space != JCS_EXT_ARGB)) return FALSE; if ((cinfo->out_color_space == JCS_RGB565 && cinfo->out_color_components != 3) || (cinfo->out_color_space != JCS_RGB565 && cinfo->out_color_components != rgb_pixelsize[cinfo->out_color_space])) return FALSE; /* and it only handles 2h1v or 2h2v sampling ratios */ if (cinfo->comp_info[0].h_samp_factor != 2 || cinfo->comp_info[1].h_samp_factor != 1 || cinfo->comp_info[2].h_samp_factor != 1 || cinfo->comp_info[0].v_samp_factor > 2 || cinfo->comp_info[1].v_samp_factor != 1 || cinfo->comp_info[2].v_samp_factor != 1) return FALSE; /* furthermore, it doesn't work if we've scaled the IDCTs differently */ if (cinfo->comp_info[0]._DCT_scaled_size != cinfo->_min_DCT_scaled_size || cinfo->comp_info[1]._DCT_scaled_size != cinfo->_min_DCT_scaled_size || cinfo->comp_info[2]._DCT_scaled_size != cinfo->_min_DCT_scaled_size) return FALSE; /* ??? also need to test for upsample-time rescaling, when & if supported */ return TRUE; /* by golly, it'll work... */ #else return FALSE; #endif } /* * Compute output image dimensions and related values. * NOTE: this is exported for possible use by application. * Hence it mustn't do anything that can't be done twice. */ #if JPEG_LIB_VERSION >= 80 GLOBAL(void) #else LOCAL(void) #endif jpeg_core_output_dimensions(j_decompress_ptr cinfo) /* Do computations that are needed before master selection phase. * This function is used for transcoding and full decompression. */ { #ifdef IDCT_SCALING_SUPPORTED int ci; jpeg_component_info *compptr; /* Compute actual output image dimensions and DCT scaling choices. */ if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom) { /* Provide 1/block_size scaling */ cinfo->output_width = (JDIMENSION) jdiv_round_up((long)cinfo->image_width, (long)DCTSIZE); cinfo->output_height = (JDIMENSION) jdiv_round_up((long)cinfo->image_height, (long)DCTSIZE); cinfo->_min_DCT_h_scaled_size = 1; cinfo->_min_DCT_v_scaled_size = 1; } else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 2) { /* Provide 2/block_size scaling */ cinfo->output_width = (JDIMENSION) jdiv_round_up((long)cinfo->image_width * 2L, (long)DCTSIZE); cinfo->output_height = (JDIMENSION) jdiv_round_up((long)cinfo->image_height * 2L, (long)DCTSIZE); cinfo->_min_DCT_h_scaled_size = 2; cinfo->_min_DCT_v_scaled_size = 2; } else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 3) { /* Provide 3/block_size scaling */ cinfo->output_width = (JDIMENSION) jdiv_round_up((long)cinfo->image_width * 3L, (long)DCTSIZE); cinfo->output_height = (JDIMENSION) jdiv_round_up((long)cinfo->image_height * 3L, (long)DCTSIZE); cinfo->_min_DCT_h_scaled_size = 3; cinfo->_min_DCT_v_scaled_size = 3; } else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 4) { /* Provide 4/block_size scaling */ cinfo->output_width = (JDIMENSION) jdiv_round_up((long)cinfo->image_width * 4L, (long)DCTSIZE); cinfo->output_height = (JDIMENSION) jdiv_round_up((long)cinfo->image_height * 4L, (long)DCTSIZE); cinfo->_min_DCT_h_scaled_size = 4; cinfo->_min_DCT_v_scaled_size = 4; } else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 5) { /* Provide 5/block_size scaling */ cinfo->output_width = (JDIMENSION) jdiv_round_up((long)cinfo->image_width * 5L, (long)DCTSIZE); cinfo->output_height = (JDIMENSION) jdiv_round_up((long)cinfo->image_height * 5L, (long)DCTSIZE); cinfo->_min_DCT_h_scaled_size = 5; cinfo->_min_DCT_v_scaled_size = 5; } else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 6) { /* Provide 6/block_size scaling */ cinfo->output_width = (JDIMENSION) jdiv_round_up((long)cinfo->image_width * 6L, (long)DCTSIZE); cinfo->output_height = (JDIMENSION) jdiv_round_up((long)cinfo->image_height * 6L, (long)DCTSIZE); cinfo->_min_DCT_h_scaled_size = 6; cinfo->_min_DCT_v_scaled_size = 6; } else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 7) { /* Provide 7/block_size scaling */ cinfo->output_width = (JDIMENSION) jdiv_round_up((long)cinfo->image_width * 7L, (long)DCTSIZE); cinfo->output_height = (JDIMENSION) jdiv_round_up((long)cinfo->image_height * 7L, (long)DCTSIZE); cinfo->_min_DCT_h_scaled_size = 7; cinfo->_min_DCT_v_scaled_size = 7; } else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 8) { /* Provide 8/block_size scaling */ cinfo->output_width = (JDIMENSION) jdiv_round_up((long)cinfo->image_width * 8L, (long)DCTSIZE); cinfo->output_height = (JDIMENSION) jdiv_round_up((long)cinfo->image_height * 8L, (long)DCTSIZE); cinfo->_min_DCT_h_scaled_size = 8; cinfo->_min_DCT_v_scaled_size = 8; } else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 9) { /* Provide 9/block_size scaling */ cinfo->output_width = (JDIMENSION) jdiv_round_up((long)cinfo->image_width * 9L, (long)DCTSIZE); cinfo->output_height = (JDIMENSION) jdiv_round_up((long)cinfo->image_height * 9L, (long)DCTSIZE); cinfo->_min_DCT_h_scaled_size = 9; cinfo->_min_DCT_v_scaled_size = 9; } else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 10) { /* Provide 10/block_size scaling */ cinfo->output_width = (JDIMENSION) jdiv_round_up((long)cinfo->image_width * 10L, (long)DCTSIZE); cinfo->output_height = (JDIMENSION) jdiv_round_up((long)cinfo->image_height * 10L, (long)DCTSIZE); cinfo->_min_DCT_h_scaled_size = 10; cinfo->_min_DCT_v_scaled_size = 10; } else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 11) { /* Provide 11/block_size scaling */ cinfo->output_width = (JDIMENSION) jdiv_round_up((long)cinfo->image_width * 11L, (long)DCTSIZE); cinfo->output_height = (JDIMENSION) jdiv_round_up((long)cinfo->image_height * 11L, (long)DCTSIZE); cinfo->_min_DCT_h_scaled_size = 11; cinfo->_min_DCT_v_scaled_size = 11; } else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 12) { /* Provide 12/block_size scaling */ cinfo->output_width = (JDIMENSION) jdiv_round_up((long)cinfo->image_width * 12L, (long)DCTSIZE); cinfo->output_height = (JDIMENSION) jdiv_round_up((long)cinfo->image_height * 12L, (long)DCTSIZE); cinfo->_min_DCT_h_scaled_size = 12; cinfo->_min_DCT_v_scaled_size = 12; } else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 13) { /* Provide 13/block_size scaling */ cinfo->output_width = (JDIMENSION) jdiv_round_up((long)cinfo->image_width * 13L, (long)DCTSIZE); cinfo->output_height = (JDIMENSION) jdiv_round_up((long)cinfo->image_height * 13L, (long)DCTSIZE); cinfo->_min_DCT_h_scaled_size = 13; cinfo->_min_DCT_v_scaled_size = 13; } else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 14) { /* Provide 14/block_size scaling */ cinfo->output_width = (JDIMENSION) jdiv_round_up((long)cinfo->image_width * 14L, (long)DCTSIZE); cinfo->output_height = (JDIMENSION) jdiv_round_up((long)cinfo->image_height * 14L, (long)DCTSIZE); cinfo->_min_DCT_h_scaled_size = 14; cinfo->_min_DCT_v_scaled_size = 14; } else if (cinfo->scale_num * DCTSIZE <= cinfo->scale_denom * 15) { /* Provide 15/block_size scaling */ cinfo->output_width = (JDIMENSION) jdiv_round_up((long)cinfo->image_width * 15L, (long)DCTSIZE); cinfo->output_height = (JDIMENSION) jdiv_round_up((long)cinfo->image_height * 15L, (long)DCTSIZE); cinfo->_min_DCT_h_scaled_size = 15; cinfo->_min_DCT_v_scaled_size = 15; } else { /* Provide 16/block_size scaling */ cinfo->output_width = (JDIMENSION) jdiv_round_up((long)cinfo->image_width * 16L, (long)DCTSIZE); cinfo->output_height = (JDIMENSION) jdiv_round_up((long)cinfo->image_height * 16L, (long)DCTSIZE); cinfo->_min_DCT_h_scaled_size = 16; cinfo->_min_DCT_v_scaled_size = 16; } /* Recompute dimensions of components */ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { compptr->_DCT_h_scaled_size = cinfo->_min_DCT_h_scaled_size; compptr->_DCT_v_scaled_size = cinfo->_min_DCT_v_scaled_size; } #else /* !IDCT_SCALING_SUPPORTED */ /* Hardwire it to "no scaling" */ cinfo->output_width = cinfo->image_width; cinfo->output_height = cinfo->image_height; /* jdinput.c has already initialized DCT_scaled_size, * and has computed unscaled downsampled_width and downsampled_height. */ #endif /* IDCT_SCALING_SUPPORTED */ } /* * Compute output image dimensions and related values. * NOTE: this is exported for possible use by application. * Hence it mustn't do anything that can't be done twice. * Also note that it may be called before the master module is initialized! */ GLOBAL(void) jpeg_calc_output_dimensions(j_decompress_ptr cinfo) /* Do computations that are needed before master selection phase */ { #ifdef IDCT_SCALING_SUPPORTED int ci; jpeg_component_info *compptr; #endif /* Prevent application from calling me at wrong times */ if (cinfo->global_state != DSTATE_READY) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); /* Compute core output image dimensions and DCT scaling choices. */ jpeg_core_output_dimensions(cinfo); #ifdef IDCT_SCALING_SUPPORTED /* In selecting the actual DCT scaling for each component, we try to * scale up the chroma components via IDCT scaling rather than upsampling. * This saves time if the upsampler gets to use 1:1 scaling. * Note this code adapts subsampling ratios which are powers of 2. */ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { int ssize = cinfo->_min_DCT_scaled_size; while (ssize < DCTSIZE && ((cinfo->max_h_samp_factor * cinfo->_min_DCT_scaled_size) % (compptr->h_samp_factor * ssize * 2) == 0) && ((cinfo->max_v_samp_factor * cinfo->_min_DCT_scaled_size) % (compptr->v_samp_factor * ssize * 2) == 0)) { ssize = ssize * 2; } #if JPEG_LIB_VERSION >= 70 compptr->DCT_h_scaled_size = compptr->DCT_v_scaled_size = ssize; #else compptr->DCT_scaled_size = ssize; #endif } /* Recompute downsampled dimensions of components; * application needs to know these if using raw downsampled data. */ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { /* Size in samples, after IDCT scaling */ compptr->downsampled_width = (JDIMENSION) jdiv_round_up((long)cinfo->image_width * (long)(compptr->h_samp_factor * compptr->_DCT_scaled_size), (long)(cinfo->max_h_samp_factor * DCTSIZE)); compptr->downsampled_height = (JDIMENSION) jdiv_round_up((long)cinfo->image_height * (long)(compptr->v_samp_factor * compptr->_DCT_scaled_size), (long)(cinfo->max_v_samp_factor * DCTSIZE)); } #else /* !IDCT_SCALING_SUPPORTED */ /* Hardwire it to "no scaling" */ cinfo->output_width = cinfo->image_width; cinfo->output_height = cinfo->image_height; /* jdinput.c has already initialized DCT_scaled_size to DCTSIZE, * and has computed unscaled downsampled_width and downsampled_height. */ #endif /* IDCT_SCALING_SUPPORTED */ /* Report number of components in selected colorspace. */ /* Probably this should be in the color conversion module... */ switch (cinfo->out_color_space) { case JCS_GRAYSCALE: cinfo->out_color_components = 1; break; case JCS_RGB: case JCS_EXT_RGB: case JCS_EXT_RGBX: case JCS_EXT_BGR: case JCS_EXT_BGRX: case JCS_EXT_XBGR: case JCS_EXT_XRGB: case JCS_EXT_RGBA: case JCS_EXT_BGRA: case JCS_EXT_ABGR: case JCS_EXT_ARGB: cinfo->out_color_components = rgb_pixelsize[cinfo->out_color_space]; break; case JCS_YCbCr: case JCS_RGB565: cinfo->out_color_components = 3; break; case JCS_CMYK: case JCS_YCCK: cinfo->out_color_components = 4; break; default: /* else must be same colorspace as in file */ cinfo->out_color_components = cinfo->num_components; break; } cinfo->output_components = (cinfo->quantize_colors ? 1 : cinfo->out_color_components); /* See if upsampler will want to emit more than one row at a time */ if (use_merged_upsample(cinfo)) cinfo->rec_outbuf_height = cinfo->max_v_samp_factor; else cinfo->rec_outbuf_height = 1; } /* * Several decompression processes need to range-limit values to the range * 0..MAXJSAMPLE; the input value may fall somewhat outside this range * due to noise introduced by quantization, roundoff error, etc. These * processes are inner loops and need to be as fast as possible. On most * machines, particularly CPUs with pipelines or instruction prefetch, * a (subscript-check-less) C table lookup * x = sample_range_limit[x]; * is faster than explicit tests * if (x < 0) x = 0; * else if (x > MAXJSAMPLE) x = MAXJSAMPLE; * These processes all use a common table prepared by the routine below. * * For most steps we can mathematically guarantee that the initial value * of x is within MAXJSAMPLE+1 of the legal range, so a table running from * -(MAXJSAMPLE+1) to 2*MAXJSAMPLE+1 is sufficient. But for the initial * limiting step (just after the IDCT), a wildly out-of-range value is * possible if the input data is corrupt. To avoid any chance of indexing * off the end of memory and getting a bad-pointer trap, we perform the * post-IDCT limiting thus: * x = range_limit[x & MASK]; * where MASK is 2 bits wider than legal sample data, ie 10 bits for 8-bit * samples. Under normal circumstances this is more than enough range and * a correct output will be generated; with bogus input data the mask will * cause wraparound, and we will safely generate a bogus-but-in-range output. * For the post-IDCT step, we want to convert the data from signed to unsigned * representation by adding CENTERJSAMPLE at the same time that we limit it. * So the post-IDCT limiting table ends up looking like this: * CENTERJSAMPLE,CENTERJSAMPLE+1,...,MAXJSAMPLE, * MAXJSAMPLE (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times), * 0 (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times), * 0,1,...,CENTERJSAMPLE-1 * Negative inputs select values from the upper half of the table after * masking. * * We can save some space by overlapping the start of the post-IDCT table * with the simpler range limiting table. The post-IDCT table begins at * sample_range_limit + CENTERJSAMPLE. */ LOCAL(void) prepare_range_limit_table(j_decompress_ptr cinfo) /* Allocate and fill in the sample_range_limit table */ { JSAMPLE *table; int i; table = (JSAMPLE *) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, (5 * (MAXJSAMPLE + 1) + CENTERJSAMPLE) * sizeof(JSAMPLE)); table += (MAXJSAMPLE + 1); /* allow negative subscripts of simple table */ cinfo->sample_range_limit = table; /* First segment of "simple" table: limit[x] = 0 for x < 0 */ memset(table - (MAXJSAMPLE + 1), 0, (MAXJSAMPLE + 1) * sizeof(JSAMPLE)); /* Main part of "simple" table: limit[x] = x */ for (i = 0; i <= MAXJSAMPLE; i++) table[i] = (JSAMPLE)i; table += CENTERJSAMPLE; /* Point to where post-IDCT table starts */ /* End of simple table, rest of first half of post-IDCT table */ for (i = CENTERJSAMPLE; i < 2 * (MAXJSAMPLE + 1); i++) table[i] = MAXJSAMPLE; /* Second half of post-IDCT table */ memset(table + (2 * (MAXJSAMPLE + 1)), 0, (2 * (MAXJSAMPLE + 1) - CENTERJSAMPLE) * sizeof(JSAMPLE)); memcpy(table + (4 * (MAXJSAMPLE + 1) - CENTERJSAMPLE), cinfo->sample_range_limit, CENTERJSAMPLE * sizeof(JSAMPLE)); } /* * Master selection of decompression modules. * This is done once at jpeg_start_decompress time. We determine * which modules will be used and give them appropriate initialization calls. * We also initialize the decompressor input side to begin consuming data. * * Since jpeg_read_header has finished, we know what is in the SOF * and (first) SOS markers. We also have all the application parameter * settings. */ LOCAL(void) master_selection(j_decompress_ptr cinfo) { my_master_ptr master = (my_master_ptr)cinfo->master; boolean use_c_buffer; long samplesperrow; JDIMENSION jd_samplesperrow; /* Initialize dimensions and other stuff */ jpeg_calc_output_dimensions(cinfo); prepare_range_limit_table(cinfo); /* Width of an output scanline must be representable as JDIMENSION. */ samplesperrow = (long)cinfo->output_width * (long)cinfo->out_color_components; jd_samplesperrow = (JDIMENSION)samplesperrow; if ((long)jd_samplesperrow != samplesperrow) ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); /* Initialize my private state */ master->pass_number = 0; master->using_merged_upsample = use_merged_upsample(cinfo); /* Color quantizer selection */ master->quantizer_1pass = NULL; master->quantizer_2pass = NULL; /* No mode changes if not using buffered-image mode. */ if (!cinfo->quantize_colors || !cinfo->buffered_image) { cinfo->enable_1pass_quant = FALSE; cinfo->enable_external_quant = FALSE; cinfo->enable_2pass_quant = FALSE; } if (cinfo->quantize_colors) { if (cinfo->raw_data_out) ERREXIT(cinfo, JERR_NOTIMPL); /* 2-pass quantizer only works in 3-component color space. */ if (cinfo->out_color_components != 3) { cinfo->enable_1pass_quant = TRUE; cinfo->enable_external_quant = FALSE; cinfo->enable_2pass_quant = FALSE; cinfo->colormap = NULL; } else if (cinfo->colormap != NULL) { cinfo->enable_external_quant = TRUE; } else if (cinfo->two_pass_quantize) { cinfo->enable_2pass_quant = TRUE; } else { cinfo->enable_1pass_quant = TRUE; } if (cinfo->enable_1pass_quant) { #ifdef QUANT_1PASS_SUPPORTED jinit_1pass_quantizer(cinfo); master->quantizer_1pass = cinfo->cquantize; #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif } /* We use the 2-pass code to map to external colormaps. */ if (cinfo->enable_2pass_quant || cinfo->enable_external_quant) { #ifdef QUANT_2PASS_SUPPORTED jinit_2pass_quantizer(cinfo); master->quantizer_2pass = cinfo->cquantize; #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif } /* If both quantizers are initialized, the 2-pass one is left active; * this is necessary for starting with quantization to an external map. */ } /* Post-processing: in particular, color conversion first */ if (!cinfo->raw_data_out) { if (master->using_merged_upsample) { #ifdef UPSAMPLE_MERGING_SUPPORTED jinit_merged_upsampler(cinfo); /* does color conversion too */ #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif } else { jinit_color_deconverter(cinfo); jinit_upsampler(cinfo); } jinit_d_post_controller(cinfo, cinfo->enable_2pass_quant); } /* Inverse DCT */ jinit_inverse_dct(cinfo); /* Entropy decoding: either Huffman or arithmetic coding. */ if (cinfo->arith_code) { #ifdef D_ARITH_CODING_SUPPORTED jinit_arith_decoder(cinfo); #else ERREXIT(cinfo, JERR_ARITH_NOTIMPL); #endif } else { if (cinfo->progressive_mode) { #ifdef D_PROGRESSIVE_SUPPORTED jinit_phuff_decoder(cinfo); #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif } else jinit_huff_decoder(cinfo); } /* Initialize principal buffer controllers. */ use_c_buffer = cinfo->inputctl->has_multiple_scans || cinfo->buffered_image; jinit_d_coef_controller(cinfo, use_c_buffer); if (!cinfo->raw_data_out) jinit_d_main_controller(cinfo, FALSE /* never need full buffer here */); /* We can now tell the memory manager to allocate virtual arrays. */ (*cinfo->mem->realize_virt_arrays) ((j_common_ptr)cinfo); /* Initialize input side of decompressor to consume first scan. */ (*cinfo->inputctl->start_input_pass) (cinfo); /* Set the first and last iMCU columns to decompress from single-scan images. * By default, decompress all of the iMCU columns. */ cinfo->master->first_iMCU_col = 0; cinfo->master->last_iMCU_col = cinfo->MCUs_per_row - 1; cinfo->master->last_good_iMCU_row = 0; #ifdef D_MULTISCAN_FILES_SUPPORTED /* If jpeg_start_decompress will read the whole file, initialize * progress monitoring appropriately. The input step is counted * as one pass. */ if (cinfo->progress != NULL && !cinfo->buffered_image && cinfo->inputctl->has_multiple_scans) { int nscans; /* Estimate number of scans to set pass_limit. */ if (cinfo->progressive_mode) { /* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */ nscans = 2 + 3 * cinfo->num_components; } else { /* For a nonprogressive multiscan file, estimate 1 scan per component. */ nscans = cinfo->num_components; } cinfo->progress->pass_counter = 0L; cinfo->progress->pass_limit = (long)cinfo->total_iMCU_rows * nscans; cinfo->progress->completed_passes = 0; cinfo->progress->total_passes = (cinfo->enable_2pass_quant ? 3 : 2); /* Count the input pass as done */ master->pass_number++; } #endif /* D_MULTISCAN_FILES_SUPPORTED */ } /* * Per-pass setup. * This is called at the beginning of each output pass. We determine which * modules will be active during this pass and give them appropriate * start_pass calls. We also set is_dummy_pass to indicate whether this * is a "real" output pass or a dummy pass for color quantization. * (In the latter case, jdapistd.c will crank the pass to completion.) */ METHODDEF(void) prepare_for_output_pass(j_decompress_ptr cinfo) { my_master_ptr master = (my_master_ptr)cinfo->master; if (master->pub.is_dummy_pass) { #ifdef QUANT_2PASS_SUPPORTED /* Final pass of 2-pass quantization */ master->pub.is_dummy_pass = FALSE; (*cinfo->cquantize->start_pass) (cinfo, FALSE); (*cinfo->post->start_pass) (cinfo, JBUF_CRANK_DEST); (*cinfo->main->start_pass) (cinfo, JBUF_CRANK_DEST); #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif /* QUANT_2PASS_SUPPORTED */ } else { if (cinfo->quantize_colors && cinfo->colormap == NULL) { /* Select new quantization method */ if (cinfo->two_pass_quantize && cinfo->enable_2pass_quant) { cinfo->cquantize = master->quantizer_2pass; master->pub.is_dummy_pass = TRUE; } else if (cinfo->enable_1pass_quant) { cinfo->cquantize = master->quantizer_1pass; } else { ERREXIT(cinfo, JERR_MODE_CHANGE); } } (*cinfo->idct->start_pass) (cinfo); (*cinfo->coef->start_output_pass) (cinfo); if (!cinfo->raw_data_out) { if (!master->using_merged_upsample) (*cinfo->cconvert->start_pass) (cinfo); (*cinfo->upsample->start_pass) (cinfo); if (cinfo->quantize_colors) (*cinfo->cquantize->start_pass) (cinfo, master->pub.is_dummy_pass); (*cinfo->post->start_pass) (cinfo, (master->pub.is_dummy_pass ? JBUF_SAVE_AND_PASS : JBUF_PASS_THRU)); (*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU); } } /* Set up progress monitor's pass info if present */ if (cinfo->progress != NULL) { cinfo->progress->completed_passes = master->pass_number; cinfo->progress->total_passes = master->pass_number + (master->pub.is_dummy_pass ? 2 : 1); /* In buffered-image mode, we assume one more output pass if EOI not * yet reached, but no more passes if EOI has been reached. */ if (cinfo->buffered_image && !cinfo->inputctl->eoi_reached) { cinfo->progress->total_passes += (cinfo->enable_2pass_quant ? 2 : 1); } } } /* * Finish up at end of an output pass. */ METHODDEF(void) finish_output_pass(j_decompress_ptr cinfo) { my_master_ptr master = (my_master_ptr)cinfo->master; if (cinfo->quantize_colors) (*cinfo->cquantize->finish_pass) (cinfo); master->pass_number++; } #ifdef D_MULTISCAN_FILES_SUPPORTED /* * Switch to a new external colormap between output passes. */ GLOBAL(void) jpeg_new_colormap(j_decompress_ptr cinfo) { my_master_ptr master = (my_master_ptr)cinfo->master; /* Prevent application from calling me at wrong times */ if (cinfo->global_state != DSTATE_BUFIMAGE) ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); if (cinfo->quantize_colors && cinfo->enable_external_quant && cinfo->colormap != NULL) { /* Select 2-pass quantizer for external colormap use */ cinfo->cquantize = master->quantizer_2pass; /* Notify quantizer of colormap change */ (*cinfo->cquantize->new_color_map) (cinfo); master->pub.is_dummy_pass = FALSE; /* just in case */ } else ERREXIT(cinfo, JERR_MODE_CHANGE); } #endif /* D_MULTISCAN_FILES_SUPPORTED */ /* * Initialize master decompression control and select active modules. * This is performed at the start of jpeg_start_decompress. */ GLOBAL(void) jinit_master_decompress(j_decompress_ptr cinfo) { my_master_ptr master = (my_master_ptr)cinfo->master; master->pub.prepare_for_output_pass = prepare_for_output_pass; master->pub.finish_output_pass = finish_output_pass; master->pub.is_dummy_pass = FALSE; master->pub.jinit_upsampler_no_alloc = FALSE; master_selection(cinfo); } libjpeg-turbo-2.1.5/jdmaster.h000066400000000000000000000014241436506551100162550ustar00rootroot00000000000000/* * jdmaster.h * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1995, Thomas G. Lane. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains the master control structure for the JPEG decompressor. */ /* Private state */ typedef struct { struct jpeg_decomp_master pub; /* public fields */ int pass_number; /* # of passes completed */ boolean using_merged_upsample; /* TRUE if using merged upsample/cconvert */ /* Saved references to initialized quantizer modules, * in case we need to switch modes. */ struct jpeg_color_quantizer *quantizer_1pass; struct jpeg_color_quantizer *quantizer_2pass; } my_decomp_master; typedef my_decomp_master *my_master_ptr; libjpeg-turbo-2.1.5/jdmerge.c000066400000000000000000000465041436506551100160640ustar00rootroot00000000000000/* * jdmerge.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1996, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright 2009 Pierre Ossman for Cendio AB * Copyright (C) 2009, 2011, 2014-2015, 2020, D. R. Commander. * Copyright (C) 2013, Linaro Limited. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains code for merged upsampling/color conversion. * * This file combines functions from jdsample.c and jdcolor.c; * read those files first to understand what's going on. * * When the chroma components are to be upsampled by simple replication * (ie, box filtering), we can save some work in color conversion by * calculating all the output pixels corresponding to a pair of chroma * samples at one time. In the conversion equations * R = Y + K1 * Cr * G = Y + K2 * Cb + K3 * Cr * B = Y + K4 * Cb * only the Y term varies among the group of pixels corresponding to a pair * of chroma samples, so the rest of the terms can be calculated just once. * At typical sampling ratios, this eliminates half or three-quarters of the * multiplications needed for color conversion. * * This file currently provides implementations for the following cases: * YCbCr => RGB color conversion only. * Sampling ratios of 2h1v or 2h2v. * No scaling needed at upsample time. * Corner-aligned (non-CCIR601) sampling alignment. * Other special cases could be added, but in most applications these are * the only common cases. (For uncommon cases we fall back on the more * general code in jdsample.c and jdcolor.c.) */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jdmerge.h" #include "jsimd.h" #ifdef UPSAMPLE_MERGING_SUPPORTED #define SCALEBITS 16 /* speediest right-shift on some machines */ #define ONE_HALF ((JLONG)1 << (SCALEBITS - 1)) #define FIX(x) ((JLONG)((x) * (1L << SCALEBITS) + 0.5)) /* Include inline routines for colorspace extensions */ #include "jdmrgext.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #define RGB_RED EXT_RGB_RED #define RGB_GREEN EXT_RGB_GREEN #define RGB_BLUE EXT_RGB_BLUE #define RGB_PIXELSIZE EXT_RGB_PIXELSIZE #define h2v1_merged_upsample_internal extrgb_h2v1_merged_upsample_internal #define h2v2_merged_upsample_internal extrgb_h2v2_merged_upsample_internal #include "jdmrgext.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef h2v1_merged_upsample_internal #undef h2v2_merged_upsample_internal #define RGB_RED EXT_RGBX_RED #define RGB_GREEN EXT_RGBX_GREEN #define RGB_BLUE EXT_RGBX_BLUE #define RGB_ALPHA 3 #define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE #define h2v1_merged_upsample_internal extrgbx_h2v1_merged_upsample_internal #define h2v2_merged_upsample_internal extrgbx_h2v2_merged_upsample_internal #include "jdmrgext.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_ALPHA #undef RGB_PIXELSIZE #undef h2v1_merged_upsample_internal #undef h2v2_merged_upsample_internal #define RGB_RED EXT_BGR_RED #define RGB_GREEN EXT_BGR_GREEN #define RGB_BLUE EXT_BGR_BLUE #define RGB_PIXELSIZE EXT_BGR_PIXELSIZE #define h2v1_merged_upsample_internal extbgr_h2v1_merged_upsample_internal #define h2v2_merged_upsample_internal extbgr_h2v2_merged_upsample_internal #include "jdmrgext.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef h2v1_merged_upsample_internal #undef h2v2_merged_upsample_internal #define RGB_RED EXT_BGRX_RED #define RGB_GREEN EXT_BGRX_GREEN #define RGB_BLUE EXT_BGRX_BLUE #define RGB_ALPHA 3 #define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE #define h2v1_merged_upsample_internal extbgrx_h2v1_merged_upsample_internal #define h2v2_merged_upsample_internal extbgrx_h2v2_merged_upsample_internal #include "jdmrgext.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_ALPHA #undef RGB_PIXELSIZE #undef h2v1_merged_upsample_internal #undef h2v2_merged_upsample_internal #define RGB_RED EXT_XBGR_RED #define RGB_GREEN EXT_XBGR_GREEN #define RGB_BLUE EXT_XBGR_BLUE #define RGB_ALPHA 0 #define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE #define h2v1_merged_upsample_internal extxbgr_h2v1_merged_upsample_internal #define h2v2_merged_upsample_internal extxbgr_h2v2_merged_upsample_internal #include "jdmrgext.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_ALPHA #undef RGB_PIXELSIZE #undef h2v1_merged_upsample_internal #undef h2v2_merged_upsample_internal #define RGB_RED EXT_XRGB_RED #define RGB_GREEN EXT_XRGB_GREEN #define RGB_BLUE EXT_XRGB_BLUE #define RGB_ALPHA 0 #define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE #define h2v1_merged_upsample_internal extxrgb_h2v1_merged_upsample_internal #define h2v2_merged_upsample_internal extxrgb_h2v2_merged_upsample_internal #include "jdmrgext.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_ALPHA #undef RGB_PIXELSIZE #undef h2v1_merged_upsample_internal #undef h2v2_merged_upsample_internal /* * Initialize tables for YCC->RGB colorspace conversion. * This is taken directly from jdcolor.c; see that file for more info. */ LOCAL(void) build_ycc_rgb_table(j_decompress_ptr cinfo) { my_merged_upsample_ptr upsample = (my_merged_upsample_ptr)cinfo->upsample; int i; JLONG x; SHIFT_TEMPS upsample->Cr_r_tab = (int *) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, (MAXJSAMPLE + 1) * sizeof(int)); upsample->Cb_b_tab = (int *) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, (MAXJSAMPLE + 1) * sizeof(int)); upsample->Cr_g_tab = (JLONG *) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, (MAXJSAMPLE + 1) * sizeof(JLONG)); upsample->Cb_g_tab = (JLONG *) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, (MAXJSAMPLE + 1) * sizeof(JLONG)); for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) { /* i is the actual input pixel value, in the range 0..MAXJSAMPLE */ /* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */ /* Cr=>R value is nearest int to 1.40200 * x */ upsample->Cr_r_tab[i] = (int) RIGHT_SHIFT(FIX(1.40200) * x + ONE_HALF, SCALEBITS); /* Cb=>B value is nearest int to 1.77200 * x */ upsample->Cb_b_tab[i] = (int) RIGHT_SHIFT(FIX(1.77200) * x + ONE_HALF, SCALEBITS); /* Cr=>G value is scaled-up -0.71414 * x */ upsample->Cr_g_tab[i] = (-FIX(0.71414)) * x; /* Cb=>G value is scaled-up -0.34414 * x */ /* We also add in ONE_HALF so that need not do it in inner loop */ upsample->Cb_g_tab[i] = (-FIX(0.34414)) * x + ONE_HALF; } } /* * Initialize for an upsampling pass. */ METHODDEF(void) start_pass_merged_upsample(j_decompress_ptr cinfo) { my_merged_upsample_ptr upsample = (my_merged_upsample_ptr)cinfo->upsample; /* Mark the spare buffer empty */ upsample->spare_full = FALSE; /* Initialize total-height counter for detecting bottom of image */ upsample->rows_to_go = cinfo->output_height; } /* * Control routine to do upsampling (and color conversion). * * The control routine just handles the row buffering considerations. */ METHODDEF(void) merged_2v_upsample(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, JDIMENSION in_row_groups_avail, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail) /* 2:1 vertical sampling case: may need a spare row. */ { my_merged_upsample_ptr upsample = (my_merged_upsample_ptr)cinfo->upsample; JSAMPROW work_ptrs[2]; JDIMENSION num_rows; /* number of rows returned to caller */ if (upsample->spare_full) { /* If we have a spare row saved from a previous cycle, just return it. */ JDIMENSION size = upsample->out_row_width; if (cinfo->out_color_space == JCS_RGB565) size = cinfo->output_width * 2; jcopy_sample_rows(&upsample->spare_row, 0, output_buf + *out_row_ctr, 0, 1, size); num_rows = 1; upsample->spare_full = FALSE; } else { /* Figure number of rows to return to caller. */ num_rows = 2; /* Not more than the distance to the end of the image. */ if (num_rows > upsample->rows_to_go) num_rows = upsample->rows_to_go; /* And not more than what the client can accept: */ out_rows_avail -= *out_row_ctr; if (num_rows > out_rows_avail) num_rows = out_rows_avail; /* Create output pointer array for upsampler. */ work_ptrs[0] = output_buf[*out_row_ctr]; if (num_rows > 1) { work_ptrs[1] = output_buf[*out_row_ctr + 1]; } else { work_ptrs[1] = upsample->spare_row; upsample->spare_full = TRUE; } /* Now do the upsampling. */ (*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr, work_ptrs); } /* Adjust counts */ *out_row_ctr += num_rows; upsample->rows_to_go -= num_rows; /* When the buffer is emptied, declare this input row group consumed */ if (!upsample->spare_full) (*in_row_group_ctr)++; } METHODDEF(void) merged_1v_upsample(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, JDIMENSION in_row_groups_avail, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail) /* 1:1 vertical sampling case: much easier, never need a spare row. */ { my_merged_upsample_ptr upsample = (my_merged_upsample_ptr)cinfo->upsample; /* Just do the upsampling. */ (*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr, output_buf + *out_row_ctr); /* Adjust counts */ (*out_row_ctr)++; (*in_row_group_ctr)++; } /* * These are the routines invoked by the control routines to do * the actual upsampling/conversion. One row group is processed per call. * * Note: since we may be writing directly into application-supplied buffers, * we have to be honest about the output width; we can't assume the buffer * has been rounded up to an even width. */ /* * Upsample and color convert for the case of 2:1 horizontal and 1:1 vertical. */ METHODDEF(void) h2v1_merged_upsample(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { switch (cinfo->out_color_space) { case JCS_EXT_RGB: extrgb_h2v1_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr, output_buf); break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: extrgbx_h2v1_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr, output_buf); break; case JCS_EXT_BGR: extbgr_h2v1_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr, output_buf); break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: extbgrx_h2v1_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr, output_buf); break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: extxbgr_h2v1_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr, output_buf); break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: extxrgb_h2v1_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr, output_buf); break; default: h2v1_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr, output_buf); break; } } /* * Upsample and color convert for the case of 2:1 horizontal and 2:1 vertical. */ METHODDEF(void) h2v2_merged_upsample(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { switch (cinfo->out_color_space) { case JCS_EXT_RGB: extrgb_h2v2_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr, output_buf); break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: extrgbx_h2v2_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr, output_buf); break; case JCS_EXT_BGR: extbgr_h2v2_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr, output_buf); break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: extbgrx_h2v2_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr, output_buf); break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: extxbgr_h2v2_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr, output_buf); break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: extxrgb_h2v2_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr, output_buf); break; default: h2v2_merged_upsample_internal(cinfo, input_buf, in_row_group_ctr, output_buf); break; } } /* * RGB565 conversion */ #define PACK_SHORT_565_LE(r, g, b) \ ((((r) << 8) & 0xF800) | (((g) << 3) & 0x7E0) | ((b) >> 3)) #define PACK_SHORT_565_BE(r, g, b) \ (((r) & 0xF8) | ((g) >> 5) | (((g) << 11) & 0xE000) | (((b) << 5) & 0x1F00)) #define PACK_TWO_PIXELS_LE(l, r) ((r << 16) | l) #define PACK_TWO_PIXELS_BE(l, r) ((l << 16) | r) #define WRITE_TWO_PIXELS_LE(addr, pixels) { \ ((INT16 *)(addr))[0] = (INT16)(pixels); \ ((INT16 *)(addr))[1] = (INT16)((pixels) >> 16); \ } #define WRITE_TWO_PIXELS_BE(addr, pixels) { \ ((INT16 *)(addr))[1] = (INT16)(pixels); \ ((INT16 *)(addr))[0] = (INT16)((pixels) >> 16); \ } #define DITHER_565_R(r, dither) ((r) + ((dither) & 0xFF)) #define DITHER_565_G(g, dither) ((g) + (((dither) & 0xFF) >> 1)) #define DITHER_565_B(b, dither) ((b) + ((dither) & 0xFF)) /* Declarations for ordered dithering * * We use a 4x4 ordered dither array packed into 32 bits. This array is * sufficient for dithering RGB888 to RGB565. */ #define DITHER_MASK 0x3 #define DITHER_ROTATE(x) ((((x) & 0xFF) << 24) | (((x) >> 8) & 0x00FFFFFF)) static const JLONG dither_matrix[4] = { 0x0008020A, 0x0C040E06, 0x030B0109, 0x0F070D05 }; /* Include inline routines for RGB565 conversion */ #define PACK_SHORT_565 PACK_SHORT_565_LE #define PACK_TWO_PIXELS PACK_TWO_PIXELS_LE #define WRITE_TWO_PIXELS WRITE_TWO_PIXELS_LE #define h2v1_merged_upsample_565_internal h2v1_merged_upsample_565_le #define h2v1_merged_upsample_565D_internal h2v1_merged_upsample_565D_le #define h2v2_merged_upsample_565_internal h2v2_merged_upsample_565_le #define h2v2_merged_upsample_565D_internal h2v2_merged_upsample_565D_le #include "jdmrg565.c" #undef PACK_SHORT_565 #undef PACK_TWO_PIXELS #undef WRITE_TWO_PIXELS #undef h2v1_merged_upsample_565_internal #undef h2v1_merged_upsample_565D_internal #undef h2v2_merged_upsample_565_internal #undef h2v2_merged_upsample_565D_internal #define PACK_SHORT_565 PACK_SHORT_565_BE #define PACK_TWO_PIXELS PACK_TWO_PIXELS_BE #define WRITE_TWO_PIXELS WRITE_TWO_PIXELS_BE #define h2v1_merged_upsample_565_internal h2v1_merged_upsample_565_be #define h2v1_merged_upsample_565D_internal h2v1_merged_upsample_565D_be #define h2v2_merged_upsample_565_internal h2v2_merged_upsample_565_be #define h2v2_merged_upsample_565D_internal h2v2_merged_upsample_565D_be #include "jdmrg565.c" #undef PACK_SHORT_565 #undef PACK_TWO_PIXELS #undef WRITE_TWO_PIXELS #undef h2v1_merged_upsample_565_internal #undef h2v1_merged_upsample_565D_internal #undef h2v2_merged_upsample_565_internal #undef h2v2_merged_upsample_565D_internal static INLINE boolean is_big_endian(void) { int test_value = 1; if (*(char *)&test_value != 1) return TRUE; return FALSE; } METHODDEF(void) h2v1_merged_upsample_565(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { if (is_big_endian()) h2v1_merged_upsample_565_be(cinfo, input_buf, in_row_group_ctr, output_buf); else h2v1_merged_upsample_565_le(cinfo, input_buf, in_row_group_ctr, output_buf); } METHODDEF(void) h2v1_merged_upsample_565D(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { if (is_big_endian()) h2v1_merged_upsample_565D_be(cinfo, input_buf, in_row_group_ctr, output_buf); else h2v1_merged_upsample_565D_le(cinfo, input_buf, in_row_group_ctr, output_buf); } METHODDEF(void) h2v2_merged_upsample_565(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { if (is_big_endian()) h2v2_merged_upsample_565_be(cinfo, input_buf, in_row_group_ctr, output_buf); else h2v2_merged_upsample_565_le(cinfo, input_buf, in_row_group_ctr, output_buf); } METHODDEF(void) h2v2_merged_upsample_565D(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { if (is_big_endian()) h2v2_merged_upsample_565D_be(cinfo, input_buf, in_row_group_ctr, output_buf); else h2v2_merged_upsample_565D_le(cinfo, input_buf, in_row_group_ctr, output_buf); } /* * Module initialization routine for merged upsampling/color conversion. * * NB: this is called under the conditions determined by use_merged_upsample() * in jdmaster.c. That routine MUST correspond to the actual capabilities * of this module; no safety checks are made here. */ GLOBAL(void) jinit_merged_upsampler(j_decompress_ptr cinfo) { my_merged_upsample_ptr upsample; upsample = (my_merged_upsample_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, sizeof(my_merged_upsampler)); cinfo->upsample = (struct jpeg_upsampler *)upsample; upsample->pub.start_pass = start_pass_merged_upsample; upsample->pub.need_context_rows = FALSE; upsample->out_row_width = cinfo->output_width * cinfo->out_color_components; if (cinfo->max_v_samp_factor == 2) { upsample->pub.upsample = merged_2v_upsample; if (jsimd_can_h2v2_merged_upsample()) upsample->upmethod = jsimd_h2v2_merged_upsample; else upsample->upmethod = h2v2_merged_upsample; if (cinfo->out_color_space == JCS_RGB565) { if (cinfo->dither_mode != JDITHER_NONE) { upsample->upmethod = h2v2_merged_upsample_565D; } else { upsample->upmethod = h2v2_merged_upsample_565; } } /* Allocate a spare row buffer */ upsample->spare_row = (JSAMPROW) (*cinfo->mem->alloc_large) ((j_common_ptr)cinfo, JPOOL_IMAGE, (size_t)(upsample->out_row_width * sizeof(JSAMPLE))); } else { upsample->pub.upsample = merged_1v_upsample; if (jsimd_can_h2v1_merged_upsample()) upsample->upmethod = jsimd_h2v1_merged_upsample; else upsample->upmethod = h2v1_merged_upsample; if (cinfo->out_color_space == JCS_RGB565) { if (cinfo->dither_mode != JDITHER_NONE) { upsample->upmethod = h2v1_merged_upsample_565D; } else { upsample->upmethod = h2v1_merged_upsample_565; } } /* No spare row needed */ upsample->spare_row = NULL; } build_ycc_rgb_table(cinfo); } #endif /* UPSAMPLE_MERGING_SUPPORTED */ libjpeg-turbo-2.1.5/jdmerge.h000066400000000000000000000031361436506551100160630ustar00rootroot00000000000000/* * jdmerge.h * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1996, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2020, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. */ #define JPEG_INTERNALS #include "jpeglib.h" #ifdef UPSAMPLE_MERGING_SUPPORTED /* Private subobject */ typedef struct { struct jpeg_upsampler pub; /* public fields */ /* Pointer to routine to do actual upsampling/conversion of one row group */ void (*upmethod) (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); /* Private state for YCC->RGB conversion */ int *Cr_r_tab; /* => table for Cr to R conversion */ int *Cb_b_tab; /* => table for Cb to B conversion */ JLONG *Cr_g_tab; /* => table for Cr to G conversion */ JLONG *Cb_g_tab; /* => table for Cb to G conversion */ /* For 2:1 vertical sampling, we produce two output rows at a time. * We need a "spare" row buffer to hold the second output row if the * application provides just a one-row buffer; we also use the spare * to discard the dummy last row if the image height is odd. */ JSAMPROW spare_row; boolean spare_full; /* T if spare buffer is occupied */ JDIMENSION out_row_width; /* samples per output row */ JDIMENSION rows_to_go; /* counts rows remaining in image */ } my_merged_upsampler; typedef my_merged_upsampler *my_merged_upsample_ptr; #endif /* UPSAMPLE_MERGING_SUPPORTED */ libjpeg-turbo-2.1.5/jdmrg565.c000066400000000000000000000254261436506551100160120ustar00rootroot00000000000000/* * jdmrg565.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1996, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2013, Linaro Limited. * Copyright (C) 2014-2015, 2018, 2020, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains code for merged upsampling/color conversion. */ INLINE LOCAL(void) h2v1_merged_upsample_565_internal(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { my_merged_upsample_ptr upsample = (my_merged_upsample_ptr)cinfo->upsample; register int y, cred, cgreen, cblue; int cb, cr; register JSAMPROW outptr; JSAMPROW inptr0, inptr1, inptr2; JDIMENSION col; /* copy these pointers into registers if possible */ register JSAMPLE *range_limit = cinfo->sample_range_limit; int *Crrtab = upsample->Cr_r_tab; int *Cbbtab = upsample->Cb_b_tab; JLONG *Crgtab = upsample->Cr_g_tab; JLONG *Cbgtab = upsample->Cb_g_tab; unsigned int r, g, b; JLONG rgb; SHIFT_TEMPS inptr0 = input_buf[0][in_row_group_ctr]; inptr1 = input_buf[1][in_row_group_ctr]; inptr2 = input_buf[2][in_row_group_ctr]; outptr = output_buf[0]; /* Loop for each pair of output pixels */ for (col = cinfo->output_width >> 1; col > 0; col--) { /* Do the chroma part of the calculation */ cb = *inptr1++; cr = *inptr2++; cred = Crrtab[cr]; cgreen = (int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); cblue = Cbbtab[cb]; /* Fetch 2 Y values and emit 2 pixels */ y = *inptr0++; r = range_limit[y + cred]; g = range_limit[y + cgreen]; b = range_limit[y + cblue]; rgb = PACK_SHORT_565(r, g, b); y = *inptr0++; r = range_limit[y + cred]; g = range_limit[y + cgreen]; b = range_limit[y + cblue]; rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r, g, b)); WRITE_TWO_PIXELS(outptr, rgb); outptr += 4; } /* If image width is odd, do the last output column separately */ if (cinfo->output_width & 1) { cb = *inptr1; cr = *inptr2; cred = Crrtab[cr]; cgreen = (int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); cblue = Cbbtab[cb]; y = *inptr0; r = range_limit[y + cred]; g = range_limit[y + cgreen]; b = range_limit[y + cblue]; rgb = PACK_SHORT_565(r, g, b); *(INT16 *)outptr = (INT16)rgb; } } INLINE LOCAL(void) h2v1_merged_upsample_565D_internal(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { my_merged_upsample_ptr upsample = (my_merged_upsample_ptr)cinfo->upsample; register int y, cred, cgreen, cblue; int cb, cr; register JSAMPROW outptr; JSAMPROW inptr0, inptr1, inptr2; JDIMENSION col; /* copy these pointers into registers if possible */ register JSAMPLE *range_limit = cinfo->sample_range_limit; int *Crrtab = upsample->Cr_r_tab; int *Cbbtab = upsample->Cb_b_tab; JLONG *Crgtab = upsample->Cr_g_tab; JLONG *Cbgtab = upsample->Cb_g_tab; JLONG d0 = dither_matrix[cinfo->output_scanline & DITHER_MASK]; unsigned int r, g, b; JLONG rgb; SHIFT_TEMPS inptr0 = input_buf[0][in_row_group_ctr]; inptr1 = input_buf[1][in_row_group_ctr]; inptr2 = input_buf[2][in_row_group_ctr]; outptr = output_buf[0]; /* Loop for each pair of output pixels */ for (col = cinfo->output_width >> 1; col > 0; col--) { /* Do the chroma part of the calculation */ cb = *inptr1++; cr = *inptr2++; cred = Crrtab[cr]; cgreen = (int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); cblue = Cbbtab[cb]; /* Fetch 2 Y values and emit 2 pixels */ y = *inptr0++; r = range_limit[DITHER_565_R(y + cred, d0)]; g = range_limit[DITHER_565_G(y + cgreen, d0)]; b = range_limit[DITHER_565_B(y + cblue, d0)]; d0 = DITHER_ROTATE(d0); rgb = PACK_SHORT_565(r, g, b); y = *inptr0++; r = range_limit[DITHER_565_R(y + cred, d0)]; g = range_limit[DITHER_565_G(y + cgreen, d0)]; b = range_limit[DITHER_565_B(y + cblue, d0)]; d0 = DITHER_ROTATE(d0); rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r, g, b)); WRITE_TWO_PIXELS(outptr, rgb); outptr += 4; } /* If image width is odd, do the last output column separately */ if (cinfo->output_width & 1) { cb = *inptr1; cr = *inptr2; cred = Crrtab[cr]; cgreen = (int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); cblue = Cbbtab[cb]; y = *inptr0; r = range_limit[DITHER_565_R(y + cred, d0)]; g = range_limit[DITHER_565_G(y + cgreen, d0)]; b = range_limit[DITHER_565_B(y + cblue, d0)]; rgb = PACK_SHORT_565(r, g, b); *(INT16 *)outptr = (INT16)rgb; } } INLINE LOCAL(void) h2v2_merged_upsample_565_internal(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { my_merged_upsample_ptr upsample = (my_merged_upsample_ptr)cinfo->upsample; register int y, cred, cgreen, cblue; int cb, cr; register JSAMPROW outptr0, outptr1; JSAMPROW inptr00, inptr01, inptr1, inptr2; JDIMENSION col; /* copy these pointers into registers if possible */ register JSAMPLE *range_limit = cinfo->sample_range_limit; int *Crrtab = upsample->Cr_r_tab; int *Cbbtab = upsample->Cb_b_tab; JLONG *Crgtab = upsample->Cr_g_tab; JLONG *Cbgtab = upsample->Cb_g_tab; unsigned int r, g, b; JLONG rgb; SHIFT_TEMPS inptr00 = input_buf[0][in_row_group_ctr * 2]; inptr01 = input_buf[0][in_row_group_ctr * 2 + 1]; inptr1 = input_buf[1][in_row_group_ctr]; inptr2 = input_buf[2][in_row_group_ctr]; outptr0 = output_buf[0]; outptr1 = output_buf[1]; /* Loop for each group of output pixels */ for (col = cinfo->output_width >> 1; col > 0; col--) { /* Do the chroma part of the calculation */ cb = *inptr1++; cr = *inptr2++; cred = Crrtab[cr]; cgreen = (int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); cblue = Cbbtab[cb]; /* Fetch 4 Y values and emit 4 pixels */ y = *inptr00++; r = range_limit[y + cred]; g = range_limit[y + cgreen]; b = range_limit[y + cblue]; rgb = PACK_SHORT_565(r, g, b); y = *inptr00++; r = range_limit[y + cred]; g = range_limit[y + cgreen]; b = range_limit[y + cblue]; rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r, g, b)); WRITE_TWO_PIXELS(outptr0, rgb); outptr0 += 4; y = *inptr01++; r = range_limit[y + cred]; g = range_limit[y + cgreen]; b = range_limit[y + cblue]; rgb = PACK_SHORT_565(r, g, b); y = *inptr01++; r = range_limit[y + cred]; g = range_limit[y + cgreen]; b = range_limit[y + cblue]; rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r, g, b)); WRITE_TWO_PIXELS(outptr1, rgb); outptr1 += 4; } /* If image width is odd, do the last output column separately */ if (cinfo->output_width & 1) { cb = *inptr1; cr = *inptr2; cred = Crrtab[cr]; cgreen = (int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); cblue = Cbbtab[cb]; y = *inptr00; r = range_limit[y + cred]; g = range_limit[y + cgreen]; b = range_limit[y + cblue]; rgb = PACK_SHORT_565(r, g, b); *(INT16 *)outptr0 = (INT16)rgb; y = *inptr01; r = range_limit[y + cred]; g = range_limit[y + cgreen]; b = range_limit[y + cblue]; rgb = PACK_SHORT_565(r, g, b); *(INT16 *)outptr1 = (INT16)rgb; } } INLINE LOCAL(void) h2v2_merged_upsample_565D_internal(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { my_merged_upsample_ptr upsample = (my_merged_upsample_ptr)cinfo->upsample; register int y, cred, cgreen, cblue; int cb, cr; register JSAMPROW outptr0, outptr1; JSAMPROW inptr00, inptr01, inptr1, inptr2; JDIMENSION col; /* copy these pointers into registers if possible */ register JSAMPLE *range_limit = cinfo->sample_range_limit; int *Crrtab = upsample->Cr_r_tab; int *Cbbtab = upsample->Cb_b_tab; JLONG *Crgtab = upsample->Cr_g_tab; JLONG *Cbgtab = upsample->Cb_g_tab; JLONG d0 = dither_matrix[cinfo->output_scanline & DITHER_MASK]; JLONG d1 = dither_matrix[(cinfo->output_scanline + 1) & DITHER_MASK]; unsigned int r, g, b; JLONG rgb; SHIFT_TEMPS inptr00 = input_buf[0][in_row_group_ctr * 2]; inptr01 = input_buf[0][in_row_group_ctr * 2 + 1]; inptr1 = input_buf[1][in_row_group_ctr]; inptr2 = input_buf[2][in_row_group_ctr]; outptr0 = output_buf[0]; outptr1 = output_buf[1]; /* Loop for each group of output pixels */ for (col = cinfo->output_width >> 1; col > 0; col--) { /* Do the chroma part of the calculation */ cb = *inptr1++; cr = *inptr2++; cred = Crrtab[cr]; cgreen = (int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); cblue = Cbbtab[cb]; /* Fetch 4 Y values and emit 4 pixels */ y = *inptr00++; r = range_limit[DITHER_565_R(y + cred, d0)]; g = range_limit[DITHER_565_G(y + cgreen, d0)]; b = range_limit[DITHER_565_B(y + cblue, d0)]; d0 = DITHER_ROTATE(d0); rgb = PACK_SHORT_565(r, g, b); y = *inptr00++; r = range_limit[DITHER_565_R(y + cred, d0)]; g = range_limit[DITHER_565_G(y + cgreen, d0)]; b = range_limit[DITHER_565_B(y + cblue, d0)]; d0 = DITHER_ROTATE(d0); rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r, g, b)); WRITE_TWO_PIXELS(outptr0, rgb); outptr0 += 4; y = *inptr01++; r = range_limit[DITHER_565_R(y + cred, d1)]; g = range_limit[DITHER_565_G(y + cgreen, d1)]; b = range_limit[DITHER_565_B(y + cblue, d1)]; d1 = DITHER_ROTATE(d1); rgb = PACK_SHORT_565(r, g, b); y = *inptr01++; r = range_limit[DITHER_565_R(y + cred, d1)]; g = range_limit[DITHER_565_G(y + cgreen, d1)]; b = range_limit[DITHER_565_B(y + cblue, d1)]; d1 = DITHER_ROTATE(d1); rgb = PACK_TWO_PIXELS(rgb, PACK_SHORT_565(r, g, b)); WRITE_TWO_PIXELS(outptr1, rgb); outptr1 += 4; } /* If image width is odd, do the last output column separately */ if (cinfo->output_width & 1) { cb = *inptr1; cr = *inptr2; cred = Crrtab[cr]; cgreen = (int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); cblue = Cbbtab[cb]; y = *inptr00; r = range_limit[DITHER_565_R(y + cred, d0)]; g = range_limit[DITHER_565_G(y + cgreen, d0)]; b = range_limit[DITHER_565_B(y + cblue, d0)]; rgb = PACK_SHORT_565(r, g, b); *(INT16 *)outptr0 = (INT16)rgb; y = *inptr01; r = range_limit[DITHER_565_R(y + cred, d1)]; g = range_limit[DITHER_565_G(y + cgreen, d1)]; b = range_limit[DITHER_565_B(y + cblue, d1)]; rgb = PACK_SHORT_565(r, g, b); *(INT16 *)outptr1 = (INT16)rgb; } } libjpeg-turbo-2.1.5/jdmrgext.c000066400000000000000000000133271436506551100162700ustar00rootroot00000000000000/* * jdmrgext.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1996, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2011, 2015, 2020, 2023, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains code for merged upsampling/color conversion. */ /* This file is included by jdmerge.c */ /* * Upsample and color convert for the case of 2:1 horizontal and 1:1 vertical. */ INLINE LOCAL(void) h2v1_merged_upsample_internal(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { my_merged_upsample_ptr upsample = (my_merged_upsample_ptr)cinfo->upsample; register int y, cred, cgreen, cblue; int cb, cr; register JSAMPROW outptr; JSAMPROW inptr0, inptr1, inptr2; JDIMENSION col; /* copy these pointers into registers if possible */ register JSAMPLE *range_limit = cinfo->sample_range_limit; int *Crrtab = upsample->Cr_r_tab; int *Cbbtab = upsample->Cb_b_tab; JLONG *Crgtab = upsample->Cr_g_tab; JLONG *Cbgtab = upsample->Cb_g_tab; SHIFT_TEMPS inptr0 = input_buf[0][in_row_group_ctr]; inptr1 = input_buf[1][in_row_group_ctr]; inptr2 = input_buf[2][in_row_group_ctr]; outptr = output_buf[0]; /* Loop for each pair of output pixels */ for (col = cinfo->output_width >> 1; col > 0; col--) { /* Do the chroma part of the calculation */ cb = *inptr1++; cr = *inptr2++; cred = Crrtab[cr]; cgreen = (int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); cblue = Cbbtab[cb]; /* Fetch 2 Y values and emit 2 pixels */ y = *inptr0++; outptr[RGB_RED] = range_limit[y + cred]; outptr[RGB_GREEN] = range_limit[y + cgreen]; outptr[RGB_BLUE] = range_limit[y + cblue]; #ifdef RGB_ALPHA outptr[RGB_ALPHA] = MAXJSAMPLE; #endif outptr += RGB_PIXELSIZE; y = *inptr0++; outptr[RGB_RED] = range_limit[y + cred]; outptr[RGB_GREEN] = range_limit[y + cgreen]; outptr[RGB_BLUE] = range_limit[y + cblue]; #ifdef RGB_ALPHA outptr[RGB_ALPHA] = MAXJSAMPLE; #endif outptr += RGB_PIXELSIZE; } /* If image width is odd, do the last output column separately */ if (cinfo->output_width & 1) { cb = *inptr1; cr = *inptr2; cred = Crrtab[cr]; cgreen = (int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); cblue = Cbbtab[cb]; y = *inptr0; outptr[RGB_RED] = range_limit[y + cred]; outptr[RGB_GREEN] = range_limit[y + cgreen]; outptr[RGB_BLUE] = range_limit[y + cblue]; #ifdef RGB_ALPHA outptr[RGB_ALPHA] = MAXJSAMPLE; #endif } } /* * Upsample and color convert for the case of 2:1 horizontal and 2:1 vertical. */ INLINE LOCAL(void) h2v2_merged_upsample_internal(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { my_merged_upsample_ptr upsample = (my_merged_upsample_ptr)cinfo->upsample; register int y, cred, cgreen, cblue; int cb, cr; register JSAMPROW outptr0, outptr1; JSAMPROW inptr00, inptr01, inptr1, inptr2; JDIMENSION col; /* copy these pointers into registers if possible */ register JSAMPLE *range_limit = cinfo->sample_range_limit; int *Crrtab = upsample->Cr_r_tab; int *Cbbtab = upsample->Cb_b_tab; JLONG *Crgtab = upsample->Cr_g_tab; JLONG *Cbgtab = upsample->Cb_g_tab; SHIFT_TEMPS inptr00 = input_buf[0][in_row_group_ctr * 2]; inptr01 = input_buf[0][in_row_group_ctr * 2 + 1]; inptr1 = input_buf[1][in_row_group_ctr]; inptr2 = input_buf[2][in_row_group_ctr]; outptr0 = output_buf[0]; outptr1 = output_buf[1]; /* Loop for each group of output pixels */ for (col = cinfo->output_width >> 1; col > 0; col--) { /* Do the chroma part of the calculation */ cb = *inptr1++; cr = *inptr2++; cred = Crrtab[cr]; cgreen = (int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); cblue = Cbbtab[cb]; /* Fetch 4 Y values and emit 4 pixels */ y = *inptr00++; outptr0[RGB_RED] = range_limit[y + cred]; outptr0[RGB_GREEN] = range_limit[y + cgreen]; outptr0[RGB_BLUE] = range_limit[y + cblue]; #ifdef RGB_ALPHA outptr0[RGB_ALPHA] = MAXJSAMPLE; #endif outptr0 += RGB_PIXELSIZE; y = *inptr00++; outptr0[RGB_RED] = range_limit[y + cred]; outptr0[RGB_GREEN] = range_limit[y + cgreen]; outptr0[RGB_BLUE] = range_limit[y + cblue]; #ifdef RGB_ALPHA outptr0[RGB_ALPHA] = MAXJSAMPLE; #endif outptr0 += RGB_PIXELSIZE; y = *inptr01++; outptr1[RGB_RED] = range_limit[y + cred]; outptr1[RGB_GREEN] = range_limit[y + cgreen]; outptr1[RGB_BLUE] = range_limit[y + cblue]; #ifdef RGB_ALPHA outptr1[RGB_ALPHA] = MAXJSAMPLE; #endif outptr1 += RGB_PIXELSIZE; y = *inptr01++; outptr1[RGB_RED] = range_limit[y + cred]; outptr1[RGB_GREEN] = range_limit[y + cgreen]; outptr1[RGB_BLUE] = range_limit[y + cblue]; #ifdef RGB_ALPHA outptr1[RGB_ALPHA] = MAXJSAMPLE; #endif outptr1 += RGB_PIXELSIZE; } /* If image width is odd, do the last output column separately */ if (cinfo->output_width & 1) { cb = *inptr1; cr = *inptr2; cred = Crrtab[cr]; cgreen = (int)RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); cblue = Cbbtab[cb]; y = *inptr00; outptr0[RGB_RED] = range_limit[y + cred]; outptr0[RGB_GREEN] = range_limit[y + cgreen]; outptr0[RGB_BLUE] = range_limit[y + cblue]; #ifdef RGB_ALPHA outptr0[RGB_ALPHA] = MAXJSAMPLE; #endif y = *inptr01; outptr1[RGB_RED] = range_limit[y + cred]; outptr1[RGB_GREEN] = range_limit[y + cgreen]; outptr1[RGB_BLUE] = range_limit[y + cblue]; #ifdef RGB_ALPHA outptr1[RGB_ALPHA] = MAXJSAMPLE; #endif } } libjpeg-turbo-2.1.5/jdphuff.c000066400000000000000000000532351436506551100160740ustar00rootroot00000000000000/* * jdphuff.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1995-1997, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2015-2016, 2018-2022, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains Huffman entropy decoding routines for progressive JPEG. * * Much of the complexity here has to do with supporting input suspension. * If the data source module demands suspension, we want to be able to back * up to the start of the current MCU. To do this, we copy state variables * into local working storage, and update them back to the permanent * storage only upon successful completion of an MCU. * * NOTE: All referenced figures are from * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jdhuff.h" /* Declarations shared with jdhuff.c */ #include #ifdef D_PROGRESSIVE_SUPPORTED /* * Expanded entropy decoder object for progressive Huffman decoding. * * The savable_state subrecord contains fields that change within an MCU, * but must not be updated permanently until we complete the MCU. */ typedef struct { unsigned int EOBRUN; /* remaining EOBs in EOBRUN */ int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ } savable_state; typedef struct { struct jpeg_entropy_decoder pub; /* public fields */ /* These fields are loaded into local variables at start of each MCU. * In case of suspension, we exit WITHOUT updating them. */ bitread_perm_state bitstate; /* Bit buffer at start of MCU */ savable_state saved; /* Other state at start of MCU */ /* These fields are NOT loaded into local working state. */ unsigned int restarts_to_go; /* MCUs left in this restart interval */ /* Pointers to derived tables (these workspaces have image lifespan) */ d_derived_tbl *derived_tbls[NUM_HUFF_TBLS]; d_derived_tbl *ac_derived_tbl; /* active table during an AC scan */ } phuff_entropy_decoder; typedef phuff_entropy_decoder *phuff_entropy_ptr; /* Forward declarations */ METHODDEF(boolean) decode_mcu_DC_first(j_decompress_ptr cinfo, JBLOCKROW *MCU_data); METHODDEF(boolean) decode_mcu_AC_first(j_decompress_ptr cinfo, JBLOCKROW *MCU_data); METHODDEF(boolean) decode_mcu_DC_refine(j_decompress_ptr cinfo, JBLOCKROW *MCU_data); METHODDEF(boolean) decode_mcu_AC_refine(j_decompress_ptr cinfo, JBLOCKROW *MCU_data); /* * Initialize for a Huffman-compressed scan. */ METHODDEF(void) start_pass_phuff_decoder(j_decompress_ptr cinfo) { phuff_entropy_ptr entropy = (phuff_entropy_ptr)cinfo->entropy; boolean is_DC_band, bad; int ci, coefi, tbl; d_derived_tbl **pdtbl; int *coef_bit_ptr, *prev_coef_bit_ptr; jpeg_component_info *compptr; is_DC_band = (cinfo->Ss == 0); /* Validate scan parameters */ bad = FALSE; if (is_DC_band) { if (cinfo->Se != 0) bad = TRUE; } else { /* need not check Ss/Se < 0 since they came from unsigned bytes */ if (cinfo->Ss > cinfo->Se || cinfo->Se >= DCTSIZE2) bad = TRUE; /* AC scans may have only one component */ if (cinfo->comps_in_scan != 1) bad = TRUE; } if (cinfo->Ah != 0) { /* Successive approximation refinement scan: must have Al = Ah-1. */ if (cinfo->Al != cinfo->Ah - 1) bad = TRUE; } if (cinfo->Al > 13) /* need not check for < 0 */ bad = TRUE; /* Arguably the maximum Al value should be less than 13 for 8-bit precision, * but the spec doesn't say so, and we try to be liberal about what we * accept. Note: large Al values could result in out-of-range DC * coefficients during early scans, leading to bizarre displays due to * overflows in the IDCT math. But we won't crash. */ if (bad) ERREXIT4(cinfo, JERR_BAD_PROGRESSION, cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al); /* Update progression status, and verify that scan order is legal. * Note that inter-scan inconsistencies are treated as warnings * not fatal errors ... not clear if this is right way to behave. */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) { int cindex = cinfo->cur_comp_info[ci]->component_index; coef_bit_ptr = &cinfo->coef_bits[cindex][0]; prev_coef_bit_ptr = &cinfo->coef_bits[cindex + cinfo->num_components][0]; if (!is_DC_band && coef_bit_ptr[0] < 0) /* AC without prior DC scan */ WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0); for (coefi = MIN(cinfo->Ss, 1); coefi <= MAX(cinfo->Se, 9); coefi++) { if (cinfo->input_scan_number > 1) prev_coef_bit_ptr[coefi] = coef_bit_ptr[coefi]; else prev_coef_bit_ptr[coefi] = 0; } for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) { int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi]; if (cinfo->Ah != expected) WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi); coef_bit_ptr[coefi] = cinfo->Al; } } /* Select MCU decoding routine */ if (cinfo->Ah == 0) { if (is_DC_band) entropy->pub.decode_mcu = decode_mcu_DC_first; else entropy->pub.decode_mcu = decode_mcu_AC_first; } else { if (is_DC_band) entropy->pub.decode_mcu = decode_mcu_DC_refine; else entropy->pub.decode_mcu = decode_mcu_AC_refine; } for (ci = 0; ci < cinfo->comps_in_scan; ci++) { compptr = cinfo->cur_comp_info[ci]; /* Make sure requested tables are present, and compute derived tables. * We may build same derived table more than once, but it's not expensive. */ if (is_DC_band) { if (cinfo->Ah == 0) { /* DC refinement needs no table */ tbl = compptr->dc_tbl_no; pdtbl = (d_derived_tbl **)(entropy->derived_tbls) + tbl; jpeg_make_d_derived_tbl(cinfo, TRUE, tbl, pdtbl); } } else { tbl = compptr->ac_tbl_no; pdtbl = (d_derived_tbl **)(entropy->derived_tbls) + tbl; jpeg_make_d_derived_tbl(cinfo, FALSE, tbl, pdtbl); /* remember the single active table */ entropy->ac_derived_tbl = entropy->derived_tbls[tbl]; } /* Initialize DC predictions to 0 */ entropy->saved.last_dc_val[ci] = 0; } /* Initialize bitread state variables */ entropy->bitstate.bits_left = 0; entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */ entropy->pub.insufficient_data = FALSE; /* Initialize private state variables */ entropy->saved.EOBRUN = 0; /* Initialize restart counter */ entropy->restarts_to_go = cinfo->restart_interval; } /* * Figure F.12: extend sign bit. * On some machines, a shift and add will be faster than a table lookup. */ #define AVOID_TABLES #ifdef AVOID_TABLES #define NEG_1 ((unsigned)-1) #define HUFF_EXTEND(x, s) \ ((x) < (1 << ((s) - 1)) ? (x) + (((NEG_1) << (s)) + 1) : (x)) #else #define HUFF_EXTEND(x, s) \ ((x) < extend_test[s] ? (x) + extend_offset[s] : (x)) static const int extend_test[16] = { /* entry n is 2**(n-1) */ 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 }; static const int extend_offset[16] = { /* entry n is (-1 << n) + 1 */ 0, ((-1) << 1) + 1, ((-1) << 2) + 1, ((-1) << 3) + 1, ((-1) << 4) + 1, ((-1) << 5) + 1, ((-1) << 6) + 1, ((-1) << 7) + 1, ((-1) << 8) + 1, ((-1) << 9) + 1, ((-1) << 10) + 1, ((-1) << 11) + 1, ((-1) << 12) + 1, ((-1) << 13) + 1, ((-1) << 14) + 1, ((-1) << 15) + 1 }; #endif /* AVOID_TABLES */ /* * Check for a restart marker & resynchronize decoder. * Returns FALSE if must suspend. */ LOCAL(boolean) process_restart(j_decompress_ptr cinfo) { phuff_entropy_ptr entropy = (phuff_entropy_ptr)cinfo->entropy; int ci; /* Throw away any unused bits remaining in bit buffer; */ /* include any full bytes in next_marker's count of discarded bytes */ cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8; entropy->bitstate.bits_left = 0; /* Advance past the RSTn marker */ if (!(*cinfo->marker->read_restart_marker) (cinfo)) return FALSE; /* Re-initialize DC predictions to 0 */ for (ci = 0; ci < cinfo->comps_in_scan; ci++) entropy->saved.last_dc_val[ci] = 0; /* Re-init EOB run count, too */ entropy->saved.EOBRUN = 0; /* Reset restart counter */ entropy->restarts_to_go = cinfo->restart_interval; /* Reset out-of-data flag, unless read_restart_marker left us smack up * against a marker. In that case we will end up treating the next data * segment as empty, and we can avoid producing bogus output pixels by * leaving the flag set. */ if (cinfo->unread_marker == 0) entropy->pub.insufficient_data = FALSE; return TRUE; } /* * Huffman MCU decoding. * Each of these routines decodes and returns one MCU's worth of * Huffman-compressed coefficients. * The coefficients are reordered from zigzag order into natural array order, * but are not dequantized. * * The i'th block of the MCU is stored into the block pointed to by * MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER. * * We return FALSE if data source requested suspension. In that case no * changes have been made to permanent state. (Exception: some output * coefficients may already have been assigned. This is harmless for * spectral selection, since we'll just re-assign them on the next call. * Successive approximation AC refinement has to be more careful, however.) */ /* * MCU decoding for DC initial scan (either spectral selection, * or first pass of successive approximation). */ METHODDEF(boolean) decode_mcu_DC_first(j_decompress_ptr cinfo, JBLOCKROW *MCU_data) { phuff_entropy_ptr entropy = (phuff_entropy_ptr)cinfo->entropy; int Al = cinfo->Al; register int s, r; int blkn, ci; JBLOCKROW block; BITREAD_STATE_VARS; savable_state state; d_derived_tbl *tbl; jpeg_component_info *compptr; /* Process restart marker if needed; may have to suspend */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) if (!process_restart(cinfo)) return FALSE; } /* If we've run out of data, just leave the MCU set to zeroes. * This way, we return uniform gray for the remainder of the segment. */ if (!entropy->pub.insufficient_data) { /* Load up working state */ BITREAD_LOAD_STATE(cinfo, entropy->bitstate); state = entropy->saved; /* Outer loop handles each block in the MCU */ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { block = MCU_data[blkn]; ci = cinfo->MCU_membership[blkn]; compptr = cinfo->cur_comp_info[ci]; tbl = entropy->derived_tbls[compptr->dc_tbl_no]; /* Decode a single block's worth of coefficients */ /* Section F.2.2.1: decode the DC coefficient difference */ HUFF_DECODE(s, br_state, tbl, return FALSE, label1); if (s) { CHECK_BIT_BUFFER(br_state, s, return FALSE); r = GET_BITS(s); s = HUFF_EXTEND(r, s); } /* Convert DC difference to actual value, update last_dc_val */ if ((state.last_dc_val[ci] >= 0 && s > INT_MAX - state.last_dc_val[ci]) || (state.last_dc_val[ci] < 0 && s < INT_MIN - state.last_dc_val[ci])) ERREXIT(cinfo, JERR_BAD_DCT_COEF); s += state.last_dc_val[ci]; state.last_dc_val[ci] = s; /* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */ (*block)[0] = (JCOEF)LEFT_SHIFT(s, Al); } /* Completed MCU, so update state */ BITREAD_SAVE_STATE(cinfo, entropy->bitstate); entropy->saved = state; } /* Account for restart interval (no-op if not using restarts) */ if (cinfo->restart_interval) entropy->restarts_to_go--; return TRUE; } /* * MCU decoding for AC initial scan (either spectral selection, * or first pass of successive approximation). */ METHODDEF(boolean) decode_mcu_AC_first(j_decompress_ptr cinfo, JBLOCKROW *MCU_data) { phuff_entropy_ptr entropy = (phuff_entropy_ptr)cinfo->entropy; int Se = cinfo->Se; int Al = cinfo->Al; register int s, k, r; unsigned int EOBRUN; JBLOCKROW block; BITREAD_STATE_VARS; d_derived_tbl *tbl; /* Process restart marker if needed; may have to suspend */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) if (!process_restart(cinfo)) return FALSE; } /* If we've run out of data, just leave the MCU set to zeroes. * This way, we return uniform gray for the remainder of the segment. */ if (!entropy->pub.insufficient_data) { /* Load up working state. * We can avoid loading/saving bitread state if in an EOB run. */ EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */ /* There is always only one block per MCU */ if (EOBRUN > 0) /* if it's a band of zeroes... */ EOBRUN--; /* ...process it now (we do nothing) */ else { BITREAD_LOAD_STATE(cinfo, entropy->bitstate); block = MCU_data[0]; tbl = entropy->ac_derived_tbl; for (k = cinfo->Ss; k <= Se; k++) { HUFF_DECODE(s, br_state, tbl, return FALSE, label2); r = s >> 4; s &= 15; if (s) { k += r; CHECK_BIT_BUFFER(br_state, s, return FALSE); r = GET_BITS(s); s = HUFF_EXTEND(r, s); /* Scale and output coefficient in natural (dezigzagged) order */ (*block)[jpeg_natural_order[k]] = (JCOEF)LEFT_SHIFT(s, Al); } else { if (r == 15) { /* ZRL */ k += 15; /* skip 15 zeroes in band */ } else { /* EOBr, run length is 2^r + appended bits */ EOBRUN = 1 << r; if (r) { /* EOBr, r > 0 */ CHECK_BIT_BUFFER(br_state, r, return FALSE); r = GET_BITS(r); EOBRUN += r; } EOBRUN--; /* this band is processed at this moment */ break; /* force end-of-band */ } } } BITREAD_SAVE_STATE(cinfo, entropy->bitstate); } /* Completed MCU, so update state */ entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */ } /* Account for restart interval (no-op if not using restarts) */ if (cinfo->restart_interval) entropy->restarts_to_go--; return TRUE; } /* * MCU decoding for DC successive approximation refinement scan. * Note: we assume such scans can be multi-component, although the spec * is not very clear on the point. */ METHODDEF(boolean) decode_mcu_DC_refine(j_decompress_ptr cinfo, JBLOCKROW *MCU_data) { phuff_entropy_ptr entropy = (phuff_entropy_ptr)cinfo->entropy; int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ int blkn; JBLOCKROW block; BITREAD_STATE_VARS; /* Process restart marker if needed; may have to suspend */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) if (!process_restart(cinfo)) return FALSE; } /* Not worth the cycles to check insufficient_data here, * since we will not change the data anyway if we read zeroes. */ /* Load up working state */ BITREAD_LOAD_STATE(cinfo, entropy->bitstate); /* Outer loop handles each block in the MCU */ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { block = MCU_data[blkn]; /* Encoded data is simply the next bit of the two's-complement DC value */ CHECK_BIT_BUFFER(br_state, 1, return FALSE); if (GET_BITS(1)) (*block)[0] |= p1; /* Note: since we use |=, repeating the assignment later is safe */ } /* Completed MCU, so update state */ BITREAD_SAVE_STATE(cinfo, entropy->bitstate); /* Account for restart interval (no-op if not using restarts) */ if (cinfo->restart_interval) entropy->restarts_to_go--; return TRUE; } /* * MCU decoding for AC successive approximation refinement scan. */ METHODDEF(boolean) decode_mcu_AC_refine(j_decompress_ptr cinfo, JBLOCKROW *MCU_data) { phuff_entropy_ptr entropy = (phuff_entropy_ptr)cinfo->entropy; int Se = cinfo->Se; int p1 = 1 << cinfo->Al; /* 1 in the bit position being coded */ int m1 = (NEG_1) << cinfo->Al; /* -1 in the bit position being coded */ register int s, k, r; unsigned int EOBRUN; JBLOCKROW block; JCOEFPTR thiscoef; BITREAD_STATE_VARS; d_derived_tbl *tbl; int num_newnz; int newnz_pos[DCTSIZE2]; /* Process restart marker if needed; may have to suspend */ if (cinfo->restart_interval) { if (entropy->restarts_to_go == 0) if (!process_restart(cinfo)) return FALSE; } /* If we've run out of data, don't modify the MCU. */ if (!entropy->pub.insufficient_data) { /* Load up working state */ BITREAD_LOAD_STATE(cinfo, entropy->bitstate); EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */ /* There is always only one block per MCU */ block = MCU_data[0]; tbl = entropy->ac_derived_tbl; /* If we are forced to suspend, we must undo the assignments to any newly * nonzero coefficients in the block, because otherwise we'd get confused * next time about which coefficients were already nonzero. * But we need not undo addition of bits to already-nonzero coefficients; * instead, we can test the current bit to see if we already did it. */ num_newnz = 0; /* initialize coefficient loop counter to start of band */ k = cinfo->Ss; if (EOBRUN == 0) { for (; k <= Se; k++) { HUFF_DECODE(s, br_state, tbl, goto undoit, label3); r = s >> 4; s &= 15; if (s) { if (s != 1) /* size of new coef should always be 1 */ WARNMS(cinfo, JWRN_HUFF_BAD_CODE); CHECK_BIT_BUFFER(br_state, 1, goto undoit); if (GET_BITS(1)) s = p1; /* newly nonzero coef is positive */ else s = m1; /* newly nonzero coef is negative */ } else { if (r != 15) { EOBRUN = 1 << r; /* EOBr, run length is 2^r + appended bits */ if (r) { CHECK_BIT_BUFFER(br_state, r, goto undoit); r = GET_BITS(r); EOBRUN += r; } break; /* rest of block is handled by EOB logic */ } /* note s = 0 for processing ZRL */ } /* Advance over already-nonzero coefs and r still-zero coefs, * appending correction bits to the nonzeroes. A correction bit is 1 * if the absolute value of the coefficient must be increased. */ do { thiscoef = *block + jpeg_natural_order[k]; if (*thiscoef != 0) { CHECK_BIT_BUFFER(br_state, 1, goto undoit); if (GET_BITS(1)) { if ((*thiscoef & p1) == 0) { /* do nothing if already set it */ if (*thiscoef >= 0) *thiscoef += (JCOEF)p1; else *thiscoef += (JCOEF)m1; } } } else { if (--r < 0) break; /* reached target zero coefficient */ } k++; } while (k <= Se); if (s) { int pos = jpeg_natural_order[k]; /* Output newly nonzero coefficient */ (*block)[pos] = (JCOEF)s; /* Remember its position in case we have to suspend */ newnz_pos[num_newnz++] = pos; } } } if (EOBRUN > 0) { /* Scan any remaining coefficient positions after the end-of-band * (the last newly nonzero coefficient, if any). Append a correction * bit to each already-nonzero coefficient. A correction bit is 1 * if the absolute value of the coefficient must be increased. */ for (; k <= Se; k++) { thiscoef = *block + jpeg_natural_order[k]; if (*thiscoef != 0) { CHECK_BIT_BUFFER(br_state, 1, goto undoit); if (GET_BITS(1)) { if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */ if (*thiscoef >= 0) *thiscoef += (JCOEF)p1; else *thiscoef += (JCOEF)m1; } } } } /* Count one block completed in EOB run */ EOBRUN--; } /* Completed MCU, so update state */ BITREAD_SAVE_STATE(cinfo, entropy->bitstate); entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */ } /* Account for restart interval (no-op if not using restarts) */ if (cinfo->restart_interval) entropy->restarts_to_go--; return TRUE; undoit: /* Re-zero any output coefficients that we made newly nonzero */ while (num_newnz > 0) (*block)[newnz_pos[--num_newnz]] = 0; return FALSE; } /* * Module initialization routine for progressive Huffman entropy decoding. */ GLOBAL(void) jinit_phuff_decoder(j_decompress_ptr cinfo) { phuff_entropy_ptr entropy; int *coef_bit_ptr; int ci, i; entropy = (phuff_entropy_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, sizeof(phuff_entropy_decoder)); cinfo->entropy = (struct jpeg_entropy_decoder *)entropy; entropy->pub.start_pass = start_pass_phuff_decoder; /* Mark derived tables unallocated */ for (i = 0; i < NUM_HUFF_TBLS; i++) { entropy->derived_tbls[i] = NULL; } /* Create progression status table */ cinfo->coef_bits = (int (*)[DCTSIZE2]) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, cinfo->num_components * 2 * DCTSIZE2 * sizeof(int)); coef_bit_ptr = &cinfo->coef_bits[0][0]; for (ci = 0; ci < cinfo->num_components; ci++) for (i = 0; i < DCTSIZE2; i++) *coef_bit_ptr++ = -1; } #endif /* D_PROGRESSIVE_SUPPORTED */ libjpeg-turbo-2.1.5/jdpostct.c000066400000000000000000000253041436506551100162740ustar00rootroot00000000000000/* * jdpostct.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1996, Thomas G. Lane. * It was modified by The libjpeg-turbo Project to include only code relevant * to libjpeg-turbo. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains the decompression postprocessing controller. * This controller manages the upsampling, color conversion, and color * quantization/reduction steps; specifically, it controls the buffering * between upsample/color conversion and color quantization/reduction. * * If no color quantization/reduction is required, then this module has no * work to do, and it just hands off to the upsample/color conversion code. * An integrated upsample/convert/quantize process would replace this module * entirely. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" /* Private buffer controller object */ typedef struct { struct jpeg_d_post_controller pub; /* public fields */ /* Color quantization source buffer: this holds output data from * the upsample/color conversion step to be passed to the quantizer. * For two-pass color quantization, we need a full-image buffer; * for one-pass operation, a strip buffer is sufficient. */ jvirt_sarray_ptr whole_image; /* virtual array, or NULL if one-pass */ JSAMPARRAY buffer; /* strip buffer, or current strip of virtual */ JDIMENSION strip_height; /* buffer size in rows */ /* for two-pass mode only: */ JDIMENSION starting_row; /* row # of first row in current strip */ JDIMENSION next_row; /* index of next row to fill/empty in strip */ } my_post_controller; typedef my_post_controller *my_post_ptr; /* Forward declarations */ METHODDEF(void) post_process_1pass(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, JDIMENSION in_row_groups_avail, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail); #ifdef QUANT_2PASS_SUPPORTED METHODDEF(void) post_process_prepass(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, JDIMENSION in_row_groups_avail, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail); METHODDEF(void) post_process_2pass(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, JDIMENSION in_row_groups_avail, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail); #endif /* * Initialize for a processing pass. */ METHODDEF(void) start_pass_dpost(j_decompress_ptr cinfo, J_BUF_MODE pass_mode) { my_post_ptr post = (my_post_ptr)cinfo->post; switch (pass_mode) { case JBUF_PASS_THRU: if (cinfo->quantize_colors) { /* Single-pass processing with color quantization. */ post->pub.post_process_data = post_process_1pass; /* We could be doing buffered-image output before starting a 2-pass * color quantization; in that case, jinit_d_post_controller did not * allocate a strip buffer. Use the virtual-array buffer as workspace. */ if (post->buffer == NULL) { post->buffer = (*cinfo->mem->access_virt_sarray) ((j_common_ptr)cinfo, post->whole_image, (JDIMENSION)0, post->strip_height, TRUE); } } else { /* For single-pass processing without color quantization, * I have no work to do; just call the upsampler directly. */ post->pub.post_process_data = cinfo->upsample->upsample; } break; #ifdef QUANT_2PASS_SUPPORTED case JBUF_SAVE_AND_PASS: /* First pass of 2-pass quantization */ if (post->whole_image == NULL) ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); post->pub.post_process_data = post_process_prepass; break; case JBUF_CRANK_DEST: /* Second pass of 2-pass quantization */ if (post->whole_image == NULL) ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); post->pub.post_process_data = post_process_2pass; break; #endif /* QUANT_2PASS_SUPPORTED */ default: ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); break; } post->starting_row = post->next_row = 0; } /* * Process some data in the one-pass (strip buffer) case. * This is used for color precision reduction as well as one-pass quantization. */ METHODDEF(void) post_process_1pass(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, JDIMENSION in_row_groups_avail, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail) { my_post_ptr post = (my_post_ptr)cinfo->post; JDIMENSION num_rows, max_rows; /* Fill the buffer, but not more than what we can dump out in one go. */ /* Note we rely on the upsampler to detect bottom of image. */ max_rows = out_rows_avail - *out_row_ctr; if (max_rows > post->strip_height) max_rows = post->strip_height; num_rows = 0; (*cinfo->upsample->upsample) (cinfo, input_buf, in_row_group_ctr, in_row_groups_avail, post->buffer, &num_rows, max_rows); /* Quantize and emit data. */ (*cinfo->cquantize->color_quantize) (cinfo, post->buffer, output_buf + *out_row_ctr, (int)num_rows); *out_row_ctr += num_rows; } #ifdef QUANT_2PASS_SUPPORTED /* * Process some data in the first pass of 2-pass quantization. */ METHODDEF(void) post_process_prepass(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, JDIMENSION in_row_groups_avail, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail) { my_post_ptr post = (my_post_ptr)cinfo->post; JDIMENSION old_next_row, num_rows; /* Reposition virtual buffer if at start of strip. */ if (post->next_row == 0) { post->buffer = (*cinfo->mem->access_virt_sarray) ((j_common_ptr)cinfo, post->whole_image, post->starting_row, post->strip_height, TRUE); } /* Upsample some data (up to a strip height's worth). */ old_next_row = post->next_row; (*cinfo->upsample->upsample) (cinfo, input_buf, in_row_group_ctr, in_row_groups_avail, post->buffer, &post->next_row, post->strip_height); /* Allow quantizer to scan new data. No data is emitted, */ /* but we advance out_row_ctr so outer loop can tell when we're done. */ if (post->next_row > old_next_row) { num_rows = post->next_row - old_next_row; (*cinfo->cquantize->color_quantize) (cinfo, post->buffer + old_next_row, (JSAMPARRAY)NULL, (int)num_rows); *out_row_ctr += num_rows; } /* Advance if we filled the strip. */ if (post->next_row >= post->strip_height) { post->starting_row += post->strip_height; post->next_row = 0; } } /* * Process some data in the second pass of 2-pass quantization. */ METHODDEF(void) post_process_2pass(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, JDIMENSION in_row_groups_avail, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail) { my_post_ptr post = (my_post_ptr)cinfo->post; JDIMENSION num_rows, max_rows; /* Reposition virtual buffer if at start of strip. */ if (post->next_row == 0) { post->buffer = (*cinfo->mem->access_virt_sarray) ((j_common_ptr)cinfo, post->whole_image, post->starting_row, post->strip_height, FALSE); } /* Determine number of rows to emit. */ num_rows = post->strip_height - post->next_row; /* available in strip */ max_rows = out_rows_avail - *out_row_ctr; /* available in output area */ if (num_rows > max_rows) num_rows = max_rows; /* We have to check bottom of image here, can't depend on upsampler. */ max_rows = cinfo->output_height - post->starting_row; if (num_rows > max_rows) num_rows = max_rows; /* Quantize and emit data. */ (*cinfo->cquantize->color_quantize) (cinfo, post->buffer + post->next_row, output_buf + *out_row_ctr, (int)num_rows); *out_row_ctr += num_rows; /* Advance if we filled the strip. */ post->next_row += num_rows; if (post->next_row >= post->strip_height) { post->starting_row += post->strip_height; post->next_row = 0; } } #endif /* QUANT_2PASS_SUPPORTED */ /* * Initialize postprocessing controller. */ GLOBAL(void) jinit_d_post_controller(j_decompress_ptr cinfo, boolean need_full_buffer) { my_post_ptr post; post = (my_post_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, sizeof(my_post_controller)); cinfo->post = (struct jpeg_d_post_controller *)post; post->pub.start_pass = start_pass_dpost; post->whole_image = NULL; /* flag for no virtual arrays */ post->buffer = NULL; /* flag for no strip buffer */ /* Create the quantization buffer, if needed */ if (cinfo->quantize_colors) { /* The buffer strip height is max_v_samp_factor, which is typically * an efficient number of rows for upsampling to return. * (In the presence of output rescaling, we might want to be smarter?) */ post->strip_height = (JDIMENSION)cinfo->max_v_samp_factor; if (need_full_buffer) { /* Two-pass color quantization: need full-image storage. */ /* We round up the number of rows to a multiple of the strip height. */ #ifdef QUANT_2PASS_SUPPORTED post->whole_image = (*cinfo->mem->request_virt_sarray) ((j_common_ptr)cinfo, JPOOL_IMAGE, FALSE, cinfo->output_width * cinfo->out_color_components, (JDIMENSION)jround_up((long)cinfo->output_height, (long)post->strip_height), post->strip_height); #else ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); #endif /* QUANT_2PASS_SUPPORTED */ } else { /* One-pass color quantization: just make a strip buffer. */ post->buffer = (*cinfo->mem->alloc_sarray) ((j_common_ptr)cinfo, JPOOL_IMAGE, cinfo->output_width * cinfo->out_color_components, post->strip_height); } } } libjpeg-turbo-2.1.5/jdsample.c000066400000000000000000000432121436506551100162370ustar00rootroot00000000000000/* * jdsample.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1996, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright 2009 Pierre Ossman for Cendio AB * Copyright (C) 2010, 2015-2016, D. R. Commander. * Copyright (C) 2014, MIPS Technologies, Inc., California. * Copyright (C) 2015, Google, Inc. * Copyright (C) 2019-2020, Arm Limited. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains upsampling routines. * * Upsampling input data is counted in "row groups". A row group * is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size) * sample rows of each component. Upsampling will normally produce * max_v_samp_factor pixel rows from each row group (but this could vary * if the upsampler is applying a scale factor of its own). * * An excellent reference for image resampling is * Digital Image Warping, George Wolberg, 1990. * Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7. */ #include "jinclude.h" #include "jdsample.h" #include "jsimd.h" #include "jpegcomp.h" /* * Initialize for an upsampling pass. */ METHODDEF(void) start_pass_upsample(j_decompress_ptr cinfo) { my_upsample_ptr upsample = (my_upsample_ptr)cinfo->upsample; /* Mark the conversion buffer empty */ upsample->next_row_out = cinfo->max_v_samp_factor; /* Initialize total-height counter for detecting bottom of image */ upsample->rows_to_go = cinfo->output_height; } /* * Control routine to do upsampling (and color conversion). * * In this version we upsample each component independently. * We upsample one row group into the conversion buffer, then apply * color conversion a row at a time. */ METHODDEF(void) sep_upsample(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, JDIMENSION in_row_groups_avail, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail) { my_upsample_ptr upsample = (my_upsample_ptr)cinfo->upsample; int ci; jpeg_component_info *compptr; JDIMENSION num_rows; /* Fill the conversion buffer, if it's empty */ if (upsample->next_row_out >= cinfo->max_v_samp_factor) { for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { /* Invoke per-component upsample method. Notice we pass a POINTER * to color_buf[ci], so that fullsize_upsample can change it. */ (*upsample->methods[ci]) (cinfo, compptr, input_buf[ci] + (*in_row_group_ctr * upsample->rowgroup_height[ci]), upsample->color_buf + ci); } upsample->next_row_out = 0; } /* Color-convert and emit rows */ /* How many we have in the buffer: */ num_rows = (JDIMENSION)(cinfo->max_v_samp_factor - upsample->next_row_out); /* Not more than the distance to the end of the image. Need this test * in case the image height is not a multiple of max_v_samp_factor: */ if (num_rows > upsample->rows_to_go) num_rows = upsample->rows_to_go; /* And not more than what the client can accept: */ out_rows_avail -= *out_row_ctr; if (num_rows > out_rows_avail) num_rows = out_rows_avail; (*cinfo->cconvert->color_convert) (cinfo, upsample->color_buf, (JDIMENSION)upsample->next_row_out, output_buf + *out_row_ctr, (int)num_rows); /* Adjust counts */ *out_row_ctr += num_rows; upsample->rows_to_go -= num_rows; upsample->next_row_out += num_rows; /* When the buffer is emptied, declare this input row group consumed */ if (upsample->next_row_out >= cinfo->max_v_samp_factor) (*in_row_group_ctr)++; } /* * These are the routines invoked by sep_upsample to upsample pixel values * of a single component. One row group is processed per call. */ /* * For full-size components, we just make color_buf[ci] point at the * input buffer, and thus avoid copying any data. Note that this is * safe only because sep_upsample doesn't declare the input row group * "consumed" until we are done color converting and emitting it. */ METHODDEF(void) fullsize_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { *output_data_ptr = input_data; } /* * This is a no-op version used for "uninteresting" components. * These components will not be referenced by color conversion. */ METHODDEF(void) noop_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { *output_data_ptr = NULL; /* safety check */ } /* * This version handles any integral sampling ratios. * This is not used for typical JPEG files, so it need not be fast. * Nor, for that matter, is it particularly accurate: the algorithm is * simple replication of the input pixel onto the corresponding output * pixels. The hi-falutin sampling literature refers to this as a * "box filter". A box filter tends to introduce visible artifacts, * so if you are actually going to use 3:1 or 4:1 sampling ratios * you would be well advised to improve this code. */ METHODDEF(void) int_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { my_upsample_ptr upsample = (my_upsample_ptr)cinfo->upsample; JSAMPARRAY output_data = *output_data_ptr; register JSAMPROW inptr, outptr; register JSAMPLE invalue; register int h; JSAMPROW outend; int h_expand, v_expand; int inrow, outrow; h_expand = upsample->h_expand[compptr->component_index]; v_expand = upsample->v_expand[compptr->component_index]; inrow = outrow = 0; while (outrow < cinfo->max_v_samp_factor) { /* Generate one output row with proper horizontal expansion */ inptr = input_data[inrow]; outptr = output_data[outrow]; outend = outptr + cinfo->output_width; while (outptr < outend) { invalue = *inptr++; for (h = h_expand; h > 0; h--) { *outptr++ = invalue; } } /* Generate any additional output rows by duplicating the first one */ if (v_expand > 1) { jcopy_sample_rows(output_data, outrow, output_data, outrow + 1, v_expand - 1, cinfo->output_width); } inrow++; outrow += v_expand; } } /* * Fast processing for the common case of 2:1 horizontal and 1:1 vertical. * It's still a box filter. */ METHODDEF(void) h2v1_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { JSAMPARRAY output_data = *output_data_ptr; register JSAMPROW inptr, outptr; register JSAMPLE invalue; JSAMPROW outend; int inrow; for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) { inptr = input_data[inrow]; outptr = output_data[inrow]; outend = outptr + cinfo->output_width; while (outptr < outend) { invalue = *inptr++; *outptr++ = invalue; *outptr++ = invalue; } } } /* * Fast processing for the common case of 2:1 horizontal and 2:1 vertical. * It's still a box filter. */ METHODDEF(void) h2v2_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { JSAMPARRAY output_data = *output_data_ptr; register JSAMPROW inptr, outptr; register JSAMPLE invalue; JSAMPROW outend; int inrow, outrow; inrow = outrow = 0; while (outrow < cinfo->max_v_samp_factor) { inptr = input_data[inrow]; outptr = output_data[outrow]; outend = outptr + cinfo->output_width; while (outptr < outend) { invalue = *inptr++; *outptr++ = invalue; *outptr++ = invalue; } jcopy_sample_rows(output_data, outrow, output_data, outrow + 1, 1, cinfo->output_width); inrow++; outrow += 2; } } /* * Fancy processing for the common case of 2:1 horizontal and 1:1 vertical. * * The upsampling algorithm is linear interpolation between pixel centers, * also known as a "triangle filter". This is a good compromise between * speed and visual quality. The centers of the output pixels are 1/4 and 3/4 * of the way between input pixel centers. * * A note about the "bias" calculations: when rounding fractional values to * integer, we do not want to always round 0.5 up to the next integer. * If we did that, we'd introduce a noticeable bias towards larger values. * Instead, this code is arranged so that 0.5 will be rounded up or down at * alternate pixel locations (a simple ordered dither pattern). */ METHODDEF(void) h2v1_fancy_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { JSAMPARRAY output_data = *output_data_ptr; register JSAMPROW inptr, outptr; register int invalue; register JDIMENSION colctr; int inrow; for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) { inptr = input_data[inrow]; outptr = output_data[inrow]; /* Special case for first column */ invalue = *inptr++; *outptr++ = (JSAMPLE)invalue; *outptr++ = (JSAMPLE)((invalue * 3 + inptr[0] + 2) >> 2); for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) { /* General case: 3/4 * nearer pixel + 1/4 * further pixel */ invalue = (*inptr++) * 3; *outptr++ = (JSAMPLE)((invalue + inptr[-2] + 1) >> 2); *outptr++ = (JSAMPLE)((invalue + inptr[0] + 2) >> 2); } /* Special case for last column */ invalue = *inptr; *outptr++ = (JSAMPLE)((invalue * 3 + inptr[-1] + 1) >> 2); *outptr++ = (JSAMPLE)invalue; } } /* * Fancy processing for 1:1 horizontal and 2:1 vertical (4:4:0 subsampling). * * This is a less common case, but it can be encountered when losslessly * rotating/transposing a JPEG file that uses 4:2:2 chroma subsampling. */ METHODDEF(void) h1v2_fancy_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { JSAMPARRAY output_data = *output_data_ptr; JSAMPROW inptr0, inptr1, outptr; #if BITS_IN_JSAMPLE == 8 int thiscolsum, bias; #else JLONG thiscolsum, bias; #endif JDIMENSION colctr; int inrow, outrow, v; inrow = outrow = 0; while (outrow < cinfo->max_v_samp_factor) { for (v = 0; v < 2; v++) { /* inptr0 points to nearest input row, inptr1 points to next nearest */ inptr0 = input_data[inrow]; if (v == 0) { /* next nearest is row above */ inptr1 = input_data[inrow - 1]; bias = 1; } else { /* next nearest is row below */ inptr1 = input_data[inrow + 1]; bias = 2; } outptr = output_data[outrow++]; for (colctr = 0; colctr < compptr->downsampled_width; colctr++) { thiscolsum = (*inptr0++) * 3 + (*inptr1++); *outptr++ = (JSAMPLE)((thiscolsum + bias) >> 2); } } inrow++; } } /* * Fancy processing for the common case of 2:1 horizontal and 2:1 vertical. * Again a triangle filter; see comments for h2v1 case, above. * * It is OK for us to reference the adjacent input rows because we demanded * context from the main buffer controller (see initialization code). */ METHODDEF(void) h2v2_fancy_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { JSAMPARRAY output_data = *output_data_ptr; register JSAMPROW inptr0, inptr1, outptr; #if BITS_IN_JSAMPLE == 8 register int thiscolsum, lastcolsum, nextcolsum; #else register JLONG thiscolsum, lastcolsum, nextcolsum; #endif register JDIMENSION colctr; int inrow, outrow, v; inrow = outrow = 0; while (outrow < cinfo->max_v_samp_factor) { for (v = 0; v < 2; v++) { /* inptr0 points to nearest input row, inptr1 points to next nearest */ inptr0 = input_data[inrow]; if (v == 0) /* next nearest is row above */ inptr1 = input_data[inrow - 1]; else /* next nearest is row below */ inptr1 = input_data[inrow + 1]; outptr = output_data[outrow++]; /* Special case for first column */ thiscolsum = (*inptr0++) * 3 + (*inptr1++); nextcolsum = (*inptr0++) * 3 + (*inptr1++); *outptr++ = (JSAMPLE)((thiscolsum * 4 + 8) >> 4); *outptr++ = (JSAMPLE)((thiscolsum * 3 + nextcolsum + 7) >> 4); lastcolsum = thiscolsum; thiscolsum = nextcolsum; for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) { /* General case: 3/4 * nearer pixel + 1/4 * further pixel in each */ /* dimension, thus 9/16, 3/16, 3/16, 1/16 overall */ nextcolsum = (*inptr0++) * 3 + (*inptr1++); *outptr++ = (JSAMPLE)((thiscolsum * 3 + lastcolsum + 8) >> 4); *outptr++ = (JSAMPLE)((thiscolsum * 3 + nextcolsum + 7) >> 4); lastcolsum = thiscolsum; thiscolsum = nextcolsum; } /* Special case for last column */ *outptr++ = (JSAMPLE)((thiscolsum * 3 + lastcolsum + 8) >> 4); *outptr++ = (JSAMPLE)((thiscolsum * 4 + 7) >> 4); } inrow++; } } /* * Module initialization routine for upsampling. */ GLOBAL(void) jinit_upsampler(j_decompress_ptr cinfo) { my_upsample_ptr upsample; int ci; jpeg_component_info *compptr; boolean need_buffer, do_fancy; int h_in_group, v_in_group, h_out_group, v_out_group; if (!cinfo->master->jinit_upsampler_no_alloc) { upsample = (my_upsample_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, sizeof(my_upsampler)); cinfo->upsample = (struct jpeg_upsampler *)upsample; upsample->pub.start_pass = start_pass_upsample; upsample->pub.upsample = sep_upsample; upsample->pub.need_context_rows = FALSE; /* until we find out differently */ } else upsample = (my_upsample_ptr)cinfo->upsample; if (cinfo->CCIR601_sampling) /* this isn't supported */ ERREXIT(cinfo, JERR_CCIR601_NOTIMPL); /* jdmainct.c doesn't support context rows when min_DCT_scaled_size = 1, * so don't ask for it. */ do_fancy = cinfo->do_fancy_upsampling && cinfo->_min_DCT_scaled_size > 1; /* Verify we can handle the sampling factors, select per-component methods, * and create storage as needed. */ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; ci++, compptr++) { /* Compute size of an "input group" after IDCT scaling. This many samples * are to be converted to max_h_samp_factor * max_v_samp_factor pixels. */ h_in_group = (compptr->h_samp_factor * compptr->_DCT_scaled_size) / cinfo->_min_DCT_scaled_size; v_in_group = (compptr->v_samp_factor * compptr->_DCT_scaled_size) / cinfo->_min_DCT_scaled_size; h_out_group = cinfo->max_h_samp_factor; v_out_group = cinfo->max_v_samp_factor; upsample->rowgroup_height[ci] = v_in_group; /* save for use later */ need_buffer = TRUE; if (!compptr->component_needed) { /* Don't bother to upsample an uninteresting component. */ upsample->methods[ci] = noop_upsample; need_buffer = FALSE; } else if (h_in_group == h_out_group && v_in_group == v_out_group) { /* Fullsize components can be processed without any work. */ upsample->methods[ci] = fullsize_upsample; need_buffer = FALSE; } else if (h_in_group * 2 == h_out_group && v_in_group == v_out_group) { /* Special cases for 2h1v upsampling */ if (do_fancy && compptr->downsampled_width > 2) { if (jsimd_can_h2v1_fancy_upsample()) upsample->methods[ci] = jsimd_h2v1_fancy_upsample; else upsample->methods[ci] = h2v1_fancy_upsample; } else { if (jsimd_can_h2v1_upsample()) upsample->methods[ci] = jsimd_h2v1_upsample; else upsample->methods[ci] = h2v1_upsample; } } else if (h_in_group == h_out_group && v_in_group * 2 == v_out_group && do_fancy) { /* Non-fancy upsampling is handled by the generic method */ #if defined(__arm__) || defined(__aarch64__) || \ defined(_M_ARM) || defined(_M_ARM64) if (jsimd_can_h1v2_fancy_upsample()) upsample->methods[ci] = jsimd_h1v2_fancy_upsample; else #endif upsample->methods[ci] = h1v2_fancy_upsample; upsample->pub.need_context_rows = TRUE; } else if (h_in_group * 2 == h_out_group && v_in_group * 2 == v_out_group) { /* Special cases for 2h2v upsampling */ if (do_fancy && compptr->downsampled_width > 2) { if (jsimd_can_h2v2_fancy_upsample()) upsample->methods[ci] = jsimd_h2v2_fancy_upsample; else upsample->methods[ci] = h2v2_fancy_upsample; upsample->pub.need_context_rows = TRUE; } else { if (jsimd_can_h2v2_upsample()) upsample->methods[ci] = jsimd_h2v2_upsample; else upsample->methods[ci] = h2v2_upsample; } } else if ((h_out_group % h_in_group) == 0 && (v_out_group % v_in_group) == 0) { /* Generic integral-factors upsampling method */ #if defined(__mips__) if (jsimd_can_int_upsample()) upsample->methods[ci] = jsimd_int_upsample; else #endif upsample->methods[ci] = int_upsample; upsample->h_expand[ci] = (UINT8)(h_out_group / h_in_group); upsample->v_expand[ci] = (UINT8)(v_out_group / v_in_group); } else ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL); if (need_buffer && !cinfo->master->jinit_upsampler_no_alloc) { upsample->color_buf[ci] = (*cinfo->mem->alloc_sarray) ((j_common_ptr)cinfo, JPOOL_IMAGE, (JDIMENSION)jround_up((long)cinfo->output_width, (long)cinfo->max_h_samp_factor), (JDIMENSION)cinfo->max_v_samp_factor); } } } libjpeg-turbo-2.1.5/jdsample.h000066400000000000000000000032751436506551100162510ustar00rootroot00000000000000/* * jdsample.h * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1996, Thomas G. Lane. * For conditions of distribution and use, see the accompanying README.ijg * file. */ #define JPEG_INTERNALS #include "jpeglib.h" /* Pointer to routine to upsample a single component */ typedef void (*upsample1_ptr) (j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); /* Private subobject */ typedef struct { struct jpeg_upsampler pub; /* public fields */ /* Color conversion buffer. When using separate upsampling and color * conversion steps, this buffer holds one upsampled row group until it * has been color converted and output. * Note: we do not allocate any storage for component(s) which are full-size, * ie do not need rescaling. The corresponding entry of color_buf[] is * simply set to point to the input data array, thereby avoiding copying. */ JSAMPARRAY color_buf[MAX_COMPONENTS]; /* Per-component upsampling method pointers */ upsample1_ptr methods[MAX_COMPONENTS]; int next_row_out; /* counts rows emitted from color_buf */ JDIMENSION rows_to_go; /* counts rows remaining in image */ /* Height of an input row group for each component. */ int rowgroup_height[MAX_COMPONENTS]; /* These arrays save pixel expansion factors so that int_expand need not * recompute them each time. They are unused for other upsampling methods. */ UINT8 h_expand[MAX_COMPONENTS]; UINT8 v_expand[MAX_COMPONENTS]; } my_upsampler; typedef my_upsampler *my_upsample_ptr; libjpeg-turbo-2.1.5/jdtrans.c000066400000000000000000000125251436506551100161100ustar00rootroot00000000000000/* * jdtrans.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1995-1997, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2020, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains library routines for transcoding decompression, * that is, reading raw DCT coefficient arrays from an input JPEG file. * The routines in jdapimin.c will also be needed by a transcoder. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jpegcomp.h" /* Forward declarations */ LOCAL(void) transdecode_master_selection(j_decompress_ptr cinfo); /* * Read the coefficient arrays from a JPEG file. * jpeg_read_header must be completed before calling this. * * The entire image is read into a set of virtual coefficient-block arrays, * one per component. The return value is a pointer to the array of * virtual-array descriptors. These can be manipulated directly via the * JPEG memory manager, or handed off to jpeg_write_coefficients(). * To release the memory occupied by the virtual arrays, call * jpeg_finish_decompress() when done with the data. * * An alternative usage is to simply obtain access to the coefficient arrays * during a buffered-image-mode decompression operation. This is allowed * after any jpeg_finish_output() call. The arrays can be accessed until * jpeg_finish_decompress() is called. (Note that any call to the library * may reposition the arrays, so don't rely on access_virt_barray() results * to stay valid across library calls.) * * Returns NULL if suspended. This case need be checked only if * a suspending data source is used. */ GLOBAL(jvirt_barray_ptr *) jpeg_read_coefficients(j_decompress_ptr cinfo) { if (cinfo->global_state == DSTATE_READY) { /* First call: initialize active modules */ transdecode_master_selection(cinfo); cinfo->global_state = DSTATE_RDCOEFS; } if (cinfo->global_state == DSTATE_RDCOEFS) { /* Absorb whole file into the coef buffer */ for (;;) { int retcode; /* Call progress monitor hook if present */ if (cinfo->progress != NULL) (*cinfo->progress->progress_monitor) ((j_common_ptr)cinfo); /* Absorb some more input */ retcode = (*cinfo->inputctl->consume_input) (cinfo); if (retcode == JPEG_SUSPENDED) return NULL; if (retcode == JPEG_REACHED_EOI) break; /* Advance progress counter if appropriate */ if (cinfo->progress != NULL && (retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) { if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) { /* startup underestimated number of scans; ratchet up one scan */ cinfo->progress->pass_limit += (long)cinfo->total_iMCU_rows; } } } /* Set state so that jpeg_finish_decompress does the right thing */ cinfo->global_state = DSTATE_STOPPING; } /* At this point we should be in state DSTATE_STOPPING if being used * standalone, or in state DSTATE_BUFIMAGE if being invoked to get access * to the coefficients during a full buffered-image-mode decompression. */ if ((cinfo->global_state == DSTATE_STOPPING || cinfo->global_state == DSTATE_BUFIMAGE) && cinfo->buffered_image) { return cinfo->coef->coef_arrays; } /* Oops, improper usage */ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); return NULL; /* keep compiler happy */ } /* * Master selection of decompression modules for transcoding. * This substitutes for jdmaster.c's initialization of the full decompressor. */ LOCAL(void) transdecode_master_selection(j_decompress_ptr cinfo) { /* This is effectively a buffered-image operation. */ cinfo->buffered_image = TRUE; #if JPEG_LIB_VERSION >= 80 /* Compute output image dimensions and related values. */ jpeg_core_output_dimensions(cinfo); #endif /* Entropy decoding: either Huffman or arithmetic coding. */ if (cinfo->arith_code) { #ifdef D_ARITH_CODING_SUPPORTED jinit_arith_decoder(cinfo); #else ERREXIT(cinfo, JERR_ARITH_NOTIMPL); #endif } else { if (cinfo->progressive_mode) { #ifdef D_PROGRESSIVE_SUPPORTED jinit_phuff_decoder(cinfo); #else ERREXIT(cinfo, JERR_NOT_COMPILED); #endif } else jinit_huff_decoder(cinfo); } /* Always get a full-image coefficient buffer. */ jinit_d_coef_controller(cinfo, TRUE); /* We can now tell the memory manager to allocate virtual arrays. */ (*cinfo->mem->realize_virt_arrays) ((j_common_ptr)cinfo); /* Initialize input side of decompressor to consume first scan. */ (*cinfo->inputctl->start_input_pass) (cinfo); /* Initialize progress monitoring. */ if (cinfo->progress != NULL) { int nscans; /* Estimate number of scans to set pass_limit. */ if (cinfo->progressive_mode) { /* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */ nscans = 2 + 3 * cinfo->num_components; } else if (cinfo->inputctl->has_multiple_scans) { /* For a nonprogressive multiscan file, estimate 1 scan per component. */ nscans = cinfo->num_components; } else { nscans = 1; } cinfo->progress->pass_counter = 0L; cinfo->progress->pass_limit = (long)cinfo->total_iMCU_rows * nscans; cinfo->progress->completed_passes = 0; cinfo->progress->total_passes = 1; } } libjpeg-turbo-2.1.5/jerror.c000066400000000000000000000173711436506551100157520ustar00rootroot00000000000000/* * jerror.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1998, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2022, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains simple error-reporting and trace-message routines. * These are suitable for Unix-like systems and others where writing to * stderr is the right thing to do. Many applications will want to replace * some or all of these routines. * * If you define USE_WINDOWS_MESSAGEBOX in jconfig.h or in the makefile, * you get a Windows-specific hack to display error messages in a dialog box. * It ain't much, but it beats dropping error messages into the bit bucket, * which is what happens to output to stderr under most Windows C compilers. * * These routines are used by both the compression and decompression code. */ /* this is not a core library module, so it doesn't define JPEG_INTERNALS */ #include "jinclude.h" #include "jpeglib.h" #include "jversion.h" #include "jerror.h" #ifdef USE_WINDOWS_MESSAGEBOX #include #endif #ifndef EXIT_FAILURE /* define exit() codes if not provided */ #define EXIT_FAILURE 1 #endif /* * Create the message string table. * We do this from the master message list in jerror.h by re-reading * jerror.h with a suitable definition for macro JMESSAGE. * The message table is made an external symbol just in case any applications * want to refer to it directly. */ #define JMESSAGE(code, string) string, const char * const jpeg_std_message_table[] = { #include "jerror.h" NULL }; /* * Error exit handler: must not return to caller. * * Applications may override this if they want to get control back after * an error. Typically one would longjmp somewhere instead of exiting. * The setjmp buffer can be made a private field within an expanded error * handler object. Note that the info needed to generate an error message * is stored in the error object, so you can generate the message now or * later, at your convenience. * You should make sure that the JPEG object is cleaned up (with jpeg_abort * or jpeg_destroy) at some point. */ METHODDEF(void) error_exit(j_common_ptr cinfo) { /* Always display the message */ (*cinfo->err->output_message) (cinfo); /* Let the memory manager delete any temp files before we die */ jpeg_destroy(cinfo); exit(EXIT_FAILURE); } /* * Actual output of an error or trace message. * Applications may override this method to send JPEG messages somewhere * other than stderr. * * On Windows, printing to stderr is generally completely useless, * so we provide optional code to produce an error-dialog popup. * Most Windows applications will still prefer to override this routine, * but if they don't, it'll do something at least marginally useful. * * NOTE: to use the library in an environment that doesn't support the * C stdio library, you may have to delete the call to fprintf() entirely, * not just not use this routine. */ METHODDEF(void) output_message(j_common_ptr cinfo) { char buffer[JMSG_LENGTH_MAX]; /* Create the message */ (*cinfo->err->format_message) (cinfo, buffer); #ifdef USE_WINDOWS_MESSAGEBOX /* Display it in a message dialog box */ MessageBox(GetActiveWindow(), buffer, "JPEG Library Error", MB_OK | MB_ICONERROR); #else /* Send it to stderr, adding a newline */ fprintf(stderr, "%s\n", buffer); #endif } /* * Decide whether to emit a trace or warning message. * msg_level is one of: * -1: recoverable corrupt-data warning, may want to abort. * 0: important advisory messages (always display to user). * 1: first level of tracing detail. * 2,3,...: successively more detailed tracing messages. * An application might override this method if it wanted to abort on warnings * or change the policy about which messages to display. */ METHODDEF(void) emit_message(j_common_ptr cinfo, int msg_level) { struct jpeg_error_mgr *err = cinfo->err; if (msg_level < 0) { /* It's a warning message. Since corrupt files may generate many warnings, * the policy implemented here is to show only the first warning, * unless trace_level >= 3. */ if (err->num_warnings == 0 || err->trace_level >= 3) (*err->output_message) (cinfo); /* Always count warnings in num_warnings. */ err->num_warnings++; } else { /* It's a trace message. Show it if trace_level >= msg_level. */ if (err->trace_level >= msg_level) (*err->output_message) (cinfo); } } /* * Format a message string for the most recent JPEG error or message. * The message is stored into buffer, which should be at least JMSG_LENGTH_MAX * characters. Note that no '\n' character is added to the string. * Few applications should need to override this method. */ METHODDEF(void) format_message(j_common_ptr cinfo, char *buffer) { struct jpeg_error_mgr *err = cinfo->err; int msg_code = err->msg_code; const char *msgtext = NULL; const char *msgptr; char ch; boolean isstring; /* Look up message string in proper table */ if (msg_code > 0 && msg_code <= err->last_jpeg_message) { msgtext = err->jpeg_message_table[msg_code]; } else if (err->addon_message_table != NULL && msg_code >= err->first_addon_message && msg_code <= err->last_addon_message) { msgtext = err->addon_message_table[msg_code - err->first_addon_message]; } /* Defend against bogus message number */ if (msgtext == NULL) { err->msg_parm.i[0] = msg_code; msgtext = err->jpeg_message_table[0]; } /* Check for string parameter, as indicated by %s in the message text */ isstring = FALSE; msgptr = msgtext; while ((ch = *msgptr++) != '\0') { if (ch == '%') { if (*msgptr == 's') isstring = TRUE; break; } } /* Format the message into the passed buffer */ if (isstring) SNPRINTF(buffer, JMSG_LENGTH_MAX, msgtext, err->msg_parm.s); else SNPRINTF(buffer, JMSG_LENGTH_MAX, msgtext, err->msg_parm.i[0], err->msg_parm.i[1], err->msg_parm.i[2], err->msg_parm.i[3], err->msg_parm.i[4], err->msg_parm.i[5], err->msg_parm.i[6], err->msg_parm.i[7]); } /* * Reset error state variables at start of a new image. * This is called during compression startup to reset trace/error * processing to default state, without losing any application-specific * method pointers. An application might possibly want to override * this method if it has additional error processing state. */ METHODDEF(void) reset_error_mgr(j_common_ptr cinfo) { cinfo->err->num_warnings = 0; /* trace_level is not reset since it is an application-supplied parameter */ cinfo->err->msg_code = 0; /* may be useful as a flag for "no error" */ } /* * Fill in the standard error-handling methods in a jpeg_error_mgr object. * Typical call is: * struct jpeg_compress_struct cinfo; * struct jpeg_error_mgr err; * * cinfo.err = jpeg_std_error(&err); * after which the application may override some of the methods. */ GLOBAL(struct jpeg_error_mgr *) jpeg_std_error(struct jpeg_error_mgr *err) { err->error_exit = error_exit; err->emit_message = emit_message; err->output_message = output_message; err->format_message = format_message; err->reset_error_mgr = reset_error_mgr; err->trace_level = 0; /* default = no tracing */ err->num_warnings = 0; /* no warnings emitted yet */ err->msg_code = 0; /* may be useful as a flag for "no error" */ /* Initialize message table pointers */ err->jpeg_message_table = jpeg_std_message_table; err->last_jpeg_message = (int)JMSG_LASTMSGCODE - 1; err->addon_message_table = NULL; err->first_addon_message = 0; /* for safety */ err->last_addon_message = 0; return err; } libjpeg-turbo-2.1.5/jerror.h000066400000000000000000000367701436506551100157630ustar00rootroot00000000000000/* * jerror.h * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1997, Thomas G. Lane. * Modified 1997-2009 by Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright (C) 2014, 2017, 2021-2022, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file defines the error and message codes for the JPEG library. * Edit this file to add new codes, or to translate the message strings to * some other language. * A set of error-reporting macros are defined too. Some applications using * the JPEG library may wish to include this file to get the error codes * and/or the macros. */ /* * To define the enum list of message codes, include this file without * defining macro JMESSAGE. To create a message string table, include it * again with a suitable JMESSAGE definition (see jerror.c for an example). */ #ifndef JMESSAGE #ifndef JERROR_H /* First time through, define the enum list */ #define JMAKE_ENUM_LIST #else /* Repeated inclusions of this file are no-ops unless JMESSAGE is defined */ #define JMESSAGE(code, string) #endif /* JERROR_H */ #endif /* JMESSAGE */ #ifdef JMAKE_ENUM_LIST typedef enum { #define JMESSAGE(code, string) code, #endif /* JMAKE_ENUM_LIST */ JMESSAGE(JMSG_NOMESSAGE, "Bogus message code %d") /* Must be first entry! */ /* For maintenance convenience, list is alphabetical by message code name */ #if JPEG_LIB_VERSION < 70 JMESSAGE(JERR_ARITH_NOTIMPL, "Sorry, arithmetic coding is not implemented") #endif JMESSAGE(JERR_BAD_ALIGN_TYPE, "ALIGN_TYPE is wrong, please fix") JMESSAGE(JERR_BAD_ALLOC_CHUNK, "MAX_ALLOC_CHUNK is wrong, please fix") JMESSAGE(JERR_BAD_BUFFER_MODE, "Bogus buffer control mode") JMESSAGE(JERR_BAD_COMPONENT_ID, "Invalid component ID %d in SOS") #if JPEG_LIB_VERSION >= 70 JMESSAGE(JERR_BAD_CROP_SPEC, "Invalid crop request") #endif JMESSAGE(JERR_BAD_DCT_COEF, "DCT coefficient out of range") JMESSAGE(JERR_BAD_DCTSIZE, "IDCT output block size %d not supported") #if JPEG_LIB_VERSION >= 70 JMESSAGE(JERR_BAD_DROP_SAMPLING, "Component index %d: mismatching sampling ratio %d:%d, %d:%d, %c") #endif JMESSAGE(JERR_BAD_HUFF_TABLE, "Bogus Huffman table definition") JMESSAGE(JERR_BAD_IN_COLORSPACE, "Bogus input colorspace") JMESSAGE(JERR_BAD_J_COLORSPACE, "Bogus JPEG colorspace") JMESSAGE(JERR_BAD_LENGTH, "Bogus marker length") JMESSAGE(JERR_BAD_LIB_VERSION, "Wrong JPEG library version: library is %d, caller expects %d") JMESSAGE(JERR_BAD_MCU_SIZE, "Sampling factors too large for interleaved scan") JMESSAGE(JERR_BAD_POOL_ID, "Invalid memory pool code %d") JMESSAGE(JERR_BAD_PRECISION, "Unsupported JPEG data precision %d") JMESSAGE(JERR_BAD_PROGRESSION, "Invalid progressive parameters Ss=%d Se=%d Ah=%d Al=%d") JMESSAGE(JERR_BAD_PROG_SCRIPT, "Invalid progressive parameters at scan script entry %d") JMESSAGE(JERR_BAD_SAMPLING, "Bogus sampling factors") JMESSAGE(JERR_BAD_SCAN_SCRIPT, "Invalid scan script at entry %d") JMESSAGE(JERR_BAD_STATE, "Improper call to JPEG library in state %d") JMESSAGE(JERR_BAD_STRUCT_SIZE, "JPEG parameter struct mismatch: library thinks size is %u, caller expects %u") JMESSAGE(JERR_BAD_VIRTUAL_ACCESS, "Bogus virtual array access") JMESSAGE(JERR_BUFFER_SIZE, "Buffer passed to JPEG library is too small") JMESSAGE(JERR_CANT_SUSPEND, "Suspension not allowed here") JMESSAGE(JERR_CCIR601_NOTIMPL, "CCIR601 sampling not implemented yet") JMESSAGE(JERR_COMPONENT_COUNT, "Too many color components: %d, max %d") JMESSAGE(JERR_CONVERSION_NOTIMPL, "Unsupported color conversion request") JMESSAGE(JERR_DAC_INDEX, "Bogus DAC index %d") JMESSAGE(JERR_DAC_VALUE, "Bogus DAC value 0x%x") JMESSAGE(JERR_DHT_INDEX, "Bogus DHT index %d") JMESSAGE(JERR_DQT_INDEX, "Bogus DQT index %d") JMESSAGE(JERR_EMPTY_IMAGE, "Empty JPEG image (DNL not supported)") JMESSAGE(JERR_EMS_READ, "Read from EMS failed") JMESSAGE(JERR_EMS_WRITE, "Write to EMS failed") JMESSAGE(JERR_EOI_EXPECTED, "Didn't expect more than one scan") JMESSAGE(JERR_FILE_READ, "Input file read error") JMESSAGE(JERR_FILE_WRITE, "Output file write error --- out of disk space?") JMESSAGE(JERR_FRACT_SAMPLE_NOTIMPL, "Fractional sampling not implemented yet") JMESSAGE(JERR_HUFF_CLEN_OVERFLOW, "Huffman code size table overflow") JMESSAGE(JERR_HUFF_MISSING_CODE, "Missing Huffman code table entry") JMESSAGE(JERR_IMAGE_TOO_BIG, "Maximum supported image dimension is %u pixels") JMESSAGE(JERR_INPUT_EMPTY, "Empty input file") JMESSAGE(JERR_INPUT_EOF, "Premature end of input file") JMESSAGE(JERR_MISMATCHED_QUANT_TABLE, "Cannot transcode due to multiple use of quantization table %d") JMESSAGE(JERR_MISSING_DATA, "Scan script does not transmit all data") JMESSAGE(JERR_MODE_CHANGE, "Invalid color quantization mode change") JMESSAGE(JERR_NOTIMPL, "Requested features are incompatible") JMESSAGE(JERR_NOT_COMPILED, "Requested feature was omitted at compile time") #if JPEG_LIB_VERSION >= 70 JMESSAGE(JERR_NO_ARITH_TABLE, "Arithmetic table 0x%02x was not defined") #endif JMESSAGE(JERR_NO_BACKING_STORE, "Backing store not supported") JMESSAGE(JERR_NO_HUFF_TABLE, "Huffman table 0x%02x was not defined") JMESSAGE(JERR_NO_IMAGE, "JPEG datastream contains no image") JMESSAGE(JERR_NO_QUANT_TABLE, "Quantization table 0x%02x was not defined") JMESSAGE(JERR_NO_SOI, "Not a JPEG file: starts with 0x%02x 0x%02x") JMESSAGE(JERR_OUT_OF_MEMORY, "Insufficient memory (case %d)") JMESSAGE(JERR_QUANT_COMPONENTS, "Cannot quantize more than %d color components") JMESSAGE(JERR_QUANT_FEW_COLORS, "Cannot quantize to fewer than %d colors") JMESSAGE(JERR_QUANT_MANY_COLORS, "Cannot quantize to more than %d colors") JMESSAGE(JERR_SOF_DUPLICATE, "Invalid JPEG file structure: two SOF markers") JMESSAGE(JERR_SOF_NO_SOS, "Invalid JPEG file structure: missing SOS marker") JMESSAGE(JERR_SOF_UNSUPPORTED, "Unsupported JPEG process: SOF type 0x%02x") JMESSAGE(JERR_SOI_DUPLICATE, "Invalid JPEG file structure: two SOI markers") JMESSAGE(JERR_SOS_NO_SOF, "Invalid JPEG file structure: SOS before SOF") JMESSAGE(JERR_TFILE_CREATE, "Failed to create temporary file %s") JMESSAGE(JERR_TFILE_READ, "Read failed on temporary file") JMESSAGE(JERR_TFILE_SEEK, "Seek failed on temporary file") JMESSAGE(JERR_TFILE_WRITE, "Write failed on temporary file --- out of disk space?") JMESSAGE(JERR_TOO_LITTLE_DATA, "Application transferred too few scanlines") JMESSAGE(JERR_UNKNOWN_MARKER, "Unsupported marker type 0x%02x") JMESSAGE(JERR_VIRTUAL_BUG, "Virtual array controller messed up") JMESSAGE(JERR_WIDTH_OVERFLOW, "Image too wide for this implementation") JMESSAGE(JERR_XMS_READ, "Read from XMS failed") JMESSAGE(JERR_XMS_WRITE, "Write to XMS failed") JMESSAGE(JMSG_COPYRIGHT, JCOPYRIGHT_SHORT) JMESSAGE(JMSG_VERSION, JVERSION) JMESSAGE(JTRC_16BIT_TABLES, "Caution: quantization tables are too coarse for baseline JPEG") JMESSAGE(JTRC_ADOBE, "Adobe APP14 marker: version %d, flags 0x%04x 0x%04x, transform %d") JMESSAGE(JTRC_APP0, "Unknown APP0 marker (not JFIF), length %u") JMESSAGE(JTRC_APP14, "Unknown APP14 marker (not Adobe), length %u") JMESSAGE(JTRC_DAC, "Define Arithmetic Table 0x%02x: 0x%02x") JMESSAGE(JTRC_DHT, "Define Huffman Table 0x%02x") JMESSAGE(JTRC_DQT, "Define Quantization Table %d precision %d") JMESSAGE(JTRC_DRI, "Define Restart Interval %u") JMESSAGE(JTRC_EMS_CLOSE, "Freed EMS handle %u") JMESSAGE(JTRC_EMS_OPEN, "Obtained EMS handle %u") JMESSAGE(JTRC_EOI, "End Of Image") JMESSAGE(JTRC_HUFFBITS, " %3d %3d %3d %3d %3d %3d %3d %3d") JMESSAGE(JTRC_JFIF, "JFIF APP0 marker: version %d.%02d, density %dx%d %d") JMESSAGE(JTRC_JFIF_BADTHUMBNAILSIZE, "Warning: thumbnail image size does not match data length %u") JMESSAGE(JTRC_JFIF_EXTENSION, "JFIF extension marker: type 0x%02x, length %u") JMESSAGE(JTRC_JFIF_THUMBNAIL, " with %d x %d thumbnail image") JMESSAGE(JTRC_MISC_MARKER, "Miscellaneous marker 0x%02x, length %u") JMESSAGE(JTRC_PARMLESS_MARKER, "Unexpected marker 0x%02x") JMESSAGE(JTRC_QUANTVALS, " %4u %4u %4u %4u %4u %4u %4u %4u") JMESSAGE(JTRC_QUANT_3_NCOLORS, "Quantizing to %d = %d*%d*%d colors") JMESSAGE(JTRC_QUANT_NCOLORS, "Quantizing to %d colors") JMESSAGE(JTRC_QUANT_SELECTED, "Selected %d colors for quantization") JMESSAGE(JTRC_RECOVERY_ACTION, "At marker 0x%02x, recovery action %d") JMESSAGE(JTRC_RST, "RST%d") JMESSAGE(JTRC_SMOOTH_NOTIMPL, "Smoothing not supported with nonstandard sampling ratios") JMESSAGE(JTRC_SOF, "Start Of Frame 0x%02x: width=%u, height=%u, components=%d") JMESSAGE(JTRC_SOF_COMPONENT, " Component %d: %dhx%dv q=%d") JMESSAGE(JTRC_SOI, "Start of Image") JMESSAGE(JTRC_SOS, "Start Of Scan: %d components") JMESSAGE(JTRC_SOS_COMPONENT, " Component %d: dc=%d ac=%d") JMESSAGE(JTRC_SOS_PARAMS, " Ss=%d, Se=%d, Ah=%d, Al=%d") JMESSAGE(JTRC_TFILE_CLOSE, "Closed temporary file %s") JMESSAGE(JTRC_TFILE_OPEN, "Opened temporary file %s") JMESSAGE(JTRC_THUMB_JPEG, "JFIF extension marker: JPEG-compressed thumbnail image, length %u") JMESSAGE(JTRC_THUMB_PALETTE, "JFIF extension marker: palette thumbnail image, length %u") JMESSAGE(JTRC_THUMB_RGB, "JFIF extension marker: RGB thumbnail image, length %u") JMESSAGE(JTRC_UNKNOWN_IDS, "Unrecognized component IDs %d %d %d, assuming YCbCr") JMESSAGE(JTRC_XMS_CLOSE, "Freed XMS handle %u") JMESSAGE(JTRC_XMS_OPEN, "Obtained XMS handle %u") JMESSAGE(JWRN_ADOBE_XFORM, "Unknown Adobe color transform code %d") #if JPEG_LIB_VERSION >= 70 JMESSAGE(JWRN_ARITH_BAD_CODE, "Corrupt JPEG data: bad arithmetic code") #endif JMESSAGE(JWRN_BOGUS_PROGRESSION, "Inconsistent progression sequence for component %d coefficient %d") JMESSAGE(JWRN_EXTRANEOUS_DATA, "Corrupt JPEG data: %u extraneous bytes before marker 0x%02x") JMESSAGE(JWRN_HIT_MARKER, "Corrupt JPEG data: premature end of data segment") JMESSAGE(JWRN_HUFF_BAD_CODE, "Corrupt JPEG data: bad Huffman code") JMESSAGE(JWRN_JFIF_MAJOR, "Warning: unknown JFIF revision number %d.%02d") JMESSAGE(JWRN_JPEG_EOF, "Premature end of JPEG file") JMESSAGE(JWRN_MUST_RESYNC, "Corrupt JPEG data: found marker 0x%02x instead of RST%d") JMESSAGE(JWRN_NOT_SEQUENTIAL, "Invalid SOS parameters for sequential JPEG") JMESSAGE(JWRN_TOO_MUCH_DATA, "Application transferred too many scanlines") #if JPEG_LIB_VERSION < 70 JMESSAGE(JERR_BAD_CROP_SPEC, "Invalid crop request") #if defined(C_ARITH_CODING_SUPPORTED) || defined(D_ARITH_CODING_SUPPORTED) JMESSAGE(JERR_NO_ARITH_TABLE, "Arithmetic table 0x%02x was not defined") JMESSAGE(JWRN_ARITH_BAD_CODE, "Corrupt JPEG data: bad arithmetic code") #endif #endif JMESSAGE(JWRN_BOGUS_ICC, "Corrupt JPEG data: bad ICC marker") #if JPEG_LIB_VERSION < 70 JMESSAGE(JERR_BAD_DROP_SAMPLING, "Component index %d: mismatching sampling ratio %d:%d, %d:%d, %c") #endif #ifdef JMAKE_ENUM_LIST JMSG_LASTMSGCODE } J_MESSAGE_CODE; #undef JMAKE_ENUM_LIST #endif /* JMAKE_ENUM_LIST */ /* Zap JMESSAGE macro so that future re-inclusions do nothing by default */ #undef JMESSAGE #ifndef JERROR_H #define JERROR_H /* Macros to simplify using the error and trace message stuff */ /* The first parameter is either type of cinfo pointer */ /* Fatal errors (print message and exit) */ #define ERREXIT(cinfo, code) \ ((cinfo)->err->msg_code = (code), \ (*(cinfo)->err->error_exit) ((j_common_ptr)(cinfo))) #define ERREXIT1(cinfo, code, p1) \ ((cinfo)->err->msg_code = (code), \ (cinfo)->err->msg_parm.i[0] = (p1), \ (*(cinfo)->err->error_exit) ((j_common_ptr)(cinfo))) #define ERREXIT2(cinfo, code, p1, p2) \ ((cinfo)->err->msg_code = (code), \ (cinfo)->err->msg_parm.i[0] = (p1), \ (cinfo)->err->msg_parm.i[1] = (p2), \ (*(cinfo)->err->error_exit) ((j_common_ptr)(cinfo))) #define ERREXIT3(cinfo, code, p1, p2, p3) \ ((cinfo)->err->msg_code = (code), \ (cinfo)->err->msg_parm.i[0] = (p1), \ (cinfo)->err->msg_parm.i[1] = (p2), \ (cinfo)->err->msg_parm.i[2] = (p3), \ (*(cinfo)->err->error_exit) ((j_common_ptr)(cinfo))) #define ERREXIT4(cinfo, code, p1, p2, p3, p4) \ ((cinfo)->err->msg_code = (code), \ (cinfo)->err->msg_parm.i[0] = (p1), \ (cinfo)->err->msg_parm.i[1] = (p2), \ (cinfo)->err->msg_parm.i[2] = (p3), \ (cinfo)->err->msg_parm.i[3] = (p4), \ (*(cinfo)->err->error_exit) ((j_common_ptr)(cinfo))) #define ERREXIT6(cinfo, code, p1, p2, p3, p4, p5, p6) \ ((cinfo)->err->msg_code = (code), \ (cinfo)->err->msg_parm.i[0] = (p1), \ (cinfo)->err->msg_parm.i[1] = (p2), \ (cinfo)->err->msg_parm.i[2] = (p3), \ (cinfo)->err->msg_parm.i[3] = (p4), \ (cinfo)->err->msg_parm.i[4] = (p5), \ (cinfo)->err->msg_parm.i[5] = (p6), \ (*(cinfo)->err->error_exit) ((j_common_ptr)(cinfo))) #define ERREXITS(cinfo, code, str) \ ((cinfo)->err->msg_code = (code), \ strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \ (cinfo)->err->msg_parm.s[JMSG_STR_PARM_MAX - 1] = '\0', \ (*(cinfo)->err->error_exit) ((j_common_ptr)(cinfo))) #define MAKESTMT(stuff) do { stuff } while (0) /* Nonfatal errors (we can keep going, but the data is probably corrupt) */ #define WARNMS(cinfo, code) \ ((cinfo)->err->msg_code = (code), \ (*(cinfo)->err->emit_message) ((j_common_ptr)(cinfo), -1)) #define WARNMS1(cinfo, code, p1) \ ((cinfo)->err->msg_code = (code), \ (cinfo)->err->msg_parm.i[0] = (p1), \ (*(cinfo)->err->emit_message) ((j_common_ptr)(cinfo), -1)) #define WARNMS2(cinfo, code, p1, p2) \ ((cinfo)->err->msg_code = (code), \ (cinfo)->err->msg_parm.i[0] = (p1), \ (cinfo)->err->msg_parm.i[1] = (p2), \ (*(cinfo)->err->emit_message) ((j_common_ptr)(cinfo), -1)) /* Informational/debugging messages */ #define TRACEMS(cinfo, lvl, code) \ ((cinfo)->err->msg_code = (code), \ (*(cinfo)->err->emit_message) ((j_common_ptr)(cinfo), (lvl))) #define TRACEMS1(cinfo, lvl, code, p1) \ ((cinfo)->err->msg_code = (code), \ (cinfo)->err->msg_parm.i[0] = (p1), \ (*(cinfo)->err->emit_message) ((j_common_ptr)(cinfo), (lvl))) #define TRACEMS2(cinfo, lvl, code, p1, p2) \ ((cinfo)->err->msg_code = (code), \ (cinfo)->err->msg_parm.i[0] = (p1), \ (cinfo)->err->msg_parm.i[1] = (p2), \ (*(cinfo)->err->emit_message) ((j_common_ptr)(cinfo), (lvl))) #define TRACEMS3(cinfo, lvl, code, p1, p2, p3) \ MAKESTMT(int *_mp = (cinfo)->err->msg_parm.i; \ _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); \ (cinfo)->err->msg_code = (code); \ (*(cinfo)->err->emit_message) ((j_common_ptr)(cinfo), (lvl)); ) #define TRACEMS4(cinfo, lvl, code, p1, p2, p3, p4) \ MAKESTMT(int *_mp = (cinfo)->err->msg_parm.i; \ _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \ (cinfo)->err->msg_code = (code); \ (*(cinfo)->err->emit_message) ((j_common_ptr)(cinfo), (lvl)); ) #define TRACEMS5(cinfo, lvl, code, p1, p2, p3, p4, p5) \ MAKESTMT(int *_mp = (cinfo)->err->msg_parm.i; \ _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \ _mp[4] = (p5); \ (cinfo)->err->msg_code = (code); \ (*(cinfo)->err->emit_message) ((j_common_ptr)(cinfo), (lvl)); ) #define TRACEMS8(cinfo, lvl, code, p1, p2, p3, p4, p5, p6, p7, p8) \ MAKESTMT(int *_mp = (cinfo)->err->msg_parm.i; \ _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \ _mp[4] = (p5); _mp[5] = (p6); _mp[6] = (p7); _mp[7] = (p8); \ (cinfo)->err->msg_code = (code); \ (*(cinfo)->err->emit_message) ((j_common_ptr)(cinfo), (lvl)); ) #define TRACEMSS(cinfo, lvl, code, str) \ ((cinfo)->err->msg_code = (code), \ strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \ (cinfo)->err->msg_parm.s[JMSG_STR_PARM_MAX - 1] = '\0', \ (*(cinfo)->err->emit_message) ((j_common_ptr)(cinfo), (lvl))) #endif /* JERROR_H */ libjpeg-turbo-2.1.5/jfdctflt.c000066400000000000000000000127241436506551100162440ustar00rootroot00000000000000/* * jfdctflt.c * * Copyright (C) 1994-1996, Thomas G. Lane. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains a floating-point implementation of the * forward DCT (Discrete Cosine Transform). * * This implementation should be more accurate than either of the integer * DCT implementations. However, it may not give the same results on all * machines because of differences in roundoff behavior. Speed will depend * on the hardware's floating point capacity. * * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT * on each column. Direct algorithms are also available, but they are * much more complex and seem not to be any faster when reduced to code. * * This implementation is based on Arai, Agui, and Nakajima's algorithm for * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in * Japanese, but the algorithm is described in the Pennebaker & Mitchell * JPEG textbook (see REFERENCES section in file README.ijg). The following * code is based directly on figure 4-8 in P&M. * While an 8-point DCT cannot be done in less than 11 multiplies, it is * possible to arrange the computation so that many of the multiplies are * simple scalings of the final outputs. These multiplies can then be * folded into the multiplications or divisions by the JPEG quantization * table entries. The AA&N method leaves only 5 multiplies and 29 adds * to be done in the DCT itself. * The primary disadvantage of this method is that with a fixed-point * implementation, accuracy is lost due to imprecise representation of the * scaled quantization values. However, that problem does not arise if * we use floating point arithmetic. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jdct.h" /* Private declarations for DCT subsystem */ #ifdef DCT_FLOAT_SUPPORTED /* * This module is specialized to the case DCTSIZE = 8. */ #if DCTSIZE != 8 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ #endif /* * Perform the forward DCT on one block of samples. */ GLOBAL(void) jpeg_fdct_float(FAST_FLOAT *data) { FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; FAST_FLOAT tmp10, tmp11, tmp12, tmp13; FAST_FLOAT z1, z2, z3, z4, z5, z11, z13; FAST_FLOAT *dataptr; int ctr; /* Pass 1: process rows. */ dataptr = data; for (ctr = DCTSIZE - 1; ctr >= 0; ctr--) { tmp0 = dataptr[0] + dataptr[7]; tmp7 = dataptr[0] - dataptr[7]; tmp1 = dataptr[1] + dataptr[6]; tmp6 = dataptr[1] - dataptr[6]; tmp2 = dataptr[2] + dataptr[5]; tmp5 = dataptr[2] - dataptr[5]; tmp3 = dataptr[3] + dataptr[4]; tmp4 = dataptr[3] - dataptr[4]; /* Even part */ tmp10 = tmp0 + tmp3; /* phase 2 */ tmp13 = tmp0 - tmp3; tmp11 = tmp1 + tmp2; tmp12 = tmp1 - tmp2; dataptr[0] = tmp10 + tmp11; /* phase 3 */ dataptr[4] = tmp10 - tmp11; z1 = (tmp12 + tmp13) * ((FAST_FLOAT)0.707106781); /* c4 */ dataptr[2] = tmp13 + z1; /* phase 5 */ dataptr[6] = tmp13 - z1; /* Odd part */ tmp10 = tmp4 + tmp5; /* phase 2 */ tmp11 = tmp5 + tmp6; tmp12 = tmp6 + tmp7; /* The rotator is modified from fig 4-8 to avoid extra negations. */ z5 = (tmp10 - tmp12) * ((FAST_FLOAT)0.382683433); /* c6 */ z2 = ((FAST_FLOAT)0.541196100) * tmp10 + z5; /* c2-c6 */ z4 = ((FAST_FLOAT)1.306562965) * tmp12 + z5; /* c2+c6 */ z3 = tmp11 * ((FAST_FLOAT)0.707106781); /* c4 */ z11 = tmp7 + z3; /* phase 5 */ z13 = tmp7 - z3; dataptr[5] = z13 + z2; /* phase 6 */ dataptr[3] = z13 - z2; dataptr[1] = z11 + z4; dataptr[7] = z11 - z4; dataptr += DCTSIZE; /* advance pointer to next row */ } /* Pass 2: process columns. */ dataptr = data; for (ctr = DCTSIZE - 1; ctr >= 0; ctr--) { tmp0 = dataptr[DCTSIZE * 0] + dataptr[DCTSIZE * 7]; tmp7 = dataptr[DCTSIZE * 0] - dataptr[DCTSIZE * 7]; tmp1 = dataptr[DCTSIZE * 1] + dataptr[DCTSIZE * 6]; tmp6 = dataptr[DCTSIZE * 1] - dataptr[DCTSIZE * 6]; tmp2 = dataptr[DCTSIZE * 2] + dataptr[DCTSIZE * 5]; tmp5 = dataptr[DCTSIZE * 2] - dataptr[DCTSIZE * 5]; tmp3 = dataptr[DCTSIZE * 3] + dataptr[DCTSIZE * 4]; tmp4 = dataptr[DCTSIZE * 3] - dataptr[DCTSIZE * 4]; /* Even part */ tmp10 = tmp0 + tmp3; /* phase 2 */ tmp13 = tmp0 - tmp3; tmp11 = tmp1 + tmp2; tmp12 = tmp1 - tmp2; dataptr[DCTSIZE * 0] = tmp10 + tmp11; /* phase 3 */ dataptr[DCTSIZE * 4] = tmp10 - tmp11; z1 = (tmp12 + tmp13) * ((FAST_FLOAT)0.707106781); /* c4 */ dataptr[DCTSIZE * 2] = tmp13 + z1; /* phase 5 */ dataptr[DCTSIZE * 6] = tmp13 - z1; /* Odd part */ tmp10 = tmp4 + tmp5; /* phase 2 */ tmp11 = tmp5 + tmp6; tmp12 = tmp6 + tmp7; /* The rotator is modified from fig 4-8 to avoid extra negations. */ z5 = (tmp10 - tmp12) * ((FAST_FLOAT)0.382683433); /* c6 */ z2 = ((FAST_FLOAT)0.541196100) * tmp10 + z5; /* c2-c6 */ z4 = ((FAST_FLOAT)1.306562965) * tmp12 + z5; /* c2+c6 */ z3 = tmp11 * ((FAST_FLOAT)0.707106781); /* c4 */ z11 = tmp7 + z3; /* phase 5 */ z13 = tmp7 - z3; dataptr[DCTSIZE * 5] = z13 + z2; /* phase 6 */ dataptr[DCTSIZE * 3] = z13 - z2; dataptr[DCTSIZE * 1] = z11 + z4; dataptr[DCTSIZE * 7] = z11 - z4; dataptr++; /* advance pointer to next column */ } } #endif /* DCT_FLOAT_SUPPORTED */ libjpeg-turbo-2.1.5/jfdctfst.c000066400000000000000000000171601436506551100162520ustar00rootroot00000000000000/* * jfdctfst.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1996, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2015, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains a fast, not so accurate integer implementation of the * forward DCT (Discrete Cosine Transform). * * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT * on each column. Direct algorithms are also available, but they are * much more complex and seem not to be any faster when reduced to code. * * This implementation is based on Arai, Agui, and Nakajima's algorithm for * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in * Japanese, but the algorithm is described in the Pennebaker & Mitchell * JPEG textbook (see REFERENCES section in file README.ijg). The following * code is based directly on figure 4-8 in P&M. * While an 8-point DCT cannot be done in less than 11 multiplies, it is * possible to arrange the computation so that many of the multiplies are * simple scalings of the final outputs. These multiplies can then be * folded into the multiplications or divisions by the JPEG quantization * table entries. The AA&N method leaves only 5 multiplies and 29 adds * to be done in the DCT itself. * The primary disadvantage of this method is that with fixed-point math, * accuracy is lost due to imprecise representation of the scaled * quantization values. The smaller the quantization table entry, the less * precise the scaled value, so this implementation does worse with high- * quality-setting files than with low-quality ones. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jdct.h" /* Private declarations for DCT subsystem */ #ifdef DCT_IFAST_SUPPORTED /* * This module is specialized to the case DCTSIZE = 8. */ #if DCTSIZE != 8 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ #endif /* Scaling decisions are generally the same as in the LL&M algorithm; * see jfdctint.c for more details. However, we choose to descale * (right shift) multiplication products as soon as they are formed, * rather than carrying additional fractional bits into subsequent additions. * This compromises accuracy slightly, but it lets us save a few shifts. * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples) * everywhere except in the multiplications proper; this saves a good deal * of work on 16-bit-int machines. * * Again to save a few shifts, the intermediate results between pass 1 and * pass 2 are not upscaled, but are represented only to integral precision. * * A final compromise is to represent the multiplicative constants to only * 8 fractional bits, rather than 13. This saves some shifting work on some * machines, and may also reduce the cost of multiplication (since there * are fewer one-bits in the constants). */ #define CONST_BITS 8 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus * causing a lot of useless floating-point operations at run time. * To get around this we use the following pre-calculated constants. * If you change CONST_BITS you may want to add appropriate values. * (With a reasonable C compiler, you can just rely on the FIX() macro...) */ #if CONST_BITS == 8 #define FIX_0_382683433 ((JLONG)98) /* FIX(0.382683433) */ #define FIX_0_541196100 ((JLONG)139) /* FIX(0.541196100) */ #define FIX_0_707106781 ((JLONG)181) /* FIX(0.707106781) */ #define FIX_1_306562965 ((JLONG)334) /* FIX(1.306562965) */ #else #define FIX_0_382683433 FIX(0.382683433) #define FIX_0_541196100 FIX(0.541196100) #define FIX_0_707106781 FIX(0.707106781) #define FIX_1_306562965 FIX(1.306562965) #endif /* We can gain a little more speed, with a further compromise in accuracy, * by omitting the addition in a descaling shift. This yields an incorrectly * rounded result half the time... */ #ifndef USE_ACCURATE_ROUNDING #undef DESCALE #define DESCALE(x, n) RIGHT_SHIFT(x, n) #endif /* Multiply a DCTELEM variable by an JLONG constant, and immediately * descale to yield a DCTELEM result. */ #define MULTIPLY(var, const) ((DCTELEM)DESCALE((var) * (const), CONST_BITS)) /* * Perform the forward DCT on one block of samples. */ GLOBAL(void) jpeg_fdct_ifast(DCTELEM *data) { DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; DCTELEM tmp10, tmp11, tmp12, tmp13; DCTELEM z1, z2, z3, z4, z5, z11, z13; DCTELEM *dataptr; int ctr; SHIFT_TEMPS /* Pass 1: process rows. */ dataptr = data; for (ctr = DCTSIZE - 1; ctr >= 0; ctr--) { tmp0 = dataptr[0] + dataptr[7]; tmp7 = dataptr[0] - dataptr[7]; tmp1 = dataptr[1] + dataptr[6]; tmp6 = dataptr[1] - dataptr[6]; tmp2 = dataptr[2] + dataptr[5]; tmp5 = dataptr[2] - dataptr[5]; tmp3 = dataptr[3] + dataptr[4]; tmp4 = dataptr[3] - dataptr[4]; /* Even part */ tmp10 = tmp0 + tmp3; /* phase 2 */ tmp13 = tmp0 - tmp3; tmp11 = tmp1 + tmp2; tmp12 = tmp1 - tmp2; dataptr[0] = tmp10 + tmp11; /* phase 3 */ dataptr[4] = tmp10 - tmp11; z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */ dataptr[2] = tmp13 + z1; /* phase 5 */ dataptr[6] = tmp13 - z1; /* Odd part */ tmp10 = tmp4 + tmp5; /* phase 2 */ tmp11 = tmp5 + tmp6; tmp12 = tmp6 + tmp7; /* The rotator is modified from fig 4-8 to avoid extra negations. */ z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */ z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */ z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */ z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */ z11 = tmp7 + z3; /* phase 5 */ z13 = tmp7 - z3; dataptr[5] = z13 + z2; /* phase 6 */ dataptr[3] = z13 - z2; dataptr[1] = z11 + z4; dataptr[7] = z11 - z4; dataptr += DCTSIZE; /* advance pointer to next row */ } /* Pass 2: process columns. */ dataptr = data; for (ctr = DCTSIZE - 1; ctr >= 0; ctr--) { tmp0 = dataptr[DCTSIZE * 0] + dataptr[DCTSIZE * 7]; tmp7 = dataptr[DCTSIZE * 0] - dataptr[DCTSIZE * 7]; tmp1 = dataptr[DCTSIZE * 1] + dataptr[DCTSIZE * 6]; tmp6 = dataptr[DCTSIZE * 1] - dataptr[DCTSIZE * 6]; tmp2 = dataptr[DCTSIZE * 2] + dataptr[DCTSIZE * 5]; tmp5 = dataptr[DCTSIZE * 2] - dataptr[DCTSIZE * 5]; tmp3 = dataptr[DCTSIZE * 3] + dataptr[DCTSIZE * 4]; tmp4 = dataptr[DCTSIZE * 3] - dataptr[DCTSIZE * 4]; /* Even part */ tmp10 = tmp0 + tmp3; /* phase 2 */ tmp13 = tmp0 - tmp3; tmp11 = tmp1 + tmp2; tmp12 = tmp1 - tmp2; dataptr[DCTSIZE * 0] = tmp10 + tmp11; /* phase 3 */ dataptr[DCTSIZE * 4] = tmp10 - tmp11; z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */ dataptr[DCTSIZE * 2] = tmp13 + z1; /* phase 5 */ dataptr[DCTSIZE * 6] = tmp13 - z1; /* Odd part */ tmp10 = tmp4 + tmp5; /* phase 2 */ tmp11 = tmp5 + tmp6; tmp12 = tmp6 + tmp7; /* The rotator is modified from fig 4-8 to avoid extra negations. */ z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */ z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */ z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */ z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */ z11 = tmp7 + z3; /* phase 5 */ z13 = tmp7 - z3; dataptr[DCTSIZE * 5] = z13 + z2; /* phase 6 */ dataptr[DCTSIZE * 3] = z13 - z2; dataptr[DCTSIZE * 1] = z11 + z4; dataptr[DCTSIZE * 7] = z11 - z4; dataptr++; /* advance pointer to next column */ } } #endif /* DCT_IFAST_SUPPORTED */ libjpeg-turbo-2.1.5/jfdctint.c000066400000000000000000000263641436506551100162560ustar00rootroot00000000000000/* * jfdctint.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1996, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2015, 2020, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains a slower but more accurate integer implementation of the * forward DCT (Discrete Cosine Transform). * * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT * on each column. Direct algorithms are also available, but they are * much more complex and seem not to be any faster when reduced to code. * * This implementation is based on an algorithm described in * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. * The primary algorithm described there uses 11 multiplies and 29 adds. * We use their alternate method with 12 multiplies and 32 adds. * The advantage of this method is that no data path contains more than one * multiplication; this allows a very simple and accurate implementation in * scaled fixed-point arithmetic, with a minimal number of shifts. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jdct.h" /* Private declarations for DCT subsystem */ #ifdef DCT_ISLOW_SUPPORTED /* * This module is specialized to the case DCTSIZE = 8. */ #if DCTSIZE != 8 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ #endif /* * The poop on this scaling stuff is as follows: * * Each 1-D DCT step produces outputs which are a factor of sqrt(N) * larger than the true DCT outputs. The final outputs are therefore * a factor of N larger than desired; since N=8 this can be cured by * a simple right shift at the end of the algorithm. The advantage of * this arrangement is that we save two multiplications per 1-D DCT, * because the y0 and y4 outputs need not be divided by sqrt(N). * In the IJG code, this factor of 8 is removed by the quantization step * (in jcdctmgr.c), NOT in this module. * * We have to do addition and subtraction of the integer inputs, which * is no problem, and multiplication by fractional constants, which is * a problem to do in integer arithmetic. We multiply all the constants * by CONST_SCALE and convert them to integer constants (thus retaining * CONST_BITS bits of precision in the constants). After doing a * multiplication we have to divide the product by CONST_SCALE, with proper * rounding, to produce the correct output. This division can be done * cheaply as a right shift of CONST_BITS bits. We postpone shifting * as long as possible so that partial sums can be added together with * full fractional precision. * * The outputs of the first pass are scaled up by PASS1_BITS bits so that * they are represented to better-than-integral precision. These outputs * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word * with the recommended scaling. (For 12-bit sample data, the intermediate * array is JLONG anyway.) * * To avoid overflow of the 32-bit intermediate results in pass 2, we must * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis * shows that the values given below are the most effective. */ #if BITS_IN_JSAMPLE == 8 #define CONST_BITS 13 #define PASS1_BITS 2 #else #define CONST_BITS 13 #define PASS1_BITS 1 /* lose a little precision to avoid overflow */ #endif /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus * causing a lot of useless floating-point operations at run time. * To get around this we use the following pre-calculated constants. * If you change CONST_BITS you may want to add appropriate values. * (With a reasonable C compiler, you can just rely on the FIX() macro...) */ #if CONST_BITS == 13 #define FIX_0_298631336 ((JLONG)2446) /* FIX(0.298631336) */ #define FIX_0_390180644 ((JLONG)3196) /* FIX(0.390180644) */ #define FIX_0_541196100 ((JLONG)4433) /* FIX(0.541196100) */ #define FIX_0_765366865 ((JLONG)6270) /* FIX(0.765366865) */ #define FIX_0_899976223 ((JLONG)7373) /* FIX(0.899976223) */ #define FIX_1_175875602 ((JLONG)9633) /* FIX(1.175875602) */ #define FIX_1_501321110 ((JLONG)12299) /* FIX(1.501321110) */ #define FIX_1_847759065 ((JLONG)15137) /* FIX(1.847759065) */ #define FIX_1_961570560 ((JLONG)16069) /* FIX(1.961570560) */ #define FIX_2_053119869 ((JLONG)16819) /* FIX(2.053119869) */ #define FIX_2_562915447 ((JLONG)20995) /* FIX(2.562915447) */ #define FIX_3_072711026 ((JLONG)25172) /* FIX(3.072711026) */ #else #define FIX_0_298631336 FIX(0.298631336) #define FIX_0_390180644 FIX(0.390180644) #define FIX_0_541196100 FIX(0.541196100) #define FIX_0_765366865 FIX(0.765366865) #define FIX_0_899976223 FIX(0.899976223) #define FIX_1_175875602 FIX(1.175875602) #define FIX_1_501321110 FIX(1.501321110) #define FIX_1_847759065 FIX(1.847759065) #define FIX_1_961570560 FIX(1.961570560) #define FIX_2_053119869 FIX(2.053119869) #define FIX_2_562915447 FIX(2.562915447) #define FIX_3_072711026 FIX(3.072711026) #endif /* Multiply an JLONG variable by an JLONG constant to yield an JLONG result. * For 8-bit samples with the recommended scaling, all the variable * and constant values involved are no more than 16 bits wide, so a * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. * For 12-bit samples, a full 32-bit multiplication will be needed. */ #if BITS_IN_JSAMPLE == 8 #define MULTIPLY(var, const) MULTIPLY16C16(var, const) #else #define MULTIPLY(var, const) ((var) * (const)) #endif /* * Perform the forward DCT on one block of samples. */ GLOBAL(void) jpeg_fdct_islow(DCTELEM *data) { JLONG tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; JLONG tmp10, tmp11, tmp12, tmp13; JLONG z1, z2, z3, z4, z5; DCTELEM *dataptr; int ctr; SHIFT_TEMPS /* Pass 1: process rows. */ /* Note results are scaled up by sqrt(8) compared to a true DCT; */ /* furthermore, we scale the results by 2**PASS1_BITS. */ dataptr = data; for (ctr = DCTSIZE - 1; ctr >= 0; ctr--) { tmp0 = dataptr[0] + dataptr[7]; tmp7 = dataptr[0] - dataptr[7]; tmp1 = dataptr[1] + dataptr[6]; tmp6 = dataptr[1] - dataptr[6]; tmp2 = dataptr[2] + dataptr[5]; tmp5 = dataptr[2] - dataptr[5]; tmp3 = dataptr[3] + dataptr[4]; tmp4 = dataptr[3] - dataptr[4]; /* Even part per LL&M figure 1 --- note that published figure is faulty; * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". */ tmp10 = tmp0 + tmp3; tmp13 = tmp0 - tmp3; tmp11 = tmp1 + tmp2; tmp12 = tmp1 - tmp2; dataptr[0] = (DCTELEM)LEFT_SHIFT(tmp10 + tmp11, PASS1_BITS); dataptr[4] = (DCTELEM)LEFT_SHIFT(tmp10 - tmp11, PASS1_BITS); z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); dataptr[2] = (DCTELEM)DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865), CONST_BITS - PASS1_BITS); dataptr[6] = (DCTELEM)DESCALE(z1 + MULTIPLY(tmp12, -FIX_1_847759065), CONST_BITS - PASS1_BITS); /* Odd part per figure 8 --- note paper omits factor of sqrt(2). * cK represents cos(K*pi/16). * i0..i3 in the paper are tmp4..tmp7 here. */ z1 = tmp4 + tmp7; z2 = tmp5 + tmp6; z3 = tmp4 + tmp6; z4 = tmp5 + tmp7; z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ z1 = MULTIPLY(z1, -FIX_0_899976223); /* sqrt(2) * ( c7-c3) */ z2 = MULTIPLY(z2, -FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ z3 = MULTIPLY(z3, -FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ z4 = MULTIPLY(z4, -FIX_0_390180644); /* sqrt(2) * ( c5-c3) */ z3 += z5; z4 += z5; dataptr[7] = (DCTELEM)DESCALE(tmp4 + z1 + z3, CONST_BITS - PASS1_BITS); dataptr[5] = (DCTELEM)DESCALE(tmp5 + z2 + z4, CONST_BITS - PASS1_BITS); dataptr[3] = (DCTELEM)DESCALE(tmp6 + z2 + z3, CONST_BITS - PASS1_BITS); dataptr[1] = (DCTELEM)DESCALE(tmp7 + z1 + z4, CONST_BITS - PASS1_BITS); dataptr += DCTSIZE; /* advance pointer to next row */ } /* Pass 2: process columns. * We remove the PASS1_BITS scaling, but leave the results scaled up * by an overall factor of 8. */ dataptr = data; for (ctr = DCTSIZE - 1; ctr >= 0; ctr--) { tmp0 = dataptr[DCTSIZE * 0] + dataptr[DCTSIZE * 7]; tmp7 = dataptr[DCTSIZE * 0] - dataptr[DCTSIZE * 7]; tmp1 = dataptr[DCTSIZE * 1] + dataptr[DCTSIZE * 6]; tmp6 = dataptr[DCTSIZE * 1] - dataptr[DCTSIZE * 6]; tmp2 = dataptr[DCTSIZE * 2] + dataptr[DCTSIZE * 5]; tmp5 = dataptr[DCTSIZE * 2] - dataptr[DCTSIZE * 5]; tmp3 = dataptr[DCTSIZE * 3] + dataptr[DCTSIZE * 4]; tmp4 = dataptr[DCTSIZE * 3] - dataptr[DCTSIZE * 4]; /* Even part per LL&M figure 1 --- note that published figure is faulty; * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". */ tmp10 = tmp0 + tmp3; tmp13 = tmp0 - tmp3; tmp11 = tmp1 + tmp2; tmp12 = tmp1 - tmp2; dataptr[DCTSIZE * 0] = (DCTELEM)DESCALE(tmp10 + tmp11, PASS1_BITS); dataptr[DCTSIZE * 4] = (DCTELEM)DESCALE(tmp10 - tmp11, PASS1_BITS); z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); dataptr[DCTSIZE * 2] = (DCTELEM)DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865), CONST_BITS + PASS1_BITS); dataptr[DCTSIZE * 6] = (DCTELEM)DESCALE(z1 + MULTIPLY(tmp12, -FIX_1_847759065), CONST_BITS + PASS1_BITS); /* Odd part per figure 8 --- note paper omits factor of sqrt(2). * cK represents cos(K*pi/16). * i0..i3 in the paper are tmp4..tmp7 here. */ z1 = tmp4 + tmp7; z2 = tmp5 + tmp6; z3 = tmp4 + tmp6; z4 = tmp5 + tmp7; z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ z1 = MULTIPLY(z1, -FIX_0_899976223); /* sqrt(2) * ( c7-c3) */ z2 = MULTIPLY(z2, -FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ z3 = MULTIPLY(z3, -FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ z4 = MULTIPLY(z4, -FIX_0_390180644); /* sqrt(2) * ( c5-c3) */ z3 += z5; z4 += z5; dataptr[DCTSIZE * 7] = (DCTELEM)DESCALE(tmp4 + z1 + z3, CONST_BITS + PASS1_BITS); dataptr[DCTSIZE * 5] = (DCTELEM)DESCALE(tmp5 + z2 + z4, CONST_BITS + PASS1_BITS); dataptr[DCTSIZE * 3] = (DCTELEM)DESCALE(tmp6 + z2 + z3, CONST_BITS + PASS1_BITS); dataptr[DCTSIZE * 1] = (DCTELEM)DESCALE(tmp7 + z1 + z4, CONST_BITS + PASS1_BITS); dataptr++; /* advance pointer to next column */ } } #endif /* DCT_ISLOW_SUPPORTED */ libjpeg-turbo-2.1.5/jidctflt.c000066400000000000000000000210311436506551100162360ustar00rootroot00000000000000/* * jidctflt.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1998, Thomas G. Lane. * Modified 2010 by Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright (C) 2014, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains a floating-point implementation of the * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine * must also perform dequantization of the input coefficients. * * This implementation should be more accurate than either of the integer * IDCT implementations. However, it may not give the same results on all * machines because of differences in roundoff behavior. Speed will depend * on the hardware's floating point capacity. * * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT * on each row (or vice versa, but it's more convenient to emit a row at * a time). Direct algorithms are also available, but they are much more * complex and seem not to be any faster when reduced to code. * * This implementation is based on Arai, Agui, and Nakajima's algorithm for * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in * Japanese, but the algorithm is described in the Pennebaker & Mitchell * JPEG textbook (see REFERENCES section in file README.ijg). The following * code is based directly on figure 4-8 in P&M. * While an 8-point DCT cannot be done in less than 11 multiplies, it is * possible to arrange the computation so that many of the multiplies are * simple scalings of the final outputs. These multiplies can then be * folded into the multiplications or divisions by the JPEG quantization * table entries. The AA&N method leaves only 5 multiplies and 29 adds * to be done in the DCT itself. * The primary disadvantage of this method is that with a fixed-point * implementation, accuracy is lost due to imprecise representation of the * scaled quantization values. However, that problem does not arise if * we use floating point arithmetic. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jdct.h" /* Private declarations for DCT subsystem */ #ifdef DCT_FLOAT_SUPPORTED /* * This module is specialized to the case DCTSIZE = 8. */ #if DCTSIZE != 8 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ #endif /* Dequantize a coefficient by multiplying it by the multiplier-table * entry; produce a float result. */ #define DEQUANTIZE(coef, quantval) (((FAST_FLOAT)(coef)) * (quantval)) /* * Perform dequantization and inverse DCT on one block of coefficients. */ GLOBAL(void) jpeg_idct_float(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; FAST_FLOAT tmp10, tmp11, tmp12, tmp13; FAST_FLOAT z5, z10, z11, z12, z13; JCOEFPTR inptr; FLOAT_MULT_TYPE *quantptr; FAST_FLOAT *wsptr; JSAMPROW outptr; JSAMPLE *range_limit = cinfo->sample_range_limit; int ctr; FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */ #define _0_125 ((FLOAT_MULT_TYPE)0.125) /* Pass 1: process columns from input, store into work array. */ inptr = coef_block; quantptr = (FLOAT_MULT_TYPE *)compptr->dct_table; wsptr = workspace; for (ctr = DCTSIZE; ctr > 0; ctr--) { /* Due to quantization, we will usually find that many of the input * coefficients are zero, especially the AC terms. We can exploit this * by short-circuiting the IDCT calculation for any column in which all * the AC terms are zero. In that case each output is equal to the * DC coefficient (with scale factor as needed). * With typical images and quantization tables, half or more of the * column DCT calculations can be simplified this way. */ if (inptr[DCTSIZE * 1] == 0 && inptr[DCTSIZE * 2] == 0 && inptr[DCTSIZE * 3] == 0 && inptr[DCTSIZE * 4] == 0 && inptr[DCTSIZE * 5] == 0 && inptr[DCTSIZE * 6] == 0 && inptr[DCTSIZE * 7] == 0) { /* AC terms all zero */ FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0] * _0_125); wsptr[DCTSIZE * 0] = dcval; wsptr[DCTSIZE * 1] = dcval; wsptr[DCTSIZE * 2] = dcval; wsptr[DCTSIZE * 3] = dcval; wsptr[DCTSIZE * 4] = dcval; wsptr[DCTSIZE * 5] = dcval; wsptr[DCTSIZE * 6] = dcval; wsptr[DCTSIZE * 7] = dcval; inptr++; /* advance pointers to next column */ quantptr++; wsptr++; continue; } /* Even part */ tmp0 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0] * _0_125); tmp1 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2] * _0_125); tmp2 = DEQUANTIZE(inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4] * _0_125); tmp3 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6] * _0_125); tmp10 = tmp0 + tmp2; /* phase 3 */ tmp11 = tmp0 - tmp2; tmp13 = tmp1 + tmp3; /* phases 5-3 */ tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT)1.414213562) - tmp13; /* 2*c4 */ tmp0 = tmp10 + tmp13; /* phase 2 */ tmp3 = tmp10 - tmp13; tmp1 = tmp11 + tmp12; tmp2 = tmp11 - tmp12; /* Odd part */ tmp4 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1] * _0_125); tmp5 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3] * _0_125); tmp6 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5] * _0_125); tmp7 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7] * _0_125); z13 = tmp6 + tmp5; /* phase 6 */ z10 = tmp6 - tmp5; z11 = tmp4 + tmp7; z12 = tmp4 - tmp7; tmp7 = z11 + z13; /* phase 5 */ tmp11 = (z11 - z13) * ((FAST_FLOAT)1.414213562); /* 2*c4 */ z5 = (z10 + z12) * ((FAST_FLOAT)1.847759065); /* 2*c2 */ tmp10 = z5 - z12 * ((FAST_FLOAT)1.082392200); /* 2*(c2-c6) */ tmp12 = z5 - z10 * ((FAST_FLOAT)2.613125930); /* 2*(c2+c6) */ tmp6 = tmp12 - tmp7; /* phase 2 */ tmp5 = tmp11 - tmp6; tmp4 = tmp10 - tmp5; wsptr[DCTSIZE * 0] = tmp0 + tmp7; wsptr[DCTSIZE * 7] = tmp0 - tmp7; wsptr[DCTSIZE * 1] = tmp1 + tmp6; wsptr[DCTSIZE * 6] = tmp1 - tmp6; wsptr[DCTSIZE * 2] = tmp2 + tmp5; wsptr[DCTSIZE * 5] = tmp2 - tmp5; wsptr[DCTSIZE * 3] = tmp3 + tmp4; wsptr[DCTSIZE * 4] = tmp3 - tmp4; inptr++; /* advance pointers to next column */ quantptr++; wsptr++; } /* Pass 2: process rows from work array, store into output array. */ wsptr = workspace; for (ctr = 0; ctr < DCTSIZE; ctr++) { outptr = output_buf[ctr] + output_col; /* Rows of zeroes can be exploited in the same way as we did with columns. * However, the column calculation has created many nonzero AC terms, so * the simplification applies less often (typically 5% to 10% of the time). * And testing floats for zero is relatively expensive, so we don't bother. */ /* Even part */ /* Apply signed->unsigned and prepare float->int conversion */ z5 = wsptr[0] + ((FAST_FLOAT)CENTERJSAMPLE + (FAST_FLOAT)0.5); tmp10 = z5 + wsptr[4]; tmp11 = z5 - wsptr[4]; tmp13 = wsptr[2] + wsptr[6]; tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT)1.414213562) - tmp13; tmp0 = tmp10 + tmp13; tmp3 = tmp10 - tmp13; tmp1 = tmp11 + tmp12; tmp2 = tmp11 - tmp12; /* Odd part */ z13 = wsptr[5] + wsptr[3]; z10 = wsptr[5] - wsptr[3]; z11 = wsptr[1] + wsptr[7]; z12 = wsptr[1] - wsptr[7]; tmp7 = z11 + z13; tmp11 = (z11 - z13) * ((FAST_FLOAT)1.414213562); z5 = (z10 + z12) * ((FAST_FLOAT)1.847759065); /* 2*c2 */ tmp10 = z5 - z12 * ((FAST_FLOAT)1.082392200); /* 2*(c2-c6) */ tmp12 = z5 - z10 * ((FAST_FLOAT)2.613125930); /* 2*(c2+c6) */ tmp6 = tmp12 - tmp7; tmp5 = tmp11 - tmp6; tmp4 = tmp10 - tmp5; /* Final output stage: float->int conversion and range-limit */ outptr[0] = range_limit[((int)(tmp0 + tmp7)) & RANGE_MASK]; outptr[7] = range_limit[((int)(tmp0 - tmp7)) & RANGE_MASK]; outptr[1] = range_limit[((int)(tmp1 + tmp6)) & RANGE_MASK]; outptr[6] = range_limit[((int)(tmp1 - tmp6)) & RANGE_MASK]; outptr[2] = range_limit[((int)(tmp2 + tmp5)) & RANGE_MASK]; outptr[5] = range_limit[((int)(tmp2 - tmp5)) & RANGE_MASK]; outptr[3] = range_limit[((int)(tmp3 + tmp4)) & RANGE_MASK]; outptr[4] = range_limit[((int)(tmp3 - tmp4)) & RANGE_MASK]; wsptr += DCTSIZE; /* advance pointer to next row */ } } #endif /* DCT_FLOAT_SUPPORTED */ libjpeg-turbo-2.1.5/jidctfst.c000066400000000000000000000323621436506551100162560ustar00rootroot00000000000000/* * jidctfst.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1998, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2015, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains a fast, not so accurate integer implementation of the * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine * must also perform dequantization of the input coefficients. * * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT * on each row (or vice versa, but it's more convenient to emit a row at * a time). Direct algorithms are also available, but they are much more * complex and seem not to be any faster when reduced to code. * * This implementation is based on Arai, Agui, and Nakajima's algorithm for * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in * Japanese, but the algorithm is described in the Pennebaker & Mitchell * JPEG textbook (see REFERENCES section in file README.ijg). The following * code is based directly on figure 4-8 in P&M. * While an 8-point DCT cannot be done in less than 11 multiplies, it is * possible to arrange the computation so that many of the multiplies are * simple scalings of the final outputs. These multiplies can then be * folded into the multiplications or divisions by the JPEG quantization * table entries. The AA&N method leaves only 5 multiplies and 29 adds * to be done in the DCT itself. * The primary disadvantage of this method is that with fixed-point math, * accuracy is lost due to imprecise representation of the scaled * quantization values. The smaller the quantization table entry, the less * precise the scaled value, so this implementation does worse with high- * quality-setting files than with low-quality ones. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jdct.h" /* Private declarations for DCT subsystem */ #ifdef DCT_IFAST_SUPPORTED /* * This module is specialized to the case DCTSIZE = 8. */ #if DCTSIZE != 8 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ #endif /* Scaling decisions are generally the same as in the LL&M algorithm; * see jidctint.c for more details. However, we choose to descale * (right shift) multiplication products as soon as they are formed, * rather than carrying additional fractional bits into subsequent additions. * This compromises accuracy slightly, but it lets us save a few shifts. * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples) * everywhere except in the multiplications proper; this saves a good deal * of work on 16-bit-int machines. * * The dequantized coefficients are not integers because the AA&N scaling * factors have been incorporated. We represent them scaled up by PASS1_BITS, * so that the first and second IDCT rounds have the same input scaling. * For 8-bit JSAMPLEs, we choose IFAST_SCALE_BITS = PASS1_BITS so as to * avoid a descaling shift; this compromises accuracy rather drastically * for small quantization table entries, but it saves a lot of shifts. * For 12-bit JSAMPLEs, there's no hope of using 16x16 multiplies anyway, * so we use a much larger scaling factor to preserve accuracy. * * A final compromise is to represent the multiplicative constants to only * 8 fractional bits, rather than 13. This saves some shifting work on some * machines, and may also reduce the cost of multiplication (since there * are fewer one-bits in the constants). */ #if BITS_IN_JSAMPLE == 8 #define CONST_BITS 8 #define PASS1_BITS 2 #else #define CONST_BITS 8 #define PASS1_BITS 1 /* lose a little precision to avoid overflow */ #endif /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus * causing a lot of useless floating-point operations at run time. * To get around this we use the following pre-calculated constants. * If you change CONST_BITS you may want to add appropriate values. * (With a reasonable C compiler, you can just rely on the FIX() macro...) */ #if CONST_BITS == 8 #define FIX_1_082392200 ((JLONG)277) /* FIX(1.082392200) */ #define FIX_1_414213562 ((JLONG)362) /* FIX(1.414213562) */ #define FIX_1_847759065 ((JLONG)473) /* FIX(1.847759065) */ #define FIX_2_613125930 ((JLONG)669) /* FIX(2.613125930) */ #else #define FIX_1_082392200 FIX(1.082392200) #define FIX_1_414213562 FIX(1.414213562) #define FIX_1_847759065 FIX(1.847759065) #define FIX_2_613125930 FIX(2.613125930) #endif /* We can gain a little more speed, with a further compromise in accuracy, * by omitting the addition in a descaling shift. This yields an incorrectly * rounded result half the time... */ #ifndef USE_ACCURATE_ROUNDING #undef DESCALE #define DESCALE(x, n) RIGHT_SHIFT(x, n) #endif /* Multiply a DCTELEM variable by an JLONG constant, and immediately * descale to yield a DCTELEM result. */ #define MULTIPLY(var, const) ((DCTELEM)DESCALE((var) * (const), CONST_BITS)) /* Dequantize a coefficient by multiplying it by the multiplier-table * entry; produce a DCTELEM result. For 8-bit data a 16x16->16 * multiplication will do. For 12-bit data, the multiplier table is * declared JLONG, so a 32-bit multiply will be used. */ #if BITS_IN_JSAMPLE == 8 #define DEQUANTIZE(coef, quantval) (((IFAST_MULT_TYPE)(coef)) * (quantval)) #else #define DEQUANTIZE(coef, quantval) \ DESCALE((coef) * (quantval), IFAST_SCALE_BITS - PASS1_BITS) #endif /* Like DESCALE, but applies to a DCTELEM and produces an int. * We assume that int right shift is unsigned if JLONG right shift is. */ #ifdef RIGHT_SHIFT_IS_UNSIGNED #define ISHIFT_TEMPS DCTELEM ishift_temp; #if BITS_IN_JSAMPLE == 8 #define DCTELEMBITS 16 /* DCTELEM may be 16 or 32 bits */ #else #define DCTELEMBITS 32 /* DCTELEM must be 32 bits */ #endif #define IRIGHT_SHIFT(x, shft) \ ((ishift_temp = (x)) < 0 ? \ (ishift_temp >> (shft)) | ((~((DCTELEM)0)) << (DCTELEMBITS - (shft))) : \ (ishift_temp >> (shft))) #else #define ISHIFT_TEMPS #define IRIGHT_SHIFT(x, shft) ((x) >> (shft)) #endif #ifdef USE_ACCURATE_ROUNDING #define IDESCALE(x, n) ((int)IRIGHT_SHIFT((x) + (1 << ((n) - 1)), n)) #else #define IDESCALE(x, n) ((int)IRIGHT_SHIFT(x, n)) #endif /* * Perform dequantization and inverse DCT on one block of coefficients. */ GLOBAL(void) jpeg_idct_ifast(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { DCTELEM tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; DCTELEM tmp10, tmp11, tmp12, tmp13; DCTELEM z5, z10, z11, z12, z13; JCOEFPTR inptr; IFAST_MULT_TYPE *quantptr; int *wsptr; JSAMPROW outptr; JSAMPLE *range_limit = IDCT_range_limit(cinfo); int ctr; int workspace[DCTSIZE2]; /* buffers data between passes */ SHIFT_TEMPS /* for DESCALE */ ISHIFT_TEMPS /* for IDESCALE */ /* Pass 1: process columns from input, store into work array. */ inptr = coef_block; quantptr = (IFAST_MULT_TYPE *)compptr->dct_table; wsptr = workspace; for (ctr = DCTSIZE; ctr > 0; ctr--) { /* Due to quantization, we will usually find that many of the input * coefficients are zero, especially the AC terms. We can exploit this * by short-circuiting the IDCT calculation for any column in which all * the AC terms are zero. In that case each output is equal to the * DC coefficient (with scale factor as needed). * With typical images and quantization tables, half or more of the * column DCT calculations can be simplified this way. */ if (inptr[DCTSIZE * 1] == 0 && inptr[DCTSIZE * 2] == 0 && inptr[DCTSIZE * 3] == 0 && inptr[DCTSIZE * 4] == 0 && inptr[DCTSIZE * 5] == 0 && inptr[DCTSIZE * 6] == 0 && inptr[DCTSIZE * 7] == 0) { /* AC terms all zero */ int dcval = (int)DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]); wsptr[DCTSIZE * 0] = dcval; wsptr[DCTSIZE * 1] = dcval; wsptr[DCTSIZE * 2] = dcval; wsptr[DCTSIZE * 3] = dcval; wsptr[DCTSIZE * 4] = dcval; wsptr[DCTSIZE * 5] = dcval; wsptr[DCTSIZE * 6] = dcval; wsptr[DCTSIZE * 7] = dcval; inptr++; /* advance pointers to next column */ quantptr++; wsptr++; continue; } /* Even part */ tmp0 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]); tmp1 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]); tmp2 = DEQUANTIZE(inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4]); tmp3 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6]); tmp10 = tmp0 + tmp2; /* phase 3 */ tmp11 = tmp0 - tmp2; tmp13 = tmp1 + tmp3; /* phases 5-3 */ tmp12 = MULTIPLY(tmp1 - tmp3, FIX_1_414213562) - tmp13; /* 2*c4 */ tmp0 = tmp10 + tmp13; /* phase 2 */ tmp3 = tmp10 - tmp13; tmp1 = tmp11 + tmp12; tmp2 = tmp11 - tmp12; /* Odd part */ tmp4 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]); tmp5 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]); tmp6 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]); tmp7 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]); z13 = tmp6 + tmp5; /* phase 6 */ z10 = tmp6 - tmp5; z11 = tmp4 + tmp7; z12 = tmp4 - tmp7; tmp7 = z11 + z13; /* phase 5 */ tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */ tmp12 = MULTIPLY(z10, -FIX_2_613125930) + z5; /* -2*(c2+c6) */ tmp6 = tmp12 - tmp7; /* phase 2 */ tmp5 = tmp11 - tmp6; tmp4 = tmp10 + tmp5; wsptr[DCTSIZE * 0] = (int)(tmp0 + tmp7); wsptr[DCTSIZE * 7] = (int)(tmp0 - tmp7); wsptr[DCTSIZE * 1] = (int)(tmp1 + tmp6); wsptr[DCTSIZE * 6] = (int)(tmp1 - tmp6); wsptr[DCTSIZE * 2] = (int)(tmp2 + tmp5); wsptr[DCTSIZE * 5] = (int)(tmp2 - tmp5); wsptr[DCTSIZE * 4] = (int)(tmp3 + tmp4); wsptr[DCTSIZE * 3] = (int)(tmp3 - tmp4); inptr++; /* advance pointers to next column */ quantptr++; wsptr++; } /* Pass 2: process rows from work array, store into output array. */ /* Note that we must descale the results by a factor of 8 == 2**3, */ /* and also undo the PASS1_BITS scaling. */ wsptr = workspace; for (ctr = 0; ctr < DCTSIZE; ctr++) { outptr = output_buf[ctr] + output_col; /* Rows of zeroes can be exploited in the same way as we did with columns. * However, the column calculation has created many nonzero AC terms, so * the simplification applies less often (typically 5% to 10% of the time). * On machines with very fast multiplication, it's possible that the * test takes more time than it's worth. In that case this section * may be commented out. */ #ifndef NO_ZERO_ROW_TEST if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 && wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { /* AC terms all zero */ JSAMPLE dcval = range_limit[IDESCALE(wsptr[0], PASS1_BITS + 3) & RANGE_MASK]; outptr[0] = dcval; outptr[1] = dcval; outptr[2] = dcval; outptr[3] = dcval; outptr[4] = dcval; outptr[5] = dcval; outptr[6] = dcval; outptr[7] = dcval; wsptr += DCTSIZE; /* advance pointer to next row */ continue; } #endif /* Even part */ tmp10 = ((DCTELEM)wsptr[0] + (DCTELEM)wsptr[4]); tmp11 = ((DCTELEM)wsptr[0] - (DCTELEM)wsptr[4]); tmp13 = ((DCTELEM)wsptr[2] + (DCTELEM)wsptr[6]); tmp12 = MULTIPLY((DCTELEM)wsptr[2] - (DCTELEM)wsptr[6], FIX_1_414213562) - tmp13; tmp0 = tmp10 + tmp13; tmp3 = tmp10 - tmp13; tmp1 = tmp11 + tmp12; tmp2 = tmp11 - tmp12; /* Odd part */ z13 = (DCTELEM)wsptr[5] + (DCTELEM)wsptr[3]; z10 = (DCTELEM)wsptr[5] - (DCTELEM)wsptr[3]; z11 = (DCTELEM)wsptr[1] + (DCTELEM)wsptr[7]; z12 = (DCTELEM)wsptr[1] - (DCTELEM)wsptr[7]; tmp7 = z11 + z13; /* phase 5 */ tmp11 = MULTIPLY(z11 - z13, FIX_1_414213562); /* 2*c4 */ z5 = MULTIPLY(z10 + z12, FIX_1_847759065); /* 2*c2 */ tmp10 = MULTIPLY(z12, FIX_1_082392200) - z5; /* 2*(c2-c6) */ tmp12 = MULTIPLY(z10, -FIX_2_613125930) + z5; /* -2*(c2+c6) */ tmp6 = tmp12 - tmp7; /* phase 2 */ tmp5 = tmp11 - tmp6; tmp4 = tmp10 + tmp5; /* Final output stage: scale down by a factor of 8 and range-limit */ outptr[0] = range_limit[IDESCALE(tmp0 + tmp7, PASS1_BITS + 3) & RANGE_MASK]; outptr[7] = range_limit[IDESCALE(tmp0 - tmp7, PASS1_BITS + 3) & RANGE_MASK]; outptr[1] = range_limit[IDESCALE(tmp1 + tmp6, PASS1_BITS + 3) & RANGE_MASK]; outptr[6] = range_limit[IDESCALE(tmp1 - tmp6, PASS1_BITS + 3) & RANGE_MASK]; outptr[2] = range_limit[IDESCALE(tmp2 + tmp5, PASS1_BITS + 3) & RANGE_MASK]; outptr[5] = range_limit[IDESCALE(tmp2 - tmp5, PASS1_BITS + 3) & RANGE_MASK]; outptr[4] = range_limit[IDESCALE(tmp3 + tmp4, PASS1_BITS + 3) & RANGE_MASK]; outptr[3] = range_limit[IDESCALE(tmp3 - tmp4, PASS1_BITS + 3) & RANGE_MASK]; wsptr += DCTSIZE; /* advance pointer to next row */ } } #endif /* DCT_IFAST_SUPPORTED */ libjpeg-turbo-2.1.5/jidctint.c000066400000000000000000003174161436506551100162620ustar00rootroot00000000000000/* * jidctint.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1998, Thomas G. Lane. * Modification developed 2002-2018 by Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright (C) 2015, 2020, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains a slower but more accurate integer implementation of the * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine * must also perform dequantization of the input coefficients. * * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT * on each row (or vice versa, but it's more convenient to emit a row at * a time). Direct algorithms are also available, but they are much more * complex and seem not to be any faster when reduced to code. * * This implementation is based on an algorithm described in * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. * The primary algorithm described there uses 11 multiplies and 29 adds. * We use their alternate method with 12 multiplies and 32 adds. * The advantage of this method is that no data path contains more than one * multiplication; this allows a very simple and accurate implementation in * scaled fixed-point arithmetic, with a minimal number of shifts. * * We also provide IDCT routines with various output sample block sizes for * direct resolution reduction or enlargement without additional resampling: * NxN (N=1...16) pixels for one 8x8 input DCT block. * * For N<8 we simply take the corresponding low-frequency coefficients of * the 8x8 input DCT block and apply an NxN point IDCT on the sub-block * to yield the downscaled outputs. * This can be seen as direct low-pass downsampling from the DCT domain * point of view rather than the usual spatial domain point of view, * yielding significant computational savings and results at least * as good as common bilinear (averaging) spatial downsampling. * * For N>8 we apply a partial NxN IDCT on the 8 input coefficients as * lower frequencies and higher frequencies assumed to be zero. * It turns out that the computational effort is similar to the 8x8 IDCT * regarding the output size. * Furthermore, the scaling and descaling is the same for all IDCT sizes. * * CAUTION: We rely on the FIX() macro except for the N=1,2,4,8 cases * since there would be too many additional constants to pre-calculate. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jdct.h" /* Private declarations for DCT subsystem */ #ifdef DCT_ISLOW_SUPPORTED /* * This module is specialized to the case DCTSIZE = 8. */ #if DCTSIZE != 8 Sorry, this code only copes with 8x8 DCT blocks. /* deliberate syntax err */ #endif /* * The poop on this scaling stuff is as follows: * * Each 1-D IDCT step produces outputs which are a factor of sqrt(N) * larger than the true IDCT outputs. The final outputs are therefore * a factor of N larger than desired; since N=8 this can be cured by * a simple right shift at the end of the algorithm. The advantage of * this arrangement is that we save two multiplications per 1-D IDCT, * because the y0 and y4 inputs need not be divided by sqrt(N). * * We have to do addition and subtraction of the integer inputs, which * is no problem, and multiplication by fractional constants, which is * a problem to do in integer arithmetic. We multiply all the constants * by CONST_SCALE and convert them to integer constants (thus retaining * CONST_BITS bits of precision in the constants). After doing a * multiplication we have to divide the product by CONST_SCALE, with proper * rounding, to produce the correct output. This division can be done * cheaply as a right shift of CONST_BITS bits. We postpone shifting * as long as possible so that partial sums can be added together with * full fractional precision. * * The outputs of the first pass are scaled up by PASS1_BITS bits so that * they are represented to better-than-integral precision. These outputs * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word * with the recommended scaling. (To scale up 12-bit sample data further, an * intermediate JLONG array would be needed.) * * To avoid overflow of the 32-bit intermediate results in pass 2, we must * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis * shows that the values given below are the most effective. */ #if BITS_IN_JSAMPLE == 8 #define CONST_BITS 13 #define PASS1_BITS 2 #else #define CONST_BITS 13 #define PASS1_BITS 1 /* lose a little precision to avoid overflow */ #endif /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus * causing a lot of useless floating-point operations at run time. * To get around this we use the following pre-calculated constants. * If you change CONST_BITS you may want to add appropriate values. * (With a reasonable C compiler, you can just rely on the FIX() macro...) */ #if CONST_BITS == 13 #define FIX_0_298631336 ((JLONG)2446) /* FIX(0.298631336) */ #define FIX_0_390180644 ((JLONG)3196) /* FIX(0.390180644) */ #define FIX_0_541196100 ((JLONG)4433) /* FIX(0.541196100) */ #define FIX_0_765366865 ((JLONG)6270) /* FIX(0.765366865) */ #define FIX_0_899976223 ((JLONG)7373) /* FIX(0.899976223) */ #define FIX_1_175875602 ((JLONG)9633) /* FIX(1.175875602) */ #define FIX_1_501321110 ((JLONG)12299) /* FIX(1.501321110) */ #define FIX_1_847759065 ((JLONG)15137) /* FIX(1.847759065) */ #define FIX_1_961570560 ((JLONG)16069) /* FIX(1.961570560) */ #define FIX_2_053119869 ((JLONG)16819) /* FIX(2.053119869) */ #define FIX_2_562915447 ((JLONG)20995) /* FIX(2.562915447) */ #define FIX_3_072711026 ((JLONG)25172) /* FIX(3.072711026) */ #else #define FIX_0_298631336 FIX(0.298631336) #define FIX_0_390180644 FIX(0.390180644) #define FIX_0_541196100 FIX(0.541196100) #define FIX_0_765366865 FIX(0.765366865) #define FIX_0_899976223 FIX(0.899976223) #define FIX_1_175875602 FIX(1.175875602) #define FIX_1_501321110 FIX(1.501321110) #define FIX_1_847759065 FIX(1.847759065) #define FIX_1_961570560 FIX(1.961570560) #define FIX_2_053119869 FIX(2.053119869) #define FIX_2_562915447 FIX(2.562915447) #define FIX_3_072711026 FIX(3.072711026) #endif /* Multiply an JLONG variable by an JLONG constant to yield an JLONG result. * For 8-bit samples with the recommended scaling, all the variable * and constant values involved are no more than 16 bits wide, so a * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. * For 12-bit samples, a full 32-bit multiplication will be needed. */ #if BITS_IN_JSAMPLE == 8 #define MULTIPLY(var, const) MULTIPLY16C16(var, const) #else #define MULTIPLY(var, const) ((var) * (const)) #endif /* Dequantize a coefficient by multiplying it by the multiplier-table * entry; produce an int result. In this module, both inputs and result * are 16 bits or less, so either int or short multiply will work. */ #define DEQUANTIZE(coef, quantval) (((ISLOW_MULT_TYPE)(coef)) * (quantval)) /* * Perform dequantization and inverse DCT on one block of coefficients. */ GLOBAL(void) jpeg_idct_islow(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { JLONG tmp0, tmp1, tmp2, tmp3; JLONG tmp10, tmp11, tmp12, tmp13; JLONG z1, z2, z3, z4, z5; JCOEFPTR inptr; ISLOW_MULT_TYPE *quantptr; int *wsptr; JSAMPROW outptr; JSAMPLE *range_limit = IDCT_range_limit(cinfo); int ctr; int workspace[DCTSIZE2]; /* buffers data between passes */ SHIFT_TEMPS /* Pass 1: process columns from input, store into work array. */ /* Note results are scaled up by sqrt(8) compared to a true IDCT; */ /* furthermore, we scale the results by 2**PASS1_BITS. */ inptr = coef_block; quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table; wsptr = workspace; for (ctr = DCTSIZE; ctr > 0; ctr--) { /* Due to quantization, we will usually find that many of the input * coefficients are zero, especially the AC terms. We can exploit this * by short-circuiting the IDCT calculation for any column in which all * the AC terms are zero. In that case each output is equal to the * DC coefficient (with scale factor as needed). * With typical images and quantization tables, half or more of the * column DCT calculations can be simplified this way. */ if (inptr[DCTSIZE * 1] == 0 && inptr[DCTSIZE * 2] == 0 && inptr[DCTSIZE * 3] == 0 && inptr[DCTSIZE * 4] == 0 && inptr[DCTSIZE * 5] == 0 && inptr[DCTSIZE * 6] == 0 && inptr[DCTSIZE * 7] == 0) { /* AC terms all zero */ int dcval = LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]), PASS1_BITS); wsptr[DCTSIZE * 0] = dcval; wsptr[DCTSIZE * 1] = dcval; wsptr[DCTSIZE * 2] = dcval; wsptr[DCTSIZE * 3] = dcval; wsptr[DCTSIZE * 4] = dcval; wsptr[DCTSIZE * 5] = dcval; wsptr[DCTSIZE * 6] = dcval; wsptr[DCTSIZE * 7] = dcval; inptr++; /* advance pointers to next column */ quantptr++; wsptr++; continue; } /* Even part: reverse the even part of the forward DCT. */ /* The rotator is sqrt(2)*c(-6). */ z2 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]); z3 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6]); z1 = MULTIPLY(z2 + z3, FIX_0_541196100); tmp2 = z1 + MULTIPLY(z3, -FIX_1_847759065); tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865); z2 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]); z3 = DEQUANTIZE(inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4]); tmp0 = LEFT_SHIFT(z2 + z3, CONST_BITS); tmp1 = LEFT_SHIFT(z2 - z3, CONST_BITS); tmp10 = tmp0 + tmp3; tmp13 = tmp0 - tmp3; tmp11 = tmp1 + tmp2; tmp12 = tmp1 - tmp2; /* Odd part per figure 8; the matrix is unitary and hence its * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. */ tmp0 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]); tmp1 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]); tmp2 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]); tmp3 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]); z1 = tmp0 + tmp3; z2 = tmp1 + tmp2; z3 = tmp0 + tmp2; z4 = tmp1 + tmp3; z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ z1 = MULTIPLY(z1, -FIX_0_899976223); /* sqrt(2) * ( c7-c3) */ z2 = MULTIPLY(z2, -FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ z3 = MULTIPLY(z3, -FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ z4 = MULTIPLY(z4, -FIX_0_390180644); /* sqrt(2) * ( c5-c3) */ z3 += z5; z4 += z5; tmp0 += z1 + z3; tmp1 += z2 + z4; tmp2 += z2 + z3; tmp3 += z1 + z4; /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ wsptr[DCTSIZE * 0] = (int)DESCALE(tmp10 + tmp3, CONST_BITS - PASS1_BITS); wsptr[DCTSIZE * 7] = (int)DESCALE(tmp10 - tmp3, CONST_BITS - PASS1_BITS); wsptr[DCTSIZE * 1] = (int)DESCALE(tmp11 + tmp2, CONST_BITS - PASS1_BITS); wsptr[DCTSIZE * 6] = (int)DESCALE(tmp11 - tmp2, CONST_BITS - PASS1_BITS); wsptr[DCTSIZE * 2] = (int)DESCALE(tmp12 + tmp1, CONST_BITS - PASS1_BITS); wsptr[DCTSIZE * 5] = (int)DESCALE(tmp12 - tmp1, CONST_BITS - PASS1_BITS); wsptr[DCTSIZE * 3] = (int)DESCALE(tmp13 + tmp0, CONST_BITS - PASS1_BITS); wsptr[DCTSIZE * 4] = (int)DESCALE(tmp13 - tmp0, CONST_BITS - PASS1_BITS); inptr++; /* advance pointers to next column */ quantptr++; wsptr++; } /* Pass 2: process rows from work array, store into output array. */ /* Note that we must descale the results by a factor of 8 == 2**3, */ /* and also undo the PASS1_BITS scaling. */ wsptr = workspace; for (ctr = 0; ctr < DCTSIZE; ctr++) { outptr = output_buf[ctr] + output_col; /* Rows of zeroes can be exploited in the same way as we did with columns. * However, the column calculation has created many nonzero AC terms, so * the simplification applies less often (typically 5% to 10% of the time). * On machines with very fast multiplication, it's possible that the * test takes more time than it's worth. In that case this section * may be commented out. */ #ifndef NO_ZERO_ROW_TEST if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 && wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { /* AC terms all zero */ JSAMPLE dcval = range_limit[(int)DESCALE((JLONG)wsptr[0], PASS1_BITS + 3) & RANGE_MASK]; outptr[0] = dcval; outptr[1] = dcval; outptr[2] = dcval; outptr[3] = dcval; outptr[4] = dcval; outptr[5] = dcval; outptr[6] = dcval; outptr[7] = dcval; wsptr += DCTSIZE; /* advance pointer to next row */ continue; } #endif /* Even part: reverse the even part of the forward DCT. */ /* The rotator is sqrt(2)*c(-6). */ z2 = (JLONG)wsptr[2]; z3 = (JLONG)wsptr[6]; z1 = MULTIPLY(z2 + z3, FIX_0_541196100); tmp2 = z1 + MULTIPLY(z3, -FIX_1_847759065); tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865); tmp0 = LEFT_SHIFT((JLONG)wsptr[0] + (JLONG)wsptr[4], CONST_BITS); tmp1 = LEFT_SHIFT((JLONG)wsptr[0] - (JLONG)wsptr[4], CONST_BITS); tmp10 = tmp0 + tmp3; tmp13 = tmp0 - tmp3; tmp11 = tmp1 + tmp2; tmp12 = tmp1 - tmp2; /* Odd part per figure 8; the matrix is unitary and hence its * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. */ tmp0 = (JLONG)wsptr[7]; tmp1 = (JLONG)wsptr[5]; tmp2 = (JLONG)wsptr[3]; tmp3 = (JLONG)wsptr[1]; z1 = tmp0 + tmp3; z2 = tmp1 + tmp2; z3 = tmp0 + tmp2; z4 = tmp1 + tmp3; z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ z1 = MULTIPLY(z1, -FIX_0_899976223); /* sqrt(2) * ( c7-c3) */ z2 = MULTIPLY(z2, -FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ z3 = MULTIPLY(z3, -FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ z4 = MULTIPLY(z4, -FIX_0_390180644); /* sqrt(2) * ( c5-c3) */ z3 += z5; z4 += z5; tmp0 += z1 + z3; tmp1 += z2 + z4; tmp2 += z2 + z3; tmp3 += z1 + z4; /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ outptr[0] = range_limit[(int)DESCALE(tmp10 + tmp3, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[7] = range_limit[(int)DESCALE(tmp10 - tmp3, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[1] = range_limit[(int)DESCALE(tmp11 + tmp2, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[6] = range_limit[(int)DESCALE(tmp11 - tmp2, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[2] = range_limit[(int)DESCALE(tmp12 + tmp1, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[5] = range_limit[(int)DESCALE(tmp12 - tmp1, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[3] = range_limit[(int)DESCALE(tmp13 + tmp0, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[4] = range_limit[(int)DESCALE(tmp13 - tmp0, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; wsptr += DCTSIZE; /* advance pointer to next row */ } } #ifdef IDCT_SCALING_SUPPORTED /* * Perform dequantization and inverse DCT on one block of coefficients, * producing a reduced-size 7x7 output block. * * Optimized algorithm with 12 multiplications in the 1-D kernel. * cK represents sqrt(2) * cos(K*pi/14). */ GLOBAL(void) jpeg_idct_7x7(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { JLONG tmp0, tmp1, tmp2, tmp10, tmp11, tmp12, tmp13; JLONG z1, z2, z3; JCOEFPTR inptr; ISLOW_MULT_TYPE *quantptr; int *wsptr; JSAMPROW outptr; JSAMPLE *range_limit = IDCT_range_limit(cinfo); int ctr; int workspace[7 * 7]; /* buffers data between passes */ SHIFT_TEMPS /* Pass 1: process columns from input, store into work array. */ inptr = coef_block; quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table; wsptr = workspace; for (ctr = 0; ctr < 7; ctr++, inptr++, quantptr++, wsptr++) { /* Even part */ tmp13 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]); tmp13 = LEFT_SHIFT(tmp13, CONST_BITS); /* Add fudge factor here for final descale. */ tmp13 += ONE << (CONST_BITS - PASS1_BITS - 1); z1 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]); z2 = DEQUANTIZE(inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4]); z3 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6]); tmp10 = MULTIPLY(z2 - z3, FIX(0.881747734)); /* c4 */ tmp12 = MULTIPLY(z1 - z2, FIX(0.314692123)); /* c6 */ tmp11 = tmp10 + tmp12 + tmp13 - MULTIPLY(z2, FIX(1.841218003)); /* c2+c4-c6 */ tmp0 = z1 + z3; z2 -= tmp0; tmp0 = MULTIPLY(tmp0, FIX(1.274162392)) + tmp13; /* c2 */ tmp10 += tmp0 - MULTIPLY(z3, FIX(0.077722536)); /* c2-c4-c6 */ tmp12 += tmp0 - MULTIPLY(z1, FIX(2.470602249)); /* c2+c4+c6 */ tmp13 += MULTIPLY(z2, FIX(1.414213562)); /* c0 */ /* Odd part */ z1 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]); z2 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]); z3 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]); tmp1 = MULTIPLY(z1 + z2, FIX(0.935414347)); /* (c3+c1-c5)/2 */ tmp2 = MULTIPLY(z1 - z2, FIX(0.170262339)); /* (c3+c5-c1)/2 */ tmp0 = tmp1 - tmp2; tmp1 += tmp2; tmp2 = MULTIPLY(z2 + z3, -FIX(1.378756276)); /* -c1 */ tmp1 += tmp2; z2 = MULTIPLY(z1 + z3, FIX(0.613604268)); /* c5 */ tmp0 += z2; tmp2 += z2 + MULTIPLY(z3, FIX(1.870828693)); /* c3+c1-c5 */ /* Final output stage */ wsptr[7 * 0] = (int)RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS - PASS1_BITS); wsptr[7 * 6] = (int)RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS - PASS1_BITS); wsptr[7 * 1] = (int)RIGHT_SHIFT(tmp11 + tmp1, CONST_BITS - PASS1_BITS); wsptr[7 * 5] = (int)RIGHT_SHIFT(tmp11 - tmp1, CONST_BITS - PASS1_BITS); wsptr[7 * 2] = (int)RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS - PASS1_BITS); wsptr[7 * 4] = (int)RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS - PASS1_BITS); wsptr[7 * 3] = (int)RIGHT_SHIFT(tmp13, CONST_BITS - PASS1_BITS); } /* Pass 2: process 7 rows from work array, store into output array. */ wsptr = workspace; for (ctr = 0; ctr < 7; ctr++) { outptr = output_buf[ctr] + output_col; /* Even part */ /* Add fudge factor here for final descale. */ tmp13 = (JLONG)wsptr[0] + (ONE << (PASS1_BITS + 2)); tmp13 = LEFT_SHIFT(tmp13, CONST_BITS); z1 = (JLONG)wsptr[2]; z2 = (JLONG)wsptr[4]; z3 = (JLONG)wsptr[6]; tmp10 = MULTIPLY(z2 - z3, FIX(0.881747734)); /* c4 */ tmp12 = MULTIPLY(z1 - z2, FIX(0.314692123)); /* c6 */ tmp11 = tmp10 + tmp12 + tmp13 - MULTIPLY(z2, FIX(1.841218003)); /* c2+c4-c6 */ tmp0 = z1 + z3; z2 -= tmp0; tmp0 = MULTIPLY(tmp0, FIX(1.274162392)) + tmp13; /* c2 */ tmp10 += tmp0 - MULTIPLY(z3, FIX(0.077722536)); /* c2-c4-c6 */ tmp12 += tmp0 - MULTIPLY(z1, FIX(2.470602249)); /* c2+c4+c6 */ tmp13 += MULTIPLY(z2, FIX(1.414213562)); /* c0 */ /* Odd part */ z1 = (JLONG)wsptr[1]; z2 = (JLONG)wsptr[3]; z3 = (JLONG)wsptr[5]; tmp1 = MULTIPLY(z1 + z2, FIX(0.935414347)); /* (c3+c1-c5)/2 */ tmp2 = MULTIPLY(z1 - z2, FIX(0.170262339)); /* (c3+c5-c1)/2 */ tmp0 = tmp1 - tmp2; tmp1 += tmp2; tmp2 = MULTIPLY(z2 + z3, -FIX(1.378756276)); /* -c1 */ tmp1 += tmp2; z2 = MULTIPLY(z1 + z3, FIX(0.613604268)); /* c5 */ tmp0 += z2; tmp2 += z2 + MULTIPLY(z3, FIX(1.870828693)); /* c3+c1-c5 */ /* Final output stage */ outptr[0] = range_limit[(int)RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[6] = range_limit[(int)RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[1] = range_limit[(int)RIGHT_SHIFT(tmp11 + tmp1, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[5] = range_limit[(int)RIGHT_SHIFT(tmp11 - tmp1, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[2] = range_limit[(int)RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[4] = range_limit[(int)RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[3] = range_limit[(int)RIGHT_SHIFT(tmp13, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; wsptr += 7; /* advance pointer to next row */ } } /* * Perform dequantization and inverse DCT on one block of coefficients, * producing a reduced-size 6x6 output block. * * Optimized algorithm with 3 multiplications in the 1-D kernel. * cK represents sqrt(2) * cos(K*pi/12). */ GLOBAL(void) jpeg_idct_6x6(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { JLONG tmp0, tmp1, tmp2, tmp10, tmp11, tmp12; JLONG z1, z2, z3; JCOEFPTR inptr; ISLOW_MULT_TYPE *quantptr; int *wsptr; JSAMPROW outptr; JSAMPLE *range_limit = IDCT_range_limit(cinfo); int ctr; int workspace[6 * 6]; /* buffers data between passes */ SHIFT_TEMPS /* Pass 1: process columns from input, store into work array. */ inptr = coef_block; quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table; wsptr = workspace; for (ctr = 0; ctr < 6; ctr++, inptr++, quantptr++, wsptr++) { /* Even part */ tmp0 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]); tmp0 = LEFT_SHIFT(tmp0, CONST_BITS); /* Add fudge factor here for final descale. */ tmp0 += ONE << (CONST_BITS - PASS1_BITS - 1); tmp2 = DEQUANTIZE(inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4]); tmp10 = MULTIPLY(tmp2, FIX(0.707106781)); /* c4 */ tmp1 = tmp0 + tmp10; tmp11 = RIGHT_SHIFT(tmp0 - tmp10 - tmp10, CONST_BITS - PASS1_BITS); tmp10 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]); tmp0 = MULTIPLY(tmp10, FIX(1.224744871)); /* c2 */ tmp10 = tmp1 + tmp0; tmp12 = tmp1 - tmp0; /* Odd part */ z1 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]); z2 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]); z3 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]); tmp1 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */ tmp0 = tmp1 + LEFT_SHIFT(z1 + z2, CONST_BITS); tmp2 = tmp1 + LEFT_SHIFT(z3 - z2, CONST_BITS); tmp1 = LEFT_SHIFT(z1 - z2 - z3, PASS1_BITS); /* Final output stage */ wsptr[6 * 0] = (int)RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS - PASS1_BITS); wsptr[6 * 5] = (int)RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS - PASS1_BITS); wsptr[6 * 1] = (int)(tmp11 + tmp1); wsptr[6 * 4] = (int)(tmp11 - tmp1); wsptr[6 * 2] = (int)RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS - PASS1_BITS); wsptr[6 * 3] = (int)RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS - PASS1_BITS); } /* Pass 2: process 6 rows from work array, store into output array. */ wsptr = workspace; for (ctr = 0; ctr < 6; ctr++) { outptr = output_buf[ctr] + output_col; /* Even part */ /* Add fudge factor here for final descale. */ tmp0 = (JLONG)wsptr[0] + (ONE << (PASS1_BITS + 2)); tmp0 = LEFT_SHIFT(tmp0, CONST_BITS); tmp2 = (JLONG)wsptr[4]; tmp10 = MULTIPLY(tmp2, FIX(0.707106781)); /* c4 */ tmp1 = tmp0 + tmp10; tmp11 = tmp0 - tmp10 - tmp10; tmp10 = (JLONG)wsptr[2]; tmp0 = MULTIPLY(tmp10, FIX(1.224744871)); /* c2 */ tmp10 = tmp1 + tmp0; tmp12 = tmp1 - tmp0; /* Odd part */ z1 = (JLONG)wsptr[1]; z2 = (JLONG)wsptr[3]; z3 = (JLONG)wsptr[5]; tmp1 = MULTIPLY(z1 + z3, FIX(0.366025404)); /* c5 */ tmp0 = tmp1 + LEFT_SHIFT(z1 + z2, CONST_BITS); tmp2 = tmp1 + LEFT_SHIFT(z3 - z2, CONST_BITS); tmp1 = LEFT_SHIFT(z1 - z2 - z3, CONST_BITS); /* Final output stage */ outptr[0] = range_limit[(int)RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[5] = range_limit[(int)RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[1] = range_limit[(int)RIGHT_SHIFT(tmp11 + tmp1, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[4] = range_limit[(int)RIGHT_SHIFT(tmp11 - tmp1, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[2] = range_limit[(int)RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[3] = range_limit[(int)RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; wsptr += 6; /* advance pointer to next row */ } } /* * Perform dequantization and inverse DCT on one block of coefficients, * producing a reduced-size 5x5 output block. * * Optimized algorithm with 5 multiplications in the 1-D kernel. * cK represents sqrt(2) * cos(K*pi/10). */ GLOBAL(void) jpeg_idct_5x5(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { JLONG tmp0, tmp1, tmp10, tmp11, tmp12; JLONG z1, z2, z3; JCOEFPTR inptr; ISLOW_MULT_TYPE *quantptr; int *wsptr; JSAMPROW outptr; JSAMPLE *range_limit = IDCT_range_limit(cinfo); int ctr; int workspace[5 * 5]; /* buffers data between passes */ SHIFT_TEMPS /* Pass 1: process columns from input, store into work array. */ inptr = coef_block; quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table; wsptr = workspace; for (ctr = 0; ctr < 5; ctr++, inptr++, quantptr++, wsptr++) { /* Even part */ tmp12 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]); tmp12 = LEFT_SHIFT(tmp12, CONST_BITS); /* Add fudge factor here for final descale. */ tmp12 += ONE << (CONST_BITS - PASS1_BITS - 1); tmp0 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]); tmp1 = DEQUANTIZE(inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4]); z1 = MULTIPLY(tmp0 + tmp1, FIX(0.790569415)); /* (c2+c4)/2 */ z2 = MULTIPLY(tmp0 - tmp1, FIX(0.353553391)); /* (c2-c4)/2 */ z3 = tmp12 + z2; tmp10 = z3 + z1; tmp11 = z3 - z1; tmp12 -= LEFT_SHIFT(z2, 2); /* Odd part */ z2 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]); z3 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]); z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c3 */ tmp0 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c1-c3 */ tmp1 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c1+c3 */ /* Final output stage */ wsptr[5 * 0] = (int)RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS - PASS1_BITS); wsptr[5 * 4] = (int)RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS - PASS1_BITS); wsptr[5 * 1] = (int)RIGHT_SHIFT(tmp11 + tmp1, CONST_BITS - PASS1_BITS); wsptr[5 * 3] = (int)RIGHT_SHIFT(tmp11 - tmp1, CONST_BITS - PASS1_BITS); wsptr[5 * 2] = (int)RIGHT_SHIFT(tmp12, CONST_BITS - PASS1_BITS); } /* Pass 2: process 5 rows from work array, store into output array. */ wsptr = workspace; for (ctr = 0; ctr < 5; ctr++) { outptr = output_buf[ctr] + output_col; /* Even part */ /* Add fudge factor here for final descale. */ tmp12 = (JLONG)wsptr[0] + (ONE << (PASS1_BITS + 2)); tmp12 = LEFT_SHIFT(tmp12, CONST_BITS); tmp0 = (JLONG)wsptr[2]; tmp1 = (JLONG)wsptr[4]; z1 = MULTIPLY(tmp0 + tmp1, FIX(0.790569415)); /* (c2+c4)/2 */ z2 = MULTIPLY(tmp0 - tmp1, FIX(0.353553391)); /* (c2-c4)/2 */ z3 = tmp12 + z2; tmp10 = z3 + z1; tmp11 = z3 - z1; tmp12 -= LEFT_SHIFT(z2, 2); /* Odd part */ z2 = (JLONG)wsptr[1]; z3 = (JLONG)wsptr[3]; z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c3 */ tmp0 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c1-c3 */ tmp1 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c1+c3 */ /* Final output stage */ outptr[0] = range_limit[(int)RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[4] = range_limit[(int)RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[1] = range_limit[(int)RIGHT_SHIFT(tmp11 + tmp1, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[3] = range_limit[(int)RIGHT_SHIFT(tmp11 - tmp1, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[2] = range_limit[(int)RIGHT_SHIFT(tmp12, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; wsptr += 5; /* advance pointer to next row */ } } /* * Perform dequantization and inverse DCT on one block of coefficients, * producing a reduced-size 3x3 output block. * * Optimized algorithm with 2 multiplications in the 1-D kernel. * cK represents sqrt(2) * cos(K*pi/6). */ GLOBAL(void) jpeg_idct_3x3(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { JLONG tmp0, tmp2, tmp10, tmp12; JCOEFPTR inptr; ISLOW_MULT_TYPE *quantptr; int *wsptr; JSAMPROW outptr; JSAMPLE *range_limit = IDCT_range_limit(cinfo); int ctr; int workspace[3 * 3]; /* buffers data between passes */ SHIFT_TEMPS /* Pass 1: process columns from input, store into work array. */ inptr = coef_block; quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table; wsptr = workspace; for (ctr = 0; ctr < 3; ctr++, inptr++, quantptr++, wsptr++) { /* Even part */ tmp0 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]); tmp0 = LEFT_SHIFT(tmp0, CONST_BITS); /* Add fudge factor here for final descale. */ tmp0 += ONE << (CONST_BITS - PASS1_BITS - 1); tmp2 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]); tmp12 = MULTIPLY(tmp2, FIX(0.707106781)); /* c2 */ tmp10 = tmp0 + tmp12; tmp2 = tmp0 - tmp12 - tmp12; /* Odd part */ tmp12 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]); tmp0 = MULTIPLY(tmp12, FIX(1.224744871)); /* c1 */ /* Final output stage */ wsptr[3 * 0] = (int)RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS - PASS1_BITS); wsptr[3 * 2] = (int)RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS - PASS1_BITS); wsptr[3 * 1] = (int)RIGHT_SHIFT(tmp2, CONST_BITS - PASS1_BITS); } /* Pass 2: process 3 rows from work array, store into output array. */ wsptr = workspace; for (ctr = 0; ctr < 3; ctr++) { outptr = output_buf[ctr] + output_col; /* Even part */ /* Add fudge factor here for final descale. */ tmp0 = (JLONG)wsptr[0] + (ONE << (PASS1_BITS + 2)); tmp0 = LEFT_SHIFT(tmp0, CONST_BITS); tmp2 = (JLONG)wsptr[2]; tmp12 = MULTIPLY(tmp2, FIX(0.707106781)); /* c2 */ tmp10 = tmp0 + tmp12; tmp2 = tmp0 - tmp12 - tmp12; /* Odd part */ tmp12 = (JLONG)wsptr[1]; tmp0 = MULTIPLY(tmp12, FIX(1.224744871)); /* c1 */ /* Final output stage */ outptr[0] = range_limit[(int)RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[2] = range_limit[(int)RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[1] = range_limit[(int)RIGHT_SHIFT(tmp2, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; wsptr += 3; /* advance pointer to next row */ } } /* * Perform dequantization and inverse DCT on one block of coefficients, * producing a 9x9 output block. * * Optimized algorithm with 10 multiplications in the 1-D kernel. * cK represents sqrt(2) * cos(K*pi/18). */ GLOBAL(void) jpeg_idct_9x9(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { JLONG tmp0, tmp1, tmp2, tmp3, tmp10, tmp11, tmp12, tmp13, tmp14; JLONG z1, z2, z3, z4; JCOEFPTR inptr; ISLOW_MULT_TYPE *quantptr; int *wsptr; JSAMPROW outptr; JSAMPLE *range_limit = IDCT_range_limit(cinfo); int ctr; int workspace[8 * 9]; /* buffers data between passes */ SHIFT_TEMPS /* Pass 1: process columns from input, store into work array. */ inptr = coef_block; quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table; wsptr = workspace; for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { /* Even part */ tmp0 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]); tmp0 = LEFT_SHIFT(tmp0, CONST_BITS); /* Add fudge factor here for final descale. */ tmp0 += ONE << (CONST_BITS - PASS1_BITS - 1); z1 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]); z2 = DEQUANTIZE(inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4]); z3 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6]); tmp3 = MULTIPLY(z3, FIX(0.707106781)); /* c6 */ tmp1 = tmp0 + tmp3; tmp2 = tmp0 - tmp3 - tmp3; tmp0 = MULTIPLY(z1 - z2, FIX(0.707106781)); /* c6 */ tmp11 = tmp2 + tmp0; tmp14 = tmp2 - tmp0 - tmp0; tmp0 = MULTIPLY(z1 + z2, FIX(1.328926049)); /* c2 */ tmp2 = MULTIPLY(z1, FIX(1.083350441)); /* c4 */ tmp3 = MULTIPLY(z2, FIX(0.245575608)); /* c8 */ tmp10 = tmp1 + tmp0 - tmp3; tmp12 = tmp1 - tmp0 + tmp2; tmp13 = tmp1 - tmp2 + tmp3; /* Odd part */ z1 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]); z2 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]); z3 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]); z4 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]); z2 = MULTIPLY(z2, -FIX(1.224744871)); /* -c3 */ tmp2 = MULTIPLY(z1 + z3, FIX(0.909038955)); /* c5 */ tmp3 = MULTIPLY(z1 + z4, FIX(0.483689525)); /* c7 */ tmp0 = tmp2 + tmp3 - z2; tmp1 = MULTIPLY(z3 - z4, FIX(1.392728481)); /* c1 */ tmp2 += z2 - tmp1; tmp3 += z2 + tmp1; tmp1 = MULTIPLY(z1 - z3 - z4, FIX(1.224744871)); /* c3 */ /* Final output stage */ wsptr[8 * 0] = (int)RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS - PASS1_BITS); wsptr[8 * 8] = (int)RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS - PASS1_BITS); wsptr[8 * 1] = (int)RIGHT_SHIFT(tmp11 + tmp1, CONST_BITS - PASS1_BITS); wsptr[8 * 7] = (int)RIGHT_SHIFT(tmp11 - tmp1, CONST_BITS - PASS1_BITS); wsptr[8 * 2] = (int)RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS - PASS1_BITS); wsptr[8 * 6] = (int)RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS - PASS1_BITS); wsptr[8 * 3] = (int)RIGHT_SHIFT(tmp13 + tmp3, CONST_BITS - PASS1_BITS); wsptr[8 * 5] = (int)RIGHT_SHIFT(tmp13 - tmp3, CONST_BITS - PASS1_BITS); wsptr[8 * 4] = (int)RIGHT_SHIFT(tmp14, CONST_BITS - PASS1_BITS); } /* Pass 2: process 9 rows from work array, store into output array. */ wsptr = workspace; for (ctr = 0; ctr < 9; ctr++) { outptr = output_buf[ctr] + output_col; /* Even part */ /* Add fudge factor here for final descale. */ tmp0 = (JLONG)wsptr[0] + (ONE << (PASS1_BITS + 2)); tmp0 = LEFT_SHIFT(tmp0, CONST_BITS); z1 = (JLONG)wsptr[2]; z2 = (JLONG)wsptr[4]; z3 = (JLONG)wsptr[6]; tmp3 = MULTIPLY(z3, FIX(0.707106781)); /* c6 */ tmp1 = tmp0 + tmp3; tmp2 = tmp0 - tmp3 - tmp3; tmp0 = MULTIPLY(z1 - z2, FIX(0.707106781)); /* c6 */ tmp11 = tmp2 + tmp0; tmp14 = tmp2 - tmp0 - tmp0; tmp0 = MULTIPLY(z1 + z2, FIX(1.328926049)); /* c2 */ tmp2 = MULTIPLY(z1, FIX(1.083350441)); /* c4 */ tmp3 = MULTIPLY(z2, FIX(0.245575608)); /* c8 */ tmp10 = tmp1 + tmp0 - tmp3; tmp12 = tmp1 - tmp0 + tmp2; tmp13 = tmp1 - tmp2 + tmp3; /* Odd part */ z1 = (JLONG)wsptr[1]; z2 = (JLONG)wsptr[3]; z3 = (JLONG)wsptr[5]; z4 = (JLONG)wsptr[7]; z2 = MULTIPLY(z2, -FIX(1.224744871)); /* -c3 */ tmp2 = MULTIPLY(z1 + z3, FIX(0.909038955)); /* c5 */ tmp3 = MULTIPLY(z1 + z4, FIX(0.483689525)); /* c7 */ tmp0 = tmp2 + tmp3 - z2; tmp1 = MULTIPLY(z3 - z4, FIX(1.392728481)); /* c1 */ tmp2 += z2 - tmp1; tmp3 += z2 + tmp1; tmp1 = MULTIPLY(z1 - z3 - z4, FIX(1.224744871)); /* c3 */ /* Final output stage */ outptr[0] = range_limit[(int)RIGHT_SHIFT(tmp10 + tmp0, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[8] = range_limit[(int)RIGHT_SHIFT(tmp10 - tmp0, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[1] = range_limit[(int)RIGHT_SHIFT(tmp11 + tmp1, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[7] = range_limit[(int)RIGHT_SHIFT(tmp11 - tmp1, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[2] = range_limit[(int)RIGHT_SHIFT(tmp12 + tmp2, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[6] = range_limit[(int)RIGHT_SHIFT(tmp12 - tmp2, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[3] = range_limit[(int)RIGHT_SHIFT(tmp13 + tmp3, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[5] = range_limit[(int)RIGHT_SHIFT(tmp13 - tmp3, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[4] = range_limit[(int)RIGHT_SHIFT(tmp14, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; wsptr += 8; /* advance pointer to next row */ } } /* * Perform dequantization and inverse DCT on one block of coefficients, * producing a 10x10 output block. * * Optimized algorithm with 12 multiplications in the 1-D kernel. * cK represents sqrt(2) * cos(K*pi/20). */ GLOBAL(void) jpeg_idct_10x10(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { JLONG tmp10, tmp11, tmp12, tmp13, tmp14; JLONG tmp20, tmp21, tmp22, tmp23, tmp24; JLONG z1, z2, z3, z4, z5; JCOEFPTR inptr; ISLOW_MULT_TYPE *quantptr; int *wsptr; JSAMPROW outptr; JSAMPLE *range_limit = IDCT_range_limit(cinfo); int ctr; int workspace[8 * 10]; /* buffers data between passes */ SHIFT_TEMPS /* Pass 1: process columns from input, store into work array. */ inptr = coef_block; quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table; wsptr = workspace; for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { /* Even part */ z3 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]); z3 = LEFT_SHIFT(z3, CONST_BITS); /* Add fudge factor here for final descale. */ z3 += ONE << (CONST_BITS - PASS1_BITS - 1); z4 = DEQUANTIZE(inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4]); z1 = MULTIPLY(z4, FIX(1.144122806)); /* c4 */ z2 = MULTIPLY(z4, FIX(0.437016024)); /* c8 */ tmp10 = z3 + z1; tmp11 = z3 - z2; tmp22 = RIGHT_SHIFT(z3 - LEFT_SHIFT(z1 - z2, 1), CONST_BITS - PASS1_BITS); /* c0 = (c4-c8)*2 */ z2 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]); z3 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6]); z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c6 */ tmp12 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c2-c6 */ tmp13 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c2+c6 */ tmp20 = tmp10 + tmp12; tmp24 = tmp10 - tmp12; tmp21 = tmp11 + tmp13; tmp23 = tmp11 - tmp13; /* Odd part */ z1 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]); z2 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]); z3 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]); z4 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]); tmp11 = z2 + z4; tmp13 = z2 - z4; tmp12 = MULTIPLY(tmp13, FIX(0.309016994)); /* (c3-c7)/2 */ z5 = LEFT_SHIFT(z3, CONST_BITS); z2 = MULTIPLY(tmp11, FIX(0.951056516)); /* (c3+c7)/2 */ z4 = z5 + tmp12; tmp10 = MULTIPLY(z1, FIX(1.396802247)) + z2 + z4; /* c1 */ tmp14 = MULTIPLY(z1, FIX(0.221231742)) - z2 + z4; /* c9 */ z2 = MULTIPLY(tmp11, FIX(0.587785252)); /* (c1-c9)/2 */ z4 = z5 - tmp12 - LEFT_SHIFT(tmp13, CONST_BITS - 1); tmp12 = LEFT_SHIFT(z1 - tmp13 - z3, PASS1_BITS); tmp11 = MULTIPLY(z1, FIX(1.260073511)) - z2 - z4; /* c3 */ tmp13 = MULTIPLY(z1, FIX(0.642039522)) - z2 + z4; /* c7 */ /* Final output stage */ wsptr[8 * 0] = (int)RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS - PASS1_BITS); wsptr[8 * 9] = (int)RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS - PASS1_BITS); wsptr[8 * 1] = (int)RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS - PASS1_BITS); wsptr[8 * 8] = (int)RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS - PASS1_BITS); wsptr[8 * 2] = (int)(tmp22 + tmp12); wsptr[8 * 7] = (int)(tmp22 - tmp12); wsptr[8 * 3] = (int)RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS - PASS1_BITS); wsptr[8 * 6] = (int)RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS - PASS1_BITS); wsptr[8 * 4] = (int)RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS - PASS1_BITS); wsptr[8 * 5] = (int)RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS - PASS1_BITS); } /* Pass 2: process 10 rows from work array, store into output array. */ wsptr = workspace; for (ctr = 0; ctr < 10; ctr++) { outptr = output_buf[ctr] + output_col; /* Even part */ /* Add fudge factor here for final descale. */ z3 = (JLONG)wsptr[0] + (ONE << (PASS1_BITS + 2)); z3 = LEFT_SHIFT(z3, CONST_BITS); z4 = (JLONG)wsptr[4]; z1 = MULTIPLY(z4, FIX(1.144122806)); /* c4 */ z2 = MULTIPLY(z4, FIX(0.437016024)); /* c8 */ tmp10 = z3 + z1; tmp11 = z3 - z2; tmp22 = z3 - LEFT_SHIFT(z1 - z2, 1); /* c0 = (c4-c8)*2 */ z2 = (JLONG)wsptr[2]; z3 = (JLONG)wsptr[6]; z1 = MULTIPLY(z2 + z3, FIX(0.831253876)); /* c6 */ tmp12 = z1 + MULTIPLY(z2, FIX(0.513743148)); /* c2-c6 */ tmp13 = z1 - MULTIPLY(z3, FIX(2.176250899)); /* c2+c6 */ tmp20 = tmp10 + tmp12; tmp24 = tmp10 - tmp12; tmp21 = tmp11 + tmp13; tmp23 = tmp11 - tmp13; /* Odd part */ z1 = (JLONG)wsptr[1]; z2 = (JLONG)wsptr[3]; z3 = (JLONG)wsptr[5]; z3 = LEFT_SHIFT(z3, CONST_BITS); z4 = (JLONG)wsptr[7]; tmp11 = z2 + z4; tmp13 = z2 - z4; tmp12 = MULTIPLY(tmp13, FIX(0.309016994)); /* (c3-c7)/2 */ z2 = MULTIPLY(tmp11, FIX(0.951056516)); /* (c3+c7)/2 */ z4 = z3 + tmp12; tmp10 = MULTIPLY(z1, FIX(1.396802247)) + z2 + z4; /* c1 */ tmp14 = MULTIPLY(z1, FIX(0.221231742)) - z2 + z4; /* c9 */ z2 = MULTIPLY(tmp11, FIX(0.587785252)); /* (c1-c9)/2 */ z4 = z3 - tmp12 - LEFT_SHIFT(tmp13, CONST_BITS - 1); tmp12 = LEFT_SHIFT(z1 - tmp13, CONST_BITS) - z3; tmp11 = MULTIPLY(z1, FIX(1.260073511)) - z2 - z4; /* c3 */ tmp13 = MULTIPLY(z1, FIX(0.642039522)) - z2 + z4; /* c7 */ /* Final output stage */ outptr[0] = range_limit[(int)RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[9] = range_limit[(int)RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[1] = range_limit[(int)RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[8] = range_limit[(int)RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[2] = range_limit[(int)RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[7] = range_limit[(int)RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[3] = range_limit[(int)RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[6] = range_limit[(int)RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[4] = range_limit[(int)RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[5] = range_limit[(int)RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; wsptr += 8; /* advance pointer to next row */ } } /* * Perform dequantization and inverse DCT on one block of coefficients, * producing an 11x11 output block. * * Optimized algorithm with 24 multiplications in the 1-D kernel. * cK represents sqrt(2) * cos(K*pi/22). */ GLOBAL(void) jpeg_idct_11x11(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { JLONG tmp10, tmp11, tmp12, tmp13, tmp14; JLONG tmp20, tmp21, tmp22, tmp23, tmp24, tmp25; JLONG z1, z2, z3, z4; JCOEFPTR inptr; ISLOW_MULT_TYPE *quantptr; int *wsptr; JSAMPROW outptr; JSAMPLE *range_limit = IDCT_range_limit(cinfo); int ctr; int workspace[8 * 11]; /* buffers data between passes */ SHIFT_TEMPS /* Pass 1: process columns from input, store into work array. */ inptr = coef_block; quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table; wsptr = workspace; for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { /* Even part */ tmp10 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]); tmp10 = LEFT_SHIFT(tmp10, CONST_BITS); /* Add fudge factor here for final descale. */ tmp10 += ONE << (CONST_BITS - PASS1_BITS - 1); z1 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]); z2 = DEQUANTIZE(inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4]); z3 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6]); tmp20 = MULTIPLY(z2 - z3, FIX(2.546640132)); /* c2+c4 */ tmp23 = MULTIPLY(z2 - z1, FIX(0.430815045)); /* c2-c6 */ z4 = z1 + z3; tmp24 = MULTIPLY(z4, -FIX(1.155664402)); /* -(c2-c10) */ z4 -= z2; tmp25 = tmp10 + MULTIPLY(z4, FIX(1.356927976)); /* c2 */ tmp21 = tmp20 + tmp23 + tmp25 - MULTIPLY(z2, FIX(1.821790775)); /* c2+c4+c10-c6 */ tmp20 += tmp25 + MULTIPLY(z3, FIX(2.115825087)); /* c4+c6 */ tmp23 += tmp25 - MULTIPLY(z1, FIX(1.513598477)); /* c6+c8 */ tmp24 += tmp25; tmp22 = tmp24 - MULTIPLY(z3, FIX(0.788749120)); /* c8+c10 */ tmp24 += MULTIPLY(z2, FIX(1.944413522)) - /* c2+c8 */ MULTIPLY(z1, FIX(1.390975730)); /* c4+c10 */ tmp25 = tmp10 - MULTIPLY(z4, FIX(1.414213562)); /* c0 */ /* Odd part */ z1 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]); z2 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]); z3 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]); z4 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]); tmp11 = z1 + z2; tmp14 = MULTIPLY(tmp11 + z3 + z4, FIX(0.398430003)); /* c9 */ tmp11 = MULTIPLY(tmp11, FIX(0.887983902)); /* c3-c9 */ tmp12 = MULTIPLY(z1 + z3, FIX(0.670361295)); /* c5-c9 */ tmp13 = tmp14 + MULTIPLY(z1 + z4, FIX(0.366151574)); /* c7-c9 */ tmp10 = tmp11 + tmp12 + tmp13 - MULTIPLY(z1, FIX(0.923107866)); /* c7+c5+c3-c1-2*c9 */ z1 = tmp14 - MULTIPLY(z2 + z3, FIX(1.163011579)); /* c7+c9 */ tmp11 += z1 + MULTIPLY(z2, FIX(2.073276588)); /* c1+c7+3*c9-c3 */ tmp12 += z1 - MULTIPLY(z3, FIX(1.192193623)); /* c3+c5-c7-c9 */ z1 = MULTIPLY(z2 + z4, -FIX(1.798248910)); /* -(c1+c9) */ tmp11 += z1; tmp13 += z1 + MULTIPLY(z4, FIX(2.102458632)); /* c1+c5+c9-c7 */ tmp14 += MULTIPLY(z2, -FIX(1.467221301)) + /* -(c5+c9) */ MULTIPLY(z3, FIX(1.001388905)) - /* c1-c9 */ MULTIPLY(z4, FIX(1.684843907)); /* c3+c9 */ /* Final output stage */ wsptr[8 * 0] = (int)RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS - PASS1_BITS); wsptr[8 * 10] = (int)RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS - PASS1_BITS); wsptr[8 * 1] = (int)RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS - PASS1_BITS); wsptr[8 * 9] = (int)RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS - PASS1_BITS); wsptr[8 * 2] = (int)RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS - PASS1_BITS); wsptr[8 * 8] = (int)RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS - PASS1_BITS); wsptr[8 * 3] = (int)RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS - PASS1_BITS); wsptr[8 * 7] = (int)RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS - PASS1_BITS); wsptr[8 * 4] = (int)RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS - PASS1_BITS); wsptr[8 * 6] = (int)RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS - PASS1_BITS); wsptr[8 * 5] = (int)RIGHT_SHIFT(tmp25, CONST_BITS - PASS1_BITS); } /* Pass 2: process 11 rows from work array, store into output array. */ wsptr = workspace; for (ctr = 0; ctr < 11; ctr++) { outptr = output_buf[ctr] + output_col; /* Even part */ /* Add fudge factor here for final descale. */ tmp10 = (JLONG)wsptr[0] + (ONE << (PASS1_BITS + 2)); tmp10 = LEFT_SHIFT(tmp10, CONST_BITS); z1 = (JLONG)wsptr[2]; z2 = (JLONG)wsptr[4]; z3 = (JLONG)wsptr[6]; tmp20 = MULTIPLY(z2 - z3, FIX(2.546640132)); /* c2+c4 */ tmp23 = MULTIPLY(z2 - z1, FIX(0.430815045)); /* c2-c6 */ z4 = z1 + z3; tmp24 = MULTIPLY(z4, -FIX(1.155664402)); /* -(c2-c10) */ z4 -= z2; tmp25 = tmp10 + MULTIPLY(z4, FIX(1.356927976)); /* c2 */ tmp21 = tmp20 + tmp23 + tmp25 - MULTIPLY(z2, FIX(1.821790775)); /* c2+c4+c10-c6 */ tmp20 += tmp25 + MULTIPLY(z3, FIX(2.115825087)); /* c4+c6 */ tmp23 += tmp25 - MULTIPLY(z1, FIX(1.513598477)); /* c6+c8 */ tmp24 += tmp25; tmp22 = tmp24 - MULTIPLY(z3, FIX(0.788749120)); /* c8+c10 */ tmp24 += MULTIPLY(z2, FIX(1.944413522)) - /* c2+c8 */ MULTIPLY(z1, FIX(1.390975730)); /* c4+c10 */ tmp25 = tmp10 - MULTIPLY(z4, FIX(1.414213562)); /* c0 */ /* Odd part */ z1 = (JLONG)wsptr[1]; z2 = (JLONG)wsptr[3]; z3 = (JLONG)wsptr[5]; z4 = (JLONG)wsptr[7]; tmp11 = z1 + z2; tmp14 = MULTIPLY(tmp11 + z3 + z4, FIX(0.398430003)); /* c9 */ tmp11 = MULTIPLY(tmp11, FIX(0.887983902)); /* c3-c9 */ tmp12 = MULTIPLY(z1 + z3, FIX(0.670361295)); /* c5-c9 */ tmp13 = tmp14 + MULTIPLY(z1 + z4, FIX(0.366151574)); /* c7-c9 */ tmp10 = tmp11 + tmp12 + tmp13 - MULTIPLY(z1, FIX(0.923107866)); /* c7+c5+c3-c1-2*c9 */ z1 = tmp14 - MULTIPLY(z2 + z3, FIX(1.163011579)); /* c7+c9 */ tmp11 += z1 + MULTIPLY(z2, FIX(2.073276588)); /* c1+c7+3*c9-c3 */ tmp12 += z1 - MULTIPLY(z3, FIX(1.192193623)); /* c3+c5-c7-c9 */ z1 = MULTIPLY(z2 + z4, -FIX(1.798248910)); /* -(c1+c9) */ tmp11 += z1; tmp13 += z1 + MULTIPLY(z4, FIX(2.102458632)); /* c1+c5+c9-c7 */ tmp14 += MULTIPLY(z2, -FIX(1.467221301)) + /* -(c5+c9) */ MULTIPLY(z3, FIX(1.001388905)) - /* c1-c9 */ MULTIPLY(z4, FIX(1.684843907)); /* c3+c9 */ /* Final output stage */ outptr[0] = range_limit[(int)RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[10] = range_limit[(int)RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[1] = range_limit[(int)RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[9] = range_limit[(int)RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[2] = range_limit[(int)RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[8] = range_limit[(int)RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[3] = range_limit[(int)RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[7] = range_limit[(int)RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[4] = range_limit[(int)RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[6] = range_limit[(int)RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[5] = range_limit[(int)RIGHT_SHIFT(tmp25, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; wsptr += 8; /* advance pointer to next row */ } } /* * Perform dequantization and inverse DCT on one block of coefficients, * producing a 12x12 output block. * * Optimized algorithm with 15 multiplications in the 1-D kernel. * cK represents sqrt(2) * cos(K*pi/24). */ GLOBAL(void) jpeg_idct_12x12(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { JLONG tmp10, tmp11, tmp12, tmp13, tmp14, tmp15; JLONG tmp20, tmp21, tmp22, tmp23, tmp24, tmp25; JLONG z1, z2, z3, z4; JCOEFPTR inptr; ISLOW_MULT_TYPE *quantptr; int *wsptr; JSAMPROW outptr; JSAMPLE *range_limit = IDCT_range_limit(cinfo); int ctr; int workspace[8 * 12]; /* buffers data between passes */ SHIFT_TEMPS /* Pass 1: process columns from input, store into work array. */ inptr = coef_block; quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table; wsptr = workspace; for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { /* Even part */ z3 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]); z3 = LEFT_SHIFT(z3, CONST_BITS); /* Add fudge factor here for final descale. */ z3 += ONE << (CONST_BITS - PASS1_BITS - 1); z4 = DEQUANTIZE(inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4]); z4 = MULTIPLY(z4, FIX(1.224744871)); /* c4 */ tmp10 = z3 + z4; tmp11 = z3 - z4; z1 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]); z4 = MULTIPLY(z1, FIX(1.366025404)); /* c2 */ z1 = LEFT_SHIFT(z1, CONST_BITS); z2 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6]); z2 = LEFT_SHIFT(z2, CONST_BITS); tmp12 = z1 - z2; tmp21 = z3 + tmp12; tmp24 = z3 - tmp12; tmp12 = z4 + z2; tmp20 = tmp10 + tmp12; tmp25 = tmp10 - tmp12; tmp12 = z4 - z1 - z2; tmp22 = tmp11 + tmp12; tmp23 = tmp11 - tmp12; /* Odd part */ z1 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]); z2 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]); z3 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]); z4 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]); tmp11 = MULTIPLY(z2, FIX(1.306562965)); /* c3 */ tmp14 = MULTIPLY(z2, -FIX_0_541196100); /* -c9 */ tmp10 = z1 + z3; tmp15 = MULTIPLY(tmp10 + z4, FIX(0.860918669)); /* c7 */ tmp12 = tmp15 + MULTIPLY(tmp10, FIX(0.261052384)); /* c5-c7 */ tmp10 = tmp12 + tmp11 + MULTIPLY(z1, FIX(0.280143716)); /* c1-c5 */ tmp13 = MULTIPLY(z3 + z4, -FIX(1.045510580)); /* -(c7+c11) */ tmp12 += tmp13 + tmp14 - MULTIPLY(z3, FIX(1.478575242)); /* c1+c5-c7-c11 */ tmp13 += tmp15 - tmp11 + MULTIPLY(z4, FIX(1.586706681)); /* c1+c11 */ tmp15 += tmp14 - MULTIPLY(z1, FIX(0.676326758)) - /* c7-c11 */ MULTIPLY(z4, FIX(1.982889723)); /* c5+c7 */ z1 -= z4; z2 -= z3; z3 = MULTIPLY(z1 + z2, FIX_0_541196100); /* c9 */ tmp11 = z3 + MULTIPLY(z1, FIX_0_765366865); /* c3-c9 */ tmp14 = z3 - MULTIPLY(z2, FIX_1_847759065); /* c3+c9 */ /* Final output stage */ wsptr[8 * 0] = (int)RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS - PASS1_BITS); wsptr[8 * 11] = (int)RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS - PASS1_BITS); wsptr[8 * 1] = (int)RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS - PASS1_BITS); wsptr[8 * 10] = (int)RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS - PASS1_BITS); wsptr[8 * 2] = (int)RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS - PASS1_BITS); wsptr[8 * 9] = (int)RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS - PASS1_BITS); wsptr[8 * 3] = (int)RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS - PASS1_BITS); wsptr[8 * 8] = (int)RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS - PASS1_BITS); wsptr[8 * 4] = (int)RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS - PASS1_BITS); wsptr[8 * 7] = (int)RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS - PASS1_BITS); wsptr[8 * 5] = (int)RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS - PASS1_BITS); wsptr[8 * 6] = (int)RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS - PASS1_BITS); } /* Pass 2: process 12 rows from work array, store into output array. */ wsptr = workspace; for (ctr = 0; ctr < 12; ctr++) { outptr = output_buf[ctr] + output_col; /* Even part */ /* Add fudge factor here for final descale. */ z3 = (JLONG)wsptr[0] + (ONE << (PASS1_BITS + 2)); z3 = LEFT_SHIFT(z3, CONST_BITS); z4 = (JLONG)wsptr[4]; z4 = MULTIPLY(z4, FIX(1.224744871)); /* c4 */ tmp10 = z3 + z4; tmp11 = z3 - z4; z1 = (JLONG)wsptr[2]; z4 = MULTIPLY(z1, FIX(1.366025404)); /* c2 */ z1 = LEFT_SHIFT(z1, CONST_BITS); z2 = (JLONG)wsptr[6]; z2 = LEFT_SHIFT(z2, CONST_BITS); tmp12 = z1 - z2; tmp21 = z3 + tmp12; tmp24 = z3 - tmp12; tmp12 = z4 + z2; tmp20 = tmp10 + tmp12; tmp25 = tmp10 - tmp12; tmp12 = z4 - z1 - z2; tmp22 = tmp11 + tmp12; tmp23 = tmp11 - tmp12; /* Odd part */ z1 = (JLONG)wsptr[1]; z2 = (JLONG)wsptr[3]; z3 = (JLONG)wsptr[5]; z4 = (JLONG)wsptr[7]; tmp11 = MULTIPLY(z2, FIX(1.306562965)); /* c3 */ tmp14 = MULTIPLY(z2, -FIX_0_541196100); /* -c9 */ tmp10 = z1 + z3; tmp15 = MULTIPLY(tmp10 + z4, FIX(0.860918669)); /* c7 */ tmp12 = tmp15 + MULTIPLY(tmp10, FIX(0.261052384)); /* c5-c7 */ tmp10 = tmp12 + tmp11 + MULTIPLY(z1, FIX(0.280143716)); /* c1-c5 */ tmp13 = MULTIPLY(z3 + z4, -FIX(1.045510580)); /* -(c7+c11) */ tmp12 += tmp13 + tmp14 - MULTIPLY(z3, FIX(1.478575242)); /* c1+c5-c7-c11 */ tmp13 += tmp15 - tmp11 + MULTIPLY(z4, FIX(1.586706681)); /* c1+c11 */ tmp15 += tmp14 - MULTIPLY(z1, FIX(0.676326758)) - /* c7-c11 */ MULTIPLY(z4, FIX(1.982889723)); /* c5+c7 */ z1 -= z4; z2 -= z3; z3 = MULTIPLY(z1 + z2, FIX_0_541196100); /* c9 */ tmp11 = z3 + MULTIPLY(z1, FIX_0_765366865); /* c3-c9 */ tmp14 = z3 - MULTIPLY(z2, FIX_1_847759065); /* c3+c9 */ /* Final output stage */ outptr[0] = range_limit[(int)RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[11] = range_limit[(int)RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[1] = range_limit[(int)RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[10] = range_limit[(int)RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[2] = range_limit[(int)RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[9] = range_limit[(int)RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[3] = range_limit[(int)RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[8] = range_limit[(int)RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[4] = range_limit[(int)RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[7] = range_limit[(int)RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[5] = range_limit[(int)RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[6] = range_limit[(int)RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; wsptr += 8; /* advance pointer to next row */ } } /* * Perform dequantization and inverse DCT on one block of coefficients, * producing a 13x13 output block. * * Optimized algorithm with 29 multiplications in the 1-D kernel. * cK represents sqrt(2) * cos(K*pi/26). */ GLOBAL(void) jpeg_idct_13x13(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { JLONG tmp10, tmp11, tmp12, tmp13, tmp14, tmp15; JLONG tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26; JLONG z1, z2, z3, z4; JCOEFPTR inptr; ISLOW_MULT_TYPE *quantptr; int *wsptr; JSAMPROW outptr; JSAMPLE *range_limit = IDCT_range_limit(cinfo); int ctr; int workspace[8 * 13]; /* buffers data between passes */ SHIFT_TEMPS /* Pass 1: process columns from input, store into work array. */ inptr = coef_block; quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table; wsptr = workspace; for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { /* Even part */ z1 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]); z1 = LEFT_SHIFT(z1, CONST_BITS); /* Add fudge factor here for final descale. */ z1 += ONE << (CONST_BITS - PASS1_BITS - 1); z2 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]); z3 = DEQUANTIZE(inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4]); z4 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6]); tmp10 = z3 + z4; tmp11 = z3 - z4; tmp12 = MULTIPLY(tmp10, FIX(1.155388986)); /* (c4+c6)/2 */ tmp13 = MULTIPLY(tmp11, FIX(0.096834934)) + z1; /* (c4-c6)/2 */ tmp20 = MULTIPLY(z2, FIX(1.373119086)) + tmp12 + tmp13; /* c2 */ tmp22 = MULTIPLY(z2, FIX(0.501487041)) - tmp12 + tmp13; /* c10 */ tmp12 = MULTIPLY(tmp10, FIX(0.316450131)); /* (c8-c12)/2 */ tmp13 = MULTIPLY(tmp11, FIX(0.486914739)) + z1; /* (c8+c12)/2 */ tmp21 = MULTIPLY(z2, FIX(1.058554052)) - tmp12 + tmp13; /* c6 */ tmp25 = MULTIPLY(z2, -FIX(1.252223920)) + tmp12 + tmp13; /* c4 */ tmp12 = MULTIPLY(tmp10, FIX(0.435816023)); /* (c2-c10)/2 */ tmp13 = MULTIPLY(tmp11, FIX(0.937303064)) - z1; /* (c2+c10)/2 */ tmp23 = MULTIPLY(z2, -FIX(0.170464608)) - tmp12 - tmp13; /* c12 */ tmp24 = MULTIPLY(z2, -FIX(0.803364869)) + tmp12 - tmp13; /* c8 */ tmp26 = MULTIPLY(tmp11 - z2, FIX(1.414213562)) + z1; /* c0 */ /* Odd part */ z1 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]); z2 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]); z3 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]); z4 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]); tmp11 = MULTIPLY(z1 + z2, FIX(1.322312651)); /* c3 */ tmp12 = MULTIPLY(z1 + z3, FIX(1.163874945)); /* c5 */ tmp15 = z1 + z4; tmp13 = MULTIPLY(tmp15, FIX(0.937797057)); /* c7 */ tmp10 = tmp11 + tmp12 + tmp13 - MULTIPLY(z1, FIX(2.020082300)); /* c7+c5+c3-c1 */ tmp14 = MULTIPLY(z2 + z3, -FIX(0.338443458)); /* -c11 */ tmp11 += tmp14 + MULTIPLY(z2, FIX(0.837223564)); /* c5+c9+c11-c3 */ tmp12 += tmp14 - MULTIPLY(z3, FIX(1.572116027)); /* c1+c5-c9-c11 */ tmp14 = MULTIPLY(z2 + z4, -FIX(1.163874945)); /* -c5 */ tmp11 += tmp14; tmp13 += tmp14 + MULTIPLY(z4, FIX(2.205608352)); /* c3+c5+c9-c7 */ tmp14 = MULTIPLY(z3 + z4, -FIX(0.657217813)); /* -c9 */ tmp12 += tmp14; tmp13 += tmp14; tmp15 = MULTIPLY(tmp15, FIX(0.338443458)); /* c11 */ tmp14 = tmp15 + MULTIPLY(z1, FIX(0.318774355)) - /* c9-c11 */ MULTIPLY(z2, FIX(0.466105296)); /* c1-c7 */ z1 = MULTIPLY(z3 - z2, FIX(0.937797057)); /* c7 */ tmp14 += z1; tmp15 += z1 + MULTIPLY(z3, FIX(0.384515595)) - /* c3-c7 */ MULTIPLY(z4, FIX(1.742345811)); /* c1+c11 */ /* Final output stage */ wsptr[8 * 0] = (int)RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS - PASS1_BITS); wsptr[8 * 12] = (int)RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS - PASS1_BITS); wsptr[8 * 1] = (int)RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS - PASS1_BITS); wsptr[8 * 11] = (int)RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS - PASS1_BITS); wsptr[8 * 2] = (int)RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS - PASS1_BITS); wsptr[8 * 10] = (int)RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS - PASS1_BITS); wsptr[8 * 3] = (int)RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS - PASS1_BITS); wsptr[8 * 9] = (int)RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS - PASS1_BITS); wsptr[8 * 4] = (int)RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS - PASS1_BITS); wsptr[8 * 8] = (int)RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS - PASS1_BITS); wsptr[8 * 5] = (int)RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS - PASS1_BITS); wsptr[8 * 7] = (int)RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS - PASS1_BITS); wsptr[8 * 6] = (int)RIGHT_SHIFT(tmp26, CONST_BITS - PASS1_BITS); } /* Pass 2: process 13 rows from work array, store into output array. */ wsptr = workspace; for (ctr = 0; ctr < 13; ctr++) { outptr = output_buf[ctr] + output_col; /* Even part */ /* Add fudge factor here for final descale. */ z1 = (JLONG)wsptr[0] + (ONE << (PASS1_BITS + 2)); z1 = LEFT_SHIFT(z1, CONST_BITS); z2 = (JLONG)wsptr[2]; z3 = (JLONG)wsptr[4]; z4 = (JLONG)wsptr[6]; tmp10 = z3 + z4; tmp11 = z3 - z4; tmp12 = MULTIPLY(tmp10, FIX(1.155388986)); /* (c4+c6)/2 */ tmp13 = MULTIPLY(tmp11, FIX(0.096834934)) + z1; /* (c4-c6)/2 */ tmp20 = MULTIPLY(z2, FIX(1.373119086)) + tmp12 + tmp13; /* c2 */ tmp22 = MULTIPLY(z2, FIX(0.501487041)) - tmp12 + tmp13; /* c10 */ tmp12 = MULTIPLY(tmp10, FIX(0.316450131)); /* (c8-c12)/2 */ tmp13 = MULTIPLY(tmp11, FIX(0.486914739)) + z1; /* (c8+c12)/2 */ tmp21 = MULTIPLY(z2, FIX(1.058554052)) - tmp12 + tmp13; /* c6 */ tmp25 = MULTIPLY(z2, -FIX(1.252223920)) + tmp12 + tmp13; /* c4 */ tmp12 = MULTIPLY(tmp10, FIX(0.435816023)); /* (c2-c10)/2 */ tmp13 = MULTIPLY(tmp11, FIX(0.937303064)) - z1; /* (c2+c10)/2 */ tmp23 = MULTIPLY(z2, -FIX(0.170464608)) - tmp12 - tmp13; /* c12 */ tmp24 = MULTIPLY(z2, -FIX(0.803364869)) + tmp12 - tmp13; /* c8 */ tmp26 = MULTIPLY(tmp11 - z2, FIX(1.414213562)) + z1; /* c0 */ /* Odd part */ z1 = (JLONG)wsptr[1]; z2 = (JLONG)wsptr[3]; z3 = (JLONG)wsptr[5]; z4 = (JLONG)wsptr[7]; tmp11 = MULTIPLY(z1 + z2, FIX(1.322312651)); /* c3 */ tmp12 = MULTIPLY(z1 + z3, FIX(1.163874945)); /* c5 */ tmp15 = z1 + z4; tmp13 = MULTIPLY(tmp15, FIX(0.937797057)); /* c7 */ tmp10 = tmp11 + tmp12 + tmp13 - MULTIPLY(z1, FIX(2.020082300)); /* c7+c5+c3-c1 */ tmp14 = MULTIPLY(z2 + z3, -FIX(0.338443458)); /* -c11 */ tmp11 += tmp14 + MULTIPLY(z2, FIX(0.837223564)); /* c5+c9+c11-c3 */ tmp12 += tmp14 - MULTIPLY(z3, FIX(1.572116027)); /* c1+c5-c9-c11 */ tmp14 = MULTIPLY(z2 + z4, -FIX(1.163874945)); /* -c5 */ tmp11 += tmp14; tmp13 += tmp14 + MULTIPLY(z4, FIX(2.205608352)); /* c3+c5+c9-c7 */ tmp14 = MULTIPLY(z3 + z4, -FIX(0.657217813)); /* -c9 */ tmp12 += tmp14; tmp13 += tmp14; tmp15 = MULTIPLY(tmp15, FIX(0.338443458)); /* c11 */ tmp14 = tmp15 + MULTIPLY(z1, FIX(0.318774355)) - /* c9-c11 */ MULTIPLY(z2, FIX(0.466105296)); /* c1-c7 */ z1 = MULTIPLY(z3 - z2, FIX(0.937797057)); /* c7 */ tmp14 += z1; tmp15 += z1 + MULTIPLY(z3, FIX(0.384515595)) - /* c3-c7 */ MULTIPLY(z4, FIX(1.742345811)); /* c1+c11 */ /* Final output stage */ outptr[0] = range_limit[(int)RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[12] = range_limit[(int)RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[1] = range_limit[(int)RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[11] = range_limit[(int)RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[2] = range_limit[(int)RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[10] = range_limit[(int)RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[3] = range_limit[(int)RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[9] = range_limit[(int)RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[4] = range_limit[(int)RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[8] = range_limit[(int)RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[5] = range_limit[(int)RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[7] = range_limit[(int)RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[6] = range_limit[(int)RIGHT_SHIFT(tmp26, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; wsptr += 8; /* advance pointer to next row */ } } /* * Perform dequantization and inverse DCT on one block of coefficients, * producing a 14x14 output block. * * Optimized algorithm with 20 multiplications in the 1-D kernel. * cK represents sqrt(2) * cos(K*pi/28). */ GLOBAL(void) jpeg_idct_14x14(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { JLONG tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16; JLONG tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26; JLONG z1, z2, z3, z4; JCOEFPTR inptr; ISLOW_MULT_TYPE *quantptr; int *wsptr; JSAMPROW outptr; JSAMPLE *range_limit = IDCT_range_limit(cinfo); int ctr; int workspace[8 * 14]; /* buffers data between passes */ SHIFT_TEMPS /* Pass 1: process columns from input, store into work array. */ inptr = coef_block; quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table; wsptr = workspace; for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { /* Even part */ z1 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]); z1 = LEFT_SHIFT(z1, CONST_BITS); /* Add fudge factor here for final descale. */ z1 += ONE << (CONST_BITS - PASS1_BITS - 1); z4 = DEQUANTIZE(inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4]); z2 = MULTIPLY(z4, FIX(1.274162392)); /* c4 */ z3 = MULTIPLY(z4, FIX(0.314692123)); /* c12 */ z4 = MULTIPLY(z4, FIX(0.881747734)); /* c8 */ tmp10 = z1 + z2; tmp11 = z1 + z3; tmp12 = z1 - z4; tmp23 = RIGHT_SHIFT(z1 - LEFT_SHIFT(z2 + z3 - z4, 1), CONST_BITS - PASS1_BITS); /* c0 = (c4+c12-c8)*2 */ z1 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]); z2 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6]); z3 = MULTIPLY(z1 + z2, FIX(1.105676686)); /* c6 */ tmp13 = z3 + MULTIPLY(z1, FIX(0.273079590)); /* c2-c6 */ tmp14 = z3 - MULTIPLY(z2, FIX(1.719280954)); /* c6+c10 */ tmp15 = MULTIPLY(z1, FIX(0.613604268)) - /* c10 */ MULTIPLY(z2, FIX(1.378756276)); /* c2 */ tmp20 = tmp10 + tmp13; tmp26 = tmp10 - tmp13; tmp21 = tmp11 + tmp14; tmp25 = tmp11 - tmp14; tmp22 = tmp12 + tmp15; tmp24 = tmp12 - tmp15; /* Odd part */ z1 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]); z2 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]); z3 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]); z4 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]); tmp13 = LEFT_SHIFT(z4, CONST_BITS); tmp14 = z1 + z3; tmp11 = MULTIPLY(z1 + z2, FIX(1.334852607)); /* c3 */ tmp12 = MULTIPLY(tmp14, FIX(1.197448846)); /* c5 */ tmp10 = tmp11 + tmp12 + tmp13 - MULTIPLY(z1, FIX(1.126980169)); /* c3+c5-c1 */ tmp14 = MULTIPLY(tmp14, FIX(0.752406978)); /* c9 */ tmp16 = tmp14 - MULTIPLY(z1, FIX(1.061150426)); /* c9+c11-c13 */ z1 -= z2; tmp15 = MULTIPLY(z1, FIX(0.467085129)) - tmp13; /* c11 */ tmp16 += tmp15; z1 += z4; z4 = MULTIPLY(z2 + z3, -FIX(0.158341681)) - tmp13; /* -c13 */ tmp11 += z4 - MULTIPLY(z2, FIX(0.424103948)); /* c3-c9-c13 */ tmp12 += z4 - MULTIPLY(z3, FIX(2.373959773)); /* c3+c5-c13 */ z4 = MULTIPLY(z3 - z2, FIX(1.405321284)); /* c1 */ tmp14 += z4 + tmp13 - MULTIPLY(z3, FIX(1.6906431334)); /* c1+c9-c11 */ tmp15 += z4 + MULTIPLY(z2, FIX(0.674957567)); /* c1+c11-c5 */ tmp13 = LEFT_SHIFT(z1 - z3, PASS1_BITS); /* Final output stage */ wsptr[8 * 0] = (int)RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS - PASS1_BITS); wsptr[8 * 13] = (int)RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS - PASS1_BITS); wsptr[8 * 1] = (int)RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS - PASS1_BITS); wsptr[8 * 12] = (int)RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS - PASS1_BITS); wsptr[8 * 2] = (int)RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS - PASS1_BITS); wsptr[8 * 11] = (int)RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS - PASS1_BITS); wsptr[8 * 3] = (int)(tmp23 + tmp13); wsptr[8 * 10] = (int)(tmp23 - tmp13); wsptr[8 * 4] = (int)RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS - PASS1_BITS); wsptr[8 * 9] = (int)RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS - PASS1_BITS); wsptr[8 * 5] = (int)RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS - PASS1_BITS); wsptr[8 * 8] = (int)RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS - PASS1_BITS); wsptr[8 * 6] = (int)RIGHT_SHIFT(tmp26 + tmp16, CONST_BITS - PASS1_BITS); wsptr[8 * 7] = (int)RIGHT_SHIFT(tmp26 - tmp16, CONST_BITS - PASS1_BITS); } /* Pass 2: process 14 rows from work array, store into output array. */ wsptr = workspace; for (ctr = 0; ctr < 14; ctr++) { outptr = output_buf[ctr] + output_col; /* Even part */ /* Add fudge factor here for final descale. */ z1 = (JLONG)wsptr[0] + (ONE << (PASS1_BITS + 2)); z1 = LEFT_SHIFT(z1, CONST_BITS); z4 = (JLONG)wsptr[4]; z2 = MULTIPLY(z4, FIX(1.274162392)); /* c4 */ z3 = MULTIPLY(z4, FIX(0.314692123)); /* c12 */ z4 = MULTIPLY(z4, FIX(0.881747734)); /* c8 */ tmp10 = z1 + z2; tmp11 = z1 + z3; tmp12 = z1 - z4; tmp23 = z1 - LEFT_SHIFT(z2 + z3 - z4, 1); /* c0 = (c4+c12-c8)*2 */ z1 = (JLONG)wsptr[2]; z2 = (JLONG)wsptr[6]; z3 = MULTIPLY(z1 + z2, FIX(1.105676686)); /* c6 */ tmp13 = z3 + MULTIPLY(z1, FIX(0.273079590)); /* c2-c6 */ tmp14 = z3 - MULTIPLY(z2, FIX(1.719280954)); /* c6+c10 */ tmp15 = MULTIPLY(z1, FIX(0.613604268)) - /* c10 */ MULTIPLY(z2, FIX(1.378756276)); /* c2 */ tmp20 = tmp10 + tmp13; tmp26 = tmp10 - tmp13; tmp21 = tmp11 + tmp14; tmp25 = tmp11 - tmp14; tmp22 = tmp12 + tmp15; tmp24 = tmp12 - tmp15; /* Odd part */ z1 = (JLONG)wsptr[1]; z2 = (JLONG)wsptr[3]; z3 = (JLONG)wsptr[5]; z4 = (JLONG)wsptr[7]; z4 = LEFT_SHIFT(z4, CONST_BITS); tmp14 = z1 + z3; tmp11 = MULTIPLY(z1 + z2, FIX(1.334852607)); /* c3 */ tmp12 = MULTIPLY(tmp14, FIX(1.197448846)); /* c5 */ tmp10 = tmp11 + tmp12 + z4 - MULTIPLY(z1, FIX(1.126980169)); /* c3+c5-c1 */ tmp14 = MULTIPLY(tmp14, FIX(0.752406978)); /* c9 */ tmp16 = tmp14 - MULTIPLY(z1, FIX(1.061150426)); /* c9+c11-c13 */ z1 -= z2; tmp15 = MULTIPLY(z1, FIX(0.467085129)) - z4; /* c11 */ tmp16 += tmp15; tmp13 = MULTIPLY(z2 + z3, -FIX(0.158341681)) - z4; /* -c13 */ tmp11 += tmp13 - MULTIPLY(z2, FIX(0.424103948)); /* c3-c9-c13 */ tmp12 += tmp13 - MULTIPLY(z3, FIX(2.373959773)); /* c3+c5-c13 */ tmp13 = MULTIPLY(z3 - z2, FIX(1.405321284)); /* c1 */ tmp14 += tmp13 + z4 - MULTIPLY(z3, FIX(1.6906431334)); /* c1+c9-c11 */ tmp15 += tmp13 + MULTIPLY(z2, FIX(0.674957567)); /* c1+c11-c5 */ tmp13 = LEFT_SHIFT(z1 - z3, CONST_BITS) + z4; /* Final output stage */ outptr[0] = range_limit[(int)RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[13] = range_limit[(int)RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[1] = range_limit[(int)RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[12] = range_limit[(int)RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[2] = range_limit[(int)RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[11] = range_limit[(int)RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[3] = range_limit[(int)RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[10] = range_limit[(int)RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[4] = range_limit[(int)RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[9] = range_limit[(int)RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[5] = range_limit[(int)RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[8] = range_limit[(int)RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[6] = range_limit[(int)RIGHT_SHIFT(tmp26 + tmp16, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[7] = range_limit[(int)RIGHT_SHIFT(tmp26 - tmp16, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; wsptr += 8; /* advance pointer to next row */ } } /* * Perform dequantization and inverse DCT on one block of coefficients, * producing a 15x15 output block. * * Optimized algorithm with 22 multiplications in the 1-D kernel. * cK represents sqrt(2) * cos(K*pi/30). */ GLOBAL(void) jpeg_idct_15x15(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { JLONG tmp10, tmp11, tmp12, tmp13, tmp14, tmp15, tmp16; JLONG tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27; JLONG z1, z2, z3, z4; JCOEFPTR inptr; ISLOW_MULT_TYPE *quantptr; int *wsptr; JSAMPROW outptr; JSAMPLE *range_limit = IDCT_range_limit(cinfo); int ctr; int workspace[8 * 15]; /* buffers data between passes */ SHIFT_TEMPS /* Pass 1: process columns from input, store into work array. */ inptr = coef_block; quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table; wsptr = workspace; for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { /* Even part */ z1 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]); z1 = LEFT_SHIFT(z1, CONST_BITS); /* Add fudge factor here for final descale. */ z1 += ONE << (CONST_BITS - PASS1_BITS - 1); z2 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]); z3 = DEQUANTIZE(inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4]); z4 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6]); tmp10 = MULTIPLY(z4, FIX(0.437016024)); /* c12 */ tmp11 = MULTIPLY(z4, FIX(1.144122806)); /* c6 */ tmp12 = z1 - tmp10; tmp13 = z1 + tmp11; z1 -= LEFT_SHIFT(tmp11 - tmp10, 1); /* c0 = (c6-c12)*2 */ z4 = z2 - z3; z3 += z2; tmp10 = MULTIPLY(z3, FIX(1.337628990)); /* (c2+c4)/2 */ tmp11 = MULTIPLY(z4, FIX(0.045680613)); /* (c2-c4)/2 */ z2 = MULTIPLY(z2, FIX(1.439773946)); /* c4+c14 */ tmp20 = tmp13 + tmp10 + tmp11; tmp23 = tmp12 - tmp10 + tmp11 + z2; tmp10 = MULTIPLY(z3, FIX(0.547059574)); /* (c8+c14)/2 */ tmp11 = MULTIPLY(z4, FIX(0.399234004)); /* (c8-c14)/2 */ tmp25 = tmp13 - tmp10 - tmp11; tmp26 = tmp12 + tmp10 - tmp11 - z2; tmp10 = MULTIPLY(z3, FIX(0.790569415)); /* (c6+c12)/2 */ tmp11 = MULTIPLY(z4, FIX(0.353553391)); /* (c6-c12)/2 */ tmp21 = tmp12 + tmp10 + tmp11; tmp24 = tmp13 - tmp10 + tmp11; tmp11 += tmp11; tmp22 = z1 + tmp11; /* c10 = c6-c12 */ tmp27 = z1 - tmp11 - tmp11; /* c0 = (c6-c12)*2 */ /* Odd part */ z1 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]); z2 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]); z4 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]); z3 = MULTIPLY(z4, FIX(1.224744871)); /* c5 */ z4 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]); tmp13 = z2 - z4; tmp15 = MULTIPLY(z1 + tmp13, FIX(0.831253876)); /* c9 */ tmp11 = tmp15 + MULTIPLY(z1, FIX(0.513743148)); /* c3-c9 */ tmp14 = tmp15 - MULTIPLY(tmp13, FIX(2.176250899)); /* c3+c9 */ tmp13 = MULTIPLY(z2, -FIX(0.831253876)); /* -c9 */ tmp15 = MULTIPLY(z2, -FIX(1.344997024)); /* -c3 */ z2 = z1 - z4; tmp12 = z3 + MULTIPLY(z2, FIX(1.406466353)); /* c1 */ tmp10 = tmp12 + MULTIPLY(z4, FIX(2.457431844)) - tmp15; /* c1+c7 */ tmp16 = tmp12 - MULTIPLY(z1, FIX(1.112434820)) + tmp13; /* c1-c13 */ tmp12 = MULTIPLY(z2, FIX(1.224744871)) - z3; /* c5 */ z2 = MULTIPLY(z1 + z4, FIX(0.575212477)); /* c11 */ tmp13 += z2 + MULTIPLY(z1, FIX(0.475753014)) - z3; /* c7-c11 */ tmp15 += z2 - MULTIPLY(z4, FIX(0.869244010)) + z3; /* c11+c13 */ /* Final output stage */ wsptr[8 * 0] = (int)RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS - PASS1_BITS); wsptr[8 * 14] = (int)RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS - PASS1_BITS); wsptr[8 * 1] = (int)RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS - PASS1_BITS); wsptr[8 * 13] = (int)RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS - PASS1_BITS); wsptr[8 * 2] = (int)RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS - PASS1_BITS); wsptr[8 * 12] = (int)RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS - PASS1_BITS); wsptr[8 * 3] = (int)RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS - PASS1_BITS); wsptr[8 * 11] = (int)RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS - PASS1_BITS); wsptr[8 * 4] = (int)RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS - PASS1_BITS); wsptr[8 * 10] = (int)RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS - PASS1_BITS); wsptr[8 * 5] = (int)RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS - PASS1_BITS); wsptr[8 * 9] = (int)RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS - PASS1_BITS); wsptr[8 * 6] = (int)RIGHT_SHIFT(tmp26 + tmp16, CONST_BITS - PASS1_BITS); wsptr[8 * 8] = (int)RIGHT_SHIFT(tmp26 - tmp16, CONST_BITS - PASS1_BITS); wsptr[8 * 7] = (int)RIGHT_SHIFT(tmp27, CONST_BITS - PASS1_BITS); } /* Pass 2: process 15 rows from work array, store into output array. */ wsptr = workspace; for (ctr = 0; ctr < 15; ctr++) { outptr = output_buf[ctr] + output_col; /* Even part */ /* Add fudge factor here for final descale. */ z1 = (JLONG)wsptr[0] + (ONE << (PASS1_BITS + 2)); z1 = LEFT_SHIFT(z1, CONST_BITS); z2 = (JLONG)wsptr[2]; z3 = (JLONG)wsptr[4]; z4 = (JLONG)wsptr[6]; tmp10 = MULTIPLY(z4, FIX(0.437016024)); /* c12 */ tmp11 = MULTIPLY(z4, FIX(1.144122806)); /* c6 */ tmp12 = z1 - tmp10; tmp13 = z1 + tmp11; z1 -= LEFT_SHIFT(tmp11 - tmp10, 1); /* c0 = (c6-c12)*2 */ z4 = z2 - z3; z3 += z2; tmp10 = MULTIPLY(z3, FIX(1.337628990)); /* (c2+c4)/2 */ tmp11 = MULTIPLY(z4, FIX(0.045680613)); /* (c2-c4)/2 */ z2 = MULTIPLY(z2, FIX(1.439773946)); /* c4+c14 */ tmp20 = tmp13 + tmp10 + tmp11; tmp23 = tmp12 - tmp10 + tmp11 + z2; tmp10 = MULTIPLY(z3, FIX(0.547059574)); /* (c8+c14)/2 */ tmp11 = MULTIPLY(z4, FIX(0.399234004)); /* (c8-c14)/2 */ tmp25 = tmp13 - tmp10 - tmp11; tmp26 = tmp12 + tmp10 - tmp11 - z2; tmp10 = MULTIPLY(z3, FIX(0.790569415)); /* (c6+c12)/2 */ tmp11 = MULTIPLY(z4, FIX(0.353553391)); /* (c6-c12)/2 */ tmp21 = tmp12 + tmp10 + tmp11; tmp24 = tmp13 - tmp10 + tmp11; tmp11 += tmp11; tmp22 = z1 + tmp11; /* c10 = c6-c12 */ tmp27 = z1 - tmp11 - tmp11; /* c0 = (c6-c12)*2 */ /* Odd part */ z1 = (JLONG)wsptr[1]; z2 = (JLONG)wsptr[3]; z4 = (JLONG)wsptr[5]; z3 = MULTIPLY(z4, FIX(1.224744871)); /* c5 */ z4 = (JLONG)wsptr[7]; tmp13 = z2 - z4; tmp15 = MULTIPLY(z1 + tmp13, FIX(0.831253876)); /* c9 */ tmp11 = tmp15 + MULTIPLY(z1, FIX(0.513743148)); /* c3-c9 */ tmp14 = tmp15 - MULTIPLY(tmp13, FIX(2.176250899)); /* c3+c9 */ tmp13 = MULTIPLY(z2, -FIX(0.831253876)); /* -c9 */ tmp15 = MULTIPLY(z2, -FIX(1.344997024)); /* -c3 */ z2 = z1 - z4; tmp12 = z3 + MULTIPLY(z2, FIX(1.406466353)); /* c1 */ tmp10 = tmp12 + MULTIPLY(z4, FIX(2.457431844)) - tmp15; /* c1+c7 */ tmp16 = tmp12 - MULTIPLY(z1, FIX(1.112434820)) + tmp13; /* c1-c13 */ tmp12 = MULTIPLY(z2, FIX(1.224744871)) - z3; /* c5 */ z2 = MULTIPLY(z1 + z4, FIX(0.575212477)); /* c11 */ tmp13 += z2 + MULTIPLY(z1, FIX(0.475753014)) - z3; /* c7-c11 */ tmp15 += z2 - MULTIPLY(z4, FIX(0.869244010)) + z3; /* c11+c13 */ /* Final output stage */ outptr[0] = range_limit[(int)RIGHT_SHIFT(tmp20 + tmp10, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[14] = range_limit[(int)RIGHT_SHIFT(tmp20 - tmp10, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[1] = range_limit[(int)RIGHT_SHIFT(tmp21 + tmp11, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[13] = range_limit[(int)RIGHT_SHIFT(tmp21 - tmp11, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[2] = range_limit[(int)RIGHT_SHIFT(tmp22 + tmp12, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[12] = range_limit[(int)RIGHT_SHIFT(tmp22 - tmp12, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[3] = range_limit[(int)RIGHT_SHIFT(tmp23 + tmp13, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[11] = range_limit[(int)RIGHT_SHIFT(tmp23 - tmp13, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[4] = range_limit[(int)RIGHT_SHIFT(tmp24 + tmp14, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[10] = range_limit[(int)RIGHT_SHIFT(tmp24 - tmp14, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[5] = range_limit[(int)RIGHT_SHIFT(tmp25 + tmp15, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[9] = range_limit[(int)RIGHT_SHIFT(tmp25 - tmp15, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[6] = range_limit[(int)RIGHT_SHIFT(tmp26 + tmp16, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[8] = range_limit[(int)RIGHT_SHIFT(tmp26 - tmp16, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[7] = range_limit[(int)RIGHT_SHIFT(tmp27, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; wsptr += 8; /* advance pointer to next row */ } } /* * Perform dequantization and inverse DCT on one block of coefficients, * producing a 16x16 output block. * * Optimized algorithm with 28 multiplications in the 1-D kernel. * cK represents sqrt(2) * cos(K*pi/32). */ GLOBAL(void) jpeg_idct_16x16(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { JLONG tmp0, tmp1, tmp2, tmp3, tmp10, tmp11, tmp12, tmp13; JLONG tmp20, tmp21, tmp22, tmp23, tmp24, tmp25, tmp26, tmp27; JLONG z1, z2, z3, z4; JCOEFPTR inptr; ISLOW_MULT_TYPE *quantptr; int *wsptr; JSAMPROW outptr; JSAMPLE *range_limit = IDCT_range_limit(cinfo); int ctr; int workspace[8 * 16]; /* buffers data between passes */ SHIFT_TEMPS /* Pass 1: process columns from input, store into work array. */ inptr = coef_block; quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table; wsptr = workspace; for (ctr = 0; ctr < 8; ctr++, inptr++, quantptr++, wsptr++) { /* Even part */ tmp0 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]); tmp0 = LEFT_SHIFT(tmp0, CONST_BITS); /* Add fudge factor here for final descale. */ tmp0 += ONE << (CONST_BITS - PASS1_BITS - 1); z1 = DEQUANTIZE(inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4]); tmp1 = MULTIPLY(z1, FIX(1.306562965)); /* c4[16] = c2[8] */ tmp2 = MULTIPLY(z1, FIX_0_541196100); /* c12[16] = c6[8] */ tmp10 = tmp0 + tmp1; tmp11 = tmp0 - tmp1; tmp12 = tmp0 + tmp2; tmp13 = tmp0 - tmp2; z1 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]); z2 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6]); z3 = z1 - z2; z4 = MULTIPLY(z3, FIX(0.275899379)); /* c14[16] = c7[8] */ z3 = MULTIPLY(z3, FIX(1.387039845)); /* c2[16] = c1[8] */ tmp0 = z3 + MULTIPLY(z2, FIX_2_562915447); /* (c6+c2)[16] = (c3+c1)[8] */ tmp1 = z4 + MULTIPLY(z1, FIX_0_899976223); /* (c6-c14)[16] = (c3-c7)[8] */ tmp2 = z3 - MULTIPLY(z1, FIX(0.601344887)); /* (c2-c10)[16] = (c1-c5)[8] */ tmp3 = z4 - MULTIPLY(z2, FIX(0.509795579)); /* (c10-c14)[16] = (c5-c7)[8] */ tmp20 = tmp10 + tmp0; tmp27 = tmp10 - tmp0; tmp21 = tmp12 + tmp1; tmp26 = tmp12 - tmp1; tmp22 = tmp13 + tmp2; tmp25 = tmp13 - tmp2; tmp23 = tmp11 + tmp3; tmp24 = tmp11 - tmp3; /* Odd part */ z1 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]); z2 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]); z3 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]); z4 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]); tmp11 = z1 + z3; tmp1 = MULTIPLY(z1 + z2, FIX(1.353318001)); /* c3 */ tmp2 = MULTIPLY(tmp11, FIX(1.247225013)); /* c5 */ tmp3 = MULTIPLY(z1 + z4, FIX(1.093201867)); /* c7 */ tmp10 = MULTIPLY(z1 - z4, FIX(0.897167586)); /* c9 */ tmp11 = MULTIPLY(tmp11, FIX(0.666655658)); /* c11 */ tmp12 = MULTIPLY(z1 - z2, FIX(0.410524528)); /* c13 */ tmp0 = tmp1 + tmp2 + tmp3 - MULTIPLY(z1, FIX(2.286341144)); /* c7+c5+c3-c1 */ tmp13 = tmp10 + tmp11 + tmp12 - MULTIPLY(z1, FIX(1.835730603)); /* c9+c11+c13-c15 */ z1 = MULTIPLY(z2 + z3, FIX(0.138617169)); /* c15 */ tmp1 += z1 + MULTIPLY(z2, FIX(0.071888074)); /* c9+c11-c3-c15 */ tmp2 += z1 - MULTIPLY(z3, FIX(1.125726048)); /* c5+c7+c15-c3 */ z1 = MULTIPLY(z3 - z2, FIX(1.407403738)); /* c1 */ tmp11 += z1 - MULTIPLY(z3, FIX(0.766367282)); /* c1+c11-c9-c13 */ tmp12 += z1 + MULTIPLY(z2, FIX(1.971951411)); /* c1+c5+c13-c7 */ z2 += z4; z1 = MULTIPLY(z2, -FIX(0.666655658)); /* -c11 */ tmp1 += z1; tmp3 += z1 + MULTIPLY(z4, FIX(1.065388962)); /* c3+c11+c15-c7 */ z2 = MULTIPLY(z2, -FIX(1.247225013)); /* -c5 */ tmp10 += z2 + MULTIPLY(z4, FIX(3.141271809)); /* c1+c5+c9-c13 */ tmp12 += z2; z2 = MULTIPLY(z3 + z4, -FIX(1.353318001)); /* -c3 */ tmp2 += z2; tmp3 += z2; z2 = MULTIPLY(z4 - z3, FIX(0.410524528)); /* c13 */ tmp10 += z2; tmp11 += z2; /* Final output stage */ wsptr[8 * 0] = (int)RIGHT_SHIFT(tmp20 + tmp0, CONST_BITS - PASS1_BITS); wsptr[8 * 15] = (int)RIGHT_SHIFT(tmp20 - tmp0, CONST_BITS - PASS1_BITS); wsptr[8 * 1] = (int)RIGHT_SHIFT(tmp21 + tmp1, CONST_BITS - PASS1_BITS); wsptr[8 * 14] = (int)RIGHT_SHIFT(tmp21 - tmp1, CONST_BITS - PASS1_BITS); wsptr[8 * 2] = (int)RIGHT_SHIFT(tmp22 + tmp2, CONST_BITS - PASS1_BITS); wsptr[8 * 13] = (int)RIGHT_SHIFT(tmp22 - tmp2, CONST_BITS - PASS1_BITS); wsptr[8 * 3] = (int)RIGHT_SHIFT(tmp23 + tmp3, CONST_BITS - PASS1_BITS); wsptr[8 * 12] = (int)RIGHT_SHIFT(tmp23 - tmp3, CONST_BITS - PASS1_BITS); wsptr[8 * 4] = (int)RIGHT_SHIFT(tmp24 + tmp10, CONST_BITS - PASS1_BITS); wsptr[8 * 11] = (int)RIGHT_SHIFT(tmp24 - tmp10, CONST_BITS - PASS1_BITS); wsptr[8 * 5] = (int)RIGHT_SHIFT(tmp25 + tmp11, CONST_BITS - PASS1_BITS); wsptr[8 * 10] = (int)RIGHT_SHIFT(tmp25 - tmp11, CONST_BITS - PASS1_BITS); wsptr[8 * 6] = (int)RIGHT_SHIFT(tmp26 + tmp12, CONST_BITS - PASS1_BITS); wsptr[8 * 9] = (int)RIGHT_SHIFT(tmp26 - tmp12, CONST_BITS - PASS1_BITS); wsptr[8 * 7] = (int)RIGHT_SHIFT(tmp27 + tmp13, CONST_BITS - PASS1_BITS); wsptr[8 * 8] = (int)RIGHT_SHIFT(tmp27 - tmp13, CONST_BITS - PASS1_BITS); } /* Pass 2: process 16 rows from work array, store into output array. */ wsptr = workspace; for (ctr = 0; ctr < 16; ctr++) { outptr = output_buf[ctr] + output_col; /* Even part */ /* Add fudge factor here for final descale. */ tmp0 = (JLONG)wsptr[0] + (ONE << (PASS1_BITS + 2)); tmp0 = LEFT_SHIFT(tmp0, CONST_BITS); z1 = (JLONG)wsptr[4]; tmp1 = MULTIPLY(z1, FIX(1.306562965)); /* c4[16] = c2[8] */ tmp2 = MULTIPLY(z1, FIX_0_541196100); /* c12[16] = c6[8] */ tmp10 = tmp0 + tmp1; tmp11 = tmp0 - tmp1; tmp12 = tmp0 + tmp2; tmp13 = tmp0 - tmp2; z1 = (JLONG)wsptr[2]; z2 = (JLONG)wsptr[6]; z3 = z1 - z2; z4 = MULTIPLY(z3, FIX(0.275899379)); /* c14[16] = c7[8] */ z3 = MULTIPLY(z3, FIX(1.387039845)); /* c2[16] = c1[8] */ tmp0 = z3 + MULTIPLY(z2, FIX_2_562915447); /* (c6+c2)[16] = (c3+c1)[8] */ tmp1 = z4 + MULTIPLY(z1, FIX_0_899976223); /* (c6-c14)[16] = (c3-c7)[8] */ tmp2 = z3 - MULTIPLY(z1, FIX(0.601344887)); /* (c2-c10)[16] = (c1-c5)[8] */ tmp3 = z4 - MULTIPLY(z2, FIX(0.509795579)); /* (c10-c14)[16] = (c5-c7)[8] */ tmp20 = tmp10 + tmp0; tmp27 = tmp10 - tmp0; tmp21 = tmp12 + tmp1; tmp26 = tmp12 - tmp1; tmp22 = tmp13 + tmp2; tmp25 = tmp13 - tmp2; tmp23 = tmp11 + tmp3; tmp24 = tmp11 - tmp3; /* Odd part */ z1 = (JLONG)wsptr[1]; z2 = (JLONG)wsptr[3]; z3 = (JLONG)wsptr[5]; z4 = (JLONG)wsptr[7]; tmp11 = z1 + z3; tmp1 = MULTIPLY(z1 + z2, FIX(1.353318001)); /* c3 */ tmp2 = MULTIPLY(tmp11, FIX(1.247225013)); /* c5 */ tmp3 = MULTIPLY(z1 + z4, FIX(1.093201867)); /* c7 */ tmp10 = MULTIPLY(z1 - z4, FIX(0.897167586)); /* c9 */ tmp11 = MULTIPLY(tmp11, FIX(0.666655658)); /* c11 */ tmp12 = MULTIPLY(z1 - z2, FIX(0.410524528)); /* c13 */ tmp0 = tmp1 + tmp2 + tmp3 - MULTIPLY(z1, FIX(2.286341144)); /* c7+c5+c3-c1 */ tmp13 = tmp10 + tmp11 + tmp12 - MULTIPLY(z1, FIX(1.835730603)); /* c9+c11+c13-c15 */ z1 = MULTIPLY(z2 + z3, FIX(0.138617169)); /* c15 */ tmp1 += z1 + MULTIPLY(z2, FIX(0.071888074)); /* c9+c11-c3-c15 */ tmp2 += z1 - MULTIPLY(z3, FIX(1.125726048)); /* c5+c7+c15-c3 */ z1 = MULTIPLY(z3 - z2, FIX(1.407403738)); /* c1 */ tmp11 += z1 - MULTIPLY(z3, FIX(0.766367282)); /* c1+c11-c9-c13 */ tmp12 += z1 + MULTIPLY(z2, FIX(1.971951411)); /* c1+c5+c13-c7 */ z2 += z4; z1 = MULTIPLY(z2, -FIX(0.666655658)); /* -c11 */ tmp1 += z1; tmp3 += z1 + MULTIPLY(z4, FIX(1.065388962)); /* c3+c11+c15-c7 */ z2 = MULTIPLY(z2, -FIX(1.247225013)); /* -c5 */ tmp10 += z2 + MULTIPLY(z4, FIX(3.141271809)); /* c1+c5+c9-c13 */ tmp12 += z2; z2 = MULTIPLY(z3 + z4, -FIX(1.353318001)); /* -c3 */ tmp2 += z2; tmp3 += z2; z2 = MULTIPLY(z4 - z3, FIX(0.410524528)); /* c13 */ tmp10 += z2; tmp11 += z2; /* Final output stage */ outptr[0] = range_limit[(int)RIGHT_SHIFT(tmp20 + tmp0, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[15] = range_limit[(int)RIGHT_SHIFT(tmp20 - tmp0, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[1] = range_limit[(int)RIGHT_SHIFT(tmp21 + tmp1, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[14] = range_limit[(int)RIGHT_SHIFT(tmp21 - tmp1, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[2] = range_limit[(int)RIGHT_SHIFT(tmp22 + tmp2, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[13] = range_limit[(int)RIGHT_SHIFT(tmp22 - tmp2, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[3] = range_limit[(int)RIGHT_SHIFT(tmp23 + tmp3, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[12] = range_limit[(int)RIGHT_SHIFT(tmp23 - tmp3, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[4] = range_limit[(int)RIGHT_SHIFT(tmp24 + tmp10, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[11] = range_limit[(int)RIGHT_SHIFT(tmp24 - tmp10, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[5] = range_limit[(int)RIGHT_SHIFT(tmp25 + tmp11, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[10] = range_limit[(int)RIGHT_SHIFT(tmp25 - tmp11, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[6] = range_limit[(int)RIGHT_SHIFT(tmp26 + tmp12, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[9] = range_limit[(int)RIGHT_SHIFT(tmp26 - tmp12, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[7] = range_limit[(int)RIGHT_SHIFT(tmp27 + tmp13, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; outptr[8] = range_limit[(int)RIGHT_SHIFT(tmp27 - tmp13, CONST_BITS + PASS1_BITS + 3) & RANGE_MASK]; wsptr += 8; /* advance pointer to next row */ } } #endif /* IDCT_SCALING_SUPPORTED */ #endif /* DCT_ISLOW_SUPPORTED */ libjpeg-turbo-2.1.5/jidctred.c000066400000000000000000000343001436506551100162260ustar00rootroot00000000000000/* * jidctred.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1998, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2015, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains inverse-DCT routines that produce reduced-size output: * either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block. * * The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M) * algorithm used in jidctint.c. We simply replace each 8-to-8 1-D IDCT step * with an 8-to-4 step that produces the four averages of two adjacent outputs * (or an 8-to-2 step producing two averages of four outputs, for 2x2 output). * These steps were derived by computing the corresponding values at the end * of the normal LL&M code, then simplifying as much as possible. * * 1x1 is trivial: just take the DC coefficient divided by 8. * * See jidctint.c for additional comments. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jdct.h" /* Private declarations for DCT subsystem */ #ifdef IDCT_SCALING_SUPPORTED /* * This module is specialized to the case DCTSIZE = 8. */ #if DCTSIZE != 8 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ #endif /* Scaling is the same as in jidctint.c. */ #if BITS_IN_JSAMPLE == 8 #define CONST_BITS 13 #define PASS1_BITS 2 #else #define CONST_BITS 13 #define PASS1_BITS 1 /* lose a little precision to avoid overflow */ #endif /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus * causing a lot of useless floating-point operations at run time. * To get around this we use the following pre-calculated constants. * If you change CONST_BITS you may want to add appropriate values. * (With a reasonable C compiler, you can just rely on the FIX() macro...) */ #if CONST_BITS == 13 #define FIX_0_211164243 ((JLONG)1730) /* FIX(0.211164243) */ #define FIX_0_509795579 ((JLONG)4176) /* FIX(0.509795579) */ #define FIX_0_601344887 ((JLONG)4926) /* FIX(0.601344887) */ #define FIX_0_720959822 ((JLONG)5906) /* FIX(0.720959822) */ #define FIX_0_765366865 ((JLONG)6270) /* FIX(0.765366865) */ #define FIX_0_850430095 ((JLONG)6967) /* FIX(0.850430095) */ #define FIX_0_899976223 ((JLONG)7373) /* FIX(0.899976223) */ #define FIX_1_061594337 ((JLONG)8697) /* FIX(1.061594337) */ #define FIX_1_272758580 ((JLONG)10426) /* FIX(1.272758580) */ #define FIX_1_451774981 ((JLONG)11893) /* FIX(1.451774981) */ #define FIX_1_847759065 ((JLONG)15137) /* FIX(1.847759065) */ #define FIX_2_172734803 ((JLONG)17799) /* FIX(2.172734803) */ #define FIX_2_562915447 ((JLONG)20995) /* FIX(2.562915447) */ #define FIX_3_624509785 ((JLONG)29692) /* FIX(3.624509785) */ #else #define FIX_0_211164243 FIX(0.211164243) #define FIX_0_509795579 FIX(0.509795579) #define FIX_0_601344887 FIX(0.601344887) #define FIX_0_720959822 FIX(0.720959822) #define FIX_0_765366865 FIX(0.765366865) #define FIX_0_850430095 FIX(0.850430095) #define FIX_0_899976223 FIX(0.899976223) #define FIX_1_061594337 FIX(1.061594337) #define FIX_1_272758580 FIX(1.272758580) #define FIX_1_451774981 FIX(1.451774981) #define FIX_1_847759065 FIX(1.847759065) #define FIX_2_172734803 FIX(2.172734803) #define FIX_2_562915447 FIX(2.562915447) #define FIX_3_624509785 FIX(3.624509785) #endif /* Multiply a JLONG variable by a JLONG constant to yield a JLONG result. * For 8-bit samples with the recommended scaling, all the variable * and constant values involved are no more than 16 bits wide, so a * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. * For 12-bit samples, a full 32-bit multiplication will be needed. */ #if BITS_IN_JSAMPLE == 8 #define MULTIPLY(var, const) MULTIPLY16C16(var, const) #else #define MULTIPLY(var, const) ((var) * (const)) #endif /* Dequantize a coefficient by multiplying it by the multiplier-table * entry; produce an int result. In this module, both inputs and result * are 16 bits or less, so either int or short multiply will work. */ #define DEQUANTIZE(coef, quantval) (((ISLOW_MULT_TYPE)(coef)) * (quantval)) /* * Perform dequantization and inverse DCT on one block of coefficients, * producing a reduced-size 4x4 output block. */ GLOBAL(void) jpeg_idct_4x4(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { JLONG tmp0, tmp2, tmp10, tmp12; JLONG z1, z2, z3, z4; JCOEFPTR inptr; ISLOW_MULT_TYPE *quantptr; int *wsptr; JSAMPROW outptr; JSAMPLE *range_limit = IDCT_range_limit(cinfo); int ctr; int workspace[DCTSIZE * 4]; /* buffers data between passes */ SHIFT_TEMPS /* Pass 1: process columns from input, store into work array. */ inptr = coef_block; quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table; wsptr = workspace; for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) { /* Don't bother to process column 4, because second pass won't use it */ if (ctr == DCTSIZE - 4) continue; if (inptr[DCTSIZE * 1] == 0 && inptr[DCTSIZE * 2] == 0 && inptr[DCTSIZE * 3] == 0 && inptr[DCTSIZE * 5] == 0 && inptr[DCTSIZE * 6] == 0 && inptr[DCTSIZE * 7] == 0) { /* AC terms all zero; we need not examine term 4 for 4x4 output */ int dcval = LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]), PASS1_BITS); wsptr[DCTSIZE * 0] = dcval; wsptr[DCTSIZE * 1] = dcval; wsptr[DCTSIZE * 2] = dcval; wsptr[DCTSIZE * 3] = dcval; continue; } /* Even part */ tmp0 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]); tmp0 = LEFT_SHIFT(tmp0, CONST_BITS + 1); z2 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]); z3 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6]); tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, -FIX_0_765366865); tmp10 = tmp0 + tmp2; tmp12 = tmp0 - tmp2; /* Odd part */ z1 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]); z2 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]); z3 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]); z4 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]); tmp0 = MULTIPLY(z1, -FIX_0_211164243) + /* sqrt(2) * ( c3-c1) */ MULTIPLY(z2, FIX_1_451774981) + /* sqrt(2) * ( c3+c7) */ MULTIPLY(z3, -FIX_2_172734803) + /* sqrt(2) * (-c1-c5) */ MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * ( c5+c7) */ tmp2 = MULTIPLY(z1, -FIX_0_509795579) + /* sqrt(2) * (c7-c5) */ MULTIPLY(z2, -FIX_0_601344887) + /* sqrt(2) * (c5-c1) */ MULTIPLY(z3, FIX_0_899976223) + /* sqrt(2) * (c3-c7) */ MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */ /* Final output stage */ wsptr[DCTSIZE * 0] = (int)DESCALE(tmp10 + tmp2, CONST_BITS - PASS1_BITS + 1); wsptr[DCTSIZE * 3] = (int)DESCALE(tmp10 - tmp2, CONST_BITS - PASS1_BITS + 1); wsptr[DCTSIZE * 1] = (int)DESCALE(tmp12 + tmp0, CONST_BITS - PASS1_BITS + 1); wsptr[DCTSIZE * 2] = (int)DESCALE(tmp12 - tmp0, CONST_BITS - PASS1_BITS + 1); } /* Pass 2: process 4 rows from work array, store into output array. */ wsptr = workspace; for (ctr = 0; ctr < 4; ctr++) { outptr = output_buf[ctr] + output_col; /* It's not clear whether a zero row test is worthwhile here ... */ #ifndef NO_ZERO_ROW_TEST if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { /* AC terms all zero */ JSAMPLE dcval = range_limit[(int)DESCALE((JLONG)wsptr[0], PASS1_BITS + 3) & RANGE_MASK]; outptr[0] = dcval; outptr[1] = dcval; outptr[2] = dcval; outptr[3] = dcval; wsptr += DCTSIZE; /* advance pointer to next row */ continue; } #endif /* Even part */ tmp0 = LEFT_SHIFT((JLONG)wsptr[0], CONST_BITS + 1); tmp2 = MULTIPLY((JLONG)wsptr[2], FIX_1_847759065) + MULTIPLY((JLONG)wsptr[6], -FIX_0_765366865); tmp10 = tmp0 + tmp2; tmp12 = tmp0 - tmp2; /* Odd part */ z1 = (JLONG)wsptr[7]; z2 = (JLONG)wsptr[5]; z3 = (JLONG)wsptr[3]; z4 = (JLONG)wsptr[1]; tmp0 = MULTIPLY(z1, -FIX_0_211164243) + /* sqrt(2) * ( c3-c1) */ MULTIPLY(z2, FIX_1_451774981) + /* sqrt(2) * ( c3+c7) */ MULTIPLY(z3, -FIX_2_172734803) + /* sqrt(2) * (-c1-c5) */ MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * ( c5+c7) */ tmp2 = MULTIPLY(z1, -FIX_0_509795579) + /* sqrt(2) * (c7-c5) */ MULTIPLY(z2, -FIX_0_601344887) + /* sqrt(2) * (c5-c1) */ MULTIPLY(z3, FIX_0_899976223) + /* sqrt(2) * (c3-c7) */ MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */ /* Final output stage */ outptr[0] = range_limit[(int)DESCALE(tmp10 + tmp2, CONST_BITS + PASS1_BITS + 3 + 1) & RANGE_MASK]; outptr[3] = range_limit[(int)DESCALE(tmp10 - tmp2, CONST_BITS + PASS1_BITS + 3 + 1) & RANGE_MASK]; outptr[1] = range_limit[(int)DESCALE(tmp12 + tmp0, CONST_BITS + PASS1_BITS + 3 + 1) & RANGE_MASK]; outptr[2] = range_limit[(int)DESCALE(tmp12 - tmp0, CONST_BITS + PASS1_BITS + 3 + 1) & RANGE_MASK]; wsptr += DCTSIZE; /* advance pointer to next row */ } } /* * Perform dequantization and inverse DCT on one block of coefficients, * producing a reduced-size 2x2 output block. */ GLOBAL(void) jpeg_idct_2x2(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { JLONG tmp0, tmp10, z1; JCOEFPTR inptr; ISLOW_MULT_TYPE *quantptr; int *wsptr; JSAMPROW outptr; JSAMPLE *range_limit = IDCT_range_limit(cinfo); int ctr; int workspace[DCTSIZE * 2]; /* buffers data between passes */ SHIFT_TEMPS /* Pass 1: process columns from input, store into work array. */ inptr = coef_block; quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table; wsptr = workspace; for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) { /* Don't bother to process columns 2,4,6 */ if (ctr == DCTSIZE - 2 || ctr == DCTSIZE - 4 || ctr == DCTSIZE - 6) continue; if (inptr[DCTSIZE * 1] == 0 && inptr[DCTSIZE * 3] == 0 && inptr[DCTSIZE * 5] == 0 && inptr[DCTSIZE * 7] == 0) { /* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */ int dcval = LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]), PASS1_BITS); wsptr[DCTSIZE * 0] = dcval; wsptr[DCTSIZE * 1] = dcval; continue; } /* Even part */ z1 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]); tmp10 = LEFT_SHIFT(z1, CONST_BITS + 2); /* Odd part */ z1 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]); tmp0 = MULTIPLY(z1, -FIX_0_720959822); /* sqrt(2) * ( c7-c5+c3-c1) */ z1 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]); tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */ z1 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]); tmp0 += MULTIPLY(z1, -FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */ z1 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]); tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * ( c1+c3+c5+c7) */ /* Final output stage */ wsptr[DCTSIZE * 0] = (int)DESCALE(tmp10 + tmp0, CONST_BITS - PASS1_BITS + 2); wsptr[DCTSIZE * 1] = (int)DESCALE(tmp10 - tmp0, CONST_BITS - PASS1_BITS + 2); } /* Pass 2: process 2 rows from work array, store into output array. */ wsptr = workspace; for (ctr = 0; ctr < 2; ctr++) { outptr = output_buf[ctr] + output_col; /* It's not clear whether a zero row test is worthwhile here ... */ #ifndef NO_ZERO_ROW_TEST if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) { /* AC terms all zero */ JSAMPLE dcval = range_limit[(int)DESCALE((JLONG)wsptr[0], PASS1_BITS + 3) & RANGE_MASK]; outptr[0] = dcval; outptr[1] = dcval; wsptr += DCTSIZE; /* advance pointer to next row */ continue; } #endif /* Even part */ tmp10 = LEFT_SHIFT((JLONG)wsptr[0], CONST_BITS + 2); /* Odd part */ tmp0 = MULTIPLY((JLONG)wsptr[7], -FIX_0_720959822) + /* sqrt(2) * ( c7-c5+c3-c1) */ MULTIPLY((JLONG)wsptr[5], FIX_0_850430095) + /* sqrt(2) * (-c1+c3+c5+c7) */ MULTIPLY((JLONG)wsptr[3], -FIX_1_272758580) + /* sqrt(2) * (-c1+c3-c5-c7) */ MULTIPLY((JLONG)wsptr[1], FIX_3_624509785); /* sqrt(2) * ( c1+c3+c5+c7) */ /* Final output stage */ outptr[0] = range_limit[(int)DESCALE(tmp10 + tmp0, CONST_BITS + PASS1_BITS + 3 + 2) & RANGE_MASK]; outptr[1] = range_limit[(int)DESCALE(tmp10 - tmp0, CONST_BITS + PASS1_BITS + 3 + 2) & RANGE_MASK]; wsptr += DCTSIZE; /* advance pointer to next row */ } } /* * Perform dequantization and inverse DCT on one block of coefficients, * producing a reduced-size 1x1 output block. */ GLOBAL(void) jpeg_idct_1x1(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { int dcval; ISLOW_MULT_TYPE *quantptr; JSAMPLE *range_limit = IDCT_range_limit(cinfo); SHIFT_TEMPS /* We hardly need an inverse DCT routine for this: just take the * average pixel value, which is one-eighth of the DC coefficient. */ quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table; dcval = DEQUANTIZE(coef_block[0], quantptr[0]); dcval = (int)DESCALE((JLONG)dcval, 3); output_buf[0][output_col] = range_limit[dcval & RANGE_MASK]; } #endif /* IDCT_SCALING_SUPPORTED */ libjpeg-turbo-2.1.5/jinclude.h000066400000000000000000000061331436506551100162430ustar00rootroot00000000000000/* * jinclude.h * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1994, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2022, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file exists to provide a single place to fix any problems with * including the wrong system include files. (Common problems are taken * care of by the standard jconfig symbols, but on really weird systems * you may have to edit this file.) * * NOTE: this file is NOT intended to be included by applications using the * JPEG library. Most applications need only include jpeglib.h. */ #ifndef __JINCLUDE_H__ #define __JINCLUDE_H__ /* Include auto-config file to find out which system include files we need. */ #include "jconfig.h" /* auto configuration options */ #include "jconfigint.h" #define JCONFIG_INCLUDED /* so that jpeglib.h doesn't do it again */ /* * Note that the core JPEG library does not require ; * only the default error handler and data source/destination modules do. * But we must pull it in because of the references to FILE in jpeglib.h. * You can remove those references if you want to compile without . */ #include #include #include #include /* * These macros/inline functions facilitate using Microsoft's "safe string" * functions with Visual Studio builds without the need to scatter #ifdefs * throughout the code base. */ #ifdef _MSC_VER #define SNPRINTF(str, n, format, ...) \ _snprintf_s(str, n, _TRUNCATE, format, ##__VA_ARGS__) #else #define SNPRINTF snprintf #endif #ifndef NO_GETENV #ifdef _MSC_VER static INLINE int GETENV_S(char *buffer, size_t buffer_size, const char *name) { size_t required_size; return (int)getenv_s(&required_size, buffer, buffer_size, name); } #else /* _MSC_VER */ #include /* This provides a similar interface to the Microsoft/C11 getenv_s() function, * but other than parameter validation, it has no advantages over getenv(). */ static INLINE int GETENV_S(char *buffer, size_t buffer_size, const char *name) { char *env; if (!buffer) { if (buffer_size == 0) return 0; else return (errno = EINVAL); } if (buffer_size == 0) return (errno = EINVAL); if (!name) { *buffer = 0; return 0; } env = getenv(name); if (!env) { *buffer = 0; return 0; } if (strlen(env) + 1 > buffer_size) { *buffer = 0; return ERANGE; } strncpy(buffer, env, buffer_size); return 0; } #endif /* _MSC_VER */ #endif /* NO_GETENV */ #ifndef NO_PUTENV #ifdef _WIN32 #define PUTENV_S(name, value) _putenv_s(name, value) #else /* This provides a similar interface to the Microsoft _putenv_s() function, but * other than parameter validation, it has no advantages over setenv(). */ static INLINE int PUTENV_S(const char *name, const char *value) { if (!name || !value) return (errno = EINVAL); setenv(name, value, 1); return errno; } #endif /* _WIN32 */ #endif /* NO_PUTENV */ #endif /* JINCLUDE_H */ libjpeg-turbo-2.1.5/jmemmgr.c000066400000000000000000001300061436506551100160740ustar00rootroot00000000000000/* * jmemmgr.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1997, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2016, 2021-2022, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains the JPEG system-independent memory management * routines. This code is usable across a wide variety of machines; most * of the system dependencies have been isolated in a separate file. * The major functions provided here are: * * pool-based allocation and freeing of memory; * * policy decisions about how to divide available memory among the * virtual arrays; * * control logic for swapping virtual arrays between main memory and * backing storage. * The separate system-dependent file provides the actual backing-storage * access code, and it contains the policy decision about how much total * main memory to use. * This file is system-dependent in the sense that some of its functions * are unnecessary in some systems. For example, if there is enough virtual * memory so that backing storage will never be used, much of the virtual * array control logic could be removed. (Of course, if you have that much * memory then you shouldn't care about a little bit of unused code...) */ #define JPEG_INTERNALS #define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */ #include "jinclude.h" #include "jpeglib.h" #include "jmemsys.h" /* import the system-dependent declarations */ #if !defined(_MSC_VER) || _MSC_VER > 1600 #include #endif #include LOCAL(size_t) round_up_pow2(size_t a, size_t b) /* a rounded up to the next multiple of b, i.e. ceil(a/b)*b */ /* Assumes a >= 0, b > 0, and b is a power of 2 */ { return ((a + b - 1) & (~(b - 1))); } /* * Some important notes: * The allocation routines provided here must never return NULL. * They should exit to error_exit if unsuccessful. * * It's not a good idea to try to merge the sarray and barray routines, * even though they are textually almost the same, because samples are * usually stored as bytes while coefficients are shorts or ints. Thus, * in machines where byte pointers have a different representation from * word pointers, the resulting machine code could not be the same. */ /* * Many machines require storage alignment: longs must start on 4-byte * boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc() * always returns pointers that are multiples of the worst-case alignment * requirement, and we had better do so too. * There isn't any really portable way to determine the worst-case alignment * requirement. This module assumes that the alignment requirement is * multiples of ALIGN_SIZE. * By default, we define ALIGN_SIZE as the maximum of sizeof(double) and * sizeof(void *). This is necessary on some workstations (where doubles * really do need 8-byte alignment) and will work fine on nearly everything. * We use the maximum of sizeof(double) and sizeof(void *) since sizeof(double) * may be insufficient, for example, on CHERI-enabled platforms with 16-byte * pointers and a 16-byte alignment requirement. If your machine has lesser * alignment needs, you can save a few bytes by making ALIGN_SIZE smaller. * The only place I know of where this will NOT work is certain Macintosh * 680x0 compilers that define double as a 10-byte IEEE extended float. * Doing 10-byte alignment is counterproductive because longwords won't be * aligned well. Put "#define ALIGN_SIZE 4" in jconfig.h if you have * such a compiler. */ #ifndef ALIGN_SIZE /* so can override from jconfig.h */ #ifndef WITH_SIMD #define ALIGN_SIZE MAX(sizeof(void *), sizeof(double)) #else #define ALIGN_SIZE 32 /* Most of the SIMD instructions we support require 16-byte (128-bit) alignment, but AVX2 requires 32-byte alignment. */ #endif #endif /* * We allocate objects from "pools", where each pool is gotten with a single * request to jpeg_get_small() or jpeg_get_large(). There is no per-object * overhead within a pool, except for alignment padding. Each pool has a * header with a link to the next pool of the same class. * Small and large pool headers are identical. */ typedef struct small_pool_struct *small_pool_ptr; typedef struct small_pool_struct { small_pool_ptr next; /* next in list of pools */ size_t bytes_used; /* how many bytes already used within pool */ size_t bytes_left; /* bytes still available in this pool */ } small_pool_hdr; typedef struct large_pool_struct *large_pool_ptr; typedef struct large_pool_struct { large_pool_ptr next; /* next in list of pools */ size_t bytes_used; /* how many bytes already used within pool */ size_t bytes_left; /* bytes still available in this pool */ } large_pool_hdr; /* * Here is the full definition of a memory manager object. */ typedef struct { struct jpeg_memory_mgr pub; /* public fields */ /* Each pool identifier (lifetime class) names a linked list of pools. */ small_pool_ptr small_list[JPOOL_NUMPOOLS]; large_pool_ptr large_list[JPOOL_NUMPOOLS]; /* Since we only have one lifetime class of virtual arrays, only one * linked list is necessary (for each datatype). Note that the virtual * array control blocks being linked together are actually stored somewhere * in the small-pool list. */ jvirt_sarray_ptr virt_sarray_list; jvirt_barray_ptr virt_barray_list; /* This counts total space obtained from jpeg_get_small/large */ size_t total_space_allocated; /* alloc_sarray and alloc_barray set this value for use by virtual * array routines. */ JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */ } my_memory_mgr; typedef my_memory_mgr *my_mem_ptr; /* * The control blocks for virtual arrays. * Note that these blocks are allocated in the "small" pool area. * System-dependent info for the associated backing store (if any) is hidden * inside the backing_store_info struct. */ struct jvirt_sarray_control { JSAMPARRAY mem_buffer; /* => the in-memory buffer */ JDIMENSION rows_in_array; /* total virtual array height */ JDIMENSION samplesperrow; /* width of array (and of memory buffer) */ JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */ JDIMENSION rows_in_mem; /* height of memory buffer */ JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ JDIMENSION cur_start_row; /* first logical row # in the buffer */ JDIMENSION first_undef_row; /* row # of first uninitialized row */ boolean pre_zero; /* pre-zero mode requested? */ boolean dirty; /* do current buffer contents need written? */ boolean b_s_open; /* is backing-store data valid? */ jvirt_sarray_ptr next; /* link to next virtual sarray control block */ backing_store_info b_s_info; /* System-dependent control info */ }; struct jvirt_barray_control { JBLOCKARRAY mem_buffer; /* => the in-memory buffer */ JDIMENSION rows_in_array; /* total virtual array height */ JDIMENSION blocksperrow; /* width of array (and of memory buffer) */ JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */ JDIMENSION rows_in_mem; /* height of memory buffer */ JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ JDIMENSION cur_start_row; /* first logical row # in the buffer */ JDIMENSION first_undef_row; /* row # of first uninitialized row */ boolean pre_zero; /* pre-zero mode requested? */ boolean dirty; /* do current buffer contents need written? */ boolean b_s_open; /* is backing-store data valid? */ jvirt_barray_ptr next; /* link to next virtual barray control block */ backing_store_info b_s_info; /* System-dependent control info */ }; #ifdef MEM_STATS /* optional extra stuff for statistics */ LOCAL(void) print_mem_stats(j_common_ptr cinfo, int pool_id) { my_mem_ptr mem = (my_mem_ptr)cinfo->mem; small_pool_ptr shdr_ptr; large_pool_ptr lhdr_ptr; /* Since this is only a debugging stub, we can cheat a little by using * fprintf directly rather than going through the trace message code. * This is helpful because message parm array can't handle longs. */ fprintf(stderr, "Freeing pool %d, total space = %ld\n", pool_id, mem->total_space_allocated); for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL; lhdr_ptr = lhdr_ptr->next) { fprintf(stderr, " Large chunk used %ld\n", (long)lhdr_ptr->bytes_used); } for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL; shdr_ptr = shdr_ptr->next) { fprintf(stderr, " Small chunk used %ld free %ld\n", (long)shdr_ptr->bytes_used, (long)shdr_ptr->bytes_left); } } #endif /* MEM_STATS */ LOCAL(void) out_of_memory(j_common_ptr cinfo, int which) /* Report an out-of-memory error and stop execution */ /* If we compiled MEM_STATS support, report alloc requests before dying */ { #ifdef MEM_STATS cinfo->err->trace_level = 2; /* force self_destruct to report stats */ #endif ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which); } /* * Allocation of "small" objects. * * For these, we use pooled storage. When a new pool must be created, * we try to get enough space for the current request plus a "slop" factor, * where the slop will be the amount of leftover space in the new pool. * The speed vs. space tradeoff is largely determined by the slop values. * A different slop value is provided for each pool class (lifetime), * and we also distinguish the first pool of a class from later ones. * NOTE: the values given work fairly well on both 16- and 32-bit-int * machines, but may be too small if longs are 64 bits or more. * * Since we do not know what alignment malloc() gives us, we have to * allocate ALIGN_SIZE-1 extra space per pool to have room for alignment * adjustment. */ static const size_t first_pool_slop[JPOOL_NUMPOOLS] = { 1600, /* first PERMANENT pool */ 16000 /* first IMAGE pool */ }; static const size_t extra_pool_slop[JPOOL_NUMPOOLS] = { 0, /* additional PERMANENT pools */ 5000 /* additional IMAGE pools */ }; #define MIN_SLOP 50 /* greater than 0 to avoid futile looping */ METHODDEF(void *) alloc_small(j_common_ptr cinfo, int pool_id, size_t sizeofobject) /* Allocate a "small" object */ { my_mem_ptr mem = (my_mem_ptr)cinfo->mem; small_pool_ptr hdr_ptr, prev_hdr_ptr; char *data_ptr; size_t min_request, slop; /* * Round up the requested size to a multiple of ALIGN_SIZE in order * to assure alignment for the next object allocated in the same pool * and so that algorithms can straddle outside the proper area up * to the next alignment. */ if (sizeofobject > MAX_ALLOC_CHUNK) { /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject is close to SIZE_MAX. */ out_of_memory(cinfo, 7); } sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE); /* Check for unsatisfiable request (do now to ensure no overflow below) */ if ((sizeof(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) > MAX_ALLOC_CHUNK) out_of_memory(cinfo, 1); /* request exceeds malloc's ability */ /* See if space is available in any existing pool */ if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ prev_hdr_ptr = NULL; hdr_ptr = mem->small_list[pool_id]; while (hdr_ptr != NULL) { if (hdr_ptr->bytes_left >= sizeofobject) break; /* found pool with enough space */ prev_hdr_ptr = hdr_ptr; hdr_ptr = hdr_ptr->next; } /* Time to make a new pool? */ if (hdr_ptr == NULL) { /* min_request is what we need now, slop is what will be leftover */ min_request = sizeof(small_pool_hdr) + sizeofobject + ALIGN_SIZE - 1; if (prev_hdr_ptr == NULL) /* first pool in class? */ slop = first_pool_slop[pool_id]; else slop = extra_pool_slop[pool_id]; /* Don't ask for more than MAX_ALLOC_CHUNK */ if (slop > (size_t)(MAX_ALLOC_CHUNK - min_request)) slop = (size_t)(MAX_ALLOC_CHUNK - min_request); /* Try to get space, if fail reduce slop and try again */ for (;;) { hdr_ptr = (small_pool_ptr)jpeg_get_small(cinfo, min_request + slop); if (hdr_ptr != NULL) break; slop /= 2; if (slop < MIN_SLOP) /* give up when it gets real small */ out_of_memory(cinfo, 2); /* jpeg_get_small failed */ } mem->total_space_allocated += min_request + slop; /* Success, initialize the new pool header and add to end of list */ hdr_ptr->next = NULL; hdr_ptr->bytes_used = 0; hdr_ptr->bytes_left = sizeofobject + slop; if (prev_hdr_ptr == NULL) /* first pool in class? */ mem->small_list[pool_id] = hdr_ptr; else prev_hdr_ptr->next = hdr_ptr; } /* OK, allocate the object from the current pool */ data_ptr = (char *)hdr_ptr; /* point to first data byte in pool... */ data_ptr += sizeof(small_pool_hdr); /* ...by skipping the header... */ if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */ data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE; data_ptr += hdr_ptr->bytes_used; /* point to place for object */ hdr_ptr->bytes_used += sizeofobject; hdr_ptr->bytes_left -= sizeofobject; return (void *)data_ptr; } /* * Allocation of "large" objects. * * The external semantics of these are the same as "small" objects. However, * the pool management heuristics are quite different. We assume that each * request is large enough that it may as well be passed directly to * jpeg_get_large; the pool management just links everything together * so that we can free it all on demand. * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY * structures. The routines that create these structures (see below) * deliberately bunch rows together to ensure a large request size. */ METHODDEF(void *) alloc_large(j_common_ptr cinfo, int pool_id, size_t sizeofobject) /* Allocate a "large" object */ { my_mem_ptr mem = (my_mem_ptr)cinfo->mem; large_pool_ptr hdr_ptr; char *data_ptr; /* * Round up the requested size to a multiple of ALIGN_SIZE so that * algorithms can straddle outside the proper area up to the next * alignment. */ if (sizeofobject > MAX_ALLOC_CHUNK) { /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject is close to SIZE_MAX. */ out_of_memory(cinfo, 8); } sizeofobject = round_up_pow2(sizeofobject, ALIGN_SIZE); /* Check for unsatisfiable request (do now to ensure no overflow below) */ if ((sizeof(large_pool_hdr) + sizeofobject + ALIGN_SIZE - 1) > MAX_ALLOC_CHUNK) out_of_memory(cinfo, 3); /* request exceeds malloc's ability */ /* Always make a new pool */ if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ hdr_ptr = (large_pool_ptr)jpeg_get_large(cinfo, sizeofobject + sizeof(large_pool_hdr) + ALIGN_SIZE - 1); if (hdr_ptr == NULL) out_of_memory(cinfo, 4); /* jpeg_get_large failed */ mem->total_space_allocated += sizeofobject + sizeof(large_pool_hdr) + ALIGN_SIZE - 1; /* Success, initialize the new pool header and add to list */ hdr_ptr->next = mem->large_list[pool_id]; /* We maintain space counts in each pool header for statistical purposes, * even though they are not needed for allocation. */ hdr_ptr->bytes_used = sizeofobject; hdr_ptr->bytes_left = 0; mem->large_list[pool_id] = hdr_ptr; data_ptr = (char *)hdr_ptr; /* point to first data byte in pool... */ data_ptr += sizeof(small_pool_hdr); /* ...by skipping the header... */ if ((size_t)data_ptr % ALIGN_SIZE) /* ...and adjust for alignment */ data_ptr += ALIGN_SIZE - (size_t)data_ptr % ALIGN_SIZE; return (void *)data_ptr; } /* * Creation of 2-D sample arrays. * * To minimize allocation overhead and to allow I/O of large contiguous * blocks, we allocate the sample rows in groups of as many rows as possible * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request. * NB: the virtual array control routines, later in this file, know about * this chunking of rows. The rowsperchunk value is left in the mem manager * object so that it can be saved away if this sarray is the workspace for * a virtual array. * * Since we are often upsampling with a factor 2, we align the size (not * the start) to 2 * ALIGN_SIZE so that the upsampling routines don't have * to be as careful about size. */ METHODDEF(JSAMPARRAY) alloc_sarray(j_common_ptr cinfo, int pool_id, JDIMENSION samplesperrow, JDIMENSION numrows) /* Allocate a 2-D sample array */ { my_mem_ptr mem = (my_mem_ptr)cinfo->mem; JSAMPARRAY result; JSAMPROW workspace; JDIMENSION rowsperchunk, currow, i; long ltemp; /* Make sure each row is properly aligned */ if ((ALIGN_SIZE % sizeof(JSAMPLE)) != 0) out_of_memory(cinfo, 5); /* safety check */ if (samplesperrow > MAX_ALLOC_CHUNK) { /* This prevents overflow/wrap-around in round_up_pow2() if sizeofobject is close to SIZE_MAX. */ out_of_memory(cinfo, 9); } samplesperrow = (JDIMENSION)round_up_pow2(samplesperrow, (2 * ALIGN_SIZE) / sizeof(JSAMPLE)); /* Calculate max # of rows allowed in one allocation chunk */ ltemp = (MAX_ALLOC_CHUNK - sizeof(large_pool_hdr)) / ((long)samplesperrow * sizeof(JSAMPLE)); if (ltemp <= 0) ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); if (ltemp < (long)numrows) rowsperchunk = (JDIMENSION)ltemp; else rowsperchunk = numrows; mem->last_rowsperchunk = rowsperchunk; /* Get space for row pointers (small object) */ result = (JSAMPARRAY)alloc_small(cinfo, pool_id, (size_t)(numrows * sizeof(JSAMPROW))); /* Get the rows themselves (large objects) */ currow = 0; while (currow < numrows) { rowsperchunk = MIN(rowsperchunk, numrows - currow); workspace = (JSAMPROW)alloc_large(cinfo, pool_id, (size_t)((size_t)rowsperchunk * (size_t)samplesperrow * sizeof(JSAMPLE))); for (i = rowsperchunk; i > 0; i--) { result[currow++] = workspace; workspace += samplesperrow; } } return result; } /* * Creation of 2-D coefficient-block arrays. * This is essentially the same as the code for sample arrays, above. */ METHODDEF(JBLOCKARRAY) alloc_barray(j_common_ptr cinfo, int pool_id, JDIMENSION blocksperrow, JDIMENSION numrows) /* Allocate a 2-D coefficient-block array */ { my_mem_ptr mem = (my_mem_ptr)cinfo->mem; JBLOCKARRAY result; JBLOCKROW workspace; JDIMENSION rowsperchunk, currow, i; long ltemp; /* Make sure each row is properly aligned */ if ((sizeof(JBLOCK) % ALIGN_SIZE) != 0) out_of_memory(cinfo, 6); /* safety check */ /* Calculate max # of rows allowed in one allocation chunk */ ltemp = (MAX_ALLOC_CHUNK - sizeof(large_pool_hdr)) / ((long)blocksperrow * sizeof(JBLOCK)); if (ltemp <= 0) ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); if (ltemp < (long)numrows) rowsperchunk = (JDIMENSION)ltemp; else rowsperchunk = numrows; mem->last_rowsperchunk = rowsperchunk; /* Get space for row pointers (small object) */ result = (JBLOCKARRAY)alloc_small(cinfo, pool_id, (size_t)(numrows * sizeof(JBLOCKROW))); /* Get the rows themselves (large objects) */ currow = 0; while (currow < numrows) { rowsperchunk = MIN(rowsperchunk, numrows - currow); workspace = (JBLOCKROW)alloc_large(cinfo, pool_id, (size_t)((size_t)rowsperchunk * (size_t)blocksperrow * sizeof(JBLOCK))); for (i = rowsperchunk; i > 0; i--) { result[currow++] = workspace; workspace += blocksperrow; } } return result; } /* * About virtual array management: * * The above "normal" array routines are only used to allocate strip buffers * (as wide as the image, but just a few rows high). Full-image-sized buffers * are handled as "virtual" arrays. The array is still accessed a strip at a * time, but the memory manager must save the whole array for repeated * accesses. The intended implementation is that there is a strip buffer in * memory (as high as is possible given the desired memory limit), plus a * backing file that holds the rest of the array. * * The request_virt_array routines are told the total size of the image and * the maximum number of rows that will be accessed at once. The in-memory * buffer must be at least as large as the maxaccess value. * * The request routines create control blocks but not the in-memory buffers. * That is postponed until realize_virt_arrays is called. At that time the * total amount of space needed is known (approximately, anyway), so free * memory can be divided up fairly. * * The access_virt_array routines are responsible for making a specific strip * area accessible (after reading or writing the backing file, if necessary). * Note that the access routines are told whether the caller intends to modify * the accessed strip; during a read-only pass this saves having to rewrite * data to disk. The access routines are also responsible for pre-zeroing * any newly accessed rows, if pre-zeroing was requested. * * In current usage, the access requests are usually for nonoverlapping * strips; that is, successive access start_row numbers differ by exactly * num_rows = maxaccess. This means we can get good performance with simple * buffer dump/reload logic, by making the in-memory buffer be a multiple * of the access height; then there will never be accesses across bufferload * boundaries. The code will still work with overlapping access requests, * but it doesn't handle bufferload overlaps very efficiently. */ METHODDEF(jvirt_sarray_ptr) request_virt_sarray(j_common_ptr cinfo, int pool_id, boolean pre_zero, JDIMENSION samplesperrow, JDIMENSION numrows, JDIMENSION maxaccess) /* Request a virtual 2-D sample array */ { my_mem_ptr mem = (my_mem_ptr)cinfo->mem; jvirt_sarray_ptr result; /* Only IMAGE-lifetime virtual arrays are currently supported */ if (pool_id != JPOOL_IMAGE) ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ /* get control block */ result = (jvirt_sarray_ptr)alloc_small(cinfo, pool_id, sizeof(struct jvirt_sarray_control)); result->mem_buffer = NULL; /* marks array not yet realized */ result->rows_in_array = numrows; result->samplesperrow = samplesperrow; result->maxaccess = maxaccess; result->pre_zero = pre_zero; result->b_s_open = FALSE; /* no associated backing-store object */ result->next = mem->virt_sarray_list; /* add to list of virtual arrays */ mem->virt_sarray_list = result; return result; } METHODDEF(jvirt_barray_ptr) request_virt_barray(j_common_ptr cinfo, int pool_id, boolean pre_zero, JDIMENSION blocksperrow, JDIMENSION numrows, JDIMENSION maxaccess) /* Request a virtual 2-D coefficient-block array */ { my_mem_ptr mem = (my_mem_ptr)cinfo->mem; jvirt_barray_ptr result; /* Only IMAGE-lifetime virtual arrays are currently supported */ if (pool_id != JPOOL_IMAGE) ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ /* get control block */ result = (jvirt_barray_ptr)alloc_small(cinfo, pool_id, sizeof(struct jvirt_barray_control)); result->mem_buffer = NULL; /* marks array not yet realized */ result->rows_in_array = numrows; result->blocksperrow = blocksperrow; result->maxaccess = maxaccess; result->pre_zero = pre_zero; result->b_s_open = FALSE; /* no associated backing-store object */ result->next = mem->virt_barray_list; /* add to list of virtual arrays */ mem->virt_barray_list = result; return result; } METHODDEF(void) realize_virt_arrays(j_common_ptr cinfo) /* Allocate the in-memory buffers for any unrealized virtual arrays */ { my_mem_ptr mem = (my_mem_ptr)cinfo->mem; size_t space_per_minheight, maximum_space, avail_mem; size_t minheights, max_minheights; jvirt_sarray_ptr sptr; jvirt_barray_ptr bptr; /* Compute the minimum space needed (maxaccess rows in each buffer) * and the maximum space needed (full image height in each buffer). * These may be of use to the system-dependent jpeg_mem_available routine. */ space_per_minheight = 0; maximum_space = 0; for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { if (sptr->mem_buffer == NULL) { /* if not realized yet */ size_t new_space = (long)sptr->rows_in_array * (long)sptr->samplesperrow * sizeof(JSAMPLE); space_per_minheight += (long)sptr->maxaccess * (long)sptr->samplesperrow * sizeof(JSAMPLE); if (SIZE_MAX - maximum_space < new_space) out_of_memory(cinfo, 10); maximum_space += new_space; } } for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { if (bptr->mem_buffer == NULL) { /* if not realized yet */ size_t new_space = (long)bptr->rows_in_array * (long)bptr->blocksperrow * sizeof(JBLOCK); space_per_minheight += (long)bptr->maxaccess * (long)bptr->blocksperrow * sizeof(JBLOCK); if (SIZE_MAX - maximum_space < new_space) out_of_memory(cinfo, 11); maximum_space += new_space; } } if (space_per_minheight <= 0) return; /* no unrealized arrays, no work */ /* Determine amount of memory to actually use; this is system-dependent. */ avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space, mem->total_space_allocated); /* If the maximum space needed is available, make all the buffers full * height; otherwise parcel it out with the same number of minheights * in each buffer. */ if (avail_mem >= maximum_space) max_minheights = 1000000000L; else { max_minheights = avail_mem / space_per_minheight; /* If there doesn't seem to be enough space, try to get the minimum * anyway. This allows a "stub" implementation of jpeg_mem_available(). */ if (max_minheights <= 0) max_minheights = 1; } /* Allocate the in-memory buffers and initialize backing store as needed. */ for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { if (sptr->mem_buffer == NULL) { /* if not realized yet */ minheights = ((long)sptr->rows_in_array - 1L) / sptr->maxaccess + 1L; if (minheights <= max_minheights) { /* This buffer fits in memory */ sptr->rows_in_mem = sptr->rows_in_array; } else { /* It doesn't fit in memory, create backing store. */ sptr->rows_in_mem = (JDIMENSION)(max_minheights * sptr->maxaccess); jpeg_open_backing_store(cinfo, &sptr->b_s_info, (long)sptr->rows_in_array * (long)sptr->samplesperrow * (long)sizeof(JSAMPLE)); sptr->b_s_open = TRUE; } sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE, sptr->samplesperrow, sptr->rows_in_mem); sptr->rowsperchunk = mem->last_rowsperchunk; sptr->cur_start_row = 0; sptr->first_undef_row = 0; sptr->dirty = FALSE; } } for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { if (bptr->mem_buffer == NULL) { /* if not realized yet */ minheights = ((long)bptr->rows_in_array - 1L) / bptr->maxaccess + 1L; if (minheights <= max_minheights) { /* This buffer fits in memory */ bptr->rows_in_mem = bptr->rows_in_array; } else { /* It doesn't fit in memory, create backing store. */ bptr->rows_in_mem = (JDIMENSION)(max_minheights * bptr->maxaccess); jpeg_open_backing_store(cinfo, &bptr->b_s_info, (long)bptr->rows_in_array * (long)bptr->blocksperrow * (long)sizeof(JBLOCK)); bptr->b_s_open = TRUE; } bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE, bptr->blocksperrow, bptr->rows_in_mem); bptr->rowsperchunk = mem->last_rowsperchunk; bptr->cur_start_row = 0; bptr->first_undef_row = 0; bptr->dirty = FALSE; } } } LOCAL(void) do_sarray_io(j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing) /* Do backing store read or write of a virtual sample array */ { long bytesperrow, file_offset, byte_count, rows, thisrow, i; bytesperrow = (long)ptr->samplesperrow * sizeof(JSAMPLE); file_offset = ptr->cur_start_row * bytesperrow; /* Loop to read or write each allocation chunk in mem_buffer */ for (i = 0; i < (long)ptr->rows_in_mem; i += ptr->rowsperchunk) { /* One chunk, but check for short chunk at end of buffer */ rows = MIN((long)ptr->rowsperchunk, (long)ptr->rows_in_mem - i); /* Transfer no more than is currently defined */ thisrow = (long)ptr->cur_start_row + i; rows = MIN(rows, (long)ptr->first_undef_row - thisrow); /* Transfer no more than fits in file */ rows = MIN(rows, (long)ptr->rows_in_array - thisrow); if (rows <= 0) /* this chunk might be past end of file! */ break; byte_count = rows * bytesperrow; if (writing) (*ptr->b_s_info.write_backing_store) (cinfo, &ptr->b_s_info, (void *)ptr->mem_buffer[i], file_offset, byte_count); else (*ptr->b_s_info.read_backing_store) (cinfo, &ptr->b_s_info, (void *)ptr->mem_buffer[i], file_offset, byte_count); file_offset += byte_count; } } LOCAL(void) do_barray_io(j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing) /* Do backing store read or write of a virtual coefficient-block array */ { long bytesperrow, file_offset, byte_count, rows, thisrow, i; bytesperrow = (long)ptr->blocksperrow * sizeof(JBLOCK); file_offset = ptr->cur_start_row * bytesperrow; /* Loop to read or write each allocation chunk in mem_buffer */ for (i = 0; i < (long)ptr->rows_in_mem; i += ptr->rowsperchunk) { /* One chunk, but check for short chunk at end of buffer */ rows = MIN((long)ptr->rowsperchunk, (long)ptr->rows_in_mem - i); /* Transfer no more than is currently defined */ thisrow = (long)ptr->cur_start_row + i; rows = MIN(rows, (long)ptr->first_undef_row - thisrow); /* Transfer no more than fits in file */ rows = MIN(rows, (long)ptr->rows_in_array - thisrow); if (rows <= 0) /* this chunk might be past end of file! */ break; byte_count = rows * bytesperrow; if (writing) (*ptr->b_s_info.write_backing_store) (cinfo, &ptr->b_s_info, (void *)ptr->mem_buffer[i], file_offset, byte_count); else (*ptr->b_s_info.read_backing_store) (cinfo, &ptr->b_s_info, (void *)ptr->mem_buffer[i], file_offset, byte_count); file_offset += byte_count; } } METHODDEF(JSAMPARRAY) access_virt_sarray(j_common_ptr cinfo, jvirt_sarray_ptr ptr, JDIMENSION start_row, JDIMENSION num_rows, boolean writable) /* Access the part of a virtual sample array starting at start_row */ /* and extending for num_rows rows. writable is true if */ /* caller intends to modify the accessed area. */ { JDIMENSION end_row = start_row + num_rows; JDIMENSION undef_row; /* debugging check */ if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || ptr->mem_buffer == NULL) ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); /* Make the desired part of the virtual array accessible */ if (start_row < ptr->cur_start_row || end_row > ptr->cur_start_row + ptr->rows_in_mem) { if (!ptr->b_s_open) ERREXIT(cinfo, JERR_VIRTUAL_BUG); /* Flush old buffer contents if necessary */ if (ptr->dirty) { do_sarray_io(cinfo, ptr, TRUE); ptr->dirty = FALSE; } /* Decide what part of virtual array to access. * Algorithm: if target address > current window, assume forward scan, * load starting at target address. If target address < current window, * assume backward scan, load so that target area is top of window. * Note that when switching from forward write to forward read, will have * start_row = 0, so the limiting case applies and we load from 0 anyway. */ if (start_row > ptr->cur_start_row) { ptr->cur_start_row = start_row; } else { /* use long arithmetic here to avoid overflow & unsigned problems */ long ltemp; ltemp = (long)end_row - (long)ptr->rows_in_mem; if (ltemp < 0) ltemp = 0; /* don't fall off front end of file */ ptr->cur_start_row = (JDIMENSION)ltemp; } /* Read in the selected part of the array. * During the initial write pass, we will do no actual read * because the selected part is all undefined. */ do_sarray_io(cinfo, ptr, FALSE); } /* Ensure the accessed part of the array is defined; prezero if needed. * To improve locality of access, we only prezero the part of the array * that the caller is about to access, not the entire in-memory array. */ if (ptr->first_undef_row < end_row) { if (ptr->first_undef_row < start_row) { if (writable) /* writer skipped over a section of array */ ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); undef_row = start_row; /* but reader is allowed to read ahead */ } else { undef_row = ptr->first_undef_row; } if (writable) ptr->first_undef_row = end_row; if (ptr->pre_zero) { size_t bytesperrow = (size_t)ptr->samplesperrow * sizeof(JSAMPLE); undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ end_row -= ptr->cur_start_row; while (undef_row < end_row) { jzero_far((void *)ptr->mem_buffer[undef_row], bytesperrow); undef_row++; } } else { if (!writable) /* reader looking at undefined data */ ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); } } /* Flag the buffer dirty if caller will write in it */ if (writable) ptr->dirty = TRUE; /* Return address of proper part of the buffer */ return ptr->mem_buffer + (start_row - ptr->cur_start_row); } METHODDEF(JBLOCKARRAY) access_virt_barray(j_common_ptr cinfo, jvirt_barray_ptr ptr, JDIMENSION start_row, JDIMENSION num_rows, boolean writable) /* Access the part of a virtual block array starting at start_row */ /* and extending for num_rows rows. writable is true if */ /* caller intends to modify the accessed area. */ { JDIMENSION end_row = start_row + num_rows; JDIMENSION undef_row; /* debugging check */ if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || ptr->mem_buffer == NULL) ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); /* Make the desired part of the virtual array accessible */ if (start_row < ptr->cur_start_row || end_row > ptr->cur_start_row + ptr->rows_in_mem) { if (!ptr->b_s_open) ERREXIT(cinfo, JERR_VIRTUAL_BUG); /* Flush old buffer contents if necessary */ if (ptr->dirty) { do_barray_io(cinfo, ptr, TRUE); ptr->dirty = FALSE; } /* Decide what part of virtual array to access. * Algorithm: if target address > current window, assume forward scan, * load starting at target address. If target address < current window, * assume backward scan, load so that target area is top of window. * Note that when switching from forward write to forward read, will have * start_row = 0, so the limiting case applies and we load from 0 anyway. */ if (start_row > ptr->cur_start_row) { ptr->cur_start_row = start_row; } else { /* use long arithmetic here to avoid overflow & unsigned problems */ long ltemp; ltemp = (long)end_row - (long)ptr->rows_in_mem; if (ltemp < 0) ltemp = 0; /* don't fall off front end of file */ ptr->cur_start_row = (JDIMENSION)ltemp; } /* Read in the selected part of the array. * During the initial write pass, we will do no actual read * because the selected part is all undefined. */ do_barray_io(cinfo, ptr, FALSE); } /* Ensure the accessed part of the array is defined; prezero if needed. * To improve locality of access, we only prezero the part of the array * that the caller is about to access, not the entire in-memory array. */ if (ptr->first_undef_row < end_row) { if (ptr->first_undef_row < start_row) { if (writable) /* writer skipped over a section of array */ ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); undef_row = start_row; /* but reader is allowed to read ahead */ } else { undef_row = ptr->first_undef_row; } if (writable) ptr->first_undef_row = end_row; if (ptr->pre_zero) { size_t bytesperrow = (size_t)ptr->blocksperrow * sizeof(JBLOCK); undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ end_row -= ptr->cur_start_row; while (undef_row < end_row) { jzero_far((void *)ptr->mem_buffer[undef_row], bytesperrow); undef_row++; } } else { if (!writable) /* reader looking at undefined data */ ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); } } /* Flag the buffer dirty if caller will write in it */ if (writable) ptr->dirty = TRUE; /* Return address of proper part of the buffer */ return ptr->mem_buffer + (start_row - ptr->cur_start_row); } /* * Release all objects belonging to a specified pool. */ METHODDEF(void) free_pool(j_common_ptr cinfo, int pool_id) { my_mem_ptr mem = (my_mem_ptr)cinfo->mem; small_pool_ptr shdr_ptr; large_pool_ptr lhdr_ptr; size_t space_freed; if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ #ifdef MEM_STATS if (cinfo->err->trace_level > 1) print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */ #endif /* If freeing IMAGE pool, close any virtual arrays first */ if (pool_id == JPOOL_IMAGE) { jvirt_sarray_ptr sptr; jvirt_barray_ptr bptr; for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { if (sptr->b_s_open) { /* there may be no backing store */ sptr->b_s_open = FALSE; /* prevent recursive close if error */ (*sptr->b_s_info.close_backing_store) (cinfo, &sptr->b_s_info); } } mem->virt_sarray_list = NULL; for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { if (bptr->b_s_open) { /* there may be no backing store */ bptr->b_s_open = FALSE; /* prevent recursive close if error */ (*bptr->b_s_info.close_backing_store) (cinfo, &bptr->b_s_info); } } mem->virt_barray_list = NULL; } /* Release large objects */ lhdr_ptr = mem->large_list[pool_id]; mem->large_list[pool_id] = NULL; while (lhdr_ptr != NULL) { large_pool_ptr next_lhdr_ptr = lhdr_ptr->next; space_freed = lhdr_ptr->bytes_used + lhdr_ptr->bytes_left + sizeof(large_pool_hdr) + ALIGN_SIZE - 1; jpeg_free_large(cinfo, (void *)lhdr_ptr, space_freed); mem->total_space_allocated -= space_freed; lhdr_ptr = next_lhdr_ptr; } /* Release small objects */ shdr_ptr = mem->small_list[pool_id]; mem->small_list[pool_id] = NULL; while (shdr_ptr != NULL) { small_pool_ptr next_shdr_ptr = shdr_ptr->next; space_freed = shdr_ptr->bytes_used + shdr_ptr->bytes_left + sizeof(small_pool_hdr) + ALIGN_SIZE - 1; jpeg_free_small(cinfo, (void *)shdr_ptr, space_freed); mem->total_space_allocated -= space_freed; shdr_ptr = next_shdr_ptr; } } /* * Close up shop entirely. * Note that this cannot be called unless cinfo->mem is non-NULL. */ METHODDEF(void) self_destruct(j_common_ptr cinfo) { int pool; /* Close all backing store, release all memory. * Releasing pools in reverse order might help avoid fragmentation * with some (brain-damaged) malloc libraries. */ for (pool = JPOOL_NUMPOOLS - 1; pool >= JPOOL_PERMANENT; pool--) { free_pool(cinfo, pool); } /* Release the memory manager control block too. */ jpeg_free_small(cinfo, (void *)cinfo->mem, sizeof(my_memory_mgr)); cinfo->mem = NULL; /* ensures I will be called only once */ jpeg_mem_term(cinfo); /* system-dependent cleanup */ } /* * Memory manager initialization. * When this is called, only the error manager pointer is valid in cinfo! */ GLOBAL(void) jinit_memory_mgr(j_common_ptr cinfo) { my_mem_ptr mem; long max_to_use; int pool; size_t test_mac; cinfo->mem = NULL; /* for safety if init fails */ /* Check for configuration errors. * sizeof(ALIGN_TYPE) should be a power of 2; otherwise, it probably * doesn't reflect any real hardware alignment requirement. * The test is a little tricky: for X>0, X and X-1 have no one-bits * in common if and only if X is a power of 2, ie has only one one-bit. * Some compilers may give an "unreachable code" warning here; ignore it. */ if ((ALIGN_SIZE & (ALIGN_SIZE - 1)) != 0) ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE); /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be * a multiple of ALIGN_SIZE. * Again, an "unreachable code" warning may be ignored here. * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK. */ test_mac = (size_t)MAX_ALLOC_CHUNK; if ((long)test_mac != MAX_ALLOC_CHUNK || (MAX_ALLOC_CHUNK % ALIGN_SIZE) != 0) ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK); max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */ /* Attempt to allocate memory manager's control block */ mem = (my_mem_ptr)jpeg_get_small(cinfo, sizeof(my_memory_mgr)); if (mem == NULL) { jpeg_mem_term(cinfo); /* system-dependent cleanup */ ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0); } /* OK, fill in the method pointers */ mem->pub.alloc_small = alloc_small; mem->pub.alloc_large = alloc_large; mem->pub.alloc_sarray = alloc_sarray; mem->pub.alloc_barray = alloc_barray; mem->pub.request_virt_sarray = request_virt_sarray; mem->pub.request_virt_barray = request_virt_barray; mem->pub.realize_virt_arrays = realize_virt_arrays; mem->pub.access_virt_sarray = access_virt_sarray; mem->pub.access_virt_barray = access_virt_barray; mem->pub.free_pool = free_pool; mem->pub.self_destruct = self_destruct; /* Make MAX_ALLOC_CHUNK accessible to other modules */ mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK; /* Initialize working state */ mem->pub.max_memory_to_use = max_to_use; for (pool = JPOOL_NUMPOOLS - 1; pool >= JPOOL_PERMANENT; pool--) { mem->small_list[pool] = NULL; mem->large_list[pool] = NULL; } mem->virt_sarray_list = NULL; mem->virt_barray_list = NULL; mem->total_space_allocated = sizeof(my_memory_mgr); /* Declare ourselves open for business */ cinfo->mem = &mem->pub; /* Check for an environment variable JPEGMEM; if found, override the * default max_memory setting from jpeg_mem_init. Note that the * surrounding application may again override this value. * If your system doesn't support getenv(), define NO_GETENV to disable * this feature. */ #ifndef NO_GETENV { char memenv[30] = { 0 }; if (!GETENV_S(memenv, 30, "JPEGMEM") && strlen(memenv) > 0) { char ch = 'x'; #ifdef _MSC_VER if (sscanf_s(memenv, "%ld%c", &max_to_use, &ch, 1) > 0) { #else if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) { #endif if (ch == 'm' || ch == 'M') max_to_use *= 1000L; mem->pub.max_memory_to_use = max_to_use * 1000L; } } } #endif } libjpeg-turbo-2.1.5/jmemnobs.c000066400000000000000000000051621436506551100162540ustar00rootroot00000000000000/* * jmemnobs.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1992-1996, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2017-2018, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file provides a really simple implementation of the system- * dependent portion of the JPEG memory manager. This implementation * assumes that no backing-store files are needed: all required space * can be obtained from malloc(). * This is very portable in the sense that it'll compile on almost anything, * but you'd better have lots of main memory (or virtual memory) if you want * to process big images. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jmemsys.h" /* import the system-dependent declarations */ /* * Memory allocation and freeing are controlled by the regular library * routines malloc() and free(). */ GLOBAL(void *) jpeg_get_small(j_common_ptr cinfo, size_t sizeofobject) { return (void *)malloc(sizeofobject); } GLOBAL(void) jpeg_free_small(j_common_ptr cinfo, void *object, size_t sizeofobject) { free(object); } /* * "Large" objects are treated the same as "small" ones. */ GLOBAL(void *) jpeg_get_large(j_common_ptr cinfo, size_t sizeofobject) { return (void *)malloc(sizeofobject); } GLOBAL(void) jpeg_free_large(j_common_ptr cinfo, void *object, size_t sizeofobject) { free(object); } /* * This routine computes the total memory space available for allocation. */ GLOBAL(size_t) jpeg_mem_available(j_common_ptr cinfo, size_t min_bytes_needed, size_t max_bytes_needed, size_t already_allocated) { if (cinfo->mem->max_memory_to_use) { if ((size_t)cinfo->mem->max_memory_to_use > already_allocated) return cinfo->mem->max_memory_to_use - already_allocated; else return 0; } else { /* Here we always say, "we got all you want bud!" */ return max_bytes_needed; } } /* * Backing store (temporary file) management. * Since jpeg_mem_available always promised the moon, * this should never be called and we can just error out. */ GLOBAL(void) jpeg_open_backing_store(j_common_ptr cinfo, backing_store_ptr info, long total_bytes_needed) { ERREXIT(cinfo, JERR_NO_BACKING_STORE); } /* * These routines take care of any system-dependent initialization and * cleanup required. Here, there isn't any. */ GLOBAL(long) jpeg_mem_init(j_common_ptr cinfo) { return 0; /* just set max_memory_to_use to 0 */ } GLOBAL(void) jpeg_mem_term(j_common_ptr cinfo) { /* no work */ } libjpeg-turbo-2.1.5/jmemsys.h000066400000000000000000000171541436506551100161420ustar00rootroot00000000000000/* * jmemsys.h * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1992-1997, Thomas G. Lane. * It was modified by The libjpeg-turbo Project to include only code and * information relevant to libjpeg-turbo. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This include file defines the interface between the system-independent * and system-dependent portions of the JPEG memory manager. No other * modules need include it. (The system-independent portion is jmemmgr.c; * there are several different versions of the system-dependent portion.) * * This file works as-is for the system-dependent memory managers supplied * in the IJG distribution. You may need to modify it if you write a * custom memory manager. If system-dependent changes are needed in * this file, the best method is to #ifdef them based on a configuration * symbol supplied in jconfig.h. */ /* * These two functions are used to allocate and release small chunks of * memory. (Typically the total amount requested through jpeg_get_small is * no more than 20K or so; this will be requested in chunks of a few K each.) * Behavior should be the same as for the standard library functions malloc * and free; in particular, jpeg_get_small must return NULL on failure. * On most systems, these ARE malloc and free. jpeg_free_small is passed the * size of the object being freed, just in case it's needed. */ EXTERN(void *) jpeg_get_small(j_common_ptr cinfo, size_t sizeofobject); EXTERN(void) jpeg_free_small(j_common_ptr cinfo, void *object, size_t sizeofobject); /* * These two functions are used to allocate and release large chunks of * memory (up to the total free space designated by jpeg_mem_available). * These are identical to the jpeg_get/free_small routines; but we keep them * separate anyway, in case a different allocation strategy is desirable for * large chunks. */ EXTERN(void *) jpeg_get_large(j_common_ptr cinfo, size_t sizeofobject); EXTERN(void) jpeg_free_large(j_common_ptr cinfo, void *object, size_t sizeofobject); /* * The macro MAX_ALLOC_CHUNK designates the maximum number of bytes that may * be requested in a single call to jpeg_get_large (and jpeg_get_small for that * matter, but that case should never come into play). This macro was needed * to model the 64Kb-segment-size limit of far addressing on 80x86 machines. * On machines with flat address spaces, any large constant may be used. * * NB: jmemmgr.c expects that MAX_ALLOC_CHUNK will be representable as type * size_t and will be a multiple of sizeof(align_type). */ #ifndef MAX_ALLOC_CHUNK /* may be overridden in jconfig.h */ #define MAX_ALLOC_CHUNK 1000000000L #endif /* * This routine computes the total space still available for allocation by * jpeg_get_large. If more space than this is needed, backing store will be * used. NOTE: any memory already allocated must not be counted. * * There is a minimum space requirement, corresponding to the minimum * feasible buffer sizes; jmemmgr.c will request that much space even if * jpeg_mem_available returns zero. The maximum space needed, enough to hold * all working storage in memory, is also passed in case it is useful. * Finally, the total space already allocated is passed. If no better * method is available, cinfo->mem->max_memory_to_use - already_allocated * is often a suitable calculation. * * It is OK for jpeg_mem_available to underestimate the space available * (that'll just lead to more backing-store access than is really necessary). * However, an overestimate will lead to failure. Hence it's wise to subtract * a slop factor from the true available space. 5% should be enough. * * On machines with lots of virtual memory, any large constant may be returned. * Conversely, zero may be returned to always use the minimum amount of memory. */ EXTERN(size_t) jpeg_mem_available(j_common_ptr cinfo, size_t min_bytes_needed, size_t max_bytes_needed, size_t already_allocated); /* * This structure holds whatever state is needed to access a single * backing-store object. The read/write/close method pointers are called * by jmemmgr.c to manipulate the backing-store object; all other fields * are private to the system-dependent backing store routines. */ #define TEMP_NAME_LENGTH 64 /* max length of a temporary file's name */ #ifdef USE_MSDOS_MEMMGR /* DOS-specific junk */ typedef unsigned short XMSH; /* type of extended-memory handles */ typedef unsigned short EMSH; /* type of expanded-memory handles */ typedef union { short file_handle; /* DOS file handle if it's a temp file */ XMSH xms_handle; /* handle if it's a chunk of XMS */ EMSH ems_handle; /* handle if it's a chunk of EMS */ } handle_union; #endif /* USE_MSDOS_MEMMGR */ #ifdef USE_MAC_MEMMGR /* Mac-specific junk */ #include #endif /* USE_MAC_MEMMGR */ typedef struct backing_store_struct *backing_store_ptr; typedef struct backing_store_struct { /* Methods for reading/writing/closing this backing-store object */ void (*read_backing_store) (j_common_ptr cinfo, backing_store_ptr info, void *buffer_address, long file_offset, long byte_count); void (*write_backing_store) (j_common_ptr cinfo, backing_store_ptr info, void *buffer_address, long file_offset, long byte_count); void (*close_backing_store) (j_common_ptr cinfo, backing_store_ptr info); /* Private fields for system-dependent backing-store management */ #ifdef USE_MSDOS_MEMMGR /* For the MS-DOS manager (jmemdos.c), we need: */ handle_union handle; /* reference to backing-store storage object */ char temp_name[TEMP_NAME_LENGTH]; /* name if it's a file */ #else #ifdef USE_MAC_MEMMGR /* For the Mac manager (jmemmac.c), we need: */ short temp_file; /* file reference number to temp file */ FSSpec tempSpec; /* the FSSpec for the temp file */ char temp_name[TEMP_NAME_LENGTH]; /* name if it's a file */ #else /* For a typical implementation with temp files, we need: */ FILE *temp_file; /* stdio reference to temp file */ char temp_name[TEMP_NAME_LENGTH]; /* name of temp file */ #endif #endif } backing_store_info; /* * Initial opening of a backing-store object. This must fill in the * read/write/close pointers in the object. The read/write routines * may take an error exit if the specified maximum file size is exceeded. * (If jpeg_mem_available always returns a large value, this routine can * just take an error exit.) */ EXTERN(void) jpeg_open_backing_store(j_common_ptr cinfo, backing_store_ptr info, long total_bytes_needed); /* * These routines take care of any system-dependent initialization and * cleanup required. jpeg_mem_init will be called before anything is * allocated (and, therefore, nothing in cinfo is of use except the error * manager pointer). It should return a suitable default value for * max_memory_to_use; this may subsequently be overridden by the surrounding * application. (Note that max_memory_to_use is only important if * jpeg_mem_available chooses to consult it ... no one else will.) * jpeg_mem_term may assume that all requested memory has been freed and that * all opened backing-store objects have been closed. */ EXTERN(long) jpeg_mem_init(j_common_ptr cinfo); EXTERN(void) jpeg_mem_term(j_common_ptr cinfo); libjpeg-turbo-2.1.5/jmorecfg.h000066400000000000000000000335601436506551100162460ustar00rootroot00000000000000/* * jmorecfg.h * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1997, Thomas G. Lane. * Modified 1997-2009 by Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright (C) 2009, 2011, 2014-2015, 2018, 2020, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains additional configuration options that customize the * JPEG software for special applications or support machine-dependent * optimizations. Most users will not need to touch this file. */ /* * Maximum number of components (color channels) allowed in JPEG image. * To meet the letter of Rec. ITU-T T.81 | ISO/IEC 10918-1, set this to 255. * However, darn few applications need more than 4 channels (maybe 5 for CMYK + * alpha mask). We recommend 10 as a reasonable compromise; use 4 if you are * really short on memory. (Each allowed component costs a hundred or so * bytes of storage, whether actually used in an image or not.) */ #define MAX_COMPONENTS 10 /* maximum number of image components */ /* * Basic data types. * You may need to change these if you have a machine with unusual data * type sizes; for example, "char" not 8 bits, "short" not 16 bits, * or "long" not 32 bits. We don't care whether "int" is 16 or 32 bits, * but it had better be at least 16. */ /* Representation of a single sample (pixel element value). * We frequently allocate large arrays of these, so it's important to keep * them small. But if you have memory to burn and access to char or short * arrays is very slow on your hardware, you might want to change these. */ #if BITS_IN_JSAMPLE == 8 /* JSAMPLE should be the smallest type that will hold the values 0..255. */ typedef unsigned char JSAMPLE; #define GETJSAMPLE(value) ((int)(value)) #define MAXJSAMPLE 255 #define CENTERJSAMPLE 128 #endif /* BITS_IN_JSAMPLE == 8 */ #if BITS_IN_JSAMPLE == 12 /* JSAMPLE should be the smallest type that will hold the values 0..4095. * On nearly all machines "short" will do nicely. */ typedef short JSAMPLE; #define GETJSAMPLE(value) ((int)(value)) #define MAXJSAMPLE 4095 #define CENTERJSAMPLE 2048 #endif /* BITS_IN_JSAMPLE == 12 */ /* Representation of a DCT frequency coefficient. * This should be a signed value of at least 16 bits; "short" is usually OK. * Again, we allocate large arrays of these, but you can change to int * if you have memory to burn and "short" is really slow. */ typedef short JCOEF; /* Compressed datastreams are represented as arrays of JOCTET. * These must be EXACTLY 8 bits wide, at least once they are written to * external storage. Note that when using the stdio data source/destination * managers, this is also the data type passed to fread/fwrite. */ typedef unsigned char JOCTET; #define GETJOCTET(value) (value) /* These typedefs are used for various table entries and so forth. * They must be at least as wide as specified; but making them too big * won't cost a huge amount of memory, so we don't provide special * extraction code like we did for JSAMPLE. (In other words, these * typedefs live at a different point on the speed/space tradeoff curve.) */ /* UINT8 must hold at least the values 0..255. */ typedef unsigned char UINT8; /* UINT16 must hold at least the values 0..65535. */ typedef unsigned short UINT16; /* INT16 must hold at least the values -32768..32767. */ #ifndef XMD_H /* X11/xmd.h correctly defines INT16 */ typedef short INT16; #endif /* INT32 must hold at least signed 32-bit values. * * NOTE: The INT32 typedef dates back to libjpeg v5 (1994.) Integers were * sometimes 16-bit back then (MS-DOS), which is why INT32 is typedef'd to * long. It also wasn't common (or at least as common) in 1994 for INT32 to be * defined by platform headers. Since then, however, INT32 is defined in * several other common places: * * Xmd.h (X11 header) typedefs INT32 to int on 64-bit platforms and long on * 32-bit platforms (i.e always a 32-bit signed type.) * * basetsd.h (Win32 header) typedefs INT32 to int (always a 32-bit signed type * on modern platforms.) * * qglobal.h (Qt header) typedefs INT32 to int (always a 32-bit signed type on * modern platforms.) * * This is a recipe for conflict, since "long" and "int" aren't always * compatible types. Since the definition of INT32 has technically been part * of the libjpeg API for more than 20 years, we can't remove it, but we do not * use it internally any longer. We instead define a separate type (JLONG) * for internal use, which ensures that internal behavior will always be the * same regardless of any external headers that may be included. */ #ifndef XMD_H /* X11/xmd.h correctly defines INT32 */ #ifndef _BASETSD_H_ /* Microsoft defines it in basetsd.h */ #ifndef _BASETSD_H /* MinGW is slightly different */ #ifndef QGLOBAL_H /* Qt defines it in qglobal.h */ typedef long INT32; #endif #endif #endif #endif /* Datatype used for image dimensions. The JPEG standard only supports * images up to 64K*64K due to 16-bit fields in SOF markers. Therefore * "unsigned int" is sufficient on all machines. However, if you need to * handle larger images and you don't mind deviating from the spec, you * can change this datatype. (Note that changing this datatype will * potentially require modifying the SIMD code. The x86-64 SIMD extensions, * in particular, assume a 32-bit JDIMENSION.) */ typedef unsigned int JDIMENSION; #define JPEG_MAX_DIMENSION 65500L /* a tad under 64K to prevent overflows */ /* These macros are used in all function definitions and extern declarations. * You could modify them if you need to change function linkage conventions; * in particular, you'll need to do that to make the library a Windows DLL. * Another application is to make all functions global for use with debuggers * or code profilers that require it. */ /* a function called through method pointers: */ #define METHODDEF(type) static type /* a function used only in its module: */ #define LOCAL(type) static type /* a function referenced thru EXTERNs: */ #define GLOBAL(type) type /* a reference to a GLOBAL function: */ #define EXTERN(type) extern type /* Originally, this macro was used as a way of defining function prototypes * for both modern compilers as well as older compilers that did not support * prototype parameters. libjpeg-turbo has never supported these older, * non-ANSI compilers, but the macro is still included because there is some * software out there that uses it. */ #define JMETHOD(type, methodname, arglist) type (*methodname) arglist /* libjpeg-turbo no longer supports platforms that have far symbols (MS-DOS), * but again, some software relies on this macro. */ #undef FAR #define FAR /* * On a few systems, type boolean and/or its values FALSE, TRUE may appear * in standard header files. Or you may have conflicts with application- * specific header files that you want to include together with these files. * Defining HAVE_BOOLEAN before including jpeglib.h should make it work. */ #ifndef HAVE_BOOLEAN typedef int boolean; #endif #ifndef FALSE /* in case these macros already exist */ #define FALSE 0 /* values of boolean */ #endif #ifndef TRUE #define TRUE 1 #endif /* * The remaining options affect code selection within the JPEG library, * but they don't need to be visible to most applications using the library. * To minimize application namespace pollution, the symbols won't be * defined unless JPEG_INTERNALS or JPEG_INTERNAL_OPTIONS has been defined. */ #ifdef JPEG_INTERNALS #define JPEG_INTERNAL_OPTIONS #endif #ifdef JPEG_INTERNAL_OPTIONS /* * These defines indicate whether to include various optional functions. * Undefining some of these symbols will produce a smaller but less capable * library. Note that you can leave certain source files out of the * compilation/linking process if you've #undef'd the corresponding symbols. * (You may HAVE to do that if your compiler doesn't like null source files.) */ /* Capability options common to encoder and decoder: */ #define DCT_ISLOW_SUPPORTED /* accurate integer method */ #define DCT_IFAST_SUPPORTED /* less accurate int method [legacy feature] */ #define DCT_FLOAT_SUPPORTED /* floating-point method [legacy feature] */ /* Encoder capability options: */ #define C_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */ #define C_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/ #define ENTROPY_OPT_SUPPORTED /* Optimization of entropy coding parms? */ /* Note: if you selected 12-bit data precision, it is dangerous to turn off * ENTROPY_OPT_SUPPORTED. The standard Huffman tables are only good for 8-bit * precision, so jchuff.c normally uses entropy optimization to compute * usable tables for higher precision. If you don't want to do optimization, * you'll have to supply different default Huffman tables. * The exact same statements apply for progressive JPEG: the default tables * don't work for progressive mode. (This may get fixed, however.) */ #define INPUT_SMOOTHING_SUPPORTED /* Input image smoothing option? */ /* Decoder capability options: */ #define D_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */ #define D_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/ #define SAVE_MARKERS_SUPPORTED /* jpeg_save_markers() needed? */ #define BLOCK_SMOOTHING_SUPPORTED /* Block smoothing? (Progressive only) */ #define IDCT_SCALING_SUPPORTED /* Output rescaling via IDCT? */ #undef UPSAMPLE_SCALING_SUPPORTED /* Output rescaling at upsample stage? */ #define UPSAMPLE_MERGING_SUPPORTED /* Fast path for sloppy upsampling? */ #define QUANT_1PASS_SUPPORTED /* 1-pass color quantization? */ #define QUANT_2PASS_SUPPORTED /* 2-pass color quantization? */ /* more capability options later, no doubt */ /* * The RGB_RED, RGB_GREEN, RGB_BLUE, and RGB_PIXELSIZE macros are a vestigial * feature of libjpeg. The idea was that, if an application developer needed * to compress from/decompress to a BGR/BGRX/RGBX/XBGR/XRGB buffer, they could * change these macros, rebuild libjpeg, and link their application statically * with it. In reality, few people ever did this, because there were some * severe restrictions involved (cjpeg and djpeg no longer worked properly, * compressing/decompressing RGB JPEGs no longer worked properly, and the color * quantizer wouldn't work with pixel sizes other than 3.) Furthermore, since * all of the O/S-supplied versions of libjpeg were built with the default * values of RGB_RED, RGB_GREEN, RGB_BLUE, and RGB_PIXELSIZE, many applications * have come to regard these values as immutable. * * The libjpeg-turbo colorspace extensions provide a much cleaner way of * compressing from/decompressing to buffers with arbitrary component orders * and pixel sizes. Thus, we do not support changing the values of RGB_RED, * RGB_GREEN, RGB_BLUE, or RGB_PIXELSIZE. In addition to the restrictions * listed above, changing these values will also break the SIMD extensions and * the regression tests. */ #define RGB_RED 0 /* Offset of Red in an RGB scanline element */ #define RGB_GREEN 1 /* Offset of Green */ #define RGB_BLUE 2 /* Offset of Blue */ #define RGB_PIXELSIZE 3 /* JSAMPLEs per RGB scanline element */ #define JPEG_NUMCS 17 #define EXT_RGB_RED 0 #define EXT_RGB_GREEN 1 #define EXT_RGB_BLUE 2 #define EXT_RGB_PIXELSIZE 3 #define EXT_RGBX_RED 0 #define EXT_RGBX_GREEN 1 #define EXT_RGBX_BLUE 2 #define EXT_RGBX_PIXELSIZE 4 #define EXT_BGR_RED 2 #define EXT_BGR_GREEN 1 #define EXT_BGR_BLUE 0 #define EXT_BGR_PIXELSIZE 3 #define EXT_BGRX_RED 2 #define EXT_BGRX_GREEN 1 #define EXT_BGRX_BLUE 0 #define EXT_BGRX_PIXELSIZE 4 #define EXT_XBGR_RED 3 #define EXT_XBGR_GREEN 2 #define EXT_XBGR_BLUE 1 #define EXT_XBGR_PIXELSIZE 4 #define EXT_XRGB_RED 1 #define EXT_XRGB_GREEN 2 #define EXT_XRGB_BLUE 3 #define EXT_XRGB_PIXELSIZE 4 static const int rgb_red[JPEG_NUMCS] = { -1, -1, RGB_RED, -1, -1, -1, EXT_RGB_RED, EXT_RGBX_RED, EXT_BGR_RED, EXT_BGRX_RED, EXT_XBGR_RED, EXT_XRGB_RED, EXT_RGBX_RED, EXT_BGRX_RED, EXT_XBGR_RED, EXT_XRGB_RED, -1 }; static const int rgb_green[JPEG_NUMCS] = { -1, -1, RGB_GREEN, -1, -1, -1, EXT_RGB_GREEN, EXT_RGBX_GREEN, EXT_BGR_GREEN, EXT_BGRX_GREEN, EXT_XBGR_GREEN, EXT_XRGB_GREEN, EXT_RGBX_GREEN, EXT_BGRX_GREEN, EXT_XBGR_GREEN, EXT_XRGB_GREEN, -1 }; static const int rgb_blue[JPEG_NUMCS] = { -1, -1, RGB_BLUE, -1, -1, -1, EXT_RGB_BLUE, EXT_RGBX_BLUE, EXT_BGR_BLUE, EXT_BGRX_BLUE, EXT_XBGR_BLUE, EXT_XRGB_BLUE, EXT_RGBX_BLUE, EXT_BGRX_BLUE, EXT_XBGR_BLUE, EXT_XRGB_BLUE, -1 }; static const int rgb_pixelsize[JPEG_NUMCS] = { -1, -1, RGB_PIXELSIZE, -1, -1, -1, EXT_RGB_PIXELSIZE, EXT_RGBX_PIXELSIZE, EXT_BGR_PIXELSIZE, EXT_BGRX_PIXELSIZE, EXT_XBGR_PIXELSIZE, EXT_XRGB_PIXELSIZE, EXT_RGBX_PIXELSIZE, EXT_BGRX_PIXELSIZE, EXT_XBGR_PIXELSIZE, EXT_XRGB_PIXELSIZE, -1 }; /* Definitions for speed-related optimizations. */ /* On some machines (notably 68000 series) "int" is 32 bits, but multiplying * two 16-bit shorts is faster than multiplying two ints. Define MULTIPLIER * as short on such a machine. MULTIPLIER must be at least 16 bits wide. */ #ifndef MULTIPLIER #ifndef WITH_SIMD #define MULTIPLIER int /* type for fastest integer multiply */ #else #define MULTIPLIER short /* prefer 16-bit with SIMD for parellelism */ #endif #endif /* FAST_FLOAT should be either float or double, whichever is done faster * by your compiler. (Note that this type is only used in the floating point * DCT routines, so it only matters if you've defined DCT_FLOAT_SUPPORTED.) */ #ifndef FAST_FLOAT #define FAST_FLOAT float #endif #endif /* JPEG_INTERNAL_OPTIONS */ libjpeg-turbo-2.1.5/jpeg_nbits_table.h000066400000000000000000010200711436506551100177370ustar00rootroot00000000000000static const unsigned char jpeg_nbits_table[65536] = { 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16 }; libjpeg-turbo-2.1.5/jpegcomp.h000066400000000000000000000021521436506551100162470ustar00rootroot00000000000000/* * jpegcomp.h * * Copyright (C) 2010, 2020, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * JPEG compatibility macros * These declarations are considered internal to the JPEG library; most * applications using the library shouldn't need to include this file. */ #if JPEG_LIB_VERSION >= 70 #define _DCT_scaled_size DCT_h_scaled_size #define _DCT_h_scaled_size DCT_h_scaled_size #define _DCT_v_scaled_size DCT_v_scaled_size #define _min_DCT_scaled_size min_DCT_h_scaled_size #define _min_DCT_h_scaled_size min_DCT_h_scaled_size #define _min_DCT_v_scaled_size min_DCT_v_scaled_size #define _jpeg_width jpeg_width #define _jpeg_height jpeg_height #define JERR_ARITH_NOTIMPL JERR_NOT_COMPILED #else #define _DCT_scaled_size DCT_scaled_size #define _DCT_h_scaled_size DCT_scaled_size #define _DCT_v_scaled_size DCT_scaled_size #define _min_DCT_scaled_size min_DCT_scaled_size #define _min_DCT_h_scaled_size min_DCT_scaled_size #define _min_DCT_v_scaled_size min_DCT_scaled_size #define _jpeg_width image_width #define _jpeg_height image_height #endif libjpeg-turbo-2.1.5/jpegint.h000066400000000000000000000366461436506551100161220ustar00rootroot00000000000000/* * jpegint.h * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1997, Thomas G. Lane. * Modified 1997-2009 by Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright (C) 2015-2016, 2019, 2021, D. R. Commander. * Copyright (C) 2015, Google, Inc. * Copyright (C) 2021, Alex Richardson. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file provides common declarations for the various JPEG modules. * These declarations are considered internal to the JPEG library; most * applications using the library shouldn't need to include this file. */ /* Declarations for both compression & decompression */ typedef enum { /* Operating modes for buffer controllers */ JBUF_PASS_THRU, /* Plain stripwise operation */ /* Remaining modes require a full-image buffer to have been created */ JBUF_SAVE_SOURCE, /* Run source subobject only, save output */ JBUF_CRANK_DEST, /* Run dest subobject only, using saved data */ JBUF_SAVE_AND_PASS /* Run both subobjects, save output */ } J_BUF_MODE; /* Values of global_state field (jdapi.c has some dependencies on ordering!) */ #define CSTATE_START 100 /* after create_compress */ #define CSTATE_SCANNING 101 /* start_compress done, write_scanlines OK */ #define CSTATE_RAW_OK 102 /* start_compress done, write_raw_data OK */ #define CSTATE_WRCOEFS 103 /* jpeg_write_coefficients done */ #define DSTATE_START 200 /* after create_decompress */ #define DSTATE_INHEADER 201 /* reading header markers, no SOS yet */ #define DSTATE_READY 202 /* found SOS, ready for start_decompress */ #define DSTATE_PRELOAD 203 /* reading multiscan file in start_decompress*/ #define DSTATE_PRESCAN 204 /* performing dummy pass for 2-pass quant */ #define DSTATE_SCANNING 205 /* start_decompress done, read_scanlines OK */ #define DSTATE_RAW_OK 206 /* start_decompress done, read_raw_data OK */ #define DSTATE_BUFIMAGE 207 /* expecting jpeg_start_output */ #define DSTATE_BUFPOST 208 /* looking for SOS/EOI in jpeg_finish_output */ #define DSTATE_RDCOEFS 209 /* reading file in jpeg_read_coefficients */ #define DSTATE_STOPPING 210 /* looking for EOI in jpeg_finish_decompress */ /* JLONG must hold at least signed 32-bit values. */ typedef long JLONG; /* JUINTPTR must hold pointer values. */ #ifdef __UINTPTR_TYPE__ /* * __UINTPTR_TYPE__ is GNU-specific and available in GCC 4.6+ and Clang 3.0+. * Fortunately, that is sufficient to support the few architectures for which * sizeof(void *) != sizeof(size_t). The only other options would require C99 * or Clang-specific builtins. */ typedef __UINTPTR_TYPE__ JUINTPTR; #else typedef size_t JUINTPTR; #endif /* * Left shift macro that handles a negative operand without causing any * sanitizer warnings */ #define LEFT_SHIFT(a, b) ((JLONG)((unsigned long)(a) << (b))) /* Declarations for compression modules */ /* Master control module */ struct jpeg_comp_master { void (*prepare_for_pass) (j_compress_ptr cinfo); void (*pass_startup) (j_compress_ptr cinfo); void (*finish_pass) (j_compress_ptr cinfo); /* State variables made visible to other modules */ boolean call_pass_startup; /* True if pass_startup must be called */ boolean is_last_pass; /* True during last pass */ }; /* Main buffer control (downsampled-data buffer) */ struct jpeg_c_main_controller { void (*start_pass) (j_compress_ptr cinfo, J_BUF_MODE pass_mode); void (*process_data) (j_compress_ptr cinfo, JSAMPARRAY input_buf, JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail); }; /* Compression preprocessing (downsampling input buffer control) */ struct jpeg_c_prep_controller { void (*start_pass) (j_compress_ptr cinfo, J_BUF_MODE pass_mode); void (*pre_process_data) (j_compress_ptr cinfo, JSAMPARRAY input_buf, JDIMENSION *in_row_ctr, JDIMENSION in_rows_avail, JSAMPIMAGE output_buf, JDIMENSION *out_row_group_ctr, JDIMENSION out_row_groups_avail); }; /* Coefficient buffer control */ struct jpeg_c_coef_controller { void (*start_pass) (j_compress_ptr cinfo, J_BUF_MODE pass_mode); boolean (*compress_data) (j_compress_ptr cinfo, JSAMPIMAGE input_buf); }; /* Colorspace conversion */ struct jpeg_color_converter { void (*start_pass) (j_compress_ptr cinfo); void (*color_convert) (j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); }; /* Downsampling */ struct jpeg_downsampler { void (*start_pass) (j_compress_ptr cinfo); void (*downsample) (j_compress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_index, JSAMPIMAGE output_buf, JDIMENSION out_row_group_index); boolean need_context_rows; /* TRUE if need rows above & below */ }; /* Forward DCT (also controls coefficient quantization) */ struct jpeg_forward_dct { void (*start_pass) (j_compress_ptr cinfo); /* perhaps this should be an array??? */ void (*forward_DCT) (j_compress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY sample_data, JBLOCKROW coef_blocks, JDIMENSION start_row, JDIMENSION start_col, JDIMENSION num_blocks); }; /* Entropy encoding */ struct jpeg_entropy_encoder { void (*start_pass) (j_compress_ptr cinfo, boolean gather_statistics); boolean (*encode_mcu) (j_compress_ptr cinfo, JBLOCKROW *MCU_data); void (*finish_pass) (j_compress_ptr cinfo); }; /* Marker writing */ struct jpeg_marker_writer { void (*write_file_header) (j_compress_ptr cinfo); void (*write_frame_header) (j_compress_ptr cinfo); void (*write_scan_header) (j_compress_ptr cinfo); void (*write_file_trailer) (j_compress_ptr cinfo); void (*write_tables_only) (j_compress_ptr cinfo); /* These routines are exported to allow insertion of extra markers */ /* Probably only COM and APPn markers should be written this way */ void (*write_marker_header) (j_compress_ptr cinfo, int marker, unsigned int datalen); void (*write_marker_byte) (j_compress_ptr cinfo, int val); }; /* Declarations for decompression modules */ /* Master control module */ struct jpeg_decomp_master { void (*prepare_for_output_pass) (j_decompress_ptr cinfo); void (*finish_output_pass) (j_decompress_ptr cinfo); /* State variables made visible to other modules */ boolean is_dummy_pass; /* True during 1st pass for 2-pass quant */ /* Partial decompression variables */ JDIMENSION first_iMCU_col; JDIMENSION last_iMCU_col; JDIMENSION first_MCU_col[MAX_COMPONENTS]; JDIMENSION last_MCU_col[MAX_COMPONENTS]; boolean jinit_upsampler_no_alloc; /* Last iMCU row that was successfully decoded */ JDIMENSION last_good_iMCU_row; }; /* Input control module */ struct jpeg_input_controller { int (*consume_input) (j_decompress_ptr cinfo); void (*reset_input_controller) (j_decompress_ptr cinfo); void (*start_input_pass) (j_decompress_ptr cinfo); void (*finish_input_pass) (j_decompress_ptr cinfo); /* State variables made visible to other modules */ boolean has_multiple_scans; /* True if file has multiple scans */ boolean eoi_reached; /* True when EOI has been consumed */ }; /* Main buffer control (downsampled-data buffer) */ struct jpeg_d_main_controller { void (*start_pass) (j_decompress_ptr cinfo, J_BUF_MODE pass_mode); void (*process_data) (j_decompress_ptr cinfo, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail); }; /* Coefficient buffer control */ struct jpeg_d_coef_controller { void (*start_input_pass) (j_decompress_ptr cinfo); int (*consume_data) (j_decompress_ptr cinfo); void (*start_output_pass) (j_decompress_ptr cinfo); int (*decompress_data) (j_decompress_ptr cinfo, JSAMPIMAGE output_buf); /* Pointer to array of coefficient virtual arrays, or NULL if none */ jvirt_barray_ptr *coef_arrays; }; /* Decompression postprocessing (color quantization buffer control) */ struct jpeg_d_post_controller { void (*start_pass) (j_decompress_ptr cinfo, J_BUF_MODE pass_mode); void (*post_process_data) (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, JDIMENSION in_row_groups_avail, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail); }; /* Marker reading & parsing */ struct jpeg_marker_reader { void (*reset_marker_reader) (j_decompress_ptr cinfo); /* Read markers until SOS or EOI. * Returns same codes as are defined for jpeg_consume_input: * JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI. */ int (*read_markers) (j_decompress_ptr cinfo); /* Read a restart marker --- exported for use by entropy decoder only */ jpeg_marker_parser_method read_restart_marker; /* State of marker reader --- nominally internal, but applications * supplying COM or APPn handlers might like to know the state. */ boolean saw_SOI; /* found SOI? */ boolean saw_SOF; /* found SOF? */ int next_restart_num; /* next restart number expected (0-7) */ unsigned int discarded_bytes; /* # of bytes skipped looking for a marker */ }; /* Entropy decoding */ struct jpeg_entropy_decoder { void (*start_pass) (j_decompress_ptr cinfo); boolean (*decode_mcu) (j_decompress_ptr cinfo, JBLOCKROW *MCU_data); /* This is here to share code between baseline and progressive decoders; */ /* other modules probably should not use it */ boolean insufficient_data; /* set TRUE after emitting warning */ }; /* Inverse DCT (also performs dequantization) */ typedef void (*inverse_DCT_method_ptr) (j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); struct jpeg_inverse_dct { void (*start_pass) (j_decompress_ptr cinfo); /* It is useful to allow each component to have a separate IDCT method. */ inverse_DCT_method_ptr inverse_DCT[MAX_COMPONENTS]; }; /* Upsampling (note that upsampler must also call color converter) */ struct jpeg_upsampler { void (*start_pass) (j_decompress_ptr cinfo); void (*upsample) (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, JDIMENSION in_row_groups_avail, JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail); boolean need_context_rows; /* TRUE if need rows above & below */ }; /* Colorspace conversion */ struct jpeg_color_deconverter { void (*start_pass) (j_decompress_ptr cinfo); void (*color_convert) (j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); }; /* Color quantization or color precision reduction */ struct jpeg_color_quantizer { void (*start_pass) (j_decompress_ptr cinfo, boolean is_pre_scan); void (*color_quantize) (j_decompress_ptr cinfo, JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows); void (*finish_pass) (j_decompress_ptr cinfo); void (*new_color_map) (j_decompress_ptr cinfo); }; /* Miscellaneous useful macros */ #undef MAX #define MAX(a, b) ((a) > (b) ? (a) : (b)) #undef MIN #define MIN(a, b) ((a) < (b) ? (a) : (b)) /* We assume that right shift corresponds to signed division by 2 with * rounding towards minus infinity. This is correct for typical "arithmetic * shift" instructions that shift in copies of the sign bit. But some * C compilers implement >> with an unsigned shift. For these machines you * must define RIGHT_SHIFT_IS_UNSIGNED. * RIGHT_SHIFT provides a proper signed right shift of a JLONG quantity. * It is only applied with constant shift counts. SHIFT_TEMPS must be * included in the variables of any routine using RIGHT_SHIFT. */ #ifdef RIGHT_SHIFT_IS_UNSIGNED #define SHIFT_TEMPS JLONG shift_temp; #define RIGHT_SHIFT(x, shft) \ ((shift_temp = (x)) < 0 ? \ (shift_temp >> (shft)) | ((~((JLONG)0)) << (32 - (shft))) : \ (shift_temp >> (shft))) #else #define SHIFT_TEMPS #define RIGHT_SHIFT(x, shft) ((x) >> (shft)) #endif /* Compression module initialization routines */ EXTERN(void) jinit_compress_master(j_compress_ptr cinfo); EXTERN(void) jinit_c_master_control(j_compress_ptr cinfo, boolean transcode_only); EXTERN(void) jinit_c_main_controller(j_compress_ptr cinfo, boolean need_full_buffer); EXTERN(void) jinit_c_prep_controller(j_compress_ptr cinfo, boolean need_full_buffer); EXTERN(void) jinit_c_coef_controller(j_compress_ptr cinfo, boolean need_full_buffer); EXTERN(void) jinit_color_converter(j_compress_ptr cinfo); EXTERN(void) jinit_downsampler(j_compress_ptr cinfo); EXTERN(void) jinit_forward_dct(j_compress_ptr cinfo); EXTERN(void) jinit_huff_encoder(j_compress_ptr cinfo); EXTERN(void) jinit_phuff_encoder(j_compress_ptr cinfo); EXTERN(void) jinit_arith_encoder(j_compress_ptr cinfo); EXTERN(void) jinit_marker_writer(j_compress_ptr cinfo); /* Decompression module initialization routines */ EXTERN(void) jinit_master_decompress(j_decompress_ptr cinfo); EXTERN(void) jinit_d_main_controller(j_decompress_ptr cinfo, boolean need_full_buffer); EXTERN(void) jinit_d_coef_controller(j_decompress_ptr cinfo, boolean need_full_buffer); EXTERN(void) jinit_d_post_controller(j_decompress_ptr cinfo, boolean need_full_buffer); EXTERN(void) jinit_input_controller(j_decompress_ptr cinfo); EXTERN(void) jinit_marker_reader(j_decompress_ptr cinfo); EXTERN(void) jinit_huff_decoder(j_decompress_ptr cinfo); EXTERN(void) jinit_phuff_decoder(j_decompress_ptr cinfo); EXTERN(void) jinit_arith_decoder(j_decompress_ptr cinfo); EXTERN(void) jinit_inverse_dct(j_decompress_ptr cinfo); EXTERN(void) jinit_upsampler(j_decompress_ptr cinfo); EXTERN(void) jinit_color_deconverter(j_decompress_ptr cinfo); EXTERN(void) jinit_1pass_quantizer(j_decompress_ptr cinfo); EXTERN(void) jinit_2pass_quantizer(j_decompress_ptr cinfo); EXTERN(void) jinit_merged_upsampler(j_decompress_ptr cinfo); /* Memory manager initialization */ EXTERN(void) jinit_memory_mgr(j_common_ptr cinfo); /* Utility routines in jutils.c */ EXTERN(long) jdiv_round_up(long a, long b); EXTERN(long) jround_up(long a, long b); EXTERN(void) jcopy_sample_rows(JSAMPARRAY input_array, int source_row, JSAMPARRAY output_array, int dest_row, int num_rows, JDIMENSION num_cols); EXTERN(void) jcopy_block_row(JBLOCKROW input_row, JBLOCKROW output_row, JDIMENSION num_blocks); EXTERN(void) jzero_far(void *target, size_t bytestozero); /* Constant tables in jutils.c */ #if 0 /* This table is not actually needed in v6a */ extern const int jpeg_zigzag_order[]; /* natural coef order to zigzag order */ #endif extern const int jpeg_natural_order[]; /* zigzag coef order to natural order */ /* Arithmetic coding probability estimation tables in jaricom.c */ extern const JLONG jpeg_aritab[]; libjpeg-turbo-2.1.5/jpeglib.h000066400000000000000000001421511436506551100160630ustar00rootroot00000000000000/* * jpeglib.h * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1998, Thomas G. Lane. * Modified 2002-2009 by Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright (C) 2009-2011, 2013-2014, 2016-2017, 2020, D. R. Commander. * Copyright (C) 2015, Google, Inc. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file defines the application interface for the JPEG library. * Most applications using the library need only include this file, * and perhaps jerror.h if they want to know the exact error codes. */ #ifndef JPEGLIB_H #define JPEGLIB_H /* * First we include the configuration files that record how this * installation of the JPEG library is set up. jconfig.h can be * generated automatically for many systems. jmorecfg.h contains * manual configuration options that most people need not worry about. */ #ifndef JCONFIG_INCLUDED /* in case jinclude.h already did */ #include "jconfig.h" /* widely used configuration options */ #endif #include "jmorecfg.h" /* seldom changed options */ #ifdef __cplusplus #ifndef DONT_USE_EXTERN_C extern "C" { #endif #endif /* Various constants determining the sizes of things. * All of these are specified by the JPEG standard, so don't change them * if you want to be compatible. */ #define DCTSIZE 8 /* The basic DCT block is 8x8 samples */ #define DCTSIZE2 64 /* DCTSIZE squared; # of elements in a block */ #define NUM_QUANT_TBLS 4 /* Quantization tables are numbered 0..3 */ #define NUM_HUFF_TBLS 4 /* Huffman tables are numbered 0..3 */ #define NUM_ARITH_TBLS 16 /* Arith-coding tables are numbered 0..15 */ #define MAX_COMPS_IN_SCAN 4 /* JPEG limit on # of components in one scan */ #define MAX_SAMP_FACTOR 4 /* JPEG limit on sampling factors */ /* Unfortunately, some bozo at Adobe saw no reason to be bound by the standard; * the PostScript DCT filter can emit files with many more than 10 blocks/MCU. * If you happen to run across such a file, you can up D_MAX_BLOCKS_IN_MCU * to handle it. We even let you do this from the jconfig.h file. However, * we strongly discourage changing C_MAX_BLOCKS_IN_MCU; just because Adobe * sometimes emits noncompliant files doesn't mean you should too. */ #define C_MAX_BLOCKS_IN_MCU 10 /* compressor's limit on blocks per MCU */ #ifndef D_MAX_BLOCKS_IN_MCU #define D_MAX_BLOCKS_IN_MCU 10 /* decompressor's limit on blocks per MCU */ #endif /* Data structures for images (arrays of samples and of DCT coefficients). */ typedef JSAMPLE *JSAMPROW; /* ptr to one image row of pixel samples. */ typedef JSAMPROW *JSAMPARRAY; /* ptr to some rows (a 2-D sample array) */ typedef JSAMPARRAY *JSAMPIMAGE; /* a 3-D sample array: top index is color */ typedef JCOEF JBLOCK[DCTSIZE2]; /* one block of coefficients */ typedef JBLOCK *JBLOCKROW; /* pointer to one row of coefficient blocks */ typedef JBLOCKROW *JBLOCKARRAY; /* a 2-D array of coefficient blocks */ typedef JBLOCKARRAY *JBLOCKIMAGE; /* a 3-D array of coefficient blocks */ typedef JCOEF *JCOEFPTR; /* useful in a couple of places */ /* Types for JPEG compression parameters and working tables. */ /* DCT coefficient quantization tables. */ typedef struct { /* This array gives the coefficient quantizers in natural array order * (not the zigzag order in which they are stored in a JPEG DQT marker). * CAUTION: IJG versions prior to v6a kept this array in zigzag order. */ UINT16 quantval[DCTSIZE2]; /* quantization step for each coefficient */ /* This field is used only during compression. It's initialized FALSE when * the table is created, and set TRUE when it's been output to the file. * You could suppress output of a table by setting this to TRUE. * (See jpeg_suppress_tables for an example.) */ boolean sent_table; /* TRUE when table has been output */ } JQUANT_TBL; /* Huffman coding tables. */ typedef struct { /* These two fields directly represent the contents of a JPEG DHT marker */ UINT8 bits[17]; /* bits[k] = # of symbols with codes of */ /* length k bits; bits[0] is unused */ UINT8 huffval[256]; /* The symbols, in order of incr code length */ /* This field is used only during compression. It's initialized FALSE when * the table is created, and set TRUE when it's been output to the file. * You could suppress output of a table by setting this to TRUE. * (See jpeg_suppress_tables for an example.) */ boolean sent_table; /* TRUE when table has been output */ } JHUFF_TBL; /* Basic info about one component (color channel). */ typedef struct { /* These values are fixed over the whole image. */ /* For compression, they must be supplied by parameter setup; */ /* for decompression, they are read from the SOF marker. */ int component_id; /* identifier for this component (0..255) */ int component_index; /* its index in SOF or cinfo->comp_info[] */ int h_samp_factor; /* horizontal sampling factor (1..4) */ int v_samp_factor; /* vertical sampling factor (1..4) */ int quant_tbl_no; /* quantization table selector (0..3) */ /* These values may vary between scans. */ /* For compression, they must be supplied by parameter setup; */ /* for decompression, they are read from the SOS marker. */ /* The decompressor output side may not use these variables. */ int dc_tbl_no; /* DC entropy table selector (0..3) */ int ac_tbl_no; /* AC entropy table selector (0..3) */ /* Remaining fields should be treated as private by applications. */ /* These values are computed during compression or decompression startup: */ /* Component's size in DCT blocks. * Any dummy blocks added to complete an MCU are not counted; therefore * these values do not depend on whether a scan is interleaved or not. */ JDIMENSION width_in_blocks; JDIMENSION height_in_blocks; /* Size of a DCT block in samples. Always DCTSIZE for compression. * For decompression this is the size of the output from one DCT block, * reflecting any scaling we choose to apply during the IDCT step. * Values from 1 to 16 are supported. * Note that different components may receive different IDCT scalings. */ #if JPEG_LIB_VERSION >= 70 int DCT_h_scaled_size; int DCT_v_scaled_size; #else int DCT_scaled_size; #endif /* The downsampled dimensions are the component's actual, unpadded number * of samples at the main buffer (preprocessing/compression interface), thus * downsampled_width = ceil(image_width * Hi/Hmax) * and similarly for height. For decompression, IDCT scaling is included, so * downsampled_width = ceil(image_width * Hi/Hmax * DCT_[h_]scaled_size/DCTSIZE) */ JDIMENSION downsampled_width; /* actual width in samples */ JDIMENSION downsampled_height; /* actual height in samples */ /* This flag is used only for decompression. In cases where some of the * components will be ignored (eg grayscale output from YCbCr image), * we can skip most computations for the unused components. */ boolean component_needed; /* do we need the value of this component? */ /* These values are computed before starting a scan of the component. */ /* The decompressor output side may not use these variables. */ int MCU_width; /* number of blocks per MCU, horizontally */ int MCU_height; /* number of blocks per MCU, vertically */ int MCU_blocks; /* MCU_width * MCU_height */ int MCU_sample_width; /* MCU width in samples, MCU_width*DCT_[h_]scaled_size */ int last_col_width; /* # of non-dummy blocks across in last MCU */ int last_row_height; /* # of non-dummy blocks down in last MCU */ /* Saved quantization table for component; NULL if none yet saved. * See jdinput.c comments about the need for this information. * This field is currently used only for decompression. */ JQUANT_TBL *quant_table; /* Private per-component storage for DCT or IDCT subsystem. */ void *dct_table; } jpeg_component_info; /* The script for encoding a multiple-scan file is an array of these: */ typedef struct { int comps_in_scan; /* number of components encoded in this scan */ int component_index[MAX_COMPS_IN_SCAN]; /* their SOF/comp_info[] indexes */ int Ss, Se; /* progressive JPEG spectral selection parms */ int Ah, Al; /* progressive JPEG successive approx. parms */ } jpeg_scan_info; /* The decompressor can save APPn and COM markers in a list of these: */ typedef struct jpeg_marker_struct *jpeg_saved_marker_ptr; struct jpeg_marker_struct { jpeg_saved_marker_ptr next; /* next in list, or NULL */ UINT8 marker; /* marker code: JPEG_COM, or JPEG_APP0+n */ unsigned int original_length; /* # bytes of data in the file */ unsigned int data_length; /* # bytes of data saved at data[] */ JOCTET *data; /* the data contained in the marker */ /* the marker length word is not counted in data_length or original_length */ }; /* Known color spaces. */ #define JCS_EXTENSIONS 1 #define JCS_ALPHA_EXTENSIONS 1 typedef enum { JCS_UNKNOWN, /* error/unspecified */ JCS_GRAYSCALE, /* monochrome */ JCS_RGB, /* red/green/blue as specified by the RGB_RED, RGB_GREEN, RGB_BLUE, and RGB_PIXELSIZE macros */ JCS_YCbCr, /* Y/Cb/Cr (also known as YUV) */ JCS_CMYK, /* C/M/Y/K */ JCS_YCCK, /* Y/Cb/Cr/K */ JCS_EXT_RGB, /* red/green/blue */ JCS_EXT_RGBX, /* red/green/blue/x */ JCS_EXT_BGR, /* blue/green/red */ JCS_EXT_BGRX, /* blue/green/red/x */ JCS_EXT_XBGR, /* x/blue/green/red */ JCS_EXT_XRGB, /* x/red/green/blue */ /* When out_color_space it set to JCS_EXT_RGBX, JCS_EXT_BGRX, JCS_EXT_XBGR, or JCS_EXT_XRGB during decompression, the X byte is undefined, and in order to ensure the best performance, libjpeg-turbo can set that byte to whatever value it wishes. Use the following colorspace constants to ensure that the X byte is set to 0xFF, so that it can be interpreted as an opaque alpha channel. */ JCS_EXT_RGBA, /* red/green/blue/alpha */ JCS_EXT_BGRA, /* blue/green/red/alpha */ JCS_EXT_ABGR, /* alpha/blue/green/red */ JCS_EXT_ARGB, /* alpha/red/green/blue */ JCS_RGB565 /* 5-bit red/6-bit green/5-bit blue */ } J_COLOR_SPACE; /* DCT/IDCT algorithm options. */ typedef enum { JDCT_ISLOW, /* accurate integer method */ JDCT_IFAST, /* less accurate integer method [legacy feature] */ JDCT_FLOAT /* floating-point method [legacy feature] */ } J_DCT_METHOD; #ifndef JDCT_DEFAULT /* may be overridden in jconfig.h */ #define JDCT_DEFAULT JDCT_ISLOW #endif #ifndef JDCT_FASTEST /* may be overridden in jconfig.h */ #define JDCT_FASTEST JDCT_IFAST #endif /* Dithering options for decompression. */ typedef enum { JDITHER_NONE, /* no dithering */ JDITHER_ORDERED, /* simple ordered dither */ JDITHER_FS /* Floyd-Steinberg error diffusion dither */ } J_DITHER_MODE; /* Common fields between JPEG compression and decompression master structs. */ #define jpeg_common_fields \ struct jpeg_error_mgr *err; /* Error handler module */ \ struct jpeg_memory_mgr *mem; /* Memory manager module */ \ struct jpeg_progress_mgr *progress; /* Progress monitor, or NULL if none */ \ void *client_data; /* Available for use by application */ \ boolean is_decompressor; /* So common code can tell which is which */ \ int global_state /* For checking call sequence validity */ /* Routines that are to be used by both halves of the library are declared * to receive a pointer to this structure. There are no actual instances of * jpeg_common_struct, only of jpeg_compress_struct and jpeg_decompress_struct. */ struct jpeg_common_struct { jpeg_common_fields; /* Fields common to both master struct types */ /* Additional fields follow in an actual jpeg_compress_struct or * jpeg_decompress_struct. All three structs must agree on these * initial fields! (This would be a lot cleaner in C++.) */ }; typedef struct jpeg_common_struct *j_common_ptr; typedef struct jpeg_compress_struct *j_compress_ptr; typedef struct jpeg_decompress_struct *j_decompress_ptr; /* Master record for a compression instance */ struct jpeg_compress_struct { jpeg_common_fields; /* Fields shared with jpeg_decompress_struct */ /* Destination for compressed data */ struct jpeg_destination_mgr *dest; /* Description of source image --- these fields must be filled in by * outer application before starting compression. in_color_space must * be correct before you can even call jpeg_set_defaults(). */ JDIMENSION image_width; /* input image width */ JDIMENSION image_height; /* input image height */ int input_components; /* # of color components in input image */ J_COLOR_SPACE in_color_space; /* colorspace of input image */ double input_gamma; /* image gamma of input image */ /* Compression parameters --- these fields must be set before calling * jpeg_start_compress(). We recommend calling jpeg_set_defaults() to * initialize everything to reasonable defaults, then changing anything * the application specifically wants to change. That way you won't get * burnt when new parameters are added. Also note that there are several * helper routines to simplify changing parameters. */ #if JPEG_LIB_VERSION >= 70 unsigned int scale_num, scale_denom; /* fraction by which to scale image */ JDIMENSION jpeg_width; /* scaled JPEG image width */ JDIMENSION jpeg_height; /* scaled JPEG image height */ /* Dimensions of actual JPEG image that will be written to file, * derived from input dimensions by scaling factors above. * These fields are computed by jpeg_start_compress(). * You can also use jpeg_calc_jpeg_dimensions() to determine these values * in advance of calling jpeg_start_compress(). */ #endif int data_precision; /* bits of precision in image data */ int num_components; /* # of color components in JPEG image */ J_COLOR_SPACE jpeg_color_space; /* colorspace of JPEG image */ jpeg_component_info *comp_info; /* comp_info[i] describes component that appears i'th in SOF */ JQUANT_TBL *quant_tbl_ptrs[NUM_QUANT_TBLS]; #if JPEG_LIB_VERSION >= 70 int q_scale_factor[NUM_QUANT_TBLS]; #endif /* ptrs to coefficient quantization tables, or NULL if not defined, * and corresponding scale factors (percentage, initialized 100). */ JHUFF_TBL *dc_huff_tbl_ptrs[NUM_HUFF_TBLS]; JHUFF_TBL *ac_huff_tbl_ptrs[NUM_HUFF_TBLS]; /* ptrs to Huffman coding tables, or NULL if not defined */ UINT8 arith_dc_L[NUM_ARITH_TBLS]; /* L values for DC arith-coding tables */ UINT8 arith_dc_U[NUM_ARITH_TBLS]; /* U values for DC arith-coding tables */ UINT8 arith_ac_K[NUM_ARITH_TBLS]; /* Kx values for AC arith-coding tables */ int num_scans; /* # of entries in scan_info array */ const jpeg_scan_info *scan_info; /* script for multi-scan file, or NULL */ /* The default value of scan_info is NULL, which causes a single-scan * sequential JPEG file to be emitted. To create a multi-scan file, * set num_scans and scan_info to point to an array of scan definitions. */ boolean raw_data_in; /* TRUE=caller supplies downsampled data */ boolean arith_code; /* TRUE=arithmetic coding, FALSE=Huffman */ boolean optimize_coding; /* TRUE=optimize entropy encoding parms */ boolean CCIR601_sampling; /* TRUE=first samples are cosited */ #if JPEG_LIB_VERSION >= 70 boolean do_fancy_downsampling; /* TRUE=apply fancy downsampling */ #endif int smoothing_factor; /* 1..100, or 0 for no input smoothing */ J_DCT_METHOD dct_method; /* DCT algorithm selector */ /* The restart interval can be specified in absolute MCUs by setting * restart_interval, or in MCU rows by setting restart_in_rows * (in which case the correct restart_interval will be figured * for each scan). */ unsigned int restart_interval; /* MCUs per restart, or 0 for no restart */ int restart_in_rows; /* if > 0, MCU rows per restart interval */ /* Parameters controlling emission of special markers. */ boolean write_JFIF_header; /* should a JFIF marker be written? */ UINT8 JFIF_major_version; /* What to write for the JFIF version number */ UINT8 JFIF_minor_version; /* These three values are not used by the JPEG code, merely copied */ /* into the JFIF APP0 marker. density_unit can be 0 for unknown, */ /* 1 for dots/inch, or 2 for dots/cm. Note that the pixel aspect */ /* ratio is defined by X_density/Y_density even when density_unit=0. */ UINT8 density_unit; /* JFIF code for pixel size units */ UINT16 X_density; /* Horizontal pixel density */ UINT16 Y_density; /* Vertical pixel density */ boolean write_Adobe_marker; /* should an Adobe marker be written? */ /* State variable: index of next scanline to be written to * jpeg_write_scanlines(). Application may use this to control its * processing loop, e.g., "while (next_scanline < image_height)". */ JDIMENSION next_scanline; /* 0 .. image_height-1 */ /* Remaining fields are known throughout compressor, but generally * should not be touched by a surrounding application. */ /* * These fields are computed during compression startup */ boolean progressive_mode; /* TRUE if scan script uses progressive mode */ int max_h_samp_factor; /* largest h_samp_factor */ int max_v_samp_factor; /* largest v_samp_factor */ #if JPEG_LIB_VERSION >= 70 int min_DCT_h_scaled_size; /* smallest DCT_h_scaled_size of any component */ int min_DCT_v_scaled_size; /* smallest DCT_v_scaled_size of any component */ #endif JDIMENSION total_iMCU_rows; /* # of iMCU rows to be input to coef ctlr */ /* The coefficient controller receives data in units of MCU rows as defined * for fully interleaved scans (whether the JPEG file is interleaved or not). * There are v_samp_factor * DCTSIZE sample rows of each component in an * "iMCU" (interleaved MCU) row. */ /* * These fields are valid during any one scan. * They describe the components and MCUs actually appearing in the scan. */ int comps_in_scan; /* # of JPEG components in this scan */ jpeg_component_info *cur_comp_info[MAX_COMPS_IN_SCAN]; /* *cur_comp_info[i] describes component that appears i'th in SOS */ JDIMENSION MCUs_per_row; /* # of MCUs across the image */ JDIMENSION MCU_rows_in_scan; /* # of MCU rows in the image */ int blocks_in_MCU; /* # of DCT blocks per MCU */ int MCU_membership[C_MAX_BLOCKS_IN_MCU]; /* MCU_membership[i] is index in cur_comp_info of component owning */ /* i'th block in an MCU */ int Ss, Se, Ah, Al; /* progressive JPEG parameters for scan */ #if JPEG_LIB_VERSION >= 80 int block_size; /* the basic DCT block size: 1..16 */ const int *natural_order; /* natural-order position array */ int lim_Se; /* min( Se, DCTSIZE2-1 ) */ #endif /* * Links to compression subobjects (methods and private variables of modules) */ struct jpeg_comp_master *master; struct jpeg_c_main_controller *main; struct jpeg_c_prep_controller *prep; struct jpeg_c_coef_controller *coef; struct jpeg_marker_writer *marker; struct jpeg_color_converter *cconvert; struct jpeg_downsampler *downsample; struct jpeg_forward_dct *fdct; struct jpeg_entropy_encoder *entropy; jpeg_scan_info *script_space; /* workspace for jpeg_simple_progression */ int script_space_size; }; /* Master record for a decompression instance */ struct jpeg_decompress_struct { jpeg_common_fields; /* Fields shared with jpeg_compress_struct */ /* Source of compressed data */ struct jpeg_source_mgr *src; /* Basic description of image --- filled in by jpeg_read_header(). */ /* Application may inspect these values to decide how to process image. */ JDIMENSION image_width; /* nominal image width (from SOF marker) */ JDIMENSION image_height; /* nominal image height */ int num_components; /* # of color components in JPEG image */ J_COLOR_SPACE jpeg_color_space; /* colorspace of JPEG image */ /* Decompression processing parameters --- these fields must be set before * calling jpeg_start_decompress(). Note that jpeg_read_header() initializes * them to default values. */ J_COLOR_SPACE out_color_space; /* colorspace for output */ unsigned int scale_num, scale_denom; /* fraction by which to scale image */ double output_gamma; /* image gamma wanted in output */ boolean buffered_image; /* TRUE=multiple output passes */ boolean raw_data_out; /* TRUE=downsampled data wanted */ J_DCT_METHOD dct_method; /* IDCT algorithm selector */ boolean do_fancy_upsampling; /* TRUE=apply fancy upsampling */ boolean do_block_smoothing; /* TRUE=apply interblock smoothing */ boolean quantize_colors; /* TRUE=colormapped output wanted */ /* the following are ignored if not quantize_colors: */ J_DITHER_MODE dither_mode; /* type of color dithering to use */ boolean two_pass_quantize; /* TRUE=use two-pass color quantization */ int desired_number_of_colors; /* max # colors to use in created colormap */ /* these are significant only in buffered-image mode: */ boolean enable_1pass_quant; /* enable future use of 1-pass quantizer */ boolean enable_external_quant;/* enable future use of external colormap */ boolean enable_2pass_quant; /* enable future use of 2-pass quantizer */ /* Description of actual output image that will be returned to application. * These fields are computed by jpeg_start_decompress(). * You can also use jpeg_calc_output_dimensions() to determine these values * in advance of calling jpeg_start_decompress(). */ JDIMENSION output_width; /* scaled image width */ JDIMENSION output_height; /* scaled image height */ int out_color_components; /* # of color components in out_color_space */ int output_components; /* # of color components returned */ /* output_components is 1 (a colormap index) when quantizing colors; * otherwise it equals out_color_components. */ int rec_outbuf_height; /* min recommended height of scanline buffer */ /* If the buffer passed to jpeg_read_scanlines() is less than this many rows * high, space and time will be wasted due to unnecessary data copying. * Usually rec_outbuf_height will be 1 or 2, at most 4. */ /* When quantizing colors, the output colormap is described by these fields. * The application can supply a colormap by setting colormap non-NULL before * calling jpeg_start_decompress; otherwise a colormap is created during * jpeg_start_decompress or jpeg_start_output. * The map has out_color_components rows and actual_number_of_colors columns. */ int actual_number_of_colors; /* number of entries in use */ JSAMPARRAY colormap; /* The color map as a 2-D pixel array */ /* State variables: these variables indicate the progress of decompression. * The application may examine these but must not modify them. */ /* Row index of next scanline to be read from jpeg_read_scanlines(). * Application may use this to control its processing loop, e.g., * "while (output_scanline < output_height)". */ JDIMENSION output_scanline; /* 0 .. output_height-1 */ /* Current input scan number and number of iMCU rows completed in scan. * These indicate the progress of the decompressor input side. */ int input_scan_number; /* Number of SOS markers seen so far */ JDIMENSION input_iMCU_row; /* Number of iMCU rows completed */ /* The "output scan number" is the notional scan being displayed by the * output side. The decompressor will not allow output scan/row number * to get ahead of input scan/row, but it can fall arbitrarily far behind. */ int output_scan_number; /* Nominal scan number being displayed */ JDIMENSION output_iMCU_row; /* Number of iMCU rows read */ /* Current progression status. coef_bits[c][i] indicates the precision * with which component c's DCT coefficient i (in zigzag order) is known. * It is -1 when no data has yet been received, otherwise it is the point * transform (shift) value for the most recent scan of the coefficient * (thus, 0 at completion of the progression). * This pointer is NULL when reading a non-progressive file. */ int (*coef_bits)[DCTSIZE2]; /* -1 or current Al value for each coef */ /* Internal JPEG parameters --- the application usually need not look at * these fields. Note that the decompressor output side may not use * any parameters that can change between scans. */ /* Quantization and Huffman tables are carried forward across input * datastreams when processing abbreviated JPEG datastreams. */ JQUANT_TBL *quant_tbl_ptrs[NUM_QUANT_TBLS]; /* ptrs to coefficient quantization tables, or NULL if not defined */ JHUFF_TBL *dc_huff_tbl_ptrs[NUM_HUFF_TBLS]; JHUFF_TBL *ac_huff_tbl_ptrs[NUM_HUFF_TBLS]; /* ptrs to Huffman coding tables, or NULL if not defined */ /* These parameters are never carried across datastreams, since they * are given in SOF/SOS markers or defined to be reset by SOI. */ int data_precision; /* bits of precision in image data */ jpeg_component_info *comp_info; /* comp_info[i] describes component that appears i'th in SOF */ #if JPEG_LIB_VERSION >= 80 boolean is_baseline; /* TRUE if Baseline SOF0 encountered */ #endif boolean progressive_mode; /* TRUE if SOFn specifies progressive mode */ boolean arith_code; /* TRUE=arithmetic coding, FALSE=Huffman */ UINT8 arith_dc_L[NUM_ARITH_TBLS]; /* L values for DC arith-coding tables */ UINT8 arith_dc_U[NUM_ARITH_TBLS]; /* U values for DC arith-coding tables */ UINT8 arith_ac_K[NUM_ARITH_TBLS]; /* Kx values for AC arith-coding tables */ unsigned int restart_interval; /* MCUs per restart interval, or 0 for no restart */ /* These fields record data obtained from optional markers recognized by * the JPEG library. */ boolean saw_JFIF_marker; /* TRUE iff a JFIF APP0 marker was found */ /* Data copied from JFIF marker; only valid if saw_JFIF_marker is TRUE: */ UINT8 JFIF_major_version; /* JFIF version number */ UINT8 JFIF_minor_version; UINT8 density_unit; /* JFIF code for pixel size units */ UINT16 X_density; /* Horizontal pixel density */ UINT16 Y_density; /* Vertical pixel density */ boolean saw_Adobe_marker; /* TRUE iff an Adobe APP14 marker was found */ UINT8 Adobe_transform; /* Color transform code from Adobe marker */ boolean CCIR601_sampling; /* TRUE=first samples are cosited */ /* Aside from the specific data retained from APPn markers known to the * library, the uninterpreted contents of any or all APPn and COM markers * can be saved in a list for examination by the application. */ jpeg_saved_marker_ptr marker_list; /* Head of list of saved markers */ /* Remaining fields are known throughout decompressor, but generally * should not be touched by a surrounding application. */ /* * These fields are computed during decompression startup */ int max_h_samp_factor; /* largest h_samp_factor */ int max_v_samp_factor; /* largest v_samp_factor */ #if JPEG_LIB_VERSION >= 70 int min_DCT_h_scaled_size; /* smallest DCT_h_scaled_size of any component */ int min_DCT_v_scaled_size; /* smallest DCT_v_scaled_size of any component */ #else int min_DCT_scaled_size; /* smallest DCT_scaled_size of any component */ #endif JDIMENSION total_iMCU_rows; /* # of iMCU rows in image */ /* The coefficient controller's input and output progress is measured in * units of "iMCU" (interleaved MCU) rows. These are the same as MCU rows * in fully interleaved JPEG scans, but are used whether the scan is * interleaved or not. We define an iMCU row as v_samp_factor DCT block * rows of each component. Therefore, the IDCT output contains * v_samp_factor*DCT_[v_]scaled_size sample rows of a component per iMCU row. */ JSAMPLE *sample_range_limit; /* table for fast range-limiting */ /* * These fields are valid during any one scan. * They describe the components and MCUs actually appearing in the scan. * Note that the decompressor output side must not use these fields. */ int comps_in_scan; /* # of JPEG components in this scan */ jpeg_component_info *cur_comp_info[MAX_COMPS_IN_SCAN]; /* *cur_comp_info[i] describes component that appears i'th in SOS */ JDIMENSION MCUs_per_row; /* # of MCUs across the image */ JDIMENSION MCU_rows_in_scan; /* # of MCU rows in the image */ int blocks_in_MCU; /* # of DCT blocks per MCU */ int MCU_membership[D_MAX_BLOCKS_IN_MCU]; /* MCU_membership[i] is index in cur_comp_info of component owning */ /* i'th block in an MCU */ int Ss, Se, Ah, Al; /* progressive JPEG parameters for scan */ #if JPEG_LIB_VERSION >= 80 /* These fields are derived from Se of first SOS marker. */ int block_size; /* the basic DCT block size: 1..16 */ const int *natural_order; /* natural-order position array for entropy decode */ int lim_Se; /* min( Se, DCTSIZE2-1 ) for entropy decode */ #endif /* This field is shared between entropy decoder and marker parser. * It is either zero or the code of a JPEG marker that has been * read from the data source, but has not yet been processed. */ int unread_marker; /* * Links to decompression subobjects (methods, private variables of modules) */ struct jpeg_decomp_master *master; struct jpeg_d_main_controller *main; struct jpeg_d_coef_controller *coef; struct jpeg_d_post_controller *post; struct jpeg_input_controller *inputctl; struct jpeg_marker_reader *marker; struct jpeg_entropy_decoder *entropy; struct jpeg_inverse_dct *idct; struct jpeg_upsampler *upsample; struct jpeg_color_deconverter *cconvert; struct jpeg_color_quantizer *cquantize; }; /* "Object" declarations for JPEG modules that may be supplied or called * directly by the surrounding application. * As with all objects in the JPEG library, these structs only define the * publicly visible methods and state variables of a module. Additional * private fields may exist after the public ones. */ /* Error handler object */ struct jpeg_error_mgr { /* Error exit handler: does not return to caller */ void (*error_exit) (j_common_ptr cinfo); /* Conditionally emit a trace or warning message */ void (*emit_message) (j_common_ptr cinfo, int msg_level); /* Routine that actually outputs a trace or error message */ void (*output_message) (j_common_ptr cinfo); /* Format a message string for the most recent JPEG error or message */ void (*format_message) (j_common_ptr cinfo, char *buffer); #define JMSG_LENGTH_MAX 200 /* recommended size of format_message buffer */ /* Reset error state variables at start of a new image */ void (*reset_error_mgr) (j_common_ptr cinfo); /* The message ID code and any parameters are saved here. * A message can have one string parameter or up to 8 int parameters. */ int msg_code; #define JMSG_STR_PARM_MAX 80 union { int i[8]; char s[JMSG_STR_PARM_MAX]; } msg_parm; /* Standard state variables for error facility */ int trace_level; /* max msg_level that will be displayed */ /* For recoverable corrupt-data errors, we emit a warning message, * but keep going unless emit_message chooses to abort. emit_message * should count warnings in num_warnings. The surrounding application * can check for bad data by seeing if num_warnings is nonzero at the * end of processing. */ long num_warnings; /* number of corrupt-data warnings */ /* These fields point to the table(s) of error message strings. * An application can change the table pointer to switch to a different * message list (typically, to change the language in which errors are * reported). Some applications may wish to add additional error codes * that will be handled by the JPEG library error mechanism; the second * table pointer is used for this purpose. * * First table includes all errors generated by JPEG library itself. * Error code 0 is reserved for a "no such error string" message. */ const char * const *jpeg_message_table; /* Library errors */ int last_jpeg_message; /* Table contains strings 0..last_jpeg_message */ /* Second table can be added by application (see cjpeg/djpeg for example). * It contains strings numbered first_addon_message..last_addon_message. */ const char * const *addon_message_table; /* Non-library errors */ int first_addon_message; /* code for first string in addon table */ int last_addon_message; /* code for last string in addon table */ }; /* Progress monitor object */ struct jpeg_progress_mgr { void (*progress_monitor) (j_common_ptr cinfo); long pass_counter; /* work units completed in this pass */ long pass_limit; /* total number of work units in this pass */ int completed_passes; /* passes completed so far */ int total_passes; /* total number of passes expected */ }; /* Data destination object for compression */ struct jpeg_destination_mgr { JOCTET *next_output_byte; /* => next byte to write in buffer */ size_t free_in_buffer; /* # of byte spaces remaining in buffer */ void (*init_destination) (j_compress_ptr cinfo); boolean (*empty_output_buffer) (j_compress_ptr cinfo); void (*term_destination) (j_compress_ptr cinfo); }; /* Data source object for decompression */ struct jpeg_source_mgr { const JOCTET *next_input_byte; /* => next byte to read from buffer */ size_t bytes_in_buffer; /* # of bytes remaining in buffer */ void (*init_source) (j_decompress_ptr cinfo); boolean (*fill_input_buffer) (j_decompress_ptr cinfo); void (*skip_input_data) (j_decompress_ptr cinfo, long num_bytes); boolean (*resync_to_restart) (j_decompress_ptr cinfo, int desired); void (*term_source) (j_decompress_ptr cinfo); }; /* Memory manager object. * Allocates "small" objects (a few K total), "large" objects (tens of K), * and "really big" objects (virtual arrays with backing store if needed). * The memory manager does not allow individual objects to be freed; rather, * each created object is assigned to a pool, and whole pools can be freed * at once. This is faster and more convenient than remembering exactly what * to free, especially where malloc()/free() are not too speedy. * NB: alloc routines never return NULL. They exit to error_exit if not * successful. */ #define JPOOL_PERMANENT 0 /* lasts until master record is destroyed */ #define JPOOL_IMAGE 1 /* lasts until done with image/datastream */ #define JPOOL_NUMPOOLS 2 typedef struct jvirt_sarray_control *jvirt_sarray_ptr; typedef struct jvirt_barray_control *jvirt_barray_ptr; struct jpeg_memory_mgr { /* Method pointers */ void *(*alloc_small) (j_common_ptr cinfo, int pool_id, size_t sizeofobject); void *(*alloc_large) (j_common_ptr cinfo, int pool_id, size_t sizeofobject); JSAMPARRAY (*alloc_sarray) (j_common_ptr cinfo, int pool_id, JDIMENSION samplesperrow, JDIMENSION numrows); JBLOCKARRAY (*alloc_barray) (j_common_ptr cinfo, int pool_id, JDIMENSION blocksperrow, JDIMENSION numrows); jvirt_sarray_ptr (*request_virt_sarray) (j_common_ptr cinfo, int pool_id, boolean pre_zero, JDIMENSION samplesperrow, JDIMENSION numrows, JDIMENSION maxaccess); jvirt_barray_ptr (*request_virt_barray) (j_common_ptr cinfo, int pool_id, boolean pre_zero, JDIMENSION blocksperrow, JDIMENSION numrows, JDIMENSION maxaccess); void (*realize_virt_arrays) (j_common_ptr cinfo); JSAMPARRAY (*access_virt_sarray) (j_common_ptr cinfo, jvirt_sarray_ptr ptr, JDIMENSION start_row, JDIMENSION num_rows, boolean writable); JBLOCKARRAY (*access_virt_barray) (j_common_ptr cinfo, jvirt_barray_ptr ptr, JDIMENSION start_row, JDIMENSION num_rows, boolean writable); void (*free_pool) (j_common_ptr cinfo, int pool_id); void (*self_destruct) (j_common_ptr cinfo); /* Limit on memory allocation for this JPEG object. (Note that this is * merely advisory, not a guaranteed maximum; it only affects the space * used for virtual-array buffers.) May be changed by outer application * after creating the JPEG object. */ long max_memory_to_use; /* Maximum allocation request accepted by alloc_large. */ long max_alloc_chunk; }; /* Routine signature for application-supplied marker processing methods. * Need not pass marker code since it is stored in cinfo->unread_marker. */ typedef boolean (*jpeg_marker_parser_method) (j_decompress_ptr cinfo); /* Originally, this macro was used as a way of defining function prototypes * for both modern compilers as well as older compilers that did not support * prototype parameters. libjpeg-turbo has never supported these older, * non-ANSI compilers, but the macro is still included because there is some * software out there that uses it. */ #define JPP(arglist) arglist /* Default error-management setup */ EXTERN(struct jpeg_error_mgr *) jpeg_std_error(struct jpeg_error_mgr *err); /* Initialization of JPEG compression objects. * jpeg_create_compress() and jpeg_create_decompress() are the exported * names that applications should call. These expand to calls on * jpeg_CreateCompress and jpeg_CreateDecompress with additional information * passed for version mismatch checking. * NB: you must set up the error-manager BEFORE calling jpeg_create_xxx. */ #define jpeg_create_compress(cinfo) \ jpeg_CreateCompress((cinfo), JPEG_LIB_VERSION, \ (size_t)sizeof(struct jpeg_compress_struct)) #define jpeg_create_decompress(cinfo) \ jpeg_CreateDecompress((cinfo), JPEG_LIB_VERSION, \ (size_t)sizeof(struct jpeg_decompress_struct)) EXTERN(void) jpeg_CreateCompress(j_compress_ptr cinfo, int version, size_t structsize); EXTERN(void) jpeg_CreateDecompress(j_decompress_ptr cinfo, int version, size_t structsize); /* Destruction of JPEG compression objects */ EXTERN(void) jpeg_destroy_compress(j_compress_ptr cinfo); EXTERN(void) jpeg_destroy_decompress(j_decompress_ptr cinfo); /* Standard data source and destination managers: stdio streams. */ /* Caller is responsible for opening the file before and closing after. */ EXTERN(void) jpeg_stdio_dest(j_compress_ptr cinfo, FILE *outfile); EXTERN(void) jpeg_stdio_src(j_decompress_ptr cinfo, FILE *infile); #if JPEG_LIB_VERSION >= 80 || defined(MEM_SRCDST_SUPPORTED) /* Data source and destination managers: memory buffers. */ EXTERN(void) jpeg_mem_dest(j_compress_ptr cinfo, unsigned char **outbuffer, unsigned long *outsize); EXTERN(void) jpeg_mem_src(j_decompress_ptr cinfo, const unsigned char *inbuffer, unsigned long insize); #endif /* Default parameter setup for compression */ EXTERN(void) jpeg_set_defaults(j_compress_ptr cinfo); /* Compression parameter setup aids */ EXTERN(void) jpeg_set_colorspace(j_compress_ptr cinfo, J_COLOR_SPACE colorspace); EXTERN(void) jpeg_default_colorspace(j_compress_ptr cinfo); EXTERN(void) jpeg_set_quality(j_compress_ptr cinfo, int quality, boolean force_baseline); EXTERN(void) jpeg_set_linear_quality(j_compress_ptr cinfo, int scale_factor, boolean force_baseline); #if JPEG_LIB_VERSION >= 70 EXTERN(void) jpeg_default_qtables(j_compress_ptr cinfo, boolean force_baseline); #endif EXTERN(void) jpeg_add_quant_table(j_compress_ptr cinfo, int which_tbl, const unsigned int *basic_table, int scale_factor, boolean force_baseline); EXTERN(int) jpeg_quality_scaling(int quality); EXTERN(void) jpeg_simple_progression(j_compress_ptr cinfo); EXTERN(void) jpeg_suppress_tables(j_compress_ptr cinfo, boolean suppress); EXTERN(JQUANT_TBL *) jpeg_alloc_quant_table(j_common_ptr cinfo); EXTERN(JHUFF_TBL *) jpeg_alloc_huff_table(j_common_ptr cinfo); /* Main entry points for compression */ EXTERN(void) jpeg_start_compress(j_compress_ptr cinfo, boolean write_all_tables); EXTERN(JDIMENSION) jpeg_write_scanlines(j_compress_ptr cinfo, JSAMPARRAY scanlines, JDIMENSION num_lines); EXTERN(void) jpeg_finish_compress(j_compress_ptr cinfo); #if JPEG_LIB_VERSION >= 70 /* Precalculate JPEG dimensions for current compression parameters. */ EXTERN(void) jpeg_calc_jpeg_dimensions(j_compress_ptr cinfo); #endif /* Replaces jpeg_write_scanlines when writing raw downsampled data. */ EXTERN(JDIMENSION) jpeg_write_raw_data(j_compress_ptr cinfo, JSAMPIMAGE data, JDIMENSION num_lines); /* Write a special marker. See libjpeg.txt concerning safe usage. */ EXTERN(void) jpeg_write_marker(j_compress_ptr cinfo, int marker, const JOCTET *dataptr, unsigned int datalen); /* Same, but piecemeal. */ EXTERN(void) jpeg_write_m_header(j_compress_ptr cinfo, int marker, unsigned int datalen); EXTERN(void) jpeg_write_m_byte(j_compress_ptr cinfo, int val); /* Alternate compression function: just write an abbreviated table file */ EXTERN(void) jpeg_write_tables(j_compress_ptr cinfo); /* Write ICC profile. See libjpeg.txt for usage information. */ EXTERN(void) jpeg_write_icc_profile(j_compress_ptr cinfo, const JOCTET *icc_data_ptr, unsigned int icc_data_len); /* Decompression startup: read start of JPEG datastream to see what's there */ EXTERN(int) jpeg_read_header(j_decompress_ptr cinfo, boolean require_image); /* Return value is one of: */ #define JPEG_SUSPENDED 0 /* Suspended due to lack of input data */ #define JPEG_HEADER_OK 1 /* Found valid image datastream */ #define JPEG_HEADER_TABLES_ONLY 2 /* Found valid table-specs-only datastream */ /* If you pass require_image = TRUE (normal case), you need not check for * a TABLES_ONLY return code; an abbreviated file will cause an error exit. * JPEG_SUSPENDED is only possible if you use a data source module that can * give a suspension return (the stdio source module doesn't). */ /* Main entry points for decompression */ EXTERN(boolean) jpeg_start_decompress(j_decompress_ptr cinfo); EXTERN(JDIMENSION) jpeg_read_scanlines(j_decompress_ptr cinfo, JSAMPARRAY scanlines, JDIMENSION max_lines); EXTERN(JDIMENSION) jpeg_skip_scanlines(j_decompress_ptr cinfo, JDIMENSION num_lines); EXTERN(void) jpeg_crop_scanline(j_decompress_ptr cinfo, JDIMENSION *xoffset, JDIMENSION *width); EXTERN(boolean) jpeg_finish_decompress(j_decompress_ptr cinfo); /* Replaces jpeg_read_scanlines when reading raw downsampled data. */ EXTERN(JDIMENSION) jpeg_read_raw_data(j_decompress_ptr cinfo, JSAMPIMAGE data, JDIMENSION max_lines); /* Additional entry points for buffered-image mode. */ EXTERN(boolean) jpeg_has_multiple_scans(j_decompress_ptr cinfo); EXTERN(boolean) jpeg_start_output(j_decompress_ptr cinfo, int scan_number); EXTERN(boolean) jpeg_finish_output(j_decompress_ptr cinfo); EXTERN(boolean) jpeg_input_complete(j_decompress_ptr cinfo); EXTERN(void) jpeg_new_colormap(j_decompress_ptr cinfo); EXTERN(int) jpeg_consume_input(j_decompress_ptr cinfo); /* Return value is one of: */ /* #define JPEG_SUSPENDED 0 Suspended due to lack of input data */ #define JPEG_REACHED_SOS 1 /* Reached start of new scan */ #define JPEG_REACHED_EOI 2 /* Reached end of image */ #define JPEG_ROW_COMPLETED 3 /* Completed one iMCU row */ #define JPEG_SCAN_COMPLETED 4 /* Completed last iMCU row of a scan */ /* Precalculate output dimensions for current decompression parameters. */ #if JPEG_LIB_VERSION >= 80 EXTERN(void) jpeg_core_output_dimensions(j_decompress_ptr cinfo); #endif EXTERN(void) jpeg_calc_output_dimensions(j_decompress_ptr cinfo); /* Control saving of COM and APPn markers into marker_list. */ EXTERN(void) jpeg_save_markers(j_decompress_ptr cinfo, int marker_code, unsigned int length_limit); /* Install a special processing method for COM or APPn markers. */ EXTERN(void) jpeg_set_marker_processor(j_decompress_ptr cinfo, int marker_code, jpeg_marker_parser_method routine); /* Read or write raw DCT coefficients --- useful for lossless transcoding. */ EXTERN(jvirt_barray_ptr *) jpeg_read_coefficients(j_decompress_ptr cinfo); EXTERN(void) jpeg_write_coefficients(j_compress_ptr cinfo, jvirt_barray_ptr *coef_arrays); EXTERN(void) jpeg_copy_critical_parameters(j_decompress_ptr srcinfo, j_compress_ptr dstinfo); /* If you choose to abort compression or decompression before completing * jpeg_finish_(de)compress, then you need to clean up to release memory, * temporary files, etc. You can just call jpeg_destroy_(de)compress * if you're done with the JPEG object, but if you want to clean it up and * reuse it, call this: */ EXTERN(void) jpeg_abort_compress(j_compress_ptr cinfo); EXTERN(void) jpeg_abort_decompress(j_decompress_ptr cinfo); /* Generic versions of jpeg_abort and jpeg_destroy that work on either * flavor of JPEG object. These may be more convenient in some places. */ EXTERN(void) jpeg_abort(j_common_ptr cinfo); EXTERN(void) jpeg_destroy(j_common_ptr cinfo); /* Default restart-marker-resync procedure for use by data source modules */ EXTERN(boolean) jpeg_resync_to_restart(j_decompress_ptr cinfo, int desired); /* Read ICC profile. See libjpeg.txt for usage information. */ EXTERN(boolean) jpeg_read_icc_profile(j_decompress_ptr cinfo, JOCTET **icc_data_ptr, unsigned int *icc_data_len); /* These marker codes are exported since applications and data source modules * are likely to want to use them. */ #define JPEG_RST0 0xD0 /* RST0 marker code */ #define JPEG_EOI 0xD9 /* EOI marker code */ #define JPEG_APP0 0xE0 /* APP0 marker code */ #define JPEG_COM 0xFE /* COM marker code */ /* If we have a brain-damaged compiler that emits warnings (or worse, errors) * for structure definitions that are never filled in, keep it quiet by * supplying dummy definitions for the various substructures. */ #ifdef INCOMPLETE_TYPES_BROKEN #ifndef JPEG_INTERNALS /* will be defined in jpegint.h */ struct jvirt_sarray_control { long dummy; }; struct jvirt_barray_control { long dummy; }; struct jpeg_comp_master { long dummy; }; struct jpeg_c_main_controller { long dummy; }; struct jpeg_c_prep_controller { long dummy; }; struct jpeg_c_coef_controller { long dummy; }; struct jpeg_marker_writer { long dummy; }; struct jpeg_color_converter { long dummy; }; struct jpeg_downsampler { long dummy; }; struct jpeg_forward_dct { long dummy; }; struct jpeg_entropy_encoder { long dummy; }; struct jpeg_decomp_master { long dummy; }; struct jpeg_d_main_controller { long dummy; }; struct jpeg_d_coef_controller { long dummy; }; struct jpeg_d_post_controller { long dummy; }; struct jpeg_input_controller { long dummy; }; struct jpeg_marker_reader { long dummy; }; struct jpeg_entropy_decoder { long dummy; }; struct jpeg_inverse_dct { long dummy; }; struct jpeg_upsampler { long dummy; }; struct jpeg_color_deconverter { long dummy; }; struct jpeg_color_quantizer { long dummy; }; #endif /* JPEG_INTERNALS */ #endif /* INCOMPLETE_TYPES_BROKEN */ /* * The JPEG library modules define JPEG_INTERNALS before including this file. * The internal structure declarations are read only when that is true. * Applications using the library should not include jpegint.h, but may wish * to include jerror.h. */ #ifdef JPEG_INTERNALS #include "jpegint.h" /* fetch private declarations */ #include "jerror.h" /* fetch error codes too */ #endif #ifdef __cplusplus #ifndef DONT_USE_EXTERN_C } #endif #endif #endif /* JPEGLIB_H */ libjpeg-turbo-2.1.5/jpegtran.1000066400000000000000000000317461436506551100162010ustar00rootroot00000000000000.TH JPEGTRAN 1 "13 July 2021" .SH NAME jpegtran \- lossless transformation of JPEG files .SH SYNOPSIS .B jpegtran [ .I options ] [ .I filename ] .LP .SH DESCRIPTION .LP .B jpegtran performs various useful transformations of JPEG files. It can translate the coded representation from one variant of JPEG to another, for example from baseline JPEG to progressive JPEG or vice versa. It can also perform some rearrangements of the image data, for example turning an image from landscape to portrait format by rotation. .PP For EXIF files and JPEG files containing Exif data, you may prefer to use .B exiftran instead. .PP .B jpegtran works by rearranging the compressed data (DCT coefficients), without ever fully decoding the image. Therefore, its transformations are lossless: there is no image degradation at all, which would not be true if you used .B djpeg followed by .B cjpeg to accomplish the same conversion. But by the same token, .B jpegtran cannot perform lossy operations such as changing the image quality. However, while the image data is losslessly transformed, metadata can be removed. See the .B \-copy option for specifics. .PP .B jpegtran reads the named JPEG/JFIF file, or the standard input if no file is named, and produces a JPEG/JFIF file on the standard output. .SH OPTIONS All switch names may be abbreviated; for example, .B \-optimize may be written .B \-opt or .BR \-o . Upper and lower case are equivalent. British spellings are also accepted (e.g., .BR \-optimise ), though for brevity these are not mentioned below. .PP To specify the coded JPEG representation used in the output file, .B jpegtran accepts a subset of the switches recognized by .BR cjpeg : .TP .B \-optimize Perform optimization of entropy encoding parameters. .TP .B \-progressive Create progressive JPEG file. .TP .BI \-restart " N" Emit a JPEG restart marker every N MCU rows, or every N MCU blocks if "B" is attached to the number. .TP .B \-arithmetic Use arithmetic coding. .TP .BI \-scans " file" Use the scan script given in the specified text file. .PP See .BR cjpeg (1) for more details about these switches. If you specify none of these switches, you get a plain baseline-JPEG output file. The quality setting and so forth are determined by the input file. .PP The image can be losslessly transformed by giving one of these switches: .TP .B \-flip horizontal Mirror image horizontally (left-right). .TP .B \-flip vertical Mirror image vertically (top-bottom). .TP .B \-rotate 90 Rotate image 90 degrees clockwise. .TP .B \-rotate 180 Rotate image 180 degrees. .TP .B \-rotate 270 Rotate image 270 degrees clockwise (or 90 ccw). .TP .B \-transpose Transpose image (across UL-to-LR axis). .TP .B \-transverse Transverse transpose (across UR-to-LL axis). .PP The transpose transformation has no restrictions regarding image dimensions. The other transformations operate rather oddly if the image dimensions are not a multiple of the iMCU size (usually 8 or 16 pixels), because they can only transform complete blocks of DCT coefficient data in the desired way. .PP .BR jpegtran 's default behavior when transforming an odd-size image is designed to preserve exact reversibility and mathematical consistency of the transformation set. As stated, transpose is able to flip the entire image area. Horizontal mirroring leaves any partial iMCU column at the right edge untouched, but is able to flip all rows of the image. Similarly, vertical mirroring leaves any partial iMCU row at the bottom edge untouched, but is able to flip all columns. The other transforms can be built up as sequences of transpose and flip operations; for consistency, their actions on edge pixels are defined to be the same as the end result of the corresponding transpose-and-flip sequence. .PP For practical use, you may prefer to discard any untransformable edge pixels rather than having a strange-looking strip along the right and/or bottom edges of a transformed image. To do this, add the .B \-trim switch: .TP .B \-trim Drop non-transformable edge blocks. .IP Obviously, a transformation with .B \-trim is not reversible, so strictly speaking .B jpegtran with this switch is not lossless. Also, the expected mathematical equivalences between the transformations no longer hold. For example, .B \-rot 270 -trim trims only the bottom edge, but .B \-rot 90 -trim followed by .B \-rot 180 -trim trims both edges. .TP .B \-perfect If you are only interested in perfect transformations, add the .B \-perfect switch. This causes .B jpegtran to fail with an error if the transformation is not perfect. .IP For example, you may want to do .IP .B (jpegtran \-rot 90 -perfect .I foo.jpg .B || djpeg .I foo.jpg .B | pnmflip \-r90 | cjpeg) .IP to do a perfect rotation, if available, or an approximated one if not. .PP This version of \fBjpegtran\fR also offers a lossless crop option, which discards data outside of a given image region but losslessly preserves what is inside. Like the rotate and flip transforms, lossless crop is restricted by the current JPEG format; the upper left corner of the selected region must fall on an iMCU boundary. If it doesn't, then it is silently moved up and/or left to the nearest iMCU boundary (the lower right corner is unchanged.) Thus, the output image covers at least the requested region, but it may cover more. The adjustment of the region dimensions may be optionally disabled by attaching an 'f' character ("force") to the width or height number. The image can be losslessly cropped by giving the switch: .TP .B \-crop WxH+X+Y Crop the image to a rectangular region of width W and height H, starting at point X,Y. The lossless crop feature discards data outside of a given image region but losslessly preserves what is inside. Like the rotate and flip transforms, lossless crop is restricted by the current JPEG format; the upper left corner of the selected region must fall on an iMCU boundary. If it doesn't, then it is silently moved up and/or left to the nearest iMCU boundary (the lower right corner is unchanged.) .PP If W or H is larger than the width/height of the input image, then the output image is expanded in size, and the expanded region is filled in with zeros (neutral gray). Attaching an 'f' character ("flatten") to the width number will cause each block in the expanded region to be filled in with the DC coefficient of the nearest block in the input image rather than grayed out. Attaching an 'r' character ("reflect") to the width number will cause the expanded region to be filled in with repeated reflections of the input image rather than grayed out. .PP A complementary lossless wipe option is provided to discard (gray out) data inside a given image region while losslessly preserving what is outside: .TP .B \-wipe WxH+X+Y Wipe (gray out) a rectangular region of width W and height H from the input image, starting at point X,Y. .PP Attaching an 'f' character ("flatten") to the width number will cause the region to be filled with the average of adjacent blocks rather than grayed out. If the wipe region and the region outside the wipe region, when adjusted to the nearest iMCU boundary, form two horizontally adjacent rectangles, then attaching an 'r' character ("reflect") to the width number will cause the wipe region to be filled with repeated reflections of the outside region rather than grayed out. .PP A lossless drop option is also provided, which allows another JPEG image to be inserted ("dropped") into the input image data at a given position, replacing the existing image data at that position: .TP .B \-drop +X+Y filename Drop (insert) another image at point X,Y .PP Both the input image and the drop image must have the same subsampling level. It is best if they also have the same quantization (quality.) Otherwise, the quantization of the output image will be adapted to accommodate the higher of the input image quality and the drop image quality. The trim option can be used with the drop option to requantize the drop image to match the input image. Note that a grayscale image can be dropped into a full-color image or vice versa, as long as the full-color image has no vertical subsampling. If the input image is grayscale and the drop image is full-color, then the chrominance channels from the drop image will be discarded. .PP Other not-strictly-lossless transformation switches are: .TP .B \-grayscale Force grayscale output. .IP This option discards the chrominance channels if the input image is YCbCr (ie, a standard color JPEG), resulting in a grayscale JPEG file. The luminance channel is preserved exactly, so this is a better method of reducing to grayscale than decompression, conversion, and recompression. This switch is particularly handy for fixing a monochrome picture that was mistakenly encoded as a color JPEG. (In such a case, the space savings from getting rid of the near-empty chroma channels won't be large; but the decoding time for a grayscale JPEG is substantially less than that for a color JPEG.) .PP .B jpegtran also recognizes these switches that control what to do with "extra" markers, such as comment blocks: .TP .B \-copy none Copy no extra markers from source file. This setting suppresses all comments and other metadata in the source file. .TP .B \-copy comments Copy only comment markers. This setting copies comments from the source file but discards any other metadata. .TP .B \-copy icc Copy only ICC profile markers. This setting copies the ICC profile from the source file but discards any other metadata. .TP .B \-copy all Copy all extra markers. This setting preserves miscellaneous markers found in the source file, such as JFIF thumbnails, Exif data, and Photoshop settings. In some files, these extra markers can be sizable. Note that this option will copy thumbnails as-is; they will not be transformed. .PP The default behavior is \fB-copy comments\fR. (Note: in IJG releases v6 and v6a, \fBjpegtran\fR always did the equivalent of \fB-copy none\fR.) .PP Additional switches recognized by jpegtran are: .TP .BI \-icc " file" Embed ICC color management profile contained in the specified file. Note that this will cause \fBjpegtran\fR to ignore any APP2 markers in the input file, even if \fB-copy all\fR or \fB-copy icc\fR is specified. .TP .BI \-maxmemory " N" Set limit for amount of memory to use in processing large images. Value is in thousands of bytes, or millions of bytes if "M" is attached to the number. For example, .B \-max 4m selects 4000000 bytes. If more space is needed, an error will occur. .TP .BI \-maxscans " N" Abort if the input image contains more than .I N scans. This feature demonstrates a method by which applications can guard against denial-of-service attacks instigated by specially-crafted malformed JPEG images containing numerous scans with missing image data or image data consisting only of "EOB runs" (a feature of progressive JPEG images that allows potentially hundreds of thousands of adjoining zero-value pixels to be represented using only a few bytes.) Attempting to transform such malformed JPEG images can cause excessive CPU activity, since the decompressor must fully process each scan (even if the scan is corrupt) before it can proceed to the next scan. .TP .BI \-outfile " name" Send output image to the named file, not to standard output. .TP .BI \-report Report transformation progress. .TP .BI \-strict Treat all warnings as fatal. This feature also demonstrates a method by which applications can guard against attacks instigated by specially-crafted malformed JPEG images. Enabling this option will cause the decompressor to abort if the input image contains incomplete or corrupt image data. .TP .B \-verbose Enable debug printout. More .BR \-v 's give more output. Also, version information is printed at startup. .TP .B \-debug Same as .BR \-verbose . .TP .B \-version Print version information and exit. .SH EXAMPLES .LP This example converts a baseline JPEG file to progressive form: .IP .B jpegtran \-progressive .I foo.jpg .B > .I fooprog.jpg .PP This example rotates an image 90 degrees clockwise, discarding any unrotatable edge pixels: .IP .B jpegtran \-rot 90 -trim .I foo.jpg .B > .I foo90.jpg .SH ENVIRONMENT .TP .B JPEGMEM If this environment variable is set, its value is the default memory limit. The value is specified as described for the .B \-maxmemory switch. .B JPEGMEM overrides the default value specified when the program was compiled, and itself is overridden by an explicit .BR \-maxmemory . .SH SEE ALSO .BR cjpeg (1), .BR djpeg (1), .BR rdjpgcom (1), .BR wrjpgcom (1) .br Wallace, Gregory K. "The JPEG Still Picture Compression Standard", Communications of the ACM, April 1991 (vol. 34, no. 4), pp. 30-44. .SH AUTHOR Independent JPEG Group .PP This file was modified by The libjpeg-turbo Project to include only information relevant to libjpeg-turbo and to wordsmith certain sections. .SH BUGS The transform options can't transform odd-size images perfectly. Use .B \-trim or .B \-perfect if you don't like the results. .PP The entire image is read into memory and then written out again, even in cases where this isn't really necessary. Expect swapping on large images, especially when using the more complex transform options. libjpeg-turbo-2.1.5/jpegtran.c000066400000000000000000000603461436506551100162610ustar00rootroot00000000000000/* * jpegtran.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1995-2019, Thomas G. Lane, Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright (C) 2010, 2014, 2017, 2019-2022, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains a command-line user interface for JPEG transcoding. * It is very similar to cjpeg.c, and partly to djpeg.c, but provides * lossless transcoding between different JPEG file formats. It also * provides some lossless and sort-of-lossless transformations of JPEG data. */ #ifdef _MSC_VER #define _CRT_SECURE_NO_DEPRECATE #endif #include "cdjpeg.h" /* Common decls for cjpeg/djpeg applications */ #include "transupp.h" /* Support routines for jpegtran */ #include "jversion.h" /* for version message */ #include "jconfigint.h" /* * Argument-parsing code. * The switch parser is designed to be useful with DOS-style command line * syntax, ie, intermixed switches and file names, where only the switches * to the left of a given file name affect processing of that file. * The main program in this file doesn't actually use this capability... */ static const char *progname; /* program name for error messages */ static char *icc_filename; /* for -icc switch */ JDIMENSION max_scans; /* for -maxscans switch */ static char *outfilename; /* for -outfile switch */ static char *dropfilename; /* for -drop switch */ boolean report; /* for -report switch */ boolean strict; /* for -strict switch */ static JCOPY_OPTION copyoption; /* -copy switch */ static jpeg_transform_info transformoption; /* image transformation options */ LOCAL(void) usage(void) /* complain about bad command line */ { fprintf(stderr, "usage: %s [switches] ", progname); #ifdef TWO_FILE_COMMANDLINE fprintf(stderr, "inputfile outputfile\n"); #else fprintf(stderr, "[inputfile]\n"); #endif fprintf(stderr, "Switches (names may be abbreviated):\n"); fprintf(stderr, " -copy none Copy no extra markers from source file\n"); fprintf(stderr, " -copy comments Copy only comment markers (default)\n"); fprintf(stderr, " -copy icc Copy only ICC profile markers\n"); fprintf(stderr, " -copy all Copy all extra markers\n"); #ifdef ENTROPY_OPT_SUPPORTED fprintf(stderr, " -optimize Optimize Huffman table (smaller file, but slow compression)\n"); #endif #ifdef C_PROGRESSIVE_SUPPORTED fprintf(stderr, " -progressive Create progressive JPEG file\n"); #endif fprintf(stderr, "Switches for modifying the image:\n"); #if TRANSFORMS_SUPPORTED fprintf(stderr, " -crop WxH+X+Y Crop to a rectangular region\n"); fprintf(stderr, " -drop +X+Y filename Drop (insert) another image\n"); fprintf(stderr, " -flip [horizontal|vertical] Mirror image (left-right or top-bottom)\n"); fprintf(stderr, " -grayscale Reduce to grayscale (omit color data)\n"); fprintf(stderr, " -perfect Fail if there is non-transformable edge blocks\n"); fprintf(stderr, " -rotate [90|180|270] Rotate image (degrees clockwise)\n"); #endif #if TRANSFORMS_SUPPORTED fprintf(stderr, " -transpose Transpose image\n"); fprintf(stderr, " -transverse Transverse transpose image\n"); fprintf(stderr, " -trim Drop non-transformable edge blocks\n"); fprintf(stderr, " with -drop: Requantize drop file to match source file\n"); fprintf(stderr, " -wipe WxH+X+Y Wipe (gray out) a rectangular region\n"); #endif fprintf(stderr, "Switches for advanced users:\n"); #ifdef C_ARITH_CODING_SUPPORTED fprintf(stderr, " -arithmetic Use arithmetic coding\n"); #endif fprintf(stderr, " -icc FILE Embed ICC profile contained in FILE\n"); fprintf(stderr, " -restart N Set restart interval in rows, or in blocks with B\n"); fprintf(stderr, " -maxmemory N Maximum memory to use (in kbytes)\n"); fprintf(stderr, " -maxscans N Maximum number of scans to allow in input file\n"); fprintf(stderr, " -outfile name Specify name for output file\n"); fprintf(stderr, " -report Report transformation progress\n"); fprintf(stderr, " -strict Treat all warnings as fatal\n"); fprintf(stderr, " -verbose or -debug Emit debug output\n"); fprintf(stderr, " -version Print version information and exit\n"); fprintf(stderr, "Switches for wizards:\n"); #ifdef C_MULTISCAN_FILES_SUPPORTED fprintf(stderr, " -scans FILE Create multi-scan JPEG per script FILE\n"); #endif exit(EXIT_FAILURE); } LOCAL(void) select_transform(JXFORM_CODE transform) /* Silly little routine to detect multiple transform options, * which we can't handle. */ { #if TRANSFORMS_SUPPORTED if (transformoption.transform == JXFORM_NONE || transformoption.transform == transform) { transformoption.transform = transform; } else { fprintf(stderr, "%s: can only do one image transformation at a time\n", progname); usage(); } #else fprintf(stderr, "%s: sorry, image transformation was not compiled\n", progname); exit(EXIT_FAILURE); #endif } LOCAL(int) parse_switches(j_compress_ptr cinfo, int argc, char **argv, int last_file_arg_seen, boolean for_real) /* Parse optional switches. * Returns argv[] index of first file-name argument (== argc if none). * Any file names with indexes <= last_file_arg_seen are ignored; * they have presumably been processed in a previous iteration. * (Pass 0 for last_file_arg_seen on the first or only iteration.) * for_real is FALSE on the first (dummy) pass; we may skip any expensive * processing. */ { int argn; char *arg; boolean simple_progressive; char *scansarg = NULL; /* saves -scans parm if any */ /* Set up default JPEG parameters. */ simple_progressive = FALSE; icc_filename = NULL; max_scans = 0; outfilename = NULL; report = FALSE; strict = FALSE; copyoption = JCOPYOPT_DEFAULT; transformoption.transform = JXFORM_NONE; transformoption.perfect = FALSE; transformoption.trim = FALSE; transformoption.force_grayscale = FALSE; transformoption.crop = FALSE; transformoption.slow_hflip = FALSE; cinfo->err->trace_level = 0; /* Scan command line options, adjust parameters */ for (argn = 1; argn < argc; argn++) { arg = argv[argn]; if (*arg != '-') { /* Not a switch, must be a file name argument */ if (argn <= last_file_arg_seen) { outfilename = NULL; /* -outfile applies to just one input file */ continue; /* ignore this name if previously processed */ } break; /* else done parsing switches */ } arg++; /* advance past switch marker character */ if (keymatch(arg, "arithmetic", 1)) { /* Use arithmetic coding. */ #ifdef C_ARITH_CODING_SUPPORTED cinfo->arith_code = TRUE; #else fprintf(stderr, "%s: sorry, arithmetic coding not supported\n", progname); exit(EXIT_FAILURE); #endif } else if (keymatch(arg, "copy", 2)) { /* Select which extra markers to copy. */ if (++argn >= argc) /* advance to next argument */ usage(); if (keymatch(argv[argn], "none", 1)) { copyoption = JCOPYOPT_NONE; } else if (keymatch(argv[argn], "comments", 1)) { copyoption = JCOPYOPT_COMMENTS; } else if (keymatch(argv[argn], "icc", 1)) { copyoption = JCOPYOPT_ICC; } else if (keymatch(argv[argn], "all", 1)) { copyoption = JCOPYOPT_ALL; } else usage(); } else if (keymatch(arg, "crop", 2)) { /* Perform lossless cropping. */ #if TRANSFORMS_SUPPORTED if (++argn >= argc) /* advance to next argument */ usage(); if (transformoption.crop /* reject multiple crop/drop/wipe requests */ || !jtransform_parse_crop_spec(&transformoption, argv[argn])) { fprintf(stderr, "%s: bogus -crop argument '%s'\n", progname, argv[argn]); exit(EXIT_FAILURE); } #else select_transform(JXFORM_NONE); /* force an error */ #endif } else if (keymatch(arg, "drop", 2)) { #if TRANSFORMS_SUPPORTED if (++argn >= argc) /* advance to next argument */ usage(); if (transformoption.crop /* reject multiple crop/drop/wipe requests */ || !jtransform_parse_crop_spec(&transformoption, argv[argn]) || transformoption.crop_width_set != JCROP_UNSET || transformoption.crop_height_set != JCROP_UNSET) { fprintf(stderr, "%s: bogus -drop argument '%s'\n", progname, argv[argn]); exit(EXIT_FAILURE); } if (++argn >= argc) /* advance to next argument */ usage(); dropfilename = argv[argn]; select_transform(JXFORM_DROP); #else select_transform(JXFORM_NONE); /* force an error */ #endif } else if (keymatch(arg, "debug", 1) || keymatch(arg, "verbose", 1)) { /* Enable debug printouts. */ /* On first -d, print version identification */ static boolean printed_version = FALSE; if (!printed_version) { fprintf(stderr, "%s version %s (build %s)\n", PACKAGE_NAME, VERSION, BUILD); fprintf(stderr, "%s\n\n", JCOPYRIGHT); fprintf(stderr, "Emulating The Independent JPEG Group's software, version %s\n\n", JVERSION); printed_version = TRUE; } cinfo->err->trace_level++; } else if (keymatch(arg, "version", 4)) { fprintf(stderr, "%s version %s (build %s)\n", PACKAGE_NAME, VERSION, BUILD); exit(EXIT_SUCCESS); } else if (keymatch(arg, "flip", 1)) { /* Mirror left-right or top-bottom. */ if (++argn >= argc) /* advance to next argument */ usage(); if (keymatch(argv[argn], "horizontal", 1)) select_transform(JXFORM_FLIP_H); else if (keymatch(argv[argn], "vertical", 1)) select_transform(JXFORM_FLIP_V); else usage(); } else if (keymatch(arg, "grayscale", 1) || keymatch(arg, "greyscale", 1)) { /* Force to grayscale. */ #if TRANSFORMS_SUPPORTED transformoption.force_grayscale = TRUE; #else select_transform(JXFORM_NONE); /* force an error */ #endif } else if (keymatch(arg, "icc", 1)) { /* Set ICC filename. */ if (++argn >= argc) /* advance to next argument */ usage(); icc_filename = argv[argn]; } else if (keymatch(arg, "maxmemory", 3)) { /* Maximum memory in Kb (or Mb with 'm'). */ long lval; char ch = 'x'; if (++argn >= argc) /* advance to next argument */ usage(); if (sscanf(argv[argn], "%ld%c", &lval, &ch) < 1) usage(); if (ch == 'm' || ch == 'M') lval *= 1000L; cinfo->mem->max_memory_to_use = lval * 1000L; } else if (keymatch(arg, "maxscans", 4)) { if (++argn >= argc) /* advance to next argument */ usage(); if (sscanf(argv[argn], "%u", &max_scans) != 1) usage(); } else if (keymatch(arg, "optimize", 1) || keymatch(arg, "optimise", 1)) { /* Enable entropy parm optimization. */ #ifdef ENTROPY_OPT_SUPPORTED cinfo->optimize_coding = TRUE; #else fprintf(stderr, "%s: sorry, entropy optimization was not compiled\n", progname); exit(EXIT_FAILURE); #endif } else if (keymatch(arg, "outfile", 4)) { /* Set output file name. */ if (++argn >= argc) /* advance to next argument */ usage(); outfilename = argv[argn]; /* save it away for later use */ } else if (keymatch(arg, "perfect", 2)) { /* Fail if there is any partial edge MCUs that the transform can't * handle. */ transformoption.perfect = TRUE; } else if (keymatch(arg, "progressive", 2)) { /* Select simple progressive mode. */ #ifdef C_PROGRESSIVE_SUPPORTED simple_progressive = TRUE; /* We must postpone execution until num_components is known. */ #else fprintf(stderr, "%s: sorry, progressive output was not compiled\n", progname); exit(EXIT_FAILURE); #endif } else if (keymatch(arg, "report", 3)) { report = TRUE; } else if (keymatch(arg, "restart", 1)) { /* Restart interval in MCU rows (or in MCUs with 'b'). */ long lval; char ch = 'x'; if (++argn >= argc) /* advance to next argument */ usage(); if (sscanf(argv[argn], "%ld%c", &lval, &ch) < 1) usage(); if (lval < 0 || lval > 65535L) usage(); if (ch == 'b' || ch == 'B') { cinfo->restart_interval = (unsigned int)lval; cinfo->restart_in_rows = 0; /* else prior '-restart n' overrides me */ } else { cinfo->restart_in_rows = (int)lval; /* restart_interval will be computed during startup */ } } else if (keymatch(arg, "rotate", 2)) { /* Rotate 90, 180, or 270 degrees (measured clockwise). */ if (++argn >= argc) /* advance to next argument */ usage(); if (keymatch(argv[argn], "90", 2)) select_transform(JXFORM_ROT_90); else if (keymatch(argv[argn], "180", 3)) select_transform(JXFORM_ROT_180); else if (keymatch(argv[argn], "270", 3)) select_transform(JXFORM_ROT_270); else usage(); } else if (keymatch(arg, "scans", 1)) { /* Set scan script. */ #ifdef C_MULTISCAN_FILES_SUPPORTED if (++argn >= argc) /* advance to next argument */ usage(); scansarg = argv[argn]; /* We must postpone reading the file in case -progressive appears. */ #else fprintf(stderr, "%s: sorry, multi-scan output was not compiled\n", progname); exit(EXIT_FAILURE); #endif } else if (keymatch(arg, "strict", 2)) { strict = TRUE; } else if (keymatch(arg, "transpose", 1)) { /* Transpose (across UL-to-LR axis). */ select_transform(JXFORM_TRANSPOSE); } else if (keymatch(arg, "transverse", 6)) { /* Transverse transpose (across UR-to-LL axis). */ select_transform(JXFORM_TRANSVERSE); } else if (keymatch(arg, "trim", 3)) { /* Trim off any partial edge MCUs that the transform can't handle. */ transformoption.trim = TRUE; } else if (keymatch(arg, "wipe", 1)) { #if TRANSFORMS_SUPPORTED if (++argn >= argc) /* advance to next argument */ usage(); if (transformoption.crop /* reject multiple crop/drop/wipe requests */ || !jtransform_parse_crop_spec(&transformoption, argv[argn])) { fprintf(stderr, "%s: bogus -wipe argument '%s'\n", progname, argv[argn]); exit(EXIT_FAILURE); } select_transform(JXFORM_WIPE); #else select_transform(JXFORM_NONE); /* force an error */ #endif } else { usage(); /* bogus switch */ } } /* Post-switch-scanning cleanup */ if (for_real) { #ifdef C_PROGRESSIVE_SUPPORTED if (simple_progressive) /* process -progressive; -scans can override */ jpeg_simple_progression(cinfo); #endif #ifdef C_MULTISCAN_FILES_SUPPORTED if (scansarg != NULL) /* process -scans if it was present */ if (!read_scan_script(cinfo, scansarg)) usage(); #endif } return argn; /* return index of next arg (file name) */ } METHODDEF(void) my_emit_message(j_common_ptr cinfo, int msg_level) { if (msg_level < 0) { /* Treat warning as fatal */ cinfo->err->error_exit(cinfo); } else { if (cinfo->err->trace_level >= msg_level) cinfo->err->output_message(cinfo); } } /* * The main program. */ int main(int argc, char **argv) { struct jpeg_decompress_struct srcinfo; #if TRANSFORMS_SUPPORTED struct jpeg_decompress_struct dropinfo; struct jpeg_error_mgr jdroperr; FILE *drop_file; #endif struct jpeg_compress_struct dstinfo; struct jpeg_error_mgr jsrcerr, jdsterr; struct cdjpeg_progress_mgr src_progress, dst_progress; jvirt_barray_ptr *src_coef_arrays; jvirt_barray_ptr *dst_coef_arrays; int file_index; /* We assume all-in-memory processing and can therefore use only a * single file pointer for sequential input and output operation. */ FILE *fp; FILE *icc_file; JOCTET *icc_profile = NULL; long icc_len = 0; progname = argv[0]; if (progname == NULL || progname[0] == 0) progname = "jpegtran"; /* in case C library doesn't provide it */ /* Initialize the JPEG decompression object with default error handling. */ srcinfo.err = jpeg_std_error(&jsrcerr); jpeg_create_decompress(&srcinfo); /* Initialize the JPEG compression object with default error handling. */ dstinfo.err = jpeg_std_error(&jdsterr); jpeg_create_compress(&dstinfo); /* Scan command line to find file names. * It is convenient to use just one switch-parsing routine, but the switch * values read here are mostly ignored; we will rescan the switches after * opening the input file. Also note that most of the switches affect the * destination JPEG object, so we parse into that and then copy over what * needs to affect the source too. */ file_index = parse_switches(&dstinfo, argc, argv, 0, FALSE); jsrcerr.trace_level = jdsterr.trace_level; srcinfo.mem->max_memory_to_use = dstinfo.mem->max_memory_to_use; if (strict) jsrcerr.emit_message = my_emit_message; #ifdef TWO_FILE_COMMANDLINE /* Must have either -outfile switch or explicit output file name */ if (outfilename == NULL) { if (file_index != argc - 2) { fprintf(stderr, "%s: must name one input and one output file\n", progname); usage(); } outfilename = argv[file_index + 1]; } else { if (file_index != argc - 1) { fprintf(stderr, "%s: must name one input and one output file\n", progname); usage(); } } #else /* Unix style: expect zero or one file name */ if (file_index < argc - 1) { fprintf(stderr, "%s: only one input file\n", progname); usage(); } #endif /* TWO_FILE_COMMANDLINE */ /* Open the input file. */ if (file_index < argc) { if ((fp = fopen(argv[file_index], READ_BINARY)) == NULL) { fprintf(stderr, "%s: can't open %s for reading\n", progname, argv[file_index]); exit(EXIT_FAILURE); } } else { /* default input file is stdin */ fp = read_stdin(); } if (icc_filename != NULL) { if ((icc_file = fopen(icc_filename, READ_BINARY)) == NULL) { fprintf(stderr, "%s: can't open %s\n", progname, icc_filename); exit(EXIT_FAILURE); } if (fseek(icc_file, 0, SEEK_END) < 0 || (icc_len = ftell(icc_file)) < 1 || fseek(icc_file, 0, SEEK_SET) < 0) { fprintf(stderr, "%s: can't determine size of %s\n", progname, icc_filename); exit(EXIT_FAILURE); } if ((icc_profile = (JOCTET *)malloc(icc_len)) == NULL) { fprintf(stderr, "%s: can't allocate memory for ICC profile\n", progname); fclose(icc_file); exit(EXIT_FAILURE); } if (fread(icc_profile, icc_len, 1, icc_file) < 1) { fprintf(stderr, "%s: can't read ICC profile from %s\n", progname, icc_filename); free(icc_profile); fclose(icc_file); exit(EXIT_FAILURE); } fclose(icc_file); if (copyoption == JCOPYOPT_ALL) copyoption = JCOPYOPT_ALL_EXCEPT_ICC; if (copyoption == JCOPYOPT_ICC) copyoption = JCOPYOPT_NONE; } if (report) { start_progress_monitor((j_common_ptr)&dstinfo, &dst_progress); dst_progress.report = report; } if (report || max_scans != 0) { start_progress_monitor((j_common_ptr)&srcinfo, &src_progress); src_progress.report = report; src_progress.max_scans = max_scans; } #if TRANSFORMS_SUPPORTED /* Open the drop file. */ if (dropfilename != NULL) { if ((drop_file = fopen(dropfilename, READ_BINARY)) == NULL) { fprintf(stderr, "%s: can't open %s for reading\n", progname, dropfilename); exit(EXIT_FAILURE); } dropinfo.err = jpeg_std_error(&jdroperr); jpeg_create_decompress(&dropinfo); jpeg_stdio_src(&dropinfo, drop_file); } else { drop_file = NULL; } #endif /* Specify data source for decompression */ jpeg_stdio_src(&srcinfo, fp); /* Enable saving of extra markers that we want to copy */ jcopy_markers_setup(&srcinfo, copyoption); /* Read file header */ (void)jpeg_read_header(&srcinfo, TRUE); #if TRANSFORMS_SUPPORTED if (dropfilename != NULL) { (void)jpeg_read_header(&dropinfo, TRUE); transformoption.crop_width = dropinfo.image_width; transformoption.crop_width_set = JCROP_POS; transformoption.crop_height = dropinfo.image_height; transformoption.crop_height_set = JCROP_POS; transformoption.drop_ptr = &dropinfo; } #endif /* Any space needed by a transform option must be requested before * jpeg_read_coefficients so that memory allocation will be done right. */ #if TRANSFORMS_SUPPORTED /* Fail right away if -perfect is given and transformation is not perfect. */ if (!jtransform_request_workspace(&srcinfo, &transformoption)) { fprintf(stderr, "%s: transformation is not perfect\n", progname); exit(EXIT_FAILURE); } #endif /* Read source file as DCT coefficients */ src_coef_arrays = jpeg_read_coefficients(&srcinfo); #if TRANSFORMS_SUPPORTED if (dropfilename != NULL) { transformoption.drop_coef_arrays = jpeg_read_coefficients(&dropinfo); } #endif /* Initialize destination compression parameters from source values */ jpeg_copy_critical_parameters(&srcinfo, &dstinfo); /* Adjust destination parameters if required by transform options; * also find out which set of coefficient arrays will hold the output. */ #if TRANSFORMS_SUPPORTED dst_coef_arrays = jtransform_adjust_parameters(&srcinfo, &dstinfo, src_coef_arrays, &transformoption); #else dst_coef_arrays = src_coef_arrays; #endif /* Close input file, if we opened it. * Note: we assume that jpeg_read_coefficients consumed all input * until JPEG_REACHED_EOI, and that jpeg_finish_decompress will * only consume more while (!cinfo->inputctl->eoi_reached). * We cannot call jpeg_finish_decompress here since we still need the * virtual arrays allocated from the source object for processing. */ if (fp != stdin) fclose(fp); /* Open the output file. */ if (outfilename != NULL) { if ((fp = fopen(outfilename, WRITE_BINARY)) == NULL) { fprintf(stderr, "%s: can't open %s for writing\n", progname, outfilename); exit(EXIT_FAILURE); } } else { /* default output file is stdout */ fp = write_stdout(); } /* Adjust default compression parameters by re-parsing the options */ file_index = parse_switches(&dstinfo, argc, argv, 0, TRUE); /* Specify data destination for compression */ jpeg_stdio_dest(&dstinfo, fp); /* Start compressor (note no image data is actually written here) */ jpeg_write_coefficients(&dstinfo, dst_coef_arrays); /* Copy to the output file any extra markers that we want to preserve */ jcopy_markers_execute(&srcinfo, &dstinfo, copyoption); if (icc_profile != NULL) jpeg_write_icc_profile(&dstinfo, icc_profile, (unsigned int)icc_len); /* Execute image transformation, if any */ #if TRANSFORMS_SUPPORTED jtransform_execute_transformation(&srcinfo, &dstinfo, src_coef_arrays, &transformoption); #endif /* Finish compression and release memory */ jpeg_finish_compress(&dstinfo); jpeg_destroy_compress(&dstinfo); #if TRANSFORMS_SUPPORTED if (dropfilename != NULL) { (void)jpeg_finish_decompress(&dropinfo); jpeg_destroy_decompress(&dropinfo); } #endif (void)jpeg_finish_decompress(&srcinfo); jpeg_destroy_decompress(&srcinfo); /* Close output file, if we opened it */ if (fp != stdout) fclose(fp); #if TRANSFORMS_SUPPORTED if (drop_file != NULL) fclose(drop_file); #endif if (report) end_progress_monitor((j_common_ptr)&dstinfo); if (report || max_scans != 0) end_progress_monitor((j_common_ptr)&srcinfo); free(icc_profile); /* All done. */ #if TRANSFORMS_SUPPORTED if (dropfilename != NULL) exit(jsrcerr.num_warnings + jdroperr.num_warnings + jdsterr.num_warnings ? EXIT_WARNING : EXIT_SUCCESS); #endif exit(jsrcerr.num_warnings + jdsterr.num_warnings ? EXIT_WARNING : EXIT_SUCCESS); return 0; /* suppress no-return-value warnings */ } libjpeg-turbo-2.1.5/jquant1.c000066400000000000000000000766601436506551100160400ustar00rootroot00000000000000/* * jquant1.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1996, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2009, 2015, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains 1-pass color quantization (color mapping) routines. * These routines provide mapping to a fixed color map using equally spaced * color values. Optional Floyd-Steinberg or ordered dithering is available. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #ifdef QUANT_1PASS_SUPPORTED /* * The main purpose of 1-pass quantization is to provide a fast, if not very * high quality, colormapped output capability. A 2-pass quantizer usually * gives better visual quality; however, for quantized grayscale output this * quantizer is perfectly adequate. Dithering is highly recommended with this * quantizer, though you can turn it off if you really want to. * * In 1-pass quantization the colormap must be chosen in advance of seeing the * image. We use a map consisting of all combinations of Ncolors[i] color * values for the i'th component. The Ncolors[] values are chosen so that * their product, the total number of colors, is no more than that requested. * (In most cases, the product will be somewhat less.) * * Since the colormap is orthogonal, the representative value for each color * component can be determined without considering the other components; * then these indexes can be combined into a colormap index by a standard * N-dimensional-array-subscript calculation. Most of the arithmetic involved * can be precalculated and stored in the lookup table colorindex[]. * colorindex[i][j] maps pixel value j in component i to the nearest * representative value (grid plane) for that component; this index is * multiplied by the array stride for component i, so that the * index of the colormap entry closest to a given pixel value is just * sum( colorindex[component-number][pixel-component-value] ) * Aside from being fast, this scheme allows for variable spacing between * representative values with no additional lookup cost. * * If gamma correction has been applied in color conversion, it might be wise * to adjust the color grid spacing so that the representative colors are * equidistant in linear space. At this writing, gamma correction is not * implemented by jdcolor, so nothing is done here. */ /* Declarations for ordered dithering. * * We use a standard 16x16 ordered dither array. The basic concept of ordered * dithering is described in many references, for instance Dale Schumacher's * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991). * In place of Schumacher's comparisons against a "threshold" value, we add a * "dither" value to the input pixel and then round the result to the nearest * output value. The dither value is equivalent to (0.5 - threshold) times * the distance between output values. For ordered dithering, we assume that * the output colors are equally spaced; if not, results will probably be * worse, since the dither may be too much or too little at a given point. * * The normal calculation would be to form pixel value + dither, range-limit * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual. * We can skip the separate range-limiting step by extending the colorindex * table in both directions. */ #define ODITHER_SIZE 16 /* dimension of dither matrix */ /* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */ #define ODITHER_CELLS (ODITHER_SIZE * ODITHER_SIZE) /* # cells in matrix */ #define ODITHER_MASK (ODITHER_SIZE - 1) /* mask for wrapping around counters */ typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE]; typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE]; static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = { /* Bayer's order-4 dither array. Generated by the code given in * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I. * The values in this array must range from 0 to ODITHER_CELLS-1. */ { 0,192, 48,240, 12,204, 60,252, 3,195, 51,243, 15,207, 63,255 }, { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 }, { 32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 }, { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 }, { 8,200, 56,248, 4,196, 52,244, 11,203, 59,251, 7,199, 55,247 }, { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 }, { 40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 }, { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 }, { 2,194, 50,242, 14,206, 62,254, 1,193, 49,241, 13,205, 61,253 }, { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 }, { 34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 }, { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 }, { 10,202, 58,250, 6,198, 54,246, 9,201, 57,249, 5,197, 53,245 }, { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 }, { 42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 }, { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 } }; /* Declarations for Floyd-Steinberg dithering. * * Errors are accumulated into the array fserrors[], at a resolution of * 1/16th of a pixel count. The error at a given pixel is propagated * to its not-yet-processed neighbors using the standard F-S fractions, * ... (here) 7/16 * 3/16 5/16 1/16 * We work left-to-right on even rows, right-to-left on odd rows. * * We can get away with a single array (holding one row's worth of errors) * by using it to store the current row's errors at pixel columns not yet * processed, but the next row's errors at columns already processed. We * need only a few extra variables to hold the errors immediately around the * current column. (If we are lucky, those variables are in registers, but * even if not, they're probably cheaper to access than array elements are.) * * The fserrors[] array is indexed [component#][position]. * We provide (#columns + 2) entries per component; the extra entry at each * end saves us from special-casing the first and last pixels. */ #if BITS_IN_JSAMPLE == 8 typedef INT16 FSERROR; /* 16 bits should be enough */ typedef int LOCFSERROR; /* use 'int' for calculation temps */ #else typedef JLONG FSERROR; /* may need more than 16 bits */ typedef JLONG LOCFSERROR; /* be sure calculation temps are big enough */ #endif typedef FSERROR *FSERRPTR; /* pointer to error array */ /* Private subobject */ #define MAX_Q_COMPS 4 /* max components I can handle */ typedef struct { struct jpeg_color_quantizer pub; /* public fields */ /* Initially allocated colormap is saved here */ JSAMPARRAY sv_colormap; /* The color map as a 2-D pixel array */ int sv_actual; /* number of entries in use */ JSAMPARRAY colorindex; /* Precomputed mapping for speed */ /* colorindex[i][j] = index of color closest to pixel value j in component i, * premultiplied as described above. Since colormap indexes must fit into * JSAMPLEs, the entries of this array will too. */ boolean is_padded; /* is the colorindex padded for odither? */ int Ncolors[MAX_Q_COMPS]; /* # of values allocated to each component */ /* Variables for ordered dithering */ int row_index; /* cur row's vertical index in dither matrix */ ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */ /* Variables for Floyd-Steinberg dithering */ FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */ boolean on_odd_row; /* flag to remember which row we are on */ } my_cquantizer; typedef my_cquantizer *my_cquantize_ptr; /* * Policy-making subroutines for create_colormap and create_colorindex. * These routines determine the colormap to be used. The rest of the module * only assumes that the colormap is orthogonal. * * * select_ncolors decides how to divvy up the available colors * among the components. * * output_value defines the set of representative values for a component. * * largest_input_value defines the mapping from input values to * representative values for a component. * Note that the latter two routines may impose different policies for * different components, though this is not currently done. */ LOCAL(int) select_ncolors(j_decompress_ptr cinfo, int Ncolors[]) /* Determine allocation of desired colors to components, */ /* and fill in Ncolors[] array to indicate choice. */ /* Return value is total number of colors (product of Ncolors[] values). */ { int nc = cinfo->out_color_components; /* number of color components */ int max_colors = cinfo->desired_number_of_colors; int total_colors, iroot, i, j; boolean changed; long temp; int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE }; RGB_order[0] = rgb_green[cinfo->out_color_space]; RGB_order[1] = rgb_red[cinfo->out_color_space]; RGB_order[2] = rgb_blue[cinfo->out_color_space]; /* We can allocate at least the nc'th root of max_colors per component. */ /* Compute floor(nc'th root of max_colors). */ iroot = 1; do { iroot++; temp = iroot; /* set temp = iroot ** nc */ for (i = 1; i < nc; i++) temp *= iroot; } while (temp <= (long)max_colors); /* repeat till iroot exceeds root */ iroot--; /* now iroot = floor(root) */ /* Must have at least 2 color values per component */ if (iroot < 2) ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int)temp); /* Initialize to iroot color values for each component */ total_colors = 1; for (i = 0; i < nc; i++) { Ncolors[i] = iroot; total_colors *= iroot; } /* We may be able to increment the count for one or more components without * exceeding max_colors, though we know not all can be incremented. * Sometimes, the first component can be incremented more than once! * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.) * In RGB colorspace, try to increment G first, then R, then B. */ do { changed = FALSE; for (i = 0; i < nc; i++) { j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i); /* calculate new total_colors if Ncolors[j] is incremented */ temp = total_colors / Ncolors[j]; temp *= Ncolors[j] + 1; /* done in long arith to avoid oflo */ if (temp > (long)max_colors) break; /* won't fit, done with this pass */ Ncolors[j]++; /* OK, apply the increment */ total_colors = (int)temp; changed = TRUE; } } while (changed); return total_colors; } LOCAL(int) output_value(j_decompress_ptr cinfo, int ci, int j, int maxj) /* Return j'th output value, where j will range from 0 to maxj */ /* The output values must fall in 0..MAXJSAMPLE in increasing order */ { /* We always provide values 0 and MAXJSAMPLE for each component; * any additional values are equally spaced between these limits. * (Forcing the upper and lower values to the limits ensures that * dithering can't produce a color outside the selected gamut.) */ return (int)(((JLONG)j * MAXJSAMPLE + maxj / 2) / maxj); } LOCAL(int) largest_input_value(j_decompress_ptr cinfo, int ci, int j, int maxj) /* Return largest input value that should map to j'th output value */ /* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */ { /* Breakpoints are halfway between values returned by output_value */ return (int)(((JLONG)(2 * j + 1) * MAXJSAMPLE + maxj) / (2 * maxj)); } /* * Create the colormap. */ LOCAL(void) create_colormap(j_decompress_ptr cinfo) { my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize; JSAMPARRAY colormap; /* Created colormap */ int total_colors; /* Number of distinct output colors */ int i, j, k, nci, blksize, blkdist, ptr, val; /* Select number of colors for each component */ total_colors = select_ncolors(cinfo, cquantize->Ncolors); /* Report selected color counts */ if (cinfo->out_color_components == 3) TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS, total_colors, cquantize->Ncolors[0], cquantize->Ncolors[1], cquantize->Ncolors[2]); else TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors); /* Allocate and fill in the colormap. */ /* The colors are ordered in the map in standard row-major order, */ /* i.e. rightmost (highest-indexed) color changes most rapidly. */ colormap = (*cinfo->mem->alloc_sarray) ((j_common_ptr)cinfo, JPOOL_IMAGE, (JDIMENSION)total_colors, (JDIMENSION)cinfo->out_color_components); /* blksize is number of adjacent repeated entries for a component */ /* blkdist is distance between groups of identical entries for a component */ blkdist = total_colors; for (i = 0; i < cinfo->out_color_components; i++) { /* fill in colormap entries for i'th color component */ nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ blksize = blkdist / nci; for (j = 0; j < nci; j++) { /* Compute j'th output value (out of nci) for component */ val = output_value(cinfo, i, j, nci - 1); /* Fill in all colormap entries that have this value of this component */ for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) { /* fill in blksize entries beginning at ptr */ for (k = 0; k < blksize; k++) colormap[i][ptr + k] = (JSAMPLE)val; } } blkdist = blksize; /* blksize of this color is blkdist of next */ } /* Save the colormap in private storage, * where it will survive color quantization mode changes. */ cquantize->sv_colormap = colormap; cquantize->sv_actual = total_colors; } /* * Create the color index table. */ LOCAL(void) create_colorindex(j_decompress_ptr cinfo) { my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize; JSAMPROW indexptr; int i, j, k, nci, blksize, val, pad; /* For ordered dither, we pad the color index tables by MAXJSAMPLE in * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE). * This is not necessary in the other dithering modes. However, we * flag whether it was done in case user changes dithering mode. */ if (cinfo->dither_mode == JDITHER_ORDERED) { pad = MAXJSAMPLE * 2; cquantize->is_padded = TRUE; } else { pad = 0; cquantize->is_padded = FALSE; } cquantize->colorindex = (*cinfo->mem->alloc_sarray) ((j_common_ptr)cinfo, JPOOL_IMAGE, (JDIMENSION)(MAXJSAMPLE + 1 + pad), (JDIMENSION)cinfo->out_color_components); /* blksize is number of adjacent repeated entries for a component */ blksize = cquantize->sv_actual; for (i = 0; i < cinfo->out_color_components; i++) { /* fill in colorindex entries for i'th color component */ nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ blksize = blksize / nci; /* adjust colorindex pointers to provide padding at negative indexes. */ if (pad) cquantize->colorindex[i] += MAXJSAMPLE; /* in loop, val = index of current output value, */ /* and k = largest j that maps to current val */ indexptr = cquantize->colorindex[i]; val = 0; k = largest_input_value(cinfo, i, 0, nci - 1); for (j = 0; j <= MAXJSAMPLE; j++) { while (j > k) /* advance val if past boundary */ k = largest_input_value(cinfo, i, ++val, nci - 1); /* premultiply so that no multiplication needed in main processing */ indexptr[j] = (JSAMPLE)(val * blksize); } /* Pad at both ends if necessary */ if (pad) for (j = 1; j <= MAXJSAMPLE; j++) { indexptr[-j] = indexptr[0]; indexptr[MAXJSAMPLE + j] = indexptr[MAXJSAMPLE]; } } } /* * Create an ordered-dither array for a component having ncolors * distinct output values. */ LOCAL(ODITHER_MATRIX_PTR) make_odither_array(j_decompress_ptr cinfo, int ncolors) { ODITHER_MATRIX_PTR odither; int j, k; JLONG num, den; odither = (ODITHER_MATRIX_PTR) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, sizeof(ODITHER_MATRIX)); /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1). * Hence the dither value for the matrix cell with fill order f * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1). * On 16-bit-int machine, be careful to avoid overflow. */ den = 2 * ODITHER_CELLS * ((JLONG)(ncolors - 1)); for (j = 0; j < ODITHER_SIZE; j++) { for (k = 0; k < ODITHER_SIZE; k++) { num = ((JLONG)(ODITHER_CELLS - 1 - 2 * ((int)base_dither_matrix[j][k]))) * MAXJSAMPLE; /* Ensure round towards zero despite C's lack of consistency * about rounding negative values in integer division... */ odither[j][k] = (int)(num < 0 ? -((-num) / den) : num / den); } } return odither; } /* * Create the ordered-dither tables. * Components having the same number of representative colors may * share a dither table. */ LOCAL(void) create_odither_tables(j_decompress_ptr cinfo) { my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize; ODITHER_MATRIX_PTR odither; int i, j, nci; for (i = 0; i < cinfo->out_color_components; i++) { nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ odither = NULL; /* search for matching prior component */ for (j = 0; j < i; j++) { if (nci == cquantize->Ncolors[j]) { odither = cquantize->odither[j]; break; } } if (odither == NULL) /* need a new table? */ odither = make_odither_array(cinfo, nci); cquantize->odither[i] = odither; } } /* * Map some rows of pixels to the output colormapped representation. */ METHODDEF(void) color_quantize(j_decompress_ptr cinfo, JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) /* General case, no dithering */ { my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize; JSAMPARRAY colorindex = cquantize->colorindex; register int pixcode, ci; register JSAMPROW ptrin, ptrout; int row; JDIMENSION col; JDIMENSION width = cinfo->output_width; register int nc = cinfo->out_color_components; for (row = 0; row < num_rows; row++) { ptrin = input_buf[row]; ptrout = output_buf[row]; for (col = width; col > 0; col--) { pixcode = 0; for (ci = 0; ci < nc; ci++) { pixcode += colorindex[ci][*ptrin++]; } *ptrout++ = (JSAMPLE)pixcode; } } } METHODDEF(void) color_quantize3(j_decompress_ptr cinfo, JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) /* Fast path for out_color_components==3, no dithering */ { my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize; register int pixcode; register JSAMPROW ptrin, ptrout; JSAMPROW colorindex0 = cquantize->colorindex[0]; JSAMPROW colorindex1 = cquantize->colorindex[1]; JSAMPROW colorindex2 = cquantize->colorindex[2]; int row; JDIMENSION col; JDIMENSION width = cinfo->output_width; for (row = 0; row < num_rows; row++) { ptrin = input_buf[row]; ptrout = output_buf[row]; for (col = width; col > 0; col--) { pixcode = colorindex0[*ptrin++]; pixcode += colorindex1[*ptrin++]; pixcode += colorindex2[*ptrin++]; *ptrout++ = (JSAMPLE)pixcode; } } } METHODDEF(void) quantize_ord_dither(j_decompress_ptr cinfo, JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) /* General case, with ordered dithering */ { my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize; register JSAMPROW input_ptr; register JSAMPROW output_ptr; JSAMPROW colorindex_ci; int *dither; /* points to active row of dither matrix */ int row_index, col_index; /* current indexes into dither matrix */ int nc = cinfo->out_color_components; int ci; int row; JDIMENSION col; JDIMENSION width = cinfo->output_width; for (row = 0; row < num_rows; row++) { /* Initialize output values to 0 so can process components separately */ jzero_far((void *)output_buf[row], (size_t)(width * sizeof(JSAMPLE))); row_index = cquantize->row_index; for (ci = 0; ci < nc; ci++) { input_ptr = input_buf[row] + ci; output_ptr = output_buf[row]; colorindex_ci = cquantize->colorindex[ci]; dither = cquantize->odither[ci][row_index]; col_index = 0; for (col = width; col > 0; col--) { /* Form pixel value + dither, range-limit to 0..MAXJSAMPLE, * select output value, accumulate into output code for this pixel. * Range-limiting need not be done explicitly, as we have extended * the colorindex table to produce the right answers for out-of-range * inputs. The maximum dither is +- MAXJSAMPLE; this sets the * required amount of padding. */ *output_ptr += colorindex_ci[*input_ptr + dither[col_index]]; input_ptr += nc; output_ptr++; col_index = (col_index + 1) & ODITHER_MASK; } } /* Advance row index for next row */ row_index = (row_index + 1) & ODITHER_MASK; cquantize->row_index = row_index; } } METHODDEF(void) quantize3_ord_dither(j_decompress_ptr cinfo, JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) /* Fast path for out_color_components==3, with ordered dithering */ { my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize; register int pixcode; register JSAMPROW input_ptr; register JSAMPROW output_ptr; JSAMPROW colorindex0 = cquantize->colorindex[0]; JSAMPROW colorindex1 = cquantize->colorindex[1]; JSAMPROW colorindex2 = cquantize->colorindex[2]; int *dither0; /* points to active row of dither matrix */ int *dither1; int *dither2; int row_index, col_index; /* current indexes into dither matrix */ int row; JDIMENSION col; JDIMENSION width = cinfo->output_width; for (row = 0; row < num_rows; row++) { row_index = cquantize->row_index; input_ptr = input_buf[row]; output_ptr = output_buf[row]; dither0 = cquantize->odither[0][row_index]; dither1 = cquantize->odither[1][row_index]; dither2 = cquantize->odither[2][row_index]; col_index = 0; for (col = width; col > 0; col--) { pixcode = colorindex0[(*input_ptr++) + dither0[col_index]]; pixcode += colorindex1[(*input_ptr++) + dither1[col_index]]; pixcode += colorindex2[(*input_ptr++) + dither2[col_index]]; *output_ptr++ = (JSAMPLE)pixcode; col_index = (col_index + 1) & ODITHER_MASK; } row_index = (row_index + 1) & ODITHER_MASK; cquantize->row_index = row_index; } } METHODDEF(void) quantize_fs_dither(j_decompress_ptr cinfo, JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) /* General case, with Floyd-Steinberg dithering */ { my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize; register LOCFSERROR cur; /* current error or pixel value */ LOCFSERROR belowerr; /* error for pixel below cur */ LOCFSERROR bpreverr; /* error for below/prev col */ LOCFSERROR bnexterr; /* error for below/next col */ LOCFSERROR delta; register FSERRPTR errorptr; /* => fserrors[] at column before current */ register JSAMPROW input_ptr; register JSAMPROW output_ptr; JSAMPROW colorindex_ci; JSAMPROW colormap_ci; int pixcode; int nc = cinfo->out_color_components; int dir; /* 1 for left-to-right, -1 for right-to-left */ int dirnc; /* dir * nc */ int ci; int row; JDIMENSION col; JDIMENSION width = cinfo->output_width; JSAMPLE *range_limit = cinfo->sample_range_limit; SHIFT_TEMPS for (row = 0; row < num_rows; row++) { /* Initialize output values to 0 so can process components separately */ jzero_far((void *)output_buf[row], (size_t)(width * sizeof(JSAMPLE))); for (ci = 0; ci < nc; ci++) { input_ptr = input_buf[row] + ci; output_ptr = output_buf[row]; if (cquantize->on_odd_row) { /* work right to left in this row */ input_ptr += (width - 1) * nc; /* so point to rightmost pixel */ output_ptr += width - 1; dir = -1; dirnc = -nc; errorptr = cquantize->fserrors[ci] + (width + 1); /* => entry after last column */ } else { /* work left to right in this row */ dir = 1; dirnc = nc; errorptr = cquantize->fserrors[ci]; /* => entry before first column */ } colorindex_ci = cquantize->colorindex[ci]; colormap_ci = cquantize->sv_colormap[ci]; /* Preset error values: no error propagated to first pixel from left */ cur = 0; /* and no error propagated to row below yet */ belowerr = bpreverr = 0; for (col = width; col > 0; col--) { /* cur holds the error propagated from the previous pixel on the * current line. Add the error propagated from the previous line * to form the complete error correction term for this pixel, and * round the error term (which is expressed * 16) to an integer. * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct * for either sign of the error value. * Note: errorptr points to *previous* column's array entry. */ cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4); /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE. * The maximum error is +- MAXJSAMPLE; this sets the required size * of the range_limit array. */ cur += *input_ptr; cur = range_limit[cur]; /* Select output value, accumulate into output code for this pixel */ pixcode = colorindex_ci[cur]; *output_ptr += (JSAMPLE)pixcode; /* Compute actual representation error at this pixel */ /* Note: we can do this even though we don't have the final */ /* pixel code, because the colormap is orthogonal. */ cur -= colormap_ci[pixcode]; /* Compute error fractions to be propagated to adjacent pixels. * Add these into the running sums, and simultaneously shift the * next-line error sums left by 1 column. */ bnexterr = cur; delta = cur * 2; cur += delta; /* form error * 3 */ errorptr[0] = (FSERROR)(bpreverr + cur); cur += delta; /* form error * 5 */ bpreverr = belowerr + cur; belowerr = bnexterr; cur += delta; /* form error * 7 */ /* At this point cur contains the 7/16 error value to be propagated * to the next pixel on the current line, and all the errors for the * next line have been shifted over. We are therefore ready to move on. */ input_ptr += dirnc; /* advance input ptr to next column */ output_ptr += dir; /* advance output ptr to next column */ errorptr += dir; /* advance errorptr to current column */ } /* Post-loop cleanup: we must unload the final error value into the * final fserrors[] entry. Note we need not unload belowerr because * it is for the dummy column before or after the actual array. */ errorptr[0] = (FSERROR)bpreverr; /* unload prev err into array */ } cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE); } } /* * Allocate workspace for Floyd-Steinberg errors. */ LOCAL(void) alloc_fs_workspace(j_decompress_ptr cinfo) { my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize; size_t arraysize; int i; arraysize = (size_t)((cinfo->output_width + 2) * sizeof(FSERROR)); for (i = 0; i < cinfo->out_color_components; i++) { cquantize->fserrors[i] = (FSERRPTR) (*cinfo->mem->alloc_large) ((j_common_ptr)cinfo, JPOOL_IMAGE, arraysize); } } /* * Initialize for one-pass color quantization. */ METHODDEF(void) start_pass_1_quant(j_decompress_ptr cinfo, boolean is_pre_scan) { my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize; size_t arraysize; int i; /* Install my colormap. */ cinfo->colormap = cquantize->sv_colormap; cinfo->actual_number_of_colors = cquantize->sv_actual; /* Initialize for desired dithering mode. */ switch (cinfo->dither_mode) { case JDITHER_NONE: if (cinfo->out_color_components == 3) cquantize->pub.color_quantize = color_quantize3; else cquantize->pub.color_quantize = color_quantize; break; case JDITHER_ORDERED: if (cinfo->out_color_components == 3) cquantize->pub.color_quantize = quantize3_ord_dither; else cquantize->pub.color_quantize = quantize_ord_dither; cquantize->row_index = 0; /* initialize state for ordered dither */ /* If user changed to ordered dither from another mode, * we must recreate the color index table with padding. * This will cost extra space, but probably isn't very likely. */ if (!cquantize->is_padded) create_colorindex(cinfo); /* Create ordered-dither tables if we didn't already. */ if (cquantize->odither[0] == NULL) create_odither_tables(cinfo); break; case JDITHER_FS: cquantize->pub.color_quantize = quantize_fs_dither; cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */ /* Allocate Floyd-Steinberg workspace if didn't already. */ if (cquantize->fserrors[0] == NULL) alloc_fs_workspace(cinfo); /* Initialize the propagated errors to zero. */ arraysize = (size_t)((cinfo->output_width + 2) * sizeof(FSERROR)); for (i = 0; i < cinfo->out_color_components; i++) jzero_far((void *)cquantize->fserrors[i], arraysize); break; default: ERREXIT(cinfo, JERR_NOT_COMPILED); break; } } /* * Finish up at the end of the pass. */ METHODDEF(void) finish_pass_1_quant(j_decompress_ptr cinfo) { /* no work in 1-pass case */ } /* * Switch to a new external colormap between output passes. * Shouldn't get to this module! */ METHODDEF(void) new_color_map_1_quant(j_decompress_ptr cinfo) { ERREXIT(cinfo, JERR_MODE_CHANGE); } /* * Module initialization routine for 1-pass color quantization. */ GLOBAL(void) jinit_1pass_quantizer(j_decompress_ptr cinfo) { my_cquantize_ptr cquantize; cquantize = (my_cquantize_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, sizeof(my_cquantizer)); cinfo->cquantize = (struct jpeg_color_quantizer *)cquantize; cquantize->pub.start_pass = start_pass_1_quant; cquantize->pub.finish_pass = finish_pass_1_quant; cquantize->pub.new_color_map = new_color_map_1_quant; cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */ cquantize->odither[0] = NULL; /* Also flag odither arrays not allocated */ /* Make sure my internal arrays won't overflow */ if (cinfo->out_color_components > MAX_Q_COMPS) ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS); /* Make sure colormap indexes can be represented by JSAMPLEs */ if (cinfo->desired_number_of_colors > (MAXJSAMPLE + 1)) ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE + 1); /* Create the colormap and color index table. */ create_colormap(cinfo); create_colorindex(cinfo); /* Allocate Floyd-Steinberg workspace now if requested. * We do this now since it may affect the memory manager's space * calculations. If the user changes to FS dither mode in a later pass, we * will allocate the space then, and will possibly overrun the * max_memory_to_use setting. */ if (cinfo->dither_mode == JDITHER_FS) alloc_fs_workspace(cinfo); } #endif /* QUANT_1PASS_SUPPORTED */ libjpeg-turbo-2.1.5/jquant2.c000066400000000000000000001371061436506551100160320ustar00rootroot00000000000000/* * jquant2.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1996, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2009, 2014-2015, 2020, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains 2-pass color quantization (color mapping) routines. * These routines provide selection of a custom color map for an image, * followed by mapping of the image to that color map, with optional * Floyd-Steinberg dithering. * It is also possible to use just the second pass to map to an arbitrary * externally-given color map. * * Note: ordered dithering is not supported, since there isn't any fast * way to compute intercolor distances; it's unclear that ordered dither's * fundamental assumptions even hold with an irregularly spaced color map. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #ifdef QUANT_2PASS_SUPPORTED /* * This module implements the well-known Heckbert paradigm for color * quantization. Most of the ideas used here can be traced back to * Heckbert's seminal paper * Heckbert, Paul. "Color Image Quantization for Frame Buffer Display", * Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304. * * In the first pass over the image, we accumulate a histogram showing the * usage count of each possible color. To keep the histogram to a reasonable * size, we reduce the precision of the input; typical practice is to retain * 5 or 6 bits per color, so that 8 or 4 different input values are counted * in the same histogram cell. * * Next, the color-selection step begins with a box representing the whole * color space, and repeatedly splits the "largest" remaining box until we * have as many boxes as desired colors. Then the mean color in each * remaining box becomes one of the possible output colors. * * The second pass over the image maps each input pixel to the closest output * color (optionally after applying a Floyd-Steinberg dithering correction). * This mapping is logically trivial, but making it go fast enough requires * considerable care. * * Heckbert-style quantizers vary a good deal in their policies for choosing * the "largest" box and deciding where to cut it. The particular policies * used here have proved out well in experimental comparisons, but better ones * may yet be found. * * In earlier versions of the IJG code, this module quantized in YCbCr color * space, processing the raw upsampled data without a color conversion step. * This allowed the color conversion math to be done only once per colormap * entry, not once per pixel. However, that optimization precluded other * useful optimizations (such as merging color conversion with upsampling) * and it also interfered with desired capabilities such as quantizing to an * externally-supplied colormap. We have therefore abandoned that approach. * The present code works in the post-conversion color space, typically RGB. * * To improve the visual quality of the results, we actually work in scaled * RGB space, giving G distances more weight than R, and R in turn more than * B. To do everything in integer math, we must use integer scale factors. * The 2/3/1 scale factors used here correspond loosely to the relative * weights of the colors in the NTSC grayscale equation. * If you want to use this code to quantize a non-RGB color space, you'll * probably need to change these scale factors. */ #define R_SCALE 2 /* scale R distances by this much */ #define G_SCALE 3 /* scale G distances by this much */ #define B_SCALE 1 /* and B by this much */ static const int c_scales[3] = { R_SCALE, G_SCALE, B_SCALE }; #define C0_SCALE c_scales[rgb_red[cinfo->out_color_space]] #define C1_SCALE c_scales[rgb_green[cinfo->out_color_space]] #define C2_SCALE c_scales[rgb_blue[cinfo->out_color_space]] /* * First we have the histogram data structure and routines for creating it. * * The number of bits of precision can be adjusted by changing these symbols. * We recommend keeping 6 bits for G and 5 each for R and B. * If you have plenty of memory and cycles, 6 bits all around gives marginally * better results; if you are short of memory, 5 bits all around will save * some space but degrade the results. * To maintain a fully accurate histogram, we'd need to allocate a "long" * (preferably unsigned long) for each cell. In practice this is overkill; * we can get by with 16 bits per cell. Few of the cell counts will overflow, * and clamping those that do overflow to the maximum value will give close- * enough results. This reduces the recommended histogram size from 256Kb * to 128Kb, which is a useful savings on PC-class machines. * (In the second pass the histogram space is re-used for pixel mapping data; * in that capacity, each cell must be able to store zero to the number of * desired colors. 16 bits/cell is plenty for that too.) * Since the JPEG code is intended to run in small memory model on 80x86 * machines, we can't just allocate the histogram in one chunk. Instead * of a true 3-D array, we use a row of pointers to 2-D arrays. Each * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries. */ #define MAXNUMCOLORS (MAXJSAMPLE + 1) /* maximum size of colormap */ /* These will do the right thing for either R,G,B or B,G,R color order, * but you may not like the results for other color orders. */ #define HIST_C0_BITS 5 /* bits of precision in R/B histogram */ #define HIST_C1_BITS 6 /* bits of precision in G histogram */ #define HIST_C2_BITS 5 /* bits of precision in B/R histogram */ /* Number of elements along histogram axes. */ #define HIST_C0_ELEMS (1 << HIST_C0_BITS) #define HIST_C1_ELEMS (1 << HIST_C1_BITS) #define HIST_C2_ELEMS (1 << HIST_C2_BITS) /* These are the amounts to shift an input value to get a histogram index. */ #define C0_SHIFT (BITS_IN_JSAMPLE - HIST_C0_BITS) #define C1_SHIFT (BITS_IN_JSAMPLE - HIST_C1_BITS) #define C2_SHIFT (BITS_IN_JSAMPLE - HIST_C2_BITS) typedef UINT16 histcell; /* histogram cell; prefer an unsigned type */ typedef histcell *histptr; /* for pointers to histogram cells */ typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */ typedef hist1d *hist2d; /* type for the 2nd-level pointers */ typedef hist2d *hist3d; /* type for top-level pointer */ /* Declarations for Floyd-Steinberg dithering. * * Errors are accumulated into the array fserrors[], at a resolution of * 1/16th of a pixel count. The error at a given pixel is propagated * to its not-yet-processed neighbors using the standard F-S fractions, * ... (here) 7/16 * 3/16 5/16 1/16 * We work left-to-right on even rows, right-to-left on odd rows. * * We can get away with a single array (holding one row's worth of errors) * by using it to store the current row's errors at pixel columns not yet * processed, but the next row's errors at columns already processed. We * need only a few extra variables to hold the errors immediately around the * current column. (If we are lucky, those variables are in registers, but * even if not, they're probably cheaper to access than array elements are.) * * The fserrors[] array has (#columns + 2) entries; the extra entry at * each end saves us from special-casing the first and last pixels. * Each entry is three values long, one value for each color component. */ #if BITS_IN_JSAMPLE == 8 typedef INT16 FSERROR; /* 16 bits should be enough */ typedef int LOCFSERROR; /* use 'int' for calculation temps */ #else typedef JLONG FSERROR; /* may need more than 16 bits */ typedef JLONG LOCFSERROR; /* be sure calculation temps are big enough */ #endif typedef FSERROR *FSERRPTR; /* pointer to error array */ /* Private subobject */ typedef struct { struct jpeg_color_quantizer pub; /* public fields */ /* Space for the eventually created colormap is stashed here */ JSAMPARRAY sv_colormap; /* colormap allocated at init time */ int desired; /* desired # of colors = size of colormap */ /* Variables for accumulating image statistics */ hist3d histogram; /* pointer to the histogram */ boolean needs_zeroed; /* TRUE if next pass must zero histogram */ /* Variables for Floyd-Steinberg dithering */ FSERRPTR fserrors; /* accumulated errors */ boolean on_odd_row; /* flag to remember which row we are on */ int *error_limiter; /* table for clamping the applied error */ } my_cquantizer; typedef my_cquantizer *my_cquantize_ptr; /* * Prescan some rows of pixels. * In this module the prescan simply updates the histogram, which has been * initialized to zeroes by start_pass. * An output_buf parameter is required by the method signature, but no data * is actually output (in fact the buffer controller is probably passing a * NULL pointer). */ METHODDEF(void) prescan_quantize(j_decompress_ptr cinfo, JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) { my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize; register JSAMPROW ptr; register histptr histp; register hist3d histogram = cquantize->histogram; int row; JDIMENSION col; JDIMENSION width = cinfo->output_width; for (row = 0; row < num_rows; row++) { ptr = input_buf[row]; for (col = width; col > 0; col--) { /* get pixel value and index into the histogram */ histp = &histogram[ptr[0] >> C0_SHIFT] [ptr[1] >> C1_SHIFT] [ptr[2] >> C2_SHIFT]; /* increment, check for overflow and undo increment if so. */ if (++(*histp) <= 0) (*histp)--; ptr += 3; } } } /* * Next we have the really interesting routines: selection of a colormap * given the completed histogram. * These routines work with a list of "boxes", each representing a rectangular * subset of the input color space (to histogram precision). */ typedef struct { /* The bounds of the box (inclusive); expressed as histogram indexes */ int c0min, c0max; int c1min, c1max; int c2min, c2max; /* The volume (actually 2-norm) of the box */ JLONG volume; /* The number of nonzero histogram cells within this box */ long colorcount; } box; typedef box *boxptr; LOCAL(boxptr) find_biggest_color_pop(boxptr boxlist, int numboxes) /* Find the splittable box with the largest color population */ /* Returns NULL if no splittable boxes remain */ { register boxptr boxp; register int i; register long maxc = 0; boxptr which = NULL; for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { if (boxp->colorcount > maxc && boxp->volume > 0) { which = boxp; maxc = boxp->colorcount; } } return which; } LOCAL(boxptr) find_biggest_volume(boxptr boxlist, int numboxes) /* Find the splittable box with the largest (scaled) volume */ /* Returns NULL if no splittable boxes remain */ { register boxptr boxp; register int i; register JLONG maxv = 0; boxptr which = NULL; for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { if (boxp->volume > maxv) { which = boxp; maxv = boxp->volume; } } return which; } LOCAL(void) update_box(j_decompress_ptr cinfo, boxptr boxp) /* Shrink the min/max bounds of a box to enclose only nonzero elements, */ /* and recompute its volume and population */ { my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize; hist3d histogram = cquantize->histogram; histptr histp; int c0, c1, c2; int c0min, c0max, c1min, c1max, c2min, c2max; JLONG dist0, dist1, dist2; long ccount; c0min = boxp->c0min; c0max = boxp->c0max; c1min = boxp->c1min; c1max = boxp->c1max; c2min = boxp->c2min; c2max = boxp->c2max; if (c0max > c0min) for (c0 = c0min; c0 <= c0max; c0++) for (c1 = c1min; c1 <= c1max; c1++) { histp = &histogram[c0][c1][c2min]; for (c2 = c2min; c2 <= c2max; c2++) if (*histp++ != 0) { boxp->c0min = c0min = c0; goto have_c0min; } } have_c0min: if (c0max > c0min) for (c0 = c0max; c0 >= c0min; c0--) for (c1 = c1min; c1 <= c1max; c1++) { histp = &histogram[c0][c1][c2min]; for (c2 = c2min; c2 <= c2max; c2++) if (*histp++ != 0) { boxp->c0max = c0max = c0; goto have_c0max; } } have_c0max: if (c1max > c1min) for (c1 = c1min; c1 <= c1max; c1++) for (c0 = c0min; c0 <= c0max; c0++) { histp = &histogram[c0][c1][c2min]; for (c2 = c2min; c2 <= c2max; c2++) if (*histp++ != 0) { boxp->c1min = c1min = c1; goto have_c1min; } } have_c1min: if (c1max > c1min) for (c1 = c1max; c1 >= c1min; c1--) for (c0 = c0min; c0 <= c0max; c0++) { histp = &histogram[c0][c1][c2min]; for (c2 = c2min; c2 <= c2max; c2++) if (*histp++ != 0) { boxp->c1max = c1max = c1; goto have_c1max; } } have_c1max: if (c2max > c2min) for (c2 = c2min; c2 <= c2max; c2++) for (c0 = c0min; c0 <= c0max; c0++) { histp = &histogram[c0][c1min][c2]; for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) if (*histp != 0) { boxp->c2min = c2min = c2; goto have_c2min; } } have_c2min: if (c2max > c2min) for (c2 = c2max; c2 >= c2min; c2--) for (c0 = c0min; c0 <= c0max; c0++) { histp = &histogram[c0][c1min][c2]; for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) if (*histp != 0) { boxp->c2max = c2max = c2; goto have_c2max; } } have_c2max: /* Update box volume. * We use 2-norm rather than real volume here; this biases the method * against making long narrow boxes, and it has the side benefit that * a box is splittable iff norm > 0. * Since the differences are expressed in histogram-cell units, * we have to shift back to JSAMPLE units to get consistent distances; * after which, we scale according to the selected distance scale factors. */ dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE; dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE; dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE; boxp->volume = dist0 * dist0 + dist1 * dist1 + dist2 * dist2; /* Now scan remaining volume of box and compute population */ ccount = 0; for (c0 = c0min; c0 <= c0max; c0++) for (c1 = c1min; c1 <= c1max; c1++) { histp = &histogram[c0][c1][c2min]; for (c2 = c2min; c2 <= c2max; c2++, histp++) if (*histp != 0) { ccount++; } } boxp->colorcount = ccount; } LOCAL(int) median_cut(j_decompress_ptr cinfo, boxptr boxlist, int numboxes, int desired_colors) /* Repeatedly select and split the largest box until we have enough boxes */ { int n, lb; int c0, c1, c2, cmax; register boxptr b1, b2; while (numboxes < desired_colors) { /* Select box to split. * Current algorithm: by population for first half, then by volume. */ if (numboxes * 2 <= desired_colors) { b1 = find_biggest_color_pop(boxlist, numboxes); } else { b1 = find_biggest_volume(boxlist, numboxes); } if (b1 == NULL) /* no splittable boxes left! */ break; b2 = &boxlist[numboxes]; /* where new box will go */ /* Copy the color bounds to the new box. */ b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max; b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min; /* Choose which axis to split the box on. * Current algorithm: longest scaled axis. * See notes in update_box about scaling distances. */ c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE; c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE; c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE; /* We want to break any ties in favor of green, then red, blue last. * This code does the right thing for R,G,B or B,G,R color orders only. */ if (rgb_red[cinfo->out_color_space] == 0) { cmax = c1; n = 1; if (c0 > cmax) { cmax = c0; n = 0; } if (c2 > cmax) { n = 2; } } else { cmax = c1; n = 1; if (c2 > cmax) { cmax = c2; n = 2; } if (c0 > cmax) { n = 0; } } /* Choose split point along selected axis, and update box bounds. * Current algorithm: split at halfway point. * (Since the box has been shrunk to minimum volume, * any split will produce two nonempty subboxes.) * Note that lb value is max for lower box, so must be < old max. */ switch (n) { case 0: lb = (b1->c0max + b1->c0min) / 2; b1->c0max = lb; b2->c0min = lb + 1; break; case 1: lb = (b1->c1max + b1->c1min) / 2; b1->c1max = lb; b2->c1min = lb + 1; break; case 2: lb = (b1->c2max + b1->c2min) / 2; b1->c2max = lb; b2->c2min = lb + 1; break; } /* Update stats for boxes */ update_box(cinfo, b1); update_box(cinfo, b2); numboxes++; } return numboxes; } LOCAL(void) compute_color(j_decompress_ptr cinfo, boxptr boxp, int icolor) /* Compute representative color for a box, put it in colormap[icolor] */ { /* Current algorithm: mean weighted by pixels (not colors) */ /* Note it is important to get the rounding correct! */ my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize; hist3d histogram = cquantize->histogram; histptr histp; int c0, c1, c2; int c0min, c0max, c1min, c1max, c2min, c2max; long count; long total = 0; long c0total = 0; long c1total = 0; long c2total = 0; c0min = boxp->c0min; c0max = boxp->c0max; c1min = boxp->c1min; c1max = boxp->c1max; c2min = boxp->c2min; c2max = boxp->c2max; for (c0 = c0min; c0 <= c0max; c0++) for (c1 = c1min; c1 <= c1max; c1++) { histp = &histogram[c0][c1][c2min]; for (c2 = c2min; c2 <= c2max; c2++) { if ((count = *histp++) != 0) { total += count; c0total += ((c0 << C0_SHIFT) + ((1 << C0_SHIFT) >> 1)) * count; c1total += ((c1 << C1_SHIFT) + ((1 << C1_SHIFT) >> 1)) * count; c2total += ((c2 << C2_SHIFT) + ((1 << C2_SHIFT) >> 1)) * count; } } } cinfo->colormap[0][icolor] = (JSAMPLE)((c0total + (total >> 1)) / total); cinfo->colormap[1][icolor] = (JSAMPLE)((c1total + (total >> 1)) / total); cinfo->colormap[2][icolor] = (JSAMPLE)((c2total + (total >> 1)) / total); } LOCAL(void) select_colors(j_decompress_ptr cinfo, int desired_colors) /* Master routine for color selection */ { boxptr boxlist; int numboxes; int i; /* Allocate workspace for box list */ boxlist = (boxptr)(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, desired_colors * sizeof(box)); /* Initialize one box containing whole space */ numboxes = 1; boxlist[0].c0min = 0; boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT; boxlist[0].c1min = 0; boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT; boxlist[0].c2min = 0; boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT; /* Shrink it to actually-used volume and set its statistics */ update_box(cinfo, &boxlist[0]); /* Perform median-cut to produce final box list */ numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors); /* Compute the representative color for each box, fill colormap */ for (i = 0; i < numboxes; i++) compute_color(cinfo, &boxlist[i], i); cinfo->actual_number_of_colors = numboxes; TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes); } /* * These routines are concerned with the time-critical task of mapping input * colors to the nearest color in the selected colormap. * * We re-use the histogram space as an "inverse color map", essentially a * cache for the results of nearest-color searches. All colors within a * histogram cell will be mapped to the same colormap entry, namely the one * closest to the cell's center. This may not be quite the closest entry to * the actual input color, but it's almost as good. A zero in the cache * indicates we haven't found the nearest color for that cell yet; the array * is cleared to zeroes before starting the mapping pass. When we find the * nearest color for a cell, its colormap index plus one is recorded in the * cache for future use. The pass2 scanning routines call fill_inverse_cmap * when they need to use an unfilled entry in the cache. * * Our method of efficiently finding nearest colors is based on the "locally * sorted search" idea described by Heckbert and on the incremental distance * calculation described by Spencer W. Thomas in chapter III.1 of Graphics * Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that * the distances from a given colormap entry to each cell of the histogram can * be computed quickly using an incremental method: the differences between * distances to adjacent cells themselves differ by a constant. This allows a * fairly fast implementation of the "brute force" approach of computing the * distance from every colormap entry to every histogram cell. Unfortunately, * it needs a work array to hold the best-distance-so-far for each histogram * cell (because the inner loop has to be over cells, not colormap entries). * The work array elements have to be JLONGs, so the work array would need * 256Kb at our recommended precision. This is not feasible in DOS machines. * * To get around these problems, we apply Thomas' method to compute the * nearest colors for only the cells within a small subbox of the histogram. * The work array need be only as big as the subbox, so the memory usage * problem is solved. Furthermore, we need not fill subboxes that are never * referenced in pass2; many images use only part of the color gamut, so a * fair amount of work is saved. An additional advantage of this * approach is that we can apply Heckbert's locality criterion to quickly * eliminate colormap entries that are far away from the subbox; typically * three-fourths of the colormap entries are rejected by Heckbert's criterion, * and we need not compute their distances to individual cells in the subbox. * The speed of this approach is heavily influenced by the subbox size: too * small means too much overhead, too big loses because Heckbert's criterion * can't eliminate as many colormap entries. Empirically the best subbox * size seems to be about 1/512th of the histogram (1/8th in each direction). * * Thomas' article also describes a refined method which is asymptotically * faster than the brute-force method, but it is also far more complex and * cannot efficiently be applied to small subboxes. It is therefore not * useful for programs intended to be portable to DOS machines. On machines * with plenty of memory, filling the whole histogram in one shot with Thomas' * refined method might be faster than the present code --- but then again, * it might not be any faster, and it's certainly more complicated. */ /* log2(histogram cells in update box) for each axis; this can be adjusted */ #define BOX_C0_LOG (HIST_C0_BITS - 3) #define BOX_C1_LOG (HIST_C1_BITS - 3) #define BOX_C2_LOG (HIST_C2_BITS - 3) #define BOX_C0_ELEMS (1 << BOX_C0_LOG) /* # of hist cells in update box */ #define BOX_C1_ELEMS (1 << BOX_C1_LOG) #define BOX_C2_ELEMS (1 << BOX_C2_LOG) #define BOX_C0_SHIFT (C0_SHIFT + BOX_C0_LOG) #define BOX_C1_SHIFT (C1_SHIFT + BOX_C1_LOG) #define BOX_C2_SHIFT (C2_SHIFT + BOX_C2_LOG) /* * The next three routines implement inverse colormap filling. They could * all be folded into one big routine, but splitting them up this way saves * some stack space (the mindist[] and bestdist[] arrays need not coexist) * and may allow some compilers to produce better code by registerizing more * inner-loop variables. */ LOCAL(int) find_nearby_colors(j_decompress_ptr cinfo, int minc0, int minc1, int minc2, JSAMPLE colorlist[]) /* Locate the colormap entries close enough to an update box to be candidates * for the nearest entry to some cell(s) in the update box. The update box * is specified by the center coordinates of its first cell. The number of * candidate colormap entries is returned, and their colormap indexes are * placed in colorlist[]. * This routine uses Heckbert's "locally sorted search" criterion to select * the colors that need further consideration. */ { int numcolors = cinfo->actual_number_of_colors; int maxc0, maxc1, maxc2; int centerc0, centerc1, centerc2; int i, x, ncolors; JLONG minmaxdist, min_dist, max_dist, tdist; JLONG mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */ /* Compute true coordinates of update box's upper corner and center. * Actually we compute the coordinates of the center of the upper-corner * histogram cell, which are the upper bounds of the volume we care about. * Note that since ">>" rounds down, the "center" values may be closer to * min than to max; hence comparisons to them must be "<=", not "<". */ maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT)); centerc0 = (minc0 + maxc0) >> 1; maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT)); centerc1 = (minc1 + maxc1) >> 1; maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT)); centerc2 = (minc2 + maxc2) >> 1; /* For each color in colormap, find: * 1. its minimum squared-distance to any point in the update box * (zero if color is within update box); * 2. its maximum squared-distance to any point in the update box. * Both of these can be found by considering only the corners of the box. * We save the minimum distance for each color in mindist[]; * only the smallest maximum distance is of interest. */ minmaxdist = 0x7FFFFFFFL; for (i = 0; i < numcolors; i++) { /* We compute the squared-c0-distance term, then add in the other two. */ x = cinfo->colormap[0][i]; if (x < minc0) { tdist = (x - minc0) * C0_SCALE; min_dist = tdist * tdist; tdist = (x - maxc0) * C0_SCALE; max_dist = tdist * tdist; } else if (x > maxc0) { tdist = (x - maxc0) * C0_SCALE; min_dist = tdist * tdist; tdist = (x - minc0) * C0_SCALE; max_dist = tdist * tdist; } else { /* within cell range so no contribution to min_dist */ min_dist = 0; if (x <= centerc0) { tdist = (x - maxc0) * C0_SCALE; max_dist = tdist * tdist; } else { tdist = (x - minc0) * C0_SCALE; max_dist = tdist * tdist; } } x = cinfo->colormap[1][i]; if (x < minc1) { tdist = (x - minc1) * C1_SCALE; min_dist += tdist * tdist; tdist = (x - maxc1) * C1_SCALE; max_dist += tdist * tdist; } else if (x > maxc1) { tdist = (x - maxc1) * C1_SCALE; min_dist += tdist * tdist; tdist = (x - minc1) * C1_SCALE; max_dist += tdist * tdist; } else { /* within cell range so no contribution to min_dist */ if (x <= centerc1) { tdist = (x - maxc1) * C1_SCALE; max_dist += tdist * tdist; } else { tdist = (x - minc1) * C1_SCALE; max_dist += tdist * tdist; } } x = cinfo->colormap[2][i]; if (x < minc2) { tdist = (x - minc2) * C2_SCALE; min_dist += tdist * tdist; tdist = (x - maxc2) * C2_SCALE; max_dist += tdist * tdist; } else if (x > maxc2) { tdist = (x - maxc2) * C2_SCALE; min_dist += tdist * tdist; tdist = (x - minc2) * C2_SCALE; max_dist += tdist * tdist; } else { /* within cell range so no contribution to min_dist */ if (x <= centerc2) { tdist = (x - maxc2) * C2_SCALE; max_dist += tdist * tdist; } else { tdist = (x - minc2) * C2_SCALE; max_dist += tdist * tdist; } } mindist[i] = min_dist; /* save away the results */ if (max_dist < minmaxdist) minmaxdist = max_dist; } /* Now we know that no cell in the update box is more than minmaxdist * away from some colormap entry. Therefore, only colors that are * within minmaxdist of some part of the box need be considered. */ ncolors = 0; for (i = 0; i < numcolors; i++) { if (mindist[i] <= minmaxdist) colorlist[ncolors++] = (JSAMPLE)i; } return ncolors; } LOCAL(void) find_best_colors(j_decompress_ptr cinfo, int minc0, int minc1, int minc2, int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[]) /* Find the closest colormap entry for each cell in the update box, * given the list of candidate colors prepared by find_nearby_colors. * Return the indexes of the closest entries in the bestcolor[] array. * This routine uses Thomas' incremental distance calculation method to * find the distance from a colormap entry to successive cells in the box. */ { int ic0, ic1, ic2; int i, icolor; register JLONG *bptr; /* pointer into bestdist[] array */ JSAMPLE *cptr; /* pointer into bestcolor[] array */ JLONG dist0, dist1; /* initial distance values */ register JLONG dist2; /* current distance in inner loop */ JLONG xx0, xx1; /* distance increments */ register JLONG xx2; JLONG inc0, inc1, inc2; /* initial values for increments */ /* This array holds the distance to the nearest-so-far color for each cell */ JLONG bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS]; /* Initialize best-distance for each cell of the update box */ bptr = bestdist; for (i = BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS - 1; i >= 0; i--) *bptr++ = 0x7FFFFFFFL; /* For each color selected by find_nearby_colors, * compute its distance to the center of each cell in the box. * If that's less than best-so-far, update best distance and color number. */ /* Nominal steps between cell centers ("x" in Thomas article) */ #define STEP_C0 ((1 << C0_SHIFT) * C0_SCALE) #define STEP_C1 ((1 << C1_SHIFT) * C1_SCALE) #define STEP_C2 ((1 << C2_SHIFT) * C2_SCALE) for (i = 0; i < numcolors; i++) { icolor = colorlist[i]; /* Compute (square of) distance from minc0/c1/c2 to this color */ inc0 = (minc0 - cinfo->colormap[0][icolor]) * C0_SCALE; dist0 = inc0 * inc0; inc1 = (minc1 - cinfo->colormap[1][icolor]) * C1_SCALE; dist0 += inc1 * inc1; inc2 = (minc2 - cinfo->colormap[2][icolor]) * C2_SCALE; dist0 += inc2 * inc2; /* Form the initial difference increments */ inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0; inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1; inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2; /* Now loop over all cells in box, updating distance per Thomas method */ bptr = bestdist; cptr = bestcolor; xx0 = inc0; for (ic0 = BOX_C0_ELEMS - 1; ic0 >= 0; ic0--) { dist1 = dist0; xx1 = inc1; for (ic1 = BOX_C1_ELEMS - 1; ic1 >= 0; ic1--) { dist2 = dist1; xx2 = inc2; for (ic2 = BOX_C2_ELEMS - 1; ic2 >= 0; ic2--) { if (dist2 < *bptr) { *bptr = dist2; *cptr = (JSAMPLE)icolor; } dist2 += xx2; xx2 += 2 * STEP_C2 * STEP_C2; bptr++; cptr++; } dist1 += xx1; xx1 += 2 * STEP_C1 * STEP_C1; } dist0 += xx0; xx0 += 2 * STEP_C0 * STEP_C0; } } } LOCAL(void) fill_inverse_cmap(j_decompress_ptr cinfo, int c0, int c1, int c2) /* Fill the inverse-colormap entries in the update box that contains */ /* histogram cell c0/c1/c2. (Only that one cell MUST be filled, but */ /* we can fill as many others as we wish.) */ { my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize; hist3d histogram = cquantize->histogram; int minc0, minc1, minc2; /* lower left corner of update box */ int ic0, ic1, ic2; register JSAMPLE *cptr; /* pointer into bestcolor[] array */ register histptr cachep; /* pointer into main cache array */ /* This array lists the candidate colormap indexes. */ JSAMPLE colorlist[MAXNUMCOLORS]; int numcolors; /* number of candidate colors */ /* This array holds the actually closest colormap index for each cell. */ JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS]; /* Convert cell coordinates to update box ID */ c0 >>= BOX_C0_LOG; c1 >>= BOX_C1_LOG; c2 >>= BOX_C2_LOG; /* Compute true coordinates of update box's origin corner. * Actually we compute the coordinates of the center of the corner * histogram cell, which are the lower bounds of the volume we care about. */ minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1); minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1); minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1); /* Determine which colormap entries are close enough to be candidates * for the nearest entry to some cell in the update box. */ numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist); /* Determine the actually nearest colors. */ find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist, bestcolor); /* Save the best color numbers (plus 1) in the main cache array */ c0 <<= BOX_C0_LOG; /* convert ID back to base cell indexes */ c1 <<= BOX_C1_LOG; c2 <<= BOX_C2_LOG; cptr = bestcolor; for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) { for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) { cachep = &histogram[c0 + ic0][c1 + ic1][c2]; for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) { *cachep++ = (histcell)((*cptr++) + 1); } } } } /* * Map some rows of pixels to the output colormapped representation. */ METHODDEF(void) pass2_no_dither(j_decompress_ptr cinfo, JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) /* This version performs no dithering */ { my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize; hist3d histogram = cquantize->histogram; register JSAMPROW inptr, outptr; register histptr cachep; register int c0, c1, c2; int row; JDIMENSION col; JDIMENSION width = cinfo->output_width; for (row = 0; row < num_rows; row++) { inptr = input_buf[row]; outptr = output_buf[row]; for (col = width; col > 0; col--) { /* get pixel value and index into the cache */ c0 = (*inptr++) >> C0_SHIFT; c1 = (*inptr++) >> C1_SHIFT; c2 = (*inptr++) >> C2_SHIFT; cachep = &histogram[c0][c1][c2]; /* If we have not seen this color before, find nearest colormap entry */ /* and update the cache */ if (*cachep == 0) fill_inverse_cmap(cinfo, c0, c1, c2); /* Now emit the colormap index for this cell */ *outptr++ = (JSAMPLE)(*cachep - 1); } } } METHODDEF(void) pass2_fs_dither(j_decompress_ptr cinfo, JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) /* This version performs Floyd-Steinberg dithering */ { my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize; hist3d histogram = cquantize->histogram; register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */ LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */ LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */ register FSERRPTR errorptr; /* => fserrors[] at column before current */ JSAMPROW inptr; /* => current input pixel */ JSAMPROW outptr; /* => current output pixel */ histptr cachep; int dir; /* +1 or -1 depending on direction */ int dir3; /* 3*dir, for advancing inptr & errorptr */ int row; JDIMENSION col; JDIMENSION width = cinfo->output_width; JSAMPLE *range_limit = cinfo->sample_range_limit; int *error_limit = cquantize->error_limiter; JSAMPROW colormap0 = cinfo->colormap[0]; JSAMPROW colormap1 = cinfo->colormap[1]; JSAMPROW colormap2 = cinfo->colormap[2]; SHIFT_TEMPS for (row = 0; row < num_rows; row++) { inptr = input_buf[row]; outptr = output_buf[row]; if (cquantize->on_odd_row) { /* work right to left in this row */ inptr += (width - 1) * 3; /* so point to rightmost pixel */ outptr += width - 1; dir = -1; dir3 = -3; errorptr = cquantize->fserrors + (width + 1) * 3; /* => entry after last column */ cquantize->on_odd_row = FALSE; /* flip for next time */ } else { /* work left to right in this row */ dir = 1; dir3 = 3; errorptr = cquantize->fserrors; /* => entry before first real column */ cquantize->on_odd_row = TRUE; /* flip for next time */ } /* Preset error values: no error propagated to first pixel from left */ cur0 = cur1 = cur2 = 0; /* and no error propagated to row below yet */ belowerr0 = belowerr1 = belowerr2 = 0; bpreverr0 = bpreverr1 = bpreverr2 = 0; for (col = width; col > 0; col--) { /* curN holds the error propagated from the previous pixel on the * current line. Add the error propagated from the previous line * to form the complete error correction term for this pixel, and * round the error term (which is expressed * 16) to an integer. * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct * for either sign of the error value. * Note: errorptr points to *previous* column's array entry. */ cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3 + 0] + 8, 4); cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3 + 1] + 8, 4); cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3 + 2] + 8, 4); /* Limit the error using transfer function set by init_error_limit. * See comments with init_error_limit for rationale. */ cur0 = error_limit[cur0]; cur1 = error_limit[cur1]; cur2 = error_limit[cur2]; /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE. * The maximum error is +- MAXJSAMPLE (or less with error limiting); * this sets the required size of the range_limit array. */ cur0 += inptr[0]; cur1 += inptr[1]; cur2 += inptr[2]; cur0 = range_limit[cur0]; cur1 = range_limit[cur1]; cur2 = range_limit[cur2]; /* Index into the cache with adjusted pixel value */ cachep = &histogram[cur0 >> C0_SHIFT][cur1 >> C1_SHIFT][cur2 >> C2_SHIFT]; /* If we have not seen this color before, find nearest colormap */ /* entry and update the cache */ if (*cachep == 0) fill_inverse_cmap(cinfo, cur0 >> C0_SHIFT, cur1 >> C1_SHIFT, cur2 >> C2_SHIFT); /* Now emit the colormap index for this cell */ { register int pixcode = *cachep - 1; *outptr = (JSAMPLE)pixcode; /* Compute representation error for this pixel */ cur0 -= colormap0[pixcode]; cur1 -= colormap1[pixcode]; cur2 -= colormap2[pixcode]; } /* Compute error fractions to be propagated to adjacent pixels. * Add these into the running sums, and simultaneously shift the * next-line error sums left by 1 column. */ { register LOCFSERROR bnexterr; bnexterr = cur0; /* Process component 0 */ errorptr[0] = (FSERROR)(bpreverr0 + cur0 * 3); bpreverr0 = belowerr0 + cur0 * 5; belowerr0 = bnexterr; cur0 *= 7; bnexterr = cur1; /* Process component 1 */ errorptr[1] = (FSERROR)(bpreverr1 + cur1 * 3); bpreverr1 = belowerr1 + cur1 * 5; belowerr1 = bnexterr; cur1 *= 7; bnexterr = cur2; /* Process component 2 */ errorptr[2] = (FSERROR)(bpreverr2 + cur2 * 3); bpreverr2 = belowerr2 + cur2 * 5; belowerr2 = bnexterr; cur2 *= 7; } /* At this point curN contains the 7/16 error value to be propagated * to the next pixel on the current line, and all the errors for the * next line have been shifted over. We are therefore ready to move on. */ inptr += dir3; /* Advance pixel pointers to next column */ outptr += dir; errorptr += dir3; /* advance errorptr to current column */ } /* Post-loop cleanup: we must unload the final error values into the * final fserrors[] entry. Note we need not unload belowerrN because * it is for the dummy column before or after the actual array. */ errorptr[0] = (FSERROR)bpreverr0; /* unload prev errs into array */ errorptr[1] = (FSERROR)bpreverr1; errorptr[2] = (FSERROR)bpreverr2; } } /* * Initialize the error-limiting transfer function (lookup table). * The raw F-S error computation can potentially compute error values of up to * +- MAXJSAMPLE. But we want the maximum correction applied to a pixel to be * much less, otherwise obviously wrong pixels will be created. (Typical * effects include weird fringes at color-area boundaries, isolated bright * pixels in a dark area, etc.) The standard advice for avoiding this problem * is to ensure that the "corners" of the color cube are allocated as output * colors; then repeated errors in the same direction cannot cause cascading * error buildup. However, that only prevents the error from getting * completely out of hand; Aaron Giles reports that error limiting improves * the results even with corner colors allocated. * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty * well, but the smoother transfer function used below is even better. Thanks * to Aaron Giles for this idea. */ LOCAL(void) init_error_limit(j_decompress_ptr cinfo) /* Allocate and fill in the error_limiter table */ { my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize; int *table; int in, out; table = (int *)(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, (MAXJSAMPLE * 2 + 1) * sizeof(int)); table += MAXJSAMPLE; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */ cquantize->error_limiter = table; #define STEPSIZE ((MAXJSAMPLE + 1) / 16) /* Map errors 1:1 up to +- MAXJSAMPLE/16 */ out = 0; for (in = 0; in < STEPSIZE; in++, out++) { table[in] = out; table[-in] = -out; } /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */ for (; in < STEPSIZE * 3; in++, out += (in & 1) ? 0 : 1) { table[in] = out; table[-in] = -out; } /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */ for (; in <= MAXJSAMPLE; in++) { table[in] = out; table[-in] = -out; } #undef STEPSIZE } /* * Finish up at the end of each pass. */ METHODDEF(void) finish_pass1(j_decompress_ptr cinfo) { my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize; /* Select the representative colors and fill in cinfo->colormap */ cinfo->colormap = cquantize->sv_colormap; select_colors(cinfo, cquantize->desired); /* Force next pass to zero the color index table */ cquantize->needs_zeroed = TRUE; } METHODDEF(void) finish_pass2(j_decompress_ptr cinfo) { /* no work */ } /* * Initialize for each processing pass. */ METHODDEF(void) start_pass_2_quant(j_decompress_ptr cinfo, boolean is_pre_scan) { my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize; hist3d histogram = cquantize->histogram; int i; /* Only F-S dithering or no dithering is supported. */ /* If user asks for ordered dither, give them F-S. */ if (cinfo->dither_mode != JDITHER_NONE) cinfo->dither_mode = JDITHER_FS; if (is_pre_scan) { /* Set up method pointers */ cquantize->pub.color_quantize = prescan_quantize; cquantize->pub.finish_pass = finish_pass1; cquantize->needs_zeroed = TRUE; /* Always zero histogram */ } else { /* Set up method pointers */ if (cinfo->dither_mode == JDITHER_FS) cquantize->pub.color_quantize = pass2_fs_dither; else cquantize->pub.color_quantize = pass2_no_dither; cquantize->pub.finish_pass = finish_pass2; /* Make sure color count is acceptable */ i = cinfo->actual_number_of_colors; if (i < 1) ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1); if (i > MAXNUMCOLORS) ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS); if (cinfo->dither_mode == JDITHER_FS) { size_t arraysize = (size_t)((cinfo->output_width + 2) * (3 * sizeof(FSERROR))); /* Allocate Floyd-Steinberg workspace if we didn't already. */ if (cquantize->fserrors == NULL) cquantize->fserrors = (FSERRPTR)(*cinfo->mem->alloc_large) ((j_common_ptr)cinfo, JPOOL_IMAGE, arraysize); /* Initialize the propagated errors to zero. */ jzero_far((void *)cquantize->fserrors, arraysize); /* Make the error-limit table if we didn't already. */ if (cquantize->error_limiter == NULL) init_error_limit(cinfo); cquantize->on_odd_row = FALSE; } } /* Zero the histogram or inverse color map, if necessary */ if (cquantize->needs_zeroed) { for (i = 0; i < HIST_C0_ELEMS; i++) { jzero_far((void *)histogram[i], HIST_C1_ELEMS * HIST_C2_ELEMS * sizeof(histcell)); } cquantize->needs_zeroed = FALSE; } } /* * Switch to a new external colormap between output passes. */ METHODDEF(void) new_color_map_2_quant(j_decompress_ptr cinfo) { my_cquantize_ptr cquantize = (my_cquantize_ptr)cinfo->cquantize; /* Reset the inverse color map */ cquantize->needs_zeroed = TRUE; } /* * Module initialization routine for 2-pass color quantization. */ GLOBAL(void) jinit_2pass_quantizer(j_decompress_ptr cinfo) { my_cquantize_ptr cquantize; int i; cquantize = (my_cquantize_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, sizeof(my_cquantizer)); cinfo->cquantize = (struct jpeg_color_quantizer *)cquantize; cquantize->pub.start_pass = start_pass_2_quant; cquantize->pub.new_color_map = new_color_map_2_quant; cquantize->fserrors = NULL; /* flag optional arrays not allocated */ cquantize->error_limiter = NULL; /* Make sure jdmaster didn't give me a case I can't handle */ if (cinfo->out_color_components != 3) ERREXIT(cinfo, JERR_NOTIMPL); /* Allocate the histogram/inverse colormap storage */ cquantize->histogram = (hist3d)(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * sizeof(hist2d)); for (i = 0; i < HIST_C0_ELEMS; i++) { cquantize->histogram[i] = (hist2d)(*cinfo->mem->alloc_large) ((j_common_ptr)cinfo, JPOOL_IMAGE, HIST_C1_ELEMS * HIST_C2_ELEMS * sizeof(histcell)); } cquantize->needs_zeroed = TRUE; /* histogram is garbage now */ /* Allocate storage for the completed colormap, if required. * We do this now since it may affect the memory manager's space * calculations. */ if (cinfo->enable_2pass_quant) { /* Make sure color count is acceptable */ int desired = cinfo->desired_number_of_colors; /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */ if (desired < 8) ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8); /* Make sure colormap indexes can be represented by JSAMPLEs */ if (desired > MAXNUMCOLORS) ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS); cquantize->sv_colormap = (*cinfo->mem->alloc_sarray) ((j_common_ptr)cinfo, JPOOL_IMAGE, (JDIMENSION)desired, (JDIMENSION)3); cquantize->desired = desired; } else cquantize->sv_colormap = NULL; /* Only F-S dithering or no dithering is supported. */ /* If user asks for ordered dither, give them F-S. */ if (cinfo->dither_mode != JDITHER_NONE) cinfo->dither_mode = JDITHER_FS; /* Allocate Floyd-Steinberg workspace if necessary. * This isn't really needed until pass 2, but again it may affect the memory * manager's space calculations. Although we will cope with a later change * in dither_mode, we do not promise to honor max_memory_to_use if * dither_mode changes. */ if (cinfo->dither_mode == JDITHER_FS) { cquantize->fserrors = (FSERRPTR)(*cinfo->mem->alloc_large) ((j_common_ptr)cinfo, JPOOL_IMAGE, (size_t)((cinfo->output_width + 2) * (3 * sizeof(FSERROR)))); /* Might as well create the error-limiting table too. */ init_error_limit(cinfo); } } #endif /* QUANT_2PASS_SUPPORTED */ libjpeg-turbo-2.1.5/jsimd.h000066400000000000000000000133531436506551100155560ustar00rootroot00000000000000/* * jsimd.h * * Copyright 2009 Pierre Ossman for Cendio AB * Copyright (C) 2011, 2014, 2022, D. R. Commander. * Copyright (C) 2015-2016, 2018, 2022, Matthieu Darbois. * Copyright (C) 2020, Arm Limited. * * Based on the x86 SIMD extension for IJG JPEG library, * Copyright (C) 1999-2006, MIYASAKA Masaru. * For conditions of distribution and use, see copyright notice in jsimdext.inc * */ #include "jchuff.h" /* Declarations shared with jcphuff.c */ EXTERN(int) jsimd_can_rgb_ycc(void); EXTERN(int) jsimd_can_rgb_gray(void); EXTERN(int) jsimd_can_ycc_rgb(void); EXTERN(int) jsimd_can_ycc_rgb565(void); EXTERN(int) jsimd_c_can_null_convert(void); EXTERN(void) jsimd_rgb_ycc_convert(j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_rgb_gray_convert(j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_ycc_rgb_convert(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_rgb565_convert(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_c_null_convert(j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(int) jsimd_can_h2v2_downsample(void); EXTERN(int) jsimd_can_h2v1_downsample(void); EXTERN(void) jsimd_h2v2_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY output_data); EXTERN(int) jsimd_can_h2v2_smooth_downsample(void); EXTERN(void) jsimd_h2v2_smooth_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY output_data); EXTERN(void) jsimd_h2v1_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY output_data); EXTERN(int) jsimd_can_h2v2_upsample(void); EXTERN(int) jsimd_can_h2v1_upsample(void); EXTERN(int) jsimd_can_int_upsample(void); EXTERN(void) jsimd_h2v2_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); EXTERN(void) jsimd_h2v1_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); EXTERN(void) jsimd_int_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); EXTERN(int) jsimd_can_h2v2_fancy_upsample(void); EXTERN(int) jsimd_can_h2v1_fancy_upsample(void); EXTERN(int) jsimd_can_h1v2_fancy_upsample(void); EXTERN(void) jsimd_h2v2_fancy_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); EXTERN(void) jsimd_h2v1_fancy_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); EXTERN(void) jsimd_h1v2_fancy_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); EXTERN(int) jsimd_can_h2v2_merged_upsample(void); EXTERN(int) jsimd_can_h2v1_merged_upsample(void); EXTERN(void) jsimd_h2v2_merged_upsample(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_merged_upsample(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(int) jsimd_can_huff_encode_one_block(void); EXTERN(JOCTET *) jsimd_huff_encode_one_block(void *state, JOCTET *buffer, JCOEFPTR block, int last_dc_val, c_derived_tbl *dctbl, c_derived_tbl *actbl); EXTERN(int) jsimd_can_encode_mcu_AC_first_prepare(void); EXTERN(void) jsimd_encode_mcu_AC_first_prepare (const JCOEF *block, const int *jpeg_natural_order_start, int Sl, int Al, UJCOEF *values, size_t *zerobits); EXTERN(int) jsimd_can_encode_mcu_AC_refine_prepare(void); EXTERN(int) jsimd_encode_mcu_AC_refine_prepare (const JCOEF *block, const int *jpeg_natural_order_start, int Sl, int Al, UJCOEF *absvalues, size_t *bits); libjpeg-turbo-2.1.5/jsimd_none.c000066400000000000000000000175621436506551100165760ustar00rootroot00000000000000/* * jsimd_none.c * * Copyright 2009 Pierre Ossman for Cendio AB * Copyright (C) 2009-2011, 2014, 2022, D. R. Commander. * Copyright (C) 2015-2016, 2018, 2022, Matthieu Darbois. * Copyright (C) 2020, Arm Limited. * * Based on the x86 SIMD extension for IJG JPEG library, * Copyright (C) 1999-2006, MIYASAKA Masaru. * For conditions of distribution and use, see copyright notice in jsimdext.inc * * This file contains stubs for when there is no SIMD support available. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "jsimd.h" #include "jdct.h" #include "jsimddct.h" GLOBAL(int) jsimd_can_rgb_ycc(void) { return 0; } GLOBAL(int) jsimd_can_rgb_gray(void) { return 0; } GLOBAL(int) jsimd_can_ycc_rgb(void) { return 0; } GLOBAL(int) jsimd_can_ycc_rgb565(void) { return 0; } GLOBAL(int) jsimd_c_can_null_convert(void) { return 0; } GLOBAL(void) jsimd_rgb_ycc_convert(j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { } GLOBAL(void) jsimd_rgb_gray_convert(j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { } GLOBAL(void) jsimd_ycc_rgb_convert(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { } GLOBAL(void) jsimd_ycc_rgb565_convert(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { } GLOBAL(void) jsimd_c_null_convert(j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { } GLOBAL(int) jsimd_can_h2v2_downsample(void) { return 0; } GLOBAL(int) jsimd_can_h2v1_downsample(void) { return 0; } GLOBAL(int) jsimd_can_h2v2_smooth_downsample(void) { return 0; } GLOBAL(void) jsimd_h2v2_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY output_data) { } GLOBAL(void) jsimd_h2v2_smooth_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY output_data) { } GLOBAL(void) jsimd_h2v1_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY output_data) { } GLOBAL(int) jsimd_can_h2v2_upsample(void) { return 0; } GLOBAL(int) jsimd_can_h2v1_upsample(void) { return 0; } GLOBAL(int) jsimd_can_int_upsample(void) { return 0; } GLOBAL(void) jsimd_int_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { } GLOBAL(void) jsimd_h2v2_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { } GLOBAL(void) jsimd_h2v1_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { } GLOBAL(int) jsimd_can_h2v2_fancy_upsample(void) { return 0; } GLOBAL(int) jsimd_can_h2v1_fancy_upsample(void) { return 0; } GLOBAL(int) jsimd_can_h1v2_fancy_upsample(void) { return 0; } GLOBAL(void) jsimd_h2v2_fancy_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { } GLOBAL(void) jsimd_h2v1_fancy_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { } GLOBAL(void) jsimd_h1v2_fancy_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { } GLOBAL(int) jsimd_can_h2v2_merged_upsample(void) { return 0; } GLOBAL(int) jsimd_can_h2v1_merged_upsample(void) { return 0; } GLOBAL(void) jsimd_h2v2_merged_upsample(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { } GLOBAL(void) jsimd_h2v1_merged_upsample(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { } GLOBAL(int) jsimd_can_convsamp(void) { return 0; } GLOBAL(int) jsimd_can_convsamp_float(void) { return 0; } GLOBAL(void) jsimd_convsamp(JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM *workspace) { } GLOBAL(void) jsimd_convsamp_float(JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT *workspace) { } GLOBAL(int) jsimd_can_fdct_islow(void) { return 0; } GLOBAL(int) jsimd_can_fdct_ifast(void) { return 0; } GLOBAL(int) jsimd_can_fdct_float(void) { return 0; } GLOBAL(void) jsimd_fdct_islow(DCTELEM *data) { } GLOBAL(void) jsimd_fdct_ifast(DCTELEM *data) { } GLOBAL(void) jsimd_fdct_float(FAST_FLOAT *data) { } GLOBAL(int) jsimd_can_quantize(void) { return 0; } GLOBAL(int) jsimd_can_quantize_float(void) { return 0; } GLOBAL(void) jsimd_quantize(JCOEFPTR coef_block, DCTELEM *divisors, DCTELEM *workspace) { } GLOBAL(void) jsimd_quantize_float(JCOEFPTR coef_block, FAST_FLOAT *divisors, FAST_FLOAT *workspace) { } GLOBAL(int) jsimd_can_idct_2x2(void) { return 0; } GLOBAL(int) jsimd_can_idct_4x4(void) { return 0; } GLOBAL(int) jsimd_can_idct_6x6(void) { return 0; } GLOBAL(int) jsimd_can_idct_12x12(void) { return 0; } GLOBAL(void) jsimd_idct_2x2(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { } GLOBAL(void) jsimd_idct_4x4(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { } GLOBAL(void) jsimd_idct_6x6(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { } GLOBAL(void) jsimd_idct_12x12(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { } GLOBAL(int) jsimd_can_idct_islow(void) { return 0; } GLOBAL(int) jsimd_can_idct_ifast(void) { return 0; } GLOBAL(int) jsimd_can_idct_float(void) { return 0; } GLOBAL(void) jsimd_idct_islow(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { } GLOBAL(void) jsimd_idct_ifast(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { } GLOBAL(void) jsimd_idct_float(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { } GLOBAL(int) jsimd_can_huff_encode_one_block(void) { return 0; } GLOBAL(JOCTET *) jsimd_huff_encode_one_block(void *state, JOCTET *buffer, JCOEFPTR block, int last_dc_val, c_derived_tbl *dctbl, c_derived_tbl *actbl) { return NULL; } GLOBAL(int) jsimd_can_encode_mcu_AC_first_prepare(void) { return 0; } GLOBAL(void) jsimd_encode_mcu_AC_first_prepare(const JCOEF *block, const int *jpeg_natural_order_start, int Sl, int Al, UJCOEF *values, size_t *zerobits) { } GLOBAL(int) jsimd_can_encode_mcu_AC_refine_prepare(void) { return 0; } GLOBAL(int) jsimd_encode_mcu_AC_refine_prepare(const JCOEF *block, const int *jpeg_natural_order_start, int Sl, int Al, UJCOEF *absvalues, size_t *bits) { return 0; } libjpeg-turbo-2.1.5/jsimddct.h000066400000000000000000000060151436506551100162460ustar00rootroot00000000000000/* * jsimddct.h * * Copyright 2009 Pierre Ossman for Cendio AB * * Based on the x86 SIMD extension for IJG JPEG library, * Copyright (C) 1999-2006, MIYASAKA Masaru. * For conditions of distribution and use, see copyright notice in jsimdext.inc * */ EXTERN(int) jsimd_can_convsamp(void); EXTERN(int) jsimd_can_convsamp_float(void); EXTERN(void) jsimd_convsamp(JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM *workspace); EXTERN(void) jsimd_convsamp_float(JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT *workspace); EXTERN(int) jsimd_can_fdct_islow(void); EXTERN(int) jsimd_can_fdct_ifast(void); EXTERN(int) jsimd_can_fdct_float(void); EXTERN(void) jsimd_fdct_islow(DCTELEM *data); EXTERN(void) jsimd_fdct_ifast(DCTELEM *data); EXTERN(void) jsimd_fdct_float(FAST_FLOAT *data); EXTERN(int) jsimd_can_quantize(void); EXTERN(int) jsimd_can_quantize_float(void); EXTERN(void) jsimd_quantize(JCOEFPTR coef_block, DCTELEM *divisors, DCTELEM *workspace); EXTERN(void) jsimd_quantize_float(JCOEFPTR coef_block, FAST_FLOAT *divisors, FAST_FLOAT *workspace); EXTERN(int) jsimd_can_idct_2x2(void); EXTERN(int) jsimd_can_idct_4x4(void); EXTERN(int) jsimd_can_idct_6x6(void); EXTERN(int) jsimd_can_idct_12x12(void); EXTERN(void) jsimd_idct_2x2(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jsimd_idct_4x4(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jsimd_idct_6x6(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jsimd_idct_12x12(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(int) jsimd_can_idct_islow(void); EXTERN(int) jsimd_can_idct_ifast(void); EXTERN(int) jsimd_can_idct_float(void); EXTERN(void) jsimd_idct_islow(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jsimd_idct_ifast(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jsimd_idct_float(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); libjpeg-turbo-2.1.5/jstdhuff.c000066400000000000000000000123111436506551100162510ustar00rootroot00000000000000/* * jstdhuff.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1998, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2013, 2022, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains routines to set the default Huffman tables, if they are * not already set. */ /* * Huffman table setup routines */ LOCAL(void) add_huff_table(j_common_ptr cinfo, JHUFF_TBL **htblptr, const UINT8 *bits, const UINT8 *val) /* Define a Huffman table */ { int nsymbols, len; if (*htblptr == NULL) *htblptr = jpeg_alloc_huff_table(cinfo); else return; /* Copy the number-of-symbols-of-each-code-length counts */ memcpy((*htblptr)->bits, bits, sizeof((*htblptr)->bits)); /* Validate the counts. We do this here mainly so we can copy the right * number of symbols from the val[] array, without risking marching off * the end of memory. jchuff.c will do a more thorough test later. */ nsymbols = 0; for (len = 1; len <= 16; len++) nsymbols += bits[len]; if (nsymbols < 1 || nsymbols > 256) ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); memcpy((*htblptr)->huffval, val, nsymbols * sizeof(UINT8)); memset(&((*htblptr)->huffval[nsymbols]), 0, (256 - nsymbols) * sizeof(UINT8)); /* Initialize sent_table FALSE so table will be written to JPEG file. */ (*htblptr)->sent_table = FALSE; } LOCAL(void) std_huff_tables(j_common_ptr cinfo) /* Set up the standard Huffman tables (cf. JPEG standard section K.3) */ /* IMPORTANT: these are only valid for 8-bit data precision! */ { JHUFF_TBL **dc_huff_tbl_ptrs, **ac_huff_tbl_ptrs; static const UINT8 bits_dc_luminance[17] = { /* 0-base */ 0, 0, 1, 5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 }; static const UINT8 val_dc_luminance[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }; static const UINT8 bits_dc_chrominance[17] = { /* 0-base */ 0, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 }; static const UINT8 val_dc_chrominance[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }; static const UINT8 bits_ac_luminance[17] = { /* 0-base */ 0, 0, 2, 1, 3, 3, 2, 4, 3, 5, 5, 4, 4, 0, 0, 1, 0x7d }; static const UINT8 val_ac_luminance[] = { 0x01, 0x02, 0x03, 0x00, 0x04, 0x11, 0x05, 0x12, 0x21, 0x31, 0x41, 0x06, 0x13, 0x51, 0x61, 0x07, 0x22, 0x71, 0x14, 0x32, 0x81, 0x91, 0xa1, 0x08, 0x23, 0x42, 0xb1, 0xc1, 0x15, 0x52, 0xd1, 0xf0, 0x24, 0x33, 0x62, 0x72, 0x82, 0x09, 0x0a, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa }; static const UINT8 bits_ac_chrominance[17] = { /* 0-base */ 0, 0, 2, 1, 2, 4, 4, 3, 4, 7, 5, 4, 4, 0, 1, 2, 0x77 }; static const UINT8 val_ac_chrominance[] = { 0x00, 0x01, 0x02, 0x03, 0x11, 0x04, 0x05, 0x21, 0x31, 0x06, 0x12, 0x41, 0x51, 0x07, 0x61, 0x71, 0x13, 0x22, 0x32, 0x81, 0x08, 0x14, 0x42, 0x91, 0xa1, 0xb1, 0xc1, 0x09, 0x23, 0x33, 0x52, 0xf0, 0x15, 0x62, 0x72, 0xd1, 0x0a, 0x16, 0x24, 0x34, 0xe1, 0x25, 0xf1, 0x17, 0x18, 0x19, 0x1a, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa }; if (cinfo->is_decompressor) { dc_huff_tbl_ptrs = ((j_decompress_ptr)cinfo)->dc_huff_tbl_ptrs; ac_huff_tbl_ptrs = ((j_decompress_ptr)cinfo)->ac_huff_tbl_ptrs; } else { dc_huff_tbl_ptrs = ((j_compress_ptr)cinfo)->dc_huff_tbl_ptrs; ac_huff_tbl_ptrs = ((j_compress_ptr)cinfo)->ac_huff_tbl_ptrs; } add_huff_table(cinfo, &dc_huff_tbl_ptrs[0], bits_dc_luminance, val_dc_luminance); add_huff_table(cinfo, &ac_huff_tbl_ptrs[0], bits_ac_luminance, val_ac_luminance); add_huff_table(cinfo, &dc_huff_tbl_ptrs[1], bits_dc_chrominance, val_dc_chrominance); add_huff_table(cinfo, &ac_huff_tbl_ptrs[1], bits_ac_chrominance, val_ac_chrominance); } libjpeg-turbo-2.1.5/jutils.c000066400000000000000000000072641436506551100157610ustar00rootroot00000000000000/* * jutils.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1996, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2022, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains tables and miscellaneous utility routines needed * for both compression and decompression. * Note we prefix all global names with "j" to minimize conflicts with * a surrounding application. */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" /* * jpeg_zigzag_order[i] is the zigzag-order position of the i'th element * of a DCT block read in natural order (left to right, top to bottom). */ #if 0 /* This table is not actually needed in v6a */ const int jpeg_zigzag_order[DCTSIZE2] = { 0, 1, 5, 6, 14, 15, 27, 28, 2, 4, 7, 13, 16, 26, 29, 42, 3, 8, 12, 17, 25, 30, 41, 43, 9, 11, 18, 24, 31, 40, 44, 53, 10, 19, 23, 32, 39, 45, 52, 54, 20, 22, 33, 38, 46, 51, 55, 60, 21, 34, 37, 47, 50, 56, 59, 61, 35, 36, 48, 49, 57, 58, 62, 63 }; #endif /* * jpeg_natural_order[i] is the natural-order position of the i'th element * of zigzag order. * * When reading corrupted data, the Huffman decoders could attempt * to reference an entry beyond the end of this array (if the decoded * zero run length reaches past the end of the block). To prevent * wild stores without adding an inner-loop test, we put some extra * "63"s after the real entries. This will cause the extra coefficient * to be stored in location 63 of the block, not somewhere random. * The worst case would be a run-length of 15, which means we need 16 * fake entries. */ const int jpeg_natural_order[DCTSIZE2 + 16] = { 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28, 35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63, 63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */ 63, 63, 63, 63, 63, 63, 63, 63 }; /* * Arithmetic utilities */ GLOBAL(long) jdiv_round_up(long a, long b) /* Compute a/b rounded up to next integer, ie, ceil(a/b) */ /* Assumes a >= 0, b > 0 */ { return (a + b - 1L) / b; } GLOBAL(long) jround_up(long a, long b) /* Compute a rounded up to next multiple of b, ie, ceil(a/b)*b */ /* Assumes a >= 0, b > 0 */ { a += b - 1L; return a - (a % b); } GLOBAL(void) jcopy_sample_rows(JSAMPARRAY input_array, int source_row, JSAMPARRAY output_array, int dest_row, int num_rows, JDIMENSION num_cols) /* Copy some rows of samples from one place to another. * num_rows rows are copied from input_array[source_row++] * to output_array[dest_row++]; these areas may overlap for duplication. * The source and destination arrays must be at least as wide as num_cols. */ { register JSAMPROW inptr, outptr; register size_t count = (size_t)(num_cols * sizeof(JSAMPLE)); register int row; input_array += source_row; output_array += dest_row; for (row = num_rows; row > 0; row--) { inptr = *input_array++; outptr = *output_array++; memcpy(outptr, inptr, count); } } GLOBAL(void) jcopy_block_row(JBLOCKROW input_row, JBLOCKROW output_row, JDIMENSION num_blocks) /* Copy a row of coefficient blocks from one place to another. */ { memcpy(output_row, input_row, num_blocks * (DCTSIZE2 * sizeof(JCOEF))); } GLOBAL(void) jzero_far(void *target, size_t bytestozero) /* Zero out a chunk of memory. */ /* This might be sample-array data, block-array data, or alloc_large data. */ { memset(target, 0, bytestozero); } libjpeg-turbo-2.1.5/jversion.h.in000066400000000000000000000033411436506551100167100ustar00rootroot00000000000000/* * jversion.h * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-2020, Thomas G. Lane, Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright (C) 2010, 2012-2023, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains software version identification. */ #if JPEG_LIB_VERSION >= 80 #define JVERSION "8d 15-Jan-2012" #elif JPEG_LIB_VERSION >= 70 #define JVERSION "7 27-Jun-2009" #else #define JVERSION "6b 27-Mar-1998" #endif /* * NOTE: It is our convention to place the authors in the following order: * - libjpeg-turbo authors (2009-) in descending order of the date of their * most recent contribution to the project, then in ascending order of the * date of their first contribution to the project, then in alphabetical * order * - Upstream authors in descending order of the date of the first inclusion of * their code */ #define JCOPYRIGHT \ "Copyright (C) 2009-2023 D. R. Commander\n" \ "Copyright (C) 2015, 2020 Google, Inc.\n" \ "Copyright (C) 2019-2020 Arm Limited\n" \ "Copyright (C) 2015-2016, 2018 Matthieu Darbois\n" \ "Copyright (C) 2011-2016 Siarhei Siamashka\n" \ "Copyright (C) 2015 Intel Corporation\n" \ "Copyright (C) 2013-2014 Linaro Limited\n" \ "Copyright (C) 2013-2014 MIPS Technologies, Inc.\n" \ "Copyright (C) 2009, 2012 Pierre Ossman for Cendio AB\n" \ "Copyright (C) 2009-2011 Nokia Corporation and/or its subsidiary(-ies)\n" \ "Copyright (C) 1999-2006 MIYASAKA Masaru\n" \ "Copyright (C) 1991-2020 Thomas G. Lane, Guido Vollbeding" #define JCOPYRIGHT_SHORT \ "Copyright (C) @COPYRIGHT_YEAR@ The libjpeg-turbo Project and many others" libjpeg-turbo-2.1.5/libjpeg.map.in000066400000000000000000000002441436506551100170120ustar00rootroot00000000000000LIBJPEGTURBO_@JPEG_LIB_VERSION_DECIMAL@ { @MEM_SRCDST_FUNCTIONS@ local: jsimd_*; jconst_*; }; LIBJPEG_@JPEG_LIB_VERSION_DECIMAL@ { global: *; }; libjpeg-turbo-2.1.5/libjpeg.txt000066400000000000000000005141751436506551100164640ustar00rootroot00000000000000USING THE IJG JPEG LIBRARY This file was part of the Independent JPEG Group's software: Copyright (C) 1994-2013, Thomas G. Lane, Guido Vollbeding. libjpeg-turbo Modifications: Copyright (C) 2010, 2014-2018, 2020, 2022, D. R. Commander. Copyright (C) 2015, Google, Inc. For conditions of distribution and use, see the accompanying README.ijg file. This file describes how to use the IJG JPEG library within an application program. Read it if you want to write a program that uses the library. The file example.txt provides heavily commented skeleton code for calling the JPEG library. Also see jpeglib.h (the include file to be used by application programs) for full details about data structures and function parameter lists. The library source code, of course, is the ultimate reference. Note that there have been *major* changes from the application interface presented by IJG version 4 and earlier versions. The old design had several inherent limitations, and it had accumulated a lot of cruft as we added features while trying to minimize application-interface changes. We have sacrificed backward compatibility in the version 5 rewrite, but we think the improvements justify this. TABLE OF CONTENTS ----------------- Overview: Functions provided by the library Outline of typical usage Basic library usage: Data formats Compression details Decompression details Partial image decompression Mechanics of usage: include files, linking, etc Advanced features: Compression parameter selection Decompression parameter selection Special color spaces Error handling Compressed data handling (source and destination managers) I/O suspension Progressive JPEG support Buffered-image mode Abbreviated datastreams and multiple images Special markers ICC profiles Raw (downsampled) image data Really raw data: DCT coefficients Progress monitoring Memory management Memory usage Library compile-time options Portability considerations You should read at least the overview and basic usage sections before trying to program with the library. The sections on advanced features can be read if and when you need them. OVERVIEW ======== Functions provided by the library --------------------------------- The IJG JPEG library provides C code to read and write JPEG-compressed image files. The surrounding application program receives or supplies image data a scanline at a time, using a straightforward uncompressed image format. All details of color conversion and other preprocessing/postprocessing can be handled by the library. The library includes a substantial amount of code that is not covered by the JPEG standard but is necessary for typical applications of JPEG. These functions preprocess the image before JPEG compression or postprocess it after decompression. They include colorspace conversion, downsampling/upsampling, and color quantization. The application indirectly selects use of this code by specifying the format in which it wishes to supply or receive image data. For example, if colormapped output is requested, then the decompression library automatically invokes color quantization. A wide range of quality vs. speed tradeoffs are possible in JPEG processing, and even more so in decompression postprocessing. The decompression library provides multiple implementations that cover most of the useful tradeoffs, ranging from very-high-quality down to fast-preview operation. On the compression side we have generally not provided low-quality choices, since compression is normally less time-critical. It should be understood that the low-quality modes may not meet the JPEG standard's accuracy requirements; nonetheless, they are useful for viewers. A word about functions *not* provided by the library. We handle a subset of the ISO JPEG standard; most baseline, extended-sequential, and progressive JPEG processes are supported. (Our subset includes all features now in common use.) Unsupported ISO options include: * Hierarchical storage * Lossless JPEG * DNL marker * Nonintegral subsampling ratios We support both 8- and 12-bit data precision, but this is a compile-time choice rather than a run-time choice; hence it is difficult to use both precisions in a single application. By itself, the library handles only interchange JPEG datastreams --- in particular the widely used JFIF file format. The library can be used by surrounding code to process interchange or abbreviated JPEG datastreams that are embedded in more complex file formats. (For example, this library is used by the free LIBTIFF library to support JPEG compression in TIFF.) Outline of typical usage ------------------------ The rough outline of a JPEG compression operation is: Allocate and initialize a JPEG compression object Specify the destination for the compressed data (eg, a file) Set parameters for compression, including image size & colorspace jpeg_start_compress(...); while (scan lines remain to be written) jpeg_write_scanlines(...); jpeg_finish_compress(...); Release the JPEG compression object A JPEG compression object holds parameters and working state for the JPEG library. We make creation/destruction of the object separate from starting or finishing compression of an image; the same object can be re-used for a series of image compression operations. This makes it easy to re-use the same parameter settings for a sequence of images. Re-use of a JPEG object also has important implications for processing abbreviated JPEG datastreams, as discussed later. The image data to be compressed is supplied to jpeg_write_scanlines() from in-memory buffers. If the application is doing file-to-file compression, reading image data from the source file is the application's responsibility. The library emits compressed data by calling a "data destination manager", which typically will write the data into a file; but the application can provide its own destination manager to do something else. Similarly, the rough outline of a JPEG decompression operation is: Allocate and initialize a JPEG decompression object Specify the source of the compressed data (eg, a file) Call jpeg_read_header() to obtain image info Set parameters for decompression jpeg_start_decompress(...); while (scan lines remain to be read) jpeg_read_scanlines(...); jpeg_finish_decompress(...); Release the JPEG decompression object This is comparable to the compression outline except that reading the datastream header is a separate step. This is helpful because information about the image's size, colorspace, etc is available when the application selects decompression parameters. For example, the application can choose an output scaling ratio that will fit the image into the available screen size. The decompression library obtains compressed data by calling a data source manager, which typically will read the data from a file; but other behaviors can be obtained with a custom source manager. Decompressed data is delivered into in-memory buffers passed to jpeg_read_scanlines(). It is possible to abort an incomplete compression or decompression operation by calling jpeg_abort(); or, if you do not need to retain the JPEG object, simply release it by calling jpeg_destroy(). JPEG compression and decompression objects are two separate struct types. However, they share some common fields, and certain routines such as jpeg_destroy() can work on either type of object. The JPEG library has no static variables: all state is in the compression or decompression object. Therefore it is possible to process multiple compression and decompression operations concurrently, using multiple JPEG objects. Both compression and decompression can be done in an incremental memory-to- memory fashion, if suitable source/destination managers are used. See the section on "I/O suspension" for more details. BASIC LIBRARY USAGE =================== Data formats ------------ Before diving into procedural details, it is helpful to understand the image data format that the JPEG library expects or returns. The standard input image format is a rectangular array of pixels, with each pixel having the same number of "component" or "sample" values (color channels). You must specify how many components there are and the colorspace interpretation of the components. Most applications will use RGB data (three components per pixel) or grayscale data (one component per pixel). PLEASE NOTE THAT RGB DATA IS THREE SAMPLES PER PIXEL, GRAYSCALE ONLY ONE. A remarkable number of people manage to miss this, only to find that their programs don't work with grayscale JPEG files. There is no provision for colormapped input. JPEG files are always full-color or full grayscale (or sometimes another colorspace such as CMYK). You can feed in a colormapped image by expanding it to full-color format. However JPEG often doesn't work very well with source data that has been colormapped, because of dithering noise. This is discussed in more detail in the JPEG FAQ and the other references mentioned in the README.ijg file. Pixels are stored by scanlines, with each scanline running from left to right. The component values for each pixel are adjacent in the row; for example, R,G,B,R,G,B,R,G,B,... for 24-bit RGB color. Each scanline is an array of data type JSAMPLE --- which is typically "unsigned char", unless you've changed jmorecfg.h. (You can also change the RGB pixel layout, say to B,G,R order, by modifying jmorecfg.h. But see the restrictions listed in that file before doing so.) A 2-D array of pixels is formed by making a list of pointers to the starts of scanlines; so the scanlines need not be physically adjacent in memory. Even if you process just one scanline at a time, you must make a one-element pointer array to conform to this structure. Pointers to JSAMPLE rows are of type JSAMPROW, and the pointer to the pointer array is of type JSAMPARRAY. The library accepts or supplies one or more complete scanlines per call. It is not possible to process part of a row at a time. Scanlines are always processed top-to-bottom. You can process an entire image in one call if you have it all in memory, but usually it's simplest to process one scanline at a time. For best results, source data values should have the precision specified by BITS_IN_JSAMPLE (normally 8 bits). For instance, if you choose to compress data that's only 6 bits/channel, you should left-justify each value in a byte before passing it to the compressor. If you need to compress data that has more than 8 bits/channel, compile with BITS_IN_JSAMPLE = 12. (See "Library compile-time options", later.) The data format returned by the decompressor is the same in all details, except that colormapped output is supported. (Again, a JPEG file is never colormapped. But you can ask the decompressor to perform on-the-fly color quantization to deliver colormapped output.) If you request colormapped output then the returned data array contains a single JSAMPLE per pixel; its value is an index into a color map. The color map is represented as a 2-D JSAMPARRAY in which each row holds the values of one color component, that is, colormap[i][j] is the value of the i'th color component for pixel value (map index) j. Note that since the colormap indexes are stored in JSAMPLEs, the maximum number of colors is limited by the size of JSAMPLE (ie, at most 256 colors for an 8-bit JPEG library). Compression details ------------------- Here we revisit the JPEG compression outline given in the overview. 1. Allocate and initialize a JPEG compression object. A JPEG compression object is a "struct jpeg_compress_struct". (It also has a bunch of subsidiary structures which are allocated via malloc(), but the application doesn't control those directly.) This struct can be just a local variable in the calling routine, if a single routine is going to execute the whole JPEG compression sequence. Otherwise it can be static or allocated from malloc(). You will also need a structure representing a JPEG error handler. The part of this that the library cares about is a "struct jpeg_error_mgr". If you are providing your own error handler, you'll typically want to embed the jpeg_error_mgr struct in a larger structure; this is discussed later under "Error handling". For now we'll assume you are just using the default error handler. The default error handler will print JPEG error/warning messages on stderr, and it will call exit() if a fatal error occurs. You must initialize the error handler structure, store a pointer to it into the JPEG object's "err" field, and then call jpeg_create_compress() to initialize the rest of the JPEG object. Typical code for this step, if you are using the default error handler, is struct jpeg_compress_struct cinfo; struct jpeg_error_mgr jerr; ... cinfo.err = jpeg_std_error(&jerr); jpeg_create_compress(&cinfo); jpeg_create_compress allocates a small amount of memory, so it could fail if you are out of memory. In that case it will exit via the error handler; that's why the error handler must be initialized first. 2. Specify the destination for the compressed data (eg, a file). As previously mentioned, the JPEG library delivers compressed data to a "data destination" module. The library includes one data destination module which knows how to write to a stdio stream. You can use your own destination module if you want to do something else, as discussed later. If you use the standard destination module, you must open the target stdio stream beforehand. Typical code for this step looks like: FILE *outfile; ... if ((outfile = fopen(filename, "wb")) == NULL) { fprintf(stderr, "can't open %s\n", filename); exit(1); } jpeg_stdio_dest(&cinfo, outfile); where the last line invokes the standard destination module. WARNING: it is critical that the binary compressed data be delivered to the output file unchanged. On non-Unix systems the stdio library may perform newline translation or otherwise corrupt binary data. To suppress this behavior, you may need to use a "b" option to fopen (as shown above), or use setmode() or another routine to put the stdio stream in binary mode. See cjpeg.c and djpeg.c for code that has been found to work on many systems. You can select the data destination after setting other parameters (step 3), if that's more convenient. You may not change the destination between calling jpeg_start_compress() and jpeg_finish_compress(). 3. Set parameters for compression, including image size & colorspace. You must supply information about the source image by setting the following fields in the JPEG object (cinfo structure): image_width Width of image, in pixels image_height Height of image, in pixels input_components Number of color channels (samples per pixel) in_color_space Color space of source image The image dimensions are, hopefully, obvious. JPEG supports image dimensions of 1 to 64K pixels in either direction. The input color space is typically RGB or grayscale, and input_components is 3 or 1 accordingly. (See "Special color spaces", later, for more info.) The in_color_space field must be assigned one of the J_COLOR_SPACE enum constants, typically JCS_RGB or JCS_GRAYSCALE. JPEG has a large number of compression parameters that determine how the image is encoded. Most applications don't need or want to know about all these parameters. You can set all the parameters to reasonable defaults by calling jpeg_set_defaults(); then, if there are particular values you want to change, you can do so after that. The "Compression parameter selection" section tells about all the parameters. You must set in_color_space correctly before calling jpeg_set_defaults(), because the defaults depend on the source image colorspace. However the other three source image parameters need not be valid until you call jpeg_start_compress(). There's no harm in calling jpeg_set_defaults() more than once, if that happens to be convenient. Typical code for a 24-bit RGB source image is cinfo.image_width = Width; /* image width and height, in pixels */ cinfo.image_height = Height; cinfo.input_components = 3; /* # of color components per pixel */ cinfo.in_color_space = JCS_RGB; /* colorspace of input image */ jpeg_set_defaults(&cinfo); /* Make optional parameter settings here */ 4. jpeg_start_compress(...); After you have established the data destination and set all the necessary source image info and other parameters, call jpeg_start_compress() to begin a compression cycle. This will initialize internal state, allocate working storage, and emit the first few bytes of the JPEG datastream header. Typical code: jpeg_start_compress(&cinfo, TRUE); The "TRUE" parameter ensures that a complete JPEG interchange datastream will be written. This is appropriate in most cases. If you think you might want to use an abbreviated datastream, read the section on abbreviated datastreams, below. Once you have called jpeg_start_compress(), you may not alter any JPEG parameters or other fields of the JPEG object until you have completed the compression cycle. 5. while (scan lines remain to be written) jpeg_write_scanlines(...); Now write all the required image data by calling jpeg_write_scanlines() one or more times. You can pass one or more scanlines in each call, up to the total image height. In most applications it is convenient to pass just one or a few scanlines at a time. The expected format for the passed data is discussed under "Data formats", above. Image data should be written in top-to-bottom scanline order. Rec. ITU-T T.81 | ISO/IEC 10918-1 says, "Applications determine which edges of a source image are defined as top, bottom, left, and right." However, if you want your files to be compatible with everyone else's, then top-to-bottom order must be used. If the source data must be read in bottom-to-top order, then you can use the JPEG library's virtual array mechanism to invert the data efficiently. Examples of this can be found in the sample application cjpeg. The library maintains a count of the number of scanlines written so far in the next_scanline field of the JPEG object. Usually you can just use this variable as the loop counter, so that the loop test looks like "while (cinfo.next_scanline < cinfo.image_height)". Code for this step depends heavily on the way that you store the source data. example.txt shows the following code for the case of a full-size 2-D source array containing 3-byte RGB pixels: JSAMPROW row_pointer[1]; /* pointer to a single row */ int row_stride; /* physical row width in buffer */ row_stride = image_width * 3; /* JSAMPLEs per row in image_buffer */ while (cinfo.next_scanline < cinfo.image_height) { row_pointer[0] = &image_buffer[cinfo.next_scanline * row_stride]; jpeg_write_scanlines(&cinfo, row_pointer, 1); } jpeg_write_scanlines() returns the number of scanlines actually written. This will normally be equal to the number passed in, so you can usually ignore the return value. It is different in just two cases: * If you try to write more scanlines than the declared image height, the additional scanlines are ignored. * If you use a suspending data destination manager, output buffer overrun will cause the compressor to return before accepting all the passed lines. This feature is discussed under "I/O suspension", below. The normal stdio destination manager will NOT cause this to happen. In any case, the return value is the same as the change in the value of next_scanline. 6. jpeg_finish_compress(...); After all the image data has been written, call jpeg_finish_compress() to complete the compression cycle. This step is ESSENTIAL to ensure that the last bufferload of data is written to the data destination. jpeg_finish_compress() also releases working memory associated with the JPEG object. Typical code: jpeg_finish_compress(&cinfo); If using the stdio destination manager, don't forget to close the output stdio stream (if necessary) afterwards. If you have requested a multi-pass operating mode, such as Huffman code optimization, jpeg_finish_compress() will perform the additional passes using data buffered by the first pass. In this case jpeg_finish_compress() may take quite a while to complete. With the default compression parameters, this will not happen. It is an error to call jpeg_finish_compress() before writing the necessary total number of scanlines. If you wish to abort compression, call jpeg_abort() as discussed below. After completing a compression cycle, you may dispose of the JPEG object as discussed next, or you may use it to compress another image. In that case return to step 2, 3, or 4 as appropriate. If you do not change the destination manager, the new datastream will be written to the same target. If you do not change any JPEG parameters, the new datastream will be written with the same parameters as before. Note that you can change the input image dimensions freely between cycles, but if you change the input colorspace, you should call jpeg_set_defaults() to adjust for the new colorspace; and then you'll need to repeat all of step 3. 7. Release the JPEG compression object. When you are done with a JPEG compression object, destroy it by calling jpeg_destroy_compress(). This will free all subsidiary memory (regardless of the previous state of the object). Or you can call jpeg_destroy(), which works for either compression or decompression objects --- this may be more convenient if you are sharing code between compression and decompression cases. (Actually, these routines are equivalent except for the declared type of the passed pointer. To avoid gripes from ANSI C compilers, jpeg_destroy() should be passed a j_common_ptr.) If you allocated the jpeg_compress_struct structure from malloc(), freeing it is your responsibility --- jpeg_destroy() won't. Ditto for the error handler structure. Typical code: jpeg_destroy_compress(&cinfo); 8. Aborting. If you decide to abort a compression cycle before finishing, you can clean up in either of two ways: * If you don't need the JPEG object any more, just call jpeg_destroy_compress() or jpeg_destroy() to release memory. This is legitimate at any point after calling jpeg_create_compress() --- in fact, it's safe even if jpeg_create_compress() fails. * If you want to re-use the JPEG object, call jpeg_abort_compress(), or call jpeg_abort() which works on both compression and decompression objects. This will return the object to an idle state, releasing any working memory. jpeg_abort() is allowed at any time after successful object creation. Note that cleaning up the data destination, if required, is your responsibility; neither of these routines will call term_destination(). (See "Compressed data handling", below, for more about that.) jpeg_destroy() and jpeg_abort() are the only safe calls to make on a JPEG object that has reported an error by calling error_exit (see "Error handling" for more info). The internal state of such an object is likely to be out of whack. Either of these two routines will return the object to a known state. Decompression details --------------------- Here we revisit the JPEG decompression outline given in the overview. 1. Allocate and initialize a JPEG decompression object. This is just like initialization for compression, as discussed above, except that the object is a "struct jpeg_decompress_struct" and you call jpeg_create_decompress(). Error handling is exactly the same. Typical code: struct jpeg_decompress_struct cinfo; struct jpeg_error_mgr jerr; ... cinfo.err = jpeg_std_error(&jerr); jpeg_create_decompress(&cinfo); (Both here and in the IJG code, we usually use variable name "cinfo" for both compression and decompression objects.) 2. Specify the source of the compressed data (eg, a file). As previously mentioned, the JPEG library reads compressed data from a "data source" module. The library includes one data source module which knows how to read from a stdio stream. You can use your own source module if you want to do something else, as discussed later. If you use the standard source module, you must open the source stdio stream beforehand. Typical code for this step looks like: FILE *infile; ... if ((infile = fopen(filename, "rb")) == NULL) { fprintf(stderr, "can't open %s\n", filename); exit(1); } jpeg_stdio_src(&cinfo, infile); where the last line invokes the standard source module. WARNING: it is critical that the binary compressed data be read unchanged. On non-Unix systems the stdio library may perform newline translation or otherwise corrupt binary data. To suppress this behavior, you may need to use a "b" option to fopen (as shown above), or use setmode() or another routine to put the stdio stream in binary mode. See cjpeg.c and djpeg.c for code that has been found to work on many systems. You may not change the data source between calling jpeg_read_header() and jpeg_finish_decompress(). If you wish to read a series of JPEG images from a single source file, you should repeat the jpeg_read_header() to jpeg_finish_decompress() sequence without reinitializing either the JPEG object or the data source module; this prevents buffered input data from being discarded. 3. Call jpeg_read_header() to obtain image info. Typical code for this step is just jpeg_read_header(&cinfo, TRUE); This will read the source datastream header markers, up to the beginning of the compressed data proper. On return, the image dimensions and other info have been stored in the JPEG object. The application may wish to consult this information before selecting decompression parameters. More complex code is necessary if * A suspending data source is used --- in that case jpeg_read_header() may return before it has read all the header data. See "I/O suspension", below. The normal stdio source manager will NOT cause this to happen. * Abbreviated JPEG files are to be processed --- see the section on abbreviated datastreams. Standard applications that deal only in interchange JPEG files need not be concerned with this case either. It is permissible to stop at this point if you just wanted to find out the image dimensions and other header info for a JPEG file. In that case, call jpeg_destroy() when you are done with the JPEG object, or call jpeg_abort() to return it to an idle state before selecting a new data source and reading another header. 4. Set parameters for decompression. jpeg_read_header() sets appropriate default decompression parameters based on the properties of the image (in particular, its colorspace). However, you may well want to alter these defaults before beginning the decompression. For example, the default is to produce full color output from a color file. If you want colormapped output you must ask for it. Other options allow the returned image to be scaled and allow various speed/quality tradeoffs to be selected. "Decompression parameter selection", below, gives details. If the defaults are appropriate, nothing need be done at this step. Note that all default values are set by each call to jpeg_read_header(). If you reuse a decompression object, you cannot expect your parameter settings to be preserved across cycles, as you can for compression. You must set desired parameter values each time. 5. jpeg_start_decompress(...); Once the parameter values are satisfactory, call jpeg_start_decompress() to begin decompression. This will initialize internal state, allocate working memory, and prepare for returning data. Typical code is just jpeg_start_decompress(&cinfo); If you have requested a multi-pass operating mode, such as 2-pass color quantization, jpeg_start_decompress() will do everything needed before data output can begin. In this case jpeg_start_decompress() may take quite a while to complete. With a single-scan (non progressive) JPEG file and default decompression parameters, this will not happen; jpeg_start_decompress() will return quickly. After this call, the final output image dimensions, including any requested scaling, are available in the JPEG object; so is the selected colormap, if colormapped output has been requested. Useful fields include output_width image width and height, as scaled output_height out_color_components # of color components in out_color_space output_components # of color components returned per pixel colormap the selected colormap, if any actual_number_of_colors number of entries in colormap output_components is 1 (a colormap index) when quantizing colors; otherwise it equals out_color_components. It is the number of JSAMPLE values that will be emitted per pixel in the output arrays. Typically you will need to allocate data buffers to hold the incoming image. You will need output_width * output_components JSAMPLEs per scanline in your output buffer, and a total of output_height scanlines will be returned. Note: if you are using the JPEG library's internal memory manager to allocate data buffers (as djpeg does), then the manager's protocol requires that you request large buffers *before* calling jpeg_start_decompress(). This is a little tricky since the output_XXX fields are not normally valid then. You can make them valid by calling jpeg_calc_output_dimensions() after setting the relevant parameters (scaling, output color space, and quantization flag). 6. while (scan lines remain to be read) jpeg_read_scanlines(...); Now you can read the decompressed image data by calling jpeg_read_scanlines() one or more times. At each call, you pass in the maximum number of scanlines to be read (ie, the height of your working buffer); jpeg_read_scanlines() will return up to that many lines. The return value is the number of lines actually read. The format of the returned data is discussed under "Data formats", above. Don't forget that grayscale and color JPEGs will return different data formats! Image data is returned in top-to-bottom scanline order. If you must write out the image in bottom-to-top order, you can use the JPEG library's virtual array mechanism to invert the data efficiently. Examples of this can be found in the sample application djpeg. The library maintains a count of the number of scanlines returned so far in the output_scanline field of the JPEG object. Usually you can just use this variable as the loop counter, so that the loop test looks like "while (cinfo.output_scanline < cinfo.output_height)". (Note that the test should NOT be against image_height, unless you never use scaling. The image_height field is the height of the original unscaled image.) The return value always equals the change in the value of output_scanline. If you don't use a suspending data source, it is safe to assume that jpeg_read_scanlines() reads at least one scanline per call, until the bottom of the image has been reached. If you use a buffer larger than one scanline, it is NOT safe to assume that jpeg_read_scanlines() fills it. (The current implementation returns only a few scanlines per call, no matter how large a buffer you pass.) So you must always provide a loop that calls jpeg_read_scanlines() repeatedly until the whole image has been read. 7. jpeg_finish_decompress(...); After all the image data has been read, call jpeg_finish_decompress() to complete the decompression cycle. This causes working memory associated with the JPEG object to be released. Typical code: jpeg_finish_decompress(&cinfo); If using the stdio source manager, don't forget to close the source stdio stream if necessary. It is an error to call jpeg_finish_decompress() before reading the correct total number of scanlines. If you wish to abort decompression, call jpeg_abort() as discussed below. After completing a decompression cycle, you may dispose of the JPEG object as discussed next, or you may use it to decompress another image. In that case return to step 2 or 3 as appropriate. If you do not change the source manager, the next image will be read from the same source. 8. Release the JPEG decompression object. When you are done with a JPEG decompression object, destroy it by calling jpeg_destroy_decompress() or jpeg_destroy(). The previous discussion of destroying compression objects applies here too. Typical code: jpeg_destroy_decompress(&cinfo); 9. Aborting. You can abort a decompression cycle by calling jpeg_destroy_decompress() or jpeg_destroy() if you don't need the JPEG object any more, or jpeg_abort_decompress() or jpeg_abort() if you want to reuse the object. The previous discussion of aborting compression cycles applies here too. Partial image decompression --------------------------- Partial image decompression is convenient for performance-critical applications that wish to view only a portion of a large JPEG image without decompressing the whole thing. It it also useful in memory-constrained environments (such as on mobile devices.) This library provides the following functions to support partial image decompression: 1. Skipping rows when decompressing jpeg_skip_scanlines(j_decompress_ptr cinfo, JDIMENSION num_lines); This function provides application programmers with the ability to skip over multiple rows in the JPEG image. Suspending data sources are not supported by this function. Calling jpeg_skip_scanlines() with a suspending data source will result in undefined behavior. Two-pass color quantization is also not supported by this function. Calling jpeg_skip_scanlines() with two-pass color quantization enabled will result in an error. jpeg_skip_scanlines() will not allow skipping past the bottom of the image. If the value of num_lines is large enough to skip past the bottom of the image, then the function will skip to the end of the image instead. If the value of num_lines is valid, then jpeg_skip_scanlines() will always skip all of the input rows requested. There is no need to inspect the return value of the function in that case. Best results will be achieved by calling jpeg_skip_scanlines() for large chunks of rows. The function should be viewed as a way to quickly jump to a particular vertical offset in the JPEG image in order to decode a subset of the image. Used in this manner, it will provide significant performance improvements. Calling jpeg_skip_scanlines() for small values of num_lines has several potential drawbacks: 1) JPEG decompression occurs in blocks, so if jpeg_skip_scanlines() is called from the middle of a decompression block, then it is likely that much of the decompression work has already been done for the first couple of rows that need to be skipped. 2) When this function returns, it must leave the decompressor in a state such that it is ready to read the next line. This may involve decompressing a block that must be partially skipped. These issues are especially tricky for cases in which upsampling requires context rows. In the worst case, jpeg_skip_scanlines() will perform similarly to jpeg_read_scanlines() (since it will actually call jpeg_read_scanlines().) 2. Decompressing partial scanlines jpeg_crop_scanline (j_decompress_ptr cinfo, JDIMENSION *xoffset, JDIMENSION *width) This function provides application programmers with the ability to decompress only a portion of each row in the JPEG image. It must be called after jpeg_start_decompress() and before any calls to jpeg_read_scanlines() or jpeg_skip_scanlines(). If xoffset and width do not form a valid subset of the image row, then this function will generate an error. Note that if the output image is scaled, then xoffset and width are relative to the scaled image dimensions. xoffset and width are passed by reference because xoffset must fall on an iMCU boundary. If it doesn't, then it will be moved left to the nearest iMCU boundary, and width will be increased accordingly. If the calling program does not like the adjusted values of xoffset and width, then it can call jpeg_crop_scanline() again with new values (for instance, if it wants to move xoffset to the nearest iMCU boundary to the right instead of to the left.) After calling this function, cinfo->output_width will be set to the adjusted width. This value should be used when allocating an output buffer to pass to jpeg_read_scanlines(). The output image from a partial-width decompression will be identical to the corresponding image region from a full decode, with one exception: The "fancy" (smooth) h2v2 (4:2:0) and h2v1 (4:2:2) upsampling algorithms fill in the missing chroma components by averaging the chroma components from neighboring pixels, except on the right and left edges of the image (where there are no neighboring pixels.) When performing a partial-width decompression, these "fancy" upsampling algorithms may treat the left and right edges of the partial image region as if they are the left and right edges of the image, meaning that the upsampling algorithm may be simplified. The result is that the pixels on the left or right edge of the partial image may not be exactly identical to the corresponding pixels in the original image. Mechanics of usage: include files, linking, etc ----------------------------------------------- Applications using the JPEG library should include the header file jpeglib.h to obtain declarations of data types and routines. Before including jpeglib.h, include system headers that define at least the typedefs FILE and size_t. On ANSI-conforming systems, including is sufficient; on older Unix systems, you may need to define size_t. If the application needs to refer to individual JPEG library error codes, also include jerror.h to define those symbols. jpeglib.h indirectly includes the files jconfig.h and jmorecfg.h. If you are installing the JPEG header files in a system directory, you will want to install all four files: jpeglib.h, jerror.h, jconfig.h, jmorecfg.h. The most convenient way to include the JPEG code into your executable program is to prepare a library file ("libjpeg.a", or a corresponding name on non-Unix machines) and reference it at your link step. If you use only half of the library (only compression or only decompression), only that much code will be included from the library, unless your linker is hopelessly brain-damaged. The supplied build system builds libjpeg.a automatically. It may be worth pointing out that the core JPEG library does not actually require the stdio library: only the default source/destination managers and error handler need it. You can use the library in a stdio-less environment if you replace those modules and use jmemnobs.c (or another memory manager of your own devising). More info about the minimum system library requirements may be found in jinclude.h. ADVANCED FEATURES ================= Compression parameter selection ------------------------------- This section describes all the optional parameters you can set for JPEG compression, as well as the "helper" routines provided to assist in this task. Proper setting of some parameters requires detailed understanding of the JPEG standard; if you don't know what a parameter is for, it's best not to mess with it! See REFERENCES in the README.ijg file for pointers to more info about JPEG. It's a good idea to call jpeg_set_defaults() first, even if you plan to set all the parameters; that way your code is more likely to work with future JPEG libraries that have additional parameters. For the same reason, we recommend you use a helper routine where one is provided, in preference to twiddling cinfo fields directly. The helper routines are: jpeg_set_defaults (j_compress_ptr cinfo) This routine sets all JPEG parameters to reasonable defaults, using only the input image's color space (field in_color_space, which must already be set in cinfo). Many applications will only need to use this routine and perhaps jpeg_set_quality(). jpeg_set_colorspace (j_compress_ptr cinfo, J_COLOR_SPACE colorspace) Sets the JPEG file's colorspace (field jpeg_color_space) as specified, and sets other color-space-dependent parameters appropriately. See "Special color spaces", below, before using this. A large number of parameters, including all per-component parameters, are set by this routine; if you want to twiddle individual parameters you should call jpeg_set_colorspace() before rather than after. jpeg_default_colorspace (j_compress_ptr cinfo) Selects an appropriate JPEG colorspace based on cinfo->in_color_space, and calls jpeg_set_colorspace(). This is actually a subroutine of jpeg_set_defaults(). It's broken out in case you want to change just the colorspace-dependent JPEG parameters. jpeg_set_quality (j_compress_ptr cinfo, int quality, boolean force_baseline) Constructs JPEG quantization tables appropriate for the indicated quality setting. The quality value is expressed on the 0..100 scale recommended by IJG (cjpeg's "-quality" switch uses this routine). Note that the exact mapping from quality values to tables may change in future IJG releases as more is learned about DCT quantization. If the force_baseline parameter is TRUE, then the quantization table entries are constrained to the range 1..255 for full JPEG baseline compatibility. In the current implementation, this only makes a difference for quality settings below 25, and it effectively prevents very small/low quality files from being generated. The IJG decoder is capable of reading the non-baseline files generated at low quality settings when force_baseline is FALSE, but other decoders may not be. jpeg_set_linear_quality (j_compress_ptr cinfo, int scale_factor, boolean force_baseline) Same as jpeg_set_quality() except that the generated tables are the sample tables given in Annex K (Clause K.1) of Rec. ITU-T T.81 (1992) | ISO/IEC 10918-1:1994, multiplied by the specified scale factor (which is expressed as a percentage; thus scale_factor = 100 reproduces the spec's tables). Note that larger scale factors give lower quality. This entry point is useful for conforming to the Adobe PostScript DCT conventions, but we do not recommend linear scaling as a user-visible quality scale otherwise. force_baseline again constrains the computed table entries to 1..255. int jpeg_quality_scaling (int quality) Converts a value on the IJG-recommended quality scale to a linear scaling percentage. Note that this routine may change or go away in future releases --- IJG may choose to adopt a scaling method that can't be expressed as a simple scalar multiplier, in which case the premise of this routine collapses. Caveat user. jpeg_default_qtables (j_compress_ptr cinfo, boolean force_baseline) [libjpeg v7+ API/ABI emulation only] Set default quantization tables with linear q_scale_factor[] values (see below). jpeg_add_quant_table (j_compress_ptr cinfo, int which_tbl, const unsigned int *basic_table, int scale_factor, boolean force_baseline) Allows an arbitrary quantization table to be created. which_tbl indicates which table slot to fill. basic_table points to an array of 64 unsigned ints given in normal array order. These values are multiplied by scale_factor/100 and then clamped to the range 1..65535 (or to 1..255 if force_baseline is TRUE). CAUTION: prior to library version 6a, jpeg_add_quant_table expected the basic table to be given in JPEG zigzag order. If you need to write code that works with either older or newer versions of this routine, you must check the library version number. Something like "#if JPEG_LIB_VERSION >= 61" is the right test. jpeg_simple_progression (j_compress_ptr cinfo) Generates a default scan script for writing a progressive-JPEG file. This is the recommended method of creating a progressive file, unless you want to make a custom scan sequence. You must ensure that the JPEG color space is set correctly before calling this routine. Compression parameters (cinfo fields) include: boolean arith_code If TRUE, use arithmetic coding. If FALSE, use Huffman coding. J_DCT_METHOD dct_method Selects the algorithm used for the DCT step. Choices are: JDCT_ISLOW: accurate integer method JDCT_IFAST: less accurate integer method [legacy feature] JDCT_FLOAT: floating-point method [legacy feature] JDCT_DEFAULT: default method (normally JDCT_ISLOW) JDCT_FASTEST: fastest method (normally JDCT_IFAST) When the Independent JPEG Group's software was first released in 1991, the compression time for a 1-megapixel JPEG image on a mainstream PC was measured in minutes. Thus, JDCT_IFAST provided noticeable performance benefits. On modern CPUs running libjpeg-turbo, however, the compression time for a 1-megapixel JPEG image is measured in milliseconds, and thus the performance benefits of JDCT_IFAST are much less noticeable. On modern x86/x86-64 CPUs that support AVX2 instructions, JDCT_IFAST and JDCT_ISLOW have similar performance. On other types of CPUs, JDCT_IFAST is generally about 5-15% faster than JDCT_ISLOW. For quality levels of 90 and below, there should be little or no perceptible quality difference between the two algorithms. For quality levels above 90, however, the difference between JDCT_IFAST and JDCT_ISLOW becomes more pronounced. With quality=97, for instance, JDCT_IFAST incurs generally about a 1-3 dB loss in PSNR relative to JDCT_ISLOW, but this can be larger for some images. Do not use JDCT_IFAST with quality levels above 97. The algorithm often degenerates at quality=98 and above and can actually produce a more lossy image than if lower quality levels had been used. Also, in libjpeg-turbo, JDCT_IFAST is not fully accelerated for quality levels above 97, so it will be slower than JDCT_ISLOW. JDCT_FLOAT does not produce significantly more accurate results than JDCT_ISLOW, and it is much slower. JDCT_FLOAT may also give different results on different machines due to varying roundoff behavior, whereas the integer methods should give the same results on all machines. J_COLOR_SPACE jpeg_color_space int num_components The JPEG color space and corresponding number of components; see "Special color spaces", below, for more info. We recommend using jpeg_set_color_space() if you want to change these. boolean optimize_coding TRUE causes the compressor to compute optimal Huffman coding tables for the image. This requires an extra pass over the data and therefore costs a good deal of space and time. The default is FALSE, which tells the compressor to use the supplied or default Huffman tables. In most cases optimal tables save only a few percent of file size compared to the default tables. Note that when this is TRUE, you need not supply Huffman tables at all, and any you do supply will be overwritten. unsigned int restart_interval int restart_in_rows To emit restart markers in the JPEG file, set one of these nonzero. Set restart_interval to specify the exact interval in MCU blocks. Set restart_in_rows to specify the interval in MCU rows. (If restart_in_rows is not 0, then restart_interval is set after the image width in MCUs is computed.) Defaults are zero (no restarts). One restart marker per MCU row is often a good choice. NOTE: the overhead of restart markers is higher in grayscale JPEG files than in color files, and MUCH higher in progressive JPEGs. If you use restarts, you may want to use larger intervals in those cases. const jpeg_scan_info *scan_info int num_scans By default, scan_info is NULL; this causes the compressor to write a single-scan sequential JPEG file. If not NULL, scan_info points to an array of scan definition records of length num_scans. The compressor will then write a JPEG file having one scan for each scan definition record. This is used to generate noninterleaved or progressive JPEG files. The library checks that the scan array defines a valid JPEG scan sequence. (jpeg_simple_progression creates a suitable scan definition array for progressive JPEG.) This is discussed further under "Progressive JPEG support". int smoothing_factor If non-zero, the input image is smoothed; the value should be 1 for minimal smoothing to 100 for maximum smoothing. Consult jcsample.c for details of the smoothing algorithm. The default is zero. boolean write_JFIF_header If TRUE, a JFIF APP0 marker is emitted. jpeg_set_defaults() and jpeg_set_colorspace() set this TRUE if a JFIF-legal JPEG color space (ie, YCbCr or grayscale) is selected, otherwise FALSE. UINT8 JFIF_major_version UINT8 JFIF_minor_version The version number to be written into the JFIF marker. jpeg_set_defaults() initializes the version to 1.01 (major=minor=1). You should set it to 1.02 (major=1, minor=2) if you plan to write any JFIF 1.02 extension markers. UINT8 density_unit UINT16 X_density UINT16 Y_density The resolution information to be written into the JFIF marker; not used otherwise. density_unit may be 0 for unknown, 1 for dots/inch, or 2 for dots/cm. The default values are 0,1,1 indicating square pixels of unknown size. boolean write_Adobe_marker If TRUE, an Adobe APP14 marker is emitted. jpeg_set_defaults() and jpeg_set_colorspace() set this TRUE if JPEG color space RGB, CMYK, or YCCK is selected, otherwise FALSE. It is generally a bad idea to set both write_JFIF_header and write_Adobe_marker. In fact, you probably shouldn't change the default settings at all --- the default behavior ensures that the JPEG file's color space can be recognized by the decoder. JQUANT_TBL *quant_tbl_ptrs[NUM_QUANT_TBLS] Pointers to coefficient quantization tables, one per table slot, or NULL if no table is defined for a slot. Usually these should be set via one of the above helper routines; jpeg_add_quant_table() is general enough to define any quantization table. The other routines will set up table slot 0 for luminance quality and table slot 1 for chrominance. int q_scale_factor[NUM_QUANT_TBLS] [libjpeg v7+ API/ABI emulation only] Linear quantization scaling factors (0-100, default 100) for use with jpeg_default_qtables(). See rdswitch.c and cjpeg.c for an example of usage. Note that the q_scale_factor[] values use "linear" scales, so JPEG quality levels chosen by the user must be converted to these scales using jpeg_quality_scaling(). Here is an example that corresponds to cjpeg -quality 90,70: jpeg_set_defaults(cinfo); /* Set luminance quality 90. */ cinfo->q_scale_factor[0] = jpeg_quality_scaling(90); /* Set chrominance quality 70. */ cinfo->q_scale_factor[1] = jpeg_quality_scaling(70); jpeg_default_qtables(cinfo, force_baseline); CAUTION: Setting separate quality levels for chrominance and luminance is mainly only useful if chrominance subsampling is disabled. 2x2 chrominance subsampling (AKA "4:2:0") is the default, but you can explicitly disable subsampling as follows: cinfo->comp_info[0].v_samp_factor = 1; cinfo->comp_info[0].h_samp_factor = 1; JHUFF_TBL *dc_huff_tbl_ptrs[NUM_HUFF_TBLS] JHUFF_TBL *ac_huff_tbl_ptrs[NUM_HUFF_TBLS] Pointers to Huffman coding tables, one per table slot, or NULL if no table is defined for a slot. Slots 0 and 1 are filled with the JPEG sample tables by jpeg_set_defaults(). If you need to allocate more table structures, jpeg_alloc_huff_table() may be used. Note that optimal Huffman tables can be computed for an image by setting optimize_coding, as discussed above; there's seldom any need to mess with providing your own Huffman tables. [libjpeg v7+ API/ABI emulation only] The actual dimensions of the JPEG image that will be written to the file are given by the following fields. These are computed from the input image dimensions and the compression parameters by jpeg_start_compress(). You can also call jpeg_calc_jpeg_dimensions() to obtain the values that will result from the current parameter settings. This can be useful if you are trying to pick a scaling ratio that will get close to a desired target size. JDIMENSION jpeg_width Actual dimensions of output image. JDIMENSION jpeg_height Per-component parameters are stored in the struct cinfo.comp_info[i] for component number i. Note that components here refer to components of the JPEG color space, *not* the source image color space. A suitably large comp_info[] array is allocated by jpeg_set_defaults(); if you choose not to use that routine, it's up to you to allocate the array. int component_id The one-byte identifier code to be recorded in the JPEG file for this component. For the standard color spaces, we recommend you leave the default values alone. int h_samp_factor int v_samp_factor Horizontal and vertical sampling factors for the component; must be 1..4 according to the JPEG standard. Note that larger sampling factors indicate a higher-resolution component; many people find this behavior quite unintuitive. The default values are 2,2 for luminance components and 1,1 for chrominance components, except for grayscale where 1,1 is used. int quant_tbl_no Quantization table number for component. The default value is 0 for luminance components and 1 for chrominance components. int dc_tbl_no int ac_tbl_no DC and AC entropy coding table numbers. The default values are 0 for luminance components and 1 for chrominance components. int component_index Must equal the component's index in comp_info[]. (Beginning in release v6, the compressor library will fill this in automatically; you don't have to.) Decompression parameter selection --------------------------------- Decompression parameter selection is somewhat simpler than compression parameter selection, since all of the JPEG internal parameters are recorded in the source file and need not be supplied by the application. (Unless you are working with abbreviated files, in which case see "Abbreviated datastreams", below.) Decompression parameters control the postprocessing done on the image to deliver it in a format suitable for the application's use. Many of the parameters control speed/quality tradeoffs, in which faster decompression may be obtained at the price of a poorer-quality image. The defaults select the highest quality (slowest) processing. The following fields in the JPEG object are set by jpeg_read_header() and may be useful to the application in choosing decompression parameters: JDIMENSION image_width Width and height of image JDIMENSION image_height int num_components Number of color components J_COLOR_SPACE jpeg_color_space Colorspace of image boolean saw_JFIF_marker TRUE if a JFIF APP0 marker was seen UINT8 JFIF_major_version Version information from JFIF marker UINT8 JFIF_minor_version UINT8 density_unit Resolution data from JFIF marker UINT16 X_density UINT16 Y_density boolean saw_Adobe_marker TRUE if an Adobe APP14 marker was seen UINT8 Adobe_transform Color transform code from Adobe marker The JPEG color space, unfortunately, is something of a guess since the JPEG standard proper does not provide a way to record it. In practice most files adhere to the JFIF or Adobe conventions, and the decoder will recognize these correctly. See "Special color spaces", below, for more info. The decompression parameters that determine the basic properties of the returned image are: J_COLOR_SPACE out_color_space Output color space. jpeg_read_header() sets an appropriate default based on jpeg_color_space; typically it will be RGB or grayscale. The application can change this field to request output in a different colorspace. For example, set it to JCS_GRAYSCALE to get grayscale output from a color file. (This is useful for previewing: grayscale output is faster than full color since the color components need not be processed.) Note that not all possible color space transforms are currently implemented; you may need to extend jdcolor.c if you want an unusual conversion. unsigned int scale_num, scale_denom Scale the image by the fraction scale_num/scale_denom. Default is 1/1, or no scaling. Currently, the only supported scaling ratios are M/8 with all M from 1 to 16, or any reduced fraction thereof (such as 1/2, 3/4, etc.) (The library design allows for arbitrary scaling ratios but this is not likely to be implemented any time soon.) Smaller scaling ratios permit significantly faster decoding since fewer pixels need be processed and a simpler IDCT method can be used. boolean quantize_colors If set TRUE, colormapped output will be delivered. Default is FALSE, meaning that full-color output will be delivered. The next three parameters are relevant only if quantize_colors is TRUE. int desired_number_of_colors Maximum number of colors to use in generating a library-supplied color map (the actual number of colors is returned in a different field). Default 256. Ignored when the application supplies its own color map. boolean two_pass_quantize If TRUE, an extra pass over the image is made to select a custom color map for the image. This usually looks a lot better than the one-size- fits-all colormap that is used otherwise. Default is TRUE. Ignored when the application supplies its own color map. J_DITHER_MODE dither_mode Selects color dithering method. Supported values are: JDITHER_NONE no dithering: fast, very low quality JDITHER_ORDERED ordered dither: moderate speed and quality JDITHER_FS Floyd-Steinberg dither: slow, high quality Default is JDITHER_FS. (At present, ordered dither is implemented only in the single-pass, standard-colormap case. If you ask for ordered dither when two_pass_quantize is TRUE or when you supply an external color map, you'll get F-S dithering.) When quantize_colors is TRUE, the target color map is described by the next two fields. colormap is set to NULL by jpeg_read_header(). The application can supply a color map by setting colormap non-NULL and setting actual_number_of_colors to the map size. Otherwise, jpeg_start_decompress() selects a suitable color map and sets these two fields itself. [Implementation restriction: at present, an externally supplied colormap is only accepted for 3-component output color spaces.] JSAMPARRAY colormap The color map, represented as a 2-D pixel array of out_color_components rows and actual_number_of_colors columns. Ignored if not quantizing. CAUTION: if the JPEG library creates its own colormap, the storage pointed to by this field is released by jpeg_finish_decompress(). Copy the colormap somewhere else first, if you want to save it. int actual_number_of_colors The number of colors in the color map. Additional decompression parameters that the application may set include: J_DCT_METHOD dct_method Selects the algorithm used for the DCT step. Choices are: JDCT_ISLOW: accurate integer method JDCT_IFAST: less accurate integer method [legacy feature] JDCT_FLOAT: floating-point method [legacy feature] JDCT_DEFAULT: default method (normally JDCT_ISLOW) JDCT_FASTEST: fastest method (normally JDCT_IFAST) When the Independent JPEG Group's software was first released in 1991, the decompression time for a 1-megapixel JPEG image on a mainstream PC was measured in minutes. Thus, JDCT_IFAST provided noticeable performance benefits. On modern CPUs running libjpeg-turbo, however, the decompression time for a 1-megapixel JPEG image is measured in milliseconds, and thus the performance benefits of JDCT_IFAST are much less noticeable. On modern x86/x86-64 CPUs that support AVX2 instructions, JDCT_IFAST and JDCT_ISLOW have similar performance. On other types of CPUs, JDCT_IFAST is generally about 5-15% faster than JDCT_ISLOW. If the JPEG image was compressed using a quality level of 85 or below, then there should be little or no perceptible quality difference between the two algorithms. When decompressing images that were compressed using quality levels above 85, however, the difference between JDCT_IFAST and JDCT_ISLOW becomes more pronounced. With images compressed using quality=97, for instance, JDCT_IFAST incurs generally about a 4-6 dB loss in PSNR relative to JDCT_ISLOW, but this can be larger for some images. If you can avoid it, do not use JDCT_IFAST when decompressing images that were compressed using quality levels above 97. The algorithm often degenerates for such images and can actually produce a more lossy output image than if the JPEG image had been compressed using lower quality levels. JDCT_FLOAT does not produce significantly more accurate results than JDCT_ISLOW, and it is much slower. JDCT_FLOAT may also give different results on different machines due to varying roundoff behavior, whereas the integer methods should give the same results on all machines. boolean do_fancy_upsampling If TRUE, do careful upsampling of chroma components. If FALSE, a faster but sloppier method is used. Default is TRUE. The visual impact of the sloppier method is often very small. boolean do_block_smoothing If TRUE, interblock smoothing is applied in early stages of decoding progressive JPEG files; if FALSE, not. Default is TRUE. Early progression stages look "fuzzy" with smoothing, "blocky" without. In any case, block smoothing ceases to be applied after the first few AC coefficients are known to full accuracy, so it is relevant only when using buffered-image mode for progressive images. boolean enable_1pass_quant boolean enable_external_quant boolean enable_2pass_quant These are significant only in buffered-image mode, which is described in its own section below. The output image dimensions are given by the following fields. These are computed from the source image dimensions and the decompression parameters by jpeg_start_decompress(). You can also call jpeg_calc_output_dimensions() to obtain the values that will result from the current parameter settings. This can be useful if you are trying to pick a scaling ratio that will get close to a desired target size. It's also important if you are using the JPEG library's memory manager to allocate output buffer space, because you are supposed to request such buffers *before* jpeg_start_decompress(). JDIMENSION output_width Actual dimensions of output image. JDIMENSION output_height int out_color_components Number of color components in out_color_space. int output_components Number of color components returned. int rec_outbuf_height Recommended height of scanline buffer. When quantizing colors, output_components is 1, indicating a single color map index per pixel. Otherwise it equals out_color_components. The output arrays are required to be output_width * output_components JSAMPLEs wide. rec_outbuf_height is the recommended minimum height (in scanlines) of the buffer passed to jpeg_read_scanlines(). If the buffer is smaller, the library will still work, but time will be wasted due to unnecessary data copying. In high-quality modes, rec_outbuf_height is always 1, but some faster, lower-quality modes set it to larger values (typically 2 to 4). If you are going to ask for a high-speed processing mode, you may as well go to the trouble of honoring rec_outbuf_height so as to avoid data copying. (An output buffer larger than rec_outbuf_height lines is OK, but won't provide any material speed improvement over that height.) Special color spaces -------------------- The JPEG standard itself is "color blind" and doesn't specify any particular color space. It is customary to convert color data to a luminance/chrominance color space before compressing, since this permits greater compression. The existing de-facto JPEG file format standards specify YCbCr or grayscale data (JFIF), or grayscale, RGB, YCbCr, CMYK, or YCCK (Adobe). For special applications such as multispectral images, other color spaces can be used, but it must be understood that such files will be unportable. The JPEG library can handle the most common colorspace conversions (namely RGB <=> YCbCr and CMYK <=> YCCK). It can also deal with data of an unknown color space, passing it through without conversion. If you deal extensively with an unusual color space, you can easily extend the library to understand additional color spaces and perform appropriate conversions. For compression, the source data's color space is specified by field in_color_space. This is transformed to the JPEG file's color space given by jpeg_color_space. jpeg_set_defaults() chooses a reasonable JPEG color space depending on in_color_space, but you can override this by calling jpeg_set_colorspace(). Of course you must select a supported transformation. jccolor.c currently supports the following transformations: RGB => YCbCr RGB => GRAYSCALE YCbCr => GRAYSCALE CMYK => YCCK plus the null transforms: GRAYSCALE => GRAYSCALE, RGB => RGB, YCbCr => YCbCr, CMYK => CMYK, YCCK => YCCK, and UNKNOWN => UNKNOWN. The de-facto file format standards (JFIF and Adobe) specify APPn markers that indicate the color space of the JPEG file. It is important to ensure that these are written correctly, or omitted if the JPEG file's color space is not one of the ones supported by the de-facto standards. jpeg_set_colorspace() will set the compression parameters to include or omit the APPn markers properly, so long as it is told the truth about the JPEG color space. For example, if you are writing some random 3-component color space without conversion, don't try to fake out the library by setting in_color_space and jpeg_color_space to JCS_YCbCr; use JCS_UNKNOWN. You may want to write an APPn marker of your own devising to identify the colorspace --- see "Special markers", below. When told that the color space is UNKNOWN, the library will default to using luminance-quality compression parameters for all color components. You may well want to change these parameters. See the source code for jpeg_set_colorspace(), in jcparam.c, for details. For decompression, the JPEG file's color space is given in jpeg_color_space, and this is transformed to the output color space out_color_space. jpeg_read_header's setting of jpeg_color_space can be relied on if the file conforms to JFIF or Adobe conventions, but otherwise it is no better than a guess. If you know the JPEG file's color space for certain, you can override jpeg_read_header's guess by setting jpeg_color_space. jpeg_read_header also selects a default output color space based on (its guess of) jpeg_color_space; set out_color_space to override this. Again, you must select a supported transformation. jdcolor.c currently supports YCbCr => RGB YCbCr => GRAYSCALE RGB => GRAYSCALE GRAYSCALE => RGB YCCK => CMYK as well as the null transforms. (Since GRAYSCALE=>RGB is provided, an application can force grayscale JPEGs to look like color JPEGs if it only wants to handle one case.) The two-pass color quantizer, jquant2.c, is specialized to handle RGB data (it weights distances appropriately for RGB colors). You'll need to modify the code if you want to use it for non-RGB output color spaces. Note that jquant2.c is used to map to an application-supplied colormap as well as for the normal two-pass colormap selection process. CAUTION: it appears that Adobe Photoshop writes inverted data in CMYK JPEG files: 0 represents 100% ink coverage, rather than 0% ink as you'd expect. This is arguably a bug in Photoshop, but if you need to work with Photoshop CMYK files, you will have to deal with it in your application. We cannot "fix" this in the library by inverting the data during the CMYK<=>YCCK transform, because that would break other applications, notably Ghostscript. Photoshop versions prior to 3.0 write EPS files containing JPEG-encoded CMYK data in the same inverted-YCCK representation used in bare JPEG files, but the surrounding PostScript code performs an inversion using the PS image operator. I am told that Photoshop 3.0 will write uninverted YCCK in EPS/JPEG files, and will omit the PS-level inversion. (But the data polarity used in bare JPEG files will not change in 3.0.) In either case, the JPEG library must not invert the data itself, or else Ghostscript would read these EPS files incorrectly. Error handling -------------- When the default error handler is used, any error detected inside the JPEG routines will cause a message to be printed on stderr, followed by exit(). You can supply your own error handling routines to override this behavior and to control the treatment of nonfatal warnings and trace/debug messages. The file example.txt illustrates the most common case, which is to have the application regain control after an error rather than exiting. The JPEG library never writes any message directly; it always goes through the error handling routines. Three classes of messages are recognized: * Fatal errors: the library cannot continue. * Warnings: the library can continue, but the data is corrupt, and a damaged output image is likely to result. * Trace/informational messages. These come with a trace level indicating the importance of the message; you can control the verbosity of the program by adjusting the maximum trace level that will be displayed. You may, if you wish, simply replace the entire JPEG error handling module (jerror.c) with your own code. However, you can avoid code duplication by only replacing some of the routines depending on the behavior you need. This is accomplished by calling jpeg_std_error() as usual, but then overriding some of the method pointers in the jpeg_error_mgr struct, as illustrated by example.txt. All of the error handling routines will receive a pointer to the JPEG object (a j_common_ptr which points to either a jpeg_compress_struct or a jpeg_decompress_struct; if you need to tell which, test the is_decompressor field). This struct includes a pointer to the error manager struct in its "err" field. Frequently, custom error handler routines will need to access additional data which is not known to the JPEG library or the standard error handler. The most convenient way to do this is to embed either the JPEG object or the jpeg_error_mgr struct in a larger structure that contains additional fields; then casting the passed pointer provides access to the additional fields. Again, see example.txt for one way to do it. (Beginning with IJG version 6b, there is also a void pointer "client_data" in each JPEG object, which the application can also use to find related data. The library does not touch client_data at all.) The individual methods that you might wish to override are: error_exit (j_common_ptr cinfo) Receives control for a fatal error. Information sufficient to generate the error message has been stored in cinfo->err; call output_message to display it. Control must NOT return to the caller; generally this routine will exit() or longjmp() somewhere. Typically you would override this routine to get rid of the exit() default behavior. Note that if you continue processing, you should clean up the JPEG object with jpeg_abort() or jpeg_destroy(). output_message (j_common_ptr cinfo) Actual output of any JPEG message. Override this to send messages somewhere other than stderr. Note that this method does not know how to generate a message, only where to send it. format_message (j_common_ptr cinfo, char *buffer) Constructs a readable error message string based on the error info stored in cinfo->err. This method is called by output_message. Few applications should need to override this method. One possible reason for doing so is to implement dynamic switching of error message language. emit_message (j_common_ptr cinfo, int msg_level) Decide whether or not to emit a warning or trace message; if so, calls output_message. The main reason for overriding this method would be to abort on warnings. msg_level is -1 for warnings, 0 and up for trace messages. Only error_exit() and emit_message() are called from the rest of the JPEG library; the other two are internal to the error handler. The actual message texts are stored in an array of strings which is pointed to by the field err->jpeg_message_table. The messages are numbered from 0 to err->last_jpeg_message, and it is these code numbers that are used in the JPEG library code. You could replace the message texts (for instance, with messages in French or German) by changing the message table pointer. See jerror.h for the default texts. CAUTION: this table will almost certainly change or grow from one library version to the next. It may be useful for an application to add its own message texts that are handled by the same mechanism. The error handler supports a second "add-on" message table for this purpose. To define an addon table, set the pointer err->addon_message_table and the message numbers err->first_addon_message and err->last_addon_message. If you number the addon messages beginning at 1000 or so, you won't have to worry about conflicts with the library's built-in messages. See the sample applications cjpeg/djpeg for an example of using addon messages (the addon messages are defined in cderror.h). Actual invocation of the error handler is done via macros defined in jerror.h: ERREXITn(...) for fatal errors WARNMSn(...) for corrupt-data warnings TRACEMSn(...) for trace and informational messages. These macros store the message code and any additional parameters into the error handler struct, then invoke the error_exit() or emit_message() method. The variants of each macro are for varying numbers of additional parameters. The additional parameters are inserted into the generated message using standard printf() format codes. See jerror.h and jerror.c for further details. Compressed data handling (source and destination managers) ---------------------------------------------------------- The JPEG compression library sends its compressed data to a "destination manager" module. The default destination manager just writes the data to a memory buffer or to a stdio stream, but you can provide your own manager to do something else. Similarly, the decompression library calls a "source manager" to obtain the compressed data; you can provide your own source manager if you want the data to come from somewhere other than a memory buffer or a stdio stream. In both cases, compressed data is processed a bufferload at a time: the destination or source manager provides a work buffer, and the library invokes the manager only when the buffer is filled or emptied. (You could define a one-character buffer to force the manager to be invoked for each byte, but that would be rather inefficient.) The buffer's size and location are controlled by the manager, not by the library. For example, the memory source manager just makes the buffer pointer and length point to the original data in memory. In this case the buffer-reload procedure will be invoked only if the decompressor ran off the end of the datastream, which would indicate an erroneous datastream. The work buffer is defined as an array of datatype JOCTET, which is generally "char" or "unsigned char". On a machine where char is not exactly 8 bits wide, you must define JOCTET as a wider data type and then modify the data source and destination modules to transcribe the work arrays into 8-bit units on external storage. A data destination manager struct contains a pointer and count defining the next byte to write in the work buffer and the remaining free space: JOCTET *next_output_byte; /* => next byte to write in buffer */ size_t free_in_buffer; /* # of byte spaces remaining in buffer */ The library increments the pointer and decrements the count until the buffer is filled. The manager's empty_output_buffer method must reset the pointer and count. The manager is expected to remember the buffer's starting address and total size in private fields not visible to the library. A data destination manager provides three methods: init_destination (j_compress_ptr cinfo) Initialize destination. This is called by jpeg_start_compress() before any data is actually written. It must initialize next_output_byte and free_in_buffer. free_in_buffer must be initialized to a positive value. empty_output_buffer (j_compress_ptr cinfo) This is called whenever the buffer has filled (free_in_buffer reaches zero). In typical applications, it should write out the *entire* buffer (use the saved start address and buffer length; ignore the current state of next_output_byte and free_in_buffer). Then reset the pointer & count to the start of the buffer, and return TRUE indicating that the buffer has been dumped. free_in_buffer must be set to a positive value when TRUE is returned. A FALSE return should only be used when I/O suspension is desired (this operating mode is discussed in the next section). term_destination (j_compress_ptr cinfo) Terminate destination --- called by jpeg_finish_compress() after all data has been written. In most applications, this must flush any data remaining in the buffer. Use either next_output_byte or free_in_buffer to determine how much data is in the buffer. term_destination() is NOT called by jpeg_abort() or jpeg_destroy(). If you want the destination manager to be cleaned up during an abort, you must do it yourself. You will also need code to create a jpeg_destination_mgr struct, fill in its method pointers, and insert a pointer to the struct into the "dest" field of the JPEG compression object. This can be done in-line in your setup code if you like, but it's probably cleaner to provide a separate routine similar to the jpeg_stdio_dest() or jpeg_mem_dest() routines of the supplied destination managers. Decompression source managers follow a parallel design, but with some additional frammishes. The source manager struct contains a pointer and count defining the next byte to read from the work buffer and the number of bytes remaining: const JOCTET *next_input_byte; /* => next byte to read from buffer */ size_t bytes_in_buffer; /* # of bytes remaining in buffer */ The library increments the pointer and decrements the count until the buffer is emptied. The manager's fill_input_buffer method must reset the pointer and count. In most applications, the manager must remember the buffer's starting address and total size in private fields not visible to the library. A data source manager provides five methods: init_source (j_decompress_ptr cinfo) Initialize source. This is called by jpeg_read_header() before any data is actually read. Unlike init_destination(), it may leave bytes_in_buffer set to 0 (in which case a fill_input_buffer() call will occur immediately). fill_input_buffer (j_decompress_ptr cinfo) This is called whenever bytes_in_buffer has reached zero and more data is wanted. In typical applications, it should read fresh data into the buffer (ignoring the current state of next_input_byte and bytes_in_buffer), reset the pointer & count to the start of the buffer, and return TRUE indicating that the buffer has been reloaded. It is not necessary to fill the buffer entirely, only to obtain at least one more byte. bytes_in_buffer MUST be set to a positive value if TRUE is returned. A FALSE return should only be used when I/O suspension is desired (this mode is discussed in the next section). skip_input_data (j_decompress_ptr cinfo, long num_bytes) Skip num_bytes worth of data. The buffer pointer and count should be advanced over num_bytes input bytes, refilling the buffer as needed. This is used to skip over a potentially large amount of uninteresting data (such as an APPn marker). In some applications it may be possible to optimize away the reading of the skipped data, but it's not clear that being smart is worth much trouble; large skips are uncommon. bytes_in_buffer may be zero on return. A zero or negative skip count should be treated as a no-op. resync_to_restart (j_decompress_ptr cinfo, int desired) This routine is called only when the decompressor has failed to find a restart (RSTn) marker where one is expected. Its mission is to find a suitable point for resuming decompression. For most applications, we recommend that you just use the default resync procedure, jpeg_resync_to_restart(). However, if you are able to back up in the input data stream, or if you have a-priori knowledge about the likely location of restart markers, you may be able to do better. Read the read_restart_marker() and jpeg_resync_to_restart() routines in jdmarker.c if you think you'd like to implement your own resync procedure. term_source (j_decompress_ptr cinfo) Terminate source --- called by jpeg_finish_decompress() after all data has been read. Often a no-op. For both fill_input_buffer() and skip_input_data(), there is no such thing as an EOF return. If the end of the file has been reached, the routine has a choice of exiting via ERREXIT() or inserting fake data into the buffer. In most cases, generating a warning message and inserting a fake EOI marker is the best course of action --- this will allow the decompressor to output however much of the image is there. In pathological cases, the decompressor may swallow the EOI and again demand data ... just keep feeding it fake EOIs. jdatasrc.c illustrates the recommended error recovery behavior. term_source() is NOT called by jpeg_abort() or jpeg_destroy(). If you want the source manager to be cleaned up during an abort, you must do it yourself. You will also need code to create a jpeg_source_mgr struct, fill in its method pointers, and insert a pointer to the struct into the "src" field of the JPEG decompression object. This can be done in-line in your setup code if you like, but it's probably cleaner to provide a separate routine similar to the jpeg_stdio_src() or jpeg_mem_src() routines of the supplied source managers. For more information, consult the memory and stdio source and destination managers in jdatasrc.c and jdatadst.c. I/O suspension -------------- Some applications need to use the JPEG library as an incremental memory-to- memory filter: when the compressed data buffer is filled or emptied, they want control to return to the outer loop, rather than expecting that the buffer can be emptied or reloaded within the data source/destination manager subroutine. The library supports this need by providing an "I/O suspension" mode, which we describe in this section. The I/O suspension mode is not a panacea: nothing is guaranteed about the maximum amount of time spent in any one call to the library, so it will not eliminate response-time problems in single-threaded applications. If you need guaranteed response time, we suggest you "bite the bullet" and implement a real multi-tasking capability. To use I/O suspension, cooperation is needed between the calling application and the data source or destination manager; you will always need a custom source/destination manager. (Please read the previous section if you haven't already.) The basic idea is that the empty_output_buffer() or fill_input_buffer() routine is a no-op, merely returning FALSE to indicate that it has done nothing. Upon seeing this, the JPEG library suspends operation and returns to its caller. The surrounding application is responsible for emptying or refilling the work buffer before calling the JPEG library again. Compression suspension: For compression suspension, use an empty_output_buffer() routine that returns FALSE; typically it will not do anything else. This will cause the compressor to return to the caller of jpeg_write_scanlines(), with the return value indicating that not all the supplied scanlines have been accepted. The application must make more room in the output buffer, adjust the output buffer pointer/count appropriately, and then call jpeg_write_scanlines() again, pointing to the first unconsumed scanline. When forced to suspend, the compressor will backtrack to a convenient stopping point (usually the start of the current MCU); it will regenerate some output data when restarted. Therefore, although empty_output_buffer() is only called when the buffer is filled, you should NOT write out the entire buffer after a suspension. Write only the data up to the current position of next_output_byte/free_in_buffer. The data beyond that point will be regenerated after resumption. Because of the backtracking behavior, a good-size output buffer is essential for efficiency; you don't want the compressor to suspend often. (In fact, an overly small buffer could lead to infinite looping, if a single MCU required more data than would fit in the buffer.) We recommend a buffer of at least several Kbytes. You may want to insert explicit code to ensure that you don't call jpeg_write_scanlines() unless there is a reasonable amount of space in the output buffer; in other words, flush the buffer before trying to compress more data. The compressor does not allow suspension while it is trying to write JPEG markers at the beginning and end of the file. This means that: * At the beginning of a compression operation, there must be enough free space in the output buffer to hold the header markers (typically 600 or so bytes). The recommended buffer size is bigger than this anyway, so this is not a problem as long as you start with an empty buffer. However, this restriction might catch you if you insert large special markers, such as a JFIF thumbnail image, without flushing the buffer afterwards. * When you call jpeg_finish_compress(), there must be enough space in the output buffer to emit any buffered data and the final EOI marker. In the current implementation, half a dozen bytes should suffice for this, but for safety's sake we recommend ensuring that at least 100 bytes are free before calling jpeg_finish_compress(). A more significant restriction is that jpeg_finish_compress() cannot suspend. This means you cannot use suspension with multi-pass operating modes, namely Huffman code optimization and multiple-scan output. Those modes write the whole file during jpeg_finish_compress(), which will certainly result in buffer overrun. (Note that this restriction applies only to compression, not decompression. The decompressor supports input suspension in all of its operating modes.) Decompression suspension: For decompression suspension, use a fill_input_buffer() routine that simply returns FALSE (except perhaps during error recovery, as discussed below). This will cause the decompressor to return to its caller with an indication that suspension has occurred. This can happen at four places: * jpeg_read_header(): will return JPEG_SUSPENDED. * jpeg_start_decompress(): will return FALSE, rather than its usual TRUE. * jpeg_read_scanlines(): will return the number of scanlines already completed (possibly 0). * jpeg_finish_decompress(): will return FALSE, rather than its usual TRUE. The surrounding application must recognize these cases, load more data into the input buffer, and repeat the call. In the case of jpeg_read_scanlines(), increment the passed pointers past any scanlines successfully read. Just as with compression, the decompressor will typically backtrack to a convenient restart point before suspending. When fill_input_buffer() is called, next_input_byte/bytes_in_buffer point to the current restart point, which is where the decompressor will backtrack to if FALSE is returned. The data beyond that position must NOT be discarded if you suspend; it needs to be re-read upon resumption. In most implementations, you'll need to shift this data down to the start of your work buffer and then load more data after it. Again, this behavior means that a several-Kbyte work buffer is essential for decent performance; furthermore, you should load a reasonable amount of new data before resuming decompression. (If you loaded, say, only one new byte each time around, you could waste a LOT of cycles.) The skip_input_data() source manager routine requires special care in a suspension scenario. This routine is NOT granted the ability to suspend the decompressor; it can decrement bytes_in_buffer to zero, but no more. If the requested skip distance exceeds the amount of data currently in the input buffer, then skip_input_data() must set bytes_in_buffer to zero and record the additional skip distance somewhere else. The decompressor will immediately call fill_input_buffer(), which should return FALSE, which will cause a suspension return. The surrounding application must then arrange to discard the recorded number of bytes before it resumes loading the input buffer. (Yes, this design is rather baroque, but it avoids complexity in the far more common case where a non-suspending source manager is used.) If the input data has been exhausted, we recommend that you emit a warning and insert dummy EOI markers just as a non-suspending data source manager would do. This can be handled either in the surrounding application logic or within fill_input_buffer(); the latter is probably more efficient. If fill_input_buffer() knows that no more data is available, it can set the pointer/count to point to a dummy EOI marker and then return TRUE just as though it had read more data in a non-suspending situation. The decompressor does not attempt to suspend within standard JPEG markers; instead it will backtrack to the start of the marker and reprocess the whole marker next time. Hence the input buffer must be large enough to hold the longest standard marker in the file. Standard JPEG markers should normally not exceed a few hundred bytes each (DHT tables are typically the longest). We recommend at least a 2K buffer for performance reasons, which is much larger than any correct marker is likely to be. For robustness against damaged marker length counts, you may wish to insert a test in your application for the case that the input buffer is completely full and yet the decoder has suspended without consuming any data --- otherwise, if this situation did occur, it would lead to an endless loop. (The library can't provide this test since it has no idea whether "the buffer is full", or even whether there is a fixed-size input buffer.) The input buffer would need to be 64K to allow for arbitrary COM or APPn markers, but these are handled specially: they are either saved into allocated memory, or skipped over by calling skip_input_data(). In the former case, suspension is handled correctly, and in the latter case, the problem of buffer overrun is placed on skip_input_data's shoulders, as explained above. Note that if you provide your own marker handling routine for large markers, you should consider how to deal with buffer overflow. Multiple-buffer management: In some applications it is desirable to store the compressed data in a linked list of buffer areas, so as to avoid data copying. This can be handled by having empty_output_buffer() or fill_input_buffer() set the pointer and count to reference the next available buffer; FALSE is returned only if no more buffers are available. Although seemingly straightforward, there is a pitfall in this approach: the backtrack that occurs when FALSE is returned could back up into an earlier buffer. For example, when fill_input_buffer() is called, the current pointer & count indicate the backtrack restart point. Since fill_input_buffer() will set the pointer and count to refer to a new buffer, the restart position must be saved somewhere else. Suppose a second call to fill_input_buffer() occurs in the same library call, and no additional input data is available, so fill_input_buffer must return FALSE. If the JPEG library has not moved the pointer/count forward in the current buffer, then *the correct restart point is the saved position in the prior buffer*. Prior buffers may be discarded only after the library establishes a restart point within a later buffer. Similar remarks apply for output into a chain of buffers. The library will never attempt to backtrack over a skip_input_data() call, so any skipped data can be permanently discarded. You still have to deal with the case of skipping not-yet-received data, however. It's much simpler to use only a single buffer; when fill_input_buffer() is called, move any unconsumed data (beyond the current pointer/count) down to the beginning of this buffer and then load new data into the remaining buffer space. This approach requires a little more data copying but is far easier to get right. Progressive JPEG support ------------------------ Progressive JPEG rearranges the stored data into a series of scans of increasing quality. In situations where a JPEG file is transmitted across a slow communications link, a decoder can generate a low-quality image very quickly from the first scan, then gradually improve the displayed quality as more scans are received. The final image after all scans are complete is identical to that of a regular (sequential) JPEG file of the same quality setting. Progressive JPEG files are often slightly smaller than equivalent sequential JPEG files, but the possibility of incremental display is the main reason for using progressive JPEG. The IJG encoder library generates progressive JPEG files when given a suitable "scan script" defining how to divide the data into scans. Creation of progressive JPEG files is otherwise transparent to the encoder. Progressive JPEG files can also be read transparently by the decoder library. If the decoding application simply uses the library as defined above, it will receive a final decoded image without any indication that the file was progressive. Of course, this approach does not allow incremental display. To perform incremental display, an application needs to use the decoder library's "buffered-image" mode, in which it receives a decoded image multiple times. Each displayed scan requires about as much work to decode as a full JPEG image of the same size, so the decoder must be fairly fast in relation to the data transmission rate in order to make incremental display useful. However, it is possible to skip displaying the image and simply add the incoming bits to the decoder's coefficient buffer. This is fast because only Huffman decoding need be done, not IDCT, upsampling, colorspace conversion, etc. The IJG decoder library allows the application to switch dynamically between displaying the image and simply absorbing the incoming bits. A properly coded application can automatically adapt the number of display passes to suit the time available as the image is received. Also, a final higher-quality display cycle can be performed from the buffered data after the end of the file is reached. Progressive compression: To create a progressive JPEG file (or a multiple-scan sequential JPEG file), set the scan_info cinfo field to point to an array of scan descriptors, and perform compression as usual. Instead of constructing your own scan list, you can call the jpeg_simple_progression() helper routine to create a recommended progression sequence; this method should be used by all applications that don't want to get involved in the nitty-gritty of progressive scan sequence design. (If you want to provide user control of scan sequences, you may wish to borrow the scan script reading code found in rdswitch.c, so that you can read scan script files just like cjpeg's.) When scan_info is not NULL, the compression library will store DCT'd data into a buffer array as jpeg_write_scanlines() is called, and will emit all the requested scans during jpeg_finish_compress(). This implies that multiple-scan output cannot be created with a suspending data destination manager, since jpeg_finish_compress() does not support suspension. We should also note that the compressor currently forces Huffman optimization mode when creating a progressive JPEG file, because the default Huffman tables are unsuitable for progressive files. Progressive decompression: When buffered-image mode is not used, the decoder library will read all of a multi-scan file during jpeg_start_decompress(), so that it can provide a final decoded image. (Here "multi-scan" means either progressive or multi-scan sequential.) This makes multi-scan files transparent to the decoding application. However, existing applications that used suspending input with version 5 of the IJG library will need to be modified to check for a suspension return from jpeg_start_decompress(). To perform incremental display, an application must use the library's buffered-image mode. This is described in the next section. Buffered-image mode ------------------- In buffered-image mode, the library stores the partially decoded image in a coefficient buffer, from which it can be read out as many times as desired. This mode is typically used for incremental display of progressive JPEG files, but it can be used with any JPEG file. Each scan of a progressive JPEG file adds more data (more detail) to the buffered image. The application can display in lockstep with the source file (one display pass per input scan), or it can allow input processing to outrun display processing. By making input and display processing run independently, it is possible for the application to adapt progressive display to a wide range of data transmission rates. The basic control flow for buffered-image decoding is jpeg_create_decompress() set data source jpeg_read_header() set overall decompression parameters cinfo.buffered_image = TRUE; /* select buffered-image mode */ jpeg_start_decompress() for (each output pass) { adjust output decompression parameters if required jpeg_start_output() /* start a new output pass */ for (all scanlines in image) { jpeg_read_scanlines() display scanlines } jpeg_finish_output() /* terminate output pass */ } jpeg_finish_decompress() jpeg_destroy_decompress() This differs from ordinary unbuffered decoding in that there is an additional level of looping. The application can choose how many output passes to make and how to display each pass. The simplest approach to displaying progressive images is to do one display pass for each scan appearing in the input file. In this case the outer loop condition is typically while (!jpeg_input_complete(&cinfo)) and the start-output call should read jpeg_start_output(&cinfo, cinfo.input_scan_number); The second parameter to jpeg_start_output() indicates which scan of the input file is to be displayed; the scans are numbered starting at 1 for this purpose. (You can use a loop counter starting at 1 if you like, but using the library's input scan counter is easier.) The library automatically reads data as necessary to complete each requested scan, and jpeg_finish_output() advances to the next scan or end-of-image marker (hence input_scan_number will be incremented by the time control arrives back at jpeg_start_output()). With this technique, data is read from the input file only as needed, and input and output processing run in lockstep. After reading the final scan and reaching the end of the input file, the buffered image remains available; it can be read additional times by repeating the jpeg_start_output()/jpeg_read_scanlines()/jpeg_finish_output() sequence. For example, a useful technique is to use fast one-pass color quantization for display passes made while the image is arriving, followed by a final display pass using two-pass quantization for highest quality. This is done by changing the library parameters before the final output pass. Changing parameters between passes is discussed in detail below. In general the last scan of a progressive file cannot be recognized as such until after it is read, so a post-input display pass is the best approach if you want special processing in the final pass. When done with the image, be sure to call jpeg_finish_decompress() to release the buffered image (or just use jpeg_destroy_decompress()). If input data arrives faster than it can be displayed, the application can cause the library to decode input data in advance of what's needed to produce output. This is done by calling the routine jpeg_consume_input(). The return value is one of the following: JPEG_REACHED_SOS: reached an SOS marker (the start of a new scan) JPEG_REACHED_EOI: reached the EOI marker (end of image) JPEG_ROW_COMPLETED: completed reading one MCU row of compressed data JPEG_SCAN_COMPLETED: completed reading last MCU row of current scan JPEG_SUSPENDED: suspended before completing any of the above (JPEG_SUSPENDED can occur only if a suspending data source is used.) This routine can be called at any time after initializing the JPEG object. It reads some additional data and returns when one of the indicated significant events occurs. (If called after the EOI marker is reached, it will immediately return JPEG_REACHED_EOI without attempting to read more data.) The library's output processing will automatically call jpeg_consume_input() whenever the output processing overtakes the input; thus, simple lockstep display requires no direct calls to jpeg_consume_input(). But by adding calls to jpeg_consume_input(), you can absorb data in advance of what is being displayed. This has two benefits: * You can limit buildup of unprocessed data in your input buffer. * You can eliminate extra display passes by paying attention to the state of the library's input processing. The first of these benefits only requires interspersing calls to jpeg_consume_input() with your display operations and any other processing you may be doing. To avoid wasting cycles due to backtracking, it's best to call jpeg_consume_input() only after a hundred or so new bytes have arrived. This is discussed further under "I/O suspension", above. (Note: the JPEG library currently is not thread-safe. You must not call jpeg_consume_input() from one thread of control if a different library routine is working on the same JPEG object in another thread.) When input arrives fast enough that more than one new scan is available before you start a new output pass, you may as well skip the output pass corresponding to the completed scan. This occurs for free if you pass cinfo.input_scan_number as the target scan number to jpeg_start_output(). The input_scan_number field is simply the index of the scan currently being consumed by the input processor. You can ensure that this is up-to-date by emptying the input buffer just before calling jpeg_start_output(): call jpeg_consume_input() repeatedly until it returns JPEG_SUSPENDED or JPEG_REACHED_EOI. The target scan number passed to jpeg_start_output() is saved in the cinfo.output_scan_number field. The library's output processing calls jpeg_consume_input() whenever the current input scan number and row within that scan is less than or equal to the current output scan number and row. Thus, input processing can "get ahead" of the output processing but is not allowed to "fall behind". You can achieve several different effects by manipulating this interlock rule. For example, if you pass a target scan number greater than the current input scan number, the output processor will wait until that scan starts to arrive before producing any output. (To avoid an infinite loop, the target scan number is automatically reset to the last scan number when the end of image is reached. Thus, if you specify a large target scan number, the library will just absorb the entire input file and then perform an output pass. This is effectively the same as what jpeg_start_decompress() does when you don't select buffered-image mode.) When you pass a target scan number equal to the current input scan number, the image is displayed no faster than the current input scan arrives. The final possibility is to pass a target scan number less than the current input scan number; this disables the input/output interlock and causes the output processor to simply display whatever it finds in the image buffer, without waiting for input. (However, the library will not accept a target scan number less than one, so you can't avoid waiting for the first scan.) When data is arriving faster than the output display processing can advance through the image, jpeg_consume_input() will store data into the buffered image beyond the point at which the output processing is reading data out again. If the input arrives fast enough, it may "wrap around" the buffer to the point where the input is more than one whole scan ahead of the output. If the output processing simply proceeds through its display pass without paying attention to the input, the effect seen on-screen is that the lower part of the image is one or more scans better in quality than the upper part. Then, when the next output scan is started, you have a choice of what target scan number to use. The recommended choice is to use the current input scan number at that time, which implies that you've skipped the output scans corresponding to the input scans that were completed while you processed the previous output scan. In this way, the decoder automatically adapts its speed to the arriving data, by skipping output scans as necessary to keep up with the arriving data. When using this strategy, you'll want to be sure that you perform a final output pass after receiving all the data; otherwise your last display may not be full quality across the whole screen. So the right outer loop logic is something like this: do { absorb any waiting input by calling jpeg_consume_input() final_pass = jpeg_input_complete(&cinfo); adjust output decompression parameters if required jpeg_start_output(&cinfo, cinfo.input_scan_number); ... jpeg_finish_output() } while (!final_pass); rather than quitting as soon as jpeg_input_complete() returns TRUE. This arrangement makes it simple to use higher-quality decoding parameters for the final pass. But if you don't want to use special parameters for the final pass, the right loop logic is like this: for (;;) { absorb any waiting input by calling jpeg_consume_input() jpeg_start_output(&cinfo, cinfo.input_scan_number); ... jpeg_finish_output() if (jpeg_input_complete(&cinfo) && cinfo.input_scan_number == cinfo.output_scan_number) break; } In this case you don't need to know in advance whether an output pass is to be the last one, so it's not necessary to have reached EOF before starting the final output pass; rather, what you want to test is whether the output pass was performed in sync with the final input scan. This form of the loop will avoid an extra output pass whenever the decoder is able (or nearly able) to keep up with the incoming data. When the data transmission speed is high, you might begin a display pass, then find that much or all of the file has arrived before you can complete the pass. (You can detect this by noting the JPEG_REACHED_EOI return code from jpeg_consume_input(), or equivalently by testing jpeg_input_complete().) In this situation you may wish to abort the current display pass and start a new one using the newly arrived information. To do so, just call jpeg_finish_output() and then start a new pass with jpeg_start_output(). A variant strategy is to abort and restart display if more than one complete scan arrives during an output pass; this can be detected by noting JPEG_REACHED_SOS returns and/or examining cinfo.input_scan_number. This idea should be employed with caution, however, since the display process might never get to the bottom of the image before being aborted, resulting in the lower part of the screen being several passes worse than the upper. In most cases it's probably best to abort an output pass only if the whole file has arrived and you want to begin the final output pass immediately. When receiving data across a communication link, we recommend always using the current input scan number for the output target scan number; if a higher-quality final pass is to be done, it should be started (aborting any incomplete output pass) as soon as the end of file is received. However, many other strategies are possible. For example, the application can examine the parameters of the current input scan and decide whether to display it or not. If the scan contains only chroma data, one might choose not to use it as the target scan, expecting that the scan will be small and will arrive quickly. To skip to the next scan, call jpeg_consume_input() until it returns JPEG_REACHED_SOS or JPEG_REACHED_EOI. Or just use the next higher number as the target scan for jpeg_start_output(); but that method doesn't let you inspect the next scan's parameters before deciding to display it. In buffered-image mode, jpeg_start_decompress() never performs input and thus never suspends. An application that uses input suspension with buffered-image mode must be prepared for suspension returns from these routines: * jpeg_start_output() performs input only if you request 2-pass quantization and the target scan isn't fully read yet. (This is discussed below.) * jpeg_read_scanlines(), as always, returns the number of scanlines that it was able to produce before suspending. * jpeg_finish_output() will read any markers following the target scan, up to the end of the file or the SOS marker that begins another scan. (But it reads no input if jpeg_consume_input() has already reached the end of the file or a SOS marker beyond the target output scan.) * jpeg_finish_decompress() will read until the end of file, and thus can suspend if the end hasn't already been reached (as can be tested by calling jpeg_input_complete()). jpeg_start_output(), jpeg_finish_output(), and jpeg_finish_decompress() all return TRUE if they completed their tasks, FALSE if they had to suspend. In the event of a FALSE return, the application must load more input data and repeat the call. Applications that use non-suspending data sources need not check the return values of these three routines. It is possible to change decoding parameters between output passes in the buffered-image mode. The decoder library currently supports only very limited changes of parameters. ONLY THE FOLLOWING parameter changes are allowed after jpeg_start_decompress() is called: * dct_method can be changed before each call to jpeg_start_output(). For example, one could use a fast DCT method for early scans, changing to a higher quality method for the final scan. * dither_mode can be changed before each call to jpeg_start_output(); of course this has no impact if not using color quantization. Typically one would use ordered dither for initial passes, then switch to Floyd-Steinberg dither for the final pass. Caution: changing dither mode can cause more memory to be allocated by the library. Although the amount of memory involved is not large (a scanline or so), it may cause the initial max_memory_to_use specification to be exceeded, which in the worst case would result in an out-of-memory failure. * do_block_smoothing can be changed before each call to jpeg_start_output(). This setting is relevant only when decoding a progressive JPEG image. During the first DC-only scan, block smoothing provides a very "fuzzy" look instead of the very "blocky" look seen without it; which is better seems a matter of personal taste. But block smoothing is nearly always a win during later stages, especially when decoding a successive-approximation image: smoothing helps to hide the slight blockiness that otherwise shows up on smooth gradients until the lowest coefficient bits are sent. * Color quantization mode can be changed under the rules described below. You *cannot* change between full-color and quantized output (because that would alter the required I/O buffer sizes), but you can change which quantization method is used. When generating color-quantized output, changing quantization method is a very useful way of switching between high-speed and high-quality display. The library allows you to change among its three quantization methods: 1. Single-pass quantization to a fixed color cube. Selected by cinfo.two_pass_quantize = FALSE and cinfo.colormap = NULL. 2. Single-pass quantization to an application-supplied colormap. Selected by setting cinfo.colormap to point to the colormap (the value of two_pass_quantize is ignored); also set cinfo.actual_number_of_colors. 3. Two-pass quantization to a colormap chosen specifically for the image. Selected by cinfo.two_pass_quantize = TRUE and cinfo.colormap = NULL. (This is the default setting selected by jpeg_read_header, but it is probably NOT what you want for the first pass of progressive display!) These methods offer successively better quality and lesser speed. However, only the first method is available for quantizing in non-RGB color spaces. IMPORTANT: because the different quantizer methods have very different working-storage requirements, the library requires you to indicate which one(s) you intend to use before you call jpeg_start_decompress(). (If we did not require this, the max_memory_to_use setting would be a complete fiction.) You do this by setting one or more of these three cinfo fields to TRUE: enable_1pass_quant Fixed color cube colormap enable_external_quant Externally-supplied colormap enable_2pass_quant Two-pass custom colormap All three are initialized FALSE by jpeg_read_header(). But jpeg_start_decompress() automatically sets TRUE the one selected by the current two_pass_quantize and colormap settings, so you only need to set the enable flags for any other quantization methods you plan to change to later. After setting the enable flags correctly at jpeg_start_decompress() time, you can change to any enabled quantization method by setting two_pass_quantize and colormap properly just before calling jpeg_start_output(). The following special rules apply: 1. You must explicitly set cinfo.colormap to NULL when switching to 1-pass or 2-pass mode from a different mode, or when you want the 2-pass quantizer to be re-run to generate a new colormap. 2. To switch to an external colormap, or to change to a different external colormap than was used on the prior pass, you must call jpeg_new_colormap() after setting cinfo.colormap. NOTE: if you want to use the same colormap as was used in the prior pass, you should not do either of these things. This will save some nontrivial switchover costs. (These requirements exist because cinfo.colormap will always be non-NULL after completing a prior output pass, since both the 1-pass and 2-pass quantizers set it to point to their output colormaps. Thus you have to do one of these two things to notify the library that something has changed. Yup, it's a bit klugy, but it's necessary to do it this way for backwards compatibility.) Note that in buffered-image mode, the library generates any requested colormap during jpeg_start_output(), not during jpeg_start_decompress(). When using two-pass quantization, jpeg_start_output() makes a pass over the buffered image to determine the optimum color map; it therefore may take a significant amount of time, whereas ordinarily it does little work. The progress monitor hook is called during this pass, if defined. It is also important to realize that if the specified target scan number is greater than or equal to the current input scan number, jpeg_start_output() will attempt to consume input as it makes this pass. If you use a suspending data source, you need to check for a FALSE return from jpeg_start_output() under these conditions. The combination of 2-pass quantization and a not-yet-fully-read target scan is the only case in which jpeg_start_output() will consume input. Application authors who support buffered-image mode may be tempted to use it for all JPEG images, even single-scan ones. This will work, but it is inefficient: there is no need to create an image-sized coefficient buffer for single-scan images. Requesting buffered-image mode for such an image wastes memory. Worse, it can cost time on large images, since the buffered data has to be swapped out or written to a temporary file. If you are concerned about maximum performance on baseline JPEG files, you should use buffered-image mode only when the incoming file actually has multiple scans. This can be tested by calling jpeg_has_multiple_scans(), which will return a correct result at any time after jpeg_read_header() completes. It is also worth noting that when you use jpeg_consume_input() to let input processing get ahead of output processing, the resulting pattern of access to the coefficient buffer is quite nonsequential. It's best to use the memory manager jmemnobs.c if you can (ie, if you have enough real or virtual main memory). If not, at least make sure that max_memory_to_use is set as high as possible. If the JPEG memory manager has to use a temporary file, you will probably see a lot of disk traffic and poor performance. (This could be improved with additional work on the memory manager, but we haven't gotten around to it yet.) In some applications it may be convenient to use jpeg_consume_input() for all input processing, including reading the initial markers; that is, you may wish to call jpeg_consume_input() instead of jpeg_read_header() during startup. This works, but note that you must check for JPEG_REACHED_SOS and JPEG_REACHED_EOI return codes as the equivalent of jpeg_read_header's codes. Once the first SOS marker has been reached, you must call jpeg_start_decompress() before jpeg_consume_input() will consume more input; it'll just keep returning JPEG_REACHED_SOS until you do. If you read a tables-only file this way, jpeg_consume_input() will return JPEG_REACHED_EOI without ever returning JPEG_REACHED_SOS; be sure to check for this case. If this happens, the decompressor will not read any more input until you call jpeg_abort() to reset it. It is OK to call jpeg_consume_input() even when not using buffered-image mode, but in that case it's basically a no-op after the initial markers have been read: it will just return JPEG_SUSPENDED. Abbreviated datastreams and multiple images ------------------------------------------- A JPEG compression or decompression object can be reused to process multiple images. This saves a small amount of time per image by eliminating the "create" and "destroy" operations, but that isn't the real purpose of the feature. Rather, reuse of an object provides support for abbreviated JPEG datastreams. Object reuse can also simplify processing a series of images in a single input or output file. This section explains these features. A JPEG file normally contains several hundred bytes worth of quantization and Huffman tables. In a situation where many images will be stored or transmitted with identical tables, this may represent an annoying overhead. The JPEG standard therefore permits tables to be omitted. The standard defines three classes of JPEG datastreams: * "Interchange" datastreams contain an image and all tables needed to decode the image. These are the usual kind of JPEG file. * "Abbreviated image" datastreams contain an image, but are missing some or all of the tables needed to decode that image. * "Abbreviated table specification" (henceforth "tables-only") datastreams contain only table specifications. To decode an abbreviated image, it is necessary to load the missing table(s) into the decoder beforehand. This can be accomplished by reading a separate tables-only file. A variant scheme uses a series of images in which the first image is an interchange (complete) datastream, while subsequent ones are abbreviated and rely on the tables loaded by the first image. It is assumed that once the decoder has read a table, it will remember that table until a new definition for the same table number is encountered. It is the application designer's responsibility to figure out how to associate the correct tables with an abbreviated image. While abbreviated datastreams can be useful in a closed environment, their use is strongly discouraged in any situation where data exchange with other applications might be needed. Caveat designer. The JPEG library provides support for reading and writing any combination of tables-only datastreams and abbreviated images. In both compression and decompression objects, a quantization or Huffman table will be retained for the lifetime of the object, unless it is overwritten by a new table definition. To create abbreviated image datastreams, it is only necessary to tell the compressor not to emit some or all of the tables it is using. Each quantization and Huffman table struct contains a boolean field "sent_table", which normally is initialized to FALSE. For each table used by the image, the header-writing process emits the table and sets sent_table = TRUE unless it is already TRUE. (In normal usage, this prevents outputting the same table definition multiple times, as would otherwise occur because the chroma components typically share tables.) Thus, setting this field to TRUE before calling jpeg_start_compress() will prevent the table from being written at all. If you want to create a "pure" abbreviated image file containing no tables, just call "jpeg_suppress_tables(&cinfo, TRUE)" after constructing all the tables. If you want to emit some but not all tables, you'll need to set the individual sent_table fields directly. To create an abbreviated image, you must also call jpeg_start_compress() with a second parameter of FALSE, not TRUE. Otherwise jpeg_start_compress() will force all the sent_table fields to FALSE. (This is a safety feature to prevent abbreviated images from being created accidentally.) To create a tables-only file, perform the same parameter setup that you normally would, but instead of calling jpeg_start_compress() and so on, call jpeg_write_tables(&cinfo). This will write an abbreviated datastream containing only SOI, DQT and/or DHT markers, and EOI. All the quantization and Huffman tables that are currently defined in the compression object will be emitted unless their sent_tables flag is already TRUE, and then all the sent_tables flags will be set TRUE. A sure-fire way to create matching tables-only and abbreviated image files is to proceed as follows: create JPEG compression object set JPEG parameters set destination to tables-only file jpeg_write_tables(&cinfo); set destination to image file jpeg_start_compress(&cinfo, FALSE); write data... jpeg_finish_compress(&cinfo); Since the JPEG parameters are not altered between writing the table file and the abbreviated image file, the same tables are sure to be used. Of course, you can repeat the jpeg_start_compress() ... jpeg_finish_compress() sequence many times to produce many abbreviated image files matching the table file. You cannot suppress output of the computed Huffman tables when Huffman optimization is selected. (If you could, there'd be no way to decode the image...) Generally, you don't want to set optimize_coding = TRUE when you are trying to produce abbreviated files. In some cases you might want to compress an image using tables which are not stored in the application, but are defined in an interchange or tables-only file readable by the application. This can be done by setting up a JPEG decompression object to read the specification file, then copying the tables into your compression object. See jpeg_copy_critical_parameters() for an example of copying quantization tables. To read abbreviated image files, you simply need to load the proper tables into the decompression object before trying to read the abbreviated image. If the proper tables are stored in the application program, you can just allocate the table structs and fill in their contents directly. For example, to load a fixed quantization table into table slot "n": if (cinfo.quant_tbl_ptrs[n] == NULL) cinfo.quant_tbl_ptrs[n] = jpeg_alloc_quant_table((j_common_ptr) &cinfo); quant_ptr = cinfo.quant_tbl_ptrs[n]; /* quant_ptr is JQUANT_TBL* */ for (i = 0; i < 64; i++) { /* Qtable[] is desired quantization table, in natural array order */ quant_ptr->quantval[i] = Qtable[i]; } Code to load a fixed Huffman table is typically (for AC table "n"): if (cinfo.ac_huff_tbl_ptrs[n] == NULL) cinfo.ac_huff_tbl_ptrs[n] = jpeg_alloc_huff_table((j_common_ptr) &cinfo); huff_ptr = cinfo.ac_huff_tbl_ptrs[n]; /* huff_ptr is JHUFF_TBL* */ for (i = 1; i <= 16; i++) { /* counts[i] is number of Huffman codes of length i bits, i=1..16 */ huff_ptr->bits[i] = counts[i]; } for (i = 0; i < 256; i++) { /* symbols[] is the list of Huffman symbols, in code-length order */ huff_ptr->huffval[i] = symbols[i]; } (Note that trying to set cinfo.quant_tbl_ptrs[n] to point directly at a constant JQUANT_TBL object is not safe. If the incoming file happened to contain a quantization table definition, your master table would get overwritten! Instead allocate a working table copy and copy the master table into it, as illustrated above. Ditto for Huffman tables, of course.) You might want to read the tables from a tables-only file, rather than hard-wiring them into your application. The jpeg_read_header() call is sufficient to read a tables-only file. You must pass a second parameter of FALSE to indicate that you do not require an image to be present. Thus, the typical scenario is create JPEG decompression object set source to tables-only file jpeg_read_header(&cinfo, FALSE); set source to abbreviated image file jpeg_read_header(&cinfo, TRUE); set decompression parameters jpeg_start_decompress(&cinfo); read data... jpeg_finish_decompress(&cinfo); In some cases, you may want to read a file without knowing whether it contains an image or just tables. In that case, pass FALSE and check the return value from jpeg_read_header(): it will be JPEG_HEADER_OK if an image was found, JPEG_HEADER_TABLES_ONLY if only tables were found. (A third return value, JPEG_SUSPENDED, is possible when using a suspending data source manager.) Note that jpeg_read_header() will not complain if you read an abbreviated image for which you haven't loaded the missing tables; the missing-table check occurs later, in jpeg_start_decompress(). It is possible to read a series of images from a single source file by repeating the jpeg_read_header() ... jpeg_finish_decompress() sequence, without releasing/recreating the JPEG object or the data source module. (If you did reinitialize, any partial bufferload left in the data source buffer at the end of one image would be discarded, causing you to lose the start of the next image.) When you use this method, stored tables are automatically carried forward, so some of the images can be abbreviated images that depend on tables from earlier images. If you intend to write a series of images into a single destination file, you might want to make a specialized data destination module that doesn't flush the output buffer at term_destination() time. This would speed things up by some trifling amount. Of course, you'd need to remember to flush the buffer after the last image. You can make the later images be abbreviated ones by passing FALSE to jpeg_start_compress(). Special markers --------------- Some applications may need to insert or extract special data in the JPEG datastream. The JPEG standard provides marker types "COM" (comment) and "APP0" through "APP15" (application) to hold application-specific data. Unfortunately, the use of these markers is not specified by the standard. COM markers are fairly widely used to hold user-supplied text. The JFIF file format spec uses APP0 markers with specified initial strings to hold certain data. Adobe applications use APP14 markers beginning with the string "Adobe" for miscellaneous data. Other APPn markers are rarely seen, but might contain almost anything. If you wish to store user-supplied text, we recommend you use COM markers and place readable 7-bit ASCII text in them. Newline conventions are not standardized --- expect to find LF (Unix style), CR/LF (DOS style), or CR (Mac style). A robust COM reader should be able to cope with random binary garbage, including nulls, since some applications generate COM markers containing non-ASCII junk. (But yours should not be one of them.) For program-supplied data, use an APPn marker, and be sure to begin it with an identifying string so that you can tell whether the marker is actually yours. It's probably best to avoid using APP0 or APP14 for any private markers. (NOTE: the upcoming SPIFF standard will use APP8 markers; we recommend you not use APP8 markers for any private purposes, either.) Keep in mind that at most 65533 bytes can be put into one marker, but you can have as many markers as you like. By default, the IJG compression library will write a JFIF APP0 marker if the selected JPEG colorspace is grayscale or YCbCr, or an Adobe APP14 marker if the selected colorspace is RGB, CMYK, or YCCK. You can disable this, but we don't recommend it. The decompression library will recognize JFIF and Adobe markers and will set the JPEG colorspace properly when one is found. You can write special markers immediately following the datastream header by calling jpeg_write_marker() after jpeg_start_compress() and before the first call to jpeg_write_scanlines(). When you do this, the markers appear after the SOI and the JFIF APP0 and Adobe APP14 markers (if written), but before all else. Specify the marker type parameter as "JPEG_COM" for COM or "JPEG_APP0 + n" for APPn. (Actually, jpeg_write_marker will let you write any marker type, but we don't recommend writing any other kinds of marker.) For example, to write a user comment string pointed to by comment_text: jpeg_write_marker(cinfo, JPEG_COM, comment_text, strlen(comment_text)); If it's not convenient to store all the marker data in memory at once, you can instead call jpeg_write_m_header() followed by multiple calls to jpeg_write_m_byte(). If you do it this way, it's your responsibility to call jpeg_write_m_byte() exactly the number of times given in the length parameter to jpeg_write_m_header(). (This method lets you empty the output buffer partway through a marker, which might be important when using a suspending data destination module. In any case, if you are using a suspending destination, you should flush its buffer after inserting any special markers. See "I/O suspension".) Or, if you prefer to synthesize the marker byte sequence yourself, you can just cram it straight into the data destination module. If you are writing JFIF 1.02 extension markers (thumbnail images), don't forget to set cinfo.JFIF_minor_version = 2 so that the encoder will write the correct JFIF version number in the JFIF header marker. The library's default is to write version 1.01, but that's wrong if you insert any 1.02 extension markers. (We could probably get away with just defaulting to 1.02, but there used to be broken decoders that would complain about unknown minor version numbers. To reduce compatibility risks it's safest not to write 1.02 unless you are actually using 1.02 extensions.) When reading, two methods of handling special markers are available: 1. You can ask the library to save the contents of COM and/or APPn markers into memory, and then examine them at your leisure afterwards. 2. You can supply your own routine to process COM and/or APPn markers on-the-fly as they are read. The first method is simpler to use, especially if you are using a suspending data source; writing a marker processor that copes with input suspension is not easy (consider what happens if the marker is longer than your available input buffer). However, the second method conserves memory since the marker data need not be kept around after it's been processed. For either method, you'd normally set up marker handling after creating a decompression object and before calling jpeg_read_header(), because the markers of interest will typically be near the head of the file and so will be scanned by jpeg_read_header. Once you've established a marker handling method, it will be used for the life of that decompression object (potentially many datastreams), unless you change it. Marker handling is determined separately for COM markers and for each APPn marker code. To save the contents of special markers in memory, call jpeg_save_markers(cinfo, marker_code, length_limit) where marker_code is the marker type to save, JPEG_COM or JPEG_APP0+n. (To arrange to save all the special marker types, you need to call this routine 17 times, for COM and APP0-APP15.) If the incoming marker is longer than length_limit data bytes, only length_limit bytes will be saved; this parameter allows you to avoid chewing up memory when you only need to see the first few bytes of a potentially large marker. If you want to save all the data, set length_limit to 0xFFFF; that is enough since marker lengths are only 16 bits. As a special case, setting length_limit to 0 prevents that marker type from being saved at all. (That is the default behavior, in fact.) After jpeg_read_header() completes, you can examine the special markers by following the cinfo->marker_list pointer chain. All the special markers in the file appear in this list, in order of their occurrence in the file (but omitting any markers of types you didn't ask for). Both the original data length and the saved data length are recorded for each list entry; the latter will not exceed length_limit for the particular marker type. Note that these lengths exclude the marker length word, whereas the stored representation within the JPEG file includes it. (Hence the maximum data length is really only 65533.) It is possible that additional special markers appear in the file beyond the SOS marker at which jpeg_read_header stops; if so, the marker list will be extended during reading of the rest of the file. This is not expected to be common, however. If you are short on memory you may want to reset the length limit to zero for all marker types after finishing jpeg_read_header, to ensure that the max_memory_to_use setting cannot be exceeded due to addition of later markers. The marker list remains stored until you call jpeg_finish_decompress or jpeg_abort, at which point the memory is freed and the list is set to empty. (jpeg_destroy also releases the storage, of course.) Note that the library is internally interested in APP0 and APP14 markers; if you try to set a small nonzero length limit on these types, the library will silently force the length up to the minimum it wants. (But you can set a zero length limit to prevent them from being saved at all.) Also, in a 16-bit environment, the maximum length limit may be constrained to less than 65533 by malloc() limitations. It is therefore best not to assume that the effective length limit is exactly what you set it to be. If you want to supply your own marker-reading routine, you do it by calling jpeg_set_marker_processor(). A marker processor routine must have the signature boolean jpeg_marker_parser_method (j_decompress_ptr cinfo) Although the marker code is not explicitly passed, the routine can find it in cinfo->unread_marker. At the time of call, the marker proper has been read from the data source module. The processor routine is responsible for reading the marker length word and the remaining parameter bytes, if any. Return TRUE to indicate success. (FALSE should be returned only if you are using a suspending data source and it tells you to suspend. See the standard marker processors in jdmarker.c for appropriate coding methods if you need to use a suspending data source.) If you override the default APP0 or APP14 processors, it is up to you to recognize JFIF and Adobe markers if you want colorspace recognition to occur properly. We recommend copying and extending the default processors if you want to do that. (A better idea is to save these marker types for later examination by calling jpeg_save_markers(); that method doesn't interfere with the library's own processing of these markers.) jpeg_set_marker_processor() and jpeg_save_markers() are mutually exclusive --- if you call one it overrides any previous call to the other, for the particular marker type specified. A simple example of an external COM processor can be found in djpeg.c. Also, see jpegtran.c for an example of using jpeg_save_markers. ICC profiles ------------ Two functions are provided for writing and reading International Color Consortium (ICC) device profiles embedded in JFIF JPEG image files: void jpeg_write_icc_profile (j_compress_ptr cinfo, const JOCTET *icc_data_ptr, unsigned int icc_data_len); boolean jpeg_read_icc_profile (j_decompress_ptr cinfo, JOCTET **icc_data_ptr, unsigned int *icc_data_len); The ICC has defined a standard for including such data in JPEG "APP2" markers. The aforementioned functions do not know anything about the internal structure of the ICC profile data; they just know how to embed the profile data into a JPEG file while writing it, or to extract the profile data from a JPEG file while reading it. jpeg_write_icc_profile() must be called after calling jpeg_start_compress() and before the first call to jpeg_write_scanlines() or jpeg_write_raw_data(). This ordering ensures that the APP2 marker(s) will appear after the SOI and JFIF or Adobe markers, but before all other data. jpeg_read_icc_profile() returns TRUE if an ICC profile was found and FALSE otherwise. If an ICC profile was found, then the function will allocate a memory region containing the profile and will return a pointer to that memory region in *icc_data_ptr, as well as the length of the region in *icc_data_len. This memory region is allocated by the library using malloc() and must be freed by the caller using free() when the memory region is no longer needed. Callers wishing to use jpeg_read_icc_profile() must call jpeg_save_markers(cinfo, JPEG_APP0 + 2, 0xFFFF); prior to calling jpeg_read_header(). jpeg_read_icc_profile() can be called at any point between jpeg_read_header() and jpeg_finish_decompress(). Raw (downsampled) image data ---------------------------- Some applications need to supply already-downsampled image data to the JPEG compressor, or to receive raw downsampled data from the decompressor. The library supports this requirement by allowing the application to write or read raw data, bypassing the normal preprocessing or postprocessing steps. The interface is different from the standard one and is somewhat harder to use. If your interest is merely in bypassing color conversion, we recommend that you use the standard interface and simply set jpeg_color_space = in_color_space (or jpeg_color_space = out_color_space for decompression). The mechanism described in this section is necessary only to supply or receive downsampled image data, in which not all components have the same dimensions. To compress raw data, you must supply the data in the colorspace to be used in the JPEG file (please read the earlier section on Special color spaces) and downsampled to the sampling factors specified in the JPEG parameters. You must supply the data in the format used internally by the JPEG library, namely a JSAMPIMAGE array. This is an array of pointers to two-dimensional arrays, each of type JSAMPARRAY. Each 2-D array holds the values for one color component. This structure is necessary since the components are of different sizes. If the image dimensions are not a multiple of the MCU size, you must also pad the data correctly (usually, this is done by replicating the last column and/or row). The data must be padded to a multiple of a DCT block in each component: that is, each downsampled row must contain a multiple of 8 valid samples, and there must be a multiple of 8 sample rows for each component. (For applications such as conversion of digital TV images, the standard image size is usually a multiple of the DCT block size, so that no padding need actually be done.) The procedure for compression of raw data is basically the same as normal compression, except that you call jpeg_write_raw_data() in place of jpeg_write_scanlines(). Before calling jpeg_start_compress(), you must do the following: * Set cinfo->raw_data_in to TRUE. (It is set FALSE by jpeg_set_defaults().) This notifies the library that you will be supplying raw data. * Ensure jpeg_color_space is correct --- an explicit jpeg_set_colorspace() call is a good idea. Note that since color conversion is bypassed, in_color_space is ignored, except that jpeg_set_defaults() uses it to choose the default jpeg_color_space setting. * Ensure the sampling factors, cinfo->comp_info[i].h_samp_factor and cinfo->comp_info[i].v_samp_factor, are correct. Since these indicate the dimensions of the data you are supplying, it's wise to set them explicitly, rather than assuming the library's defaults are what you want. To pass raw data to the library, call jpeg_write_raw_data() in place of jpeg_write_scanlines(). The two routines work similarly except that jpeg_write_raw_data takes a JSAMPIMAGE data array rather than JSAMPARRAY. The scanlines count passed to and returned from jpeg_write_raw_data is measured in terms of the component with the largest v_samp_factor. jpeg_write_raw_data() processes one MCU row per call, which is to say v_samp_factor*DCTSIZE sample rows of each component. The passed num_lines value must be at least max_v_samp_factor*DCTSIZE, and the return value will be exactly that amount (or possibly some multiple of that amount, in future library versions). This is true even on the last call at the bottom of the image; don't forget to pad your data as necessary. The required dimensions of the supplied data can be computed for each component as cinfo->comp_info[i].width_in_blocks*DCTSIZE samples per row cinfo->comp_info[i].height_in_blocks*DCTSIZE rows in image after jpeg_start_compress() has initialized those fields. If the valid data is smaller than this, it must be padded appropriately. For some sampling factors and image sizes, additional dummy DCT blocks are inserted to make the image a multiple of the MCU dimensions. The library creates such dummy blocks itself; it does not read them from your supplied data. Therefore you need never pad by more than DCTSIZE samples. An example may help here. Assume 2h2v downsampling of YCbCr data, that is cinfo->comp_info[0].h_samp_factor = 2 for Y cinfo->comp_info[0].v_samp_factor = 2 cinfo->comp_info[1].h_samp_factor = 1 for Cb cinfo->comp_info[1].v_samp_factor = 1 cinfo->comp_info[2].h_samp_factor = 1 for Cr cinfo->comp_info[2].v_samp_factor = 1 and suppose that the nominal image dimensions (cinfo->image_width and cinfo->image_height) are 101x101 pixels. Then jpeg_start_compress() will compute downsampled_width = 101 and width_in_blocks = 13 for Y, downsampled_width = 51 and width_in_blocks = 7 for Cb and Cr (and the same for the height fields). You must pad the Y data to at least 13*8 = 104 columns and rows, the Cb/Cr data to at least 7*8 = 56 columns and rows. The MCU height is max_v_samp_factor = 2 DCT rows so you must pass at least 16 scanlines on each call to jpeg_write_raw_data(), which is to say 16 actual sample rows of Y and 8 each of Cb and Cr. A total of 7 MCU rows are needed, so you must pass a total of 7*16 = 112 "scanlines". The last DCT block row of Y data is dummy, so it doesn't matter what you pass for it in the data arrays, but the scanlines count must total up to 112 so that all of the Cb and Cr data gets passed. Output suspension is supported with raw-data compression: if the data destination module suspends, jpeg_write_raw_data() will return 0. In this case the same data rows must be passed again on the next call. Decompression with raw data output implies bypassing all postprocessing: you cannot ask for rescaling or color quantization, for instance. More seriously, you must deal with the color space and sampling factors present in the incoming file. If your application only handles, say, 2h1v YCbCr data, you must check for and fail on other color spaces or other sampling factors. The library will not convert to a different color space for you. To obtain raw data output, set cinfo->raw_data_out = TRUE before jpeg_start_decompress() (it is set FALSE by jpeg_read_header()). Be sure to verify that the color space and sampling factors are ones you can handle. Then call jpeg_read_raw_data() in place of jpeg_read_scanlines(). The decompression process is otherwise the same as usual. jpeg_read_raw_data() returns one MCU row per call, and thus you must pass a buffer of at least max_v_samp_factor*DCTSIZE scanlines (scanline counting is the same as for raw-data compression). The buffer you pass must be large enough to hold the actual data plus padding to DCT-block boundaries. As with compression, any entirely dummy DCT blocks are not processed so you need not allocate space for them, but the total scanline count includes them. The above example of computing buffer dimensions for raw-data compression is equally valid for decompression. Input suspension is supported with raw-data decompression: if the data source module suspends, jpeg_read_raw_data() will return 0. You can also use buffered-image mode to read raw data in multiple passes. Really raw data: DCT coefficients --------------------------------- It is possible to read or write the contents of a JPEG file as raw DCT coefficients. This facility is mainly intended for use in lossless transcoding between different JPEG file formats. Other possible applications include lossless cropping of a JPEG image, lossless reassembly of a multi-strip or multi-tile TIFF/JPEG file into a single JPEG datastream, etc. To read the contents of a JPEG file as DCT coefficients, open the file and do jpeg_read_header() as usual. But instead of calling jpeg_start_decompress() and jpeg_read_scanlines(), call jpeg_read_coefficients(). This will read the entire image into a set of virtual coefficient-block arrays, one array per component. The return value is a pointer to an array of virtual-array descriptors. Each virtual array can be accessed directly using the JPEG memory manager's access_virt_barray method (see Memory management, below, and also read structure.txt's discussion of virtual array handling). Or, for simple transcoding to a different JPEG file format, the array list can just be handed directly to jpeg_write_coefficients(). Each block in the block arrays contains quantized coefficient values in normal array order (not JPEG zigzag order). The block arrays contain only DCT blocks containing real data; any entirely-dummy blocks added to fill out interleaved MCUs at the right or bottom edges of the image are discarded during reading and are not stored in the block arrays. (The size of each block array can be determined from the width_in_blocks and height_in_blocks fields of the component's comp_info entry.) This is also the data format expected by jpeg_write_coefficients(). When you are done using the virtual arrays, call jpeg_finish_decompress() to release the array storage and return the decompression object to an idle state; or just call jpeg_destroy() if you don't need to reuse the object. If you use a suspending data source, jpeg_read_coefficients() will return NULL if it is forced to suspend; a non-NULL return value indicates successful completion. You need not test for a NULL return value when using a non-suspending data source. It is also possible to call jpeg_read_coefficients() to obtain access to the decoder's coefficient arrays during a normal decode cycle in buffered-image mode. This frammish might be useful for progressively displaying an incoming image and then re-encoding it without loss. To do this, decode in buffered- image mode as discussed previously, then call jpeg_read_coefficients() after the last jpeg_finish_output() call. The arrays will be available for your use until you call jpeg_finish_decompress(). To write the contents of a JPEG file as DCT coefficients, you must provide the DCT coefficients stored in virtual block arrays. You can either pass block arrays read from an input JPEG file by jpeg_read_coefficients(), or allocate virtual arrays from the JPEG compression object and fill them yourself. In either case, jpeg_write_coefficients() is substituted for jpeg_start_compress() and jpeg_write_scanlines(). Thus the sequence is * Create compression object * Set all compression parameters as necessary * Request virtual arrays if needed * jpeg_write_coefficients() * jpeg_finish_compress() * Destroy or re-use compression object jpeg_write_coefficients() is passed a pointer to an array of virtual block array descriptors; the number of arrays is equal to cinfo.num_components. The virtual arrays need only have been requested, not realized, before jpeg_write_coefficients() is called. A side-effect of jpeg_write_coefficients() is to realize any virtual arrays that have been requested from the compression object's memory manager. Thus, when obtaining the virtual arrays from the compression object, you should fill the arrays after calling jpeg_write_coefficients(). The data is actually written out when you call jpeg_finish_compress(); jpeg_write_coefficients() only writes the file header. When writing raw DCT coefficients, it is crucial that the JPEG quantization tables and sampling factors match the way the data was encoded, or the resulting file will be invalid. For transcoding from an existing JPEG file, we recommend using jpeg_copy_critical_parameters(). This routine initializes all the compression parameters to default values (like jpeg_set_defaults()), then copies the critical information from a source decompression object. The decompression object should have just been used to read the entire JPEG input file --- that is, it should be awaiting jpeg_finish_decompress(). jpeg_write_coefficients() marks all tables stored in the compression object as needing to be written to the output file (thus, it acts like jpeg_start_compress(cinfo, TRUE)). This is for safety's sake, to avoid emitting abbreviated JPEG files by accident. If you really want to emit an abbreviated JPEG file, call jpeg_suppress_tables(), or set the tables' individual sent_table flags, between calling jpeg_write_coefficients() and jpeg_finish_compress(). Progress monitoring ------------------- Some applications may need to regain control from the JPEG library every so often. The typical use of this feature is to produce a percent-done bar or other progress display. (For a simple example, see cjpeg.c or djpeg.c.) Although you do get control back frequently during the data-transferring pass (the jpeg_read_scanlines or jpeg_write_scanlines loop), any additional passes will occur inside jpeg_finish_compress or jpeg_start_decompress; those routines may take a long time to execute, and you don't get control back until they are done. You can define a progress-monitor routine which will be called periodically by the library. No guarantees are made about how often this call will occur, so we don't recommend you use it for mouse tracking or anything like that. At present, a call will occur once per MCU row, scanline, or sample row group, whichever unit is convenient for the current processing mode; so the wider the image, the longer the time between calls. During the data transferring pass, only one call occurs per call of jpeg_read_scanlines or jpeg_write_scanlines, so don't pass a large number of scanlines at once if you want fine resolution in the progress count. (If you really need to use the callback mechanism for time-critical tasks like mouse tracking, you could insert additional calls inside some of the library's inner loops.) To establish a progress-monitor callback, create a struct jpeg_progress_mgr, fill in its progress_monitor field with a pointer to your callback routine, and set cinfo->progress to point to the struct. The callback will be called whenever cinfo->progress is non-NULL. (This pointer is set to NULL by jpeg_create_compress or jpeg_create_decompress; the library will not change it thereafter. So if you allocate dynamic storage for the progress struct, make sure it will live as long as the JPEG object does. Allocating from the JPEG memory manager with lifetime JPOOL_PERMANENT will work nicely.) You can use the same callback routine for both compression and decompression. The jpeg_progress_mgr struct contains four fields which are set by the library: long pass_counter; /* work units completed in this pass */ long pass_limit; /* total number of work units in this pass */ int completed_passes; /* passes completed so far */ int total_passes; /* total number of passes expected */ During any one pass, pass_counter increases from 0 up to (not including) pass_limit; the step size is usually but not necessarily 1. The pass_limit value may change from one pass to another. The expected total number of passes is in total_passes, and the number of passes already completed is in completed_passes. Thus the fraction of work completed may be estimated as completed_passes + (pass_counter/pass_limit) -------------------------------------------- total_passes ignoring the fact that the passes may not be equal amounts of work. When decompressing, pass_limit can even change within a pass, because it depends on the number of scans in the JPEG file, which isn't always known in advance. The computed fraction-of-work-done may jump suddenly (if the library discovers it has overestimated the number of scans) or even decrease (in the opposite case). It is not wise to put great faith in the work estimate. When using the decompressor's buffered-image mode, the progress monitor work estimate is likely to be completely unhelpful, because the library has no way to know how many output passes will be demanded of it. Currently, the library sets total_passes based on the assumption that there will be one more output pass if the input file end hasn't yet been read (jpeg_input_complete() isn't TRUE), but no more output passes if the file end has been reached when the output pass is started. This means that total_passes will rise as additional output passes are requested. If you have a way of determining the input file size, estimating progress based on the fraction of the file that's been read will probably be more useful than using the library's value. Memory management ----------------- This section covers some key facts about the JPEG library's built-in memory manager. For more info, please read structure.txt's section about the memory manager, and consult the source code if necessary. All memory and temporary file allocation within the library is done via the memory manager. If necessary, you can replace the "back end" of the memory manager to control allocation yourself (for example, if you don't want the library to use malloc() and free() for some reason). Some data is allocated "permanently" and will not be freed until the JPEG object is destroyed. Most data is allocated "per image" and is freed by jpeg_finish_compress, jpeg_finish_decompress, or jpeg_abort. You can call the memory manager yourself to allocate structures that will automatically be freed at these times. Typical code for this is ptr = (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, size); Use JPOOL_PERMANENT to get storage that lasts as long as the JPEG object. Use alloc_large instead of alloc_small for anything bigger than a few Kbytes. There are also alloc_sarray and alloc_barray routines that automatically build 2-D sample or block arrays. The library's minimum space requirements to process an image depend on the image's width, but not on its height, because the library ordinarily works with "strip" buffers that are as wide as the image but just a few rows high. Some operating modes (eg, two-pass color quantization) require full-image buffers. Such buffers are treated as "virtual arrays": only the current strip need be in memory, and the rest can be swapped out to a temporary file. When using temporary files, the library will make the in-memory buffers for its virtual arrays just big enough to stay within a "maximum memory" setting. Your application can set this limit by setting cinfo->mem->max_memory_to_use after creating the JPEG object. (Of course, there is still a minimum size for the buffers, so the max-memory setting is effective only if it is bigger than the minimum space needed.) If you allocate any large structures yourself, you must allocate them before jpeg_start_compress() or jpeg_start_decompress() in order to have them counted against the max memory limit. Also keep in mind that space allocated with alloc_small() is ignored, on the assumption that it's too small to be worth worrying about; so a reasonable safety margin should be left when setting max_memory_to_use. NOTE: Unless you develop your own memory manager back end, then temporary files will never be used. The back end provided in libjpeg-turbo (jmemnobs.c) simply malloc()s and free()s virtual arrays, and an error occurs if the required memory exceeds the limit specified in cinfo->mem->max_memory_to_use. Memory usage ------------ Working memory requirements while performing compression or decompression depend on image dimensions, image characteristics (such as colorspace and JPEG process), and operating mode (application-selected options). As of v6b, the decompressor requires: 1. About 24K in more-or-less-fixed-size data. This varies a bit depending on operating mode and image characteristics (particularly color vs. grayscale), but it doesn't depend on image dimensions. 2. Strip buffers (of size proportional to the image width) for IDCT and upsampling results. The worst case for commonly used sampling factors is about 34 bytes * width in pixels for a color image. A grayscale image only needs about 8 bytes per pixel column. 3. A full-image DCT coefficient buffer is needed to decode a multi-scan JPEG file (including progressive JPEGs), or whenever you select buffered-image mode. This takes 2 bytes/coefficient. At typical 2x2 sampling, that's 3 bytes per pixel for a color image. Worst case (1x1 sampling) requires 6 bytes/pixel. For grayscale, figure 2 bytes/pixel. 4. To perform 2-pass color quantization, the decompressor also needs a 128K color lookup table and a full-image pixel buffer (3 bytes/pixel). This does not count any memory allocated by the application, such as a buffer to hold the final output image. The above figures are valid for 8-bit JPEG data precision and a machine with 32-bit ints. For 12-bit JPEG data, double the size of the strip buffers and quantization pixel buffer. The "fixed-size" data will be somewhat smaller with 16-bit ints, larger with 64-bit ints. Also, CMYK or other unusual color spaces will require different amounts of space. The full-image coefficient and pixel buffers, if needed at all, do not have to be fully RAM resident; you can have the library use temporary files instead when the total memory usage would exceed a limit you set. (But if your OS supports virtual memory, it's probably better to just use jmemnobs and let the OS do the swapping.) The compressor's memory requirements are similar, except that it has no need for color quantization. Also, it needs a full-image DCT coefficient buffer if Huffman-table optimization is asked for, even if progressive mode is not requested. If you need more detailed information about memory usage in a particular situation, you can enable the MEM_STATS code in jmemmgr.c. Library compile-time options ---------------------------- A number of compile-time options are available by modifying jmorecfg.h. The JPEG standard provides for both the baseline 8-bit DCT process and a 12-bit DCT process. The IJG code supports 12-bit lossy JPEG if you define BITS_IN_JSAMPLE as 12 rather than 8. Note that this causes JSAMPLE to be larger than a char, so it affects the surrounding application's image data. The sample applications cjpeg and djpeg can support 12-bit mode only for PPM and GIF file formats; you must disable the other file formats to compile a 12-bit cjpeg or djpeg. At present, a 12-bit library can handle *only* 12-bit images, not both precisions. Note that a 12-bit library always compresses in Huffman optimization mode, in order to generate valid Huffman tables. This is necessary because our default Huffman tables only cover 8-bit data. If you need to output 12-bit files in one pass, you'll have to supply suitable default Huffman tables. You may also want to supply your own DCT quantization tables; the existing quality-scaling code has been developed for 8-bit use, and probably doesn't generate especially good tables for 12-bit. The maximum number of components (color channels) in the image is determined by MAX_COMPONENTS. The JPEG standard allows up to 255 components, but we expect that few applications will need more than four or so. On machines with unusual data type sizes, you may be able to improve performance or reduce memory space by tweaking the various typedefs in jmorecfg.h. In particular, on some RISC CPUs, access to arrays of "short"s is quite slow; consider trading memory for speed by making JCOEF, INT16, and UINT16 be "int" or "unsigned int". UINT8 is also a candidate to become int. You probably don't want to make JSAMPLE be int unless you have lots of memory to burn. You can reduce the size of the library by compiling out various optional functions. To do this, undefine xxx_SUPPORTED symbols as necessary. You can also save a few K by not having text error messages in the library; the standard error message table occupies about 5Kb. This is particularly reasonable for embedded applications where there's no good way to display a message anyway. To do this, remove the creation of the message table (jpeg_std_message_table[]) from jerror.c, and alter format_message to do something reasonable without it. You could output the numeric value of the message code number, for example. If you do this, you can also save a couple more K by modifying the TRACEMSn() macros in jerror.h to expand to nothing; you don't need trace capability anyway, right? Portability considerations -------------------------- The JPEG library has been written to be extremely portable; the sample applications cjpeg and djpeg are slightly less so. This section summarizes the design goals in this area. (If you encounter any bugs that cause the library to be less portable than is claimed here, we'd appreciate hearing about them.) The code works fine on ANSI C and C++ compilers, using any of the popular system include file setups, and some not-so-popular ones too. The code is not dependent on the exact sizes of the C data types. As distributed, we make the assumptions that char is at least 8 bits wide short is at least 16 bits wide int is at least 16 bits wide long is at least 32 bits wide (These are the minimum requirements of the ANSI C standard.) Wider types will work fine, although memory may be used inefficiently if char is much larger than 8 bits or short is much bigger than 16 bits. The code should work equally well with 16- or 32-bit ints. In a system where these assumptions are not met, you may be able to make the code work by modifying the typedefs in jmorecfg.h. However, you will probably have difficulty if int is less than 16 bits wide, since references to plain int abound in the code. char can be either signed or unsigned, although the code runs faster if an unsigned char type is available. If char is wider than 8 bits, you will need to redefine JOCTET and/or provide custom data source/destination managers so that JOCTET represents exactly 8 bits of data on external storage. The JPEG library proper does not assume ASCII representation of characters. But some of the image file I/O modules in cjpeg/djpeg do have ASCII dependencies in file-header manipulation; so does cjpeg's select_file_type() routine. The JPEG library does not rely heavily on the C library. In particular, C stdio is used only by the data source/destination modules and the error handler, all of which are application-replaceable. (cjpeg/djpeg are more heavily dependent on stdio.) malloc and free are called only from the memory manager "back end" module, so you can use a different memory allocator by replacing that one file. More info about porting the code may be gleaned by reading jconfig.txt, jmorecfg.h, and jinclude.h. libjpeg-turbo-2.1.5/md5/000077500000000000000000000000001436506551100147575ustar00rootroot00000000000000libjpeg-turbo-2.1.5/md5/CMakeLists.txt000066400000000000000000000000561436506551100175200ustar00rootroot00000000000000add_executable(md5cmp md5cmp.c md5.c md5hl.c) libjpeg-turbo-2.1.5/md5/md5.c000066400000000000000000000226731436506551100156220ustar00rootroot00000000000000/* * This code implements the MD5 message-digest algorithm. * The algorithm is due to Ron Rivest. This code was * written by Colin Plumb in 1993, no copyright is claimed. * This code is in the public domain; do with it what you wish. * * Equivalent code is available from RSA Data Security, Inc. * This code has been tested against that, and is equivalent, * except that you don't need to include two pages of legalese * with every copy. * * To compute the message digest of a chunk of bytes, declare an * MD5Context structure, pass it to MD5Init, call MD5Update as * needed on buffers full of bytes, and then call MD5Final, which * will fill a supplied 16-byte array with the digest. * ---------------------------------------------------------------------------- * libjpeg-turbo Modifications: * Copyright (C)2018, D. R. Commander. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ---------------------------------------------------------------------------- */ #include /* for memcpy() */ #include "md5.h" #if (BYTE_ORDER == LITTLE_ENDIAN) #define byteReverse(buf, len) /* Nothing */ #else /* * Note: this code is harmless on little-endian machines. */ static void byteReverse(unsigned char *buf, unsigned int longs) { uint32 t; do { t = (uint32)((unsigned int)buf[3] << 8 | buf[2]) << 16 | ((unsigned int)buf[1] << 8 | buf[0]); *(uint32 *)buf = t; buf += 4; } while (--longs); } #endif /* * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious * initialization constants. */ void MD5Init(struct MD5Context *ctx) { ctx->buf[0] = 0x67452301; ctx->buf[1] = 0xefcdab89; ctx->buf[2] = 0x98badcfe; ctx->buf[3] = 0x10325476; ctx->bits[0] = 0; ctx->bits[1] = 0; } /* * Update context to reflect the concatenation of another buffer full * of bytes. */ void MD5Update(struct MD5Context *ctx, unsigned char *buf, unsigned int len) { uint32 t; /* Update bitcount */ t = ctx->bits[0]; if ((ctx->bits[0] = t + ((uint32)len << 3)) < t) ctx->bits[1]++; /* Carry from low to high */ ctx->bits[1] += len >> 29; t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */ /* Handle any leading odd-sized chunks */ if (t) { unsigned char *p = (unsigned char *)ctx->in + t; t = 64 - t; if (len < t) { memcpy(p, buf, len); return; } memcpy(p, buf, t); byteReverse(ctx->in, 16); MD5Transform(ctx->buf, (uint32 *)ctx->in); buf += t; len -= t; } /* Process data in 64-byte chunks */ while (len >= 64) { memcpy(ctx->in, buf, 64); byteReverse(ctx->in, 16); MD5Transform(ctx->buf, (uint32 *)ctx->in); buf += 64; len -= 64; } /* Handle any remaining bytes of data. */ memcpy(ctx->in, buf, len); } /* * Final wrapup - pad to 64-byte boundary with the bit pattern * 1 0* (64-bit count of bits processed, MSB-first) */ void MD5Final(unsigned char digest[16], struct MD5Context *ctx) { unsigned int count; unsigned char *p; uint32 *in32 = (uint32 *)ctx->in; /* Compute number of bytes mod 64 */ count = (ctx->bits[0] >> 3) & 0x3F; /* Set the first char of padding to 0x80. This is safe since there is always at least one byte free */ p = ctx->in + count; *p++ = 0x80; /* Bytes of padding needed to make 64 bytes */ count = 64 - 1 - count; /* Pad out to 56 mod 64 */ if (count < 8) { /* Two lots of padding: Pad the first block to 64 bytes */ memset(p, 0, count); byteReverse(ctx->in, 16); MD5Transform(ctx->buf, (uint32 *)ctx->in); /* Now fill the next block with 56 bytes */ memset(ctx->in, 0, 56); } else { /* Pad block to 56 bytes */ memset(p, 0, count - 8); } byteReverse(ctx->in, 14); /* Append length in bits and transform */ in32[14] = ctx->bits[0]; in32[15] = ctx->bits[1]; MD5Transform(ctx->buf, (uint32 *)ctx->in); byteReverse((unsigned char *)ctx->buf, 4); memcpy(digest, ctx->buf, 16); memset(ctx, 0, sizeof(struct MD5Context)); /* In case it's sensitive */ } /* The four core functions - F1 is optimized somewhat */ /* #define F1(x, y, z) (x & y | ~x & z) */ #define F1(x, y, z) (z ^ (x & (y ^ z))) #define F2(x, y, z) F1(z, x, y) #define F3(x, y, z) (x ^ y ^ z) #define F4(x, y, z) (y ^ (x | ~z)) /* This is the central step in the MD5 algorithm. */ #define MD5STEP(f, w, x, y, z, data, s) \ ( w += f(x, y, z) + data, w = w << s | w >> (32 - s), w += x ) /* * The core of the MD5 algorithm, this alters an existing MD5 hash to * reflect the addition of 16 longwords of new data. MD5Update blocks * the data and converts bytes into longwords for this routine. */ void MD5Transform(uint32 buf[4], uint32 in[16]) { register uint32 a, b, c, d; a = buf[0]; b = buf[1]; c = buf[2]; d = buf[3]; MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7); MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12); MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17); MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22); MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7); MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12); MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17); MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22); MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7); MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12); MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17); MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22); MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7); MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12); MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17); MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22); MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5); MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9); MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14); MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20); MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5); MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9); MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14); MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20); MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5); MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9); MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14); MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20); MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5); MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9); MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14); MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20); MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4); MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11); MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16); MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23); MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4); MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11); MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16); MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23); MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4); MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11); MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16); MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23); MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4); MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11); MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16); MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23); MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6); MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10); MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15); MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21); MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6); MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10); MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15); MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21); MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6); MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10); MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15); MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21); MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6); MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10); MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15); MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21); buf[0] += a; buf[1] += b; buf[2] += c; buf[3] += d; } libjpeg-turbo-2.1.5/md5/md5.h000066400000000000000000000045031436506551100156170ustar00rootroot00000000000000/* * libjpeg-turbo Modifications: * Copyright (C)2018 D. R. Commander. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #ifndef MD5_H #define MD5_H #include #ifdef __amigaos4__ #include #endif /* On machines where "long" is 64 bits, we need to declare uint32 as something guaranteed to be 32 bits. */ typedef unsigned int uint32; typedef struct MD5Context { uint32 buf[4]; uint32 bits[2]; unsigned char in[64]; } MD5_CTX; extern void MD5Init(struct MD5Context *ctx); extern void MD5Update(struct MD5Context *ctx, unsigned char *buf, unsigned int len); extern void MD5Final(unsigned char digest[16], struct MD5Context *ctx); extern void MD5Transform(uint32 buf[4], uint32 in[16]); extern char *MD5File(const char *, char *); extern char *MD5FileChunk(const char *, char *, off_t, off_t); #endif /* !MD5_H */ libjpeg-turbo-2.1.5/md5/md5cmp.c000066400000000000000000000043001436506551100163050ustar00rootroot00000000000000/* * Copyright (C)2013, 2016 D. R. Commander. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include #include "./md5.h" #include "../tjutil.h" int main(int argc, char *argv[]) { char *md5sum = NULL, buf[65]; if (argc < 3) { fprintf(stderr, "USAGE: %s \n", argv[0]); return -1; } if (strlen(argv[1]) != 32) fprintf(stderr, "WARNING: MD5 hash size is wrong.\n"); md5sum = MD5File(argv[2], buf); if (!md5sum) { perror("Could not obtain MD5 sum"); return -1; } if (!strcasecmp(md5sum, argv[1])) { fprintf(stderr, "%s: OK\n", argv[2]); return 0; } else { fprintf(stderr, "%s: FAILED. Checksum is %s\n", argv[2], md5sum); return -1; } } libjpeg-turbo-2.1.5/md5/md5hl.c000066400000000000000000000074701436506551100161440ustar00rootroot00000000000000/* mdXhl.c * ---------------------------------------------------------------------------- * "THE BEER-WARE LICENSE" (Revision 42): * wrote this file. As long as you retain this notice you * can do whatever you want with this stuff. If we meet some day, and you think * this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp * ---------------------------------------------------------------------------- * libjpeg-turbo Modifications: * Copyright (C)2016, 2018-2019, 2022 D. R. Commander. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ---------------------------------------------------------------------------- */ #ifdef _MSC_VER #define _CRT_SECURE_NO_DEPRECATE #endif #include #include #include #ifdef _WIN32 #include #define close _close #define fstat _fstat #define lseek _lseek #define read _read #define stat _stat #else #include #endif #include #include #include #define LENGTH 16 #include "./md5.h" static char *MD5End(MD5_CTX *ctx, char *buf) { int i; unsigned char digest[LENGTH]; static const char hex[] = "0123456789abcdef"; if (!buf) buf = malloc(2 * LENGTH + 1); if (!buf) return 0; MD5Final(digest, ctx); for (i = 0; i < LENGTH; i++) { buf[i + i] = hex[digest[i] >> 4]; buf[i + i + 1] = hex[digest[i] & 0x0f]; } buf[i + i] = '\0'; return buf; } char *MD5File(const char *filename, char *buf) { return (MD5FileChunk(filename, buf, 0, 0)); } char *MD5FileChunk(const char *filename, char *buf, off_t ofs, off_t len) { unsigned char buffer[BUFSIZ]; MD5_CTX ctx; struct stat stbuf; int f, i, e; off_t n; MD5Init(&ctx); #ifdef _WIN32 f = _open(filename, O_RDONLY | O_BINARY); #else f = open(filename, O_RDONLY); #endif if (f < 0) return 0; if (fstat(f, &stbuf) < 0) return 0; if (ofs > stbuf.st_size) ofs = stbuf.st_size; if ((len == 0) || (len > stbuf.st_size - ofs)) len = stbuf.st_size - ofs; if (lseek(f, ofs, SEEK_SET) < 0) return 0; n = len; i = 0; while (n > 0) { if (n > sizeof(buffer)) i = read(f, buffer, sizeof(buffer)); else i = read(f, buffer, n); if (i < 0) break; MD5Update(&ctx, buffer, i); n -= i; } e = errno; close(f); errno = e; if (i < 0) return 0; return (MD5End(&ctx, buf)); } libjpeg-turbo-2.1.5/rdbmp.c000066400000000000000000000550561436506551100155550ustar00rootroot00000000000000/* * rdbmp.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1996, Thomas G. Lane. * Modified 2009-2017 by Guido Vollbeding. * libjpeg-turbo Modifications: * Modified 2011 by Siarhei Siamashka. * Copyright (C) 2015, 2017-2018, 2021-2022, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains routines to read input images in Microsoft "BMP" * format (MS Windows 3.x, OS/2 1.x, and OS/2 2.x flavors). * Currently, only 8-, 24-, and 32-bit images are supported, not 1-bit or * 4-bit (feeding such low-depth images into JPEG would be silly anyway). * Also, we don't support RLE-compressed files. * * These routines may need modification for non-Unix environments or * specialized applications. As they stand, they assume input from * an ordinary stdio stream. They further assume that reading begins * at the start of the file; start_input may need work if the * user interface has already read some data (e.g., to determine that * the file is indeed BMP format). * * This code contributed by James Arthur Boucher. */ #include "cmyk.h" #include "cdjpeg.h" /* Common decls for cjpeg/djpeg applications */ #ifdef BMP_SUPPORTED /* Macros to deal with unsigned chars as efficiently as compiler allows */ typedef unsigned char U_CHAR; #define UCH(x) ((int)(x)) #define ReadOK(file, buffer, len) \ (fread(buffer, 1, len, file) == ((size_t)(len))) static int alpha_index[JPEG_NUMCS] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 3, 3, 0, 0, -1 }; /* Private version of data source object */ typedef struct _bmp_source_struct *bmp_source_ptr; typedef struct _bmp_source_struct { struct cjpeg_source_struct pub; /* public fields */ j_compress_ptr cinfo; /* back link saves passing separate parm */ JSAMPARRAY colormap; /* BMP colormap (converted to my format) */ jvirt_sarray_ptr whole_image; /* Needed to reverse row order */ JDIMENSION source_row; /* Current source row number */ JDIMENSION row_width; /* Physical width of scanlines in file */ int bits_per_pixel; /* remembers 8-, 24-, or 32-bit format */ int cmap_length; /* colormap length */ boolean use_inversion_array; /* TRUE = preload the whole image, which is stored in bottom-up order, and feed it to the calling program in top-down order FALSE = the calling program will maintain its own image buffer and read the rows in bottom-up order */ U_CHAR *iobuffer; /* I/O buffer (used to buffer a single row from disk if use_inversion_array == FALSE) */ } bmp_source_struct; LOCAL(int) read_byte(bmp_source_ptr sinfo) /* Read next byte from BMP file */ { register FILE *infile = sinfo->pub.input_file; register int c; if ((c = getc(infile)) == EOF) ERREXIT(sinfo->cinfo, JERR_INPUT_EOF); return c; } LOCAL(void) read_colormap(bmp_source_ptr sinfo, int cmaplen, int mapentrysize) /* Read the colormap from a BMP file */ { int i, gray = 1; switch (mapentrysize) { case 3: /* BGR format (occurs in OS/2 files) */ for (i = 0; i < cmaplen; i++) { sinfo->colormap[2][i] = (JSAMPLE)read_byte(sinfo); sinfo->colormap[1][i] = (JSAMPLE)read_byte(sinfo); sinfo->colormap[0][i] = (JSAMPLE)read_byte(sinfo); if (sinfo->colormap[2][i] != sinfo->colormap[1][i] || sinfo->colormap[1][i] != sinfo->colormap[0][i]) gray = 0; } break; case 4: /* BGR0 format (occurs in MS Windows files) */ for (i = 0; i < cmaplen; i++) { sinfo->colormap[2][i] = (JSAMPLE)read_byte(sinfo); sinfo->colormap[1][i] = (JSAMPLE)read_byte(sinfo); sinfo->colormap[0][i] = (JSAMPLE)read_byte(sinfo); (void)read_byte(sinfo); if (sinfo->colormap[2][i] != sinfo->colormap[1][i] || sinfo->colormap[1][i] != sinfo->colormap[0][i]) gray = 0; } break; default: ERREXIT(sinfo->cinfo, JERR_BMP_BADCMAP); break; } if ((sinfo->cinfo->in_color_space == JCS_UNKNOWN || sinfo->cinfo->in_color_space == JCS_RGB) && gray) sinfo->cinfo->in_color_space = JCS_GRAYSCALE; if (sinfo->cinfo->in_color_space == JCS_GRAYSCALE && !gray) ERREXIT(sinfo->cinfo, JERR_BAD_IN_COLORSPACE); } /* * Read one row of pixels. * The image has been read into the whole_image array, but is otherwise * unprocessed. We must read it out in top-to-bottom row order, and if * it is an 8-bit image, we must expand colormapped pixels to 24bit format. */ METHODDEF(JDIMENSION) get_8bit_row(j_compress_ptr cinfo, cjpeg_source_ptr sinfo) /* This version is for reading 8-bit colormap indexes */ { bmp_source_ptr source = (bmp_source_ptr)sinfo; register JSAMPARRAY colormap = source->colormap; int cmaplen = source->cmap_length; JSAMPARRAY image_ptr; register int t; register JSAMPROW inptr, outptr; register JDIMENSION col; if (source->use_inversion_array) { /* Fetch next row from virtual array */ source->source_row--; image_ptr = (*cinfo->mem->access_virt_sarray) ((j_common_ptr)cinfo, source->whole_image, source->source_row, (JDIMENSION)1, FALSE); inptr = image_ptr[0]; } else { if (!ReadOK(source->pub.input_file, source->iobuffer, source->row_width)) ERREXIT(cinfo, JERR_INPUT_EOF); inptr = source->iobuffer; } /* Expand the colormap indexes to real data */ outptr = source->pub.buffer[0]; if (cinfo->in_color_space == JCS_GRAYSCALE) { for (col = cinfo->image_width; col > 0; col--) { t = *inptr++; if (t >= cmaplen) ERREXIT(cinfo, JERR_BMP_OUTOFRANGE); *outptr++ = colormap[0][t]; } } else if (cinfo->in_color_space == JCS_CMYK) { for (col = cinfo->image_width; col > 0; col--) { t = *inptr++; if (t >= cmaplen) ERREXIT(cinfo, JERR_BMP_OUTOFRANGE); rgb_to_cmyk(colormap[0][t], colormap[1][t], colormap[2][t], outptr, outptr + 1, outptr + 2, outptr + 3); outptr += 4; } } else { register int rindex = rgb_red[cinfo->in_color_space]; register int gindex = rgb_green[cinfo->in_color_space]; register int bindex = rgb_blue[cinfo->in_color_space]; register int aindex = alpha_index[cinfo->in_color_space]; register int ps = rgb_pixelsize[cinfo->in_color_space]; if (aindex >= 0) { for (col = cinfo->image_width; col > 0; col--) { t = *inptr++; if (t >= cmaplen) ERREXIT(cinfo, JERR_BMP_OUTOFRANGE); outptr[rindex] = colormap[0][t]; outptr[gindex] = colormap[1][t]; outptr[bindex] = colormap[2][t]; outptr[aindex] = 0xFF; outptr += ps; } } else { for (col = cinfo->image_width; col > 0; col--) { t = *inptr++; if (t >= cmaplen) ERREXIT(cinfo, JERR_BMP_OUTOFRANGE); outptr[rindex] = colormap[0][t]; outptr[gindex] = colormap[1][t]; outptr[bindex] = colormap[2][t]; outptr += ps; } } } return 1; } METHODDEF(JDIMENSION) get_24bit_row(j_compress_ptr cinfo, cjpeg_source_ptr sinfo) /* This version is for reading 24-bit pixels */ { bmp_source_ptr source = (bmp_source_ptr)sinfo; JSAMPARRAY image_ptr; register JSAMPROW inptr, outptr; register JDIMENSION col; if (source->use_inversion_array) { /* Fetch next row from virtual array */ source->source_row--; image_ptr = (*cinfo->mem->access_virt_sarray) ((j_common_ptr)cinfo, source->whole_image, source->source_row, (JDIMENSION)1, FALSE); inptr = image_ptr[0]; } else { if (!ReadOK(source->pub.input_file, source->iobuffer, source->row_width)) ERREXIT(cinfo, JERR_INPUT_EOF); inptr = source->iobuffer; } /* Transfer data. Note source values are in BGR order * (even though Microsoft's own documents say the opposite). */ outptr = source->pub.buffer[0]; if (cinfo->in_color_space == JCS_EXT_BGR) { memcpy(outptr, inptr, source->row_width); } else if (cinfo->in_color_space == JCS_CMYK) { for (col = cinfo->image_width; col > 0; col--) { JSAMPLE b = *inptr++, g = *inptr++, r = *inptr++; rgb_to_cmyk(r, g, b, outptr, outptr + 1, outptr + 2, outptr + 3); outptr += 4; } } else { register int rindex = rgb_red[cinfo->in_color_space]; register int gindex = rgb_green[cinfo->in_color_space]; register int bindex = rgb_blue[cinfo->in_color_space]; register int aindex = alpha_index[cinfo->in_color_space]; register int ps = rgb_pixelsize[cinfo->in_color_space]; if (aindex >= 0) { for (col = cinfo->image_width; col > 0; col--) { outptr[bindex] = *inptr++; outptr[gindex] = *inptr++; outptr[rindex] = *inptr++; outptr[aindex] = 0xFF; outptr += ps; } } else { for (col = cinfo->image_width; col > 0; col--) { outptr[bindex] = *inptr++; outptr[gindex] = *inptr++; outptr[rindex] = *inptr++; outptr += ps; } } } return 1; } METHODDEF(JDIMENSION) get_32bit_row(j_compress_ptr cinfo, cjpeg_source_ptr sinfo) /* This version is for reading 32-bit pixels */ { bmp_source_ptr source = (bmp_source_ptr)sinfo; JSAMPARRAY image_ptr; register JSAMPROW inptr, outptr; register JDIMENSION col; if (source->use_inversion_array) { /* Fetch next row from virtual array */ source->source_row--; image_ptr = (*cinfo->mem->access_virt_sarray) ((j_common_ptr)cinfo, source->whole_image, source->source_row, (JDIMENSION)1, FALSE); inptr = image_ptr[0]; } else { if (!ReadOK(source->pub.input_file, source->iobuffer, source->row_width)) ERREXIT(cinfo, JERR_INPUT_EOF); inptr = source->iobuffer; } /* Transfer data. Note source values are in BGR order * (even though Microsoft's own documents say the opposite). */ outptr = source->pub.buffer[0]; if (cinfo->in_color_space == JCS_EXT_BGRX || cinfo->in_color_space == JCS_EXT_BGRA) { memcpy(outptr, inptr, source->row_width); } else if (cinfo->in_color_space == JCS_CMYK) { for (col = cinfo->image_width; col > 0; col--) { JSAMPLE b = *inptr++, g = *inptr++, r = *inptr++; rgb_to_cmyk(r, g, b, outptr, outptr + 1, outptr + 2, outptr + 3); inptr++; /* skip the 4th byte (Alpha channel) */ outptr += 4; } } else { register int rindex = rgb_red[cinfo->in_color_space]; register int gindex = rgb_green[cinfo->in_color_space]; register int bindex = rgb_blue[cinfo->in_color_space]; register int aindex = alpha_index[cinfo->in_color_space]; register int ps = rgb_pixelsize[cinfo->in_color_space]; if (aindex >= 0) { for (col = cinfo->image_width; col > 0; col--) { outptr[bindex] = *inptr++; outptr[gindex] = *inptr++; outptr[rindex] = *inptr++; outptr[aindex] = *inptr++; outptr += ps; } } else { for (col = cinfo->image_width; col > 0; col--) { outptr[bindex] = *inptr++; outptr[gindex] = *inptr++; outptr[rindex] = *inptr++; inptr++; /* skip the 4th byte (Alpha channel) */ outptr += ps; } } } return 1; } /* * This method loads the image into whole_image during the first call on * get_pixel_rows. The get_pixel_rows pointer is then adjusted to call * get_8bit_row, get_24bit_row, or get_32bit_row on subsequent calls. */ METHODDEF(JDIMENSION) preload_image(j_compress_ptr cinfo, cjpeg_source_ptr sinfo) { bmp_source_ptr source = (bmp_source_ptr)sinfo; register FILE *infile = source->pub.input_file; register JSAMPROW out_ptr; JSAMPARRAY image_ptr; JDIMENSION row; cd_progress_ptr progress = (cd_progress_ptr)cinfo->progress; /* Read the data into a virtual array in input-file row order. */ for (row = 0; row < cinfo->image_height; row++) { if (progress != NULL) { progress->pub.pass_counter = (long)row; progress->pub.pass_limit = (long)cinfo->image_height; (*progress->pub.progress_monitor) ((j_common_ptr)cinfo); } image_ptr = (*cinfo->mem->access_virt_sarray) ((j_common_ptr)cinfo, source->whole_image, row, (JDIMENSION)1, TRUE); out_ptr = image_ptr[0]; if (fread(out_ptr, 1, source->row_width, infile) != source->row_width) { if (feof(infile)) ERREXIT(cinfo, JERR_INPUT_EOF); else ERREXIT(cinfo, JERR_FILE_READ); } } if (progress != NULL) progress->completed_extra_passes++; /* Set up to read from the virtual array in top-to-bottom order */ switch (source->bits_per_pixel) { case 8: source->pub.get_pixel_rows = get_8bit_row; break; case 24: source->pub.get_pixel_rows = get_24bit_row; break; case 32: source->pub.get_pixel_rows = get_32bit_row; break; default: ERREXIT(cinfo, JERR_BMP_BADDEPTH); } source->source_row = cinfo->image_height; /* And read the first row */ return (*source->pub.get_pixel_rows) (cinfo, sinfo); } /* * Read the file header; return image size and component count. */ METHODDEF(void) start_input_bmp(j_compress_ptr cinfo, cjpeg_source_ptr sinfo) { bmp_source_ptr source = (bmp_source_ptr)sinfo; U_CHAR bmpfileheader[14]; U_CHAR bmpinfoheader[64]; #define GET_2B(array, offset) \ ((unsigned short)UCH(array[offset]) + \ (((unsigned short)UCH(array[offset + 1])) << 8)) #define GET_4B(array, offset) \ ((unsigned int)UCH(array[offset]) + \ (((unsigned int)UCH(array[offset + 1])) << 8) + \ (((unsigned int)UCH(array[offset + 2])) << 16) + \ (((unsigned int)UCH(array[offset + 3])) << 24)) int bfOffBits; int headerSize; int biWidth; int biHeight; unsigned short biPlanes; unsigned int biCompression; int biXPelsPerMeter, biYPelsPerMeter; int biClrUsed = 0; int mapentrysize = 0; /* 0 indicates no colormap */ int bPad; JDIMENSION row_width = 0; /* Read and verify the bitmap file header */ if (!ReadOK(source->pub.input_file, bmpfileheader, 14)) ERREXIT(cinfo, JERR_INPUT_EOF); if (GET_2B(bmpfileheader, 0) != 0x4D42) /* 'BM' */ ERREXIT(cinfo, JERR_BMP_NOT); bfOffBits = GET_4B(bmpfileheader, 10); /* We ignore the remaining fileheader fields */ /* The infoheader might be 12 bytes (OS/2 1.x), 40 bytes (Windows), * or 64 bytes (OS/2 2.x). Check the first 4 bytes to find out which. */ if (!ReadOK(source->pub.input_file, bmpinfoheader, 4)) ERREXIT(cinfo, JERR_INPUT_EOF); headerSize = GET_4B(bmpinfoheader, 0); if (headerSize < 12 || headerSize > 64 || (headerSize + 14) > bfOffBits) ERREXIT(cinfo, JERR_BMP_BADHEADER); if (!ReadOK(source->pub.input_file, bmpinfoheader + 4, headerSize - 4)) ERREXIT(cinfo, JERR_INPUT_EOF); switch (headerSize) { case 12: /* Decode OS/2 1.x header (Microsoft calls this a BITMAPCOREHEADER) */ biWidth = (int)GET_2B(bmpinfoheader, 4); biHeight = (int)GET_2B(bmpinfoheader, 6); biPlanes = GET_2B(bmpinfoheader, 8); source->bits_per_pixel = (int)GET_2B(bmpinfoheader, 10); switch (source->bits_per_pixel) { case 8: /* colormapped image */ mapentrysize = 3; /* OS/2 uses RGBTRIPLE colormap */ TRACEMS2(cinfo, 1, JTRC_BMP_OS2_MAPPED, biWidth, biHeight); break; case 24: /* RGB image */ case 32: /* RGB image + Alpha channel */ TRACEMS3(cinfo, 1, JTRC_BMP_OS2, biWidth, biHeight, source->bits_per_pixel); break; default: ERREXIT(cinfo, JERR_BMP_BADDEPTH); break; } break; case 40: case 64: /* Decode Windows 3.x header (Microsoft calls this a BITMAPINFOHEADER) */ /* or OS/2 2.x header, which has additional fields that we ignore */ biWidth = (int)GET_4B(bmpinfoheader, 4); biHeight = (int)GET_4B(bmpinfoheader, 8); biPlanes = GET_2B(bmpinfoheader, 12); source->bits_per_pixel = (int)GET_2B(bmpinfoheader, 14); biCompression = GET_4B(bmpinfoheader, 16); biXPelsPerMeter = (int)GET_4B(bmpinfoheader, 24); biYPelsPerMeter = (int)GET_4B(bmpinfoheader, 28); biClrUsed = GET_4B(bmpinfoheader, 32); /* biSizeImage, biClrImportant fields are ignored */ switch (source->bits_per_pixel) { case 8: /* colormapped image */ mapentrysize = 4; /* Windows uses RGBQUAD colormap */ TRACEMS2(cinfo, 1, JTRC_BMP_MAPPED, biWidth, biHeight); break; case 24: /* RGB image */ case 32: /* RGB image + Alpha channel */ TRACEMS3(cinfo, 1, JTRC_BMP, biWidth, biHeight, source->bits_per_pixel); break; default: ERREXIT(cinfo, JERR_BMP_BADDEPTH); break; } if (biCompression != 0) ERREXIT(cinfo, JERR_BMP_COMPRESSED); if (biXPelsPerMeter > 0 && biYPelsPerMeter > 0) { /* Set JFIF density parameters from the BMP data */ cinfo->X_density = (UINT16)(biXPelsPerMeter / 100); /* 100 cm per meter */ cinfo->Y_density = (UINT16)(biYPelsPerMeter / 100); cinfo->density_unit = 2; /* dots/cm */ } break; default: ERREXIT(cinfo, JERR_BMP_BADHEADER); return; } if (biWidth <= 0 || biHeight <= 0) ERREXIT(cinfo, JERR_BMP_EMPTY); #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION if (sinfo->max_pixels && (unsigned long long)biWidth * biHeight > sinfo->max_pixels) ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); #endif if (biPlanes != 1) ERREXIT(cinfo, JERR_BMP_BADPLANES); /* Compute distance to bitmap data --- will adjust for colormap below */ bPad = bfOffBits - (headerSize + 14); /* Read the colormap, if any */ if (mapentrysize > 0) { if (biClrUsed <= 0) biClrUsed = 256; /* assume it's 256 */ else if (biClrUsed > 256) ERREXIT(cinfo, JERR_BMP_BADCMAP); /* Allocate space to store the colormap */ source->colormap = (*cinfo->mem->alloc_sarray) ((j_common_ptr)cinfo, JPOOL_IMAGE, (JDIMENSION)biClrUsed, (JDIMENSION)3); source->cmap_length = (int)biClrUsed; /* and read it from the file */ read_colormap(source, (int)biClrUsed, mapentrysize); /* account for size of colormap */ bPad -= biClrUsed * mapentrysize; } /* Skip any remaining pad bytes */ if (bPad < 0) /* incorrect bfOffBits value? */ ERREXIT(cinfo, JERR_BMP_BADHEADER); while (--bPad >= 0) { (void)read_byte(source); } /* Compute row width in file, including padding to 4-byte boundary */ switch (source->bits_per_pixel) { case 8: if (cinfo->in_color_space == JCS_UNKNOWN) cinfo->in_color_space = JCS_EXT_RGB; if (IsExtRGB(cinfo->in_color_space)) cinfo->input_components = rgb_pixelsize[cinfo->in_color_space]; else if (cinfo->in_color_space == JCS_GRAYSCALE) cinfo->input_components = 1; else if (cinfo->in_color_space == JCS_CMYK) cinfo->input_components = 4; else ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); row_width = (JDIMENSION)biWidth; break; case 24: if (cinfo->in_color_space == JCS_UNKNOWN) cinfo->in_color_space = JCS_EXT_BGR; if (IsExtRGB(cinfo->in_color_space)) cinfo->input_components = rgb_pixelsize[cinfo->in_color_space]; else if (cinfo->in_color_space == JCS_CMYK) cinfo->input_components = 4; else ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); if ((unsigned long long)biWidth * 3ULL > 0xFFFFFFFFULL) ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); row_width = (JDIMENSION)biWidth * 3; break; case 32: if (cinfo->in_color_space == JCS_UNKNOWN) cinfo->in_color_space = JCS_EXT_BGRA; if (IsExtRGB(cinfo->in_color_space)) cinfo->input_components = rgb_pixelsize[cinfo->in_color_space]; else if (cinfo->in_color_space == JCS_CMYK) cinfo->input_components = 4; else ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); if ((unsigned long long)biWidth * 4ULL > 0xFFFFFFFFULL) ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); row_width = (JDIMENSION)biWidth * 4; break; default: ERREXIT(cinfo, JERR_BMP_BADDEPTH); } while ((row_width & 3) != 0) row_width++; source->row_width = row_width; if (source->use_inversion_array) { /* Allocate space for inversion array, prepare for preload pass */ source->whole_image = (*cinfo->mem->request_virt_sarray) ((j_common_ptr)cinfo, JPOOL_IMAGE, FALSE, row_width, (JDIMENSION)biHeight, (JDIMENSION)1); source->pub.get_pixel_rows = preload_image; if (cinfo->progress != NULL) { cd_progress_ptr progress = (cd_progress_ptr)cinfo->progress; progress->total_extra_passes++; /* count file input as separate pass */ } } else { source->iobuffer = (U_CHAR *) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, row_width); switch (source->bits_per_pixel) { case 8: source->pub.get_pixel_rows = get_8bit_row; break; case 24: source->pub.get_pixel_rows = get_24bit_row; break; case 32: source->pub.get_pixel_rows = get_32bit_row; break; default: ERREXIT(cinfo, JERR_BMP_BADDEPTH); } } /* Ensure that biWidth * cinfo->input_components doesn't exceed the maximum value of the JDIMENSION type. This is only a danger with BMP files, since their width and height fields are 32-bit integers. */ if ((unsigned long long)biWidth * (unsigned long long)cinfo->input_components > 0xFFFFFFFFULL) ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); /* Allocate one-row buffer for returned data */ source->pub.buffer = (*cinfo->mem->alloc_sarray) ((j_common_ptr)cinfo, JPOOL_IMAGE, (JDIMENSION)biWidth * (JDIMENSION)cinfo->input_components, (JDIMENSION)1); source->pub.buffer_height = 1; cinfo->data_precision = 8; cinfo->image_width = (JDIMENSION)biWidth; cinfo->image_height = (JDIMENSION)biHeight; } /* * Finish up at the end of the file. */ METHODDEF(void) finish_input_bmp(j_compress_ptr cinfo, cjpeg_source_ptr sinfo) { /* no work */ } /* * The module selection routine for BMP format input. */ GLOBAL(cjpeg_source_ptr) jinit_read_bmp(j_compress_ptr cinfo, boolean use_inversion_array) { bmp_source_ptr source; /* Create module interface object */ source = (bmp_source_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, sizeof(bmp_source_struct)); source->cinfo = cinfo; /* make back link for subroutines */ /* Fill in method ptrs, except get_pixel_rows which start_input sets */ source->pub.start_input = start_input_bmp; source->pub.finish_input = finish_input_bmp; #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION source->pub.max_pixels = 0; #endif source->use_inversion_array = use_inversion_array; return (cjpeg_source_ptr)source; } #endif /* BMP_SUPPORTED */ libjpeg-turbo-2.1.5/rdcolmap.c000066400000000000000000000155311436506551100162440ustar00rootroot00000000000000/* * rdcolmap.c * * Copyright (C) 1994-1996, Thomas G. Lane. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file implements djpeg's "-map file" switch. It reads a source image * and constructs a colormap to be supplied to the JPEG decompressor. * * Currently, these file formats are supported for the map file: * GIF: the contents of the GIF's global colormap are used. * PPM (either text or raw flavor): the entire file is read and * each unique pixel value is entered in the map. * Note that reading a large PPM file will be horrendously slow. * Typically, a PPM-format map file should contain just one pixel * of each desired color. Such a file can be extracted from an * ordinary image PPM file with ppmtomap(1). * * Rescaling a PPM that has a maxval unequal to MAXJSAMPLE is not * currently implemented. */ #include "cdjpeg.h" /* Common decls for cjpeg/djpeg applications */ #ifdef QUANT_2PASS_SUPPORTED /* otherwise can't quantize to supplied map */ /* Portions of this code are based on the PBMPLUS library, which is: ** ** Copyright (C) 1988 by Jef Poskanzer. ** ** Permission to use, copy, modify, and distribute this software and its ** documentation for any purpose and without fee is hereby granted, provided ** that the above copyright notice appear in all copies and that both that ** copyright notice and this permission notice appear in supporting ** documentation. This software is provided "as is" without express or ** implied warranty. */ /* * Add a (potentially) new color to the color map. */ LOCAL(void) add_map_entry(j_decompress_ptr cinfo, int R, int G, int B) { JSAMPROW colormap0 = cinfo->colormap[0]; JSAMPROW colormap1 = cinfo->colormap[1]; JSAMPROW colormap2 = cinfo->colormap[2]; int ncolors = cinfo->actual_number_of_colors; int index; /* Check for duplicate color. */ for (index = 0; index < ncolors; index++) { if (colormap0[index] == R && colormap1[index] == G && colormap2[index] == B) return; /* color is already in map */ } /* Check for map overflow. */ if (ncolors >= (MAXJSAMPLE + 1)) ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, (MAXJSAMPLE + 1)); /* OK, add color to map. */ colormap0[ncolors] = (JSAMPLE)R; colormap1[ncolors] = (JSAMPLE)G; colormap2[ncolors] = (JSAMPLE)B; cinfo->actual_number_of_colors++; } /* * Extract color map from a GIF file. */ LOCAL(void) read_gif_map(j_decompress_ptr cinfo, FILE *infile) { int header[13]; int i, colormaplen; int R, G, B; /* Initial 'G' has already been read by read_color_map */ /* Read the rest of the GIF header and logical screen descriptor */ for (i = 1; i < 13; i++) { if ((header[i] = getc(infile)) == EOF) ERREXIT(cinfo, JERR_BAD_CMAP_FILE); } /* Verify GIF Header */ if (header[1] != 'I' || header[2] != 'F') ERREXIT(cinfo, JERR_BAD_CMAP_FILE); /* There must be a global color map. */ if ((header[10] & 0x80) == 0) ERREXIT(cinfo, JERR_BAD_CMAP_FILE); /* OK, fetch it. */ colormaplen = 2 << (header[10] & 0x07); for (i = 0; i < colormaplen; i++) { R = getc(infile); G = getc(infile); B = getc(infile); if (R == EOF || G == EOF || B == EOF) ERREXIT(cinfo, JERR_BAD_CMAP_FILE); add_map_entry(cinfo, R << (BITS_IN_JSAMPLE - 8), G << (BITS_IN_JSAMPLE - 8), B << (BITS_IN_JSAMPLE - 8)); } } /* Support routines for reading PPM */ LOCAL(int) pbm_getc(FILE *infile) /* Read next char, skipping over any comments */ /* A comment/newline sequence is returned as a newline */ { register int ch; ch = getc(infile); if (ch == '#') { do { ch = getc(infile); } while (ch != '\n' && ch != EOF); } return ch; } LOCAL(unsigned int) read_pbm_integer(j_decompress_ptr cinfo, FILE *infile) /* Read an unsigned decimal integer from the PPM file */ /* Swallows one trailing character after the integer */ /* Note that on a 16-bit-int machine, only values up to 64k can be read. */ /* This should not be a problem in practice. */ { register int ch; register unsigned int val; /* Skip any leading whitespace */ do { ch = pbm_getc(infile); if (ch == EOF) ERREXIT(cinfo, JERR_BAD_CMAP_FILE); } while (ch == ' ' || ch == '\t' || ch == '\n' || ch == '\r'); if (ch < '0' || ch > '9') ERREXIT(cinfo, JERR_BAD_CMAP_FILE); val = ch - '0'; while ((ch = pbm_getc(infile)) >= '0' && ch <= '9') { val *= 10; val += ch - '0'; } return val; } /* * Extract color map from a PPM file. */ LOCAL(void) read_ppm_map(j_decompress_ptr cinfo, FILE *infile) { int c; unsigned int w, h, maxval, row, col; int R, G, B; /* Initial 'P' has already been read by read_color_map */ c = getc(infile); /* save format discriminator for a sec */ /* while we fetch the remaining header info */ w = read_pbm_integer(cinfo, infile); h = read_pbm_integer(cinfo, infile); maxval = read_pbm_integer(cinfo, infile); if (w <= 0 || h <= 0 || maxval <= 0) /* error check */ ERREXIT(cinfo, JERR_BAD_CMAP_FILE); /* For now, we don't support rescaling from an unusual maxval. */ if (maxval != (unsigned int)MAXJSAMPLE) ERREXIT(cinfo, JERR_BAD_CMAP_FILE); switch (c) { case '3': /* it's a text-format PPM file */ for (row = 0; row < h; row++) { for (col = 0; col < w; col++) { R = read_pbm_integer(cinfo, infile); G = read_pbm_integer(cinfo, infile); B = read_pbm_integer(cinfo, infile); add_map_entry(cinfo, R, G, B); } } break; case '6': /* it's a raw-format PPM file */ for (row = 0; row < h; row++) { for (col = 0; col < w; col++) { R = getc(infile); G = getc(infile); B = getc(infile); if (R == EOF || G == EOF || B == EOF) ERREXIT(cinfo, JERR_BAD_CMAP_FILE); add_map_entry(cinfo, R, G, B); } } break; default: ERREXIT(cinfo, JERR_BAD_CMAP_FILE); break; } } /* * Main entry point from djpeg.c. * Input: opened input file (from file name argument on command line). * Output: colormap and actual_number_of_colors fields are set in cinfo. */ GLOBAL(void) read_color_map(j_decompress_ptr cinfo, FILE *infile) { /* Allocate space for a color map of maximum supported size. */ cinfo->colormap = (*cinfo->mem->alloc_sarray) ((j_common_ptr)cinfo, JPOOL_IMAGE, (JDIMENSION)(MAXJSAMPLE + 1), (JDIMENSION)3); cinfo->actual_number_of_colors = 0; /* initialize map to empty */ /* Read first byte to determine file format */ switch (getc(infile)) { case 'G': read_gif_map(cinfo, infile); break; case 'P': read_ppm_map(cinfo, infile); break; default: ERREXIT(cinfo, JERR_BAD_CMAP_FILE); break; } } #endif /* QUANT_2PASS_SUPPORTED */ libjpeg-turbo-2.1.5/rdgif.c000066400000000000000000000577421436506551100155500ustar00rootroot00000000000000/* * rdgif.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1997, Thomas G. Lane. * Modified 2019 by Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright (C) 2021-2022, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains routines to read input images in GIF format. * * These routines may need modification for non-Unix environments or * specialized applications. As they stand, they assume input from * an ordinary stdio stream. They further assume that reading begins * at the start of the file; start_input may need work if the * user interface has already read some data (e.g., to determine that * the file is indeed GIF format). */ /* * This code is loosely based on giftoppm from the PBMPLUS distribution * of Feb. 1991. That file contains the following copyright notice: * +-------------------------------------------------------------------+ * | Copyright 1990, David Koblas. | * | Permission to use, copy, modify, and distribute this software | * | and its documentation for any purpose and without fee is hereby | * | granted, provided that the above copyright notice appear in all | * | copies and that both that copyright notice and this permission | * | notice appear in supporting documentation. This software is | * | provided "as is" without express or implied warranty. | * +-------------------------------------------------------------------+ */ #include "cdjpeg.h" /* Common decls for cjpeg/djpeg applications */ #ifdef GIF_SUPPORTED /* Macros to deal with unsigned chars as efficiently as compiler allows */ typedef unsigned char U_CHAR; #define UCH(x) ((int)(x)) #define ReadOK(file, buffer, len) \ (fread(buffer, 1, len, file) == ((size_t)(len))) #define MAXCOLORMAPSIZE 256 /* max # of colors in a GIF colormap */ #define NUMCOLORS 3 /* # of colors */ #define CM_RED 0 /* color component numbers */ #define CM_GREEN 1 #define CM_BLUE 2 #define MAX_LZW_BITS 12 /* maximum LZW code size */ #define LZW_TABLE_SIZE (1 << MAX_LZW_BITS) /* # of possible LZW symbols */ /* Macros for extracting header data --- note we assume chars may be signed */ #define LM_to_uint(array, offset) \ ((unsigned int)UCH(array[offset]) + \ (((unsigned int)UCH(array[offset + 1])) << 8)) #define BitSet(byte, bit) ((byte) & (bit)) #define INTERLACE 0x40 /* mask for bit signifying interlaced image */ #define COLORMAPFLAG 0x80 /* mask for bit signifying colormap presence */ /* * LZW decompression tables look like this: * symbol_head[K] = prefix symbol of any LZW symbol K (0..LZW_TABLE_SIZE-1) * symbol_tail[K] = suffix byte of any LZW symbol K (0..LZW_TABLE_SIZE-1) * Note that entries 0..end_code of the above tables are not used, * since those symbols represent raw bytes or special codes. * * The stack represents the not-yet-used expansion of the last LZW symbol. * In the worst case, a symbol could expand to as many bytes as there are * LZW symbols, so we allocate LZW_TABLE_SIZE bytes for the stack. * (This is conservative since that number includes the raw-byte symbols.) */ /* Private version of data source object */ typedef struct { struct cjpeg_source_struct pub; /* public fields */ j_compress_ptr cinfo; /* back link saves passing separate parm */ JSAMPARRAY colormap; /* GIF colormap (converted to my format) */ /* State for GetCode and LZWReadByte */ U_CHAR code_buf[256 + 4]; /* current input data block */ int last_byte; /* # of bytes in code_buf */ int last_bit; /* # of bits in code_buf */ int cur_bit; /* next bit index to read */ boolean first_time; /* flags first call to GetCode */ boolean out_of_blocks; /* TRUE if hit terminator data block */ int input_code_size; /* codesize given in GIF file */ int clear_code, end_code; /* values for Clear and End codes */ int code_size; /* current actual code size */ int limit_code; /* 2^code_size */ int max_code; /* first unused code value */ /* Private state for LZWReadByte */ int oldcode; /* previous LZW symbol */ int firstcode; /* first byte of oldcode's expansion */ /* LZW symbol table and expansion stack */ UINT16 *symbol_head; /* => table of prefix symbols */ UINT8 *symbol_tail; /* => table of suffix bytes */ UINT8 *symbol_stack; /* => stack for symbol expansions */ UINT8 *sp; /* stack pointer */ /* State for interlaced image processing */ boolean is_interlaced; /* TRUE if have interlaced image */ jvirt_sarray_ptr interlaced_image; /* full image in interlaced order */ JDIMENSION cur_row_number; /* need to know actual row number */ JDIMENSION pass2_offset; /* # of pixel rows in pass 1 */ JDIMENSION pass3_offset; /* # of pixel rows in passes 1&2 */ JDIMENSION pass4_offset; /* # of pixel rows in passes 1,2,3 */ } gif_source_struct; typedef gif_source_struct *gif_source_ptr; /* Forward declarations */ METHODDEF(JDIMENSION) get_pixel_rows(j_compress_ptr cinfo, cjpeg_source_ptr sinfo); METHODDEF(JDIMENSION) load_interlaced_image(j_compress_ptr cinfo, cjpeg_source_ptr sinfo); METHODDEF(JDIMENSION) get_interlaced_row(j_compress_ptr cinfo, cjpeg_source_ptr sinfo); LOCAL(int) ReadByte(gif_source_ptr sinfo) /* Read next byte from GIF file */ { register FILE *infile = sinfo->pub.input_file; register int c; if ((c = getc(infile)) == EOF) ERREXIT(sinfo->cinfo, JERR_INPUT_EOF); return c; } LOCAL(int) GetDataBlock(gif_source_ptr sinfo, U_CHAR *buf) /* Read a GIF data block, which has a leading count byte */ /* A zero-length block marks the end of a data block sequence */ { int count; count = ReadByte(sinfo); if (count > 0) { if (!ReadOK(sinfo->pub.input_file, buf, count)) ERREXIT(sinfo->cinfo, JERR_INPUT_EOF); } return count; } LOCAL(void) SkipDataBlocks(gif_source_ptr sinfo) /* Skip a series of data blocks, until a block terminator is found */ { U_CHAR buf[256]; while (GetDataBlock(sinfo, buf) > 0) /* skip */; } LOCAL(void) ReInitLZW(gif_source_ptr sinfo) /* (Re)initialize LZW state; shared code for startup and Clear processing */ { sinfo->code_size = sinfo->input_code_size + 1; sinfo->limit_code = sinfo->clear_code << 1; /* 2^code_size */ sinfo->max_code = sinfo->clear_code + 2; /* first unused code value */ sinfo->sp = sinfo->symbol_stack; /* init stack to empty */ } LOCAL(void) InitLZWCode(gif_source_ptr sinfo) /* Initialize for a series of LZWReadByte (and hence GetCode) calls */ { /* GetCode initialization */ sinfo->last_byte = 2; /* make safe to "recopy last two bytes" */ sinfo->code_buf[0] = 0; sinfo->code_buf[1] = 0; sinfo->last_bit = 0; /* nothing in the buffer */ sinfo->cur_bit = 0; /* force buffer load on first call */ sinfo->first_time = TRUE; sinfo->out_of_blocks = FALSE; /* LZWReadByte initialization: */ /* compute special code values (note that these do not change later) */ sinfo->clear_code = 1 << sinfo->input_code_size; sinfo->end_code = sinfo->clear_code + 1; ReInitLZW(sinfo); } LOCAL(int) GetCode(gif_source_ptr sinfo) /* Fetch the next code_size bits from the GIF data */ /* We assume code_size is less than 16 */ { register int accum; int offs, count; while (sinfo->cur_bit + sinfo->code_size > sinfo->last_bit) { /* Time to reload the buffer */ /* First time, share code with Clear case */ if (sinfo->first_time) { sinfo->first_time = FALSE; return sinfo->clear_code; } if (sinfo->out_of_blocks) { WARNMS(sinfo->cinfo, JWRN_GIF_NOMOREDATA); return sinfo->end_code; /* fake something useful */ } /* preserve last two bytes of what we have -- assume code_size <= 16 */ sinfo->code_buf[0] = sinfo->code_buf[sinfo->last_byte-2]; sinfo->code_buf[1] = sinfo->code_buf[sinfo->last_byte-1]; /* Load more bytes; set flag if we reach the terminator block */ if ((count = GetDataBlock(sinfo, &sinfo->code_buf[2])) == 0) { sinfo->out_of_blocks = TRUE; WARNMS(sinfo->cinfo, JWRN_GIF_NOMOREDATA); return sinfo->end_code; /* fake something useful */ } /* Reset counters */ sinfo->cur_bit = (sinfo->cur_bit - sinfo->last_bit) + 16; sinfo->last_byte = 2 + count; sinfo->last_bit = sinfo->last_byte * 8; } /* Form up next 24 bits in accum */ offs = sinfo->cur_bit >> 3; /* byte containing cur_bit */ accum = UCH(sinfo->code_buf[offs + 2]); accum <<= 8; accum |= UCH(sinfo->code_buf[offs + 1]); accum <<= 8; accum |= UCH(sinfo->code_buf[offs]); /* Right-align cur_bit in accum, then mask off desired number of bits */ accum >>= (sinfo->cur_bit & 7); sinfo->cur_bit += sinfo->code_size; return accum & ((1 << sinfo->code_size) - 1); } LOCAL(int) LZWReadByte(gif_source_ptr sinfo) /* Read an LZW-compressed byte */ { register int code; /* current working code */ int incode; /* saves actual input code */ /* If any codes are stacked from a previously read symbol, return them */ if (sinfo->sp > sinfo->symbol_stack) return (int)(*(--sinfo->sp)); /* Time to read a new symbol */ code = GetCode(sinfo); if (code == sinfo->clear_code) { /* Reinit state, swallow any extra Clear codes, and */ /* return next code, which is expected to be a raw byte. */ ReInitLZW(sinfo); do { code = GetCode(sinfo); } while (code == sinfo->clear_code); if (code > sinfo->clear_code) { /* make sure it is a raw byte */ WARNMS(sinfo->cinfo, JWRN_GIF_BADDATA); code = 0; /* use something valid */ } /* make firstcode, oldcode valid! */ sinfo->firstcode = sinfo->oldcode = code; return code; } if (code == sinfo->end_code) { /* Skip the rest of the image, unless GetCode already read terminator */ if (!sinfo->out_of_blocks) { SkipDataBlocks(sinfo); sinfo->out_of_blocks = TRUE; } /* Complain that there's not enough data */ WARNMS(sinfo->cinfo, JWRN_GIF_ENDCODE); /* Pad data with 0's */ return 0; /* fake something usable */ } /* Got normal raw byte or LZW symbol */ incode = code; /* save for a moment */ if (code >= sinfo->max_code) { /* special case for not-yet-defined symbol */ /* code == max_code is OK; anything bigger is bad data */ if (code > sinfo->max_code) { WARNMS(sinfo->cinfo, JWRN_GIF_BADDATA); incode = 0; /* prevent creation of loops in symbol table */ } /* this symbol will be defined as oldcode/firstcode */ *(sinfo->sp++) = (UINT8)sinfo->firstcode; code = sinfo->oldcode; } /* If it's a symbol, expand it into the stack */ while (code >= sinfo->clear_code) { *(sinfo->sp++) = sinfo->symbol_tail[code]; /* tail is a byte value */ code = sinfo->symbol_head[code]; /* head is another LZW symbol */ } /* At this point code just represents a raw byte */ sinfo->firstcode = code; /* save for possible future use */ /* If there's room in table... */ if ((code = sinfo->max_code) < LZW_TABLE_SIZE) { /* Define a new symbol = prev sym + head of this sym's expansion */ sinfo->symbol_head[code] = (UINT16)sinfo->oldcode; sinfo->symbol_tail[code] = (UINT8)sinfo->firstcode; sinfo->max_code++; /* Is it time to increase code_size? */ if (sinfo->max_code >= sinfo->limit_code && sinfo->code_size < MAX_LZW_BITS) { sinfo->code_size++; sinfo->limit_code <<= 1; /* keep equal to 2^code_size */ } } sinfo->oldcode = incode; /* save last input symbol for future use */ return sinfo->firstcode; /* return first byte of symbol's expansion */ } LOCAL(void) ReadColorMap(gif_source_ptr sinfo, int cmaplen, JSAMPARRAY cmap) /* Read a GIF colormap */ { int i, gray = 1; for (i = 0; i < cmaplen; i++) { #if BITS_IN_JSAMPLE == 8 #define UPSCALE(x) (x) #else #define UPSCALE(x) ((x) << (BITS_IN_JSAMPLE - 8)) #endif cmap[CM_RED][i] = (JSAMPLE)UPSCALE(ReadByte(sinfo)); cmap[CM_GREEN][i] = (JSAMPLE)UPSCALE(ReadByte(sinfo)); cmap[CM_BLUE][i] = (JSAMPLE)UPSCALE(ReadByte(sinfo)); if (cmap[CM_RED][i] != cmap[CM_GREEN][i] || cmap[CM_GREEN][i] != cmap[CM_BLUE][i]) gray = 0; } if (sinfo->cinfo->in_color_space == JCS_RGB && gray) { sinfo->cinfo->in_color_space = JCS_GRAYSCALE; sinfo->cinfo->input_components = 1; } } LOCAL(void) DoExtension(gif_source_ptr sinfo) /* Process an extension block */ /* Currently we ignore 'em all */ { int extlabel; /* Read extension label byte */ extlabel = ReadByte(sinfo); TRACEMS1(sinfo->cinfo, 1, JTRC_GIF_EXTENSION, extlabel); /* Skip the data block(s) associated with the extension */ SkipDataBlocks(sinfo); } /* * Read the file header; return image size and component count. */ METHODDEF(void) start_input_gif(j_compress_ptr cinfo, cjpeg_source_ptr sinfo) { gif_source_ptr source = (gif_source_ptr)sinfo; U_CHAR hdrbuf[10]; /* workspace for reading control blocks */ unsigned int width, height; /* image dimensions */ int colormaplen, aspectRatio; int c; /* Read and verify GIF Header */ if (!ReadOK(source->pub.input_file, hdrbuf, 6)) ERREXIT(cinfo, JERR_GIF_NOT); if (hdrbuf[0] != 'G' || hdrbuf[1] != 'I' || hdrbuf[2] != 'F') ERREXIT(cinfo, JERR_GIF_NOT); /* Check for expected version numbers. * If unknown version, give warning and try to process anyway; * this is per recommendation in GIF89a standard. */ if ((hdrbuf[3] != '8' || hdrbuf[4] != '7' || hdrbuf[5] != 'a') && (hdrbuf[3] != '8' || hdrbuf[4] != '9' || hdrbuf[5] != 'a')) TRACEMS3(cinfo, 1, JTRC_GIF_BADVERSION, hdrbuf[3], hdrbuf[4], hdrbuf[5]); /* Read and decipher Logical Screen Descriptor */ if (!ReadOK(source->pub.input_file, hdrbuf, 7)) ERREXIT(cinfo, JERR_INPUT_EOF); width = LM_to_uint(hdrbuf, 0); height = LM_to_uint(hdrbuf, 2); if (width == 0 || height == 0) ERREXIT(cinfo, JERR_GIF_EMPTY); #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION if (sinfo->max_pixels && (unsigned long long)width * height > sinfo->max_pixels) ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); #endif /* we ignore the color resolution, sort flag, and background color index */ aspectRatio = UCH(hdrbuf[6]); if (aspectRatio != 0 && aspectRatio != 49) TRACEMS(cinfo, 1, JTRC_GIF_NONSQUARE); /* Allocate space to store the colormap */ source->colormap = (*cinfo->mem->alloc_sarray) ((j_common_ptr)cinfo, JPOOL_IMAGE, (JDIMENSION)MAXCOLORMAPSIZE, (JDIMENSION)NUMCOLORS); colormaplen = 0; /* indicate initialization */ /* Read global colormap if header indicates it is present */ if (BitSet(hdrbuf[4], COLORMAPFLAG)) { colormaplen = 2 << (hdrbuf[4] & 0x07); ReadColorMap(source, colormaplen, source->colormap); } /* Scan until we reach start of desired image. * We don't currently support skipping images, but could add it easily. */ for (;;) { c = ReadByte(source); if (c == ';') /* GIF terminator?? */ ERREXIT(cinfo, JERR_GIF_IMAGENOTFOUND); if (c == '!') { /* Extension */ DoExtension(source); continue; } if (c != ',') { /* Not an image separator? */ WARNMS1(cinfo, JWRN_GIF_CHAR, c); continue; } /* Read and decipher Local Image Descriptor */ if (!ReadOK(source->pub.input_file, hdrbuf, 9)) ERREXIT(cinfo, JERR_INPUT_EOF); /* we ignore top/left position info, also sort flag */ width = LM_to_uint(hdrbuf, 4); height = LM_to_uint(hdrbuf, 6); if (width == 0 || height == 0) ERREXIT(cinfo, JERR_GIF_EMPTY); #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION if (sinfo->max_pixels && (unsigned long long)width * height > sinfo->max_pixels) ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); #endif source->is_interlaced = (BitSet(hdrbuf[8], INTERLACE) != 0); /* Read local colormap if header indicates it is present */ /* Note: if we wanted to support skipping images, */ /* we'd need to skip rather than read colormap for ignored images */ if (BitSet(hdrbuf[8], COLORMAPFLAG)) { colormaplen = 2 << (hdrbuf[8] & 0x07); ReadColorMap(source, colormaplen, source->colormap); } source->input_code_size = ReadByte(source); /* get min-code-size byte */ if (source->input_code_size < 2 || source->input_code_size > 8) ERREXIT1(cinfo, JERR_GIF_CODESIZE, source->input_code_size); /* Reached desired image, so break out of loop */ /* If we wanted to skip this image, */ /* we'd call SkipDataBlocks and then continue the loop */ break; } /* Prepare to read selected image: first initialize LZW decompressor */ source->symbol_head = (UINT16 *) (*cinfo->mem->alloc_large) ((j_common_ptr)cinfo, JPOOL_IMAGE, LZW_TABLE_SIZE * sizeof(UINT16)); source->symbol_tail = (UINT8 *) (*cinfo->mem->alloc_large) ((j_common_ptr)cinfo, JPOOL_IMAGE, LZW_TABLE_SIZE * sizeof(UINT8)); source->symbol_stack = (UINT8 *) (*cinfo->mem->alloc_large) ((j_common_ptr)cinfo, JPOOL_IMAGE, LZW_TABLE_SIZE * sizeof(UINT8)); InitLZWCode(source); /* * If image is interlaced, we read it into a full-size sample array, * decompressing as we go; then get_interlaced_row selects rows from the * sample array in the proper order. */ if (source->is_interlaced) { /* We request the virtual array now, but can't access it until virtual * arrays have been allocated. Hence, the actual work of reading the * image is postponed until the first call to get_pixel_rows. */ source->interlaced_image = (*cinfo->mem->request_virt_sarray) ((j_common_ptr)cinfo, JPOOL_IMAGE, FALSE, (JDIMENSION)width, (JDIMENSION)height, (JDIMENSION)1); if (cinfo->progress != NULL) { cd_progress_ptr progress = (cd_progress_ptr)cinfo->progress; progress->total_extra_passes++; /* count file input as separate pass */ } source->pub.get_pixel_rows = load_interlaced_image; } else { source->pub.get_pixel_rows = get_pixel_rows; } if (cinfo->in_color_space != JCS_GRAYSCALE) { cinfo->in_color_space = JCS_RGB; cinfo->input_components = NUMCOLORS; } /* Create compressor input buffer. */ source->pub.buffer = (*cinfo->mem->alloc_sarray) ((j_common_ptr)cinfo, JPOOL_IMAGE, (JDIMENSION)width * cinfo->input_components, (JDIMENSION)1); source->pub.buffer_height = 1; /* Pad colormap for safety. */ for (c = colormaplen; c < source->clear_code; c++) { source->colormap[CM_RED][c] = source->colormap[CM_GREEN][c] = source->colormap[CM_BLUE][c] = CENTERJSAMPLE; } /* Return info about the image. */ cinfo->data_precision = BITS_IN_JSAMPLE; /* we always rescale data to this */ cinfo->image_width = width; cinfo->image_height = height; TRACEMS3(cinfo, 1, JTRC_GIF, width, height, colormaplen); } /* * Read one row of pixels. * This version is used for noninterlaced GIF images: * we read directly from the GIF file. */ METHODDEF(JDIMENSION) get_pixel_rows(j_compress_ptr cinfo, cjpeg_source_ptr sinfo) { gif_source_ptr source = (gif_source_ptr)sinfo; register int c; register JSAMPROW ptr; register JDIMENSION col; register JSAMPARRAY colormap = source->colormap; ptr = source->pub.buffer[0]; if (cinfo->in_color_space == JCS_GRAYSCALE) { for (col = cinfo->image_width; col > 0; col--) { c = LZWReadByte(source); *ptr++ = colormap[CM_RED][c]; } } else { for (col = cinfo->image_width; col > 0; col--) { c = LZWReadByte(source); *ptr++ = colormap[CM_RED][c]; *ptr++ = colormap[CM_GREEN][c]; *ptr++ = colormap[CM_BLUE][c]; } } return 1; } /* * Read one row of pixels. * This version is used for the first call on get_pixel_rows when * reading an interlaced GIF file: we read the whole image into memory. */ METHODDEF(JDIMENSION) load_interlaced_image(j_compress_ptr cinfo, cjpeg_source_ptr sinfo) { gif_source_ptr source = (gif_source_ptr)sinfo; register JSAMPROW sptr; register JDIMENSION col; JDIMENSION row; cd_progress_ptr progress = (cd_progress_ptr)cinfo->progress; /* Read the interlaced image into the virtual array we've created. */ for (row = 0; row < cinfo->image_height; row++) { if (progress != NULL) { progress->pub.pass_counter = (long)row; progress->pub.pass_limit = (long)cinfo->image_height; (*progress->pub.progress_monitor) ((j_common_ptr)cinfo); } sptr = *(*cinfo->mem->access_virt_sarray) ((j_common_ptr)cinfo, source->interlaced_image, row, (JDIMENSION)1, TRUE); for (col = cinfo->image_width; col > 0; col--) { *sptr++ = (JSAMPLE)LZWReadByte(source); } } if (progress != NULL) progress->completed_extra_passes++; /* Replace method pointer so subsequent calls don't come here. */ source->pub.get_pixel_rows = get_interlaced_row; /* Initialize for get_interlaced_row, and perform first call on it. */ source->cur_row_number = 0; source->pass2_offset = (cinfo->image_height + 7) / 8; source->pass3_offset = source->pass2_offset + (cinfo->image_height + 3) / 8; source->pass4_offset = source->pass3_offset + (cinfo->image_height + 1) / 4; return get_interlaced_row(cinfo, sinfo); } /* * Read one row of pixels. * This version is used for interlaced GIF images: * we read from the virtual array. */ METHODDEF(JDIMENSION) get_interlaced_row(j_compress_ptr cinfo, cjpeg_source_ptr sinfo) { gif_source_ptr source = (gif_source_ptr)sinfo; register int c; register JSAMPROW sptr, ptr; register JDIMENSION col; register JSAMPARRAY colormap = source->colormap; JDIMENSION irow; /* Figure out which row of interlaced image is needed, and access it. */ switch ((int)(source->cur_row_number & 7)) { case 0: /* first-pass row */ irow = source->cur_row_number >> 3; break; case 4: /* second-pass row */ irow = (source->cur_row_number >> 3) + source->pass2_offset; break; case 2: /* third-pass row */ case 6: irow = (source->cur_row_number >> 2) + source->pass3_offset; break; default: /* fourth-pass row */ irow = (source->cur_row_number >> 1) + source->pass4_offset; } sptr = *(*cinfo->mem->access_virt_sarray) ((j_common_ptr)cinfo, source->interlaced_image, irow, (JDIMENSION)1, FALSE); /* Scan the row, expand colormap, and output */ ptr = source->pub.buffer[0]; if (cinfo->in_color_space == JCS_GRAYSCALE) { for (col = cinfo->image_width; col > 0; col--) { c = *sptr++; *ptr++ = colormap[CM_RED][c]; } } else { for (col = cinfo->image_width; col > 0; col--) { c = *sptr++; *ptr++ = colormap[CM_RED][c]; *ptr++ = colormap[CM_GREEN][c]; *ptr++ = colormap[CM_BLUE][c]; } } source->cur_row_number++; /* for next time */ return 1; } /* * Finish up at the end of the file. */ METHODDEF(void) finish_input_gif(j_compress_ptr cinfo, cjpeg_source_ptr sinfo) { /* no work */ } /* * The module selection routine for GIF format input. */ GLOBAL(cjpeg_source_ptr) jinit_read_gif(j_compress_ptr cinfo) { gif_source_ptr source; /* Create module interface object */ source = (gif_source_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, sizeof(gif_source_struct)); source->cinfo = cinfo; /* make back link for subroutines */ /* Fill in method ptrs, except get_pixel_rows which start_input sets */ source->pub.start_input = start_input_gif; source->pub.finish_input = finish_input_gif; #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION source->pub.max_pixels = 0; #endif return (cjpeg_source_ptr)source; } #endif /* GIF_SUPPORTED */ libjpeg-turbo-2.1.5/rdjpgcom.1000066400000000000000000000032431436506551100161630ustar00rootroot00000000000000.TH RDJPGCOM 1 "02 April 2009" .SH NAME rdjpgcom \- display text comments from a JPEG file .SH SYNOPSIS .B rdjpgcom [ .B \-raw ] [ .B \-verbose ] [ .I filename ] .LP .SH DESCRIPTION .LP .B rdjpgcom reads the named JPEG/JFIF file, or the standard input if no file is named, and prints any text comments found in the file on the standard output. .PP The JPEG standard allows "comment" (COM) blocks to occur within a JPEG file. Although the standard doesn't actually define what COM blocks are for, they are widely used to hold user-supplied text strings. This lets you add annotations, titles, index terms, etc to your JPEG files, and later retrieve them as text. COM blocks do not interfere with the image stored in the JPEG file. The maximum size of a COM block is 64K, but you can have as many of them as you like in one JPEG file. .SH OPTIONS .TP .B \-raw Normally .B rdjpgcom escapes non-printable characters in comments, for security reasons. This option avoids that. .PP .B \-verbose Causes .B rdjpgcom to also display the JPEG image dimensions. .PP Switch names may be abbreviated, and are not case sensitive. .SH HINTS .B rdjpgcom does not depend on the IJG JPEG library. Its source code is intended as an illustration of the minimum amount of code required to parse a JPEG file header correctly. .PP In .B \-verbose mode, .B rdjpgcom will also attempt to print the contents of any "APP12" markers as text. Some digital cameras produce APP12 markers containing useful textual information. If you like, you can modify the source code to print other APPn marker types as well. .SH SEE ALSO .BR cjpeg (1), .BR djpeg (1), .BR jpegtran (1), .BR wrjpgcom (1) .SH AUTHOR Independent JPEG Group libjpeg-turbo-2.1.5/rdjpgcom.c000066400000000000000000000343361436506551100162540ustar00rootroot00000000000000/* * rdjpgcom.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1997, Thomas G. Lane. * Modified 2009 by Bill Allombert, Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright (C) 2022, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains a very simple stand-alone application that displays * the text in COM (comment) markers in a JFIF file. * This may be useful as an example of the minimum logic needed to parse * JPEG markers. */ #ifdef _MSC_VER #define _CRT_SECURE_NO_DEPRECATE #endif #define JPEG_CJPEG_DJPEG /* to get the command-line config symbols */ #include "jinclude.h" /* get auto-config symbols, */ #include /* Bill Allombert: use locale for isprint */ #include /* to declare isupper(), tolower() */ #ifdef USE_SETMODE #include /* to declare setmode()'s parameter macros */ /* If you have setmode() but not , just delete this line: */ #include /* to declare setmode() */ #endif #ifdef DONT_USE_B_MODE /* define mode parameters for fopen() */ #define READ_BINARY "r" #else #define READ_BINARY "rb" #endif #ifndef EXIT_FAILURE /* define exit() codes if not provided */ #define EXIT_FAILURE 1 #endif #ifndef EXIT_SUCCESS #define EXIT_SUCCESS 0 #endif /* * These macros are used to read the input file. * To reuse this code in another application, you might need to change these. */ static FILE *infile; /* input JPEG file */ /* Return next input byte, or EOF if no more */ #define NEXTBYTE() getc(infile) /* Error exit handler */ #define ERREXIT(msg) (fprintf(stderr, "%s\n", msg), exit(EXIT_FAILURE)) /* Read one byte, testing for EOF */ static int read_1_byte(void) { int c; c = NEXTBYTE(); if (c == EOF) ERREXIT("Premature EOF in JPEG file"); return c; } /* Read 2 bytes, convert to unsigned int */ /* All 2-byte quantities in JPEG markers are MSB first */ static unsigned int read_2_bytes(void) { int c1, c2; c1 = NEXTBYTE(); if (c1 == EOF) ERREXIT("Premature EOF in JPEG file"); c2 = NEXTBYTE(); if (c2 == EOF) ERREXIT("Premature EOF in JPEG file"); return (((unsigned int)c1) << 8) + ((unsigned int)c2); } /* * JPEG markers consist of one or more 0xFF bytes, followed by a marker * code byte (which is not an FF). Here are the marker codes of interest * in this program. (See jdmarker.c for a more complete list.) */ #define M_SOF0 0xC0 /* Start Of Frame N */ #define M_SOF1 0xC1 /* N indicates which compression process */ #define M_SOF2 0xC2 /* Only SOF0-SOF2 are now in common use */ #define M_SOF3 0xC3 #define M_SOF5 0xC5 /* NB: codes C4 and CC are NOT SOF markers */ #define M_SOF6 0xC6 #define M_SOF7 0xC7 #define M_SOF9 0xC9 #define M_SOF10 0xCA #define M_SOF11 0xCB #define M_SOF13 0xCD #define M_SOF14 0xCE #define M_SOF15 0xCF #define M_SOI 0xD8 /* Start Of Image (beginning of datastream) */ #define M_EOI 0xD9 /* End Of Image (end of datastream) */ #define M_SOS 0xDA /* Start Of Scan (begins compressed data) */ #define M_APP12 0xEC /* (we don't bother to list all 16 APPn's) */ #define M_COM 0xFE /* COMment */ /* * Find the next JPEG marker and return its marker code. * We expect at least one FF byte, possibly more if the compressor used FFs * to pad the file. * There could also be non-FF garbage between markers. The treatment of such * garbage is unspecified; we choose to skip over it but emit a warning msg. * NB: this routine must not be used after seeing SOS marker, since it will * not deal correctly with FF/00 sequences in the compressed image data... */ static int next_marker(void) { int c; int discarded_bytes = 0; /* Find 0xFF byte; count and skip any non-FFs. */ c = read_1_byte(); while (c != 0xFF) { discarded_bytes++; c = read_1_byte(); } /* Get marker code byte, swallowing any duplicate FF bytes. Extra FFs * are legal as pad bytes, so don't count them in discarded_bytes. */ do { c = read_1_byte(); } while (c == 0xFF); if (discarded_bytes != 0) { fprintf(stderr, "Warning: garbage data found in JPEG file\n"); } return c; } /* * Read the initial marker, which should be SOI. * For a JFIF file, the first two bytes of the file should be literally * 0xFF M_SOI. To be more general, we could use next_marker, but if the * input file weren't actually JPEG at all, next_marker might read the whole * file and then return a misleading error message... */ static int first_marker(void) { int c1, c2; c1 = NEXTBYTE(); c2 = NEXTBYTE(); if (c1 != 0xFF || c2 != M_SOI) ERREXIT("Not a JPEG file"); return c2; } /* * Most types of marker are followed by a variable-length parameter segment. * This routine skips over the parameters for any marker we don't otherwise * want to process. * Note that we MUST skip the parameter segment explicitly in order not to * be fooled by 0xFF bytes that might appear within the parameter segment; * such bytes do NOT introduce new markers. */ static void skip_variable(void) /* Skip over an unknown or uninteresting variable-length marker */ { unsigned int length; /* Get the marker parameter length count */ length = read_2_bytes(); /* Length includes itself, so must be at least 2 */ if (length < 2) ERREXIT("Erroneous JPEG marker length"); length -= 2; /* Skip over the remaining bytes */ while (length > 0) { (void)read_1_byte(); length--; } } /* * Process a COM marker. * We want to print out the marker contents as legible text; * we must guard against non-text junk and varying newline representations. */ static void process_COM(int raw) { unsigned int length; int ch; int lastch = 0; /* Bill Allombert: set locale properly for isprint */ setlocale(LC_CTYPE, ""); /* Get the marker parameter length count */ length = read_2_bytes(); /* Length includes itself, so must be at least 2 */ if (length < 2) ERREXIT("Erroneous JPEG marker length"); length -= 2; while (length > 0) { ch = read_1_byte(); if (raw) { putc(ch, stdout); /* Emit the character in a readable form. * Nonprintables are converted to \nnn form, * while \ is converted to \\. * Newlines in CR, CR/LF, or LF form will be printed as one newline. */ } else if (ch == '\r') { printf("\n"); } else if (ch == '\n') { if (lastch != '\r') printf("\n"); } else if (ch == '\\') { printf("\\\\"); } else if (isprint(ch)) { putc(ch, stdout); } else { printf("\\%03o", (unsigned int)ch); } lastch = ch; length--; } printf("\n"); /* Bill Allombert: revert to C locale */ setlocale(LC_CTYPE, "C"); } /* * Process a SOFn marker. * This code is only needed if you want to know the image dimensions... */ static void process_SOFn(int marker) { unsigned int length; unsigned int image_height, image_width; int data_precision, num_components; const char *process; int ci; length = read_2_bytes(); /* usual parameter length count */ data_precision = read_1_byte(); image_height = read_2_bytes(); image_width = read_2_bytes(); num_components = read_1_byte(); switch (marker) { case M_SOF0: process = "Baseline"; break; case M_SOF1: process = "Extended sequential"; break; case M_SOF2: process = "Progressive"; break; case M_SOF3: process = "Lossless"; break; case M_SOF5: process = "Differential sequential"; break; case M_SOF6: process = "Differential progressive"; break; case M_SOF7: process = "Differential lossless"; break; case M_SOF9: process = "Extended sequential, arithmetic coding"; break; case M_SOF10: process = "Progressive, arithmetic coding"; break; case M_SOF11: process = "Lossless, arithmetic coding"; break; case M_SOF13: process = "Differential sequential, arithmetic coding"; break; case M_SOF14: process = "Differential progressive, arithmetic coding"; break; case M_SOF15: process = "Differential lossless, arithmetic coding"; break; default: process = "Unknown"; break; } printf("JPEG image is %uw * %uh, %d color components, %d bits per sample\n", image_width, image_height, num_components, data_precision); printf("JPEG process: %s\n", process); if (length != (unsigned int)(8 + num_components * 3)) ERREXIT("Bogus SOF marker length"); for (ci = 0; ci < num_components; ci++) { (void)read_1_byte(); /* Component ID code */ (void)read_1_byte(); /* H, V sampling factors */ (void)read_1_byte(); /* Quantization table number */ } } /* * Parse the marker stream until SOS or EOI is seen; * display any COM markers. * While the companion program wrjpgcom will always insert COM markers before * SOFn, other implementations might not, so we scan to SOS before stopping. * If we were only interested in the image dimensions, we would stop at SOFn. * (Conversely, if we only cared about COM markers, there would be no need * for special code to handle SOFn; we could treat it like other markers.) */ static int scan_JPEG_header(int verbose, int raw) { int marker; /* Expect SOI at start of file */ if (first_marker() != M_SOI) ERREXIT("Expected SOI marker first"); /* Scan miscellaneous markers until we reach SOS. */ for (;;) { marker = next_marker(); switch (marker) { /* Note that marker codes 0xC4, 0xC8, 0xCC are not, and must not be, * treated as SOFn. C4 in particular is actually DHT. */ case M_SOF0: /* Baseline */ case M_SOF1: /* Extended sequential, Huffman */ case M_SOF2: /* Progressive, Huffman */ case M_SOF3: /* Lossless, Huffman */ case M_SOF5: /* Differential sequential, Huffman */ case M_SOF6: /* Differential progressive, Huffman */ case M_SOF7: /* Differential lossless, Huffman */ case M_SOF9: /* Extended sequential, arithmetic */ case M_SOF10: /* Progressive, arithmetic */ case M_SOF11: /* Lossless, arithmetic */ case M_SOF13: /* Differential sequential, arithmetic */ case M_SOF14: /* Differential progressive, arithmetic */ case M_SOF15: /* Differential lossless, arithmetic */ if (verbose) process_SOFn(marker); else skip_variable(); break; case M_SOS: /* stop before hitting compressed data */ return marker; case M_EOI: /* in case it's a tables-only JPEG stream */ return marker; case M_COM: process_COM(raw); break; case M_APP12: /* Some digital camera makers put useful textual information into * APP12 markers, so we print those out too when in -verbose mode. */ if (verbose) { printf("APP12 contains:\n"); process_COM(raw); } else skip_variable(); break; default: /* Anything else just gets skipped */ skip_variable(); /* we assume it has a parameter count... */ break; } } /* end loop */ } /* Command line parsing code */ static const char *progname; /* program name for error messages */ static void usage(void) /* complain about bad command line */ { fprintf(stderr, "rdjpgcom displays any textual comments in a JPEG file.\n"); fprintf(stderr, "Usage: %s [switches] [inputfile]\n", progname); fprintf(stderr, "Switches (names may be abbreviated):\n"); fprintf(stderr, " -raw Display non-printable characters in comments (unsafe)\n"); fprintf(stderr, " -verbose Also display dimensions of JPEG image\n"); exit(EXIT_FAILURE); } static int keymatch(char *arg, const char *keyword, int minchars) /* Case-insensitive matching of (possibly abbreviated) keyword switches. */ /* keyword is the constant keyword (must be lower case already), */ /* minchars is length of minimum legal abbreviation. */ { register int ca, ck; register int nmatched = 0; while ((ca = *arg++) != '\0') { if ((ck = *keyword++) == '\0') return 0; /* arg longer than keyword, no good */ if (isupper(ca)) /* force arg to lcase (assume ck is already) */ ca = tolower(ca); if (ca != ck) return 0; /* no good */ nmatched++; /* count matched characters */ } /* reached end of argument; fail if it's too short for unique abbrev */ if (nmatched < minchars) return 0; return 1; /* A-OK */ } /* * The main program. */ int main(int argc, char **argv) { int argn; char *arg; int verbose = 0, raw = 0; progname = argv[0]; if (progname == NULL || progname[0] == 0) progname = "rdjpgcom"; /* in case C library doesn't provide it */ /* Parse switches, if any */ for (argn = 1; argn < argc; argn++) { arg = argv[argn]; if (arg[0] != '-') break; /* not switch, must be file name */ arg++; /* advance over '-' */ if (keymatch(arg, "verbose", 1)) { verbose++; } else if (keymatch(arg, "raw", 1)) { raw = 1; } else usage(); } /* Open the input file. */ /* Unix style: expect zero or one file name */ if (argn < argc - 1) { fprintf(stderr, "%s: only one input file\n", progname); usage(); } if (argn < argc) { if ((infile = fopen(argv[argn], READ_BINARY)) == NULL) { fprintf(stderr, "%s: can't open %s\n", progname, argv[argn]); exit(EXIT_FAILURE); } } else { /* default input file is stdin */ #ifdef USE_SETMODE /* need to hack file mode? */ setmode(fileno(stdin), O_BINARY); #endif #ifdef USE_FDOPEN /* need to re-open in binary mode? */ if ((infile = fdopen(fileno(stdin), READ_BINARY)) == NULL) { fprintf(stderr, "%s: can't open stdin\n", progname); exit(EXIT_FAILURE); } #else infile = stdin; #endif } /* Scan the JPEG headers. */ (void)scan_JPEG_header(verbose, raw); /* All done. */ exit(EXIT_SUCCESS); return 0; /* suppress no-return-value warnings */ } libjpeg-turbo-2.1.5/rdppm.c000066400000000000000000000621031436506551100155620ustar00rootroot00000000000000/* * rdppm.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1997, Thomas G. Lane. * Modified 2009 by Bill Allombert, Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright (C) 2015-2017, 2020-2023, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains routines to read input images in PPM/PGM format. * The extended 2-byte-per-sample raw PPM/PGM formats are supported. * The PBMPLUS library is NOT required to compile this software * (but it is highly useful as a set of PPM image manipulation programs). * * These routines may need modification for non-Unix environments or * specialized applications. As they stand, they assume input from * an ordinary stdio stream. They further assume that reading begins * at the start of the file; start_input may need work if the * user interface has already read some data (e.g., to determine that * the file is indeed PPM format). */ #include "cmyk.h" #include "cdjpeg.h" /* Common decls for cjpeg/djpeg applications */ #ifdef PPM_SUPPORTED /* Portions of this code are based on the PBMPLUS library, which is: ** ** Copyright (C) 1988 by Jef Poskanzer. ** ** Permission to use, copy, modify, and distribute this software and its ** documentation for any purpose and without fee is hereby granted, provided ** that the above copyright notice appear in all copies and that both that ** copyright notice and this permission notice appear in supporting ** documentation. This software is provided "as is" without express or ** implied warranty. */ /* Macros to deal with unsigned chars as efficiently as compiler allows */ typedef unsigned char U_CHAR; #define UCH(x) ((int)(x)) #define ReadOK(file, buffer, len) \ (fread(buffer, 1, len, file) == ((size_t)(len))) static int alpha_index[JPEG_NUMCS] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 3, 3, 0, 0, -1 }; /* Private version of data source object */ typedef struct { struct cjpeg_source_struct pub; /* public fields */ /* Usually these two pointers point to the same place: */ U_CHAR *iobuffer; /* fread's I/O buffer */ JSAMPROW pixrow; /* compressor input buffer */ size_t buffer_width; /* width of I/O buffer */ JSAMPLE *rescale; /* => maxval-remapping array, or NULL */ unsigned int maxval; } ppm_source_struct; typedef ppm_source_struct *ppm_source_ptr; LOCAL(int) pbm_getc(FILE *infile) /* Read next char, skipping over any comments */ /* A comment/newline sequence is returned as a newline */ { register int ch; ch = getc(infile); if (ch == '#') { do { ch = getc(infile); } while (ch != '\n' && ch != EOF); } return ch; } LOCAL(unsigned int) read_pbm_integer(j_compress_ptr cinfo, FILE *infile, unsigned int maxval) /* Read an unsigned decimal integer from the PPM file */ /* Swallows one trailing character after the integer */ /* Note that on a 16-bit-int machine, only values up to 64k can be read. */ /* This should not be a problem in practice. */ { register int ch; register unsigned int val; /* Skip any leading whitespace */ do { ch = pbm_getc(infile); if (ch == EOF) ERREXIT(cinfo, JERR_INPUT_EOF); } while (ch == ' ' || ch == '\t' || ch == '\n' || ch == '\r'); if (ch < '0' || ch > '9') ERREXIT(cinfo, JERR_PPM_NONNUMERIC); val = ch - '0'; while ((ch = pbm_getc(infile)) >= '0' && ch <= '9') { val *= 10; val += ch - '0'; if (val > maxval) ERREXIT(cinfo, JERR_PPM_OUTOFRANGE); } return val; } /* * Read one row of pixels. * * We provide several different versions depending on input file format. * In all cases, input is scaled to the size of JSAMPLE. * * A really fast path is provided for reading byte/sample raw files with * maxval = MAXJSAMPLE, which is the normal case for 8-bit data. */ METHODDEF(JDIMENSION) get_text_gray_row(j_compress_ptr cinfo, cjpeg_source_ptr sinfo) /* This version is for reading text-format PGM files with any maxval */ { ppm_source_ptr source = (ppm_source_ptr)sinfo; FILE *infile = source->pub.input_file; register JSAMPROW ptr; register JSAMPLE *rescale = source->rescale; JDIMENSION col; unsigned int maxval = source->maxval; ptr = source->pub.buffer[0]; for (col = cinfo->image_width; col > 0; col--) { *ptr++ = rescale[read_pbm_integer(cinfo, infile, maxval)]; } return 1; } #define GRAY_RGB_READ_LOOP(read_op, alpha_set_op) { \ for (col = cinfo->image_width; col > 0; col--) { \ ptr[rindex] = ptr[gindex] = ptr[bindex] = read_op; \ alpha_set_op \ ptr += ps; \ } \ } METHODDEF(JDIMENSION) get_text_gray_rgb_row(j_compress_ptr cinfo, cjpeg_source_ptr sinfo) /* This version is for reading text-format PGM files with any maxval and converting to extended RGB */ { ppm_source_ptr source = (ppm_source_ptr)sinfo; FILE *infile = source->pub.input_file; register JSAMPROW ptr; register JSAMPLE *rescale = source->rescale; JDIMENSION col; unsigned int maxval = source->maxval; register int rindex = rgb_red[cinfo->in_color_space]; register int gindex = rgb_green[cinfo->in_color_space]; register int bindex = rgb_blue[cinfo->in_color_space]; register int aindex = alpha_index[cinfo->in_color_space]; register int ps = rgb_pixelsize[cinfo->in_color_space]; ptr = source->pub.buffer[0]; if (maxval == MAXJSAMPLE) { if (aindex >= 0) GRAY_RGB_READ_LOOP((JSAMPLE)read_pbm_integer(cinfo, infile, maxval), ptr[aindex] = MAXJSAMPLE;) else GRAY_RGB_READ_LOOP((JSAMPLE)read_pbm_integer(cinfo, infile, maxval), {}) } else { if (aindex >= 0) GRAY_RGB_READ_LOOP(rescale[read_pbm_integer(cinfo, infile, maxval)], ptr[aindex] = MAXJSAMPLE;) else GRAY_RGB_READ_LOOP(rescale[read_pbm_integer(cinfo, infile, maxval)], {}) } return 1; } METHODDEF(JDIMENSION) get_text_gray_cmyk_row(j_compress_ptr cinfo, cjpeg_source_ptr sinfo) /* This version is for reading text-format PGM files with any maxval and converting to CMYK */ { ppm_source_ptr source = (ppm_source_ptr)sinfo; FILE *infile = source->pub.input_file; register JSAMPROW ptr; register JSAMPLE *rescale = source->rescale; JDIMENSION col; unsigned int maxval = source->maxval; ptr = source->pub.buffer[0]; if (maxval == MAXJSAMPLE) { for (col = cinfo->image_width; col > 0; col--) { JSAMPLE gray = (JSAMPLE)read_pbm_integer(cinfo, infile, maxval); rgb_to_cmyk(gray, gray, gray, ptr, ptr + 1, ptr + 2, ptr + 3); ptr += 4; } } else { for (col = cinfo->image_width; col > 0; col--) { JSAMPLE gray = rescale[read_pbm_integer(cinfo, infile, maxval)]; rgb_to_cmyk(gray, gray, gray, ptr, ptr + 1, ptr + 2, ptr + 3); ptr += 4; } } return 1; } #define RGB_READ_LOOP(read_op, alpha_set_op) { \ for (col = cinfo->image_width; col > 0; col--) { \ ptr[rindex] = read_op; \ ptr[gindex] = read_op; \ ptr[bindex] = read_op; \ alpha_set_op \ ptr += ps; \ } \ } METHODDEF(JDIMENSION) get_text_rgb_row(j_compress_ptr cinfo, cjpeg_source_ptr sinfo) /* This version is for reading text-format PPM files with any maxval */ { ppm_source_ptr source = (ppm_source_ptr)sinfo; FILE *infile = source->pub.input_file; register JSAMPROW ptr; register JSAMPLE *rescale = source->rescale; JDIMENSION col; unsigned int maxval = source->maxval; register int rindex = rgb_red[cinfo->in_color_space]; register int gindex = rgb_green[cinfo->in_color_space]; register int bindex = rgb_blue[cinfo->in_color_space]; register int aindex = alpha_index[cinfo->in_color_space]; register int ps = rgb_pixelsize[cinfo->in_color_space]; ptr = source->pub.buffer[0]; if (maxval == MAXJSAMPLE) { if (aindex >= 0) RGB_READ_LOOP((JSAMPLE)read_pbm_integer(cinfo, infile, maxval), ptr[aindex] = MAXJSAMPLE;) else RGB_READ_LOOP((JSAMPLE)read_pbm_integer(cinfo, infile, maxval), {}) } else { if (aindex >= 0) RGB_READ_LOOP(rescale[read_pbm_integer(cinfo, infile, maxval)], ptr[aindex] = MAXJSAMPLE;) else RGB_READ_LOOP(rescale[read_pbm_integer(cinfo, infile, maxval)], {}) } return 1; } METHODDEF(JDIMENSION) get_text_rgb_cmyk_row(j_compress_ptr cinfo, cjpeg_source_ptr sinfo) /* This version is for reading text-format PPM files with any maxval and converting to CMYK */ { ppm_source_ptr source = (ppm_source_ptr)sinfo; FILE *infile = source->pub.input_file; register JSAMPROW ptr; register JSAMPLE *rescale = source->rescale; JDIMENSION col; unsigned int maxval = source->maxval; ptr = source->pub.buffer[0]; if (maxval == MAXJSAMPLE) { for (col = cinfo->image_width; col > 0; col--) { JSAMPLE r = (JSAMPLE)read_pbm_integer(cinfo, infile, maxval); JSAMPLE g = (JSAMPLE)read_pbm_integer(cinfo, infile, maxval); JSAMPLE b = (JSAMPLE)read_pbm_integer(cinfo, infile, maxval); rgb_to_cmyk(r, g, b, ptr, ptr + 1, ptr + 2, ptr + 3); ptr += 4; } } else { for (col = cinfo->image_width; col > 0; col--) { JSAMPLE r = rescale[read_pbm_integer(cinfo, infile, maxval)]; JSAMPLE g = rescale[read_pbm_integer(cinfo, infile, maxval)]; JSAMPLE b = rescale[read_pbm_integer(cinfo, infile, maxval)]; rgb_to_cmyk(r, g, b, ptr, ptr + 1, ptr + 2, ptr + 3); ptr += 4; } } return 1; } METHODDEF(JDIMENSION) get_scaled_gray_row(j_compress_ptr cinfo, cjpeg_source_ptr sinfo) /* This version is for reading raw-byte-format PGM files with any maxval */ { ppm_source_ptr source = (ppm_source_ptr)sinfo; register JSAMPROW ptr; register U_CHAR *bufferptr; register JSAMPLE *rescale = source->rescale; JDIMENSION col; if (!ReadOK(source->pub.input_file, source->iobuffer, source->buffer_width)) ERREXIT(cinfo, JERR_INPUT_EOF); ptr = source->pub.buffer[0]; bufferptr = source->iobuffer; for (col = cinfo->image_width; col > 0; col--) { *ptr++ = rescale[UCH(*bufferptr++)]; } return 1; } METHODDEF(JDIMENSION) get_gray_rgb_row(j_compress_ptr cinfo, cjpeg_source_ptr sinfo) /* This version is for reading raw-byte-format PGM files with any maxval and converting to extended RGB */ { ppm_source_ptr source = (ppm_source_ptr)sinfo; register JSAMPROW ptr; register U_CHAR *bufferptr; register JSAMPLE *rescale = source->rescale; JDIMENSION col; unsigned int maxval = source->maxval; register int rindex = rgb_red[cinfo->in_color_space]; register int gindex = rgb_green[cinfo->in_color_space]; register int bindex = rgb_blue[cinfo->in_color_space]; register int aindex = alpha_index[cinfo->in_color_space]; register int ps = rgb_pixelsize[cinfo->in_color_space]; if (!ReadOK(source->pub.input_file, source->iobuffer, source->buffer_width)) ERREXIT(cinfo, JERR_INPUT_EOF); ptr = source->pub.buffer[0]; bufferptr = source->iobuffer; if (maxval == MAXJSAMPLE) { if (aindex >= 0) GRAY_RGB_READ_LOOP(*bufferptr++, ptr[aindex] = MAXJSAMPLE;) else GRAY_RGB_READ_LOOP(*bufferptr++, {}) } else { if (aindex >= 0) GRAY_RGB_READ_LOOP(rescale[UCH(*bufferptr++)], ptr[aindex] = MAXJSAMPLE;) else GRAY_RGB_READ_LOOP(rescale[UCH(*bufferptr++)], {}) } return 1; } METHODDEF(JDIMENSION) get_gray_cmyk_row(j_compress_ptr cinfo, cjpeg_source_ptr sinfo) /* This version is for reading raw-byte-format PGM files with any maxval and converting to CMYK */ { ppm_source_ptr source = (ppm_source_ptr)sinfo; register JSAMPROW ptr; register U_CHAR *bufferptr; register JSAMPLE *rescale = source->rescale; JDIMENSION col; unsigned int maxval = source->maxval; if (!ReadOK(source->pub.input_file, source->iobuffer, source->buffer_width)) ERREXIT(cinfo, JERR_INPUT_EOF); ptr = source->pub.buffer[0]; bufferptr = source->iobuffer; if (maxval == MAXJSAMPLE) { for (col = cinfo->image_width; col > 0; col--) { JSAMPLE gray = *bufferptr++; rgb_to_cmyk(gray, gray, gray, ptr, ptr + 1, ptr + 2, ptr + 3); ptr += 4; } } else { for (col = cinfo->image_width; col > 0; col--) { JSAMPLE gray = rescale[UCH(*bufferptr++)]; rgb_to_cmyk(gray, gray, gray, ptr, ptr + 1, ptr + 2, ptr + 3); ptr += 4; } } return 1; } METHODDEF(JDIMENSION) get_rgb_row(j_compress_ptr cinfo, cjpeg_source_ptr sinfo) /* This version is for reading raw-byte-format PPM files with any maxval */ { ppm_source_ptr source = (ppm_source_ptr)sinfo; register JSAMPROW ptr; register U_CHAR *bufferptr; register JSAMPLE *rescale = source->rescale; JDIMENSION col; unsigned int maxval = source->maxval; register int rindex = rgb_red[cinfo->in_color_space]; register int gindex = rgb_green[cinfo->in_color_space]; register int bindex = rgb_blue[cinfo->in_color_space]; register int aindex = alpha_index[cinfo->in_color_space]; register int ps = rgb_pixelsize[cinfo->in_color_space]; if (!ReadOK(source->pub.input_file, source->iobuffer, source->buffer_width)) ERREXIT(cinfo, JERR_INPUT_EOF); ptr = source->pub.buffer[0]; bufferptr = source->iobuffer; if (maxval == MAXJSAMPLE) { if (aindex >= 0) RGB_READ_LOOP(*bufferptr++, ptr[aindex] = MAXJSAMPLE;) else RGB_READ_LOOP(*bufferptr++, {}) } else { if (aindex >= 0) RGB_READ_LOOP(rescale[UCH(*bufferptr++)], ptr[aindex] = MAXJSAMPLE;) else RGB_READ_LOOP(rescale[UCH(*bufferptr++)], {}) } return 1; } METHODDEF(JDIMENSION) get_rgb_cmyk_row(j_compress_ptr cinfo, cjpeg_source_ptr sinfo) /* This version is for reading raw-byte-format PPM files with any maxval and converting to CMYK */ { ppm_source_ptr source = (ppm_source_ptr)sinfo; register JSAMPROW ptr; register U_CHAR *bufferptr; register JSAMPLE *rescale = source->rescale; JDIMENSION col; unsigned int maxval = source->maxval; if (!ReadOK(source->pub.input_file, source->iobuffer, source->buffer_width)) ERREXIT(cinfo, JERR_INPUT_EOF); ptr = source->pub.buffer[0]; bufferptr = source->iobuffer; if (maxval == MAXJSAMPLE) { for (col = cinfo->image_width; col > 0; col--) { JSAMPLE r = *bufferptr++; JSAMPLE g = *bufferptr++; JSAMPLE b = *bufferptr++; rgb_to_cmyk(r, g, b, ptr, ptr + 1, ptr + 2, ptr + 3); ptr += 4; } } else { for (col = cinfo->image_width; col > 0; col--) { JSAMPLE r = rescale[UCH(*bufferptr++)]; JSAMPLE g = rescale[UCH(*bufferptr++)]; JSAMPLE b = rescale[UCH(*bufferptr++)]; rgb_to_cmyk(r, g, b, ptr, ptr + 1, ptr + 2, ptr + 3); ptr += 4; } } return 1; } METHODDEF(JDIMENSION) get_raw_row(j_compress_ptr cinfo, cjpeg_source_ptr sinfo) /* This version is for reading raw-byte-format files with maxval = MAXJSAMPLE. * In this case we just read right into the JSAMPLE buffer! * Note that same code works for PPM and PGM files. */ { ppm_source_ptr source = (ppm_source_ptr)sinfo; if (!ReadOK(source->pub.input_file, source->iobuffer, source->buffer_width)) ERREXIT(cinfo, JERR_INPUT_EOF); return 1; } METHODDEF(JDIMENSION) get_word_gray_row(j_compress_ptr cinfo, cjpeg_source_ptr sinfo) /* This version is for reading raw-word-format PGM files with any maxval */ { ppm_source_ptr source = (ppm_source_ptr)sinfo; register JSAMPROW ptr; register U_CHAR *bufferptr; register JSAMPLE *rescale = source->rescale; JDIMENSION col; unsigned int maxval = source->maxval; if (!ReadOK(source->pub.input_file, source->iobuffer, source->buffer_width)) ERREXIT(cinfo, JERR_INPUT_EOF); ptr = source->pub.buffer[0]; bufferptr = source->iobuffer; for (col = cinfo->image_width; col > 0; col--) { register unsigned int temp; temp = UCH(*bufferptr++) << 8; temp |= UCH(*bufferptr++); if (temp > maxval) ERREXIT(cinfo, JERR_PPM_OUTOFRANGE); *ptr++ = rescale[temp]; } return 1; } METHODDEF(JDIMENSION) get_word_rgb_row(j_compress_ptr cinfo, cjpeg_source_ptr sinfo) /* This version is for reading raw-word-format PPM files with any maxval */ { ppm_source_ptr source = (ppm_source_ptr)sinfo; register JSAMPROW ptr; register U_CHAR *bufferptr; register JSAMPLE *rescale = source->rescale; JDIMENSION col; unsigned int maxval = source->maxval; register int rindex = rgb_red[cinfo->in_color_space]; register int gindex = rgb_green[cinfo->in_color_space]; register int bindex = rgb_blue[cinfo->in_color_space]; register int aindex = alpha_index[cinfo->in_color_space]; register int ps = rgb_pixelsize[cinfo->in_color_space]; if (!ReadOK(source->pub.input_file, source->iobuffer, source->buffer_width)) ERREXIT(cinfo, JERR_INPUT_EOF); ptr = source->pub.buffer[0]; bufferptr = source->iobuffer; for (col = cinfo->image_width; col > 0; col--) { register unsigned int temp; temp = UCH(*bufferptr++) << 8; temp |= UCH(*bufferptr++); if (temp > maxval) ERREXIT(cinfo, JERR_PPM_OUTOFRANGE); ptr[rindex] = rescale[temp]; temp = UCH(*bufferptr++) << 8; temp |= UCH(*bufferptr++); if (temp > maxval) ERREXIT(cinfo, JERR_PPM_OUTOFRANGE); ptr[gindex] = rescale[temp]; temp = UCH(*bufferptr++) << 8; temp |= UCH(*bufferptr++); if (temp > maxval) ERREXIT(cinfo, JERR_PPM_OUTOFRANGE); ptr[bindex] = rescale[temp]; if (aindex >= 0) ptr[aindex] = MAXJSAMPLE; ptr += ps; } return 1; } /* * Read the file header; return image size and component count. */ METHODDEF(void) start_input_ppm(j_compress_ptr cinfo, cjpeg_source_ptr sinfo) { ppm_source_ptr source = (ppm_source_ptr)sinfo; int c; unsigned int w, h, maxval; boolean need_iobuffer, use_raw_buffer, need_rescale; if (getc(source->pub.input_file) != 'P') ERREXIT(cinfo, JERR_PPM_NOT); c = getc(source->pub.input_file); /* subformat discriminator character */ /* detect unsupported variants (ie, PBM) before trying to read header */ switch (c) { case '2': /* it's a text-format PGM file */ case '3': /* it's a text-format PPM file */ case '5': /* it's a raw-format PGM file */ case '6': /* it's a raw-format PPM file */ break; default: ERREXIT(cinfo, JERR_PPM_NOT); break; } /* fetch the remaining header info */ w = read_pbm_integer(cinfo, source->pub.input_file, 65535); h = read_pbm_integer(cinfo, source->pub.input_file, 65535); maxval = read_pbm_integer(cinfo, source->pub.input_file, 65535); if (w <= 0 || h <= 0 || maxval <= 0) /* error check */ ERREXIT(cinfo, JERR_PPM_NOT); #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION if (sinfo->max_pixels && (unsigned long long)w * h > sinfo->max_pixels) ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); #endif cinfo->data_precision = BITS_IN_JSAMPLE; /* we always rescale data to this */ cinfo->image_width = (JDIMENSION)w; cinfo->image_height = (JDIMENSION)h; source->maxval = maxval; /* initialize flags to most common settings */ need_iobuffer = TRUE; /* do we need an I/O buffer? */ use_raw_buffer = FALSE; /* do we map input buffer onto I/O buffer? */ need_rescale = TRUE; /* do we need a rescale array? */ switch (c) { case '2': /* it's a text-format PGM file */ if (cinfo->in_color_space == JCS_UNKNOWN || cinfo->in_color_space == JCS_RGB) cinfo->in_color_space = JCS_GRAYSCALE; TRACEMS2(cinfo, 1, JTRC_PGM_TEXT, w, h); if (cinfo->in_color_space == JCS_GRAYSCALE) source->pub.get_pixel_rows = get_text_gray_row; else if (IsExtRGB(cinfo->in_color_space)) source->pub.get_pixel_rows = get_text_gray_rgb_row; else if (cinfo->in_color_space == JCS_CMYK) source->pub.get_pixel_rows = get_text_gray_cmyk_row; else ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); need_iobuffer = FALSE; break; case '3': /* it's a text-format PPM file */ if (cinfo->in_color_space == JCS_UNKNOWN) cinfo->in_color_space = JCS_EXT_RGB; TRACEMS2(cinfo, 1, JTRC_PPM_TEXT, w, h); if (IsExtRGB(cinfo->in_color_space)) source->pub.get_pixel_rows = get_text_rgb_row; else if (cinfo->in_color_space == JCS_CMYK) source->pub.get_pixel_rows = get_text_rgb_cmyk_row; else ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); need_iobuffer = FALSE; break; case '5': /* it's a raw-format PGM file */ if (cinfo->in_color_space == JCS_UNKNOWN || cinfo->in_color_space == JCS_RGB) cinfo->in_color_space = JCS_GRAYSCALE; TRACEMS2(cinfo, 1, JTRC_PGM, w, h); if (maxval > 255) { if (cinfo->in_color_space == JCS_GRAYSCALE) source->pub.get_pixel_rows = get_word_gray_row; else ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); } else if (maxval == MAXJSAMPLE && sizeof(JSAMPLE) == sizeof(U_CHAR) && cinfo->in_color_space == JCS_GRAYSCALE) { source->pub.get_pixel_rows = get_raw_row; use_raw_buffer = TRUE; need_rescale = FALSE; } else { if (cinfo->in_color_space == JCS_GRAYSCALE) source->pub.get_pixel_rows = get_scaled_gray_row; else if (IsExtRGB(cinfo->in_color_space)) source->pub.get_pixel_rows = get_gray_rgb_row; else if (cinfo->in_color_space == JCS_CMYK) source->pub.get_pixel_rows = get_gray_cmyk_row; else ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); } break; case '6': /* it's a raw-format PPM file */ if (cinfo->in_color_space == JCS_UNKNOWN) cinfo->in_color_space = JCS_EXT_RGB; TRACEMS2(cinfo, 1, JTRC_PPM, w, h); if (maxval > 255) { if (IsExtRGB(cinfo->in_color_space)) source->pub.get_pixel_rows = get_word_rgb_row; else ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); } else if (maxval == MAXJSAMPLE && sizeof(JSAMPLE) == sizeof(U_CHAR) && #if RGB_RED == 0 && RGB_GREEN == 1 && RGB_BLUE == 2 && RGB_PIXELSIZE == 3 (cinfo->in_color_space == JCS_EXT_RGB || cinfo->in_color_space == JCS_RGB)) { #else cinfo->in_color_space == JCS_EXT_RGB) { #endif source->pub.get_pixel_rows = get_raw_row; use_raw_buffer = TRUE; need_rescale = FALSE; } else { if (IsExtRGB(cinfo->in_color_space)) source->pub.get_pixel_rows = get_rgb_row; else if (cinfo->in_color_space == JCS_CMYK) source->pub.get_pixel_rows = get_rgb_cmyk_row; else ERREXIT(cinfo, JERR_BAD_IN_COLORSPACE); } break; } if (IsExtRGB(cinfo->in_color_space)) cinfo->input_components = rgb_pixelsize[cinfo->in_color_space]; else if (cinfo->in_color_space == JCS_GRAYSCALE) cinfo->input_components = 1; else if (cinfo->in_color_space == JCS_CMYK) cinfo->input_components = 4; /* Allocate space for I/O buffer: 1 or 3 bytes or words/pixel. */ if (need_iobuffer) { if (c == '6') source->buffer_width = (size_t)w * 3 * ((maxval <= 255) ? sizeof(U_CHAR) : (2 * sizeof(U_CHAR))); else source->buffer_width = (size_t)w * ((maxval <= 255) ? sizeof(U_CHAR) : (2 * sizeof(U_CHAR))); source->iobuffer = (U_CHAR *) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, source->buffer_width); } /* Create compressor input buffer. */ if (use_raw_buffer) { /* For unscaled raw-input case, we can just map it onto the I/O buffer. */ /* Synthesize a JSAMPARRAY pointer structure */ source->pixrow = (JSAMPROW)source->iobuffer; source->pub.buffer = &source->pixrow; source->pub.buffer_height = 1; } else { /* Need to translate anyway, so make a separate sample buffer. */ source->pub.buffer = (*cinfo->mem->alloc_sarray) ((j_common_ptr)cinfo, JPOOL_IMAGE, (JDIMENSION)w * cinfo->input_components, (JDIMENSION)1); source->pub.buffer_height = 1; } /* Compute the rescaling array if required. */ if (need_rescale) { long val, half_maxval; /* On 16-bit-int machines we have to be careful of maxval = 65535 */ source->rescale = (JSAMPLE *) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, (size_t)(((long)MAX(maxval, 255) + 1L) * sizeof(JSAMPLE))); memset(source->rescale, 0, (size_t)(((long)MAX(maxval, 255) + 1L) * sizeof(JSAMPLE))); half_maxval = maxval / 2; for (val = 0; val <= (long)maxval; val++) { /* The multiplication here must be done in 32 bits to avoid overflow */ source->rescale[val] = (JSAMPLE)((val * MAXJSAMPLE + half_maxval) / maxval); } } } /* * Finish up at the end of the file. */ METHODDEF(void) finish_input_ppm(j_compress_ptr cinfo, cjpeg_source_ptr sinfo) { /* no work */ } /* * The module selection routine for PPM format input. */ GLOBAL(cjpeg_source_ptr) jinit_read_ppm(j_compress_ptr cinfo) { ppm_source_ptr source; /* Create module interface object */ source = (ppm_source_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, sizeof(ppm_source_struct)); /* Fill in method ptrs, except get_pixel_rows which start_input sets */ source->pub.start_input = start_input_ppm; source->pub.finish_input = finish_input_ppm; #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION source->pub.max_pixels = 0; #endif return (cjpeg_source_ptr)source; } #endif /* PPM_SUPPORTED */ libjpeg-turbo-2.1.5/rdswitch.c000066400000000000000000000316131436506551100162710ustar00rootroot00000000000000/* * rdswitch.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1996, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2010, 2018, 2022, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains routines to process some of cjpeg's more complicated * command-line switches. Switches processed here are: * -qtables file Read quantization tables from text file * -scans file Read scan script from text file * -quality N[,N,...] Set quality ratings * -qslots N[,N,...] Set component quantization table selectors * -sample HxV[,HxV,...] Set component sampling factors */ #ifdef _MSC_VER #define _CRT_SECURE_NO_DEPRECATE #endif #include "cdjpeg.h" /* Common decls for cjpeg/djpeg applications */ #include /* to declare isdigit(), isspace() */ LOCAL(int) text_getc(FILE *file) /* Read next char, skipping over any comments (# to end of line) */ /* A comment/newline sequence is returned as a newline */ { register int ch; ch = getc(file); if (ch == '#') { do { ch = getc(file); } while (ch != '\n' && ch != EOF); } return ch; } LOCAL(boolean) read_text_integer(FILE *file, long *result, int *termchar) /* Read an unsigned decimal integer from a file, store it in result */ /* Reads one trailing character after the integer; returns it in termchar */ { register int ch; register long val; /* Skip any leading whitespace, detect EOF */ do { ch = text_getc(file); if (ch == EOF) { *termchar = ch; return FALSE; } } while (isspace(ch)); if (!isdigit(ch)) { *termchar = ch; return FALSE; } val = ch - '0'; while ((ch = text_getc(file)) != EOF) { if (!isdigit(ch)) break; val *= 10; val += ch - '0'; } *result = val; *termchar = ch; return TRUE; } #if JPEG_LIB_VERSION < 70 static int q_scale_factor[NUM_QUANT_TBLS] = { 100, 100, 100, 100 }; #endif GLOBAL(boolean) read_quant_tables(j_compress_ptr cinfo, char *filename, boolean force_baseline) /* Read a set of quantization tables from the specified file. * The file is plain ASCII text: decimal numbers with whitespace between. * Comments preceded by '#' may be included in the file. * There may be one to NUM_QUANT_TBLS tables in the file, each of 64 values. * The tables are implicitly numbered 0,1,etc. * NOTE: does not affect the qslots mapping, which will default to selecting * table 0 for luminance (or primary) components, 1 for chrominance components. * You must use -qslots if you want a different component->table mapping. */ { FILE *fp; int tblno, i, termchar; long val; unsigned int table[DCTSIZE2]; if ((fp = fopen(filename, "r")) == NULL) { fprintf(stderr, "Can't open table file %s\n", filename); return FALSE; } tblno = 0; while (read_text_integer(fp, &val, &termchar)) { /* read 1st element of table */ if (tblno >= NUM_QUANT_TBLS) { fprintf(stderr, "Too many tables in file %s\n", filename); fclose(fp); return FALSE; } table[0] = (unsigned int)val; for (i = 1; i < DCTSIZE2; i++) { if (!read_text_integer(fp, &val, &termchar)) { fprintf(stderr, "Invalid table data in file %s\n", filename); fclose(fp); return FALSE; } table[i] = (unsigned int)val; } #if JPEG_LIB_VERSION >= 70 jpeg_add_quant_table(cinfo, tblno, table, cinfo->q_scale_factor[tblno], force_baseline); #else jpeg_add_quant_table(cinfo, tblno, table, q_scale_factor[tblno], force_baseline); #endif tblno++; } if (termchar != EOF) { fprintf(stderr, "Non-numeric data in file %s\n", filename); fclose(fp); return FALSE; } fclose(fp); return TRUE; } #ifdef C_MULTISCAN_FILES_SUPPORTED LOCAL(boolean) read_scan_integer(FILE *file, long *result, int *termchar) /* Variant of read_text_integer that always looks for a non-space termchar; * this simplifies parsing of punctuation in scan scripts. */ { register int ch; if (!read_text_integer(file, result, termchar)) return FALSE; ch = *termchar; while (ch != EOF && isspace(ch)) ch = text_getc(file); if (isdigit(ch)) { /* oops, put it back */ if (ungetc(ch, file) == EOF) return FALSE; ch = ' '; } else { /* Any separators other than ';' and ':' are ignored; * this allows user to insert commas, etc, if desired. */ if (ch != EOF && ch != ';' && ch != ':') ch = ' '; } *termchar = ch; return TRUE; } GLOBAL(boolean) read_scan_script(j_compress_ptr cinfo, char *filename) /* Read a scan script from the specified text file. * Each entry in the file defines one scan to be emitted. * Entries are separated by semicolons ';'. * An entry contains one to four component indexes, * optionally followed by a colon ':' and four progressive-JPEG parameters. * The component indexes denote which component(s) are to be transmitted * in the current scan. The first component has index 0. * Sequential JPEG is used if the progressive-JPEG parameters are omitted. * The file is free format text: any whitespace may appear between numbers * and the ':' and ';' punctuation marks. Also, other punctuation (such * as commas or dashes) can be placed between numbers if desired. * Comments preceded by '#' may be included in the file. * Note: we do very little validity checking here; * jcmaster.c will validate the script parameters. */ { FILE *fp; int scanno, ncomps, termchar; long val; jpeg_scan_info *scanptr; #define MAX_SCANS 100 /* quite arbitrary limit */ jpeg_scan_info scans[MAX_SCANS]; if ((fp = fopen(filename, "r")) == NULL) { fprintf(stderr, "Can't open scan definition file %s\n", filename); return FALSE; } scanptr = scans; scanno = 0; while (read_scan_integer(fp, &val, &termchar)) { if (scanno >= MAX_SCANS) { fprintf(stderr, "Too many scans defined in file %s\n", filename); fclose(fp); return FALSE; } scanptr->component_index[0] = (int)val; ncomps = 1; while (termchar == ' ') { if (ncomps >= MAX_COMPS_IN_SCAN) { fprintf(stderr, "Too many components in one scan in file %s\n", filename); fclose(fp); return FALSE; } if (!read_scan_integer(fp, &val, &termchar)) goto bogus; scanptr->component_index[ncomps] = (int)val; ncomps++; } scanptr->comps_in_scan = ncomps; if (termchar == ':') { if (!read_scan_integer(fp, &val, &termchar) || termchar != ' ') goto bogus; scanptr->Ss = (int)val; if (!read_scan_integer(fp, &val, &termchar) || termchar != ' ') goto bogus; scanptr->Se = (int)val; if (!read_scan_integer(fp, &val, &termchar) || termchar != ' ') goto bogus; scanptr->Ah = (int)val; if (!read_scan_integer(fp, &val, &termchar)) goto bogus; scanptr->Al = (int)val; } else { /* set non-progressive parameters */ scanptr->Ss = 0; scanptr->Se = DCTSIZE2 - 1; scanptr->Ah = 0; scanptr->Al = 0; } if (termchar != ';' && termchar != EOF) { bogus: fprintf(stderr, "Invalid scan entry format in file %s\n", filename); fclose(fp); return FALSE; } scanptr++, scanno++; } if (termchar != EOF) { fprintf(stderr, "Non-numeric data in file %s\n", filename); fclose(fp); return FALSE; } if (scanno > 0) { /* Stash completed scan list in cinfo structure. * NOTE: for cjpeg's use, JPOOL_IMAGE is the right lifetime for this data, * but if you want to compress multiple images you'd want JPOOL_PERMANENT. */ scanptr = (jpeg_scan_info *) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, scanno * sizeof(jpeg_scan_info)); memcpy(scanptr, scans, scanno * sizeof(jpeg_scan_info)); cinfo->scan_info = scanptr; cinfo->num_scans = scanno; } fclose(fp); return TRUE; } #endif /* C_MULTISCAN_FILES_SUPPORTED */ #if JPEG_LIB_VERSION < 70 /* These are the sample quantization tables given in Annex K (Clause K.1) of * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994. * The spec says that the values given produce "good" quality, and * when divided by 2, "very good" quality. */ static const unsigned int std_luminance_quant_tbl[DCTSIZE2] = { 16, 11, 10, 16, 24, 40, 51, 61, 12, 12, 14, 19, 26, 58, 60, 55, 14, 13, 16, 24, 40, 57, 69, 56, 14, 17, 22, 29, 51, 87, 80, 62, 18, 22, 37, 56, 68, 109, 103, 77, 24, 35, 55, 64, 81, 104, 113, 92, 49, 64, 78, 87, 103, 121, 120, 101, 72, 92, 95, 98, 112, 100, 103, 99 }; static const unsigned int std_chrominance_quant_tbl[DCTSIZE2] = { 17, 18, 24, 47, 99, 99, 99, 99, 18, 21, 26, 66, 99, 99, 99, 99, 24, 26, 56, 99, 99, 99, 99, 99, 47, 66, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99 }; LOCAL(void) jpeg_default_qtables(j_compress_ptr cinfo, boolean force_baseline) { jpeg_add_quant_table(cinfo, 0, std_luminance_quant_tbl, q_scale_factor[0], force_baseline); jpeg_add_quant_table(cinfo, 1, std_chrominance_quant_tbl, q_scale_factor[1], force_baseline); } #endif GLOBAL(boolean) set_quality_ratings(j_compress_ptr cinfo, char *arg, boolean force_baseline) /* Process a quality-ratings parameter string, of the form * N[,N,...] * If there are more q-table slots than parameters, the last value is replicated. */ { int val = 75; /* default value */ int tblno; char ch; for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) { if (*arg) { ch = ','; /* if not set by sscanf, will be ',' */ if (sscanf(arg, "%d%c", &val, &ch) < 1) return FALSE; if (ch != ',') /* syntax check */ return FALSE; /* Convert user 0-100 rating to percentage scaling */ #if JPEG_LIB_VERSION >= 70 cinfo->q_scale_factor[tblno] = jpeg_quality_scaling(val); #else q_scale_factor[tblno] = jpeg_quality_scaling(val); #endif while (*arg && *arg++ != ','); /* advance to next segment of arg string */ } else { /* reached end of parameter, set remaining factors to last value */ #if JPEG_LIB_VERSION >= 70 cinfo->q_scale_factor[tblno] = jpeg_quality_scaling(val); #else q_scale_factor[tblno] = jpeg_quality_scaling(val); #endif } } jpeg_default_qtables(cinfo, force_baseline); return TRUE; } GLOBAL(boolean) set_quant_slots(j_compress_ptr cinfo, char *arg) /* Process a quantization-table-selectors parameter string, of the form * N[,N,...] * If there are more components than parameters, the last value is replicated. */ { int val = 0; /* default table # */ int ci; char ch; for (ci = 0; ci < MAX_COMPONENTS; ci++) { if (*arg) { ch = ','; /* if not set by sscanf, will be ',' */ if (sscanf(arg, "%d%c", &val, &ch) < 1) return FALSE; if (ch != ',') /* syntax check */ return FALSE; if (val < 0 || val >= NUM_QUANT_TBLS) { fprintf(stderr, "JPEG quantization tables are numbered 0..%d\n", NUM_QUANT_TBLS - 1); return FALSE; } cinfo->comp_info[ci].quant_tbl_no = val; while (*arg && *arg++ != ','); /* advance to next segment of arg string */ } else { /* reached end of parameter, set remaining components to last table */ cinfo->comp_info[ci].quant_tbl_no = val; } } return TRUE; } GLOBAL(boolean) set_sample_factors(j_compress_ptr cinfo, char *arg) /* Process a sample-factors parameter string, of the form * HxV[,HxV,...] * If there are more components than parameters, "1x1" is assumed for the rest. */ { int ci, val1, val2; char ch1, ch2; for (ci = 0; ci < MAX_COMPONENTS; ci++) { if (*arg) { ch2 = ','; /* if not set by sscanf, will be ',' */ if (sscanf(arg, "%d%c%d%c", &val1, &ch1, &val2, &ch2) < 3) return FALSE; if ((ch1 != 'x' && ch1 != 'X') || ch2 != ',') /* syntax check */ return FALSE; if (val1 <= 0 || val1 > 4 || val2 <= 0 || val2 > 4) { fprintf(stderr, "JPEG sampling factors must be 1..4\n"); return FALSE; } cinfo->comp_info[ci].h_samp_factor = val1; cinfo->comp_info[ci].v_samp_factor = val2; while (*arg && *arg++ != ','); /* advance to next segment of arg string */ } else { /* reached end of parameter, set remaining components to 1x1 sampling */ cinfo->comp_info[ci].h_samp_factor = 1; cinfo->comp_info[ci].v_samp_factor = 1; } } return TRUE; } libjpeg-turbo-2.1.5/rdtarga.c000066400000000000000000000361771436506551100161000ustar00rootroot00000000000000/* * rdtarga.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1996, Thomas G. Lane. * Modified 2017 by Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright (C) 2018, 2021-2022, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains routines to read input images in Targa format. * * These routines may need modification for non-Unix environments or * specialized applications. As they stand, they assume input from * an ordinary stdio stream. They further assume that reading begins * at the start of the file; start_input may need work if the * user interface has already read some data (e.g., to determine that * the file is indeed Targa format). * * Based on code contributed by Lee Daniel Crocker. */ #include "cdjpeg.h" /* Common decls for cjpeg/djpeg applications */ #ifdef TARGA_SUPPORTED /* Macros to deal with unsigned chars as efficiently as compiler allows */ typedef unsigned char U_CHAR; #define UCH(x) ((int)(x)) #define ReadOK(file, buffer, len) \ (fread(buffer, 1, len, file) == ((size_t)(len))) /* Private version of data source object */ typedef struct _tga_source_struct *tga_source_ptr; typedef struct _tga_source_struct { struct cjpeg_source_struct pub; /* public fields */ j_compress_ptr cinfo; /* back link saves passing separate parm */ JSAMPARRAY colormap; /* Targa colormap (converted to my format) */ jvirt_sarray_ptr whole_image; /* Needed if funny input row order */ JDIMENSION current_row; /* Current logical row number to read */ /* Pointer to routine to extract next Targa pixel from input file */ void (*read_pixel) (tga_source_ptr sinfo); /* Result of read_pixel is delivered here: */ U_CHAR tga_pixel[4]; int pixel_size; /* Bytes per Targa pixel (1 to 4) */ int cmap_length; /* colormap length */ /* State info for reading RLE-coded pixels; both counts must be init to 0 */ int block_count; /* # of pixels remaining in RLE block */ int dup_pixel_count; /* # of times to duplicate previous pixel */ /* This saves the correct pixel-row-expansion method for preload_image */ JDIMENSION (*get_pixel_rows) (j_compress_ptr cinfo, cjpeg_source_ptr sinfo); } tga_source_struct; /* For expanding 5-bit pixel values to 8-bit with best rounding */ static const UINT8 c5to8bits[32] = { 0, 8, 16, 25, 33, 41, 49, 58, 66, 74, 82, 90, 99, 107, 115, 123, 132, 140, 148, 156, 165, 173, 181, 189, 197, 206, 214, 222, 230, 239, 247, 255 }; LOCAL(int) read_byte(tga_source_ptr sinfo) /* Read next byte from Targa file */ { register FILE *infile = sinfo->pub.input_file; register int c; if ((c = getc(infile)) == EOF) ERREXIT(sinfo->cinfo, JERR_INPUT_EOF); return c; } LOCAL(void) read_colormap(tga_source_ptr sinfo, int cmaplen, int mapentrysize) /* Read the colormap from a Targa file */ { int i; /* Presently only handles 24-bit BGR format */ if (mapentrysize != 24) ERREXIT(sinfo->cinfo, JERR_TGA_BADCMAP); for (i = 0; i < cmaplen; i++) { sinfo->colormap[2][i] = (JSAMPLE)read_byte(sinfo); sinfo->colormap[1][i] = (JSAMPLE)read_byte(sinfo); sinfo->colormap[0][i] = (JSAMPLE)read_byte(sinfo); } } /* * read_pixel methods: get a single pixel from Targa file into tga_pixel[] */ METHODDEF(void) read_non_rle_pixel(tga_source_ptr sinfo) /* Read one Targa pixel from the input file; no RLE expansion */ { register int i; for (i = 0; i < sinfo->pixel_size; i++) { sinfo->tga_pixel[i] = (U_CHAR)read_byte(sinfo); } } METHODDEF(void) read_rle_pixel(tga_source_ptr sinfo) /* Read one Targa pixel from the input file, expanding RLE data as needed */ { register int i; /* Duplicate previously read pixel? */ if (sinfo->dup_pixel_count > 0) { sinfo->dup_pixel_count--; return; } /* Time to read RLE block header? */ if (--sinfo->block_count < 0) { /* decrement pixels remaining in block */ i = read_byte(sinfo); if (i & 0x80) { /* Start of duplicate-pixel block? */ sinfo->dup_pixel_count = i & 0x7F; /* number of dups after this one */ sinfo->block_count = 0; /* then read new block header */ } else { sinfo->block_count = i & 0x7F; /* number of pixels after this one */ } } /* Read next pixel */ for (i = 0; i < sinfo->pixel_size; i++) { sinfo->tga_pixel[i] = (U_CHAR)read_byte(sinfo); } } /* * Read one row of pixels. * * We provide several different versions depending on input file format. */ METHODDEF(JDIMENSION) get_8bit_gray_row(j_compress_ptr cinfo, cjpeg_source_ptr sinfo) /* This version is for reading 8-bit grayscale pixels */ { tga_source_ptr source = (tga_source_ptr)sinfo; register JSAMPROW ptr; register JDIMENSION col; ptr = source->pub.buffer[0]; for (col = cinfo->image_width; col > 0; col--) { (*source->read_pixel) (source); /* Load next pixel into tga_pixel */ *ptr++ = (JSAMPLE)UCH(source->tga_pixel[0]); } return 1; } METHODDEF(JDIMENSION) get_8bit_row(j_compress_ptr cinfo, cjpeg_source_ptr sinfo) /* This version is for reading 8-bit colormap indexes */ { tga_source_ptr source = (tga_source_ptr)sinfo; register int t; register JSAMPROW ptr; register JDIMENSION col; register JSAMPARRAY colormap = source->colormap; int cmaplen = source->cmap_length; ptr = source->pub.buffer[0]; for (col = cinfo->image_width; col > 0; col--) { (*source->read_pixel) (source); /* Load next pixel into tga_pixel */ t = UCH(source->tga_pixel[0]); if (t >= cmaplen) ERREXIT(cinfo, JERR_TGA_BADPARMS); *ptr++ = colormap[0][t]; *ptr++ = colormap[1][t]; *ptr++ = colormap[2][t]; } return 1; } METHODDEF(JDIMENSION) get_16bit_row(j_compress_ptr cinfo, cjpeg_source_ptr sinfo) /* This version is for reading 16-bit pixels */ { tga_source_ptr source = (tga_source_ptr)sinfo; register int t; register JSAMPROW ptr; register JDIMENSION col; ptr = source->pub.buffer[0]; for (col = cinfo->image_width; col > 0; col--) { (*source->read_pixel) (source); /* Load next pixel into tga_pixel */ t = UCH(source->tga_pixel[0]); t += UCH(source->tga_pixel[1]) << 8; /* We expand 5 bit data to 8 bit sample width. * The format of the 16-bit (LSB first) input word is * xRRRRRGGGGGBBBBB */ ptr[2] = (JSAMPLE)c5to8bits[t & 0x1F]; t >>= 5; ptr[1] = (JSAMPLE)c5to8bits[t & 0x1F]; t >>= 5; ptr[0] = (JSAMPLE)c5to8bits[t & 0x1F]; ptr += 3; } return 1; } METHODDEF(JDIMENSION) get_24bit_row(j_compress_ptr cinfo, cjpeg_source_ptr sinfo) /* This version is for reading 24-bit pixels */ { tga_source_ptr source = (tga_source_ptr)sinfo; register JSAMPROW ptr; register JDIMENSION col; ptr = source->pub.buffer[0]; for (col = cinfo->image_width; col > 0; col--) { (*source->read_pixel) (source); /* Load next pixel into tga_pixel */ *ptr++ = (JSAMPLE)UCH(source->tga_pixel[2]); /* change BGR to RGB order */ *ptr++ = (JSAMPLE)UCH(source->tga_pixel[1]); *ptr++ = (JSAMPLE)UCH(source->tga_pixel[0]); } return 1; } /* * Targa also defines a 32-bit pixel format with order B,G,R,A. * We presently ignore the attribute byte, so the code for reading * these pixels is identical to the 24-bit routine above. * This works because the actual pixel length is only known to read_pixel. */ #define get_32bit_row get_24bit_row /* * This method is for re-reading the input data in standard top-down * row order. The entire image has already been read into whole_image * with proper conversion of pixel format, but it's in a funny row order. */ METHODDEF(JDIMENSION) get_memory_row(j_compress_ptr cinfo, cjpeg_source_ptr sinfo) { tga_source_ptr source = (tga_source_ptr)sinfo; JDIMENSION source_row; /* Compute row of source that maps to current_row of normal order */ /* For now, assume image is bottom-up and not interlaced. */ /* NEEDS WORK to support interlaced images! */ source_row = cinfo->image_height - source->current_row - 1; /* Fetch that row from virtual array */ source->pub.buffer = (*cinfo->mem->access_virt_sarray) ((j_common_ptr)cinfo, source->whole_image, source_row, (JDIMENSION)1, FALSE); source->current_row++; return 1; } /* * This method loads the image into whole_image during the first call on * get_pixel_rows. The get_pixel_rows pointer is then adjusted to call * get_memory_row on subsequent calls. */ METHODDEF(JDIMENSION) preload_image(j_compress_ptr cinfo, cjpeg_source_ptr sinfo) { tga_source_ptr source = (tga_source_ptr)sinfo; JDIMENSION row; cd_progress_ptr progress = (cd_progress_ptr)cinfo->progress; /* Read the data into a virtual array in input-file row order. */ for (row = 0; row < cinfo->image_height; row++) { if (progress != NULL) { progress->pub.pass_counter = (long)row; progress->pub.pass_limit = (long)cinfo->image_height; (*progress->pub.progress_monitor) ((j_common_ptr)cinfo); } source->pub.buffer = (*cinfo->mem->access_virt_sarray) ((j_common_ptr)cinfo, source->whole_image, row, (JDIMENSION)1, TRUE); (*source->get_pixel_rows) (cinfo, sinfo); } if (progress != NULL) progress->completed_extra_passes++; /* Set up to read from the virtual array in unscrambled order */ source->pub.get_pixel_rows = get_memory_row; source->current_row = 0; /* And read the first row */ return get_memory_row(cinfo, sinfo); } /* * Read the file header; return image size and component count. */ METHODDEF(void) start_input_tga(j_compress_ptr cinfo, cjpeg_source_ptr sinfo) { tga_source_ptr source = (tga_source_ptr)sinfo; U_CHAR targaheader[18]; int idlen, cmaptype, subtype, flags, interlace_type, components; unsigned int width, height, maplen; boolean is_bottom_up; #define GET_2B(offset) \ ((unsigned int)UCH(targaheader[offset]) + \ (((unsigned int)UCH(targaheader[offset + 1])) << 8)) if (!ReadOK(source->pub.input_file, targaheader, 18)) ERREXIT(cinfo, JERR_INPUT_EOF); /* Pretend "15-bit" pixels are 16-bit --- we ignore attribute bit anyway */ if (targaheader[16] == 15) targaheader[16] = 16; idlen = UCH(targaheader[0]); cmaptype = UCH(targaheader[1]); subtype = UCH(targaheader[2]); maplen = GET_2B(5); width = GET_2B(12); height = GET_2B(14); source->pixel_size = UCH(targaheader[16]) >> 3; flags = UCH(targaheader[17]); /* Image Descriptor byte */ is_bottom_up = ((flags & 0x20) == 0); /* bit 5 set => top-down */ interlace_type = flags >> 6; /* bits 6/7 are interlace code */ if (cmaptype > 1 || /* cmaptype must be 0 or 1 */ source->pixel_size < 1 || source->pixel_size > 4 || (UCH(targaheader[16]) & 7) != 0 || /* bits/pixel must be multiple of 8 */ interlace_type != 0 || /* currently don't allow interlaced image */ width == 0 || height == 0) /* image width/height must be non-zero */ ERREXIT(cinfo, JERR_TGA_BADPARMS); #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION if (sinfo->max_pixels && (unsigned long long)width * height > sinfo->max_pixels) ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); #endif if (subtype > 8) { /* It's an RLE-coded file */ source->read_pixel = read_rle_pixel; source->block_count = source->dup_pixel_count = 0; subtype -= 8; } else { /* Non-RLE file */ source->read_pixel = read_non_rle_pixel; } /* Now should have subtype 1, 2, or 3 */ components = 3; /* until proven different */ cinfo->in_color_space = JCS_RGB; switch (subtype) { case 1: /* Colormapped image */ if (source->pixel_size == 1 && cmaptype == 1) source->get_pixel_rows = get_8bit_row; else ERREXIT(cinfo, JERR_TGA_BADPARMS); TRACEMS2(cinfo, 1, JTRC_TGA_MAPPED, width, height); break; case 2: /* RGB image */ switch (source->pixel_size) { case 2: source->get_pixel_rows = get_16bit_row; break; case 3: source->get_pixel_rows = get_24bit_row; break; case 4: source->get_pixel_rows = get_32bit_row; break; default: ERREXIT(cinfo, JERR_TGA_BADPARMS); break; } TRACEMS2(cinfo, 1, JTRC_TGA, width, height); break; case 3: /* Grayscale image */ components = 1; cinfo->in_color_space = JCS_GRAYSCALE; if (source->pixel_size == 1) source->get_pixel_rows = get_8bit_gray_row; else ERREXIT(cinfo, JERR_TGA_BADPARMS); TRACEMS2(cinfo, 1, JTRC_TGA_GRAY, width, height); break; default: ERREXIT(cinfo, JERR_TGA_BADPARMS); break; } if (is_bottom_up) { /* Create a virtual array to buffer the upside-down image. */ source->whole_image = (*cinfo->mem->request_virt_sarray) ((j_common_ptr)cinfo, JPOOL_IMAGE, FALSE, (JDIMENSION)width * components, (JDIMENSION)height, (JDIMENSION)1); if (cinfo->progress != NULL) { cd_progress_ptr progress = (cd_progress_ptr)cinfo->progress; progress->total_extra_passes++; /* count file input as separate pass */ } /* source->pub.buffer will point to the virtual array. */ source->pub.buffer_height = 1; /* in case anyone looks at it */ source->pub.get_pixel_rows = preload_image; } else { /* Don't need a virtual array, but do need a one-row input buffer. */ source->whole_image = NULL; source->pub.buffer = (*cinfo->mem->alloc_sarray) ((j_common_ptr)cinfo, JPOOL_IMAGE, (JDIMENSION)width * components, (JDIMENSION)1); source->pub.buffer_height = 1; source->pub.get_pixel_rows = source->get_pixel_rows; } while (idlen--) /* Throw away ID field */ (void)read_byte(source); if (maplen > 0) { if (maplen > 256 || GET_2B(3) != 0) ERREXIT(cinfo, JERR_TGA_BADCMAP); /* Allocate space to store the colormap */ source->colormap = (*cinfo->mem->alloc_sarray) ((j_common_ptr)cinfo, JPOOL_IMAGE, (JDIMENSION)maplen, (JDIMENSION)3); source->cmap_length = (int)maplen; /* and read it from the file */ read_colormap(source, (int)maplen, UCH(targaheader[7])); } else { if (cmaptype) /* but you promised a cmap! */ ERREXIT(cinfo, JERR_TGA_BADPARMS); source->colormap = NULL; source->cmap_length = 0; } cinfo->input_components = components; cinfo->data_precision = 8; cinfo->image_width = width; cinfo->image_height = height; } /* * Finish up at the end of the file. */ METHODDEF(void) finish_input_tga(j_compress_ptr cinfo, cjpeg_source_ptr sinfo) { /* no work */ } /* * The module selection routine for Targa format input. */ GLOBAL(cjpeg_source_ptr) jinit_read_targa(j_compress_ptr cinfo) { tga_source_ptr source; /* Create module interface object */ source = (tga_source_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, sizeof(tga_source_struct)); source->cinfo = cinfo; /* make back link for subroutines */ /* Fill in method ptrs, except get_pixel_rows which start_input sets */ source->pub.start_input = start_input_tga; source->pub.finish_input = finish_input_tga; #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION source->pub.max_pixels = 0; #endif return (cjpeg_source_ptr)source; } #endif /* TARGA_SUPPORTED */ libjpeg-turbo-2.1.5/release/000077500000000000000000000000001436506551100157125ustar00rootroot00000000000000libjpeg-turbo-2.1.5/release/Config.cmake.in000066400000000000000000000002111436506551100205200ustar00rootroot00000000000000@PACKAGE_INIT@ include("${CMAKE_CURRENT_LIST_DIR}/@CMAKE_PROJECT_NAME@Targets.cmake") check_required_components("@CMAKE_PROJECT_NAME@") libjpeg-turbo-2.1.5/release/Distribution.xml.in000066400000000000000000000011701436506551100215170ustar00rootroot00000000000000 @CMAKE_PROJECT_NAME@ @PKGNAME@.pkg libjpeg-turbo-2.1.5/release/License.rtf000066400000000000000000000042021436506551100200070ustar00rootroot00000000000000{\rtf1\ansi\ansicpg1252\cocoartf1038\cocoasubrtf350 {\fonttbl\f0\fswiss\fcharset0 Helvetica;} {\colortbl;\red255\green255\blue255;} {\*\listtable{\list\listtemplateid1\listhybrid{\listlevel\levelnfc23\levelnfcn23\leveljc0\leveljcn0\levelfollow0\levelstartat1\levelspace360\levelindent0{\*\levelmarker \{disc\}}{\leveltext\leveltemplateid1\'01\uc0\u8226 ;}{\levelnumbers;}\fi-360\li720\lin720 }{\listname ;}\listid1}} {\*\listoverridetable{\listoverride\listid1\listoverridecount0\ls1}} \margl1440\margr1440\vieww9820\viewh8480\viewkind0 \deftab720 \pard\pardeftab720 \f0\fs24 \cf0 Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:\ \ \pard\tx220\tx720\pardeftab720\li720\fi-720 \ls1\ilvl0\cf0 {\listtext \'95 }Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.\ {\listtext \'95 }Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.\ {\listtext \'95 }Neither the name of the libjpeg-turbo Project nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.\ \pard\pardeftab720\qc \cf0 \ \pard\pardeftab720 \cf0 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.\ }libjpeg-turbo-2.1.5/release/ReadMe.txt000066400000000000000000000024611436506551100176130ustar00rootroot00000000000000libjpeg-turbo is a JPEG image codec that uses SIMD instructions to accelerate baseline JPEG compression and decompression on x86, x86-64, Arm, PowerPC, and MIPS systems, as well as progressive JPEG compression on x86, x86-64, and Arm systems. On such systems, libjpeg-turbo is generally 2-6x as fast as libjpeg, all else being equal. On other types of systems, libjpeg-turbo can still outperform libjpeg by a significant amount, by virtue of its highly-optimized Huffman coding routines. In many cases, the performance of libjpeg-turbo rivals that of proprietary high-speed JPEG codecs. libjpeg-turbo implements both the traditional libjpeg API as well as the less powerful but more straightforward TurboJPEG API. libjpeg-turbo also features colorspace extensions that allow it to compress from/decompress to 32-bit and big-endian pixel buffers (RGBX, XBGR, etc.), as well as a full-featured Java interface. libjpeg-turbo was originally based on libjpeg/SIMD, an MMX-accelerated derivative of libjpeg v6b developed by Miyasaka Masaru. The TigerVNC and VirtualGL projects made numerous enhancements to the codec in 2009, and in early 2010, libjpeg-turbo spun off into an independent project, with the goal of making high-speed JPEG compression/decompression technology available to a broader range of users and developers. libjpeg-turbo-2.1.5/release/Welcome.rtf.in000066400000000000000000000012161436506551100204270ustar00rootroot00000000000000{\rtf1\ansi\ansicpg1252\cocoartf1038\cocoasubrtf360 {\fonttbl\f0\fswiss\fcharset0 Helvetica;\f1\fmodern\fcharset0 CourierNewPSMT;} {\colortbl;\red255\green255\blue255;} \margl1440\margr1440\vieww9000\viewh8400\viewkind0 \deftab720 \pard\pardeftab720\ql\qnatural \f0\fs24 \cf0 This installer will install the libjpeg-turbo SDK and run-time libraries onto your computer so that you can use libjpeg-turbo to build new applications or accelerate existing ones. To remove the libjpeg-turbo package, run\ \ \pard\pardeftab720\ql\qnatural \f1 \cf0 @CMAKE_INSTALL_FULL_BINDIR@/uninstall\ \pard\pardeftab720\ql\qnatural \f0 \cf0 \ from the command line.\ } libjpeg-turbo-2.1.5/release/deb-control.in000066400000000000000000000031541436506551100204550ustar00rootroot00000000000000Package: {__PKGNAME} Version: @VERSION@-@BUILD@ Section: misc Priority: optional Architecture: {__ARCH} Essential: no Maintainer: @PKGVENDOR@ <@PKGEMAIL@> Homepage: @PKGURL@ Installed-Size: {__SIZE} Description: A SIMD-accelerated JPEG codec that provides both the libjpeg and TurboJPEG APIs libjpeg-turbo is a JPEG image codec that uses SIMD instructions to accelerate baseline JPEG compression and decompression on x86, x86-64, Arm, PowerPC, and MIPS systems, as well as progressive JPEG compression on x86, x86-64, and Arm systems. On such systems, libjpeg-turbo is generally 2-6x as fast as libjpeg, all else being equal. On other types of systems, libjpeg-turbo can still outperform libjpeg by a significant amount, by virtue of its highly-optimized Huffman coding routines. In many cases, the performance of libjpeg-turbo rivals that of proprietary high-speed JPEG codecs. . libjpeg-turbo implements both the traditional libjpeg API as well as the less powerful but more straightforward TurboJPEG API. libjpeg-turbo also features colorspace extensions that allow it to compress from/decompress to 32-bit and big-endian pixel buffers (RGBX, XBGR, etc.), as well as a full-featured Java interface. . libjpeg-turbo was originally based on libjpeg/SIMD, an MMX-accelerated derivative of libjpeg v6b developed by Miyasaka Masaru. The TigerVNC and VirtualGL projects made numerous enhancements to the codec in 2009, and in early 2010, libjpeg-turbo spun off into an independent project, with the goal of making high-speed JPEG compression/decompression technology available to a broader range of users and developers. libjpeg-turbo-2.1.5/release/installer.nsi.in000066400000000000000000000157731436506551100210440ustar00rootroot00000000000000!include x64.nsh Name "@CMAKE_PROJECT_NAME@ SDK for @INST_PLATFORM@" OutFile "@CMAKE_CURRENT_BINARY_DIR@\${BUILDDIR}@INST_NAME@.exe" InstallDir "@INST_DIR@" SetCompressor bzip2 Page directory Page instfiles UninstPage uninstConfirm UninstPage instfiles Section "@CMAKE_PROJECT_NAME@ SDK for @INST_PLATFORM@ (required)" !ifdef WIN64 ${If} ${RunningX64} ${DisableX64FSRedirection} ${Endif} !endif SectionIn RO !ifdef GCC IfFileExists $SYSDIR/libturbojpeg.dll exists 0 !else IfFileExists $SYSDIR/turbojpeg.dll exists 0 !endif goto notexists exists: !ifdef GCC MessageBox MB_OK "An existing version of the @CMAKE_PROJECT_NAME@ SDK for @INST_PLATFORM@ is already installed. Please uninstall it first." !else MessageBox MB_OK "An existing version of the @CMAKE_PROJECT_NAME@ SDK for @INST_PLATFORM@ or the TurboJPEG SDK is already installed. Please uninstall it first." !endif quit notexists: SetOutPath $SYSDIR !ifdef GCC File "@CMAKE_CURRENT_BINARY_DIR@\libturbojpeg.dll" !else File "@CMAKE_CURRENT_BINARY_DIR@\${BUILDDIR}turbojpeg.dll" !endif SetOutPath $INSTDIR\bin !ifdef GCC File "@CMAKE_CURRENT_BINARY_DIR@\libturbojpeg.dll" !else File "@CMAKE_CURRENT_BINARY_DIR@\${BUILDDIR}turbojpeg.dll" !endif !ifdef GCC File "@CMAKE_CURRENT_BINARY_DIR@\libjpeg-@SO_MAJOR_VERSION@.dll" !else File "@CMAKE_CURRENT_BINARY_DIR@\${BUILDDIR}jpeg@SO_MAJOR_VERSION@.dll" !endif File "@CMAKE_CURRENT_BINARY_DIR@\${BUILDDIR}cjpeg.exe" File "@CMAKE_CURRENT_BINARY_DIR@\${BUILDDIR}djpeg.exe" File "@CMAKE_CURRENT_BINARY_DIR@\${BUILDDIR}jpegtran.exe" File "@CMAKE_CURRENT_BINARY_DIR@\${BUILDDIR}tjbench.exe" File "@CMAKE_CURRENT_BINARY_DIR@\${BUILDDIR}rdjpgcom.exe" File "@CMAKE_CURRENT_BINARY_DIR@\${BUILDDIR}wrjpgcom.exe" SetOutPath $INSTDIR\lib !ifdef GCC File "@CMAKE_CURRENT_BINARY_DIR@\libturbojpeg.dll.a" File "@CMAKE_CURRENT_BINARY_DIR@\libturbojpeg.a" File "@CMAKE_CURRENT_BINARY_DIR@\libjpeg.dll.a" File "@CMAKE_CURRENT_BINARY_DIR@\libjpeg.a" !else File "@CMAKE_CURRENT_BINARY_DIR@\${BUILDDIR}turbojpeg.lib" File "@CMAKE_CURRENT_BINARY_DIR@\${BUILDDIR}turbojpeg-static.lib" File "@CMAKE_CURRENT_BINARY_DIR@\${BUILDDIR}jpeg.lib" File "@CMAKE_CURRENT_BINARY_DIR@\${BUILDDIR}jpeg-static.lib" !endif SetOutPath $INSTDIR\lib\pkgconfig File "@CMAKE_CURRENT_BINARY_DIR@\pkgscripts\libjpeg.pc" File "@CMAKE_CURRENT_BINARY_DIR@\pkgscripts\libturbojpeg.pc" SetOutPath $INSTDIR\lib\cmake\@CMAKE_PROJECT_NAME@ File "@CMAKE_CURRENT_BINARY_DIR@\pkgscripts\@CMAKE_PROJECT_NAME@Config.cmake" File "@CMAKE_CURRENT_BINARY_DIR@\pkgscripts\@CMAKE_PROJECT_NAME@ConfigVersion.cmake" File "@CMAKE_CURRENT_BINARY_DIR@\win\@CMAKE_PROJECT_NAME@Targets.cmake" File "@CMAKE_CURRENT_BINARY_DIR@\win\@CMAKE_PROJECT_NAME@Targets-release.cmake" !ifdef JAVA SetOutPath $INSTDIR\classes File "@CMAKE_CURRENT_BINARY_DIR@\java\turbojpeg.jar" !endif SetOutPath $INSTDIR\include File "@CMAKE_CURRENT_BINARY_DIR@\jconfig.h" File "@CMAKE_CURRENT_SOURCE_DIR@\jerror.h" File "@CMAKE_CURRENT_SOURCE_DIR@\jmorecfg.h" File "@CMAKE_CURRENT_SOURCE_DIR@\jpeglib.h" File "@CMAKE_CURRENT_SOURCE_DIR@\turbojpeg.h" SetOutPath $INSTDIR\doc File "@CMAKE_CURRENT_SOURCE_DIR@\README.ijg" File "@CMAKE_CURRENT_SOURCE_DIR@\README.md" File "@CMAKE_CURRENT_SOURCE_DIR@\LICENSE.md" File "@CMAKE_CURRENT_SOURCE_DIR@\example.txt" File "@CMAKE_CURRENT_SOURCE_DIR@\libjpeg.txt" File "@CMAKE_CURRENT_SOURCE_DIR@\structure.txt" File "@CMAKE_CURRENT_SOURCE_DIR@\usage.txt" File "@CMAKE_CURRENT_SOURCE_DIR@\wizard.txt" File "@CMAKE_CURRENT_SOURCE_DIR@\tjexample.c" File "@CMAKE_CURRENT_SOURCE_DIR@\java\TJExample.java" !ifdef GCC SetOutPath $INSTDIR\man\man1 File "@CMAKE_CURRENT_SOURCE_DIR@\cjpeg.1" File "@CMAKE_CURRENT_SOURCE_DIR@\djpeg.1" File "@CMAKE_CURRENT_SOURCE_DIR@\jpegtran.1" File "@CMAKE_CURRENT_SOURCE_DIR@\rdjpgcom.1" File "@CMAKE_CURRENT_SOURCE_DIR@\wrjpgcom.1" !endif WriteRegStr HKLM "SOFTWARE\@INST_REG_NAME@ @VERSION@" "Install_Dir" "$INSTDIR" WriteRegStr HKLM "Software\Microsoft\Windows\CurrentVersion\Uninstall\@INST_REG_NAME@ @VERSION@" "DisplayName" "@CMAKE_PROJECT_NAME@ SDK v@VERSION@ for @INST_PLATFORM@" WriteRegStr HKLM "Software\Microsoft\Windows\CurrentVersion\Uninstall\@INST_REG_NAME@ @VERSION@" "UninstallString" '"$INSTDIR\uninstall_@VERSION@.exe"' WriteRegDWORD HKLM "Software\Microsoft\Windows\CurrentVersion\Uninstall\@INST_REG_NAME@ @VERSION@" "NoModify" 1 WriteRegDWORD HKLM "Software\Microsoft\Windows\CurrentVersion\Uninstall\@INST_REG_NAME@ @VERSION@" "NoRepair" 1 WriteUninstaller "uninstall_@VERSION@.exe" SectionEnd Section "Uninstall" !ifdef WIN64 ${If} ${RunningX64} ${DisableX64FSRedirection} ${Endif} !endif SetShellVarContext all DeleteRegKey HKLM "Software\Microsoft\Windows\CurrentVersion\Uninstall\@INST_REG_NAME@ @VERSION@" DeleteRegKey HKLM "SOFTWARE\@INST_REG_NAME@ @VERSION@" !ifdef GCC Delete $INSTDIR\bin\libjpeg-@SO_MAJOR_VERSION@.dll Delete $INSTDIR\bin\libturbojpeg.dll Delete $SYSDIR\libturbojpeg.dll Delete $INSTDIR\lib\libturbojpeg.dll.a Delete $INSTDIR\lib\libturbojpeg.a Delete $INSTDIR\lib\libjpeg.dll.a Delete $INSTDIR\lib\libjpeg.a !else Delete $INSTDIR\bin\jpeg@SO_MAJOR_VERSION@.dll Delete $INSTDIR\bin\turbojpeg.dll Delete $SYSDIR\turbojpeg.dll Delete $INSTDIR\lib\jpeg.lib Delete $INSTDIR\lib\jpeg-static.lib Delete $INSTDIR\lib\turbojpeg.lib Delete $INSTDIR\lib\turbojpeg-static.lib !endif Delete $INSTDIR\lib\pkgconfig\libjpeg.pc Delete $INSTDIR\lib\pkgconfig\libturbojpeg.pc Delete $INSTDIR\lib\cmake\@CMAKE_PROJECT_NAME@\@CMAKE_PROJECT_NAME@Config.cmake Delete $INSTDIR\lib\cmake\@CMAKE_PROJECT_NAME@\@CMAKE_PROJECT_NAME@ConfigVersion.cmake Delete $INSTDIR\lib\cmake\@CMAKE_PROJECT_NAME@\@CMAKE_PROJECT_NAME@Targets.cmake Delete $INSTDIR\lib\cmake\@CMAKE_PROJECT_NAME@\@CMAKE_PROJECT_NAME@Targets-release.cmake !ifdef JAVA Delete $INSTDIR\classes\turbojpeg.jar !endif Delete $INSTDIR\bin\cjpeg.exe Delete $INSTDIR\bin\djpeg.exe Delete $INSTDIR\bin\jpegtran.exe Delete $INSTDIR\bin\tjbench.exe Delete $INSTDIR\bin\rdjpgcom.exe Delete $INSTDIR\bin\wrjpgcom.exe Delete $INSTDIR\include\jconfig.h Delete $INSTDIR\include\jerror.h Delete $INSTDIR\include\jmorecfg.h Delete $INSTDIR\include\jpeglib.h Delete $INSTDIR\include\turbojpeg.h Delete $INSTDIR\uninstall_@VERSION@.exe Delete $INSTDIR\doc\README.ijg Delete $INSTDIR\doc\README.md Delete $INSTDIR\doc\LICENSE.md Delete $INSTDIR\doc\example.txt Delete $INSTDIR\doc\libjpeg.txt Delete $INSTDIR\doc\structure.txt Delete $INSTDIR\doc\usage.txt Delete $INSTDIR\doc\wizard.txt Delete $INSTDIR\doc\tjexample.c Delete $INSTDIR\doc\TJExample.java !ifdef GCC Delete $INSTDIR\man\man1\cjpeg.1 Delete $INSTDIR\man\man1\djpeg.1 Delete $INSTDIR\man\man1\jpegtran.1 Delete $INSTDIR\man\man1\rdjpgcom.1 Delete $INSTDIR\man\man1\wrjpgcom.1 !endif RMDir "$INSTDIR\include" RMDir "$INSTDIR\lib\pkgconfig" RMDir "$INSTDIR\lib\cmake\@CMAKE_PROJECT_NAME@" RMDir "$INSTDIR\lib\cmake" RMDir "$INSTDIR\lib" RMDir "$INSTDIR\doc" !ifdef GCC RMDir "$INSTDIR\man\man1" RMDir "$INSTDIR\man" !endif !ifdef JAVA RMDir "$INSTDIR\classes" !endif RMDir "$INSTDIR\bin" RMDir "$INSTDIR" SectionEnd libjpeg-turbo-2.1.5/release/libjpeg.pc.in000066400000000000000000000004531436506551100202610ustar00rootroot00000000000000prefix=@CMAKE_INSTALL_PREFIX@ exec_prefix=@CMAKE_INSTALL_PREFIX@ libdir=@CMAKE_INSTALL_FULL_LIBDIR@ includedir=@CMAKE_INSTALL_FULL_INCLUDEDIR@ Name: libjpeg Description: A SIMD-accelerated JPEG codec that provides the libjpeg API Version: @VERSION@ Libs: -L${libdir} -ljpeg Cflags: -I${includedir} libjpeg-turbo-2.1.5/release/libturbojpeg.pc.in000066400000000000000000000004671436506551100213420ustar00rootroot00000000000000prefix=@CMAKE_INSTALL_PREFIX@ exec_prefix=@CMAKE_INSTALL_PREFIX@ libdir=@CMAKE_INSTALL_FULL_LIBDIR@ includedir=@CMAKE_INSTALL_FULL_INCLUDEDIR@ Name: libturbojpeg Description: A SIMD-accelerated JPEG codec that provides the TurboJPEG API Version: @VERSION@ Libs: -L${libdir} -lturbojpeg Cflags: -I${includedir} libjpeg-turbo-2.1.5/release/makedpkg.in000077500000000000000000000045311436506551100200330ustar00rootroot00000000000000#!/bin/sh set -u set -e trap onexit INT trap onexit TERM trap onexit EXIT TMPDIR= SUDO= onexit() { if [ ! "$TMPDIR" = "" ]; then $SUDO rm -rf $TMPDIR fi } uid() { id | cut -f2 -d = | cut -f1 -d \(; } safedirmove () { if [ "$1" = "$2" ]; then return 0 fi if [ "$1" = "" -o ! -d "$1" ]; then echo safedirmove: source dir $1 is not valid return 1 fi if [ "$2" = "" -o -e "$2" ]; then echo safedirmove: dest dir $2 is not valid return 1 fi if [ "$3" = "" -o -e "$3" ]; then echo safedirmove: tmp dir $3 is not valid return 1 fi mkdir -p $3 mv $1/* $3/ rmdir $1 mkdir -p $2 mv $3/* $2/ rmdir $3 return 0 } makedeb() { SUPPLEMENT=$1 DIRNAME=$PKGNAME if [ $SUPPLEMENT = 1 ]; then PKGNAME=$PKGNAME\32 if [ "$DEBARCH" = "i386" ]; then DEBARCH=amd64 else DEBARCH=arm64 fi fi umask 022 rm -f $PKGNAME\_$VERSION\_$DEBARCH.deb TMPDIR=`mktemp -d /tmp/$PKGNAME-build.XXXXXX` mkdir $TMPDIR/DEBIAN if [ $SUPPLEMENT = 1 ]; then DESTDIR=$TMPDIR @CMAKE_MAKE_PROGRAM@ install rm -rf $TMPDIR$BINDIR if [ "$DATAROOTDIR" != "$PREFIX" ]; then rm -rf $TMPDIR$DATAROOTDIR fi if [ "$JAVADIR" != "" ]; then rm -rf $TMPDIR$JAVADIR fi rm -rf $TMPDIR$DOCDIR rm -rf $TMPDIR$INCLUDEDIR rm -rf $TMPDIR$MANDIR else DESTDIR=$TMPDIR @CMAKE_MAKE_PROGRAM@ install if [ "$PREFIX" = "@CMAKE_INSTALL_DEFAULT_PREFIX@" -a "$DOCDIR" = "@CMAKE_INSTALL_DEFAULT_PREFIX@/doc" ]; then safedirmove $TMPDIR/$DOCDIR $TMPDIR/usr/share/doc/$PKGNAME-$VERSION $TMPDIR/__tmpdoc ln -fs /usr/share/doc/$DIRNAME-$VERSION $TMPDIR$DOCDIR fi fi SIZE=`du -s $TMPDIR | cut -f1` (cat pkgscripts/deb-control | sed s/{__PKGNAME}/$PKGNAME/g \ | sed s/{__ARCH}/$DEBARCH/g | sed s/{__SIZE}/$SIZE/g \ > $TMPDIR/DEBIAN/control) /sbin/ldconfig -n $TMPDIR$LIBDIR $SUDO chown -Rh root:root $TMPDIR/* dpkg -b $TMPDIR $PKGNAME\_$VERSION\_$DEBARCH.deb } PKGNAME=@PKGNAME@ VERSION=@VERSION@ DEBARCH=@DEBARCH@ PREFIX=@CMAKE_INSTALL_PREFIX@ BINDIR=@CMAKE_INSTALL_FULL_BINDIR@ DATAROOTDIR=@CMAKE_INSTALL_FULL_DATAROOTDIR@ DOCDIR=@CMAKE_INSTALL_FULL_DOCDIR@ INCLUDEDIR=@CMAKE_INSTALL_FULL_INCLUDEDIR@ JAVADIR=@CMAKE_INSTALL_FULL_JAVADIR@ LIBDIR=@CMAKE_INSTALL_FULL_LIBDIR@ MANDIR=@CMAKE_INSTALL_FULL_MANDIR@ if [ ! `uid` -eq 0 ]; then SUDO=sudo fi makedeb 0 if [ "$DEBARCH" = "i386" -o "$DEBARCH" = "armel" -o "$DEBARCH" = "armhf" ]; then makedeb 1 fi exit libjpeg-turbo-2.1.5/release/makemacpkg.in000077500000000000000000000124011436506551100203430ustar00rootroot00000000000000#!/bin/sh set -u set -e trap onexit INT trap onexit TERM trap onexit EXIT TMPDIR= onexit() { if [ ! "$TMPDIR" = "" ]; then rm -rf $TMPDIR fi } safedirmove () { if [ "$1" = "$2" ]; then return 0 fi if [ "$1" = "" -o ! -d "$1" ]; then echo safedirmove: source dir $1 is not valid return 1 fi if [ "$2" = "" -o -e "$2" ]; then echo safedirmove: dest dir $2 is not valid return 1 fi if [ "$3" = "" -o -e "$3" ]; then echo safedirmove: tmp dir $3 is not valid return 1 fi mkdir -p $3 mv $1/* $3/ rmdir $1 mkdir -p $2 mv $3/* $2/ rmdir $3 return 0 } usage() { echo "$0 [-lipo [path to lipo]]" exit 1 } PKGNAME=@PKGNAME@ VERSION=@VERSION@ BUILD=@BUILD@ SRCDIR=@CMAKE_CURRENT_SOURCE_DIR@ BUILDDIRARMV8=@ARMV8_BUILD@ WITH_JAVA=@WITH_JAVA@ MACOS_APP_CERT_NAME="@MACOS_APP_CERT_NAME@" MACOS_INST_CERT_NAME="@MACOS_INST_CERT_NAME@" LIPO=lipo PREFIX=@CMAKE_INSTALL_PREFIX@ BINDIR=@CMAKE_INSTALL_FULL_BINDIR@ DOCDIR=@CMAKE_INSTALL_FULL_DOCDIR@ LIBDIR=@CMAKE_INSTALL_FULL_LIBDIR@ LIBJPEG_DSO_NAME=libjpeg.@SO_MAJOR_VERSION@.@SO_AGE@.@SO_MINOR_VERSION@.dylib TURBOJPEG_DSO_NAME=libturbojpeg.@TURBOJPEG_SO_VERSION@.dylib while [ $# -gt 0 ]; do case $1 in -h*) usage 0 ;; -lipo) if [ $# -gt 1 ]; then if [[ ! "$2" =~ -.* ]]; then LIPO=$2; shift fi fi ;; esac shift done if [ -f $PKGNAME-$VERSION.dmg ]; then rm -f $PKGNAME-$VERSION.dmg fi umask 022 TMPDIR=`mktemp -d /tmp/$PKGNAME-build.XXXXXX` PKGROOT=$TMPDIR/pkg/Package_Root mkdir -p $PKGROOT DESTDIR=$PKGROOT @CMAKE_MAKE_PROGRAM@ install if [ "$PREFIX" = "@CMAKE_INSTALL_DEFAULT_PREFIX@" -a "$DOCDIR" = "@CMAKE_INSTALL_DEFAULT_PREFIX@/doc" ]; then mkdir -p $PKGROOT/Library/Documentation safedirmove $PKGROOT$DOCDIR $PKGROOT/Library/Documentation/$PKGNAME $TMPDIR/__tmpdoc ln -fs /Library/Documentation/$PKGNAME $PKGROOT$DOCDIR fi install_subbuild() { BUILDDIR=$1 ARCHNAME=$2 DIRNAME=$3 LIPOARCH=$4 if [ ! -d $BUILDDIR ]; then echo ERROR: $ARCHNAME build directory $BUILDDIR does not exist exit 1 fi if [ ! -f $BUILDDIR/Makefile -a ! -f $BUILDDIR/build.ninja ]; then echo ERROR: $ARCHNAME build directory $BUILDDIR is not configured exit 1 fi mkdir -p $TMPDIR/dist.$DIRNAME pushd $BUILDDIR DESTDIR=$TMPDIR/dist.$DIRNAME @CMAKE_MAKE_PROGRAM@ install popd $LIPO -create \ $PKGROOT/$LIBDIR/$LIBJPEG_DSO_NAME \ -arch $LIPOARCH $TMPDIR/dist.$DIRNAME/$LIBDIR/$LIBJPEG_DSO_NAME \ -output $PKGROOT/$LIBDIR/$LIBJPEG_DSO_NAME $LIPO -create \ $PKGROOT/$LIBDIR/libjpeg.a \ -arch $LIPOARCH $TMPDIR/dist.$DIRNAME/$LIBDIR/libjpeg.a \ -output $PKGROOT/$LIBDIR/libjpeg.a $LIPO -create \ $PKGROOT/$LIBDIR/$TURBOJPEG_DSO_NAME \ -arch $LIPOARCH $TMPDIR/dist.$DIRNAME/$LIBDIR/$TURBOJPEG_DSO_NAME \ -output $PKGROOT/$LIBDIR/$TURBOJPEG_DSO_NAME $LIPO -create \ $PKGROOT/$LIBDIR/libturbojpeg.a \ -arch $LIPOARCH $TMPDIR/dist.$DIRNAME/$LIBDIR/libturbojpeg.a \ -output $PKGROOT/$LIBDIR/libturbojpeg.a $LIPO -create \ $PKGROOT/$BINDIR/cjpeg \ -arch $LIPOARCH $TMPDIR/dist.$DIRNAME/$BINDIR/cjpeg \ -output $PKGROOT/$BINDIR/cjpeg $LIPO -create \ $PKGROOT/$BINDIR/djpeg \ -arch $LIPOARCH $TMPDIR/dist.$DIRNAME/$BINDIR/djpeg \ -output $PKGROOT/$BINDIR/djpeg $LIPO -create \ $PKGROOT/$BINDIR/jpegtran \ -arch $LIPOARCH $TMPDIR/dist.$DIRNAME/$BINDIR/jpegtran \ -output $PKGROOT/$BINDIR/jpegtran $LIPO -create \ $PKGROOT/$BINDIR/tjbench \ -arch $LIPOARCH $TMPDIR/dist.$DIRNAME/$BINDIR/tjbench \ -output $PKGROOT/$BINDIR/tjbench $LIPO -create \ $PKGROOT/$BINDIR/rdjpgcom \ -arch $LIPOARCH $TMPDIR/dist.$DIRNAME/$BINDIR/rdjpgcom \ -output $PKGROOT/$BINDIR/rdjpgcom $LIPO -create \ $PKGROOT/$BINDIR/wrjpgcom \ -arch $LIPOARCH $TMPDIR/dist.$DIRNAME/$BINDIR/wrjpgcom \ -output $PKGROOT/$BINDIR/wrjpgcom } if [ "$BUILDDIRARMV8" != "" ]; then install_subbuild $BUILDDIRARMV8 Armv8 armv8 arm64 fi install_name_tool -id $LIBDIR/$LIBJPEG_DSO_NAME $PKGROOT/$LIBDIR/$LIBJPEG_DSO_NAME install_name_tool -id $LIBDIR/$TURBOJPEG_DSO_NAME $PKGROOT/$LIBDIR/$TURBOJPEG_DSO_NAME if [ "$PREFIX" = "@CMAKE_INSTALL_DEFAULT_PREFIX@" -a "$LIBDIR" = "@CMAKE_INSTALL_DEFAULT_PREFIX@/lib" ]; then if [ ! -h $PKGROOT/$PREFIX/lib64 ]; then ln -fs lib $PKGROOT/$PREFIX/lib64 fi fi mkdir -p $TMPDIR/pkg install -m 755 pkgscripts/uninstall $PKGROOT/$BINDIR/ find $PKGROOT -type f | while read file; do xattr -c $file; done cp $SRCDIR/release/License.rtf pkgscripts/Welcome.rtf $SRCDIR/release/ReadMe.txt $TMPDIR/pkg/ mkdir $TMPDIR/dmg pkgbuild --root $PKGROOT --version $VERSION.$BUILD --identifier @PKGID@ \ $TMPDIR/pkg/$PKGNAME.pkg SUFFIX= if [ "$MACOS_INST_CERT_NAME" != "" ]; then SUFFIX=-unsigned fi productbuild --distribution pkgscripts/Distribution.xml \ --package-path $TMPDIR/pkg/ --resources $TMPDIR/pkg/ \ $TMPDIR/dmg/$PKGNAME$SUFFIX.pkg if [ "$MACOS_INST_CERT_NAME" != "" ]; then productsign --sign "$MACOS_INST_CERT_NAME" --timestamp \ $TMPDIR/dmg/$PKGNAME$SUFFIX.pkg $TMPDIR/dmg/$PKGNAME.pkg rm -r $TMPDIR/dmg/$PKGNAME$SUFFIX.pkg pkgutil --check-signature $TMPDIR/dmg/$PKGNAME.pkg fi hdiutil create -fs HFS+ -volname $PKGNAME-$VERSION \ -srcfolder "$TMPDIR/dmg" $TMPDIR/$PKGNAME-$VERSION.dmg if [ "$MACOS_APP_CERT_NAME" != "" ]; then codesign -s "$MACOS_APP_CERT_NAME" --timestamp $TMPDIR/$PKGNAME-$VERSION.dmg codesign -vv $TMPDIR/$PKGNAME-$VERSION.dmg fi cp $TMPDIR/$PKGNAME-$VERSION.dmg . exit libjpeg-turbo-2.1.5/release/makerpm.in000077500000000000000000000011171436506551100177010ustar00rootroot00000000000000#!/bin/sh set -u set -e trap onexit INT trap onexit TERM trap onexit EXIT TMPDIR= onexit() { if [ ! "$TMPDIR" = "" ]; then rm -rf $TMPDIR fi } if [ -f @PKGNAME@-@VERSION@.@RPMARCH@.rpm ]; then rm -f @PKGNAME@-@VERSION@.@RPMARCH@.rpm fi umask 022 TMPDIR=`mktemp -d /tmp/@CMAKE_PROJECT_NAME@-build.XXXXXX` mkdir -p $TMPDIR/RPMS ln -fs `pwd` $TMPDIR/BUILD rpmbuild -bb --define "_blddir $TMPDIR/buildroot" --define "_topdir $TMPDIR" \ --target @RPMARCH@ pkgscripts/rpm.spec; \ cp $TMPDIR/RPMS/@RPMARCH@/@PKGNAME@-@VERSION@-@BUILD@.@RPMARCH@.rpm \ @PKGNAME@-@VERSION@.@RPMARCH@.rpm libjpeg-turbo-2.1.5/release/makesrpm.in000077500000000000000000000016231436506551100200660ustar00rootroot00000000000000#!/bin/sh set -u set -e trap onexit INT trap onexit TERM trap onexit EXIT TMPDIR= onexit() { if [ ! "$TMPDIR" = "" ]; then rm -rf $TMPDIR fi } PKGNAME=@PKGNAME@ PROJECT=@CMAKE_PROJECT_NAME@ VERSION=@VERSION@ BUILD=@BUILD@ if [ -f $PKGNAME-$VERSION.src.rpm ]; then rm -f $PKGNAME-$VERSION.src.rpm fi umask 022 TMPDIR=`mktemp -d /tmp/$PKGNAME-build.XXXXXX` mkdir -p $TMPDIR/RPMS mkdir -p $TMPDIR/SRPMS mkdir -p $TMPDIR/BUILD mkdir -p $TMPDIR/SOURCES mkdir -p $TMPDIR/SPECS if [ ! -f $PROJECT-$VERSION.tar.gz ]; then echo "ERROR: $PROJECT-$VERSION.tar.gz does not exist." fi cp $PROJECT-$VERSION.tar.gz $TMPDIR/SOURCES/$PROJECT-$VERSION.tar.gz cat pkgscripts/rpm.spec | sed s/%{_blddir}/%{_tmppath}/g \ | sed s/#--\>//g > $TMPDIR/SPECS/$PKGNAME.spec rpmbuild -bs --define "_topdir $TMPDIR" $TMPDIR/SPECS/$PKGNAME.spec mv $TMPDIR/SRPMS/$PKGNAME-$VERSION-$BUILD.src.rpm $PKGNAME-$VERSION.src.rpm exit libjpeg-turbo-2.1.5/release/maketarball.in000077500000000000000000000021271436506551100205260ustar00rootroot00000000000000#!/bin/sh set -u set -e trap onexit INT trap onexit TERM trap onexit EXIT TMPDIR= SUDO= onexit() { if [ ! "$TMPDIR" = "" ]; then rm -rf $TMPDIR fi } uid() { id | cut -f2 -d = | cut -f1 -d \(; } PKGNAME=@PKGNAME@ VERSION=@VERSION@ ARCH=@CPU_TYPE@ OS=@CMAKE_SYSTEM_NAME@ PREFIX=@CMAKE_INSTALL_PREFIX@ umask 022 rm -f $PKGNAME-$VERSION-$OS-$ARCH.tar.bz2 TMPDIR=`mktemp -d /tmp/$PKGNAME-build.XXXXXX` mkdir -p $TMPDIR/install DESTDIR=$TMPDIR/install @CMAKE_MAKE_PROGRAM@ install echo tartest >$TMPDIR/tartest GNUTAR=0 BSDTAR=0 tar cf $TMPDIR/tartest.tar --owner=root --group=root -C $TMPDIR tartest >/dev/null 2>&1 && GNUTAR=1 if [ "$GNUTAR" = "1" ]; then tar cf - --owner=root --group=root -C $TMPDIR/install .$PREFIX | bzip2 -c >$PKGNAME-$VERSION-$OS-$ARCH.tar.bz2 else tar cf $TMPDIR/tartest.tar --uid 0 --gid 0 -C $TMPDIR tartest >/dev/null 2>&1 && BSDTAR=1 if [ "$BSDTAR" = "1" ]; then tar cf - --uid=0 --gid=0 -C $TMPDIR/install .$PREFIX | bzip2 -c >$PKGNAME-$VERSION-$OS-$ARCH.tar.bz2 else tar cf - -C $TMPDIR/install .$PREFIX | bzip2 -c >$PKGNAME-$VERSION-$OS-$ARCH.tar.bz2 fi fi exit libjpeg-turbo-2.1.5/release/rpm.spec.in000066400000000000000000000156641436506551100200050ustar00rootroot00000000000000%global _docdir %{_defaultdocdir}/%{name}-%{version} %define _prefix @CMAKE_INSTALL_PREFIX@ %define _bindir @CMAKE_INSTALL_FULL_BINDIR@ %define _datarootdir @CMAKE_INSTALL_FULL_DATAROOTDIR@ %define _includedir @CMAKE_INSTALL_FULL_INCLUDEDIR@ %define _javadir @CMAKE_INSTALL_FULL_JAVADIR@ %define _mandir @CMAKE_INSTALL_FULL_MANDIR@ %define _enable_static @ENABLE_STATIC@ %define _enable_shared @ENABLE_SHARED@ %define _with_turbojpeg @WITH_TURBOJPEG@ %define _with_java @WITH_JAVA@ %if "%{?__isa_bits:1}" == "1" %define _bits %{__isa_bits} %else # RPM < 4.6 %if "%{_lib}" == "lib64" %define _bits 64 %else %define _bits 32 %endif %endif %if "%{_bits}" == "64" %define _syslibdir /usr/lib64 %else %define _syslibdir /usr/lib %endif #-->%if 1 %if "%{_bits}" == "64" %define _libdir %{_exec_prefix}/lib64 %else %if "%{_prefix}" == "/opt/libjpeg-turbo" %define _libdir %{_exec_prefix}/lib32 %endif %endif #-->%else %define _libdir @CMAKE_INSTALL_FULL_LIBDIR@ #-->%endif Summary: A SIMD-accelerated JPEG codec that provides both the libjpeg and TurboJPEG APIs Name: @PKGNAME@ Version: @VERSION@ Vendor: @PKGVENDOR@ URL: @PKGURL@ Group: System Environment/Libraries #-->Source0: http://prdownloads.sourceforge.net/@CMAKE_PROJECT_NAME@/@CMAKE_PROJECT_NAME@-%{version}.tar.gz Release: @BUILD@ License: BSD-style BuildRoot: %{_blddir}/%{name}-buildroot-%{version}-%{release} Requires: /sbin/ldconfig %if "%{_bits}" == "64" Provides: %{name} = %{version}-%{release}, @CMAKE_PROJECT_NAME@ = %{version}-%{release}, libturbojpeg.so()(64bit) %else Provides: %{name} = %{version}-%{release}, @CMAKE_PROJECT_NAME@ = %{version}-%{release}, libturbojpeg.so %endif %description libjpeg-turbo is a JPEG image codec that uses SIMD instructions to accelerate baseline JPEG compression and decompression on x86, x86-64, Arm, PowerPC, and MIPS systems, as well as progressive JPEG compression on x86, x86-64, and Arm systems. On such systems, libjpeg-turbo is generally 2-6x as fast as libjpeg, all else being equal. On other types of systems, libjpeg-turbo can still outperform libjpeg by a significant amount, by virtue of its highly-optimized Huffman coding routines. In many cases, the performance of libjpeg-turbo rivals that of proprietary high-speed JPEG codecs. libjpeg-turbo implements both the traditional libjpeg API as well as the less powerful but more straightforward TurboJPEG API. libjpeg-turbo also features colorspace extensions that allow it to compress from/decompress to 32-bit and big-endian pixel buffers (RGBX, XBGR, etc.), as well as a full-featured Java interface. libjpeg-turbo was originally based on libjpeg/SIMD, an MMX-accelerated derivative of libjpeg v6b developed by Miyasaka Masaru. The TigerVNC and VirtualGL projects made numerous enhancements to the codec in 2009, and in early 2010, libjpeg-turbo spun off into an independent project, with the goal of making high-speed JPEG compression/decompression technology available to a broader range of users and developers. #-->%prep #-->%setup -q -n @CMAKE_PROJECT_NAME@-%{version} #-->%build #-->cmake -G"Unix Makefiles" -DCMAKE_BUILD_TYPE=@CMAKE_BUILD_TYPE@ \ #--> -DBUILD=%{release} \ #--> -DCMAKE_INSTALL_BINDIR=%{_bindir} \ #--> -DCMAKE_INSTALL_DATAROOTDIR=%{_datarootdir} \ #--> -DCMAKE_INSTALL_DOCDIR=%{_docdir} \ #--> -DCMAKE_INSTALL_INCLUDEDIR=%{_includedir} \ #--> -DCMAKE_INSTALL_JAVADIR=%{_javadir} \ #--> -DCMAKE_INSTALL_LIBDIR=%{_libdir} \ #--> -DCMAKE_INSTALL_MANDIR=%{_mandir} \ #--> -DCMAKE_INSTALL_PREFIX=%{_prefix} \ #--> -DCMAKE_POSITION_INDEPENDENT_CODE=@CMAKE_POSITION_INDEPENDENT_CODE@ \ #--> -DENABLE_SHARED=@ENABLE_SHARED@ -DENABLE_STATIC=@ENABLE_STATIC@ \ #--> -DSO_MAJOR_VERSION=@SO_MAJOR_VERSION@ \ #--> -DSO_MINOR_VERSION=@SO_MINOR_VERSION@ \ #--> -DJPEG_LIB_VERSION=@JPEG_LIB_VERSION@ \ #--> -DREQUIRE_SIMD=@REQUIRE_SIMD@ \ #--> -DWITH_12BIT=@WITH_12BIT@ -DWITH_ARITH_DEC=@WITH_ARITH_DEC@ \ #--> -DWITH_ARITH_ENC=@WITH_ARITH_ENC@ -DWITH_JAVA=@WITH_JAVA@ \ #--> -DWITH_JPEG7=@WITH_JPEG7@ -DWITH_JPEG8=@WITH_JPEG8@ \ #--> -DWITH_MEM_SRCDST=@WITH_MEM_SRCDST@ -DWITH_SIMD=@WITH_SIMD@ \ #--> -DWITH_TURBOJPEG=@WITH_TURBOJPEG@ . #-->make DESTDIR=$RPM_BUILD_ROOT %install rm -rf $RPM_BUILD_ROOT DESTDIR=$RPM_BUILD_ROOT @CMAKE_MAKE_PROGRAM@ install /sbin/ldconfig -n $RPM_BUILD_ROOT%{_libdir} #-->%if 0 # This is only needed to support in-tree RPM generation via 'make rpm'. When # building from a SRPM, we control where things are installed via CMake # variables. safedirmove () { if [ "$1" = "$2" ]; then return 0 fi if [ "$1" = "" -o ! -d "$1" ]; then echo safedirmove: source dir $1 is not valid return 1 fi if [ "$2" = "" -o -e "$2" ]; then echo safedirmove: dest dir $2 is not valid return 1 fi if [ "$3" = "" -o -e "$3" ]; then echo safedirmove: tmp dir $3 is not valid return 1 fi mkdir -p $3 mv $1/* $3/ rmdir $1 mkdir -p $2 mv $3/* $2/ rmdir $3 return 0 } LJT_DOCDIR=@CMAKE_INSTALL_FULL_DOCDIR@ if [ ! "$LJT_DOCDIR" = "%{_docdir}" ]; then safedirmove $RPM_BUILD_ROOT/$LJT_DOCDIR $RPM_BUILD_ROOT/%{_docdir} $RPM_BUILD_ROOT/__tmpdoc fi #-->%endif LJT_DOCDIR=@CMAKE_INSTALL_FULL_DOCDIR@ if [ "%{_prefix}" = "@CMAKE_INSTALL_DEFAULT_PREFIX@" -a "$LJT_DOCDIR" = "@CMAKE_INSTALL_DEFAULT_PREFIX@/doc" ]; then ln -fs %{_docdir} $RPM_BUILD_ROOT/$LJT_DOCDIR fi %post -p /sbin/ldconfig %postun -p /sbin/ldconfig %clean rm -rf $RPM_BUILD_ROOT %files %defattr(-,root,root) %dir %{_docdir} %doc %{_docdir}/* %dir %{_prefix} %if "%{_prefix}" == "@CMAKE_INSTALL_DEFAULT_PREFIX@" && "%{_docdir}" != "%{_prefix}/doc" %{_prefix}/doc %endif %dir %{_bindir} %{_bindir}/cjpeg %{_bindir}/djpeg %{_bindir}/jpegtran %if "%{_with_turbojpeg}" == "1" %{_bindir}/tjbench %endif %{_bindir}/rdjpgcom %{_bindir}/wrjpgcom %if "%{_libdir}" != "%{_syslibdir}" %dir %{_libdir} %endif %if "%{_enable_shared}" == "1" %{_libdir}/libjpeg.so.@SO_MAJOR_VERSION@.@SO_AGE@.@SO_MINOR_VERSION@ %{_libdir}/libjpeg.so.@SO_MAJOR_VERSION@ %{_libdir}/libjpeg.so %endif %if "%{_enable_static}" == "1" %{_libdir}/libjpeg.a %endif %dir %{_libdir}/pkgconfig %{_libdir}/pkgconfig/libjpeg.pc %dir %{_libdir}/cmake %dir %{_libdir}/cmake/@CMAKE_PROJECT_NAME@ %{_libdir}/cmake/@CMAKE_PROJECT_NAME@ %if "%{_with_turbojpeg}" == "1" %if "%{_enable_shared}" == "1" || "%{_with_java}" == "1" %{_libdir}/libturbojpeg.so.@TURBOJPEG_SO_VERSION@ %{_libdir}/libturbojpeg.so.@TURBOJPEG_SO_MAJOR_VERSION@ %{_libdir}/libturbojpeg.so %endif %if "%{_enable_static}" == "1" %{_libdir}/libturbojpeg.a %endif %{_libdir}/pkgconfig/libturbojpeg.pc %endif %dir %{_includedir} %{_includedir}/jconfig.h %{_includedir}/jerror.h %{_includedir}/jmorecfg.h %{_includedir}/jpeglib.h %if "%{_with_turbojpeg}" == "1" %{_includedir}/turbojpeg.h %endif %dir %{_mandir} %dir %{_mandir}/man1 %{_mandir}/man1/cjpeg.1* %{_mandir}/man1/djpeg.1* %{_mandir}/man1/jpegtran.1* %{_mandir}/man1/rdjpgcom.1* %{_mandir}/man1/wrjpgcom.1* %if "%{_prefix}" != "%{_datarootdir}" %dir %{_datarootdir} %endif %if "%{_with_java}" == "1" %dir %{_javadir} %{_javadir}/turbojpeg.jar %endif %changelog libjpeg-turbo-2.1.5/release/uninstall.in000066400000000000000000000074651436506551100202670ustar00rootroot00000000000000# Copyright (C)2009-2011, 2013, 2016, 2020 D. R. Commander. # All Rights Reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # - Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # - Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # - Neither the name of the libjpeg-turbo Project nor the names of its # contributors may be used to endorse or promote products derived from this # software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. #!/bin/sh if [ ! "`id -u`" = "0" ]; then echo "ERROR: This script must be executed as root" exit -1 fi PKGNAME=@PKGNAME@ PKGID=@PKGID@ RECEIPT=/Library/Receipts/$PKGNAME.pkg LSBOM= if [ -d $RECEIPT ]; then LSBOM='lsbom -s -f -l '$RECEIPT'/Contents/Archive.bom' else LSBOM='pkgutil --files '$PKGID fi mylsbom() { $LSBOM || (echo "ERROR: Could not list package contents"; exit -1) } echo Removing package files ... EXITSTATUS=0 pushd / mylsbom | while read file; do if [ ! -d "$file" ]; then rm "$file" 2>&1 || EXITSTATUS=-1; fi done popd echo Removing package directories ... PREFIX=@CMAKE_INSTALL_PREFIX@ BINDIR=@CMAKE_INSTALL_FULL_BINDIR@ DATAROOTDIR=@CMAKE_INSTALL_FULL_DATAROOTDIR@ INCLUDEDIR=@CMAKE_INSTALL_FULL_INCLUDEDIR@ JAVADIR=@CMAKE_INSTALL_FULL_JAVADIR@ LIBDIR=@CMAKE_INSTALL_FULL_LIBDIR@ MANDIR=@CMAKE_INSTALL_FULL_MANDIR@ if [ -d $BINDIR ]; then rmdir $BINDIR 2>&1 || EXITSTATUS=-1 fi if [ -d $LIBDIR/pkgconfig ]; then rmdir $LIBDIR/pkgconfig 2>&1 || EXITSTATUS=-1 fi if [ -d $LIBDIR/cmake/@CMAKE_PROJECT_NAME@ ]; then rmdir $LIBDIR/cmake/@CMAKE_PROJECT_NAME@ || EXITSTATUS=-1 fi if [ -d $LIBDIR/cmake ]; then rmdir $LIBDIR/cmake || EXITSTATUS=-1 fi if [ -d $LIBDIR ]; then rmdir $LIBDIR 2>&1 || EXITSTATUS=-1 fi if [ -d $INCLUDEDIR ]; then rmdir $INCLUDEDIR 2>&1 || EXITSTATUS=-1 fi if [ "$PREFIX" = "@CMAKE_INSTALL_DEFAULT_PREFIX@" -a "$LIBDIR" = "@CMAKE_INSTALL_DEFAULT_PREFIX@/lib" ]; then if [ -h $LIBDIR\32 ]; then rm $LIBDIR\32 2>&1 || EXITSTATUS=-1 fi if [ -h $LIBDIR\64 ]; then rm $LIBDIR\64 2>&1 || EXITSTATUS=-1 fi fi if [ -d $MANDIR/man1 ]; then rmdir $MANDIR/man1 2>&1 || EXITSTATUS=-1 fi if [ -d $MANDIR ]; then rmdir $MANDIR 2>&1 || EXITSTATUS=-1 fi if [ -d "$JAVADIR" ]; then rmdir $JAVADIR 2>&1 || EXITSTATUS=-1 fi if [ -d $DATAROOTDIR -a "$DATAROOTDIR" != "$PREFIX" ]; then rmdir $DATAROOTDIR 2>&1 || EXITSTATUS=-1 fi if [ "$PREFIX" = "@CMAKE_INSTALL_DEFAULT_PREFIX@" -a -h "$PREFIX/doc" ]; then rm $PREFIX/doc 2>&1 || EXITSTATUS=-1 fi rmdir $PREFIX 2>&1 || EXITSTATUS=-1 rmdir /Library/Documentation/$PKGNAME 2>&1 || EXITSTATUS=-1 if [ -d $RECEIPT ]; then echo Removing package receipt ... rm -r $RECEIPT 2>&1 || EXITSTATUS=-1 else echo Forgetting package $PKGID ... pkgutil --forget $PKGID fi exit $EXITSTATUS libjpeg-turbo-2.1.5/sharedlib/000077500000000000000000000000001436506551100162275ustar00rootroot00000000000000libjpeg-turbo-2.1.5/sharedlib/CMakeLists.txt000066400000000000000000000100001436506551100207560ustar00rootroot00000000000000# Anything that must be linked against the shared C library on Windows must # be built in this subdirectory, because CMake doesn't allow us to override # the compiler flags for each build type except at directory scope. Note # to CMake developers: Add a COMPILE_FLAGS_ target property, or # better yet, provide a friendly way of configuring a Windows target to use the # static C library. set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/..) set(CMAKE_LIBRARY_OUTPUT_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/..) set(CMAKE_ARCHIVE_OUTPUT_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/..) if(MSVC) # Build all configurations against shared C library foreach(var CMAKE_C_FLAGS CMAKE_C_FLAGS_DEBUG CMAKE_C_FLAGS_RELEASE CMAKE_C_FLAGS_MINSIZEREL CMAKE_C_FLAGS_RELWITHDEBINFO) if(${var} MATCHES "/MT") string(REGEX REPLACE "/MT" "/MD" ${var} "${${var}}") endif() endforeach() endif() foreach(src ${JPEG_SOURCES}) set(JPEG_SRCS ${JPEG_SRCS} ../${src}) endforeach() if(WITH_SIMD AND (MSVC_IDE OR XCODE)) # This tells CMake that the "source" files haven't been generated yet set_source_files_properties(${SIMD_OBJS} PROPERTIES GENERATED 1) endif() if(WIN32) if(WITH_MEM_SRCDST) set(DEFFILE ../win/jpeg${SO_MAJOR_VERSION}-memsrcdst.def) else() set(DEFFILE ../win/jpeg${SO_MAJOR_VERSION}.def) endif() endif() if(MSVC) configure_file(${CMAKE_SOURCE_DIR}/win/jpeg.rc.in ${CMAKE_BINARY_DIR}/win/jpeg.rc) set(JPEG_SRCS ${JPEG_SRCS} ${CMAKE_BINARY_DIR}/win/jpeg.rc) endif() add_library(jpeg SHARED ${JPEG_SRCS} ${DEFFILE} $ ${SIMD_OBJS}) set_target_properties(jpeg PROPERTIES SOVERSION ${SO_MAJOR_VERSION} VERSION ${SO_MAJOR_VERSION}.${SO_AGE}.${SO_MINOR_VERSION}) if(APPLE AND (NOT CMAKE_OSX_DEPLOYMENT_TARGET OR CMAKE_OSX_DEPLOYMENT_TARGET VERSION_GREATER 10.4)) if(NOT CMAKE_SHARED_LIBRARY_RUNTIME_C_FLAG) set(CMAKE_SHARED_LIBRARY_RUNTIME_C_FLAG "-Wl,-rpath,") endif() set_target_properties(jpeg PROPERTIES MACOSX_RPATH 1) endif() if(MAPFLAG) set_target_properties(jpeg PROPERTIES LINK_FLAGS "${MAPFLAG}${CMAKE_CURRENT_BINARY_DIR}/../libjpeg.map") endif() if(MSVC) set_target_properties(jpeg PROPERTIES RUNTIME_OUTPUT_NAME jpeg${SO_MAJOR_VERSION}) # The jsimd_*.c file is built using /MT, so this prevents a linker warning. set_target_properties(jpeg PROPERTIES LINK_FLAGS "/NODEFAULTLIB:LIBCMT /NODEFAULTLIB:LIBCMTD") elseif(MINGW) set_target_properties(jpeg PROPERTIES SUFFIX -${SO_MAJOR_VERSION}.dll) endif() if(WIN32) set(USE_SETMODE "-DUSE_SETMODE") endif() if(WITH_12BIT) set(COMPILE_FLAGS "-DGIF_SUPPORTED -DPPM_SUPPORTED ${USE_SETMODE}") else() set(COMPILE_FLAGS "-DBMP_SUPPORTED -DGIF_SUPPORTED -DPPM_SUPPORTED -DTARGA_SUPPORTED ${USE_SETMODE}") set(CJPEG_BMP_SOURCES ../rdbmp.c ../rdtarga.c) set(DJPEG_BMP_SOURCES ../wrbmp.c ../wrtarga.c) endif() add_executable(cjpeg ../cjpeg.c ../cdjpeg.c ../rdgif.c ../rdppm.c ../rdswitch.c ${CJPEG_BMP_SOURCES}) set_property(TARGET cjpeg PROPERTY COMPILE_FLAGS ${COMPILE_FLAGS}) target_link_libraries(cjpeg jpeg) add_executable(djpeg ../djpeg.c ../cdjpeg.c ../rdcolmap.c ../rdswitch.c ../wrgif.c ../wrppm.c ${DJPEG_BMP_SOURCES}) set_property(TARGET djpeg PROPERTY COMPILE_FLAGS ${COMPILE_FLAGS}) target_link_libraries(djpeg jpeg) add_executable(jpegtran ../jpegtran.c ../cdjpeg.c ../rdswitch.c ../transupp.c) target_link_libraries(jpegtran jpeg) set_property(TARGET jpegtran PROPERTY COMPILE_FLAGS "${USE_SETMODE}") add_executable(jcstest ../jcstest.c) target_link_libraries(jcstest jpeg) install(TARGETS jpeg EXPORT ${CMAKE_PROJECT_NAME}Targets INCLUDES DESTINATION ${CMAKE_INSTALL_INCLUDEDIR} ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR} LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR} RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR}) install(TARGETS cjpeg djpeg jpegtran RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR}) if(NOT CMAKE_VERSION VERSION_LESS "3.1" AND MSVC AND CMAKE_C_LINKER_SUPPORTS_PDB) install(FILES "$" DESTINATION ${CMAKE_INSTALL_BINDIR} OPTIONAL) endif() libjpeg-turbo-2.1.5/simd/000077500000000000000000000000001436506551100152265ustar00rootroot00000000000000libjpeg-turbo-2.1.5/simd/CMakeLists.txt000066400000000000000000000501321436506551100177670ustar00rootroot00000000000000macro(simd_fail message) if(REQUIRE_SIMD) message(FATAL_ERROR "${message}.") else() message(WARNING "${message}. Performance will suffer.") set(WITH_SIMD 0 PARENT_SCOPE) endif() endmacro() ############################################################################### # x86[-64] (NASM) ############################################################################### if(CPU_TYPE STREQUAL "x86_64" OR CPU_TYPE STREQUAL "i386") set(CMAKE_ASM_NASM_FLAGS_DEBUG_INIT "-g") set(CMAKE_ASM_NASM_FLAGS_RELWITHDEBINFO_INIT "-g") # Allow the location of the NASM executable to be specified using the ASM_NASM # environment variable. This should happen automatically, but unfortunately # enable_language(ASM_NASM) doesn't parse the ASM_NASM environment variable # until after CMAKE_ASM_NASM_COMPILER has been populated with the results of # searching for NASM or Yasm in the PATH. if(NOT DEFINED CMAKE_ASM_NASM_COMPILER AND DEFINED ENV{ASM_NASM}) set(CMAKE_ASM_NASM_COMPILER $ENV{ASM_NASM}) endif() if(CPU_TYPE STREQUAL "x86_64") if(CYGWIN) set(CMAKE_ASM_NASM_OBJECT_FORMAT win64) endif() if(CMAKE_C_COMPILER_ABI MATCHES "ELF X32") set(CMAKE_ASM_NASM_OBJECT_FORMAT elfx32) endif() elseif(CPU_TYPE STREQUAL "i386") if(BORLAND) set(CMAKE_ASM_NASM_OBJECT_FORMAT obj) elseif(CYGWIN) set(CMAKE_ASM_NASM_OBJECT_FORMAT win32) endif() endif() if(NOT REQUIRE_SIMD) include(CheckLanguage) check_language(ASM_NASM) if(NOT CMAKE_ASM_NASM_COMPILER) simd_fail("SIMD extensions disabled: could not find NASM compiler") return() endif() endif() enable_language(ASM_NASM) message(STATUS "CMAKE_ASM_NASM_COMPILER = ${CMAKE_ASM_NASM_COMPILER}") if(CMAKE_ASM_NASM_OBJECT_FORMAT MATCHES "^macho") set(CMAKE_ASM_NASM_FLAGS "${CMAKE_ASM_NASM_FLAGS} -DMACHO") elseif(CMAKE_ASM_NASM_OBJECT_FORMAT MATCHES "^elf") set(CMAKE_ASM_NASM_FLAGS "${CMAKE_ASM_NASM_FLAGS} -DELF") set(CMAKE_ASM_NASM_DEBUG_FORMAT "dwarf2") endif() if(CPU_TYPE STREQUAL "x86_64") if(WIN32 OR CYGWIN) set(CMAKE_ASM_NASM_FLAGS "${CMAKE_ASM_NASM_FLAGS} -DWIN64") endif() set(CMAKE_ASM_NASM_FLAGS "${CMAKE_ASM_NASM_FLAGS} -D__x86_64__") elseif(CPU_TYPE STREQUAL "i386") if(BORLAND) set(CMAKE_ASM_NASM_FLAGS "${CMAKE_ASM_NASM_FLAGS} -DOBJ32") elseif(WIN32 OR CYGWIN) set(CMAKE_ASM_NASM_FLAGS "${CMAKE_ASM_NASM_FLAGS} -DWIN32") endif() endif() message(STATUS "CMAKE_ASM_NASM_OBJECT_FORMAT = ${CMAKE_ASM_NASM_OBJECT_FORMAT}") if(NOT CMAKE_ASM_NASM_OBJECT_FORMAT) simd_fail("SIMD extensions disabled: could not determine NASM object format") return() endif() get_filename_component(CMAKE_ASM_NASM_COMPILER_TYPE "${CMAKE_ASM_NASM_COMPILER}" NAME_WE) if(CMAKE_ASM_NASM_COMPILER_TYPE MATCHES "yasm") foreach(var CMAKE_ASM_NASM_FLAGS_DEBUG CMAKE_ASM_NASM_FLAGS_RELWITHDEBINFO) if(${var} STREQUAL "-g") if(CMAKE_ASM_NASM_DEBUG_FORMAT) set_property(CACHE ${var} PROPERTY VALUE "-g ${CMAKE_ASM_NASM_DEBUG_FORMAT}") else() set_property(CACHE ${var} PROPERTY VALUE "") endif() endif() endforeach() endif() if(NOT WIN32 AND (CMAKE_POSITION_INDEPENDENT_CODE OR ENABLE_SHARED)) set(CMAKE_ASM_NASM_FLAGS "${CMAKE_ASM_NASM_FLAGS} -DPIC") endif() string(TOUPPER ${CMAKE_BUILD_TYPE} CMAKE_BUILD_TYPE_UC) set(EFFECTIVE_ASM_NASM_FLAGS "${CMAKE_ASM_NASM_FLAGS} ${CMAKE_ASM_NASM_FLAGS_${CMAKE_BUILD_TYPE_UC}}") message(STATUS "CMAKE_ASM_NASM_FLAGS = ${EFFECTIVE_ASM_NASM_FLAGS}") set(CMAKE_ASM_NASM_FLAGS "${CMAKE_ASM_NASM_FLAGS} -I\"${CMAKE_CURRENT_SOURCE_DIR}/nasm/\" -I\"${CMAKE_CURRENT_SOURCE_DIR}/${CPU_TYPE}/\"") set(GREP grep) if(CMAKE_SYSTEM_NAME STREQUAL "SunOS") set(GREP ggrep) endif() add_custom_target(jsimdcfg COMMAND ${CMAKE_C_COMPILER} -E -I${CMAKE_BINARY_DIR} -I${CMAKE_CURRENT_BINARY_DIR} -I${CMAKE_CURRENT_SOURCE_DIR} ${CMAKE_CURRENT_SOURCE_DIR}/nasm/jsimdcfg.inc.h | ${GREP} -E '^[\;%]|^\ %' | sed 's%_cpp_protection_%%' | sed 's@% define@%define@g' >${CMAKE_CURRENT_SOURCE_DIR}/nasm/jsimdcfg.inc) if(CPU_TYPE STREQUAL "x86_64") set(SIMD_SOURCES x86_64/jsimdcpu.asm x86_64/jfdctflt-sse.asm x86_64/jccolor-sse2.asm x86_64/jcgray-sse2.asm x86_64/jchuff-sse2.asm x86_64/jcphuff-sse2.asm x86_64/jcsample-sse2.asm x86_64/jdcolor-sse2.asm x86_64/jdmerge-sse2.asm x86_64/jdsample-sse2.asm x86_64/jfdctfst-sse2.asm x86_64/jfdctint-sse2.asm x86_64/jidctflt-sse2.asm x86_64/jidctfst-sse2.asm x86_64/jidctint-sse2.asm x86_64/jidctred-sse2.asm x86_64/jquantf-sse2.asm x86_64/jquanti-sse2.asm x86_64/jccolor-avx2.asm x86_64/jcgray-avx2.asm x86_64/jcsample-avx2.asm x86_64/jdcolor-avx2.asm x86_64/jdmerge-avx2.asm x86_64/jdsample-avx2.asm x86_64/jfdctint-avx2.asm x86_64/jidctint-avx2.asm x86_64/jquanti-avx2.asm) else() set(SIMD_SOURCES i386/jsimdcpu.asm i386/jfdctflt-3dn.asm i386/jidctflt-3dn.asm i386/jquant-3dn.asm i386/jccolor-mmx.asm i386/jcgray-mmx.asm i386/jcsample-mmx.asm i386/jdcolor-mmx.asm i386/jdmerge-mmx.asm i386/jdsample-mmx.asm i386/jfdctfst-mmx.asm i386/jfdctint-mmx.asm i386/jidctfst-mmx.asm i386/jidctint-mmx.asm i386/jidctred-mmx.asm i386/jquant-mmx.asm i386/jfdctflt-sse.asm i386/jidctflt-sse.asm i386/jquant-sse.asm i386/jccolor-sse2.asm i386/jcgray-sse2.asm i386/jchuff-sse2.asm i386/jcphuff-sse2.asm i386/jcsample-sse2.asm i386/jdcolor-sse2.asm i386/jdmerge-sse2.asm i386/jdsample-sse2.asm i386/jfdctfst-sse2.asm i386/jfdctint-sse2.asm i386/jidctflt-sse2.asm i386/jidctfst-sse2.asm i386/jidctint-sse2.asm i386/jidctred-sse2.asm i386/jquantf-sse2.asm i386/jquanti-sse2.asm i386/jccolor-avx2.asm i386/jcgray-avx2.asm i386/jcsample-avx2.asm i386/jdcolor-avx2.asm i386/jdmerge-avx2.asm i386/jdsample-avx2.asm i386/jfdctint-avx2.asm i386/jidctint-avx2.asm i386/jquanti-avx2.asm) endif() if(MSVC_IDE) set(OBJDIR "${CMAKE_CURRENT_BINARY_DIR}/${CMAKE_CFG_INTDIR}") string(REGEX REPLACE " " ";" CMAKE_ASM_NASM_FLAGS "${CMAKE_ASM_NASM_FLAGS}") elseif(XCODE) set(OBJDIR "${CMAKE_CURRENT_BINARY_DIR}") string(REGEX REPLACE " " ";" CMAKE_ASM_NASM_FLAGS "${CMAKE_ASM_NASM_FLAGS}") endif() file(GLOB INC_FILES nasm/*.inc) foreach(file ${SIMD_SOURCES}) set(OBJECT_DEPENDS "") if(${file} MATCHES jccolor) string(REGEX REPLACE "jccolor" "jccolext" DEPFILE ${file}) set(OBJECT_DEPENDS ${OBJECT_DEPENDS} ${CMAKE_CURRENT_SOURCE_DIR}/${DEPFILE}) endif() if(${file} MATCHES jcgray) string(REGEX REPLACE "jcgray" "jcgryext" DEPFILE ${file}) set(OBJECT_DEPENDS ${OBJECT_DEPENDS} ${CMAKE_CURRENT_SOURCE_DIR}/${DEPFILE}) endif() if(${file} MATCHES jdcolor) string(REGEX REPLACE "jdcolor" "jdcolext" DEPFILE ${file}) set(OBJECT_DEPENDS ${OBJECT_DEPENDS} ${CMAKE_CURRENT_SOURCE_DIR}/${DEPFILE}) endif() if(${file} MATCHES jdmerge) string(REGEX REPLACE "jdmerge" "jdmrgext" DEPFILE ${file}) set(OBJECT_DEPENDS ${OBJECT_DEPENDS} ${CMAKE_CURRENT_SOURCE_DIR}/${DEPFILE}) endif() set(OBJECT_DEPENDS ${OBJECT_DEPENDS} ${INC_FILES}) if(MSVC_IDE OR XCODE) # The CMake Visual Studio generators do not work properly with the ASM_NASM # language, so we have to go rogue here and use a custom command like we # did in prior versions of libjpeg-turbo. (This is why we can't have nice # things.) string(REGEX REPLACE "${CPU_TYPE}/" "" filename ${file}) set(SIMD_OBJ ${OBJDIR}/${filename}${CMAKE_C_OUTPUT_EXTENSION}) add_custom_command(OUTPUT ${SIMD_OBJ} DEPENDS ${file} ${OBJECT_DEPENDS} COMMAND ${CMAKE_ASM_NASM_COMPILER} -f${CMAKE_ASM_NASM_OBJECT_FORMAT} ${CMAKE_ASM_NASM_FLAGS} ${CMAKE_CURRENT_SOURCE_DIR}/${file} -o${SIMD_OBJ}) set(SIMD_OBJS ${SIMD_OBJS} ${SIMD_OBJ}) else() set_source_files_properties(${file} PROPERTIES OBJECT_DEPENDS "${OBJECT_DEPENDS}") endif() endforeach() if(MSVC_IDE OR XCODE) set(SIMD_OBJS ${SIMD_OBJS} PARENT_SCOPE) add_library(simd OBJECT ${CPU_TYPE}/jsimd.c) add_custom_target(simd-objs DEPENDS ${SIMD_OBJS}) add_dependencies(simd simd-objs) else() add_library(simd OBJECT ${SIMD_SOURCES} ${CPU_TYPE}/jsimd.c) endif() if(NOT WIN32 AND (CMAKE_POSITION_INDEPENDENT_CODE OR ENABLE_SHARED)) set_target_properties(simd PROPERTIES POSITION_INDEPENDENT_CODE 1) endif() ############################################################################### # Arm (Intrinsics or GAS) ############################################################################### elseif(CPU_TYPE STREQUAL "arm64" OR CPU_TYPE STREQUAL "arm") # If Neon instructions are not explicitly enabled at compile time (e.g. using # -mfpu=neon) with an AArch32 Linux or Android build, then the AArch32 SIMD # dispatcher will parse /proc/cpuinfo to determine whether the Neon SIMD # extensions can be enabled at run time. In order to support all AArch32 CPUs # using the same code base, i.e. to support run-time FPU and Neon # auto-detection, it is necessary to compile the scalar C source code using # -mfloat-abi=soft (which is usually the default) but compile the intrinsics # implementation of the Neon SIMD extensions using -mfloat-abi=softfp. The # following test determines whether -mfloat-abi=softfp should be explicitly # added to the compile flags for the intrinsics implementation of the Neon SIMD # extensions. if(BITS EQUAL 32) check_c_source_compiles(" #if defined(__ARM_NEON__) || (!defined(__linux__) && !defined(ANDROID) && !defined(__ANDROID__)) #error \"Neon run-time auto-detection will not be used\" #endif #if __ARM_PCS_VFP == 1 #error \"float ABI = hard\" #endif #if __SOFTFP__ != 1 #error \"float ABI = softfp\" #endif int main(void) { return 0; }" NEED_SOFTFP_FOR_INTRINSICS) if(NEED_SOFTFP_FOR_INTRINSICS) set(SOFTFP_FLAG -mfloat-abi=softfp) endif() endif() if(BITS EQUAL 32) set(CMAKE_REQUIRED_FLAGS "-mfpu=neon ${SOFTFP_FLAG}") check_c_source_compiles(" #include int main(int argc, char **argv) { uint16x8_t input = vdupq_n_u16((uint16_t)argc); uint8x8_t output = vmovn_u16(input); return (int)output[0]; }" HAVE_NEON) if(NOT HAVE_NEON) simd_fail("SIMD extensions not available for this architecture") return() endif() endif() check_c_source_compiles(" #include int main(int argc, char **argv) { int16_t input[] = { (int16_t)argc, (int16_t)argc, (int16_t)argc, (int16_t)argc, (int16_t)argc, (int16_t)argc, (int16_t)argc, (int16_t)argc, (int16_t)argc, (int16_t)argc, (int16_t)argc, (int16_t)argc }; int16x4x3_t output = vld1_s16_x3(input); vst3_s16(input, output); return (int)input[0]; }" HAVE_VLD1_S16_X3) check_c_source_compiles(" #include int main(int argc, char **argv) { uint16_t input[] = { (uint16_t)argc, (uint16_t)argc, (uint16_t)argc, (uint16_t)argc, (uint16_t)argc, (uint16_t)argc, (uint16_t)argc, (uint16_t)argc }; uint16x4x2_t output = vld1_u16_x2(input); vst2_u16(input, output); return (int)input[0]; }" HAVE_VLD1_U16_X2) check_c_source_compiles(" #include int main(int argc, char **argv) { uint8_t input[] = { (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc, (uint8_t)argc }; uint8x16x4_t output = vld1q_u8_x4(input); vst4q_u8(input, output); return (int)input[0]; }" HAVE_VLD1Q_U8_X4) if(BITS EQUAL 32) unset(CMAKE_REQUIRED_FLAGS) endif() configure_file(arm/neon-compat.h.in arm/neon-compat.h @ONLY) include_directories(${CMAKE_CURRENT_BINARY_DIR}/arm) # GCC 11 and earlier and some older versions of Clang do not have a full or # optimal set of Neon intrinsics, so for performance reasons, when using those # compilers, we default to using the older GAS implementation of the Neon SIMD # extensions for certain algorithms. The presence or absence of the three # intrinsics we tested above is a reasonable proxy for this, except with GCC 10 # and 11. if((HAVE_VLD1_S16_X3 AND HAVE_VLD1_U16_X2 AND HAVE_VLD1Q_U8_X4 AND (NOT CMAKE_COMPILER_IS_GNUCC OR CMAKE_C_COMPILER_VERSION VERSION_EQUAL 12.0.0 OR CMAKE_C_COMPILER_VERSION VERSION_GREATER 12.0.0))) set(DEFAULT_NEON_INTRINSICS 1) else() set(DEFAULT_NEON_INTRINSICS 0) endif() option(NEON_INTRINSICS "Because GCC (as of this writing) and some older versions of Clang do not have a full or optimal set of Neon intrinsics, for performance reasons, the default when building libjpeg-turbo with those compilers is to continue using the older GAS implementation of the Neon SIMD extensions for certain algorithms. Setting this option forces the full Neon intrinsics implementation to be used with all compilers. Unsetting this option forces the hybrid GAS/intrinsics implementation to be used with all compilers." ${DEFAULT_NEON_INTRINSICS}) if(NOT NEON_INTRINSICS) enable_language(ASM) set(CMAKE_ASM_FLAGS "${CMAKE_C_FLAGS} ${CMAKE_ASM_FLAGS}") # Test whether gas-preprocessor.pl would be needed to build the GAS # implementation of the Neon SIMD extensions. If so, then automatically # enable the full Neon intrinsics implementation. if(CPU_TYPE STREQUAL "arm") file(WRITE ${CMAKE_CURRENT_BINARY_DIR}/gastest.S " .text .fpu neon .arch armv7a .object_arch armv4 .arm pld [r0] vmovn.u16 d0, q0") else() file(WRITE ${CMAKE_CURRENT_BINARY_DIR}/gastest.S " .text MYVAR .req x0 movi v0.16b, #100 mov MYVAR, #100 .unreq MYVAR") endif() separate_arguments(CMAKE_ASM_FLAGS_SEP UNIX_COMMAND "${CMAKE_ASM_FLAGS}") execute_process(COMMAND ${CMAKE_ASM_COMPILER} ${CMAKE_ASM_FLAGS_SEP} -x assembler-with-cpp -c ${CMAKE_CURRENT_BINARY_DIR}/gastest.S RESULT_VARIABLE RESULT OUTPUT_VARIABLE OUTPUT ERROR_VARIABLE ERROR) if(NOT RESULT EQUAL 0) message(WARNING "GAS appears to be broken. Using the full Neon SIMD intrinsics implementation.") set(NEON_INTRINSICS 1 CACHE INTERNAL "" FORCE) endif() endif() boolean_number(NEON_INTRINSICS PARENT_SCOPE) if(NEON_INTRINSICS) add_definitions(-DNEON_INTRINSICS) message(STATUS "Use full Neon SIMD intrinsics implementation (NEON_INTRINSICS = ${NEON_INTRINSICS})") else() message(STATUS "Use partial Neon SIMD intrinsics implementation (NEON_INTRINSICS = ${NEON_INTRINSICS})") endif() set(SIMD_SOURCES arm/jcgray-neon.c arm/jcphuff-neon.c arm/jcsample-neon.c arm/jdmerge-neon.c arm/jdsample-neon.c arm/jfdctfst-neon.c arm/jidctred-neon.c arm/jquanti-neon.c) if(NEON_INTRINSICS) set(SIMD_SOURCES ${SIMD_SOURCES} arm/jccolor-neon.c arm/jidctint-neon.c) endif() if(NEON_INTRINSICS OR BITS EQUAL 64) set(SIMD_SOURCES ${SIMD_SOURCES} arm/jidctfst-neon.c) endif() if(NEON_INTRINSICS OR BITS EQUAL 32) set(SIMD_SOURCES ${SIMD_SOURCES} arm/aarch${BITS}/jchuff-neon.c arm/jdcolor-neon.c arm/jfdctint-neon.c) endif() if(BITS EQUAL 32) set_source_files_properties(${SIMD_SOURCES} COMPILE_FLAGS "-mfpu=neon ${SOFTFP_FLAG}") endif() if(NOT NEON_INTRINSICS) string(TOUPPER ${CMAKE_BUILD_TYPE} CMAKE_BUILD_TYPE_UC) set(EFFECTIVE_ASM_FLAGS "${CMAKE_ASM_FLAGS} ${CMAKE_ASM_FLAGS_${CMAKE_BUILD_TYPE_UC}}") message(STATUS "CMAKE_ASM_FLAGS = ${EFFECTIVE_ASM_FLAGS}") set(SIMD_SOURCES ${SIMD_SOURCES} arm/aarch${BITS}/jsimd_neon.S) endif() add_library(simd OBJECT ${SIMD_SOURCES} arm/aarch${BITS}/jsimd.c) if(CMAKE_POSITION_INDEPENDENT_CODE OR ENABLE_SHARED) set_target_properties(simd PROPERTIES POSITION_INDEPENDENT_CODE 1) endif() ############################################################################### # MIPS (GAS) ############################################################################### elseif(CPU_TYPE STREQUAL "mips" OR CPU_TYPE STREQUAL "mipsel") enable_language(ASM) string(TOUPPER ${CMAKE_BUILD_TYPE} CMAKE_BUILD_TYPE_UC) set(EFFECTIVE_ASM_FLAGS "${CMAKE_ASM_FLAGS} ${CMAKE_ASM_FLAGS_${CMAKE_BUILD_TYPE_UC}}") message(STATUS "CMAKE_ASM_FLAGS = ${EFFECTIVE_ASM_FLAGS}") set(CMAKE_REQUIRED_FLAGS -mdspr2) check_c_source_compiles(" #if !(defined(__mips__) && __mips_isa_rev >= 2) #error MIPS DSPr2 is currently only available on MIPS32r2 platforms. #endif int main(void) { int c = 0, a = 0, b = 0; __asm__ __volatile__ ( \"precr.qb.ph %[c], %[a], %[b]\" : [c] \"=r\" (c) : [a] \"r\" (a), [b] \"r\" (b) ); return c; }" HAVE_DSPR2) unset(CMAKE_REQUIRED_FLAGS) if(NOT HAVE_DSPR2) simd_fail("SIMD extensions not available for this CPU") return() endif() add_library(simd OBJECT mips/jsimd_dspr2.S mips/jsimd.c) if(CMAKE_POSITION_INDEPENDENT_CODE OR ENABLE_SHARED) set_target_properties(simd PROPERTIES POSITION_INDEPENDENT_CODE 1) endif() ############################################################################### # MIPS64 (Intrinsics) ############################################################################### elseif(CPU_TYPE STREQUAL "loongson" OR CPU_TYPE MATCHES "^mips64") set(CMAKE_REQUIRED_FLAGS -Wa,-mloongson-mmi,-mloongson-ext) check_c_source_compiles(" #if !(defined(__mips__) && __mips_isa_rev < 6) #error Loongson MMI can't work with MIPS Release 6+ #endif int main(void) { int c = 0, a = 0, b = 0; asm ( \"paddb %0, %1, %2\" : \"=f\" (c) : \"f\" (a), \"f\" (b) ); return c; }" HAVE_MMI) unset(CMAKE_REQUIRED_FLAGS) if(NOT HAVE_MMI) simd_fail("SIMD extensions not available for this CPU") return() endif() set(SIMD_SOURCES mips64/jccolor-mmi.c mips64/jcgray-mmi.c mips64/jcsample-mmi.c mips64/jdcolor-mmi.c mips64/jdmerge-mmi.c mips64/jdsample-mmi.c mips64/jfdctfst-mmi.c mips64/jfdctint-mmi.c mips64/jidctfst-mmi.c mips64/jidctint-mmi.c mips64/jquanti-mmi.c) if(CMAKE_COMPILER_IS_GNUCC) foreach(file ${SIMD_SOURCES}) set_property(SOURCE ${file} APPEND_STRING PROPERTY COMPILE_FLAGS " -fno-strict-aliasing") endforeach() endif() foreach(file ${SIMD_SOURCES}) set_property(SOURCE ${file} APPEND_STRING PROPERTY COMPILE_FLAGS " -Wa,-mloongson-mmi,-mloongson-ext") endforeach() add_library(simd OBJECT ${SIMD_SOURCES} mips64/jsimd.c) if(CMAKE_POSITION_INDEPENDENT_CODE OR ENABLE_SHARED) set_target_properties(simd PROPERTIES POSITION_INDEPENDENT_CODE 1) endif() ############################################################################### # PowerPC (Intrinsics) ############################################################################### elseif(CPU_TYPE STREQUAL "powerpc") set(CMAKE_REQUIRED_FLAGS -maltivec) check_c_source_compiles(" #include int main(void) { __vector int vi = { 0, 0, 0, 0 }; int i[4]; vec_st(vi, 0, i); return i[0]; }" HAVE_ALTIVEC) unset(CMAKE_REQUIRED_FLAGS) if(NOT HAVE_ALTIVEC) simd_fail("SIMD extensions not available for this CPU (PowerPC SPE)") return() endif() set(SIMD_SOURCES powerpc/jccolor-altivec.c powerpc/jcgray-altivec.c powerpc/jcsample-altivec.c powerpc/jdcolor-altivec.c powerpc/jdmerge-altivec.c powerpc/jdsample-altivec.c powerpc/jfdctfst-altivec.c powerpc/jfdctint-altivec.c powerpc/jidctfst-altivec.c powerpc/jidctint-altivec.c powerpc/jquanti-altivec.c) set_source_files_properties(${SIMD_SOURCES} PROPERTIES COMPILE_FLAGS -maltivec) add_library(simd OBJECT ${SIMD_SOURCES} powerpc/jsimd.c) if(CMAKE_POSITION_INDEPENDENT_CODE OR ENABLE_SHARED) set_target_properties(simd PROPERTIES POSITION_INDEPENDENT_CODE 1) endif() ############################################################################### # None ############################################################################### else() simd_fail("SIMD extensions not available for this CPU (${CMAKE_SYSTEM_PROCESSOR})") endif() # CPU_TYPE libjpeg-turbo-2.1.5/simd/arm/000077500000000000000000000000001436506551100160055ustar00rootroot00000000000000libjpeg-turbo-2.1.5/simd/arm/aarch32/000077500000000000000000000000001436506551100172305ustar00rootroot00000000000000libjpeg-turbo-2.1.5/simd/arm/aarch32/jccolext-neon.c000066400000000000000000000145761436506551100221610ustar00rootroot00000000000000/* * jccolext-neon.c - colorspace conversion (32-bit Arm Neon) * * Copyright (C) 2020, Arm Limited. All Rights Reserved. * Copyright (C) 2020, D. R. Commander. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ /* This file is included by jccolor-neon.c */ /* RGB -> YCbCr conversion is defined by the following equations: * Y = 0.29900 * R + 0.58700 * G + 0.11400 * B * Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + 128 * Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + 128 * * Avoid floating point arithmetic by using shifted integer constants: * 0.29899597 = 19595 * 2^-16 * 0.58700561 = 38470 * 2^-16 * 0.11399841 = 7471 * 2^-16 * 0.16874695 = 11059 * 2^-16 * 0.33125305 = 21709 * 2^-16 * 0.50000000 = 32768 * 2^-16 * 0.41868592 = 27439 * 2^-16 * 0.08131409 = 5329 * 2^-16 * These constants are defined in jccolor-neon.c * * We add the fixed-point equivalent of 0.5 to Cb and Cr, which effectively * rounds up or down the result via integer truncation. */ void jsimd_rgb_ycc_convert_neon(JDIMENSION image_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { /* Pointer to RGB(X/A) input data */ JSAMPROW inptr; /* Pointers to Y, Cb, and Cr output data */ JSAMPROW outptr0, outptr1, outptr2; /* Allocate temporary buffer for final (image_width % 8) pixels in row. */ ALIGN(16) uint8_t tmp_buf[8 * RGB_PIXELSIZE]; /* Set up conversion constants. */ #ifdef HAVE_VLD1_U16_X2 const uint16x4x2_t consts = vld1_u16_x2(jsimd_rgb_ycc_neon_consts); #else /* GCC does not currently support the intrinsic vld1__x2(). */ const uint16x4_t consts1 = vld1_u16(jsimd_rgb_ycc_neon_consts); const uint16x4_t consts2 = vld1_u16(jsimd_rgb_ycc_neon_consts + 4); const uint16x4x2_t consts = { { consts1, consts2 } }; #endif const uint32x4_t scaled_128_5 = vdupq_n_u32((128 << 16) + 32767); while (--num_rows >= 0) { inptr = *input_buf++; outptr0 = output_buf[0][output_row]; outptr1 = output_buf[1][output_row]; outptr2 = output_buf[2][output_row]; output_row++; int cols_remaining = image_width; for (; cols_remaining > 0; cols_remaining -= 8) { /* To prevent buffer overread by the vector load instructions, the last * (image_width % 8) columns of data are first memcopied to a temporary * buffer large enough to accommodate the vector load. */ if (cols_remaining < 8) { memcpy(tmp_buf, inptr, cols_remaining * RGB_PIXELSIZE); inptr = tmp_buf; } #if RGB_PIXELSIZE == 4 uint8x8x4_t input_pixels = vld4_u8(inptr); #else uint8x8x3_t input_pixels = vld3_u8(inptr); #endif uint16x8_t r = vmovl_u8(input_pixels.val[RGB_RED]); uint16x8_t g = vmovl_u8(input_pixels.val[RGB_GREEN]); uint16x8_t b = vmovl_u8(input_pixels.val[RGB_BLUE]); /* Compute Y = 0.29900 * R + 0.58700 * G + 0.11400 * B */ uint32x4_t y_low = vmull_lane_u16(vget_low_u16(r), consts.val[0], 0); y_low = vmlal_lane_u16(y_low, vget_low_u16(g), consts.val[0], 1); y_low = vmlal_lane_u16(y_low, vget_low_u16(b), consts.val[0], 2); uint32x4_t y_high = vmull_lane_u16(vget_high_u16(r), consts.val[0], 0); y_high = vmlal_lane_u16(y_high, vget_high_u16(g), consts.val[0], 1); y_high = vmlal_lane_u16(y_high, vget_high_u16(b), consts.val[0], 2); /* Compute Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + 128 */ uint32x4_t cb_low = scaled_128_5; cb_low = vmlsl_lane_u16(cb_low, vget_low_u16(r), consts.val[0], 3); cb_low = vmlsl_lane_u16(cb_low, vget_low_u16(g), consts.val[1], 0); cb_low = vmlal_lane_u16(cb_low, vget_low_u16(b), consts.val[1], 1); uint32x4_t cb_high = scaled_128_5; cb_high = vmlsl_lane_u16(cb_high, vget_high_u16(r), consts.val[0], 3); cb_high = vmlsl_lane_u16(cb_high, vget_high_u16(g), consts.val[1], 0); cb_high = vmlal_lane_u16(cb_high, vget_high_u16(b), consts.val[1], 1); /* Compute Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + 128 */ uint32x4_t cr_low = scaled_128_5; cr_low = vmlal_lane_u16(cr_low, vget_low_u16(r), consts.val[1], 1); cr_low = vmlsl_lane_u16(cr_low, vget_low_u16(g), consts.val[1], 2); cr_low = vmlsl_lane_u16(cr_low, vget_low_u16(b), consts.val[1], 3); uint32x4_t cr_high = scaled_128_5; cr_high = vmlal_lane_u16(cr_high, vget_high_u16(r), consts.val[1], 1); cr_high = vmlsl_lane_u16(cr_high, vget_high_u16(g), consts.val[1], 2); cr_high = vmlsl_lane_u16(cr_high, vget_high_u16(b), consts.val[1], 3); /* Descale Y values (rounding right shift) and narrow to 16-bit. */ uint16x8_t y_u16 = vcombine_u16(vrshrn_n_u32(y_low, 16), vrshrn_n_u32(y_high, 16)); /* Descale Cb values (right shift) and narrow to 16-bit. */ uint16x8_t cb_u16 = vcombine_u16(vshrn_n_u32(cb_low, 16), vshrn_n_u32(cb_high, 16)); /* Descale Cr values (right shift) and narrow to 16-bit. */ uint16x8_t cr_u16 = vcombine_u16(vshrn_n_u32(cr_low, 16), vshrn_n_u32(cr_high, 16)); /* Narrow Y, Cb, and Cr values to 8-bit and store to memory. Buffer * overwrite is permitted up to the next multiple of ALIGN_SIZE bytes. */ vst1_u8(outptr0, vmovn_u16(y_u16)); vst1_u8(outptr1, vmovn_u16(cb_u16)); vst1_u8(outptr2, vmovn_u16(cr_u16)); /* Increment pointers. */ inptr += (8 * RGB_PIXELSIZE); outptr0 += 8; outptr1 += 8; outptr2 += 8; } } } libjpeg-turbo-2.1.5/simd/arm/aarch32/jchuff-neon.c000066400000000000000000000322351436506551100216030ustar00rootroot00000000000000/* * jchuff-neon.c - Huffman entropy encoding (32-bit Arm Neon) * * Copyright (C) 2020, Arm Limited. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. * * NOTE: All referenced figures are from * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994. */ #define JPEG_INTERNALS #include "../../../jinclude.h" #include "../../../jpeglib.h" #include "../../../jsimd.h" #include "../../../jdct.h" #include "../../../jsimddct.h" #include "../../jsimd.h" #include "../jchuff.h" #include "neon-compat.h" #include #include JOCTET *jsimd_huff_encode_one_block_neon(void *state, JOCTET *buffer, JCOEFPTR block, int last_dc_val, c_derived_tbl *dctbl, c_derived_tbl *actbl) { uint8_t block_nbits[DCTSIZE2]; uint16_t block_diff[DCTSIZE2]; /* Load rows of coefficients from DCT block in zig-zag order. */ /* Compute DC coefficient difference value. (F.1.1.5.1) */ int16x8_t row0 = vdupq_n_s16(block[0] - last_dc_val); row0 = vld1q_lane_s16(block + 1, row0, 1); row0 = vld1q_lane_s16(block + 8, row0, 2); row0 = vld1q_lane_s16(block + 16, row0, 3); row0 = vld1q_lane_s16(block + 9, row0, 4); row0 = vld1q_lane_s16(block + 2, row0, 5); row0 = vld1q_lane_s16(block + 3, row0, 6); row0 = vld1q_lane_s16(block + 10, row0, 7); int16x8_t row1 = vld1q_dup_s16(block + 17); row1 = vld1q_lane_s16(block + 24, row1, 1); row1 = vld1q_lane_s16(block + 32, row1, 2); row1 = vld1q_lane_s16(block + 25, row1, 3); row1 = vld1q_lane_s16(block + 18, row1, 4); row1 = vld1q_lane_s16(block + 11, row1, 5); row1 = vld1q_lane_s16(block + 4, row1, 6); row1 = vld1q_lane_s16(block + 5, row1, 7); int16x8_t row2 = vld1q_dup_s16(block + 12); row2 = vld1q_lane_s16(block + 19, row2, 1); row2 = vld1q_lane_s16(block + 26, row2, 2); row2 = vld1q_lane_s16(block + 33, row2, 3); row2 = vld1q_lane_s16(block + 40, row2, 4); row2 = vld1q_lane_s16(block + 48, row2, 5); row2 = vld1q_lane_s16(block + 41, row2, 6); row2 = vld1q_lane_s16(block + 34, row2, 7); int16x8_t row3 = vld1q_dup_s16(block + 27); row3 = vld1q_lane_s16(block + 20, row3, 1); row3 = vld1q_lane_s16(block + 13, row3, 2); row3 = vld1q_lane_s16(block + 6, row3, 3); row3 = vld1q_lane_s16(block + 7, row3, 4); row3 = vld1q_lane_s16(block + 14, row3, 5); row3 = vld1q_lane_s16(block + 21, row3, 6); row3 = vld1q_lane_s16(block + 28, row3, 7); int16x8_t abs_row0 = vabsq_s16(row0); int16x8_t abs_row1 = vabsq_s16(row1); int16x8_t abs_row2 = vabsq_s16(row2); int16x8_t abs_row3 = vabsq_s16(row3); int16x8_t row0_lz = vclzq_s16(abs_row0); int16x8_t row1_lz = vclzq_s16(abs_row1); int16x8_t row2_lz = vclzq_s16(abs_row2); int16x8_t row3_lz = vclzq_s16(abs_row3); /* Compute number of bits required to represent each coefficient. */ uint8x8_t row0_nbits = vsub_u8(vdup_n_u8(16), vmovn_u16(vreinterpretq_u16_s16(row0_lz))); uint8x8_t row1_nbits = vsub_u8(vdup_n_u8(16), vmovn_u16(vreinterpretq_u16_s16(row1_lz))); uint8x8_t row2_nbits = vsub_u8(vdup_n_u8(16), vmovn_u16(vreinterpretq_u16_s16(row2_lz))); uint8x8_t row3_nbits = vsub_u8(vdup_n_u8(16), vmovn_u16(vreinterpretq_u16_s16(row3_lz))); vst1_u8(block_nbits + 0 * DCTSIZE, row0_nbits); vst1_u8(block_nbits + 1 * DCTSIZE, row1_nbits); vst1_u8(block_nbits + 2 * DCTSIZE, row2_nbits); vst1_u8(block_nbits + 3 * DCTSIZE, row3_nbits); uint16x8_t row0_mask = vshlq_u16(vreinterpretq_u16_s16(vshrq_n_s16(row0, 15)), vnegq_s16(row0_lz)); uint16x8_t row1_mask = vshlq_u16(vreinterpretq_u16_s16(vshrq_n_s16(row1, 15)), vnegq_s16(row1_lz)); uint16x8_t row2_mask = vshlq_u16(vreinterpretq_u16_s16(vshrq_n_s16(row2, 15)), vnegq_s16(row2_lz)); uint16x8_t row3_mask = vshlq_u16(vreinterpretq_u16_s16(vshrq_n_s16(row3, 15)), vnegq_s16(row3_lz)); uint16x8_t row0_diff = veorq_u16(vreinterpretq_u16_s16(abs_row0), row0_mask); uint16x8_t row1_diff = veorq_u16(vreinterpretq_u16_s16(abs_row1), row1_mask); uint16x8_t row2_diff = veorq_u16(vreinterpretq_u16_s16(abs_row2), row2_mask); uint16x8_t row3_diff = veorq_u16(vreinterpretq_u16_s16(abs_row3), row3_mask); /* Store diff values for rows 0, 1, 2, and 3. */ vst1q_u16(block_diff + 0 * DCTSIZE, row0_diff); vst1q_u16(block_diff + 1 * DCTSIZE, row1_diff); vst1q_u16(block_diff + 2 * DCTSIZE, row2_diff); vst1q_u16(block_diff + 3 * DCTSIZE, row3_diff); /* Load last four rows of coefficients from DCT block in zig-zag order. */ int16x8_t row4 = vld1q_dup_s16(block + 35); row4 = vld1q_lane_s16(block + 42, row4, 1); row4 = vld1q_lane_s16(block + 49, row4, 2); row4 = vld1q_lane_s16(block + 56, row4, 3); row4 = vld1q_lane_s16(block + 57, row4, 4); row4 = vld1q_lane_s16(block + 50, row4, 5); row4 = vld1q_lane_s16(block + 43, row4, 6); row4 = vld1q_lane_s16(block + 36, row4, 7); int16x8_t row5 = vld1q_dup_s16(block + 29); row5 = vld1q_lane_s16(block + 22, row5, 1); row5 = vld1q_lane_s16(block + 15, row5, 2); row5 = vld1q_lane_s16(block + 23, row5, 3); row5 = vld1q_lane_s16(block + 30, row5, 4); row5 = vld1q_lane_s16(block + 37, row5, 5); row5 = vld1q_lane_s16(block + 44, row5, 6); row5 = vld1q_lane_s16(block + 51, row5, 7); int16x8_t row6 = vld1q_dup_s16(block + 58); row6 = vld1q_lane_s16(block + 59, row6, 1); row6 = vld1q_lane_s16(block + 52, row6, 2); row6 = vld1q_lane_s16(block + 45, row6, 3); row6 = vld1q_lane_s16(block + 38, row6, 4); row6 = vld1q_lane_s16(block + 31, row6, 5); row6 = vld1q_lane_s16(block + 39, row6, 6); row6 = vld1q_lane_s16(block + 46, row6, 7); int16x8_t row7 = vld1q_dup_s16(block + 53); row7 = vld1q_lane_s16(block + 60, row7, 1); row7 = vld1q_lane_s16(block + 61, row7, 2); row7 = vld1q_lane_s16(block + 54, row7, 3); row7 = vld1q_lane_s16(block + 47, row7, 4); row7 = vld1q_lane_s16(block + 55, row7, 5); row7 = vld1q_lane_s16(block + 62, row7, 6); row7 = vld1q_lane_s16(block + 63, row7, 7); int16x8_t abs_row4 = vabsq_s16(row4); int16x8_t abs_row5 = vabsq_s16(row5); int16x8_t abs_row6 = vabsq_s16(row6); int16x8_t abs_row7 = vabsq_s16(row7); int16x8_t row4_lz = vclzq_s16(abs_row4); int16x8_t row5_lz = vclzq_s16(abs_row5); int16x8_t row6_lz = vclzq_s16(abs_row6); int16x8_t row7_lz = vclzq_s16(abs_row7); /* Compute number of bits required to represent each coefficient. */ uint8x8_t row4_nbits = vsub_u8(vdup_n_u8(16), vmovn_u16(vreinterpretq_u16_s16(row4_lz))); uint8x8_t row5_nbits = vsub_u8(vdup_n_u8(16), vmovn_u16(vreinterpretq_u16_s16(row5_lz))); uint8x8_t row6_nbits = vsub_u8(vdup_n_u8(16), vmovn_u16(vreinterpretq_u16_s16(row6_lz))); uint8x8_t row7_nbits = vsub_u8(vdup_n_u8(16), vmovn_u16(vreinterpretq_u16_s16(row7_lz))); vst1_u8(block_nbits + 4 * DCTSIZE, row4_nbits); vst1_u8(block_nbits + 5 * DCTSIZE, row5_nbits); vst1_u8(block_nbits + 6 * DCTSIZE, row6_nbits); vst1_u8(block_nbits + 7 * DCTSIZE, row7_nbits); uint16x8_t row4_mask = vshlq_u16(vreinterpretq_u16_s16(vshrq_n_s16(row4, 15)), vnegq_s16(row4_lz)); uint16x8_t row5_mask = vshlq_u16(vreinterpretq_u16_s16(vshrq_n_s16(row5, 15)), vnegq_s16(row5_lz)); uint16x8_t row6_mask = vshlq_u16(vreinterpretq_u16_s16(vshrq_n_s16(row6, 15)), vnegq_s16(row6_lz)); uint16x8_t row7_mask = vshlq_u16(vreinterpretq_u16_s16(vshrq_n_s16(row7, 15)), vnegq_s16(row7_lz)); uint16x8_t row4_diff = veorq_u16(vreinterpretq_u16_s16(abs_row4), row4_mask); uint16x8_t row5_diff = veorq_u16(vreinterpretq_u16_s16(abs_row5), row5_mask); uint16x8_t row6_diff = veorq_u16(vreinterpretq_u16_s16(abs_row6), row6_mask); uint16x8_t row7_diff = veorq_u16(vreinterpretq_u16_s16(abs_row7), row7_mask); /* Store diff values for rows 4, 5, 6, and 7. */ vst1q_u16(block_diff + 4 * DCTSIZE, row4_diff); vst1q_u16(block_diff + 5 * DCTSIZE, row5_diff); vst1q_u16(block_diff + 6 * DCTSIZE, row6_diff); vst1q_u16(block_diff + 7 * DCTSIZE, row7_diff); /* Construct bitmap to accelerate encoding of AC coefficients. A set bit * means that the corresponding coefficient != 0. */ uint8x8_t row0_nbits_gt0 = vcgt_u8(row0_nbits, vdup_n_u8(0)); uint8x8_t row1_nbits_gt0 = vcgt_u8(row1_nbits, vdup_n_u8(0)); uint8x8_t row2_nbits_gt0 = vcgt_u8(row2_nbits, vdup_n_u8(0)); uint8x8_t row3_nbits_gt0 = vcgt_u8(row3_nbits, vdup_n_u8(0)); uint8x8_t row4_nbits_gt0 = vcgt_u8(row4_nbits, vdup_n_u8(0)); uint8x8_t row5_nbits_gt0 = vcgt_u8(row5_nbits, vdup_n_u8(0)); uint8x8_t row6_nbits_gt0 = vcgt_u8(row6_nbits, vdup_n_u8(0)); uint8x8_t row7_nbits_gt0 = vcgt_u8(row7_nbits, vdup_n_u8(0)); /* { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 } */ const uint8x8_t bitmap_mask = vreinterpret_u8_u64(vmov_n_u64(0x0102040810204080)); row0_nbits_gt0 = vand_u8(row0_nbits_gt0, bitmap_mask); row1_nbits_gt0 = vand_u8(row1_nbits_gt0, bitmap_mask); row2_nbits_gt0 = vand_u8(row2_nbits_gt0, bitmap_mask); row3_nbits_gt0 = vand_u8(row3_nbits_gt0, bitmap_mask); row4_nbits_gt0 = vand_u8(row4_nbits_gt0, bitmap_mask); row5_nbits_gt0 = vand_u8(row5_nbits_gt0, bitmap_mask); row6_nbits_gt0 = vand_u8(row6_nbits_gt0, bitmap_mask); row7_nbits_gt0 = vand_u8(row7_nbits_gt0, bitmap_mask); uint8x8_t bitmap_rows_10 = vpadd_u8(row1_nbits_gt0, row0_nbits_gt0); uint8x8_t bitmap_rows_32 = vpadd_u8(row3_nbits_gt0, row2_nbits_gt0); uint8x8_t bitmap_rows_54 = vpadd_u8(row5_nbits_gt0, row4_nbits_gt0); uint8x8_t bitmap_rows_76 = vpadd_u8(row7_nbits_gt0, row6_nbits_gt0); uint8x8_t bitmap_rows_3210 = vpadd_u8(bitmap_rows_32, bitmap_rows_10); uint8x8_t bitmap_rows_7654 = vpadd_u8(bitmap_rows_76, bitmap_rows_54); uint8x8_t bitmap = vpadd_u8(bitmap_rows_7654, bitmap_rows_3210); /* Shift left to remove DC bit. */ bitmap = vreinterpret_u8_u64(vshl_n_u64(vreinterpret_u64_u8(bitmap), 1)); /* Move bitmap to 32-bit scalar registers. */ uint32_t bitmap_1_32 = vget_lane_u32(vreinterpret_u32_u8(bitmap), 1); uint32_t bitmap_33_63 = vget_lane_u32(vreinterpret_u32_u8(bitmap), 0); /* Set up state and bit buffer for output bitstream. */ working_state *state_ptr = (working_state *)state; int free_bits = state_ptr->cur.free_bits; size_t put_buffer = state_ptr->cur.put_buffer; /* Encode DC coefficient. */ unsigned int nbits = block_nbits[0]; /* Emit Huffman-coded symbol and additional diff bits. */ unsigned int diff = block_diff[0]; PUT_CODE(dctbl->ehufco[nbits], dctbl->ehufsi[nbits], diff) /* Encode AC coefficients. */ unsigned int r = 0; /* r = run length of zeros */ unsigned int i = 1; /* i = number of coefficients encoded */ /* Code and size information for a run length of 16 zero coefficients */ const unsigned int code_0xf0 = actbl->ehufco[0xf0]; const unsigned int size_0xf0 = actbl->ehufsi[0xf0]; while (bitmap_1_32 != 0) { r = BUILTIN_CLZ(bitmap_1_32); i += r; bitmap_1_32 <<= r; nbits = block_nbits[i]; diff = block_diff[i]; while (r > 15) { /* If run length > 15, emit special run-length-16 codes. */ PUT_BITS(code_0xf0, size_0xf0) r -= 16; } /* Emit Huffman symbol for run length / number of bits. (F.1.2.2.1) */ unsigned int rs = (r << 4) + nbits; PUT_CODE(actbl->ehufco[rs], actbl->ehufsi[rs], diff) i++; bitmap_1_32 <<= 1; } r = 33 - i; i = 33; while (bitmap_33_63 != 0) { unsigned int leading_zeros = BUILTIN_CLZ(bitmap_33_63); r += leading_zeros; i += leading_zeros; bitmap_33_63 <<= leading_zeros; nbits = block_nbits[i]; diff = block_diff[i]; while (r > 15) { /* If run length > 15, emit special run-length-16 codes. */ PUT_BITS(code_0xf0, size_0xf0) r -= 16; } /* Emit Huffman symbol for run length / number of bits. (F.1.2.2.1) */ unsigned int rs = (r << 4) + nbits; PUT_CODE(actbl->ehufco[rs], actbl->ehufsi[rs], diff) r = 0; i++; bitmap_33_63 <<= 1; } /* If the last coefficient(s) were zero, emit an end-of-block (EOB) code. * The value of RS for the EOB code is 0. */ if (i != 64) { PUT_BITS(actbl->ehufco[0], actbl->ehufsi[0]) } state_ptr->cur.put_buffer = put_buffer; state_ptr->cur.free_bits = free_bits; return buffer; } libjpeg-turbo-2.1.5/simd/arm/aarch32/jsimd.c000066400000000000000000000526121436506551100205100ustar00rootroot00000000000000/* * jsimd_arm.c * * Copyright 2009 Pierre Ossman for Cendio AB * Copyright (C) 2011, Nokia Corporation and/or its subsidiary(-ies). * Copyright (C) 2009-2011, 2013-2014, 2016, 2018, 2022, D. R. Commander. * Copyright (C) 2015-2016, 2018, 2022, Matthieu Darbois. * Copyright (C) 2019, Google LLC. * Copyright (C) 2020, Arm Limited. * * Based on the x86 SIMD extension for IJG JPEG library, * Copyright (C) 1999-2006, MIYASAKA Masaru. * For conditions of distribution and use, see copyright notice in jsimdext.inc * * This file contains the interface between the "normal" portions * of the library and the SIMD implementations when running on a * 32-bit Arm architecture. */ #define JPEG_INTERNALS #include "../../../jinclude.h" #include "../../../jpeglib.h" #include "../../../jsimd.h" #include "../../../jdct.h" #include "../../../jsimddct.h" #include "../../jsimd.h" #include static THREAD_LOCAL unsigned int simd_support = ~0; static THREAD_LOCAL unsigned int simd_huffman = 1; #if !defined(__ARM_NEON__) && (defined(__linux__) || defined(ANDROID) || defined(__ANDROID__)) #define SOMEWHAT_SANE_PROC_CPUINFO_SIZE_LIMIT (1024 * 1024) LOCAL(int) check_feature(char *buffer, char *feature) { char *p; if (*feature == 0) return 0; if (strncmp(buffer, "Features", 8) != 0) return 0; buffer += 8; while (isspace(*buffer)) buffer++; /* Check if 'feature' is present in the buffer as a separate word */ while ((p = strstr(buffer, feature))) { if (p > buffer && !isspace(*(p - 1))) { buffer++; continue; } p += strlen(feature); if (*p != 0 && !isspace(*p)) { buffer++; continue; } return 1; } return 0; } LOCAL(int) parse_proc_cpuinfo(int bufsize) { char *buffer = (char *)malloc(bufsize); FILE *fd; simd_support = 0; if (!buffer) return 0; fd = fopen("/proc/cpuinfo", "r"); if (fd) { while (fgets(buffer, bufsize, fd)) { if (!strchr(buffer, '\n') && !feof(fd)) { /* "impossible" happened - insufficient size of the buffer! */ fclose(fd); free(buffer); return 0; } if (check_feature(buffer, "neon")) simd_support |= JSIMD_NEON; } fclose(fd); } free(buffer); return 1; } #endif /* * Check what SIMD accelerations are supported. */ LOCAL(void) init_simd(void) { #ifndef NO_GETENV char env[2] = { 0 }; #endif #if !defined(__ARM_NEON__) && (defined(__linux__) || defined(ANDROID) || defined(__ANDROID__)) int bufsize = 1024; /* an initial guess for the line buffer size limit */ #endif if (simd_support != ~0U) return; simd_support = 0; #if defined(__ARM_NEON__) simd_support |= JSIMD_NEON; #elif defined(__linux__) || defined(ANDROID) || defined(__ANDROID__) /* We still have a chance to use Neon regardless of globally used * -mcpu/-mfpu options passed to gcc by performing runtime detection via * /proc/cpuinfo parsing on linux/android */ while (!parse_proc_cpuinfo(bufsize)) { bufsize *= 2; if (bufsize > SOMEWHAT_SANE_PROC_CPUINFO_SIZE_LIMIT) break; } #endif #ifndef NO_GETENV /* Force different settings through environment variables */ if (!GETENV_S(env, 2, "JSIMD_FORCENEON") && !strcmp(env, "1")) simd_support = JSIMD_NEON; if (!GETENV_S(env, 2, "JSIMD_FORCENONE") && !strcmp(env, "1")) simd_support = 0; if (!GETENV_S(env, 2, "JSIMD_NOHUFFENC") && !strcmp(env, "1")) simd_huffman = 0; #endif } GLOBAL(int) jsimd_can_rgb_ycc(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if ((RGB_PIXELSIZE != 3) && (RGB_PIXELSIZE != 4)) return 0; if (simd_support & JSIMD_NEON) return 1; return 0; } GLOBAL(int) jsimd_can_rgb_gray(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if ((RGB_PIXELSIZE != 3) && (RGB_PIXELSIZE != 4)) return 0; if (simd_support & JSIMD_NEON) return 1; return 0; } GLOBAL(int) jsimd_can_ycc_rgb(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if ((RGB_PIXELSIZE != 3) && (RGB_PIXELSIZE != 4)) return 0; if (simd_support & JSIMD_NEON) return 1; return 0; } GLOBAL(int) jsimd_can_ycc_rgb565(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_NEON) return 1; return 0; } GLOBAL(void) jsimd_rgb_ycc_convert(j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { void (*neonfct) (JDIMENSION, JSAMPARRAY, JSAMPIMAGE, JDIMENSION, int); switch (cinfo->in_color_space) { case JCS_EXT_RGB: neonfct = jsimd_extrgb_ycc_convert_neon; break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: neonfct = jsimd_extrgbx_ycc_convert_neon; break; case JCS_EXT_BGR: neonfct = jsimd_extbgr_ycc_convert_neon; break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: neonfct = jsimd_extbgrx_ycc_convert_neon; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: neonfct = jsimd_extxbgr_ycc_convert_neon; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: neonfct = jsimd_extxrgb_ycc_convert_neon; break; default: neonfct = jsimd_extrgb_ycc_convert_neon; break; } neonfct(cinfo->image_width, input_buf, output_buf, output_row, num_rows); } GLOBAL(void) jsimd_rgb_gray_convert(j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { void (*neonfct) (JDIMENSION, JSAMPARRAY, JSAMPIMAGE, JDIMENSION, int); switch (cinfo->in_color_space) { case JCS_EXT_RGB: neonfct = jsimd_extrgb_gray_convert_neon; break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: neonfct = jsimd_extrgbx_gray_convert_neon; break; case JCS_EXT_BGR: neonfct = jsimd_extbgr_gray_convert_neon; break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: neonfct = jsimd_extbgrx_gray_convert_neon; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: neonfct = jsimd_extxbgr_gray_convert_neon; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: neonfct = jsimd_extxrgb_gray_convert_neon; break; default: neonfct = jsimd_extrgb_gray_convert_neon; break; } neonfct(cinfo->image_width, input_buf, output_buf, output_row, num_rows); } GLOBAL(void) jsimd_ycc_rgb_convert(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { void (*neonfct) (JDIMENSION, JSAMPIMAGE, JDIMENSION, JSAMPARRAY, int); switch (cinfo->out_color_space) { case JCS_EXT_RGB: neonfct = jsimd_ycc_extrgb_convert_neon; break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: neonfct = jsimd_ycc_extrgbx_convert_neon; break; case JCS_EXT_BGR: neonfct = jsimd_ycc_extbgr_convert_neon; break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: neonfct = jsimd_ycc_extbgrx_convert_neon; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: neonfct = jsimd_ycc_extxbgr_convert_neon; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: neonfct = jsimd_ycc_extxrgb_convert_neon; break; default: neonfct = jsimd_ycc_extrgb_convert_neon; break; } neonfct(cinfo->output_width, input_buf, input_row, output_buf, num_rows); } GLOBAL(void) jsimd_ycc_rgb565_convert(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { jsimd_ycc_rgb565_convert_neon(cinfo->output_width, input_buf, input_row, output_buf, num_rows); } GLOBAL(int) jsimd_can_h2v2_downsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (DCTSIZE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_NEON) return 1; return 0; } GLOBAL(int) jsimd_can_h2v1_downsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (DCTSIZE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_NEON) return 1; return 0; } GLOBAL(void) jsimd_h2v2_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY output_data) { jsimd_h2v2_downsample_neon(cinfo->image_width, cinfo->max_v_samp_factor, compptr->v_samp_factor, compptr->width_in_blocks, input_data, output_data); } GLOBAL(void) jsimd_h2v1_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY output_data) { jsimd_h2v1_downsample_neon(cinfo->image_width, cinfo->max_v_samp_factor, compptr->v_samp_factor, compptr->width_in_blocks, input_data, output_data); } GLOBAL(int) jsimd_can_h2v2_upsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_NEON) return 1; return 0; } GLOBAL(int) jsimd_can_h2v1_upsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_NEON) return 1; return 0; } GLOBAL(void) jsimd_h2v2_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { jsimd_h2v2_upsample_neon(cinfo->max_v_samp_factor, cinfo->output_width, input_data, output_data_ptr); } GLOBAL(void) jsimd_h2v1_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { jsimd_h2v1_upsample_neon(cinfo->max_v_samp_factor, cinfo->output_width, input_data, output_data_ptr); } GLOBAL(int) jsimd_can_h2v2_fancy_upsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_NEON) return 1; return 0; } GLOBAL(int) jsimd_can_h2v1_fancy_upsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_NEON) return 1; return 0; } GLOBAL(int) jsimd_can_h1v2_fancy_upsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_NEON) return 1; return 0; } GLOBAL(void) jsimd_h2v2_fancy_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { jsimd_h2v2_fancy_upsample_neon(cinfo->max_v_samp_factor, compptr->downsampled_width, input_data, output_data_ptr); } GLOBAL(void) jsimd_h2v1_fancy_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { jsimd_h2v1_fancy_upsample_neon(cinfo->max_v_samp_factor, compptr->downsampled_width, input_data, output_data_ptr); } GLOBAL(void) jsimd_h1v2_fancy_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { jsimd_h1v2_fancy_upsample_neon(cinfo->max_v_samp_factor, compptr->downsampled_width, input_data, output_data_ptr); } GLOBAL(int) jsimd_can_h2v2_merged_upsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_NEON) return 1; return 0; } GLOBAL(int) jsimd_can_h2v1_merged_upsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_NEON) return 1; return 0; } GLOBAL(void) jsimd_h2v2_merged_upsample(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { void (*neonfct) (JDIMENSION, JSAMPIMAGE, JDIMENSION, JSAMPARRAY); switch (cinfo->out_color_space) { case JCS_EXT_RGB: neonfct = jsimd_h2v2_extrgb_merged_upsample_neon; break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: neonfct = jsimd_h2v2_extrgbx_merged_upsample_neon; break; case JCS_EXT_BGR: neonfct = jsimd_h2v2_extbgr_merged_upsample_neon; break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: neonfct = jsimd_h2v2_extbgrx_merged_upsample_neon; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: neonfct = jsimd_h2v2_extxbgr_merged_upsample_neon; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: neonfct = jsimd_h2v2_extxrgb_merged_upsample_neon; break; default: neonfct = jsimd_h2v2_extrgb_merged_upsample_neon; break; } neonfct(cinfo->output_width, input_buf, in_row_group_ctr, output_buf); } GLOBAL(void) jsimd_h2v1_merged_upsample(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { void (*neonfct) (JDIMENSION, JSAMPIMAGE, JDIMENSION, JSAMPARRAY); switch (cinfo->out_color_space) { case JCS_EXT_RGB: neonfct = jsimd_h2v1_extrgb_merged_upsample_neon; break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: neonfct = jsimd_h2v1_extrgbx_merged_upsample_neon; break; case JCS_EXT_BGR: neonfct = jsimd_h2v1_extbgr_merged_upsample_neon; break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: neonfct = jsimd_h2v1_extbgrx_merged_upsample_neon; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: neonfct = jsimd_h2v1_extxbgr_merged_upsample_neon; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: neonfct = jsimd_h2v1_extxrgb_merged_upsample_neon; break; default: neonfct = jsimd_h2v1_extrgb_merged_upsample_neon; break; } neonfct(cinfo->output_width, input_buf, in_row_group_ctr, output_buf); } GLOBAL(int) jsimd_can_convsamp(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(DCTELEM) != 2) return 0; if (simd_support & JSIMD_NEON) return 1; return 0; } GLOBAL(int) jsimd_can_convsamp_float(void) { return 0; } GLOBAL(void) jsimd_convsamp(JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM *workspace) { jsimd_convsamp_neon(sample_data, start_col, workspace); } GLOBAL(void) jsimd_convsamp_float(JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT *workspace) { } GLOBAL(int) jsimd_can_fdct_islow(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(DCTELEM) != 2) return 0; if (simd_support & JSIMD_NEON) return 1; return 0; } GLOBAL(int) jsimd_can_fdct_ifast(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(DCTELEM) != 2) return 0; if (simd_support & JSIMD_NEON) return 1; return 0; } GLOBAL(int) jsimd_can_fdct_float(void) { return 0; } GLOBAL(void) jsimd_fdct_islow(DCTELEM *data) { jsimd_fdct_islow_neon(data); } GLOBAL(void) jsimd_fdct_ifast(DCTELEM *data) { jsimd_fdct_ifast_neon(data); } GLOBAL(void) jsimd_fdct_float(FAST_FLOAT *data) { } GLOBAL(int) jsimd_can_quantize(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (sizeof(DCTELEM) != 2) return 0; if (simd_support & JSIMD_NEON) return 1; return 0; } GLOBAL(int) jsimd_can_quantize_float(void) { return 0; } GLOBAL(void) jsimd_quantize(JCOEFPTR coef_block, DCTELEM *divisors, DCTELEM *workspace) { jsimd_quantize_neon(coef_block, divisors, workspace); } GLOBAL(void) jsimd_quantize_float(JCOEFPTR coef_block, FAST_FLOAT *divisors, FAST_FLOAT *workspace) { } GLOBAL(int) jsimd_can_idct_2x2(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(ISLOW_MULT_TYPE) != 2) return 0; if (simd_support & JSIMD_NEON) return 1; return 0; } GLOBAL(int) jsimd_can_idct_4x4(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(ISLOW_MULT_TYPE) != 2) return 0; if (simd_support & JSIMD_NEON) return 1; return 0; } GLOBAL(void) jsimd_idct_2x2(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { jsimd_idct_2x2_neon(compptr->dct_table, coef_block, output_buf, output_col); } GLOBAL(void) jsimd_idct_4x4(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { jsimd_idct_4x4_neon(compptr->dct_table, coef_block, output_buf, output_col); } GLOBAL(int) jsimd_can_idct_islow(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(ISLOW_MULT_TYPE) != 2) return 0; if (simd_support & JSIMD_NEON) return 1; return 0; } GLOBAL(int) jsimd_can_idct_ifast(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(IFAST_MULT_TYPE) != 2) return 0; if (IFAST_SCALE_BITS != 2) return 0; if (simd_support & JSIMD_NEON) return 1; return 0; } GLOBAL(int) jsimd_can_idct_float(void) { return 0; } GLOBAL(void) jsimd_idct_islow(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { jsimd_idct_islow_neon(compptr->dct_table, coef_block, output_buf, output_col); } GLOBAL(void) jsimd_idct_ifast(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { jsimd_idct_ifast_neon(compptr->dct_table, coef_block, output_buf, output_col); } GLOBAL(void) jsimd_idct_float(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { } GLOBAL(int) jsimd_can_huff_encode_one_block(void) { init_simd(); if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (simd_support & JSIMD_NEON && simd_huffman) return 1; return 0; } GLOBAL(JOCTET *) jsimd_huff_encode_one_block(void *state, JOCTET *buffer, JCOEFPTR block, int last_dc_val, c_derived_tbl *dctbl, c_derived_tbl *actbl) { return jsimd_huff_encode_one_block_neon(state, buffer, block, last_dc_val, dctbl, actbl); } GLOBAL(int) jsimd_can_encode_mcu_AC_first_prepare(void) { init_simd(); if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (simd_support & JSIMD_NEON) return 1; return 0; } GLOBAL(void) jsimd_encode_mcu_AC_first_prepare(const JCOEF *block, const int *jpeg_natural_order_start, int Sl, int Al, UJCOEF *values, size_t *zerobits) { jsimd_encode_mcu_AC_first_prepare_neon(block, jpeg_natural_order_start, Sl, Al, values, zerobits); } GLOBAL(int) jsimd_can_encode_mcu_AC_refine_prepare(void) { init_simd(); if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (simd_support & JSIMD_NEON) return 1; return 0; } GLOBAL(int) jsimd_encode_mcu_AC_refine_prepare(const JCOEF *block, const int *jpeg_natural_order_start, int Sl, int Al, UJCOEF *absvalues, size_t *bits) { return jsimd_encode_mcu_AC_refine_prepare_neon(block, jpeg_natural_order_start, Sl, Al, absvalues, bits); } libjpeg-turbo-2.1.5/simd/arm/aarch32/jsimd_neon.S000066400000000000000000001253341436506551100215110ustar00rootroot00000000000000/* * Armv7 Neon optimizations for libjpeg-turbo * * Copyright (C) 2009-2011, Nokia Corporation and/or its subsidiary(-ies). * All Rights Reserved. * Author: Siarhei Siamashka * Copyright (C) 2014, Siarhei Siamashka. All Rights Reserved. * Copyright (C) 2014, Linaro Limited. All Rights Reserved. * Copyright (C) 2015, D. R. Commander. All Rights Reserved. * Copyright (C) 2015-2016, 2018, Matthieu Darbois. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #if defined(__linux__) && defined(__ELF__) .section .note.GNU-stack, "", %progbits /* mark stack as non-executable */ #endif .text .fpu neon .arch armv7a .object_arch armv4 .arm .syntax unified /*****************************************************************************/ /* Supplementary macro for setting function attributes */ .macro asm_function fname #ifdef __APPLE__ .private_extern _\fname .globl _\fname _\fname: #else .global \fname #ifdef __ELF__ .hidden \fname .type \fname, %function #endif \fname: #endif .endm #define CENTERJSAMPLE 128 /*****************************************************************************/ /* * Perform dequantization and inverse DCT on one block of coefficients. * * GLOBAL(void) * jsimd_idct_islow_neon(void *dct_table, JCOEFPTR coef_block, * JSAMPARRAY output_buf, JDIMENSION output_col) */ #define FIX_0_298631336 (2446) #define FIX_0_390180644 (3196) #define FIX_0_541196100 (4433) #define FIX_0_765366865 (6270) #define FIX_0_899976223 (7373) #define FIX_1_175875602 (9633) #define FIX_1_501321110 (12299) #define FIX_1_847759065 (15137) #define FIX_1_961570560 (16069) #define FIX_2_053119869 (16819) #define FIX_2_562915447 (20995) #define FIX_3_072711026 (25172) #define FIX_1_175875602_MINUS_1_961570560 (FIX_1_175875602 - FIX_1_961570560) #define FIX_1_175875602_MINUS_0_390180644 (FIX_1_175875602 - FIX_0_390180644) #define FIX_0_541196100_MINUS_1_847759065 (FIX_0_541196100 - FIX_1_847759065) #define FIX_3_072711026_MINUS_2_562915447 (FIX_3_072711026 - FIX_2_562915447) #define FIX_0_298631336_MINUS_0_899976223 (FIX_0_298631336 - FIX_0_899976223) #define FIX_1_501321110_MINUS_0_899976223 (FIX_1_501321110 - FIX_0_899976223) #define FIX_2_053119869_MINUS_2_562915447 (FIX_2_053119869 - FIX_2_562915447) #define FIX_0_541196100_PLUS_0_765366865 (FIX_0_541196100 + FIX_0_765366865) /* * Reference SIMD-friendly 1-D ISLOW iDCT C implementation. * Uses some ideas from the comments in 'simd/jiss2int-64.asm' */ #define REF_1D_IDCT(xrow0, xrow1, xrow2, xrow3, xrow4, xrow5, xrow6, xrow7) { \ DCTELEM row0, row1, row2, row3, row4, row5, row6, row7; \ JLONG q1, q2, q3, q4, q5, q6, q7; \ JLONG tmp11_plus_tmp2, tmp11_minus_tmp2; \ \ /* 1-D iDCT input data */ \ row0 = xrow0; \ row1 = xrow1; \ row2 = xrow2; \ row3 = xrow3; \ row4 = xrow4; \ row5 = xrow5; \ row6 = xrow6; \ row7 = xrow7; \ \ q5 = row7 + row3; \ q4 = row5 + row1; \ q6 = MULTIPLY(q5, FIX_1_175875602_MINUS_1_961570560) + \ MULTIPLY(q4, FIX_1_175875602); \ q7 = MULTIPLY(q5, FIX_1_175875602) + \ MULTIPLY(q4, FIX_1_175875602_MINUS_0_390180644); \ q2 = MULTIPLY(row2, FIX_0_541196100) + \ MULTIPLY(row6, FIX_0_541196100_MINUS_1_847759065); \ q4 = q6; \ q3 = ((JLONG)row0 - (JLONG)row4) << 13; \ q6 += MULTIPLY(row5, -FIX_2_562915447) + \ MULTIPLY(row3, FIX_3_072711026_MINUS_2_562915447); \ /* now we can use q1 (reloadable constants have been used up) */ \ q1 = q3 + q2; \ q4 += MULTIPLY(row7, FIX_0_298631336_MINUS_0_899976223) + \ MULTIPLY(row1, -FIX_0_899976223); \ q5 = q7; \ q1 = q1 + q6; \ q7 += MULTIPLY(row7, -FIX_0_899976223) + \ MULTIPLY(row1, FIX_1_501321110_MINUS_0_899976223); \ \ /* (tmp11 + tmp2) has been calculated (out_row1 before descale) */ \ tmp11_plus_tmp2 = q1; \ row1 = 0; \ \ q1 = q1 - q6; \ q5 += MULTIPLY(row5, FIX_2_053119869_MINUS_2_562915447) + \ MULTIPLY(row3, -FIX_2_562915447); \ q1 = q1 - q6; \ q6 = MULTIPLY(row2, FIX_0_541196100_PLUS_0_765366865) + \ MULTIPLY(row6, FIX_0_541196100); \ q3 = q3 - q2; \ \ /* (tmp11 - tmp2) has been calculated (out_row6 before descale) */ \ tmp11_minus_tmp2 = q1; \ \ q1 = ((JLONG)row0 + (JLONG)row4) << 13; \ q2 = q1 + q6; \ q1 = q1 - q6; \ \ /* pick up the results */ \ tmp0 = q4; \ tmp1 = q5; \ tmp2 = (tmp11_plus_tmp2 - tmp11_minus_tmp2) / 2; \ tmp3 = q7; \ tmp10 = q2; \ tmp11 = (tmp11_plus_tmp2 + tmp11_minus_tmp2) / 2; \ tmp12 = q3; \ tmp13 = q1; \ } #define XFIX_0_899976223 d0[0] #define XFIX_0_541196100 d0[1] #define XFIX_2_562915447 d0[2] #define XFIX_0_298631336_MINUS_0_899976223 d0[3] #define XFIX_1_501321110_MINUS_0_899976223 d1[0] #define XFIX_2_053119869_MINUS_2_562915447 d1[1] #define XFIX_0_541196100_PLUS_0_765366865 d1[2] #define XFIX_1_175875602 d1[3] #define XFIX_1_175875602_MINUS_0_390180644 d2[0] #define XFIX_0_541196100_MINUS_1_847759065 d2[1] #define XFIX_3_072711026_MINUS_2_562915447 d2[2] #define XFIX_1_175875602_MINUS_1_961570560 d2[3] .balign 16 jsimd_idct_islow_neon_consts: .short FIX_0_899976223 /* d0[0] */ .short FIX_0_541196100 /* d0[1] */ .short FIX_2_562915447 /* d0[2] */ .short FIX_0_298631336_MINUS_0_899976223 /* d0[3] */ .short FIX_1_501321110_MINUS_0_899976223 /* d1[0] */ .short FIX_2_053119869_MINUS_2_562915447 /* d1[1] */ .short FIX_0_541196100_PLUS_0_765366865 /* d1[2] */ .short FIX_1_175875602 /* d1[3] */ /* reloadable constants */ .short FIX_1_175875602_MINUS_0_390180644 /* d2[0] */ .short FIX_0_541196100_MINUS_1_847759065 /* d2[1] */ .short FIX_3_072711026_MINUS_2_562915447 /* d2[2] */ .short FIX_1_175875602_MINUS_1_961570560 /* d2[3] */ asm_function jsimd_idct_islow_neon DCT_TABLE .req r0 COEF_BLOCK .req r1 OUTPUT_BUF .req r2 OUTPUT_COL .req r3 TMP1 .req r0 TMP2 .req r1 TMP3 .req r2 TMP4 .req ip ROW0L .req d16 ROW0R .req d17 ROW1L .req d18 ROW1R .req d19 ROW2L .req d20 ROW2R .req d21 ROW3L .req d22 ROW3R .req d23 ROW4L .req d24 ROW4R .req d25 ROW5L .req d26 ROW5R .req d27 ROW6L .req d28 ROW6R .req d29 ROW7L .req d30 ROW7R .req d31 /* Load and dequantize coefficients into Neon registers * with the following allocation: * 0 1 2 3 | 4 5 6 7 * ---------+-------- * 0 | d16 | d17 ( q8 ) * 1 | d18 | d19 ( q9 ) * 2 | d20 | d21 ( q10 ) * 3 | d22 | d23 ( q11 ) * 4 | d24 | d25 ( q12 ) * 5 | d26 | d27 ( q13 ) * 6 | d28 | d29 ( q14 ) * 7 | d30 | d31 ( q15 ) */ adr ip, jsimd_idct_islow_neon_consts vld1.16 {d16, d17, d18, d19}, [COEF_BLOCK, :128]! vld1.16 {d0, d1, d2, d3}, [DCT_TABLE, :128]! vld1.16 {d20, d21, d22, d23}, [COEF_BLOCK, :128]! vmul.s16 q8, q8, q0 vld1.16 {d4, d5, d6, d7}, [DCT_TABLE, :128]! vmul.s16 q9, q9, q1 vld1.16 {d24, d25, d26, d27}, [COEF_BLOCK, :128]! vmul.s16 q10, q10, q2 vld1.16 {d0, d1, d2, d3}, [DCT_TABLE, :128]! vmul.s16 q11, q11, q3 vld1.16 {d28, d29, d30, d31}, [COEF_BLOCK, :128] vmul.s16 q12, q12, q0 vld1.16 {d4, d5, d6, d7}, [DCT_TABLE, :128]! vmul.s16 q14, q14, q2 vmul.s16 q13, q13, q1 vld1.16 {d0, d1, d2, d3}, [ip, :128] /* load constants */ add ip, ip, #16 vmul.s16 q15, q15, q3 vpush {d8 - d15} /* save Neon registers */ /* 1-D IDCT, pass 1, left 4x8 half */ vadd.s16 d4, ROW7L, ROW3L vadd.s16 d5, ROW5L, ROW1L vmull.s16 q6, d4, XFIX_1_175875602_MINUS_1_961570560 vmlal.s16 q6, d5, XFIX_1_175875602 vmull.s16 q7, d4, XFIX_1_175875602 /* Check for the zero coefficients in the right 4x8 half */ push {r4, r5} vmlal.s16 q7, d5, XFIX_1_175875602_MINUS_0_390180644 vsubl.s16 q3, ROW0L, ROW4L ldrd r4, [COEF_BLOCK, #(-96 + 2 * (4 + 1 * 8))] vmull.s16 q2, ROW2L, XFIX_0_541196100 vmlal.s16 q2, ROW6L, XFIX_0_541196100_MINUS_1_847759065 orr r0, r4, r5 vmov q4, q6 vmlsl.s16 q6, ROW5L, XFIX_2_562915447 ldrd r4, [COEF_BLOCK, #(-96 + 2 * (4 + 2 * 8))] vmlal.s16 q6, ROW3L, XFIX_3_072711026_MINUS_2_562915447 vshl.s32 q3, q3, #13 orr r0, r0, r4 vmlsl.s16 q4, ROW1L, XFIX_0_899976223 orr r0, r0, r5 vadd.s32 q1, q3, q2 ldrd r4, [COEF_BLOCK, #(-96 + 2 * (4 + 3 * 8))] vmov q5, q7 vadd.s32 q1, q1, q6 orr r0, r0, r4 vmlsl.s16 q7, ROW7L, XFIX_0_899976223 orr r0, r0, r5 vmlal.s16 q7, ROW1L, XFIX_1_501321110_MINUS_0_899976223 vrshrn.s32 ROW1L, q1, #11 ldrd r4, [COEF_BLOCK, #(-96 + 2 * (4 + 4 * 8))] vsub.s32 q1, q1, q6 vmlal.s16 q5, ROW5L, XFIX_2_053119869_MINUS_2_562915447 orr r0, r0, r4 vmlsl.s16 q5, ROW3L, XFIX_2_562915447 orr r0, r0, r5 vsub.s32 q1, q1, q6 vmull.s16 q6, ROW2L, XFIX_0_541196100_PLUS_0_765366865 ldrd r4, [COEF_BLOCK, #(-96 + 2 * (4 + 5 * 8))] vmlal.s16 q6, ROW6L, XFIX_0_541196100 vsub.s32 q3, q3, q2 orr r0, r0, r4 vrshrn.s32 ROW6L, q1, #11 orr r0, r0, r5 vadd.s32 q1, q3, q5 ldrd r4, [COEF_BLOCK, #(-96 + 2 * (4 + 6 * 8))] vsub.s32 q3, q3, q5 vaddl.s16 q5, ROW0L, ROW4L orr r0, r0, r4 vrshrn.s32 ROW2L, q1, #11 orr r0, r0, r5 vrshrn.s32 ROW5L, q3, #11 ldrd r4, [COEF_BLOCK, #(-96 + 2 * (4 + 7 * 8))] vshl.s32 q5, q5, #13 vmlal.s16 q4, ROW7L, XFIX_0_298631336_MINUS_0_899976223 orr r0, r0, r4 vadd.s32 q2, q5, q6 orrs r0, r0, r5 vsub.s32 q1, q5, q6 vadd.s32 q6, q2, q7 ldrd r4, [COEF_BLOCK, #(-96 + 2 * (4 + 0 * 8))] vsub.s32 q2, q2, q7 vadd.s32 q5, q1, q4 orr r0, r4, r5 vsub.s32 q3, q1, q4 pop {r4, r5} vrshrn.s32 ROW7L, q2, #11 vrshrn.s32 ROW3L, q5, #11 vrshrn.s32 ROW0L, q6, #11 vrshrn.s32 ROW4L, q3, #11 beq 3f /* Go to do some special handling for the sparse right 4x8 half */ /* 1-D IDCT, pass 1, right 4x8 half */ vld1.s16 {d2}, [ip, :64] /* reload constants */ vadd.s16 d10, ROW7R, ROW3R vadd.s16 d8, ROW5R, ROW1R /* Transpose left 4x8 half */ vtrn.16 ROW6L, ROW7L vmull.s16 q6, d10, XFIX_1_175875602_MINUS_1_961570560 vmlal.s16 q6, d8, XFIX_1_175875602 vtrn.16 ROW2L, ROW3L vmull.s16 q7, d10, XFIX_1_175875602 vmlal.s16 q7, d8, XFIX_1_175875602_MINUS_0_390180644 vtrn.16 ROW0L, ROW1L vsubl.s16 q3, ROW0R, ROW4R vmull.s16 q2, ROW2R, XFIX_0_541196100 vmlal.s16 q2, ROW6R, XFIX_0_541196100_MINUS_1_847759065 vtrn.16 ROW4L, ROW5L vmov q4, q6 vmlsl.s16 q6, ROW5R, XFIX_2_562915447 vmlal.s16 q6, ROW3R, XFIX_3_072711026_MINUS_2_562915447 vtrn.32 ROW1L, ROW3L vshl.s32 q3, q3, #13 vmlsl.s16 q4, ROW1R, XFIX_0_899976223 vtrn.32 ROW4L, ROW6L vadd.s32 q1, q3, q2 vmov q5, q7 vadd.s32 q1, q1, q6 vtrn.32 ROW0L, ROW2L vmlsl.s16 q7, ROW7R, XFIX_0_899976223 vmlal.s16 q7, ROW1R, XFIX_1_501321110_MINUS_0_899976223 vrshrn.s32 ROW1R, q1, #11 vtrn.32 ROW5L, ROW7L vsub.s32 q1, q1, q6 vmlal.s16 q5, ROW5R, XFIX_2_053119869_MINUS_2_562915447 vmlsl.s16 q5, ROW3R, XFIX_2_562915447 vsub.s32 q1, q1, q6 vmull.s16 q6, ROW2R, XFIX_0_541196100_PLUS_0_765366865 vmlal.s16 q6, ROW6R, XFIX_0_541196100 vsub.s32 q3, q3, q2 vrshrn.s32 ROW6R, q1, #11 vadd.s32 q1, q3, q5 vsub.s32 q3, q3, q5 vaddl.s16 q5, ROW0R, ROW4R vrshrn.s32 ROW2R, q1, #11 vrshrn.s32 ROW5R, q3, #11 vshl.s32 q5, q5, #13 vmlal.s16 q4, ROW7R, XFIX_0_298631336_MINUS_0_899976223 vadd.s32 q2, q5, q6 vsub.s32 q1, q5, q6 vadd.s32 q6, q2, q7 vsub.s32 q2, q2, q7 vadd.s32 q5, q1, q4 vsub.s32 q3, q1, q4 vrshrn.s32 ROW7R, q2, #11 vrshrn.s32 ROW3R, q5, #11 vrshrn.s32 ROW0R, q6, #11 vrshrn.s32 ROW4R, q3, #11 /* Transpose right 4x8 half */ vtrn.16 ROW6R, ROW7R vtrn.16 ROW2R, ROW3R vtrn.16 ROW0R, ROW1R vtrn.16 ROW4R, ROW5R vtrn.32 ROW1R, ROW3R vtrn.32 ROW4R, ROW6R vtrn.32 ROW0R, ROW2R vtrn.32 ROW5R, ROW7R 1: /* 1-D IDCT, pass 2 (normal variant), left 4x8 half */ vld1.s16 {d2}, [ip, :64] /* reload constants */ vmull.s16 q6, ROW1R, XFIX_1_175875602 /* ROW5L <-> ROW1R */ vmlal.s16 q6, ROW1L, XFIX_1_175875602 vmlal.s16 q6, ROW3R, XFIX_1_175875602_MINUS_1_961570560 /* ROW7L <-> ROW3R */ vmlal.s16 q6, ROW3L, XFIX_1_175875602_MINUS_1_961570560 vmull.s16 q7, ROW3R, XFIX_1_175875602 /* ROW7L <-> ROW3R */ vmlal.s16 q7, ROW3L, XFIX_1_175875602 vmlal.s16 q7, ROW1R, XFIX_1_175875602_MINUS_0_390180644 /* ROW5L <-> ROW1R */ vmlal.s16 q7, ROW1L, XFIX_1_175875602_MINUS_0_390180644 vsubl.s16 q3, ROW0L, ROW0R /* ROW4L <-> ROW0R */ vmull.s16 q2, ROW2L, XFIX_0_541196100 vmlal.s16 q2, ROW2R, XFIX_0_541196100_MINUS_1_847759065 /* ROW6L <-> ROW2R */ vmov q4, q6 vmlsl.s16 q6, ROW1R, XFIX_2_562915447 /* ROW5L <-> ROW1R */ vmlal.s16 q6, ROW3L, XFIX_3_072711026_MINUS_2_562915447 vshl.s32 q3, q3, #13 vmlsl.s16 q4, ROW1L, XFIX_0_899976223 vadd.s32 q1, q3, q2 vmov q5, q7 vadd.s32 q1, q1, q6 vmlsl.s16 q7, ROW3R, XFIX_0_899976223 /* ROW7L <-> ROW3R */ vmlal.s16 q7, ROW1L, XFIX_1_501321110_MINUS_0_899976223 vshrn.s32 ROW1L, q1, #16 vsub.s32 q1, q1, q6 vmlal.s16 q5, ROW1R, XFIX_2_053119869_MINUS_2_562915447 /* ROW5L <-> ROW1R */ vmlsl.s16 q5, ROW3L, XFIX_2_562915447 vsub.s32 q1, q1, q6 vmull.s16 q6, ROW2L, XFIX_0_541196100_PLUS_0_765366865 vmlal.s16 q6, ROW2R, XFIX_0_541196100 /* ROW6L <-> ROW2R */ vsub.s32 q3, q3, q2 vshrn.s32 ROW2R, q1, #16 /* ROW6L <-> ROW2R */ vadd.s32 q1, q3, q5 vsub.s32 q3, q3, q5 vaddl.s16 q5, ROW0L, ROW0R /* ROW4L <-> ROW0R */ vshrn.s32 ROW2L, q1, #16 vshrn.s32 ROW1R, q3, #16 /* ROW5L <-> ROW1R */ vshl.s32 q5, q5, #13 vmlal.s16 q4, ROW3R, XFIX_0_298631336_MINUS_0_899976223 /* ROW7L <-> ROW3R */ vadd.s32 q2, q5, q6 vsub.s32 q1, q5, q6 vadd.s32 q6, q2, q7 vsub.s32 q2, q2, q7 vadd.s32 q5, q1, q4 vsub.s32 q3, q1, q4 vshrn.s32 ROW3R, q2, #16 /* ROW7L <-> ROW3R */ vshrn.s32 ROW3L, q5, #16 vshrn.s32 ROW0L, q6, #16 vshrn.s32 ROW0R, q3, #16 /* ROW4L <-> ROW0R */ /* 1-D IDCT, pass 2, right 4x8 half */ vld1.s16 {d2}, [ip, :64] /* reload constants */ vmull.s16 q6, ROW5R, XFIX_1_175875602 vmlal.s16 q6, ROW5L, XFIX_1_175875602 /* ROW5L <-> ROW1R */ vmlal.s16 q6, ROW7R, XFIX_1_175875602_MINUS_1_961570560 vmlal.s16 q6, ROW7L, XFIX_1_175875602_MINUS_1_961570560 /* ROW7L <-> ROW3R */ vmull.s16 q7, ROW7R, XFIX_1_175875602 vmlal.s16 q7, ROW7L, XFIX_1_175875602 /* ROW7L <-> ROW3R */ vmlal.s16 q7, ROW5R, XFIX_1_175875602_MINUS_0_390180644 vmlal.s16 q7, ROW5L, XFIX_1_175875602_MINUS_0_390180644 /* ROW5L <-> ROW1R */ vsubl.s16 q3, ROW4L, ROW4R /* ROW4L <-> ROW0R */ vmull.s16 q2, ROW6L, XFIX_0_541196100 /* ROW6L <-> ROW2R */ vmlal.s16 q2, ROW6R, XFIX_0_541196100_MINUS_1_847759065 vmov q4, q6 vmlsl.s16 q6, ROW5R, XFIX_2_562915447 vmlal.s16 q6, ROW7L, XFIX_3_072711026_MINUS_2_562915447 /* ROW7L <-> ROW3R */ vshl.s32 q3, q3, #13 vmlsl.s16 q4, ROW5L, XFIX_0_899976223 /* ROW5L <-> ROW1R */ vadd.s32 q1, q3, q2 vmov q5, q7 vadd.s32 q1, q1, q6 vmlsl.s16 q7, ROW7R, XFIX_0_899976223 vmlal.s16 q7, ROW5L, XFIX_1_501321110_MINUS_0_899976223 /* ROW5L <-> ROW1R */ vshrn.s32 ROW5L, q1, #16 /* ROW5L <-> ROW1R */ vsub.s32 q1, q1, q6 vmlal.s16 q5, ROW5R, XFIX_2_053119869_MINUS_2_562915447 vmlsl.s16 q5, ROW7L, XFIX_2_562915447 /* ROW7L <-> ROW3R */ vsub.s32 q1, q1, q6 vmull.s16 q6, ROW6L, XFIX_0_541196100_PLUS_0_765366865 /* ROW6L <-> ROW2R */ vmlal.s16 q6, ROW6R, XFIX_0_541196100 vsub.s32 q3, q3, q2 vshrn.s32 ROW6R, q1, #16 vadd.s32 q1, q3, q5 vsub.s32 q3, q3, q5 vaddl.s16 q5, ROW4L, ROW4R /* ROW4L <-> ROW0R */ vshrn.s32 ROW6L, q1, #16 /* ROW6L <-> ROW2R */ vshrn.s32 ROW5R, q3, #16 vshl.s32 q5, q5, #13 vmlal.s16 q4, ROW7R, XFIX_0_298631336_MINUS_0_899976223 vadd.s32 q2, q5, q6 vsub.s32 q1, q5, q6 vadd.s32 q6, q2, q7 vsub.s32 q2, q2, q7 vadd.s32 q5, q1, q4 vsub.s32 q3, q1, q4 vshrn.s32 ROW7R, q2, #16 vshrn.s32 ROW7L, q5, #16 /* ROW7L <-> ROW3R */ vshrn.s32 ROW4L, q6, #16 /* ROW4L <-> ROW0R */ vshrn.s32 ROW4R, q3, #16 2: /* Descale to 8-bit and range limit */ vqrshrn.s16 d16, q8, #2 vqrshrn.s16 d17, q9, #2 vqrshrn.s16 d18, q10, #2 vqrshrn.s16 d19, q11, #2 vpop {d8 - d15} /* restore Neon registers */ vqrshrn.s16 d20, q12, #2 /* Transpose the final 8-bit samples and do signed->unsigned conversion */ vtrn.16 q8, q9 vqrshrn.s16 d21, q13, #2 vqrshrn.s16 d22, q14, #2 vmov.u8 q0, #(CENTERJSAMPLE) vqrshrn.s16 d23, q15, #2 vtrn.8 d16, d17 vtrn.8 d18, d19 vadd.u8 q8, q8, q0 vadd.u8 q9, q9, q0 vtrn.16 q10, q11 /* Store results to the output buffer */ ldmia OUTPUT_BUF!, {TMP1, TMP2} add TMP1, TMP1, OUTPUT_COL add TMP2, TMP2, OUTPUT_COL vst1.8 {d16}, [TMP1] vtrn.8 d20, d21 vst1.8 {d17}, [TMP2] ldmia OUTPUT_BUF!, {TMP1, TMP2} add TMP1, TMP1, OUTPUT_COL add TMP2, TMP2, OUTPUT_COL vst1.8 {d18}, [TMP1] vadd.u8 q10, q10, q0 vst1.8 {d19}, [TMP2] ldmia OUTPUT_BUF, {TMP1, TMP2, TMP3, TMP4} add TMP1, TMP1, OUTPUT_COL add TMP2, TMP2, OUTPUT_COL add TMP3, TMP3, OUTPUT_COL add TMP4, TMP4, OUTPUT_COL vtrn.8 d22, d23 vst1.8 {d20}, [TMP1] vadd.u8 q11, q11, q0 vst1.8 {d21}, [TMP2] vst1.8 {d22}, [TMP3] vst1.8 {d23}, [TMP4] bx lr 3: /* Left 4x8 half is done, right 4x8 half contains mostly zeros */ /* Transpose left 4x8 half */ vtrn.16 ROW6L, ROW7L vtrn.16 ROW2L, ROW3L vtrn.16 ROW0L, ROW1L vtrn.16 ROW4L, ROW5L vshl.s16 ROW0R, ROW0R, #2 /* PASS1_BITS */ vtrn.32 ROW1L, ROW3L vtrn.32 ROW4L, ROW6L vtrn.32 ROW0L, ROW2L vtrn.32 ROW5L, ROW7L cmp r0, #0 beq 4f /* Right 4x8 half has all zeros, go to 'sparse' second pass */ /* Only row 0 is non-zero for the right 4x8 half */ vdup.s16 ROW1R, ROW0R[1] vdup.s16 ROW2R, ROW0R[2] vdup.s16 ROW3R, ROW0R[3] vdup.s16 ROW4R, ROW0R[0] vdup.s16 ROW5R, ROW0R[1] vdup.s16 ROW6R, ROW0R[2] vdup.s16 ROW7R, ROW0R[3] vdup.s16 ROW0R, ROW0R[0] b 1b /* Go to 'normal' second pass */ 4: /* 1-D IDCT, pass 2 (sparse variant with zero rows 4-7), left 4x8 half */ vld1.s16 {d2}, [ip, :64] /* reload constants */ vmull.s16 q6, ROW1L, XFIX_1_175875602 vmlal.s16 q6, ROW3L, XFIX_1_175875602_MINUS_1_961570560 vmull.s16 q7, ROW3L, XFIX_1_175875602 vmlal.s16 q7, ROW1L, XFIX_1_175875602_MINUS_0_390180644 vmull.s16 q2, ROW2L, XFIX_0_541196100 vshll.s16 q3, ROW0L, #13 vmov q4, q6 vmlal.s16 q6, ROW3L, XFIX_3_072711026_MINUS_2_562915447 vmlsl.s16 q4, ROW1L, XFIX_0_899976223 vadd.s32 q1, q3, q2 vmov q5, q7 vmlal.s16 q7, ROW1L, XFIX_1_501321110_MINUS_0_899976223 vadd.s32 q1, q1, q6 vadd.s32 q6, q6, q6 vmlsl.s16 q5, ROW3L, XFIX_2_562915447 vshrn.s32 ROW1L, q1, #16 vsub.s32 q1, q1, q6 vmull.s16 q6, ROW2L, XFIX_0_541196100_PLUS_0_765366865 vsub.s32 q3, q3, q2 vshrn.s32 ROW2R, q1, #16 /* ROW6L <-> ROW2R */ vadd.s32 q1, q3, q5 vsub.s32 q3, q3, q5 vshll.s16 q5, ROW0L, #13 vshrn.s32 ROW2L, q1, #16 vshrn.s32 ROW1R, q3, #16 /* ROW5L <-> ROW1R */ vadd.s32 q2, q5, q6 vsub.s32 q1, q5, q6 vadd.s32 q6, q2, q7 vsub.s32 q2, q2, q7 vadd.s32 q5, q1, q4 vsub.s32 q3, q1, q4 vshrn.s32 ROW3R, q2, #16 /* ROW7L <-> ROW3R */ vshrn.s32 ROW3L, q5, #16 vshrn.s32 ROW0L, q6, #16 vshrn.s32 ROW0R, q3, #16 /* ROW4L <-> ROW0R */ /* 1-D IDCT, pass 2 (sparse variant with zero rows 4-7), right 4x8 half */ vld1.s16 {d2}, [ip, :64] /* reload constants */ vmull.s16 q6, ROW5L, XFIX_1_175875602 vmlal.s16 q6, ROW7L, XFIX_1_175875602_MINUS_1_961570560 vmull.s16 q7, ROW7L, XFIX_1_175875602 vmlal.s16 q7, ROW5L, XFIX_1_175875602_MINUS_0_390180644 vmull.s16 q2, ROW6L, XFIX_0_541196100 vshll.s16 q3, ROW4L, #13 vmov q4, q6 vmlal.s16 q6, ROW7L, XFIX_3_072711026_MINUS_2_562915447 vmlsl.s16 q4, ROW5L, XFIX_0_899976223 vadd.s32 q1, q3, q2 vmov q5, q7 vmlal.s16 q7, ROW5L, XFIX_1_501321110_MINUS_0_899976223 vadd.s32 q1, q1, q6 vadd.s32 q6, q6, q6 vmlsl.s16 q5, ROW7L, XFIX_2_562915447 vshrn.s32 ROW5L, q1, #16 /* ROW5L <-> ROW1R */ vsub.s32 q1, q1, q6 vmull.s16 q6, ROW6L, XFIX_0_541196100_PLUS_0_765366865 vsub.s32 q3, q3, q2 vshrn.s32 ROW6R, q1, #16 vadd.s32 q1, q3, q5 vsub.s32 q3, q3, q5 vshll.s16 q5, ROW4L, #13 vshrn.s32 ROW6L, q1, #16 /* ROW6L <-> ROW2R */ vshrn.s32 ROW5R, q3, #16 vadd.s32 q2, q5, q6 vsub.s32 q1, q5, q6 vadd.s32 q6, q2, q7 vsub.s32 q2, q2, q7 vadd.s32 q5, q1, q4 vsub.s32 q3, q1, q4 vshrn.s32 ROW7R, q2, #16 vshrn.s32 ROW7L, q5, #16 /* ROW7L <-> ROW3R */ vshrn.s32 ROW4L, q6, #16 /* ROW4L <-> ROW0R */ vshrn.s32 ROW4R, q3, #16 b 2b /* Go to epilogue */ .unreq DCT_TABLE .unreq COEF_BLOCK .unreq OUTPUT_BUF .unreq OUTPUT_COL .unreq TMP1 .unreq TMP2 .unreq TMP3 .unreq TMP4 .unreq ROW0L .unreq ROW0R .unreq ROW1L .unreq ROW1R .unreq ROW2L .unreq ROW2R .unreq ROW3L .unreq ROW3R .unreq ROW4L .unreq ROW4R .unreq ROW5L .unreq ROW5R .unreq ROW6L .unreq ROW6R .unreq ROW7L .unreq ROW7R /*****************************************************************************/ /* * jsimd_idct_ifast_neon * * This function contains a fast, not so accurate integer implementation of * the inverse DCT (Discrete Cosine Transform). It uses the same calculations * and produces exactly the same output as IJG's original 'jpeg_idct_ifast' * function from jidctfst.c * * Normally 1-D AAN DCT needs 5 multiplications and 29 additions. * But in Arm Neon case some extra additions are required because VQDMULH * instruction can't handle the constants larger than 1. So the expressions * like "x * 1.082392200" have to be converted to "x * 0.082392200 + x", * which introduces an extra addition. Overall, there are 6 extra additions * per 1-D IDCT pass, totalling to 5 VQDMULH and 35 VADD/VSUB instructions. */ #define XFIX_1_082392200 d0[0] #define XFIX_1_414213562 d0[1] #define XFIX_1_847759065 d0[2] #define XFIX_2_613125930 d0[3] .balign 16 jsimd_idct_ifast_neon_consts: .short (277 * 128 - 256 * 128) /* XFIX_1_082392200 */ .short (362 * 128 - 256 * 128) /* XFIX_1_414213562 */ .short (473 * 128 - 256 * 128) /* XFIX_1_847759065 */ .short (669 * 128 - 512 * 128) /* XFIX_2_613125930 */ asm_function jsimd_idct_ifast_neon DCT_TABLE .req r0 COEF_BLOCK .req r1 OUTPUT_BUF .req r2 OUTPUT_COL .req r3 TMP1 .req r0 TMP2 .req r1 TMP3 .req r2 TMP4 .req ip /* Load and dequantize coefficients into Neon registers * with the following allocation: * 0 1 2 3 | 4 5 6 7 * ---------+-------- * 0 | d16 | d17 ( q8 ) * 1 | d18 | d19 ( q9 ) * 2 | d20 | d21 ( q10 ) * 3 | d22 | d23 ( q11 ) * 4 | d24 | d25 ( q12 ) * 5 | d26 | d27 ( q13 ) * 6 | d28 | d29 ( q14 ) * 7 | d30 | d31 ( q15 ) */ adr ip, jsimd_idct_ifast_neon_consts vld1.16 {d16, d17, d18, d19}, [COEF_BLOCK, :128]! vld1.16 {d0, d1, d2, d3}, [DCT_TABLE, :128]! vld1.16 {d20, d21, d22, d23}, [COEF_BLOCK, :128]! vmul.s16 q8, q8, q0 vld1.16 {d4, d5, d6, d7}, [DCT_TABLE, :128]! vmul.s16 q9, q9, q1 vld1.16 {d24, d25, d26, d27}, [COEF_BLOCK, :128]! vmul.s16 q10, q10, q2 vld1.16 {d0, d1, d2, d3}, [DCT_TABLE, :128]! vmul.s16 q11, q11, q3 vld1.16 {d28, d29, d30, d31}, [COEF_BLOCK, :128] vmul.s16 q12, q12, q0 vld1.16 {d4, d5, d6, d7}, [DCT_TABLE, :128]! vmul.s16 q14, q14, q2 vmul.s16 q13, q13, q1 vld1.16 {d0}, [ip, :64] /* load constants */ vmul.s16 q15, q15, q3 vpush {d8 - d13} /* save Neon registers */ /* 1-D IDCT, pass 1 */ vsub.s16 q2, q10, q14 vadd.s16 q14, q10, q14 vsub.s16 q1, q11, q13 vadd.s16 q13, q11, q13 vsub.s16 q5, q9, q15 vadd.s16 q15, q9, q15 vqdmulh.s16 q4, q2, XFIX_1_414213562 vqdmulh.s16 q6, q1, XFIX_2_613125930 vadd.s16 q3, q1, q1 vsub.s16 q1, q5, q1 vadd.s16 q10, q2, q4 vqdmulh.s16 q4, q1, XFIX_1_847759065 vsub.s16 q2, q15, q13 vadd.s16 q3, q3, q6 vqdmulh.s16 q6, q2, XFIX_1_414213562 vadd.s16 q1, q1, q4 vqdmulh.s16 q4, q5, XFIX_1_082392200 vsub.s16 q10, q10, q14 vadd.s16 q2, q2, q6 vsub.s16 q6, q8, q12 vadd.s16 q12, q8, q12 vadd.s16 q9, q5, q4 vadd.s16 q5, q6, q10 vsub.s16 q10, q6, q10 vadd.s16 q6, q15, q13 vadd.s16 q8, q12, q14 vsub.s16 q3, q6, q3 vsub.s16 q12, q12, q14 vsub.s16 q3, q3, q1 vsub.s16 q1, q9, q1 vadd.s16 q2, q3, q2 vsub.s16 q15, q8, q6 vadd.s16 q1, q1, q2 vadd.s16 q8, q8, q6 vadd.s16 q14, q5, q3 vsub.s16 q9, q5, q3 vsub.s16 q13, q10, q2 vadd.s16 q10, q10, q2 /* Transpose */ vtrn.16 q8, q9 vsub.s16 q11, q12, q1 vtrn.16 q14, q15 vadd.s16 q12, q12, q1 vtrn.16 q10, q11 vtrn.16 q12, q13 vtrn.32 q9, q11 vtrn.32 q12, q14 vtrn.32 q8, q10 vtrn.32 q13, q15 vswp d28, d21 vswp d26, d19 /* 1-D IDCT, pass 2 */ vsub.s16 q2, q10, q14 vswp d30, d23 vadd.s16 q14, q10, q14 vswp d24, d17 vsub.s16 q1, q11, q13 vadd.s16 q13, q11, q13 vsub.s16 q5, q9, q15 vadd.s16 q15, q9, q15 vqdmulh.s16 q4, q2, XFIX_1_414213562 vqdmulh.s16 q6, q1, XFIX_2_613125930 vadd.s16 q3, q1, q1 vsub.s16 q1, q5, q1 vadd.s16 q10, q2, q4 vqdmulh.s16 q4, q1, XFIX_1_847759065 vsub.s16 q2, q15, q13 vadd.s16 q3, q3, q6 vqdmulh.s16 q6, q2, XFIX_1_414213562 vadd.s16 q1, q1, q4 vqdmulh.s16 q4, q5, XFIX_1_082392200 vsub.s16 q10, q10, q14 vadd.s16 q2, q2, q6 vsub.s16 q6, q8, q12 vadd.s16 q12, q8, q12 vadd.s16 q9, q5, q4 vadd.s16 q5, q6, q10 vsub.s16 q10, q6, q10 vadd.s16 q6, q15, q13 vadd.s16 q8, q12, q14 vsub.s16 q3, q6, q3 vsub.s16 q12, q12, q14 vsub.s16 q3, q3, q1 vsub.s16 q1, q9, q1 vadd.s16 q2, q3, q2 vsub.s16 q15, q8, q6 vadd.s16 q1, q1, q2 vadd.s16 q8, q8, q6 vadd.s16 q14, q5, q3 vsub.s16 q9, q5, q3 vsub.s16 q13, q10, q2 vpop {d8 - d13} /* restore Neon registers */ vadd.s16 q10, q10, q2 vsub.s16 q11, q12, q1 vadd.s16 q12, q12, q1 /* Descale to 8-bit and range limit */ vmov.u8 q0, #0x80 vqshrn.s16 d16, q8, #5 vqshrn.s16 d17, q9, #5 vqshrn.s16 d18, q10, #5 vqshrn.s16 d19, q11, #5 vqshrn.s16 d20, q12, #5 vqshrn.s16 d21, q13, #5 vqshrn.s16 d22, q14, #5 vqshrn.s16 d23, q15, #5 vadd.u8 q8, q8, q0 vadd.u8 q9, q9, q0 vadd.u8 q10, q10, q0 vadd.u8 q11, q11, q0 /* Transpose the final 8-bit samples */ vtrn.16 q8, q9 vtrn.16 q10, q11 vtrn.32 q8, q10 vtrn.32 q9, q11 vtrn.8 d16, d17 vtrn.8 d18, d19 /* Store results to the output buffer */ ldmia OUTPUT_BUF!, {TMP1, TMP2} add TMP1, TMP1, OUTPUT_COL add TMP2, TMP2, OUTPUT_COL vst1.8 {d16}, [TMP1] vst1.8 {d17}, [TMP2] ldmia OUTPUT_BUF!, {TMP1, TMP2} add TMP1, TMP1, OUTPUT_COL add TMP2, TMP2, OUTPUT_COL vst1.8 {d18}, [TMP1] vtrn.8 d20, d21 vst1.8 {d19}, [TMP2] ldmia OUTPUT_BUF, {TMP1, TMP2, TMP3, TMP4} add TMP1, TMP1, OUTPUT_COL add TMP2, TMP2, OUTPUT_COL add TMP3, TMP3, OUTPUT_COL add TMP4, TMP4, OUTPUT_COL vst1.8 {d20}, [TMP1] vtrn.8 d22, d23 vst1.8 {d21}, [TMP2] vst1.8 {d22}, [TMP3] vst1.8 {d23}, [TMP4] bx lr .unreq DCT_TABLE .unreq COEF_BLOCK .unreq OUTPUT_BUF .unreq OUTPUT_COL .unreq TMP1 .unreq TMP2 .unreq TMP3 .unreq TMP4 /*****************************************************************************/ /* * jsimd_extrgb_ycc_convert_neon * jsimd_extbgr_ycc_convert_neon * jsimd_extrgbx_ycc_convert_neon * jsimd_extbgrx_ycc_convert_neon * jsimd_extxbgr_ycc_convert_neon * jsimd_extxrgb_ycc_convert_neon * * Colorspace conversion RGB -> YCbCr */ .macro do_store size .if \size == 8 vst1.8 {d20}, [Y]! vst1.8 {d21}, [U]! vst1.8 {d22}, [V]! .elseif \size == 4 vst1.8 {d20[0]}, [Y]! vst1.8 {d20[1]}, [Y]! vst1.8 {d20[2]}, [Y]! vst1.8 {d20[3]}, [Y]! vst1.8 {d21[0]}, [U]! vst1.8 {d21[1]}, [U]! vst1.8 {d21[2]}, [U]! vst1.8 {d21[3]}, [U]! vst1.8 {d22[0]}, [V]! vst1.8 {d22[1]}, [V]! vst1.8 {d22[2]}, [V]! vst1.8 {d22[3]}, [V]! .elseif \size == 2 vst1.8 {d20[4]}, [Y]! vst1.8 {d20[5]}, [Y]! vst1.8 {d21[4]}, [U]! vst1.8 {d21[5]}, [U]! vst1.8 {d22[4]}, [V]! vst1.8 {d22[5]}, [V]! .elseif \size == 1 vst1.8 {d20[6]}, [Y]! vst1.8 {d21[6]}, [U]! vst1.8 {d22[6]}, [V]! .else .error unsupported macroblock size .endif .endm .macro do_load bpp, size .if \bpp == 24 .if \size == 8 vld3.8 {d10, d11, d12}, [RGB]! pld [RGB, #128] .elseif \size == 4 vld3.8 {d10[0], d11[0], d12[0]}, [RGB]! vld3.8 {d10[1], d11[1], d12[1]}, [RGB]! vld3.8 {d10[2], d11[2], d12[2]}, [RGB]! vld3.8 {d10[3], d11[3], d12[3]}, [RGB]! .elseif \size == 2 vld3.8 {d10[4], d11[4], d12[4]}, [RGB]! vld3.8 {d10[5], d11[5], d12[5]}, [RGB]! .elseif \size == 1 vld3.8 {d10[6], d11[6], d12[6]}, [RGB]! .else .error unsupported macroblock size .endif .elseif \bpp == 32 .if \size == 8 vld4.8 {d10, d11, d12, d13}, [RGB]! pld [RGB, #128] .elseif \size == 4 vld4.8 {d10[0], d11[0], d12[0], d13[0]}, [RGB]! vld4.8 {d10[1], d11[1], d12[1], d13[1]}, [RGB]! vld4.8 {d10[2], d11[2], d12[2], d13[2]}, [RGB]! vld4.8 {d10[3], d11[3], d12[3], d13[3]}, [RGB]! .elseif \size == 2 vld4.8 {d10[4], d11[4], d12[4], d13[4]}, [RGB]! vld4.8 {d10[5], d11[5], d12[5], d13[5]}, [RGB]! .elseif \size == 1 vld4.8 {d10[6], d11[6], d12[6], d13[6]}, [RGB]! .else .error unsupported macroblock size .endif .else .error unsupported bpp .endif .endm .macro generate_jsimd_rgb_ycc_convert_neon colorid, bpp, r_offs, g_offs, b_offs /* * 2-stage pipelined RGB->YCbCr conversion */ .macro do_rgb_to_yuv_stage1 vmovl.u8 q2, d1\r_offs /* r = { d4, d5 } */ vmovl.u8 q3, d1\g_offs /* g = { d6, d7 } */ vmovl.u8 q4, d1\b_offs /* b = { d8, d9 } */ vmull.u16 q7, d4, d0[0] vmlal.u16 q7, d6, d0[1] vmlal.u16 q7, d8, d0[2] vmull.u16 q8, d5, d0[0] vmlal.u16 q8, d7, d0[1] vmlal.u16 q8, d9, d0[2] vrev64.32 q9, q1 vrev64.32 q13, q1 vmlsl.u16 q9, d4, d0[3] vmlsl.u16 q9, d6, d1[0] vmlal.u16 q9, d8, d1[1] vmlsl.u16 q13, d5, d0[3] vmlsl.u16 q13, d7, d1[0] vmlal.u16 q13, d9, d1[1] vrev64.32 q14, q1 vrev64.32 q15, q1 vmlal.u16 q14, d4, d1[1] vmlsl.u16 q14, d6, d1[2] vmlsl.u16 q14, d8, d1[3] vmlal.u16 q15, d5, d1[1] vmlsl.u16 q15, d7, d1[2] vmlsl.u16 q15, d9, d1[3] .endm .macro do_rgb_to_yuv_stage2 vrshrn.u32 d20, q7, #16 vrshrn.u32 d21, q8, #16 vshrn.u32 d22, q9, #16 vshrn.u32 d23, q13, #16 vshrn.u32 d24, q14, #16 vshrn.u32 d25, q15, #16 vmovn.u16 d20, q10 /* d20 = y */ vmovn.u16 d21, q11 /* d21 = u */ vmovn.u16 d22, q12 /* d22 = v */ .endm .macro do_rgb_to_yuv do_rgb_to_yuv_stage1 do_rgb_to_yuv_stage2 .endm .macro do_rgb_to_yuv_stage2_store_load_stage1 vrshrn.u32 d20, q7, #16 vrshrn.u32 d21, q8, #16 vshrn.u32 d22, q9, #16 vrev64.32 q9, q1 vshrn.u32 d23, q13, #16 vrev64.32 q13, q1 vshrn.u32 d24, q14, #16 vshrn.u32 d25, q15, #16 do_load \bpp, 8 vmovn.u16 d20, q10 /* d20 = y */ vmovl.u8 q2, d1\r_offs /* r = { d4, d5 } */ vmovn.u16 d21, q11 /* d21 = u */ vmovl.u8 q3, d1\g_offs /* g = { d6, d7 } */ vmovn.u16 d22, q12 /* d22 = v */ vmovl.u8 q4, d1\b_offs /* b = { d8, d9 } */ vmull.u16 q7, d4, d0[0] vmlal.u16 q7, d6, d0[1] vmlal.u16 q7, d8, d0[2] vst1.8 {d20}, [Y]! vmull.u16 q8, d5, d0[0] vmlal.u16 q8, d7, d0[1] vmlal.u16 q8, d9, d0[2] vmlsl.u16 q9, d4, d0[3] vmlsl.u16 q9, d6, d1[0] vmlal.u16 q9, d8, d1[1] vst1.8 {d21}, [U]! vmlsl.u16 q13, d5, d0[3] vmlsl.u16 q13, d7, d1[0] vmlal.u16 q13, d9, d1[1] vrev64.32 q14, q1 vrev64.32 q15, q1 vmlal.u16 q14, d4, d1[1] vmlsl.u16 q14, d6, d1[2] vmlsl.u16 q14, d8, d1[3] vst1.8 {d22}, [V]! vmlal.u16 q15, d5, d1[1] vmlsl.u16 q15, d7, d1[2] vmlsl.u16 q15, d9, d1[3] .endm .balign 16 jsimd_\colorid\()_ycc_neon_consts: .short 19595, 38470, 7471, 11059 .short 21709, 32768, 27439, 5329 .short 32767, 128, 32767, 128 .short 32767, 128, 32767, 128 asm_function jsimd_\colorid\()_ycc_convert_neon OUTPUT_WIDTH .req r0 INPUT_BUF .req r1 OUTPUT_BUF .req r2 OUTPUT_ROW .req r3 NUM_ROWS .req r4 OUTPUT_BUF0 .req r5 OUTPUT_BUF1 .req r6 OUTPUT_BUF2 .req OUTPUT_BUF RGB .req r7 Y .req r8 U .req r9 V .req r10 N .req ip /* Load constants to d0, d1, d2, d3 */ adr ip, jsimd_\colorid\()_ycc_neon_consts vld1.16 {d0, d1, d2, d3}, [ip, :128] /* Save Arm registers and handle input arguments */ push {r4, r5, r6, r7, r8, r9, r10, lr} ldr NUM_ROWS, [sp, #(4 * 8)] ldr OUTPUT_BUF0, [OUTPUT_BUF] ldr OUTPUT_BUF1, [OUTPUT_BUF, #4] ldr OUTPUT_BUF2, [OUTPUT_BUF, #8] .unreq OUTPUT_BUF /* Save Neon registers */ vpush {d8 - d15} /* Outer loop over scanlines */ cmp NUM_ROWS, #1 blt 9f 0: ldr Y, [OUTPUT_BUF0, OUTPUT_ROW, lsl #2] ldr U, [OUTPUT_BUF1, OUTPUT_ROW, lsl #2] mov N, OUTPUT_WIDTH ldr V, [OUTPUT_BUF2, OUTPUT_ROW, lsl #2] add OUTPUT_ROW, OUTPUT_ROW, #1 ldr RGB, [INPUT_BUF], #4 /* Inner loop over pixels */ subs N, N, #8 blt 3f do_load \bpp, 8 do_rgb_to_yuv_stage1 subs N, N, #8 blt 2f 1: do_rgb_to_yuv_stage2_store_load_stage1 subs N, N, #8 bge 1b 2: do_rgb_to_yuv_stage2 do_store 8 tst N, #7 beq 8f 3: tst N, #4 beq 3f do_load \bpp, 4 3: tst N, #2 beq 4f do_load \bpp, 2 4: tst N, #1 beq 5f do_load \bpp, 1 5: do_rgb_to_yuv tst N, #4 beq 6f do_store 4 6: tst N, #2 beq 7f do_store 2 7: tst N, #1 beq 8f do_store 1 8: subs NUM_ROWS, NUM_ROWS, #1 bgt 0b 9: /* Restore all registers and return */ vpop {d8 - d15} pop {r4, r5, r6, r7, r8, r9, r10, pc} .unreq OUTPUT_WIDTH .unreq OUTPUT_ROW .unreq INPUT_BUF .unreq NUM_ROWS .unreq OUTPUT_BUF0 .unreq OUTPUT_BUF1 .unreq OUTPUT_BUF2 .unreq RGB .unreq Y .unreq U .unreq V .unreq N .purgem do_rgb_to_yuv .purgem do_rgb_to_yuv_stage1 .purgem do_rgb_to_yuv_stage2 .purgem do_rgb_to_yuv_stage2_store_load_stage1 .endm /*--------------------------------- id ----- bpp R G B */ generate_jsimd_rgb_ycc_convert_neon extrgb, 24, 0, 1, 2 generate_jsimd_rgb_ycc_convert_neon extbgr, 24, 2, 1, 0 generate_jsimd_rgb_ycc_convert_neon extrgbx, 32, 0, 1, 2 generate_jsimd_rgb_ycc_convert_neon extbgrx, 32, 2, 1, 0 generate_jsimd_rgb_ycc_convert_neon extxbgr, 32, 3, 2, 1 generate_jsimd_rgb_ycc_convert_neon extxrgb, 32, 1, 2, 3 .purgem do_load .purgem do_store libjpeg-turbo-2.1.5/simd/arm/aarch64/000077500000000000000000000000001436506551100172355ustar00rootroot00000000000000libjpeg-turbo-2.1.5/simd/arm/aarch64/jccolext-neon.c000066400000000000000000000373101436506551100221550ustar00rootroot00000000000000/* * jccolext-neon.c - colorspace conversion (64-bit Arm Neon) * * Copyright (C) 2020, Arm Limited. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ /* This file is included by jccolor-neon.c */ /* RGB -> YCbCr conversion is defined by the following equations: * Y = 0.29900 * R + 0.58700 * G + 0.11400 * B * Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + 128 * Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + 128 * * Avoid floating point arithmetic by using shifted integer constants: * 0.29899597 = 19595 * 2^-16 * 0.58700561 = 38470 * 2^-16 * 0.11399841 = 7471 * 2^-16 * 0.16874695 = 11059 * 2^-16 * 0.33125305 = 21709 * 2^-16 * 0.50000000 = 32768 * 2^-16 * 0.41868592 = 27439 * 2^-16 * 0.08131409 = 5329 * 2^-16 * These constants are defined in jccolor-neon.c * * We add the fixed-point equivalent of 0.5 to Cb and Cr, which effectively * rounds up or down the result via integer truncation. */ void jsimd_rgb_ycc_convert_neon(JDIMENSION image_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { /* Pointer to RGB(X/A) input data */ JSAMPROW inptr; /* Pointers to Y, Cb, and Cr output data */ JSAMPROW outptr0, outptr1, outptr2; /* Allocate temporary buffer for final (image_width % 16) pixels in row. */ ALIGN(16) uint8_t tmp_buf[16 * RGB_PIXELSIZE]; /* Set up conversion constants. */ const uint16x8_t consts = vld1q_u16(jsimd_rgb_ycc_neon_consts); const uint32x4_t scaled_128_5 = vdupq_n_u32((128 << 16) + 32767); while (--num_rows >= 0) { inptr = *input_buf++; outptr0 = output_buf[0][output_row]; outptr1 = output_buf[1][output_row]; outptr2 = output_buf[2][output_row]; output_row++; int cols_remaining = image_width; for (; cols_remaining >= 16; cols_remaining -= 16) { #if RGB_PIXELSIZE == 4 uint8x16x4_t input_pixels = vld4q_u8(inptr); #else uint8x16x3_t input_pixels = vld3q_u8(inptr); #endif uint16x8_t r_l = vmovl_u8(vget_low_u8(input_pixels.val[RGB_RED])); uint16x8_t g_l = vmovl_u8(vget_low_u8(input_pixels.val[RGB_GREEN])); uint16x8_t b_l = vmovl_u8(vget_low_u8(input_pixels.val[RGB_BLUE])); uint16x8_t r_h = vmovl_u8(vget_high_u8(input_pixels.val[RGB_RED])); uint16x8_t g_h = vmovl_u8(vget_high_u8(input_pixels.val[RGB_GREEN])); uint16x8_t b_h = vmovl_u8(vget_high_u8(input_pixels.val[RGB_BLUE])); /* Compute Y = 0.29900 * R + 0.58700 * G + 0.11400 * B */ uint32x4_t y_ll = vmull_laneq_u16(vget_low_u16(r_l), consts, 0); y_ll = vmlal_laneq_u16(y_ll, vget_low_u16(g_l), consts, 1); y_ll = vmlal_laneq_u16(y_ll, vget_low_u16(b_l), consts, 2); uint32x4_t y_lh = vmull_laneq_u16(vget_high_u16(r_l), consts, 0); y_lh = vmlal_laneq_u16(y_lh, vget_high_u16(g_l), consts, 1); y_lh = vmlal_laneq_u16(y_lh, vget_high_u16(b_l), consts, 2); uint32x4_t y_hl = vmull_laneq_u16(vget_low_u16(r_h), consts, 0); y_hl = vmlal_laneq_u16(y_hl, vget_low_u16(g_h), consts, 1); y_hl = vmlal_laneq_u16(y_hl, vget_low_u16(b_h), consts, 2); uint32x4_t y_hh = vmull_laneq_u16(vget_high_u16(r_h), consts, 0); y_hh = vmlal_laneq_u16(y_hh, vget_high_u16(g_h), consts, 1); y_hh = vmlal_laneq_u16(y_hh, vget_high_u16(b_h), consts, 2); /* Compute Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + 128 */ uint32x4_t cb_ll = scaled_128_5; cb_ll = vmlsl_laneq_u16(cb_ll, vget_low_u16(r_l), consts, 3); cb_ll = vmlsl_laneq_u16(cb_ll, vget_low_u16(g_l), consts, 4); cb_ll = vmlal_laneq_u16(cb_ll, vget_low_u16(b_l), consts, 5); uint32x4_t cb_lh = scaled_128_5; cb_lh = vmlsl_laneq_u16(cb_lh, vget_high_u16(r_l), consts, 3); cb_lh = vmlsl_laneq_u16(cb_lh, vget_high_u16(g_l), consts, 4); cb_lh = vmlal_laneq_u16(cb_lh, vget_high_u16(b_l), consts, 5); uint32x4_t cb_hl = scaled_128_5; cb_hl = vmlsl_laneq_u16(cb_hl, vget_low_u16(r_h), consts, 3); cb_hl = vmlsl_laneq_u16(cb_hl, vget_low_u16(g_h), consts, 4); cb_hl = vmlal_laneq_u16(cb_hl, vget_low_u16(b_h), consts, 5); uint32x4_t cb_hh = scaled_128_5; cb_hh = vmlsl_laneq_u16(cb_hh, vget_high_u16(r_h), consts, 3); cb_hh = vmlsl_laneq_u16(cb_hh, vget_high_u16(g_h), consts, 4); cb_hh = vmlal_laneq_u16(cb_hh, vget_high_u16(b_h), consts, 5); /* Compute Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + 128 */ uint32x4_t cr_ll = scaled_128_5; cr_ll = vmlal_laneq_u16(cr_ll, vget_low_u16(r_l), consts, 5); cr_ll = vmlsl_laneq_u16(cr_ll, vget_low_u16(g_l), consts, 6); cr_ll = vmlsl_laneq_u16(cr_ll, vget_low_u16(b_l), consts, 7); uint32x4_t cr_lh = scaled_128_5; cr_lh = vmlal_laneq_u16(cr_lh, vget_high_u16(r_l), consts, 5); cr_lh = vmlsl_laneq_u16(cr_lh, vget_high_u16(g_l), consts, 6); cr_lh = vmlsl_laneq_u16(cr_lh, vget_high_u16(b_l), consts, 7); uint32x4_t cr_hl = scaled_128_5; cr_hl = vmlal_laneq_u16(cr_hl, vget_low_u16(r_h), consts, 5); cr_hl = vmlsl_laneq_u16(cr_hl, vget_low_u16(g_h), consts, 6); cr_hl = vmlsl_laneq_u16(cr_hl, vget_low_u16(b_h), consts, 7); uint32x4_t cr_hh = scaled_128_5; cr_hh = vmlal_laneq_u16(cr_hh, vget_high_u16(r_h), consts, 5); cr_hh = vmlsl_laneq_u16(cr_hh, vget_high_u16(g_h), consts, 6); cr_hh = vmlsl_laneq_u16(cr_hh, vget_high_u16(b_h), consts, 7); /* Descale Y values (rounding right shift) and narrow to 16-bit. */ uint16x8_t y_l = vcombine_u16(vrshrn_n_u32(y_ll, 16), vrshrn_n_u32(y_lh, 16)); uint16x8_t y_h = vcombine_u16(vrshrn_n_u32(y_hl, 16), vrshrn_n_u32(y_hh, 16)); /* Descale Cb values (right shift) and narrow to 16-bit. */ uint16x8_t cb_l = vcombine_u16(vshrn_n_u32(cb_ll, 16), vshrn_n_u32(cb_lh, 16)); uint16x8_t cb_h = vcombine_u16(vshrn_n_u32(cb_hl, 16), vshrn_n_u32(cb_hh, 16)); /* Descale Cr values (right shift) and narrow to 16-bit. */ uint16x8_t cr_l = vcombine_u16(vshrn_n_u32(cr_ll, 16), vshrn_n_u32(cr_lh, 16)); uint16x8_t cr_h = vcombine_u16(vshrn_n_u32(cr_hl, 16), vshrn_n_u32(cr_hh, 16)); /* Narrow Y, Cb, and Cr values to 8-bit and store to memory. Buffer * overwrite is permitted up to the next multiple of ALIGN_SIZE bytes. */ vst1q_u8(outptr0, vcombine_u8(vmovn_u16(y_l), vmovn_u16(y_h))); vst1q_u8(outptr1, vcombine_u8(vmovn_u16(cb_l), vmovn_u16(cb_h))); vst1q_u8(outptr2, vcombine_u8(vmovn_u16(cr_l), vmovn_u16(cr_h))); /* Increment pointers. */ inptr += (16 * RGB_PIXELSIZE); outptr0 += 16; outptr1 += 16; outptr2 += 16; } if (cols_remaining > 8) { /* To prevent buffer overread by the vector load instructions, the last * (image_width % 16) columns of data are first memcopied to a temporary * buffer large enough to accommodate the vector load. */ memcpy(tmp_buf, inptr, cols_remaining * RGB_PIXELSIZE); inptr = tmp_buf; #if RGB_PIXELSIZE == 4 uint8x16x4_t input_pixels = vld4q_u8(inptr); #else uint8x16x3_t input_pixels = vld3q_u8(inptr); #endif uint16x8_t r_l = vmovl_u8(vget_low_u8(input_pixels.val[RGB_RED])); uint16x8_t g_l = vmovl_u8(vget_low_u8(input_pixels.val[RGB_GREEN])); uint16x8_t b_l = vmovl_u8(vget_low_u8(input_pixels.val[RGB_BLUE])); uint16x8_t r_h = vmovl_u8(vget_high_u8(input_pixels.val[RGB_RED])); uint16x8_t g_h = vmovl_u8(vget_high_u8(input_pixels.val[RGB_GREEN])); uint16x8_t b_h = vmovl_u8(vget_high_u8(input_pixels.val[RGB_BLUE])); /* Compute Y = 0.29900 * R + 0.58700 * G + 0.11400 * B */ uint32x4_t y_ll = vmull_laneq_u16(vget_low_u16(r_l), consts, 0); y_ll = vmlal_laneq_u16(y_ll, vget_low_u16(g_l), consts, 1); y_ll = vmlal_laneq_u16(y_ll, vget_low_u16(b_l), consts, 2); uint32x4_t y_lh = vmull_laneq_u16(vget_high_u16(r_l), consts, 0); y_lh = vmlal_laneq_u16(y_lh, vget_high_u16(g_l), consts, 1); y_lh = vmlal_laneq_u16(y_lh, vget_high_u16(b_l), consts, 2); uint32x4_t y_hl = vmull_laneq_u16(vget_low_u16(r_h), consts, 0); y_hl = vmlal_laneq_u16(y_hl, vget_low_u16(g_h), consts, 1); y_hl = vmlal_laneq_u16(y_hl, vget_low_u16(b_h), consts, 2); uint32x4_t y_hh = vmull_laneq_u16(vget_high_u16(r_h), consts, 0); y_hh = vmlal_laneq_u16(y_hh, vget_high_u16(g_h), consts, 1); y_hh = vmlal_laneq_u16(y_hh, vget_high_u16(b_h), consts, 2); /* Compute Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + 128 */ uint32x4_t cb_ll = scaled_128_5; cb_ll = vmlsl_laneq_u16(cb_ll, vget_low_u16(r_l), consts, 3); cb_ll = vmlsl_laneq_u16(cb_ll, vget_low_u16(g_l), consts, 4); cb_ll = vmlal_laneq_u16(cb_ll, vget_low_u16(b_l), consts, 5); uint32x4_t cb_lh = scaled_128_5; cb_lh = vmlsl_laneq_u16(cb_lh, vget_high_u16(r_l), consts, 3); cb_lh = vmlsl_laneq_u16(cb_lh, vget_high_u16(g_l), consts, 4); cb_lh = vmlal_laneq_u16(cb_lh, vget_high_u16(b_l), consts, 5); uint32x4_t cb_hl = scaled_128_5; cb_hl = vmlsl_laneq_u16(cb_hl, vget_low_u16(r_h), consts, 3); cb_hl = vmlsl_laneq_u16(cb_hl, vget_low_u16(g_h), consts, 4); cb_hl = vmlal_laneq_u16(cb_hl, vget_low_u16(b_h), consts, 5); uint32x4_t cb_hh = scaled_128_5; cb_hh = vmlsl_laneq_u16(cb_hh, vget_high_u16(r_h), consts, 3); cb_hh = vmlsl_laneq_u16(cb_hh, vget_high_u16(g_h), consts, 4); cb_hh = vmlal_laneq_u16(cb_hh, vget_high_u16(b_h), consts, 5); /* Compute Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + 128 */ uint32x4_t cr_ll = scaled_128_5; cr_ll = vmlal_laneq_u16(cr_ll, vget_low_u16(r_l), consts, 5); cr_ll = vmlsl_laneq_u16(cr_ll, vget_low_u16(g_l), consts, 6); cr_ll = vmlsl_laneq_u16(cr_ll, vget_low_u16(b_l), consts, 7); uint32x4_t cr_lh = scaled_128_5; cr_lh = vmlal_laneq_u16(cr_lh, vget_high_u16(r_l), consts, 5); cr_lh = vmlsl_laneq_u16(cr_lh, vget_high_u16(g_l), consts, 6); cr_lh = vmlsl_laneq_u16(cr_lh, vget_high_u16(b_l), consts, 7); uint32x4_t cr_hl = scaled_128_5; cr_hl = vmlal_laneq_u16(cr_hl, vget_low_u16(r_h), consts, 5); cr_hl = vmlsl_laneq_u16(cr_hl, vget_low_u16(g_h), consts, 6); cr_hl = vmlsl_laneq_u16(cr_hl, vget_low_u16(b_h), consts, 7); uint32x4_t cr_hh = scaled_128_5; cr_hh = vmlal_laneq_u16(cr_hh, vget_high_u16(r_h), consts, 5); cr_hh = vmlsl_laneq_u16(cr_hh, vget_high_u16(g_h), consts, 6); cr_hh = vmlsl_laneq_u16(cr_hh, vget_high_u16(b_h), consts, 7); /* Descale Y values (rounding right shift) and narrow to 16-bit. */ uint16x8_t y_l = vcombine_u16(vrshrn_n_u32(y_ll, 16), vrshrn_n_u32(y_lh, 16)); uint16x8_t y_h = vcombine_u16(vrshrn_n_u32(y_hl, 16), vrshrn_n_u32(y_hh, 16)); /* Descale Cb values (right shift) and narrow to 16-bit. */ uint16x8_t cb_l = vcombine_u16(vshrn_n_u32(cb_ll, 16), vshrn_n_u32(cb_lh, 16)); uint16x8_t cb_h = vcombine_u16(vshrn_n_u32(cb_hl, 16), vshrn_n_u32(cb_hh, 16)); /* Descale Cr values (right shift) and narrow to 16-bit. */ uint16x8_t cr_l = vcombine_u16(vshrn_n_u32(cr_ll, 16), vshrn_n_u32(cr_lh, 16)); uint16x8_t cr_h = vcombine_u16(vshrn_n_u32(cr_hl, 16), vshrn_n_u32(cr_hh, 16)); /* Narrow Y, Cb, and Cr values to 8-bit and store to memory. Buffer * overwrite is permitted up to the next multiple of ALIGN_SIZE bytes. */ vst1q_u8(outptr0, vcombine_u8(vmovn_u16(y_l), vmovn_u16(y_h))); vst1q_u8(outptr1, vcombine_u8(vmovn_u16(cb_l), vmovn_u16(cb_h))); vst1q_u8(outptr2, vcombine_u8(vmovn_u16(cr_l), vmovn_u16(cr_h))); } else if (cols_remaining > 0) { /* To prevent buffer overread by the vector load instructions, the last * (image_width % 8) columns of data are first memcopied to a temporary * buffer large enough to accommodate the vector load. */ memcpy(tmp_buf, inptr, cols_remaining * RGB_PIXELSIZE); inptr = tmp_buf; #if RGB_PIXELSIZE == 4 uint8x8x4_t input_pixels = vld4_u8(inptr); #else uint8x8x3_t input_pixels = vld3_u8(inptr); #endif uint16x8_t r = vmovl_u8(input_pixels.val[RGB_RED]); uint16x8_t g = vmovl_u8(input_pixels.val[RGB_GREEN]); uint16x8_t b = vmovl_u8(input_pixels.val[RGB_BLUE]); /* Compute Y = 0.29900 * R + 0.58700 * G + 0.11400 * B */ uint32x4_t y_l = vmull_laneq_u16(vget_low_u16(r), consts, 0); y_l = vmlal_laneq_u16(y_l, vget_low_u16(g), consts, 1); y_l = vmlal_laneq_u16(y_l, vget_low_u16(b), consts, 2); uint32x4_t y_h = vmull_laneq_u16(vget_high_u16(r), consts, 0); y_h = vmlal_laneq_u16(y_h, vget_high_u16(g), consts, 1); y_h = vmlal_laneq_u16(y_h, vget_high_u16(b), consts, 2); /* Compute Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + 128 */ uint32x4_t cb_l = scaled_128_5; cb_l = vmlsl_laneq_u16(cb_l, vget_low_u16(r), consts, 3); cb_l = vmlsl_laneq_u16(cb_l, vget_low_u16(g), consts, 4); cb_l = vmlal_laneq_u16(cb_l, vget_low_u16(b), consts, 5); uint32x4_t cb_h = scaled_128_5; cb_h = vmlsl_laneq_u16(cb_h, vget_high_u16(r), consts, 3); cb_h = vmlsl_laneq_u16(cb_h, vget_high_u16(g), consts, 4); cb_h = vmlal_laneq_u16(cb_h, vget_high_u16(b), consts, 5); /* Compute Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + 128 */ uint32x4_t cr_l = scaled_128_5; cr_l = vmlal_laneq_u16(cr_l, vget_low_u16(r), consts, 5); cr_l = vmlsl_laneq_u16(cr_l, vget_low_u16(g), consts, 6); cr_l = vmlsl_laneq_u16(cr_l, vget_low_u16(b), consts, 7); uint32x4_t cr_h = scaled_128_5; cr_h = vmlal_laneq_u16(cr_h, vget_high_u16(r), consts, 5); cr_h = vmlsl_laneq_u16(cr_h, vget_high_u16(g), consts, 6); cr_h = vmlsl_laneq_u16(cr_h, vget_high_u16(b), consts, 7); /* Descale Y values (rounding right shift) and narrow to 16-bit. */ uint16x8_t y_u16 = vcombine_u16(vrshrn_n_u32(y_l, 16), vrshrn_n_u32(y_h, 16)); /* Descale Cb values (right shift) and narrow to 16-bit. */ uint16x8_t cb_u16 = vcombine_u16(vshrn_n_u32(cb_l, 16), vshrn_n_u32(cb_h, 16)); /* Descale Cr values (right shift) and narrow to 16-bit. */ uint16x8_t cr_u16 = vcombine_u16(vshrn_n_u32(cr_l, 16), vshrn_n_u32(cr_h, 16)); /* Narrow Y, Cb, and Cr values to 8-bit and store to memory. Buffer * overwrite is permitted up to the next multiple of ALIGN_SIZE bytes. */ vst1_u8(outptr0, vmovn_u16(y_u16)); vst1_u8(outptr1, vmovn_u16(cb_u16)); vst1_u8(outptr2, vmovn_u16(cr_u16)); } } } libjpeg-turbo-2.1.5/simd/arm/aarch64/jchuff-neon.c000066400000000000000000000436641436506551100216200ustar00rootroot00000000000000/* * jchuff-neon.c - Huffman entropy encoding (64-bit Arm Neon) * * Copyright (C) 2020-2021, Arm Limited. All Rights Reserved. * Copyright (C) 2020, 2022, D. R. Commander. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. * * NOTE: All referenced figures are from * Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994. */ #define JPEG_INTERNALS #include "../../../jinclude.h" #include "../../../jpeglib.h" #include "../../../jsimd.h" #include "../../../jdct.h" #include "../../../jsimddct.h" #include "../../jsimd.h" #include "../align.h" #include "../jchuff.h" #include "neon-compat.h" #include #include ALIGN(16) static const uint8_t jsimd_huff_encode_one_block_consts[] = { 0, 1, 2, 3, 16, 17, 32, 33, 18, 19, 4, 5, 6, 7, 20, 21, 34, 35, 48, 49, 255, 255, 50, 51, 36, 37, 22, 23, 8, 9, 10, 11, 255, 255, 6, 7, 20, 21, 34, 35, 48, 49, 255, 255, 50, 51, 36, 37, 54, 55, 40, 41, 26, 27, 12, 13, 14, 15, 28, 29, 42, 43, 56, 57, 6, 7, 20, 21, 34, 35, 48, 49, 50, 51, 36, 37, 22, 23, 8, 9, 26, 27, 12, 13, 255, 255, 14, 15, 28, 29, 42, 43, 56, 57, 255, 255, 52, 53, 54, 55, 40, 41, 26, 27, 12, 13, 255, 255, 14, 15, 28, 29, 26, 27, 40, 41, 42, 43, 28, 29, 14, 15, 30, 31, 44, 45, 46, 47 }; /* The AArch64 implementation of the FLUSH() macro triggers a UBSan misaligned * address warning because the macro sometimes writes a 64-bit value to a * non-64-bit-aligned address. That behavior is technically undefined per * the C specification, but it is supported by the AArch64 architecture and * compilers. */ #if defined(__has_feature) #if __has_feature(undefined_behavior_sanitizer) __attribute__((no_sanitize("alignment"))) #endif #endif JOCTET *jsimd_huff_encode_one_block_neon(void *state, JOCTET *buffer, JCOEFPTR block, int last_dc_val, c_derived_tbl *dctbl, c_derived_tbl *actbl) { uint16_t block_diff[DCTSIZE2]; /* Load lookup table indices for rows of zig-zag ordering. */ #ifdef HAVE_VLD1Q_U8_X4 const uint8x16x4_t idx_rows_0123 = vld1q_u8_x4(jsimd_huff_encode_one_block_consts + 0 * DCTSIZE); const uint8x16x4_t idx_rows_4567 = vld1q_u8_x4(jsimd_huff_encode_one_block_consts + 8 * DCTSIZE); #else /* GCC does not currently support intrinsics vl1dq__x4(). */ const uint8x16x4_t idx_rows_0123 = { { vld1q_u8(jsimd_huff_encode_one_block_consts + 0 * DCTSIZE), vld1q_u8(jsimd_huff_encode_one_block_consts + 2 * DCTSIZE), vld1q_u8(jsimd_huff_encode_one_block_consts + 4 * DCTSIZE), vld1q_u8(jsimd_huff_encode_one_block_consts + 6 * DCTSIZE) } }; const uint8x16x4_t idx_rows_4567 = { { vld1q_u8(jsimd_huff_encode_one_block_consts + 8 * DCTSIZE), vld1q_u8(jsimd_huff_encode_one_block_consts + 10 * DCTSIZE), vld1q_u8(jsimd_huff_encode_one_block_consts + 12 * DCTSIZE), vld1q_u8(jsimd_huff_encode_one_block_consts + 14 * DCTSIZE) } }; #endif /* Load 8x8 block of DCT coefficients. */ #ifdef HAVE_VLD1Q_U8_X4 const int8x16x4_t tbl_rows_0123 = vld1q_s8_x4((int8_t *)(block + 0 * DCTSIZE)); const int8x16x4_t tbl_rows_4567 = vld1q_s8_x4((int8_t *)(block + 4 * DCTSIZE)); #else const int8x16x4_t tbl_rows_0123 = { { vld1q_s8((int8_t *)(block + 0 * DCTSIZE)), vld1q_s8((int8_t *)(block + 1 * DCTSIZE)), vld1q_s8((int8_t *)(block + 2 * DCTSIZE)), vld1q_s8((int8_t *)(block + 3 * DCTSIZE)) } }; const int8x16x4_t tbl_rows_4567 = { { vld1q_s8((int8_t *)(block + 4 * DCTSIZE)), vld1q_s8((int8_t *)(block + 5 * DCTSIZE)), vld1q_s8((int8_t *)(block + 6 * DCTSIZE)), vld1q_s8((int8_t *)(block + 7 * DCTSIZE)) } }; #endif /* Initialise extra lookup tables. */ const int8x16x4_t tbl_rows_2345 = { { tbl_rows_0123.val[2], tbl_rows_0123.val[3], tbl_rows_4567.val[0], tbl_rows_4567.val[1] } }; const int8x16x3_t tbl_rows_567 = { { tbl_rows_4567.val[1], tbl_rows_4567.val[2], tbl_rows_4567.val[3] } }; /* Shuffle coefficients into zig-zag order. */ int16x8_t row0 = vreinterpretq_s16_s8(vqtbl4q_s8(tbl_rows_0123, idx_rows_0123.val[0])); int16x8_t row1 = vreinterpretq_s16_s8(vqtbl4q_s8(tbl_rows_0123, idx_rows_0123.val[1])); int16x8_t row2 = vreinterpretq_s16_s8(vqtbl4q_s8(tbl_rows_2345, idx_rows_0123.val[2])); int16x8_t row3 = vreinterpretq_s16_s8(vqtbl4q_s8(tbl_rows_0123, idx_rows_0123.val[3])); int16x8_t row4 = vreinterpretq_s16_s8(vqtbl4q_s8(tbl_rows_4567, idx_rows_4567.val[0])); int16x8_t row5 = vreinterpretq_s16_s8(vqtbl4q_s8(tbl_rows_2345, idx_rows_4567.val[1])); int16x8_t row6 = vreinterpretq_s16_s8(vqtbl4q_s8(tbl_rows_4567, idx_rows_4567.val[2])); int16x8_t row7 = vreinterpretq_s16_s8(vqtbl3q_s8(tbl_rows_567, idx_rows_4567.val[3])); /* Compute DC coefficient difference value (F.1.1.5.1). */ row0 = vsetq_lane_s16(block[0] - last_dc_val, row0, 0); /* Initialize AC coefficient lanes not reachable by lookup tables. */ row1 = vsetq_lane_s16(vgetq_lane_s16(vreinterpretq_s16_s8(tbl_rows_4567.val[0]), 0), row1, 2); row2 = vsetq_lane_s16(vgetq_lane_s16(vreinterpretq_s16_s8(tbl_rows_0123.val[1]), 4), row2, 0); row2 = vsetq_lane_s16(vgetq_lane_s16(vreinterpretq_s16_s8(tbl_rows_4567.val[2]), 0), row2, 5); row5 = vsetq_lane_s16(vgetq_lane_s16(vreinterpretq_s16_s8(tbl_rows_0123.val[1]), 7), row5, 2); row5 = vsetq_lane_s16(vgetq_lane_s16(vreinterpretq_s16_s8(tbl_rows_4567.val[2]), 3), row5, 7); row6 = vsetq_lane_s16(vgetq_lane_s16(vreinterpretq_s16_s8(tbl_rows_0123.val[3]), 7), row6, 5); /* DCT block is now in zig-zag order; start Huffman encoding process. */ /* Construct bitmap to accelerate encoding of AC coefficients. A set bit * means that the corresponding coefficient != 0. */ uint16x8_t row0_ne_0 = vtstq_s16(row0, row0); uint16x8_t row1_ne_0 = vtstq_s16(row1, row1); uint16x8_t row2_ne_0 = vtstq_s16(row2, row2); uint16x8_t row3_ne_0 = vtstq_s16(row3, row3); uint16x8_t row4_ne_0 = vtstq_s16(row4, row4); uint16x8_t row5_ne_0 = vtstq_s16(row5, row5); uint16x8_t row6_ne_0 = vtstq_s16(row6, row6); uint16x8_t row7_ne_0 = vtstq_s16(row7, row7); uint8x16_t row10_ne_0 = vuzp1q_u8(vreinterpretq_u8_u16(row1_ne_0), vreinterpretq_u8_u16(row0_ne_0)); uint8x16_t row32_ne_0 = vuzp1q_u8(vreinterpretq_u8_u16(row3_ne_0), vreinterpretq_u8_u16(row2_ne_0)); uint8x16_t row54_ne_0 = vuzp1q_u8(vreinterpretq_u8_u16(row5_ne_0), vreinterpretq_u8_u16(row4_ne_0)); uint8x16_t row76_ne_0 = vuzp1q_u8(vreinterpretq_u8_u16(row7_ne_0), vreinterpretq_u8_u16(row6_ne_0)); /* { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 } */ const uint8x16_t bitmap_mask = vreinterpretq_u8_u64(vdupq_n_u64(0x0102040810204080)); uint8x16_t bitmap_rows_10 = vandq_u8(row10_ne_0, bitmap_mask); uint8x16_t bitmap_rows_32 = vandq_u8(row32_ne_0, bitmap_mask); uint8x16_t bitmap_rows_54 = vandq_u8(row54_ne_0, bitmap_mask); uint8x16_t bitmap_rows_76 = vandq_u8(row76_ne_0, bitmap_mask); uint8x16_t bitmap_rows_3210 = vpaddq_u8(bitmap_rows_32, bitmap_rows_10); uint8x16_t bitmap_rows_7654 = vpaddq_u8(bitmap_rows_76, bitmap_rows_54); uint8x16_t bitmap_rows_76543210 = vpaddq_u8(bitmap_rows_7654, bitmap_rows_3210); uint8x8_t bitmap_all = vpadd_u8(vget_low_u8(bitmap_rows_76543210), vget_high_u8(bitmap_rows_76543210)); /* Shift left to remove DC bit. */ bitmap_all = vreinterpret_u8_u64(vshl_n_u64(vreinterpret_u64_u8(bitmap_all), 1)); /* Count bits set (number of non-zero coefficients) in bitmap. */ unsigned int non_zero_coefficients = vaddv_u8(vcnt_u8(bitmap_all)); /* Move bitmap to 64-bit scalar register. */ uint64_t bitmap = vget_lane_u64(vreinterpret_u64_u8(bitmap_all), 0); /* Set up state and bit buffer for output bitstream. */ working_state *state_ptr = (working_state *)state; int free_bits = state_ptr->cur.free_bits; size_t put_buffer = state_ptr->cur.put_buffer; /* Encode DC coefficient. */ /* For negative coeffs: diff = abs(coeff) -1 = ~abs(coeff) */ int16x8_t abs_row0 = vabsq_s16(row0); int16x8_t row0_lz = vclzq_s16(abs_row0); uint16x8_t row0_mask = vshlq_u16(vcltzq_s16(row0), vnegq_s16(row0_lz)); uint16x8_t row0_diff = veorq_u16(vreinterpretq_u16_s16(abs_row0), row0_mask); /* Find nbits required to specify sign and amplitude of coefficient. */ unsigned int lz = vgetq_lane_u16(vreinterpretq_u16_s16(row0_lz), 0); unsigned int nbits = 16 - lz; /* Emit Huffman-coded symbol and additional diff bits. */ unsigned int diff = vgetq_lane_u16(row0_diff, 0); PUT_CODE(dctbl->ehufco[nbits], dctbl->ehufsi[nbits], diff) /* Encode AC coefficients. */ unsigned int r = 0; /* r = run length of zeros */ unsigned int i = 1; /* i = number of coefficients encoded */ /* Code and size information for a run length of 16 zero coefficients */ const unsigned int code_0xf0 = actbl->ehufco[0xf0]; const unsigned int size_0xf0 = actbl->ehufsi[0xf0]; /* The most efficient method of computing nbits and diff depends on the * number of non-zero coefficients. If the bitmap is not too sparse (> 8 * non-zero AC coefficients), it is beneficial to do all of the work using * Neon; else we do some of the work using Neon and the rest on demand using * scalar code. */ if (non_zero_coefficients > 8) { uint8_t block_nbits[DCTSIZE2]; int16x8_t abs_row1 = vabsq_s16(row1); int16x8_t abs_row2 = vabsq_s16(row2); int16x8_t abs_row3 = vabsq_s16(row3); int16x8_t abs_row4 = vabsq_s16(row4); int16x8_t abs_row5 = vabsq_s16(row5); int16x8_t abs_row6 = vabsq_s16(row6); int16x8_t abs_row7 = vabsq_s16(row7); int16x8_t row1_lz = vclzq_s16(abs_row1); int16x8_t row2_lz = vclzq_s16(abs_row2); int16x8_t row3_lz = vclzq_s16(abs_row3); int16x8_t row4_lz = vclzq_s16(abs_row4); int16x8_t row5_lz = vclzq_s16(abs_row5); int16x8_t row6_lz = vclzq_s16(abs_row6); int16x8_t row7_lz = vclzq_s16(abs_row7); /* Narrow leading zero count to 8 bits. */ uint8x16_t row01_lz = vuzp1q_u8(vreinterpretq_u8_s16(row0_lz), vreinterpretq_u8_s16(row1_lz)); uint8x16_t row23_lz = vuzp1q_u8(vreinterpretq_u8_s16(row2_lz), vreinterpretq_u8_s16(row3_lz)); uint8x16_t row45_lz = vuzp1q_u8(vreinterpretq_u8_s16(row4_lz), vreinterpretq_u8_s16(row5_lz)); uint8x16_t row67_lz = vuzp1q_u8(vreinterpretq_u8_s16(row6_lz), vreinterpretq_u8_s16(row7_lz)); /* Compute nbits needed to specify magnitude of each coefficient. */ uint8x16_t row01_nbits = vsubq_u8(vdupq_n_u8(16), row01_lz); uint8x16_t row23_nbits = vsubq_u8(vdupq_n_u8(16), row23_lz); uint8x16_t row45_nbits = vsubq_u8(vdupq_n_u8(16), row45_lz); uint8x16_t row67_nbits = vsubq_u8(vdupq_n_u8(16), row67_lz); /* Store nbits. */ vst1q_u8(block_nbits + 0 * DCTSIZE, row01_nbits); vst1q_u8(block_nbits + 2 * DCTSIZE, row23_nbits); vst1q_u8(block_nbits + 4 * DCTSIZE, row45_nbits); vst1q_u8(block_nbits + 6 * DCTSIZE, row67_nbits); /* Mask bits not required to specify sign and amplitude of diff. */ uint16x8_t row1_mask = vshlq_u16(vcltzq_s16(row1), vnegq_s16(row1_lz)); uint16x8_t row2_mask = vshlq_u16(vcltzq_s16(row2), vnegq_s16(row2_lz)); uint16x8_t row3_mask = vshlq_u16(vcltzq_s16(row3), vnegq_s16(row3_lz)); uint16x8_t row4_mask = vshlq_u16(vcltzq_s16(row4), vnegq_s16(row4_lz)); uint16x8_t row5_mask = vshlq_u16(vcltzq_s16(row5), vnegq_s16(row5_lz)); uint16x8_t row6_mask = vshlq_u16(vcltzq_s16(row6), vnegq_s16(row6_lz)); uint16x8_t row7_mask = vshlq_u16(vcltzq_s16(row7), vnegq_s16(row7_lz)); /* diff = abs(coeff) ^ sign(coeff) [no-op for positive coefficients] */ uint16x8_t row1_diff = veorq_u16(vreinterpretq_u16_s16(abs_row1), row1_mask); uint16x8_t row2_diff = veorq_u16(vreinterpretq_u16_s16(abs_row2), row2_mask); uint16x8_t row3_diff = veorq_u16(vreinterpretq_u16_s16(abs_row3), row3_mask); uint16x8_t row4_diff = veorq_u16(vreinterpretq_u16_s16(abs_row4), row4_mask); uint16x8_t row5_diff = veorq_u16(vreinterpretq_u16_s16(abs_row5), row5_mask); uint16x8_t row6_diff = veorq_u16(vreinterpretq_u16_s16(abs_row6), row6_mask); uint16x8_t row7_diff = veorq_u16(vreinterpretq_u16_s16(abs_row7), row7_mask); /* Store diff bits. */ vst1q_u16(block_diff + 0 * DCTSIZE, row0_diff); vst1q_u16(block_diff + 1 * DCTSIZE, row1_diff); vst1q_u16(block_diff + 2 * DCTSIZE, row2_diff); vst1q_u16(block_diff + 3 * DCTSIZE, row3_diff); vst1q_u16(block_diff + 4 * DCTSIZE, row4_diff); vst1q_u16(block_diff + 5 * DCTSIZE, row5_diff); vst1q_u16(block_diff + 6 * DCTSIZE, row6_diff); vst1q_u16(block_diff + 7 * DCTSIZE, row7_diff); while (bitmap != 0) { r = BUILTIN_CLZLL(bitmap); i += r; bitmap <<= r; nbits = block_nbits[i]; diff = block_diff[i]; while (r > 15) { /* If run length > 15, emit special run-length-16 codes. */ PUT_BITS(code_0xf0, size_0xf0) r -= 16; } /* Emit Huffman symbol for run length / number of bits. (F.1.2.2.1) */ unsigned int rs = (r << 4) + nbits; PUT_CODE(actbl->ehufco[rs], actbl->ehufsi[rs], diff) i++; bitmap <<= 1; } } else if (bitmap != 0) { uint16_t block_abs[DCTSIZE2]; /* Compute and store absolute value of coefficients. */ int16x8_t abs_row1 = vabsq_s16(row1); int16x8_t abs_row2 = vabsq_s16(row2); int16x8_t abs_row3 = vabsq_s16(row3); int16x8_t abs_row4 = vabsq_s16(row4); int16x8_t abs_row5 = vabsq_s16(row5); int16x8_t abs_row6 = vabsq_s16(row6); int16x8_t abs_row7 = vabsq_s16(row7); vst1q_u16(block_abs + 0 * DCTSIZE, vreinterpretq_u16_s16(abs_row0)); vst1q_u16(block_abs + 1 * DCTSIZE, vreinterpretq_u16_s16(abs_row1)); vst1q_u16(block_abs + 2 * DCTSIZE, vreinterpretq_u16_s16(abs_row2)); vst1q_u16(block_abs + 3 * DCTSIZE, vreinterpretq_u16_s16(abs_row3)); vst1q_u16(block_abs + 4 * DCTSIZE, vreinterpretq_u16_s16(abs_row4)); vst1q_u16(block_abs + 5 * DCTSIZE, vreinterpretq_u16_s16(abs_row5)); vst1q_u16(block_abs + 6 * DCTSIZE, vreinterpretq_u16_s16(abs_row6)); vst1q_u16(block_abs + 7 * DCTSIZE, vreinterpretq_u16_s16(abs_row7)); /* Compute diff bits (without nbits mask) and store. */ uint16x8_t row1_diff = veorq_u16(vreinterpretq_u16_s16(abs_row1), vcltzq_s16(row1)); uint16x8_t row2_diff = veorq_u16(vreinterpretq_u16_s16(abs_row2), vcltzq_s16(row2)); uint16x8_t row3_diff = veorq_u16(vreinterpretq_u16_s16(abs_row3), vcltzq_s16(row3)); uint16x8_t row4_diff = veorq_u16(vreinterpretq_u16_s16(abs_row4), vcltzq_s16(row4)); uint16x8_t row5_diff = veorq_u16(vreinterpretq_u16_s16(abs_row5), vcltzq_s16(row5)); uint16x8_t row6_diff = veorq_u16(vreinterpretq_u16_s16(abs_row6), vcltzq_s16(row6)); uint16x8_t row7_diff = veorq_u16(vreinterpretq_u16_s16(abs_row7), vcltzq_s16(row7)); vst1q_u16(block_diff + 0 * DCTSIZE, row0_diff); vst1q_u16(block_diff + 1 * DCTSIZE, row1_diff); vst1q_u16(block_diff + 2 * DCTSIZE, row2_diff); vst1q_u16(block_diff + 3 * DCTSIZE, row3_diff); vst1q_u16(block_diff + 4 * DCTSIZE, row4_diff); vst1q_u16(block_diff + 5 * DCTSIZE, row5_diff); vst1q_u16(block_diff + 6 * DCTSIZE, row6_diff); vst1q_u16(block_diff + 7 * DCTSIZE, row7_diff); /* Same as above but must mask diff bits and compute nbits on demand. */ while (bitmap != 0) { r = BUILTIN_CLZLL(bitmap); i += r; bitmap <<= r; lz = BUILTIN_CLZ(block_abs[i]); nbits = 32 - lz; diff = ((unsigned int)block_diff[i] << lz) >> lz; while (r > 15) { /* If run length > 15, emit special run-length-16 codes. */ PUT_BITS(code_0xf0, size_0xf0) r -= 16; } /* Emit Huffman symbol for run length / number of bits. (F.1.2.2.1) */ unsigned int rs = (r << 4) + nbits; PUT_CODE(actbl->ehufco[rs], actbl->ehufsi[rs], diff) i++; bitmap <<= 1; } } /* If the last coefficient(s) were zero, emit an end-of-block (EOB) code. * The value of RS for the EOB code is 0. */ if (i != 64) { PUT_BITS(actbl->ehufco[0], actbl->ehufsi[0]) } state_ptr->cur.put_buffer = put_buffer; state_ptr->cur.free_bits = free_bits; return buffer; } libjpeg-turbo-2.1.5/simd/arm/aarch64/jsimd.c000066400000000000000000000573041436506551100205200ustar00rootroot00000000000000/* * jsimd_arm64.c * * Copyright 2009 Pierre Ossman for Cendio AB * Copyright (C) 2011, Nokia Corporation and/or its subsidiary(-ies). * Copyright (C) 2009-2011, 2013-2014, 2016, 2018, 2020, 2022, D. R. Commander. * Copyright (C) 2015-2016, 2018, 2022, Matthieu Darbois. * Copyright (C) 2020, Arm Limited. * * Based on the x86 SIMD extension for IJG JPEG library, * Copyright (C) 1999-2006, MIYASAKA Masaru. * For conditions of distribution and use, see copyright notice in jsimdext.inc * * This file contains the interface between the "normal" portions * of the library and the SIMD implementations when running on a * 64-bit Arm architecture. */ #define JPEG_INTERNALS #include "../../../jinclude.h" #include "../../../jpeglib.h" #include "../../../jsimd.h" #include "../../../jdct.h" #include "../../../jsimddct.h" #include "../../jsimd.h" #include #define JSIMD_FASTLD3 1 #define JSIMD_FASTST3 2 #define JSIMD_FASTTBL 4 static THREAD_LOCAL unsigned int simd_support = ~0; static THREAD_LOCAL unsigned int simd_huffman = 1; static THREAD_LOCAL unsigned int simd_features = JSIMD_FASTLD3 | JSIMD_FASTST3 | JSIMD_FASTTBL; #if defined(__linux__) || defined(ANDROID) || defined(__ANDROID__) #define SOMEWHAT_SANE_PROC_CPUINFO_SIZE_LIMIT (1024 * 1024) LOCAL(int) check_cpuinfo(char *buffer, const char *field, char *value) { char *p; if (*value == 0) return 0; if (strncmp(buffer, field, strlen(field)) != 0) return 0; buffer += strlen(field); while (isspace(*buffer)) buffer++; /* Check if 'value' is present in the buffer as a separate word */ while ((p = strstr(buffer, value))) { if (p > buffer && !isspace(*(p - 1))) { buffer++; continue; } p += strlen(value); if (*p != 0 && !isspace(*p)) { buffer++; continue; } return 1; } return 0; } LOCAL(int) parse_proc_cpuinfo(int bufsize) { char *buffer = (char *)malloc(bufsize); FILE *fd; if (!buffer) return 0; fd = fopen("/proc/cpuinfo", "r"); if (fd) { while (fgets(buffer, bufsize, fd)) { if (!strchr(buffer, '\n') && !feof(fd)) { /* "impossible" happened - insufficient size of the buffer! */ fclose(fd); free(buffer); return 0; } if (check_cpuinfo(buffer, "CPU part", "0xd03") || check_cpuinfo(buffer, "CPU part", "0xd07")) /* The Cortex-A53 has a slow tbl implementation. We can gain a few percent speedup by disabling the use of that instruction. The speedup on Cortex-A57 is more subtle but still measurable. */ simd_features &= ~JSIMD_FASTTBL; else if (check_cpuinfo(buffer, "CPU part", "0x0a1")) /* The SIMD version of Huffman encoding is slower than the C version on Cavium ThunderX. Also, ld3 and st3 are abyssmally slow on that CPU. */ simd_huffman = simd_features = 0; } fclose(fd); } free(buffer); return 1; } #endif /* * Check what SIMD accelerations are supported. */ /* * Armv8 architectures support Neon extensions by default. * It is no longer optional as it was with Armv7. */ LOCAL(void) init_simd(void) { #ifndef NO_GETENV char env[2] = { 0 }; #endif #if defined(__linux__) || defined(ANDROID) || defined(__ANDROID__) int bufsize = 1024; /* an initial guess for the line buffer size limit */ #endif if (simd_support != ~0U) return; simd_support = 0; simd_support |= JSIMD_NEON; #if defined(__linux__) || defined(ANDROID) || defined(__ANDROID__) while (!parse_proc_cpuinfo(bufsize)) { bufsize *= 2; if (bufsize > SOMEWHAT_SANE_PROC_CPUINFO_SIZE_LIMIT) break; } #endif #ifndef NO_GETENV /* Force different settings through environment variables */ if (!GETENV_S(env, 2, "JSIMD_FORCENEON") && !strcmp(env, "1")) simd_support = JSIMD_NEON; if (!GETENV_S(env, 2, "JSIMD_FORCENONE") && !strcmp(env, "1")) simd_support = 0; if (!GETENV_S(env, 2, "JSIMD_NOHUFFENC") && !strcmp(env, "1")) simd_huffman = 0; if (!GETENV_S(env, 2, "JSIMD_FASTLD3") && !strcmp(env, "1")) simd_features |= JSIMD_FASTLD3; if (!GETENV_S(env, 2, "JSIMD_FASTLD3") && !strcmp(env, "0")) simd_features &= ~JSIMD_FASTLD3; if (!GETENV_S(env, 2, "JSIMD_FASTST3") && !strcmp(env, "1")) simd_features |= JSIMD_FASTST3; if (!GETENV_S(env, 2, "JSIMD_FASTST3") && !strcmp(env, "0")) simd_features &= ~JSIMD_FASTST3; #endif } GLOBAL(int) jsimd_can_rgb_ycc(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if ((RGB_PIXELSIZE != 3) && (RGB_PIXELSIZE != 4)) return 0; if (simd_support & JSIMD_NEON) return 1; return 0; } GLOBAL(int) jsimd_can_rgb_gray(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if ((RGB_PIXELSIZE != 3) && (RGB_PIXELSIZE != 4)) return 0; if (simd_support & JSIMD_NEON) return 1; return 0; } GLOBAL(int) jsimd_can_ycc_rgb(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if ((RGB_PIXELSIZE != 3) && (RGB_PIXELSIZE != 4)) return 0; if (simd_support & JSIMD_NEON) return 1; return 0; } GLOBAL(int) jsimd_can_ycc_rgb565(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_NEON) return 1; return 0; } GLOBAL(void) jsimd_rgb_ycc_convert(j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { void (*neonfct) (JDIMENSION, JSAMPARRAY, JSAMPIMAGE, JDIMENSION, int); switch (cinfo->in_color_space) { case JCS_EXT_RGB: #ifndef NEON_INTRINSICS if (simd_features & JSIMD_FASTLD3) #endif neonfct = jsimd_extrgb_ycc_convert_neon; #ifndef NEON_INTRINSICS else neonfct = jsimd_extrgb_ycc_convert_neon_slowld3; #endif break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: neonfct = jsimd_extrgbx_ycc_convert_neon; break; case JCS_EXT_BGR: #ifndef NEON_INTRINSICS if (simd_features & JSIMD_FASTLD3) #endif neonfct = jsimd_extbgr_ycc_convert_neon; #ifndef NEON_INTRINSICS else neonfct = jsimd_extbgr_ycc_convert_neon_slowld3; #endif break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: neonfct = jsimd_extbgrx_ycc_convert_neon; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: neonfct = jsimd_extxbgr_ycc_convert_neon; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: neonfct = jsimd_extxrgb_ycc_convert_neon; break; default: #ifndef NEON_INTRINSICS if (simd_features & JSIMD_FASTLD3) #endif neonfct = jsimd_extrgb_ycc_convert_neon; #ifndef NEON_INTRINSICS else neonfct = jsimd_extrgb_ycc_convert_neon_slowld3; #endif break; } neonfct(cinfo->image_width, input_buf, output_buf, output_row, num_rows); } GLOBAL(void) jsimd_rgb_gray_convert(j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { void (*neonfct) (JDIMENSION, JSAMPARRAY, JSAMPIMAGE, JDIMENSION, int); switch (cinfo->in_color_space) { case JCS_EXT_RGB: neonfct = jsimd_extrgb_gray_convert_neon; break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: neonfct = jsimd_extrgbx_gray_convert_neon; break; case JCS_EXT_BGR: neonfct = jsimd_extbgr_gray_convert_neon; break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: neonfct = jsimd_extbgrx_gray_convert_neon; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: neonfct = jsimd_extxbgr_gray_convert_neon; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: neonfct = jsimd_extxrgb_gray_convert_neon; break; default: neonfct = jsimd_extrgb_gray_convert_neon; break; } neonfct(cinfo->image_width, input_buf, output_buf, output_row, num_rows); } GLOBAL(void) jsimd_ycc_rgb_convert(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { void (*neonfct) (JDIMENSION, JSAMPIMAGE, JDIMENSION, JSAMPARRAY, int); switch (cinfo->out_color_space) { case JCS_EXT_RGB: #ifndef NEON_INTRINSICS if (simd_features & JSIMD_FASTST3) #endif neonfct = jsimd_ycc_extrgb_convert_neon; #ifndef NEON_INTRINSICS else neonfct = jsimd_ycc_extrgb_convert_neon_slowst3; #endif break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: neonfct = jsimd_ycc_extrgbx_convert_neon; break; case JCS_EXT_BGR: #ifndef NEON_INTRINSICS if (simd_features & JSIMD_FASTST3) #endif neonfct = jsimd_ycc_extbgr_convert_neon; #ifndef NEON_INTRINSICS else neonfct = jsimd_ycc_extbgr_convert_neon_slowst3; #endif break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: neonfct = jsimd_ycc_extbgrx_convert_neon; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: neonfct = jsimd_ycc_extxbgr_convert_neon; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: neonfct = jsimd_ycc_extxrgb_convert_neon; break; default: #ifndef NEON_INTRINSICS if (simd_features & JSIMD_FASTST3) #endif neonfct = jsimd_ycc_extrgb_convert_neon; #ifndef NEON_INTRINSICS else neonfct = jsimd_ycc_extrgb_convert_neon_slowst3; #endif break; } neonfct(cinfo->output_width, input_buf, input_row, output_buf, num_rows); } GLOBAL(void) jsimd_ycc_rgb565_convert(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { jsimd_ycc_rgb565_convert_neon(cinfo->output_width, input_buf, input_row, output_buf, num_rows); } GLOBAL(int) jsimd_can_h2v2_downsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (DCTSIZE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_NEON) return 1; return 0; } GLOBAL(int) jsimd_can_h2v1_downsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (DCTSIZE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_NEON) return 1; return 0; } GLOBAL(void) jsimd_h2v2_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY output_data) { jsimd_h2v2_downsample_neon(cinfo->image_width, cinfo->max_v_samp_factor, compptr->v_samp_factor, compptr->width_in_blocks, input_data, output_data); } GLOBAL(void) jsimd_h2v1_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY output_data) { jsimd_h2v1_downsample_neon(cinfo->image_width, cinfo->max_v_samp_factor, compptr->v_samp_factor, compptr->width_in_blocks, input_data, output_data); } GLOBAL(int) jsimd_can_h2v2_upsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_NEON) return 1; return 0; } GLOBAL(int) jsimd_can_h2v1_upsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_NEON) return 1; return 0; } GLOBAL(void) jsimd_h2v2_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { jsimd_h2v2_upsample_neon(cinfo->max_v_samp_factor, cinfo->output_width, input_data, output_data_ptr); } GLOBAL(void) jsimd_h2v1_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { jsimd_h2v1_upsample_neon(cinfo->max_v_samp_factor, cinfo->output_width, input_data, output_data_ptr); } GLOBAL(int) jsimd_can_h2v2_fancy_upsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_NEON) return 1; return 0; } GLOBAL(int) jsimd_can_h2v1_fancy_upsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_NEON) return 1; return 0; } GLOBAL(int) jsimd_can_h1v2_fancy_upsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_NEON) return 1; return 0; } GLOBAL(void) jsimd_h2v2_fancy_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { jsimd_h2v2_fancy_upsample_neon(cinfo->max_v_samp_factor, compptr->downsampled_width, input_data, output_data_ptr); } GLOBAL(void) jsimd_h2v1_fancy_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { jsimd_h2v1_fancy_upsample_neon(cinfo->max_v_samp_factor, compptr->downsampled_width, input_data, output_data_ptr); } GLOBAL(void) jsimd_h1v2_fancy_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { jsimd_h1v2_fancy_upsample_neon(cinfo->max_v_samp_factor, compptr->downsampled_width, input_data, output_data_ptr); } GLOBAL(int) jsimd_can_h2v2_merged_upsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_NEON) return 1; return 0; } GLOBAL(int) jsimd_can_h2v1_merged_upsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_NEON) return 1; return 0; } GLOBAL(void) jsimd_h2v2_merged_upsample(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { void (*neonfct) (JDIMENSION, JSAMPIMAGE, JDIMENSION, JSAMPARRAY); switch (cinfo->out_color_space) { case JCS_EXT_RGB: neonfct = jsimd_h2v2_extrgb_merged_upsample_neon; break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: neonfct = jsimd_h2v2_extrgbx_merged_upsample_neon; break; case JCS_EXT_BGR: neonfct = jsimd_h2v2_extbgr_merged_upsample_neon; break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: neonfct = jsimd_h2v2_extbgrx_merged_upsample_neon; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: neonfct = jsimd_h2v2_extxbgr_merged_upsample_neon; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: neonfct = jsimd_h2v2_extxrgb_merged_upsample_neon; break; default: neonfct = jsimd_h2v2_extrgb_merged_upsample_neon; break; } neonfct(cinfo->output_width, input_buf, in_row_group_ctr, output_buf); } GLOBAL(void) jsimd_h2v1_merged_upsample(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { void (*neonfct) (JDIMENSION, JSAMPIMAGE, JDIMENSION, JSAMPARRAY); switch (cinfo->out_color_space) { case JCS_EXT_RGB: neonfct = jsimd_h2v1_extrgb_merged_upsample_neon; break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: neonfct = jsimd_h2v1_extrgbx_merged_upsample_neon; break; case JCS_EXT_BGR: neonfct = jsimd_h2v1_extbgr_merged_upsample_neon; break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: neonfct = jsimd_h2v1_extbgrx_merged_upsample_neon; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: neonfct = jsimd_h2v1_extxbgr_merged_upsample_neon; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: neonfct = jsimd_h2v1_extxrgb_merged_upsample_neon; break; default: neonfct = jsimd_h2v1_extrgb_merged_upsample_neon; break; } neonfct(cinfo->output_width, input_buf, in_row_group_ctr, output_buf); } GLOBAL(int) jsimd_can_convsamp(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(DCTELEM) != 2) return 0; if (simd_support & JSIMD_NEON) return 1; return 0; } GLOBAL(int) jsimd_can_convsamp_float(void) { return 0; } GLOBAL(void) jsimd_convsamp(JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM *workspace) { jsimd_convsamp_neon(sample_data, start_col, workspace); } GLOBAL(void) jsimd_convsamp_float(JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT *workspace) { } GLOBAL(int) jsimd_can_fdct_islow(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(DCTELEM) != 2) return 0; if (simd_support & JSIMD_NEON) return 1; return 0; } GLOBAL(int) jsimd_can_fdct_ifast(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(DCTELEM) != 2) return 0; if (simd_support & JSIMD_NEON) return 1; return 0; } GLOBAL(int) jsimd_can_fdct_float(void) { return 0; } GLOBAL(void) jsimd_fdct_islow(DCTELEM *data) { jsimd_fdct_islow_neon(data); } GLOBAL(void) jsimd_fdct_ifast(DCTELEM *data) { jsimd_fdct_ifast_neon(data); } GLOBAL(void) jsimd_fdct_float(FAST_FLOAT *data) { } GLOBAL(int) jsimd_can_quantize(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (sizeof(DCTELEM) != 2) return 0; if (simd_support & JSIMD_NEON) return 1; return 0; } GLOBAL(int) jsimd_can_quantize_float(void) { return 0; } GLOBAL(void) jsimd_quantize(JCOEFPTR coef_block, DCTELEM *divisors, DCTELEM *workspace) { jsimd_quantize_neon(coef_block, divisors, workspace); } GLOBAL(void) jsimd_quantize_float(JCOEFPTR coef_block, FAST_FLOAT *divisors, FAST_FLOAT *workspace) { } GLOBAL(int) jsimd_can_idct_2x2(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(ISLOW_MULT_TYPE) != 2) return 0; if (simd_support & JSIMD_NEON) return 1; return 0; } GLOBAL(int) jsimd_can_idct_4x4(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(ISLOW_MULT_TYPE) != 2) return 0; if (simd_support & JSIMD_NEON) return 1; return 0; } GLOBAL(void) jsimd_idct_2x2(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { jsimd_idct_2x2_neon(compptr->dct_table, coef_block, output_buf, output_col); } GLOBAL(void) jsimd_idct_4x4(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { jsimd_idct_4x4_neon(compptr->dct_table, coef_block, output_buf, output_col); } GLOBAL(int) jsimd_can_idct_islow(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(ISLOW_MULT_TYPE) != 2) return 0; if (simd_support & JSIMD_NEON) return 1; return 0; } GLOBAL(int) jsimd_can_idct_ifast(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(IFAST_MULT_TYPE) != 2) return 0; if (IFAST_SCALE_BITS != 2) return 0; if (simd_support & JSIMD_NEON) return 1; return 0; } GLOBAL(int) jsimd_can_idct_float(void) { return 0; } GLOBAL(void) jsimd_idct_islow(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { jsimd_idct_islow_neon(compptr->dct_table, coef_block, output_buf, output_col); } GLOBAL(void) jsimd_idct_ifast(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { jsimd_idct_ifast_neon(compptr->dct_table, coef_block, output_buf, output_col); } GLOBAL(void) jsimd_idct_float(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { } GLOBAL(int) jsimd_can_huff_encode_one_block(void) { init_simd(); if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (simd_support & JSIMD_NEON && simd_huffman) return 1; return 0; } GLOBAL(JOCTET *) jsimd_huff_encode_one_block(void *state, JOCTET *buffer, JCOEFPTR block, int last_dc_val, c_derived_tbl *dctbl, c_derived_tbl *actbl) { #ifndef NEON_INTRINSICS if (simd_features & JSIMD_FASTTBL) #endif return jsimd_huff_encode_one_block_neon(state, buffer, block, last_dc_val, dctbl, actbl); #ifndef NEON_INTRINSICS else return jsimd_huff_encode_one_block_neon_slowtbl(state, buffer, block, last_dc_val, dctbl, actbl); #endif } GLOBAL(int) jsimd_can_encode_mcu_AC_first_prepare(void) { init_simd(); if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (SIZEOF_SIZE_T != 8) return 0; if (simd_support & JSIMD_NEON) return 1; return 0; } GLOBAL(void) jsimd_encode_mcu_AC_first_prepare(const JCOEF *block, const int *jpeg_natural_order_start, int Sl, int Al, UJCOEF *values, size_t *zerobits) { jsimd_encode_mcu_AC_first_prepare_neon(block, jpeg_natural_order_start, Sl, Al, values, zerobits); } GLOBAL(int) jsimd_can_encode_mcu_AC_refine_prepare(void) { init_simd(); if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (SIZEOF_SIZE_T != 8) return 0; if (simd_support & JSIMD_NEON) return 1; return 0; } GLOBAL(int) jsimd_encode_mcu_AC_refine_prepare(const JCOEF *block, const int *jpeg_natural_order_start, int Sl, int Al, UJCOEF *absvalues, size_t *bits) { return jsimd_encode_mcu_AC_refine_prepare_neon(block, jpeg_natural_order_start, Sl, Al, absvalues, bits); } libjpeg-turbo-2.1.5/simd/arm/aarch64/jsimd_neon.S000066400000000000000000003002621436506551100215110ustar00rootroot00000000000000/* * Armv8 Neon optimizations for libjpeg-turbo * * Copyright (C) 2009-2011, Nokia Corporation and/or its subsidiary(-ies). * All Rights Reserved. * Author: Siarhei Siamashka * Copyright (C) 2013-2014, Linaro Limited. All Rights Reserved. * Author: Ragesh Radhakrishnan * Copyright (C) 2014-2016, 2020, D. R. Commander. All Rights Reserved. * Copyright (C) 2015-2016, 2018, Matthieu Darbois. All Rights Reserved. * Copyright (C) 2016, Siarhei Siamashka. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #if defined(__linux__) && defined(__ELF__) .section .note.GNU-stack, "", %progbits /* mark stack as non-executable */ #endif #if defined(__APPLE__) .section __DATA, __const #elif defined(_WIN32) .section .rdata #else .section .rodata, "a", %progbits #endif /* Constants for jsimd_idct_islow_neon() */ #define F_0_298 2446 /* FIX(0.298631336) */ #define F_0_390 3196 /* FIX(0.390180644) */ #define F_0_541 4433 /* FIX(0.541196100) */ #define F_0_765 6270 /* FIX(0.765366865) */ #define F_0_899 7373 /* FIX(0.899976223) */ #define F_1_175 9633 /* FIX(1.175875602) */ #define F_1_501 12299 /* FIX(1.501321110) */ #define F_1_847 15137 /* FIX(1.847759065) */ #define F_1_961 16069 /* FIX(1.961570560) */ #define F_2_053 16819 /* FIX(2.053119869) */ #define F_2_562 20995 /* FIX(2.562915447) */ #define F_3_072 25172 /* FIX(3.072711026) */ .balign 16 Ljsimd_idct_islow_neon_consts: .short F_0_298 .short -F_0_390 .short F_0_541 .short F_0_765 .short - F_0_899 .short F_1_175 .short F_1_501 .short - F_1_847 .short - F_1_961 .short F_2_053 .short - F_2_562 .short F_3_072 .short 0 /* padding */ .short 0 .short 0 .short 0 #undef F_0_298 #undef F_0_390 #undef F_0_541 #undef F_0_765 #undef F_0_899 #undef F_1_175 #undef F_1_501 #undef F_1_847 #undef F_1_961 #undef F_2_053 #undef F_2_562 #undef F_3_072 /* Constants for jsimd_ycc_*_neon() */ .balign 16 Ljsimd_ycc_rgb_neon_consts: .short 0, 0, 0, 0 .short 22971, -11277, -23401, 29033 .short -128, -128, -128, -128 .short -128, -128, -128, -128 /* Constants for jsimd_*_ycc_neon() */ .balign 16 Ljsimd_rgb_ycc_neon_consts: .short 19595, 38470, 7471, 11059 .short 21709, 32768, 27439, 5329 .short 32767, 128, 32767, 128 .short 32767, 128, 32767, 128 /* Constants for jsimd_fdct_islow_neon() */ #define F_0_298 2446 /* FIX(0.298631336) */ #define F_0_390 3196 /* FIX(0.390180644) */ #define F_0_541 4433 /* FIX(0.541196100) */ #define F_0_765 6270 /* FIX(0.765366865) */ #define F_0_899 7373 /* FIX(0.899976223) */ #define F_1_175 9633 /* FIX(1.175875602) */ #define F_1_501 12299 /* FIX(1.501321110) */ #define F_1_847 15137 /* FIX(1.847759065) */ #define F_1_961 16069 /* FIX(1.961570560) */ #define F_2_053 16819 /* FIX(2.053119869) */ #define F_2_562 20995 /* FIX(2.562915447) */ #define F_3_072 25172 /* FIX(3.072711026) */ .balign 16 Ljsimd_fdct_islow_neon_consts: .short F_0_298 .short -F_0_390 .short F_0_541 .short F_0_765 .short - F_0_899 .short F_1_175 .short F_1_501 .short - F_1_847 .short - F_1_961 .short F_2_053 .short - F_2_562 .short F_3_072 .short 0 /* padding */ .short 0 .short 0 .short 0 #undef F_0_298 #undef F_0_390 #undef F_0_541 #undef F_0_765 #undef F_0_899 #undef F_1_175 #undef F_1_501 #undef F_1_847 #undef F_1_961 #undef F_2_053 #undef F_2_562 #undef F_3_072 /* Constants for jsimd_huff_encode_one_block_neon() */ .balign 16 Ljsimd_huff_encode_one_block_neon_consts: .byte 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, \ 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 .byte 0, 1, 2, 3, 16, 17, 32, 33, \ 18, 19, 4, 5, 6, 7, 20, 21 /* L0 => L3 : 4 lines OK */ .byte 34, 35, 48, 49, 255, 255, 50, 51, \ 36, 37, 22, 23, 8, 9, 10, 11 /* L0 => L3 : 4 lines OK */ .byte 8, 9, 22, 23, 36, 37, 50, 51, \ 255, 255, 255, 255, 255, 255, 52, 53 /* L1 => L4 : 4 lines OK */ .byte 54, 55, 40, 41, 26, 27, 12, 13, \ 14, 15, 28, 29, 42, 43, 56, 57 /* L0 => L3 : 4 lines OK */ .byte 6, 7, 20, 21, 34, 35, 48, 49, \ 50, 51, 36, 37, 22, 23, 8, 9 /* L4 => L7 : 4 lines OK */ .byte 42, 43, 28, 29, 14, 15, 30, 31, \ 44, 45, 58, 59, 255, 255, 255, 255 /* L1 => L4 : 4 lines OK */ .byte 255, 255, 255, 255, 56, 57, 42, 43, \ 28, 29, 14, 15, 30, 31, 44, 45 /* L3 => L6 : 4 lines OK */ .byte 26, 27, 40, 41, 42, 43, 28, 29, \ 14, 15, 30, 31, 44, 45, 46, 47 /* L5 => L7 : 3 lines OK */ .byte 255, 255, 255, 255, 0, 1, 255, 255, \ 255, 255, 255, 255, 255, 255, 255, 255 /* L4 : 1 lines OK */ .byte 255, 255, 255, 255, 255, 255, 255, 255, \ 0, 1, 16, 17, 2, 3, 255, 255 /* L5 => L6 : 2 lines OK */ .byte 255, 255, 255, 255, 255, 255, 255, 255, \ 255, 255, 255, 255, 8, 9, 22, 23 /* L5 => L6 : 2 lines OK */ .byte 4, 5, 6, 7, 255, 255, 255, 255, \ 255, 255, 255, 255, 255, 255, 255, 255 /* L7 : 1 line OK */ .text /*****************************************************************************/ /* Supplementary macro for setting function attributes */ .macro asm_function fname #ifdef __APPLE__ .private_extern _\fname .globl _\fname _\fname: #else .global \fname #ifdef __ELF__ .hidden \fname .type \fname, %function #endif \fname: #endif .endm /* Get symbol location */ .macro get_symbol_loc reg, symbol #ifdef __APPLE__ adrp \reg, \symbol@PAGE add \reg, \reg, \symbol@PAGEOFF #else adrp \reg, \symbol add \reg, \reg, :lo12:\symbol #endif .endm .macro transpose_8x8 l0, l1, l2, l3, l4, l5, l6, l7, t0, t1, t2, t3 trn1 \t0\().8h, \l0\().8h, \l1\().8h trn1 \t1\().8h, \l2\().8h, \l3\().8h trn1 \t2\().8h, \l4\().8h, \l5\().8h trn1 \t3\().8h, \l6\().8h, \l7\().8h trn2 \l1\().8h, \l0\().8h, \l1\().8h trn2 \l3\().8h, \l2\().8h, \l3\().8h trn2 \l5\().8h, \l4\().8h, \l5\().8h trn2 \l7\().8h, \l6\().8h, \l7\().8h trn1 \l4\().4s, \t2\().4s, \t3\().4s trn2 \t3\().4s, \t2\().4s, \t3\().4s trn1 \t2\().4s, \t0\().4s, \t1\().4s trn2 \l2\().4s, \t0\().4s, \t1\().4s trn1 \t0\().4s, \l1\().4s, \l3\().4s trn2 \l3\().4s, \l1\().4s, \l3\().4s trn2 \t1\().4s, \l5\().4s, \l7\().4s trn1 \l5\().4s, \l5\().4s, \l7\().4s trn2 \l6\().2d, \l2\().2d, \t3\().2d trn1 \l0\().2d, \t2\().2d, \l4\().2d trn1 \l1\().2d, \t0\().2d, \l5\().2d trn2 \l7\().2d, \l3\().2d, \t1\().2d trn1 \l2\().2d, \l2\().2d, \t3\().2d trn2 \l4\().2d, \t2\().2d, \l4\().2d trn1 \l3\().2d, \l3\().2d, \t1\().2d trn2 \l5\().2d, \t0\().2d, \l5\().2d .endm #define CENTERJSAMPLE 128 /*****************************************************************************/ /* * Perform dequantization and inverse DCT on one block of coefficients. * * GLOBAL(void) * jsimd_idct_islow_neon(void *dct_table, JCOEFPTR coef_block, * JSAMPARRAY output_buf, JDIMENSION output_col) */ #define CONST_BITS 13 #define PASS1_BITS 2 #define XFIX_P_0_298 v0.h[0] #define XFIX_N_0_390 v0.h[1] #define XFIX_P_0_541 v0.h[2] #define XFIX_P_0_765 v0.h[3] #define XFIX_N_0_899 v0.h[4] #define XFIX_P_1_175 v0.h[5] #define XFIX_P_1_501 v0.h[6] #define XFIX_N_1_847 v0.h[7] #define XFIX_N_1_961 v1.h[0] #define XFIX_P_2_053 v1.h[1] #define XFIX_N_2_562 v1.h[2] #define XFIX_P_3_072 v1.h[3] asm_function jsimd_idct_islow_neon DCT_TABLE .req x0 COEF_BLOCK .req x1 OUTPUT_BUF .req x2 OUTPUT_COL .req x3 TMP1 .req x0 TMP2 .req x1 TMP3 .req x9 TMP4 .req x10 TMP5 .req x11 TMP6 .req x12 TMP7 .req x13 TMP8 .req x14 /* OUTPUT_COL is a JDIMENSION (unsigned int) argument, so the ABI doesn't guarantee that the upper (unused) 32 bits of x3 are valid. This instruction ensures that those bits are set to zero. */ uxtw x3, w3 sub sp, sp, #64 get_symbol_loc x15, Ljsimd_idct_islow_neon_consts mov x10, sp st1 {v8.8b, v9.8b, v10.8b, v11.8b}, [x10], #32 st1 {v12.8b, v13.8b, v14.8b, v15.8b}, [x10], #32 ld1 {v0.8h, v1.8h}, [x15] ld1 {v2.8h, v3.8h, v4.8h, v5.8h}, [COEF_BLOCK], #64 ld1 {v18.8h, v19.8h, v20.8h, v21.8h}, [DCT_TABLE], #64 ld1 {v6.8h, v7.8h, v8.8h, v9.8h}, [COEF_BLOCK], #64 ld1 {v22.8h, v23.8h, v24.8h, v25.8h}, [DCT_TABLE], #64 cmeq v16.8h, v3.8h, #0 cmeq v26.8h, v4.8h, #0 cmeq v27.8h, v5.8h, #0 cmeq v28.8h, v6.8h, #0 cmeq v29.8h, v7.8h, #0 cmeq v30.8h, v8.8h, #0 cmeq v31.8h, v9.8h, #0 and v10.16b, v16.16b, v26.16b and v11.16b, v27.16b, v28.16b and v12.16b, v29.16b, v30.16b and v13.16b, v31.16b, v10.16b and v14.16b, v11.16b, v12.16b mul v2.8h, v2.8h, v18.8h and v15.16b, v13.16b, v14.16b shl v10.8h, v2.8h, #(PASS1_BITS) sqxtn v16.8b, v15.8h mov TMP1, v16.d[0] mvn TMP2, TMP1 cbnz TMP2, 2f /* case all AC coeffs are zeros */ dup v2.2d, v10.d[0] dup v6.2d, v10.d[1] mov v3.16b, v2.16b mov v7.16b, v6.16b mov v4.16b, v2.16b mov v8.16b, v6.16b mov v5.16b, v2.16b mov v9.16b, v6.16b 1: /* for this transpose, we should organise data like this: * 00, 01, 02, 03, 40, 41, 42, 43 * 10, 11, 12, 13, 50, 51, 52, 53 * 20, 21, 22, 23, 60, 61, 62, 63 * 30, 31, 32, 33, 70, 71, 72, 73 * 04, 05, 06, 07, 44, 45, 46, 47 * 14, 15, 16, 17, 54, 55, 56, 57 * 24, 25, 26, 27, 64, 65, 66, 67 * 34, 35, 36, 37, 74, 75, 76, 77 */ trn1 v28.8h, v2.8h, v3.8h trn1 v29.8h, v4.8h, v5.8h trn1 v30.8h, v6.8h, v7.8h trn1 v31.8h, v8.8h, v9.8h trn2 v16.8h, v2.8h, v3.8h trn2 v17.8h, v4.8h, v5.8h trn2 v18.8h, v6.8h, v7.8h trn2 v19.8h, v8.8h, v9.8h trn1 v2.4s, v28.4s, v29.4s trn1 v6.4s, v30.4s, v31.4s trn1 v3.4s, v16.4s, v17.4s trn1 v7.4s, v18.4s, v19.4s trn2 v4.4s, v28.4s, v29.4s trn2 v8.4s, v30.4s, v31.4s trn2 v5.4s, v16.4s, v17.4s trn2 v9.4s, v18.4s, v19.4s /* Even part: reverse the even part of the forward DCT. */ add v18.8h, v4.8h, v8.8h /* z2 + z3 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]) + DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]) */ add v22.8h, v2.8h, v6.8h /* z2 + z3 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) + DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]) */ smull2 v19.4s, v18.8h, XFIX_P_0_541 /* z1h z1 = MULTIPLY(z2 + z3, FIX_0_541196100); */ sub v26.8h, v2.8h, v6.8h /* z2 - z3 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) - DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]) */ smull v18.4s, v18.4h, XFIX_P_0_541 /* z1l z1 = MULTIPLY(z2 + z3, FIX_0_541196100); */ sshll2 v23.4s, v22.8h, #(CONST_BITS) /* tmp0h tmp0 = LEFT_SHIFT(z2 + z3, CONST_BITS); */ mov v21.16b, v19.16b /* tmp3 = z1 */ mov v20.16b, v18.16b /* tmp3 = z1 */ smlal2 v19.4s, v8.8h, XFIX_N_1_847 /* tmp2h tmp2 = z1 + MULTIPLY(z3, -FIX_1_847759065); */ smlal v18.4s, v8.4h, XFIX_N_1_847 /* tmp2l tmp2 = z1 + MULTIPLY(z3, -FIX_1_847759065); */ sshll2 v27.4s, v26.8h, #(CONST_BITS) /* tmp1h tmp1 = LEFT_SHIFT(z2 - z3, CONST_BITS); */ smlal2 v21.4s, v4.8h, XFIX_P_0_765 /* tmp3h tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865); */ smlal v20.4s, v4.4h, XFIX_P_0_765 /* tmp3l tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865); */ sshll v22.4s, v22.4h, #(CONST_BITS) /* tmp0l tmp0 = LEFT_SHIFT(z2 + z3, CONST_BITS); */ sshll v26.4s, v26.4h, #(CONST_BITS) /* tmp1l tmp1 = LEFT_SHIFT(z2 - z3, CONST_BITS); */ add v2.4s, v22.4s, v20.4s /* tmp10l tmp10 = tmp0 + tmp3; */ sub v6.4s, v22.4s, v20.4s /* tmp13l tmp13 = tmp0 - tmp3; */ add v8.4s, v26.4s, v18.4s /* tmp11l tmp11 = tmp1 + tmp2; */ sub v4.4s, v26.4s, v18.4s /* tmp12l tmp12 = tmp1 - tmp2; */ add v28.4s, v23.4s, v21.4s /* tmp10h tmp10 = tmp0 + tmp3; */ sub v31.4s, v23.4s, v21.4s /* tmp13h tmp13 = tmp0 - tmp3; */ add v29.4s, v27.4s, v19.4s /* tmp11h tmp11 = tmp1 + tmp2; */ sub v30.4s, v27.4s, v19.4s /* tmp12h tmp12 = tmp1 - tmp2; */ /* Odd part per figure 8; the matrix is unitary and hence its * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. */ add v22.8h, v9.8h, v5.8h /* z3 = tmp0 + tmp2 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]) + DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]) */ add v24.8h, v7.8h, v3.8h /* z4 = tmp1 + tmp3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]) + DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]) */ add v18.8h, v9.8h, v3.8h /* z1 = tmp0 + tmp3 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]) + DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]) */ add v20.8h, v7.8h, v5.8h /* z2 = tmp1 + tmp2 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]) + DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]) */ add v26.8h, v22.8h, v24.8h /* z5 = z3 + z4 */ smull2 v11.4s, v9.8h, XFIX_P_0_298 /* tmp0 = MULTIPLY(tmp0, FIX_0_298631336) */ smull2 v13.4s, v7.8h, XFIX_P_2_053 /* tmp1 = MULTIPLY(tmp1, FIX_2_053119869) */ smull2 v15.4s, v5.8h, XFIX_P_3_072 /* tmp2 = MULTIPLY(tmp2, FIX_3_072711026) */ smull2 v17.4s, v3.8h, XFIX_P_1_501 /* tmp3 = MULTIPLY(tmp3, FIX_1_501321110) */ smull2 v27.4s, v26.8h, XFIX_P_1_175 /* z5h z5 = MULTIPLY(z3 + z4, FIX_1_175875602) */ smull2 v23.4s, v22.8h, XFIX_N_1_961 /* z3 = MULTIPLY(z3, -FIX_1_961570560) */ smull2 v25.4s, v24.8h, XFIX_N_0_390 /* z4 = MULTIPLY(z4, -FIX_0_390180644) */ smull2 v19.4s, v18.8h, XFIX_N_0_899 /* z1 = MULTIPLY(z1, -FIX_0_899976223) */ smull2 v21.4s, v20.8h, XFIX_N_2_562 /* z2 = MULTIPLY(z2, -FIX_2_562915447) */ smull v10.4s, v9.4h, XFIX_P_0_298 /* tmp0 = MULTIPLY(tmp0, FIX_0_298631336) */ smull v12.4s, v7.4h, XFIX_P_2_053 /* tmp1 = MULTIPLY(tmp1, FIX_2_053119869) */ smull v14.4s, v5.4h, XFIX_P_3_072 /* tmp2 = MULTIPLY(tmp2, FIX_3_072711026) */ smull v16.4s, v3.4h, XFIX_P_1_501 /* tmp3 = MULTIPLY(tmp3, FIX_1_501321110) */ smull v26.4s, v26.4h, XFIX_P_1_175 /* z5l z5 = MULTIPLY(z3 + z4, FIX_1_175875602) */ smull v22.4s, v22.4h, XFIX_N_1_961 /* z3 = MULTIPLY(z3, -FIX_1_961570560) */ smull v24.4s, v24.4h, XFIX_N_0_390 /* z4 = MULTIPLY(z4, -FIX_0_390180644) */ smull v18.4s, v18.4h, XFIX_N_0_899 /* z1 = MULTIPLY(z1, -FIX_0_899976223) */ smull v20.4s, v20.4h, XFIX_N_2_562 /* z2 = MULTIPLY(z2, -FIX_2_562915447) */ add v23.4s, v23.4s, v27.4s /* z3 += z5 */ add v22.4s, v22.4s, v26.4s /* z3 += z5 */ add v25.4s, v25.4s, v27.4s /* z4 += z5 */ add v24.4s, v24.4s, v26.4s /* z4 += z5 */ add v11.4s, v11.4s, v19.4s /* tmp0 += z1 */ add v10.4s, v10.4s, v18.4s /* tmp0 += z1 */ add v13.4s, v13.4s, v21.4s /* tmp1 += z2 */ add v12.4s, v12.4s, v20.4s /* tmp1 += z2 */ add v15.4s, v15.4s, v21.4s /* tmp2 += z2 */ add v14.4s, v14.4s, v20.4s /* tmp2 += z2 */ add v17.4s, v17.4s, v19.4s /* tmp3 += z1 */ add v16.4s, v16.4s, v18.4s /* tmp3 += z1 */ add v11.4s, v11.4s, v23.4s /* tmp0 += z3 */ add v10.4s, v10.4s, v22.4s /* tmp0 += z3 */ add v13.4s, v13.4s, v25.4s /* tmp1 += z4 */ add v12.4s, v12.4s, v24.4s /* tmp1 += z4 */ add v17.4s, v17.4s, v25.4s /* tmp3 += z4 */ add v16.4s, v16.4s, v24.4s /* tmp3 += z4 */ add v15.4s, v15.4s, v23.4s /* tmp2 += z3 */ add v14.4s, v14.4s, v22.4s /* tmp2 += z3 */ /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ add v18.4s, v2.4s, v16.4s /* tmp10 + tmp3 */ add v19.4s, v28.4s, v17.4s /* tmp10 + tmp3 */ sub v20.4s, v2.4s, v16.4s /* tmp10 - tmp3 */ sub v21.4s, v28.4s, v17.4s /* tmp10 - tmp3 */ add v22.4s, v8.4s, v14.4s /* tmp11 + tmp2 */ add v23.4s, v29.4s, v15.4s /* tmp11 + tmp2 */ sub v24.4s, v8.4s, v14.4s /* tmp11 - tmp2 */ sub v25.4s, v29.4s, v15.4s /* tmp11 - tmp2 */ add v26.4s, v4.4s, v12.4s /* tmp12 + tmp1 */ add v27.4s, v30.4s, v13.4s /* tmp12 + tmp1 */ sub v28.4s, v4.4s, v12.4s /* tmp12 - tmp1 */ sub v29.4s, v30.4s, v13.4s /* tmp12 - tmp1 */ add v14.4s, v6.4s, v10.4s /* tmp13 + tmp0 */ add v15.4s, v31.4s, v11.4s /* tmp13 + tmp0 */ sub v16.4s, v6.4s, v10.4s /* tmp13 - tmp0 */ sub v17.4s, v31.4s, v11.4s /* tmp13 - tmp0 */ shrn v2.4h, v18.4s, #16 /* wsptr[DCTSIZE*0] = (int)DESCALE(tmp10 + tmp3, CONST_BITS+PASS1_BITS+3) */ shrn v9.4h, v20.4s, #16 /* wsptr[DCTSIZE*7] = (int)DESCALE(tmp10 - tmp3, CONST_BITS+PASS1_BITS+3) */ shrn v3.4h, v22.4s, #16 /* wsptr[DCTSIZE*1] = (int)DESCALE(tmp11 + tmp2, CONST_BITS+PASS1_BITS+3) */ shrn v8.4h, v24.4s, #16 /* wsptr[DCTSIZE*6] = (int)DESCALE(tmp11 - tmp2, CONST_BITS+PASS1_BITS+3) */ shrn v4.4h, v26.4s, #16 /* wsptr[DCTSIZE*2] = (int)DESCALE(tmp12 + tmp1, CONST_BITS+PASS1_BITS+3) */ shrn v7.4h, v28.4s, #16 /* wsptr[DCTSIZE*5] = (int)DESCALE(tmp12 - tmp1, CONST_BITS+PASS1_BITS+3) */ shrn v5.4h, v14.4s, #16 /* wsptr[DCTSIZE*3] = (int)DESCALE(tmp13 + tmp0, CONST_BITS+PASS1_BITS+3) */ shrn v6.4h, v16.4s, #16 /* wsptr[DCTSIZE*4] = (int)DESCALE(tmp13 - tmp0, CONST_BITS+PASS1_BITS+3) */ shrn2 v2.8h, v19.4s, #16 /* wsptr[DCTSIZE*0] = (int)DESCALE(tmp10 + tmp3, CONST_BITS+PASS1_BITS+3) */ shrn2 v9.8h, v21.4s, #16 /* wsptr[DCTSIZE*7] = (int)DESCALE(tmp10 - tmp3, CONST_BITS+PASS1_BITS+3) */ shrn2 v3.8h, v23.4s, #16 /* wsptr[DCTSIZE*1] = (int)DESCALE(tmp11 + tmp2, CONST_BITS+PASS1_BITS+3) */ shrn2 v8.8h, v25.4s, #16 /* wsptr[DCTSIZE*6] = (int)DESCALE(tmp11 - tmp2, CONST_BITS+PASS1_BITS+3) */ shrn2 v4.8h, v27.4s, #16 /* wsptr[DCTSIZE*2] = (int)DESCALE(tmp12 + tmp1, CONST_BITS+PASS1_BITS+3) */ shrn2 v7.8h, v29.4s, #16 /* wsptr[DCTSIZE*5] = (int)DESCALE(tmp12 - tmp1, CONST_BITS+PASS1_BITS+3) */ shrn2 v5.8h, v15.4s, #16 /* wsptr[DCTSIZE*3] = (int)DESCALE(tmp13 + tmp0, CONST_BITS+PASS1_BITS+3) */ shrn2 v6.8h, v17.4s, #16 /* wsptr[DCTSIZE*4] = (int)DESCALE(tmp13 - tmp0, CONST_BITS+PASS1_BITS+3) */ movi v0.16b, #(CENTERJSAMPLE) /* Prepare pointers (dual-issue with Neon instructions) */ ldp TMP1, TMP2, [OUTPUT_BUF], 16 sqrshrn v28.8b, v2.8h, #(CONST_BITS + PASS1_BITS + 3 - 16) ldp TMP3, TMP4, [OUTPUT_BUF], 16 sqrshrn v29.8b, v3.8h, #(CONST_BITS + PASS1_BITS + 3 - 16) add TMP1, TMP1, OUTPUT_COL sqrshrn v30.8b, v4.8h, #(CONST_BITS + PASS1_BITS + 3 - 16) add TMP2, TMP2, OUTPUT_COL sqrshrn v31.8b, v5.8h, #(CONST_BITS + PASS1_BITS + 3 - 16) add TMP3, TMP3, OUTPUT_COL sqrshrn2 v28.16b, v6.8h, #(CONST_BITS + PASS1_BITS + 3 - 16) add TMP4, TMP4, OUTPUT_COL sqrshrn2 v29.16b, v7.8h, #(CONST_BITS + PASS1_BITS + 3 - 16) ldp TMP5, TMP6, [OUTPUT_BUF], 16 sqrshrn2 v30.16b, v8.8h, #(CONST_BITS + PASS1_BITS + 3 - 16) ldp TMP7, TMP8, [OUTPUT_BUF], 16 sqrshrn2 v31.16b, v9.8h, #(CONST_BITS + PASS1_BITS + 3 - 16) add TMP5, TMP5, OUTPUT_COL add v16.16b, v28.16b, v0.16b add TMP6, TMP6, OUTPUT_COL add v18.16b, v29.16b, v0.16b add TMP7, TMP7, OUTPUT_COL add v20.16b, v30.16b, v0.16b add TMP8, TMP8, OUTPUT_COL add v22.16b, v31.16b, v0.16b /* Transpose the final 8-bit samples */ trn1 v28.16b, v16.16b, v18.16b trn1 v30.16b, v20.16b, v22.16b trn2 v29.16b, v16.16b, v18.16b trn2 v31.16b, v20.16b, v22.16b trn1 v16.8h, v28.8h, v30.8h trn2 v18.8h, v28.8h, v30.8h trn1 v20.8h, v29.8h, v31.8h trn2 v22.8h, v29.8h, v31.8h uzp1 v28.4s, v16.4s, v18.4s uzp2 v30.4s, v16.4s, v18.4s uzp1 v29.4s, v20.4s, v22.4s uzp2 v31.4s, v20.4s, v22.4s /* Store results to the output buffer */ st1 {v28.d}[0], [TMP1] st1 {v29.d}[0], [TMP2] st1 {v28.d}[1], [TMP3] st1 {v29.d}[1], [TMP4] st1 {v30.d}[0], [TMP5] st1 {v31.d}[0], [TMP6] st1 {v30.d}[1], [TMP7] st1 {v31.d}[1], [TMP8] ld1 {v8.8b, v9.8b, v10.8b, v11.8b}, [sp], #32 ld1 {v12.8b, v13.8b, v14.8b, v15.8b}, [sp], #32 blr x30 .balign 16 2: mul v3.8h, v3.8h, v19.8h mul v4.8h, v4.8h, v20.8h mul v5.8h, v5.8h, v21.8h add TMP4, xzr, TMP2, LSL #32 mul v6.8h, v6.8h, v22.8h mul v7.8h, v7.8h, v23.8h adds TMP3, xzr, TMP2, LSR #32 mul v8.8h, v8.8h, v24.8h mul v9.8h, v9.8h, v25.8h b.ne 3f /* Right AC coef is zero */ dup v15.2d, v10.d[1] /* Even part: reverse the even part of the forward DCT. */ add v18.4h, v4.4h, v8.4h /* z2 + z3 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]) + DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]) */ add v22.4h, v2.4h, v6.4h /* z2 + z3 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) + DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]) */ sub v26.4h, v2.4h, v6.4h /* z2 - z3 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) - DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]) */ smull v18.4s, v18.4h, XFIX_P_0_541 /* z1l z1 = MULTIPLY(z2 + z3, FIX_0_541196100); */ sshll v22.4s, v22.4h, #(CONST_BITS) /* tmp0l tmp0 = LEFT_SHIFT(z2 + z3, CONST_BITS); */ mov v20.16b, v18.16b /* tmp3 = z1 */ sshll v26.4s, v26.4h, #(CONST_BITS) /* tmp1l tmp1 = LEFT_SHIFT(z2 - z3, CONST_BITS); */ smlal v18.4s, v8.4h, XFIX_N_1_847 /* tmp2l tmp2 = z1 + MULTIPLY(z3, -FIX_1_847759065); */ smlal v20.4s, v4.4h, XFIX_P_0_765 /* tmp3l tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865); */ add v2.4s, v22.4s, v20.4s /* tmp10l tmp10 = tmp0 + tmp3; */ sub v6.4s, v22.4s, v20.4s /* tmp13l tmp13 = tmp0 - tmp3; */ add v8.4s, v26.4s, v18.4s /* tmp11l tmp11 = tmp1 + tmp2; */ sub v4.4s, v26.4s, v18.4s /* tmp12l tmp12 = tmp1 - tmp2; */ /* Odd part per figure 8; the matrix is unitary and hence its * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. */ add v22.4h, v9.4h, v5.4h /* z3 = tmp0 + tmp2 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]) + DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]) */ add v24.4h, v7.4h, v3.4h /* z4 = tmp1 + tmp3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]) + DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]) */ add v18.4h, v9.4h, v3.4h /* z1 = tmp0 + tmp3 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]) + DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]) */ add v20.4h, v7.4h, v5.4h /* z2 = tmp1 + tmp2 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]) + DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]) */ add v26.4h, v22.4h, v24.4h /* z5 = z3 + z4 */ smull v10.4s, v9.4h, XFIX_P_0_298 /* tmp0 = MULTIPLY(tmp0, FIX_0_298631336) */ smull v12.4s, v7.4h, XFIX_P_2_053 /* tmp1 = MULTIPLY(tmp1, FIX_2_053119869) */ smull v14.4s, v5.4h, XFIX_P_3_072 /* tmp2 = MULTIPLY(tmp2, FIX_3_072711026) */ smull v16.4s, v3.4h, XFIX_P_1_501 /* tmp3 = MULTIPLY(tmp3, FIX_1_501321110) */ smull v26.4s, v26.4h, XFIX_P_1_175 /* z5l z5 = MULTIPLY(z3 + z4, FIX_1_175875602) */ smull v22.4s, v22.4h, XFIX_N_1_961 /* z3 = MULTIPLY(z3, -FIX_1_961570560) */ smull v24.4s, v24.4h, XFIX_N_0_390 /* z4 = MULTIPLY(z4, -FIX_0_390180644) */ smull v18.4s, v18.4h, XFIX_N_0_899 /* z1 = MULTIPLY(z1, -FIX_0_899976223) */ smull v20.4s, v20.4h, XFIX_N_2_562 /* z2 = MULTIPLY(z2, -FIX_2_562915447) */ add v22.4s, v22.4s, v26.4s /* z3 += z5 */ add v24.4s, v24.4s, v26.4s /* z4 += z5 */ add v10.4s, v10.4s, v18.4s /* tmp0 += z1 */ add v12.4s, v12.4s, v20.4s /* tmp1 += z2 */ add v14.4s, v14.4s, v20.4s /* tmp2 += z2 */ add v16.4s, v16.4s, v18.4s /* tmp3 += z1 */ add v10.4s, v10.4s, v22.4s /* tmp0 += z3 */ add v12.4s, v12.4s, v24.4s /* tmp1 += z4 */ add v16.4s, v16.4s, v24.4s /* tmp3 += z4 */ add v14.4s, v14.4s, v22.4s /* tmp2 += z3 */ /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ add v18.4s, v2.4s, v16.4s /* tmp10 + tmp3 */ sub v20.4s, v2.4s, v16.4s /* tmp10 - tmp3 */ add v22.4s, v8.4s, v14.4s /* tmp11 + tmp2 */ sub v24.4s, v8.4s, v14.4s /* tmp11 - tmp2 */ add v26.4s, v4.4s, v12.4s /* tmp12 + tmp1 */ sub v28.4s, v4.4s, v12.4s /* tmp12 - tmp1 */ add v14.4s, v6.4s, v10.4s /* tmp13 + tmp0 */ sub v16.4s, v6.4s, v10.4s /* tmp13 - tmp0 */ rshrn v2.4h, v18.4s, #(CONST_BITS - PASS1_BITS) /* wsptr[DCTSIZE*0] = (int)DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS) */ rshrn v3.4h, v22.4s, #(CONST_BITS - PASS1_BITS) /* wsptr[DCTSIZE*1] = (int)DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS) */ rshrn v4.4h, v26.4s, #(CONST_BITS - PASS1_BITS) /* wsptr[DCTSIZE*2] = (int)DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS) */ rshrn v5.4h, v14.4s, #(CONST_BITS - PASS1_BITS) /* wsptr[DCTSIZE*3] = (int)DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS) */ rshrn2 v2.8h, v16.4s, #(CONST_BITS - PASS1_BITS) /* wsptr[DCTSIZE*4] = (int)DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS) */ rshrn2 v3.8h, v28.4s, #(CONST_BITS - PASS1_BITS) /* wsptr[DCTSIZE*5] = (int)DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS) */ rshrn2 v4.8h, v24.4s, #(CONST_BITS - PASS1_BITS) /* wsptr[DCTSIZE*6] = (int)DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS) */ rshrn2 v5.8h, v20.4s, #(CONST_BITS - PASS1_BITS) /* wsptr[DCTSIZE*7] = (int)DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS) */ mov v6.16b, v15.16b mov v7.16b, v15.16b mov v8.16b, v15.16b mov v9.16b, v15.16b b 1b .balign 16 3: cbnz TMP4, 4f /* Left AC coef is zero */ dup v14.2d, v10.d[0] /* Even part: reverse the even part of the forward DCT. */ add v18.8h, v4.8h, v8.8h /* z2 + z3 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]) + DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]) */ add v22.8h, v2.8h, v6.8h /* z2 + z3 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) + DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]) */ smull2 v19.4s, v18.8h, XFIX_P_0_541 /* z1h z1 = MULTIPLY(z2 + z3, FIX_0_541196100); */ sub v26.8h, v2.8h, v6.8h /* z2 - z3 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) - DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]) */ sshll2 v23.4s, v22.8h, #(CONST_BITS) /* tmp0h tmp0 = LEFT_SHIFT(z2 + z3, CONST_BITS); */ mov v21.16b, v19.16b /* tmp3 = z1 */ smlal2 v19.4s, v8.8h, XFIX_N_1_847 /* tmp2h tmp2 = z1 + MULTIPLY(z3, -FIX_1_847759065); */ sshll2 v27.4s, v26.8h, #(CONST_BITS) /* tmp1h tmp1 = LEFT_SHIFT(z2 - z3, CONST_BITS); */ smlal2 v21.4s, v4.8h, XFIX_P_0_765 /* tmp3h tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865); */ add v28.4s, v23.4s, v21.4s /* tmp10h tmp10 = tmp0 + tmp3; */ sub v31.4s, v23.4s, v21.4s /* tmp13h tmp13 = tmp0 - tmp3; */ add v29.4s, v27.4s, v19.4s /* tmp11h tmp11 = tmp1 + tmp2; */ sub v30.4s, v27.4s, v19.4s /* tmp12h tmp12 = tmp1 - tmp2; */ /* Odd part per figure 8; the matrix is unitary and hence its * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. */ add v22.8h, v9.8h, v5.8h /* z3 = tmp0 + tmp2 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]) + DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]) */ add v24.8h, v7.8h, v3.8h /* z4 = tmp1 + tmp3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]) + DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]) */ add v18.8h, v9.8h, v3.8h /* z1 = tmp0 + tmp3 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]) + DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]) */ add v20.8h, v7.8h, v5.8h /* z2 = tmp1 + tmp2 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]) + DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]) */ add v26.8h, v22.8h, v24.8h /* z5 = z3 + z4 */ smull2 v11.4s, v9.8h, XFIX_P_0_298 /* tmp0 = MULTIPLY(tmp0, FIX_0_298631336) */ smull2 v13.4s, v7.8h, XFIX_P_2_053 /* tmp1 = MULTIPLY(tmp1, FIX_2_053119869) */ smull2 v15.4s, v5.8h, XFIX_P_3_072 /* tmp2 = MULTIPLY(tmp2, FIX_3_072711026) */ smull2 v17.4s, v3.8h, XFIX_P_1_501 /* tmp3 = MULTIPLY(tmp3, FIX_1_501321110) */ smull2 v27.4s, v26.8h, XFIX_P_1_175 /* z5h z5 = MULTIPLY(z3 + z4, FIX_1_175875602) */ smull2 v23.4s, v22.8h, XFIX_N_1_961 /* z3 = MULTIPLY(z3, -FIX_1_961570560) */ smull2 v25.4s, v24.8h, XFIX_N_0_390 /* z4 = MULTIPLY(z4, -FIX_0_390180644) */ smull2 v19.4s, v18.8h, XFIX_N_0_899 /* z1 = MULTIPLY(z1, -FIX_0_899976223) */ smull2 v21.4s, v20.8h, XFIX_N_2_562 /* z2 = MULTIPLY(z2, -FIX_2_562915447) */ add v23.4s, v23.4s, v27.4s /* z3 += z5 */ add v22.4s, v22.4s, v26.4s /* z3 += z5 */ add v25.4s, v25.4s, v27.4s /* z4 += z5 */ add v24.4s, v24.4s, v26.4s /* z4 += z5 */ add v11.4s, v11.4s, v19.4s /* tmp0 += z1 */ add v13.4s, v13.4s, v21.4s /* tmp1 += z2 */ add v15.4s, v15.4s, v21.4s /* tmp2 += z2 */ add v17.4s, v17.4s, v19.4s /* tmp3 += z1 */ add v11.4s, v11.4s, v23.4s /* tmp0 += z3 */ add v13.4s, v13.4s, v25.4s /* tmp1 += z4 */ add v17.4s, v17.4s, v25.4s /* tmp3 += z4 */ add v15.4s, v15.4s, v23.4s /* tmp2 += z3 */ /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ add v19.4s, v28.4s, v17.4s /* tmp10 + tmp3 */ sub v21.4s, v28.4s, v17.4s /* tmp10 - tmp3 */ add v23.4s, v29.4s, v15.4s /* tmp11 + tmp2 */ sub v25.4s, v29.4s, v15.4s /* tmp11 - tmp2 */ add v27.4s, v30.4s, v13.4s /* tmp12 + tmp1 */ sub v29.4s, v30.4s, v13.4s /* tmp12 - tmp1 */ add v15.4s, v31.4s, v11.4s /* tmp13 + tmp0 */ sub v17.4s, v31.4s, v11.4s /* tmp13 - tmp0 */ mov v2.16b, v14.16b mov v3.16b, v14.16b mov v4.16b, v14.16b mov v5.16b, v14.16b rshrn v6.4h, v19.4s, #(CONST_BITS - PASS1_BITS) /* wsptr[DCTSIZE*0] = (int)DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS) */ rshrn v7.4h, v23.4s, #(CONST_BITS - PASS1_BITS) /* wsptr[DCTSIZE*1] = (int)DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS) */ rshrn v8.4h, v27.4s, #(CONST_BITS - PASS1_BITS) /* wsptr[DCTSIZE*2] = (int)DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS) */ rshrn v9.4h, v15.4s, #(CONST_BITS - PASS1_BITS) /* wsptr[DCTSIZE*3] = (int)DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS) */ rshrn2 v6.8h, v17.4s, #(CONST_BITS - PASS1_BITS) /* wsptr[DCTSIZE*4] = (int)DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS) */ rshrn2 v7.8h, v29.4s, #(CONST_BITS - PASS1_BITS) /* wsptr[DCTSIZE*5] = (int)DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS) */ rshrn2 v8.8h, v25.4s, #(CONST_BITS - PASS1_BITS) /* wsptr[DCTSIZE*6] = (int)DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS) */ rshrn2 v9.8h, v21.4s, #(CONST_BITS - PASS1_BITS) /* wsptr[DCTSIZE*7] = (int)DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS) */ b 1b .balign 16 4: /* "No" AC coef is zero */ /* Even part: reverse the even part of the forward DCT. */ add v18.8h, v4.8h, v8.8h /* z2 + z3 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]) + DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]) */ add v22.8h, v2.8h, v6.8h /* z2 + z3 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) + DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]) */ smull2 v19.4s, v18.8h, XFIX_P_0_541 /* z1h z1 = MULTIPLY(z2 + z3, FIX_0_541196100); */ sub v26.8h, v2.8h, v6.8h /* z2 - z3 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) - DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]) */ smull v18.4s, v18.4h, XFIX_P_0_541 /* z1l z1 = MULTIPLY(z2 + z3, FIX_0_541196100); */ sshll2 v23.4s, v22.8h, #(CONST_BITS) /* tmp0h tmp0 = LEFT_SHIFT(z2 + z3, CONST_BITS); */ mov v21.16b, v19.16b /* tmp3 = z1 */ mov v20.16b, v18.16b /* tmp3 = z1 */ smlal2 v19.4s, v8.8h, XFIX_N_1_847 /* tmp2h tmp2 = z1 + MULTIPLY(z3, -FIX_1_847759065); */ smlal v18.4s, v8.4h, XFIX_N_1_847 /* tmp2l tmp2 = z1 + MULTIPLY(z3, -FIX_1_847759065); */ sshll2 v27.4s, v26.8h, #(CONST_BITS) /* tmp1h tmp1 = LEFT_SHIFT(z2 - z3, CONST_BITS); */ smlal2 v21.4s, v4.8h, XFIX_P_0_765 /* tmp3h tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865); */ smlal v20.4s, v4.4h, XFIX_P_0_765 /* tmp3l tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865); */ sshll v22.4s, v22.4h, #(CONST_BITS) /* tmp0l tmp0 = LEFT_SHIFT(z2 + z3, CONST_BITS); */ sshll v26.4s, v26.4h, #(CONST_BITS) /* tmp1l tmp1 = LEFT_SHIFT(z2 - z3, CONST_BITS); */ add v2.4s, v22.4s, v20.4s /* tmp10l tmp10 = tmp0 + tmp3; */ sub v6.4s, v22.4s, v20.4s /* tmp13l tmp13 = tmp0 - tmp3; */ add v8.4s, v26.4s, v18.4s /* tmp11l tmp11 = tmp1 + tmp2; */ sub v4.4s, v26.4s, v18.4s /* tmp12l tmp12 = tmp1 - tmp2; */ add v28.4s, v23.4s, v21.4s /* tmp10h tmp10 = tmp0 + tmp3; */ sub v31.4s, v23.4s, v21.4s /* tmp13h tmp13 = tmp0 - tmp3; */ add v29.4s, v27.4s, v19.4s /* tmp11h tmp11 = tmp1 + tmp2; */ sub v30.4s, v27.4s, v19.4s /* tmp12h tmp12 = tmp1 - tmp2; */ /* Odd part per figure 8; the matrix is unitary and hence its * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. */ add v22.8h, v9.8h, v5.8h /* z3 = tmp0 + tmp2 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]) + DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]) */ add v24.8h, v7.8h, v3.8h /* z4 = tmp1 + tmp3 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]) + DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]) */ add v18.8h, v9.8h, v3.8h /* z1 = tmp0 + tmp3 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]) + DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]) */ add v20.8h, v7.8h, v5.8h /* z2 = tmp1 + tmp2 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]) + DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]) */ add v26.8h, v22.8h, v24.8h /* z5 = z3 + z4 */ smull2 v11.4s, v9.8h, XFIX_P_0_298 /* tmp0 = MULTIPLY(tmp0, FIX_0_298631336) */ smull2 v13.4s, v7.8h, XFIX_P_2_053 /* tmp1 = MULTIPLY(tmp1, FIX_2_053119869) */ smull2 v15.4s, v5.8h, XFIX_P_3_072 /* tmp2 = MULTIPLY(tmp2, FIX_3_072711026) */ smull2 v17.4s, v3.8h, XFIX_P_1_501 /* tmp3 = MULTIPLY(tmp3, FIX_1_501321110) */ smull2 v27.4s, v26.8h, XFIX_P_1_175 /* z5h z5 = MULTIPLY(z3 + z4, FIX_1_175875602) */ smull2 v23.4s, v22.8h, XFIX_N_1_961 /* z3 = MULTIPLY(z3, -FIX_1_961570560) */ smull2 v25.4s, v24.8h, XFIX_N_0_390 /* z4 = MULTIPLY(z4, -FIX_0_390180644) */ smull2 v19.4s, v18.8h, XFIX_N_0_899 /* z1 = MULTIPLY(z1, -FIX_0_899976223) */ smull2 v21.4s, v20.8h, XFIX_N_2_562 /* z2 = MULTIPLY(z2, -FIX_2_562915447) */ smull v10.4s, v9.4h, XFIX_P_0_298 /* tmp0 = MULTIPLY(tmp0, FIX_0_298631336) */ smull v12.4s, v7.4h, XFIX_P_2_053 /* tmp1 = MULTIPLY(tmp1, FIX_2_053119869) */ smull v14.4s, v5.4h, XFIX_P_3_072 /* tmp2 = MULTIPLY(tmp2, FIX_3_072711026) */ smull v16.4s, v3.4h, XFIX_P_1_501 /* tmp3 = MULTIPLY(tmp3, FIX_1_501321110) */ smull v26.4s, v26.4h, XFIX_P_1_175 /* z5l z5 = MULTIPLY(z3 + z4, FIX_1_175875602) */ smull v22.4s, v22.4h, XFIX_N_1_961 /* z3 = MULTIPLY(z3, -FIX_1_961570560) */ smull v24.4s, v24.4h, XFIX_N_0_390 /* z4 = MULTIPLY(z4, -FIX_0_390180644) */ smull v18.4s, v18.4h, XFIX_N_0_899 /* z1 = MULTIPLY(z1, -FIX_0_899976223) */ smull v20.4s, v20.4h, XFIX_N_2_562 /* z2 = MULTIPLY(z2, -FIX_2_562915447) */ add v23.4s, v23.4s, v27.4s /* z3 += z5 */ add v22.4s, v22.4s, v26.4s /* z3 += z5 */ add v25.4s, v25.4s, v27.4s /* z4 += z5 */ add v24.4s, v24.4s, v26.4s /* z4 += z5 */ add v11.4s, v11.4s, v19.4s /* tmp0 += z1 */ add v10.4s, v10.4s, v18.4s /* tmp0 += z1 */ add v13.4s, v13.4s, v21.4s /* tmp1 += z2 */ add v12.4s, v12.4s, v20.4s /* tmp1 += z2 */ add v15.4s, v15.4s, v21.4s /* tmp2 += z2 */ add v14.4s, v14.4s, v20.4s /* tmp2 += z2 */ add v17.4s, v17.4s, v19.4s /* tmp3 += z1 */ add v16.4s, v16.4s, v18.4s /* tmp3 += z1 */ add v11.4s, v11.4s, v23.4s /* tmp0 += z3 */ add v10.4s, v10.4s, v22.4s /* tmp0 += z3 */ add v13.4s, v13.4s, v25.4s /* tmp1 += z4 */ add v12.4s, v12.4s, v24.4s /* tmp1 += z4 */ add v17.4s, v17.4s, v25.4s /* tmp3 += z4 */ add v16.4s, v16.4s, v24.4s /* tmp3 += z4 */ add v15.4s, v15.4s, v23.4s /* tmp2 += z3 */ add v14.4s, v14.4s, v22.4s /* tmp2 += z3 */ /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ add v18.4s, v2.4s, v16.4s /* tmp10 + tmp3 */ add v19.4s, v28.4s, v17.4s /* tmp10 + tmp3 */ sub v20.4s, v2.4s, v16.4s /* tmp10 - tmp3 */ sub v21.4s, v28.4s, v17.4s /* tmp10 - tmp3 */ add v22.4s, v8.4s, v14.4s /* tmp11 + tmp2 */ add v23.4s, v29.4s, v15.4s /* tmp11 + tmp2 */ sub v24.4s, v8.4s, v14.4s /* tmp11 - tmp2 */ sub v25.4s, v29.4s, v15.4s /* tmp11 - tmp2 */ add v26.4s, v4.4s, v12.4s /* tmp12 + tmp1 */ add v27.4s, v30.4s, v13.4s /* tmp12 + tmp1 */ sub v28.4s, v4.4s, v12.4s /* tmp12 - tmp1 */ sub v29.4s, v30.4s, v13.4s /* tmp12 - tmp1 */ add v14.4s, v6.4s, v10.4s /* tmp13 + tmp0 */ add v15.4s, v31.4s, v11.4s /* tmp13 + tmp0 */ sub v16.4s, v6.4s, v10.4s /* tmp13 - tmp0 */ sub v17.4s, v31.4s, v11.4s /* tmp13 - tmp0 */ rshrn v2.4h, v18.4s, #(CONST_BITS - PASS1_BITS) /* wsptr[DCTSIZE*0] = (int)DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS) */ rshrn v3.4h, v22.4s, #(CONST_BITS - PASS1_BITS) /* wsptr[DCTSIZE*1] = (int)DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS) */ rshrn v4.4h, v26.4s, #(CONST_BITS - PASS1_BITS) /* wsptr[DCTSIZE*2] = (int)DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS) */ rshrn v5.4h, v14.4s, #(CONST_BITS - PASS1_BITS) /* wsptr[DCTSIZE*3] = (int)DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS) */ rshrn v6.4h, v19.4s, #(CONST_BITS - PASS1_BITS) /* wsptr[DCTSIZE*0] = (int)DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS) */ rshrn v7.4h, v23.4s, #(CONST_BITS - PASS1_BITS) /* wsptr[DCTSIZE*1] = (int)DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS) */ rshrn v8.4h, v27.4s, #(CONST_BITS - PASS1_BITS) /* wsptr[DCTSIZE*2] = (int)DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS) */ rshrn v9.4h, v15.4s, #(CONST_BITS - PASS1_BITS) /* wsptr[DCTSIZE*3] = (int)DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS) */ rshrn2 v2.8h, v16.4s, #(CONST_BITS - PASS1_BITS) /* wsptr[DCTSIZE*4] = (int)DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS) */ rshrn2 v3.8h, v28.4s, #(CONST_BITS - PASS1_BITS) /* wsptr[DCTSIZE*5] = (int)DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS) */ rshrn2 v4.8h, v24.4s, #(CONST_BITS - PASS1_BITS) /* wsptr[DCTSIZE*6] = (int)DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS) */ rshrn2 v5.8h, v20.4s, #(CONST_BITS - PASS1_BITS) /* wsptr[DCTSIZE*7] = (int)DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS) */ rshrn2 v6.8h, v17.4s, #(CONST_BITS - PASS1_BITS) /* wsptr[DCTSIZE*4] = (int)DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS) */ rshrn2 v7.8h, v29.4s, #(CONST_BITS - PASS1_BITS) /* wsptr[DCTSIZE*5] = (int)DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS) */ rshrn2 v8.8h, v25.4s, #(CONST_BITS - PASS1_BITS) /* wsptr[DCTSIZE*6] = (int)DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS) */ rshrn2 v9.8h, v21.4s, #(CONST_BITS - PASS1_BITS) /* wsptr[DCTSIZE*7] = (int)DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS) */ b 1b .unreq DCT_TABLE .unreq COEF_BLOCK .unreq OUTPUT_BUF .unreq OUTPUT_COL .unreq TMP1 .unreq TMP2 .unreq TMP3 .unreq TMP4 .unreq TMP5 .unreq TMP6 .unreq TMP7 .unreq TMP8 #undef CENTERJSAMPLE #undef CONST_BITS #undef PASS1_BITS #undef XFIX_P_0_298 #undef XFIX_N_0_390 #undef XFIX_P_0_541 #undef XFIX_P_0_765 #undef XFIX_N_0_899 #undef XFIX_P_1_175 #undef XFIX_P_1_501 #undef XFIX_N_1_847 #undef XFIX_N_1_961 #undef XFIX_P_2_053 #undef XFIX_N_2_562 #undef XFIX_P_3_072 /*****************************************************************************/ /* * jsimd_ycc_extrgb_convert_neon * jsimd_ycc_extbgr_convert_neon * jsimd_ycc_extrgbx_convert_neon * jsimd_ycc_extbgrx_convert_neon * jsimd_ycc_extxbgr_convert_neon * jsimd_ycc_extxrgb_convert_neon * * Colorspace conversion YCbCr -> RGB */ .macro do_load size .if \size == 8 ld1 {v4.8b}, [U], 8 ld1 {v5.8b}, [V], 8 ld1 {v0.8b}, [Y], 8 prfm pldl1keep, [U, #64] prfm pldl1keep, [V, #64] prfm pldl1keep, [Y, #64] .elseif \size == 4 ld1 {v4.b}[0], [U], 1 ld1 {v4.b}[1], [U], 1 ld1 {v4.b}[2], [U], 1 ld1 {v4.b}[3], [U], 1 ld1 {v5.b}[0], [V], 1 ld1 {v5.b}[1], [V], 1 ld1 {v5.b}[2], [V], 1 ld1 {v5.b}[3], [V], 1 ld1 {v0.b}[0], [Y], 1 ld1 {v0.b}[1], [Y], 1 ld1 {v0.b}[2], [Y], 1 ld1 {v0.b}[3], [Y], 1 .elseif \size == 2 ld1 {v4.b}[4], [U], 1 ld1 {v4.b}[5], [U], 1 ld1 {v5.b}[4], [V], 1 ld1 {v5.b}[5], [V], 1 ld1 {v0.b}[4], [Y], 1 ld1 {v0.b}[5], [Y], 1 .elseif \size == 1 ld1 {v4.b}[6], [U], 1 ld1 {v5.b}[6], [V], 1 ld1 {v0.b}[6], [Y], 1 .else .error unsupported macroblock size .endif .endm .macro do_store bpp, size, fast_st3 .if \bpp == 24 .if \size == 8 .if \fast_st3 == 1 st3 {v10.8b, v11.8b, v12.8b}, [RGB], 24 .else st1 {v10.b}[0], [RGB], #1 st1 {v11.b}[0], [RGB], #1 st1 {v12.b}[0], [RGB], #1 st1 {v10.b}[1], [RGB], #1 st1 {v11.b}[1], [RGB], #1 st1 {v12.b}[1], [RGB], #1 st1 {v10.b}[2], [RGB], #1 st1 {v11.b}[2], [RGB], #1 st1 {v12.b}[2], [RGB], #1 st1 {v10.b}[3], [RGB], #1 st1 {v11.b}[3], [RGB], #1 st1 {v12.b}[3], [RGB], #1 st1 {v10.b}[4], [RGB], #1 st1 {v11.b}[4], [RGB], #1 st1 {v12.b}[4], [RGB], #1 st1 {v10.b}[5], [RGB], #1 st1 {v11.b}[5], [RGB], #1 st1 {v12.b}[5], [RGB], #1 st1 {v10.b}[6], [RGB], #1 st1 {v11.b}[6], [RGB], #1 st1 {v12.b}[6], [RGB], #1 st1 {v10.b}[7], [RGB], #1 st1 {v11.b}[7], [RGB], #1 st1 {v12.b}[7], [RGB], #1 .endif .elseif \size == 4 st3 {v10.b, v11.b, v12.b}[0], [RGB], 3 st3 {v10.b, v11.b, v12.b}[1], [RGB], 3 st3 {v10.b, v11.b, v12.b}[2], [RGB], 3 st3 {v10.b, v11.b, v12.b}[3], [RGB], 3 .elseif \size == 2 st3 {v10.b, v11.b, v12.b}[4], [RGB], 3 st3 {v10.b, v11.b, v12.b}[5], [RGB], 3 .elseif \size == 1 st3 {v10.b, v11.b, v12.b}[6], [RGB], 3 .else .error unsupported macroblock size .endif .elseif \bpp == 32 .if \size == 8 st4 {v10.8b, v11.8b, v12.8b, v13.8b}, [RGB], 32 .elseif \size == 4 st4 {v10.b, v11.b, v12.b, v13.b}[0], [RGB], 4 st4 {v10.b, v11.b, v12.b, v13.b}[1], [RGB], 4 st4 {v10.b, v11.b, v12.b, v13.b}[2], [RGB], 4 st4 {v10.b, v11.b, v12.b, v13.b}[3], [RGB], 4 .elseif \size == 2 st4 {v10.b, v11.b, v12.b, v13.b}[4], [RGB], 4 st4 {v10.b, v11.b, v12.b, v13.b}[5], [RGB], 4 .elseif \size == 1 st4 {v10.b, v11.b, v12.b, v13.b}[6], [RGB], 4 .else .error unsupported macroblock size .endif .elseif \bpp == 16 .if \size == 8 st1 {v25.8h}, [RGB], 16 .elseif \size == 4 st1 {v25.4h}, [RGB], 8 .elseif \size == 2 st1 {v25.h}[4], [RGB], 2 st1 {v25.h}[5], [RGB], 2 .elseif \size == 1 st1 {v25.h}[6], [RGB], 2 .else .error unsupported macroblock size .endif .else .error unsupported bpp .endif .endm .macro generate_jsimd_ycc_rgb_convert_neon colorid, bpp, r_offs, rsize, \ g_offs, gsize, b_offs, bsize, \ defsize, fast_st3 /* * 2-stage pipelined YCbCr->RGB conversion */ .macro do_yuv_to_rgb_stage1 uaddw v6.8h, v2.8h, v4.8b /* q3 = u - 128 */ uaddw v8.8h, v2.8h, v5.8b /* q2 = v - 128 */ smull v20.4s, v6.4h, v1.h[1] /* multiply by -11277 */ smlal v20.4s, v8.4h, v1.h[2] /* multiply by -23401 */ smull2 v22.4s, v6.8h, v1.h[1] /* multiply by -11277 */ smlal2 v22.4s, v8.8h, v1.h[2] /* multiply by -23401 */ smull v24.4s, v8.4h, v1.h[0] /* multiply by 22971 */ smull2 v26.4s, v8.8h, v1.h[0] /* multiply by 22971 */ smull v28.4s, v6.4h, v1.h[3] /* multiply by 29033 */ smull2 v30.4s, v6.8h, v1.h[3] /* multiply by 29033 */ .endm .macro do_yuv_to_rgb_stage2 rshrn v20.4h, v20.4s, #15 rshrn2 v20.8h, v22.4s, #15 rshrn v24.4h, v24.4s, #14 rshrn2 v24.8h, v26.4s, #14 rshrn v28.4h, v28.4s, #14 rshrn2 v28.8h, v30.4s, #14 uaddw v20.8h, v20.8h, v0.8b uaddw v24.8h, v24.8h, v0.8b uaddw v28.8h, v28.8h, v0.8b .if \bpp != 16 sqxtun v1\g_offs\defsize, v20.8h sqxtun v1\r_offs\defsize, v24.8h sqxtun v1\b_offs\defsize, v28.8h .else sqshlu v21.8h, v20.8h, #8 sqshlu v25.8h, v24.8h, #8 sqshlu v29.8h, v28.8h, #8 sri v25.8h, v21.8h, #5 sri v25.8h, v29.8h, #11 .endif .endm .macro do_yuv_to_rgb_stage2_store_load_stage1 fast_st3 rshrn v20.4h, v20.4s, #15 rshrn v24.4h, v24.4s, #14 rshrn v28.4h, v28.4s, #14 ld1 {v4.8b}, [U], 8 rshrn2 v20.8h, v22.4s, #15 rshrn2 v24.8h, v26.4s, #14 rshrn2 v28.8h, v30.4s, #14 ld1 {v5.8b}, [V], 8 uaddw v20.8h, v20.8h, v0.8b uaddw v24.8h, v24.8h, v0.8b uaddw v28.8h, v28.8h, v0.8b .if \bpp != 16 /**************** rgb24/rgb32 ******************************/ sqxtun v1\g_offs\defsize, v20.8h ld1 {v0.8b}, [Y], 8 sqxtun v1\r_offs\defsize, v24.8h prfm pldl1keep, [U, #64] prfm pldl1keep, [V, #64] prfm pldl1keep, [Y, #64] sqxtun v1\b_offs\defsize, v28.8h uaddw v6.8h, v2.8h, v4.8b /* v6.16b = u - 128 */ uaddw v8.8h, v2.8h, v5.8b /* q2 = v - 128 */ smull v20.4s, v6.4h, v1.h[1] /* multiply by -11277 */ smlal v20.4s, v8.4h, v1.h[2] /* multiply by -23401 */ smull2 v22.4s, v6.8h, v1.h[1] /* multiply by -11277 */ smlal2 v22.4s, v8.8h, v1.h[2] /* multiply by -23401 */ smull v24.4s, v8.4h, v1.h[0] /* multiply by 22971 */ smull2 v26.4s, v8.8h, v1.h[0] /* multiply by 22971 */ .else /**************************** rgb565 ********************************/ sqshlu v21.8h, v20.8h, #8 sqshlu v25.8h, v24.8h, #8 sqshlu v29.8h, v28.8h, #8 uaddw v6.8h, v2.8h, v4.8b /* v6.16b = u - 128 */ uaddw v8.8h, v2.8h, v5.8b /* q2 = v - 128 */ ld1 {v0.8b}, [Y], 8 smull v20.4s, v6.4h, v1.h[1] /* multiply by -11277 */ smlal v20.4s, v8.4h, v1.h[2] /* multiply by -23401 */ smull2 v22.4s, v6.8h, v1.h[1] /* multiply by -11277 */ smlal2 v22.4s, v8.8h, v1.h[2] /* multiply by -23401 */ sri v25.8h, v21.8h, #5 smull v24.4s, v8.4h, v1.h[0] /* multiply by 22971 */ smull2 v26.4s, v8.8h, v1.h[0] /* multiply by 22971 */ prfm pldl1keep, [U, #64] prfm pldl1keep, [V, #64] prfm pldl1keep, [Y, #64] sri v25.8h, v29.8h, #11 .endif do_store \bpp, 8, \fast_st3 smull v28.4s, v6.4h, v1.h[3] /* multiply by 29033 */ smull2 v30.4s, v6.8h, v1.h[3] /* multiply by 29033 */ .endm .macro do_yuv_to_rgb do_yuv_to_rgb_stage1 do_yuv_to_rgb_stage2 .endm .if \fast_st3 == 1 asm_function jsimd_ycc_\colorid\()_convert_neon .else asm_function jsimd_ycc_\colorid\()_convert_neon_slowst3 .endif OUTPUT_WIDTH .req w0 INPUT_BUF .req x1 INPUT_ROW .req w2 OUTPUT_BUF .req x3 NUM_ROWS .req w4 INPUT_BUF0 .req x5 INPUT_BUF1 .req x6 INPUT_BUF2 .req x1 RGB .req x7 Y .req x9 U .req x10 V .req x11 N .req w15 sub sp, sp, 64 mov x9, sp /* Load constants to d1, d2, d3 (v0.4h is just used for padding) */ get_symbol_loc x15, Ljsimd_ycc_rgb_neon_consts /* Save Neon registers */ st1 {v8.8b, v9.8b, v10.8b, v11.8b}, [x9], 32 st1 {v12.8b, v13.8b, v14.8b, v15.8b}, [x9], 32 ld1 {v0.4h, v1.4h}, [x15], 16 ld1 {v2.8h}, [x15] ldr INPUT_BUF0, [INPUT_BUF] ldr INPUT_BUF1, [INPUT_BUF, #8] ldr INPUT_BUF2, [INPUT_BUF, #16] .unreq INPUT_BUF /* Initially set v10, v11.4h, v12.8b, d13 to 0xFF */ movi v10.16b, #255 movi v13.16b, #255 /* Outer loop over scanlines */ cmp NUM_ROWS, #1 b.lt 9f 0: ldr Y, [INPUT_BUF0, INPUT_ROW, uxtw #3] ldr U, [INPUT_BUF1, INPUT_ROW, uxtw #3] mov N, OUTPUT_WIDTH ldr V, [INPUT_BUF2, INPUT_ROW, uxtw #3] add INPUT_ROW, INPUT_ROW, #1 ldr RGB, [OUTPUT_BUF], #8 /* Inner loop over pixels */ subs N, N, #8 b.lt 3f do_load 8 do_yuv_to_rgb_stage1 subs N, N, #8 b.lt 2f 1: do_yuv_to_rgb_stage2_store_load_stage1 \fast_st3 subs N, N, #8 b.ge 1b 2: do_yuv_to_rgb_stage2 do_store \bpp, 8, \fast_st3 tst N, #7 b.eq 8f 3: tst N, #4 b.eq 3f do_load 4 3: tst N, #2 b.eq 4f do_load 2 4: tst N, #1 b.eq 5f do_load 1 5: do_yuv_to_rgb tst N, #4 b.eq 6f do_store \bpp, 4, \fast_st3 6: tst N, #2 b.eq 7f do_store \bpp, 2, \fast_st3 7: tst N, #1 b.eq 8f do_store \bpp, 1, \fast_st3 8: subs NUM_ROWS, NUM_ROWS, #1 b.gt 0b 9: /* Restore all registers and return */ ld1 {v8.8b, v9.8b, v10.8b, v11.8b}, [sp], 32 ld1 {v12.8b, v13.8b, v14.8b, v15.8b}, [sp], 32 br x30 .unreq OUTPUT_WIDTH .unreq INPUT_ROW .unreq OUTPUT_BUF .unreq NUM_ROWS .unreq INPUT_BUF0 .unreq INPUT_BUF1 .unreq INPUT_BUF2 .unreq RGB .unreq Y .unreq U .unreq V .unreq N .purgem do_yuv_to_rgb .purgem do_yuv_to_rgb_stage1 .purgem do_yuv_to_rgb_stage2 .purgem do_yuv_to_rgb_stage2_store_load_stage1 .endm /*--------------------------------- id ----- bpp R rsize G gsize B bsize defsize fast_st3*/ generate_jsimd_ycc_rgb_convert_neon extrgb, 24, 0, .4h, 1, .4h, 2, .4h, .8b, 1 generate_jsimd_ycc_rgb_convert_neon extbgr, 24, 2, .4h, 1, .4h, 0, .4h, .8b, 1 generate_jsimd_ycc_rgb_convert_neon extrgbx, 32, 0, .4h, 1, .4h, 2, .4h, .8b, 1 generate_jsimd_ycc_rgb_convert_neon extbgrx, 32, 2, .4h, 1, .4h, 0, .4h, .8b, 1 generate_jsimd_ycc_rgb_convert_neon extxbgr, 32, 3, .4h, 2, .4h, 1, .4h, .8b, 1 generate_jsimd_ycc_rgb_convert_neon extxrgb, 32, 1, .4h, 2, .4h, 3, .4h, .8b, 1 generate_jsimd_ycc_rgb_convert_neon rgb565, 16, 0, .4h, 0, .4h, 0, .4h, .8b, 1 generate_jsimd_ycc_rgb_convert_neon extrgb, 24, 0, .4h, 1, .4h, 2, .4h, .8b, 0 generate_jsimd_ycc_rgb_convert_neon extbgr, 24, 2, .4h, 1, .4h, 0, .4h, .8b, 0 .purgem do_load .purgem do_store /*****************************************************************************/ /* * jsimd_extrgb_ycc_convert_neon * jsimd_extbgr_ycc_convert_neon * jsimd_extrgbx_ycc_convert_neon * jsimd_extbgrx_ycc_convert_neon * jsimd_extxbgr_ycc_convert_neon * jsimd_extxrgb_ycc_convert_neon * * Colorspace conversion RGB -> YCbCr */ .macro do_store size .if \size == 8 st1 {v20.8b}, [Y], #8 st1 {v21.8b}, [U], #8 st1 {v22.8b}, [V], #8 .elseif \size == 4 st1 {v20.b}[0], [Y], #1 st1 {v20.b}[1], [Y], #1 st1 {v20.b}[2], [Y], #1 st1 {v20.b}[3], [Y], #1 st1 {v21.b}[0], [U], #1 st1 {v21.b}[1], [U], #1 st1 {v21.b}[2], [U], #1 st1 {v21.b}[3], [U], #1 st1 {v22.b}[0], [V], #1 st1 {v22.b}[1], [V], #1 st1 {v22.b}[2], [V], #1 st1 {v22.b}[3], [V], #1 .elseif \size == 2 st1 {v20.b}[4], [Y], #1 st1 {v20.b}[5], [Y], #1 st1 {v21.b}[4], [U], #1 st1 {v21.b}[5], [U], #1 st1 {v22.b}[4], [V], #1 st1 {v22.b}[5], [V], #1 .elseif \size == 1 st1 {v20.b}[6], [Y], #1 st1 {v21.b}[6], [U], #1 st1 {v22.b}[6], [V], #1 .else .error unsupported macroblock size .endif .endm .macro do_load bpp, size, fast_ld3 .if \bpp == 24 .if \size == 8 .if \fast_ld3 == 1 ld3 {v10.8b, v11.8b, v12.8b}, [RGB], #24 .else ld1 {v10.b}[0], [RGB], #1 ld1 {v11.b}[0], [RGB], #1 ld1 {v12.b}[0], [RGB], #1 ld1 {v10.b}[1], [RGB], #1 ld1 {v11.b}[1], [RGB], #1 ld1 {v12.b}[1], [RGB], #1 ld1 {v10.b}[2], [RGB], #1 ld1 {v11.b}[2], [RGB], #1 ld1 {v12.b}[2], [RGB], #1 ld1 {v10.b}[3], [RGB], #1 ld1 {v11.b}[3], [RGB], #1 ld1 {v12.b}[3], [RGB], #1 ld1 {v10.b}[4], [RGB], #1 ld1 {v11.b}[4], [RGB], #1 ld1 {v12.b}[4], [RGB], #1 ld1 {v10.b}[5], [RGB], #1 ld1 {v11.b}[5], [RGB], #1 ld1 {v12.b}[5], [RGB], #1 ld1 {v10.b}[6], [RGB], #1 ld1 {v11.b}[6], [RGB], #1 ld1 {v12.b}[6], [RGB], #1 ld1 {v10.b}[7], [RGB], #1 ld1 {v11.b}[7], [RGB], #1 ld1 {v12.b}[7], [RGB], #1 .endif prfm pldl1keep, [RGB, #128] .elseif \size == 4 ld3 {v10.b, v11.b, v12.b}[0], [RGB], #3 ld3 {v10.b, v11.b, v12.b}[1], [RGB], #3 ld3 {v10.b, v11.b, v12.b}[2], [RGB], #3 ld3 {v10.b, v11.b, v12.b}[3], [RGB], #3 .elseif \size == 2 ld3 {v10.b, v11.b, v12.b}[4], [RGB], #3 ld3 {v10.b, v11.b, v12.b}[5], [RGB], #3 .elseif \size == 1 ld3 {v10.b, v11.b, v12.b}[6], [RGB], #3 .else .error unsupported macroblock size .endif .elseif \bpp == 32 .if \size == 8 ld4 {v10.8b, v11.8b, v12.8b, v13.8b}, [RGB], #32 prfm pldl1keep, [RGB, #128] .elseif \size == 4 ld4 {v10.b, v11.b, v12.b, v13.b}[0], [RGB], #4 ld4 {v10.b, v11.b, v12.b, v13.b}[1], [RGB], #4 ld4 {v10.b, v11.b, v12.b, v13.b}[2], [RGB], #4 ld4 {v10.b, v11.b, v12.b, v13.b}[3], [RGB], #4 .elseif \size == 2 ld4 {v10.b, v11.b, v12.b, v13.b}[4], [RGB], #4 ld4 {v10.b, v11.b, v12.b, v13.b}[5], [RGB], #4 .elseif \size == 1 ld4 {v10.b, v11.b, v12.b, v13.b}[6], [RGB], #4 .else .error unsupported macroblock size .endif .else .error unsupported bpp .endif .endm .macro generate_jsimd_rgb_ycc_convert_neon colorid, bpp, r_offs, g_offs, \ b_offs, fast_ld3 /* * 2-stage pipelined RGB->YCbCr conversion */ .macro do_rgb_to_yuv_stage1 ushll v4.8h, v1\r_offs\().8b, #0 /* r = v4 */ ushll v6.8h, v1\g_offs\().8b, #0 /* g = v6 */ ushll v8.8h, v1\b_offs\().8b, #0 /* b = v8 */ rev64 v18.4s, v1.4s rev64 v26.4s, v1.4s rev64 v28.4s, v1.4s rev64 v30.4s, v1.4s umull v14.4s, v4.4h, v0.h[0] umull2 v16.4s, v4.8h, v0.h[0] umlsl v18.4s, v4.4h, v0.h[3] umlsl2 v26.4s, v4.8h, v0.h[3] umlal v28.4s, v4.4h, v0.h[5] umlal2 v30.4s, v4.8h, v0.h[5] umlal v14.4s, v6.4h, v0.h[1] umlal2 v16.4s, v6.8h, v0.h[1] umlsl v18.4s, v6.4h, v0.h[4] umlsl2 v26.4s, v6.8h, v0.h[4] umlsl v28.4s, v6.4h, v0.h[6] umlsl2 v30.4s, v6.8h, v0.h[6] umlal v14.4s, v8.4h, v0.h[2] umlal2 v16.4s, v8.8h, v0.h[2] umlal v18.4s, v8.4h, v0.h[5] umlal2 v26.4s, v8.8h, v0.h[5] umlsl v28.4s, v8.4h, v0.h[7] umlsl2 v30.4s, v8.8h, v0.h[7] .endm .macro do_rgb_to_yuv_stage2 rshrn v20.4h, v14.4s, #16 shrn v22.4h, v18.4s, #16 shrn v24.4h, v28.4s, #16 rshrn2 v20.8h, v16.4s, #16 shrn2 v22.8h, v26.4s, #16 shrn2 v24.8h, v30.4s, #16 xtn v20.8b, v20.8h /* v20 = y */ xtn v21.8b, v22.8h /* v21 = u */ xtn v22.8b, v24.8h /* v22 = v */ .endm .macro do_rgb_to_yuv do_rgb_to_yuv_stage1 do_rgb_to_yuv_stage2 .endm /* TODO: expand macros and interleave instructions if some in-order * AArch64 processor actually can dual-issue LOAD/STORE with ALU */ .macro do_rgb_to_yuv_stage2_store_load_stage1 fast_ld3 do_rgb_to_yuv_stage2 do_load \bpp, 8, \fast_ld3 st1 {v20.8b}, [Y], #8 st1 {v21.8b}, [U], #8 st1 {v22.8b}, [V], #8 do_rgb_to_yuv_stage1 .endm .if \fast_ld3 == 1 asm_function jsimd_\colorid\()_ycc_convert_neon .else asm_function jsimd_\colorid\()_ycc_convert_neon_slowld3 .endif OUTPUT_WIDTH .req w0 INPUT_BUF .req x1 OUTPUT_BUF .req x2 OUTPUT_ROW .req w3 NUM_ROWS .req w4 OUTPUT_BUF0 .req x5 OUTPUT_BUF1 .req x6 OUTPUT_BUF2 .req x2 /* OUTPUT_BUF */ RGB .req x7 Y .req x9 U .req x10 V .req x11 N .req w12 /* Load constants to d0, d1, d2, d3 */ get_symbol_loc x13, Ljsimd_rgb_ycc_neon_consts ld1 {v0.8h, v1.8h}, [x13] ldr OUTPUT_BUF0, [OUTPUT_BUF] ldr OUTPUT_BUF1, [OUTPUT_BUF, #8] ldr OUTPUT_BUF2, [OUTPUT_BUF, #16] .unreq OUTPUT_BUF /* Save Neon registers */ sub sp, sp, #64 mov x9, sp st1 {v8.8b, v9.8b, v10.8b, v11.8b}, [x9], 32 st1 {v12.8b, v13.8b, v14.8b, v15.8b}, [x9], 32 /* Outer loop over scanlines */ cmp NUM_ROWS, #1 b.lt 9f 0: ldr Y, [OUTPUT_BUF0, OUTPUT_ROW, uxtw #3] ldr U, [OUTPUT_BUF1, OUTPUT_ROW, uxtw #3] mov N, OUTPUT_WIDTH ldr V, [OUTPUT_BUF2, OUTPUT_ROW, uxtw #3] add OUTPUT_ROW, OUTPUT_ROW, #1 ldr RGB, [INPUT_BUF], #8 /* Inner loop over pixels */ subs N, N, #8 b.lt 3f do_load \bpp, 8, \fast_ld3 do_rgb_to_yuv_stage1 subs N, N, #8 b.lt 2f 1: do_rgb_to_yuv_stage2_store_load_stage1 \fast_ld3 subs N, N, #8 b.ge 1b 2: do_rgb_to_yuv_stage2 do_store 8 tst N, #7 b.eq 8f 3: tbz N, #2, 3f do_load \bpp, 4, \fast_ld3 3: tbz N, #1, 4f do_load \bpp, 2, \fast_ld3 4: tbz N, #0, 5f do_load \bpp, 1, \fast_ld3 5: do_rgb_to_yuv tbz N, #2, 6f do_store 4 6: tbz N, #1, 7f do_store 2 7: tbz N, #0, 8f do_store 1 8: subs NUM_ROWS, NUM_ROWS, #1 b.gt 0b 9: /* Restore all registers and return */ ld1 {v8.8b, v9.8b, v10.8b, v11.8b}, [sp], 32 ld1 {v12.8b, v13.8b, v14.8b, v15.8b}, [sp], 32 br x30 .unreq OUTPUT_WIDTH .unreq OUTPUT_ROW .unreq INPUT_BUF .unreq NUM_ROWS .unreq OUTPUT_BUF0 .unreq OUTPUT_BUF1 .unreq OUTPUT_BUF2 .unreq RGB .unreq Y .unreq U .unreq V .unreq N .purgem do_rgb_to_yuv .purgem do_rgb_to_yuv_stage1 .purgem do_rgb_to_yuv_stage2 .purgem do_rgb_to_yuv_stage2_store_load_stage1 .endm /*--------------------------------- id ----- bpp R G B Fast LD3 */ generate_jsimd_rgb_ycc_convert_neon extrgb, 24, 0, 1, 2, 1 generate_jsimd_rgb_ycc_convert_neon extbgr, 24, 2, 1, 0, 1 generate_jsimd_rgb_ycc_convert_neon extrgbx, 32, 0, 1, 2, 1 generate_jsimd_rgb_ycc_convert_neon extbgrx, 32, 2, 1, 0, 1 generate_jsimd_rgb_ycc_convert_neon extxbgr, 32, 3, 2, 1, 1 generate_jsimd_rgb_ycc_convert_neon extxrgb, 32, 1, 2, 3, 1 generate_jsimd_rgb_ycc_convert_neon extrgb, 24, 0, 1, 2, 0 generate_jsimd_rgb_ycc_convert_neon extbgr, 24, 2, 1, 0, 0 .purgem do_load .purgem do_store /*****************************************************************************/ /* * jsimd_fdct_islow_neon * * This file contains a slower but more accurate integer implementation of the * forward DCT (Discrete Cosine Transform). The following code is based * directly on the IJG''s original jfdctint.c; see the jfdctint.c for * more details. * * TODO: can be combined with 'jsimd_convsamp_neon' to get * rid of a bunch of VLD1.16 instructions */ #define CONST_BITS 13 #define PASS1_BITS 2 #define DESCALE_P1 (CONST_BITS - PASS1_BITS) #define DESCALE_P2 (CONST_BITS + PASS1_BITS) #define XFIX_P_0_298 v0.h[0] #define XFIX_N_0_390 v0.h[1] #define XFIX_P_0_541 v0.h[2] #define XFIX_P_0_765 v0.h[3] #define XFIX_N_0_899 v0.h[4] #define XFIX_P_1_175 v0.h[5] #define XFIX_P_1_501 v0.h[6] #define XFIX_N_1_847 v0.h[7] #define XFIX_N_1_961 v1.h[0] #define XFIX_P_2_053 v1.h[1] #define XFIX_N_2_562 v1.h[2] #define XFIX_P_3_072 v1.h[3] asm_function jsimd_fdct_islow_neon DATA .req x0 TMP .req x9 /* Load constants */ get_symbol_loc TMP, Ljsimd_fdct_islow_neon_consts ld1 {v0.8h, v1.8h}, [TMP] /* Save Neon registers */ sub sp, sp, #64 mov x10, sp st1 {v8.8b, v9.8b, v10.8b, v11.8b}, [x10], 32 st1 {v12.8b, v13.8b, v14.8b, v15.8b}, [x10], 32 /* Load all DATA into Neon registers with the following allocation: * 0 1 2 3 | 4 5 6 7 * ---------+-------- * 0 | d16 | d17 | v16.8h * 1 | d18 | d19 | v17.8h * 2 | d20 | d21 | v18.8h * 3 | d22 | d23 | v19.8h * 4 | d24 | d25 | v20.8h * 5 | d26 | d27 | v21.8h * 6 | d28 | d29 | v22.8h * 7 | d30 | d31 | v23.8h */ ld1 {v16.8h, v17.8h, v18.8h, v19.8h}, [DATA], 64 ld1 {v20.8h, v21.8h, v22.8h, v23.8h}, [DATA] sub DATA, DATA, #64 /* Transpose */ transpose_8x8 v16, v17, v18, v19, v20, v21, v22, v23, v31, v2, v3, v4 /* 1-D FDCT */ add v24.8h, v16.8h, v23.8h /* tmp0 = dataptr[0] + dataptr[7]; */ sub v31.8h, v16.8h, v23.8h /* tmp7 = dataptr[0] - dataptr[7]; */ add v25.8h, v17.8h, v22.8h /* tmp1 = dataptr[1] + dataptr[6]; */ sub v30.8h, v17.8h, v22.8h /* tmp6 = dataptr[1] - dataptr[6]; */ add v26.8h, v18.8h, v21.8h /* tmp2 = dataptr[2] + dataptr[5]; */ sub v29.8h, v18.8h, v21.8h /* tmp5 = dataptr[2] - dataptr[5]; */ add v27.8h, v19.8h, v20.8h /* tmp3 = dataptr[3] + dataptr[4]; */ sub v28.8h, v19.8h, v20.8h /* tmp4 = dataptr[3] - dataptr[4]; */ /* even part */ add v8.8h, v24.8h, v27.8h /* tmp10 = tmp0 + tmp3; */ sub v9.8h, v24.8h, v27.8h /* tmp13 = tmp0 - tmp3; */ add v10.8h, v25.8h, v26.8h /* tmp11 = tmp1 + tmp2; */ sub v11.8h, v25.8h, v26.8h /* tmp12 = tmp1 - tmp2; */ add v16.8h, v8.8h, v10.8h /* tmp10 + tmp11 */ sub v20.8h, v8.8h, v10.8h /* tmp10 - tmp11 */ add v18.8h, v11.8h, v9.8h /* tmp12 + tmp13 */ shl v16.8h, v16.8h, #PASS1_BITS /* dataptr[0] = (DCTELEM)LEFT_SHIFT(tmp10 + tmp11, PASS1_BITS); */ shl v20.8h, v20.8h, #PASS1_BITS /* dataptr[4] = (DCTELEM)LEFT_SHIFT(tmp10 - tmp11, PASS1_BITS); */ smull2 v24.4s, v18.8h, XFIX_P_0_541 /* z1 hi = MULTIPLY(tmp12 + tmp13, XFIX_P_0_541); */ smull v18.4s, v18.4h, XFIX_P_0_541 /* z1 lo = MULTIPLY(tmp12 + tmp13, XFIX_P_0_541); */ mov v22.16b, v18.16b mov v25.16b, v24.16b smlal v18.4s, v9.4h, XFIX_P_0_765 /* lo z1 + MULTIPLY(tmp13, XFIX_P_0_765) */ smlal2 v24.4s, v9.8h, XFIX_P_0_765 /* hi z1 + MULTIPLY(tmp13, XFIX_P_0_765) */ smlal v22.4s, v11.4h, XFIX_N_1_847 /* lo z1 + MULTIPLY(tmp12, XFIX_N_1_847) */ smlal2 v25.4s, v11.8h, XFIX_N_1_847 /* hi z1 + MULTIPLY(tmp12, XFIX_N_1_847) */ rshrn v18.4h, v18.4s, #DESCALE_P1 rshrn v22.4h, v22.4s, #DESCALE_P1 rshrn2 v18.8h, v24.4s, #DESCALE_P1 /* dataptr[2] = (DCTELEM)DESCALE(z1 + MULTIPLY(tmp13, XFIX_P_0_765), CONST_BITS-PASS1_BITS); */ rshrn2 v22.8h, v25.4s, #DESCALE_P1 /* dataptr[6] = (DCTELEM)DESCALE(z1 + MULTIPLY(tmp12, XFIX_N_1_847), CONST_BITS-PASS1_BITS); */ /* Odd part */ add v8.8h, v28.8h, v31.8h /* z1 = tmp4 + tmp7; */ add v9.8h, v29.8h, v30.8h /* z2 = tmp5 + tmp6; */ add v10.8h, v28.8h, v30.8h /* z3 = tmp4 + tmp6; */ add v11.8h, v29.8h, v31.8h /* z4 = tmp5 + tmp7; */ smull v4.4s, v10.4h, XFIX_P_1_175 /* z5 lo = z3 lo * XFIX_P_1_175 */ smull2 v5.4s, v10.8h, XFIX_P_1_175 smlal v4.4s, v11.4h, XFIX_P_1_175 /* z5 = MULTIPLY(z3 + z4, FIX_1_175875602); */ smlal2 v5.4s, v11.8h, XFIX_P_1_175 smull2 v24.4s, v28.8h, XFIX_P_0_298 smull2 v25.4s, v29.8h, XFIX_P_2_053 smull2 v26.4s, v30.8h, XFIX_P_3_072 smull2 v27.4s, v31.8h, XFIX_P_1_501 smull v28.4s, v28.4h, XFIX_P_0_298 /* tmp4 = MULTIPLY(tmp4, FIX_0_298631336); */ smull v29.4s, v29.4h, XFIX_P_2_053 /* tmp5 = MULTIPLY(tmp5, FIX_2_053119869); */ smull v30.4s, v30.4h, XFIX_P_3_072 /* tmp6 = MULTIPLY(tmp6, FIX_3_072711026); */ smull v31.4s, v31.4h, XFIX_P_1_501 /* tmp7 = MULTIPLY(tmp7, FIX_1_501321110); */ smull2 v12.4s, v8.8h, XFIX_N_0_899 smull2 v13.4s, v9.8h, XFIX_N_2_562 smull2 v14.4s, v10.8h, XFIX_N_1_961 smull2 v15.4s, v11.8h, XFIX_N_0_390 smull v8.4s, v8.4h, XFIX_N_0_899 /* z1 = MULTIPLY(z1, -FIX_0_899976223); */ smull v9.4s, v9.4h, XFIX_N_2_562 /* z2 = MULTIPLY(z2, -FIX_2_562915447); */ smull v10.4s, v10.4h, XFIX_N_1_961 /* z3 = MULTIPLY(z3, -FIX_1_961570560); */ smull v11.4s, v11.4h, XFIX_N_0_390 /* z4 = MULTIPLY(z4, -FIX_0_390180644); */ add v10.4s, v10.4s, v4.4s /* z3 += z5 */ add v14.4s, v14.4s, v5.4s add v11.4s, v11.4s, v4.4s /* z4 += z5 */ add v15.4s, v15.4s, v5.4s add v28.4s, v28.4s, v8.4s /* tmp4 += z1 */ add v24.4s, v24.4s, v12.4s add v29.4s, v29.4s, v9.4s /* tmp5 += z2 */ add v25.4s, v25.4s, v13.4s add v30.4s, v30.4s, v10.4s /* tmp6 += z3 */ add v26.4s, v26.4s, v14.4s add v31.4s, v31.4s, v11.4s /* tmp7 += z4 */ add v27.4s, v27.4s, v15.4s add v28.4s, v28.4s, v10.4s /* tmp4 += z3 */ add v24.4s, v24.4s, v14.4s add v29.4s, v29.4s, v11.4s /* tmp5 += z4 */ add v25.4s, v25.4s, v15.4s add v30.4s, v30.4s, v9.4s /* tmp6 += z2 */ add v26.4s, v26.4s, v13.4s add v31.4s, v31.4s, v8.4s /* tmp7 += z1 */ add v27.4s, v27.4s, v12.4s rshrn v23.4h, v28.4s, #DESCALE_P1 rshrn v21.4h, v29.4s, #DESCALE_P1 rshrn v19.4h, v30.4s, #DESCALE_P1 rshrn v17.4h, v31.4s, #DESCALE_P1 rshrn2 v23.8h, v24.4s, #DESCALE_P1 /* dataptr[7] = (DCTELEM)DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS); */ rshrn2 v21.8h, v25.4s, #DESCALE_P1 /* dataptr[5] = (DCTELEM)DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS); */ rshrn2 v19.8h, v26.4s, #DESCALE_P1 /* dataptr[3] = (DCTELEM)DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS); */ rshrn2 v17.8h, v27.4s, #DESCALE_P1 /* dataptr[1] = (DCTELEM)DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS); */ /* Transpose */ transpose_8x8 v16, v17, v18, v19, v20, v21, v22, v23, v31, v2, v3, v4 /* 1-D FDCT */ add v24.8h, v16.8h, v23.8h /* tmp0 = dataptr[0] + dataptr[7]; */ sub v31.8h, v16.8h, v23.8h /* tmp7 = dataptr[0] - dataptr[7]; */ add v25.8h, v17.8h, v22.8h /* tmp1 = dataptr[1] + dataptr[6]; */ sub v30.8h, v17.8h, v22.8h /* tmp6 = dataptr[1] - dataptr[6]; */ add v26.8h, v18.8h, v21.8h /* tmp2 = dataptr[2] + dataptr[5]; */ sub v29.8h, v18.8h, v21.8h /* tmp5 = dataptr[2] - dataptr[5]; */ add v27.8h, v19.8h, v20.8h /* tmp3 = dataptr[3] + dataptr[4]; */ sub v28.8h, v19.8h, v20.8h /* tmp4 = dataptr[3] - dataptr[4]; */ /* even part */ add v8.8h, v24.8h, v27.8h /* tmp10 = tmp0 + tmp3; */ sub v9.8h, v24.8h, v27.8h /* tmp13 = tmp0 - tmp3; */ add v10.8h, v25.8h, v26.8h /* tmp11 = tmp1 + tmp2; */ sub v11.8h, v25.8h, v26.8h /* tmp12 = tmp1 - tmp2; */ add v16.8h, v8.8h, v10.8h /* tmp10 + tmp11 */ sub v20.8h, v8.8h, v10.8h /* tmp10 - tmp11 */ add v18.8h, v11.8h, v9.8h /* tmp12 + tmp13 */ srshr v16.8h, v16.8h, #PASS1_BITS /* dataptr[0] = (DCTELEM)DESCALE(tmp10 + tmp11, PASS1_BITS); */ srshr v20.8h, v20.8h, #PASS1_BITS /* dataptr[4] = (DCTELEM)DESCALE(tmp10 - tmp11, PASS1_BITS); */ smull2 v24.4s, v18.8h, XFIX_P_0_541 /* z1 hi = MULTIPLY(tmp12 + tmp13, XFIX_P_0_541); */ smull v18.4s, v18.4h, XFIX_P_0_541 /* z1 lo = MULTIPLY(tmp12 + tmp13, XFIX_P_0_541); */ mov v22.16b, v18.16b mov v25.16b, v24.16b smlal v18.4s, v9.4h, XFIX_P_0_765 /* lo z1 + MULTIPLY(tmp13, XFIX_P_0_765) */ smlal2 v24.4s, v9.8h, XFIX_P_0_765 /* hi z1 + MULTIPLY(tmp13, XFIX_P_0_765) */ smlal v22.4s, v11.4h, XFIX_N_1_847 /* lo z1 + MULTIPLY(tmp12, XFIX_N_1_847) */ smlal2 v25.4s, v11.8h, XFIX_N_1_847 /* hi z1 + MULTIPLY(tmp12, XFIX_N_1_847) */ rshrn v18.4h, v18.4s, #DESCALE_P2 rshrn v22.4h, v22.4s, #DESCALE_P2 rshrn2 v18.8h, v24.4s, #DESCALE_P2 /* dataptr[2] = (DCTELEM)DESCALE(z1 + MULTIPLY(tmp13, XFIX_P_0_765), CONST_BITS-PASS1_BITS); */ rshrn2 v22.8h, v25.4s, #DESCALE_P2 /* dataptr[6] = (DCTELEM)DESCALE(z1 + MULTIPLY(tmp12, XFIX_N_1_847), CONST_BITS-PASS1_BITS); */ /* Odd part */ add v8.8h, v28.8h, v31.8h /* z1 = tmp4 + tmp7; */ add v9.8h, v29.8h, v30.8h /* z2 = tmp5 + tmp6; */ add v10.8h, v28.8h, v30.8h /* z3 = tmp4 + tmp6; */ add v11.8h, v29.8h, v31.8h /* z4 = tmp5 + tmp7; */ smull v4.4s, v10.4h, XFIX_P_1_175 /* z5 lo = z3 lo * XFIX_P_1_175 */ smull2 v5.4s, v10.8h, XFIX_P_1_175 smlal v4.4s, v11.4h, XFIX_P_1_175 /* z5 = MULTIPLY(z3 + z4, FIX_1_175875602); */ smlal2 v5.4s, v11.8h, XFIX_P_1_175 smull2 v24.4s, v28.8h, XFIX_P_0_298 smull2 v25.4s, v29.8h, XFIX_P_2_053 smull2 v26.4s, v30.8h, XFIX_P_3_072 smull2 v27.4s, v31.8h, XFIX_P_1_501 smull v28.4s, v28.4h, XFIX_P_0_298 /* tmp4 = MULTIPLY(tmp4, FIX_0_298631336); */ smull v29.4s, v29.4h, XFIX_P_2_053 /* tmp5 = MULTIPLY(tmp5, FIX_2_053119869); */ smull v30.4s, v30.4h, XFIX_P_3_072 /* tmp6 = MULTIPLY(tmp6, FIX_3_072711026); */ smull v31.4s, v31.4h, XFIX_P_1_501 /* tmp7 = MULTIPLY(tmp7, FIX_1_501321110); */ smull2 v12.4s, v8.8h, XFIX_N_0_899 smull2 v13.4s, v9.8h, XFIX_N_2_562 smull2 v14.4s, v10.8h, XFIX_N_1_961 smull2 v15.4s, v11.8h, XFIX_N_0_390 smull v8.4s, v8.4h, XFIX_N_0_899 /* z1 = MULTIPLY(z1, -FIX_0_899976223); */ smull v9.4s, v9.4h, XFIX_N_2_562 /* z2 = MULTIPLY(z2, -FIX_2_562915447); */ smull v10.4s, v10.4h, XFIX_N_1_961 /* z3 = MULTIPLY(z3, -FIX_1_961570560); */ smull v11.4s, v11.4h, XFIX_N_0_390 /* z4 = MULTIPLY(z4, -FIX_0_390180644); */ add v10.4s, v10.4s, v4.4s add v14.4s, v14.4s, v5.4s add v11.4s, v11.4s, v4.4s add v15.4s, v15.4s, v5.4s add v28.4s, v28.4s, v8.4s /* tmp4 += z1 */ add v24.4s, v24.4s, v12.4s add v29.4s, v29.4s, v9.4s /* tmp5 += z2 */ add v25.4s, v25.4s, v13.4s add v30.4s, v30.4s, v10.4s /* tmp6 += z3 */ add v26.4s, v26.4s, v14.4s add v31.4s, v31.4s, v11.4s /* tmp7 += z4 */ add v27.4s, v27.4s, v15.4s add v28.4s, v28.4s, v10.4s /* tmp4 += z3 */ add v24.4s, v24.4s, v14.4s add v29.4s, v29.4s, v11.4s /* tmp5 += z4 */ add v25.4s, v25.4s, v15.4s add v30.4s, v30.4s, v9.4s /* tmp6 += z2 */ add v26.4s, v26.4s, v13.4s add v31.4s, v31.4s, v8.4s /* tmp7 += z1 */ add v27.4s, v27.4s, v12.4s rshrn v23.4h, v28.4s, #DESCALE_P2 rshrn v21.4h, v29.4s, #DESCALE_P2 rshrn v19.4h, v30.4s, #DESCALE_P2 rshrn v17.4h, v31.4s, #DESCALE_P2 rshrn2 v23.8h, v24.4s, #DESCALE_P2 /* dataptr[7] = (DCTELEM)DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS); */ rshrn2 v21.8h, v25.4s, #DESCALE_P2 /* dataptr[5] = (DCTELEM)DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS); */ rshrn2 v19.8h, v26.4s, #DESCALE_P2 /* dataptr[3] = (DCTELEM)DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS); */ rshrn2 v17.8h, v27.4s, #DESCALE_P2 /* dataptr[1] = (DCTELEM)DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS); */ /* store results */ st1 {v16.8h, v17.8h, v18.8h, v19.8h}, [DATA], 64 st1 {v20.8h, v21.8h, v22.8h, v23.8h}, [DATA] /* Restore Neon registers */ ld1 {v8.8b, v9.8b, v10.8b, v11.8b}, [sp], 32 ld1 {v12.8b, v13.8b, v14.8b, v15.8b}, [sp], 32 br x30 .unreq DATA .unreq TMP #undef XFIX_P_0_298 #undef XFIX_N_0_390 #undef XFIX_P_0_541 #undef XFIX_P_0_765 #undef XFIX_N_0_899 #undef XFIX_P_1_175 #undef XFIX_P_1_501 #undef XFIX_N_1_847 #undef XFIX_N_1_961 #undef XFIX_P_2_053 #undef XFIX_N_2_562 #undef XFIX_P_3_072 /*****************************************************************************/ /* * GLOBAL(JOCTET *) * jsimd_huff_encode_one_block(working_state *state, JOCTET *buffer, * JCOEFPTR block, int last_dc_val, * c_derived_tbl *dctbl, c_derived_tbl *actbl) * */ BUFFER .req x1 PUT_BUFFER .req x6 PUT_BITS .req x7 PUT_BITSw .req w7 .macro emit_byte sub PUT_BITS, PUT_BITS, #0x8 lsr x19, PUT_BUFFER, PUT_BITS uxtb w19, w19 strb w19, [BUFFER, #1]! cmp w19, #0xff b.ne 14f strb wzr, [BUFFER, #1]! 14: .endm .macro put_bits CODE, SIZE lsl PUT_BUFFER, PUT_BUFFER, \SIZE add PUT_BITS, PUT_BITS, \SIZE orr PUT_BUFFER, PUT_BUFFER, \CODE .endm .macro checkbuf31 cmp PUT_BITS, #0x20 b.lt 31f emit_byte emit_byte emit_byte emit_byte 31: .endm .macro checkbuf47 cmp PUT_BITS, #0x30 b.lt 47f emit_byte emit_byte emit_byte emit_byte emit_byte emit_byte 47: .endm .macro generate_jsimd_huff_encode_one_block fast_tbl .if \fast_tbl == 1 asm_function jsimd_huff_encode_one_block_neon .else asm_function jsimd_huff_encode_one_block_neon_slowtbl .endif sub sp, sp, 272 sub BUFFER, BUFFER, #0x1 /* BUFFER=buffer-- */ /* Save Arm registers */ stp x19, x20, [sp] get_symbol_loc x15, Ljsimd_huff_encode_one_block_neon_consts ldr PUT_BUFFER, [x0, #0x10] ldr PUT_BITSw, [x0, #0x18] ldrsh w12, [x2] /* load DC coeff in w12 */ /* prepare data */ .if \fast_tbl == 1 ld1 {v23.16b}, [x15], #16 ld1 {v0.16b, v1.16b, v2.16b, v3.16b}, [x15], #64 ld1 {v4.16b, v5.16b, v6.16b, v7.16b}, [x15], #64 ld1 {v16.16b, v17.16b, v18.16b, v19.16b}, [x15], #64 ld1 {v24.16b, v25.16b, v26.16b, v27.16b}, [x2], #64 ld1 {v28.16b, v29.16b, v30.16b, v31.16b}, [x2], #64 sub w12, w12, w3 /* last_dc_val, not used afterwards */ /* ZigZag 8x8 */ tbl v0.16b, {v24.16b, v25.16b, v26.16b, v27.16b}, v0.16b tbl v1.16b, {v24.16b, v25.16b, v26.16b, v27.16b}, v1.16b tbl v2.16b, {v25.16b, v26.16b, v27.16b, v28.16b}, v2.16b tbl v3.16b, {v24.16b, v25.16b, v26.16b, v27.16b}, v3.16b tbl v4.16b, {v28.16b, v29.16b, v30.16b, v31.16b}, v4.16b tbl v5.16b, {v25.16b, v26.16b, v27.16b, v28.16b}, v5.16b tbl v6.16b, {v27.16b, v28.16b, v29.16b, v30.16b}, v6.16b tbl v7.16b, {v29.16b, v30.16b, v31.16b}, v7.16b ins v0.h[0], w12 tbx v1.16b, {v28.16b}, v16.16b tbx v2.16b, {v29.16b, v30.16b}, v17.16b tbx v5.16b, {v29.16b, v30.16b}, v18.16b tbx v6.16b, {v31.16b}, v19.16b .else add x13, x2, #0x22 sub w12, w12, w3 /* last_dc_val, not used afterwards */ ld1 {v23.16b}, [x15] add x14, x2, #0x18 add x3, x2, #0x36 ins v0.h[0], w12 add x9, x2, #0x2 ld1 {v1.h}[0], [x13] add x15, x2, #0x30 ld1 {v2.h}[0], [x14] add x19, x2, #0x26 ld1 {v3.h}[0], [x3] add x20, x2, #0x28 ld1 {v0.h}[1], [x9] add x12, x2, #0x10 ld1 {v1.h}[1], [x15] add x13, x2, #0x40 ld1 {v2.h}[1], [x19] add x14, x2, #0x34 ld1 {v3.h}[1], [x20] add x3, x2, #0x1a ld1 {v0.h}[2], [x12] add x9, x2, #0x20 ld1 {v1.h}[2], [x13] add x15, x2, #0x32 ld1 {v2.h}[2], [x14] add x19, x2, #0x42 ld1 {v3.h}[2], [x3] add x20, x2, #0xc ld1 {v0.h}[3], [x9] add x12, x2, #0x12 ld1 {v1.h}[3], [x15] add x13, x2, #0x24 ld1 {v2.h}[3], [x19] add x14, x2, #0x50 ld1 {v3.h}[3], [x20] add x3, x2, #0xe ld1 {v0.h}[4], [x12] add x9, x2, #0x4 ld1 {v1.h}[4], [x13] add x15, x2, #0x16 ld1 {v2.h}[4], [x14] add x19, x2, #0x60 ld1 {v3.h}[4], [x3] add x20, x2, #0x1c ld1 {v0.h}[5], [x9] add x12, x2, #0x6 ld1 {v1.h}[5], [x15] add x13, x2, #0x8 ld1 {v2.h}[5], [x19] add x14, x2, #0x52 ld1 {v3.h}[5], [x20] add x3, x2, #0x2a ld1 {v0.h}[6], [x12] add x9, x2, #0x14 ld1 {v1.h}[6], [x13] add x15, x2, #0xa ld1 {v2.h}[6], [x14] add x19, x2, #0x44 ld1 {v3.h}[6], [x3] add x20, x2, #0x38 ld1 {v0.h}[7], [x9] add x12, x2, #0x46 ld1 {v1.h}[7], [x15] add x13, x2, #0x3a ld1 {v2.h}[7], [x19] add x14, x2, #0x74 ld1 {v3.h}[7], [x20] add x3, x2, #0x6a ld1 {v4.h}[0], [x12] add x9, x2, #0x54 ld1 {v5.h}[0], [x13] add x15, x2, #0x2c ld1 {v6.h}[0], [x14] add x19, x2, #0x76 ld1 {v7.h}[0], [x3] add x20, x2, #0x78 ld1 {v4.h}[1], [x9] add x12, x2, #0x62 ld1 {v5.h}[1], [x15] add x13, x2, #0x1e ld1 {v6.h}[1], [x19] add x14, x2, #0x68 ld1 {v7.h}[1], [x20] add x3, x2, #0x7a ld1 {v4.h}[2], [x12] add x9, x2, #0x70 ld1 {v5.h}[2], [x13] add x15, x2, #0x2e ld1 {v6.h}[2], [x14] add x19, x2, #0x5a ld1 {v7.h}[2], [x3] add x20, x2, #0x6c ld1 {v4.h}[3], [x9] add x12, x2, #0x72 ld1 {v5.h}[3], [x15] add x13, x2, #0x3c ld1 {v6.h}[3], [x19] add x14, x2, #0x4c ld1 {v7.h}[3], [x20] add x3, x2, #0x5e ld1 {v4.h}[4], [x12] add x9, x2, #0x64 ld1 {v5.h}[4], [x13] add x15, x2, #0x4a ld1 {v6.h}[4], [x14] add x19, x2, #0x3e ld1 {v7.h}[4], [x3] add x20, x2, #0x6e ld1 {v4.h}[5], [x9] add x12, x2, #0x56 ld1 {v5.h}[5], [x15] add x13, x2, #0x58 ld1 {v6.h}[5], [x19] add x14, x2, #0x4e ld1 {v7.h}[5], [x20] add x3, x2, #0x7c ld1 {v4.h}[6], [x12] add x9, x2, #0x48 ld1 {v5.h}[6], [x13] add x15, x2, #0x66 ld1 {v6.h}[6], [x14] add x19, x2, #0x5c ld1 {v7.h}[6], [x3] add x20, x2, #0x7e ld1 {v4.h}[7], [x9] ld1 {v5.h}[7], [x15] ld1 {v6.h}[7], [x19] ld1 {v7.h}[7], [x20] .endif cmlt v24.8h, v0.8h, #0 cmlt v25.8h, v1.8h, #0 cmlt v26.8h, v2.8h, #0 cmlt v27.8h, v3.8h, #0 cmlt v28.8h, v4.8h, #0 cmlt v29.8h, v5.8h, #0 cmlt v30.8h, v6.8h, #0 cmlt v31.8h, v7.8h, #0 abs v0.8h, v0.8h abs v1.8h, v1.8h abs v2.8h, v2.8h abs v3.8h, v3.8h abs v4.8h, v4.8h abs v5.8h, v5.8h abs v6.8h, v6.8h abs v7.8h, v7.8h eor v24.16b, v24.16b, v0.16b eor v25.16b, v25.16b, v1.16b eor v26.16b, v26.16b, v2.16b eor v27.16b, v27.16b, v3.16b eor v28.16b, v28.16b, v4.16b eor v29.16b, v29.16b, v5.16b eor v30.16b, v30.16b, v6.16b eor v31.16b, v31.16b, v7.16b cmeq v16.8h, v0.8h, #0 cmeq v17.8h, v1.8h, #0 cmeq v18.8h, v2.8h, #0 cmeq v19.8h, v3.8h, #0 cmeq v20.8h, v4.8h, #0 cmeq v21.8h, v5.8h, #0 cmeq v22.8h, v6.8h, #0 xtn v16.8b, v16.8h xtn v18.8b, v18.8h xtn v20.8b, v20.8h xtn v22.8b, v22.8h umov w14, v0.h[0] xtn2 v16.16b, v17.8h umov w13, v24.h[0] xtn2 v18.16b, v19.8h clz w14, w14 xtn2 v20.16b, v21.8h lsl w13, w13, w14 cmeq v17.8h, v7.8h, #0 sub w12, w14, #32 xtn2 v22.16b, v17.8h lsr w13, w13, w14 and v16.16b, v16.16b, v23.16b neg w12, w12 and v18.16b, v18.16b, v23.16b add x3, x4, #0x400 /* r1 = dctbl->ehufsi */ and v20.16b, v20.16b, v23.16b add x15, sp, #0x90 /* x15 = t2 */ and v22.16b, v22.16b, v23.16b ldr w10, [x4, x12, lsl #2] addp v16.16b, v16.16b, v18.16b ldrb w11, [x3, x12] addp v20.16b, v20.16b, v22.16b checkbuf47 addp v16.16b, v16.16b, v20.16b put_bits x10, x11 addp v16.16b, v16.16b, v18.16b checkbuf47 umov x9, v16.D[0] put_bits x13, x12 cnt v17.8b, v16.8b mvn x9, x9 addv B18, v17.8b add x4, x5, #0x400 /* x4 = actbl->ehufsi */ umov w12, v18.b[0] lsr x9, x9, #0x1 /* clear AC coeff */ ldr w13, [x5, #0x3c0] /* x13 = actbl->ehufco[0xf0] */ rbit x9, x9 /* x9 = index0 */ ldrb w14, [x4, #0xf0] /* x14 = actbl->ehufsi[0xf0] */ cmp w12, #(64-8) add x11, sp, #16 b.lt 4f cbz x9, 6f st1 {v0.8h, v1.8h, v2.8h, v3.8h}, [x11], #64 st1 {v4.8h, v5.8h, v6.8h, v7.8h}, [x11], #64 st1 {v24.8h, v25.8h, v26.8h, v27.8h}, [x11], #64 st1 {v28.8h, v29.8h, v30.8h, v31.8h}, [x11], #64 1: clz x2, x9 add x15, x15, x2, lsl #1 lsl x9, x9, x2 ldrh w20, [x15, #-126] 2: cmp x2, #0x10 b.lt 3f sub x2, x2, #0x10 checkbuf47 put_bits x13, x14 b 2b 3: clz w20, w20 ldrh w3, [x15, #2]! sub w11, w20, #32 lsl w3, w3, w20 neg w11, w11 lsr w3, w3, w20 add x2, x11, x2, lsl #4 lsl x9, x9, #0x1 ldr w12, [x5, x2, lsl #2] ldrb w10, [x4, x2] checkbuf31 put_bits x12, x10 put_bits x3, x11 cbnz x9, 1b b 6f 4: movi v21.8h, #0x0010 clz v0.8h, v0.8h clz v1.8h, v1.8h clz v2.8h, v2.8h clz v3.8h, v3.8h clz v4.8h, v4.8h clz v5.8h, v5.8h clz v6.8h, v6.8h clz v7.8h, v7.8h ushl v24.8h, v24.8h, v0.8h ushl v25.8h, v25.8h, v1.8h ushl v26.8h, v26.8h, v2.8h ushl v27.8h, v27.8h, v3.8h ushl v28.8h, v28.8h, v4.8h ushl v29.8h, v29.8h, v5.8h ushl v30.8h, v30.8h, v6.8h ushl v31.8h, v31.8h, v7.8h neg v0.8h, v0.8h neg v1.8h, v1.8h neg v2.8h, v2.8h neg v3.8h, v3.8h neg v4.8h, v4.8h neg v5.8h, v5.8h neg v6.8h, v6.8h neg v7.8h, v7.8h ushl v24.8h, v24.8h, v0.8h ushl v25.8h, v25.8h, v1.8h ushl v26.8h, v26.8h, v2.8h ushl v27.8h, v27.8h, v3.8h ushl v28.8h, v28.8h, v4.8h ushl v29.8h, v29.8h, v5.8h ushl v30.8h, v30.8h, v6.8h ushl v31.8h, v31.8h, v7.8h add v0.8h, v21.8h, v0.8h add v1.8h, v21.8h, v1.8h add v2.8h, v21.8h, v2.8h add v3.8h, v21.8h, v3.8h add v4.8h, v21.8h, v4.8h add v5.8h, v21.8h, v5.8h add v6.8h, v21.8h, v6.8h add v7.8h, v21.8h, v7.8h st1 {v0.8h, v1.8h, v2.8h, v3.8h}, [x11], #64 st1 {v4.8h, v5.8h, v6.8h, v7.8h}, [x11], #64 st1 {v24.8h, v25.8h, v26.8h, v27.8h}, [x11], #64 st1 {v28.8h, v29.8h, v30.8h, v31.8h}, [x11], #64 1: clz x2, x9 add x15, x15, x2, lsl #1 lsl x9, x9, x2 ldrh w11, [x15, #-126] 2: cmp x2, #0x10 b.lt 3f sub x2, x2, #0x10 checkbuf47 put_bits x13, x14 b 2b 3: ldrh w3, [x15, #2]! add x2, x11, x2, lsl #4 lsl x9, x9, #0x1 ldr w12, [x5, x2, lsl #2] ldrb w10, [x4, x2] checkbuf31 put_bits x12, x10 put_bits x3, x11 cbnz x9, 1b 6: add x13, sp, #0x10e cmp x15, x13 b.hs 1f ldr w12, [x5] ldrb w14, [x4] checkbuf47 put_bits x12, x14 1: str PUT_BUFFER, [x0, #0x10] str PUT_BITSw, [x0, #0x18] ldp x19, x20, [sp], 16 add x0, BUFFER, #0x1 add sp, sp, 256 br x30 .endm generate_jsimd_huff_encode_one_block 1 generate_jsimd_huff_encode_one_block 0 .unreq BUFFER .unreq PUT_BUFFER .unreq PUT_BITS .unreq PUT_BITSw .purgem emit_byte .purgem put_bits .purgem checkbuf31 .purgem checkbuf47 libjpeg-turbo-2.1.5/simd/arm/align.h000066400000000000000000000023051436506551100172500ustar00rootroot00000000000000/* * Copyright (C) 2020, Arm Limited. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ /* How to obtain memory alignment for structures and variables */ #if defined(_MSC_VER) #define ALIGN(alignment) __declspec(align(alignment)) #elif defined(__clang__) || defined(__GNUC__) #define ALIGN(alignment) __attribute__((aligned(alignment))) #else #error "Unknown compiler" #endif libjpeg-turbo-2.1.5/simd/arm/jccolor-neon.c000066400000000000000000000106711436506551100205460ustar00rootroot00000000000000/* * jccolor-neon.c - colorspace conversion (Arm Neon) * * Copyright (C) 2020, Arm Limited. All Rights Reserved. * Copyright (C) 2020, D. R. Commander. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #define JPEG_INTERNALS #include "../../jinclude.h" #include "../../jpeglib.h" #include "../../jsimd.h" #include "../../jdct.h" #include "../../jsimddct.h" #include "../jsimd.h" #include "align.h" #include "neon-compat.h" #include /* RGB -> YCbCr conversion constants */ #define F_0_298 19595 #define F_0_587 38470 #define F_0_113 7471 #define F_0_168 11059 #define F_0_331 21709 #define F_0_500 32768 #define F_0_418 27439 #define F_0_081 5329 ALIGN(16) static const uint16_t jsimd_rgb_ycc_neon_consts[] = { F_0_298, F_0_587, F_0_113, F_0_168, F_0_331, F_0_500, F_0_418, F_0_081 }; /* Include inline routines for colorspace extensions. */ #if defined(__aarch64__) || defined(_M_ARM64) #include "aarch64/jccolext-neon.c" #else #include "aarch32/jccolext-neon.c" #endif #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #define RGB_RED EXT_RGB_RED #define RGB_GREEN EXT_RGB_GREEN #define RGB_BLUE EXT_RGB_BLUE #define RGB_PIXELSIZE EXT_RGB_PIXELSIZE #define jsimd_rgb_ycc_convert_neon jsimd_extrgb_ycc_convert_neon #if defined(__aarch64__) || defined(_M_ARM64) #include "aarch64/jccolext-neon.c" #else #include "aarch32/jccolext-neon.c" #endif #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef jsimd_rgb_ycc_convert_neon #define RGB_RED EXT_RGBX_RED #define RGB_GREEN EXT_RGBX_GREEN #define RGB_BLUE EXT_RGBX_BLUE #define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE #define jsimd_rgb_ycc_convert_neon jsimd_extrgbx_ycc_convert_neon #if defined(__aarch64__) || defined(_M_ARM64) #include "aarch64/jccolext-neon.c" #else #include "aarch32/jccolext-neon.c" #endif #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef jsimd_rgb_ycc_convert_neon #define RGB_RED EXT_BGR_RED #define RGB_GREEN EXT_BGR_GREEN #define RGB_BLUE EXT_BGR_BLUE #define RGB_PIXELSIZE EXT_BGR_PIXELSIZE #define jsimd_rgb_ycc_convert_neon jsimd_extbgr_ycc_convert_neon #if defined(__aarch64__) || defined(_M_ARM64) #include "aarch64/jccolext-neon.c" #else #include "aarch32/jccolext-neon.c" #endif #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef jsimd_rgb_ycc_convert_neon #define RGB_RED EXT_BGRX_RED #define RGB_GREEN EXT_BGRX_GREEN #define RGB_BLUE EXT_BGRX_BLUE #define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE #define jsimd_rgb_ycc_convert_neon jsimd_extbgrx_ycc_convert_neon #if defined(__aarch64__) || defined(_M_ARM64) #include "aarch64/jccolext-neon.c" #else #include "aarch32/jccolext-neon.c" #endif #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef jsimd_rgb_ycc_convert_neon #define RGB_RED EXT_XBGR_RED #define RGB_GREEN EXT_XBGR_GREEN #define RGB_BLUE EXT_XBGR_BLUE #define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE #define jsimd_rgb_ycc_convert_neon jsimd_extxbgr_ycc_convert_neon #if defined(__aarch64__) || defined(_M_ARM64) #include "aarch64/jccolext-neon.c" #else #include "aarch32/jccolext-neon.c" #endif #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef jsimd_rgb_ycc_convert_neon #define RGB_RED EXT_XRGB_RED #define RGB_GREEN EXT_XRGB_GREEN #define RGB_BLUE EXT_XRGB_BLUE #define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE #define jsimd_rgb_ycc_convert_neon jsimd_extxrgb_ycc_convert_neon #if defined(__aarch64__) || defined(_M_ARM64) #include "aarch64/jccolext-neon.c" #else #include "aarch32/jccolext-neon.c" #endif #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef jsimd_rgb_ycc_convert_neon libjpeg-turbo-2.1.5/simd/arm/jcgray-neon.c000066400000000000000000000066661436506551100204030ustar00rootroot00000000000000/* * jcgray-neon.c - grayscale colorspace conversion (Arm Neon) * * Copyright (C) 2020, Arm Limited. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #define JPEG_INTERNALS #include "../../jinclude.h" #include "../../jpeglib.h" #include "../../jsimd.h" #include "../../jdct.h" #include "../../jsimddct.h" #include "../jsimd.h" #include "align.h" #include /* RGB -> Grayscale conversion constants */ #define F_0_298 19595 #define F_0_587 38470 #define F_0_113 7471 /* Include inline routines for colorspace extensions. */ #include "jcgryext-neon.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #define RGB_RED EXT_RGB_RED #define RGB_GREEN EXT_RGB_GREEN #define RGB_BLUE EXT_RGB_BLUE #define RGB_PIXELSIZE EXT_RGB_PIXELSIZE #define jsimd_rgb_gray_convert_neon jsimd_extrgb_gray_convert_neon #include "jcgryext-neon.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef jsimd_rgb_gray_convert_neon #define RGB_RED EXT_RGBX_RED #define RGB_GREEN EXT_RGBX_GREEN #define RGB_BLUE EXT_RGBX_BLUE #define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE #define jsimd_rgb_gray_convert_neon jsimd_extrgbx_gray_convert_neon #include "jcgryext-neon.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef jsimd_rgb_gray_convert_neon #define RGB_RED EXT_BGR_RED #define RGB_GREEN EXT_BGR_GREEN #define RGB_BLUE EXT_BGR_BLUE #define RGB_PIXELSIZE EXT_BGR_PIXELSIZE #define jsimd_rgb_gray_convert_neon jsimd_extbgr_gray_convert_neon #include "jcgryext-neon.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef jsimd_rgb_gray_convert_neon #define RGB_RED EXT_BGRX_RED #define RGB_GREEN EXT_BGRX_GREEN #define RGB_BLUE EXT_BGRX_BLUE #define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE #define jsimd_rgb_gray_convert_neon jsimd_extbgrx_gray_convert_neon #include "jcgryext-neon.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef jsimd_rgb_gray_convert_neon #define RGB_RED EXT_XBGR_RED #define RGB_GREEN EXT_XBGR_GREEN #define RGB_BLUE EXT_XBGR_BLUE #define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE #define jsimd_rgb_gray_convert_neon jsimd_extxbgr_gray_convert_neon #include "jcgryext-neon.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef jsimd_rgb_gray_convert_neon #define RGB_RED EXT_XRGB_RED #define RGB_GREEN EXT_XRGB_GREEN #define RGB_BLUE EXT_XRGB_BLUE #define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE #define jsimd_rgb_gray_convert_neon jsimd_extxrgb_gray_convert_neon #include "jcgryext-neon.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef jsimd_rgb_gray_convert_neon libjpeg-turbo-2.1.5/simd/arm/jcgryext-neon.c000066400000000000000000000105311436506551100207450ustar00rootroot00000000000000/* * jcgryext-neon.c - grayscale colorspace conversion (Arm Neon) * * Copyright (C) 2020, Arm Limited. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ /* This file is included by jcgray-neon.c */ /* RGB -> Grayscale conversion is defined by the following equation: * Y = 0.29900 * R + 0.58700 * G + 0.11400 * B * * Avoid floating point arithmetic by using shifted integer constants: * 0.29899597 = 19595 * 2^-16 * 0.58700561 = 38470 * 2^-16 * 0.11399841 = 7471 * 2^-16 * These constants are defined in jcgray-neon.c * * This is the same computation as the RGB -> Y portion of RGB -> YCbCr. */ void jsimd_rgb_gray_convert_neon(JDIMENSION image_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { JSAMPROW inptr; JSAMPROW outptr; /* Allocate temporary buffer for final (image_width % 16) pixels in row. */ ALIGN(16) uint8_t tmp_buf[16 * RGB_PIXELSIZE]; while (--num_rows >= 0) { inptr = *input_buf++; outptr = output_buf[0][output_row]; output_row++; int cols_remaining = image_width; for (; cols_remaining > 0; cols_remaining -= 16) { /* To prevent buffer overread by the vector load instructions, the last * (image_width % 16) columns of data are first memcopied to a temporary * buffer large enough to accommodate the vector load. */ if (cols_remaining < 16) { memcpy(tmp_buf, inptr, cols_remaining * RGB_PIXELSIZE); inptr = tmp_buf; } #if RGB_PIXELSIZE == 4 uint8x16x4_t input_pixels = vld4q_u8(inptr); #else uint8x16x3_t input_pixels = vld3q_u8(inptr); #endif uint16x8_t r_l = vmovl_u8(vget_low_u8(input_pixels.val[RGB_RED])); uint16x8_t r_h = vmovl_u8(vget_high_u8(input_pixels.val[RGB_RED])); uint16x8_t g_l = vmovl_u8(vget_low_u8(input_pixels.val[RGB_GREEN])); uint16x8_t g_h = vmovl_u8(vget_high_u8(input_pixels.val[RGB_GREEN])); uint16x8_t b_l = vmovl_u8(vget_low_u8(input_pixels.val[RGB_BLUE])); uint16x8_t b_h = vmovl_u8(vget_high_u8(input_pixels.val[RGB_BLUE])); /* Compute Y = 0.29900 * R + 0.58700 * G + 0.11400 * B */ uint32x4_t y_ll = vmull_n_u16(vget_low_u16(r_l), F_0_298); uint32x4_t y_lh = vmull_n_u16(vget_high_u16(r_l), F_0_298); uint32x4_t y_hl = vmull_n_u16(vget_low_u16(r_h), F_0_298); uint32x4_t y_hh = vmull_n_u16(vget_high_u16(r_h), F_0_298); y_ll = vmlal_n_u16(y_ll, vget_low_u16(g_l), F_0_587); y_lh = vmlal_n_u16(y_lh, vget_high_u16(g_l), F_0_587); y_hl = vmlal_n_u16(y_hl, vget_low_u16(g_h), F_0_587); y_hh = vmlal_n_u16(y_hh, vget_high_u16(g_h), F_0_587); y_ll = vmlal_n_u16(y_ll, vget_low_u16(b_l), F_0_113); y_lh = vmlal_n_u16(y_lh, vget_high_u16(b_l), F_0_113); y_hl = vmlal_n_u16(y_hl, vget_low_u16(b_h), F_0_113); y_hh = vmlal_n_u16(y_hh, vget_high_u16(b_h), F_0_113); /* Descale Y values (rounding right shift) and narrow to 16-bit. */ uint16x8_t y_l = vcombine_u16(vrshrn_n_u32(y_ll, 16), vrshrn_n_u32(y_lh, 16)); uint16x8_t y_h = vcombine_u16(vrshrn_n_u32(y_hl, 16), vrshrn_n_u32(y_hh, 16)); /* Narrow Y values to 8-bit and store to memory. Buffer overwrite is * permitted up to the next multiple of ALIGN_SIZE bytes. */ vst1q_u8(outptr, vcombine_u8(vmovn_u16(y_l), vmovn_u16(y_h))); /* Increment pointers. */ inptr += (16 * RGB_PIXELSIZE); outptr += 16; } } } libjpeg-turbo-2.1.5/simd/arm/jchuff.h000066400000000000000000000075561436506551100174400ustar00rootroot00000000000000/* * jchuff.h * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1997, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2009, 2018, 2021, D. R. Commander. * Copyright (C) 2018, Matthias Räncker. * Copyright (C) 2020-2021, Arm Limited. * For conditions of distribution and use, see the accompanying README.ijg * file. */ /* Expanded entropy encoder object for Huffman encoding. * * The savable_state subrecord contains fields that change within an MCU, * but must not be updated permanently until we complete the MCU. */ #if defined(__aarch64__) || defined(_M_ARM64) #define BIT_BUF_SIZE 64 #else #define BIT_BUF_SIZE 32 #endif typedef struct { size_t put_buffer; /* current bit accumulation buffer */ int free_bits; /* # of bits available in it */ int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ } savable_state; typedef struct { JOCTET *next_output_byte; /* => next byte to write in buffer */ size_t free_in_buffer; /* # of byte spaces remaining in buffer */ savable_state cur; /* Current bit buffer & DC state */ j_compress_ptr cinfo; /* dump_buffer needs access to this */ int simd; } working_state; /* Outputting bits to the file */ /* Output byte b and, speculatively, an additional 0 byte. 0xFF must be encoded * as 0xFF 0x00, so the output buffer pointer is advanced by 2 if the byte is * 0xFF. Otherwise, the output buffer pointer is advanced by 1, and the * speculative 0 byte will be overwritten by the next byte. */ #define EMIT_BYTE(b) { \ buffer[0] = (JOCTET)(b); \ buffer[1] = 0; \ buffer -= -2 + ((JOCTET)(b) < 0xFF); \ } /* Output the entire bit buffer. If there are no 0xFF bytes in it, then write * directly to the output buffer. Otherwise, use the EMIT_BYTE() macro to * encode 0xFF as 0xFF 0x00. */ #if defined(__aarch64__) || defined(_M_ARM64) #define FLUSH() { \ if (put_buffer & 0x8080808080808080 & ~(put_buffer + 0x0101010101010101)) { \ EMIT_BYTE(put_buffer >> 56) \ EMIT_BYTE(put_buffer >> 48) \ EMIT_BYTE(put_buffer >> 40) \ EMIT_BYTE(put_buffer >> 32) \ EMIT_BYTE(put_buffer >> 24) \ EMIT_BYTE(put_buffer >> 16) \ EMIT_BYTE(put_buffer >> 8) \ EMIT_BYTE(put_buffer ) \ } else { \ *((uint64_t *)buffer) = BUILTIN_BSWAP64(put_buffer); \ buffer += 8; \ } \ } #else #if defined(_MSC_VER) && !defined(__clang__) #define SPLAT() { \ buffer[0] = (JOCTET)(put_buffer >> 24); \ buffer[1] = (JOCTET)(put_buffer >> 16); \ buffer[2] = (JOCTET)(put_buffer >> 8); \ buffer[3] = (JOCTET)(put_buffer ); \ buffer += 4; \ } #else #define SPLAT() { \ put_buffer = __builtin_bswap32(put_buffer); \ __asm__("str %1, [%0], #4" : "+r" (buffer) : "r" (put_buffer)); \ } #endif #define FLUSH() { \ if (put_buffer & 0x80808080 & ~(put_buffer + 0x01010101)) { \ EMIT_BYTE(put_buffer >> 24) \ EMIT_BYTE(put_buffer >> 16) \ EMIT_BYTE(put_buffer >> 8) \ EMIT_BYTE(put_buffer ) \ } else { \ SPLAT(); \ } \ } #endif /* Fill the bit buffer to capacity with the leading bits from code, then output * the bit buffer and put the remaining bits from code into the bit buffer. */ #define PUT_AND_FLUSH(code, size) { \ put_buffer = (put_buffer << (size + free_bits)) | (code >> -free_bits); \ FLUSH() \ free_bits += BIT_BUF_SIZE; \ put_buffer = code; \ } /* Insert code into the bit buffer and output the bit buffer if needed. * NOTE: We can't flush with free_bits == 0, since the left shift in * PUT_AND_FLUSH() would have undefined behavior. */ #define PUT_BITS(code, size) { \ free_bits -= size; \ if (free_bits < 0) \ PUT_AND_FLUSH(code, size) \ else \ put_buffer = (put_buffer << size) | code; \ } #define PUT_CODE(code, size, diff) { \ diff |= code << nbits; \ nbits += size; \ PUT_BITS(diff, nbits) \ } libjpeg-turbo-2.1.5/simd/arm/jcphuff-neon.c000066400000000000000000000643761436506551100205530ustar00rootroot00000000000000/* * jcphuff-neon.c - prepare data for progressive Huffman encoding (Arm Neon) * * Copyright (C) 2020-2021, Arm Limited. All Rights Reserved. * Copyright (C) 2022, Matthieu Darbois. All Rights Reserved. * Copyright (C) 2022, D. R. Commander. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #define JPEG_INTERNALS #include "../../jinclude.h" #include "../../jpeglib.h" #include "../../jsimd.h" #include "../../jdct.h" #include "../../jsimddct.h" #include "../jsimd.h" #include "neon-compat.h" #include /* Data preparation for encode_mcu_AC_first(). * * The equivalent scalar C function (encode_mcu_AC_first_prepare()) can be * found in jcphuff.c. */ void jsimd_encode_mcu_AC_first_prepare_neon (const JCOEF *block, const int *jpeg_natural_order_start, int Sl, int Al, UJCOEF *values, size_t *zerobits) { UJCOEF *values_ptr = values; UJCOEF *diff_values_ptr = values + DCTSIZE2; /* Rows of coefficients to zero (since they haven't been processed) */ int i, rows_to_zero = 8; for (i = 0; i < Sl / 16; i++) { int16x8_t coefs1 = vld1q_dup_s16(block + jpeg_natural_order_start[0]); coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[1], coefs1, 1); coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[2], coefs1, 2); coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[3], coefs1, 3); coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[4], coefs1, 4); coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[5], coefs1, 5); coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[6], coefs1, 6); coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[7], coefs1, 7); int16x8_t coefs2 = vld1q_dup_s16(block + jpeg_natural_order_start[8]); coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[9], coefs2, 1); coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[10], coefs2, 2); coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[11], coefs2, 3); coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[12], coefs2, 4); coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[13], coefs2, 5); coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[14], coefs2, 6); coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[15], coefs2, 7); /* Isolate sign of coefficients. */ uint16x8_t sign_coefs1 = vreinterpretq_u16_s16(vshrq_n_s16(coefs1, 15)); uint16x8_t sign_coefs2 = vreinterpretq_u16_s16(vshrq_n_s16(coefs2, 15)); /* Compute absolute value of coefficients and apply point transform Al. */ uint16x8_t abs_coefs1 = vreinterpretq_u16_s16(vabsq_s16(coefs1)); uint16x8_t abs_coefs2 = vreinterpretq_u16_s16(vabsq_s16(coefs2)); abs_coefs1 = vshlq_u16(abs_coefs1, vdupq_n_s16(-Al)); abs_coefs2 = vshlq_u16(abs_coefs2, vdupq_n_s16(-Al)); /* Compute diff values. */ uint16x8_t diff1 = veorq_u16(abs_coefs1, sign_coefs1); uint16x8_t diff2 = veorq_u16(abs_coefs2, sign_coefs2); /* Store transformed coefficients and diff values. */ vst1q_u16(values_ptr, abs_coefs1); vst1q_u16(values_ptr + DCTSIZE, abs_coefs2); vst1q_u16(diff_values_ptr, diff1); vst1q_u16(diff_values_ptr + DCTSIZE, diff2); values_ptr += 16; diff_values_ptr += 16; jpeg_natural_order_start += 16; rows_to_zero -= 2; } /* Same operation but for remaining partial vector */ int remaining_coefs = Sl % 16; if (remaining_coefs > 8) { int16x8_t coefs1 = vld1q_dup_s16(block + jpeg_natural_order_start[0]); coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[1], coefs1, 1); coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[2], coefs1, 2); coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[3], coefs1, 3); coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[4], coefs1, 4); coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[5], coefs1, 5); coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[6], coefs1, 6); coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[7], coefs1, 7); int16x8_t coefs2 = vdupq_n_s16(0); switch (remaining_coefs) { case 15: coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[14], coefs2, 6); FALLTHROUGH /*FALLTHROUGH*/ case 14: coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[13], coefs2, 5); FALLTHROUGH /*FALLTHROUGH*/ case 13: coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[12], coefs2, 4); FALLTHROUGH /*FALLTHROUGH*/ case 12: coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[11], coefs2, 3); FALLTHROUGH /*FALLTHROUGH*/ case 11: coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[10], coefs2, 2); FALLTHROUGH /*FALLTHROUGH*/ case 10: coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[9], coefs2, 1); FALLTHROUGH /*FALLTHROUGH*/ case 9: coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[8], coefs2, 0); FALLTHROUGH /*FALLTHROUGH*/ default: break; } /* Isolate sign of coefficients. */ uint16x8_t sign_coefs1 = vreinterpretq_u16_s16(vshrq_n_s16(coefs1, 15)); uint16x8_t sign_coefs2 = vreinterpretq_u16_s16(vshrq_n_s16(coefs2, 15)); /* Compute absolute value of coefficients and apply point transform Al. */ uint16x8_t abs_coefs1 = vreinterpretq_u16_s16(vabsq_s16(coefs1)); uint16x8_t abs_coefs2 = vreinterpretq_u16_s16(vabsq_s16(coefs2)); abs_coefs1 = vshlq_u16(abs_coefs1, vdupq_n_s16(-Al)); abs_coefs2 = vshlq_u16(abs_coefs2, vdupq_n_s16(-Al)); /* Compute diff values. */ uint16x8_t diff1 = veorq_u16(abs_coefs1, sign_coefs1); uint16x8_t diff2 = veorq_u16(abs_coefs2, sign_coefs2); /* Store transformed coefficients and diff values. */ vst1q_u16(values_ptr, abs_coefs1); vst1q_u16(values_ptr + DCTSIZE, abs_coefs2); vst1q_u16(diff_values_ptr, diff1); vst1q_u16(diff_values_ptr + DCTSIZE, diff2); values_ptr += 16; diff_values_ptr += 16; rows_to_zero -= 2; } else if (remaining_coefs > 0) { int16x8_t coefs = vdupq_n_s16(0); switch (remaining_coefs) { case 8: coefs = vld1q_lane_s16(block + jpeg_natural_order_start[7], coefs, 7); FALLTHROUGH /*FALLTHROUGH*/ case 7: coefs = vld1q_lane_s16(block + jpeg_natural_order_start[6], coefs, 6); FALLTHROUGH /*FALLTHROUGH*/ case 6: coefs = vld1q_lane_s16(block + jpeg_natural_order_start[5], coefs, 5); FALLTHROUGH /*FALLTHROUGH*/ case 5: coefs = vld1q_lane_s16(block + jpeg_natural_order_start[4], coefs, 4); FALLTHROUGH /*FALLTHROUGH*/ case 4: coefs = vld1q_lane_s16(block + jpeg_natural_order_start[3], coefs, 3); FALLTHROUGH /*FALLTHROUGH*/ case 3: coefs = vld1q_lane_s16(block + jpeg_natural_order_start[2], coefs, 2); FALLTHROUGH /*FALLTHROUGH*/ case 2: coefs = vld1q_lane_s16(block + jpeg_natural_order_start[1], coefs, 1); FALLTHROUGH /*FALLTHROUGH*/ case 1: coefs = vld1q_lane_s16(block + jpeg_natural_order_start[0], coefs, 0); FALLTHROUGH /*FALLTHROUGH*/ default: break; } /* Isolate sign of coefficients. */ uint16x8_t sign_coefs = vreinterpretq_u16_s16(vshrq_n_s16(coefs, 15)); /* Compute absolute value of coefficients and apply point transform Al. */ uint16x8_t abs_coefs = vreinterpretq_u16_s16(vabsq_s16(coefs)); abs_coefs = vshlq_u16(abs_coefs, vdupq_n_s16(-Al)); /* Compute diff values. */ uint16x8_t diff = veorq_u16(abs_coefs, sign_coefs); /* Store transformed coefficients and diff values. */ vst1q_u16(values_ptr, abs_coefs); vst1q_u16(diff_values_ptr, diff); values_ptr += 8; diff_values_ptr += 8; rows_to_zero--; } /* Zero remaining memory in the values and diff_values blocks. */ for (i = 0; i < rows_to_zero; i++) { vst1q_u16(values_ptr, vdupq_n_u16(0)); vst1q_u16(diff_values_ptr, vdupq_n_u16(0)); values_ptr += 8; diff_values_ptr += 8; } /* Construct zerobits bitmap. A set bit means that the corresponding * coefficient != 0. */ uint16x8_t row0 = vld1q_u16(values + 0 * DCTSIZE); uint16x8_t row1 = vld1q_u16(values + 1 * DCTSIZE); uint16x8_t row2 = vld1q_u16(values + 2 * DCTSIZE); uint16x8_t row3 = vld1q_u16(values + 3 * DCTSIZE); uint16x8_t row4 = vld1q_u16(values + 4 * DCTSIZE); uint16x8_t row5 = vld1q_u16(values + 5 * DCTSIZE); uint16x8_t row6 = vld1q_u16(values + 6 * DCTSIZE); uint16x8_t row7 = vld1q_u16(values + 7 * DCTSIZE); uint8x8_t row0_eq0 = vmovn_u16(vceqq_u16(row0, vdupq_n_u16(0))); uint8x8_t row1_eq0 = vmovn_u16(vceqq_u16(row1, vdupq_n_u16(0))); uint8x8_t row2_eq0 = vmovn_u16(vceqq_u16(row2, vdupq_n_u16(0))); uint8x8_t row3_eq0 = vmovn_u16(vceqq_u16(row3, vdupq_n_u16(0))); uint8x8_t row4_eq0 = vmovn_u16(vceqq_u16(row4, vdupq_n_u16(0))); uint8x8_t row5_eq0 = vmovn_u16(vceqq_u16(row5, vdupq_n_u16(0))); uint8x8_t row6_eq0 = vmovn_u16(vceqq_u16(row6, vdupq_n_u16(0))); uint8x8_t row7_eq0 = vmovn_u16(vceqq_u16(row7, vdupq_n_u16(0))); /* { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 } */ const uint8x8_t bitmap_mask = vreinterpret_u8_u64(vmov_n_u64(0x8040201008040201)); row0_eq0 = vand_u8(row0_eq0, bitmap_mask); row1_eq0 = vand_u8(row1_eq0, bitmap_mask); row2_eq0 = vand_u8(row2_eq0, bitmap_mask); row3_eq0 = vand_u8(row3_eq0, bitmap_mask); row4_eq0 = vand_u8(row4_eq0, bitmap_mask); row5_eq0 = vand_u8(row5_eq0, bitmap_mask); row6_eq0 = vand_u8(row6_eq0, bitmap_mask); row7_eq0 = vand_u8(row7_eq0, bitmap_mask); uint8x8_t bitmap_rows_01 = vpadd_u8(row0_eq0, row1_eq0); uint8x8_t bitmap_rows_23 = vpadd_u8(row2_eq0, row3_eq0); uint8x8_t bitmap_rows_45 = vpadd_u8(row4_eq0, row5_eq0); uint8x8_t bitmap_rows_67 = vpadd_u8(row6_eq0, row7_eq0); uint8x8_t bitmap_rows_0123 = vpadd_u8(bitmap_rows_01, bitmap_rows_23); uint8x8_t bitmap_rows_4567 = vpadd_u8(bitmap_rows_45, bitmap_rows_67); uint8x8_t bitmap_all = vpadd_u8(bitmap_rows_0123, bitmap_rows_4567); #if defined(__aarch64__) || defined(_M_ARM64) /* Move bitmap to a 64-bit scalar register. */ uint64_t bitmap = vget_lane_u64(vreinterpret_u64_u8(bitmap_all), 0); /* Store zerobits bitmap. */ *zerobits = ~bitmap; #else /* Move bitmap to two 32-bit scalar registers. */ uint32_t bitmap0 = vget_lane_u32(vreinterpret_u32_u8(bitmap_all), 0); uint32_t bitmap1 = vget_lane_u32(vreinterpret_u32_u8(bitmap_all), 1); /* Store zerobits bitmap. */ zerobits[0] = ~bitmap0; zerobits[1] = ~bitmap1; #endif } /* Data preparation for encode_mcu_AC_refine(). * * The equivalent scalar C function (encode_mcu_AC_refine_prepare()) can be * found in jcphuff.c. */ int jsimd_encode_mcu_AC_refine_prepare_neon (const JCOEF *block, const int *jpeg_natural_order_start, int Sl, int Al, UJCOEF *absvalues, size_t *bits) { /* Temporary storage buffers for data used to compute the signbits bitmap and * the end-of-block (EOB) position */ uint8_t coef_sign_bits[64]; uint8_t coef_eq1_bits[64]; UJCOEF *absvalues_ptr = absvalues; uint8_t *coef_sign_bits_ptr = coef_sign_bits; uint8_t *eq1_bits_ptr = coef_eq1_bits; /* Rows of coefficients to zero (since they haven't been processed) */ int i, rows_to_zero = 8; for (i = 0; i < Sl / 16; i++) { int16x8_t coefs1 = vld1q_dup_s16(block + jpeg_natural_order_start[0]); coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[1], coefs1, 1); coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[2], coefs1, 2); coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[3], coefs1, 3); coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[4], coefs1, 4); coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[5], coefs1, 5); coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[6], coefs1, 6); coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[7], coefs1, 7); int16x8_t coefs2 = vld1q_dup_s16(block + jpeg_natural_order_start[8]); coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[9], coefs2, 1); coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[10], coefs2, 2); coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[11], coefs2, 3); coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[12], coefs2, 4); coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[13], coefs2, 5); coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[14], coefs2, 6); coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[15], coefs2, 7); /* Compute and store data for signbits bitmap. */ uint8x8_t sign_coefs1 = vmovn_u16(vreinterpretq_u16_s16(vshrq_n_s16(coefs1, 15))); uint8x8_t sign_coefs2 = vmovn_u16(vreinterpretq_u16_s16(vshrq_n_s16(coefs2, 15))); vst1_u8(coef_sign_bits_ptr, sign_coefs1); vst1_u8(coef_sign_bits_ptr + DCTSIZE, sign_coefs2); /* Compute absolute value of coefficients and apply point transform Al. */ uint16x8_t abs_coefs1 = vreinterpretq_u16_s16(vabsq_s16(coefs1)); uint16x8_t abs_coefs2 = vreinterpretq_u16_s16(vabsq_s16(coefs2)); abs_coefs1 = vshlq_u16(abs_coefs1, vdupq_n_s16(-Al)); abs_coefs2 = vshlq_u16(abs_coefs2, vdupq_n_s16(-Al)); vst1q_u16(absvalues_ptr, abs_coefs1); vst1q_u16(absvalues_ptr + DCTSIZE, abs_coefs2); /* Test whether transformed coefficient values == 1 (used to find EOB * position.) */ uint8x8_t coefs_eq11 = vmovn_u16(vceqq_u16(abs_coefs1, vdupq_n_u16(1))); uint8x8_t coefs_eq12 = vmovn_u16(vceqq_u16(abs_coefs2, vdupq_n_u16(1))); vst1_u8(eq1_bits_ptr, coefs_eq11); vst1_u8(eq1_bits_ptr + DCTSIZE, coefs_eq12); absvalues_ptr += 16; coef_sign_bits_ptr += 16; eq1_bits_ptr += 16; jpeg_natural_order_start += 16; rows_to_zero -= 2; } /* Same operation but for remaining partial vector */ int remaining_coefs = Sl % 16; if (remaining_coefs > 8) { int16x8_t coefs1 = vld1q_dup_s16(block + jpeg_natural_order_start[0]); coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[1], coefs1, 1); coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[2], coefs1, 2); coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[3], coefs1, 3); coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[4], coefs1, 4); coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[5], coefs1, 5); coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[6], coefs1, 6); coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[7], coefs1, 7); int16x8_t coefs2 = vdupq_n_s16(0); switch (remaining_coefs) { case 15: coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[14], coefs2, 6); FALLTHROUGH /*FALLTHROUGH*/ case 14: coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[13], coefs2, 5); FALLTHROUGH /*FALLTHROUGH*/ case 13: coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[12], coefs2, 4); FALLTHROUGH /*FALLTHROUGH*/ case 12: coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[11], coefs2, 3); FALLTHROUGH /*FALLTHROUGH*/ case 11: coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[10], coefs2, 2); FALLTHROUGH /*FALLTHROUGH*/ case 10: coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[9], coefs2, 1); FALLTHROUGH /*FALLTHROUGH*/ case 9: coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[8], coefs2, 0); FALLTHROUGH /*FALLTHROUGH*/ default: break; } /* Compute and store data for signbits bitmap. */ uint8x8_t sign_coefs1 = vmovn_u16(vreinterpretq_u16_s16(vshrq_n_s16(coefs1, 15))); uint8x8_t sign_coefs2 = vmovn_u16(vreinterpretq_u16_s16(vshrq_n_s16(coefs2, 15))); vst1_u8(coef_sign_bits_ptr, sign_coefs1); vst1_u8(coef_sign_bits_ptr + DCTSIZE, sign_coefs2); /* Compute absolute value of coefficients and apply point transform Al. */ uint16x8_t abs_coefs1 = vreinterpretq_u16_s16(vabsq_s16(coefs1)); uint16x8_t abs_coefs2 = vreinterpretq_u16_s16(vabsq_s16(coefs2)); abs_coefs1 = vshlq_u16(abs_coefs1, vdupq_n_s16(-Al)); abs_coefs2 = vshlq_u16(abs_coefs2, vdupq_n_s16(-Al)); vst1q_u16(absvalues_ptr, abs_coefs1); vst1q_u16(absvalues_ptr + DCTSIZE, abs_coefs2); /* Test whether transformed coefficient values == 1 (used to find EOB * position.) */ uint8x8_t coefs_eq11 = vmovn_u16(vceqq_u16(abs_coefs1, vdupq_n_u16(1))); uint8x8_t coefs_eq12 = vmovn_u16(vceqq_u16(abs_coefs2, vdupq_n_u16(1))); vst1_u8(eq1_bits_ptr, coefs_eq11); vst1_u8(eq1_bits_ptr + DCTSIZE, coefs_eq12); absvalues_ptr += 16; coef_sign_bits_ptr += 16; eq1_bits_ptr += 16; jpeg_natural_order_start += 16; rows_to_zero -= 2; } else if (remaining_coefs > 0) { int16x8_t coefs = vdupq_n_s16(0); switch (remaining_coefs) { case 8: coefs = vld1q_lane_s16(block + jpeg_natural_order_start[7], coefs, 7); FALLTHROUGH /*FALLTHROUGH*/ case 7: coefs = vld1q_lane_s16(block + jpeg_natural_order_start[6], coefs, 6); FALLTHROUGH /*FALLTHROUGH*/ case 6: coefs = vld1q_lane_s16(block + jpeg_natural_order_start[5], coefs, 5); FALLTHROUGH /*FALLTHROUGH*/ case 5: coefs = vld1q_lane_s16(block + jpeg_natural_order_start[4], coefs, 4); FALLTHROUGH /*FALLTHROUGH*/ case 4: coefs = vld1q_lane_s16(block + jpeg_natural_order_start[3], coefs, 3); FALLTHROUGH /*FALLTHROUGH*/ case 3: coefs = vld1q_lane_s16(block + jpeg_natural_order_start[2], coefs, 2); FALLTHROUGH /*FALLTHROUGH*/ case 2: coefs = vld1q_lane_s16(block + jpeg_natural_order_start[1], coefs, 1); FALLTHROUGH /*FALLTHROUGH*/ case 1: coefs = vld1q_lane_s16(block + jpeg_natural_order_start[0], coefs, 0); FALLTHROUGH /*FALLTHROUGH*/ default: break; } /* Compute and store data for signbits bitmap. */ uint8x8_t sign_coefs = vmovn_u16(vreinterpretq_u16_s16(vshrq_n_s16(coefs, 15))); vst1_u8(coef_sign_bits_ptr, sign_coefs); /* Compute absolute value of coefficients and apply point transform Al. */ uint16x8_t abs_coefs = vreinterpretq_u16_s16(vabsq_s16(coefs)); abs_coefs = vshlq_u16(abs_coefs, vdupq_n_s16(-Al)); vst1q_u16(absvalues_ptr, abs_coefs); /* Test whether transformed coefficient values == 1 (used to find EOB * position.) */ uint8x8_t coefs_eq1 = vmovn_u16(vceqq_u16(abs_coefs, vdupq_n_u16(1))); vst1_u8(eq1_bits_ptr, coefs_eq1); absvalues_ptr += 8; coef_sign_bits_ptr += 8; eq1_bits_ptr += 8; rows_to_zero--; } /* Zero remaining memory in blocks. */ for (i = 0; i < rows_to_zero; i++) { vst1q_u16(absvalues_ptr, vdupq_n_u16(0)); vst1_u8(coef_sign_bits_ptr, vdup_n_u8(0)); vst1_u8(eq1_bits_ptr, vdup_n_u8(0)); absvalues_ptr += 8; coef_sign_bits_ptr += 8; eq1_bits_ptr += 8; } /* Construct zerobits bitmap. */ uint16x8_t abs_row0 = vld1q_u16(absvalues + 0 * DCTSIZE); uint16x8_t abs_row1 = vld1q_u16(absvalues + 1 * DCTSIZE); uint16x8_t abs_row2 = vld1q_u16(absvalues + 2 * DCTSIZE); uint16x8_t abs_row3 = vld1q_u16(absvalues + 3 * DCTSIZE); uint16x8_t abs_row4 = vld1q_u16(absvalues + 4 * DCTSIZE); uint16x8_t abs_row5 = vld1q_u16(absvalues + 5 * DCTSIZE); uint16x8_t abs_row6 = vld1q_u16(absvalues + 6 * DCTSIZE); uint16x8_t abs_row7 = vld1q_u16(absvalues + 7 * DCTSIZE); uint8x8_t abs_row0_eq0 = vmovn_u16(vceqq_u16(abs_row0, vdupq_n_u16(0))); uint8x8_t abs_row1_eq0 = vmovn_u16(vceqq_u16(abs_row1, vdupq_n_u16(0))); uint8x8_t abs_row2_eq0 = vmovn_u16(vceqq_u16(abs_row2, vdupq_n_u16(0))); uint8x8_t abs_row3_eq0 = vmovn_u16(vceqq_u16(abs_row3, vdupq_n_u16(0))); uint8x8_t abs_row4_eq0 = vmovn_u16(vceqq_u16(abs_row4, vdupq_n_u16(0))); uint8x8_t abs_row5_eq0 = vmovn_u16(vceqq_u16(abs_row5, vdupq_n_u16(0))); uint8x8_t abs_row6_eq0 = vmovn_u16(vceqq_u16(abs_row6, vdupq_n_u16(0))); uint8x8_t abs_row7_eq0 = vmovn_u16(vceqq_u16(abs_row7, vdupq_n_u16(0))); /* { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 } */ const uint8x8_t bitmap_mask = vreinterpret_u8_u64(vmov_n_u64(0x8040201008040201)); abs_row0_eq0 = vand_u8(abs_row0_eq0, bitmap_mask); abs_row1_eq0 = vand_u8(abs_row1_eq0, bitmap_mask); abs_row2_eq0 = vand_u8(abs_row2_eq0, bitmap_mask); abs_row3_eq0 = vand_u8(abs_row3_eq0, bitmap_mask); abs_row4_eq0 = vand_u8(abs_row4_eq0, bitmap_mask); abs_row5_eq0 = vand_u8(abs_row5_eq0, bitmap_mask); abs_row6_eq0 = vand_u8(abs_row6_eq0, bitmap_mask); abs_row7_eq0 = vand_u8(abs_row7_eq0, bitmap_mask); uint8x8_t bitmap_rows_01 = vpadd_u8(abs_row0_eq0, abs_row1_eq0); uint8x8_t bitmap_rows_23 = vpadd_u8(abs_row2_eq0, abs_row3_eq0); uint8x8_t bitmap_rows_45 = vpadd_u8(abs_row4_eq0, abs_row5_eq0); uint8x8_t bitmap_rows_67 = vpadd_u8(abs_row6_eq0, abs_row7_eq0); uint8x8_t bitmap_rows_0123 = vpadd_u8(bitmap_rows_01, bitmap_rows_23); uint8x8_t bitmap_rows_4567 = vpadd_u8(bitmap_rows_45, bitmap_rows_67); uint8x8_t bitmap_all = vpadd_u8(bitmap_rows_0123, bitmap_rows_4567); #if defined(__aarch64__) || defined(_M_ARM64) /* Move bitmap to a 64-bit scalar register. */ uint64_t bitmap = vget_lane_u64(vreinterpret_u64_u8(bitmap_all), 0); /* Store zerobits bitmap. */ bits[0] = ~bitmap; #else /* Move bitmap to two 32-bit scalar registers. */ uint32_t bitmap0 = vget_lane_u32(vreinterpret_u32_u8(bitmap_all), 0); uint32_t bitmap1 = vget_lane_u32(vreinterpret_u32_u8(bitmap_all), 1); /* Store zerobits bitmap. */ bits[0] = ~bitmap0; bits[1] = ~bitmap1; #endif /* Construct signbits bitmap. */ uint8x8_t signbits_row0 = vld1_u8(coef_sign_bits + 0 * DCTSIZE); uint8x8_t signbits_row1 = vld1_u8(coef_sign_bits + 1 * DCTSIZE); uint8x8_t signbits_row2 = vld1_u8(coef_sign_bits + 2 * DCTSIZE); uint8x8_t signbits_row3 = vld1_u8(coef_sign_bits + 3 * DCTSIZE); uint8x8_t signbits_row4 = vld1_u8(coef_sign_bits + 4 * DCTSIZE); uint8x8_t signbits_row5 = vld1_u8(coef_sign_bits + 5 * DCTSIZE); uint8x8_t signbits_row6 = vld1_u8(coef_sign_bits + 6 * DCTSIZE); uint8x8_t signbits_row7 = vld1_u8(coef_sign_bits + 7 * DCTSIZE); signbits_row0 = vand_u8(signbits_row0, bitmap_mask); signbits_row1 = vand_u8(signbits_row1, bitmap_mask); signbits_row2 = vand_u8(signbits_row2, bitmap_mask); signbits_row3 = vand_u8(signbits_row3, bitmap_mask); signbits_row4 = vand_u8(signbits_row4, bitmap_mask); signbits_row5 = vand_u8(signbits_row5, bitmap_mask); signbits_row6 = vand_u8(signbits_row6, bitmap_mask); signbits_row7 = vand_u8(signbits_row7, bitmap_mask); bitmap_rows_01 = vpadd_u8(signbits_row0, signbits_row1); bitmap_rows_23 = vpadd_u8(signbits_row2, signbits_row3); bitmap_rows_45 = vpadd_u8(signbits_row4, signbits_row5); bitmap_rows_67 = vpadd_u8(signbits_row6, signbits_row7); bitmap_rows_0123 = vpadd_u8(bitmap_rows_01, bitmap_rows_23); bitmap_rows_4567 = vpadd_u8(bitmap_rows_45, bitmap_rows_67); bitmap_all = vpadd_u8(bitmap_rows_0123, bitmap_rows_4567); #if defined(__aarch64__) || defined(_M_ARM64) /* Move bitmap to a 64-bit scalar register. */ bitmap = vget_lane_u64(vreinterpret_u64_u8(bitmap_all), 0); /* Store signbits bitmap. */ bits[1] = ~bitmap; #else /* Move bitmap to two 32-bit scalar registers. */ bitmap0 = vget_lane_u32(vreinterpret_u32_u8(bitmap_all), 0); bitmap1 = vget_lane_u32(vreinterpret_u32_u8(bitmap_all), 1); /* Store signbits bitmap. */ bits[2] = ~bitmap0; bits[3] = ~bitmap1; #endif /* Construct bitmap to find EOB position (the index of the last coefficient * equal to 1.) */ uint8x8_t row0_eq1 = vld1_u8(coef_eq1_bits + 0 * DCTSIZE); uint8x8_t row1_eq1 = vld1_u8(coef_eq1_bits + 1 * DCTSIZE); uint8x8_t row2_eq1 = vld1_u8(coef_eq1_bits + 2 * DCTSIZE); uint8x8_t row3_eq1 = vld1_u8(coef_eq1_bits + 3 * DCTSIZE); uint8x8_t row4_eq1 = vld1_u8(coef_eq1_bits + 4 * DCTSIZE); uint8x8_t row5_eq1 = vld1_u8(coef_eq1_bits + 5 * DCTSIZE); uint8x8_t row6_eq1 = vld1_u8(coef_eq1_bits + 6 * DCTSIZE); uint8x8_t row7_eq1 = vld1_u8(coef_eq1_bits + 7 * DCTSIZE); row0_eq1 = vand_u8(row0_eq1, bitmap_mask); row1_eq1 = vand_u8(row1_eq1, bitmap_mask); row2_eq1 = vand_u8(row2_eq1, bitmap_mask); row3_eq1 = vand_u8(row3_eq1, bitmap_mask); row4_eq1 = vand_u8(row4_eq1, bitmap_mask); row5_eq1 = vand_u8(row5_eq1, bitmap_mask); row6_eq1 = vand_u8(row6_eq1, bitmap_mask); row7_eq1 = vand_u8(row7_eq1, bitmap_mask); bitmap_rows_01 = vpadd_u8(row0_eq1, row1_eq1); bitmap_rows_23 = vpadd_u8(row2_eq1, row3_eq1); bitmap_rows_45 = vpadd_u8(row4_eq1, row5_eq1); bitmap_rows_67 = vpadd_u8(row6_eq1, row7_eq1); bitmap_rows_0123 = vpadd_u8(bitmap_rows_01, bitmap_rows_23); bitmap_rows_4567 = vpadd_u8(bitmap_rows_45, bitmap_rows_67); bitmap_all = vpadd_u8(bitmap_rows_0123, bitmap_rows_4567); #if defined(__aarch64__) || defined(_M_ARM64) /* Move bitmap to a 64-bit scalar register. */ bitmap = vget_lane_u64(vreinterpret_u64_u8(bitmap_all), 0); /* Return EOB position. */ if (bitmap == 0) { /* EOB position is defined to be 0 if all coefficients != 1. */ return 0; } else { return 63 - BUILTIN_CLZLL(bitmap); } #else /* Move bitmap to two 32-bit scalar registers. */ bitmap0 = vget_lane_u32(vreinterpret_u32_u8(bitmap_all), 0); bitmap1 = vget_lane_u32(vreinterpret_u32_u8(bitmap_all), 1); /* Return EOB position. */ if (bitmap0 == 0 && bitmap1 == 0) { return 0; } else if (bitmap1 != 0) { return 63 - BUILTIN_CLZ(bitmap1); } else { return 31 - BUILTIN_CLZ(bitmap0); } #endif } libjpeg-turbo-2.1.5/simd/arm/jcsample-neon.c000066400000000000000000000206621436506551100207120ustar00rootroot00000000000000/* * jcsample-neon.c - downsampling (Arm Neon) * * Copyright (C) 2020, Arm Limited. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #define JPEG_INTERNALS #include "../../jinclude.h" #include "../../jpeglib.h" #include "../../jsimd.h" #include "../../jdct.h" #include "../../jsimddct.h" #include "../jsimd.h" #include "align.h" #include ALIGN(16) static const uint8_t jsimd_h2_downsample_consts[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, /* Pad 0 */ 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, /* Pad 1 */ 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0E, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, /* Pad 2 */ 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0D, 0x0D, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, /* Pad 3 */ 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0C, 0x0C, 0x0C, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, /* Pad 4 */ 0x08, 0x09, 0x0A, 0x0B, 0x0B, 0x0B, 0x0B, 0x0B, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, /* Pad 5 */ 0x08, 0x09, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x0A, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, /* Pad 6 */ 0x08, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, /* Pad 7 */ 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, /* Pad 8 */ 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x06, /* Pad 9 */ 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x05, 0x05, /* Pad 10 */ 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x00, 0x01, 0x02, 0x03, 0x04, 0x04, 0x04, 0x04, /* Pad 11 */ 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x00, 0x01, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, /* Pad 12 */ 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x00, 0x01, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, /* Pad 13 */ 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, /* Pad 14 */ 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* Pad 15 */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; /* Downsample pixel values of a single component. * This version handles the common case of 2:1 horizontal and 1:1 vertical, * without smoothing. */ void jsimd_h2v1_downsample_neon(JDIMENSION image_width, int max_v_samp_factor, JDIMENSION v_samp_factor, JDIMENSION width_in_blocks, JSAMPARRAY input_data, JSAMPARRAY output_data) { JSAMPROW inptr, outptr; /* Load expansion mask to pad remaining elements of last DCT block. */ const int mask_offset = 16 * ((width_in_blocks * 2 * DCTSIZE) - image_width); const uint8x16_t expand_mask = vld1q_u8(&jsimd_h2_downsample_consts[mask_offset]); /* Load bias pattern (alternating every pixel.) */ /* { 0, 1, 0, 1, 0, 1, 0, 1 } */ const uint16x8_t bias = vreinterpretq_u16_u32(vdupq_n_u32(0x00010000)); unsigned i, outrow; for (outrow = 0; outrow < v_samp_factor; outrow++) { outptr = output_data[outrow]; inptr = input_data[outrow]; /* Downsample all but the last DCT block of pixels. */ for (i = 0; i < width_in_blocks - 1; i++) { uint8x16_t pixels = vld1q_u8(inptr + i * 2 * DCTSIZE); /* Add adjacent pixel values, widen to 16-bit, and add bias. */ uint16x8_t samples_u16 = vpadalq_u8(bias, pixels); /* Divide total by 2 and narrow to 8-bit. */ uint8x8_t samples_u8 = vshrn_n_u16(samples_u16, 1); /* Store samples to memory. */ vst1_u8(outptr + i * DCTSIZE, samples_u8); } /* Load pixels in last DCT block into a table. */ uint8x16_t pixels = vld1q_u8(inptr + (width_in_blocks - 1) * 2 * DCTSIZE); #if defined(__aarch64__) || defined(_M_ARM64) /* Pad the empty elements with the value of the last pixel. */ pixels = vqtbl1q_u8(pixels, expand_mask); #else uint8x8x2_t table = { { vget_low_u8(pixels), vget_high_u8(pixels) } }; pixels = vcombine_u8(vtbl2_u8(table, vget_low_u8(expand_mask)), vtbl2_u8(table, vget_high_u8(expand_mask))); #endif /* Add adjacent pixel values, widen to 16-bit, and add bias. */ uint16x8_t samples_u16 = vpadalq_u8(bias, pixels); /* Divide total by 2, narrow to 8-bit, and store. */ uint8x8_t samples_u8 = vshrn_n_u16(samples_u16, 1); vst1_u8(outptr + (width_in_blocks - 1) * DCTSIZE, samples_u8); } } /* Downsample pixel values of a single component. * This version handles the standard case of 2:1 horizontal and 2:1 vertical, * without smoothing. */ void jsimd_h2v2_downsample_neon(JDIMENSION image_width, int max_v_samp_factor, JDIMENSION v_samp_factor, JDIMENSION width_in_blocks, JSAMPARRAY input_data, JSAMPARRAY output_data) { JSAMPROW inptr0, inptr1, outptr; /* Load expansion mask to pad remaining elements of last DCT block. */ const int mask_offset = 16 * ((width_in_blocks * 2 * DCTSIZE) - image_width); const uint8x16_t expand_mask = vld1q_u8(&jsimd_h2_downsample_consts[mask_offset]); /* Load bias pattern (alternating every pixel.) */ /* { 1, 2, 1, 2, 1, 2, 1, 2 } */ const uint16x8_t bias = vreinterpretq_u16_u32(vdupq_n_u32(0x00020001)); unsigned i, outrow; for (outrow = 0; outrow < v_samp_factor; outrow++) { outptr = output_data[outrow]; inptr0 = input_data[outrow]; inptr1 = input_data[outrow + 1]; /* Downsample all but the last DCT block of pixels. */ for (i = 0; i < width_in_blocks - 1; i++) { uint8x16_t pixels_r0 = vld1q_u8(inptr0 + i * 2 * DCTSIZE); uint8x16_t pixels_r1 = vld1q_u8(inptr1 + i * 2 * DCTSIZE); /* Add adjacent pixel values in row 0, widen to 16-bit, and add bias. */ uint16x8_t samples_u16 = vpadalq_u8(bias, pixels_r0); /* Add adjacent pixel values in row 1, widen to 16-bit, and accumulate. */ samples_u16 = vpadalq_u8(samples_u16, pixels_r1); /* Divide total by 4 and narrow to 8-bit. */ uint8x8_t samples_u8 = vshrn_n_u16(samples_u16, 2); /* Store samples to memory and increment pointers. */ vst1_u8(outptr + i * DCTSIZE, samples_u8); } /* Load pixels in last DCT block into a table. */ uint8x16_t pixels_r0 = vld1q_u8(inptr0 + (width_in_blocks - 1) * 2 * DCTSIZE); uint8x16_t pixels_r1 = vld1q_u8(inptr1 + (width_in_blocks - 1) * 2 * DCTSIZE); #if defined(__aarch64__) || defined(_M_ARM64) /* Pad the empty elements with the value of the last pixel. */ pixels_r0 = vqtbl1q_u8(pixels_r0, expand_mask); pixels_r1 = vqtbl1q_u8(pixels_r1, expand_mask); #else uint8x8x2_t table_r0 = { { vget_low_u8(pixels_r0), vget_high_u8(pixels_r0) } }; uint8x8x2_t table_r1 = { { vget_low_u8(pixels_r1), vget_high_u8(pixels_r1) } }; pixels_r0 = vcombine_u8(vtbl2_u8(table_r0, vget_low_u8(expand_mask)), vtbl2_u8(table_r0, vget_high_u8(expand_mask))); pixels_r1 = vcombine_u8(vtbl2_u8(table_r1, vget_low_u8(expand_mask)), vtbl2_u8(table_r1, vget_high_u8(expand_mask))); #endif /* Add adjacent pixel values in row 0, widen to 16-bit, and add bias. */ uint16x8_t samples_u16 = vpadalq_u8(bias, pixels_r0); /* Add adjacent pixel values in row 1, widen to 16-bit, and accumulate. */ samples_u16 = vpadalq_u8(samples_u16, pixels_r1); /* Divide total by 4, narrow to 8-bit, and store. */ uint8x8_t samples_u8 = vshrn_n_u16(samples_u16, 2); vst1_u8(outptr + (width_in_blocks - 1) * DCTSIZE, samples_u8); } } libjpeg-turbo-2.1.5/simd/arm/jdcolext-neon.c000066400000000000000000000400511436506551100207220ustar00rootroot00000000000000/* * jdcolext-neon.c - colorspace conversion (Arm Neon) * * Copyright (C) 2020, Arm Limited. All Rights Reserved. * Copyright (C) 2020, D. R. Commander. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ /* This file is included by jdcolor-neon.c. */ /* YCbCr -> RGB conversion is defined by the following equations: * R = Y + 1.40200 * (Cr - 128) * G = Y - 0.34414 * (Cb - 128) - 0.71414 * (Cr - 128) * B = Y + 1.77200 * (Cb - 128) * * Scaled integer constants are used to avoid floating-point arithmetic: * 0.3441467 = 11277 * 2^-15 * 0.7141418 = 23401 * 2^-15 * 1.4020386 = 22971 * 2^-14 * 1.7720337 = 29033 * 2^-14 * These constants are defined in jdcolor-neon.c. * * To ensure correct results, rounding is used when descaling. */ /* Notes on safe memory access for YCbCr -> RGB conversion routines: * * Input memory buffers can be safely overread up to the next multiple of * ALIGN_SIZE bytes, since they are always allocated by alloc_sarray() in * jmemmgr.c. * * The output buffer cannot safely be written beyond output_width, since * output_buf points to a possibly unpadded row in the decompressed image * buffer allocated by the calling program. */ void jsimd_ycc_rgb_convert_neon(JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { JSAMPROW outptr; /* Pointers to Y, Cb, and Cr data */ JSAMPROW inptr0, inptr1, inptr2; const int16x4_t consts = vld1_s16(jsimd_ycc_rgb_convert_neon_consts); const int16x8_t neg_128 = vdupq_n_s16(-128); while (--num_rows >= 0) { inptr0 = input_buf[0][input_row]; inptr1 = input_buf[1][input_row]; inptr2 = input_buf[2][input_row]; input_row++; outptr = *output_buf++; int cols_remaining = output_width; for (; cols_remaining >= 16; cols_remaining -= 16) { uint8x16_t y = vld1q_u8(inptr0); uint8x16_t cb = vld1q_u8(inptr1); uint8x16_t cr = vld1q_u8(inptr2); /* Subtract 128 from Cb and Cr. */ int16x8_t cr_128_l = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(neg_128), vget_low_u8(cr))); int16x8_t cr_128_h = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(neg_128), vget_high_u8(cr))); int16x8_t cb_128_l = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(neg_128), vget_low_u8(cb))); int16x8_t cb_128_h = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(neg_128), vget_high_u8(cb))); /* Compute G-Y: - 0.34414 * (Cb - 128) - 0.71414 * (Cr - 128) */ int32x4_t g_sub_y_ll = vmull_lane_s16(vget_low_s16(cb_128_l), consts, 0); int32x4_t g_sub_y_lh = vmull_lane_s16(vget_high_s16(cb_128_l), consts, 0); int32x4_t g_sub_y_hl = vmull_lane_s16(vget_low_s16(cb_128_h), consts, 0); int32x4_t g_sub_y_hh = vmull_lane_s16(vget_high_s16(cb_128_h), consts, 0); g_sub_y_ll = vmlsl_lane_s16(g_sub_y_ll, vget_low_s16(cr_128_l), consts, 1); g_sub_y_lh = vmlsl_lane_s16(g_sub_y_lh, vget_high_s16(cr_128_l), consts, 1); g_sub_y_hl = vmlsl_lane_s16(g_sub_y_hl, vget_low_s16(cr_128_h), consts, 1); g_sub_y_hh = vmlsl_lane_s16(g_sub_y_hh, vget_high_s16(cr_128_h), consts, 1); /* Descale G components: shift right 15, round, and narrow to 16-bit. */ int16x8_t g_sub_y_l = vcombine_s16(vrshrn_n_s32(g_sub_y_ll, 15), vrshrn_n_s32(g_sub_y_lh, 15)); int16x8_t g_sub_y_h = vcombine_s16(vrshrn_n_s32(g_sub_y_hl, 15), vrshrn_n_s32(g_sub_y_hh, 15)); /* Compute R-Y: 1.40200 * (Cr - 128) */ int16x8_t r_sub_y_l = vqrdmulhq_lane_s16(vshlq_n_s16(cr_128_l, 1), consts, 2); int16x8_t r_sub_y_h = vqrdmulhq_lane_s16(vshlq_n_s16(cr_128_h, 1), consts, 2); /* Compute B-Y: 1.77200 * (Cb - 128) */ int16x8_t b_sub_y_l = vqrdmulhq_lane_s16(vshlq_n_s16(cb_128_l, 1), consts, 3); int16x8_t b_sub_y_h = vqrdmulhq_lane_s16(vshlq_n_s16(cb_128_h, 1), consts, 3); /* Add Y. */ int16x8_t r_l = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(r_sub_y_l), vget_low_u8(y))); int16x8_t r_h = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(r_sub_y_h), vget_high_u8(y))); int16x8_t b_l = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(b_sub_y_l), vget_low_u8(y))); int16x8_t b_h = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(b_sub_y_h), vget_high_u8(y))); int16x8_t g_l = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(g_sub_y_l), vget_low_u8(y))); int16x8_t g_h = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(g_sub_y_h), vget_high_u8(y))); #if RGB_PIXELSIZE == 4 uint8x16x4_t rgba; /* Convert each component to unsigned and narrow, clamping to [0-255]. */ rgba.val[RGB_RED] = vcombine_u8(vqmovun_s16(r_l), vqmovun_s16(r_h)); rgba.val[RGB_GREEN] = vcombine_u8(vqmovun_s16(g_l), vqmovun_s16(g_h)); rgba.val[RGB_BLUE] = vcombine_u8(vqmovun_s16(b_l), vqmovun_s16(b_h)); /* Set alpha channel to opaque (0xFF). */ rgba.val[RGB_ALPHA] = vdupq_n_u8(0xFF); /* Store RGBA pixel data to memory. */ vst4q_u8(outptr, rgba); #elif RGB_PIXELSIZE == 3 uint8x16x3_t rgb; /* Convert each component to unsigned and narrow, clamping to [0-255]. */ rgb.val[RGB_RED] = vcombine_u8(vqmovun_s16(r_l), vqmovun_s16(r_h)); rgb.val[RGB_GREEN] = vcombine_u8(vqmovun_s16(g_l), vqmovun_s16(g_h)); rgb.val[RGB_BLUE] = vcombine_u8(vqmovun_s16(b_l), vqmovun_s16(b_h)); /* Store RGB pixel data to memory. */ vst3q_u8(outptr, rgb); #else /* Pack R, G, and B values in ratio 5:6:5. */ uint16x8_t rgb565_l = vqshluq_n_s16(r_l, 8); rgb565_l = vsriq_n_u16(rgb565_l, vqshluq_n_s16(g_l, 8), 5); rgb565_l = vsriq_n_u16(rgb565_l, vqshluq_n_s16(b_l, 8), 11); uint16x8_t rgb565_h = vqshluq_n_s16(r_h, 8); rgb565_h = vsriq_n_u16(rgb565_h, vqshluq_n_s16(g_h, 8), 5); rgb565_h = vsriq_n_u16(rgb565_h, vqshluq_n_s16(b_h, 8), 11); /* Store RGB pixel data to memory. */ vst1q_u16((uint16_t *)outptr, rgb565_l); vst1q_u16(((uint16_t *)outptr) + 8, rgb565_h); #endif /* Increment pointers. */ inptr0 += 16; inptr1 += 16; inptr2 += 16; outptr += (RGB_PIXELSIZE * 16); } if (cols_remaining >= 8) { uint8x8_t y = vld1_u8(inptr0); uint8x8_t cb = vld1_u8(inptr1); uint8x8_t cr = vld1_u8(inptr2); /* Subtract 128 from Cb and Cr. */ int16x8_t cr_128 = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(neg_128), cr)); int16x8_t cb_128 = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(neg_128), cb)); /* Compute G-Y: - 0.34414 * (Cb - 128) - 0.71414 * (Cr - 128) */ int32x4_t g_sub_y_l = vmull_lane_s16(vget_low_s16(cb_128), consts, 0); int32x4_t g_sub_y_h = vmull_lane_s16(vget_high_s16(cb_128), consts, 0); g_sub_y_l = vmlsl_lane_s16(g_sub_y_l, vget_low_s16(cr_128), consts, 1); g_sub_y_h = vmlsl_lane_s16(g_sub_y_h, vget_high_s16(cr_128), consts, 1); /* Descale G components: shift right 15, round, and narrow to 16-bit. */ int16x8_t g_sub_y = vcombine_s16(vrshrn_n_s32(g_sub_y_l, 15), vrshrn_n_s32(g_sub_y_h, 15)); /* Compute R-Y: 1.40200 * (Cr - 128) */ int16x8_t r_sub_y = vqrdmulhq_lane_s16(vshlq_n_s16(cr_128, 1), consts, 2); /* Compute B-Y: 1.77200 * (Cb - 128) */ int16x8_t b_sub_y = vqrdmulhq_lane_s16(vshlq_n_s16(cb_128, 1), consts, 3); /* Add Y. */ int16x8_t r = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(r_sub_y), y)); int16x8_t b = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(b_sub_y), y)); int16x8_t g = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(g_sub_y), y)); #if RGB_PIXELSIZE == 4 uint8x8x4_t rgba; /* Convert each component to unsigned and narrow, clamping to [0-255]. */ rgba.val[RGB_RED] = vqmovun_s16(r); rgba.val[RGB_GREEN] = vqmovun_s16(g); rgba.val[RGB_BLUE] = vqmovun_s16(b); /* Set alpha channel to opaque (0xFF). */ rgba.val[RGB_ALPHA] = vdup_n_u8(0xFF); /* Store RGBA pixel data to memory. */ vst4_u8(outptr, rgba); #elif RGB_PIXELSIZE == 3 uint8x8x3_t rgb; /* Convert each component to unsigned and narrow, clamping to [0-255]. */ rgb.val[RGB_RED] = vqmovun_s16(r); rgb.val[RGB_GREEN] = vqmovun_s16(g); rgb.val[RGB_BLUE] = vqmovun_s16(b); /* Store RGB pixel data to memory. */ vst3_u8(outptr, rgb); #else /* Pack R, G, and B values in ratio 5:6:5. */ uint16x8_t rgb565 = vqshluq_n_s16(r, 8); rgb565 = vsriq_n_u16(rgb565, vqshluq_n_s16(g, 8), 5); rgb565 = vsriq_n_u16(rgb565, vqshluq_n_s16(b, 8), 11); /* Store RGB pixel data to memory. */ vst1q_u16((uint16_t *)outptr, rgb565); #endif /* Increment pointers. */ inptr0 += 8; inptr1 += 8; inptr2 += 8; outptr += (RGB_PIXELSIZE * 8); cols_remaining -= 8; } /* Handle the tail elements. */ if (cols_remaining > 0) { uint8x8_t y = vld1_u8(inptr0); uint8x8_t cb = vld1_u8(inptr1); uint8x8_t cr = vld1_u8(inptr2); /* Subtract 128 from Cb and Cr. */ int16x8_t cr_128 = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(neg_128), cr)); int16x8_t cb_128 = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(neg_128), cb)); /* Compute G-Y: - 0.34414 * (Cb - 128) - 0.71414 * (Cr - 128) */ int32x4_t g_sub_y_l = vmull_lane_s16(vget_low_s16(cb_128), consts, 0); int32x4_t g_sub_y_h = vmull_lane_s16(vget_high_s16(cb_128), consts, 0); g_sub_y_l = vmlsl_lane_s16(g_sub_y_l, vget_low_s16(cr_128), consts, 1); g_sub_y_h = vmlsl_lane_s16(g_sub_y_h, vget_high_s16(cr_128), consts, 1); /* Descale G components: shift right 15, round, and narrow to 16-bit. */ int16x8_t g_sub_y = vcombine_s16(vrshrn_n_s32(g_sub_y_l, 15), vrshrn_n_s32(g_sub_y_h, 15)); /* Compute R-Y: 1.40200 * (Cr - 128) */ int16x8_t r_sub_y = vqrdmulhq_lane_s16(vshlq_n_s16(cr_128, 1), consts, 2); /* Compute B-Y: 1.77200 * (Cb - 128) */ int16x8_t b_sub_y = vqrdmulhq_lane_s16(vshlq_n_s16(cb_128, 1), consts, 3); /* Add Y. */ int16x8_t r = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(r_sub_y), y)); int16x8_t b = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(b_sub_y), y)); int16x8_t g = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(g_sub_y), y)); #if RGB_PIXELSIZE == 4 uint8x8x4_t rgba; /* Convert each component to unsigned and narrow, clamping to [0-255]. */ rgba.val[RGB_RED] = vqmovun_s16(r); rgba.val[RGB_GREEN] = vqmovun_s16(g); rgba.val[RGB_BLUE] = vqmovun_s16(b); /* Set alpha channel to opaque (0xFF). */ rgba.val[RGB_ALPHA] = vdup_n_u8(0xFF); /* Store RGBA pixel data to memory. */ switch (cols_remaining) { case 7: vst4_lane_u8(outptr + 6 * RGB_PIXELSIZE, rgba, 6); FALLTHROUGH /*FALLTHROUGH*/ case 6: vst4_lane_u8(outptr + 5 * RGB_PIXELSIZE, rgba, 5); FALLTHROUGH /*FALLTHROUGH*/ case 5: vst4_lane_u8(outptr + 4 * RGB_PIXELSIZE, rgba, 4); FALLTHROUGH /*FALLTHROUGH*/ case 4: vst4_lane_u8(outptr + 3 * RGB_PIXELSIZE, rgba, 3); FALLTHROUGH /*FALLTHROUGH*/ case 3: vst4_lane_u8(outptr + 2 * RGB_PIXELSIZE, rgba, 2); FALLTHROUGH /*FALLTHROUGH*/ case 2: vst4_lane_u8(outptr + RGB_PIXELSIZE, rgba, 1); FALLTHROUGH /*FALLTHROUGH*/ case 1: vst4_lane_u8(outptr, rgba, 0); FALLTHROUGH /*FALLTHROUGH*/ default: break; } #elif RGB_PIXELSIZE == 3 uint8x8x3_t rgb; /* Convert each component to unsigned and narrow, clamping to [0-255]. */ rgb.val[RGB_RED] = vqmovun_s16(r); rgb.val[RGB_GREEN] = vqmovun_s16(g); rgb.val[RGB_BLUE] = vqmovun_s16(b); /* Store RGB pixel data to memory. */ switch (cols_remaining) { case 7: vst3_lane_u8(outptr + 6 * RGB_PIXELSIZE, rgb, 6); FALLTHROUGH /*FALLTHROUGH*/ case 6: vst3_lane_u8(outptr + 5 * RGB_PIXELSIZE, rgb, 5); FALLTHROUGH /*FALLTHROUGH*/ case 5: vst3_lane_u8(outptr + 4 * RGB_PIXELSIZE, rgb, 4); FALLTHROUGH /*FALLTHROUGH*/ case 4: vst3_lane_u8(outptr + 3 * RGB_PIXELSIZE, rgb, 3); FALLTHROUGH /*FALLTHROUGH*/ case 3: vst3_lane_u8(outptr + 2 * RGB_PIXELSIZE, rgb, 2); FALLTHROUGH /*FALLTHROUGH*/ case 2: vst3_lane_u8(outptr + RGB_PIXELSIZE, rgb, 1); FALLTHROUGH /*FALLTHROUGH*/ case 1: vst3_lane_u8(outptr, rgb, 0); FALLTHROUGH /*FALLTHROUGH*/ default: break; } #else /* Pack R, G, and B values in ratio 5:6:5. */ uint16x8_t rgb565 = vqshluq_n_s16(r, 8); rgb565 = vsriq_n_u16(rgb565, vqshluq_n_s16(g, 8), 5); rgb565 = vsriq_n_u16(rgb565, vqshluq_n_s16(b, 8), 11); /* Store RGB565 pixel data to memory. */ switch (cols_remaining) { case 7: vst1q_lane_u16((uint16_t *)(outptr + 6 * RGB_PIXELSIZE), rgb565, 6); FALLTHROUGH /*FALLTHROUGH*/ case 6: vst1q_lane_u16((uint16_t *)(outptr + 5 * RGB_PIXELSIZE), rgb565, 5); FALLTHROUGH /*FALLTHROUGH*/ case 5: vst1q_lane_u16((uint16_t *)(outptr + 4 * RGB_PIXELSIZE), rgb565, 4); FALLTHROUGH /*FALLTHROUGH*/ case 4: vst1q_lane_u16((uint16_t *)(outptr + 3 * RGB_PIXELSIZE), rgb565, 3); FALLTHROUGH /*FALLTHROUGH*/ case 3: vst1q_lane_u16((uint16_t *)(outptr + 2 * RGB_PIXELSIZE), rgb565, 2); FALLTHROUGH /*FALLTHROUGH*/ case 2: vst1q_lane_u16((uint16_t *)(outptr + RGB_PIXELSIZE), rgb565, 1); FALLTHROUGH /*FALLTHROUGH*/ case 1: vst1q_lane_u16((uint16_t *)outptr, rgb565, 0); FALLTHROUGH /*FALLTHROUGH*/ default: break; } #endif } } } libjpeg-turbo-2.1.5/simd/arm/jdcolor-neon.c000066400000000000000000000100141436506551100205360ustar00rootroot00000000000000/* * jdcolor-neon.c - colorspace conversion (Arm Neon) * * Copyright (C) 2020, Arm Limited. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #define JPEG_INTERNALS #include "../../jinclude.h" #include "../../jpeglib.h" #include "../../jsimd.h" #include "../../jdct.h" #include "../../jsimddct.h" #include "../jsimd.h" #include "align.h" #include /* YCbCr -> RGB conversion constants */ #define F_0_344 11277 /* 0.3441467 = 11277 * 2^-15 */ #define F_0_714 23401 /* 0.7141418 = 23401 * 2^-15 */ #define F_1_402 22971 /* 1.4020386 = 22971 * 2^-14 */ #define F_1_772 29033 /* 1.7720337 = 29033 * 2^-14 */ ALIGN(16) static const int16_t jsimd_ycc_rgb_convert_neon_consts[] = { -F_0_344, F_0_714, F_1_402, F_1_772 }; /* Include inline routines for colorspace extensions. */ #include "jdcolext-neon.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #define RGB_RED EXT_RGB_RED #define RGB_GREEN EXT_RGB_GREEN #define RGB_BLUE EXT_RGB_BLUE #define RGB_PIXELSIZE EXT_RGB_PIXELSIZE #define jsimd_ycc_rgb_convert_neon jsimd_ycc_extrgb_convert_neon #include "jdcolext-neon.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef jsimd_ycc_rgb_convert_neon #define RGB_RED EXT_RGBX_RED #define RGB_GREEN EXT_RGBX_GREEN #define RGB_BLUE EXT_RGBX_BLUE #define RGB_ALPHA 3 #define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE #define jsimd_ycc_rgb_convert_neon jsimd_ycc_extrgbx_convert_neon #include "jdcolext-neon.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_ALPHA #undef RGB_PIXELSIZE #undef jsimd_ycc_rgb_convert_neon #define RGB_RED EXT_BGR_RED #define RGB_GREEN EXT_BGR_GREEN #define RGB_BLUE EXT_BGR_BLUE #define RGB_PIXELSIZE EXT_BGR_PIXELSIZE #define jsimd_ycc_rgb_convert_neon jsimd_ycc_extbgr_convert_neon #include "jdcolext-neon.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef jsimd_ycc_rgb_convert_neon #define RGB_RED EXT_BGRX_RED #define RGB_GREEN EXT_BGRX_GREEN #define RGB_BLUE EXT_BGRX_BLUE #define RGB_ALPHA 3 #define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE #define jsimd_ycc_rgb_convert_neon jsimd_ycc_extbgrx_convert_neon #include "jdcolext-neon.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_ALPHA #undef RGB_PIXELSIZE #undef jsimd_ycc_rgb_convert_neon #define RGB_RED EXT_XBGR_RED #define RGB_GREEN EXT_XBGR_GREEN #define RGB_BLUE EXT_XBGR_BLUE #define RGB_ALPHA 0 #define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE #define jsimd_ycc_rgb_convert_neon jsimd_ycc_extxbgr_convert_neon #include "jdcolext-neon.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_ALPHA #undef RGB_PIXELSIZE #undef jsimd_ycc_rgb_convert_neon #define RGB_RED EXT_XRGB_RED #define RGB_GREEN EXT_XRGB_GREEN #define RGB_BLUE EXT_XRGB_BLUE #define RGB_ALPHA 0 #define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE #define jsimd_ycc_rgb_convert_neon jsimd_ycc_extxrgb_convert_neon #include "jdcolext-neon.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_ALPHA #undef RGB_PIXELSIZE #undef jsimd_ycc_rgb_convert_neon /* YCbCr -> RGB565 Conversion */ #define RGB_PIXELSIZE 2 #define jsimd_ycc_rgb_convert_neon jsimd_ycc_rgb565_convert_neon #include "jdcolext-neon.c" #undef RGB_PIXELSIZE #undef jsimd_ycc_rgb_convert_neon libjpeg-turbo-2.1.5/simd/arm/jdmerge-neon.c000066400000000000000000000111421436506551100205220ustar00rootroot00000000000000/* * jdmerge-neon.c - merged upsampling/color conversion (Arm Neon) * * Copyright (C) 2020, Arm Limited. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #define JPEG_INTERNALS #include "../../jinclude.h" #include "../../jpeglib.h" #include "../../jsimd.h" #include "../../jdct.h" #include "../../jsimddct.h" #include "../jsimd.h" #include "align.h" #include /* YCbCr -> RGB conversion constants */ #define F_0_344 11277 /* 0.3441467 = 11277 * 2^-15 */ #define F_0_714 23401 /* 0.7141418 = 23401 * 2^-15 */ #define F_1_402 22971 /* 1.4020386 = 22971 * 2^-14 */ #define F_1_772 29033 /* 1.7720337 = 29033 * 2^-14 */ ALIGN(16) static const int16_t jsimd_ycc_rgb_convert_neon_consts[] = { -F_0_344, F_0_714, F_1_402, F_1_772 }; /* Include inline routines for colorspace extensions. */ #include "jdmrgext-neon.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #define RGB_RED EXT_RGB_RED #define RGB_GREEN EXT_RGB_GREEN #define RGB_BLUE EXT_RGB_BLUE #define RGB_PIXELSIZE EXT_RGB_PIXELSIZE #define jsimd_h2v1_merged_upsample_neon jsimd_h2v1_extrgb_merged_upsample_neon #define jsimd_h2v2_merged_upsample_neon jsimd_h2v2_extrgb_merged_upsample_neon #include "jdmrgext-neon.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef jsimd_h2v1_merged_upsample_neon #undef jsimd_h2v2_merged_upsample_neon #define RGB_RED EXT_RGBX_RED #define RGB_GREEN EXT_RGBX_GREEN #define RGB_BLUE EXT_RGBX_BLUE #define RGB_ALPHA 3 #define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE #define jsimd_h2v1_merged_upsample_neon jsimd_h2v1_extrgbx_merged_upsample_neon #define jsimd_h2v2_merged_upsample_neon jsimd_h2v2_extrgbx_merged_upsample_neon #include "jdmrgext-neon.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_ALPHA #undef RGB_PIXELSIZE #undef jsimd_h2v1_merged_upsample_neon #undef jsimd_h2v2_merged_upsample_neon #define RGB_RED EXT_BGR_RED #define RGB_GREEN EXT_BGR_GREEN #define RGB_BLUE EXT_BGR_BLUE #define RGB_PIXELSIZE EXT_BGR_PIXELSIZE #define jsimd_h2v1_merged_upsample_neon jsimd_h2v1_extbgr_merged_upsample_neon #define jsimd_h2v2_merged_upsample_neon jsimd_h2v2_extbgr_merged_upsample_neon #include "jdmrgext-neon.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef jsimd_h2v1_merged_upsample_neon #undef jsimd_h2v2_merged_upsample_neon #define RGB_RED EXT_BGRX_RED #define RGB_GREEN EXT_BGRX_GREEN #define RGB_BLUE EXT_BGRX_BLUE #define RGB_ALPHA 3 #define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE #define jsimd_h2v1_merged_upsample_neon jsimd_h2v1_extbgrx_merged_upsample_neon #define jsimd_h2v2_merged_upsample_neon jsimd_h2v2_extbgrx_merged_upsample_neon #include "jdmrgext-neon.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_ALPHA #undef RGB_PIXELSIZE #undef jsimd_h2v1_merged_upsample_neon #undef jsimd_h2v2_merged_upsample_neon #define RGB_RED EXT_XBGR_RED #define RGB_GREEN EXT_XBGR_GREEN #define RGB_BLUE EXT_XBGR_BLUE #define RGB_ALPHA 0 #define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE #define jsimd_h2v1_merged_upsample_neon jsimd_h2v1_extxbgr_merged_upsample_neon #define jsimd_h2v2_merged_upsample_neon jsimd_h2v2_extxbgr_merged_upsample_neon #include "jdmrgext-neon.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_ALPHA #undef RGB_PIXELSIZE #undef jsimd_h2v1_merged_upsample_neon #undef jsimd_h2v2_merged_upsample_neon #define RGB_RED EXT_XRGB_RED #define RGB_GREEN EXT_XRGB_GREEN #define RGB_BLUE EXT_XRGB_BLUE #define RGB_ALPHA 0 #define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE #define jsimd_h2v1_merged_upsample_neon jsimd_h2v1_extxrgb_merged_upsample_neon #define jsimd_h2v2_merged_upsample_neon jsimd_h2v2_extxrgb_merged_upsample_neon #include "jdmrgext-neon.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_ALPHA #undef RGB_PIXELSIZE #undef jsimd_h2v1_merged_upsample_neon libjpeg-turbo-2.1.5/simd/arm/jdmrgext-neon.c000066400000000000000000000743001436506551100207360ustar00rootroot00000000000000/* * jdmrgext-neon.c - merged upsampling/color conversion (Arm Neon) * * Copyright (C) 2020, Arm Limited. All Rights Reserved. * Copyright (C) 2020, D. R. Commander. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ /* This file is included by jdmerge-neon.c. */ /* These routines combine simple (non-fancy, i.e. non-smooth) h2v1 or h2v2 * chroma upsampling and YCbCr -> RGB color conversion into a single function. * * As with the standalone functions, YCbCr -> RGB conversion is defined by the * following equations: * R = Y + 1.40200 * (Cr - 128) * G = Y - 0.34414 * (Cb - 128) - 0.71414 * (Cr - 128) * B = Y + 1.77200 * (Cb - 128) * * Scaled integer constants are used to avoid floating-point arithmetic: * 0.3441467 = 11277 * 2^-15 * 0.7141418 = 23401 * 2^-15 * 1.4020386 = 22971 * 2^-14 * 1.7720337 = 29033 * 2^-14 * These constants are defined in jdmerge-neon.c. * * To ensure correct results, rounding is used when descaling. */ /* Notes on safe memory access for merged upsampling/YCbCr -> RGB conversion * routines: * * Input memory buffers can be safely overread up to the next multiple of * ALIGN_SIZE bytes, since they are always allocated by alloc_sarray() in * jmemmgr.c. * * The output buffer cannot safely be written beyond output_width, since * output_buf points to a possibly unpadded row in the decompressed image * buffer allocated by the calling program. */ /* Upsample and color convert for the case of 2:1 horizontal and 1:1 vertical. */ void jsimd_h2v1_merged_upsample_neon(JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { JSAMPROW outptr; /* Pointers to Y, Cb, and Cr data */ JSAMPROW inptr0, inptr1, inptr2; const int16x4_t consts = vld1_s16(jsimd_ycc_rgb_convert_neon_consts); const int16x8_t neg_128 = vdupq_n_s16(-128); inptr0 = input_buf[0][in_row_group_ctr]; inptr1 = input_buf[1][in_row_group_ctr]; inptr2 = input_buf[2][in_row_group_ctr]; outptr = output_buf[0]; int cols_remaining = output_width; for (; cols_remaining >= 16; cols_remaining -= 16) { /* De-interleave Y component values into two separate vectors, one * containing the component values with even-numbered indices and one * containing the component values with odd-numbered indices. */ uint8x8x2_t y = vld2_u8(inptr0); uint8x8_t cb = vld1_u8(inptr1); uint8x8_t cr = vld1_u8(inptr2); /* Subtract 128 from Cb and Cr. */ int16x8_t cr_128 = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(neg_128), cr)); int16x8_t cb_128 = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(neg_128), cb)); /* Compute G-Y: - 0.34414 * (Cb - 128) - 0.71414 * (Cr - 128) */ int32x4_t g_sub_y_l = vmull_lane_s16(vget_low_s16(cb_128), consts, 0); int32x4_t g_sub_y_h = vmull_lane_s16(vget_high_s16(cb_128), consts, 0); g_sub_y_l = vmlsl_lane_s16(g_sub_y_l, vget_low_s16(cr_128), consts, 1); g_sub_y_h = vmlsl_lane_s16(g_sub_y_h, vget_high_s16(cr_128), consts, 1); /* Descale G components: shift right 15, round, and narrow to 16-bit. */ int16x8_t g_sub_y = vcombine_s16(vrshrn_n_s32(g_sub_y_l, 15), vrshrn_n_s32(g_sub_y_h, 15)); /* Compute R-Y: 1.40200 * (Cr - 128) */ int16x8_t r_sub_y = vqrdmulhq_lane_s16(vshlq_n_s16(cr_128, 1), consts, 2); /* Compute B-Y: 1.77200 * (Cb - 128) */ int16x8_t b_sub_y = vqrdmulhq_lane_s16(vshlq_n_s16(cb_128, 1), consts, 3); /* Add the chroma-derived values (G-Y, R-Y, and B-Y) to both the "even" and * "odd" Y component values. This effectively upsamples the chroma * components horizontally. */ int16x8_t g_even = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(g_sub_y), y.val[0])); int16x8_t r_even = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(r_sub_y), y.val[0])); int16x8_t b_even = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(b_sub_y), y.val[0])); int16x8_t g_odd = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(g_sub_y), y.val[1])); int16x8_t r_odd = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(r_sub_y), y.val[1])); int16x8_t b_odd = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(b_sub_y), y.val[1])); /* Convert each component to unsigned and narrow, clamping to [0-255]. * Re-interleave the "even" and "odd" component values. */ uint8x8x2_t r = vzip_u8(vqmovun_s16(r_even), vqmovun_s16(r_odd)); uint8x8x2_t g = vzip_u8(vqmovun_s16(g_even), vqmovun_s16(g_odd)); uint8x8x2_t b = vzip_u8(vqmovun_s16(b_even), vqmovun_s16(b_odd)); #ifdef RGB_ALPHA uint8x16x4_t rgba; rgba.val[RGB_RED] = vcombine_u8(r.val[0], r.val[1]); rgba.val[RGB_GREEN] = vcombine_u8(g.val[0], g.val[1]); rgba.val[RGB_BLUE] = vcombine_u8(b.val[0], b.val[1]); /* Set alpha channel to opaque (0xFF). */ rgba.val[RGB_ALPHA] = vdupq_n_u8(0xFF); /* Store RGBA pixel data to memory. */ vst4q_u8(outptr, rgba); #else uint8x16x3_t rgb; rgb.val[RGB_RED] = vcombine_u8(r.val[0], r.val[1]); rgb.val[RGB_GREEN] = vcombine_u8(g.val[0], g.val[1]); rgb.val[RGB_BLUE] = vcombine_u8(b.val[0], b.val[1]); /* Store RGB pixel data to memory. */ vst3q_u8(outptr, rgb); #endif /* Increment pointers. */ inptr0 += 16; inptr1 += 8; inptr2 += 8; outptr += (RGB_PIXELSIZE * 16); } if (cols_remaining > 0) { /* De-interleave Y component values into two separate vectors, one * containing the component values with even-numbered indices and one * containing the component values with odd-numbered indices. */ uint8x8x2_t y = vld2_u8(inptr0); uint8x8_t cb = vld1_u8(inptr1); uint8x8_t cr = vld1_u8(inptr2); /* Subtract 128 from Cb and Cr. */ int16x8_t cr_128 = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(neg_128), cr)); int16x8_t cb_128 = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(neg_128), cb)); /* Compute G-Y: - 0.34414 * (Cb - 128) - 0.71414 * (Cr - 128) */ int32x4_t g_sub_y_l = vmull_lane_s16(vget_low_s16(cb_128), consts, 0); int32x4_t g_sub_y_h = vmull_lane_s16(vget_high_s16(cb_128), consts, 0); g_sub_y_l = vmlsl_lane_s16(g_sub_y_l, vget_low_s16(cr_128), consts, 1); g_sub_y_h = vmlsl_lane_s16(g_sub_y_h, vget_high_s16(cr_128), consts, 1); /* Descale G components: shift right 15, round, and narrow to 16-bit. */ int16x8_t g_sub_y = vcombine_s16(vrshrn_n_s32(g_sub_y_l, 15), vrshrn_n_s32(g_sub_y_h, 15)); /* Compute R-Y: 1.40200 * (Cr - 128) */ int16x8_t r_sub_y = vqrdmulhq_lane_s16(vshlq_n_s16(cr_128, 1), consts, 2); /* Compute B-Y: 1.77200 * (Cb - 128) */ int16x8_t b_sub_y = vqrdmulhq_lane_s16(vshlq_n_s16(cb_128, 1), consts, 3); /* Add the chroma-derived values (G-Y, R-Y, and B-Y) to both the "even" and * "odd" Y component values. This effectively upsamples the chroma * components horizontally. */ int16x8_t g_even = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(g_sub_y), y.val[0])); int16x8_t r_even = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(r_sub_y), y.val[0])); int16x8_t b_even = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(b_sub_y), y.val[0])); int16x8_t g_odd = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(g_sub_y), y.val[1])); int16x8_t r_odd = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(r_sub_y), y.val[1])); int16x8_t b_odd = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(b_sub_y), y.val[1])); /* Convert each component to unsigned and narrow, clamping to [0-255]. * Re-interleave the "even" and "odd" component values. */ uint8x8x2_t r = vzip_u8(vqmovun_s16(r_even), vqmovun_s16(r_odd)); uint8x8x2_t g = vzip_u8(vqmovun_s16(g_even), vqmovun_s16(g_odd)); uint8x8x2_t b = vzip_u8(vqmovun_s16(b_even), vqmovun_s16(b_odd)); #ifdef RGB_ALPHA uint8x8x4_t rgba_h; rgba_h.val[RGB_RED] = r.val[1]; rgba_h.val[RGB_GREEN] = g.val[1]; rgba_h.val[RGB_BLUE] = b.val[1]; /* Set alpha channel to opaque (0xFF). */ rgba_h.val[RGB_ALPHA] = vdup_n_u8(0xFF); uint8x8x4_t rgba_l; rgba_l.val[RGB_RED] = r.val[0]; rgba_l.val[RGB_GREEN] = g.val[0]; rgba_l.val[RGB_BLUE] = b.val[0]; /* Set alpha channel to opaque (0xFF). */ rgba_l.val[RGB_ALPHA] = vdup_n_u8(0xFF); /* Store RGBA pixel data to memory. */ switch (cols_remaining) { case 15: vst4_lane_u8(outptr + 14 * RGB_PIXELSIZE, rgba_h, 6); FALLTHROUGH /*FALLTHROUGH*/ case 14: vst4_lane_u8(outptr + 13 * RGB_PIXELSIZE, rgba_h, 5); FALLTHROUGH /*FALLTHROUGH*/ case 13: vst4_lane_u8(outptr + 12 * RGB_PIXELSIZE, rgba_h, 4); FALLTHROUGH /*FALLTHROUGH*/ case 12: vst4_lane_u8(outptr + 11 * RGB_PIXELSIZE, rgba_h, 3); FALLTHROUGH /*FALLTHROUGH*/ case 11: vst4_lane_u8(outptr + 10 * RGB_PIXELSIZE, rgba_h, 2); FALLTHROUGH /*FALLTHROUGH*/ case 10: vst4_lane_u8(outptr + 9 * RGB_PIXELSIZE, rgba_h, 1); FALLTHROUGH /*FALLTHROUGH*/ case 9: vst4_lane_u8(outptr + 8 * RGB_PIXELSIZE, rgba_h, 0); FALLTHROUGH /*FALLTHROUGH*/ case 8: vst4_u8(outptr, rgba_l); break; case 7: vst4_lane_u8(outptr + 6 * RGB_PIXELSIZE, rgba_l, 6); FALLTHROUGH /*FALLTHROUGH*/ case 6: vst4_lane_u8(outptr + 5 * RGB_PIXELSIZE, rgba_l, 5); FALLTHROUGH /*FALLTHROUGH*/ case 5: vst4_lane_u8(outptr + 4 * RGB_PIXELSIZE, rgba_l, 4); FALLTHROUGH /*FALLTHROUGH*/ case 4: vst4_lane_u8(outptr + 3 * RGB_PIXELSIZE, rgba_l, 3); FALLTHROUGH /*FALLTHROUGH*/ case 3: vst4_lane_u8(outptr + 2 * RGB_PIXELSIZE, rgba_l, 2); FALLTHROUGH /*FALLTHROUGH*/ case 2: vst4_lane_u8(outptr + RGB_PIXELSIZE, rgba_l, 1); FALLTHROUGH /*FALLTHROUGH*/ case 1: vst4_lane_u8(outptr, rgba_l, 0); FALLTHROUGH /*FALLTHROUGH*/ default: break; } #else uint8x8x3_t rgb_h; rgb_h.val[RGB_RED] = r.val[1]; rgb_h.val[RGB_GREEN] = g.val[1]; rgb_h.val[RGB_BLUE] = b.val[1]; uint8x8x3_t rgb_l; rgb_l.val[RGB_RED] = r.val[0]; rgb_l.val[RGB_GREEN] = g.val[0]; rgb_l.val[RGB_BLUE] = b.val[0]; /* Store RGB pixel data to memory. */ switch (cols_remaining) { case 15: vst3_lane_u8(outptr + 14 * RGB_PIXELSIZE, rgb_h, 6); FALLTHROUGH /*FALLTHROUGH*/ case 14: vst3_lane_u8(outptr + 13 * RGB_PIXELSIZE, rgb_h, 5); FALLTHROUGH /*FALLTHROUGH*/ case 13: vst3_lane_u8(outptr + 12 * RGB_PIXELSIZE, rgb_h, 4); FALLTHROUGH /*FALLTHROUGH*/ case 12: vst3_lane_u8(outptr + 11 * RGB_PIXELSIZE, rgb_h, 3); FALLTHROUGH /*FALLTHROUGH*/ case 11: vst3_lane_u8(outptr + 10 * RGB_PIXELSIZE, rgb_h, 2); FALLTHROUGH /*FALLTHROUGH*/ case 10: vst3_lane_u8(outptr + 9 * RGB_PIXELSIZE, rgb_h, 1); FALLTHROUGH /*FALLTHROUGH*/ case 9: vst3_lane_u8(outptr + 8 * RGB_PIXELSIZE, rgb_h, 0); FALLTHROUGH /*FALLTHROUGH*/ case 8: vst3_u8(outptr, rgb_l); break; case 7: vst3_lane_u8(outptr + 6 * RGB_PIXELSIZE, rgb_l, 6); FALLTHROUGH /*FALLTHROUGH*/ case 6: vst3_lane_u8(outptr + 5 * RGB_PIXELSIZE, rgb_l, 5); FALLTHROUGH /*FALLTHROUGH*/ case 5: vst3_lane_u8(outptr + 4 * RGB_PIXELSIZE, rgb_l, 4); FALLTHROUGH /*FALLTHROUGH*/ case 4: vst3_lane_u8(outptr + 3 * RGB_PIXELSIZE, rgb_l, 3); FALLTHROUGH /*FALLTHROUGH*/ case 3: vst3_lane_u8(outptr + 2 * RGB_PIXELSIZE, rgb_l, 2); FALLTHROUGH /*FALLTHROUGH*/ case 2: vst3_lane_u8(outptr + RGB_PIXELSIZE, rgb_l, 1); FALLTHROUGH /*FALLTHROUGH*/ case 1: vst3_lane_u8(outptr, rgb_l, 0); FALLTHROUGH /*FALLTHROUGH*/ default: break; } #endif } } /* Upsample and color convert for the case of 2:1 horizontal and 2:1 vertical. * * See comments above for details regarding color conversion and safe memory * access. */ void jsimd_h2v2_merged_upsample_neon(JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { JSAMPROW outptr0, outptr1; /* Pointers to Y (both rows), Cb, and Cr data */ JSAMPROW inptr0_0, inptr0_1, inptr1, inptr2; const int16x4_t consts = vld1_s16(jsimd_ycc_rgb_convert_neon_consts); const int16x8_t neg_128 = vdupq_n_s16(-128); inptr0_0 = input_buf[0][in_row_group_ctr * 2]; inptr0_1 = input_buf[0][in_row_group_ctr * 2 + 1]; inptr1 = input_buf[1][in_row_group_ctr]; inptr2 = input_buf[2][in_row_group_ctr]; outptr0 = output_buf[0]; outptr1 = output_buf[1]; int cols_remaining = output_width; for (; cols_remaining >= 16; cols_remaining -= 16) { /* For each row, de-interleave Y component values into two separate * vectors, one containing the component values with even-numbered indices * and one containing the component values with odd-numbered indices. */ uint8x8x2_t y0 = vld2_u8(inptr0_0); uint8x8x2_t y1 = vld2_u8(inptr0_1); uint8x8_t cb = vld1_u8(inptr1); uint8x8_t cr = vld1_u8(inptr2); /* Subtract 128 from Cb and Cr. */ int16x8_t cr_128 = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(neg_128), cr)); int16x8_t cb_128 = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(neg_128), cb)); /* Compute G-Y: - 0.34414 * (Cb - 128) - 0.71414 * (Cr - 128) */ int32x4_t g_sub_y_l = vmull_lane_s16(vget_low_s16(cb_128), consts, 0); int32x4_t g_sub_y_h = vmull_lane_s16(vget_high_s16(cb_128), consts, 0); g_sub_y_l = vmlsl_lane_s16(g_sub_y_l, vget_low_s16(cr_128), consts, 1); g_sub_y_h = vmlsl_lane_s16(g_sub_y_h, vget_high_s16(cr_128), consts, 1); /* Descale G components: shift right 15, round, and narrow to 16-bit. */ int16x8_t g_sub_y = vcombine_s16(vrshrn_n_s32(g_sub_y_l, 15), vrshrn_n_s32(g_sub_y_h, 15)); /* Compute R-Y: 1.40200 * (Cr - 128) */ int16x8_t r_sub_y = vqrdmulhq_lane_s16(vshlq_n_s16(cr_128, 1), consts, 2); /* Compute B-Y: 1.77200 * (Cb - 128) */ int16x8_t b_sub_y = vqrdmulhq_lane_s16(vshlq_n_s16(cb_128, 1), consts, 3); /* For each row, add the chroma-derived values (G-Y, R-Y, and B-Y) to both * the "even" and "odd" Y component values. This effectively upsamples the * chroma components both horizontally and vertically. */ int16x8_t g0_even = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(g_sub_y), y0.val[0])); int16x8_t r0_even = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(r_sub_y), y0.val[0])); int16x8_t b0_even = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(b_sub_y), y0.val[0])); int16x8_t g0_odd = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(g_sub_y), y0.val[1])); int16x8_t r0_odd = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(r_sub_y), y0.val[1])); int16x8_t b0_odd = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(b_sub_y), y0.val[1])); int16x8_t g1_even = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(g_sub_y), y1.val[0])); int16x8_t r1_even = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(r_sub_y), y1.val[0])); int16x8_t b1_even = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(b_sub_y), y1.val[0])); int16x8_t g1_odd = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(g_sub_y), y1.val[1])); int16x8_t r1_odd = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(r_sub_y), y1.val[1])); int16x8_t b1_odd = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(b_sub_y), y1.val[1])); /* Convert each component to unsigned and narrow, clamping to [0-255]. * Re-interleave the "even" and "odd" component values. */ uint8x8x2_t r0 = vzip_u8(vqmovun_s16(r0_even), vqmovun_s16(r0_odd)); uint8x8x2_t r1 = vzip_u8(vqmovun_s16(r1_even), vqmovun_s16(r1_odd)); uint8x8x2_t g0 = vzip_u8(vqmovun_s16(g0_even), vqmovun_s16(g0_odd)); uint8x8x2_t g1 = vzip_u8(vqmovun_s16(g1_even), vqmovun_s16(g1_odd)); uint8x8x2_t b0 = vzip_u8(vqmovun_s16(b0_even), vqmovun_s16(b0_odd)); uint8x8x2_t b1 = vzip_u8(vqmovun_s16(b1_even), vqmovun_s16(b1_odd)); #ifdef RGB_ALPHA uint8x16x4_t rgba0, rgba1; rgba0.val[RGB_RED] = vcombine_u8(r0.val[0], r0.val[1]); rgba1.val[RGB_RED] = vcombine_u8(r1.val[0], r1.val[1]); rgba0.val[RGB_GREEN] = vcombine_u8(g0.val[0], g0.val[1]); rgba1.val[RGB_GREEN] = vcombine_u8(g1.val[0], g1.val[1]); rgba0.val[RGB_BLUE] = vcombine_u8(b0.val[0], b0.val[1]); rgba1.val[RGB_BLUE] = vcombine_u8(b1.val[0], b1.val[1]); /* Set alpha channel to opaque (0xFF). */ rgba0.val[RGB_ALPHA] = vdupq_n_u8(0xFF); rgba1.val[RGB_ALPHA] = vdupq_n_u8(0xFF); /* Store RGBA pixel data to memory. */ vst4q_u8(outptr0, rgba0); vst4q_u8(outptr1, rgba1); #else uint8x16x3_t rgb0, rgb1; rgb0.val[RGB_RED] = vcombine_u8(r0.val[0], r0.val[1]); rgb1.val[RGB_RED] = vcombine_u8(r1.val[0], r1.val[1]); rgb0.val[RGB_GREEN] = vcombine_u8(g0.val[0], g0.val[1]); rgb1.val[RGB_GREEN] = vcombine_u8(g1.val[0], g1.val[1]); rgb0.val[RGB_BLUE] = vcombine_u8(b0.val[0], b0.val[1]); rgb1.val[RGB_BLUE] = vcombine_u8(b1.val[0], b1.val[1]); /* Store RGB pixel data to memory. */ vst3q_u8(outptr0, rgb0); vst3q_u8(outptr1, rgb1); #endif /* Increment pointers. */ inptr0_0 += 16; inptr0_1 += 16; inptr1 += 8; inptr2 += 8; outptr0 += (RGB_PIXELSIZE * 16); outptr1 += (RGB_PIXELSIZE * 16); } if (cols_remaining > 0) { /* For each row, de-interleave Y component values into two separate * vectors, one containing the component values with even-numbered indices * and one containing the component values with odd-numbered indices. */ uint8x8x2_t y0 = vld2_u8(inptr0_0); uint8x8x2_t y1 = vld2_u8(inptr0_1); uint8x8_t cb = vld1_u8(inptr1); uint8x8_t cr = vld1_u8(inptr2); /* Subtract 128 from Cb and Cr. */ int16x8_t cr_128 = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(neg_128), cr)); int16x8_t cb_128 = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(neg_128), cb)); /* Compute G-Y: - 0.34414 * (Cb - 128) - 0.71414 * (Cr - 128) */ int32x4_t g_sub_y_l = vmull_lane_s16(vget_low_s16(cb_128), consts, 0); int32x4_t g_sub_y_h = vmull_lane_s16(vget_high_s16(cb_128), consts, 0); g_sub_y_l = vmlsl_lane_s16(g_sub_y_l, vget_low_s16(cr_128), consts, 1); g_sub_y_h = vmlsl_lane_s16(g_sub_y_h, vget_high_s16(cr_128), consts, 1); /* Descale G components: shift right 15, round, and narrow to 16-bit. */ int16x8_t g_sub_y = vcombine_s16(vrshrn_n_s32(g_sub_y_l, 15), vrshrn_n_s32(g_sub_y_h, 15)); /* Compute R-Y: 1.40200 * (Cr - 128) */ int16x8_t r_sub_y = vqrdmulhq_lane_s16(vshlq_n_s16(cr_128, 1), consts, 2); /* Compute B-Y: 1.77200 * (Cb - 128) */ int16x8_t b_sub_y = vqrdmulhq_lane_s16(vshlq_n_s16(cb_128, 1), consts, 3); /* For each row, add the chroma-derived values (G-Y, R-Y, and B-Y) to both * the "even" and "odd" Y component values. This effectively upsamples the * chroma components both horizontally and vertically. */ int16x8_t g0_even = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(g_sub_y), y0.val[0])); int16x8_t r0_even = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(r_sub_y), y0.val[0])); int16x8_t b0_even = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(b_sub_y), y0.val[0])); int16x8_t g0_odd = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(g_sub_y), y0.val[1])); int16x8_t r0_odd = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(r_sub_y), y0.val[1])); int16x8_t b0_odd = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(b_sub_y), y0.val[1])); int16x8_t g1_even = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(g_sub_y), y1.val[0])); int16x8_t r1_even = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(r_sub_y), y1.val[0])); int16x8_t b1_even = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(b_sub_y), y1.val[0])); int16x8_t g1_odd = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(g_sub_y), y1.val[1])); int16x8_t r1_odd = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(r_sub_y), y1.val[1])); int16x8_t b1_odd = vreinterpretq_s16_u16(vaddw_u8(vreinterpretq_u16_s16(b_sub_y), y1.val[1])); /* Convert each component to unsigned and narrow, clamping to [0-255]. * Re-interleave the "even" and "odd" component values. */ uint8x8x2_t r0 = vzip_u8(vqmovun_s16(r0_even), vqmovun_s16(r0_odd)); uint8x8x2_t r1 = vzip_u8(vqmovun_s16(r1_even), vqmovun_s16(r1_odd)); uint8x8x2_t g0 = vzip_u8(vqmovun_s16(g0_even), vqmovun_s16(g0_odd)); uint8x8x2_t g1 = vzip_u8(vqmovun_s16(g1_even), vqmovun_s16(g1_odd)); uint8x8x2_t b0 = vzip_u8(vqmovun_s16(b0_even), vqmovun_s16(b0_odd)); uint8x8x2_t b1 = vzip_u8(vqmovun_s16(b1_even), vqmovun_s16(b1_odd)); #ifdef RGB_ALPHA uint8x8x4_t rgba0_h, rgba1_h; rgba0_h.val[RGB_RED] = r0.val[1]; rgba1_h.val[RGB_RED] = r1.val[1]; rgba0_h.val[RGB_GREEN] = g0.val[1]; rgba1_h.val[RGB_GREEN] = g1.val[1]; rgba0_h.val[RGB_BLUE] = b0.val[1]; rgba1_h.val[RGB_BLUE] = b1.val[1]; /* Set alpha channel to opaque (0xFF). */ rgba0_h.val[RGB_ALPHA] = vdup_n_u8(0xFF); rgba1_h.val[RGB_ALPHA] = vdup_n_u8(0xFF); uint8x8x4_t rgba0_l, rgba1_l; rgba0_l.val[RGB_RED] = r0.val[0]; rgba1_l.val[RGB_RED] = r1.val[0]; rgba0_l.val[RGB_GREEN] = g0.val[0]; rgba1_l.val[RGB_GREEN] = g1.val[0]; rgba0_l.val[RGB_BLUE] = b0.val[0]; rgba1_l.val[RGB_BLUE] = b1.val[0]; /* Set alpha channel to opaque (0xFF). */ rgba0_l.val[RGB_ALPHA] = vdup_n_u8(0xFF); rgba1_l.val[RGB_ALPHA] = vdup_n_u8(0xFF); /* Store RGBA pixel data to memory. */ switch (cols_remaining) { case 15: vst4_lane_u8(outptr0 + 14 * RGB_PIXELSIZE, rgba0_h, 6); vst4_lane_u8(outptr1 + 14 * RGB_PIXELSIZE, rgba1_h, 6); FALLTHROUGH /*FALLTHROUGH*/ case 14: vst4_lane_u8(outptr0 + 13 * RGB_PIXELSIZE, rgba0_h, 5); vst4_lane_u8(outptr1 + 13 * RGB_PIXELSIZE, rgba1_h, 5); FALLTHROUGH /*FALLTHROUGH*/ case 13: vst4_lane_u8(outptr0 + 12 * RGB_PIXELSIZE, rgba0_h, 4); vst4_lane_u8(outptr1 + 12 * RGB_PIXELSIZE, rgba1_h, 4); FALLTHROUGH /*FALLTHROUGH*/ case 12: vst4_lane_u8(outptr0 + 11 * RGB_PIXELSIZE, rgba0_h, 3); vst4_lane_u8(outptr1 + 11 * RGB_PIXELSIZE, rgba1_h, 3); FALLTHROUGH /*FALLTHROUGH*/ case 11: vst4_lane_u8(outptr0 + 10 * RGB_PIXELSIZE, rgba0_h, 2); vst4_lane_u8(outptr1 + 10 * RGB_PIXELSIZE, rgba1_h, 2); FALLTHROUGH /*FALLTHROUGH*/ case 10: vst4_lane_u8(outptr0 + 9 * RGB_PIXELSIZE, rgba0_h, 1); vst4_lane_u8(outptr1 + 9 * RGB_PIXELSIZE, rgba1_h, 1); FALLTHROUGH /*FALLTHROUGH*/ case 9: vst4_lane_u8(outptr0 + 8 * RGB_PIXELSIZE, rgba0_h, 0); vst4_lane_u8(outptr1 + 8 * RGB_PIXELSIZE, rgba1_h, 0); FALLTHROUGH /*FALLTHROUGH*/ case 8: vst4_u8(outptr0, rgba0_l); vst4_u8(outptr1, rgba1_l); break; case 7: vst4_lane_u8(outptr0 + 6 * RGB_PIXELSIZE, rgba0_l, 6); vst4_lane_u8(outptr1 + 6 * RGB_PIXELSIZE, rgba1_l, 6); FALLTHROUGH /*FALLTHROUGH*/ case 6: vst4_lane_u8(outptr0 + 5 * RGB_PIXELSIZE, rgba0_l, 5); vst4_lane_u8(outptr1 + 5 * RGB_PIXELSIZE, rgba1_l, 5); FALLTHROUGH /*FALLTHROUGH*/ case 5: vst4_lane_u8(outptr0 + 4 * RGB_PIXELSIZE, rgba0_l, 4); vst4_lane_u8(outptr1 + 4 * RGB_PIXELSIZE, rgba1_l, 4); FALLTHROUGH /*FALLTHROUGH*/ case 4: vst4_lane_u8(outptr0 + 3 * RGB_PIXELSIZE, rgba0_l, 3); vst4_lane_u8(outptr1 + 3 * RGB_PIXELSIZE, rgba1_l, 3); FALLTHROUGH /*FALLTHROUGH*/ case 3: vst4_lane_u8(outptr0 + 2 * RGB_PIXELSIZE, rgba0_l, 2); vst4_lane_u8(outptr1 + 2 * RGB_PIXELSIZE, rgba1_l, 2); FALLTHROUGH /*FALLTHROUGH*/ case 2: vst4_lane_u8(outptr0 + 1 * RGB_PIXELSIZE, rgba0_l, 1); vst4_lane_u8(outptr1 + 1 * RGB_PIXELSIZE, rgba1_l, 1); FALLTHROUGH /*FALLTHROUGH*/ case 1: vst4_lane_u8(outptr0, rgba0_l, 0); vst4_lane_u8(outptr1, rgba1_l, 0); FALLTHROUGH /*FALLTHROUGH*/ default: break; } #else uint8x8x3_t rgb0_h, rgb1_h; rgb0_h.val[RGB_RED] = r0.val[1]; rgb1_h.val[RGB_RED] = r1.val[1]; rgb0_h.val[RGB_GREEN] = g0.val[1]; rgb1_h.val[RGB_GREEN] = g1.val[1]; rgb0_h.val[RGB_BLUE] = b0.val[1]; rgb1_h.val[RGB_BLUE] = b1.val[1]; uint8x8x3_t rgb0_l, rgb1_l; rgb0_l.val[RGB_RED] = r0.val[0]; rgb1_l.val[RGB_RED] = r1.val[0]; rgb0_l.val[RGB_GREEN] = g0.val[0]; rgb1_l.val[RGB_GREEN] = g1.val[0]; rgb0_l.val[RGB_BLUE] = b0.val[0]; rgb1_l.val[RGB_BLUE] = b1.val[0]; /* Store RGB pixel data to memory. */ switch (cols_remaining) { case 15: vst3_lane_u8(outptr0 + 14 * RGB_PIXELSIZE, rgb0_h, 6); vst3_lane_u8(outptr1 + 14 * RGB_PIXELSIZE, rgb1_h, 6); FALLTHROUGH /*FALLTHROUGH*/ case 14: vst3_lane_u8(outptr0 + 13 * RGB_PIXELSIZE, rgb0_h, 5); vst3_lane_u8(outptr1 + 13 * RGB_PIXELSIZE, rgb1_h, 5); FALLTHROUGH /*FALLTHROUGH*/ case 13: vst3_lane_u8(outptr0 + 12 * RGB_PIXELSIZE, rgb0_h, 4); vst3_lane_u8(outptr1 + 12 * RGB_PIXELSIZE, rgb1_h, 4); FALLTHROUGH /*FALLTHROUGH*/ case 12: vst3_lane_u8(outptr0 + 11 * RGB_PIXELSIZE, rgb0_h, 3); vst3_lane_u8(outptr1 + 11 * RGB_PIXELSIZE, rgb1_h, 3); FALLTHROUGH /*FALLTHROUGH*/ case 11: vst3_lane_u8(outptr0 + 10 * RGB_PIXELSIZE, rgb0_h, 2); vst3_lane_u8(outptr1 + 10 * RGB_PIXELSIZE, rgb1_h, 2); FALLTHROUGH /*FALLTHROUGH*/ case 10: vst3_lane_u8(outptr0 + 9 * RGB_PIXELSIZE, rgb0_h, 1); vst3_lane_u8(outptr1 + 9 * RGB_PIXELSIZE, rgb1_h, 1); FALLTHROUGH /*FALLTHROUGH*/ case 9: vst3_lane_u8(outptr0 + 8 * RGB_PIXELSIZE, rgb0_h, 0); vst3_lane_u8(outptr1 + 8 * RGB_PIXELSIZE, rgb1_h, 0); FALLTHROUGH /*FALLTHROUGH*/ case 8: vst3_u8(outptr0, rgb0_l); vst3_u8(outptr1, rgb1_l); break; case 7: vst3_lane_u8(outptr0 + 6 * RGB_PIXELSIZE, rgb0_l, 6); vst3_lane_u8(outptr1 + 6 * RGB_PIXELSIZE, rgb1_l, 6); FALLTHROUGH /*FALLTHROUGH*/ case 6: vst3_lane_u8(outptr0 + 5 * RGB_PIXELSIZE, rgb0_l, 5); vst3_lane_u8(outptr1 + 5 * RGB_PIXELSIZE, rgb1_l, 5); FALLTHROUGH /*FALLTHROUGH*/ case 5: vst3_lane_u8(outptr0 + 4 * RGB_PIXELSIZE, rgb0_l, 4); vst3_lane_u8(outptr1 + 4 * RGB_PIXELSIZE, rgb1_l, 4); FALLTHROUGH /*FALLTHROUGH*/ case 4: vst3_lane_u8(outptr0 + 3 * RGB_PIXELSIZE, rgb0_l, 3); vst3_lane_u8(outptr1 + 3 * RGB_PIXELSIZE, rgb1_l, 3); FALLTHROUGH /*FALLTHROUGH*/ case 3: vst3_lane_u8(outptr0 + 2 * RGB_PIXELSIZE, rgb0_l, 2); vst3_lane_u8(outptr1 + 2 * RGB_PIXELSIZE, rgb1_l, 2); FALLTHROUGH /*FALLTHROUGH*/ case 2: vst3_lane_u8(outptr0 + 1 * RGB_PIXELSIZE, rgb0_l, 1); vst3_lane_u8(outptr1 + 1 * RGB_PIXELSIZE, rgb1_l, 1); FALLTHROUGH /*FALLTHROUGH*/ case 1: vst3_lane_u8(outptr0, rgb0_l, 0); vst3_lane_u8(outptr1, rgb1_l, 0); FALLTHROUGH /*FALLTHROUGH*/ default: break; } #endif } } libjpeg-turbo-2.1.5/simd/arm/jdsample-neon.c000066400000000000000000000615531436506551100207170ustar00rootroot00000000000000/* * jdsample-neon.c - upsampling (Arm Neon) * * Copyright (C) 2020, Arm Limited. All Rights Reserved. * Copyright (C) 2020, D. R. Commander. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #define JPEG_INTERNALS #include "../../jinclude.h" #include "../../jpeglib.h" #include "../../jsimd.h" #include "../../jdct.h" #include "../../jsimddct.h" #include "../jsimd.h" #include /* The diagram below shows a row of samples produced by h2v1 downsampling. * * s0 s1 s2 * +---------+---------+---------+ * | | | | * | p0 p1 | p2 p3 | p4 p5 | * | | | | * +---------+---------+---------+ * * Samples s0-s2 were created by averaging the original pixel component values * centered at positions p0-p5 above. To approximate those original pixel * component values, we proportionally blend the adjacent samples in each row. * * An upsampled pixel component value is computed by blending the sample * containing the pixel center with the nearest neighboring sample, in the * ratio 3:1. For example: * p1(upsampled) = 3/4 * s0 + 1/4 * s1 * p2(upsampled) = 3/4 * s1 + 1/4 * s0 * When computing the first and last pixel component values in the row, there * is no adjacent sample to blend, so: * p0(upsampled) = s0 * p5(upsampled) = s2 */ void jsimd_h2v1_fancy_upsample_neon(int max_v_samp_factor, JDIMENSION downsampled_width, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { JSAMPARRAY output_data = *output_data_ptr; JSAMPROW inptr, outptr; int inrow; unsigned colctr; /* Set up constants. */ const uint16x8_t one_u16 = vdupq_n_u16(1); const uint8x8_t three_u8 = vdup_n_u8(3); for (inrow = 0; inrow < max_v_samp_factor; inrow++) { inptr = input_data[inrow]; outptr = output_data[inrow]; /* First pixel component value in this row of the original image */ *outptr = (JSAMPLE)GETJSAMPLE(*inptr); /* 3/4 * containing sample + 1/4 * nearest neighboring sample * For p1: containing sample = s0, nearest neighboring sample = s1 * For p2: containing sample = s1, nearest neighboring sample = s0 */ uint8x16_t s0 = vld1q_u8(inptr); uint8x16_t s1 = vld1q_u8(inptr + 1); /* Multiplication makes vectors twice as wide. '_l' and '_h' suffixes * denote low half and high half respectively. */ uint16x8_t s1_add_3s0_l = vmlal_u8(vmovl_u8(vget_low_u8(s1)), vget_low_u8(s0), three_u8); uint16x8_t s1_add_3s0_h = vmlal_u8(vmovl_u8(vget_high_u8(s1)), vget_high_u8(s0), three_u8); uint16x8_t s0_add_3s1_l = vmlal_u8(vmovl_u8(vget_low_u8(s0)), vget_low_u8(s1), three_u8); uint16x8_t s0_add_3s1_h = vmlal_u8(vmovl_u8(vget_high_u8(s0)), vget_high_u8(s1), three_u8); /* Add ordered dithering bias to odd pixel values. */ s0_add_3s1_l = vaddq_u16(s0_add_3s1_l, one_u16); s0_add_3s1_h = vaddq_u16(s0_add_3s1_h, one_u16); /* The offset is initially 1, because the first pixel component has already * been stored. However, in subsequent iterations of the SIMD loop, this * offset is (2 * colctr - 1) to stay within the bounds of the sample * buffers without having to resort to a slow scalar tail case for the last * (downsampled_width % 16) samples. See "Creation of 2-D sample arrays" * in jmemmgr.c for more details. */ unsigned outptr_offset = 1; uint8x16x2_t output_pixels; /* We use software pipelining to maximise performance. The code indented * an extra two spaces begins the next iteration of the loop. */ for (colctr = 16; colctr < downsampled_width; colctr += 16) { s0 = vld1q_u8(inptr + colctr - 1); s1 = vld1q_u8(inptr + colctr); /* Right-shift by 2 (divide by 4), narrow to 8-bit, and combine. */ output_pixels.val[0] = vcombine_u8(vrshrn_n_u16(s1_add_3s0_l, 2), vrshrn_n_u16(s1_add_3s0_h, 2)); output_pixels.val[1] = vcombine_u8(vshrn_n_u16(s0_add_3s1_l, 2), vshrn_n_u16(s0_add_3s1_h, 2)); /* Multiplication makes vectors twice as wide. '_l' and '_h' suffixes * denote low half and high half respectively. */ s1_add_3s0_l = vmlal_u8(vmovl_u8(vget_low_u8(s1)), vget_low_u8(s0), three_u8); s1_add_3s0_h = vmlal_u8(vmovl_u8(vget_high_u8(s1)), vget_high_u8(s0), three_u8); s0_add_3s1_l = vmlal_u8(vmovl_u8(vget_low_u8(s0)), vget_low_u8(s1), three_u8); s0_add_3s1_h = vmlal_u8(vmovl_u8(vget_high_u8(s0)), vget_high_u8(s1), three_u8); /* Add ordered dithering bias to odd pixel values. */ s0_add_3s1_l = vaddq_u16(s0_add_3s1_l, one_u16); s0_add_3s1_h = vaddq_u16(s0_add_3s1_h, one_u16); /* Store pixel component values to memory. */ vst2q_u8(outptr + outptr_offset, output_pixels); outptr_offset = 2 * colctr - 1; } /* Complete the last iteration of the loop. */ /* Right-shift by 2 (divide by 4), narrow to 8-bit, and combine. */ output_pixels.val[0] = vcombine_u8(vrshrn_n_u16(s1_add_3s0_l, 2), vrshrn_n_u16(s1_add_3s0_h, 2)); output_pixels.val[1] = vcombine_u8(vshrn_n_u16(s0_add_3s1_l, 2), vshrn_n_u16(s0_add_3s1_h, 2)); /* Store pixel component values to memory. */ vst2q_u8(outptr + outptr_offset, output_pixels); /* Last pixel component value in this row of the original image */ outptr[2 * downsampled_width - 1] = GETJSAMPLE(inptr[downsampled_width - 1]); } } /* The diagram below shows an array of samples produced by h2v2 downsampling. * * s0 s1 s2 * +---------+---------+---------+ * | p0 p1 | p2 p3 | p4 p5 | * sA | | | | * | p6 p7 | p8 p9 | p10 p11| * +---------+---------+---------+ * | p12 p13| p14 p15| p16 p17| * sB | | | | * | p18 p19| p20 p21| p22 p23| * +---------+---------+---------+ * | p24 p25| p26 p27| p28 p29| * sC | | | | * | p30 p31| p32 p33| p34 p35| * +---------+---------+---------+ * * Samples s0A-s2C were created by averaging the original pixel component * values centered at positions p0-p35 above. To approximate one of those * original pixel component values, we proportionally blend the sample * containing the pixel center with the nearest neighboring samples in each * row, column, and diagonal. * * An upsampled pixel component value is computed by first blending the sample * containing the pixel center with the nearest neighboring samples in the * same column, in the ratio 3:1, and then blending each column sum with the * nearest neighboring column sum, in the ratio 3:1. For example: * p14(upsampled) = 3/4 * (3/4 * s1B + 1/4 * s1A) + * 1/4 * (3/4 * s0B + 1/4 * s0A) * = 9/16 * s1B + 3/16 * s1A + 3/16 * s0B + 1/16 * s0A * When computing the first and last pixel component values in the row, there * is no horizontally adjacent sample to blend, so: * p12(upsampled) = 3/4 * s0B + 1/4 * s0A * p23(upsampled) = 3/4 * s2B + 1/4 * s2C * When computing the first and last pixel component values in the column, * there is no vertically adjacent sample to blend, so: * p2(upsampled) = 3/4 * s1A + 1/4 * s0A * p33(upsampled) = 3/4 * s1C + 1/4 * s2C * When computing the corner pixel component values, there is no adjacent * sample to blend, so: * p0(upsampled) = s0A * p35(upsampled) = s2C */ void jsimd_h2v2_fancy_upsample_neon(int max_v_samp_factor, JDIMENSION downsampled_width, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { JSAMPARRAY output_data = *output_data_ptr; JSAMPROW inptr0, inptr1, inptr2, outptr0, outptr1; int inrow, outrow; unsigned colctr; /* Set up constants. */ const uint16x8_t seven_u16 = vdupq_n_u16(7); const uint8x8_t three_u8 = vdup_n_u8(3); const uint16x8_t three_u16 = vdupq_n_u16(3); inrow = outrow = 0; while (outrow < max_v_samp_factor) { inptr0 = input_data[inrow - 1]; inptr1 = input_data[inrow]; inptr2 = input_data[inrow + 1]; /* Suffixes 0 and 1 denote the upper and lower rows of output pixels, * respectively. */ outptr0 = output_data[outrow++]; outptr1 = output_data[outrow++]; /* First pixel component value in this row of the original image */ int s0colsum0 = GETJSAMPLE(*inptr1) * 3 + GETJSAMPLE(*inptr0); *outptr0 = (JSAMPLE)((s0colsum0 * 4 + 8) >> 4); int s0colsum1 = GETJSAMPLE(*inptr1) * 3 + GETJSAMPLE(*inptr2); *outptr1 = (JSAMPLE)((s0colsum1 * 4 + 8) >> 4); /* Step 1: Blend samples vertically in columns s0 and s1. * Leave the divide by 4 until the end, when it can be done for both * dimensions at once, right-shifting by 4. */ /* Load and compute s0colsum0 and s0colsum1. */ uint8x16_t s0A = vld1q_u8(inptr0); uint8x16_t s0B = vld1q_u8(inptr1); uint8x16_t s0C = vld1q_u8(inptr2); /* Multiplication makes vectors twice as wide. '_l' and '_h' suffixes * denote low half and high half respectively. */ uint16x8_t s0colsum0_l = vmlal_u8(vmovl_u8(vget_low_u8(s0A)), vget_low_u8(s0B), three_u8); uint16x8_t s0colsum0_h = vmlal_u8(vmovl_u8(vget_high_u8(s0A)), vget_high_u8(s0B), three_u8); uint16x8_t s0colsum1_l = vmlal_u8(vmovl_u8(vget_low_u8(s0C)), vget_low_u8(s0B), three_u8); uint16x8_t s0colsum1_h = vmlal_u8(vmovl_u8(vget_high_u8(s0C)), vget_high_u8(s0B), three_u8); /* Load and compute s1colsum0 and s1colsum1. */ uint8x16_t s1A = vld1q_u8(inptr0 + 1); uint8x16_t s1B = vld1q_u8(inptr1 + 1); uint8x16_t s1C = vld1q_u8(inptr2 + 1); uint16x8_t s1colsum0_l = vmlal_u8(vmovl_u8(vget_low_u8(s1A)), vget_low_u8(s1B), three_u8); uint16x8_t s1colsum0_h = vmlal_u8(vmovl_u8(vget_high_u8(s1A)), vget_high_u8(s1B), three_u8); uint16x8_t s1colsum1_l = vmlal_u8(vmovl_u8(vget_low_u8(s1C)), vget_low_u8(s1B), three_u8); uint16x8_t s1colsum1_h = vmlal_u8(vmovl_u8(vget_high_u8(s1C)), vget_high_u8(s1B), three_u8); /* Step 2: Blend the already-blended columns. */ uint16x8_t output0_p1_l = vmlaq_u16(s1colsum0_l, s0colsum0_l, three_u16); uint16x8_t output0_p1_h = vmlaq_u16(s1colsum0_h, s0colsum0_h, three_u16); uint16x8_t output0_p2_l = vmlaq_u16(s0colsum0_l, s1colsum0_l, three_u16); uint16x8_t output0_p2_h = vmlaq_u16(s0colsum0_h, s1colsum0_h, three_u16); uint16x8_t output1_p1_l = vmlaq_u16(s1colsum1_l, s0colsum1_l, three_u16); uint16x8_t output1_p1_h = vmlaq_u16(s1colsum1_h, s0colsum1_h, three_u16); uint16x8_t output1_p2_l = vmlaq_u16(s0colsum1_l, s1colsum1_l, three_u16); uint16x8_t output1_p2_h = vmlaq_u16(s0colsum1_h, s1colsum1_h, three_u16); /* Add ordered dithering bias to odd pixel values. */ output0_p1_l = vaddq_u16(output0_p1_l, seven_u16); output0_p1_h = vaddq_u16(output0_p1_h, seven_u16); output1_p1_l = vaddq_u16(output1_p1_l, seven_u16); output1_p1_h = vaddq_u16(output1_p1_h, seven_u16); /* Right-shift by 4 (divide by 16), narrow to 8-bit, and combine. */ uint8x16x2_t output_pixels0 = { { vcombine_u8(vshrn_n_u16(output0_p1_l, 4), vshrn_n_u16(output0_p1_h, 4)), vcombine_u8(vrshrn_n_u16(output0_p2_l, 4), vrshrn_n_u16(output0_p2_h, 4)) } }; uint8x16x2_t output_pixels1 = { { vcombine_u8(vshrn_n_u16(output1_p1_l, 4), vshrn_n_u16(output1_p1_h, 4)), vcombine_u8(vrshrn_n_u16(output1_p2_l, 4), vrshrn_n_u16(output1_p2_h, 4)) } }; /* Store pixel component values to memory. * The minimum size of the output buffer for each row is 64 bytes => no * need to worry about buffer overflow here. See "Creation of 2-D sample * arrays" in jmemmgr.c for more details. */ vst2q_u8(outptr0 + 1, output_pixels0); vst2q_u8(outptr1 + 1, output_pixels1); /* The first pixel of the image shifted our loads and stores by one byte. * We have to re-align on a 32-byte boundary at some point before the end * of the row (we do it now on the 32/33 pixel boundary) to stay within the * bounds of the sample buffers without having to resort to a slow scalar * tail case for the last (downsampled_width % 16) samples. See "Creation * of 2-D sample arrays" in jmemmgr.c for more details. */ for (colctr = 16; colctr < downsampled_width; colctr += 16) { /* Step 1: Blend samples vertically in columns s0 and s1. */ /* Load and compute s0colsum0 and s0colsum1. */ s0A = vld1q_u8(inptr0 + colctr - 1); s0B = vld1q_u8(inptr1 + colctr - 1); s0C = vld1q_u8(inptr2 + colctr - 1); s0colsum0_l = vmlal_u8(vmovl_u8(vget_low_u8(s0A)), vget_low_u8(s0B), three_u8); s0colsum0_h = vmlal_u8(vmovl_u8(vget_high_u8(s0A)), vget_high_u8(s0B), three_u8); s0colsum1_l = vmlal_u8(vmovl_u8(vget_low_u8(s0C)), vget_low_u8(s0B), three_u8); s0colsum1_h = vmlal_u8(vmovl_u8(vget_high_u8(s0C)), vget_high_u8(s0B), three_u8); /* Load and compute s1colsum0 and s1colsum1. */ s1A = vld1q_u8(inptr0 + colctr); s1B = vld1q_u8(inptr1 + colctr); s1C = vld1q_u8(inptr2 + colctr); s1colsum0_l = vmlal_u8(vmovl_u8(vget_low_u8(s1A)), vget_low_u8(s1B), three_u8); s1colsum0_h = vmlal_u8(vmovl_u8(vget_high_u8(s1A)), vget_high_u8(s1B), three_u8); s1colsum1_l = vmlal_u8(vmovl_u8(vget_low_u8(s1C)), vget_low_u8(s1B), three_u8); s1colsum1_h = vmlal_u8(vmovl_u8(vget_high_u8(s1C)), vget_high_u8(s1B), three_u8); /* Step 2: Blend the already-blended columns. */ output0_p1_l = vmlaq_u16(s1colsum0_l, s0colsum0_l, three_u16); output0_p1_h = vmlaq_u16(s1colsum0_h, s0colsum0_h, three_u16); output0_p2_l = vmlaq_u16(s0colsum0_l, s1colsum0_l, three_u16); output0_p2_h = vmlaq_u16(s0colsum0_h, s1colsum0_h, three_u16); output1_p1_l = vmlaq_u16(s1colsum1_l, s0colsum1_l, three_u16); output1_p1_h = vmlaq_u16(s1colsum1_h, s0colsum1_h, three_u16); output1_p2_l = vmlaq_u16(s0colsum1_l, s1colsum1_l, three_u16); output1_p2_h = vmlaq_u16(s0colsum1_h, s1colsum1_h, three_u16); /* Add ordered dithering bias to odd pixel values. */ output0_p1_l = vaddq_u16(output0_p1_l, seven_u16); output0_p1_h = vaddq_u16(output0_p1_h, seven_u16); output1_p1_l = vaddq_u16(output1_p1_l, seven_u16); output1_p1_h = vaddq_u16(output1_p1_h, seven_u16); /* Right-shift by 4 (divide by 16), narrow to 8-bit, and combine. */ output_pixels0.val[0] = vcombine_u8(vshrn_n_u16(output0_p1_l, 4), vshrn_n_u16(output0_p1_h, 4)); output_pixels0.val[1] = vcombine_u8(vrshrn_n_u16(output0_p2_l, 4), vrshrn_n_u16(output0_p2_h, 4)); output_pixels1.val[0] = vcombine_u8(vshrn_n_u16(output1_p1_l, 4), vshrn_n_u16(output1_p1_h, 4)); output_pixels1.val[1] = vcombine_u8(vrshrn_n_u16(output1_p2_l, 4), vrshrn_n_u16(output1_p2_h, 4)); /* Store pixel component values to memory. */ vst2q_u8(outptr0 + 2 * colctr - 1, output_pixels0); vst2q_u8(outptr1 + 2 * colctr - 1, output_pixels1); } /* Last pixel component value in this row of the original image */ int s1colsum0 = GETJSAMPLE(inptr1[downsampled_width - 1]) * 3 + GETJSAMPLE(inptr0[downsampled_width - 1]); outptr0[2 * downsampled_width - 1] = (JSAMPLE)((s1colsum0 * 4 + 7) >> 4); int s1colsum1 = GETJSAMPLE(inptr1[downsampled_width - 1]) * 3 + GETJSAMPLE(inptr2[downsampled_width - 1]); outptr1[2 * downsampled_width - 1] = (JSAMPLE)((s1colsum1 * 4 + 7) >> 4); inrow++; } } /* The diagram below shows a column of samples produced by h1v2 downsampling * (or by losslessly rotating or transposing an h2v1-downsampled image.) * * +---------+ * | p0 | * sA | | * | p1 | * +---------+ * | p2 | * sB | | * | p3 | * +---------+ * | p4 | * sC | | * | p5 | * +---------+ * * Samples sA-sC were created by averaging the original pixel component values * centered at positions p0-p5 above. To approximate those original pixel * component values, we proportionally blend the adjacent samples in each * column. * * An upsampled pixel component value is computed by blending the sample * containing the pixel center with the nearest neighboring sample, in the * ratio 3:1. For example: * p1(upsampled) = 3/4 * sA + 1/4 * sB * p2(upsampled) = 3/4 * sB + 1/4 * sA * When computing the first and last pixel component values in the column, * there is no adjacent sample to blend, so: * p0(upsampled) = sA * p5(upsampled) = sC */ void jsimd_h1v2_fancy_upsample_neon(int max_v_samp_factor, JDIMENSION downsampled_width, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { JSAMPARRAY output_data = *output_data_ptr; JSAMPROW inptr0, inptr1, inptr2, outptr0, outptr1; int inrow, outrow; unsigned colctr; /* Set up constants. */ const uint16x8_t one_u16 = vdupq_n_u16(1); const uint8x8_t three_u8 = vdup_n_u8(3); inrow = outrow = 0; while (outrow < max_v_samp_factor) { inptr0 = input_data[inrow - 1]; inptr1 = input_data[inrow]; inptr2 = input_data[inrow + 1]; /* Suffixes 0 and 1 denote the upper and lower rows of output pixels, * respectively. */ outptr0 = output_data[outrow++]; outptr1 = output_data[outrow++]; inrow++; /* The size of the input and output buffers is always a multiple of 32 * bytes => no need to worry about buffer overflow when reading/writing * memory. See "Creation of 2-D sample arrays" in jmemmgr.c for more * details. */ for (colctr = 0; colctr < downsampled_width; colctr += 16) { /* Load samples. */ uint8x16_t sA = vld1q_u8(inptr0 + colctr); uint8x16_t sB = vld1q_u8(inptr1 + colctr); uint8x16_t sC = vld1q_u8(inptr2 + colctr); /* Blend samples vertically. */ uint16x8_t colsum0_l = vmlal_u8(vmovl_u8(vget_low_u8(sA)), vget_low_u8(sB), three_u8); uint16x8_t colsum0_h = vmlal_u8(vmovl_u8(vget_high_u8(sA)), vget_high_u8(sB), three_u8); uint16x8_t colsum1_l = vmlal_u8(vmovl_u8(vget_low_u8(sC)), vget_low_u8(sB), three_u8); uint16x8_t colsum1_h = vmlal_u8(vmovl_u8(vget_high_u8(sC)), vget_high_u8(sB), three_u8); /* Add ordered dithering bias to pixel values in even output rows. */ colsum0_l = vaddq_u16(colsum0_l, one_u16); colsum0_h = vaddq_u16(colsum0_h, one_u16); /* Right-shift by 2 (divide by 4), narrow to 8-bit, and combine. */ uint8x16_t output_pixels0 = vcombine_u8(vshrn_n_u16(colsum0_l, 2), vshrn_n_u16(colsum0_h, 2)); uint8x16_t output_pixels1 = vcombine_u8(vrshrn_n_u16(colsum1_l, 2), vrshrn_n_u16(colsum1_h, 2)); /* Store pixel component values to memory. */ vst1q_u8(outptr0 + colctr, output_pixels0); vst1q_u8(outptr1 + colctr, output_pixels1); } } } /* The diagram below shows a row of samples produced by h2v1 downsampling. * * s0 s1 * +---------+---------+ * | | | * | p0 p1 | p2 p3 | * | | | * +---------+---------+ * * Samples s0 and s1 were created by averaging the original pixel component * values centered at positions p0-p3 above. To approximate those original * pixel component values, we duplicate the samples horizontally: * p0(upsampled) = p1(upsampled) = s0 * p2(upsampled) = p3(upsampled) = s1 */ void jsimd_h2v1_upsample_neon(int max_v_samp_factor, JDIMENSION output_width, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { JSAMPARRAY output_data = *output_data_ptr; JSAMPROW inptr, outptr; int inrow; unsigned colctr; for (inrow = 0; inrow < max_v_samp_factor; inrow++) { inptr = input_data[inrow]; outptr = output_data[inrow]; for (colctr = 0; 2 * colctr < output_width; colctr += 16) { uint8x16_t samples = vld1q_u8(inptr + colctr); /* Duplicate the samples. The store operation below interleaves them so * that adjacent pixel component values take on the same sample value, * per above. */ uint8x16x2_t output_pixels = { { samples, samples } }; /* Store pixel component values to memory. * Due to the way sample buffers are allocated, we don't need to worry * about tail cases when output_width is not a multiple of 32. See * "Creation of 2-D sample arrays" in jmemmgr.c for details. */ vst2q_u8(outptr + 2 * colctr, output_pixels); } } } /* The diagram below shows an array of samples produced by h2v2 downsampling. * * s0 s1 * +---------+---------+ * | p0 p1 | p2 p3 | * sA | | | * | p4 p5 | p6 p7 | * +---------+---------+ * | p8 p9 | p10 p11| * sB | | | * | p12 p13| p14 p15| * +---------+---------+ * * Samples s0A-s1B were created by averaging the original pixel component * values centered at positions p0-p15 above. To approximate those original * pixel component values, we duplicate the samples both horizontally and * vertically: * p0(upsampled) = p1(upsampled) = p4(upsampled) = p5(upsampled) = s0A * p2(upsampled) = p3(upsampled) = p6(upsampled) = p7(upsampled) = s1A * p8(upsampled) = p9(upsampled) = p12(upsampled) = p13(upsampled) = s0B * p10(upsampled) = p11(upsampled) = p14(upsampled) = p15(upsampled) = s1B */ void jsimd_h2v2_upsample_neon(int max_v_samp_factor, JDIMENSION output_width, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { JSAMPARRAY output_data = *output_data_ptr; JSAMPROW inptr, outptr0, outptr1; int inrow, outrow; unsigned colctr; for (inrow = 0, outrow = 0; outrow < max_v_samp_factor; inrow++) { inptr = input_data[inrow]; outptr0 = output_data[outrow++]; outptr1 = output_data[outrow++]; for (colctr = 0; 2 * colctr < output_width; colctr += 16) { uint8x16_t samples = vld1q_u8(inptr + colctr); /* Duplicate the samples. The store operation below interleaves them so * that adjacent pixel component values take on the same sample value, * per above. */ uint8x16x2_t output_pixels = { { samples, samples } }; /* Store pixel component values for both output rows to memory. * Due to the way sample buffers are allocated, we don't need to worry * about tail cases when output_width is not a multiple of 32. See * "Creation of 2-D sample arrays" in jmemmgr.c for details. */ vst2q_u8(outptr0 + 2 * colctr, output_pixels); vst2q_u8(outptr1 + 2 * colctr, output_pixels); } } } libjpeg-turbo-2.1.5/simd/arm/jfdctfst-neon.c000066400000000000000000000174411436506551100207240ustar00rootroot00000000000000/* * jfdctfst-neon.c - fast integer FDCT (Arm Neon) * * Copyright (C) 2020, Arm Limited. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #define JPEG_INTERNALS #include "../../jinclude.h" #include "../../jpeglib.h" #include "../../jsimd.h" #include "../../jdct.h" #include "../../jsimddct.h" #include "../jsimd.h" #include "align.h" #include /* jsimd_fdct_ifast_neon() performs a fast, not so accurate forward DCT * (Discrete Cosine Transform) on one block of samples. It uses the same * calculations and produces exactly the same output as IJG's original * jpeg_fdct_ifast() function, which can be found in jfdctfst.c. * * Scaled integer constants are used to avoid floating-point arithmetic: * 0.382683433 = 12544 * 2^-15 * 0.541196100 = 17795 * 2^-15 * 0.707106781 = 23168 * 2^-15 * 0.306562965 = 9984 * 2^-15 * * See jfdctfst.c for further details of the DCT algorithm. Where possible, * the variable names and comments here in jsimd_fdct_ifast_neon() match up * with those in jpeg_fdct_ifast(). */ #define F_0_382 12544 #define F_0_541 17792 #define F_0_707 23168 #define F_0_306 9984 ALIGN(16) static const int16_t jsimd_fdct_ifast_neon_consts[] = { F_0_382, F_0_541, F_0_707, F_0_306 }; void jsimd_fdct_ifast_neon(DCTELEM *data) { /* Load an 8x8 block of samples into Neon registers. De-interleaving loads * are used, followed by vuzp to transpose the block such that we have a * column of samples per vector - allowing all rows to be processed at once. */ int16x8x4_t data1 = vld4q_s16(data); int16x8x4_t data2 = vld4q_s16(data + 4 * DCTSIZE); int16x8x2_t cols_04 = vuzpq_s16(data1.val[0], data2.val[0]); int16x8x2_t cols_15 = vuzpq_s16(data1.val[1], data2.val[1]); int16x8x2_t cols_26 = vuzpq_s16(data1.val[2], data2.val[2]); int16x8x2_t cols_37 = vuzpq_s16(data1.val[3], data2.val[3]); int16x8_t col0 = cols_04.val[0]; int16x8_t col1 = cols_15.val[0]; int16x8_t col2 = cols_26.val[0]; int16x8_t col3 = cols_37.val[0]; int16x8_t col4 = cols_04.val[1]; int16x8_t col5 = cols_15.val[1]; int16x8_t col6 = cols_26.val[1]; int16x8_t col7 = cols_37.val[1]; /* Pass 1: process rows. */ /* Load DCT conversion constants. */ const int16x4_t consts = vld1_s16(jsimd_fdct_ifast_neon_consts); int16x8_t tmp0 = vaddq_s16(col0, col7); int16x8_t tmp7 = vsubq_s16(col0, col7); int16x8_t tmp1 = vaddq_s16(col1, col6); int16x8_t tmp6 = vsubq_s16(col1, col6); int16x8_t tmp2 = vaddq_s16(col2, col5); int16x8_t tmp5 = vsubq_s16(col2, col5); int16x8_t tmp3 = vaddq_s16(col3, col4); int16x8_t tmp4 = vsubq_s16(col3, col4); /* Even part */ int16x8_t tmp10 = vaddq_s16(tmp0, tmp3); /* phase 2 */ int16x8_t tmp13 = vsubq_s16(tmp0, tmp3); int16x8_t tmp11 = vaddq_s16(tmp1, tmp2); int16x8_t tmp12 = vsubq_s16(tmp1, tmp2); col0 = vaddq_s16(tmp10, tmp11); /* phase 3 */ col4 = vsubq_s16(tmp10, tmp11); int16x8_t z1 = vqdmulhq_lane_s16(vaddq_s16(tmp12, tmp13), consts, 2); col2 = vaddq_s16(tmp13, z1); /* phase 5 */ col6 = vsubq_s16(tmp13, z1); /* Odd part */ tmp10 = vaddq_s16(tmp4, tmp5); /* phase 2 */ tmp11 = vaddq_s16(tmp5, tmp6); tmp12 = vaddq_s16(tmp6, tmp7); int16x8_t z5 = vqdmulhq_lane_s16(vsubq_s16(tmp10, tmp12), consts, 0); int16x8_t z2 = vqdmulhq_lane_s16(tmp10, consts, 1); z2 = vaddq_s16(z2, z5); int16x8_t z4 = vqdmulhq_lane_s16(tmp12, consts, 3); z5 = vaddq_s16(tmp12, z5); z4 = vaddq_s16(z4, z5); int16x8_t z3 = vqdmulhq_lane_s16(tmp11, consts, 2); int16x8_t z11 = vaddq_s16(tmp7, z3); /* phase 5 */ int16x8_t z13 = vsubq_s16(tmp7, z3); col5 = vaddq_s16(z13, z2); /* phase 6 */ col3 = vsubq_s16(z13, z2); col1 = vaddq_s16(z11, z4); col7 = vsubq_s16(z11, z4); /* Transpose to work on columns in pass 2. */ int16x8x2_t cols_01 = vtrnq_s16(col0, col1); int16x8x2_t cols_23 = vtrnq_s16(col2, col3); int16x8x2_t cols_45 = vtrnq_s16(col4, col5); int16x8x2_t cols_67 = vtrnq_s16(col6, col7); int32x4x2_t cols_0145_l = vtrnq_s32(vreinterpretq_s32_s16(cols_01.val[0]), vreinterpretq_s32_s16(cols_45.val[0])); int32x4x2_t cols_0145_h = vtrnq_s32(vreinterpretq_s32_s16(cols_01.val[1]), vreinterpretq_s32_s16(cols_45.val[1])); int32x4x2_t cols_2367_l = vtrnq_s32(vreinterpretq_s32_s16(cols_23.val[0]), vreinterpretq_s32_s16(cols_67.val[0])); int32x4x2_t cols_2367_h = vtrnq_s32(vreinterpretq_s32_s16(cols_23.val[1]), vreinterpretq_s32_s16(cols_67.val[1])); int32x4x2_t rows_04 = vzipq_s32(cols_0145_l.val[0], cols_2367_l.val[0]); int32x4x2_t rows_15 = vzipq_s32(cols_0145_h.val[0], cols_2367_h.val[0]); int32x4x2_t rows_26 = vzipq_s32(cols_0145_l.val[1], cols_2367_l.val[1]); int32x4x2_t rows_37 = vzipq_s32(cols_0145_h.val[1], cols_2367_h.val[1]); int16x8_t row0 = vreinterpretq_s16_s32(rows_04.val[0]); int16x8_t row1 = vreinterpretq_s16_s32(rows_15.val[0]); int16x8_t row2 = vreinterpretq_s16_s32(rows_26.val[0]); int16x8_t row3 = vreinterpretq_s16_s32(rows_37.val[0]); int16x8_t row4 = vreinterpretq_s16_s32(rows_04.val[1]); int16x8_t row5 = vreinterpretq_s16_s32(rows_15.val[1]); int16x8_t row6 = vreinterpretq_s16_s32(rows_26.val[1]); int16x8_t row7 = vreinterpretq_s16_s32(rows_37.val[1]); /* Pass 2: process columns. */ tmp0 = vaddq_s16(row0, row7); tmp7 = vsubq_s16(row0, row7); tmp1 = vaddq_s16(row1, row6); tmp6 = vsubq_s16(row1, row6); tmp2 = vaddq_s16(row2, row5); tmp5 = vsubq_s16(row2, row5); tmp3 = vaddq_s16(row3, row4); tmp4 = vsubq_s16(row3, row4); /* Even part */ tmp10 = vaddq_s16(tmp0, tmp3); /* phase 2 */ tmp13 = vsubq_s16(tmp0, tmp3); tmp11 = vaddq_s16(tmp1, tmp2); tmp12 = vsubq_s16(tmp1, tmp2); row0 = vaddq_s16(tmp10, tmp11); /* phase 3 */ row4 = vsubq_s16(tmp10, tmp11); z1 = vqdmulhq_lane_s16(vaddq_s16(tmp12, tmp13), consts, 2); row2 = vaddq_s16(tmp13, z1); /* phase 5 */ row6 = vsubq_s16(tmp13, z1); /* Odd part */ tmp10 = vaddq_s16(tmp4, tmp5); /* phase 2 */ tmp11 = vaddq_s16(tmp5, tmp6); tmp12 = vaddq_s16(tmp6, tmp7); z5 = vqdmulhq_lane_s16(vsubq_s16(tmp10, tmp12), consts, 0); z2 = vqdmulhq_lane_s16(tmp10, consts, 1); z2 = vaddq_s16(z2, z5); z4 = vqdmulhq_lane_s16(tmp12, consts, 3); z5 = vaddq_s16(tmp12, z5); z4 = vaddq_s16(z4, z5); z3 = vqdmulhq_lane_s16(tmp11, consts, 2); z11 = vaddq_s16(tmp7, z3); /* phase 5 */ z13 = vsubq_s16(tmp7, z3); row5 = vaddq_s16(z13, z2); /* phase 6 */ row3 = vsubq_s16(z13, z2); row1 = vaddq_s16(z11, z4); row7 = vsubq_s16(z11, z4); vst1q_s16(data + 0 * DCTSIZE, row0); vst1q_s16(data + 1 * DCTSIZE, row1); vst1q_s16(data + 2 * DCTSIZE, row2); vst1q_s16(data + 3 * DCTSIZE, row3); vst1q_s16(data + 4 * DCTSIZE, row4); vst1q_s16(data + 5 * DCTSIZE, row5); vst1q_s16(data + 6 * DCTSIZE, row6); vst1q_s16(data + 7 * DCTSIZE, row7); } libjpeg-turbo-2.1.5/simd/arm/jfdctint-neon.c000066400000000000000000000353161436506551100207230ustar00rootroot00000000000000/* * jfdctint-neon.c - accurate integer FDCT (Arm Neon) * * Copyright (C) 2020, Arm Limited. All Rights Reserved. * Copyright (C) 2020, D. R. Commander. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #define JPEG_INTERNALS #include "../../jinclude.h" #include "../../jpeglib.h" #include "../../jsimd.h" #include "../../jdct.h" #include "../../jsimddct.h" #include "../jsimd.h" #include "align.h" #include "neon-compat.h" #include /* jsimd_fdct_islow_neon() performs a slower but more accurate forward DCT * (Discrete Cosine Transform) on one block of samples. It uses the same * calculations and produces exactly the same output as IJG's original * jpeg_fdct_islow() function, which can be found in jfdctint.c. * * Scaled integer constants are used to avoid floating-point arithmetic: * 0.298631336 = 2446 * 2^-13 * 0.390180644 = 3196 * 2^-13 * 0.541196100 = 4433 * 2^-13 * 0.765366865 = 6270 * 2^-13 * 0.899976223 = 7373 * 2^-13 * 1.175875602 = 9633 * 2^-13 * 1.501321110 = 12299 * 2^-13 * 1.847759065 = 15137 * 2^-13 * 1.961570560 = 16069 * 2^-13 * 2.053119869 = 16819 * 2^-13 * 2.562915447 = 20995 * 2^-13 * 3.072711026 = 25172 * 2^-13 * * See jfdctint.c for further details of the DCT algorithm. Where possible, * the variable names and comments here in jsimd_fdct_islow_neon() match up * with those in jpeg_fdct_islow(). */ #define CONST_BITS 13 #define PASS1_BITS 2 #define DESCALE_P1 (CONST_BITS - PASS1_BITS) #define DESCALE_P2 (CONST_BITS + PASS1_BITS) #define F_0_298 2446 #define F_0_390 3196 #define F_0_541 4433 #define F_0_765 6270 #define F_0_899 7373 #define F_1_175 9633 #define F_1_501 12299 #define F_1_847 15137 #define F_1_961 16069 #define F_2_053 16819 #define F_2_562 20995 #define F_3_072 25172 ALIGN(16) static const int16_t jsimd_fdct_islow_neon_consts[] = { F_0_298, -F_0_390, F_0_541, F_0_765, -F_0_899, F_1_175, F_1_501, -F_1_847, -F_1_961, F_2_053, -F_2_562, F_3_072 }; void jsimd_fdct_islow_neon(DCTELEM *data) { /* Load DCT constants. */ #ifdef HAVE_VLD1_S16_X3 const int16x4x3_t consts = vld1_s16_x3(jsimd_fdct_islow_neon_consts); #else /* GCC does not currently support the intrinsic vld1__x3(). */ const int16x4_t consts1 = vld1_s16(jsimd_fdct_islow_neon_consts); const int16x4_t consts2 = vld1_s16(jsimd_fdct_islow_neon_consts + 4); const int16x4_t consts3 = vld1_s16(jsimd_fdct_islow_neon_consts + 8); const int16x4x3_t consts = { { consts1, consts2, consts3 } }; #endif /* Load an 8x8 block of samples into Neon registers. De-interleaving loads * are used, followed by vuzp to transpose the block such that we have a * column of samples per vector - allowing all rows to be processed at once. */ int16x8x4_t s_rows_0123 = vld4q_s16(data); int16x8x4_t s_rows_4567 = vld4q_s16(data + 4 * DCTSIZE); int16x8x2_t cols_04 = vuzpq_s16(s_rows_0123.val[0], s_rows_4567.val[0]); int16x8x2_t cols_15 = vuzpq_s16(s_rows_0123.val[1], s_rows_4567.val[1]); int16x8x2_t cols_26 = vuzpq_s16(s_rows_0123.val[2], s_rows_4567.val[2]); int16x8x2_t cols_37 = vuzpq_s16(s_rows_0123.val[3], s_rows_4567.val[3]); int16x8_t col0 = cols_04.val[0]; int16x8_t col1 = cols_15.val[0]; int16x8_t col2 = cols_26.val[0]; int16x8_t col3 = cols_37.val[0]; int16x8_t col4 = cols_04.val[1]; int16x8_t col5 = cols_15.val[1]; int16x8_t col6 = cols_26.val[1]; int16x8_t col7 = cols_37.val[1]; /* Pass 1: process rows. */ int16x8_t tmp0 = vaddq_s16(col0, col7); int16x8_t tmp7 = vsubq_s16(col0, col7); int16x8_t tmp1 = vaddq_s16(col1, col6); int16x8_t tmp6 = vsubq_s16(col1, col6); int16x8_t tmp2 = vaddq_s16(col2, col5); int16x8_t tmp5 = vsubq_s16(col2, col5); int16x8_t tmp3 = vaddq_s16(col3, col4); int16x8_t tmp4 = vsubq_s16(col3, col4); /* Even part */ int16x8_t tmp10 = vaddq_s16(tmp0, tmp3); int16x8_t tmp13 = vsubq_s16(tmp0, tmp3); int16x8_t tmp11 = vaddq_s16(tmp1, tmp2); int16x8_t tmp12 = vsubq_s16(tmp1, tmp2); col0 = vshlq_n_s16(vaddq_s16(tmp10, tmp11), PASS1_BITS); col4 = vshlq_n_s16(vsubq_s16(tmp10, tmp11), PASS1_BITS); int16x8_t tmp12_add_tmp13 = vaddq_s16(tmp12, tmp13); int32x4_t z1_l = vmull_lane_s16(vget_low_s16(tmp12_add_tmp13), consts.val[0], 2); int32x4_t z1_h = vmull_lane_s16(vget_high_s16(tmp12_add_tmp13), consts.val[0], 2); int32x4_t col2_scaled_l = vmlal_lane_s16(z1_l, vget_low_s16(tmp13), consts.val[0], 3); int32x4_t col2_scaled_h = vmlal_lane_s16(z1_h, vget_high_s16(tmp13), consts.val[0], 3); col2 = vcombine_s16(vrshrn_n_s32(col2_scaled_l, DESCALE_P1), vrshrn_n_s32(col2_scaled_h, DESCALE_P1)); int32x4_t col6_scaled_l = vmlal_lane_s16(z1_l, vget_low_s16(tmp12), consts.val[1], 3); int32x4_t col6_scaled_h = vmlal_lane_s16(z1_h, vget_high_s16(tmp12), consts.val[1], 3); col6 = vcombine_s16(vrshrn_n_s32(col6_scaled_l, DESCALE_P1), vrshrn_n_s32(col6_scaled_h, DESCALE_P1)); /* Odd part */ int16x8_t z1 = vaddq_s16(tmp4, tmp7); int16x8_t z2 = vaddq_s16(tmp5, tmp6); int16x8_t z3 = vaddq_s16(tmp4, tmp6); int16x8_t z4 = vaddq_s16(tmp5, tmp7); /* sqrt(2) * c3 */ int32x4_t z5_l = vmull_lane_s16(vget_low_s16(z3), consts.val[1], 1); int32x4_t z5_h = vmull_lane_s16(vget_high_s16(z3), consts.val[1], 1); z5_l = vmlal_lane_s16(z5_l, vget_low_s16(z4), consts.val[1], 1); z5_h = vmlal_lane_s16(z5_h, vget_high_s16(z4), consts.val[1], 1); /* sqrt(2) * (-c1+c3+c5-c7) */ int32x4_t tmp4_l = vmull_lane_s16(vget_low_s16(tmp4), consts.val[0], 0); int32x4_t tmp4_h = vmull_lane_s16(vget_high_s16(tmp4), consts.val[0], 0); /* sqrt(2) * ( c1+c3-c5+c7) */ int32x4_t tmp5_l = vmull_lane_s16(vget_low_s16(tmp5), consts.val[2], 1); int32x4_t tmp5_h = vmull_lane_s16(vget_high_s16(tmp5), consts.val[2], 1); /* sqrt(2) * ( c1+c3+c5-c7) */ int32x4_t tmp6_l = vmull_lane_s16(vget_low_s16(tmp6), consts.val[2], 3); int32x4_t tmp6_h = vmull_lane_s16(vget_high_s16(tmp6), consts.val[2], 3); /* sqrt(2) * ( c1+c3-c5-c7) */ int32x4_t tmp7_l = vmull_lane_s16(vget_low_s16(tmp7), consts.val[1], 2); int32x4_t tmp7_h = vmull_lane_s16(vget_high_s16(tmp7), consts.val[1], 2); /* sqrt(2) * (c7-c3) */ z1_l = vmull_lane_s16(vget_low_s16(z1), consts.val[1], 0); z1_h = vmull_lane_s16(vget_high_s16(z1), consts.val[1], 0); /* sqrt(2) * (-c1-c3) */ int32x4_t z2_l = vmull_lane_s16(vget_low_s16(z2), consts.val[2], 2); int32x4_t z2_h = vmull_lane_s16(vget_high_s16(z2), consts.val[2], 2); /* sqrt(2) * (-c3-c5) */ int32x4_t z3_l = vmull_lane_s16(vget_low_s16(z3), consts.val[2], 0); int32x4_t z3_h = vmull_lane_s16(vget_high_s16(z3), consts.val[2], 0); /* sqrt(2) * (c5-c3) */ int32x4_t z4_l = vmull_lane_s16(vget_low_s16(z4), consts.val[0], 1); int32x4_t z4_h = vmull_lane_s16(vget_high_s16(z4), consts.val[0], 1); z3_l = vaddq_s32(z3_l, z5_l); z3_h = vaddq_s32(z3_h, z5_h); z4_l = vaddq_s32(z4_l, z5_l); z4_h = vaddq_s32(z4_h, z5_h); tmp4_l = vaddq_s32(tmp4_l, z1_l); tmp4_h = vaddq_s32(tmp4_h, z1_h); tmp4_l = vaddq_s32(tmp4_l, z3_l); tmp4_h = vaddq_s32(tmp4_h, z3_h); col7 = vcombine_s16(vrshrn_n_s32(tmp4_l, DESCALE_P1), vrshrn_n_s32(tmp4_h, DESCALE_P1)); tmp5_l = vaddq_s32(tmp5_l, z2_l); tmp5_h = vaddq_s32(tmp5_h, z2_h); tmp5_l = vaddq_s32(tmp5_l, z4_l); tmp5_h = vaddq_s32(tmp5_h, z4_h); col5 = vcombine_s16(vrshrn_n_s32(tmp5_l, DESCALE_P1), vrshrn_n_s32(tmp5_h, DESCALE_P1)); tmp6_l = vaddq_s32(tmp6_l, z2_l); tmp6_h = vaddq_s32(tmp6_h, z2_h); tmp6_l = vaddq_s32(tmp6_l, z3_l); tmp6_h = vaddq_s32(tmp6_h, z3_h); col3 = vcombine_s16(vrshrn_n_s32(tmp6_l, DESCALE_P1), vrshrn_n_s32(tmp6_h, DESCALE_P1)); tmp7_l = vaddq_s32(tmp7_l, z1_l); tmp7_h = vaddq_s32(tmp7_h, z1_h); tmp7_l = vaddq_s32(tmp7_l, z4_l); tmp7_h = vaddq_s32(tmp7_h, z4_h); col1 = vcombine_s16(vrshrn_n_s32(tmp7_l, DESCALE_P1), vrshrn_n_s32(tmp7_h, DESCALE_P1)); /* Transpose to work on columns in pass 2. */ int16x8x2_t cols_01 = vtrnq_s16(col0, col1); int16x8x2_t cols_23 = vtrnq_s16(col2, col3); int16x8x2_t cols_45 = vtrnq_s16(col4, col5); int16x8x2_t cols_67 = vtrnq_s16(col6, col7); int32x4x2_t cols_0145_l = vtrnq_s32(vreinterpretq_s32_s16(cols_01.val[0]), vreinterpretq_s32_s16(cols_45.val[0])); int32x4x2_t cols_0145_h = vtrnq_s32(vreinterpretq_s32_s16(cols_01.val[1]), vreinterpretq_s32_s16(cols_45.val[1])); int32x4x2_t cols_2367_l = vtrnq_s32(vreinterpretq_s32_s16(cols_23.val[0]), vreinterpretq_s32_s16(cols_67.val[0])); int32x4x2_t cols_2367_h = vtrnq_s32(vreinterpretq_s32_s16(cols_23.val[1]), vreinterpretq_s32_s16(cols_67.val[1])); int32x4x2_t rows_04 = vzipq_s32(cols_0145_l.val[0], cols_2367_l.val[0]); int32x4x2_t rows_15 = vzipq_s32(cols_0145_h.val[0], cols_2367_h.val[0]); int32x4x2_t rows_26 = vzipq_s32(cols_0145_l.val[1], cols_2367_l.val[1]); int32x4x2_t rows_37 = vzipq_s32(cols_0145_h.val[1], cols_2367_h.val[1]); int16x8_t row0 = vreinterpretq_s16_s32(rows_04.val[0]); int16x8_t row1 = vreinterpretq_s16_s32(rows_15.val[0]); int16x8_t row2 = vreinterpretq_s16_s32(rows_26.val[0]); int16x8_t row3 = vreinterpretq_s16_s32(rows_37.val[0]); int16x8_t row4 = vreinterpretq_s16_s32(rows_04.val[1]); int16x8_t row5 = vreinterpretq_s16_s32(rows_15.val[1]); int16x8_t row6 = vreinterpretq_s16_s32(rows_26.val[1]); int16x8_t row7 = vreinterpretq_s16_s32(rows_37.val[1]); /* Pass 2: process columns. */ tmp0 = vaddq_s16(row0, row7); tmp7 = vsubq_s16(row0, row7); tmp1 = vaddq_s16(row1, row6); tmp6 = vsubq_s16(row1, row6); tmp2 = vaddq_s16(row2, row5); tmp5 = vsubq_s16(row2, row5); tmp3 = vaddq_s16(row3, row4); tmp4 = vsubq_s16(row3, row4); /* Even part */ tmp10 = vaddq_s16(tmp0, tmp3); tmp13 = vsubq_s16(tmp0, tmp3); tmp11 = vaddq_s16(tmp1, tmp2); tmp12 = vsubq_s16(tmp1, tmp2); row0 = vrshrq_n_s16(vaddq_s16(tmp10, tmp11), PASS1_BITS); row4 = vrshrq_n_s16(vsubq_s16(tmp10, tmp11), PASS1_BITS); tmp12_add_tmp13 = vaddq_s16(tmp12, tmp13); z1_l = vmull_lane_s16(vget_low_s16(tmp12_add_tmp13), consts.val[0], 2); z1_h = vmull_lane_s16(vget_high_s16(tmp12_add_tmp13), consts.val[0], 2); int32x4_t row2_scaled_l = vmlal_lane_s16(z1_l, vget_low_s16(tmp13), consts.val[0], 3); int32x4_t row2_scaled_h = vmlal_lane_s16(z1_h, vget_high_s16(tmp13), consts.val[0], 3); row2 = vcombine_s16(vrshrn_n_s32(row2_scaled_l, DESCALE_P2), vrshrn_n_s32(row2_scaled_h, DESCALE_P2)); int32x4_t row6_scaled_l = vmlal_lane_s16(z1_l, vget_low_s16(tmp12), consts.val[1], 3); int32x4_t row6_scaled_h = vmlal_lane_s16(z1_h, vget_high_s16(tmp12), consts.val[1], 3); row6 = vcombine_s16(vrshrn_n_s32(row6_scaled_l, DESCALE_P2), vrshrn_n_s32(row6_scaled_h, DESCALE_P2)); /* Odd part */ z1 = vaddq_s16(tmp4, tmp7); z2 = vaddq_s16(tmp5, tmp6); z3 = vaddq_s16(tmp4, tmp6); z4 = vaddq_s16(tmp5, tmp7); /* sqrt(2) * c3 */ z5_l = vmull_lane_s16(vget_low_s16(z3), consts.val[1], 1); z5_h = vmull_lane_s16(vget_high_s16(z3), consts.val[1], 1); z5_l = vmlal_lane_s16(z5_l, vget_low_s16(z4), consts.val[1], 1); z5_h = vmlal_lane_s16(z5_h, vget_high_s16(z4), consts.val[1], 1); /* sqrt(2) * (-c1+c3+c5-c7) */ tmp4_l = vmull_lane_s16(vget_low_s16(tmp4), consts.val[0], 0); tmp4_h = vmull_lane_s16(vget_high_s16(tmp4), consts.val[0], 0); /* sqrt(2) * ( c1+c3-c5+c7) */ tmp5_l = vmull_lane_s16(vget_low_s16(tmp5), consts.val[2], 1); tmp5_h = vmull_lane_s16(vget_high_s16(tmp5), consts.val[2], 1); /* sqrt(2) * ( c1+c3+c5-c7) */ tmp6_l = vmull_lane_s16(vget_low_s16(tmp6), consts.val[2], 3); tmp6_h = vmull_lane_s16(vget_high_s16(tmp6), consts.val[2], 3); /* sqrt(2) * ( c1+c3-c5-c7) */ tmp7_l = vmull_lane_s16(vget_low_s16(tmp7), consts.val[1], 2); tmp7_h = vmull_lane_s16(vget_high_s16(tmp7), consts.val[1], 2); /* sqrt(2) * (c7-c3) */ z1_l = vmull_lane_s16(vget_low_s16(z1), consts.val[1], 0); z1_h = vmull_lane_s16(vget_high_s16(z1), consts.val[1], 0); /* sqrt(2) * (-c1-c3) */ z2_l = vmull_lane_s16(vget_low_s16(z2), consts.val[2], 2); z2_h = vmull_lane_s16(vget_high_s16(z2), consts.val[2], 2); /* sqrt(2) * (-c3-c5) */ z3_l = vmull_lane_s16(vget_low_s16(z3), consts.val[2], 0); z3_h = vmull_lane_s16(vget_high_s16(z3), consts.val[2], 0); /* sqrt(2) * (c5-c3) */ z4_l = vmull_lane_s16(vget_low_s16(z4), consts.val[0], 1); z4_h = vmull_lane_s16(vget_high_s16(z4), consts.val[0], 1); z3_l = vaddq_s32(z3_l, z5_l); z3_h = vaddq_s32(z3_h, z5_h); z4_l = vaddq_s32(z4_l, z5_l); z4_h = vaddq_s32(z4_h, z5_h); tmp4_l = vaddq_s32(tmp4_l, z1_l); tmp4_h = vaddq_s32(tmp4_h, z1_h); tmp4_l = vaddq_s32(tmp4_l, z3_l); tmp4_h = vaddq_s32(tmp4_h, z3_h); row7 = vcombine_s16(vrshrn_n_s32(tmp4_l, DESCALE_P2), vrshrn_n_s32(tmp4_h, DESCALE_P2)); tmp5_l = vaddq_s32(tmp5_l, z2_l); tmp5_h = vaddq_s32(tmp5_h, z2_h); tmp5_l = vaddq_s32(tmp5_l, z4_l); tmp5_h = vaddq_s32(tmp5_h, z4_h); row5 = vcombine_s16(vrshrn_n_s32(tmp5_l, DESCALE_P2), vrshrn_n_s32(tmp5_h, DESCALE_P2)); tmp6_l = vaddq_s32(tmp6_l, z2_l); tmp6_h = vaddq_s32(tmp6_h, z2_h); tmp6_l = vaddq_s32(tmp6_l, z3_l); tmp6_h = vaddq_s32(tmp6_h, z3_h); row3 = vcombine_s16(vrshrn_n_s32(tmp6_l, DESCALE_P2), vrshrn_n_s32(tmp6_h, DESCALE_P2)); tmp7_l = vaddq_s32(tmp7_l, z1_l); tmp7_h = vaddq_s32(tmp7_h, z1_h); tmp7_l = vaddq_s32(tmp7_l, z4_l); tmp7_h = vaddq_s32(tmp7_h, z4_h); row1 = vcombine_s16(vrshrn_n_s32(tmp7_l, DESCALE_P2), vrshrn_n_s32(tmp7_h, DESCALE_P2)); vst1q_s16(data + 0 * DCTSIZE, row0); vst1q_s16(data + 1 * DCTSIZE, row1); vst1q_s16(data + 2 * DCTSIZE, row2); vst1q_s16(data + 3 * DCTSIZE, row3); vst1q_s16(data + 4 * DCTSIZE, row4); vst1q_s16(data + 5 * DCTSIZE, row5); vst1q_s16(data + 6 * DCTSIZE, row6); vst1q_s16(data + 7 * DCTSIZE, row7); } libjpeg-turbo-2.1.5/simd/arm/jidctfst-neon.c000066400000000000000000000466161436506551100207350ustar00rootroot00000000000000/* * jidctfst-neon.c - fast integer IDCT (Arm Neon) * * Copyright (C) 2020, Arm Limited. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #define JPEG_INTERNALS #include "../../jinclude.h" #include "../../jpeglib.h" #include "../../jsimd.h" #include "../../jdct.h" #include "../../jsimddct.h" #include "../jsimd.h" #include "align.h" #include /* jsimd_idct_ifast_neon() performs dequantization and a fast, not so accurate * inverse DCT (Discrete Cosine Transform) on one block of coefficients. It * uses the same calculations and produces exactly the same output as IJG's * original jpeg_idct_ifast() function, which can be found in jidctfst.c. * * Scaled integer constants are used to avoid floating-point arithmetic: * 0.082392200 = 2688 * 2^-15 * 0.414213562 = 13568 * 2^-15 * 0.847759065 = 27776 * 2^-15 * 0.613125930 = 20096 * 2^-15 * * See jidctfst.c for further details of the IDCT algorithm. Where possible, * the variable names and comments here in jsimd_idct_ifast_neon() match up * with those in jpeg_idct_ifast(). */ #define PASS1_BITS 2 #define F_0_082 2688 #define F_0_414 13568 #define F_0_847 27776 #define F_0_613 20096 ALIGN(16) static const int16_t jsimd_idct_ifast_neon_consts[] = { F_0_082, F_0_414, F_0_847, F_0_613 }; void jsimd_idct_ifast_neon(void *dct_table, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { IFAST_MULT_TYPE *quantptr = dct_table; /* Load DCT coefficients. */ int16x8_t row0 = vld1q_s16(coef_block + 0 * DCTSIZE); int16x8_t row1 = vld1q_s16(coef_block + 1 * DCTSIZE); int16x8_t row2 = vld1q_s16(coef_block + 2 * DCTSIZE); int16x8_t row3 = vld1q_s16(coef_block + 3 * DCTSIZE); int16x8_t row4 = vld1q_s16(coef_block + 4 * DCTSIZE); int16x8_t row5 = vld1q_s16(coef_block + 5 * DCTSIZE); int16x8_t row6 = vld1q_s16(coef_block + 6 * DCTSIZE); int16x8_t row7 = vld1q_s16(coef_block + 7 * DCTSIZE); /* Load quantization table values for DC coefficients. */ int16x8_t quant_row0 = vld1q_s16(quantptr + 0 * DCTSIZE); /* Dequantize DC coefficients. */ row0 = vmulq_s16(row0, quant_row0); /* Construct bitmap to test if all AC coefficients are 0. */ int16x8_t bitmap = vorrq_s16(row1, row2); bitmap = vorrq_s16(bitmap, row3); bitmap = vorrq_s16(bitmap, row4); bitmap = vorrq_s16(bitmap, row5); bitmap = vorrq_s16(bitmap, row6); bitmap = vorrq_s16(bitmap, row7); int64_t left_ac_bitmap = vgetq_lane_s64(vreinterpretq_s64_s16(bitmap), 0); int64_t right_ac_bitmap = vgetq_lane_s64(vreinterpretq_s64_s16(bitmap), 1); /* Load IDCT conversion constants. */ const int16x4_t consts = vld1_s16(jsimd_idct_ifast_neon_consts); if (left_ac_bitmap == 0 && right_ac_bitmap == 0) { /* All AC coefficients are zero. * Compute DC values and duplicate into vectors. */ int16x8_t dcval = row0; row1 = dcval; row2 = dcval; row3 = dcval; row4 = dcval; row5 = dcval; row6 = dcval; row7 = dcval; } else if (left_ac_bitmap == 0) { /* AC coefficients are zero for columns 0, 1, 2, and 3. * Use DC values for these columns. */ int16x4_t dcval = vget_low_s16(row0); /* Commence regular fast IDCT computation for columns 4, 5, 6, and 7. */ /* Load quantization table. */ int16x4_t quant_row1 = vld1_s16(quantptr + 1 * DCTSIZE + 4); int16x4_t quant_row2 = vld1_s16(quantptr + 2 * DCTSIZE + 4); int16x4_t quant_row3 = vld1_s16(quantptr + 3 * DCTSIZE + 4); int16x4_t quant_row4 = vld1_s16(quantptr + 4 * DCTSIZE + 4); int16x4_t quant_row5 = vld1_s16(quantptr + 5 * DCTSIZE + 4); int16x4_t quant_row6 = vld1_s16(quantptr + 6 * DCTSIZE + 4); int16x4_t quant_row7 = vld1_s16(quantptr + 7 * DCTSIZE + 4); /* Even part: dequantize DCT coefficients. */ int16x4_t tmp0 = vget_high_s16(row0); int16x4_t tmp1 = vmul_s16(vget_high_s16(row2), quant_row2); int16x4_t tmp2 = vmul_s16(vget_high_s16(row4), quant_row4); int16x4_t tmp3 = vmul_s16(vget_high_s16(row6), quant_row6); int16x4_t tmp10 = vadd_s16(tmp0, tmp2); /* phase 3 */ int16x4_t tmp11 = vsub_s16(tmp0, tmp2); int16x4_t tmp13 = vadd_s16(tmp1, tmp3); /* phases 5-3 */ int16x4_t tmp1_sub_tmp3 = vsub_s16(tmp1, tmp3); int16x4_t tmp12 = vqdmulh_lane_s16(tmp1_sub_tmp3, consts, 1); tmp12 = vadd_s16(tmp12, tmp1_sub_tmp3); tmp12 = vsub_s16(tmp12, tmp13); tmp0 = vadd_s16(tmp10, tmp13); /* phase 2 */ tmp3 = vsub_s16(tmp10, tmp13); tmp1 = vadd_s16(tmp11, tmp12); tmp2 = vsub_s16(tmp11, tmp12); /* Odd part: dequantize DCT coefficients. */ int16x4_t tmp4 = vmul_s16(vget_high_s16(row1), quant_row1); int16x4_t tmp5 = vmul_s16(vget_high_s16(row3), quant_row3); int16x4_t tmp6 = vmul_s16(vget_high_s16(row5), quant_row5); int16x4_t tmp7 = vmul_s16(vget_high_s16(row7), quant_row7); int16x4_t z13 = vadd_s16(tmp6, tmp5); /* phase 6 */ int16x4_t neg_z10 = vsub_s16(tmp5, tmp6); int16x4_t z11 = vadd_s16(tmp4, tmp7); int16x4_t z12 = vsub_s16(tmp4, tmp7); tmp7 = vadd_s16(z11, z13); /* phase 5 */ int16x4_t z11_sub_z13 = vsub_s16(z11, z13); tmp11 = vqdmulh_lane_s16(z11_sub_z13, consts, 1); tmp11 = vadd_s16(tmp11, z11_sub_z13); int16x4_t z10_add_z12 = vsub_s16(z12, neg_z10); int16x4_t z5 = vqdmulh_lane_s16(z10_add_z12, consts, 2); z5 = vadd_s16(z5, z10_add_z12); tmp10 = vqdmulh_lane_s16(z12, consts, 0); tmp10 = vadd_s16(tmp10, z12); tmp10 = vsub_s16(tmp10, z5); tmp12 = vqdmulh_lane_s16(neg_z10, consts, 3); tmp12 = vadd_s16(tmp12, vadd_s16(neg_z10, neg_z10)); tmp12 = vadd_s16(tmp12, z5); tmp6 = vsub_s16(tmp12, tmp7); /* phase 2 */ tmp5 = vsub_s16(tmp11, tmp6); tmp4 = vadd_s16(tmp10, tmp5); row0 = vcombine_s16(dcval, vadd_s16(tmp0, tmp7)); row7 = vcombine_s16(dcval, vsub_s16(tmp0, tmp7)); row1 = vcombine_s16(dcval, vadd_s16(tmp1, tmp6)); row6 = vcombine_s16(dcval, vsub_s16(tmp1, tmp6)); row2 = vcombine_s16(dcval, vadd_s16(tmp2, tmp5)); row5 = vcombine_s16(dcval, vsub_s16(tmp2, tmp5)); row4 = vcombine_s16(dcval, vadd_s16(tmp3, tmp4)); row3 = vcombine_s16(dcval, vsub_s16(tmp3, tmp4)); } else if (right_ac_bitmap == 0) { /* AC coefficients are zero for columns 4, 5, 6, and 7. * Use DC values for these columns. */ int16x4_t dcval = vget_high_s16(row0); /* Commence regular fast IDCT computation for columns 0, 1, 2, and 3. */ /* Load quantization table. */ int16x4_t quant_row1 = vld1_s16(quantptr + 1 * DCTSIZE); int16x4_t quant_row2 = vld1_s16(quantptr + 2 * DCTSIZE); int16x4_t quant_row3 = vld1_s16(quantptr + 3 * DCTSIZE); int16x4_t quant_row4 = vld1_s16(quantptr + 4 * DCTSIZE); int16x4_t quant_row5 = vld1_s16(quantptr + 5 * DCTSIZE); int16x4_t quant_row6 = vld1_s16(quantptr + 6 * DCTSIZE); int16x4_t quant_row7 = vld1_s16(quantptr + 7 * DCTSIZE); /* Even part: dequantize DCT coefficients. */ int16x4_t tmp0 = vget_low_s16(row0); int16x4_t tmp1 = vmul_s16(vget_low_s16(row2), quant_row2); int16x4_t tmp2 = vmul_s16(vget_low_s16(row4), quant_row4); int16x4_t tmp3 = vmul_s16(vget_low_s16(row6), quant_row6); int16x4_t tmp10 = vadd_s16(tmp0, tmp2); /* phase 3 */ int16x4_t tmp11 = vsub_s16(tmp0, tmp2); int16x4_t tmp13 = vadd_s16(tmp1, tmp3); /* phases 5-3 */ int16x4_t tmp1_sub_tmp3 = vsub_s16(tmp1, tmp3); int16x4_t tmp12 = vqdmulh_lane_s16(tmp1_sub_tmp3, consts, 1); tmp12 = vadd_s16(tmp12, tmp1_sub_tmp3); tmp12 = vsub_s16(tmp12, tmp13); tmp0 = vadd_s16(tmp10, tmp13); /* phase 2 */ tmp3 = vsub_s16(tmp10, tmp13); tmp1 = vadd_s16(tmp11, tmp12); tmp2 = vsub_s16(tmp11, tmp12); /* Odd part: dequantize DCT coefficients. */ int16x4_t tmp4 = vmul_s16(vget_low_s16(row1), quant_row1); int16x4_t tmp5 = vmul_s16(vget_low_s16(row3), quant_row3); int16x4_t tmp6 = vmul_s16(vget_low_s16(row5), quant_row5); int16x4_t tmp7 = vmul_s16(vget_low_s16(row7), quant_row7); int16x4_t z13 = vadd_s16(tmp6, tmp5); /* phase 6 */ int16x4_t neg_z10 = vsub_s16(tmp5, tmp6); int16x4_t z11 = vadd_s16(tmp4, tmp7); int16x4_t z12 = vsub_s16(tmp4, tmp7); tmp7 = vadd_s16(z11, z13); /* phase 5 */ int16x4_t z11_sub_z13 = vsub_s16(z11, z13); tmp11 = vqdmulh_lane_s16(z11_sub_z13, consts, 1); tmp11 = vadd_s16(tmp11, z11_sub_z13); int16x4_t z10_add_z12 = vsub_s16(z12, neg_z10); int16x4_t z5 = vqdmulh_lane_s16(z10_add_z12, consts, 2); z5 = vadd_s16(z5, z10_add_z12); tmp10 = vqdmulh_lane_s16(z12, consts, 0); tmp10 = vadd_s16(tmp10, z12); tmp10 = vsub_s16(tmp10, z5); tmp12 = vqdmulh_lane_s16(neg_z10, consts, 3); tmp12 = vadd_s16(tmp12, vadd_s16(neg_z10, neg_z10)); tmp12 = vadd_s16(tmp12, z5); tmp6 = vsub_s16(tmp12, tmp7); /* phase 2 */ tmp5 = vsub_s16(tmp11, tmp6); tmp4 = vadd_s16(tmp10, tmp5); row0 = vcombine_s16(vadd_s16(tmp0, tmp7), dcval); row7 = vcombine_s16(vsub_s16(tmp0, tmp7), dcval); row1 = vcombine_s16(vadd_s16(tmp1, tmp6), dcval); row6 = vcombine_s16(vsub_s16(tmp1, tmp6), dcval); row2 = vcombine_s16(vadd_s16(tmp2, tmp5), dcval); row5 = vcombine_s16(vsub_s16(tmp2, tmp5), dcval); row4 = vcombine_s16(vadd_s16(tmp3, tmp4), dcval); row3 = vcombine_s16(vsub_s16(tmp3, tmp4), dcval); } else { /* Some AC coefficients are non-zero; full IDCT calculation required. */ /* Load quantization table. */ int16x8_t quant_row1 = vld1q_s16(quantptr + 1 * DCTSIZE); int16x8_t quant_row2 = vld1q_s16(quantptr + 2 * DCTSIZE); int16x8_t quant_row3 = vld1q_s16(quantptr + 3 * DCTSIZE); int16x8_t quant_row4 = vld1q_s16(quantptr + 4 * DCTSIZE); int16x8_t quant_row5 = vld1q_s16(quantptr + 5 * DCTSIZE); int16x8_t quant_row6 = vld1q_s16(quantptr + 6 * DCTSIZE); int16x8_t quant_row7 = vld1q_s16(quantptr + 7 * DCTSIZE); /* Even part: dequantize DCT coefficients. */ int16x8_t tmp0 = row0; int16x8_t tmp1 = vmulq_s16(row2, quant_row2); int16x8_t tmp2 = vmulq_s16(row4, quant_row4); int16x8_t tmp3 = vmulq_s16(row6, quant_row6); int16x8_t tmp10 = vaddq_s16(tmp0, tmp2); /* phase 3 */ int16x8_t tmp11 = vsubq_s16(tmp0, tmp2); int16x8_t tmp13 = vaddq_s16(tmp1, tmp3); /* phases 5-3 */ int16x8_t tmp1_sub_tmp3 = vsubq_s16(tmp1, tmp3); int16x8_t tmp12 = vqdmulhq_lane_s16(tmp1_sub_tmp3, consts, 1); tmp12 = vaddq_s16(tmp12, tmp1_sub_tmp3); tmp12 = vsubq_s16(tmp12, tmp13); tmp0 = vaddq_s16(tmp10, tmp13); /* phase 2 */ tmp3 = vsubq_s16(tmp10, tmp13); tmp1 = vaddq_s16(tmp11, tmp12); tmp2 = vsubq_s16(tmp11, tmp12); /* Odd part: dequantize DCT coefficients. */ int16x8_t tmp4 = vmulq_s16(row1, quant_row1); int16x8_t tmp5 = vmulq_s16(row3, quant_row3); int16x8_t tmp6 = vmulq_s16(row5, quant_row5); int16x8_t tmp7 = vmulq_s16(row7, quant_row7); int16x8_t z13 = vaddq_s16(tmp6, tmp5); /* phase 6 */ int16x8_t neg_z10 = vsubq_s16(tmp5, tmp6); int16x8_t z11 = vaddq_s16(tmp4, tmp7); int16x8_t z12 = vsubq_s16(tmp4, tmp7); tmp7 = vaddq_s16(z11, z13); /* phase 5 */ int16x8_t z11_sub_z13 = vsubq_s16(z11, z13); tmp11 = vqdmulhq_lane_s16(z11_sub_z13, consts, 1); tmp11 = vaddq_s16(tmp11, z11_sub_z13); int16x8_t z10_add_z12 = vsubq_s16(z12, neg_z10); int16x8_t z5 = vqdmulhq_lane_s16(z10_add_z12, consts, 2); z5 = vaddq_s16(z5, z10_add_z12); tmp10 = vqdmulhq_lane_s16(z12, consts, 0); tmp10 = vaddq_s16(tmp10, z12); tmp10 = vsubq_s16(tmp10, z5); tmp12 = vqdmulhq_lane_s16(neg_z10, consts, 3); tmp12 = vaddq_s16(tmp12, vaddq_s16(neg_z10, neg_z10)); tmp12 = vaddq_s16(tmp12, z5); tmp6 = vsubq_s16(tmp12, tmp7); /* phase 2 */ tmp5 = vsubq_s16(tmp11, tmp6); tmp4 = vaddq_s16(tmp10, tmp5); row0 = vaddq_s16(tmp0, tmp7); row7 = vsubq_s16(tmp0, tmp7); row1 = vaddq_s16(tmp1, tmp6); row6 = vsubq_s16(tmp1, tmp6); row2 = vaddq_s16(tmp2, tmp5); row5 = vsubq_s16(tmp2, tmp5); row4 = vaddq_s16(tmp3, tmp4); row3 = vsubq_s16(tmp3, tmp4); } /* Transpose rows to work on columns in pass 2. */ int16x8x2_t rows_01 = vtrnq_s16(row0, row1); int16x8x2_t rows_23 = vtrnq_s16(row2, row3); int16x8x2_t rows_45 = vtrnq_s16(row4, row5); int16x8x2_t rows_67 = vtrnq_s16(row6, row7); int32x4x2_t rows_0145_l = vtrnq_s32(vreinterpretq_s32_s16(rows_01.val[0]), vreinterpretq_s32_s16(rows_45.val[0])); int32x4x2_t rows_0145_h = vtrnq_s32(vreinterpretq_s32_s16(rows_01.val[1]), vreinterpretq_s32_s16(rows_45.val[1])); int32x4x2_t rows_2367_l = vtrnq_s32(vreinterpretq_s32_s16(rows_23.val[0]), vreinterpretq_s32_s16(rows_67.val[0])); int32x4x2_t rows_2367_h = vtrnq_s32(vreinterpretq_s32_s16(rows_23.val[1]), vreinterpretq_s32_s16(rows_67.val[1])); int32x4x2_t cols_04 = vzipq_s32(rows_0145_l.val[0], rows_2367_l.val[0]); int32x4x2_t cols_15 = vzipq_s32(rows_0145_h.val[0], rows_2367_h.val[0]); int32x4x2_t cols_26 = vzipq_s32(rows_0145_l.val[1], rows_2367_l.val[1]); int32x4x2_t cols_37 = vzipq_s32(rows_0145_h.val[1], rows_2367_h.val[1]); int16x8_t col0 = vreinterpretq_s16_s32(cols_04.val[0]); int16x8_t col1 = vreinterpretq_s16_s32(cols_15.val[0]); int16x8_t col2 = vreinterpretq_s16_s32(cols_26.val[0]); int16x8_t col3 = vreinterpretq_s16_s32(cols_37.val[0]); int16x8_t col4 = vreinterpretq_s16_s32(cols_04.val[1]); int16x8_t col5 = vreinterpretq_s16_s32(cols_15.val[1]); int16x8_t col6 = vreinterpretq_s16_s32(cols_26.val[1]); int16x8_t col7 = vreinterpretq_s16_s32(cols_37.val[1]); /* 1-D IDCT, pass 2 */ /* Even part */ int16x8_t tmp10 = vaddq_s16(col0, col4); int16x8_t tmp11 = vsubq_s16(col0, col4); int16x8_t tmp13 = vaddq_s16(col2, col6); int16x8_t col2_sub_col6 = vsubq_s16(col2, col6); int16x8_t tmp12 = vqdmulhq_lane_s16(col2_sub_col6, consts, 1); tmp12 = vaddq_s16(tmp12, col2_sub_col6); tmp12 = vsubq_s16(tmp12, tmp13); int16x8_t tmp0 = vaddq_s16(tmp10, tmp13); int16x8_t tmp3 = vsubq_s16(tmp10, tmp13); int16x8_t tmp1 = vaddq_s16(tmp11, tmp12); int16x8_t tmp2 = vsubq_s16(tmp11, tmp12); /* Odd part */ int16x8_t z13 = vaddq_s16(col5, col3); int16x8_t neg_z10 = vsubq_s16(col3, col5); int16x8_t z11 = vaddq_s16(col1, col7); int16x8_t z12 = vsubq_s16(col1, col7); int16x8_t tmp7 = vaddq_s16(z11, z13); /* phase 5 */ int16x8_t z11_sub_z13 = vsubq_s16(z11, z13); tmp11 = vqdmulhq_lane_s16(z11_sub_z13, consts, 1); tmp11 = vaddq_s16(tmp11, z11_sub_z13); int16x8_t z10_add_z12 = vsubq_s16(z12, neg_z10); int16x8_t z5 = vqdmulhq_lane_s16(z10_add_z12, consts, 2); z5 = vaddq_s16(z5, z10_add_z12); tmp10 = vqdmulhq_lane_s16(z12, consts, 0); tmp10 = vaddq_s16(tmp10, z12); tmp10 = vsubq_s16(tmp10, z5); tmp12 = vqdmulhq_lane_s16(neg_z10, consts, 3); tmp12 = vaddq_s16(tmp12, vaddq_s16(neg_z10, neg_z10)); tmp12 = vaddq_s16(tmp12, z5); int16x8_t tmp6 = vsubq_s16(tmp12, tmp7); /* phase 2 */ int16x8_t tmp5 = vsubq_s16(tmp11, tmp6); int16x8_t tmp4 = vaddq_s16(tmp10, tmp5); col0 = vaddq_s16(tmp0, tmp7); col7 = vsubq_s16(tmp0, tmp7); col1 = vaddq_s16(tmp1, tmp6); col6 = vsubq_s16(tmp1, tmp6); col2 = vaddq_s16(tmp2, tmp5); col5 = vsubq_s16(tmp2, tmp5); col4 = vaddq_s16(tmp3, tmp4); col3 = vsubq_s16(tmp3, tmp4); /* Scale down by a factor of 8, narrowing to 8-bit. */ int8x16_t cols_01_s8 = vcombine_s8(vqshrn_n_s16(col0, PASS1_BITS + 3), vqshrn_n_s16(col1, PASS1_BITS + 3)); int8x16_t cols_45_s8 = vcombine_s8(vqshrn_n_s16(col4, PASS1_BITS + 3), vqshrn_n_s16(col5, PASS1_BITS + 3)); int8x16_t cols_23_s8 = vcombine_s8(vqshrn_n_s16(col2, PASS1_BITS + 3), vqshrn_n_s16(col3, PASS1_BITS + 3)); int8x16_t cols_67_s8 = vcombine_s8(vqshrn_n_s16(col6, PASS1_BITS + 3), vqshrn_n_s16(col7, PASS1_BITS + 3)); /* Clamp to range [0-255]. */ uint8x16_t cols_01 = vreinterpretq_u8_s8 (vaddq_s8(cols_01_s8, vreinterpretq_s8_u8(vdupq_n_u8(CENTERJSAMPLE)))); uint8x16_t cols_45 = vreinterpretq_u8_s8 (vaddq_s8(cols_45_s8, vreinterpretq_s8_u8(vdupq_n_u8(CENTERJSAMPLE)))); uint8x16_t cols_23 = vreinterpretq_u8_s8 (vaddq_s8(cols_23_s8, vreinterpretq_s8_u8(vdupq_n_u8(CENTERJSAMPLE)))); uint8x16_t cols_67 = vreinterpretq_u8_s8 (vaddq_s8(cols_67_s8, vreinterpretq_s8_u8(vdupq_n_u8(CENTERJSAMPLE)))); /* Transpose block to prepare for store. */ uint32x4x2_t cols_0415 = vzipq_u32(vreinterpretq_u32_u8(cols_01), vreinterpretq_u32_u8(cols_45)); uint32x4x2_t cols_2637 = vzipq_u32(vreinterpretq_u32_u8(cols_23), vreinterpretq_u32_u8(cols_67)); uint8x16x2_t cols_0145 = vtrnq_u8(vreinterpretq_u8_u32(cols_0415.val[0]), vreinterpretq_u8_u32(cols_0415.val[1])); uint8x16x2_t cols_2367 = vtrnq_u8(vreinterpretq_u8_u32(cols_2637.val[0]), vreinterpretq_u8_u32(cols_2637.val[1])); uint16x8x2_t rows_0426 = vtrnq_u16(vreinterpretq_u16_u8(cols_0145.val[0]), vreinterpretq_u16_u8(cols_2367.val[0])); uint16x8x2_t rows_1537 = vtrnq_u16(vreinterpretq_u16_u8(cols_0145.val[1]), vreinterpretq_u16_u8(cols_2367.val[1])); uint8x16_t rows_04 = vreinterpretq_u8_u16(rows_0426.val[0]); uint8x16_t rows_15 = vreinterpretq_u8_u16(rows_1537.val[0]); uint8x16_t rows_26 = vreinterpretq_u8_u16(rows_0426.val[1]); uint8x16_t rows_37 = vreinterpretq_u8_u16(rows_1537.val[1]); JSAMPROW outptr0 = output_buf[0] + output_col; JSAMPROW outptr1 = output_buf[1] + output_col; JSAMPROW outptr2 = output_buf[2] + output_col; JSAMPROW outptr3 = output_buf[3] + output_col; JSAMPROW outptr4 = output_buf[4] + output_col; JSAMPROW outptr5 = output_buf[5] + output_col; JSAMPROW outptr6 = output_buf[6] + output_col; JSAMPROW outptr7 = output_buf[7] + output_col; /* Store DCT block to memory. */ vst1q_lane_u64((uint64_t *)outptr0, vreinterpretq_u64_u8(rows_04), 0); vst1q_lane_u64((uint64_t *)outptr1, vreinterpretq_u64_u8(rows_15), 0); vst1q_lane_u64((uint64_t *)outptr2, vreinterpretq_u64_u8(rows_26), 0); vst1q_lane_u64((uint64_t *)outptr3, vreinterpretq_u64_u8(rows_37), 0); vst1q_lane_u64((uint64_t *)outptr4, vreinterpretq_u64_u8(rows_04), 1); vst1q_lane_u64((uint64_t *)outptr5, vreinterpretq_u64_u8(rows_15), 1); vst1q_lane_u64((uint64_t *)outptr6, vreinterpretq_u64_u8(rows_26), 1); vst1q_lane_u64((uint64_t *)outptr7, vreinterpretq_u64_u8(rows_37), 1); } libjpeg-turbo-2.1.5/simd/arm/jidctint-neon.c000066400000000000000000001051161436506551100207220ustar00rootroot00000000000000/* * jidctint-neon.c - accurate integer IDCT (Arm Neon) * * Copyright (C) 2020, Arm Limited. All Rights Reserved. * Copyright (C) 2020, D. R. Commander. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #define JPEG_INTERNALS #include "../../jinclude.h" #include "../../jpeglib.h" #include "../../jsimd.h" #include "../../jdct.h" #include "../../jsimddct.h" #include "../jsimd.h" #include "align.h" #include "neon-compat.h" #include #define CONST_BITS 13 #define PASS1_BITS 2 #define DESCALE_P1 (CONST_BITS - PASS1_BITS) #define DESCALE_P2 (CONST_BITS + PASS1_BITS + 3) /* The computation of the inverse DCT requires the use of constants known at * compile time. Scaled integer constants are used to avoid floating-point * arithmetic: * 0.298631336 = 2446 * 2^-13 * 0.390180644 = 3196 * 2^-13 * 0.541196100 = 4433 * 2^-13 * 0.765366865 = 6270 * 2^-13 * 0.899976223 = 7373 * 2^-13 * 1.175875602 = 9633 * 2^-13 * 1.501321110 = 12299 * 2^-13 * 1.847759065 = 15137 * 2^-13 * 1.961570560 = 16069 * 2^-13 * 2.053119869 = 16819 * 2^-13 * 2.562915447 = 20995 * 2^-13 * 3.072711026 = 25172 * 2^-13 */ #define F_0_298 2446 #define F_0_390 3196 #define F_0_541 4433 #define F_0_765 6270 #define F_0_899 7373 #define F_1_175 9633 #define F_1_501 12299 #define F_1_847 15137 #define F_1_961 16069 #define F_2_053 16819 #define F_2_562 20995 #define F_3_072 25172 #define F_1_175_MINUS_1_961 (F_1_175 - F_1_961) #define F_1_175_MINUS_0_390 (F_1_175 - F_0_390) #define F_0_541_MINUS_1_847 (F_0_541 - F_1_847) #define F_3_072_MINUS_2_562 (F_3_072 - F_2_562) #define F_0_298_MINUS_0_899 (F_0_298 - F_0_899) #define F_1_501_MINUS_0_899 (F_1_501 - F_0_899) #define F_2_053_MINUS_2_562 (F_2_053 - F_2_562) #define F_0_541_PLUS_0_765 (F_0_541 + F_0_765) ALIGN(16) static const int16_t jsimd_idct_islow_neon_consts[] = { F_0_899, F_0_541, F_2_562, F_0_298_MINUS_0_899, F_1_501_MINUS_0_899, F_2_053_MINUS_2_562, F_0_541_PLUS_0_765, F_1_175, F_1_175_MINUS_0_390, F_0_541_MINUS_1_847, F_3_072_MINUS_2_562, F_1_175_MINUS_1_961, 0, 0, 0, 0 }; /* Forward declaration of regular and sparse IDCT helper functions */ static INLINE void jsimd_idct_islow_pass1_regular(int16x4_t row0, int16x4_t row1, int16x4_t row2, int16x4_t row3, int16x4_t row4, int16x4_t row5, int16x4_t row6, int16x4_t row7, int16x4_t quant_row0, int16x4_t quant_row1, int16x4_t quant_row2, int16x4_t quant_row3, int16x4_t quant_row4, int16x4_t quant_row5, int16x4_t quant_row6, int16x4_t quant_row7, int16_t *workspace_1, int16_t *workspace_2); static INLINE void jsimd_idct_islow_pass1_sparse(int16x4_t row0, int16x4_t row1, int16x4_t row2, int16x4_t row3, int16x4_t quant_row0, int16x4_t quant_row1, int16x4_t quant_row2, int16x4_t quant_row3, int16_t *workspace_1, int16_t *workspace_2); static INLINE void jsimd_idct_islow_pass2_regular(int16_t *workspace, JSAMPARRAY output_buf, JDIMENSION output_col, unsigned buf_offset); static INLINE void jsimd_idct_islow_pass2_sparse(int16_t *workspace, JSAMPARRAY output_buf, JDIMENSION output_col, unsigned buf_offset); /* Perform dequantization and inverse DCT on one block of coefficients. For * reference, the C implementation (jpeg_idct_slow()) can be found in * jidctint.c. * * Optimization techniques used for fast data access: * * In each pass, the inverse DCT is computed for the left and right 4x8 halves * of the DCT block. This avoids spilling due to register pressure, and the * increased granularity allows for an optimized calculation depending on the * values of the DCT coefficients. Between passes, intermediate data is stored * in 4x8 workspace buffers. * * Transposing the 8x8 DCT block after each pass can be achieved by transposing * each of the four 4x4 quadrants and swapping quadrants 1 and 2 (refer to the * diagram below.) Swapping quadrants is cheap, since the second pass can just * swap the workspace buffer pointers. * * +-------+-------+ +-------+-------+ * | | | | | | * | 0 | 1 | | 0 | 2 | * | | | transpose | | | * +-------+-------+ ------> +-------+-------+ * | | | | | | * | 2 | 3 | | 1 | 3 | * | | | | | | * +-------+-------+ +-------+-------+ * * Optimization techniques used to accelerate the inverse DCT calculation: * * In a DCT coefficient block, the coefficients are increasingly likely to be 0 * as you move diagonally from top left to bottom right. If whole rows of * coefficients are 0, then the inverse DCT calculation can be simplified. On * the first pass of the inverse DCT, we test for three special cases before * defaulting to a full "regular" inverse DCT: * * 1) Coefficients in rows 4-7 are all zero. In this case, we perform a * "sparse" simplified inverse DCT on rows 0-3. * 2) AC coefficients (rows 1-7) are all zero. In this case, the inverse DCT * result is equal to the dequantized DC coefficients. * 3) AC and DC coefficients are all zero. In this case, the inverse DCT * result is all zero. For the left 4x8 half, this is handled identically * to Case 2 above. For the right 4x8 half, we do no work and signal that * the "sparse" algorithm is required for the second pass. * * In the second pass, only a single special case is tested: whether the AC and * DC coefficients were all zero in the right 4x8 block during the first pass * (refer to Case 3 above.) If this is the case, then a "sparse" variant of * the second pass is performed for both the left and right halves of the DCT * block. (The transposition after the first pass means that the right 4x8 * block during the first pass becomes rows 4-7 during the second pass.) */ void jsimd_idct_islow_neon(void *dct_table, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { ISLOW_MULT_TYPE *quantptr = dct_table; int16_t workspace_l[8 * DCTSIZE / 2]; int16_t workspace_r[8 * DCTSIZE / 2]; /* Compute IDCT first pass on left 4x8 coefficient block. */ /* Load DCT coefficients in left 4x8 block. */ int16x4_t row0 = vld1_s16(coef_block + 0 * DCTSIZE); int16x4_t row1 = vld1_s16(coef_block + 1 * DCTSIZE); int16x4_t row2 = vld1_s16(coef_block + 2 * DCTSIZE); int16x4_t row3 = vld1_s16(coef_block + 3 * DCTSIZE); int16x4_t row4 = vld1_s16(coef_block + 4 * DCTSIZE); int16x4_t row5 = vld1_s16(coef_block + 5 * DCTSIZE); int16x4_t row6 = vld1_s16(coef_block + 6 * DCTSIZE); int16x4_t row7 = vld1_s16(coef_block + 7 * DCTSIZE); /* Load quantization table for left 4x8 block. */ int16x4_t quant_row0 = vld1_s16(quantptr + 0 * DCTSIZE); int16x4_t quant_row1 = vld1_s16(quantptr + 1 * DCTSIZE); int16x4_t quant_row2 = vld1_s16(quantptr + 2 * DCTSIZE); int16x4_t quant_row3 = vld1_s16(quantptr + 3 * DCTSIZE); int16x4_t quant_row4 = vld1_s16(quantptr + 4 * DCTSIZE); int16x4_t quant_row5 = vld1_s16(quantptr + 5 * DCTSIZE); int16x4_t quant_row6 = vld1_s16(quantptr + 6 * DCTSIZE); int16x4_t quant_row7 = vld1_s16(quantptr + 7 * DCTSIZE); /* Construct bitmap to test if DCT coefficients in left 4x8 block are 0. */ int16x4_t bitmap = vorr_s16(row7, row6); bitmap = vorr_s16(bitmap, row5); bitmap = vorr_s16(bitmap, row4); int64_t bitmap_rows_4567 = vget_lane_s64(vreinterpret_s64_s16(bitmap), 0); if (bitmap_rows_4567 == 0) { bitmap = vorr_s16(bitmap, row3); bitmap = vorr_s16(bitmap, row2); bitmap = vorr_s16(bitmap, row1); int64_t left_ac_bitmap = vget_lane_s64(vreinterpret_s64_s16(bitmap), 0); if (left_ac_bitmap == 0) { int16x4_t dcval = vshl_n_s16(vmul_s16(row0, quant_row0), PASS1_BITS); int16x4x4_t quadrant = { { dcval, dcval, dcval, dcval } }; /* Store 4x4 blocks to workspace, transposing in the process. */ vst4_s16(workspace_l, quadrant); vst4_s16(workspace_r, quadrant); } else { jsimd_idct_islow_pass1_sparse(row0, row1, row2, row3, quant_row0, quant_row1, quant_row2, quant_row3, workspace_l, workspace_r); } } else { jsimd_idct_islow_pass1_regular(row0, row1, row2, row3, row4, row5, row6, row7, quant_row0, quant_row1, quant_row2, quant_row3, quant_row4, quant_row5, quant_row6, quant_row7, workspace_l, workspace_r); } /* Compute IDCT first pass on right 4x8 coefficient block. */ /* Load DCT coefficients in right 4x8 block. */ row0 = vld1_s16(coef_block + 0 * DCTSIZE + 4); row1 = vld1_s16(coef_block + 1 * DCTSIZE + 4); row2 = vld1_s16(coef_block + 2 * DCTSIZE + 4); row3 = vld1_s16(coef_block + 3 * DCTSIZE + 4); row4 = vld1_s16(coef_block + 4 * DCTSIZE + 4); row5 = vld1_s16(coef_block + 5 * DCTSIZE + 4); row6 = vld1_s16(coef_block + 6 * DCTSIZE + 4); row7 = vld1_s16(coef_block + 7 * DCTSIZE + 4); /* Load quantization table for right 4x8 block. */ quant_row0 = vld1_s16(quantptr + 0 * DCTSIZE + 4); quant_row1 = vld1_s16(quantptr + 1 * DCTSIZE + 4); quant_row2 = vld1_s16(quantptr + 2 * DCTSIZE + 4); quant_row3 = vld1_s16(quantptr + 3 * DCTSIZE + 4); quant_row4 = vld1_s16(quantptr + 4 * DCTSIZE + 4); quant_row5 = vld1_s16(quantptr + 5 * DCTSIZE + 4); quant_row6 = vld1_s16(quantptr + 6 * DCTSIZE + 4); quant_row7 = vld1_s16(quantptr + 7 * DCTSIZE + 4); /* Construct bitmap to test if DCT coefficients in right 4x8 block are 0. */ bitmap = vorr_s16(row7, row6); bitmap = vorr_s16(bitmap, row5); bitmap = vorr_s16(bitmap, row4); bitmap_rows_4567 = vget_lane_s64(vreinterpret_s64_s16(bitmap), 0); bitmap = vorr_s16(bitmap, row3); bitmap = vorr_s16(bitmap, row2); bitmap = vorr_s16(bitmap, row1); int64_t right_ac_bitmap = vget_lane_s64(vreinterpret_s64_s16(bitmap), 0); /* If this remains non-zero, a "regular" second pass will be performed. */ int64_t right_ac_dc_bitmap = 1; if (right_ac_bitmap == 0) { bitmap = vorr_s16(bitmap, row0); right_ac_dc_bitmap = vget_lane_s64(vreinterpret_s64_s16(bitmap), 0); if (right_ac_dc_bitmap != 0) { int16x4_t dcval = vshl_n_s16(vmul_s16(row0, quant_row0), PASS1_BITS); int16x4x4_t quadrant = { { dcval, dcval, dcval, dcval } }; /* Store 4x4 blocks to workspace, transposing in the process. */ vst4_s16(workspace_l + 4 * DCTSIZE / 2, quadrant); vst4_s16(workspace_r + 4 * DCTSIZE / 2, quadrant); } } else { if (bitmap_rows_4567 == 0) { jsimd_idct_islow_pass1_sparse(row0, row1, row2, row3, quant_row0, quant_row1, quant_row2, quant_row3, workspace_l + 4 * DCTSIZE / 2, workspace_r + 4 * DCTSIZE / 2); } else { jsimd_idct_islow_pass1_regular(row0, row1, row2, row3, row4, row5, row6, row7, quant_row0, quant_row1, quant_row2, quant_row3, quant_row4, quant_row5, quant_row6, quant_row7, workspace_l + 4 * DCTSIZE / 2, workspace_r + 4 * DCTSIZE / 2); } } /* Second pass: compute IDCT on rows in workspace. */ /* If all coefficients in right 4x8 block are 0, use "sparse" second pass. */ if (right_ac_dc_bitmap == 0) { jsimd_idct_islow_pass2_sparse(workspace_l, output_buf, output_col, 0); jsimd_idct_islow_pass2_sparse(workspace_r, output_buf, output_col, 4); } else { jsimd_idct_islow_pass2_regular(workspace_l, output_buf, output_col, 0); jsimd_idct_islow_pass2_regular(workspace_r, output_buf, output_col, 4); } } /* Perform dequantization and the first pass of the accurate inverse DCT on a * 4x8 block of coefficients. (To process the full 8x8 DCT block, this * function-- or some other optimized variant-- needs to be called for both the * left and right 4x8 blocks.) * * This "regular" version assumes that no optimization can be made to the IDCT * calculation, since no useful set of AC coefficients is all 0. * * The original C implementation of the accurate IDCT (jpeg_idct_slow()) can be * found in jidctint.c. Algorithmic changes made here are documented inline. */ static INLINE void jsimd_idct_islow_pass1_regular(int16x4_t row0, int16x4_t row1, int16x4_t row2, int16x4_t row3, int16x4_t row4, int16x4_t row5, int16x4_t row6, int16x4_t row7, int16x4_t quant_row0, int16x4_t quant_row1, int16x4_t quant_row2, int16x4_t quant_row3, int16x4_t quant_row4, int16x4_t quant_row5, int16x4_t quant_row6, int16x4_t quant_row7, int16_t *workspace_1, int16_t *workspace_2) { /* Load constants for IDCT computation. */ #ifdef HAVE_VLD1_S16_X3 const int16x4x3_t consts = vld1_s16_x3(jsimd_idct_islow_neon_consts); #else const int16x4_t consts1 = vld1_s16(jsimd_idct_islow_neon_consts); const int16x4_t consts2 = vld1_s16(jsimd_idct_islow_neon_consts + 4); const int16x4_t consts3 = vld1_s16(jsimd_idct_islow_neon_consts + 8); const int16x4x3_t consts = { { consts1, consts2, consts3 } }; #endif /* Even part */ int16x4_t z2_s16 = vmul_s16(row2, quant_row2); int16x4_t z3_s16 = vmul_s16(row6, quant_row6); int32x4_t tmp2 = vmull_lane_s16(z2_s16, consts.val[0], 1); int32x4_t tmp3 = vmull_lane_s16(z2_s16, consts.val[1], 2); tmp2 = vmlal_lane_s16(tmp2, z3_s16, consts.val[2], 1); tmp3 = vmlal_lane_s16(tmp3, z3_s16, consts.val[0], 1); z2_s16 = vmul_s16(row0, quant_row0); z3_s16 = vmul_s16(row4, quant_row4); int32x4_t tmp0 = vshll_n_s16(vadd_s16(z2_s16, z3_s16), CONST_BITS); int32x4_t tmp1 = vshll_n_s16(vsub_s16(z2_s16, z3_s16), CONST_BITS); int32x4_t tmp10 = vaddq_s32(tmp0, tmp3); int32x4_t tmp13 = vsubq_s32(tmp0, tmp3); int32x4_t tmp11 = vaddq_s32(tmp1, tmp2); int32x4_t tmp12 = vsubq_s32(tmp1, tmp2); /* Odd part */ int16x4_t tmp0_s16 = vmul_s16(row7, quant_row7); int16x4_t tmp1_s16 = vmul_s16(row5, quant_row5); int16x4_t tmp2_s16 = vmul_s16(row3, quant_row3); int16x4_t tmp3_s16 = vmul_s16(row1, quant_row1); z3_s16 = vadd_s16(tmp0_s16, tmp2_s16); int16x4_t z4_s16 = vadd_s16(tmp1_s16, tmp3_s16); /* Implementation as per jpeg_idct_islow() in jidctint.c: * z5 = (z3 + z4) * 1.175875602; * z3 = z3 * -1.961570560; z4 = z4 * -0.390180644; * z3 += z5; z4 += z5; * * This implementation: * z3 = z3 * (1.175875602 - 1.961570560) + z4 * 1.175875602; * z4 = z3 * 1.175875602 + z4 * (1.175875602 - 0.390180644); */ int32x4_t z3 = vmull_lane_s16(z3_s16, consts.val[2], 3); int32x4_t z4 = vmull_lane_s16(z3_s16, consts.val[1], 3); z3 = vmlal_lane_s16(z3, z4_s16, consts.val[1], 3); z4 = vmlal_lane_s16(z4, z4_s16, consts.val[2], 0); /* Implementation as per jpeg_idct_islow() in jidctint.c: * z1 = tmp0 + tmp3; z2 = tmp1 + tmp2; * tmp0 = tmp0 * 0.298631336; tmp1 = tmp1 * 2.053119869; * tmp2 = tmp2 * 3.072711026; tmp3 = tmp3 * 1.501321110; * z1 = z1 * -0.899976223; z2 = z2 * -2.562915447; * tmp0 += z1 + z3; tmp1 += z2 + z4; * tmp2 += z2 + z3; tmp3 += z1 + z4; * * This implementation: * tmp0 = tmp0 * (0.298631336 - 0.899976223) + tmp3 * -0.899976223; * tmp1 = tmp1 * (2.053119869 - 2.562915447) + tmp2 * -2.562915447; * tmp2 = tmp1 * -2.562915447 + tmp2 * (3.072711026 - 2.562915447); * tmp3 = tmp0 * -0.899976223 + tmp3 * (1.501321110 - 0.899976223); * tmp0 += z3; tmp1 += z4; * tmp2 += z3; tmp3 += z4; */ tmp0 = vmull_lane_s16(tmp0_s16, consts.val[0], 3); tmp1 = vmull_lane_s16(tmp1_s16, consts.val[1], 1); tmp2 = vmull_lane_s16(tmp2_s16, consts.val[2], 2); tmp3 = vmull_lane_s16(tmp3_s16, consts.val[1], 0); tmp0 = vmlsl_lane_s16(tmp0, tmp3_s16, consts.val[0], 0); tmp1 = vmlsl_lane_s16(tmp1, tmp2_s16, consts.val[0], 2); tmp2 = vmlsl_lane_s16(tmp2, tmp1_s16, consts.val[0], 2); tmp3 = vmlsl_lane_s16(tmp3, tmp0_s16, consts.val[0], 0); tmp0 = vaddq_s32(tmp0, z3); tmp1 = vaddq_s32(tmp1, z4); tmp2 = vaddq_s32(tmp2, z3); tmp3 = vaddq_s32(tmp3, z4); /* Final output stage: descale and narrow to 16-bit. */ int16x4x4_t rows_0123 = { { vrshrn_n_s32(vaddq_s32(tmp10, tmp3), DESCALE_P1), vrshrn_n_s32(vaddq_s32(tmp11, tmp2), DESCALE_P1), vrshrn_n_s32(vaddq_s32(tmp12, tmp1), DESCALE_P1), vrshrn_n_s32(vaddq_s32(tmp13, tmp0), DESCALE_P1) } }; int16x4x4_t rows_4567 = { { vrshrn_n_s32(vsubq_s32(tmp13, tmp0), DESCALE_P1), vrshrn_n_s32(vsubq_s32(tmp12, tmp1), DESCALE_P1), vrshrn_n_s32(vsubq_s32(tmp11, tmp2), DESCALE_P1), vrshrn_n_s32(vsubq_s32(tmp10, tmp3), DESCALE_P1) } }; /* Store 4x4 blocks to the intermediate workspace, ready for the second pass. * (VST4 transposes the blocks. We need to operate on rows in the next * pass.) */ vst4_s16(workspace_1, rows_0123); vst4_s16(workspace_2, rows_4567); } /* Perform dequantization and the first pass of the accurate inverse DCT on a * 4x8 block of coefficients. * * This "sparse" version assumes that the AC coefficients in rows 4-7 are all * 0. This simplifies the IDCT calculation, accelerating overall performance. */ static INLINE void jsimd_idct_islow_pass1_sparse(int16x4_t row0, int16x4_t row1, int16x4_t row2, int16x4_t row3, int16x4_t quant_row0, int16x4_t quant_row1, int16x4_t quant_row2, int16x4_t quant_row3, int16_t *workspace_1, int16_t *workspace_2) { /* Load constants for IDCT computation. */ #ifdef HAVE_VLD1_S16_X3 const int16x4x3_t consts = vld1_s16_x3(jsimd_idct_islow_neon_consts); #else const int16x4_t consts1 = vld1_s16(jsimd_idct_islow_neon_consts); const int16x4_t consts2 = vld1_s16(jsimd_idct_islow_neon_consts + 4); const int16x4_t consts3 = vld1_s16(jsimd_idct_islow_neon_consts + 8); const int16x4x3_t consts = { { consts1, consts2, consts3 } }; #endif /* Even part (z3 is all 0) */ int16x4_t z2_s16 = vmul_s16(row2, quant_row2); int32x4_t tmp2 = vmull_lane_s16(z2_s16, consts.val[0], 1); int32x4_t tmp3 = vmull_lane_s16(z2_s16, consts.val[1], 2); z2_s16 = vmul_s16(row0, quant_row0); int32x4_t tmp0 = vshll_n_s16(z2_s16, CONST_BITS); int32x4_t tmp1 = vshll_n_s16(z2_s16, CONST_BITS); int32x4_t tmp10 = vaddq_s32(tmp0, tmp3); int32x4_t tmp13 = vsubq_s32(tmp0, tmp3); int32x4_t tmp11 = vaddq_s32(tmp1, tmp2); int32x4_t tmp12 = vsubq_s32(tmp1, tmp2); /* Odd part (tmp0 and tmp1 are both all 0) */ int16x4_t tmp2_s16 = vmul_s16(row3, quant_row3); int16x4_t tmp3_s16 = vmul_s16(row1, quant_row1); int16x4_t z3_s16 = tmp2_s16; int16x4_t z4_s16 = tmp3_s16; int32x4_t z3 = vmull_lane_s16(z3_s16, consts.val[2], 3); int32x4_t z4 = vmull_lane_s16(z3_s16, consts.val[1], 3); z3 = vmlal_lane_s16(z3, z4_s16, consts.val[1], 3); z4 = vmlal_lane_s16(z4, z4_s16, consts.val[2], 0); tmp0 = vmlsl_lane_s16(z3, tmp3_s16, consts.val[0], 0); tmp1 = vmlsl_lane_s16(z4, tmp2_s16, consts.val[0], 2); tmp2 = vmlal_lane_s16(z3, tmp2_s16, consts.val[2], 2); tmp3 = vmlal_lane_s16(z4, tmp3_s16, consts.val[1], 0); /* Final output stage: descale and narrow to 16-bit. */ int16x4x4_t rows_0123 = { { vrshrn_n_s32(vaddq_s32(tmp10, tmp3), DESCALE_P1), vrshrn_n_s32(vaddq_s32(tmp11, tmp2), DESCALE_P1), vrshrn_n_s32(vaddq_s32(tmp12, tmp1), DESCALE_P1), vrshrn_n_s32(vaddq_s32(tmp13, tmp0), DESCALE_P1) } }; int16x4x4_t rows_4567 = { { vrshrn_n_s32(vsubq_s32(tmp13, tmp0), DESCALE_P1), vrshrn_n_s32(vsubq_s32(tmp12, tmp1), DESCALE_P1), vrshrn_n_s32(vsubq_s32(tmp11, tmp2), DESCALE_P1), vrshrn_n_s32(vsubq_s32(tmp10, tmp3), DESCALE_P1) } }; /* Store 4x4 blocks to the intermediate workspace, ready for the second pass. * (VST4 transposes the blocks. We need to operate on rows in the next * pass.) */ vst4_s16(workspace_1, rows_0123); vst4_s16(workspace_2, rows_4567); } /* Perform the second pass of the accurate inverse DCT on a 4x8 block of * coefficients. (To process the full 8x8 DCT block, this function-- or some * other optimized variant-- needs to be called for both the right and left 4x8 * blocks.) * * This "regular" version assumes that no optimization can be made to the IDCT * calculation, since no useful set of coefficient values are all 0 after the * first pass. * * Again, the original C implementation of the accurate IDCT (jpeg_idct_slow()) * can be found in jidctint.c. Algorithmic changes made here are documented * inline. */ static INLINE void jsimd_idct_islow_pass2_regular(int16_t *workspace, JSAMPARRAY output_buf, JDIMENSION output_col, unsigned buf_offset) { /* Load constants for IDCT computation. */ #ifdef HAVE_VLD1_S16_X3 const int16x4x3_t consts = vld1_s16_x3(jsimd_idct_islow_neon_consts); #else const int16x4_t consts1 = vld1_s16(jsimd_idct_islow_neon_consts); const int16x4_t consts2 = vld1_s16(jsimd_idct_islow_neon_consts + 4); const int16x4_t consts3 = vld1_s16(jsimd_idct_islow_neon_consts + 8); const int16x4x3_t consts = { { consts1, consts2, consts3 } }; #endif /* Even part */ int16x4_t z2_s16 = vld1_s16(workspace + 2 * DCTSIZE / 2); int16x4_t z3_s16 = vld1_s16(workspace + 6 * DCTSIZE / 2); int32x4_t tmp2 = vmull_lane_s16(z2_s16, consts.val[0], 1); int32x4_t tmp3 = vmull_lane_s16(z2_s16, consts.val[1], 2); tmp2 = vmlal_lane_s16(tmp2, z3_s16, consts.val[2], 1); tmp3 = vmlal_lane_s16(tmp3, z3_s16, consts.val[0], 1); z2_s16 = vld1_s16(workspace + 0 * DCTSIZE / 2); z3_s16 = vld1_s16(workspace + 4 * DCTSIZE / 2); int32x4_t tmp0 = vshll_n_s16(vadd_s16(z2_s16, z3_s16), CONST_BITS); int32x4_t tmp1 = vshll_n_s16(vsub_s16(z2_s16, z3_s16), CONST_BITS); int32x4_t tmp10 = vaddq_s32(tmp0, tmp3); int32x4_t tmp13 = vsubq_s32(tmp0, tmp3); int32x4_t tmp11 = vaddq_s32(tmp1, tmp2); int32x4_t tmp12 = vsubq_s32(tmp1, tmp2); /* Odd part */ int16x4_t tmp0_s16 = vld1_s16(workspace + 7 * DCTSIZE / 2); int16x4_t tmp1_s16 = vld1_s16(workspace + 5 * DCTSIZE / 2); int16x4_t tmp2_s16 = vld1_s16(workspace + 3 * DCTSIZE / 2); int16x4_t tmp3_s16 = vld1_s16(workspace + 1 * DCTSIZE / 2); z3_s16 = vadd_s16(tmp0_s16, tmp2_s16); int16x4_t z4_s16 = vadd_s16(tmp1_s16, tmp3_s16); /* Implementation as per jpeg_idct_islow() in jidctint.c: * z5 = (z3 + z4) * 1.175875602; * z3 = z3 * -1.961570560; z4 = z4 * -0.390180644; * z3 += z5; z4 += z5; * * This implementation: * z3 = z3 * (1.175875602 - 1.961570560) + z4 * 1.175875602; * z4 = z3 * 1.175875602 + z4 * (1.175875602 - 0.390180644); */ int32x4_t z3 = vmull_lane_s16(z3_s16, consts.val[2], 3); int32x4_t z4 = vmull_lane_s16(z3_s16, consts.val[1], 3); z3 = vmlal_lane_s16(z3, z4_s16, consts.val[1], 3); z4 = vmlal_lane_s16(z4, z4_s16, consts.val[2], 0); /* Implementation as per jpeg_idct_islow() in jidctint.c: * z1 = tmp0 + tmp3; z2 = tmp1 + tmp2; * tmp0 = tmp0 * 0.298631336; tmp1 = tmp1 * 2.053119869; * tmp2 = tmp2 * 3.072711026; tmp3 = tmp3 * 1.501321110; * z1 = z1 * -0.899976223; z2 = z2 * -2.562915447; * tmp0 += z1 + z3; tmp1 += z2 + z4; * tmp2 += z2 + z3; tmp3 += z1 + z4; * * This implementation: * tmp0 = tmp0 * (0.298631336 - 0.899976223) + tmp3 * -0.899976223; * tmp1 = tmp1 * (2.053119869 - 2.562915447) + tmp2 * -2.562915447; * tmp2 = tmp1 * -2.562915447 + tmp2 * (3.072711026 - 2.562915447); * tmp3 = tmp0 * -0.899976223 + tmp3 * (1.501321110 - 0.899976223); * tmp0 += z3; tmp1 += z4; * tmp2 += z3; tmp3 += z4; */ tmp0 = vmull_lane_s16(tmp0_s16, consts.val[0], 3); tmp1 = vmull_lane_s16(tmp1_s16, consts.val[1], 1); tmp2 = vmull_lane_s16(tmp2_s16, consts.val[2], 2); tmp3 = vmull_lane_s16(tmp3_s16, consts.val[1], 0); tmp0 = vmlsl_lane_s16(tmp0, tmp3_s16, consts.val[0], 0); tmp1 = vmlsl_lane_s16(tmp1, tmp2_s16, consts.val[0], 2); tmp2 = vmlsl_lane_s16(tmp2, tmp1_s16, consts.val[0], 2); tmp3 = vmlsl_lane_s16(tmp3, tmp0_s16, consts.val[0], 0); tmp0 = vaddq_s32(tmp0, z3); tmp1 = vaddq_s32(tmp1, z4); tmp2 = vaddq_s32(tmp2, z3); tmp3 = vaddq_s32(tmp3, z4); /* Final output stage: descale and narrow to 16-bit. */ int16x8_t cols_02_s16 = vcombine_s16(vaddhn_s32(tmp10, tmp3), vaddhn_s32(tmp12, tmp1)); int16x8_t cols_13_s16 = vcombine_s16(vaddhn_s32(tmp11, tmp2), vaddhn_s32(tmp13, tmp0)); int16x8_t cols_46_s16 = vcombine_s16(vsubhn_s32(tmp13, tmp0), vsubhn_s32(tmp11, tmp2)); int16x8_t cols_57_s16 = vcombine_s16(vsubhn_s32(tmp12, tmp1), vsubhn_s32(tmp10, tmp3)); /* Descale and narrow to 8-bit. */ int8x8_t cols_02_s8 = vqrshrn_n_s16(cols_02_s16, DESCALE_P2 - 16); int8x8_t cols_13_s8 = vqrshrn_n_s16(cols_13_s16, DESCALE_P2 - 16); int8x8_t cols_46_s8 = vqrshrn_n_s16(cols_46_s16, DESCALE_P2 - 16); int8x8_t cols_57_s8 = vqrshrn_n_s16(cols_57_s16, DESCALE_P2 - 16); /* Clamp to range [0-255]. */ uint8x8_t cols_02_u8 = vadd_u8(vreinterpret_u8_s8(cols_02_s8), vdup_n_u8(CENTERJSAMPLE)); uint8x8_t cols_13_u8 = vadd_u8(vreinterpret_u8_s8(cols_13_s8), vdup_n_u8(CENTERJSAMPLE)); uint8x8_t cols_46_u8 = vadd_u8(vreinterpret_u8_s8(cols_46_s8), vdup_n_u8(CENTERJSAMPLE)); uint8x8_t cols_57_u8 = vadd_u8(vreinterpret_u8_s8(cols_57_s8), vdup_n_u8(CENTERJSAMPLE)); /* Transpose 4x8 block and store to memory. (Zipping adjacent columns * together allows us to store 16-bit elements.) */ uint8x8x2_t cols_01_23 = vzip_u8(cols_02_u8, cols_13_u8); uint8x8x2_t cols_45_67 = vzip_u8(cols_46_u8, cols_57_u8); uint16x4x4_t cols_01_23_45_67 = { { vreinterpret_u16_u8(cols_01_23.val[0]), vreinterpret_u16_u8(cols_01_23.val[1]), vreinterpret_u16_u8(cols_45_67.val[0]), vreinterpret_u16_u8(cols_45_67.val[1]) } }; JSAMPROW outptr0 = output_buf[buf_offset + 0] + output_col; JSAMPROW outptr1 = output_buf[buf_offset + 1] + output_col; JSAMPROW outptr2 = output_buf[buf_offset + 2] + output_col; JSAMPROW outptr3 = output_buf[buf_offset + 3] + output_col; /* VST4 of 16-bit elements completes the transpose. */ vst4_lane_u16((uint16_t *)outptr0, cols_01_23_45_67, 0); vst4_lane_u16((uint16_t *)outptr1, cols_01_23_45_67, 1); vst4_lane_u16((uint16_t *)outptr2, cols_01_23_45_67, 2); vst4_lane_u16((uint16_t *)outptr3, cols_01_23_45_67, 3); } /* Performs the second pass of the accurate inverse DCT on a 4x8 block * of coefficients. * * This "sparse" version assumes that the coefficient values (after the first * pass) in rows 4-7 are all 0. This simplifies the IDCT calculation, * accelerating overall performance. */ static INLINE void jsimd_idct_islow_pass2_sparse(int16_t *workspace, JSAMPARRAY output_buf, JDIMENSION output_col, unsigned buf_offset) { /* Load constants for IDCT computation. */ #ifdef HAVE_VLD1_S16_X3 const int16x4x3_t consts = vld1_s16_x3(jsimd_idct_islow_neon_consts); #else const int16x4_t consts1 = vld1_s16(jsimd_idct_islow_neon_consts); const int16x4_t consts2 = vld1_s16(jsimd_idct_islow_neon_consts + 4); const int16x4_t consts3 = vld1_s16(jsimd_idct_islow_neon_consts + 8); const int16x4x3_t consts = { { consts1, consts2, consts3 } }; #endif /* Even part (z3 is all 0) */ int16x4_t z2_s16 = vld1_s16(workspace + 2 * DCTSIZE / 2); int32x4_t tmp2 = vmull_lane_s16(z2_s16, consts.val[0], 1); int32x4_t tmp3 = vmull_lane_s16(z2_s16, consts.val[1], 2); z2_s16 = vld1_s16(workspace + 0 * DCTSIZE / 2); int32x4_t tmp0 = vshll_n_s16(z2_s16, CONST_BITS); int32x4_t tmp1 = vshll_n_s16(z2_s16, CONST_BITS); int32x4_t tmp10 = vaddq_s32(tmp0, tmp3); int32x4_t tmp13 = vsubq_s32(tmp0, tmp3); int32x4_t tmp11 = vaddq_s32(tmp1, tmp2); int32x4_t tmp12 = vsubq_s32(tmp1, tmp2); /* Odd part (tmp0 and tmp1 are both all 0) */ int16x4_t tmp2_s16 = vld1_s16(workspace + 3 * DCTSIZE / 2); int16x4_t tmp3_s16 = vld1_s16(workspace + 1 * DCTSIZE / 2); int16x4_t z3_s16 = tmp2_s16; int16x4_t z4_s16 = tmp3_s16; int32x4_t z3 = vmull_lane_s16(z3_s16, consts.val[2], 3); z3 = vmlal_lane_s16(z3, z4_s16, consts.val[1], 3); int32x4_t z4 = vmull_lane_s16(z3_s16, consts.val[1], 3); z4 = vmlal_lane_s16(z4, z4_s16, consts.val[2], 0); tmp0 = vmlsl_lane_s16(z3, tmp3_s16, consts.val[0], 0); tmp1 = vmlsl_lane_s16(z4, tmp2_s16, consts.val[0], 2); tmp2 = vmlal_lane_s16(z3, tmp2_s16, consts.val[2], 2); tmp3 = vmlal_lane_s16(z4, tmp3_s16, consts.val[1], 0); /* Final output stage: descale and narrow to 16-bit. */ int16x8_t cols_02_s16 = vcombine_s16(vaddhn_s32(tmp10, tmp3), vaddhn_s32(tmp12, tmp1)); int16x8_t cols_13_s16 = vcombine_s16(vaddhn_s32(tmp11, tmp2), vaddhn_s32(tmp13, tmp0)); int16x8_t cols_46_s16 = vcombine_s16(vsubhn_s32(tmp13, tmp0), vsubhn_s32(tmp11, tmp2)); int16x8_t cols_57_s16 = vcombine_s16(vsubhn_s32(tmp12, tmp1), vsubhn_s32(tmp10, tmp3)); /* Descale and narrow to 8-bit. */ int8x8_t cols_02_s8 = vqrshrn_n_s16(cols_02_s16, DESCALE_P2 - 16); int8x8_t cols_13_s8 = vqrshrn_n_s16(cols_13_s16, DESCALE_P2 - 16); int8x8_t cols_46_s8 = vqrshrn_n_s16(cols_46_s16, DESCALE_P2 - 16); int8x8_t cols_57_s8 = vqrshrn_n_s16(cols_57_s16, DESCALE_P2 - 16); /* Clamp to range [0-255]. */ uint8x8_t cols_02_u8 = vadd_u8(vreinterpret_u8_s8(cols_02_s8), vdup_n_u8(CENTERJSAMPLE)); uint8x8_t cols_13_u8 = vadd_u8(vreinterpret_u8_s8(cols_13_s8), vdup_n_u8(CENTERJSAMPLE)); uint8x8_t cols_46_u8 = vadd_u8(vreinterpret_u8_s8(cols_46_s8), vdup_n_u8(CENTERJSAMPLE)); uint8x8_t cols_57_u8 = vadd_u8(vreinterpret_u8_s8(cols_57_s8), vdup_n_u8(CENTERJSAMPLE)); /* Transpose 4x8 block and store to memory. (Zipping adjacent columns * together allows us to store 16-bit elements.) */ uint8x8x2_t cols_01_23 = vzip_u8(cols_02_u8, cols_13_u8); uint8x8x2_t cols_45_67 = vzip_u8(cols_46_u8, cols_57_u8); uint16x4x4_t cols_01_23_45_67 = { { vreinterpret_u16_u8(cols_01_23.val[0]), vreinterpret_u16_u8(cols_01_23.val[1]), vreinterpret_u16_u8(cols_45_67.val[0]), vreinterpret_u16_u8(cols_45_67.val[1]) } }; JSAMPROW outptr0 = output_buf[buf_offset + 0] + output_col; JSAMPROW outptr1 = output_buf[buf_offset + 1] + output_col; JSAMPROW outptr2 = output_buf[buf_offset + 2] + output_col; JSAMPROW outptr3 = output_buf[buf_offset + 3] + output_col; /* VST4 of 16-bit elements completes the transpose. */ vst4_lane_u16((uint16_t *)outptr0, cols_01_23_45_67, 0); vst4_lane_u16((uint16_t *)outptr1, cols_01_23_45_67, 1); vst4_lane_u16((uint16_t *)outptr2, cols_01_23_45_67, 2); vst4_lane_u16((uint16_t *)outptr3, cols_01_23_45_67, 3); } libjpeg-turbo-2.1.5/simd/arm/jidctred-neon.c000066400000000000000000000517171436506551100207110ustar00rootroot00000000000000/* * jidctred-neon.c - reduced-size IDCT (Arm Neon) * * Copyright (C) 2020, Arm Limited. All Rights Reserved. * Copyright (C) 2020, D. R. Commander. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #define JPEG_INTERNALS #include "../../jinclude.h" #include "../../jpeglib.h" #include "../../jsimd.h" #include "../../jdct.h" #include "../../jsimddct.h" #include "../jsimd.h" #include "align.h" #include "neon-compat.h" #include #define CONST_BITS 13 #define PASS1_BITS 2 #define F_0_211 1730 #define F_0_509 4176 #define F_0_601 4926 #define F_0_720 5906 #define F_0_765 6270 #define F_0_850 6967 #define F_0_899 7373 #define F_1_061 8697 #define F_1_272 10426 #define F_1_451 11893 #define F_1_847 15137 #define F_2_172 17799 #define F_2_562 20995 #define F_3_624 29692 /* jsimd_idct_2x2_neon() is an inverse DCT function that produces reduced-size * 2x2 output from an 8x8 DCT block. It uses the same calculations and * produces exactly the same output as IJG's original jpeg_idct_2x2() function * from jpeg-6b, which can be found in jidctred.c. * * Scaled integer constants are used to avoid floating-point arithmetic: * 0.720959822 = 5906 * 2^-13 * 0.850430095 = 6967 * 2^-13 * 1.272758580 = 10426 * 2^-13 * 3.624509785 = 29692 * 2^-13 * * See jidctred.c for further details of the 2x2 IDCT algorithm. Where * possible, the variable names and comments here in jsimd_idct_2x2_neon() * match up with those in jpeg_idct_2x2(). */ ALIGN(16) static const int16_t jsimd_idct_2x2_neon_consts[] = { -F_0_720, F_0_850, -F_1_272, F_3_624 }; void jsimd_idct_2x2_neon(void *dct_table, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { ISLOW_MULT_TYPE *quantptr = dct_table; /* Load DCT coefficients. */ int16x8_t row0 = vld1q_s16(coef_block + 0 * DCTSIZE); int16x8_t row1 = vld1q_s16(coef_block + 1 * DCTSIZE); int16x8_t row3 = vld1q_s16(coef_block + 3 * DCTSIZE); int16x8_t row5 = vld1q_s16(coef_block + 5 * DCTSIZE); int16x8_t row7 = vld1q_s16(coef_block + 7 * DCTSIZE); /* Load quantization table values. */ int16x8_t quant_row0 = vld1q_s16(quantptr + 0 * DCTSIZE); int16x8_t quant_row1 = vld1q_s16(quantptr + 1 * DCTSIZE); int16x8_t quant_row3 = vld1q_s16(quantptr + 3 * DCTSIZE); int16x8_t quant_row5 = vld1q_s16(quantptr + 5 * DCTSIZE); int16x8_t quant_row7 = vld1q_s16(quantptr + 7 * DCTSIZE); /* Dequantize DCT coefficients. */ row0 = vmulq_s16(row0, quant_row0); row1 = vmulq_s16(row1, quant_row1); row3 = vmulq_s16(row3, quant_row3); row5 = vmulq_s16(row5, quant_row5); row7 = vmulq_s16(row7, quant_row7); /* Load IDCT conversion constants. */ const int16x4_t consts = vld1_s16(jsimd_idct_2x2_neon_consts); /* Pass 1: process columns from input, put results in vectors row0 and * row1. */ /* Even part */ int32x4_t tmp10_l = vshll_n_s16(vget_low_s16(row0), CONST_BITS + 2); int32x4_t tmp10_h = vshll_n_s16(vget_high_s16(row0), CONST_BITS + 2); /* Odd part */ int32x4_t tmp0_l = vmull_lane_s16(vget_low_s16(row1), consts, 3); tmp0_l = vmlal_lane_s16(tmp0_l, vget_low_s16(row3), consts, 2); tmp0_l = vmlal_lane_s16(tmp0_l, vget_low_s16(row5), consts, 1); tmp0_l = vmlal_lane_s16(tmp0_l, vget_low_s16(row7), consts, 0); int32x4_t tmp0_h = vmull_lane_s16(vget_high_s16(row1), consts, 3); tmp0_h = vmlal_lane_s16(tmp0_h, vget_high_s16(row3), consts, 2); tmp0_h = vmlal_lane_s16(tmp0_h, vget_high_s16(row5), consts, 1); tmp0_h = vmlal_lane_s16(tmp0_h, vget_high_s16(row7), consts, 0); /* Final output stage: descale and narrow to 16-bit. */ row0 = vcombine_s16(vrshrn_n_s32(vaddq_s32(tmp10_l, tmp0_l), CONST_BITS), vrshrn_n_s32(vaddq_s32(tmp10_h, tmp0_h), CONST_BITS)); row1 = vcombine_s16(vrshrn_n_s32(vsubq_s32(tmp10_l, tmp0_l), CONST_BITS), vrshrn_n_s32(vsubq_s32(tmp10_h, tmp0_h), CONST_BITS)); /* Transpose two rows, ready for second pass. */ int16x8x2_t cols_0246_1357 = vtrnq_s16(row0, row1); int16x8_t cols_0246 = cols_0246_1357.val[0]; int16x8_t cols_1357 = cols_0246_1357.val[1]; /* Duplicate columns such that each is accessible in its own vector. */ int32x4x2_t cols_1155_3377 = vtrnq_s32(vreinterpretq_s32_s16(cols_1357), vreinterpretq_s32_s16(cols_1357)); int16x8_t cols_1155 = vreinterpretq_s16_s32(cols_1155_3377.val[0]); int16x8_t cols_3377 = vreinterpretq_s16_s32(cols_1155_3377.val[1]); /* Pass 2: process two rows, store to output array. */ /* Even part: we're only interested in col0; the top half of tmp10 is "don't * care." */ int32x4_t tmp10 = vshll_n_s16(vget_low_s16(cols_0246), CONST_BITS + 2); /* Odd part: we're only interested in the bottom half of tmp0. */ int32x4_t tmp0 = vmull_lane_s16(vget_low_s16(cols_1155), consts, 3); tmp0 = vmlal_lane_s16(tmp0, vget_low_s16(cols_3377), consts, 2); tmp0 = vmlal_lane_s16(tmp0, vget_high_s16(cols_1155), consts, 1); tmp0 = vmlal_lane_s16(tmp0, vget_high_s16(cols_3377), consts, 0); /* Final output stage: descale and clamp to range [0-255]. */ int16x8_t output_s16 = vcombine_s16(vaddhn_s32(tmp10, tmp0), vsubhn_s32(tmp10, tmp0)); output_s16 = vrsraq_n_s16(vdupq_n_s16(CENTERJSAMPLE), output_s16, CONST_BITS + PASS1_BITS + 3 + 2 - 16); /* Narrow to 8-bit and convert to unsigned. */ uint8x8_t output_u8 = vqmovun_s16(output_s16); /* Store 2x2 block to memory. */ vst1_lane_u8(output_buf[0] + output_col, output_u8, 0); vst1_lane_u8(output_buf[1] + output_col, output_u8, 1); vst1_lane_u8(output_buf[0] + output_col + 1, output_u8, 4); vst1_lane_u8(output_buf[1] + output_col + 1, output_u8, 5); } /* jsimd_idct_4x4_neon() is an inverse DCT function that produces reduced-size * 4x4 output from an 8x8 DCT block. It uses the same calculations and * produces exactly the same output as IJG's original jpeg_idct_4x4() function * from jpeg-6b, which can be found in jidctred.c. * * Scaled integer constants are used to avoid floating-point arithmetic: * 0.211164243 = 1730 * 2^-13 * 0.509795579 = 4176 * 2^-13 * 0.601344887 = 4926 * 2^-13 * 0.765366865 = 6270 * 2^-13 * 0.899976223 = 7373 * 2^-13 * 1.061594337 = 8697 * 2^-13 * 1.451774981 = 11893 * 2^-13 * 1.847759065 = 15137 * 2^-13 * 2.172734803 = 17799 * 2^-13 * 2.562915447 = 20995 * 2^-13 * * See jidctred.c for further details of the 4x4 IDCT algorithm. Where * possible, the variable names and comments here in jsimd_idct_4x4_neon() * match up with those in jpeg_idct_4x4(). */ ALIGN(16) static const int16_t jsimd_idct_4x4_neon_consts[] = { F_1_847, -F_0_765, -F_0_211, F_1_451, -F_2_172, F_1_061, -F_0_509, -F_0_601, F_0_899, F_2_562, 0, 0 }; void jsimd_idct_4x4_neon(void *dct_table, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { ISLOW_MULT_TYPE *quantptr = dct_table; /* Load DCT coefficients. */ int16x8_t row0 = vld1q_s16(coef_block + 0 * DCTSIZE); int16x8_t row1 = vld1q_s16(coef_block + 1 * DCTSIZE); int16x8_t row2 = vld1q_s16(coef_block + 2 * DCTSIZE); int16x8_t row3 = vld1q_s16(coef_block + 3 * DCTSIZE); int16x8_t row5 = vld1q_s16(coef_block + 5 * DCTSIZE); int16x8_t row6 = vld1q_s16(coef_block + 6 * DCTSIZE); int16x8_t row7 = vld1q_s16(coef_block + 7 * DCTSIZE); /* Load quantization table values for DC coefficients. */ int16x8_t quant_row0 = vld1q_s16(quantptr + 0 * DCTSIZE); /* Dequantize DC coefficients. */ row0 = vmulq_s16(row0, quant_row0); /* Construct bitmap to test if all AC coefficients are 0. */ int16x8_t bitmap = vorrq_s16(row1, row2); bitmap = vorrq_s16(bitmap, row3); bitmap = vorrq_s16(bitmap, row5); bitmap = vorrq_s16(bitmap, row6); bitmap = vorrq_s16(bitmap, row7); int64_t left_ac_bitmap = vgetq_lane_s64(vreinterpretq_s64_s16(bitmap), 0); int64_t right_ac_bitmap = vgetq_lane_s64(vreinterpretq_s64_s16(bitmap), 1); /* Load constants for IDCT computation. */ #ifdef HAVE_VLD1_S16_X3 const int16x4x3_t consts = vld1_s16_x3(jsimd_idct_4x4_neon_consts); #else /* GCC does not currently support the intrinsic vld1__x3(). */ const int16x4_t consts1 = vld1_s16(jsimd_idct_4x4_neon_consts); const int16x4_t consts2 = vld1_s16(jsimd_idct_4x4_neon_consts + 4); const int16x4_t consts3 = vld1_s16(jsimd_idct_4x4_neon_consts + 8); const int16x4x3_t consts = { { consts1, consts2, consts3 } }; #endif if (left_ac_bitmap == 0 && right_ac_bitmap == 0) { /* All AC coefficients are zero. * Compute DC values and duplicate into row vectors 0, 1, 2, and 3. */ int16x8_t dcval = vshlq_n_s16(row0, PASS1_BITS); row0 = dcval; row1 = dcval; row2 = dcval; row3 = dcval; } else if (left_ac_bitmap == 0) { /* AC coefficients are zero for columns 0, 1, 2, and 3. * Compute DC values for these columns. */ int16x4_t dcval = vshl_n_s16(vget_low_s16(row0), PASS1_BITS); /* Commence regular IDCT computation for columns 4, 5, 6, and 7. */ /* Load quantization table. */ int16x4_t quant_row1 = vld1_s16(quantptr + 1 * DCTSIZE + 4); int16x4_t quant_row2 = vld1_s16(quantptr + 2 * DCTSIZE + 4); int16x4_t quant_row3 = vld1_s16(quantptr + 3 * DCTSIZE + 4); int16x4_t quant_row5 = vld1_s16(quantptr + 5 * DCTSIZE + 4); int16x4_t quant_row6 = vld1_s16(quantptr + 6 * DCTSIZE + 4); int16x4_t quant_row7 = vld1_s16(quantptr + 7 * DCTSIZE + 4); /* Even part */ int32x4_t tmp0 = vshll_n_s16(vget_high_s16(row0), CONST_BITS + 1); int16x4_t z2 = vmul_s16(vget_high_s16(row2), quant_row2); int16x4_t z3 = vmul_s16(vget_high_s16(row6), quant_row6); int32x4_t tmp2 = vmull_lane_s16(z2, consts.val[0], 0); tmp2 = vmlal_lane_s16(tmp2, z3, consts.val[0], 1); int32x4_t tmp10 = vaddq_s32(tmp0, tmp2); int32x4_t tmp12 = vsubq_s32(tmp0, tmp2); /* Odd part */ int16x4_t z1 = vmul_s16(vget_high_s16(row7), quant_row7); z2 = vmul_s16(vget_high_s16(row5), quant_row5); z3 = vmul_s16(vget_high_s16(row3), quant_row3); int16x4_t z4 = vmul_s16(vget_high_s16(row1), quant_row1); tmp0 = vmull_lane_s16(z1, consts.val[0], 2); tmp0 = vmlal_lane_s16(tmp0, z2, consts.val[0], 3); tmp0 = vmlal_lane_s16(tmp0, z3, consts.val[1], 0); tmp0 = vmlal_lane_s16(tmp0, z4, consts.val[1], 1); tmp2 = vmull_lane_s16(z1, consts.val[1], 2); tmp2 = vmlal_lane_s16(tmp2, z2, consts.val[1], 3); tmp2 = vmlal_lane_s16(tmp2, z3, consts.val[2], 0); tmp2 = vmlal_lane_s16(tmp2, z4, consts.val[2], 1); /* Final output stage: descale and narrow to 16-bit. */ row0 = vcombine_s16(dcval, vrshrn_n_s32(vaddq_s32(tmp10, tmp2), CONST_BITS - PASS1_BITS + 1)); row3 = vcombine_s16(dcval, vrshrn_n_s32(vsubq_s32(tmp10, tmp2), CONST_BITS - PASS1_BITS + 1)); row1 = vcombine_s16(dcval, vrshrn_n_s32(vaddq_s32(tmp12, tmp0), CONST_BITS - PASS1_BITS + 1)); row2 = vcombine_s16(dcval, vrshrn_n_s32(vsubq_s32(tmp12, tmp0), CONST_BITS - PASS1_BITS + 1)); } else if (right_ac_bitmap == 0) { /* AC coefficients are zero for columns 4, 5, 6, and 7. * Compute DC values for these columns. */ int16x4_t dcval = vshl_n_s16(vget_high_s16(row0), PASS1_BITS); /* Commence regular IDCT computation for columns 0, 1, 2, and 3. */ /* Load quantization table. */ int16x4_t quant_row1 = vld1_s16(quantptr + 1 * DCTSIZE); int16x4_t quant_row2 = vld1_s16(quantptr + 2 * DCTSIZE); int16x4_t quant_row3 = vld1_s16(quantptr + 3 * DCTSIZE); int16x4_t quant_row5 = vld1_s16(quantptr + 5 * DCTSIZE); int16x4_t quant_row6 = vld1_s16(quantptr + 6 * DCTSIZE); int16x4_t quant_row7 = vld1_s16(quantptr + 7 * DCTSIZE); /* Even part */ int32x4_t tmp0 = vshll_n_s16(vget_low_s16(row0), CONST_BITS + 1); int16x4_t z2 = vmul_s16(vget_low_s16(row2), quant_row2); int16x4_t z3 = vmul_s16(vget_low_s16(row6), quant_row6); int32x4_t tmp2 = vmull_lane_s16(z2, consts.val[0], 0); tmp2 = vmlal_lane_s16(tmp2, z3, consts.val[0], 1); int32x4_t tmp10 = vaddq_s32(tmp0, tmp2); int32x4_t tmp12 = vsubq_s32(tmp0, tmp2); /* Odd part */ int16x4_t z1 = vmul_s16(vget_low_s16(row7), quant_row7); z2 = vmul_s16(vget_low_s16(row5), quant_row5); z3 = vmul_s16(vget_low_s16(row3), quant_row3); int16x4_t z4 = vmul_s16(vget_low_s16(row1), quant_row1); tmp0 = vmull_lane_s16(z1, consts.val[0], 2); tmp0 = vmlal_lane_s16(tmp0, z2, consts.val[0], 3); tmp0 = vmlal_lane_s16(tmp0, z3, consts.val[1], 0); tmp0 = vmlal_lane_s16(tmp0, z4, consts.val[1], 1); tmp2 = vmull_lane_s16(z1, consts.val[1], 2); tmp2 = vmlal_lane_s16(tmp2, z2, consts.val[1], 3); tmp2 = vmlal_lane_s16(tmp2, z3, consts.val[2], 0); tmp2 = vmlal_lane_s16(tmp2, z4, consts.val[2], 1); /* Final output stage: descale and narrow to 16-bit. */ row0 = vcombine_s16(vrshrn_n_s32(vaddq_s32(tmp10, tmp2), CONST_BITS - PASS1_BITS + 1), dcval); row3 = vcombine_s16(vrshrn_n_s32(vsubq_s32(tmp10, tmp2), CONST_BITS - PASS1_BITS + 1), dcval); row1 = vcombine_s16(vrshrn_n_s32(vaddq_s32(tmp12, tmp0), CONST_BITS - PASS1_BITS + 1), dcval); row2 = vcombine_s16(vrshrn_n_s32(vsubq_s32(tmp12, tmp0), CONST_BITS - PASS1_BITS + 1), dcval); } else { /* All AC coefficients are non-zero; full IDCT calculation required. */ int16x8_t quant_row1 = vld1q_s16(quantptr + 1 * DCTSIZE); int16x8_t quant_row2 = vld1q_s16(quantptr + 2 * DCTSIZE); int16x8_t quant_row3 = vld1q_s16(quantptr + 3 * DCTSIZE); int16x8_t quant_row5 = vld1q_s16(quantptr + 5 * DCTSIZE); int16x8_t quant_row6 = vld1q_s16(quantptr + 6 * DCTSIZE); int16x8_t quant_row7 = vld1q_s16(quantptr + 7 * DCTSIZE); /* Even part */ int32x4_t tmp0_l = vshll_n_s16(vget_low_s16(row0), CONST_BITS + 1); int32x4_t tmp0_h = vshll_n_s16(vget_high_s16(row0), CONST_BITS + 1); int16x8_t z2 = vmulq_s16(row2, quant_row2); int16x8_t z3 = vmulq_s16(row6, quant_row6); int32x4_t tmp2_l = vmull_lane_s16(vget_low_s16(z2), consts.val[0], 0); int32x4_t tmp2_h = vmull_lane_s16(vget_high_s16(z2), consts.val[0], 0); tmp2_l = vmlal_lane_s16(tmp2_l, vget_low_s16(z3), consts.val[0], 1); tmp2_h = vmlal_lane_s16(tmp2_h, vget_high_s16(z3), consts.val[0], 1); int32x4_t tmp10_l = vaddq_s32(tmp0_l, tmp2_l); int32x4_t tmp10_h = vaddq_s32(tmp0_h, tmp2_h); int32x4_t tmp12_l = vsubq_s32(tmp0_l, tmp2_l); int32x4_t tmp12_h = vsubq_s32(tmp0_h, tmp2_h); /* Odd part */ int16x8_t z1 = vmulq_s16(row7, quant_row7); z2 = vmulq_s16(row5, quant_row5); z3 = vmulq_s16(row3, quant_row3); int16x8_t z4 = vmulq_s16(row1, quant_row1); tmp0_l = vmull_lane_s16(vget_low_s16(z1), consts.val[0], 2); tmp0_l = vmlal_lane_s16(tmp0_l, vget_low_s16(z2), consts.val[0], 3); tmp0_l = vmlal_lane_s16(tmp0_l, vget_low_s16(z3), consts.val[1], 0); tmp0_l = vmlal_lane_s16(tmp0_l, vget_low_s16(z4), consts.val[1], 1); tmp0_h = vmull_lane_s16(vget_high_s16(z1), consts.val[0], 2); tmp0_h = vmlal_lane_s16(tmp0_h, vget_high_s16(z2), consts.val[0], 3); tmp0_h = vmlal_lane_s16(tmp0_h, vget_high_s16(z3), consts.val[1], 0); tmp0_h = vmlal_lane_s16(tmp0_h, vget_high_s16(z4), consts.val[1], 1); tmp2_l = vmull_lane_s16(vget_low_s16(z1), consts.val[1], 2); tmp2_l = vmlal_lane_s16(tmp2_l, vget_low_s16(z2), consts.val[1], 3); tmp2_l = vmlal_lane_s16(tmp2_l, vget_low_s16(z3), consts.val[2], 0); tmp2_l = vmlal_lane_s16(tmp2_l, vget_low_s16(z4), consts.val[2], 1); tmp2_h = vmull_lane_s16(vget_high_s16(z1), consts.val[1], 2); tmp2_h = vmlal_lane_s16(tmp2_h, vget_high_s16(z2), consts.val[1], 3); tmp2_h = vmlal_lane_s16(tmp2_h, vget_high_s16(z3), consts.val[2], 0); tmp2_h = vmlal_lane_s16(tmp2_h, vget_high_s16(z4), consts.val[2], 1); /* Final output stage: descale and narrow to 16-bit. */ row0 = vcombine_s16(vrshrn_n_s32(vaddq_s32(tmp10_l, tmp2_l), CONST_BITS - PASS1_BITS + 1), vrshrn_n_s32(vaddq_s32(tmp10_h, tmp2_h), CONST_BITS - PASS1_BITS + 1)); row3 = vcombine_s16(vrshrn_n_s32(vsubq_s32(tmp10_l, tmp2_l), CONST_BITS - PASS1_BITS + 1), vrshrn_n_s32(vsubq_s32(tmp10_h, tmp2_h), CONST_BITS - PASS1_BITS + 1)); row1 = vcombine_s16(vrshrn_n_s32(vaddq_s32(tmp12_l, tmp0_l), CONST_BITS - PASS1_BITS + 1), vrshrn_n_s32(vaddq_s32(tmp12_h, tmp0_h), CONST_BITS - PASS1_BITS + 1)); row2 = vcombine_s16(vrshrn_n_s32(vsubq_s32(tmp12_l, tmp0_l), CONST_BITS - PASS1_BITS + 1), vrshrn_n_s32(vsubq_s32(tmp12_h, tmp0_h), CONST_BITS - PASS1_BITS + 1)); } /* Transpose 8x4 block to perform IDCT on rows in second pass. */ int16x8x2_t row_01 = vtrnq_s16(row0, row1); int16x8x2_t row_23 = vtrnq_s16(row2, row3); int32x4x2_t cols_0426 = vtrnq_s32(vreinterpretq_s32_s16(row_01.val[0]), vreinterpretq_s32_s16(row_23.val[0])); int32x4x2_t cols_1537 = vtrnq_s32(vreinterpretq_s32_s16(row_01.val[1]), vreinterpretq_s32_s16(row_23.val[1])); int16x4_t col0 = vreinterpret_s16_s32(vget_low_s32(cols_0426.val[0])); int16x4_t col1 = vreinterpret_s16_s32(vget_low_s32(cols_1537.val[0])); int16x4_t col2 = vreinterpret_s16_s32(vget_low_s32(cols_0426.val[1])); int16x4_t col3 = vreinterpret_s16_s32(vget_low_s32(cols_1537.val[1])); int16x4_t col5 = vreinterpret_s16_s32(vget_high_s32(cols_1537.val[0])); int16x4_t col6 = vreinterpret_s16_s32(vget_high_s32(cols_0426.val[1])); int16x4_t col7 = vreinterpret_s16_s32(vget_high_s32(cols_1537.val[1])); /* Commence second pass of IDCT. */ /* Even part */ int32x4_t tmp0 = vshll_n_s16(col0, CONST_BITS + 1); int32x4_t tmp2 = vmull_lane_s16(col2, consts.val[0], 0); tmp2 = vmlal_lane_s16(tmp2, col6, consts.val[0], 1); int32x4_t tmp10 = vaddq_s32(tmp0, tmp2); int32x4_t tmp12 = vsubq_s32(tmp0, tmp2); /* Odd part */ tmp0 = vmull_lane_s16(col7, consts.val[0], 2); tmp0 = vmlal_lane_s16(tmp0, col5, consts.val[0], 3); tmp0 = vmlal_lane_s16(tmp0, col3, consts.val[1], 0); tmp0 = vmlal_lane_s16(tmp0, col1, consts.val[1], 1); tmp2 = vmull_lane_s16(col7, consts.val[1], 2); tmp2 = vmlal_lane_s16(tmp2, col5, consts.val[1], 3); tmp2 = vmlal_lane_s16(tmp2, col3, consts.val[2], 0); tmp2 = vmlal_lane_s16(tmp2, col1, consts.val[2], 1); /* Final output stage: descale and clamp to range [0-255]. */ int16x8_t output_cols_02 = vcombine_s16(vaddhn_s32(tmp10, tmp2), vsubhn_s32(tmp12, tmp0)); int16x8_t output_cols_13 = vcombine_s16(vaddhn_s32(tmp12, tmp0), vsubhn_s32(tmp10, tmp2)); output_cols_02 = vrsraq_n_s16(vdupq_n_s16(CENTERJSAMPLE), output_cols_02, CONST_BITS + PASS1_BITS + 3 + 1 - 16); output_cols_13 = vrsraq_n_s16(vdupq_n_s16(CENTERJSAMPLE), output_cols_13, CONST_BITS + PASS1_BITS + 3 + 1 - 16); /* Narrow to 8-bit and convert to unsigned while zipping 8-bit elements. * An interleaving store completes the transpose. */ uint8x8x2_t output_0123 = vzip_u8(vqmovun_s16(output_cols_02), vqmovun_s16(output_cols_13)); uint16x4x2_t output_01_23 = { { vreinterpret_u16_u8(output_0123.val[0]), vreinterpret_u16_u8(output_0123.val[1]) } }; /* Store 4x4 block to memory. */ JSAMPROW outptr0 = output_buf[0] + output_col; JSAMPROW outptr1 = output_buf[1] + output_col; JSAMPROW outptr2 = output_buf[2] + output_col; JSAMPROW outptr3 = output_buf[3] + output_col; vst2_lane_u16((uint16_t *)outptr0, output_01_23, 0); vst2_lane_u16((uint16_t *)outptr1, output_01_23, 1); vst2_lane_u16((uint16_t *)outptr2, output_01_23, 2); vst2_lane_u16((uint16_t *)outptr3, output_01_23, 3); } libjpeg-turbo-2.1.5/simd/arm/jquanti-neon.c000066400000000000000000000214351436506551100205660ustar00rootroot00000000000000/* * jquanti-neon.c - sample data conversion and quantization (Arm Neon) * * Copyright (C) 2020-2021, Arm Limited. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #define JPEG_INTERNALS #include "../../jinclude.h" #include "../../jpeglib.h" #include "../../jsimd.h" #include "../../jdct.h" #include "../../jsimddct.h" #include "../jsimd.h" #include /* After downsampling, the resulting sample values are in the range [0, 255], * but the Discrete Cosine Transform (DCT) operates on values centered around * 0. * * To prepare sample values for the DCT, load samples into a DCT workspace, * subtracting CENTERJSAMPLE (128). The samples, now in the range [-128, 127], * are also widened from 8- to 16-bit. * * The equivalent scalar C function convsamp() can be found in jcdctmgr.c. */ void jsimd_convsamp_neon(JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM *workspace) { uint8x8_t samp_row0 = vld1_u8(sample_data[0] + start_col); uint8x8_t samp_row1 = vld1_u8(sample_data[1] + start_col); uint8x8_t samp_row2 = vld1_u8(sample_data[2] + start_col); uint8x8_t samp_row3 = vld1_u8(sample_data[3] + start_col); uint8x8_t samp_row4 = vld1_u8(sample_data[4] + start_col); uint8x8_t samp_row5 = vld1_u8(sample_data[5] + start_col); uint8x8_t samp_row6 = vld1_u8(sample_data[6] + start_col); uint8x8_t samp_row7 = vld1_u8(sample_data[7] + start_col); int16x8_t row0 = vreinterpretq_s16_u16(vsubl_u8(samp_row0, vdup_n_u8(CENTERJSAMPLE))); int16x8_t row1 = vreinterpretq_s16_u16(vsubl_u8(samp_row1, vdup_n_u8(CENTERJSAMPLE))); int16x8_t row2 = vreinterpretq_s16_u16(vsubl_u8(samp_row2, vdup_n_u8(CENTERJSAMPLE))); int16x8_t row3 = vreinterpretq_s16_u16(vsubl_u8(samp_row3, vdup_n_u8(CENTERJSAMPLE))); int16x8_t row4 = vreinterpretq_s16_u16(vsubl_u8(samp_row4, vdup_n_u8(CENTERJSAMPLE))); int16x8_t row5 = vreinterpretq_s16_u16(vsubl_u8(samp_row5, vdup_n_u8(CENTERJSAMPLE))); int16x8_t row6 = vreinterpretq_s16_u16(vsubl_u8(samp_row6, vdup_n_u8(CENTERJSAMPLE))); int16x8_t row7 = vreinterpretq_s16_u16(vsubl_u8(samp_row7, vdup_n_u8(CENTERJSAMPLE))); vst1q_s16(workspace + 0 * DCTSIZE, row0); vst1q_s16(workspace + 1 * DCTSIZE, row1); vst1q_s16(workspace + 2 * DCTSIZE, row2); vst1q_s16(workspace + 3 * DCTSIZE, row3); vst1q_s16(workspace + 4 * DCTSIZE, row4); vst1q_s16(workspace + 5 * DCTSIZE, row5); vst1q_s16(workspace + 6 * DCTSIZE, row6); vst1q_s16(workspace + 7 * DCTSIZE, row7); } /* After the DCT, the resulting array of coefficient values needs to be divided * by an array of quantization values. * * To avoid a slow division operation, the DCT coefficients are multiplied by * the (scaled) reciprocals of the quantization values and then right-shifted. * * The equivalent scalar C function quantize() can be found in jcdctmgr.c. */ void jsimd_quantize_neon(JCOEFPTR coef_block, DCTELEM *divisors, DCTELEM *workspace) { JCOEFPTR out_ptr = coef_block; UDCTELEM *recip_ptr = (UDCTELEM *)divisors; UDCTELEM *corr_ptr = (UDCTELEM *)divisors + DCTSIZE2; DCTELEM *shift_ptr = divisors + 3 * DCTSIZE2; int i; #if defined(__clang__) && (defined(__aarch64__) || defined(_M_ARM64)) #pragma unroll #endif for (i = 0; i < DCTSIZE; i += DCTSIZE / 2) { /* Load DCT coefficients. */ int16x8_t row0 = vld1q_s16(workspace + (i + 0) * DCTSIZE); int16x8_t row1 = vld1q_s16(workspace + (i + 1) * DCTSIZE); int16x8_t row2 = vld1q_s16(workspace + (i + 2) * DCTSIZE); int16x8_t row3 = vld1q_s16(workspace + (i + 3) * DCTSIZE); /* Load reciprocals of quantization values. */ uint16x8_t recip0 = vld1q_u16(recip_ptr + (i + 0) * DCTSIZE); uint16x8_t recip1 = vld1q_u16(recip_ptr + (i + 1) * DCTSIZE); uint16x8_t recip2 = vld1q_u16(recip_ptr + (i + 2) * DCTSIZE); uint16x8_t recip3 = vld1q_u16(recip_ptr + (i + 3) * DCTSIZE); uint16x8_t corr0 = vld1q_u16(corr_ptr + (i + 0) * DCTSIZE); uint16x8_t corr1 = vld1q_u16(corr_ptr + (i + 1) * DCTSIZE); uint16x8_t corr2 = vld1q_u16(corr_ptr + (i + 2) * DCTSIZE); uint16x8_t corr3 = vld1q_u16(corr_ptr + (i + 3) * DCTSIZE); int16x8_t shift0 = vld1q_s16(shift_ptr + (i + 0) * DCTSIZE); int16x8_t shift1 = vld1q_s16(shift_ptr + (i + 1) * DCTSIZE); int16x8_t shift2 = vld1q_s16(shift_ptr + (i + 2) * DCTSIZE); int16x8_t shift3 = vld1q_s16(shift_ptr + (i + 3) * DCTSIZE); /* Extract sign from coefficients. */ int16x8_t sign_row0 = vshrq_n_s16(row0, 15); int16x8_t sign_row1 = vshrq_n_s16(row1, 15); int16x8_t sign_row2 = vshrq_n_s16(row2, 15); int16x8_t sign_row3 = vshrq_n_s16(row3, 15); /* Get absolute value of DCT coefficients. */ uint16x8_t abs_row0 = vreinterpretq_u16_s16(vabsq_s16(row0)); uint16x8_t abs_row1 = vreinterpretq_u16_s16(vabsq_s16(row1)); uint16x8_t abs_row2 = vreinterpretq_u16_s16(vabsq_s16(row2)); uint16x8_t abs_row3 = vreinterpretq_u16_s16(vabsq_s16(row3)); /* Add correction. */ abs_row0 = vaddq_u16(abs_row0, corr0); abs_row1 = vaddq_u16(abs_row1, corr1); abs_row2 = vaddq_u16(abs_row2, corr2); abs_row3 = vaddq_u16(abs_row3, corr3); /* Multiply DCT coefficients by quantization reciprocals. */ int32x4_t row0_l = vreinterpretq_s32_u32(vmull_u16(vget_low_u16(abs_row0), vget_low_u16(recip0))); int32x4_t row0_h = vreinterpretq_s32_u32(vmull_u16(vget_high_u16(abs_row0), vget_high_u16(recip0))); int32x4_t row1_l = vreinterpretq_s32_u32(vmull_u16(vget_low_u16(abs_row1), vget_low_u16(recip1))); int32x4_t row1_h = vreinterpretq_s32_u32(vmull_u16(vget_high_u16(abs_row1), vget_high_u16(recip1))); int32x4_t row2_l = vreinterpretq_s32_u32(vmull_u16(vget_low_u16(abs_row2), vget_low_u16(recip2))); int32x4_t row2_h = vreinterpretq_s32_u32(vmull_u16(vget_high_u16(abs_row2), vget_high_u16(recip2))); int32x4_t row3_l = vreinterpretq_s32_u32(vmull_u16(vget_low_u16(abs_row3), vget_low_u16(recip3))); int32x4_t row3_h = vreinterpretq_s32_u32(vmull_u16(vget_high_u16(abs_row3), vget_high_u16(recip3))); /* Narrow back to 16-bit. */ row0 = vcombine_s16(vshrn_n_s32(row0_l, 16), vshrn_n_s32(row0_h, 16)); row1 = vcombine_s16(vshrn_n_s32(row1_l, 16), vshrn_n_s32(row1_h, 16)); row2 = vcombine_s16(vshrn_n_s32(row2_l, 16), vshrn_n_s32(row2_h, 16)); row3 = vcombine_s16(vshrn_n_s32(row3_l, 16), vshrn_n_s32(row3_h, 16)); /* Since VSHR only supports an immediate as its second argument, negate the * shift value and shift left. */ row0 = vreinterpretq_s16_u16(vshlq_u16(vreinterpretq_u16_s16(row0), vnegq_s16(shift0))); row1 = vreinterpretq_s16_u16(vshlq_u16(vreinterpretq_u16_s16(row1), vnegq_s16(shift1))); row2 = vreinterpretq_s16_u16(vshlq_u16(vreinterpretq_u16_s16(row2), vnegq_s16(shift2))); row3 = vreinterpretq_s16_u16(vshlq_u16(vreinterpretq_u16_s16(row3), vnegq_s16(shift3))); /* Restore sign to original product. */ row0 = veorq_s16(row0, sign_row0); row0 = vsubq_s16(row0, sign_row0); row1 = veorq_s16(row1, sign_row1); row1 = vsubq_s16(row1, sign_row1); row2 = veorq_s16(row2, sign_row2); row2 = vsubq_s16(row2, sign_row2); row3 = veorq_s16(row3, sign_row3); row3 = vsubq_s16(row3, sign_row3); /* Store quantized coefficients to memory. */ vst1q_s16(out_ptr + (i + 0) * DCTSIZE, row0); vst1q_s16(out_ptr + (i + 1) * DCTSIZE, row1); vst1q_s16(out_ptr + (i + 2) * DCTSIZE, row2); vst1q_s16(out_ptr + (i + 3) * DCTSIZE, row3); } } libjpeg-turbo-2.1.5/simd/arm/neon-compat.h.in000066400000000000000000000030451436506551100210050ustar00rootroot00000000000000/* * Copyright (C) 2020, D. R. Commander. All Rights Reserved. * Copyright (C) 2020-2021, Arm Limited. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #cmakedefine HAVE_VLD1_S16_X3 #cmakedefine HAVE_VLD1_U16_X2 #cmakedefine HAVE_VLD1Q_U8_X4 /* Define compiler-independent count-leading-zeros and byte-swap macros */ #if defined(_MSC_VER) && !defined(__clang__) #define BUILTIN_CLZ(x) _CountLeadingZeros(x) #define BUILTIN_CLZLL(x) _CountLeadingZeros64(x) #define BUILTIN_BSWAP64(x) _byteswap_uint64(x) #elif defined(__clang__) || defined(__GNUC__) #define BUILTIN_CLZ(x) __builtin_clz(x) #define BUILTIN_CLZLL(x) __builtin_clzll(x) #define BUILTIN_BSWAP64(x) __builtin_bswap64(x) #else #error "Unknown compiler" #endif libjpeg-turbo-2.1.5/simd/i386/000077500000000000000000000000001436506551100157175ustar00rootroot00000000000000libjpeg-turbo-2.1.5/simd/i386/jccolext-avx2.asm000066400000000000000000000620651436506551100211230ustar00rootroot00000000000000; ; jccolext.asm - colorspace conversion (AVX2) ; ; Copyright (C) 2015, Intel Corporation. ; Copyright (C) 2016, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jcolsamp.inc" ; -------------------------------------------------------------------------- ; ; Convert some rows of samples to the output colorspace. ; ; GLOBAL(void) ; jsimd_rgb_ycc_convert_avx2(JDIMENSION img_width, JSAMPARRAY input_buf, ; JSAMPIMAGE output_buf, JDIMENSION output_row, ; int num_rows); ; %define img_width(b) (b) + 8 ; JDIMENSION img_width %define input_buf(b) (b) + 12 ; JSAMPARRAY input_buf %define output_buf(b) (b) + 16 ; JSAMPIMAGE output_buf %define output_row(b) (b) + 20 ; JDIMENSION output_row %define num_rows(b) (b) + 24 ; int num_rows %define original_ebp ebp + 0 %define wk(i) ebp - (WK_NUM - (i)) * SIZEOF_YMMWORD ; ymmword wk[WK_NUM] %define WK_NUM 8 %define gotptr wk(0) - SIZEOF_POINTER ; void * gotptr align 32 GLOBAL_FUNCTION(jsimd_rgb_ycc_convert_avx2) EXTN(jsimd_rgb_ycc_convert_avx2): push ebp mov eax, esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_YMMWORD) ; align to 256 bits mov [esp], eax mov ebp, esp ; ebp = aligned ebp lea esp, [wk(0)] pushpic eax ; make a room for GOT address push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address movpic POINTER [gotptr], ebx ; save GOT address mov ecx, JDIMENSION [img_width(eax)] test ecx, ecx jz near .return push ecx mov esi, JSAMPIMAGE [output_buf(eax)] mov ecx, JDIMENSION [output_row(eax)] mov edi, JSAMPARRAY [esi+0*SIZEOF_JSAMPARRAY] mov ebx, JSAMPARRAY [esi+1*SIZEOF_JSAMPARRAY] mov edx, JSAMPARRAY [esi+2*SIZEOF_JSAMPARRAY] lea edi, [edi+ecx*SIZEOF_JSAMPROW] lea ebx, [ebx+ecx*SIZEOF_JSAMPROW] lea edx, [edx+ecx*SIZEOF_JSAMPROW] pop ecx mov esi, JSAMPARRAY [input_buf(eax)] mov eax, INT [num_rows(eax)] test eax, eax jle near .return alignx 16, 7 .rowloop: pushpic eax push edx push ebx push edi push esi push ecx ; col mov esi, JSAMPROW [esi] ; inptr mov edi, JSAMPROW [edi] ; outptr0 mov ebx, JSAMPROW [ebx] ; outptr1 mov edx, JSAMPROW [edx] ; outptr2 movpic eax, POINTER [gotptr] ; load GOT address (eax) cmp ecx, byte SIZEOF_YMMWORD jae near .columnloop alignx 16, 7 %if RGB_PIXELSIZE == 3 ; --------------- .column_ld1: push eax push edx lea ecx, [ecx+ecx*2] ; imul ecx,RGB_PIXELSIZE test cl, SIZEOF_BYTE jz short .column_ld2 sub ecx, byte SIZEOF_BYTE movzx eax, byte [esi+ecx] .column_ld2: test cl, SIZEOF_WORD jz short .column_ld4 sub ecx, byte SIZEOF_WORD movzx edx, word [esi+ecx] shl eax, WORD_BIT or eax, edx .column_ld4: vmovd xmmA, eax pop edx pop eax test cl, SIZEOF_DWORD jz short .column_ld8 sub ecx, byte SIZEOF_DWORD vmovd xmmF, XMM_DWORD [esi+ecx] vpslldq xmmA, xmmA, SIZEOF_DWORD vpor xmmA, xmmA, xmmF .column_ld8: test cl, SIZEOF_MMWORD jz short .column_ld16 sub ecx, byte SIZEOF_MMWORD vmovq xmmB, XMM_MMWORD [esi+ecx] vpslldq xmmA, xmmA, SIZEOF_MMWORD vpor xmmA, xmmA, xmmB .column_ld16: test cl, SIZEOF_XMMWORD jz short .column_ld32 sub ecx, byte SIZEOF_XMMWORD vmovdqu xmmB, XMM_MMWORD [esi+ecx] vperm2i128 ymmA, ymmA, ymmA, 1 vpor ymmA, ymmB .column_ld32: test cl, SIZEOF_YMMWORD jz short .column_ld64 sub ecx, byte SIZEOF_YMMWORD vmovdqa ymmF, ymmA vmovdqu ymmA, YMMWORD [esi+0*SIZEOF_YMMWORD] .column_ld64: test cl, 2*SIZEOF_YMMWORD mov ecx, SIZEOF_YMMWORD jz short .rgb_ycc_cnv vmovdqa ymmB, ymmA vmovdqu ymmA, YMMWORD [esi+0*SIZEOF_YMMWORD] vmovdqu ymmF, YMMWORD [esi+1*SIZEOF_YMMWORD] jmp short .rgb_ycc_cnv alignx 16, 7 .columnloop: vmovdqu ymmA, YMMWORD [esi+0*SIZEOF_YMMWORD] vmovdqu ymmF, YMMWORD [esi+1*SIZEOF_YMMWORD] vmovdqu ymmB, YMMWORD [esi+2*SIZEOF_YMMWORD] .rgb_ycc_cnv: ; ymmA=(00 10 20 01 11 21 02 12 22 03 13 23 04 14 24 05 ; 15 25 06 16 26 07 17 27 08 18 28 09 19 29 0A 1A) ; ymmF=(2A 0B 1B 2B 0C 1C 2C 0D 1D 2D 0E 1E 2E 0F 1F 2F ; 0G 1G 2G 0H 1H 2H 0I 1I 2I 0J 1J 2J 0K 1K 2K 0L) ; ymmB=(1L 2L 0M 1M 2M 0N 1N 2N 0O 1O 2O 0P 1P 2P 0Q 1Q ; 2Q 0R 1R 2R 0S 1S 2S 0T 1T 2T 0U 1U 2U 0V 1V 2V) vmovdqu ymmC, ymmA vinserti128 ymmA, ymmF, xmmA, 0 ; ymmA=(00 10 20 01 11 21 02 12 22 03 13 23 04 14 24 05 ; 0G 1G 2G 0H 1H 2H 0I 1I 2I 0J 1J 2J 0K 1K 2K 0L) vinserti128 ymmC, ymmC, xmmB, 0 ; ymmC=(1L 2L 0M 1M 2M 0N 1N 2N 0O 1O 2O 0P 1P 2P 0Q 1Q ; 15 25 06 16 26 07 17 27 08 18 28 09 19 29 0A 1A) vinserti128 ymmB, ymmB, xmmF, 0 ; ymmB=(2A 0B 1B 2B 0C 1C 2C 0D 1D 2D 0E 1E 2E 0F 1F 2F ; 2Q 0R 1R 2R 0S 1S 2S 0T 1T 2T 0U 1U 2U 0V 1V 2V) vperm2i128 ymmF, ymmC, ymmC, 1 ; ymmF=(15 25 06 16 26 07 17 27 08 18 28 09 19 29 0A 1A ; 1L 2L 0M 1M 2M 0N 1N 2N 0O 1O 2O 0P 1P 2P 0Q 1Q) vmovdqa ymmG, ymmA vpslldq ymmA, ymmA, 8 ; ymmA=(-- -- -- -- -- -- -- -- 00 10 20 01 11 21 02 12 ; 22 03 13 23 04 14 24 05 0G 1G 2G 0H 1H 2H 0I 1I) vpsrldq ymmG, ymmG, 8 ; ymmG=(22 03 13 23 04 14 24 05 0G 1G 2G 0H 1H 2H 0I 1I ; 2I 0J 1J 2J 0K 1K 2K 0L -- -- -- -- -- -- -- --) vpunpckhbw ymmA, ymmA, ymmF ; ymmA=(00 08 10 18 20 28 01 09 11 19 21 29 02 0A 12 1A ; 0G 0O 1G 1O 2G 2O 0H 0P 1H 1P 2H 2P 0I 0Q 1I 1Q) vpslldq ymmF, ymmF, 8 ; ymmF=(-- -- -- -- -- -- -- -- 15 25 06 16 26 07 17 27 ; 08 18 28 09 19 29 0A 1A 1L 2L 0M 1M 2M 0N 1N 2N) vpunpcklbw ymmG, ymmG, ymmB ; ymmG=(22 2A 03 0B 13 1B 23 2B 04 0C 14 1C 24 2C 05 0D ; 2I 2Q 0J 0R 1J 1R 2J 2R 0K 0S 1K 1S 2K 2S 0L 0T) vpunpckhbw ymmF, ymmF, ymmB ; ymmF=(15 1D 25 2D 06 0E 16 1E 26 2E 07 0F 17 1F 27 2F ; 1L 1T 2L 2T 0M 0U 1M 1U 2M 2U 0N 0V 1N 1V 2N 2V) vmovdqa ymmD, ymmA vpslldq ymmA, ymmA, 8 ; ymmA=(-- -- -- -- -- -- -- -- 00 08 10 18 20 28 01 09 ; 11 19 21 29 02 0A 12 1A 0G 0O 1G 1O 2G 2O 0H 0P) vpsrldq ymmD, ymmD, 8 ; ymmD=(11 19 21 29 02 0A 12 1A 0G 0O 1G 1O 2G 2O 0H 0P ; 1H 1P 2H 2P 0I 0Q 1I 1Q -- -- -- -- -- -- -- --) vpunpckhbw ymmA, ymmA, ymmG ; ymmA=(00 04 08 0C 10 14 18 1C 20 24 28 2C 01 05 09 0D ; 0G 0K 0O 0S 1G 1K 1O 1S 2G 2K 2O 2S 0H 0L 0P 0T) vpslldq ymmG, ymmG, 8 ; ymmG=(-- -- -- -- -- -- -- -- 22 2A 03 0B 13 1B 23 2B ; 04 0C 14 1C 24 2C 05 0D 2I 2Q 0J 0R 1J 1R 2J 2R) vpunpcklbw ymmD, ymmD, ymmF ; ymmD=(11 15 19 1D 21 25 29 2D 02 06 0A 0E 12 16 1A 1E ; 1H 1L 1P 1T 2H 2L 2P 2T 0I 0M 0Q 0U 1I 1M 1Q 1U) vpunpckhbw ymmG, ymmG, ymmF ; ymmG=(22 26 2A 2E 03 07 0B 0F 13 17 1B 1F 23 27 2B 2F ; 2I 2M 2Q 2U 0J 0N 0R 0V 1J 1N 1R 1V 2J 2N 2R 2V) vmovdqa ymmE, ymmA vpslldq ymmA, ymmA, 8 ; ymmA=(-- -- -- -- -- -- -- -- 00 04 08 0C 10 14 18 1C ; 20 24 28 2C 01 05 09 0D 0G 0K 0O 0S 1G 1K 1O 1S) vpsrldq ymmE, ymmE, 8 ; ymmE=(20 24 28 2C 01 05 09 0D 0G 0K 0O 0S 1G 1K 1O 1S ; 2G 2K 2O 2S 0H 0L 0P 0T -- -- -- -- -- -- -- --) vpunpckhbw ymmA, ymmA, ymmD ; ymmA=(00 02 04 06 08 0A 0C 0E 10 12 14 16 18 1A 1C 1E ; 0G 0I 0K 0M 0O 0Q 0S 0U 1G 1I 1K 1M 1O 1Q 1S 1U) vpslldq ymmD, ymmD, 8 ; ymmD=(-- -- -- -- -- -- -- -- 11 15 19 1D 21 25 29 2D ; 02 06 0A 0E 12 16 1A 1E 1H 1L 1P 1T 2H 2L 2P 2T) vpunpcklbw ymmE, ymmE, ymmG ; ymmE=(20 22 24 26 28 2A 2C 2E 01 03 05 07 09 0B 0D 0F ; 2G 2I 2K 2M 2O 2Q 2S 2U 0H 0J 0L 0N 0P 0R 0T 0V) vpunpckhbw ymmD, ymmD, ymmG ; ymmD=(11 13 15 17 19 1B 1D 1F 21 23 25 27 29 2B 2D 2F ; 1H 1J 1L 1N 1P 1R 1T 1V 2H 2J 2L 2N 2P 2R 2T 2V) vpxor ymmH, ymmH, ymmH vmovdqa ymmC, ymmA vpunpcklbw ymmA, ymmA, ymmH ; ymmA=(00 02 04 06 08 0A 0C 0E 0G 0I 0K 0M 0O 0Q 0S 0U) vpunpckhbw ymmC, ymmC, ymmH ; ymmC=(10 12 14 16 18 1A 1C 1E 1G 1I 1K 1M 1O 1Q 1S 1U) vmovdqa ymmB, ymmE vpunpcklbw ymmE, ymmE, ymmH ; ymmE=(20 22 24 26 28 2A 2C 2E 2G 2I 2K 2M 2O 2Q 2S 2U) vpunpckhbw ymmB, ymmB, ymmH ; ymmB=(01 03 05 07 09 0B 0D 0F 0H 0J 0L 0N 0P 0R 0T 0V) vmovdqa ymmF, ymmD vpunpcklbw ymmD, ymmD, ymmH ; ymmD=(11 13 15 17 19 1B 1D 1F 1H 1J 1L 1N 1P 1R 1T 1V) vpunpckhbw ymmF, ymmF, ymmH ; ymmF=(21 23 25 27 29 2B 2D 2F 2H 2J 2L 2N 2P 2R 2T 2V) %else ; RGB_PIXELSIZE == 4 ; ----------- .column_ld1: test cl, SIZEOF_XMMWORD/16 jz short .column_ld2 sub ecx, byte SIZEOF_XMMWORD/16 vmovd xmmA, XMM_DWORD [esi+ecx*RGB_PIXELSIZE] .column_ld2: test cl, SIZEOF_XMMWORD/8 jz short .column_ld4 sub ecx, byte SIZEOF_XMMWORD/8 vmovq xmmF, XMM_MMWORD [esi+ecx*RGB_PIXELSIZE] vpslldq xmmA, xmmA, SIZEOF_MMWORD vpor xmmA, xmmA, xmmF .column_ld4: test cl, SIZEOF_XMMWORD/4 jz short .column_ld8 sub ecx, byte SIZEOF_XMMWORD/4 vmovdqa xmmF, xmmA vperm2i128 ymmF, ymmF, ymmF, 1 vmovdqu xmmA, XMMWORD [esi+ecx*RGB_PIXELSIZE] vpor ymmA, ymmA, ymmF .column_ld8: test cl, SIZEOF_XMMWORD/2 jz short .column_ld16 sub ecx, byte SIZEOF_XMMWORD/2 vmovdqa ymmF, ymmA vmovdqu ymmA, YMMWORD [esi+ecx*RGB_PIXELSIZE] .column_ld16: test cl, SIZEOF_XMMWORD mov ecx, SIZEOF_YMMWORD jz short .rgb_ycc_cnv vmovdqa ymmE, ymmA vmovdqa ymmH, ymmF vmovdqu ymmA, YMMWORD [esi+0*SIZEOF_YMMWORD] vmovdqu ymmF, YMMWORD [esi+1*SIZEOF_YMMWORD] jmp short .rgb_ycc_cnv alignx 16, 7 .columnloop: vmovdqu ymmA, YMMWORD [esi+0*SIZEOF_YMMWORD] vmovdqu ymmF, YMMWORD [esi+1*SIZEOF_YMMWORD] vmovdqu ymmE, YMMWORD [esi+2*SIZEOF_YMMWORD] vmovdqu ymmH, YMMWORD [esi+3*SIZEOF_YMMWORD] .rgb_ycc_cnv: ; ymmA=(00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33 ; 04 14 24 34 05 15 25 35 06 16 26 36 07 17 27 37) ; ymmF=(08 18 28 38 09 19 29 39 0A 1A 2A 3A 0B 1B 2B 3B ; 0C 1C 2C 3C 0D 1D 2D 3D 0E 1E 2E 3E 0F 1F 2F 3F) ; ymmE=(0G 1G 2G 3G 0H 1H 2H 3H 0I 1I 2I 3I 0J 1J 2J 3J ; 0K 1K 2K 3K 0L 1L 2L 3L 0M 1M 2M 3M 0N 1N 2N 3N) ; ymmH=(0O 1O 2O 3O 0P 1P 2P 3P 0Q 1Q 2Q 3Q 0R 1R 2R 3R ; 0S 1S 2S 3S 0T 1T 2T 3T 0U 1U 2U 3U 0V 1V 2V 3V) vmovdqa ymmB, ymmA vinserti128 ymmA, ymmA, xmmE, 1 ; ymmA=(00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33 ; 0G 1G 2G 3G 0H 1H 2H 3H 0I 1I 2I 3I 0J 1J 2J 3J) vperm2i128 ymmE, ymmB, ymmE, 0x31 ; ymmE=(04 14 24 34 05 15 25 35 06 16 26 36 07 17 27 37 ; 0K 1K 2K 3K 0L 1L 2L 3L 0M 1M 2M 3M 0N 1N 2N 3N) vmovdqa ymmB, ymmF vinserti128 ymmF, ymmF, xmmH, 1 ; ymmF=(08 18 28 38 09 19 29 39 0A 1A 2A 3A 0B 1B 2B 3B ; 0O 1O 2O 3O 0P 1P 2P 3P 0Q 1Q 2Q 3Q 0R 1R 2R 3R) vperm2i128 ymmH, ymmB, ymmH, 0x31 ; ymmH=(0C 1C 2C 3C 0D 1D 2D 3D 0E 1E 2E 3E 0F 1F 2F 3F ; 0S 1S 2S 3S 0T 1T 2T 3T 0U 1U 2U 3U 0V 1V 2V 3V) vmovdqa ymmD, ymmA vpunpcklbw ymmA, ymmA, ymmE ; ymmA=(00 04 10 14 20 24 30 34 01 05 11 15 21 25 31 35 ; 0G 0K 1G 1K 2G 2K 3G 3K 0H 0L 1H 1L 2H 2L 3H 3L) vpunpckhbw ymmD, ymmD, ymmE ; ymmD=(02 06 12 16 22 26 32 36 03 07 13 17 23 27 33 37 ; 0I 0M 1I 1M 2I 2M 3I 3M 0J 0N 1J 1N 2J 2N 3J 3N) vmovdqa ymmC, ymmF vpunpcklbw ymmF, ymmF, ymmH ; ymmF=(08 0C 18 1C 28 2C 38 3C 09 0D 19 1D 29 2D 39 3D ; 0O 0S 1O 1S 2O 2S 3O 3S 0P 0T 1P 1T 2P 2T 3P 3T) vpunpckhbw ymmC, ymmC, ymmH ; ymmC=(0A 0E 1A 1E 2A 2E 3A 3E 0B 0F 1B 1F 2B 2F 3B 3F ; 0Q 0U 1Q 1U 2Q 2U 3Q 3U 0R 0V 1R 1V 2R 2V 3R 3V) vmovdqa ymmB, ymmA vpunpcklwd ymmA, ymmA, ymmF ; ymmA=(00 04 08 0C 10 14 18 1C 20 24 28 2C 30 34 38 3C ; 0G 0K 0O 0S 1G 1K 1O 1S 2G 2K 2O 2S 3G 3K 3O 3S) vpunpckhwd ymmB, ymmB, ymmF ; ymmB=(01 05 09 0D 11 15 19 1D 21 25 29 2D 31 35 39 3D ; 0H 0L 0P 0T 1H 1L 1P 1T 2H 2L 2P 2T 3H 3L 3P 3T) vmovdqa ymmG, ymmD vpunpcklwd ymmD, ymmD, ymmC ; ymmD=(02 06 0A 0E 12 16 1A 1E 22 26 2A 2E 32 36 3A 3E ; 0I 0M 0Q 0U 1I 1M 1Q 1U 2I 2M 2Q 2U 3I 3M 3Q 3U) vpunpckhwd ymmG, ymmG, ymmC ; ymmG=(03 07 0B 0F 13 17 1B 1F 23 27 2B 2F 33 37 3B 3F ; 0J 0N 0R 0V 1J 1N 1R 1V 2J 2N 2R 2V 3J 3N 3R 3V) vmovdqa ymmE, ymmA vpunpcklbw ymmA, ymmA, ymmD ; ymmA=(00 02 04 06 08 0A 0C 0E 10 12 14 16 18 1A 1C 1E ; 0G 0I 0K 0M 0O 0Q 0S 0U 1G 1I 1K 1M 1O 1Q 1S 1U) vpunpckhbw ymmE, ymmE, ymmD ; ymmE=(20 22 24 26 28 2A 2C 2E 30 32 34 36 38 3A 3C 3E ; 2G 2I 2K 2M 2O 2Q 2S 2U 3G 3I 3K 3M 3O 3Q 3S 3U) vmovdqa ymmH, ymmB vpunpcklbw ymmB, ymmB, ymmG ; ymmB=(01 03 05 07 09 0B 0D 0F 11 13 15 17 19 1B 1D 1F ; 0H 0J 0L 0N 0P 0R 0T 0V 1H 1J 1L 1N 1P 1R 1T 1V) vpunpckhbw ymmH, ymmH, ymmG ; ymmH=(21 23 25 27 29 2B 2D 2F 31 33 35 37 39 3B 3D 3F ; 2H 2J 2L 2N 2P 2R 2T 2V 3H 3J 3L 3N 3P 3R 3T 3V) vpxor ymmF, ymmF, ymmF vmovdqa ymmC, ymmA vpunpcklbw ymmA, ymmA, ymmF ; ymmA=(00 02 04 06 08 0A 0C 0E 0G 0I 0K 0M 0O 0Q 0S 0U) vpunpckhbw ymmC, ymmC, ymmF ; ymmC=(10 12 14 16 18 1A 1C 1E 1G 1I 1K 1M 1O 1Q 1S 1U) vmovdqa ymmD, ymmB vpunpcklbw ymmB, ymmB, ymmF ; ymmB=(01 03 05 07 09 0B 0D 0F 0H 0J 0L 0N 0P 0R 0T 0V) vpunpckhbw ymmD, ymmD, ymmF ; ymmD=(11 13 15 17 19 1B 1D 1F 1H 1J 1L 1N 1P 1R 1T 1V) vmovdqa ymmG, ymmE vpunpcklbw ymmE, ymmE, ymmF ; ymmE=(20 22 24 26 28 2A 2C 2E 2G 2I 2K 2M 2O 2Q 2S 2U) vpunpckhbw ymmG, ymmG, ymmF ; ymmG=(30 32 34 36 38 3A 3C 3E 3G 3I 3K 3M 3O 3Q 3S 3U) vpunpcklbw ymmF, ymmF, ymmH vpunpckhbw ymmH, ymmH, ymmH vpsrlw ymmF, ymmF, BYTE_BIT ; ymmF=(21 23 25 27 29 2B 2D 2F 2H 2J 2L 2N 2P 2R 2T 2V) vpsrlw ymmH, ymmH, BYTE_BIT ; ymmH=(31 33 35 37 39 3B 3D 3F 3H 3J 3L 3N 3P 3R 3T 3V) %endif ; RGB_PIXELSIZE ; --------------- ; ymm0=R(02468ACEGIKMOQSU)=RE, ymm2=G(02468ACEGIKMOQSU)=GE, ymm4=B(02468ACEGIKMOQSU)=BE ; ymm1=R(13579BDFHJLNPRTV)=RO, ymm3=G(13579BDFHJLNPRTV)=GO, ymm5=B(13579BDFHJLNPRTV)=BO ; (Original) ; Y = 0.29900 * R + 0.58700 * G + 0.11400 * B ; Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + CENTERJSAMPLE ; Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + CENTERJSAMPLE ; ; (This implementation) ; Y = 0.29900 * R + 0.33700 * G + 0.11400 * B + 0.25000 * G ; Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + CENTERJSAMPLE ; Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + CENTERJSAMPLE vmovdqa YMMWORD [wk(0)], ymm0 ; wk(0)=RE vmovdqa YMMWORD [wk(1)], ymm1 ; wk(1)=RO vmovdqa YMMWORD [wk(2)], ymm4 ; wk(2)=BE vmovdqa YMMWORD [wk(3)], ymm5 ; wk(3)=BO vmovdqa ymm6, ymm1 vpunpcklwd ymm1, ymm1, ymm3 vpunpckhwd ymm6, ymm6, ymm3 vmovdqa ymm7, ymm1 vmovdqa ymm4, ymm6 vpmaddwd ymm1, ymm1, [GOTOFF(eax,PW_F0299_F0337)] ; ymm1=ROL*FIX(0.299)+GOL*FIX(0.337) vpmaddwd ymm6, ymm6, [GOTOFF(eax,PW_F0299_F0337)] ; ymm6=ROH*FIX(0.299)+GOH*FIX(0.337) vpmaddwd ymm7, ymm7, [GOTOFF(eax,PW_MF016_MF033)] ; ymm7=ROL*-FIX(0.168)+GOL*-FIX(0.331) vpmaddwd ymm4, ymm4, [GOTOFF(eax,PW_MF016_MF033)] ; ymm4=ROH*-FIX(0.168)+GOH*-FIX(0.331) vmovdqa YMMWORD [wk(4)], ymm1 ; wk(4)=ROL*FIX(0.299)+GOL*FIX(0.337) vmovdqa YMMWORD [wk(5)], ymm6 ; wk(5)=ROH*FIX(0.299)+GOH*FIX(0.337) vpxor ymm1, ymm1, ymm1 vpxor ymm6, ymm6, ymm6 vpunpcklwd ymm1, ymm1, ymm5 ; ymm1=BOL vpunpckhwd ymm6, ymm6, ymm5 ; ymm6=BOH vpsrld ymm1, ymm1, 1 ; ymm1=BOL*FIX(0.500) vpsrld ymm6, ymm6, 1 ; ymm6=BOH*FIX(0.500) vmovdqa ymm5, [GOTOFF(eax,PD_ONEHALFM1_CJ)] ; ymm5=[PD_ONEHALFM1_CJ] vpaddd ymm7, ymm7, ymm1 vpaddd ymm4, ymm4, ymm6 vpaddd ymm7, ymm7, ymm5 vpaddd ymm4, ymm4, ymm5 vpsrld ymm7, ymm7, SCALEBITS ; ymm7=CbOL vpsrld ymm4, ymm4, SCALEBITS ; ymm4=CbOH vpackssdw ymm7, ymm7, ymm4 ; ymm7=CbO vmovdqa ymm1, YMMWORD [wk(2)] ; ymm1=BE vmovdqa ymm6, ymm0 vpunpcklwd ymm0, ymm0, ymm2 vpunpckhwd ymm6, ymm6, ymm2 vmovdqa ymm5, ymm0 vmovdqa ymm4, ymm6 vpmaddwd ymm0, ymm0, [GOTOFF(eax,PW_F0299_F0337)] ; ymm0=REL*FIX(0.299)+GEL*FIX(0.337) vpmaddwd ymm6, ymm6, [GOTOFF(eax,PW_F0299_F0337)] ; ymm6=REH*FIX(0.299)+GEH*FIX(0.337) vpmaddwd ymm5, ymm5, [GOTOFF(eax,PW_MF016_MF033)] ; ymm5=REL*-FIX(0.168)+GEL*-FIX(0.331) vpmaddwd ymm4, ymm4, [GOTOFF(eax,PW_MF016_MF033)] ; ymm4=REH*-FIX(0.168)+GEH*-FIX(0.331) vmovdqa YMMWORD [wk(6)], ymm0 ; wk(6)=REL*FIX(0.299)+GEL*FIX(0.337) vmovdqa YMMWORD [wk(7)], ymm6 ; wk(7)=REH*FIX(0.299)+GEH*FIX(0.337) vpxor ymm0, ymm0, ymm0 vpxor ymm6, ymm6, ymm6 vpunpcklwd ymm0, ymm0, ymm1 ; ymm0=BEL vpunpckhwd ymm6, ymm6, ymm1 ; ymm6=BEH vpsrld ymm0, ymm0, 1 ; ymm0=BEL*FIX(0.500) vpsrld ymm6, ymm6, 1 ; ymm6=BEH*FIX(0.500) vmovdqa ymm1, [GOTOFF(eax,PD_ONEHALFM1_CJ)] ; ymm1=[PD_ONEHALFM1_CJ] vpaddd ymm5, ymm5, ymm0 vpaddd ymm4, ymm4, ymm6 vpaddd ymm5, ymm5, ymm1 vpaddd ymm4, ymm4, ymm1 vpsrld ymm5, ymm5, SCALEBITS ; ymm5=CbEL vpsrld ymm4, ymm4, SCALEBITS ; ymm4=CbEH vpackssdw ymm5, ymm5, ymm4 ; ymm5=CbE vpsllw ymm7, ymm7, BYTE_BIT vpor ymm5, ymm5, ymm7 ; ymm5=Cb vmovdqu YMMWORD [ebx], ymm5 ; Save Cb vmovdqa ymm0, YMMWORD [wk(3)] ; ymm0=BO vmovdqa ymm6, YMMWORD [wk(2)] ; ymm6=BE vmovdqa ymm1, YMMWORD [wk(1)] ; ymm1=RO vmovdqa ymm4, ymm0 vpunpcklwd ymm0, ymm0, ymm3 vpunpckhwd ymm4, ymm4, ymm3 vmovdqa ymm7, ymm0 vmovdqa ymm5, ymm4 vpmaddwd ymm0, ymm0, [GOTOFF(eax,PW_F0114_F0250)] ; ymm0=BOL*FIX(0.114)+GOL*FIX(0.250) vpmaddwd ymm4, ymm4, [GOTOFF(eax,PW_F0114_F0250)] ; ymm4=BOH*FIX(0.114)+GOH*FIX(0.250) vpmaddwd ymm7, ymm7, [GOTOFF(eax,PW_MF008_MF041)] ; ymm7=BOL*-FIX(0.081)+GOL*-FIX(0.418) vpmaddwd ymm5, ymm5, [GOTOFF(eax,PW_MF008_MF041)] ; ymm5=BOH*-FIX(0.081)+GOH*-FIX(0.418) vmovdqa ymm3, [GOTOFF(eax,PD_ONEHALF)] ; ymm3=[PD_ONEHALF] vpaddd ymm0, ymm0, YMMWORD [wk(4)] vpaddd ymm4, ymm4, YMMWORD [wk(5)] vpaddd ymm0, ymm0, ymm3 vpaddd ymm4, ymm4, ymm3 vpsrld ymm0, ymm0, SCALEBITS ; ymm0=YOL vpsrld ymm4, ymm4, SCALEBITS ; ymm4=YOH vpackssdw ymm0, ymm0, ymm4 ; ymm0=YO vpxor ymm3, ymm3, ymm3 vpxor ymm4, ymm4, ymm4 vpunpcklwd ymm3, ymm3, ymm1 ; ymm3=ROL vpunpckhwd ymm4, ymm4, ymm1 ; ymm4=ROH vpsrld ymm3, ymm3, 1 ; ymm3=ROL*FIX(0.500) vpsrld ymm4, ymm4, 1 ; ymm4=ROH*FIX(0.500) vmovdqa ymm1, [GOTOFF(eax,PD_ONEHALFM1_CJ)] ; ymm1=[PD_ONEHALFM1_CJ] vpaddd ymm7, ymm7, ymm3 vpaddd ymm5, ymm5, ymm4 vpaddd ymm7, ymm7, ymm1 vpaddd ymm5, ymm5, ymm1 vpsrld ymm7, ymm7, SCALEBITS ; ymm7=CrOL vpsrld ymm5, ymm5, SCALEBITS ; ymm5=CrOH vpackssdw ymm7, ymm7, ymm5 ; ymm7=CrO vmovdqa ymm3, YMMWORD [wk(0)] ; ymm3=RE vmovdqa ymm4, ymm6 vpunpcklwd ymm6, ymm6, ymm2 vpunpckhwd ymm4, ymm4, ymm2 vmovdqa ymm1, ymm6 vmovdqa ymm5, ymm4 vpmaddwd ymm6, ymm6, [GOTOFF(eax,PW_F0114_F0250)] ; ymm6=BEL*FIX(0.114)+GEL*FIX(0.250) vpmaddwd ymm4, ymm4, [GOTOFF(eax,PW_F0114_F0250)] ; ymm4=BEH*FIX(0.114)+GEH*FIX(0.250) vpmaddwd ymm1, ymm1, [GOTOFF(eax,PW_MF008_MF041)] ; ymm1=BEL*-FIX(0.081)+GEL*-FIX(0.418) vpmaddwd ymm5, ymm5, [GOTOFF(eax,PW_MF008_MF041)] ; ymm5=BEH*-FIX(0.081)+GEH*-FIX(0.418) vmovdqa ymm2, [GOTOFF(eax,PD_ONEHALF)] ; ymm2=[PD_ONEHALF] vpaddd ymm6, ymm6, YMMWORD [wk(6)] vpaddd ymm4, ymm4, YMMWORD [wk(7)] vpaddd ymm6, ymm6, ymm2 vpaddd ymm4, ymm4, ymm2 vpsrld ymm6, ymm6, SCALEBITS ; ymm6=YEL vpsrld ymm4, ymm4, SCALEBITS ; ymm4=YEH vpackssdw ymm6, ymm6, ymm4 ; ymm6=YE vpsllw ymm0, ymm0, BYTE_BIT vpor ymm6, ymm6, ymm0 ; ymm6=Y vmovdqu YMMWORD [edi], ymm6 ; Save Y vpxor ymm2, ymm2, ymm2 vpxor ymm4, ymm4, ymm4 vpunpcklwd ymm2, ymm2, ymm3 ; ymm2=REL vpunpckhwd ymm4, ymm4, ymm3 ; ymm4=REH vpsrld ymm2, ymm2, 1 ; ymm2=REL*FIX(0.500) vpsrld ymm4, ymm4, 1 ; ymm4=REH*FIX(0.500) vmovdqa ymm0, [GOTOFF(eax,PD_ONEHALFM1_CJ)] ; ymm0=[PD_ONEHALFM1_CJ] vpaddd ymm1, ymm1, ymm2 vpaddd ymm5, ymm5, ymm4 vpaddd ymm1, ymm1, ymm0 vpaddd ymm5, ymm5, ymm0 vpsrld ymm1, ymm1, SCALEBITS ; ymm1=CrEL vpsrld ymm5, ymm5, SCALEBITS ; ymm5=CrEH vpackssdw ymm1, ymm1, ymm5 ; ymm1=CrE vpsllw ymm7, ymm7, BYTE_BIT vpor ymm1, ymm1, ymm7 ; ymm1=Cr vmovdqu YMMWORD [edx], ymm1 ; Save Cr sub ecx, byte SIZEOF_YMMWORD add esi, RGB_PIXELSIZE*SIZEOF_YMMWORD ; inptr add edi, byte SIZEOF_YMMWORD ; outptr0 add ebx, byte SIZEOF_YMMWORD ; outptr1 add edx, byte SIZEOF_YMMWORD ; outptr2 cmp ecx, byte SIZEOF_YMMWORD jae near .columnloop test ecx, ecx jnz near .column_ld1 pop ecx ; col pop esi pop edi pop ebx pop edx poppic eax add esi, byte SIZEOF_JSAMPROW ; input_buf add edi, byte SIZEOF_JSAMPROW add ebx, byte SIZEOF_JSAMPROW add edx, byte SIZEOF_JSAMPROW dec eax ; num_rows jg near .rowloop .return: vzeroupper pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx mov esp, ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/i386/jccolext-mmx.asm000066400000000000000000000415011436506551100210340ustar00rootroot00000000000000; ; jccolext.asm - colorspace conversion (MMX) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2016, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jcolsamp.inc" ; -------------------------------------------------------------------------- ; ; Convert some rows of samples to the output colorspace. ; ; GLOBAL(void) ; jsimd_rgb_ycc_convert_mmx(JDIMENSION img_width, JSAMPARRAY input_buf, ; JSAMPIMAGE output_buf, JDIMENSION output_row, ; int num_rows); ; %define img_width(b) (b) + 8 ; JDIMENSION img_width %define input_buf(b) (b) + 12 ; JSAMPARRAY input_buf %define output_buf(b) (b) + 16 ; JSAMPIMAGE output_buf %define output_row(b) (b) + 20 ; JDIMENSION output_row %define num_rows(b) (b) + 24 ; int num_rows %define original_ebp ebp + 0 %define wk(i) ebp - (WK_NUM - (i)) * SIZEOF_MMWORD ; mmword wk[WK_NUM] %define WK_NUM 8 %define gotptr wk(0) - SIZEOF_POINTER ; void * gotptr align 32 GLOBAL_FUNCTION(jsimd_rgb_ycc_convert_mmx) EXTN(jsimd_rgb_ycc_convert_mmx): push ebp mov eax, esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_MMWORD) ; align to 64 bits mov [esp], eax mov ebp, esp ; ebp = aligned ebp lea esp, [wk(0)] pushpic eax ; make a room for GOT address push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address movpic POINTER [gotptr], ebx ; save GOT address mov ecx, JDIMENSION [img_width(eax)] ; num_cols test ecx, ecx jz near .return push ecx mov esi, JSAMPIMAGE [output_buf(eax)] mov ecx, JDIMENSION [output_row(eax)] mov edi, JSAMPARRAY [esi+0*SIZEOF_JSAMPARRAY] mov ebx, JSAMPARRAY [esi+1*SIZEOF_JSAMPARRAY] mov edx, JSAMPARRAY [esi+2*SIZEOF_JSAMPARRAY] lea edi, [edi+ecx*SIZEOF_JSAMPROW] lea ebx, [ebx+ecx*SIZEOF_JSAMPROW] lea edx, [edx+ecx*SIZEOF_JSAMPROW] pop ecx mov esi, JSAMPARRAY [input_buf(eax)] mov eax, INT [num_rows(eax)] test eax, eax jle near .return alignx 16, 7 .rowloop: pushpic eax push edx push ebx push edi push esi push ecx ; col mov esi, JSAMPROW [esi] ; inptr mov edi, JSAMPROW [edi] ; outptr0 mov ebx, JSAMPROW [ebx] ; outptr1 mov edx, JSAMPROW [edx] ; outptr2 movpic eax, POINTER [gotptr] ; load GOT address (eax) cmp ecx, byte SIZEOF_MMWORD jae short .columnloop alignx 16, 7 %if RGB_PIXELSIZE == 3 ; --------------- .column_ld1: push eax push edx lea ecx, [ecx+ecx*2] ; imul ecx,RGB_PIXELSIZE test cl, SIZEOF_BYTE jz short .column_ld2 sub ecx, byte SIZEOF_BYTE xor eax, eax mov al, byte [esi+ecx] .column_ld2: test cl, SIZEOF_WORD jz short .column_ld4 sub ecx, byte SIZEOF_WORD xor edx, edx mov dx, word [esi+ecx] shl eax, WORD_BIT or eax, edx .column_ld4: movd mmA, eax pop edx pop eax test cl, SIZEOF_DWORD jz short .column_ld8 sub ecx, byte SIZEOF_DWORD movd mmG, dword [esi+ecx] psllq mmA, DWORD_BIT por mmA, mmG .column_ld8: test cl, SIZEOF_MMWORD jz short .column_ld16 movq mmG, mmA movq mmA, MMWORD [esi+0*SIZEOF_MMWORD] mov ecx, SIZEOF_MMWORD jmp short .rgb_ycc_cnv .column_ld16: test cl, 2*SIZEOF_MMWORD mov ecx, SIZEOF_MMWORD jz short .rgb_ycc_cnv movq mmF, mmA movq mmA, MMWORD [esi+0*SIZEOF_MMWORD] movq mmG, MMWORD [esi+1*SIZEOF_MMWORD] jmp short .rgb_ycc_cnv alignx 16, 7 .columnloop: movq mmA, MMWORD [esi+0*SIZEOF_MMWORD] movq mmG, MMWORD [esi+1*SIZEOF_MMWORD] movq mmF, MMWORD [esi+2*SIZEOF_MMWORD] .rgb_ycc_cnv: ; mmA=(00 10 20 01 11 21 02 12) ; mmG=(22 03 13 23 04 14 24 05) ; mmF=(15 25 06 16 26 07 17 27) movq mmD, mmA psllq mmA, 4*BYTE_BIT ; mmA=(-- -- -- -- 00 10 20 01) psrlq mmD, 4*BYTE_BIT ; mmD=(11 21 02 12 -- -- -- --) punpckhbw mmA, mmG ; mmA=(00 04 10 14 20 24 01 05) psllq mmG, 4*BYTE_BIT ; mmG=(-- -- -- -- 22 03 13 23) punpcklbw mmD, mmF ; mmD=(11 15 21 25 02 06 12 16) punpckhbw mmG, mmF ; mmG=(22 26 03 07 13 17 23 27) movq mmE, mmA psllq mmA, 4*BYTE_BIT ; mmA=(-- -- -- -- 00 04 10 14) psrlq mmE, 4*BYTE_BIT ; mmE=(20 24 01 05 -- -- -- --) punpckhbw mmA, mmD ; mmA=(00 02 04 06 10 12 14 16) psllq mmD, 4*BYTE_BIT ; mmD=(-- -- -- -- 11 15 21 25) punpcklbw mmE, mmG ; mmE=(20 22 24 26 01 03 05 07) punpckhbw mmD, mmG ; mmD=(11 13 15 17 21 23 25 27) pxor mmH, mmH movq mmC, mmA punpcklbw mmA, mmH ; mmA=(00 02 04 06) punpckhbw mmC, mmH ; mmC=(10 12 14 16) movq mmB, mmE punpcklbw mmE, mmH ; mmE=(20 22 24 26) punpckhbw mmB, mmH ; mmB=(01 03 05 07) movq mmF, mmD punpcklbw mmD, mmH ; mmD=(11 13 15 17) punpckhbw mmF, mmH ; mmF=(21 23 25 27) %else ; RGB_PIXELSIZE == 4 ; ----------- .column_ld1: test cl, SIZEOF_MMWORD/8 jz short .column_ld2 sub ecx, byte SIZEOF_MMWORD/8 movd mmA, dword [esi+ecx*RGB_PIXELSIZE] .column_ld2: test cl, SIZEOF_MMWORD/4 jz short .column_ld4 sub ecx, byte SIZEOF_MMWORD/4 movq mmF, mmA movq mmA, MMWORD [esi+ecx*RGB_PIXELSIZE] .column_ld4: test cl, SIZEOF_MMWORD/2 mov ecx, SIZEOF_MMWORD jz short .rgb_ycc_cnv movq mmD, mmA movq mmC, mmF movq mmA, MMWORD [esi+0*SIZEOF_MMWORD] movq mmF, MMWORD [esi+1*SIZEOF_MMWORD] jmp short .rgb_ycc_cnv alignx 16, 7 .columnloop: movq mmA, MMWORD [esi+0*SIZEOF_MMWORD] movq mmF, MMWORD [esi+1*SIZEOF_MMWORD] movq mmD, MMWORD [esi+2*SIZEOF_MMWORD] movq mmC, MMWORD [esi+3*SIZEOF_MMWORD] .rgb_ycc_cnv: ; mmA=(00 10 20 30 01 11 21 31) ; mmF=(02 12 22 32 03 13 23 33) ; mmD=(04 14 24 34 05 15 25 35) ; mmC=(06 16 26 36 07 17 27 37) movq mmB, mmA punpcklbw mmA, mmF ; mmA=(00 02 10 12 20 22 30 32) punpckhbw mmB, mmF ; mmB=(01 03 11 13 21 23 31 33) movq mmG, mmD punpcklbw mmD, mmC ; mmD=(04 06 14 16 24 26 34 36) punpckhbw mmG, mmC ; mmG=(05 07 15 17 25 27 35 37) movq mmE, mmA punpcklwd mmA, mmD ; mmA=(00 02 04 06 10 12 14 16) punpckhwd mmE, mmD ; mmE=(20 22 24 26 30 32 34 36) movq mmH, mmB punpcklwd mmB, mmG ; mmB=(01 03 05 07 11 13 15 17) punpckhwd mmH, mmG ; mmH=(21 23 25 27 31 33 35 37) pxor mmF, mmF movq mmC, mmA punpcklbw mmA, mmF ; mmA=(00 02 04 06) punpckhbw mmC, mmF ; mmC=(10 12 14 16) movq mmD, mmB punpcklbw mmB, mmF ; mmB=(01 03 05 07) punpckhbw mmD, mmF ; mmD=(11 13 15 17) movq mmG, mmE punpcklbw mmE, mmF ; mmE=(20 22 24 26) punpckhbw mmG, mmF ; mmG=(30 32 34 36) punpcklbw mmF, mmH punpckhbw mmH, mmH psrlw mmF, BYTE_BIT ; mmF=(21 23 25 27) psrlw mmH, BYTE_BIT ; mmH=(31 33 35 37) %endif ; RGB_PIXELSIZE ; --------------- ; mm0=(R0 R2 R4 R6)=RE, mm2=(G0 G2 G4 G6)=GE, mm4=(B0 B2 B4 B6)=BE ; mm1=(R1 R3 R5 R7)=RO, mm3=(G1 G3 G5 G7)=GO, mm5=(B1 B3 B5 B7)=BO ; (Original) ; Y = 0.29900 * R + 0.58700 * G + 0.11400 * B ; Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + CENTERJSAMPLE ; Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + CENTERJSAMPLE ; ; (This implementation) ; Y = 0.29900 * R + 0.33700 * G + 0.11400 * B + 0.25000 * G ; Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + CENTERJSAMPLE ; Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + CENTERJSAMPLE movq MMWORD [wk(0)], mm0 ; wk(0)=RE movq MMWORD [wk(1)], mm1 ; wk(1)=RO movq MMWORD [wk(2)], mm4 ; wk(2)=BE movq MMWORD [wk(3)], mm5 ; wk(3)=BO movq mm6, mm1 punpcklwd mm1, mm3 punpckhwd mm6, mm3 movq mm7, mm1 movq mm4, mm6 pmaddwd mm1, [GOTOFF(eax,PW_F0299_F0337)] ; mm1=ROL*FIX(0.299)+GOL*FIX(0.337) pmaddwd mm6, [GOTOFF(eax,PW_F0299_F0337)] ; mm6=ROH*FIX(0.299)+GOH*FIX(0.337) pmaddwd mm7, [GOTOFF(eax,PW_MF016_MF033)] ; mm7=ROL*-FIX(0.168)+GOL*-FIX(0.331) pmaddwd mm4, [GOTOFF(eax,PW_MF016_MF033)] ; mm4=ROH*-FIX(0.168)+GOH*-FIX(0.331) movq MMWORD [wk(4)], mm1 ; wk(4)=ROL*FIX(0.299)+GOL*FIX(0.337) movq MMWORD [wk(5)], mm6 ; wk(5)=ROH*FIX(0.299)+GOH*FIX(0.337) pxor mm1, mm1 pxor mm6, mm6 punpcklwd mm1, mm5 ; mm1=BOL punpckhwd mm6, mm5 ; mm6=BOH psrld mm1, 1 ; mm1=BOL*FIX(0.500) psrld mm6, 1 ; mm6=BOH*FIX(0.500) movq mm5, [GOTOFF(eax,PD_ONEHALFM1_CJ)] ; mm5=[PD_ONEHALFM1_CJ] paddd mm7, mm1 paddd mm4, mm6 paddd mm7, mm5 paddd mm4, mm5 psrld mm7, SCALEBITS ; mm7=CbOL psrld mm4, SCALEBITS ; mm4=CbOH packssdw mm7, mm4 ; mm7=CbO movq mm1, MMWORD [wk(2)] ; mm1=BE movq mm6, mm0 punpcklwd mm0, mm2 punpckhwd mm6, mm2 movq mm5, mm0 movq mm4, mm6 pmaddwd mm0, [GOTOFF(eax,PW_F0299_F0337)] ; mm0=REL*FIX(0.299)+GEL*FIX(0.337) pmaddwd mm6, [GOTOFF(eax,PW_F0299_F0337)] ; mm6=REH*FIX(0.299)+GEH*FIX(0.337) pmaddwd mm5, [GOTOFF(eax,PW_MF016_MF033)] ; mm5=REL*-FIX(0.168)+GEL*-FIX(0.331) pmaddwd mm4, [GOTOFF(eax,PW_MF016_MF033)] ; mm4=REH*-FIX(0.168)+GEH*-FIX(0.331) movq MMWORD [wk(6)], mm0 ; wk(6)=REL*FIX(0.299)+GEL*FIX(0.337) movq MMWORD [wk(7)], mm6 ; wk(7)=REH*FIX(0.299)+GEH*FIX(0.337) pxor mm0, mm0 pxor mm6, mm6 punpcklwd mm0, mm1 ; mm0=BEL punpckhwd mm6, mm1 ; mm6=BEH psrld mm0, 1 ; mm0=BEL*FIX(0.500) psrld mm6, 1 ; mm6=BEH*FIX(0.500) movq mm1, [GOTOFF(eax,PD_ONEHALFM1_CJ)] ; mm1=[PD_ONEHALFM1_CJ] paddd mm5, mm0 paddd mm4, mm6 paddd mm5, mm1 paddd mm4, mm1 psrld mm5, SCALEBITS ; mm5=CbEL psrld mm4, SCALEBITS ; mm4=CbEH packssdw mm5, mm4 ; mm5=CbE psllw mm7, BYTE_BIT por mm5, mm7 ; mm5=Cb movq MMWORD [ebx], mm5 ; Save Cb movq mm0, MMWORD [wk(3)] ; mm0=BO movq mm6, MMWORD [wk(2)] ; mm6=BE movq mm1, MMWORD [wk(1)] ; mm1=RO movq mm4, mm0 punpcklwd mm0, mm3 punpckhwd mm4, mm3 movq mm7, mm0 movq mm5, mm4 pmaddwd mm0, [GOTOFF(eax,PW_F0114_F0250)] ; mm0=BOL*FIX(0.114)+GOL*FIX(0.250) pmaddwd mm4, [GOTOFF(eax,PW_F0114_F0250)] ; mm4=BOH*FIX(0.114)+GOH*FIX(0.250) pmaddwd mm7, [GOTOFF(eax,PW_MF008_MF041)] ; mm7=BOL*-FIX(0.081)+GOL*-FIX(0.418) pmaddwd mm5, [GOTOFF(eax,PW_MF008_MF041)] ; mm5=BOH*-FIX(0.081)+GOH*-FIX(0.418) movq mm3, [GOTOFF(eax,PD_ONEHALF)] ; mm3=[PD_ONEHALF] paddd mm0, MMWORD [wk(4)] paddd mm4, MMWORD [wk(5)] paddd mm0, mm3 paddd mm4, mm3 psrld mm0, SCALEBITS ; mm0=YOL psrld mm4, SCALEBITS ; mm4=YOH packssdw mm0, mm4 ; mm0=YO pxor mm3, mm3 pxor mm4, mm4 punpcklwd mm3, mm1 ; mm3=ROL punpckhwd mm4, mm1 ; mm4=ROH psrld mm3, 1 ; mm3=ROL*FIX(0.500) psrld mm4, 1 ; mm4=ROH*FIX(0.500) movq mm1, [GOTOFF(eax,PD_ONEHALFM1_CJ)] ; mm1=[PD_ONEHALFM1_CJ] paddd mm7, mm3 paddd mm5, mm4 paddd mm7, mm1 paddd mm5, mm1 psrld mm7, SCALEBITS ; mm7=CrOL psrld mm5, SCALEBITS ; mm5=CrOH packssdw mm7, mm5 ; mm7=CrO movq mm3, MMWORD [wk(0)] ; mm3=RE movq mm4, mm6 punpcklwd mm6, mm2 punpckhwd mm4, mm2 movq mm1, mm6 movq mm5, mm4 pmaddwd mm6, [GOTOFF(eax,PW_F0114_F0250)] ; mm6=BEL*FIX(0.114)+GEL*FIX(0.250) pmaddwd mm4, [GOTOFF(eax,PW_F0114_F0250)] ; mm4=BEH*FIX(0.114)+GEH*FIX(0.250) pmaddwd mm1, [GOTOFF(eax,PW_MF008_MF041)] ; mm1=BEL*-FIX(0.081)+GEL*-FIX(0.418) pmaddwd mm5, [GOTOFF(eax,PW_MF008_MF041)] ; mm5=BEH*-FIX(0.081)+GEH*-FIX(0.418) movq mm2, [GOTOFF(eax,PD_ONEHALF)] ; mm2=[PD_ONEHALF] paddd mm6, MMWORD [wk(6)] paddd mm4, MMWORD [wk(7)] paddd mm6, mm2 paddd mm4, mm2 psrld mm6, SCALEBITS ; mm6=YEL psrld mm4, SCALEBITS ; mm4=YEH packssdw mm6, mm4 ; mm6=YE psllw mm0, BYTE_BIT por mm6, mm0 ; mm6=Y movq MMWORD [edi], mm6 ; Save Y pxor mm2, mm2 pxor mm4, mm4 punpcklwd mm2, mm3 ; mm2=REL punpckhwd mm4, mm3 ; mm4=REH psrld mm2, 1 ; mm2=REL*FIX(0.500) psrld mm4, 1 ; mm4=REH*FIX(0.500) movq mm0, [GOTOFF(eax,PD_ONEHALFM1_CJ)] ; mm0=[PD_ONEHALFM1_CJ] paddd mm1, mm2 paddd mm5, mm4 paddd mm1, mm0 paddd mm5, mm0 psrld mm1, SCALEBITS ; mm1=CrEL psrld mm5, SCALEBITS ; mm5=CrEH packssdw mm1, mm5 ; mm1=CrE psllw mm7, BYTE_BIT por mm1, mm7 ; mm1=Cr movq MMWORD [edx], mm1 ; Save Cr sub ecx, byte SIZEOF_MMWORD add esi, byte RGB_PIXELSIZE*SIZEOF_MMWORD ; inptr add edi, byte SIZEOF_MMWORD ; outptr0 add ebx, byte SIZEOF_MMWORD ; outptr1 add edx, byte SIZEOF_MMWORD ; outptr2 cmp ecx, byte SIZEOF_MMWORD jae near .columnloop test ecx, ecx jnz near .column_ld1 pop ecx ; col pop esi pop edi pop ebx pop edx poppic eax add esi, byte SIZEOF_JSAMPROW ; input_buf add edi, byte SIZEOF_JSAMPROW add ebx, byte SIZEOF_JSAMPROW add edx, byte SIZEOF_JSAMPROW dec eax ; num_rows jg near .rowloop emms ; empty MMX state .return: pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx mov esp, ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/i386/jccolext-sse2.asm000066400000000000000000000455311436506551100211160ustar00rootroot00000000000000; ; jccolext.asm - colorspace conversion (SSE2) ; ; Copyright (C) 2016, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jcolsamp.inc" ; -------------------------------------------------------------------------- ; ; Convert some rows of samples to the output colorspace. ; ; GLOBAL(void) ; jsimd_rgb_ycc_convert_sse2(JDIMENSION img_width, JSAMPARRAY input_buf, ; JSAMPIMAGE output_buf, JDIMENSION output_row, ; int num_rows); ; %define img_width(b) (b) + 8 ; JDIMENSION img_width %define input_buf(b) (b) + 12 ; JSAMPARRAY input_buf %define output_buf(b) (b) + 16 ; JSAMPIMAGE output_buf %define output_row(b) (b) + 20 ; JDIMENSION output_row %define num_rows(b) (b) + 24 ; int num_rows %define original_ebp ebp + 0 %define wk(i) ebp - (WK_NUM - (i)) * SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 8 %define gotptr wk(0) - SIZEOF_POINTER ; void * gotptr align 32 GLOBAL_FUNCTION(jsimd_rgb_ycc_convert_sse2) EXTN(jsimd_rgb_ycc_convert_sse2): push ebp mov eax, esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [esp], eax mov ebp, esp ; ebp = aligned ebp lea esp, [wk(0)] pushpic eax ; make a room for GOT address push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address movpic POINTER [gotptr], ebx ; save GOT address mov ecx, JDIMENSION [img_width(eax)] test ecx, ecx jz near .return push ecx mov esi, JSAMPIMAGE [output_buf(eax)] mov ecx, JDIMENSION [output_row(eax)] mov edi, JSAMPARRAY [esi+0*SIZEOF_JSAMPARRAY] mov ebx, JSAMPARRAY [esi+1*SIZEOF_JSAMPARRAY] mov edx, JSAMPARRAY [esi+2*SIZEOF_JSAMPARRAY] lea edi, [edi+ecx*SIZEOF_JSAMPROW] lea ebx, [ebx+ecx*SIZEOF_JSAMPROW] lea edx, [edx+ecx*SIZEOF_JSAMPROW] pop ecx mov esi, JSAMPARRAY [input_buf(eax)] mov eax, INT [num_rows(eax)] test eax, eax jle near .return alignx 16, 7 .rowloop: pushpic eax push edx push ebx push edi push esi push ecx ; col mov esi, JSAMPROW [esi] ; inptr mov edi, JSAMPROW [edi] ; outptr0 mov ebx, JSAMPROW [ebx] ; outptr1 mov edx, JSAMPROW [edx] ; outptr2 movpic eax, POINTER [gotptr] ; load GOT address (eax) cmp ecx, byte SIZEOF_XMMWORD jae near .columnloop alignx 16, 7 %if RGB_PIXELSIZE == 3 ; --------------- .column_ld1: push eax push edx lea ecx, [ecx+ecx*2] ; imul ecx,RGB_PIXELSIZE test cl, SIZEOF_BYTE jz short .column_ld2 sub ecx, byte SIZEOF_BYTE movzx eax, byte [esi+ecx] .column_ld2: test cl, SIZEOF_WORD jz short .column_ld4 sub ecx, byte SIZEOF_WORD movzx edx, word [esi+ecx] shl eax, WORD_BIT or eax, edx .column_ld4: movd xmmA, eax pop edx pop eax test cl, SIZEOF_DWORD jz short .column_ld8 sub ecx, byte SIZEOF_DWORD movd xmmF, XMM_DWORD [esi+ecx] pslldq xmmA, SIZEOF_DWORD por xmmA, xmmF .column_ld8: test cl, SIZEOF_MMWORD jz short .column_ld16 sub ecx, byte SIZEOF_MMWORD movq xmmB, XMM_MMWORD [esi+ecx] pslldq xmmA, SIZEOF_MMWORD por xmmA, xmmB .column_ld16: test cl, SIZEOF_XMMWORD jz short .column_ld32 movdqa xmmF, xmmA movdqu xmmA, XMMWORD [esi+0*SIZEOF_XMMWORD] mov ecx, SIZEOF_XMMWORD jmp short .rgb_ycc_cnv .column_ld32: test cl, 2*SIZEOF_XMMWORD mov ecx, SIZEOF_XMMWORD jz short .rgb_ycc_cnv movdqa xmmB, xmmA movdqu xmmA, XMMWORD [esi+0*SIZEOF_XMMWORD] movdqu xmmF, XMMWORD [esi+1*SIZEOF_XMMWORD] jmp short .rgb_ycc_cnv alignx 16, 7 .columnloop: movdqu xmmA, XMMWORD [esi+0*SIZEOF_XMMWORD] movdqu xmmF, XMMWORD [esi+1*SIZEOF_XMMWORD] movdqu xmmB, XMMWORD [esi+2*SIZEOF_XMMWORD] .rgb_ycc_cnv: ; xmmA=(00 10 20 01 11 21 02 12 22 03 13 23 04 14 24 05) ; xmmF=(15 25 06 16 26 07 17 27 08 18 28 09 19 29 0A 1A) ; xmmB=(2A 0B 1B 2B 0C 1C 2C 0D 1D 2D 0E 1E 2E 0F 1F 2F) movdqa xmmG, xmmA pslldq xmmA, 8 ; xmmA=(-- -- -- -- -- -- -- -- 00 10 20 01 11 21 02 12) psrldq xmmG, 8 ; xmmG=(22 03 13 23 04 14 24 05 -- -- -- -- -- -- -- --) punpckhbw xmmA, xmmF ; xmmA=(00 08 10 18 20 28 01 09 11 19 21 29 02 0A 12 1A) pslldq xmmF, 8 ; xmmF=(-- -- -- -- -- -- -- -- 15 25 06 16 26 07 17 27) punpcklbw xmmG, xmmB ; xmmG=(22 2A 03 0B 13 1B 23 2B 04 0C 14 1C 24 2C 05 0D) punpckhbw xmmF, xmmB ; xmmF=(15 1D 25 2D 06 0E 16 1E 26 2E 07 0F 17 1F 27 2F) movdqa xmmD, xmmA pslldq xmmA, 8 ; xmmA=(-- -- -- -- -- -- -- -- 00 08 10 18 20 28 01 09) psrldq xmmD, 8 ; xmmD=(11 19 21 29 02 0A 12 1A -- -- -- -- -- -- -- --) punpckhbw xmmA, xmmG ; xmmA=(00 04 08 0C 10 14 18 1C 20 24 28 2C 01 05 09 0D) pslldq xmmG, 8 ; xmmG=(-- -- -- -- -- -- -- -- 22 2A 03 0B 13 1B 23 2B) punpcklbw xmmD, xmmF ; xmmD=(11 15 19 1D 21 25 29 2D 02 06 0A 0E 12 16 1A 1E) punpckhbw xmmG, xmmF ; xmmG=(22 26 2A 2E 03 07 0B 0F 13 17 1B 1F 23 27 2B 2F) movdqa xmmE, xmmA pslldq xmmA, 8 ; xmmA=(-- -- -- -- -- -- -- -- 00 04 08 0C 10 14 18 1C) psrldq xmmE, 8 ; xmmE=(20 24 28 2C 01 05 09 0D -- -- -- -- -- -- -- --) punpckhbw xmmA, xmmD ; xmmA=(00 02 04 06 08 0A 0C 0E 10 12 14 16 18 1A 1C 1E) pslldq xmmD, 8 ; xmmD=(-- -- -- -- -- -- -- -- 11 15 19 1D 21 25 29 2D) punpcklbw xmmE, xmmG ; xmmE=(20 22 24 26 28 2A 2C 2E 01 03 05 07 09 0B 0D 0F) punpckhbw xmmD, xmmG ; xmmD=(11 13 15 17 19 1B 1D 1F 21 23 25 27 29 2B 2D 2F) pxor xmmH, xmmH movdqa xmmC, xmmA punpcklbw xmmA, xmmH ; xmmA=(00 02 04 06 08 0A 0C 0E) punpckhbw xmmC, xmmH ; xmmC=(10 12 14 16 18 1A 1C 1E) movdqa xmmB, xmmE punpcklbw xmmE, xmmH ; xmmE=(20 22 24 26 28 2A 2C 2E) punpckhbw xmmB, xmmH ; xmmB=(01 03 05 07 09 0B 0D 0F) movdqa xmmF, xmmD punpcklbw xmmD, xmmH ; xmmD=(11 13 15 17 19 1B 1D 1F) punpckhbw xmmF, xmmH ; xmmF=(21 23 25 27 29 2B 2D 2F) %else ; RGB_PIXELSIZE == 4 ; ----------- .column_ld1: test cl, SIZEOF_XMMWORD/16 jz short .column_ld2 sub ecx, byte SIZEOF_XMMWORD/16 movd xmmA, XMM_DWORD [esi+ecx*RGB_PIXELSIZE] .column_ld2: test cl, SIZEOF_XMMWORD/8 jz short .column_ld4 sub ecx, byte SIZEOF_XMMWORD/8 movq xmmE, XMM_MMWORD [esi+ecx*RGB_PIXELSIZE] pslldq xmmA, SIZEOF_MMWORD por xmmA, xmmE .column_ld4: test cl, SIZEOF_XMMWORD/4 jz short .column_ld8 sub ecx, byte SIZEOF_XMMWORD/4 movdqa xmmE, xmmA movdqu xmmA, XMMWORD [esi+ecx*RGB_PIXELSIZE] .column_ld8: test cl, SIZEOF_XMMWORD/2 mov ecx, SIZEOF_XMMWORD jz short .rgb_ycc_cnv movdqa xmmF, xmmA movdqa xmmH, xmmE movdqu xmmA, XMMWORD [esi+0*SIZEOF_XMMWORD] movdqu xmmE, XMMWORD [esi+1*SIZEOF_XMMWORD] jmp short .rgb_ycc_cnv alignx 16, 7 .columnloop: movdqu xmmA, XMMWORD [esi+0*SIZEOF_XMMWORD] movdqu xmmE, XMMWORD [esi+1*SIZEOF_XMMWORD] movdqu xmmF, XMMWORD [esi+2*SIZEOF_XMMWORD] movdqu xmmH, XMMWORD [esi+3*SIZEOF_XMMWORD] .rgb_ycc_cnv: ; xmmA=(00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33) ; xmmE=(04 14 24 34 05 15 25 35 06 16 26 36 07 17 27 37) ; xmmF=(08 18 28 38 09 19 29 39 0A 1A 2A 3A 0B 1B 2B 3B) ; xmmH=(0C 1C 2C 3C 0D 1D 2D 3D 0E 1E 2E 3E 0F 1F 2F 3F) movdqa xmmD, xmmA punpcklbw xmmA, xmmE ; xmmA=(00 04 10 14 20 24 30 34 01 05 11 15 21 25 31 35) punpckhbw xmmD, xmmE ; xmmD=(02 06 12 16 22 26 32 36 03 07 13 17 23 27 33 37) movdqa xmmC, xmmF punpcklbw xmmF, xmmH ; xmmF=(08 0C 18 1C 28 2C 38 3C 09 0D 19 1D 29 2D 39 3D) punpckhbw xmmC, xmmH ; xmmC=(0A 0E 1A 1E 2A 2E 3A 3E 0B 0F 1B 1F 2B 2F 3B 3F) movdqa xmmB, xmmA punpcklwd xmmA, xmmF ; xmmA=(00 04 08 0C 10 14 18 1C 20 24 28 2C 30 34 38 3C) punpckhwd xmmB, xmmF ; xmmB=(01 05 09 0D 11 15 19 1D 21 25 29 2D 31 35 39 3D) movdqa xmmG, xmmD punpcklwd xmmD, xmmC ; xmmD=(02 06 0A 0E 12 16 1A 1E 22 26 2A 2E 32 36 3A 3E) punpckhwd xmmG, xmmC ; xmmG=(03 07 0B 0F 13 17 1B 1F 23 27 2B 2F 33 37 3B 3F) movdqa xmmE, xmmA punpcklbw xmmA, xmmD ; xmmA=(00 02 04 06 08 0A 0C 0E 10 12 14 16 18 1A 1C 1E) punpckhbw xmmE, xmmD ; xmmE=(20 22 24 26 28 2A 2C 2E 30 32 34 36 38 3A 3C 3E) movdqa xmmH, xmmB punpcklbw xmmB, xmmG ; xmmB=(01 03 05 07 09 0B 0D 0F 11 13 15 17 19 1B 1D 1F) punpckhbw xmmH, xmmG ; xmmH=(21 23 25 27 29 2B 2D 2F 31 33 35 37 39 3B 3D 3F) pxor xmmF, xmmF movdqa xmmC, xmmA punpcklbw xmmA, xmmF ; xmmA=(00 02 04 06 08 0A 0C 0E) punpckhbw xmmC, xmmF ; xmmC=(10 12 14 16 18 1A 1C 1E) movdqa xmmD, xmmB punpcklbw xmmB, xmmF ; xmmB=(01 03 05 07 09 0B 0D 0F) punpckhbw xmmD, xmmF ; xmmD=(11 13 15 17 19 1B 1D 1F) movdqa xmmG, xmmE punpcklbw xmmE, xmmF ; xmmE=(20 22 24 26 28 2A 2C 2E) punpckhbw xmmG, xmmF ; xmmG=(30 32 34 36 38 3A 3C 3E) punpcklbw xmmF, xmmH punpckhbw xmmH, xmmH psrlw xmmF, BYTE_BIT ; xmmF=(21 23 25 27 29 2B 2D 2F) psrlw xmmH, BYTE_BIT ; xmmH=(31 33 35 37 39 3B 3D 3F) %endif ; RGB_PIXELSIZE ; --------------- ; xmm0=R(02468ACE)=RE, xmm2=G(02468ACE)=GE, xmm4=B(02468ACE)=BE ; xmm1=R(13579BDF)=RO, xmm3=G(13579BDF)=GO, xmm5=B(13579BDF)=BO ; (Original) ; Y = 0.29900 * R + 0.58700 * G + 0.11400 * B ; Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + CENTERJSAMPLE ; Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + CENTERJSAMPLE ; ; (This implementation) ; Y = 0.29900 * R + 0.33700 * G + 0.11400 * B + 0.25000 * G ; Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + CENTERJSAMPLE ; Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + CENTERJSAMPLE movdqa XMMWORD [wk(0)], xmm0 ; wk(0)=RE movdqa XMMWORD [wk(1)], xmm1 ; wk(1)=RO movdqa XMMWORD [wk(2)], xmm4 ; wk(2)=BE movdqa XMMWORD [wk(3)], xmm5 ; wk(3)=BO movdqa xmm6, xmm1 punpcklwd xmm1, xmm3 punpckhwd xmm6, xmm3 movdqa xmm7, xmm1 movdqa xmm4, xmm6 pmaddwd xmm1, [GOTOFF(eax,PW_F0299_F0337)] ; xmm1=ROL*FIX(0.299)+GOL*FIX(0.337) pmaddwd xmm6, [GOTOFF(eax,PW_F0299_F0337)] ; xmm6=ROH*FIX(0.299)+GOH*FIX(0.337) pmaddwd xmm7, [GOTOFF(eax,PW_MF016_MF033)] ; xmm7=ROL*-FIX(0.168)+GOL*-FIX(0.331) pmaddwd xmm4, [GOTOFF(eax,PW_MF016_MF033)] ; xmm4=ROH*-FIX(0.168)+GOH*-FIX(0.331) movdqa XMMWORD [wk(4)], xmm1 ; wk(4)=ROL*FIX(0.299)+GOL*FIX(0.337) movdqa XMMWORD [wk(5)], xmm6 ; wk(5)=ROH*FIX(0.299)+GOH*FIX(0.337) pxor xmm1, xmm1 pxor xmm6, xmm6 punpcklwd xmm1, xmm5 ; xmm1=BOL punpckhwd xmm6, xmm5 ; xmm6=BOH psrld xmm1, 1 ; xmm1=BOL*FIX(0.500) psrld xmm6, 1 ; xmm6=BOH*FIX(0.500) movdqa xmm5, [GOTOFF(eax,PD_ONEHALFM1_CJ)] ; xmm5=[PD_ONEHALFM1_CJ] paddd xmm7, xmm1 paddd xmm4, xmm6 paddd xmm7, xmm5 paddd xmm4, xmm5 psrld xmm7, SCALEBITS ; xmm7=CbOL psrld xmm4, SCALEBITS ; xmm4=CbOH packssdw xmm7, xmm4 ; xmm7=CbO movdqa xmm1, XMMWORD [wk(2)] ; xmm1=BE movdqa xmm6, xmm0 punpcklwd xmm0, xmm2 punpckhwd xmm6, xmm2 movdqa xmm5, xmm0 movdqa xmm4, xmm6 pmaddwd xmm0, [GOTOFF(eax,PW_F0299_F0337)] ; xmm0=REL*FIX(0.299)+GEL*FIX(0.337) pmaddwd xmm6, [GOTOFF(eax,PW_F0299_F0337)] ; xmm6=REH*FIX(0.299)+GEH*FIX(0.337) pmaddwd xmm5, [GOTOFF(eax,PW_MF016_MF033)] ; xmm5=REL*-FIX(0.168)+GEL*-FIX(0.331) pmaddwd xmm4, [GOTOFF(eax,PW_MF016_MF033)] ; xmm4=REH*-FIX(0.168)+GEH*-FIX(0.331) movdqa XMMWORD [wk(6)], xmm0 ; wk(6)=REL*FIX(0.299)+GEL*FIX(0.337) movdqa XMMWORD [wk(7)], xmm6 ; wk(7)=REH*FIX(0.299)+GEH*FIX(0.337) pxor xmm0, xmm0 pxor xmm6, xmm6 punpcklwd xmm0, xmm1 ; xmm0=BEL punpckhwd xmm6, xmm1 ; xmm6=BEH psrld xmm0, 1 ; xmm0=BEL*FIX(0.500) psrld xmm6, 1 ; xmm6=BEH*FIX(0.500) movdqa xmm1, [GOTOFF(eax,PD_ONEHALFM1_CJ)] ; xmm1=[PD_ONEHALFM1_CJ] paddd xmm5, xmm0 paddd xmm4, xmm6 paddd xmm5, xmm1 paddd xmm4, xmm1 psrld xmm5, SCALEBITS ; xmm5=CbEL psrld xmm4, SCALEBITS ; xmm4=CbEH packssdw xmm5, xmm4 ; xmm5=CbE psllw xmm7, BYTE_BIT por xmm5, xmm7 ; xmm5=Cb movdqa XMMWORD [ebx], xmm5 ; Save Cb movdqa xmm0, XMMWORD [wk(3)] ; xmm0=BO movdqa xmm6, XMMWORD [wk(2)] ; xmm6=BE movdqa xmm1, XMMWORD [wk(1)] ; xmm1=RO movdqa xmm4, xmm0 punpcklwd xmm0, xmm3 punpckhwd xmm4, xmm3 movdqa xmm7, xmm0 movdqa xmm5, xmm4 pmaddwd xmm0, [GOTOFF(eax,PW_F0114_F0250)] ; xmm0=BOL*FIX(0.114)+GOL*FIX(0.250) pmaddwd xmm4, [GOTOFF(eax,PW_F0114_F0250)] ; xmm4=BOH*FIX(0.114)+GOH*FIX(0.250) pmaddwd xmm7, [GOTOFF(eax,PW_MF008_MF041)] ; xmm7=BOL*-FIX(0.081)+GOL*-FIX(0.418) pmaddwd xmm5, [GOTOFF(eax,PW_MF008_MF041)] ; xmm5=BOH*-FIX(0.081)+GOH*-FIX(0.418) movdqa xmm3, [GOTOFF(eax,PD_ONEHALF)] ; xmm3=[PD_ONEHALF] paddd xmm0, XMMWORD [wk(4)] paddd xmm4, XMMWORD [wk(5)] paddd xmm0, xmm3 paddd xmm4, xmm3 psrld xmm0, SCALEBITS ; xmm0=YOL psrld xmm4, SCALEBITS ; xmm4=YOH packssdw xmm0, xmm4 ; xmm0=YO pxor xmm3, xmm3 pxor xmm4, xmm4 punpcklwd xmm3, xmm1 ; xmm3=ROL punpckhwd xmm4, xmm1 ; xmm4=ROH psrld xmm3, 1 ; xmm3=ROL*FIX(0.500) psrld xmm4, 1 ; xmm4=ROH*FIX(0.500) movdqa xmm1, [GOTOFF(eax,PD_ONEHALFM1_CJ)] ; xmm1=[PD_ONEHALFM1_CJ] paddd xmm7, xmm3 paddd xmm5, xmm4 paddd xmm7, xmm1 paddd xmm5, xmm1 psrld xmm7, SCALEBITS ; xmm7=CrOL psrld xmm5, SCALEBITS ; xmm5=CrOH packssdw xmm7, xmm5 ; xmm7=CrO movdqa xmm3, XMMWORD [wk(0)] ; xmm3=RE movdqa xmm4, xmm6 punpcklwd xmm6, xmm2 punpckhwd xmm4, xmm2 movdqa xmm1, xmm6 movdqa xmm5, xmm4 pmaddwd xmm6, [GOTOFF(eax,PW_F0114_F0250)] ; xmm6=BEL*FIX(0.114)+GEL*FIX(0.250) pmaddwd xmm4, [GOTOFF(eax,PW_F0114_F0250)] ; xmm4=BEH*FIX(0.114)+GEH*FIX(0.250) pmaddwd xmm1, [GOTOFF(eax,PW_MF008_MF041)] ; xmm1=BEL*-FIX(0.081)+GEL*-FIX(0.418) pmaddwd xmm5, [GOTOFF(eax,PW_MF008_MF041)] ; xmm5=BEH*-FIX(0.081)+GEH*-FIX(0.418) movdqa xmm2, [GOTOFF(eax,PD_ONEHALF)] ; xmm2=[PD_ONEHALF] paddd xmm6, XMMWORD [wk(6)] paddd xmm4, XMMWORD [wk(7)] paddd xmm6, xmm2 paddd xmm4, xmm2 psrld xmm6, SCALEBITS ; xmm6=YEL psrld xmm4, SCALEBITS ; xmm4=YEH packssdw xmm6, xmm4 ; xmm6=YE psllw xmm0, BYTE_BIT por xmm6, xmm0 ; xmm6=Y movdqa XMMWORD [edi], xmm6 ; Save Y pxor xmm2, xmm2 pxor xmm4, xmm4 punpcklwd xmm2, xmm3 ; xmm2=REL punpckhwd xmm4, xmm3 ; xmm4=REH psrld xmm2, 1 ; xmm2=REL*FIX(0.500) psrld xmm4, 1 ; xmm4=REH*FIX(0.500) movdqa xmm0, [GOTOFF(eax,PD_ONEHALFM1_CJ)] ; xmm0=[PD_ONEHALFM1_CJ] paddd xmm1, xmm2 paddd xmm5, xmm4 paddd xmm1, xmm0 paddd xmm5, xmm0 psrld xmm1, SCALEBITS ; xmm1=CrEL psrld xmm5, SCALEBITS ; xmm5=CrEH packssdw xmm1, xmm5 ; xmm1=CrE psllw xmm7, BYTE_BIT por xmm1, xmm7 ; xmm1=Cr movdqa XMMWORD [edx], xmm1 ; Save Cr sub ecx, byte SIZEOF_XMMWORD add esi, byte RGB_PIXELSIZE*SIZEOF_XMMWORD ; inptr add edi, byte SIZEOF_XMMWORD ; outptr0 add ebx, byte SIZEOF_XMMWORD ; outptr1 add edx, byte SIZEOF_XMMWORD ; outptr2 cmp ecx, byte SIZEOF_XMMWORD jae near .columnloop test ecx, ecx jnz near .column_ld1 pop ecx ; col pop esi pop edi pop ebx pop edx poppic eax add esi, byte SIZEOF_JSAMPROW ; input_buf add edi, byte SIZEOF_JSAMPROW add ebx, byte SIZEOF_JSAMPROW add edx, byte SIZEOF_JSAMPROW dec eax ; num_rows jg near .rowloop .return: pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx mov esp, ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/i386/jccolor-avx2.asm000066400000000000000000000072231436506551100207360ustar00rootroot00000000000000; ; jccolor.asm - colorspace conversion (AVX2) ; ; Copyright (C) 2009, 2016, D. R. Commander. ; Copyright (C) 2015, Intel Corporation. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jsimdext.inc" ; -------------------------------------------------------------------------- %define SCALEBITS 16 F_0_081 equ 5329 ; FIX(0.08131) F_0_114 equ 7471 ; FIX(0.11400) F_0_168 equ 11059 ; FIX(0.16874) F_0_250 equ 16384 ; FIX(0.25000) F_0_299 equ 19595 ; FIX(0.29900) F_0_331 equ 21709 ; FIX(0.33126) F_0_418 equ 27439 ; FIX(0.41869) F_0_587 equ 38470 ; FIX(0.58700) F_0_337 equ (F_0_587 - F_0_250) ; FIX(0.58700) - FIX(0.25000) ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 32 GLOBAL_DATA(jconst_rgb_ycc_convert_avx2) EXTN(jconst_rgb_ycc_convert_avx2): PW_F0299_F0337 times 8 dw F_0_299, F_0_337 PW_F0114_F0250 times 8 dw F_0_114, F_0_250 PW_MF016_MF033 times 8 dw -F_0_168, -F_0_331 PW_MF008_MF041 times 8 dw -F_0_081, -F_0_418 PD_ONEHALFM1_CJ times 8 dd (1 << (SCALEBITS - 1)) - 1 + \ (CENTERJSAMPLE << SCALEBITS) PD_ONEHALF times 8 dd (1 << (SCALEBITS - 1)) alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 %include "jccolext-avx2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGB_RED %define RGB_GREEN EXT_RGB_GREEN %define RGB_BLUE EXT_RGB_BLUE %define RGB_PIXELSIZE EXT_RGB_PIXELSIZE %define jsimd_rgb_ycc_convert_avx2 jsimd_extrgb_ycc_convert_avx2 %include "jccolext-avx2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGBX_RED %define RGB_GREEN EXT_RGBX_GREEN %define RGB_BLUE EXT_RGBX_BLUE %define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE %define jsimd_rgb_ycc_convert_avx2 jsimd_extrgbx_ycc_convert_avx2 %include "jccolext-avx2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGR_RED %define RGB_GREEN EXT_BGR_GREEN %define RGB_BLUE EXT_BGR_BLUE %define RGB_PIXELSIZE EXT_BGR_PIXELSIZE %define jsimd_rgb_ycc_convert_avx2 jsimd_extbgr_ycc_convert_avx2 %include "jccolext-avx2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGRX_RED %define RGB_GREEN EXT_BGRX_GREEN %define RGB_BLUE EXT_BGRX_BLUE %define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE %define jsimd_rgb_ycc_convert_avx2 jsimd_extbgrx_ycc_convert_avx2 %include "jccolext-avx2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XBGR_RED %define RGB_GREEN EXT_XBGR_GREEN %define RGB_BLUE EXT_XBGR_BLUE %define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE %define jsimd_rgb_ycc_convert_avx2 jsimd_extxbgr_ycc_convert_avx2 %include "jccolext-avx2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XRGB_RED %define RGB_GREEN EXT_XRGB_GREEN %define RGB_BLUE EXT_XRGB_BLUE %define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE %define jsimd_rgb_ycc_convert_avx2 jsimd_extxrgb_ycc_convert_avx2 %include "jccolext-avx2.asm" libjpeg-turbo-2.1.5/simd/i386/jccolor-mmx.asm000066400000000000000000000072241436506551100206600ustar00rootroot00000000000000; ; jccolor.asm - colorspace conversion (MMX) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2009, 2016, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jsimdext.inc" ; -------------------------------------------------------------------------- %define SCALEBITS 16 F_0_081 equ 5329 ; FIX(0.08131) F_0_114 equ 7471 ; FIX(0.11400) F_0_168 equ 11059 ; FIX(0.16874) F_0_250 equ 16384 ; FIX(0.25000) F_0_299 equ 19595 ; FIX(0.29900) F_0_331 equ 21709 ; FIX(0.33126) F_0_418 equ 27439 ; FIX(0.41869) F_0_587 equ 38470 ; FIX(0.58700) F_0_337 equ (F_0_587 - F_0_250) ; FIX(0.58700) - FIX(0.25000) ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 32 GLOBAL_DATA(jconst_rgb_ycc_convert_mmx) EXTN(jconst_rgb_ycc_convert_mmx): PW_F0299_F0337 times 2 dw F_0_299, F_0_337 PW_F0114_F0250 times 2 dw F_0_114, F_0_250 PW_MF016_MF033 times 2 dw -F_0_168, -F_0_331 PW_MF008_MF041 times 2 dw -F_0_081, -F_0_418 PD_ONEHALFM1_CJ times 2 dd (1 << (SCALEBITS - 1)) - 1 + \ (CENTERJSAMPLE << SCALEBITS) PD_ONEHALF times 2 dd (1 << (SCALEBITS - 1)) alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 %include "jccolext-mmx.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGB_RED %define RGB_GREEN EXT_RGB_GREEN %define RGB_BLUE EXT_RGB_BLUE %define RGB_PIXELSIZE EXT_RGB_PIXELSIZE %define jsimd_rgb_ycc_convert_mmx jsimd_extrgb_ycc_convert_mmx %include "jccolext-mmx.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGBX_RED %define RGB_GREEN EXT_RGBX_GREEN %define RGB_BLUE EXT_RGBX_BLUE %define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE %define jsimd_rgb_ycc_convert_mmx jsimd_extrgbx_ycc_convert_mmx %include "jccolext-mmx.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGR_RED %define RGB_GREEN EXT_BGR_GREEN %define RGB_BLUE EXT_BGR_BLUE %define RGB_PIXELSIZE EXT_BGR_PIXELSIZE %define jsimd_rgb_ycc_convert_mmx jsimd_extbgr_ycc_convert_mmx %include "jccolext-mmx.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGRX_RED %define RGB_GREEN EXT_BGRX_GREEN %define RGB_BLUE EXT_BGRX_BLUE %define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE %define jsimd_rgb_ycc_convert_mmx jsimd_extbgrx_ycc_convert_mmx %include "jccolext-mmx.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XBGR_RED %define RGB_GREEN EXT_XBGR_GREEN %define RGB_BLUE EXT_XBGR_BLUE %define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE %define jsimd_rgb_ycc_convert_mmx jsimd_extxbgr_ycc_convert_mmx %include "jccolext-mmx.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XRGB_RED %define RGB_GREEN EXT_XRGB_GREEN %define RGB_BLUE EXT_XRGB_BLUE %define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE %define jsimd_rgb_ycc_convert_mmx jsimd_extxrgb_ycc_convert_mmx %include "jccolext-mmx.asm" libjpeg-turbo-2.1.5/simd/i386/jccolor-sse2.asm000066400000000000000000000071521436506551100207330ustar00rootroot00000000000000; ; jccolor.asm - colorspace conversion (SSE2) ; ; Copyright (C) 2009, 2016, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jsimdext.inc" ; -------------------------------------------------------------------------- %define SCALEBITS 16 F_0_081 equ 5329 ; FIX(0.08131) F_0_114 equ 7471 ; FIX(0.11400) F_0_168 equ 11059 ; FIX(0.16874) F_0_250 equ 16384 ; FIX(0.25000) F_0_299 equ 19595 ; FIX(0.29900) F_0_331 equ 21709 ; FIX(0.33126) F_0_418 equ 27439 ; FIX(0.41869) F_0_587 equ 38470 ; FIX(0.58700) F_0_337 equ (F_0_587 - F_0_250) ; FIX(0.58700) - FIX(0.25000) ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 32 GLOBAL_DATA(jconst_rgb_ycc_convert_sse2) EXTN(jconst_rgb_ycc_convert_sse2): PW_F0299_F0337 times 4 dw F_0_299, F_0_337 PW_F0114_F0250 times 4 dw F_0_114, F_0_250 PW_MF016_MF033 times 4 dw -F_0_168, -F_0_331 PW_MF008_MF041 times 4 dw -F_0_081, -F_0_418 PD_ONEHALFM1_CJ times 4 dd (1 << (SCALEBITS - 1)) - 1 + \ (CENTERJSAMPLE << SCALEBITS) PD_ONEHALF times 4 dd (1 << (SCALEBITS - 1)) alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 %include "jccolext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGB_RED %define RGB_GREEN EXT_RGB_GREEN %define RGB_BLUE EXT_RGB_BLUE %define RGB_PIXELSIZE EXT_RGB_PIXELSIZE %define jsimd_rgb_ycc_convert_sse2 jsimd_extrgb_ycc_convert_sse2 %include "jccolext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGBX_RED %define RGB_GREEN EXT_RGBX_GREEN %define RGB_BLUE EXT_RGBX_BLUE %define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE %define jsimd_rgb_ycc_convert_sse2 jsimd_extrgbx_ycc_convert_sse2 %include "jccolext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGR_RED %define RGB_GREEN EXT_BGR_GREEN %define RGB_BLUE EXT_BGR_BLUE %define RGB_PIXELSIZE EXT_BGR_PIXELSIZE %define jsimd_rgb_ycc_convert_sse2 jsimd_extbgr_ycc_convert_sse2 %include "jccolext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGRX_RED %define RGB_GREEN EXT_BGRX_GREEN %define RGB_BLUE EXT_BGRX_BLUE %define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE %define jsimd_rgb_ycc_convert_sse2 jsimd_extbgrx_ycc_convert_sse2 %include "jccolext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XBGR_RED %define RGB_GREEN EXT_XBGR_GREEN %define RGB_BLUE EXT_XBGR_BLUE %define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE %define jsimd_rgb_ycc_convert_sse2 jsimd_extxbgr_ycc_convert_sse2 %include "jccolext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XRGB_RED %define RGB_GREEN EXT_XRGB_GREEN %define RGB_BLUE EXT_XRGB_BLUE %define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE %define jsimd_rgb_ycc_convert_sse2 jsimd_extxrgb_ycc_convert_sse2 %include "jccolext-sse2.asm" libjpeg-turbo-2.1.5/simd/i386/jcgray-avx2.asm000066400000000000000000000064221436506551100205620ustar00rootroot00000000000000; ; jcgray.asm - grayscale colorspace conversion (AVX2) ; ; Copyright (C) 2011, 2016, D. R. Commander. ; Copyright (C) 2015, Intel Corporation. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jsimdext.inc" ; -------------------------------------------------------------------------- %define SCALEBITS 16 F_0_114 equ 7471 ; FIX(0.11400) F_0_250 equ 16384 ; FIX(0.25000) F_0_299 equ 19595 ; FIX(0.29900) F_0_587 equ 38470 ; FIX(0.58700) F_0_337 equ (F_0_587 - F_0_250) ; FIX(0.58700) - FIX(0.25000) ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 32 GLOBAL_DATA(jconst_rgb_gray_convert_avx2) EXTN(jconst_rgb_gray_convert_avx2): PW_F0299_F0337 times 8 dw F_0_299, F_0_337 PW_F0114_F0250 times 8 dw F_0_114, F_0_250 PD_ONEHALF times 8 dd (1 << (SCALEBITS - 1)) alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 %include "jcgryext-avx2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGB_RED %define RGB_GREEN EXT_RGB_GREEN %define RGB_BLUE EXT_RGB_BLUE %define RGB_PIXELSIZE EXT_RGB_PIXELSIZE %define jsimd_rgb_gray_convert_avx2 jsimd_extrgb_gray_convert_avx2 %include "jcgryext-avx2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGBX_RED %define RGB_GREEN EXT_RGBX_GREEN %define RGB_BLUE EXT_RGBX_BLUE %define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE %define jsimd_rgb_gray_convert_avx2 jsimd_extrgbx_gray_convert_avx2 %include "jcgryext-avx2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGR_RED %define RGB_GREEN EXT_BGR_GREEN %define RGB_BLUE EXT_BGR_BLUE %define RGB_PIXELSIZE EXT_BGR_PIXELSIZE %define jsimd_rgb_gray_convert_avx2 jsimd_extbgr_gray_convert_avx2 %include "jcgryext-avx2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGRX_RED %define RGB_GREEN EXT_BGRX_GREEN %define RGB_BLUE EXT_BGRX_BLUE %define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE %define jsimd_rgb_gray_convert_avx2 jsimd_extbgrx_gray_convert_avx2 %include "jcgryext-avx2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XBGR_RED %define RGB_GREEN EXT_XBGR_GREEN %define RGB_BLUE EXT_XBGR_BLUE %define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE %define jsimd_rgb_gray_convert_avx2 jsimd_extxbgr_gray_convert_avx2 %include "jcgryext-avx2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XRGB_RED %define RGB_GREEN EXT_XRGB_GREEN %define RGB_BLUE EXT_XRGB_BLUE %define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE %define jsimd_rgb_gray_convert_avx2 jsimd_extxrgb_gray_convert_avx2 %include "jcgryext-avx2.asm" libjpeg-turbo-2.1.5/simd/i386/jcgray-mmx.asm000066400000000000000000000064231436506551100205040ustar00rootroot00000000000000; ; jcgray.asm - grayscale colorspace conversion (MMX) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2011, 2016, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jsimdext.inc" ; -------------------------------------------------------------------------- %define SCALEBITS 16 F_0_114 equ 7471 ; FIX(0.11400) F_0_250 equ 16384 ; FIX(0.25000) F_0_299 equ 19595 ; FIX(0.29900) F_0_587 equ 38470 ; FIX(0.58700) F_0_337 equ (F_0_587 - F_0_250) ; FIX(0.58700) - FIX(0.25000) ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 32 GLOBAL_DATA(jconst_rgb_gray_convert_mmx) EXTN(jconst_rgb_gray_convert_mmx): PW_F0299_F0337 times 2 dw F_0_299, F_0_337 PW_F0114_F0250 times 2 dw F_0_114, F_0_250 PD_ONEHALF times 2 dd (1 << (SCALEBITS - 1)) alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 %include "jcgryext-mmx.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGB_RED %define RGB_GREEN EXT_RGB_GREEN %define RGB_BLUE EXT_RGB_BLUE %define RGB_PIXELSIZE EXT_RGB_PIXELSIZE %define jsimd_rgb_gray_convert_mmx jsimd_extrgb_gray_convert_mmx %include "jcgryext-mmx.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGBX_RED %define RGB_GREEN EXT_RGBX_GREEN %define RGB_BLUE EXT_RGBX_BLUE %define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE %define jsimd_rgb_gray_convert_mmx jsimd_extrgbx_gray_convert_mmx %include "jcgryext-mmx.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGR_RED %define RGB_GREEN EXT_BGR_GREEN %define RGB_BLUE EXT_BGR_BLUE %define RGB_PIXELSIZE EXT_BGR_PIXELSIZE %define jsimd_rgb_gray_convert_mmx jsimd_extbgr_gray_convert_mmx %include "jcgryext-mmx.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGRX_RED %define RGB_GREEN EXT_BGRX_GREEN %define RGB_BLUE EXT_BGRX_BLUE %define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE %define jsimd_rgb_gray_convert_mmx jsimd_extbgrx_gray_convert_mmx %include "jcgryext-mmx.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XBGR_RED %define RGB_GREEN EXT_XBGR_GREEN %define RGB_BLUE EXT_XBGR_BLUE %define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE %define jsimd_rgb_gray_convert_mmx jsimd_extxbgr_gray_convert_mmx %include "jcgryext-mmx.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XRGB_RED %define RGB_GREEN EXT_XRGB_GREEN %define RGB_BLUE EXT_XRGB_BLUE %define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE %define jsimd_rgb_gray_convert_mmx jsimd_extxrgb_gray_convert_mmx %include "jcgryext-mmx.asm" libjpeg-turbo-2.1.5/simd/i386/jcgray-sse2.asm000066400000000000000000000063511436506551100205570ustar00rootroot00000000000000; ; jcgray.asm - grayscale colorspace conversion (SSE2) ; ; Copyright (C) 2011, 2016, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jsimdext.inc" ; -------------------------------------------------------------------------- %define SCALEBITS 16 F_0_114 equ 7471 ; FIX(0.11400) F_0_250 equ 16384 ; FIX(0.25000) F_0_299 equ 19595 ; FIX(0.29900) F_0_587 equ 38470 ; FIX(0.58700) F_0_337 equ (F_0_587 - F_0_250) ; FIX(0.58700) - FIX(0.25000) ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 32 GLOBAL_DATA(jconst_rgb_gray_convert_sse2) EXTN(jconst_rgb_gray_convert_sse2): PW_F0299_F0337 times 4 dw F_0_299, F_0_337 PW_F0114_F0250 times 4 dw F_0_114, F_0_250 PD_ONEHALF times 4 dd (1 << (SCALEBITS - 1)) alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 %include "jcgryext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGB_RED %define RGB_GREEN EXT_RGB_GREEN %define RGB_BLUE EXT_RGB_BLUE %define RGB_PIXELSIZE EXT_RGB_PIXELSIZE %define jsimd_rgb_gray_convert_sse2 jsimd_extrgb_gray_convert_sse2 %include "jcgryext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGBX_RED %define RGB_GREEN EXT_RGBX_GREEN %define RGB_BLUE EXT_RGBX_BLUE %define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE %define jsimd_rgb_gray_convert_sse2 jsimd_extrgbx_gray_convert_sse2 %include "jcgryext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGR_RED %define RGB_GREEN EXT_BGR_GREEN %define RGB_BLUE EXT_BGR_BLUE %define RGB_PIXELSIZE EXT_BGR_PIXELSIZE %define jsimd_rgb_gray_convert_sse2 jsimd_extbgr_gray_convert_sse2 %include "jcgryext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGRX_RED %define RGB_GREEN EXT_BGRX_GREEN %define RGB_BLUE EXT_BGRX_BLUE %define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE %define jsimd_rgb_gray_convert_sse2 jsimd_extbgrx_gray_convert_sse2 %include "jcgryext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XBGR_RED %define RGB_GREEN EXT_XBGR_GREEN %define RGB_BLUE EXT_XBGR_BLUE %define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE %define jsimd_rgb_gray_convert_sse2 jsimd_extxbgr_gray_convert_sse2 %include "jcgryext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XRGB_RED %define RGB_GREEN EXT_XRGB_GREEN %define RGB_BLUE EXT_XRGB_BLUE %define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE %define jsimd_rgb_gray_convert_sse2 jsimd_extxrgb_gray_convert_sse2 %include "jcgryext-sse2.asm" libjpeg-turbo-2.1.5/simd/i386/jcgryext-avx2.asm000066400000000000000000000477361436506551100211570ustar00rootroot00000000000000; ; jcgryext.asm - grayscale colorspace conversion (AVX2) ; ; Copyright (C) 2011, 2016, D. R. Commander. ; Copyright (C) 2015, Intel Corporation. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jcolsamp.inc" ; -------------------------------------------------------------------------- ; ; Convert some rows of samples to the output colorspace. ; ; GLOBAL(void) ; jsimd_rgb_gray_convert_avx2(JDIMENSION img_width, JSAMPARRAY input_buf, ; JSAMPIMAGE output_buf, JDIMENSION output_row, ; int num_rows); ; %define img_width(b) (b) + 8 ; JDIMENSION img_width %define input_buf(b) (b) + 12 ; JSAMPARRAY input_buf %define output_buf(b) (b) + 16 ; JSAMPIMAGE output_buf %define output_row(b) (b) + 20 ; JDIMENSION output_row %define num_rows(b) (b) + 24 ; int num_rows %define original_ebp ebp + 0 %define wk(i) ebp - (WK_NUM - (i)) * SIZEOF_YMMWORD ; ymmword wk[WK_NUM] %define WK_NUM 2 %define gotptr wk(0) - SIZEOF_POINTER ; void * gotptr align 32 GLOBAL_FUNCTION(jsimd_rgb_gray_convert_avx2) EXTN(jsimd_rgb_gray_convert_avx2): push ebp mov eax, esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_YMMWORD) ; align to 256 bits mov [esp], eax mov ebp, esp ; ebp = aligned ebp lea esp, [wk(0)] pushpic eax ; make a room for GOT address push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address movpic POINTER [gotptr], ebx ; save GOT address mov ecx, JDIMENSION [img_width(eax)] test ecx, ecx jz near .return push ecx mov esi, JSAMPIMAGE [output_buf(eax)] mov ecx, JDIMENSION [output_row(eax)] mov edi, JSAMPARRAY [esi+0*SIZEOF_JSAMPARRAY] lea edi, [edi+ecx*SIZEOF_JSAMPROW] pop ecx mov esi, JSAMPARRAY [input_buf(eax)] mov eax, INT [num_rows(eax)] test eax, eax jle near .return alignx 16, 7 .rowloop: pushpic eax push edi push esi push ecx ; col mov esi, JSAMPROW [esi] ; inptr mov edi, JSAMPROW [edi] ; outptr0 movpic eax, POINTER [gotptr] ; load GOT address (eax) cmp ecx, byte SIZEOF_YMMWORD jae near .columnloop alignx 16, 7 %if RGB_PIXELSIZE == 3 ; --------------- .column_ld1: push eax push edx lea ecx, [ecx+ecx*2] ; imul ecx,RGB_PIXELSIZE test cl, SIZEOF_BYTE jz short .column_ld2 sub ecx, byte SIZEOF_BYTE movzx eax, byte [esi+ecx] .column_ld2: test cl, SIZEOF_WORD jz short .column_ld4 sub ecx, byte SIZEOF_WORD movzx edx, word [esi+ecx] shl eax, WORD_BIT or eax, edx .column_ld4: vmovd xmmA, eax pop edx pop eax test cl, SIZEOF_DWORD jz short .column_ld8 sub ecx, byte SIZEOF_DWORD vmovd xmmF, XMM_DWORD [esi+ecx] vpslldq xmmA, xmmA, SIZEOF_DWORD vpor xmmA, xmmA, xmmF .column_ld8: test cl, SIZEOF_MMWORD jz short .column_ld16 sub ecx, byte SIZEOF_MMWORD vmovq xmmB, XMM_MMWORD [esi+ecx] vpslldq xmmA, xmmA, SIZEOF_MMWORD vpor xmmA, xmmA, xmmB .column_ld16: test cl, SIZEOF_XMMWORD jz short .column_ld32 sub ecx, byte SIZEOF_XMMWORD vmovdqu xmmB, XMM_MMWORD [esi+ecx] vperm2i128 ymmA, ymmA, ymmA, 1 vpor ymmA, ymmB .column_ld32: test cl, SIZEOF_YMMWORD jz short .column_ld64 sub ecx, byte SIZEOF_YMMWORD vmovdqa ymmF, ymmA vmovdqu ymmA, YMMWORD [esi+0*SIZEOF_YMMWORD] .column_ld64: test cl, 2*SIZEOF_YMMWORD mov ecx, SIZEOF_YMMWORD jz short .rgb_gray_cnv vmovdqa ymmB, ymmA vmovdqu ymmA, YMMWORD [esi+0*SIZEOF_YMMWORD] vmovdqu ymmF, YMMWORD [esi+1*SIZEOF_YMMWORD] jmp short .rgb_gray_cnv alignx 16, 7 .columnloop: vmovdqu ymmA, YMMWORD [esi+0*SIZEOF_YMMWORD] vmovdqu ymmF, YMMWORD [esi+1*SIZEOF_YMMWORD] vmovdqu ymmB, YMMWORD [esi+2*SIZEOF_YMMWORD] .rgb_gray_cnv: ; ymmA=(00 10 20 01 11 21 02 12 22 03 13 23 04 14 24 05 ; 15 25 06 16 26 07 17 27 08 18 28 09 19 29 0A 1A) ; ymmF=(2A 0B 1B 2B 0C 1C 2C 0D 1D 2D 0E 1E 2E 0F 1F 2F ; 0G 1G 2G 0H 1H 2H 0I 1I 2I 0J 1J 2J 0K 1K 2K 0L) ; ymmB=(1L 2L 0M 1M 2M 0N 1N 2N 0O 1O 2O 0P 1P 2P 0Q 1Q ; 2Q 0R 1R 2R 0S 1S 2S 0T 1T 2T 0U 1U 2U 0V 1V 2V) vmovdqu ymmC, ymmA vinserti128 ymmA, ymmF, xmmA, 0 ; ymmA=(00 10 20 01 11 21 02 12 22 03 13 23 04 14 24 05 ; 0G 1G 2G 0H 1H 2H 0I 1I 2I 0J 1J 2J 0K 1K 2K 0L) vinserti128 ymmC, ymmC, xmmB, 0 ; ymmC=(1L 2L 0M 1M 2M 0N 1N 2N 0O 1O 2O 0P 1P 2P 0Q 1Q ; 15 25 06 16 26 07 17 27 08 18 28 09 19 29 0A 1A) vinserti128 ymmB, ymmB, xmmF, 0 ; ymmB=(2A 0B 1B 2B 0C 1C 2C 0D 1D 2D 0E 1E 2E 0F 1F 2F ; 2Q 0R 1R 2R 0S 1S 2S 0T 1T 2T 0U 1U 2U 0V 1V 2V) vperm2i128 ymmF, ymmC, ymmC, 1 ; ymmF=(15 25 06 16 26 07 17 27 08 18 28 09 19 29 0A 1A ; 1L 2L 0M 1M 2M 0N 1N 2N 0O 1O 2O 0P 1P 2P 0Q 1Q) vmovdqa ymmG, ymmA vpslldq ymmA, ymmA, 8 ; ymmA=(-- -- -- -- -- -- -- -- 00 10 20 01 11 21 02 12 ; 22 03 13 23 04 14 24 05 0G 1G 2G 0H 1H 2H 0I 1I) vpsrldq ymmG, ymmG, 8 ; ymmG=(22 03 13 23 04 14 24 05 0G 1G 2G 0H 1H 2H 0I 1I ; 2I 0J 1J 2J 0K 1K 2K 0L -- -- -- -- -- -- -- --) vpunpckhbw ymmA, ymmA, ymmF ; ymmA=(00 08 10 18 20 28 01 09 11 19 21 29 02 0A 12 1A ; 0G 0O 1G 1O 2G 2O 0H 0P 1H 1P 2H 2P 0I 0Q 1I 1Q) vpslldq ymmF, ymmF, 8 ; ymmF=(-- -- -- -- -- -- -- -- 15 25 06 16 26 07 17 27 ; 08 18 28 09 19 29 0A 1A 1L 2L 0M 1M 2M 0N 1N 2N) vpunpcklbw ymmG, ymmG, ymmB ; ymmG=(22 2A 03 0B 13 1B 23 2B 04 0C 14 1C 24 2C 05 0D ; 2I 2Q 0J 0R 1J 1R 2J 2R 0K 0S 1K 1S 2K 2S 0L 0T) vpunpckhbw ymmF, ymmF, ymmB ; ymmF=(15 1D 25 2D 06 0E 16 1E 26 2E 07 0F 17 1F 27 2F ; 1L 1T 2L 2T 0M 0U 1M 1U 2M 2U 0N 0V 1N 1V 2N 2V) vmovdqa ymmD, ymmA vpslldq ymmA, ymmA, 8 ; ymmA=(-- -- -- -- -- -- -- -- 00 08 10 18 20 28 01 09 ; 11 19 21 29 02 0A 12 1A 0G 0O 1G 1O 2G 2O 0H 0P) vpsrldq ymmD, ymmD, 8 ; ymmD=(11 19 21 29 02 0A 12 1A 0G 0O 1G 1O 2G 2O 0H 0P ; 1H 1P 2H 2P 0I 0Q 1I 1Q -- -- -- -- -- -- -- --) vpunpckhbw ymmA, ymmA, ymmG ; ymmA=(00 04 08 0C 10 14 18 1C 20 24 28 2C 01 05 09 0D ; 0G 0K 0O 0S 1G 1K 1O 1S 2G 2K 2O 2S 0H 0L 0P 0T) vpslldq ymmG, ymmG, 8 ; ymmG=(-- -- -- -- -- -- -- -- 22 2A 03 0B 13 1B 23 2B ; 04 0C 14 1C 24 2C 05 0D 2I 2Q 0J 0R 1J 1R 2J 2R) vpunpcklbw ymmD, ymmD, ymmF ; ymmD=(11 15 19 1D 21 25 29 2D 02 06 0A 0E 12 16 1A 1E ; 1H 1L 1P 1T 2H 2L 2P 2T 0I 0M 0Q 0U 1I 1M 1Q 1U) vpunpckhbw ymmG, ymmG, ymmF ; ymmG=(22 26 2A 2E 03 07 0B 0F 13 17 1B 1F 23 27 2B 2F ; 2I 2M 2Q 2U 0J 0N 0R 0V 1J 1N 1R 1V 2J 2N 2R 2V) vmovdqa ymmE, ymmA vpslldq ymmA, ymmA, 8 ; ymmA=(-- -- -- -- -- -- -- -- 00 04 08 0C 10 14 18 1C ; 20 24 28 2C 01 05 09 0D 0G 0K 0O 0S 1G 1K 1O 1S) vpsrldq ymmE, ymmE, 8 ; ymmE=(20 24 28 2C 01 05 09 0D 0G 0K 0O 0S 1G 1K 1O 1S ; 2G 2K 2O 2S 0H 0L 0P 0T -- -- -- -- -- -- -- --) vpunpckhbw ymmA, ymmA, ymmD ; ymmA=(00 02 04 06 08 0A 0C 0E 10 12 14 16 18 1A 1C 1E ; 0G 0I 0K 0M 0O 0Q 0S 0U 1G 1I 1K 1M 1O 1Q 1S 1U) vpslldq ymmD, ymmD, 8 ; ymmD=(-- -- -- -- -- -- -- -- 11 15 19 1D 21 25 29 2D ; 02 06 0A 0E 12 16 1A 1E 1H 1L 1P 1T 2H 2L 2P 2T) vpunpcklbw ymmE, ymmE, ymmG ; ymmE=(20 22 24 26 28 2A 2C 2E 01 03 05 07 09 0B 0D 0F ; 2G 2I 2K 2M 2O 2Q 2S 2U 0H 0J 0L 0N 0P 0R 0T 0V) vpunpckhbw ymmD, ymmD, ymmG ; ymmD=(11 13 15 17 19 1B 1D 1F 21 23 25 27 29 2B 2D 2F ; 1H 1J 1L 1N 1P 1R 1T 1V 2H 2J 2L 2N 2P 2R 2T 2V) vpxor ymmH, ymmH, ymmH vmovdqa ymmC, ymmA vpunpcklbw ymmA, ymmA, ymmH ; ymmA=(00 02 04 06 08 0A 0C 0E 0G 0I 0K 0M 0O 0Q 0S 0U) vpunpckhbw ymmC, ymmC, ymmH ; ymmC=(10 12 14 16 18 1A 1C 1E 1G 1I 1K 1M 1O 1Q 1S 1U) vmovdqa ymmB, ymmE vpunpcklbw ymmE, ymmE, ymmH ; ymmE=(20 22 24 26 28 2A 2C 2E 2G 2I 2K 2M 2O 2Q 2S 2U) vpunpckhbw ymmB, ymmB, ymmH ; ymmB=(01 03 05 07 09 0B 0D 0F 0H 0J 0L 0N 0P 0R 0T 0V) vmovdqa ymmF, ymmD vpunpcklbw ymmD, ymmD, ymmH ; ymmD=(11 13 15 17 19 1B 1D 1F 1H 1J 1L 1N 1P 1R 1T 1V) vpunpckhbw ymmF, ymmF, ymmH ; ymmF=(21 23 25 27 29 2B 2D 2F 2H 2J 2L 2N 2P 2R 2T 2V) %else ; RGB_PIXELSIZE == 4 ; ----------- .column_ld1: test cl, SIZEOF_XMMWORD/16 jz short .column_ld2 sub ecx, byte SIZEOF_XMMWORD/16 vmovd xmmA, XMM_DWORD [esi+ecx*RGB_PIXELSIZE] .column_ld2: test cl, SIZEOF_XMMWORD/8 jz short .column_ld4 sub ecx, byte SIZEOF_XMMWORD/8 vmovq xmmF, XMM_MMWORD [esi+ecx*RGB_PIXELSIZE] vpslldq xmmA, xmmA, SIZEOF_MMWORD vpor xmmA, xmmA, xmmF .column_ld4: test cl, SIZEOF_XMMWORD/4 jz short .column_ld8 sub ecx, byte SIZEOF_XMMWORD/4 vmovdqa xmmF, xmmA vperm2i128 ymmF, ymmF, ymmF, 1 vmovdqu xmmA, XMMWORD [esi+ecx*RGB_PIXELSIZE] vpor ymmA, ymmA, ymmF .column_ld8: test cl, SIZEOF_XMMWORD/2 jz short .column_ld16 sub ecx, byte SIZEOF_XMMWORD/2 vmovdqa ymmF, ymmA vmovdqu ymmA, YMMWORD [esi+ecx*RGB_PIXELSIZE] .column_ld16: test cl, SIZEOF_XMMWORD mov ecx, SIZEOF_YMMWORD jz short .rgb_gray_cnv vmovdqa ymmE, ymmA vmovdqa ymmH, ymmF vmovdqu ymmA, YMMWORD [esi+0*SIZEOF_YMMWORD] vmovdqu ymmF, YMMWORD [esi+1*SIZEOF_YMMWORD] jmp short .rgb_gray_cnv alignx 16, 7 .columnloop: vmovdqu ymmA, YMMWORD [esi+0*SIZEOF_YMMWORD] vmovdqu ymmF, YMMWORD [esi+1*SIZEOF_YMMWORD] vmovdqu ymmE, YMMWORD [esi+2*SIZEOF_YMMWORD] vmovdqu ymmH, YMMWORD [esi+3*SIZEOF_YMMWORD] .rgb_gray_cnv: ; ymmA=(00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33 ; 04 14 24 34 05 15 25 35 06 16 26 36 07 17 27 37) ; ymmF=(08 18 28 38 09 19 29 39 0A 1A 2A 3A 0B 1B 2B 3B ; 0C 1C 2C 3C 0D 1D 2D 3D 0E 1E 2E 3E 0F 1F 2F 3F) ; ymmE=(0G 1G 2G 3G 0H 1H 2H 3H 0I 1I 2I 3I 0J 1J 2J 3J ; 0K 1K 2K 3K 0L 1L 2L 3L 0M 1M 2M 3M 0N 1N 2N 3N) ; ymmH=(0O 1O 2O 3O 0P 1P 2P 3P 0Q 1Q 2Q 3Q 0R 1R 2R 3R ; 0S 1S 2S 3S 0T 1T 2T 3T 0U 1U 2U 3U 0V 1V 2V 3V) vmovdqa ymmB, ymmA vinserti128 ymmA, ymmA, xmmE, 1 ; ymmA=(00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33 ; 0G 1G 2G 3G 0H 1H 2H 3H 0I 1I 2I 3I 0J 1J 2J 3J) vperm2i128 ymmE, ymmB, ymmE, 0x31 ; ymmE=(04 14 24 34 05 15 25 35 06 16 26 36 07 17 27 37 ; 0K 1K 2K 3K 0L 1L 2L 3L 0M 1M 2M 3M 0N 1N 2N 3N) vmovdqa ymmB, ymmF vinserti128 ymmF, ymmF, xmmH, 1 ; ymmF=(08 18 28 38 09 19 29 39 0A 1A 2A 3A 0B 1B 2B 3B ; 0O 1O 2O 3O 0P 1P 2P 3P 0Q 1Q 2Q 3Q 0R 1R 2R 3R) vperm2i128 ymmH, ymmB, ymmH, 0x31 ; ymmH=(0C 1C 2C 3C 0D 1D 2D 3D 0E 1E 2E 3E 0F 1F 2F 3F ; 0S 1S 2S 3S 0T 1T 2T 3T 0U 1U 2U 3U 0V 1V 2V 3V) vmovdqa ymmD, ymmA vpunpcklbw ymmA, ymmA, ymmE ; ymmA=(00 04 10 14 20 24 30 34 01 05 11 15 21 25 31 35 ; 0G 0K 1G 1K 2G 2K 3G 3K 0H 0L 1H 1L 2H 2L 3H 3L) vpunpckhbw ymmD, ymmD, ymmE ; ymmD=(02 06 12 16 22 26 32 36 03 07 13 17 23 27 33 37 ; 0I 0M 1I 1M 2I 2M 3I 3M 0J 0N 1J 1N 2J 2N 3J 3N) vmovdqa ymmC, ymmF vpunpcklbw ymmF, ymmF, ymmH ; ymmF=(08 0C 18 1C 28 2C 38 3C 09 0D 19 1D 29 2D 39 3D ; 0O 0S 1O 1S 2O 2S 3O 3S 0P 0T 1P 1T 2P 2T 3P 3T) vpunpckhbw ymmC, ymmC, ymmH ; ymmC=(0A 0E 1A 1E 2A 2E 3A 3E 0B 0F 1B 1F 2B 2F 3B 3F ; 0Q 0U 1Q 1U 2Q 2U 3Q 3U 0R 0V 1R 1V 2R 2V 3R 3V) vmovdqa ymmB, ymmA vpunpcklwd ymmA, ymmA, ymmF ; ymmA=(00 04 08 0C 10 14 18 1C 20 24 28 2C 30 34 38 3C ; 0G 0K 0O 0S 1G 1K 1O 1S 2G 2K 2O 2S 3G 3K 3O 3S) vpunpckhwd ymmB, ymmB, ymmF ; ymmB=(01 05 09 0D 11 15 19 1D 21 25 29 2D 31 35 39 3D ; 0H 0L 0P 0T 1H 1L 1P 1T 2H 2L 2P 2T 3H 3L 3P 3T) vmovdqa ymmG, ymmD vpunpcklwd ymmD, ymmD, ymmC ; ymmD=(02 06 0A 0E 12 16 1A 1E 22 26 2A 2E 32 36 3A 3E ; 0I 0M 0Q 0U 1I 1M 1Q 1U 2I 2M 2Q 2U 3I 3M 3Q 3U) vpunpckhwd ymmG, ymmG, ymmC ; ymmG=(03 07 0B 0F 13 17 1B 1F 23 27 2B 2F 33 37 3B 3F ; 0J 0N 0R 0V 1J 1N 1R 1V 2J 2N 2R 2V 3J 3N 3R 3V) vmovdqa ymmE, ymmA vpunpcklbw ymmA, ymmA, ymmD ; ymmA=(00 02 04 06 08 0A 0C 0E 10 12 14 16 18 1A 1C 1E ; 0G 0I 0K 0M 0O 0Q 0S 0U 1G 1I 1K 1M 1O 1Q 1S 1U) vpunpckhbw ymmE, ymmE, ymmD ; ymmE=(20 22 24 26 28 2A 2C 2E 30 32 34 36 38 3A 3C 3E ; 2G 2I 2K 2M 2O 2Q 2S 2U 3G 3I 3K 3M 3O 3Q 3S 3U) vmovdqa ymmH, ymmB vpunpcklbw ymmB, ymmB, ymmG ; ymmB=(01 03 05 07 09 0B 0D 0F 11 13 15 17 19 1B 1D 1F ; 0H 0J 0L 0N 0P 0R 0T 0V 1H 1J 1L 1N 1P 1R 1T 1V) vpunpckhbw ymmH, ymmH, ymmG ; ymmH=(21 23 25 27 29 2B 2D 2F 31 33 35 37 39 3B 3D 3F ; 2H 2J 2L 2N 2P 2R 2T 2V 3H 3J 3L 3N 3P 3R 3T 3V) vpxor ymmF, ymmF, ymmF vmovdqa ymmC, ymmA vpunpcklbw ymmA, ymmA, ymmF ; ymmA=(00 02 04 06 08 0A 0C 0E 0G 0I 0K 0M 0O 0Q 0S 0U) vpunpckhbw ymmC, ymmC, ymmF ; ymmC=(10 12 14 16 18 1A 1C 1E 1G 1I 1K 1M 1O 1Q 1S 1U) vmovdqa ymmD, ymmB vpunpcklbw ymmB, ymmB, ymmF ; ymmB=(01 03 05 07 09 0B 0D 0F 0H 0J 0L 0N 0P 0R 0T 0V) vpunpckhbw ymmD, ymmD, ymmF ; ymmD=(11 13 15 17 19 1B 1D 1F 1H 1J 1L 1N 1P 1R 1T 1V) vmovdqa ymmG, ymmE vpunpcklbw ymmE, ymmE, ymmF ; ymmE=(20 22 24 26 28 2A 2C 2E 2G 2I 2K 2M 2O 2Q 2S 2U) vpunpckhbw ymmG, ymmG, ymmF ; ymmG=(30 32 34 36 38 3A 3C 3E 3G 3I 3K 3M 3O 3Q 3S 3U) vpunpcklbw ymmF, ymmF, ymmH vpunpckhbw ymmH, ymmH, ymmH vpsrlw ymmF, ymmF, BYTE_BIT ; ymmF=(21 23 25 27 29 2B 2D 2F 2H 2J 2L 2N 2P 2R 2T 2V) vpsrlw ymmH, ymmH, BYTE_BIT ; ymmH=(31 33 35 37 39 3B 3D 3F 3H 3J 3L 3N 3P 3R 3T 3V) %endif ; RGB_PIXELSIZE ; --------------- ; ymm0=R(02468ACEGIKMOQSU)=RE, ymm2=G(02468ACEGIKMOQSU)=GE, ymm4=B(02468ACEGIKMOQSU)=BE ; ymm1=R(13579BDFHJLNPRTV)=RO, ymm3=G(13579BDFHJLNPRTV)=GO, ymm5=B(13579BDFHJLNPRTV)=BO ; (Original) ; Y = 0.29900 * R + 0.58700 * G + 0.11400 * B ; ; (This implementation) ; Y = 0.29900 * R + 0.33700 * G + 0.11400 * B + 0.25000 * G vmovdqa ymm6, ymm1 vpunpcklwd ymm1, ymm1, ymm3 vpunpckhwd ymm6, ymm6, ymm3 vpmaddwd ymm1, ymm1, [GOTOFF(eax,PW_F0299_F0337)] ; ymm1=ROL*FIX(0.299)+GOL*FIX(0.337) vpmaddwd ymm6, ymm6, [GOTOFF(eax,PW_F0299_F0337)] ; ymm6=ROH*FIX(0.299)+GOH*FIX(0.337) vmovdqa ymm7, ymm6 ; ymm7=ROH*FIX(0.299)+GOH*FIX(0.337) vmovdqa ymm6, ymm0 vpunpcklwd ymm0, ymm0, ymm2 vpunpckhwd ymm6, ymm6, ymm2 vpmaddwd ymm0, ymm0, [GOTOFF(eax,PW_F0299_F0337)] ; ymm0=REL*FIX(0.299)+GEL*FIX(0.337) vpmaddwd ymm6, ymm6, [GOTOFF(eax,PW_F0299_F0337)] ; ymm6=REH*FIX(0.299)+GEH*FIX(0.337) vmovdqa YMMWORD [wk(0)], ymm0 ; wk(0)=REL*FIX(0.299)+GEL*FIX(0.337) vmovdqa YMMWORD [wk(1)], ymm6 ; wk(1)=REH*FIX(0.299)+GEH*FIX(0.337) vmovdqa ymm0, ymm5 ; ymm0=BO vmovdqa ymm6, ymm4 ; ymm6=BE vmovdqa ymm4, ymm0 vpunpcklwd ymm0, ymm0, ymm3 vpunpckhwd ymm4, ymm4, ymm3 vpmaddwd ymm0, ymm0, [GOTOFF(eax,PW_F0114_F0250)] ; ymm0=BOL*FIX(0.114)+GOL*FIX(0.250) vpmaddwd ymm4, ymm4, [GOTOFF(eax,PW_F0114_F0250)] ; ymm4=BOH*FIX(0.114)+GOH*FIX(0.250) vmovdqa ymm3, [GOTOFF(eax,PD_ONEHALF)] ; ymm3=[PD_ONEHALF] vpaddd ymm0, ymm0, ymm1 vpaddd ymm4, ymm4, ymm7 vpaddd ymm0, ymm0, ymm3 vpaddd ymm4, ymm4, ymm3 vpsrld ymm0, ymm0, SCALEBITS ; ymm0=YOL vpsrld ymm4, ymm4, SCALEBITS ; ymm4=YOH vpackssdw ymm0, ymm0, ymm4 ; ymm0=YO vmovdqa ymm4, ymm6 vpunpcklwd ymm6, ymm6, ymm2 vpunpckhwd ymm4, ymm4, ymm2 vpmaddwd ymm6, ymm6, [GOTOFF(eax,PW_F0114_F0250)] ; ymm6=BEL*FIX(0.114)+GEL*FIX(0.250) vpmaddwd ymm4, ymm4, [GOTOFF(eax,PW_F0114_F0250)] ; ymm4=BEH*FIX(0.114)+GEH*FIX(0.250) vmovdqa ymm2, [GOTOFF(eax,PD_ONEHALF)] ; ymm2=[PD_ONEHALF] vpaddd ymm6, ymm6, YMMWORD [wk(0)] vpaddd ymm4, ymm4, YMMWORD [wk(1)] vpaddd ymm6, ymm6, ymm2 vpaddd ymm4, ymm4, ymm2 vpsrld ymm6, ymm6, SCALEBITS ; ymm6=YEL vpsrld ymm4, ymm4, SCALEBITS ; ymm4=YEH vpackssdw ymm6, ymm6, ymm4 ; ymm6=YE vpsllw ymm0, ymm0, BYTE_BIT vpor ymm6, ymm6, ymm0 ; ymm6=Y vmovdqu YMMWORD [edi], ymm6 ; Save Y sub ecx, byte SIZEOF_YMMWORD add esi, RGB_PIXELSIZE*SIZEOF_YMMWORD ; inptr add edi, byte SIZEOF_YMMWORD ; outptr0 cmp ecx, byte SIZEOF_YMMWORD jae near .columnloop test ecx, ecx jnz near .column_ld1 pop ecx ; col pop esi pop edi poppic eax add esi, byte SIZEOF_JSAMPROW ; input_buf add edi, byte SIZEOF_JSAMPROW dec eax ; num_rows jg near .rowloop .return: vzeroupper pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx mov esp, ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/i386/jcgryext-mmx.asm000066400000000000000000000300511436506551100210560ustar00rootroot00000000000000; ; jcgryext.asm - grayscale colorspace conversion (MMX) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2011, 2016, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jcolsamp.inc" ; -------------------------------------------------------------------------- ; ; Convert some rows of samples to the output colorspace. ; ; GLOBAL(void) ; jsimd_rgb_gray_convert_mmx(JDIMENSION img_width, JSAMPARRAY input_buf, ; JSAMPIMAGE output_buf, JDIMENSION output_row, ; int num_rows); ; %define img_width(b) (b) + 8 ; JDIMENSION img_width %define input_buf(b) (b) + 12 ; JSAMPARRAY input_buf %define output_buf(b) (b) + 16 ; JSAMPIMAGE output_buf %define output_row(b) (b) + 20 ; JDIMENSION output_row %define num_rows(b) (b) + 24 ; int num_rows %define original_ebp ebp + 0 %define wk(i) ebp - (WK_NUM - (i)) * SIZEOF_MMWORD ; mmword wk[WK_NUM] %define WK_NUM 2 %define gotptr wk(0) - SIZEOF_POINTER ; void * gotptr align 32 GLOBAL_FUNCTION(jsimd_rgb_gray_convert_mmx) EXTN(jsimd_rgb_gray_convert_mmx): push ebp mov eax, esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_MMWORD) ; align to 64 bits mov [esp], eax mov ebp, esp ; ebp = aligned ebp lea esp, [wk(0)] pushpic eax ; make a room for GOT address push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address movpic POINTER [gotptr], ebx ; save GOT address mov ecx, JDIMENSION [img_width(eax)] ; num_cols test ecx, ecx jz near .return push ecx mov esi, JSAMPIMAGE [output_buf(eax)] mov ecx, JDIMENSION [output_row(eax)] mov edi, JSAMPARRAY [esi+0*SIZEOF_JSAMPARRAY] lea edi, [edi+ecx*SIZEOF_JSAMPROW] pop ecx mov esi, JSAMPARRAY [input_buf(eax)] mov eax, INT [num_rows(eax)] test eax, eax jle near .return alignx 16, 7 .rowloop: pushpic eax push edi push esi push ecx ; col mov esi, JSAMPROW [esi] ; inptr mov edi, JSAMPROW [edi] ; outptr0 movpic eax, POINTER [gotptr] ; load GOT address (eax) cmp ecx, byte SIZEOF_MMWORD jae short .columnloop alignx 16, 7 %if RGB_PIXELSIZE == 3 ; --------------- .column_ld1: push eax push edx lea ecx, [ecx+ecx*2] ; imul ecx,RGB_PIXELSIZE test cl, SIZEOF_BYTE jz short .column_ld2 sub ecx, byte SIZEOF_BYTE xor eax, eax mov al, byte [esi+ecx] .column_ld2: test cl, SIZEOF_WORD jz short .column_ld4 sub ecx, byte SIZEOF_WORD xor edx, edx mov dx, word [esi+ecx] shl eax, WORD_BIT or eax, edx .column_ld4: movd mmA, eax pop edx pop eax test cl, SIZEOF_DWORD jz short .column_ld8 sub ecx, byte SIZEOF_DWORD movd mmG, dword [esi+ecx] psllq mmA, DWORD_BIT por mmA, mmG .column_ld8: test cl, SIZEOF_MMWORD jz short .column_ld16 movq mmG, mmA movq mmA, MMWORD [esi+0*SIZEOF_MMWORD] mov ecx, SIZEOF_MMWORD jmp short .rgb_gray_cnv .column_ld16: test cl, 2*SIZEOF_MMWORD mov ecx, SIZEOF_MMWORD jz short .rgb_gray_cnv movq mmF, mmA movq mmA, MMWORD [esi+0*SIZEOF_MMWORD] movq mmG, MMWORD [esi+1*SIZEOF_MMWORD] jmp short .rgb_gray_cnv alignx 16, 7 .columnloop: movq mmA, MMWORD [esi+0*SIZEOF_MMWORD] movq mmG, MMWORD [esi+1*SIZEOF_MMWORD] movq mmF, MMWORD [esi+2*SIZEOF_MMWORD] .rgb_gray_cnv: ; mmA=(00 10 20 01 11 21 02 12) ; mmG=(22 03 13 23 04 14 24 05) ; mmF=(15 25 06 16 26 07 17 27) movq mmD, mmA psllq mmA, 4*BYTE_BIT ; mmA=(-- -- -- -- 00 10 20 01) psrlq mmD, 4*BYTE_BIT ; mmD=(11 21 02 12 -- -- -- --) punpckhbw mmA, mmG ; mmA=(00 04 10 14 20 24 01 05) psllq mmG, 4*BYTE_BIT ; mmG=(-- -- -- -- 22 03 13 23) punpcklbw mmD, mmF ; mmD=(11 15 21 25 02 06 12 16) punpckhbw mmG, mmF ; mmG=(22 26 03 07 13 17 23 27) movq mmE, mmA psllq mmA, 4*BYTE_BIT ; mmA=(-- -- -- -- 00 04 10 14) psrlq mmE, 4*BYTE_BIT ; mmE=(20 24 01 05 -- -- -- --) punpckhbw mmA, mmD ; mmA=(00 02 04 06 10 12 14 16) psllq mmD, 4*BYTE_BIT ; mmD=(-- -- -- -- 11 15 21 25) punpcklbw mmE, mmG ; mmE=(20 22 24 26 01 03 05 07) punpckhbw mmD, mmG ; mmD=(11 13 15 17 21 23 25 27) pxor mmH, mmH movq mmC, mmA punpcklbw mmA, mmH ; mmA=(00 02 04 06) punpckhbw mmC, mmH ; mmC=(10 12 14 16) movq mmB, mmE punpcklbw mmE, mmH ; mmE=(20 22 24 26) punpckhbw mmB, mmH ; mmB=(01 03 05 07) movq mmF, mmD punpcklbw mmD, mmH ; mmD=(11 13 15 17) punpckhbw mmF, mmH ; mmF=(21 23 25 27) %else ; RGB_PIXELSIZE == 4 ; ----------- .column_ld1: test cl, SIZEOF_MMWORD/8 jz short .column_ld2 sub ecx, byte SIZEOF_MMWORD/8 movd mmA, dword [esi+ecx*RGB_PIXELSIZE] .column_ld2: test cl, SIZEOF_MMWORD/4 jz short .column_ld4 sub ecx, byte SIZEOF_MMWORD/4 movq mmF, mmA movq mmA, MMWORD [esi+ecx*RGB_PIXELSIZE] .column_ld4: test cl, SIZEOF_MMWORD/2 mov ecx, SIZEOF_MMWORD jz short .rgb_gray_cnv movq mmD, mmA movq mmC, mmF movq mmA, MMWORD [esi+0*SIZEOF_MMWORD] movq mmF, MMWORD [esi+1*SIZEOF_MMWORD] jmp short .rgb_gray_cnv alignx 16, 7 .columnloop: movq mmA, MMWORD [esi+0*SIZEOF_MMWORD] movq mmF, MMWORD [esi+1*SIZEOF_MMWORD] movq mmD, MMWORD [esi+2*SIZEOF_MMWORD] movq mmC, MMWORD [esi+3*SIZEOF_MMWORD] .rgb_gray_cnv: ; mmA=(00 10 20 30 01 11 21 31) ; mmF=(02 12 22 32 03 13 23 33) ; mmD=(04 14 24 34 05 15 25 35) ; mmC=(06 16 26 36 07 17 27 37) movq mmB, mmA punpcklbw mmA, mmF ; mmA=(00 02 10 12 20 22 30 32) punpckhbw mmB, mmF ; mmB=(01 03 11 13 21 23 31 33) movq mmG, mmD punpcklbw mmD, mmC ; mmD=(04 06 14 16 24 26 34 36) punpckhbw mmG, mmC ; mmG=(05 07 15 17 25 27 35 37) movq mmE, mmA punpcklwd mmA, mmD ; mmA=(00 02 04 06 10 12 14 16) punpckhwd mmE, mmD ; mmE=(20 22 24 26 30 32 34 36) movq mmH, mmB punpcklwd mmB, mmG ; mmB=(01 03 05 07 11 13 15 17) punpckhwd mmH, mmG ; mmH=(21 23 25 27 31 33 35 37) pxor mmF, mmF movq mmC, mmA punpcklbw mmA, mmF ; mmA=(00 02 04 06) punpckhbw mmC, mmF ; mmC=(10 12 14 16) movq mmD, mmB punpcklbw mmB, mmF ; mmB=(01 03 05 07) punpckhbw mmD, mmF ; mmD=(11 13 15 17) movq mmG, mmE punpcklbw mmE, mmF ; mmE=(20 22 24 26) punpckhbw mmG, mmF ; mmG=(30 32 34 36) punpcklbw mmF, mmH punpckhbw mmH, mmH psrlw mmF, BYTE_BIT ; mmF=(21 23 25 27) psrlw mmH, BYTE_BIT ; mmH=(31 33 35 37) %endif ; RGB_PIXELSIZE ; --------------- ; mm0=(R0 R2 R4 R6)=RE, mm2=(G0 G2 G4 G6)=GE, mm4=(B0 B2 B4 B6)=BE ; mm1=(R1 R3 R5 R7)=RO, mm3=(G1 G3 G5 G7)=GO, mm5=(B1 B3 B5 B7)=BO ; (Original) ; Y = 0.29900 * R + 0.58700 * G + 0.11400 * B ; ; (This implementation) ; Y = 0.29900 * R + 0.33700 * G + 0.11400 * B + 0.25000 * G movq mm6, mm1 punpcklwd mm1, mm3 punpckhwd mm6, mm3 pmaddwd mm1, [GOTOFF(eax,PW_F0299_F0337)] ; mm1=ROL*FIX(0.299)+GOL*FIX(0.337) pmaddwd mm6, [GOTOFF(eax,PW_F0299_F0337)] ; mm6=ROH*FIX(0.299)+GOH*FIX(0.337) movq mm7, mm6 ; mm7=ROH*FIX(0.299)+GOH*FIX(0.337) movq mm6, mm0 punpcklwd mm0, mm2 punpckhwd mm6, mm2 pmaddwd mm0, [GOTOFF(eax,PW_F0299_F0337)] ; mm0=REL*FIX(0.299)+GEL*FIX(0.337) pmaddwd mm6, [GOTOFF(eax,PW_F0299_F0337)] ; mm6=REH*FIX(0.299)+GEH*FIX(0.337) movq MMWORD [wk(0)], mm0 ; wk(0)=REL*FIX(0.299)+GEL*FIX(0.337) movq MMWORD [wk(1)], mm6 ; wk(1)=REH*FIX(0.299)+GEH*FIX(0.337) movq mm0, mm5 ; mm0=BO movq mm6, mm4 ; mm6=BE movq mm4, mm0 punpcklwd mm0, mm3 punpckhwd mm4, mm3 pmaddwd mm0, [GOTOFF(eax,PW_F0114_F0250)] ; mm0=BOL*FIX(0.114)+GOL*FIX(0.250) pmaddwd mm4, [GOTOFF(eax,PW_F0114_F0250)] ; mm4=BOH*FIX(0.114)+GOH*FIX(0.250) movq mm3, [GOTOFF(eax,PD_ONEHALF)] ; mm3=[PD_ONEHALF] paddd mm0, mm1 paddd mm4, mm7 paddd mm0, mm3 paddd mm4, mm3 psrld mm0, SCALEBITS ; mm0=YOL psrld mm4, SCALEBITS ; mm4=YOH packssdw mm0, mm4 ; mm0=YO movq mm4, mm6 punpcklwd mm6, mm2 punpckhwd mm4, mm2 pmaddwd mm6, [GOTOFF(eax,PW_F0114_F0250)] ; mm6=BEL*FIX(0.114)+GEL*FIX(0.250) pmaddwd mm4, [GOTOFF(eax,PW_F0114_F0250)] ; mm4=BEH*FIX(0.114)+GEH*FIX(0.250) movq mm2, [GOTOFF(eax,PD_ONEHALF)] ; mm2=[PD_ONEHALF] paddd mm6, MMWORD [wk(0)] paddd mm4, MMWORD [wk(1)] paddd mm6, mm2 paddd mm4, mm2 psrld mm6, SCALEBITS ; mm6=YEL psrld mm4, SCALEBITS ; mm4=YEH packssdw mm6, mm4 ; mm6=YE psllw mm0, BYTE_BIT por mm6, mm0 ; mm6=Y movq MMWORD [edi], mm6 ; Save Y sub ecx, byte SIZEOF_MMWORD add esi, byte RGB_PIXELSIZE*SIZEOF_MMWORD ; inptr add edi, byte SIZEOF_MMWORD ; outptr0 cmp ecx, byte SIZEOF_MMWORD jae near .columnloop test ecx, ecx jnz near .column_ld1 pop ecx ; col pop esi pop edi poppic eax add esi, byte SIZEOF_JSAMPROW ; input_buf add edi, byte SIZEOF_JSAMPROW dec eax ; num_rows jg near .rowloop emms ; empty MMX state .return: pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx mov esp, ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/i386/jcgryext-sse2.asm000066400000000000000000000337111436506551100211370ustar00rootroot00000000000000; ; jcgryext.asm - grayscale colorspace conversion (SSE2) ; ; Copyright (C) 2011, 2016, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jcolsamp.inc" ; -------------------------------------------------------------------------- ; ; Convert some rows of samples to the output colorspace. ; ; GLOBAL(void) ; jsimd_rgb_gray_convert_sse2(JDIMENSION img_width, JSAMPARRAY input_buf, ; JSAMPIMAGE output_buf, JDIMENSION output_row, ; int num_rows); ; %define img_width(b) (b) + 8 ; JDIMENSION img_width %define input_buf(b) (b) + 12 ; JSAMPARRAY input_buf %define output_buf(b) (b) + 16 ; JSAMPIMAGE output_buf %define output_row(b) (b) + 20 ; JDIMENSION output_row %define num_rows(b) (b) + 24 ; int num_rows %define original_ebp ebp + 0 %define wk(i) ebp - (WK_NUM - (i)) * SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 2 %define gotptr wk(0) - SIZEOF_POINTER ; void * gotptr align 32 GLOBAL_FUNCTION(jsimd_rgb_gray_convert_sse2) EXTN(jsimd_rgb_gray_convert_sse2): push ebp mov eax, esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [esp], eax mov ebp, esp ; ebp = aligned ebp lea esp, [wk(0)] pushpic eax ; make a room for GOT address push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address movpic POINTER [gotptr], ebx ; save GOT address mov ecx, JDIMENSION [img_width(eax)] test ecx, ecx jz near .return push ecx mov esi, JSAMPIMAGE [output_buf(eax)] mov ecx, JDIMENSION [output_row(eax)] mov edi, JSAMPARRAY [esi+0*SIZEOF_JSAMPARRAY] lea edi, [edi+ecx*SIZEOF_JSAMPROW] pop ecx mov esi, JSAMPARRAY [input_buf(eax)] mov eax, INT [num_rows(eax)] test eax, eax jle near .return alignx 16, 7 .rowloop: pushpic eax push edi push esi push ecx ; col mov esi, JSAMPROW [esi] ; inptr mov edi, JSAMPROW [edi] ; outptr0 movpic eax, POINTER [gotptr] ; load GOT address (eax) cmp ecx, byte SIZEOF_XMMWORD jae near .columnloop alignx 16, 7 %if RGB_PIXELSIZE == 3 ; --------------- .column_ld1: push eax push edx lea ecx, [ecx+ecx*2] ; imul ecx,RGB_PIXELSIZE test cl, SIZEOF_BYTE jz short .column_ld2 sub ecx, byte SIZEOF_BYTE movzx eax, byte [esi+ecx] .column_ld2: test cl, SIZEOF_WORD jz short .column_ld4 sub ecx, byte SIZEOF_WORD movzx edx, word [esi+ecx] shl eax, WORD_BIT or eax, edx .column_ld4: movd xmmA, eax pop edx pop eax test cl, SIZEOF_DWORD jz short .column_ld8 sub ecx, byte SIZEOF_DWORD movd xmmF, XMM_DWORD [esi+ecx] pslldq xmmA, SIZEOF_DWORD por xmmA, xmmF .column_ld8: test cl, SIZEOF_MMWORD jz short .column_ld16 sub ecx, byte SIZEOF_MMWORD movq xmmB, XMM_MMWORD [esi+ecx] pslldq xmmA, SIZEOF_MMWORD por xmmA, xmmB .column_ld16: test cl, SIZEOF_XMMWORD jz short .column_ld32 movdqa xmmF, xmmA movdqu xmmA, XMMWORD [esi+0*SIZEOF_XMMWORD] mov ecx, SIZEOF_XMMWORD jmp short .rgb_gray_cnv .column_ld32: test cl, 2*SIZEOF_XMMWORD mov ecx, SIZEOF_XMMWORD jz short .rgb_gray_cnv movdqa xmmB, xmmA movdqu xmmA, XMMWORD [esi+0*SIZEOF_XMMWORD] movdqu xmmF, XMMWORD [esi+1*SIZEOF_XMMWORD] jmp short .rgb_gray_cnv alignx 16, 7 .columnloop: movdqu xmmA, XMMWORD [esi+0*SIZEOF_XMMWORD] movdqu xmmF, XMMWORD [esi+1*SIZEOF_XMMWORD] movdqu xmmB, XMMWORD [esi+2*SIZEOF_XMMWORD] .rgb_gray_cnv: ; xmmA=(00 10 20 01 11 21 02 12 22 03 13 23 04 14 24 05) ; xmmF=(15 25 06 16 26 07 17 27 08 18 28 09 19 29 0A 1A) ; xmmB=(2A 0B 1B 2B 0C 1C 2C 0D 1D 2D 0E 1E 2E 0F 1F 2F) movdqa xmmG, xmmA pslldq xmmA, 8 ; xmmA=(-- -- -- -- -- -- -- -- 00 10 20 01 11 21 02 12) psrldq xmmG, 8 ; xmmG=(22 03 13 23 04 14 24 05 -- -- -- -- -- -- -- --) punpckhbw xmmA, xmmF ; xmmA=(00 08 10 18 20 28 01 09 11 19 21 29 02 0A 12 1A) pslldq xmmF, 8 ; xmmF=(-- -- -- -- -- -- -- -- 15 25 06 16 26 07 17 27) punpcklbw xmmG, xmmB ; xmmG=(22 2A 03 0B 13 1B 23 2B 04 0C 14 1C 24 2C 05 0D) punpckhbw xmmF, xmmB ; xmmF=(15 1D 25 2D 06 0E 16 1E 26 2E 07 0F 17 1F 27 2F) movdqa xmmD, xmmA pslldq xmmA, 8 ; xmmA=(-- -- -- -- -- -- -- -- 00 08 10 18 20 28 01 09) psrldq xmmD, 8 ; xmmD=(11 19 21 29 02 0A 12 1A -- -- -- -- -- -- -- --) punpckhbw xmmA, xmmG ; xmmA=(00 04 08 0C 10 14 18 1C 20 24 28 2C 01 05 09 0D) pslldq xmmG, 8 ; xmmG=(-- -- -- -- -- -- -- -- 22 2A 03 0B 13 1B 23 2B) punpcklbw xmmD, xmmF ; xmmD=(11 15 19 1D 21 25 29 2D 02 06 0A 0E 12 16 1A 1E) punpckhbw xmmG, xmmF ; xmmG=(22 26 2A 2E 03 07 0B 0F 13 17 1B 1F 23 27 2B 2F) movdqa xmmE, xmmA pslldq xmmA, 8 ; xmmA=(-- -- -- -- -- -- -- -- 00 04 08 0C 10 14 18 1C) psrldq xmmE, 8 ; xmmE=(20 24 28 2C 01 05 09 0D -- -- -- -- -- -- -- --) punpckhbw xmmA, xmmD ; xmmA=(00 02 04 06 08 0A 0C 0E 10 12 14 16 18 1A 1C 1E) pslldq xmmD, 8 ; xmmD=(-- -- -- -- -- -- -- -- 11 15 19 1D 21 25 29 2D) punpcklbw xmmE, xmmG ; xmmE=(20 22 24 26 28 2A 2C 2E 01 03 05 07 09 0B 0D 0F) punpckhbw xmmD, xmmG ; xmmD=(11 13 15 17 19 1B 1D 1F 21 23 25 27 29 2B 2D 2F) pxor xmmH, xmmH movdqa xmmC, xmmA punpcklbw xmmA, xmmH ; xmmA=(00 02 04 06 08 0A 0C 0E) punpckhbw xmmC, xmmH ; xmmC=(10 12 14 16 18 1A 1C 1E) movdqa xmmB, xmmE punpcklbw xmmE, xmmH ; xmmE=(20 22 24 26 28 2A 2C 2E) punpckhbw xmmB, xmmH ; xmmB=(01 03 05 07 09 0B 0D 0F) movdqa xmmF, xmmD punpcklbw xmmD, xmmH ; xmmD=(11 13 15 17 19 1B 1D 1F) punpckhbw xmmF, xmmH ; xmmF=(21 23 25 27 29 2B 2D 2F) %else ; RGB_PIXELSIZE == 4 ; ----------- .column_ld1: test cl, SIZEOF_XMMWORD/16 jz short .column_ld2 sub ecx, byte SIZEOF_XMMWORD/16 movd xmmA, XMM_DWORD [esi+ecx*RGB_PIXELSIZE] .column_ld2: test cl, SIZEOF_XMMWORD/8 jz short .column_ld4 sub ecx, byte SIZEOF_XMMWORD/8 movq xmmE, XMM_MMWORD [esi+ecx*RGB_PIXELSIZE] pslldq xmmA, SIZEOF_MMWORD por xmmA, xmmE .column_ld4: test cl, SIZEOF_XMMWORD/4 jz short .column_ld8 sub ecx, byte SIZEOF_XMMWORD/4 movdqa xmmE, xmmA movdqu xmmA, XMMWORD [esi+ecx*RGB_PIXELSIZE] .column_ld8: test cl, SIZEOF_XMMWORD/2 mov ecx, SIZEOF_XMMWORD jz short .rgb_gray_cnv movdqa xmmF, xmmA movdqa xmmH, xmmE movdqu xmmA, XMMWORD [esi+0*SIZEOF_XMMWORD] movdqu xmmE, XMMWORD [esi+1*SIZEOF_XMMWORD] jmp short .rgb_gray_cnv alignx 16, 7 .columnloop: movdqu xmmA, XMMWORD [esi+0*SIZEOF_XMMWORD] movdqu xmmE, XMMWORD [esi+1*SIZEOF_XMMWORD] movdqu xmmF, XMMWORD [esi+2*SIZEOF_XMMWORD] movdqu xmmH, XMMWORD [esi+3*SIZEOF_XMMWORD] .rgb_gray_cnv: ; xmmA=(00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33) ; xmmE=(04 14 24 34 05 15 25 35 06 16 26 36 07 17 27 37) ; xmmF=(08 18 28 38 09 19 29 39 0A 1A 2A 3A 0B 1B 2B 3B) ; xmmH=(0C 1C 2C 3C 0D 1D 2D 3D 0E 1E 2E 3E 0F 1F 2F 3F) movdqa xmmD, xmmA punpcklbw xmmA, xmmE ; xmmA=(00 04 10 14 20 24 30 34 01 05 11 15 21 25 31 35) punpckhbw xmmD, xmmE ; xmmD=(02 06 12 16 22 26 32 36 03 07 13 17 23 27 33 37) movdqa xmmC, xmmF punpcklbw xmmF, xmmH ; xmmF=(08 0C 18 1C 28 2C 38 3C 09 0D 19 1D 29 2D 39 3D) punpckhbw xmmC, xmmH ; xmmC=(0A 0E 1A 1E 2A 2E 3A 3E 0B 0F 1B 1F 2B 2F 3B 3F) movdqa xmmB, xmmA punpcklwd xmmA, xmmF ; xmmA=(00 04 08 0C 10 14 18 1C 20 24 28 2C 30 34 38 3C) punpckhwd xmmB, xmmF ; xmmB=(01 05 09 0D 11 15 19 1D 21 25 29 2D 31 35 39 3D) movdqa xmmG, xmmD punpcklwd xmmD, xmmC ; xmmD=(02 06 0A 0E 12 16 1A 1E 22 26 2A 2E 32 36 3A 3E) punpckhwd xmmG, xmmC ; xmmG=(03 07 0B 0F 13 17 1B 1F 23 27 2B 2F 33 37 3B 3F) movdqa xmmE, xmmA punpcklbw xmmA, xmmD ; xmmA=(00 02 04 06 08 0A 0C 0E 10 12 14 16 18 1A 1C 1E) punpckhbw xmmE, xmmD ; xmmE=(20 22 24 26 28 2A 2C 2E 30 32 34 36 38 3A 3C 3E) movdqa xmmH, xmmB punpcklbw xmmB, xmmG ; xmmB=(01 03 05 07 09 0B 0D 0F 11 13 15 17 19 1B 1D 1F) punpckhbw xmmH, xmmG ; xmmH=(21 23 25 27 29 2B 2D 2F 31 33 35 37 39 3B 3D 3F) pxor xmmF, xmmF movdqa xmmC, xmmA punpcklbw xmmA, xmmF ; xmmA=(00 02 04 06 08 0A 0C 0E) punpckhbw xmmC, xmmF ; xmmC=(10 12 14 16 18 1A 1C 1E) movdqa xmmD, xmmB punpcklbw xmmB, xmmF ; xmmB=(01 03 05 07 09 0B 0D 0F) punpckhbw xmmD, xmmF ; xmmD=(11 13 15 17 19 1B 1D 1F) movdqa xmmG, xmmE punpcklbw xmmE, xmmF ; xmmE=(20 22 24 26 28 2A 2C 2E) punpckhbw xmmG, xmmF ; xmmG=(30 32 34 36 38 3A 3C 3E) punpcklbw xmmF, xmmH punpckhbw xmmH, xmmH psrlw xmmF, BYTE_BIT ; xmmF=(21 23 25 27 29 2B 2D 2F) psrlw xmmH, BYTE_BIT ; xmmH=(31 33 35 37 39 3B 3D 3F) %endif ; RGB_PIXELSIZE ; --------------- ; xmm0=R(02468ACE)=RE, xmm2=G(02468ACE)=GE, xmm4=B(02468ACE)=BE ; xmm1=R(13579BDF)=RO, xmm3=G(13579BDF)=GO, xmm5=B(13579BDF)=BO ; (Original) ; Y = 0.29900 * R + 0.58700 * G + 0.11400 * B ; ; (This implementation) ; Y = 0.29900 * R + 0.33700 * G + 0.11400 * B + 0.25000 * G movdqa xmm6, xmm1 punpcklwd xmm1, xmm3 punpckhwd xmm6, xmm3 pmaddwd xmm1, [GOTOFF(eax,PW_F0299_F0337)] ; xmm1=ROL*FIX(0.299)+GOL*FIX(0.337) pmaddwd xmm6, [GOTOFF(eax,PW_F0299_F0337)] ; xmm6=ROH*FIX(0.299)+GOH*FIX(0.337) movdqa xmm7, xmm6 ; xmm7=ROH*FIX(0.299)+GOH*FIX(0.337) movdqa xmm6, xmm0 punpcklwd xmm0, xmm2 punpckhwd xmm6, xmm2 pmaddwd xmm0, [GOTOFF(eax,PW_F0299_F0337)] ; xmm0=REL*FIX(0.299)+GEL*FIX(0.337) pmaddwd xmm6, [GOTOFF(eax,PW_F0299_F0337)] ; xmm6=REH*FIX(0.299)+GEH*FIX(0.337) movdqa XMMWORD [wk(0)], xmm0 ; wk(0)=REL*FIX(0.299)+GEL*FIX(0.337) movdqa XMMWORD [wk(1)], xmm6 ; wk(1)=REH*FIX(0.299)+GEH*FIX(0.337) movdqa xmm0, xmm5 ; xmm0=BO movdqa xmm6, xmm4 ; xmm6=BE movdqa xmm4, xmm0 punpcklwd xmm0, xmm3 punpckhwd xmm4, xmm3 pmaddwd xmm0, [GOTOFF(eax,PW_F0114_F0250)] ; xmm0=BOL*FIX(0.114)+GOL*FIX(0.250) pmaddwd xmm4, [GOTOFF(eax,PW_F0114_F0250)] ; xmm4=BOH*FIX(0.114)+GOH*FIX(0.250) movdqa xmm3, [GOTOFF(eax,PD_ONEHALF)] ; xmm3=[PD_ONEHALF] paddd xmm0, xmm1 paddd xmm4, xmm7 paddd xmm0, xmm3 paddd xmm4, xmm3 psrld xmm0, SCALEBITS ; xmm0=YOL psrld xmm4, SCALEBITS ; xmm4=YOH packssdw xmm0, xmm4 ; xmm0=YO movdqa xmm4, xmm6 punpcklwd xmm6, xmm2 punpckhwd xmm4, xmm2 pmaddwd xmm6, [GOTOFF(eax,PW_F0114_F0250)] ; xmm6=BEL*FIX(0.114)+GEL*FIX(0.250) pmaddwd xmm4, [GOTOFF(eax,PW_F0114_F0250)] ; xmm4=BEH*FIX(0.114)+GEH*FIX(0.250) movdqa xmm2, [GOTOFF(eax,PD_ONEHALF)] ; xmm2=[PD_ONEHALF] paddd xmm6, XMMWORD [wk(0)] paddd xmm4, XMMWORD [wk(1)] paddd xmm6, xmm2 paddd xmm4, xmm2 psrld xmm6, SCALEBITS ; xmm6=YEL psrld xmm4, SCALEBITS ; xmm4=YEH packssdw xmm6, xmm4 ; xmm6=YE psllw xmm0, BYTE_BIT por xmm6, xmm0 ; xmm6=Y movdqa XMMWORD [edi], xmm6 ; Save Y sub ecx, byte SIZEOF_XMMWORD add esi, byte RGB_PIXELSIZE*SIZEOF_XMMWORD ; inptr add edi, byte SIZEOF_XMMWORD ; outptr0 cmp ecx, byte SIZEOF_XMMWORD jae near .columnloop test ecx, ecx jnz near .column_ld1 pop ecx ; col pop esi pop edi poppic eax add esi, byte SIZEOF_JSAMPROW ; input_buf add edi, byte SIZEOF_JSAMPROW dec eax ; num_rows jg near .rowloop .return: pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx mov esp, ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/i386/jchuff-sse2.asm000066400000000000000000001147461436506551100205550ustar00rootroot00000000000000; ; jchuff-sse2.asm - Huffman entropy encoding (SSE2) ; ; Copyright (C) 2009-2011, 2014-2017, 2019, D. R. Commander. ; Copyright (C) 2015, Matthieu Darbois. ; Copyright (C) 2018, Matthias Räncker. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains an SSE2 implementation for Huffman coding of one block. ; The following code is based on jchuff.c; see jchuff.c for more details. %include "jsimdext.inc" struc working_state .next_output_byte: resp 1 ; => next byte to write in buffer .free_in_buffer: resp 1 ; # of byte spaces remaining in buffer .cur.put_buffer.simd resq 1 ; current bit accumulation buffer .cur.free_bits resd 1 ; # of bits available in it .cur.last_dc_val resd 4 ; last DC coef for each component .cinfo: resp 1 ; dump_buffer needs access to this endstruc struc c_derived_tbl .ehufco: resd 256 ; code for each symbol .ehufsi: resb 256 ; length of code for each symbol ; If no code has been allocated for a symbol S, ehufsi[S] contains 0 endstruc ; -------------------------------------------------------------------------- SECTION SEG_CONST GLOBAL_DATA(jconst_huff_encode_one_block) EXTN(jconst_huff_encode_one_block): alignz 32 jpeg_mask_bits dq 0x0000, 0x0001, 0x0003, 0x0007 dq 0x000f, 0x001f, 0x003f, 0x007f dq 0x00ff, 0x01ff, 0x03ff, 0x07ff dq 0x0fff, 0x1fff, 0x3fff, 0x7fff times 1 << 14 db 15 times 1 << 13 db 14 times 1 << 12 db 13 times 1 << 11 db 12 times 1 << 10 db 11 times 1 << 9 db 10 times 1 << 8 db 9 times 1 << 7 db 8 times 1 << 6 db 7 times 1 << 5 db 6 times 1 << 4 db 5 times 1 << 3 db 4 times 1 << 2 db 3 times 1 << 1 db 2 times 1 << 0 db 1 times 1 db 0 jpeg_nbits_table: times 1 db 0 times 1 << 0 db 1 times 1 << 1 db 2 times 1 << 2 db 3 times 1 << 3 db 4 times 1 << 4 db 5 times 1 << 5 db 6 times 1 << 6 db 7 times 1 << 7 db 8 times 1 << 8 db 9 times 1 << 9 db 10 times 1 << 10 db 11 times 1 << 11 db 12 times 1 << 12 db 13 times 1 << 13 db 14 times 1 << 14 db 15 alignz 32 %ifdef PIC %define NBITS(x) nbits_base + x %else %define NBITS(x) jpeg_nbits_table + x %endif %define MASK_BITS(x) NBITS((x) * 8) + (jpeg_mask_bits - jpeg_nbits_table) ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 %define mm_put_buffer mm0 %define mm_all_0xff mm1 %define mm_temp mm2 %define mm_nbits mm3 %define mm_code_bits mm3 %define mm_code mm4 %define mm_overflow_bits mm5 %define mm_save_nbits mm6 ; Shorthand used to describe SIMD operations: ; wN: xmmN treated as eight signed 16-bit values ; wN[i]: perform the same operation on all eight signed 16-bit values, i=0..7 ; bN: xmmN treated as 16 unsigned 8-bit values, or ; mmN treated as eight unsigned 8-bit values ; bN[i]: perform the same operation on all unsigned 8-bit values, ; i=0..15 (SSE register) or i=0..7 (MMX register) ; Contents of SIMD registers are shown in memory order. ; Fill the bit buffer to capacity with the leading bits from code, then output ; the bit buffer and put the remaining bits from code into the bit buffer. ; ; Usage: ; code - contains the bits to shift into the bit buffer (LSB-aligned) ; %1 - temp register ; %2 - low byte of temp register ; %3 - second byte of temp register ; %4-%8 (optional) - extra instructions to execute before the macro completes ; %9 - the label to which to jump when the macro completes ; ; Upon completion, free_bits will be set to the number of remaining bits from ; code, and put_buffer will contain those remaining bits. temp and code will ; be clobbered. ; ; This macro encodes any 0xFF bytes as 0xFF 0x00, as does the EMIT_BYTE() ; macro in jchuff.c. %macro EMIT_QWORD 9 %define %%temp %1 %define %%tempb %2 %define %%temph %3 add nbits, free_bits ; nbits += free_bits; neg free_bits ; free_bits = -free_bits; movq mm_temp, mm_code ; temp = code; movd mm_nbits, nbits ; nbits --> MMX register movd mm_overflow_bits, free_bits ; overflow_bits (temp register) = free_bits; neg free_bits ; free_bits = -free_bits; psllq mm_put_buffer, mm_nbits ; put_buffer <<= nbits; psrlq mm_temp, mm_overflow_bits ; temp >>= overflow_bits; add free_bits, 64 ; free_bits += 64; por mm_temp, mm_put_buffer ; temp |= put_buffer; %ifidn %%temp, nbits_base movd mm_save_nbits, nbits_base ; save nbits_base %endif movq mm_code_bits, mm_temp ; code_bits (temp register) = temp; movq mm_put_buffer, mm_code ; put_buffer = code; pcmpeqb mm_temp, mm_all_0xff ; b_temp[i] = (b_temp[i] == 0xFF ? 0xFF : 0); movq mm_code, mm_code_bits ; code = code_bits; psrlq mm_code_bits, 32 ; code_bits >>= 32; pmovmskb nbits, mm_temp ; nbits = 0; nbits |= ((b_temp[i] >> 7) << i); movd %%temp, mm_code_bits ; temp = code_bits; bswap %%temp ; temp = htonl(temp); test nbits, nbits ; if (nbits != 0) /* Some 0xFF bytes */ jnz %%.SLOW ; goto %%.SLOW mov dword [buffer], %%temp ; *(uint32_t)buffer = temp; %ifidn %%temp, nbits_base movd nbits_base, mm_save_nbits ; restore nbits_base %endif %4 movd nbits, mm_code ; nbits = (uint32_t)(code); %5 bswap nbits ; nbits = htonl(nbits); mov dword [buffer + 4], nbits ; *(uint32_t)(buffer + 4) = nbits; lea buffer, [buffer + 8] ; buffer += 8; %6 %7 %8 jmp %9 ; return %%.SLOW: ; Execute the equivalent of the EMIT_BYTE() macro in jchuff.c for all 8 ; bytes in the qword. mov byte [buffer], %%tempb ; buffer[0] = temp[0]; cmp %%tempb, 0xFF ; Set CF if temp[0] < 0xFF mov byte [buffer+1], 0 ; buffer[1] = 0; sbb buffer, -2 ; buffer -= (-2 + (temp[0] < 0xFF ? 1 : 0)); mov byte [buffer], %%temph ; buffer[0] = temp[1]; cmp %%temph, 0xFF ; Set CF if temp[1] < 0xFF mov byte [buffer+1], 0 ; buffer[1] = 0; sbb buffer, -2 ; buffer -= (-2 + (temp[1] < 0xFF ? 1 : 0)); shr %%temp, 16 ; temp >>= 16; mov byte [buffer], %%tempb ; buffer[0] = temp[0]; cmp %%tempb, 0xFF ; Set CF if temp[0] < 0xFF mov byte [buffer+1], 0 ; buffer[1] = 0; sbb buffer, -2 ; buffer -= (-2 + (temp[0] < 0xFF ? 1 : 0)); mov byte [buffer], %%temph ; buffer[0] = temp[1]; cmp %%temph, 0xFF ; Set CF if temp[1] < 0xFF mov byte [buffer+1], 0 ; buffer[1] = 0; sbb buffer, -2 ; buffer -= (-2 + (temp[1] < 0xFF ? 1 : 0)); movd nbits, mm_code ; nbits (temp register) = (uint32_t)(code) %ifidn %%temp, nbits_base movd nbits_base, mm_save_nbits ; restore nbits_base %endif bswap nbits ; nbits = htonl(nbits) mov byte [buffer], nbitsb ; buffer[0] = nbits[0]; cmp nbitsb, 0xFF ; Set CF if nbits[0] < 0xFF mov byte [buffer+1], 0 ; buffer[1] = 0; sbb buffer, -2 ; buffer -= (-2 + (nbits[0] < 0xFF ? 1 : 0)); mov byte [buffer], nbitsh ; buffer[0] = nbits[1]; cmp nbitsh, 0xFF ; Set CF if nbits[1] < 0xFF mov byte [buffer+1], 0 ; buffer[1] = 0; sbb buffer, -2 ; buffer -= (-2 + (nbits[1] < 0xFF ? 1 : 0)); shr nbits, 16 ; nbits >>= 16; mov byte [buffer], nbitsb ; buffer[0] = nbits[0]; cmp nbitsb, 0xFF ; Set CF if nbits[0] < 0xFF mov byte [buffer+1], 0 ; buffer[1] = 0; sbb buffer, -2 ; buffer -= (-2 + (nbits[0] < 0xFF ? 1 : 0)); mov byte [buffer], nbitsh ; buffer[0] = nbits[1]; %4 cmp nbitsh, 0xFF ; Set CF if nbits[1] < 0xFF mov byte [buffer+1], 0 ; buffer[1] = 0; sbb buffer, -2 ; buffer -= (-2 + (nbits[1] < 0xFF ? 1 : 0)); %5 %6 %7 %8 jmp %9 ; return; %endmacro %macro PUSH 1 push %1 %assign stack_offset stack_offset + 4 %endmacro %macro POP 1 pop %1 %assign stack_offset stack_offset - 4 %endmacro ; If PIC is defined, load the address of a symbol defined in this file into a ; register. Equivalent to ; get_GOT %1 ; lea %1, [GOTOFF(%1, %2)] ; without using the GOT. ; ; Usage: ; %1 - register into which to load the address of the symbol ; %2 - symbol whose address should be loaded ; %3 - optional multi-line macro to execute before the symbol address is loaded ; %4 - optional multi-line macro to execute after the symbol address is loaded ; ; If PIC is not defined, then %3 and %4 are executed in order. %macro GET_SYM 2-4 %ifdef PIC call %%.geteip %%.ref: %4 add %1, %2 - %%.ref jmp short %%.done align 32 %%.geteip: %3 4 ; must adjust stack pointer because of call mov %1, POINTER [esp] ret align 32 %%.done: %else %3 0 %4 %endif %endmacro ; ; Encode a single block's worth of coefficients. ; ; GLOBAL(JOCTET *) ; jsimd_huff_encode_one_block_sse2(working_state *state, JOCTET *buffer, ; JCOEFPTR block, int last_dc_val, ; c_derived_tbl *dctbl, c_derived_tbl *actbl) ; ; Stack layout: ; Function args ; Return address ; Saved ebx ; Saved ebp ; Saved esi ; Saved edi <-- esp_save ; ... ; esp_save ; t_ 64*2 bytes (aligned to 128 bytes) ; ; esp is used (as t) to point into t_ (data in lower indices is not used once ; esp passes over them, so this is signal-safe.) Aligning to 128 bytes allows ; us to find the rest of the data again. ; ; NOTES: ; When shuffling data, we try to avoid pinsrw as much as possible, since it is ; slow on many CPUs. Its reciprocal throughput (issue latency) is 1 even on ; modern CPUs, so chains of pinsrw instructions (even with different outputs) ; can limit performance. pinsrw is a VectorPath instruction on AMD K8 and ; requires 2 µops (with memory operand) on Intel. In either case, only one ; pinsrw instruction can be decoded per cycle (and nothing else if they are ; back-to-back), so out-of-order execution cannot be used to work around long ; pinsrw chains (though for Sandy Bridge and later, this may be less of a ; problem if the code runs from the µop cache.) ; ; We use tzcnt instead of bsf without checking for support. The instruction is ; executed as bsf on CPUs that don't support tzcnt (encoding is equivalent to ; rep bsf.) The destination (first) operand of bsf (and tzcnt on some CPUs) is ; an input dependency (although the behavior is not formally defined, Intel ; CPUs usually leave the destination unmodified if the source is zero.) This ; can prevent out-of-order execution, so we clear the destination before ; invoking tzcnt. ; ; Initial register allocation ; eax - frame --> buffer ; ebx - nbits_base (PIC) / emit_temp ; ecx - dctbl --> size --> state ; edx - block --> nbits ; esi - code_temp --> state --> actbl ; edi - index_temp --> free_bits ; esp - t ; ebp - index %define frame eax %ifdef PIC %define nbits_base ebx %endif %define emit_temp ebx %define emit_tempb bl %define emit_temph bh %define dctbl ecx %define block edx %define code_temp esi %define index_temp edi %define t esp %define index ebp %assign save_frame DCTSIZE2 * SIZEOF_WORD ; Step 1: Re-arrange input data according to jpeg_natural_order ; xx 01 02 03 04 05 06 07 xx 01 08 16 09 02 03 10 ; 08 09 10 11 12 13 14 15 17 24 32 25 18 11 04 05 ; 16 17 18 19 20 21 22 23 12 19 26 33 40 48 41 34 ; 24 25 26 27 28 29 30 31 ==> 27 20 13 06 07 14 21 28 ; 32 33 34 35 36 37 38 39 35 42 49 56 57 50 43 36 ; 40 41 42 43 44 45 46 47 29 22 15 23 30 37 44 51 ; 48 49 50 51 52 53 54 55 58 59 52 45 38 31 39 46 ; 56 57 58 59 60 61 62 63 53 60 61 54 47 55 62 63 align 32 GLOBAL_FUNCTION(jsimd_huff_encode_one_block_sse2) EXTN(jsimd_huff_encode_one_block_sse2): %assign stack_offset 0 %define arg_state 4 + stack_offset %define arg_buffer 8 + stack_offset %define arg_block 12 + stack_offset %define arg_last_dc_val 16 + stack_offset %define arg_dctbl 20 + stack_offset %define arg_actbl 24 + stack_offset ;X: X = code stream mov block, [esp + arg_block] PUSH ebx PUSH ebp movups xmm3, XMMWORD [block + 0 * SIZEOF_WORD] ;D: w3 = xx 01 02 03 04 05 06 07 PUSH esi PUSH edi movdqa xmm0, xmm3 ;A: w0 = xx 01 02 03 04 05 06 07 mov frame, esp lea t, [frame - (save_frame + 4)] movups xmm1, XMMWORD [block + 8 * SIZEOF_WORD] ;B: w1 = 08 09 10 11 12 13 14 15 and t, -DCTSIZE2 * SIZEOF_WORD ; t = &t_[0] mov [t + save_frame], frame pxor xmm4, xmm4 ;A: w4[i] = 0; punpckldq xmm0, xmm1 ;A: w0 = xx 01 08 09 02 03 10 11 pshuflw xmm0, xmm0, 11001001b ;A: w0 = 01 08 xx 09 02 03 10 11 pinsrw xmm0, word [block + 16 * SIZEOF_WORD], 2 ;A: w0 = 01 08 16 09 02 03 10 11 punpckhdq xmm3, xmm1 ;D: w3 = 04 05 12 13 06 07 14 15 punpcklqdq xmm1, xmm3 ;B: w1 = 08 09 10 11 04 05 12 13 pinsrw xmm0, word [block + 17 * SIZEOF_WORD], 7 ;A: w0 = 01 08 16 09 02 03 10 17 ;A: (Row 0, offset 1) pcmpgtw xmm4, xmm0 ;A: w4[i] = (w0[i] < 0 ? -1 : 0); paddw xmm0, xmm4 ;A: w0[i] += w4[i]; movaps XMMWORD [t + 0 * SIZEOF_WORD], xmm0 ;A: t[i] = w0[i]; movq xmm2, qword [block + 24 * SIZEOF_WORD] ;B: w2 = 24 25 26 27 -- -- -- -- pshuflw xmm2, xmm2, 11011000b ;B: w2 = 24 26 25 27 -- -- -- -- pslldq xmm1, 1 * SIZEOF_WORD ;B: w1 = -- 08 09 10 11 04 05 12 movups xmm5, XMMWORD [block + 48 * SIZEOF_WORD] ;H: w5 = 48 49 50 51 52 53 54 55 movsd xmm1, xmm2 ;B: w1 = 24 26 25 27 11 04 05 12 punpcklqdq xmm2, xmm5 ;C: w2 = 24 26 25 27 48 49 50 51 pinsrw xmm1, word [block + 32 * SIZEOF_WORD], 1 ;B: w1 = 24 32 25 27 11 04 05 12 pxor xmm4, xmm4 ;A: w4[i] = 0; psrldq xmm3, 2 * SIZEOF_WORD ;D: w3 = 12 13 06 07 14 15 -- -- pcmpeqw xmm0, xmm4 ;A: w0[i] = (w0[i] == 0 ? -1 : 0); pinsrw xmm1, word [block + 18 * SIZEOF_WORD], 3 ;B: w1 = 24 32 25 18 11 04 05 12 ; (Row 1, offset 1) pcmpgtw xmm4, xmm1 ;B: w4[i] = (w1[i] < 0 ? -1 : 0); paddw xmm1, xmm4 ;B: w1[i] += w4[i]; movaps XMMWORD [t + 8 * SIZEOF_WORD], xmm1 ;B: t[i+8] = w1[i]; pxor xmm4, xmm4 ;B: w4[i] = 0; pcmpeqw xmm1, xmm4 ;B: w1[i] = (w1[i] == 0 ? -1 : 0); packsswb xmm0, xmm1 ;AB: b0[i] = w0[i], b0[i+8] = w1[i] ; w/ signed saturation pinsrw xmm3, word [block + 20 * SIZEOF_WORD], 0 ;D: w3 = 20 13 06 07 14 15 -- -- pinsrw xmm3, word [block + 21 * SIZEOF_WORD], 5 ;D: w3 = 20 13 06 07 14 21 -- -- pinsrw xmm3, word [block + 28 * SIZEOF_WORD], 6 ;D: w3 = 20 13 06 07 14 21 28 -- pinsrw xmm3, word [block + 35 * SIZEOF_WORD], 7 ;D: w3 = 20 13 06 07 14 21 28 35 ; (Row 3, offset 1) pcmpgtw xmm4, xmm3 ;D: w4[i] = (w3[i] < 0 ? -1 : 0); paddw xmm3, xmm4 ;D: w3[i] += w4[i]; movaps XMMWORD [t + 24 * SIZEOF_WORD], xmm3 ;D: t[i+24] = w3[i]; pxor xmm4, xmm4 ;D: w4[i] = 0; pcmpeqw xmm3, xmm4 ;D: w3[i] = (w3[i] == 0 ? -1 : 0); pinsrw xmm2, word [block + 19 * SIZEOF_WORD], 0 ;C: w2 = 19 26 25 27 48 49 50 51 pinsrw xmm2, word [block + 33 * SIZEOF_WORD], 2 ;C: w2 = 19 26 33 27 48 49 50 51 pinsrw xmm2, word [block + 40 * SIZEOF_WORD], 3 ;C: w2 = 19 26 33 40 48 49 50 51 pinsrw xmm2, word [block + 41 * SIZEOF_WORD], 5 ;C: w2 = 19 26 33 40 48 41 50 51 pinsrw xmm2, word [block + 34 * SIZEOF_WORD], 6 ;C: w2 = 19 26 33 40 48 41 34 51 pinsrw xmm2, word [block + 27 * SIZEOF_WORD], 7 ;C: w2 = 19 26 33 40 48 41 34 27 ; (Row 2, offset 1) pcmpgtw xmm4, xmm2 ;C: w4[i] = (w2[i] < 0 ? -1 : 0); paddw xmm2, xmm4 ;C: w2[i] += w4[i]; movsx code_temp, word [block] ;Z: code_temp = block[0]; ; %1 - stack pointer adjustment %macro GET_SYM_BEFORE 1 movaps XMMWORD [t + 16 * SIZEOF_WORD + %1], xmm2 ;C: t[i+16] = w2[i]; pxor xmm4, xmm4 ;C: w4[i] = 0; pcmpeqw xmm2, xmm4 ;C: w2[i] = (w2[i] == 0 ? -1 : 0); sub code_temp, [frame + arg_last_dc_val] ;Z: code_temp -= last_dc_val; packsswb xmm2, xmm3 ;CD: b2[i] = w2[i], b2[i+8] = w3[i] ; w/ signed saturation movdqa xmm3, xmm5 ;H: w3 = 48 49 50 51 52 53 54 55 pmovmskb index_temp, xmm2 ;Z: index_temp = 0; index_temp |= ((b2[i] >> 7) << i); pmovmskb index, xmm0 ;Z: index = 0; index |= ((b0[i] >> 7) << i); movups xmm0, XMMWORD [block + 56 * SIZEOF_WORD] ;H: w0 = 56 57 58 59 60 61 62 63 punpckhdq xmm3, xmm0 ;H: w3 = 52 53 60 61 54 55 62 63 shl index_temp, 16 ;Z: index_temp <<= 16; psrldq xmm3, 1 * SIZEOF_WORD ;H: w3 = 53 60 61 54 55 62 63 -- pxor xmm2, xmm2 ;H: w2[i] = 0; pshuflw xmm3, xmm3, 00111001b ;H: w3 = 60 61 54 53 55 62 63 -- or index, index_temp ;Z: index |= index_temp; %undef index_temp %define free_bits edi %endmacro %macro GET_SYM_AFTER 0 movq xmm1, qword [block + 44 * SIZEOF_WORD] ;G: w1 = 44 45 46 47 -- -- -- -- unpcklps xmm5, xmm0 ;E: w5 = 48 49 56 57 50 51 58 59 pxor xmm0, xmm0 ;H: w0[i] = 0; not index ;Z: index = ~index; pinsrw xmm3, word [block + 47 * SIZEOF_WORD], 3 ;H: w3 = 60 61 54 47 55 62 63 -- ; (Row 7, offset 1) pcmpgtw xmm2, xmm3 ;H: w2[i] = (w3[i] < 0 ? -1 : 0); mov dctbl, [frame + arg_dctbl] paddw xmm3, xmm2 ;H: w3[i] += w2[i]; movaps XMMWORD [t + 56 * SIZEOF_WORD], xmm3 ;H: t[i+56] = w3[i]; movq xmm4, qword [block + 36 * SIZEOF_WORD] ;G: w4 = 36 37 38 39 -- -- -- -- pcmpeqw xmm3, xmm0 ;H: w3[i] = (w3[i] == 0 ? -1 : 0); punpckldq xmm4, xmm1 ;G: w4 = 36 37 44 45 38 39 46 47 movdqa xmm1, xmm4 ;F: w1 = 36 37 44 45 38 39 46 47 pcmpeqw mm_all_0xff, mm_all_0xff ;Z: all_0xff[i] = 0xFF; %endmacro GET_SYM nbits_base, jpeg_nbits_table, GET_SYM_BEFORE, GET_SYM_AFTER psrldq xmm4, 1 * SIZEOF_WORD ;G: w4 = 37 44 45 38 39 46 47 -- shufpd xmm1, xmm5, 10b ;F: w1 = 36 37 44 45 50 51 58 59 pshufhw xmm4, xmm4, 11010011b ;G: w4 = 37 44 45 38 -- 39 46 -- pslldq xmm1, 1 * SIZEOF_WORD ;F: w1 = -- 36 37 44 45 50 51 58 pinsrw xmm4, word [block + 59 * SIZEOF_WORD], 0 ;G: w4 = 59 44 45 38 -- 39 46 -- pshufd xmm1, xmm1, 11011000b ;F: w1 = -- 36 45 50 37 44 51 58 cmp code_temp, 1 << 31 ;Z: Set CF if code_temp < 0x80000000, ;Z: i.e. if code_temp is positive pinsrw xmm4, word [block + 52 * SIZEOF_WORD], 1 ;G: w4 = 59 52 45 38 -- 39 46 -- movlps xmm1, qword [block + 20 * SIZEOF_WORD] ;F: w1 = 20 21 22 23 37 44 51 58 pinsrw xmm4, word [block + 31 * SIZEOF_WORD], 4 ;G: w4 = 59 52 45 38 31 39 46 -- pshuflw xmm1, xmm1, 01110010b ;F: w1 = 22 20 23 21 37 44 51 58 pinsrw xmm4, word [block + 53 * SIZEOF_WORD], 7 ;G: w4 = 59 52 45 38 31 39 46 53 ; (Row 6, offset 1) adc code_temp, -1 ;Z: code_temp += -1 + (code_temp >= 0 ? 1 : 0); pxor xmm2, xmm2 ;G: w2[i] = 0; pcmpgtw xmm0, xmm4 ;G: w0[i] = (w4[i] < 0 ? -1 : 0); pinsrw xmm1, word [block + 15 * SIZEOF_WORD], 1 ;F: w1 = 22 15 23 21 37 44 51 58 paddw xmm4, xmm0 ;G: w4[i] += w0[i]; movaps XMMWORD [t + 48 * SIZEOF_WORD], xmm4 ;G: t[48+i] = w4[i]; movd mm_temp, code_temp ;Z: temp = code_temp pinsrw xmm1, word [block + 30 * SIZEOF_WORD], 3 ;F: w1 = 22 15 23 30 37 44 51 58 ; (Row 5, offset 1) pcmpeqw xmm4, xmm2 ;G: w4[i] = (w4[i] == 0 ? -1 : 0); packsswb xmm4, xmm3 ;GH: b4[i] = w4[i], b4[i+8] = w3[i] ; w/ signed saturation lea t, [t - SIZEOF_WORD] ;Z: t = &t[-1] pxor xmm0, xmm0 ;F: w0[i] = 0; pcmpgtw xmm2, xmm1 ;F: w2[i] = (w1[i] < 0 ? -1 : 0); paddw xmm1, xmm2 ;F: w1[i] += w2[i]; movaps XMMWORD [t + (40+1) * SIZEOF_WORD], xmm1 ;F: t[40+i] = w1[i]; pcmpeqw xmm1, xmm0 ;F: w1[i] = (w1[i] == 0 ? -1 : 0); pinsrw xmm5, word [block + 42 * SIZEOF_WORD], 0 ;E: w5 = 42 49 56 57 50 51 58 59 pinsrw xmm5, word [block + 43 * SIZEOF_WORD], 5 ;E: w5 = 42 49 56 57 50 43 58 59 pinsrw xmm5, word [block + 36 * SIZEOF_WORD], 6 ;E: w5 = 42 49 56 57 50 43 36 59 pinsrw xmm5, word [block + 29 * SIZEOF_WORD], 7 ;E: w5 = 42 49 56 57 50 43 36 29 ; (Row 4, offset 1) %undef block %define nbits edx %define nbitsb dl %define nbitsh dh movzx nbits, byte [NBITS(code_temp)] ;Z: nbits = JPEG_NBITS(code_temp); %undef code_temp %define state esi pxor xmm2, xmm2 ;E: w2[i] = 0; mov state, [frame + arg_state] movd mm_nbits, nbits ;Z: nbits --> MMX register pcmpgtw xmm0, xmm5 ;E: w0[i] = (w5[i] < 0 ? -1 : 0); movd mm_code, dword [dctbl + c_derived_tbl.ehufco + nbits * 4] ;Z: code = dctbl->ehufco[nbits]; %define size ecx %define sizeb cl %define sizeh ch paddw xmm5, xmm0 ;E: w5[i] += w0[i]; movaps XMMWORD [t + (32+1) * SIZEOF_WORD], xmm5 ;E: t[32+i] = w5[i]; movzx size, byte [dctbl + c_derived_tbl.ehufsi + nbits] ;Z: size = dctbl->ehufsi[nbits]; %undef dctbl pcmpeqw xmm5, xmm2 ;E: w5[i] = (w5[i] == 0 ? -1 : 0); packsswb xmm5, xmm1 ;EF: b5[i] = w5[i], b5[i+8] = w1[i] ; w/ signed saturation movq mm_put_buffer, [state + working_state.cur.put_buffer.simd] ;Z: put_buffer = state->cur.put_buffer.simd; mov free_bits, [state + working_state.cur.free_bits] ;Z: free_bits = state->cur.free_bits; %undef state %define actbl esi mov actbl, [frame + arg_actbl] %define buffer eax mov buffer, [frame + arg_buffer] %undef frame jmp .BEGIN ; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ align 16 ; size <= 32, so this is not really a loop .BRLOOP1: ; .BRLOOP1: movzx nbits, byte [actbl + c_derived_tbl.ehufsi + 0xf0] ; nbits = actbl->ehufsi[0xf0]; movd mm_code, dword [actbl + c_derived_tbl.ehufco + 0xf0 * 4] ; code = actbl->ehufco[0xf0]; and index, 0x7ffffff ; clear index if size == 32 sub size, 16 ; size -= 16; sub free_bits, nbits ; if ((free_bits -= nbits) <= 0) jle .EMIT_BRLOOP1 ; goto .EMIT_BRLOOP1; movd mm_nbits, nbits ; nbits --> MMX register psllq mm_put_buffer, mm_nbits ; put_buffer <<= nbits; por mm_put_buffer, mm_code ; put_buffer |= code; jmp .ERLOOP1 ; goto .ERLOOP1; ; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ align 16 %ifdef PIC times 6 nop %else times 2 nop %endif .BLOOP1: ; do { /* size = # of zero bits/elements to skip */ ; if size == 32, index remains unchanged. Correct in .BRLOOP. shr index, sizeb ; index >>= size; lea t, [t + size * SIZEOF_WORD] ; t += size; cmp size, 16 ; if (size > 16) jg .BRLOOP1 ; goto .BRLOOP1; .ERLOOP1: ; .ERLOOP1: movsx nbits, word [t] ; nbits = *t; %ifdef PIC add size, size ; size += size; %else lea size, [size * 2] ; size += size; %endif movd mm_temp, nbits ; temp = nbits; movzx nbits, byte [NBITS(nbits)] ; nbits = JPEG_NBITS(nbits); lea size, [size * 8 + nbits] ; size = size * 8 + nbits; movd mm_nbits, nbits ; nbits --> MMX register movd mm_code, dword [actbl + c_derived_tbl.ehufco + (size - 16) * 4] ; code = actbl->ehufco[size-16]; movzx size, byte [actbl + c_derived_tbl.ehufsi + (size - 16)] ; size = actbl->ehufsi[size-16]; .BEGIN: ; .BEGIN: pand mm_temp, [MASK_BITS(nbits)] ; temp &= (1 << nbits) - 1; psllq mm_code, mm_nbits ; code <<= nbits; add nbits, size ; nbits += size; por mm_code, mm_temp ; code |= temp; sub free_bits, nbits ; if ((free_bits -= nbits) <= 0) jle .EMIT_ERLOOP1 ; insert code, flush buffer, init size, goto .BLOOP1 xor size, size ; size = 0; /* kill tzcnt input dependency */ tzcnt size, index ; size = # of trailing 0 bits in index movd mm_nbits, nbits ; nbits --> MMX register psllq mm_put_buffer, mm_nbits ; put_buffer <<= nbits; inc size ; ++size; por mm_put_buffer, mm_code ; put_buffer |= code; test index, index jnz .BLOOP1 ; } while (index != 0); ; Round 2 ; t points to the last used word, possibly below t_ if the previous index had 32 zero bits. .ELOOP1: ; .ELOOP1: pmovmskb size, xmm4 ; size = 0; size |= ((b4[i] >> 7) << i); pmovmskb index, xmm5 ; index = 0; index |= ((b5[i] >> 7) << i); shl size, 16 ; size <<= 16; or index, size ; index |= size; not index ; index = ~index; lea nbits, [t + (1 + DCTSIZE2) * SIZEOF_WORD] ; nbits = t + 1 + 64; and nbits, -DCTSIZE2 * SIZEOF_WORD ; nbits &= -128; /* now points to &t_[64] */ sub nbits, t ; nbits -= t; shr nbits, 1 ; nbits >>= 1; /* # of leading 0 bits in old index + 33 */ tzcnt size, index ; size = # of trailing 0 bits in index inc size ; ++size; test index, index ; if (index == 0) jz .ELOOP2 ; goto .ELOOP2; ; NOTE: size == 32 cannot happen, since the last element is always 0. shr index, sizeb ; index >>= size; lea size, [size + nbits - 33] ; size = size + nbits - 33; lea t, [t + size * SIZEOF_WORD] ; t += size; cmp size, 16 ; if (size <= 16) jle .ERLOOP2 ; goto .ERLOOP2; .BRLOOP2: ; do { movzx nbits, byte [actbl + c_derived_tbl.ehufsi + 0xf0] ; nbits = actbl->ehufsi[0xf0]; sub size, 16 ; size -= 16; movd mm_code, dword [actbl + c_derived_tbl.ehufco + 0xf0 * 4] ; code = actbl->ehufco[0xf0]; sub free_bits, nbits ; if ((free_bits -= nbits) <= 0) jle .EMIT_BRLOOP2 ; insert code and flush put_buffer movd mm_nbits, nbits ; else { nbits --> MMX register psllq mm_put_buffer, mm_nbits ; put_buffer <<= nbits; por mm_put_buffer, mm_code ; put_buffer |= code; cmp size, 16 ; if (size <= 16) jle .ERLOOP2 ; goto .ERLOOP2; jmp .BRLOOP2 ; } while (1); ; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ align 16 .BLOOP2: ; do { /* size = # of zero bits/elements to skip */ shr index, sizeb ; index >>= size; lea t, [t + size * SIZEOF_WORD] ; t += size; cmp size, 16 ; if (size > 16) jg .BRLOOP2 ; goto .BRLOOP2; .ERLOOP2: ; .ERLOOP2: movsx nbits, word [t] ; nbits = *t; add size, size ; size += size; movd mm_temp, nbits ; temp = nbits; movzx nbits, byte [NBITS(nbits)] ; nbits = JPEG_NBITS(nbits); movd mm_nbits, nbits ; nbits --> MMX register lea size, [size * 8 + nbits] ; size = size * 8 + nbits; movd mm_code, dword [actbl + c_derived_tbl.ehufco + (size - 16) * 4] ; code = actbl->ehufco[size-16]; movzx size, byte [actbl + c_derived_tbl.ehufsi + (size - 16)] ; size = actbl->ehufsi[size-16]; psllq mm_code, mm_nbits ; code <<= nbits; pand mm_temp, [MASK_BITS(nbits)] ; temp &= (1 << nbits) - 1; lea nbits, [nbits + size] ; nbits += size; por mm_code, mm_temp ; code |= temp; xor size, size ; size = 0; /* kill tzcnt input dependency */ sub free_bits, nbits ; if ((free_bits -= nbits) <= 0) jle .EMIT_ERLOOP2 ; insert code, flush buffer, init size, goto .BLOOP2 tzcnt size, index ; size = # of trailing 0 bits in index movd mm_nbits, nbits ; nbits --> MMX register psllq mm_put_buffer, mm_nbits ; put_buffer <<= nbits; inc size ; ++size; por mm_put_buffer, mm_code ; put_buffer |= code; test index, index jnz .BLOOP2 ; } while (index != 0); .ELOOP2: ; .ELOOP2: mov nbits, t ; nbits = t; lea t, [t + SIZEOF_WORD] ; t = &t[1]; and nbits, DCTSIZE2 * SIZEOF_WORD - 1 ; nbits &= 127; and t, -DCTSIZE2 * SIZEOF_WORD ; t &= -128; /* t = &t_[0]; */ cmp nbits, (DCTSIZE2 - 2) * SIZEOF_WORD ; if (nbits != 62 * 2) je .EFN ; { movd mm_code, dword [actbl + c_derived_tbl.ehufco + 0] ; code = actbl->ehufco[0]; movzx nbits, byte [actbl + c_derived_tbl.ehufsi + 0] ; nbits = actbl->ehufsi[0]; sub free_bits, nbits ; if ((free_bits -= nbits) <= 0) jg .EFN_SKIP_EMIT_CODE ; { EMIT_QWORD size, sizeb, sizeh, , , , , , .EFN ; insert code, flush put_buffer align 16 .EFN_SKIP_EMIT_CODE: ; } else { movd mm_nbits, nbits ; nbits --> MMX register psllq mm_put_buffer, mm_nbits ; put_buffer <<= nbits; por mm_put_buffer, mm_code ; put_buffer |= code; .EFN: ; } } %define frame esp mov frame, [t + save_frame] %define state ecx mov state, [frame + arg_state] movq [state + working_state.cur.put_buffer.simd], mm_put_buffer ; state->cur.put_buffer.simd = put_buffer; emms mov [state + working_state.cur.free_bits], free_bits ; state->cur.free_bits = free_bits; POP edi POP esi POP ebp POP ebx ret ; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ align 16 .EMIT_BRLOOP1: EMIT_QWORD emit_temp, emit_tempb, emit_temph, , , , , , \ .ERLOOP1 ; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ align 16 .EMIT_ERLOOP1: EMIT_QWORD size, sizeb, sizeh, \ { xor size, size }, \ { tzcnt size, index }, \ { inc size }, \ { test index, index }, \ { jnz .BLOOP1 }, \ .ELOOP1 ; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ align 16 .EMIT_BRLOOP2: EMIT_QWORD emit_temp, emit_tempb, emit_temph, , , , \ { cmp size, 16 }, \ { jle .ERLOOP2 }, \ .BRLOOP2 ; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ align 16 .EMIT_ERLOOP2: EMIT_QWORD size, sizeb, sizeh, \ { xor size, size }, \ { tzcnt size, index }, \ { inc size }, \ { test index, index }, \ { jnz .BLOOP2 }, \ .ELOOP2 ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/i386/jcphuff-sse2.asm000066400000000000000000000442561436506551100207330ustar00rootroot00000000000000; ; jcphuff-sse2.asm - prepare data for progressive Huffman encoding (SSE2) ; ; Copyright (C) 2016, 2018, Matthieu Darbois ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains an SSE2 implementation of data preparation for progressive ; Huffman encoding. See jcphuff.c for more details. %include "jsimdext.inc" ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; -------------------------------------------------------------------------- ; Macros to load data for jsimd_encode_mcu_AC_first_prepare_sse2() and ; jsimd_encode_mcu_AC_refine_prepare_sse2() %macro LOAD16 0 pxor N0, N0 pxor N1, N1 mov T0, INT [LUT + 0*SIZEOF_INT] mov T1, INT [LUT + 8*SIZEOF_INT] pinsrw X0, word [BLOCK + T0 * 2], 0 pinsrw X1, word [BLOCK + T1 * 2], 0 mov T0, INT [LUT + 1*SIZEOF_INT] mov T1, INT [LUT + 9*SIZEOF_INT] pinsrw X0, word [BLOCK + T0 * 2], 1 pinsrw X1, word [BLOCK + T1 * 2], 1 mov T0, INT [LUT + 2*SIZEOF_INT] mov T1, INT [LUT + 10*SIZEOF_INT] pinsrw X0, word [BLOCK + T0 * 2], 2 pinsrw X1, word [BLOCK + T1 * 2], 2 mov T0, INT [LUT + 3*SIZEOF_INT] mov T1, INT [LUT + 11*SIZEOF_INT] pinsrw X0, word [BLOCK + T0 * 2], 3 pinsrw X1, word [BLOCK + T1 * 2], 3 mov T0, INT [LUT + 4*SIZEOF_INT] mov T1, INT [LUT + 12*SIZEOF_INT] pinsrw X0, word [BLOCK + T0 * 2], 4 pinsrw X1, word [BLOCK + T1 * 2], 4 mov T0, INT [LUT + 5*SIZEOF_INT] mov T1, INT [LUT + 13*SIZEOF_INT] pinsrw X0, word [BLOCK + T0 * 2], 5 pinsrw X1, word [BLOCK + T1 * 2], 5 mov T0, INT [LUT + 6*SIZEOF_INT] mov T1, INT [LUT + 14*SIZEOF_INT] pinsrw X0, word [BLOCK + T0 * 2], 6 pinsrw X1, word [BLOCK + T1 * 2], 6 mov T0, INT [LUT + 7*SIZEOF_INT] mov T1, INT [LUT + 15*SIZEOF_INT] pinsrw X0, word [BLOCK + T0 * 2], 7 pinsrw X1, word [BLOCK + T1 * 2], 7 %endmacro %macro LOAD15 0 pxor N0, N0 pxor N1, N1 pxor X1, X1 mov T0, INT [LUT + 0*SIZEOF_INT] mov T1, INT [LUT + 8*SIZEOF_INT] pinsrw X0, word [BLOCK + T0 * 2], 0 pinsrw X1, word [BLOCK + T1 * 2], 0 mov T0, INT [LUT + 1*SIZEOF_INT] pinsrw X0, word [BLOCK + T0 * 2], 1 mov T0, INT [LUT + 2*SIZEOF_INT] pinsrw X0, word [BLOCK + T0 * 2], 2 mov T0, INT [LUT + 3*SIZEOF_INT] pinsrw X0, word [BLOCK + T0 * 2], 3 mov T0, INT [LUT + 4*SIZEOF_INT] pinsrw X0, word [BLOCK + T0 * 2], 4 mov T0, INT [LUT + 5*SIZEOF_INT] pinsrw X0, word [BLOCK + T0 * 2], 5 mov T0, INT [LUT + 6*SIZEOF_INT] pinsrw X0, word [BLOCK + T0 * 2], 6 mov T0, INT [LUT + 7*SIZEOF_INT] pinsrw X0, word [BLOCK + T0 * 2], 7 cmp LENEND, 2 jl %%.ELOAD15 mov T1, INT [LUT + 9*SIZEOF_INT] pinsrw X1, word [BLOCK + T1 * 2], 1 cmp LENEND, 3 jl %%.ELOAD15 mov T1, INT [LUT + 10*SIZEOF_INT] pinsrw X1, word [BLOCK + T1 * 2], 2 cmp LENEND, 4 jl %%.ELOAD15 mov T1, INT [LUT + 11*SIZEOF_INT] pinsrw X1, word [BLOCK + T1 * 2], 3 cmp LENEND, 5 jl %%.ELOAD15 mov T1, INT [LUT + 12*SIZEOF_INT] pinsrw X1, word [BLOCK + T1 * 2], 4 cmp LENEND, 6 jl %%.ELOAD15 mov T1, INT [LUT + 13*SIZEOF_INT] pinsrw X1, word [BLOCK + T1 * 2], 5 cmp LENEND, 7 jl %%.ELOAD15 mov T1, INT [LUT + 14*SIZEOF_INT] pinsrw X1, word [BLOCK + T1 * 2], 6 %%.ELOAD15: %endmacro %macro LOAD8 0 pxor N0, N0 mov T0, INT [LUT + 0*SIZEOF_INT] pinsrw X0, word [BLOCK + T0 * 2], 0 mov T0, INT [LUT + 1*SIZEOF_INT] pinsrw X0, word [BLOCK + T0 * 2], 1 mov T0, INT [LUT + 2*SIZEOF_INT] pinsrw X0, word [BLOCK + T0 * 2], 2 mov T0, INT [LUT + 3*SIZEOF_INT] pinsrw X0, word [BLOCK + T0 * 2], 3 mov T0, INT [LUT + 4*SIZEOF_INT] pinsrw X0, word [BLOCK + T0 * 2], 4 mov T0, INT [LUT + 5*SIZEOF_INT] pinsrw X0, word [BLOCK + T0 * 2], 5 mov T0, INT [LUT + 6*SIZEOF_INT] pinsrw X0, word [BLOCK + T0 * 2], 6 mov T0, INT [LUT + 7*SIZEOF_INT] pinsrw X0, word [BLOCK + T0 * 2], 7 %endmacro %macro LOAD7 0 pxor N0, N0 pxor X0, X0 mov T1, INT [LUT + 0*SIZEOF_INT] pinsrw X0, word [BLOCK + T1 * 2], 0 cmp LENEND, 2 jl %%.ELOAD7 mov T1, INT [LUT + 1*SIZEOF_INT] pinsrw X0, word [BLOCK + T1 * 2], 1 cmp LENEND, 3 jl %%.ELOAD7 mov T1, INT [LUT + 2*SIZEOF_INT] pinsrw X0, word [BLOCK + T1 * 2], 2 cmp LENEND, 4 jl %%.ELOAD7 mov T1, INT [LUT + 3*SIZEOF_INT] pinsrw X0, word [BLOCK + T1 * 2], 3 cmp LENEND, 5 jl %%.ELOAD7 mov T1, INT [LUT + 4*SIZEOF_INT] pinsrw X0, word [BLOCK + T1 * 2], 4 cmp LENEND, 6 jl %%.ELOAD7 mov T1, INT [LUT + 5*SIZEOF_INT] pinsrw X0, word [BLOCK + T1 * 2], 5 cmp LENEND, 7 jl %%.ELOAD7 mov T1, INT [LUT + 6*SIZEOF_INT] pinsrw X0, word [BLOCK + T1 * 2], 6 %%.ELOAD7: %endmacro %macro REDUCE0 0 movdqa xmm0, XMMWORD [VALUES + ( 0*2)] movdqa xmm1, XMMWORD [VALUES + ( 8*2)] movdqa xmm2, XMMWORD [VALUES + (16*2)] movdqa xmm3, XMMWORD [VALUES + (24*2)] movdqa xmm4, XMMWORD [VALUES + (32*2)] movdqa xmm5, XMMWORD [VALUES + (40*2)] movdqa xmm6, XMMWORD [VALUES + (48*2)] pcmpeqw xmm0, ZERO pcmpeqw xmm1, ZERO pcmpeqw xmm2, ZERO pcmpeqw xmm3, ZERO pcmpeqw xmm4, ZERO pcmpeqw xmm5, ZERO pcmpeqw xmm6, ZERO pcmpeqw xmm7, XMMWORD [VALUES + (56*2)] packsswb xmm0, xmm1 packsswb xmm2, xmm3 packsswb xmm4, xmm5 packsswb xmm6, xmm7 pmovmskb eax, xmm0 pmovmskb ecx, xmm2 pmovmskb edx, xmm4 pmovmskb esi, xmm6 shl ecx, 16 shl esi, 16 or eax, ecx or edx, esi not eax not edx mov edi, ZEROBITS mov INT [edi], eax mov INT [edi+SIZEOF_INT], edx %endmacro ; ; Prepare data for jsimd_encode_mcu_AC_first(). ; ; GLOBAL(void) ; jsimd_encode_mcu_AC_first_prepare_sse2(const JCOEF *block, ; const int *jpeg_natural_order_start, ; int Sl, int Al, JCOEF *values, ; size_t *zerobits) ; ; eax + 8 = const JCOEF *block ; eax + 12 = const int *jpeg_natural_order_start ; eax + 16 = int Sl ; eax + 20 = int Al ; eax + 24 = JCOEF *values ; eax + 28 = size_t *zerobits %define ZERO xmm7 %define X0 xmm0 %define X1 xmm1 %define N0 xmm2 %define N1 xmm3 %define AL xmm4 %define K eax %define LENEND eax %define LUT ebx %define T0 ecx %define T1 edx %define BLOCK esi %define VALUES edi %define LEN ebp %define ZEROBITS INT [esp + 5 * 4] align 32 GLOBAL_FUNCTION(jsimd_encode_mcu_AC_first_prepare_sse2) EXTN(jsimd_encode_mcu_AC_first_prepare_sse2): push ebp mov eax, esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [esp], eax mov ebp, esp ; ebp = aligned ebp sub esp, 4 push ebx push ecx ; push edx ; need not be preserved push esi push edi push ebp mov BLOCK, INT [eax + 8] mov LUT, INT [eax + 12] mov VALUES, INT [eax + 24] movd AL, INT [eax + 20] mov T0, INT [eax + 28] mov ZEROBITS, T0 mov LEN, INT [eax + 16] pxor ZERO, ZERO mov K, LEN and K, -16 shr K, 4 jz .ELOOP16 .BLOOP16: LOAD16 pcmpgtw N0, X0 pcmpgtw N1, X1 paddw X0, N0 paddw X1, N1 pxor X0, N0 pxor X1, N1 psrlw X0, AL psrlw X1, AL pxor N0, X0 pxor N1, X1 movdqa XMMWORD [VALUES + (0) * 2], X0 movdqa XMMWORD [VALUES + (8) * 2], X1 movdqa XMMWORD [VALUES + (0 + DCTSIZE2) * 2], N0 movdqa XMMWORD [VALUES + (8 + DCTSIZE2) * 2], N1 add VALUES, 16*2 add LUT, 16*SIZEOF_INT dec K jnz .BLOOP16 test LEN, 15 je .PADDING .ELOOP16: mov LENEND, LEN and LENEND, 7 test LEN, 8 jz .TRY7 test LEN, 7 jz .TRY8 LOAD15 pcmpgtw N0, X0 pcmpgtw N1, X1 paddw X0, N0 paddw X1, N1 pxor X0, N0 pxor X1, N1 psrlw X0, AL psrlw X1, AL pxor N0, X0 pxor N1, X1 movdqa XMMWORD [VALUES + (0) * 2], X0 movdqa XMMWORD [VALUES + (8) * 2], X1 movdqa XMMWORD [VALUES + (0 + DCTSIZE2) * 2], N0 movdqa XMMWORD [VALUES + (8 + DCTSIZE2) * 2], N1 add VALUES, 16*2 jmp .PADDING .TRY8: LOAD8 pcmpgtw N0, X0 paddw X0, N0 pxor X0, N0 psrlw X0, AL pxor N0, X0 movdqa XMMWORD [VALUES + (0) * 2], X0 movdqa XMMWORD [VALUES + (0 + DCTSIZE2) * 2], N0 add VALUES, 8*2 jmp .PADDING .TRY7: LOAD7 pcmpgtw N0, X0 paddw X0, N0 pxor X0, N0 psrlw X0, AL pxor N0, X0 movdqa XMMWORD [VALUES + (0) * 2], X0 movdqa XMMWORD [VALUES + (0 + DCTSIZE2) * 2], N0 add VALUES, 8*2 .PADDING: mov K, LEN add K, 7 and K, -8 shr K, 3 sub K, DCTSIZE2/8 jz .EPADDING align 16 .ZEROLOOP: movdqa XMMWORD [VALUES + 0], ZERO add VALUES, 8*2 inc K jnz .ZEROLOOP .EPADDING: sub VALUES, DCTSIZE2*2 REDUCE0 pop ebp pop edi pop esi ; pop edx ; need not be preserved pop ecx pop ebx mov esp, ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret %undef ZERO %undef X0 %undef X1 %undef N0 %undef N1 %undef AL %undef K %undef LUT %undef T0 %undef T1 %undef BLOCK %undef VALUES %undef LEN ; ; Prepare data for jsimd_encode_mcu_AC_refine(). ; ; GLOBAL(int) ; jsimd_encode_mcu_AC_refine_prepare_sse2(const JCOEF *block, ; const int *jpeg_natural_order_start, ; int Sl, int Al, JCOEF *absvalues, ; size_t *bits) ; ; eax + 8 = const JCOEF *block ; eax + 12 = const int *jpeg_natural_order_start ; eax + 16 = int Sl ; eax + 20 = int Al ; eax + 24 = JCOEF *values ; eax + 28 = size_t *bits %define ZERO xmm7 %define ONE xmm5 %define X0 xmm0 %define X1 xmm1 %define N0 xmm2 %define N1 xmm3 %define AL xmm4 %define K eax %define LENEND eax %define LUT ebx %define T0 ecx %define T0w cx %define T1 edx %define BLOCK esi %define VALUES edi %define KK ebp %define ZEROBITS INT [esp + 5 * 4] %define EOB INT [esp + 5 * 4 + 4] %define LEN INT [esp + 5 * 4 + 8] align 32 GLOBAL_FUNCTION(jsimd_encode_mcu_AC_refine_prepare_sse2) EXTN(jsimd_encode_mcu_AC_refine_prepare_sse2): push ebp mov eax, esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [esp], eax mov ebp, esp ; ebp = aligned ebp sub esp, 16 push ebx push ecx ; push edx ; need not be preserved push esi push edi push ebp pcmpeqw ONE, ONE psrlw ONE, 15 mov BLOCK, INT [eax + 8] mov LUT, INT [eax + 12] mov VALUES, INT [eax + 24] movd AL, INT [eax + 20] mov T0, INT [eax + 28] mov K, INT [eax + 16] mov INT [T0 + 2 * SIZEOF_INT], -1 mov INT [T0 + 3 * SIZEOF_INT], -1 mov ZEROBITS, T0 mov LEN, K pxor ZERO, ZERO and K, -16 mov EOB, 0 xor KK, KK shr K, 4 jz .ELOOPR16 .BLOOPR16: LOAD16 pcmpgtw N0, X0 pcmpgtw N1, X1 paddw X0, N0 paddw X1, N1 pxor X0, N0 pxor X1, N1 psrlw X0, AL psrlw X1, AL movdqa XMMWORD [VALUES + (0) * 2], X0 movdqa XMMWORD [VALUES + (8) * 2], X1 pcmpeqw X0, ONE pcmpeqw X1, ONE packsswb N0, N1 packsswb X0, X1 pmovmskb T0, N0 ; lsignbits.val16u[k>>4] = _mm_movemask_epi8(neg); mov T1, ZEROBITS not T0 mov word [T1 + 2 * SIZEOF_INT + KK], T0w pmovmskb T1, X0 ; idx = _mm_movemask_epi8(x1); bsr T1, T1 ; idx = 16 - (__builtin_clz(idx)>>1); jz .CONTINUER16 ; if (idx) { lea T1, [T1+KK*8] mov EOB, T1 ; EOB = k + idx; .CONTINUER16: add VALUES, 16*2 add LUT, 16*SIZEOF_INT add KK, 2 dec K jnz .BLOOPR16 test LEN, 15 je .PADDINGR .ELOOPR16: mov LENEND, LEN test LENEND, 8 jz .TRYR7 test LENEND, 7 jz .TRYR8 and LENEND, 7 LOAD15 pcmpgtw N0, X0 pcmpgtw N1, X1 paddw X0, N0 paddw X1, N1 pxor X0, N0 pxor X1, N1 psrlw X0, AL psrlw X1, AL movdqa XMMWORD [VALUES + (0) * 2], X0 movdqa XMMWORD [VALUES + (8) * 2], X1 pcmpeqw X0, ONE pcmpeqw X1, ONE packsswb N0, N1 packsswb X0, X1 pmovmskb T0, N0 ; lsignbits.val16u[k>>4] = _mm_movemask_epi8(neg); mov T1, ZEROBITS not T0 mov word [T1 + 2 * SIZEOF_INT + KK], T0w pmovmskb T1, X0 ; idx = _mm_movemask_epi8(x1); bsr T1, T1 ; idx = 16 - (__builtin_clz(idx)>>1); jz .CONTINUER15 ; if (idx) { lea T1, [T1+KK*8] mov EOB, T1 ; EOB = k + idx; .CONTINUER15: add VALUES, 16*2 jmp .PADDINGR .TRYR8: LOAD8 pcmpgtw N0, X0 paddw X0, N0 pxor X0, N0 psrlw X0, AL movdqa XMMWORD [VALUES + (0) * 2], X0 pcmpeqw X0, ONE packsswb N0, ZERO packsswb X0, ZERO pmovmskb T0, N0 ; lsignbits.val16u[k>>4] = _mm_movemask_epi8(neg); mov T1, ZEROBITS not T0 mov word [T1 + 2 * SIZEOF_INT + KK], T0w pmovmskb T1, X0 ; idx = _mm_movemask_epi8(x1); bsr T1, T1 ; idx = 16 - (__builtin_clz(idx)>>1); jz .CONTINUER8 ; if (idx) { lea T1, [T1+KK*8] mov EOB, T1 ; EOB = k + idx; .CONTINUER8: add VALUES, 8*2 jmp .PADDINGR .TRYR7: and LENEND, 7 LOAD7 pcmpgtw N0, X0 paddw X0, N0 pxor X0, N0 psrlw X0, AL movdqa XMMWORD [VALUES + (0) * 2], X0 pcmpeqw X0, ONE packsswb N0, ZERO packsswb X0, ZERO pmovmskb T0, N0 ; lsignbits.val16u[k>>4] = _mm_movemask_epi8(neg); mov T1, ZEROBITS not T0 mov word [T1 + 2 * SIZEOF_INT + KK], T0w pmovmskb T1, X0 ; idx = _mm_movemask_epi8(x1); bsr T1, T1 ; idx = 16 - (__builtin_clz(idx)>>1); jz .CONTINUER7 ; if (idx) { lea T1, [T1+KK*8] mov EOB, T1 ; EOB = k + idx; .CONTINUER7: add VALUES, 8*2 .PADDINGR: mov K, LEN add K, 7 and K, -8 shr K, 3 sub K, DCTSIZE2/8 jz .EPADDINGR align 16 .ZEROLOOPR: movdqa XMMWORD [VALUES + 0], ZERO add VALUES, 8*2 inc K jnz .ZEROLOOPR .EPADDINGR: sub VALUES, DCTSIZE2*2 REDUCE0 mov eax, EOB pop ebp pop edi pop esi ; pop edx ; need not be preserved pop ecx pop ebx mov esp, ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret %undef ZERO %undef ONE %undef X0 %undef X1 %undef N0 %undef N1 %undef AL %undef K %undef KK %undef EOB %undef SIGN %undef LUT %undef T0 %undef T1 %undef BLOCK %undef VALUES %undef LEN %undef LENEND ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/i386/jcsample-avx2.asm000066400000000000000000000273771436506551100211150ustar00rootroot00000000000000; ; jcsample.asm - downsampling (AVX2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2015, Intel Corporation. ; Copyright (C) 2016, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jsimdext.inc" ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Downsample pixel values of a single component. ; This version handles the common case of 2:1 horizontal and 1:1 vertical, ; without smoothing. ; ; GLOBAL(void) ; jsimd_h2v1_downsample_avx2(JDIMENSION image_width, int max_v_samp_factor, ; JDIMENSION v_samp_factor, ; JDIMENSION width_in_blocks, JSAMPARRAY input_data, ; JSAMPARRAY output_data); ; %define img_width(b) (b) + 8 ; JDIMENSION image_width %define max_v_samp(b) (b) + 12 ; int max_v_samp_factor %define v_samp(b) (b) + 16 ; JDIMENSION v_samp_factor %define width_blks(b) (b) + 20 ; JDIMENSION width_in_blocks %define input_data(b) (b) + 24 ; JSAMPARRAY input_data %define output_data(b) (b) + 28 ; JSAMPARRAY output_data align 32 GLOBAL_FUNCTION(jsimd_h2v1_downsample_avx2) EXTN(jsimd_h2v1_downsample_avx2): push ebp mov ebp, esp ; push ebx ; unused ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi mov ecx, JDIMENSION [width_blks(ebp)] shl ecx, 3 ; imul ecx,DCTSIZE (ecx = output_cols) jz near .return mov edx, JDIMENSION [img_width(ebp)] ; -- expand_right_edge push ecx shl ecx, 1 ; output_cols * 2 sub ecx, edx jle short .expand_end mov eax, INT [max_v_samp(ebp)] test eax, eax jle short .expand_end cld mov esi, JSAMPARRAY [input_data(ebp)] ; input_data alignx 16, 7 .expandloop: push eax push ecx mov edi, JSAMPROW [esi] add edi, edx mov al, JSAMPLE [edi-1] rep stosb pop ecx pop eax add esi, byte SIZEOF_JSAMPROW dec eax jg short .expandloop .expand_end: pop ecx ; output_cols ; -- h2v1_downsample mov eax, JDIMENSION [v_samp(ebp)] ; rowctr test eax, eax jle near .return mov edx, 0x00010000 ; bias pattern vmovd xmm7, edx vpshufd xmm7, xmm7, 0x00 ; xmm7={0, 1, 0, 1, 0, 1, 0, 1} vperm2i128 ymm7, ymm7, ymm7, 0 ; ymm7={xmm7, xmm7} vpcmpeqw ymm6, ymm6, ymm6 vpsrlw ymm6, ymm6, BYTE_BIT ; ymm6={0xFF 0x00 0xFF 0x00 ..} mov esi, JSAMPARRAY [input_data(ebp)] ; input_data mov edi, JSAMPARRAY [output_data(ebp)] ; output_data alignx 16, 7 .rowloop: push ecx push edi push esi mov esi, JSAMPROW [esi] ; inptr mov edi, JSAMPROW [edi] ; outptr cmp ecx, byte SIZEOF_YMMWORD jae short .columnloop alignx 16, 7 .columnloop_r24: ; ecx can possibly be 8, 16, 24 cmp ecx, 24 jne .columnloop_r16 vmovdqu ymm0, YMMWORD [esi+0*SIZEOF_YMMWORD] vmovdqu xmm1, XMMWORD [esi+1*SIZEOF_YMMWORD] mov ecx, SIZEOF_YMMWORD jmp short .downsample .columnloop_r16: cmp ecx, 16 jne .columnloop_r8 vmovdqu ymm0, YMMWORD [esi+0*SIZEOF_YMMWORD] vpxor ymm1, ymm1, ymm1 mov ecx, SIZEOF_YMMWORD jmp short .downsample .columnloop_r8: vmovdqu xmm0, XMMWORD[esi+0*SIZEOF_YMMWORD] vpxor ymm1, ymm1, ymm1 mov ecx, SIZEOF_YMMWORD jmp short .downsample alignx 16, 7 .columnloop: vmovdqu ymm0, YMMWORD [esi+0*SIZEOF_YMMWORD] vmovdqu ymm1, YMMWORD [esi+1*SIZEOF_YMMWORD] .downsample: vpsrlw ymm2, ymm0, BYTE_BIT vpand ymm0, ymm0, ymm6 vpsrlw ymm3, ymm1, BYTE_BIT vpand ymm1, ymm1, ymm6 vpaddw ymm0, ymm0, ymm2 vpaddw ymm1, ymm1, ymm3 vpaddw ymm0, ymm0, ymm7 vpaddw ymm1, ymm1, ymm7 vpsrlw ymm0, ymm0, 1 vpsrlw ymm1, ymm1, 1 vpackuswb ymm0, ymm0, ymm1 vpermq ymm0, ymm0, 0xd8 vmovdqu YMMWORD [edi+0*SIZEOF_YMMWORD], ymm0 sub ecx, byte SIZEOF_YMMWORD ; outcol add esi, byte 2*SIZEOF_YMMWORD ; inptr add edi, byte 1*SIZEOF_YMMWORD ; outptr cmp ecx, byte SIZEOF_YMMWORD jae short .columnloop test ecx, ecx jnz near .columnloop_r24 pop esi pop edi pop ecx add esi, byte SIZEOF_JSAMPROW ; input_data add edi, byte SIZEOF_JSAMPROW ; output_data dec eax ; rowctr jg near .rowloop .return: vzeroupper pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved ; pop ebx ; unused pop ebp ret ; -------------------------------------------------------------------------- ; ; Downsample pixel values of a single component. ; This version handles the standard case of 2:1 horizontal and 2:1 vertical, ; without smoothing. ; ; GLOBAL(void) ; jsimd_h2v2_downsample_avx2(JDIMENSION image_width, int max_v_samp_factor, ; JDIMENSION v_samp_factor, ; JDIMENSION width_in_blocks, JSAMPARRAY input_data, ; JSAMPARRAY output_data); ; %define img_width(b) (b) + 8 ; JDIMENSION image_width %define max_v_samp(b) (b) + 12 ; int max_v_samp_factor %define v_samp(b) (b) + 16 ; JDIMENSION v_samp_factor %define width_blks(b) (b) + 20 ; JDIMENSION width_in_blocks %define input_data(b) (b) + 24 ; JSAMPARRAY input_data %define output_data(b) (b) + 28 ; JSAMPARRAY output_data align 32 GLOBAL_FUNCTION(jsimd_h2v2_downsample_avx2) EXTN(jsimd_h2v2_downsample_avx2): push ebp mov ebp, esp ; push ebx ; unused ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi mov ecx, JDIMENSION [width_blks(ebp)] shl ecx, 3 ; imul ecx,DCTSIZE (ecx = output_cols) jz near .return mov edx, JDIMENSION [img_width(ebp)] ; -- expand_right_edge push ecx shl ecx, 1 ; output_cols * 2 sub ecx, edx jle short .expand_end mov eax, INT [max_v_samp(ebp)] test eax, eax jle short .expand_end cld mov esi, JSAMPARRAY [input_data(ebp)] ; input_data alignx 16, 7 .expandloop: push eax push ecx mov edi, JSAMPROW [esi] add edi, edx mov al, JSAMPLE [edi-1] rep stosb pop ecx pop eax add esi, byte SIZEOF_JSAMPROW dec eax jg short .expandloop .expand_end: pop ecx ; output_cols ; -- h2v2_downsample mov eax, JDIMENSION [v_samp(ebp)] ; rowctr test eax, eax jle near .return mov edx, 0x00020001 ; bias pattern vmovd xmm7, edx vpcmpeqw ymm6, ymm6, ymm6 vpshufd xmm7, xmm7, 0x00 ; ymm7={1, 2, 1, 2, 1, 2, 1, 2} vperm2i128 ymm7, ymm7, ymm7, 0 vpsrlw ymm6, ymm6, BYTE_BIT ; ymm6={0xFF 0x00 0xFF 0x00 ..} mov esi, JSAMPARRAY [input_data(ebp)] ; input_data mov edi, JSAMPARRAY [output_data(ebp)] ; output_data alignx 16, 7 .rowloop: push ecx push edi push esi mov edx, JSAMPROW [esi+0*SIZEOF_JSAMPROW] ; inptr0 mov esi, JSAMPROW [esi+1*SIZEOF_JSAMPROW] ; inptr1 mov edi, JSAMPROW [edi] ; outptr cmp ecx, byte SIZEOF_YMMWORD jae short .columnloop alignx 16, 7 .columnloop_r24: cmp ecx, 24 jne .columnloop_r16 vmovdqu ymm0, YMMWORD [edx+0*SIZEOF_YMMWORD] vmovdqu ymm1, YMMWORD [esi+0*SIZEOF_YMMWORD] vmovdqu xmm2, XMMWORD [edx+1*SIZEOF_YMMWORD] vmovdqu xmm3, XMMWORD [esi+1*SIZEOF_YMMWORD] mov ecx, SIZEOF_YMMWORD jmp short .downsample .columnloop_r16: cmp ecx, 16 jne .columnloop_r8 vmovdqu ymm0, YMMWORD [edx+0*SIZEOF_YMMWORD] vmovdqu ymm1, YMMWORD [esi+0*SIZEOF_YMMWORD] vpxor ymm2, ymm2, ymm2 vpxor ymm3, ymm3, ymm3 mov ecx, SIZEOF_YMMWORD jmp short .downsample .columnloop_r8: vmovdqu xmm0, XMMWORD [edx+0*SIZEOF_XMMWORD] vmovdqu xmm1, XMMWORD [esi+0*SIZEOF_XMMWORD] vpxor ymm2, ymm2, ymm2 vpxor ymm3, ymm3, ymm3 mov ecx, SIZEOF_YMMWORD jmp short .downsample alignx 16, 7 .columnloop: vmovdqu ymm0, YMMWORD [edx+0*SIZEOF_YMMWORD] vmovdqu ymm1, YMMWORD [esi+0*SIZEOF_YMMWORD] vmovdqu ymm2, YMMWORD [edx+1*SIZEOF_YMMWORD] vmovdqu ymm3, YMMWORD [esi+1*SIZEOF_YMMWORD] .downsample: vpand ymm4, ymm0, ymm6 vpsrlw ymm0, ymm0, BYTE_BIT vpand ymm5, ymm1, ymm6 vpsrlw ymm1, ymm1, BYTE_BIT vpaddw ymm0, ymm0, ymm4 vpaddw ymm1, ymm1, ymm5 vpand ymm4, ymm2, ymm6 vpsrlw ymm2, ymm2, BYTE_BIT vpand ymm5, ymm3, ymm6 vpsrlw ymm3, ymm3, BYTE_BIT vpaddw ymm2, ymm2, ymm4 vpaddw ymm3, ymm3, ymm5 vpaddw ymm0, ymm0, ymm1 vpaddw ymm2, ymm2, ymm3 vpaddw ymm0, ymm0, ymm7 vpaddw ymm2, ymm2, ymm7 vpsrlw ymm0, ymm0, 2 vpsrlw ymm2, ymm2, 2 vpackuswb ymm0, ymm0, ymm2 vpermq ymm0, ymm0, 0xd8 vmovdqu YMMWORD [edi+0*SIZEOF_YMMWORD], ymm0 sub ecx, byte SIZEOF_YMMWORD ; outcol add edx, byte 2*SIZEOF_YMMWORD ; inptr0 add esi, byte 2*SIZEOF_YMMWORD ; inptr1 add edi, byte 1*SIZEOF_YMMWORD ; outptr cmp ecx, byte SIZEOF_YMMWORD jae near .columnloop test ecx, ecx jnz near .columnloop_r24 pop esi pop edi pop ecx add esi, byte 2*SIZEOF_JSAMPROW ; input_data add edi, byte 1*SIZEOF_JSAMPROW ; output_data dec eax ; rowctr jg near .rowloop .return: vzeroupper pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved ; pop ebx ; unused pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/i386/jcsample-mmx.asm000066400000000000000000000227461436506551100210310ustar00rootroot00000000000000; ; jcsample.asm - downsampling (MMX) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2016, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jsimdext.inc" ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Downsample pixel values of a single component. ; This version handles the common case of 2:1 horizontal and 1:1 vertical, ; without smoothing. ; ; GLOBAL(void) ; jsimd_h2v1_downsample_mmx(JDIMENSION image_width, int max_v_samp_factor, ; JDIMENSION v_samp_factor, ; JDIMENSION width_in_blocks, JSAMPARRAY input_data, ; JSAMPARRAY output_data); ; %define img_width(b) (b) + 8 ; JDIMENSION image_width %define max_v_samp(b) (b) + 12 ; int max_v_samp_factor %define v_samp(b) (b) + 16 ; JDIMENSION v_samp_factor %define width_blks(b) (b) + 20 ; JDIMENSION width_in_blocks %define input_data(b) (b) + 24 ; JSAMPARRAY input_data %define output_data(b) (b) + 28 ; JSAMPARRAY output_data align 32 GLOBAL_FUNCTION(jsimd_h2v1_downsample_mmx) EXTN(jsimd_h2v1_downsample_mmx): push ebp mov ebp, esp ; push ebx ; unused ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi mov ecx, JDIMENSION [width_blks(ebp)] shl ecx, 3 ; imul ecx,DCTSIZE (ecx = output_cols) jz near .return mov edx, JDIMENSION [img_width(ebp)] ; -- expand_right_edge push ecx shl ecx, 1 ; output_cols * 2 sub ecx, edx jle short .expand_end mov eax, INT [max_v_samp(ebp)] test eax, eax jle short .expand_end cld mov esi, JSAMPARRAY [input_data(ebp)] ; input_data alignx 16, 7 .expandloop: push eax push ecx mov edi, JSAMPROW [esi] add edi, edx mov al, JSAMPLE [edi-1] rep stosb pop ecx pop eax add esi, byte SIZEOF_JSAMPROW dec eax jg short .expandloop .expand_end: pop ecx ; output_cols ; -- h2v1_downsample mov eax, JDIMENSION [v_samp(ebp)] ; rowctr test eax, eax jle near .return mov edx, 0x00010000 ; bias pattern movd mm7, edx pcmpeqw mm6, mm6 punpckldq mm7, mm7 ; mm7={0, 1, 0, 1} psrlw mm6, BYTE_BIT ; mm6={0xFF 0x00 0xFF 0x00 ..} mov esi, JSAMPARRAY [input_data(ebp)] ; input_data mov edi, JSAMPARRAY [output_data(ebp)] ; output_data alignx 16, 7 .rowloop: push ecx push edi push esi mov esi, JSAMPROW [esi] ; inptr mov edi, JSAMPROW [edi] ; outptr alignx 16, 7 .columnloop: movq mm0, MMWORD [esi+0*SIZEOF_MMWORD] movq mm1, MMWORD [esi+1*SIZEOF_MMWORD] movq mm2, mm0 movq mm3, mm1 pand mm0, mm6 psrlw mm2, BYTE_BIT pand mm1, mm6 psrlw mm3, BYTE_BIT paddw mm0, mm2 paddw mm1, mm3 paddw mm0, mm7 paddw mm1, mm7 psrlw mm0, 1 psrlw mm1, 1 packuswb mm0, mm1 movq MMWORD [edi+0*SIZEOF_MMWORD], mm0 add esi, byte 2*SIZEOF_MMWORD ; inptr add edi, byte 1*SIZEOF_MMWORD ; outptr sub ecx, byte SIZEOF_MMWORD ; outcol jnz short .columnloop pop esi pop edi pop ecx add esi, byte SIZEOF_JSAMPROW ; input_data add edi, byte SIZEOF_JSAMPROW ; output_data dec eax ; rowctr jg short .rowloop emms ; empty MMX state .return: pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved ; pop ebx ; unused pop ebp ret ; -------------------------------------------------------------------------- ; ; Downsample pixel values of a single component. ; This version handles the standard case of 2:1 horizontal and 2:1 vertical, ; without smoothing. ; ; GLOBAL(void) ; jsimd_h2v2_downsample_mmx(JDIMENSION image_width, int max_v_samp_factor, ; JDIMENSION v_samp_factor, ; JDIMENSION width_in_blocks, JSAMPARRAY input_data, ; JSAMPARRAY output_data); ; %define img_width(b) (b) + 8 ; JDIMENSION image_width %define max_v_samp(b) (b) + 12 ; int max_v_samp_factor %define v_samp(b) (b) + 16 ; JDIMENSION v_samp_factor %define width_blks(b) (b) + 20 ; JDIMENSION width_in_blocks %define input_data(b) (b) + 24 ; JSAMPARRAY input_data %define output_data(b) (b) + 28 ; JSAMPARRAY output_data align 32 GLOBAL_FUNCTION(jsimd_h2v2_downsample_mmx) EXTN(jsimd_h2v2_downsample_mmx): push ebp mov ebp, esp ; push ebx ; unused ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi mov ecx, JDIMENSION [width_blks(ebp)] shl ecx, 3 ; imul ecx,DCTSIZE (ecx = output_cols) jz near .return mov edx, JDIMENSION [img_width(ebp)] ; -- expand_right_edge push ecx shl ecx, 1 ; output_cols * 2 sub ecx, edx jle short .expand_end mov eax, INT [max_v_samp(ebp)] test eax, eax jle short .expand_end cld mov esi, JSAMPARRAY [input_data(ebp)] ; input_data alignx 16, 7 .expandloop: push eax push ecx mov edi, JSAMPROW [esi] add edi, edx mov al, JSAMPLE [edi-1] rep stosb pop ecx pop eax add esi, byte SIZEOF_JSAMPROW dec eax jg short .expandloop .expand_end: pop ecx ; output_cols ; -- h2v2_downsample mov eax, JDIMENSION [v_samp(ebp)] ; rowctr test eax, eax jle near .return mov edx, 0x00020001 ; bias pattern movd mm7, edx pcmpeqw mm6, mm6 punpckldq mm7, mm7 ; mm7={1, 2, 1, 2} psrlw mm6, BYTE_BIT ; mm6={0xFF 0x00 0xFF 0x00 ..} mov esi, JSAMPARRAY [input_data(ebp)] ; input_data mov edi, JSAMPARRAY [output_data(ebp)] ; output_data alignx 16, 7 .rowloop: push ecx push edi push esi mov edx, JSAMPROW [esi+0*SIZEOF_JSAMPROW] ; inptr0 mov esi, JSAMPROW [esi+1*SIZEOF_JSAMPROW] ; inptr1 mov edi, JSAMPROW [edi] ; outptr alignx 16, 7 .columnloop: movq mm0, MMWORD [edx+0*SIZEOF_MMWORD] movq mm1, MMWORD [esi+0*SIZEOF_MMWORD] movq mm2, MMWORD [edx+1*SIZEOF_MMWORD] movq mm3, MMWORD [esi+1*SIZEOF_MMWORD] movq mm4, mm0 movq mm5, mm1 pand mm0, mm6 psrlw mm4, BYTE_BIT pand mm1, mm6 psrlw mm5, BYTE_BIT paddw mm0, mm4 paddw mm1, mm5 movq mm4, mm2 movq mm5, mm3 pand mm2, mm6 psrlw mm4, BYTE_BIT pand mm3, mm6 psrlw mm5, BYTE_BIT paddw mm2, mm4 paddw mm3, mm5 paddw mm0, mm1 paddw mm2, mm3 paddw mm0, mm7 paddw mm2, mm7 psrlw mm0, 2 psrlw mm2, 2 packuswb mm0, mm2 movq MMWORD [edi+0*SIZEOF_MMWORD], mm0 add edx, byte 2*SIZEOF_MMWORD ; inptr0 add esi, byte 2*SIZEOF_MMWORD ; inptr1 add edi, byte 1*SIZEOF_MMWORD ; outptr sub ecx, byte SIZEOF_MMWORD ; outcol jnz near .columnloop pop esi pop edi pop ecx add esi, byte 2*SIZEOF_JSAMPROW ; input_data add edi, byte 1*SIZEOF_JSAMPROW ; output_data dec eax ; rowctr jg near .rowloop emms ; empty MMX state .return: pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved ; pop ebx ; unused pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/i386/jcsample-sse2.asm000066400000000000000000000245051436506551100210770ustar00rootroot00000000000000; ; jcsample.asm - downsampling (SSE2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2016, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jsimdext.inc" ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Downsample pixel values of a single component. ; This version handles the common case of 2:1 horizontal and 1:1 vertical, ; without smoothing. ; ; GLOBAL(void) ; jsimd_h2v1_downsample_sse2(JDIMENSION image_width, int max_v_samp_factor, ; JDIMENSION v_samp_factor, ; JDIMENSION width_in_blocks, JSAMPARRAY input_data, ; JSAMPARRAY output_data); ; %define img_width(b) (b) + 8 ; JDIMENSION image_width %define max_v_samp(b) (b) + 12 ; int max_v_samp_factor %define v_samp(b) (b) + 16 ; JDIMENSION v_samp_factor %define width_blks(b) (b) + 20 ; JDIMENSION width_in_blocks %define input_data(b) (b) + 24 ; JSAMPARRAY input_data %define output_data(b) (b) + 28 ; JSAMPARRAY output_data align 32 GLOBAL_FUNCTION(jsimd_h2v1_downsample_sse2) EXTN(jsimd_h2v1_downsample_sse2): push ebp mov ebp, esp ; push ebx ; unused ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi mov ecx, JDIMENSION [width_blks(ebp)] shl ecx, 3 ; imul ecx,DCTSIZE (ecx = output_cols) jz near .return mov edx, JDIMENSION [img_width(ebp)] ; -- expand_right_edge push ecx shl ecx, 1 ; output_cols * 2 sub ecx, edx jle short .expand_end mov eax, INT [max_v_samp(ebp)] test eax, eax jle short .expand_end cld mov esi, JSAMPARRAY [input_data(ebp)] ; input_data alignx 16, 7 .expandloop: push eax push ecx mov edi, JSAMPROW [esi] add edi, edx mov al, JSAMPLE [edi-1] rep stosb pop ecx pop eax add esi, byte SIZEOF_JSAMPROW dec eax jg short .expandloop .expand_end: pop ecx ; output_cols ; -- h2v1_downsample mov eax, JDIMENSION [v_samp(ebp)] ; rowctr test eax, eax jle near .return mov edx, 0x00010000 ; bias pattern movd xmm7, edx pcmpeqw xmm6, xmm6 pshufd xmm7, xmm7, 0x00 ; xmm7={0, 1, 0, 1, 0, 1, 0, 1} psrlw xmm6, BYTE_BIT ; xmm6={0xFF 0x00 0xFF 0x00 ..} mov esi, JSAMPARRAY [input_data(ebp)] ; input_data mov edi, JSAMPARRAY [output_data(ebp)] ; output_data alignx 16, 7 .rowloop: push ecx push edi push esi mov esi, JSAMPROW [esi] ; inptr mov edi, JSAMPROW [edi] ; outptr cmp ecx, byte SIZEOF_XMMWORD jae short .columnloop alignx 16, 7 .columnloop_r8: movdqa xmm0, XMMWORD [esi+0*SIZEOF_XMMWORD] pxor xmm1, xmm1 mov ecx, SIZEOF_XMMWORD jmp short .downsample alignx 16, 7 .columnloop: movdqa xmm0, XMMWORD [esi+0*SIZEOF_XMMWORD] movdqa xmm1, XMMWORD [esi+1*SIZEOF_XMMWORD] .downsample: movdqa xmm2, xmm0 movdqa xmm3, xmm1 pand xmm0, xmm6 psrlw xmm2, BYTE_BIT pand xmm1, xmm6 psrlw xmm3, BYTE_BIT paddw xmm0, xmm2 paddw xmm1, xmm3 paddw xmm0, xmm7 paddw xmm1, xmm7 psrlw xmm0, 1 psrlw xmm1, 1 packuswb xmm0, xmm1 movdqa XMMWORD [edi+0*SIZEOF_XMMWORD], xmm0 sub ecx, byte SIZEOF_XMMWORD ; outcol add esi, byte 2*SIZEOF_XMMWORD ; inptr add edi, byte 1*SIZEOF_XMMWORD ; outptr cmp ecx, byte SIZEOF_XMMWORD jae short .columnloop test ecx, ecx jnz short .columnloop_r8 pop esi pop edi pop ecx add esi, byte SIZEOF_JSAMPROW ; input_data add edi, byte SIZEOF_JSAMPROW ; output_data dec eax ; rowctr jg near .rowloop .return: pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved ; pop ebx ; unused pop ebp ret ; -------------------------------------------------------------------------- ; ; Downsample pixel values of a single component. ; This version handles the standard case of 2:1 horizontal and 2:1 vertical, ; without smoothing. ; ; GLOBAL(void) ; jsimd_h2v2_downsample_sse2(JDIMENSION image_width, int max_v_samp_factor, ; JDIMENSION v_samp_factor, ; JDIMENSION width_in_blocks, JSAMPARRAY input_data, ; JSAMPARRAY output_data); ; %define img_width(b) (b) + 8 ; JDIMENSION image_width %define max_v_samp(b) (b) + 12 ; int max_v_samp_factor %define v_samp(b) (b) + 16 ; JDIMENSION v_samp_factor %define width_blks(b) (b) + 20 ; JDIMENSION width_in_blocks %define input_data(b) (b) + 24 ; JSAMPARRAY input_data %define output_data(b) (b) + 28 ; JSAMPARRAY output_data align 32 GLOBAL_FUNCTION(jsimd_h2v2_downsample_sse2) EXTN(jsimd_h2v2_downsample_sse2): push ebp mov ebp, esp ; push ebx ; unused ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi mov ecx, JDIMENSION [width_blks(ebp)] shl ecx, 3 ; imul ecx,DCTSIZE (ecx = output_cols) jz near .return mov edx, JDIMENSION [img_width(ebp)] ; -- expand_right_edge push ecx shl ecx, 1 ; output_cols * 2 sub ecx, edx jle short .expand_end mov eax, INT [max_v_samp(ebp)] test eax, eax jle short .expand_end cld mov esi, JSAMPARRAY [input_data(ebp)] ; input_data alignx 16, 7 .expandloop: push eax push ecx mov edi, JSAMPROW [esi] add edi, edx mov al, JSAMPLE [edi-1] rep stosb pop ecx pop eax add esi, byte SIZEOF_JSAMPROW dec eax jg short .expandloop .expand_end: pop ecx ; output_cols ; -- h2v2_downsample mov eax, JDIMENSION [v_samp(ebp)] ; rowctr test eax, eax jle near .return mov edx, 0x00020001 ; bias pattern movd xmm7, edx pcmpeqw xmm6, xmm6 pshufd xmm7, xmm7, 0x00 ; xmm7={1, 2, 1, 2, 1, 2, 1, 2} psrlw xmm6, BYTE_BIT ; xmm6={0xFF 0x00 0xFF 0x00 ..} mov esi, JSAMPARRAY [input_data(ebp)] ; input_data mov edi, JSAMPARRAY [output_data(ebp)] ; output_data alignx 16, 7 .rowloop: push ecx push edi push esi mov edx, JSAMPROW [esi+0*SIZEOF_JSAMPROW] ; inptr0 mov esi, JSAMPROW [esi+1*SIZEOF_JSAMPROW] ; inptr1 mov edi, JSAMPROW [edi] ; outptr cmp ecx, byte SIZEOF_XMMWORD jae short .columnloop alignx 16, 7 .columnloop_r8: movdqa xmm0, XMMWORD [edx+0*SIZEOF_XMMWORD] movdqa xmm1, XMMWORD [esi+0*SIZEOF_XMMWORD] pxor xmm2, xmm2 pxor xmm3, xmm3 mov ecx, SIZEOF_XMMWORD jmp short .downsample alignx 16, 7 .columnloop: movdqa xmm0, XMMWORD [edx+0*SIZEOF_XMMWORD] movdqa xmm1, XMMWORD [esi+0*SIZEOF_XMMWORD] movdqa xmm2, XMMWORD [edx+1*SIZEOF_XMMWORD] movdqa xmm3, XMMWORD [esi+1*SIZEOF_XMMWORD] .downsample: movdqa xmm4, xmm0 movdqa xmm5, xmm1 pand xmm0, xmm6 psrlw xmm4, BYTE_BIT pand xmm1, xmm6 psrlw xmm5, BYTE_BIT paddw xmm0, xmm4 paddw xmm1, xmm5 movdqa xmm4, xmm2 movdqa xmm5, xmm3 pand xmm2, xmm6 psrlw xmm4, BYTE_BIT pand xmm3, xmm6 psrlw xmm5, BYTE_BIT paddw xmm2, xmm4 paddw xmm3, xmm5 paddw xmm0, xmm1 paddw xmm2, xmm3 paddw xmm0, xmm7 paddw xmm2, xmm7 psrlw xmm0, 2 psrlw xmm2, 2 packuswb xmm0, xmm2 movdqa XMMWORD [edi+0*SIZEOF_XMMWORD], xmm0 sub ecx, byte SIZEOF_XMMWORD ; outcol add edx, byte 2*SIZEOF_XMMWORD ; inptr0 add esi, byte 2*SIZEOF_XMMWORD ; inptr1 add edi, byte 1*SIZEOF_XMMWORD ; outptr cmp ecx, byte SIZEOF_XMMWORD jae near .columnloop test ecx, ecx jnz near .columnloop_r8 pop esi pop edi pop ecx add esi, byte 2*SIZEOF_JSAMPROW ; input_data add edi, byte 1*SIZEOF_JSAMPROW ; output_data dec eax ; rowctr jg near .rowloop .return: pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved ; pop ebx ; unused pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/i386/jdcolext-avx2.asm000066400000000000000000000607461436506551100211300ustar00rootroot00000000000000; ; jdcolext.asm - colorspace conversion (AVX2) ; ; Copyright 2009, 2012 Pierre Ossman for Cendio AB ; Copyright (C) 2012, 2016, D. R. Commander. ; Copyright (C) 2015, Intel Corporation. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jcolsamp.inc" ; -------------------------------------------------------------------------- ; ; Convert some rows of samples to the output colorspace. ; ; GLOBAL(void) ; jsimd_ycc_rgb_convert_avx2(JDIMENSION out_width, JSAMPIMAGE input_buf, ; JDIMENSION input_row, JSAMPARRAY output_buf, ; int num_rows) ; %define out_width(b) (b) + 8 ; JDIMENSION out_width %define input_buf(b) (b) + 12 ; JSAMPIMAGE input_buf %define input_row(b) (b) + 16 ; JDIMENSION input_row %define output_buf(b) (b) + 20 ; JSAMPARRAY output_buf %define num_rows(b) (b) + 24 ; int num_rows %define original_ebp ebp + 0 %define wk(i) ebp - (WK_NUM - (i)) * SIZEOF_YMMWORD ; ymmword wk[WK_NUM] %define WK_NUM 2 %define gotptr wk(0) - SIZEOF_POINTER ; void * gotptr align 32 GLOBAL_FUNCTION(jsimd_ycc_rgb_convert_avx2) EXTN(jsimd_ycc_rgb_convert_avx2): push ebp mov eax, esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_YMMWORD) ; align to 256 bits mov [esp], eax mov ebp, esp ; ebp = aligned ebp lea esp, [wk(0)] pushpic eax ; make a room for GOT address push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address movpic POINTER [gotptr], ebx ; save GOT address mov ecx, JDIMENSION [out_width(eax)] ; num_cols test ecx, ecx jz near .return push ecx mov edi, JSAMPIMAGE [input_buf(eax)] mov ecx, JDIMENSION [input_row(eax)] mov esi, JSAMPARRAY [edi+0*SIZEOF_JSAMPARRAY] mov ebx, JSAMPARRAY [edi+1*SIZEOF_JSAMPARRAY] mov edx, JSAMPARRAY [edi+2*SIZEOF_JSAMPARRAY] lea esi, [esi+ecx*SIZEOF_JSAMPROW] lea ebx, [ebx+ecx*SIZEOF_JSAMPROW] lea edx, [edx+ecx*SIZEOF_JSAMPROW] pop ecx mov edi, JSAMPARRAY [output_buf(eax)] mov eax, INT [num_rows(eax)] test eax, eax jle near .return alignx 16, 7 .rowloop: push eax push edi push edx push ebx push esi push ecx ; col mov esi, JSAMPROW [esi] ; inptr0 mov ebx, JSAMPROW [ebx] ; inptr1 mov edx, JSAMPROW [edx] ; inptr2 mov edi, JSAMPROW [edi] ; outptr movpic eax, POINTER [gotptr] ; load GOT address (eax) alignx 16, 7 .columnloop: vmovdqu ymm5, YMMWORD [ebx] ; ymm5=Cb(0123456789ABCDEFGHIJKLMNOPQRSTUV) vmovdqu ymm1, YMMWORD [edx] ; ymm1=Cr(0123456789ABCDEFGHIJKLMNOPQRSTUV) vpcmpeqw ymm0, ymm0, ymm0 vpcmpeqw ymm7, ymm7, ymm7 vpsrlw ymm0, ymm0, BYTE_BIT ; ymm0={0xFF 0x00 0xFF 0x00 ..} vpsllw ymm7, ymm7, 7 ; ymm7={0xFF80 0xFF80 0xFF80 0xFF80 ..} vpand ymm4, ymm0, ymm5 ; ymm4=Cb(02468ACEGIKMOQSU)=CbE vpsrlw ymm5, ymm5, BYTE_BIT ; ymm5=Cb(13579BDFHJLNPRTV)=CbO vpand ymm0, ymm0, ymm1 ; ymm0=Cr(02468ACEGIKMOQSU)=CrE vpsrlw ymm1, ymm1, BYTE_BIT ; ymm1=Cr(13579BDFHJLNPRTV)=CrO vpaddw ymm2, ymm4, ymm7 vpaddw ymm3, ymm5, ymm7 vpaddw ymm6, ymm0, ymm7 vpaddw ymm7, ymm1, ymm7 ; (Original) ; R = Y + 1.40200 * Cr ; G = Y - 0.34414 * Cb - 0.71414 * Cr ; B = Y + 1.77200 * Cb ; ; (This implementation) ; R = Y + 0.40200 * Cr + Cr ; G = Y - 0.34414 * Cb + 0.28586 * Cr - Cr ; B = Y - 0.22800 * Cb + Cb + Cb vpaddw ymm4, ymm2, ymm2 ; ymm4=2*CbE vpaddw ymm5, ymm3, ymm3 ; ymm5=2*CbO vpaddw ymm0, ymm6, ymm6 ; ymm0=2*CrE vpaddw ymm1, ymm7, ymm7 ; ymm1=2*CrO vpmulhw ymm4, ymm4, [GOTOFF(eax,PW_MF0228)] ; ymm4=(2*CbE * -FIX(0.22800)) vpmulhw ymm5, ymm5, [GOTOFF(eax,PW_MF0228)] ; ymm5=(2*CbO * -FIX(0.22800)) vpmulhw ymm0, ymm0, [GOTOFF(eax,PW_F0402)] ; ymm0=(2*CrE * FIX(0.40200)) vpmulhw ymm1, ymm1, [GOTOFF(eax,PW_F0402)] ; ymm1=(2*CrO * FIX(0.40200)) vpaddw ymm4, ymm4, [GOTOFF(eax,PW_ONE)] vpaddw ymm5, ymm5, [GOTOFF(eax,PW_ONE)] vpsraw ymm4, ymm4, 1 ; ymm4=(CbE * -FIX(0.22800)) vpsraw ymm5, ymm5, 1 ; ymm5=(CbO * -FIX(0.22800)) vpaddw ymm0, ymm0, [GOTOFF(eax,PW_ONE)] vpaddw ymm1, ymm1, [GOTOFF(eax,PW_ONE)] vpsraw ymm0, ymm0, 1 ; ymm0=(CrE * FIX(0.40200)) vpsraw ymm1, ymm1, 1 ; ymm1=(CrO * FIX(0.40200)) vpaddw ymm4, ymm4, ymm2 vpaddw ymm5, ymm5, ymm3 vpaddw ymm4, ymm4, ymm2 ; ymm4=(CbE * FIX(1.77200))=(B-Y)E vpaddw ymm5, ymm5, ymm3 ; ymm5=(CbO * FIX(1.77200))=(B-Y)O vpaddw ymm0, ymm0, ymm6 ; ymm0=(CrE * FIX(1.40200))=(R-Y)E vpaddw ymm1, ymm1, ymm7 ; ymm1=(CrO * FIX(1.40200))=(R-Y)O vmovdqa YMMWORD [wk(0)], ymm4 ; wk(0)=(B-Y)E vmovdqa YMMWORD [wk(1)], ymm5 ; wk(1)=(B-Y)O vpunpckhwd ymm4, ymm2, ymm6 vpunpcklwd ymm2, ymm2, ymm6 vpmaddwd ymm2, ymm2, [GOTOFF(eax,PW_MF0344_F0285)] vpmaddwd ymm4, ymm4, [GOTOFF(eax,PW_MF0344_F0285)] vpunpckhwd ymm5, ymm3, ymm7 vpunpcklwd ymm3, ymm3, ymm7 vpmaddwd ymm3, ymm3, [GOTOFF(eax,PW_MF0344_F0285)] vpmaddwd ymm5, ymm5, [GOTOFF(eax,PW_MF0344_F0285)] vpaddd ymm2, ymm2, [GOTOFF(eax,PD_ONEHALF)] vpaddd ymm4, ymm4, [GOTOFF(eax,PD_ONEHALF)] vpsrad ymm2, ymm2, SCALEBITS vpsrad ymm4, ymm4, SCALEBITS vpaddd ymm3, ymm3, [GOTOFF(eax,PD_ONEHALF)] vpaddd ymm5, ymm5, [GOTOFF(eax,PD_ONEHALF)] vpsrad ymm3, ymm3, SCALEBITS vpsrad ymm5, ymm5, SCALEBITS vpackssdw ymm2, ymm2, ymm4 ; ymm2=CbE*-FIX(0.344)+CrE*FIX(0.285) vpackssdw ymm3, ymm3, ymm5 ; ymm3=CbO*-FIX(0.344)+CrO*FIX(0.285) vpsubw ymm2, ymm2, ymm6 ; ymm2=CbE*-FIX(0.344)+CrE*-FIX(0.714)=(G-Y)E vpsubw ymm3, ymm3, ymm7 ; ymm3=CbO*-FIX(0.344)+CrO*-FIX(0.714)=(G-Y)O vmovdqu ymm5, YMMWORD [esi] ; ymm5=Y(0123456789ABCDEFGHIJKLMNOPQRSTUV) vpcmpeqw ymm4, ymm4, ymm4 vpsrlw ymm4, ymm4, BYTE_BIT ; ymm4={0xFF 0x00 0xFF 0x00 ..} vpand ymm4, ymm4, ymm5 ; ymm4=Y(02468ACEGIKMOQSU)=YE vpsrlw ymm5, ymm5, BYTE_BIT ; ymm5=Y(13579BDFHJLNPRTV)=YO vpaddw ymm0, ymm0, ymm4 ; ymm0=((R-Y)E+YE)=RE=R(02468ACEGIKMOQSU) vpaddw ymm1, ymm1, ymm5 ; ymm1=((R-Y)O+YO)=RO=R(13579BDFHJLNPRTV) vpackuswb ymm0, ymm0, ymm0 ; ymm0=R(02468ACE********GIKMOQSU********) vpackuswb ymm1, ymm1, ymm1 ; ymm1=R(13579BDF********HJLNPRTV********) vpaddw ymm2, ymm2, ymm4 ; ymm2=((G-Y)E+YE)=GE=G(02468ACEGIKMOQSU) vpaddw ymm3, ymm3, ymm5 ; ymm3=((G-Y)O+YO)=GO=G(13579BDFHJLNPRTV) vpackuswb ymm2, ymm2, ymm2 ; ymm2=G(02468ACE********GIKMOQSU********) vpackuswb ymm3, ymm3, ymm3 ; ymm3=G(13579BDF********HJLNPRTV********) vpaddw ymm4, ymm4, YMMWORD [wk(0)] ; ymm4=(YE+(B-Y)E)=BE=B(02468ACEGIKMOQSU) vpaddw ymm5, ymm5, YMMWORD [wk(1)] ; ymm5=(YO+(B-Y)O)=BO=B(13579BDFHJLNPRTV) vpackuswb ymm4, ymm4, ymm4 ; ymm4=B(02468ACE********GIKMOQSU********) vpackuswb ymm5, ymm5, ymm5 ; ymm5=B(13579BDF********HJLNPRTV********) %if RGB_PIXELSIZE == 3 ; --------------- ; ymmA=(00 02 04 06 08 0A 0C 0E ** 0G 0I 0K 0M 0O 0Q 0S 0U **) ; ymmB=(01 03 05 07 09 0B 0D 0F ** 0H 0J 0L 0N 0P 0R 0T 0V **) ; ymmC=(10 12 14 16 18 1A 1C 1E ** 1G 1I 1K 1M 1O 1Q 1S 1U **) ; ymmD=(11 13 15 17 19 1B 1D 1F ** 1H 1J 1L 1N 1P 1R 1T 1V **) ; ymmE=(20 22 24 26 28 2A 2C 2E ** 2G 2I 2K 2M 2O 2Q 2S 2U **) ; ymmF=(21 23 25 27 29 2B 2D 2F ** 2H 2J 2L 2N 2P 2R 2T 2V **) ; ymmG=(** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **) ; ymmH=(** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **) vpunpcklbw ymmA, ymmA, ymmC ; ymmA=(00 10 02 12 04 14 06 16 08 18 0A 1A 0C 1C 0E 1E ; 0G 1G 0I 1I 0K 1K 0M 1M 0O 1O 0Q 1Q 0S 1S 0U 1U) vpunpcklbw ymmE, ymmE, ymmB ; ymmE=(20 01 22 03 24 05 26 07 28 09 2A 0B 2C 0D 2E 0F ; 2G 0H 2I 0J 2K 0L 2M 0N 2O 0P 2Q 0R 2S 0T 2U 0V) vpunpcklbw ymmD, ymmD, ymmF ; ymmD=(11 21 13 23 15 25 17 27 19 29 1B 2B 1D 2D 1F 2F ; 1H 2H 1J 2J 1L 2L 1N 2N 1P 2P 1R 2R 1T 2T 1V 2V) vpsrldq ymmH, ymmA, 2 ; ymmH=(02 12 04 14 06 16 08 18 0A 1A 0C 1C 0E 1E 0G 1G ; 0I 1I 0K 1K 0M 1M 0O 1O 0Q 1Q 0S 1S 0U 1U -- --) vpunpckhwd ymmG, ymmA, ymmE ; ymmG=(08 18 28 09 0A 1A 2A 0B 0C 1C 2C 0D 0E 1E 2E 0F ; 0O 1O 2O 0P 0Q 1Q 2Q 0R 0S 1S 2S 0T 0U 1U 2U 0V) vpunpcklwd ymmA, ymmA, ymmE ; ymmA=(00 10 20 01 02 12 22 03 04 14 24 05 06 16 26 07 ; 0G 1G 2G 0H 0I 1I 2I 0J 0K 1K 2K 0L 0M 1M 2M 0N) vpsrldq ymmE, ymmE, 2 ; ymmE=(22 03 24 05 26 07 28 09 2A 0B 2C 0D 2E 0F 2G 0H ; 2I 0J 2K 0L 2M 0N 2O 0P 2Q 0R 2S 0T 2U 0V -- --) vpsrldq ymmB, ymmD, 2 ; ymmB=(13 23 15 25 17 27 19 29 1B 2B 1D 2D 1F 2F 1H 2H ; 1J 2J 1L 2L 1N 2N 1P 2P 1R 2R 1T 2T 1V 2V -- --) vpunpckhwd ymmC, ymmD, ymmH ; ymmC=(19 29 0A 1A 1B 2B 0C 1C 1D 2D 0E 1E 1F 2F 0G 1G ; 1P 2P 0Q 1Q 1R 2R 0S 1S 1T 2T 0U 1U 1V 2V -- --) vpunpcklwd ymmD, ymmD, ymmH ; ymmD=(11 21 02 12 13 23 04 14 15 25 06 16 17 27 08 18 ; 1H 2H 0I 1I 1J 2J 0K 1K 1L 2L 0M 1M 1N 2N 0O 1O) vpunpckhwd ymmF, ymmE, ymmB ; ymmF=(2A 0B 1B 2B 2C 0D 1D 2D 2E 0F 1F 2F 2G 0H 1H 2H ; 2Q 0R 1R 2R 2S 0T 1T 2T 2U 0V 1V 2V -- -- -- --) vpunpcklwd ymmE, ymmE, ymmB ; ymmE=(22 03 13 23 24 05 15 25 26 07 17 27 28 09 19 29 ; 2I 0J 1J 2J 2K 0L 1L 2L 2M 0N 1N 2N 2O 0P 1P 2P) vpshufd ymmH, ymmA, 0x4E ; ymmH=(04 14 24 05 06 16 26 07 00 10 20 01 02 12 22 03 ; 0K 1K 2K 0L 0M 1M 2M 0N 0G 1G 2G 0H 0I 1I 2I 0J) vpunpckldq ymmA, ymmA, ymmD ; ymmA=(00 10 20 01 11 21 02 12 02 12 22 03 13 23 04 14 ; 0G 1G 2G 0H 1H 2H 0I 1I 0I 1I 2I 0J 1J 2J 0K 1K) vpunpckhdq ymmD, ymmD, ymmE ; ymmD=(15 25 06 16 26 07 17 27 17 27 08 18 28 09 19 29 ; 1L 2L 0M 1M 2M 0N 1N 2N 1N 2N 0O 1O 2O 0P 1P 2P) vpunpckldq ymmE, ymmE, ymmH ; ymmE=(22 03 13 23 04 14 24 05 24 05 15 25 06 16 26 07 ; 2I 0J 1J 2J 0K 1K 2K 0L 2K 0L 1L 2L 0M 1M 2M 0N) vpshufd ymmH, ymmG, 0x4E ; ymmH=(0C 1C 2C 0D 0E 1E 2E 0F 08 18 28 09 0A 1A 2A 0B ; 0S 1S 2S 0T 0U 1U 2U 0V 0O 1O 2O 0P 0Q 1Q 2Q 0R) vpunpckldq ymmG, ymmG, ymmC ; ymmG=(08 18 28 09 19 29 0A 1A 0A 1A 2A 0B 1B 2B 0C 1C ; 0O 1O 2O 0P 1P 2P 0Q 1Q 0Q 1Q 2Q 0R 1R 2R 0S 1S) vpunpckhdq ymmC, ymmC, ymmF ; ymmC=(1D 2D 0E 1E 2E 0F 1F 2F 1F 2F 0G 1G 2G 0H 1H 2H ; 1T 2T 0U 1U 2U 0V 1V 2V 1V 2V -- -- -- -- -- --) vpunpckldq ymmF, ymmF, ymmH ; ymmF=(2A 0B 1B 2B 0C 1C 2C 0D 2C 0D 1D 2D 0E 1E 2E 0F ; 2Q 0R 1R 2R 0S 1S 2S 0T 2S 0T 1T 2T 0U 1U 2U 0V) vpunpcklqdq ymmH, ymmA, ymmE ; ymmH=(00 10 20 01 11 21 02 12 22 03 13 23 04 14 24 05 ; 0G 1G 2G 0H 1H 2H 0I 1I 2I 0J 1J 2J 0K 1K 2K 0L) vpunpcklqdq ymmG, ymmD, ymmG ; ymmG=(15 25 06 16 26 07 17 27 08 18 28 09 19 29 0A 1A ; 1L 2L 0M 1M 2M 0N 1N 2N 0O 1O 2O 0P 1P 2P 0Q 1Q) vpunpcklqdq ymmC, ymmF, ymmC ; ymmC=(2A 0B 1B 2B 0C 1C 2C 0D 1D 2D 0E 1E 2E 0F 1F 2F ; 2Q 0R 1R 2R 0S 1S 2S 0T 1T 2T 0U 1U 2U 0V 1V 2V) vperm2i128 ymmA, ymmH, ymmG, 0x20 ; ymmA=(00 10 20 01 11 21 02 12 22 03 13 23 04 14 24 05 ; 15 25 06 16 26 07 17 27 08 18 28 09 19 29 0A 1A) vperm2i128 ymmD, ymmC, ymmH, 0x30 ; ymmD=(2A 0B 1B 2B 0C 1C 2C 0D 1D 2D 0E 1E 2E 0F 1F 2F ; 0G 1G 2G 0H 1H 2H 0I 1I 2I 0J 1J 2J 0K 1K 2K 0L) vperm2i128 ymmF, ymmG, ymmC, 0x31 ; ymmF=(1L 2L 0M 1M 2M 0N 1N 2N 0O 1O 2O 0P 1P 2P 0Q 1Q ; 2Q 0R 1R 2R 0S 1S 2S 0T 1T 2T 0U 1U 2U 0V 1V 2V) cmp ecx, byte SIZEOF_YMMWORD jb short .column_st64 test edi, SIZEOF_YMMWORD-1 jnz short .out1 ; --(aligned)------------------- vmovntdq YMMWORD [edi+0*SIZEOF_YMMWORD], ymmA vmovntdq YMMWORD [edi+1*SIZEOF_YMMWORD], ymmD vmovntdq YMMWORD [edi+2*SIZEOF_YMMWORD], ymmF jmp short .out0 .out1: ; --(unaligned)----------------- vmovdqu YMMWORD [edi+0*SIZEOF_YMMWORD], ymmA vmovdqu YMMWORD [edi+1*SIZEOF_YMMWORD], ymmD vmovdqu YMMWORD [edi+2*SIZEOF_YMMWORD], ymmF .out0: add edi, byte RGB_PIXELSIZE*SIZEOF_YMMWORD ; outptr sub ecx, byte SIZEOF_YMMWORD jz near .nextrow add esi, byte SIZEOF_YMMWORD ; inptr0 add ebx, byte SIZEOF_YMMWORD ; inptr1 add edx, byte SIZEOF_YMMWORD ; inptr2 jmp near .columnloop alignx 16, 7 .column_st64: lea ecx, [ecx+ecx*2] ; imul ecx, RGB_PIXELSIZE cmp ecx, byte 2*SIZEOF_YMMWORD jb short .column_st32 vmovdqu YMMWORD [edi+0*SIZEOF_YMMWORD], ymmA vmovdqu YMMWORD [edi+1*SIZEOF_YMMWORD], ymmD add edi, byte 2*SIZEOF_YMMWORD ; outptr vmovdqa ymmA, ymmF sub ecx, byte 2*SIZEOF_YMMWORD jmp short .column_st31 .column_st32: cmp ecx, byte SIZEOF_YMMWORD jb short .column_st31 vmovdqu YMMWORD [edi+0*SIZEOF_YMMWORD], ymmA add edi, byte SIZEOF_YMMWORD ; outptr vmovdqa ymmA, ymmD sub ecx, byte SIZEOF_YMMWORD jmp short .column_st31 .column_st31: cmp ecx, byte SIZEOF_XMMWORD jb short .column_st15 vmovdqu XMMWORD [edi+0*SIZEOF_XMMWORD], xmmA add edi, byte SIZEOF_XMMWORD ; outptr vperm2i128 ymmA, ymmA, ymmA, 1 sub ecx, byte SIZEOF_XMMWORD .column_st15: ; Store the lower 8 bytes of xmmA to the output when it has enough ; space. cmp ecx, byte SIZEOF_MMWORD jb short .column_st7 vmovq XMM_MMWORD [edi], xmmA add edi, byte SIZEOF_MMWORD sub ecx, byte SIZEOF_MMWORD vpsrldq xmmA, xmmA, SIZEOF_MMWORD .column_st7: ; Store the lower 4 bytes of xmmA to the output when it has enough ; space. cmp ecx, byte SIZEOF_DWORD jb short .column_st3 vmovd XMM_DWORD [edi], xmmA add edi, byte SIZEOF_DWORD sub ecx, byte SIZEOF_DWORD vpsrldq xmmA, xmmA, SIZEOF_DWORD .column_st3: ; Store the lower 2 bytes of eax to the output when it has enough ; space. vmovd eax, xmmA cmp ecx, byte SIZEOF_WORD jb short .column_st1 mov word [edi], ax add edi, byte SIZEOF_WORD sub ecx, byte SIZEOF_WORD shr eax, 16 .column_st1: ; Store the lower 1 byte of eax to the output when it has enough ; space. test ecx, ecx jz short .nextrow mov byte [edi], al %else ; RGB_PIXELSIZE == 4 ; ----------- %ifdef RGBX_FILLER_0XFF vpcmpeqb ymm6, ymm6, ymm6 ; ymm6=XE=X(02468ACE********GIKMOQSU********) vpcmpeqb ymm7, ymm7, ymm7 ; ymm7=XO=X(13579BDF********HJLNPRTV********) %else vpxor ymm6, ymm6, ymm6 ; ymm6=XE=X(02468ACE********GIKMOQSU********) vpxor ymm7, ymm7, ymm7 ; ymm7=XO=X(13579BDF********HJLNPRTV********) %endif ; ymmA=(00 02 04 06 08 0A 0C 0E ** 0G 0I 0K 0M 0O 0Q 0S 0U **) ; ymmB=(01 03 05 07 09 0B 0D 0F ** 0H 0J 0L 0N 0P 0R 0T 0V **) ; ymmC=(10 12 14 16 18 1A 1C 1E ** 1G 1I 1K 1M 1O 1Q 1S 1U **) ; ymmD=(11 13 15 17 19 1B 1D 1F ** 1H 1J 1L 1N 1P 1R 1T 1V **) ; ymmE=(20 22 24 26 28 2A 2C 2E ** 2G 2I 2K 2M 2O 2Q 2S 2U **) ; ymmF=(21 23 25 27 29 2B 2D 2F ** 2H 2J 2L 2N 2P 2R 2T 2V **) ; ymmG=(30 32 34 36 38 3A 3C 3E ** 3G 3I 3K 3M 3O 3Q 3S 3U **) ; ymmH=(31 33 35 37 39 3B 3D 3F ** 3H 3J 3L 3N 3P 3R 3T 3V **) vpunpcklbw ymmA, ymmA, ymmC ; ymmA=(00 10 02 12 04 14 06 16 08 18 0A 1A 0C 1C 0E 1E ; 0G 1G 0I 1I 0K 1K 0M 1M 0O 1O 0Q 1Q 0S 1S 0U 1U) vpunpcklbw ymmE, ymmE, ymmG ; ymmE=(20 30 22 32 24 34 26 36 28 38 2A 3A 2C 3C 2E 3E ; 2G 3G 2I 3I 2K 3K 2M 3M 2O 3O 2Q 3Q 2S 3S 2U 3U) vpunpcklbw ymmB, ymmB, ymmD ; ymmB=(01 11 03 13 05 15 07 17 09 19 0B 1B 0D 1D 0F 1F ; 0H 1H 0J 1J 0L 1L 0N 1N 0P 1P 0R 1R 0T 1T 0V 1V) vpunpcklbw ymmF, ymmF, ymmH ; ymmF=(21 31 23 33 25 35 27 37 29 39 2B 3B 2D 3D 2F 3F ; 2H 3H 2J 3J 2L 3L 2N 3N 2P 3P 2R 3R 2T 3T 2V 3V) vpunpckhwd ymmC, ymmA, ymmE ; ymmC=(08 18 28 38 0A 1A 2A 3A 0C 1C 2C 3C 0E 1E 2E 3E ; 0O 1O 2O 3O 0Q 1Q 2Q 3Q 0S 1S 2S 3S 0U 1U 2U 3U) vpunpcklwd ymmA, ymmA, ymmE ; ymmA=(00 10 20 30 02 12 22 32 04 14 24 34 06 16 26 36 ; 0G 1G 2G 3G 0I 1I 2I 3I 0K 1K 2K 3K 0M 1M 2M 3M) vpunpckhwd ymmG, ymmB, ymmF ; ymmG=(09 19 29 39 0B 1B 2B 3B 0D 1D 2D 3D 0F 1F 2F 3F ; 0P 1P 2P 3P 0R 1R 2R 3R 0T 1T 2T 3T 0V 1V 2V 3V) vpunpcklwd ymmB, ymmB, ymmF ; ymmB=(01 11 21 31 03 13 23 33 05 15 25 35 07 17 27 37 ; 0H 1H 2H 3H 0J 1J 2J 3J 0L 1L 2L 3L 0N 1N 2N 3N) vpunpckhdq ymmE, ymmA, ymmB ; ymmE=(04 14 24 34 05 15 25 35 06 16 26 36 07 17 27 37 ; 0K 1K 2K 3K 0L 1L 2L 3L 0M 1M 2M 3M 0N 1N 2N 3N) vpunpckldq ymmB, ymmA, ymmB ; ymmB=(00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33 ; 0G 1G 2G 3G 0H 1H 2H 3H 0I 1I 2I 3I 0J 1J 2J 3J) vpunpckhdq ymmF, ymmC, ymmG ; ymmF=(0C 1C 2C 3C 0D 1D 2D 3D 0E 1E 2E 3E 0F 1F 2F 3F ; 0S 1S 2S 3S 0T 1T 2T 3T 0U 1U 2U 3U 0V 1V 2V 3V) vpunpckldq ymmG, ymmC, ymmG ; ymmG=(08 18 28 38 09 19 29 39 0A 1A 2A 3A 0B 1B 2B 3B ; 0O 1O 2O 3O 0P 1P 2P 3P 0Q 1Q 2Q 3Q 0R 1R 2R 3R) vperm2i128 ymmA, ymmB, ymmE, 0x20 ; ymmA=(00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33 ; 04 14 24 34 05 15 25 35 06 16 26 36 07 17 27 37) vperm2i128 ymmD, ymmG, ymmF, 0x20 ; ymmD=(08 18 28 38 09 19 29 39 0A 1A 2A 3A 0B 1B 2B 3B ; 0C 1C 2C 3C 0D 1D 2D 3D 0E 1E 2E 3E 0F 1F 2F 3F) vperm2i128 ymmC, ymmB, ymmE, 0x31 ; ymmC=(0G 1G 2G 3G 0H 1H 2H 3H 0I 1I 2I 3I 0J 1J 2J 3J ; 0K 1K 2K 3K 0L 1L 2L 3L 0M 1M 2M 3M 0N 1N 2N 3N) vperm2i128 ymmH, ymmG, ymmF, 0x31 ; ymmH=(0O 1O 2O 3O 0P 1P 2P 3P 0Q 1Q 2Q 3Q 0R 1R 2R 3R ; 0S 1S 2S 3S 0T 1T 2T 3T 0U 1U 2U 3U 0V 1V 2V 3V) cmp ecx, byte SIZEOF_YMMWORD jb short .column_st64 test edi, SIZEOF_YMMWORD-1 jnz short .out1 ; --(aligned)------------------- vmovntdq YMMWORD [edi+0*SIZEOF_YMMWORD], ymmA vmovntdq YMMWORD [edi+1*SIZEOF_YMMWORD], ymmD vmovntdq YMMWORD [edi+2*SIZEOF_YMMWORD], ymmC vmovntdq YMMWORD [edi+3*SIZEOF_YMMWORD], ymmH jmp short .out0 .out1: ; --(unaligned)----------------- vmovdqu YMMWORD [edi+0*SIZEOF_YMMWORD], ymmA vmovdqu YMMWORD [edi+1*SIZEOF_YMMWORD], ymmD vmovdqu YMMWORD [edi+2*SIZEOF_YMMWORD], ymmC vmovdqu YMMWORD [edi+3*SIZEOF_YMMWORD], ymmH .out0: add edi, RGB_PIXELSIZE*SIZEOF_YMMWORD ; outptr sub ecx, byte SIZEOF_YMMWORD jz near .nextrow add esi, byte SIZEOF_YMMWORD ; inptr0 add ebx, byte SIZEOF_YMMWORD ; inptr1 add edx, byte SIZEOF_YMMWORD ; inptr2 jmp near .columnloop alignx 16, 7 .column_st64: cmp ecx, byte SIZEOF_YMMWORD/2 jb short .column_st32 vmovdqu YMMWORD [edi+0*SIZEOF_YMMWORD], ymmA vmovdqu YMMWORD [edi+1*SIZEOF_YMMWORD], ymmD add edi, byte 2*SIZEOF_YMMWORD ; outptr vmovdqa ymmA, ymmC vmovdqa ymmD, ymmH sub ecx, byte SIZEOF_YMMWORD/2 .column_st32: cmp ecx, byte SIZEOF_YMMWORD/4 jb short .column_st16 vmovdqu YMMWORD [edi+0*SIZEOF_YMMWORD], ymmA add edi, byte SIZEOF_YMMWORD ; outptr vmovdqa ymmA, ymmD sub ecx, byte SIZEOF_YMMWORD/4 .column_st16: cmp ecx, byte SIZEOF_YMMWORD/8 jb short .column_st15 vmovdqu XMMWORD [edi+0*SIZEOF_XMMWORD], xmmA vperm2i128 ymmA, ymmA, ymmA, 1 add edi, byte SIZEOF_XMMWORD ; outptr sub ecx, byte SIZEOF_YMMWORD/8 .column_st15: ; Store two pixels (8 bytes) of ymmA to the output when it has enough ; space. cmp ecx, byte SIZEOF_YMMWORD/16 jb short .column_st7 vmovq MMWORD [edi], xmmA add edi, byte SIZEOF_YMMWORD/16*4 sub ecx, byte SIZEOF_YMMWORD/16 vpsrldq xmmA, SIZEOF_YMMWORD/16*4 .column_st7: ; Store one pixel (4 bytes) of ymmA to the output when it has enough ; space. test ecx, ecx jz short .nextrow vmovd XMM_DWORD [edi], xmmA %endif ; RGB_PIXELSIZE ; --------------- alignx 16, 7 .nextrow: pop ecx pop esi pop ebx pop edx pop edi pop eax add esi, byte SIZEOF_JSAMPROW add ebx, byte SIZEOF_JSAMPROW add edx, byte SIZEOF_JSAMPROW add edi, byte SIZEOF_JSAMPROW ; output_buf dec eax ; num_rows jg near .rowloop sfence ; flush the write buffer .return: vzeroupper pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx mov esp, ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/i386/jdcolext-mmx.asm000066400000000000000000000364431436506551100210460ustar00rootroot00000000000000; ; jdcolext.asm - colorspace conversion (MMX) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2016, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jcolsamp.inc" ; -------------------------------------------------------------------------- ; ; Convert some rows of samples to the output colorspace. ; ; GLOBAL(void) ; jsimd_ycc_rgb_convert_mmx(JDIMENSION out_width, JSAMPIMAGE input_buf, ; JDIMENSION input_row, JSAMPARRAY output_buf, ; int num_rows) ; %define out_width(b) (b) + 8 ; JDIMENSION out_width %define input_buf(b) (b) + 12 ; JSAMPIMAGE input_buf %define input_row(b) (b) + 16 ; JDIMENSION input_row %define output_buf(b) (b) + 20 ; JSAMPARRAY output_buf %define num_rows(b) (b) + 24 ; int num_rows %define original_ebp ebp + 0 %define wk(i) ebp - (WK_NUM - (i)) * SIZEOF_MMWORD ; mmword wk[WK_NUM] %define WK_NUM 2 %define gotptr wk(0) - SIZEOF_POINTER ; void * gotptr align 32 GLOBAL_FUNCTION(jsimd_ycc_rgb_convert_mmx) EXTN(jsimd_ycc_rgb_convert_mmx): push ebp mov eax, esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_MMWORD) ; align to 64 bits mov [esp], eax mov ebp, esp ; ebp = aligned ebp lea esp, [wk(0)] pushpic eax ; make a room for GOT address push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address movpic POINTER [gotptr], ebx ; save GOT address mov ecx, JDIMENSION [out_width(eax)] ; num_cols test ecx, ecx jz near .return push ecx mov edi, JSAMPIMAGE [input_buf(eax)] mov ecx, JDIMENSION [input_row(eax)] mov esi, JSAMPARRAY [edi+0*SIZEOF_JSAMPARRAY] mov ebx, JSAMPARRAY [edi+1*SIZEOF_JSAMPARRAY] mov edx, JSAMPARRAY [edi+2*SIZEOF_JSAMPARRAY] lea esi, [esi+ecx*SIZEOF_JSAMPROW] lea ebx, [ebx+ecx*SIZEOF_JSAMPROW] lea edx, [edx+ecx*SIZEOF_JSAMPROW] pop ecx mov edi, JSAMPARRAY [output_buf(eax)] mov eax, INT [num_rows(eax)] test eax, eax jle near .return alignx 16, 7 .rowloop: push eax push edi push edx push ebx push esi push ecx ; col mov esi, JSAMPROW [esi] ; inptr0 mov ebx, JSAMPROW [ebx] ; inptr1 mov edx, JSAMPROW [edx] ; inptr2 mov edi, JSAMPROW [edi] ; outptr movpic eax, POINTER [gotptr] ; load GOT address (eax) alignx 16, 7 .columnloop: movq mm5, MMWORD [ebx] ; mm5=Cb(01234567) movq mm1, MMWORD [edx] ; mm1=Cr(01234567) pcmpeqw mm4, mm4 pcmpeqw mm7, mm7 psrlw mm4, BYTE_BIT psllw mm7, 7 ; mm7={0xFF80 0xFF80 0xFF80 0xFF80} movq mm0, mm4 ; mm0=mm4={0xFF 0x00 0xFF 0x00 ..} pand mm4, mm5 ; mm4=Cb(0246)=CbE psrlw mm5, BYTE_BIT ; mm5=Cb(1357)=CbO pand mm0, mm1 ; mm0=Cr(0246)=CrE psrlw mm1, BYTE_BIT ; mm1=Cr(1357)=CrO paddw mm4, mm7 paddw mm5, mm7 paddw mm0, mm7 paddw mm1, mm7 ; (Original) ; R = Y + 1.40200 * Cr ; G = Y - 0.34414 * Cb - 0.71414 * Cr ; B = Y + 1.77200 * Cb ; ; (This implementation) ; R = Y + 0.40200 * Cr + Cr ; G = Y - 0.34414 * Cb + 0.28586 * Cr - Cr ; B = Y - 0.22800 * Cb + Cb + Cb movq mm2, mm4 ; mm2=CbE movq mm3, mm5 ; mm3=CbO paddw mm4, mm4 ; mm4=2*CbE paddw mm5, mm5 ; mm5=2*CbO movq mm6, mm0 ; mm6=CrE movq mm7, mm1 ; mm7=CrO paddw mm0, mm0 ; mm0=2*CrE paddw mm1, mm1 ; mm1=2*CrO pmulhw mm4, [GOTOFF(eax,PW_MF0228)] ; mm4=(2*CbE * -FIX(0.22800)) pmulhw mm5, [GOTOFF(eax,PW_MF0228)] ; mm5=(2*CbO * -FIX(0.22800)) pmulhw mm0, [GOTOFF(eax,PW_F0402)] ; mm0=(2*CrE * FIX(0.40200)) pmulhw mm1, [GOTOFF(eax,PW_F0402)] ; mm1=(2*CrO * FIX(0.40200)) paddw mm4, [GOTOFF(eax,PW_ONE)] paddw mm5, [GOTOFF(eax,PW_ONE)] psraw mm4, 1 ; mm4=(CbE * -FIX(0.22800)) psraw mm5, 1 ; mm5=(CbO * -FIX(0.22800)) paddw mm0, [GOTOFF(eax,PW_ONE)] paddw mm1, [GOTOFF(eax,PW_ONE)] psraw mm0, 1 ; mm0=(CrE * FIX(0.40200)) psraw mm1, 1 ; mm1=(CrO * FIX(0.40200)) paddw mm4, mm2 paddw mm5, mm3 paddw mm4, mm2 ; mm4=(CbE * FIX(1.77200))=(B-Y)E paddw mm5, mm3 ; mm5=(CbO * FIX(1.77200))=(B-Y)O paddw mm0, mm6 ; mm0=(CrE * FIX(1.40200))=(R-Y)E paddw mm1, mm7 ; mm1=(CrO * FIX(1.40200))=(R-Y)O movq MMWORD [wk(0)], mm4 ; wk(0)=(B-Y)E movq MMWORD [wk(1)], mm5 ; wk(1)=(B-Y)O movq mm4, mm2 movq mm5, mm3 punpcklwd mm2, mm6 punpckhwd mm4, mm6 pmaddwd mm2, [GOTOFF(eax,PW_MF0344_F0285)] pmaddwd mm4, [GOTOFF(eax,PW_MF0344_F0285)] punpcklwd mm3, mm7 punpckhwd mm5, mm7 pmaddwd mm3, [GOTOFF(eax,PW_MF0344_F0285)] pmaddwd mm5, [GOTOFF(eax,PW_MF0344_F0285)] paddd mm2, [GOTOFF(eax,PD_ONEHALF)] paddd mm4, [GOTOFF(eax,PD_ONEHALF)] psrad mm2, SCALEBITS psrad mm4, SCALEBITS paddd mm3, [GOTOFF(eax,PD_ONEHALF)] paddd mm5, [GOTOFF(eax,PD_ONEHALF)] psrad mm3, SCALEBITS psrad mm5, SCALEBITS packssdw mm2, mm4 ; mm2=CbE*-FIX(0.344)+CrE*FIX(0.285) packssdw mm3, mm5 ; mm3=CbO*-FIX(0.344)+CrO*FIX(0.285) psubw mm2, mm6 ; mm2=CbE*-FIX(0.344)+CrE*-FIX(0.714)=(G-Y)E psubw mm3, mm7 ; mm3=CbO*-FIX(0.344)+CrO*-FIX(0.714)=(G-Y)O movq mm5, MMWORD [esi] ; mm5=Y(01234567) pcmpeqw mm4, mm4 psrlw mm4, BYTE_BIT ; mm4={0xFF 0x00 0xFF 0x00 ..} pand mm4, mm5 ; mm4=Y(0246)=YE psrlw mm5, BYTE_BIT ; mm5=Y(1357)=YO paddw mm0, mm4 ; mm0=((R-Y)E+YE)=RE=(R0 R2 R4 R6) paddw mm1, mm5 ; mm1=((R-Y)O+YO)=RO=(R1 R3 R5 R7) packuswb mm0, mm0 ; mm0=(R0 R2 R4 R6 ** ** ** **) packuswb mm1, mm1 ; mm1=(R1 R3 R5 R7 ** ** ** **) paddw mm2, mm4 ; mm2=((G-Y)E+YE)=GE=(G0 G2 G4 G6) paddw mm3, mm5 ; mm3=((G-Y)O+YO)=GO=(G1 G3 G5 G7) packuswb mm2, mm2 ; mm2=(G0 G2 G4 G6 ** ** ** **) packuswb mm3, mm3 ; mm3=(G1 G3 G5 G7 ** ** ** **) paddw mm4, MMWORD [wk(0)] ; mm4=(YE+(B-Y)E)=BE=(B0 B2 B4 B6) paddw mm5, MMWORD [wk(1)] ; mm5=(YO+(B-Y)O)=BO=(B1 B3 B5 B7) packuswb mm4, mm4 ; mm4=(B0 B2 B4 B6 ** ** ** **) packuswb mm5, mm5 ; mm5=(B1 B3 B5 B7 ** ** ** **) %if RGB_PIXELSIZE == 3 ; --------------- ; mmA=(00 02 04 06 ** ** ** **), mmB=(01 03 05 07 ** ** ** **) ; mmC=(10 12 14 16 ** ** ** **), mmD=(11 13 15 17 ** ** ** **) ; mmE=(20 22 24 26 ** ** ** **), mmF=(21 23 25 27 ** ** ** **) ; mmG=(** ** ** ** ** ** ** **), mmH=(** ** ** ** ** ** ** **) punpcklbw mmA, mmC ; mmA=(00 10 02 12 04 14 06 16) punpcklbw mmE, mmB ; mmE=(20 01 22 03 24 05 26 07) punpcklbw mmD, mmF ; mmD=(11 21 13 23 15 25 17 27) movq mmG, mmA movq mmH, mmA punpcklwd mmA, mmE ; mmA=(00 10 20 01 02 12 22 03) punpckhwd mmG, mmE ; mmG=(04 14 24 05 06 16 26 07) psrlq mmH, 2*BYTE_BIT ; mmH=(02 12 04 14 06 16 -- --) psrlq mmE, 2*BYTE_BIT ; mmE=(22 03 24 05 26 07 -- --) movq mmC, mmD movq mmB, mmD punpcklwd mmD, mmH ; mmD=(11 21 02 12 13 23 04 14) punpckhwd mmC, mmH ; mmC=(15 25 06 16 17 27 -- --) psrlq mmB, 2*BYTE_BIT ; mmB=(13 23 15 25 17 27 -- --) movq mmF, mmE punpcklwd mmE, mmB ; mmE=(22 03 13 23 24 05 15 25) punpckhwd mmF, mmB ; mmF=(26 07 17 27 -- -- -- --) punpckldq mmA, mmD ; mmA=(00 10 20 01 11 21 02 12) punpckldq mmE, mmG ; mmE=(22 03 13 23 04 14 24 05) punpckldq mmC, mmF ; mmC=(15 25 06 16 26 07 17 27) cmp ecx, byte SIZEOF_MMWORD jb short .column_st16 movq MMWORD [edi+0*SIZEOF_MMWORD], mmA movq MMWORD [edi+1*SIZEOF_MMWORD], mmE movq MMWORD [edi+2*SIZEOF_MMWORD], mmC sub ecx, byte SIZEOF_MMWORD jz short .nextrow add esi, byte SIZEOF_MMWORD ; inptr0 add ebx, byte SIZEOF_MMWORD ; inptr1 add edx, byte SIZEOF_MMWORD ; inptr2 add edi, byte RGB_PIXELSIZE*SIZEOF_MMWORD ; outptr jmp near .columnloop alignx 16, 7 .column_st16: lea ecx, [ecx+ecx*2] ; imul ecx, RGB_PIXELSIZE cmp ecx, byte 2*SIZEOF_MMWORD jb short .column_st8 movq MMWORD [edi+0*SIZEOF_MMWORD], mmA movq MMWORD [edi+1*SIZEOF_MMWORD], mmE movq mmA, mmC sub ecx, byte 2*SIZEOF_MMWORD add edi, byte 2*SIZEOF_MMWORD jmp short .column_st4 .column_st8: cmp ecx, byte SIZEOF_MMWORD jb short .column_st4 movq MMWORD [edi+0*SIZEOF_MMWORD], mmA movq mmA, mmE sub ecx, byte SIZEOF_MMWORD add edi, byte SIZEOF_MMWORD .column_st4: movd eax, mmA cmp ecx, byte SIZEOF_DWORD jb short .column_st2 mov dword [edi+0*SIZEOF_DWORD], eax psrlq mmA, DWORD_BIT movd eax, mmA sub ecx, byte SIZEOF_DWORD add edi, byte SIZEOF_DWORD .column_st2: cmp ecx, byte SIZEOF_WORD jb short .column_st1 mov word [edi+0*SIZEOF_WORD], ax shr eax, WORD_BIT sub ecx, byte SIZEOF_WORD add edi, byte SIZEOF_WORD .column_st1: cmp ecx, byte SIZEOF_BYTE jb short .nextrow mov byte [edi+0*SIZEOF_BYTE], al %else ; RGB_PIXELSIZE == 4 ; ----------- %ifdef RGBX_FILLER_0XFF pcmpeqb mm6, mm6 ; mm6=(X0 X2 X4 X6 ** ** ** **) pcmpeqb mm7, mm7 ; mm7=(X1 X3 X5 X7 ** ** ** **) %else pxor mm6, mm6 ; mm6=(X0 X2 X4 X6 ** ** ** **) pxor mm7, mm7 ; mm7=(X1 X3 X5 X7 ** ** ** **) %endif ; mmA=(00 02 04 06 ** ** ** **), mmB=(01 03 05 07 ** ** ** **) ; mmC=(10 12 14 16 ** ** ** **), mmD=(11 13 15 17 ** ** ** **) ; mmE=(20 22 24 26 ** ** ** **), mmF=(21 23 25 27 ** ** ** **) ; mmG=(30 32 34 36 ** ** ** **), mmH=(31 33 35 37 ** ** ** **) punpcklbw mmA, mmC ; mmA=(00 10 02 12 04 14 06 16) punpcklbw mmE, mmG ; mmE=(20 30 22 32 24 34 26 36) punpcklbw mmB, mmD ; mmB=(01 11 03 13 05 15 07 17) punpcklbw mmF, mmH ; mmF=(21 31 23 33 25 35 27 37) movq mmC, mmA punpcklwd mmA, mmE ; mmA=(00 10 20 30 02 12 22 32) punpckhwd mmC, mmE ; mmC=(04 14 24 34 06 16 26 36) movq mmG, mmB punpcklwd mmB, mmF ; mmB=(01 11 21 31 03 13 23 33) punpckhwd mmG, mmF ; mmG=(05 15 25 35 07 17 27 37) movq mmD, mmA punpckldq mmA, mmB ; mmA=(00 10 20 30 01 11 21 31) punpckhdq mmD, mmB ; mmD=(02 12 22 32 03 13 23 33) movq mmH, mmC punpckldq mmC, mmG ; mmC=(04 14 24 34 05 15 25 35) punpckhdq mmH, mmG ; mmH=(06 16 26 36 07 17 27 37) cmp ecx, byte SIZEOF_MMWORD jb short .column_st16 movq MMWORD [edi+0*SIZEOF_MMWORD], mmA movq MMWORD [edi+1*SIZEOF_MMWORD], mmD movq MMWORD [edi+2*SIZEOF_MMWORD], mmC movq MMWORD [edi+3*SIZEOF_MMWORD], mmH sub ecx, byte SIZEOF_MMWORD jz short .nextrow add esi, byte SIZEOF_MMWORD ; inptr0 add ebx, byte SIZEOF_MMWORD ; inptr1 add edx, byte SIZEOF_MMWORD ; inptr2 add edi, byte RGB_PIXELSIZE*SIZEOF_MMWORD ; outptr jmp near .columnloop alignx 16, 7 .column_st16: cmp ecx, byte SIZEOF_MMWORD/2 jb short .column_st8 movq MMWORD [edi+0*SIZEOF_MMWORD], mmA movq MMWORD [edi+1*SIZEOF_MMWORD], mmD movq mmA, mmC movq mmD, mmH sub ecx, byte SIZEOF_MMWORD/2 add edi, byte 2*SIZEOF_MMWORD .column_st8: cmp ecx, byte SIZEOF_MMWORD/4 jb short .column_st4 movq MMWORD [edi+0*SIZEOF_MMWORD], mmA movq mmA, mmD sub ecx, byte SIZEOF_MMWORD/4 add edi, byte 1*SIZEOF_MMWORD .column_st4: cmp ecx, byte SIZEOF_MMWORD/8 jb short .nextrow movd dword [edi+0*SIZEOF_DWORD], mmA %endif ; RGB_PIXELSIZE ; --------------- alignx 16, 7 .nextrow: pop ecx pop esi pop ebx pop edx pop edi pop eax add esi, byte SIZEOF_JSAMPROW add ebx, byte SIZEOF_JSAMPROW add edx, byte SIZEOF_JSAMPROW add edi, byte SIZEOF_JSAMPROW ; output_buf dec eax ; num_rows jg near .rowloop emms ; empty MMX state .return: pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx mov esp, ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/i386/jdcolext-sse2.asm000066400000000000000000000444771436506551100211270ustar00rootroot00000000000000; ; jdcolext.asm - colorspace conversion (SSE2) ; ; Copyright 2009, 2012 Pierre Ossman for Cendio AB ; Copyright (C) 2012, 2016, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jcolsamp.inc" ; -------------------------------------------------------------------------- ; ; Convert some rows of samples to the output colorspace. ; ; GLOBAL(void) ; jsimd_ycc_rgb_convert_sse2(JDIMENSION out_width, JSAMPIMAGE input_buf, ; JDIMENSION input_row, JSAMPARRAY output_buf, ; int num_rows) ; %define out_width(b) (b) + 8 ; JDIMENSION out_width %define input_buf(b) (b) + 12 ; JSAMPIMAGE input_buf %define input_row(b) (b) + 16 ; JDIMENSION input_row %define output_buf(b) (b) + 20 ; JSAMPARRAY output_buf %define num_rows(b) (b) + 24 ; int num_rows %define original_ebp ebp + 0 %define wk(i) ebp - (WK_NUM - (i)) * SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 2 %define gotptr wk(0) - SIZEOF_POINTER ; void * gotptr align 32 GLOBAL_FUNCTION(jsimd_ycc_rgb_convert_sse2) EXTN(jsimd_ycc_rgb_convert_sse2): push ebp mov eax, esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [esp], eax mov ebp, esp ; ebp = aligned ebp lea esp, [wk(0)] pushpic eax ; make a room for GOT address push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address movpic POINTER [gotptr], ebx ; save GOT address mov ecx, JDIMENSION [out_width(eax)] ; num_cols test ecx, ecx jz near .return push ecx mov edi, JSAMPIMAGE [input_buf(eax)] mov ecx, JDIMENSION [input_row(eax)] mov esi, JSAMPARRAY [edi+0*SIZEOF_JSAMPARRAY] mov ebx, JSAMPARRAY [edi+1*SIZEOF_JSAMPARRAY] mov edx, JSAMPARRAY [edi+2*SIZEOF_JSAMPARRAY] lea esi, [esi+ecx*SIZEOF_JSAMPROW] lea ebx, [ebx+ecx*SIZEOF_JSAMPROW] lea edx, [edx+ecx*SIZEOF_JSAMPROW] pop ecx mov edi, JSAMPARRAY [output_buf(eax)] mov eax, INT [num_rows(eax)] test eax, eax jle near .return alignx 16, 7 .rowloop: push eax push edi push edx push ebx push esi push ecx ; col mov esi, JSAMPROW [esi] ; inptr0 mov ebx, JSAMPROW [ebx] ; inptr1 mov edx, JSAMPROW [edx] ; inptr2 mov edi, JSAMPROW [edi] ; outptr movpic eax, POINTER [gotptr] ; load GOT address (eax) alignx 16, 7 .columnloop: movdqa xmm5, XMMWORD [ebx] ; xmm5=Cb(0123456789ABCDEF) movdqa xmm1, XMMWORD [edx] ; xmm1=Cr(0123456789ABCDEF) pcmpeqw xmm4, xmm4 pcmpeqw xmm7, xmm7 psrlw xmm4, BYTE_BIT psllw xmm7, 7 ; xmm7={0xFF80 0xFF80 0xFF80 0xFF80 ..} movdqa xmm0, xmm4 ; xmm0=xmm4={0xFF 0x00 0xFF 0x00 ..} pand xmm4, xmm5 ; xmm4=Cb(02468ACE)=CbE psrlw xmm5, BYTE_BIT ; xmm5=Cb(13579BDF)=CbO pand xmm0, xmm1 ; xmm0=Cr(02468ACE)=CrE psrlw xmm1, BYTE_BIT ; xmm1=Cr(13579BDF)=CrO paddw xmm4, xmm7 paddw xmm5, xmm7 paddw xmm0, xmm7 paddw xmm1, xmm7 ; (Original) ; R = Y + 1.40200 * Cr ; G = Y - 0.34414 * Cb - 0.71414 * Cr ; B = Y + 1.77200 * Cb ; ; (This implementation) ; R = Y + 0.40200 * Cr + Cr ; G = Y - 0.34414 * Cb + 0.28586 * Cr - Cr ; B = Y - 0.22800 * Cb + Cb + Cb movdqa xmm2, xmm4 ; xmm2=CbE movdqa xmm3, xmm5 ; xmm3=CbO paddw xmm4, xmm4 ; xmm4=2*CbE paddw xmm5, xmm5 ; xmm5=2*CbO movdqa xmm6, xmm0 ; xmm6=CrE movdqa xmm7, xmm1 ; xmm7=CrO paddw xmm0, xmm0 ; xmm0=2*CrE paddw xmm1, xmm1 ; xmm1=2*CrO pmulhw xmm4, [GOTOFF(eax,PW_MF0228)] ; xmm4=(2*CbE * -FIX(0.22800)) pmulhw xmm5, [GOTOFF(eax,PW_MF0228)] ; xmm5=(2*CbO * -FIX(0.22800)) pmulhw xmm0, [GOTOFF(eax,PW_F0402)] ; xmm0=(2*CrE * FIX(0.40200)) pmulhw xmm1, [GOTOFF(eax,PW_F0402)] ; xmm1=(2*CrO * FIX(0.40200)) paddw xmm4, [GOTOFF(eax,PW_ONE)] paddw xmm5, [GOTOFF(eax,PW_ONE)] psraw xmm4, 1 ; xmm4=(CbE * -FIX(0.22800)) psraw xmm5, 1 ; xmm5=(CbO * -FIX(0.22800)) paddw xmm0, [GOTOFF(eax,PW_ONE)] paddw xmm1, [GOTOFF(eax,PW_ONE)] psraw xmm0, 1 ; xmm0=(CrE * FIX(0.40200)) psraw xmm1, 1 ; xmm1=(CrO * FIX(0.40200)) paddw xmm4, xmm2 paddw xmm5, xmm3 paddw xmm4, xmm2 ; xmm4=(CbE * FIX(1.77200))=(B-Y)E paddw xmm5, xmm3 ; xmm5=(CbO * FIX(1.77200))=(B-Y)O paddw xmm0, xmm6 ; xmm0=(CrE * FIX(1.40200))=(R-Y)E paddw xmm1, xmm7 ; xmm1=(CrO * FIX(1.40200))=(R-Y)O movdqa XMMWORD [wk(0)], xmm4 ; wk(0)=(B-Y)E movdqa XMMWORD [wk(1)], xmm5 ; wk(1)=(B-Y)O movdqa xmm4, xmm2 movdqa xmm5, xmm3 punpcklwd xmm2, xmm6 punpckhwd xmm4, xmm6 pmaddwd xmm2, [GOTOFF(eax,PW_MF0344_F0285)] pmaddwd xmm4, [GOTOFF(eax,PW_MF0344_F0285)] punpcklwd xmm3, xmm7 punpckhwd xmm5, xmm7 pmaddwd xmm3, [GOTOFF(eax,PW_MF0344_F0285)] pmaddwd xmm5, [GOTOFF(eax,PW_MF0344_F0285)] paddd xmm2, [GOTOFF(eax,PD_ONEHALF)] paddd xmm4, [GOTOFF(eax,PD_ONEHALF)] psrad xmm2, SCALEBITS psrad xmm4, SCALEBITS paddd xmm3, [GOTOFF(eax,PD_ONEHALF)] paddd xmm5, [GOTOFF(eax,PD_ONEHALF)] psrad xmm3, SCALEBITS psrad xmm5, SCALEBITS packssdw xmm2, xmm4 ; xmm2=CbE*-FIX(0.344)+CrE*FIX(0.285) packssdw xmm3, xmm5 ; xmm3=CbO*-FIX(0.344)+CrO*FIX(0.285) psubw xmm2, xmm6 ; xmm2=CbE*-FIX(0.344)+CrE*-FIX(0.714)=(G-Y)E psubw xmm3, xmm7 ; xmm3=CbO*-FIX(0.344)+CrO*-FIX(0.714)=(G-Y)O movdqa xmm5, XMMWORD [esi] ; xmm5=Y(0123456789ABCDEF) pcmpeqw xmm4, xmm4 psrlw xmm4, BYTE_BIT ; xmm4={0xFF 0x00 0xFF 0x00 ..} pand xmm4, xmm5 ; xmm4=Y(02468ACE)=YE psrlw xmm5, BYTE_BIT ; xmm5=Y(13579BDF)=YO paddw xmm0, xmm4 ; xmm0=((R-Y)E+YE)=RE=R(02468ACE) paddw xmm1, xmm5 ; xmm1=((R-Y)O+YO)=RO=R(13579BDF) packuswb xmm0, xmm0 ; xmm0=R(02468ACE********) packuswb xmm1, xmm1 ; xmm1=R(13579BDF********) paddw xmm2, xmm4 ; xmm2=((G-Y)E+YE)=GE=G(02468ACE) paddw xmm3, xmm5 ; xmm3=((G-Y)O+YO)=GO=G(13579BDF) packuswb xmm2, xmm2 ; xmm2=G(02468ACE********) packuswb xmm3, xmm3 ; xmm3=G(13579BDF********) paddw xmm4, XMMWORD [wk(0)] ; xmm4=(YE+(B-Y)E)=BE=B(02468ACE) paddw xmm5, XMMWORD [wk(1)] ; xmm5=(YO+(B-Y)O)=BO=B(13579BDF) packuswb xmm4, xmm4 ; xmm4=B(02468ACE********) packuswb xmm5, xmm5 ; xmm5=B(13579BDF********) %if RGB_PIXELSIZE == 3 ; --------------- ; xmmA=(00 02 04 06 08 0A 0C 0E **), xmmB=(01 03 05 07 09 0B 0D 0F **) ; xmmC=(10 12 14 16 18 1A 1C 1E **), xmmD=(11 13 15 17 19 1B 1D 1F **) ; xmmE=(20 22 24 26 28 2A 2C 2E **), xmmF=(21 23 25 27 29 2B 2D 2F **) ; xmmG=(** ** ** ** ** ** ** ** **), xmmH=(** ** ** ** ** ** ** ** **) punpcklbw xmmA, xmmC ; xmmA=(00 10 02 12 04 14 06 16 08 18 0A 1A 0C 1C 0E 1E) punpcklbw xmmE, xmmB ; xmmE=(20 01 22 03 24 05 26 07 28 09 2A 0B 2C 0D 2E 0F) punpcklbw xmmD, xmmF ; xmmD=(11 21 13 23 15 25 17 27 19 29 1B 2B 1D 2D 1F 2F) movdqa xmmG, xmmA movdqa xmmH, xmmA punpcklwd xmmA, xmmE ; xmmA=(00 10 20 01 02 12 22 03 04 14 24 05 06 16 26 07) punpckhwd xmmG, xmmE ; xmmG=(08 18 28 09 0A 1A 2A 0B 0C 1C 2C 0D 0E 1E 2E 0F) psrldq xmmH, 2 ; xmmH=(02 12 04 14 06 16 08 18 0A 1A 0C 1C 0E 1E -- --) psrldq xmmE, 2 ; xmmE=(22 03 24 05 26 07 28 09 2A 0B 2C 0D 2E 0F -- --) movdqa xmmC, xmmD movdqa xmmB, xmmD punpcklwd xmmD, xmmH ; xmmD=(11 21 02 12 13 23 04 14 15 25 06 16 17 27 08 18) punpckhwd xmmC, xmmH ; xmmC=(19 29 0A 1A 1B 2B 0C 1C 1D 2D 0E 1E 1F 2F -- --) psrldq xmmB, 2 ; xmmB=(13 23 15 25 17 27 19 29 1B 2B 1D 2D 1F 2F -- --) movdqa xmmF, xmmE punpcklwd xmmE, xmmB ; xmmE=(22 03 13 23 24 05 15 25 26 07 17 27 28 09 19 29) punpckhwd xmmF, xmmB ; xmmF=(2A 0B 1B 2B 2C 0D 1D 2D 2E 0F 1F 2F -- -- -- --) pshufd xmmH, xmmA, 0x4E ; xmmH=(04 14 24 05 06 16 26 07 00 10 20 01 02 12 22 03) movdqa xmmB, xmmE punpckldq xmmA, xmmD ; xmmA=(00 10 20 01 11 21 02 12 02 12 22 03 13 23 04 14) punpckldq xmmE, xmmH ; xmmE=(22 03 13 23 04 14 24 05 24 05 15 25 06 16 26 07) punpckhdq xmmD, xmmB ; xmmD=(15 25 06 16 26 07 17 27 17 27 08 18 28 09 19 29) pshufd xmmH, xmmG, 0x4E ; xmmH=(0C 1C 2C 0D 0E 1E 2E 0F 08 18 28 09 0A 1A 2A 0B) movdqa xmmB, xmmF punpckldq xmmG, xmmC ; xmmG=(08 18 28 09 19 29 0A 1A 0A 1A 2A 0B 1B 2B 0C 1C) punpckldq xmmF, xmmH ; xmmF=(2A 0B 1B 2B 0C 1C 2C 0D 2C 0D 1D 2D 0E 1E 2E 0F) punpckhdq xmmC, xmmB ; xmmC=(1D 2D 0E 1E 2E 0F 1F 2F 1F 2F -- -- -- -- -- --) punpcklqdq xmmA, xmmE ; xmmA=(00 10 20 01 11 21 02 12 22 03 13 23 04 14 24 05) punpcklqdq xmmD, xmmG ; xmmD=(15 25 06 16 26 07 17 27 08 18 28 09 19 29 0A 1A) punpcklqdq xmmF, xmmC ; xmmF=(2A 0B 1B 2B 0C 1C 2C 0D 1D 2D 0E 1E 2E 0F 1F 2F) cmp ecx, byte SIZEOF_XMMWORD jb short .column_st32 test edi, SIZEOF_XMMWORD-1 jnz short .out1 ; --(aligned)------------------- movntdq XMMWORD [edi+0*SIZEOF_XMMWORD], xmmA movntdq XMMWORD [edi+1*SIZEOF_XMMWORD], xmmD movntdq XMMWORD [edi+2*SIZEOF_XMMWORD], xmmF jmp short .out0 .out1: ; --(unaligned)----------------- movdqu XMMWORD [edi+0*SIZEOF_XMMWORD], xmmA movdqu XMMWORD [edi+1*SIZEOF_XMMWORD], xmmD movdqu XMMWORD [edi+2*SIZEOF_XMMWORD], xmmF .out0: add edi, byte RGB_PIXELSIZE*SIZEOF_XMMWORD ; outptr sub ecx, byte SIZEOF_XMMWORD jz near .nextrow add esi, byte SIZEOF_XMMWORD ; inptr0 add ebx, byte SIZEOF_XMMWORD ; inptr1 add edx, byte SIZEOF_XMMWORD ; inptr2 jmp near .columnloop alignx 16, 7 .column_st32: lea ecx, [ecx+ecx*2] ; imul ecx, RGB_PIXELSIZE cmp ecx, byte 2*SIZEOF_XMMWORD jb short .column_st16 movdqu XMMWORD [edi+0*SIZEOF_XMMWORD], xmmA movdqu XMMWORD [edi+1*SIZEOF_XMMWORD], xmmD add edi, byte 2*SIZEOF_XMMWORD ; outptr movdqa xmmA, xmmF sub ecx, byte 2*SIZEOF_XMMWORD jmp short .column_st15 .column_st16: cmp ecx, byte SIZEOF_XMMWORD jb short .column_st15 movdqu XMMWORD [edi+0*SIZEOF_XMMWORD], xmmA add edi, byte SIZEOF_XMMWORD ; outptr movdqa xmmA, xmmD sub ecx, byte SIZEOF_XMMWORD .column_st15: ; Store the lower 8 bytes of xmmA to the output when it has enough ; space. cmp ecx, byte SIZEOF_MMWORD jb short .column_st7 movq XMM_MMWORD [edi], xmmA add edi, byte SIZEOF_MMWORD sub ecx, byte SIZEOF_MMWORD psrldq xmmA, SIZEOF_MMWORD .column_st7: ; Store the lower 4 bytes of xmmA to the output when it has enough ; space. cmp ecx, byte SIZEOF_DWORD jb short .column_st3 movd XMM_DWORD [edi], xmmA add edi, byte SIZEOF_DWORD sub ecx, byte SIZEOF_DWORD psrldq xmmA, SIZEOF_DWORD .column_st3: ; Store the lower 2 bytes of eax to the output when it has enough ; space. movd eax, xmmA cmp ecx, byte SIZEOF_WORD jb short .column_st1 mov word [edi], ax add edi, byte SIZEOF_WORD sub ecx, byte SIZEOF_WORD shr eax, 16 .column_st1: ; Store the lower 1 byte of eax to the output when it has enough ; space. test ecx, ecx jz short .nextrow mov byte [edi], al %else ; RGB_PIXELSIZE == 4 ; ----------- %ifdef RGBX_FILLER_0XFF pcmpeqb xmm6, xmm6 ; xmm6=XE=X(02468ACE********) pcmpeqb xmm7, xmm7 ; xmm7=XO=X(13579BDF********) %else pxor xmm6, xmm6 ; xmm6=XE=X(02468ACE********) pxor xmm7, xmm7 ; xmm7=XO=X(13579BDF********) %endif ; xmmA=(00 02 04 06 08 0A 0C 0E **), xmmB=(01 03 05 07 09 0B 0D 0F **) ; xmmC=(10 12 14 16 18 1A 1C 1E **), xmmD=(11 13 15 17 19 1B 1D 1F **) ; xmmE=(20 22 24 26 28 2A 2C 2E **), xmmF=(21 23 25 27 29 2B 2D 2F **) ; xmmG=(30 32 34 36 38 3A 3C 3E **), xmmH=(31 33 35 37 39 3B 3D 3F **) punpcklbw xmmA, xmmC ; xmmA=(00 10 02 12 04 14 06 16 08 18 0A 1A 0C 1C 0E 1E) punpcklbw xmmE, xmmG ; xmmE=(20 30 22 32 24 34 26 36 28 38 2A 3A 2C 3C 2E 3E) punpcklbw xmmB, xmmD ; xmmB=(01 11 03 13 05 15 07 17 09 19 0B 1B 0D 1D 0F 1F) punpcklbw xmmF, xmmH ; xmmF=(21 31 23 33 25 35 27 37 29 39 2B 3B 2D 3D 2F 3F) movdqa xmmC, xmmA punpcklwd xmmA, xmmE ; xmmA=(00 10 20 30 02 12 22 32 04 14 24 34 06 16 26 36) punpckhwd xmmC, xmmE ; xmmC=(08 18 28 38 0A 1A 2A 3A 0C 1C 2C 3C 0E 1E 2E 3E) movdqa xmmG, xmmB punpcklwd xmmB, xmmF ; xmmB=(01 11 21 31 03 13 23 33 05 15 25 35 07 17 27 37) punpckhwd xmmG, xmmF ; xmmG=(09 19 29 39 0B 1B 2B 3B 0D 1D 2D 3D 0F 1F 2F 3F) movdqa xmmD, xmmA punpckldq xmmA, xmmB ; xmmA=(00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33) punpckhdq xmmD, xmmB ; xmmD=(04 14 24 34 05 15 25 35 06 16 26 36 07 17 27 37) movdqa xmmH, xmmC punpckldq xmmC, xmmG ; xmmC=(08 18 28 38 09 19 29 39 0A 1A 2A 3A 0B 1B 2B 3B) punpckhdq xmmH, xmmG ; xmmH=(0C 1C 2C 3C 0D 1D 2D 3D 0E 1E 2E 3E 0F 1F 2F 3F) cmp ecx, byte SIZEOF_XMMWORD jb short .column_st32 test edi, SIZEOF_XMMWORD-1 jnz short .out1 ; --(aligned)------------------- movntdq XMMWORD [edi+0*SIZEOF_XMMWORD], xmmA movntdq XMMWORD [edi+1*SIZEOF_XMMWORD], xmmD movntdq XMMWORD [edi+2*SIZEOF_XMMWORD], xmmC movntdq XMMWORD [edi+3*SIZEOF_XMMWORD], xmmH jmp short .out0 .out1: ; --(unaligned)----------------- movdqu XMMWORD [edi+0*SIZEOF_XMMWORD], xmmA movdqu XMMWORD [edi+1*SIZEOF_XMMWORD], xmmD movdqu XMMWORD [edi+2*SIZEOF_XMMWORD], xmmC movdqu XMMWORD [edi+3*SIZEOF_XMMWORD], xmmH .out0: add edi, byte RGB_PIXELSIZE*SIZEOF_XMMWORD ; outptr sub ecx, byte SIZEOF_XMMWORD jz near .nextrow add esi, byte SIZEOF_XMMWORD ; inptr0 add ebx, byte SIZEOF_XMMWORD ; inptr1 add edx, byte SIZEOF_XMMWORD ; inptr2 jmp near .columnloop alignx 16, 7 .column_st32: cmp ecx, byte SIZEOF_XMMWORD/2 jb short .column_st16 movdqu XMMWORD [edi+0*SIZEOF_XMMWORD], xmmA movdqu XMMWORD [edi+1*SIZEOF_XMMWORD], xmmD add edi, byte 2*SIZEOF_XMMWORD ; outptr movdqa xmmA, xmmC movdqa xmmD, xmmH sub ecx, byte SIZEOF_XMMWORD/2 .column_st16: cmp ecx, byte SIZEOF_XMMWORD/4 jb short .column_st15 movdqu XMMWORD [edi+0*SIZEOF_XMMWORD], xmmA add edi, byte SIZEOF_XMMWORD ; outptr movdqa xmmA, xmmD sub ecx, byte SIZEOF_XMMWORD/4 .column_st15: ; Store two pixels (8 bytes) of xmmA to the output when it has enough ; space. cmp ecx, byte SIZEOF_XMMWORD/8 jb short .column_st7 movq XMM_MMWORD [edi], xmmA add edi, byte SIZEOF_XMMWORD/8*4 sub ecx, byte SIZEOF_XMMWORD/8 psrldq xmmA, SIZEOF_XMMWORD/8*4 .column_st7: ; Store one pixel (4 bytes) of xmmA to the output when it has enough ; space. test ecx, ecx jz short .nextrow movd XMM_DWORD [edi], xmmA %endif ; RGB_PIXELSIZE ; --------------- alignx 16, 7 .nextrow: pop ecx pop esi pop ebx pop edx pop edi pop eax add esi, byte SIZEOF_JSAMPROW add ebx, byte SIZEOF_JSAMPROW add edx, byte SIZEOF_JSAMPROW add edi, byte SIZEOF_JSAMPROW ; output_buf dec eax ; num_rows jg near .rowloop sfence ; flush the write buffer .return: pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx mov esp, ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/i386/jdcolor-avx2.asm000066400000000000000000000067341436506551100207450ustar00rootroot00000000000000; ; jdcolor.asm - colorspace conversion (AVX2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2015, Intel Corporation. ; Copyright (C) 2016, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jsimdext.inc" ; -------------------------------------------------------------------------- %define SCALEBITS 16 F_0_344 equ 22554 ; FIX(0.34414) F_0_714 equ 46802 ; FIX(0.71414) F_1_402 equ 91881 ; FIX(1.40200) F_1_772 equ 116130 ; FIX(1.77200) F_0_402 equ (F_1_402 - 65536) ; FIX(1.40200) - FIX(1) F_0_285 equ ( 65536 - F_0_714) ; FIX(1) - FIX(0.71414) F_0_228 equ (131072 - F_1_772) ; FIX(2) - FIX(1.77200) ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 32 GLOBAL_DATA(jconst_ycc_rgb_convert_avx2) EXTN(jconst_ycc_rgb_convert_avx2): PW_F0402 times 16 dw F_0_402 PW_MF0228 times 16 dw -F_0_228 PW_MF0344_F0285 times 8 dw -F_0_344, F_0_285 PW_ONE times 16 dw 1 PD_ONEHALF times 8 dd 1 << (SCALEBITS - 1) alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 %include "jdcolext-avx2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGB_RED %define RGB_GREEN EXT_RGB_GREEN %define RGB_BLUE EXT_RGB_BLUE %define RGB_PIXELSIZE EXT_RGB_PIXELSIZE %define jsimd_ycc_rgb_convert_avx2 jsimd_ycc_extrgb_convert_avx2 %include "jdcolext-avx2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGBX_RED %define RGB_GREEN EXT_RGBX_GREEN %define RGB_BLUE EXT_RGBX_BLUE %define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE %define jsimd_ycc_rgb_convert_avx2 jsimd_ycc_extrgbx_convert_avx2 %include "jdcolext-avx2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGR_RED %define RGB_GREEN EXT_BGR_GREEN %define RGB_BLUE EXT_BGR_BLUE %define RGB_PIXELSIZE EXT_BGR_PIXELSIZE %define jsimd_ycc_rgb_convert_avx2 jsimd_ycc_extbgr_convert_avx2 %include "jdcolext-avx2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGRX_RED %define RGB_GREEN EXT_BGRX_GREEN %define RGB_BLUE EXT_BGRX_BLUE %define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE %define jsimd_ycc_rgb_convert_avx2 jsimd_ycc_extbgrx_convert_avx2 %include "jdcolext-avx2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XBGR_RED %define RGB_GREEN EXT_XBGR_GREEN %define RGB_BLUE EXT_XBGR_BLUE %define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE %define jsimd_ycc_rgb_convert_avx2 jsimd_ycc_extxbgr_convert_avx2 %include "jdcolext-avx2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XRGB_RED %define RGB_GREEN EXT_XRGB_GREEN %define RGB_BLUE EXT_XRGB_BLUE %define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE %define jsimd_ycc_rgb_convert_avx2 jsimd_ycc_extxrgb_convert_avx2 %include "jdcolext-avx2.asm" libjpeg-turbo-2.1.5/simd/i386/jdcolor-mmx.asm000066400000000000000000000066361436506551100206670ustar00rootroot00000000000000; ; jdcolor.asm - colorspace conversion (MMX) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2009, 2016, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jsimdext.inc" ; -------------------------------------------------------------------------- %define SCALEBITS 16 F_0_344 equ 22554 ; FIX(0.34414) F_0_714 equ 46802 ; FIX(0.71414) F_1_402 equ 91881 ; FIX(1.40200) F_1_772 equ 116130 ; FIX(1.77200) F_0_402 equ (F_1_402 - 65536) ; FIX(1.40200) - FIX(1) F_0_285 equ ( 65536 - F_0_714) ; FIX(1) - FIX(0.71414) F_0_228 equ (131072 - F_1_772) ; FIX(2) - FIX(1.77200) ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 32 GLOBAL_DATA(jconst_ycc_rgb_convert_mmx) EXTN(jconst_ycc_rgb_convert_mmx): PW_F0402 times 4 dw F_0_402 PW_MF0228 times 4 dw -F_0_228 PW_MF0344_F0285 times 2 dw -F_0_344, F_0_285 PW_ONE times 4 dw 1 PD_ONEHALF times 2 dd 1 << (SCALEBITS - 1) alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 %include "jdcolext-mmx.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGB_RED %define RGB_GREEN EXT_RGB_GREEN %define RGB_BLUE EXT_RGB_BLUE %define RGB_PIXELSIZE EXT_RGB_PIXELSIZE %define jsimd_ycc_rgb_convert_mmx jsimd_ycc_extrgb_convert_mmx %include "jdcolext-mmx.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGBX_RED %define RGB_GREEN EXT_RGBX_GREEN %define RGB_BLUE EXT_RGBX_BLUE %define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE %define jsimd_ycc_rgb_convert_mmx jsimd_ycc_extrgbx_convert_mmx %include "jdcolext-mmx.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGR_RED %define RGB_GREEN EXT_BGR_GREEN %define RGB_BLUE EXT_BGR_BLUE %define RGB_PIXELSIZE EXT_BGR_PIXELSIZE %define jsimd_ycc_rgb_convert_mmx jsimd_ycc_extbgr_convert_mmx %include "jdcolext-mmx.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGRX_RED %define RGB_GREEN EXT_BGRX_GREEN %define RGB_BLUE EXT_BGRX_BLUE %define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE %define jsimd_ycc_rgb_convert_mmx jsimd_ycc_extbgrx_convert_mmx %include "jdcolext-mmx.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XBGR_RED %define RGB_GREEN EXT_XBGR_GREEN %define RGB_BLUE EXT_XBGR_BLUE %define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE %define jsimd_ycc_rgb_convert_mmx jsimd_ycc_extxbgr_convert_mmx %include "jdcolext-mmx.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XRGB_RED %define RGB_GREEN EXT_XRGB_GREEN %define RGB_BLUE EXT_XRGB_BLUE %define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE %define jsimd_ycc_rgb_convert_mmx jsimd_ycc_extxrgb_convert_mmx %include "jdcolext-mmx.asm" libjpeg-turbo-2.1.5/simd/i386/jdcolor-sse2.asm000066400000000000000000000066641436506551100207430ustar00rootroot00000000000000; ; jdcolor.asm - colorspace conversion (SSE2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2009, 2016, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jsimdext.inc" ; -------------------------------------------------------------------------- %define SCALEBITS 16 F_0_344 equ 22554 ; FIX(0.34414) F_0_714 equ 46802 ; FIX(0.71414) F_1_402 equ 91881 ; FIX(1.40200) F_1_772 equ 116130 ; FIX(1.77200) F_0_402 equ (F_1_402 - 65536) ; FIX(1.40200) - FIX(1) F_0_285 equ ( 65536 - F_0_714) ; FIX(1) - FIX(0.71414) F_0_228 equ (131072 - F_1_772) ; FIX(2) - FIX(1.77200) ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 32 GLOBAL_DATA(jconst_ycc_rgb_convert_sse2) EXTN(jconst_ycc_rgb_convert_sse2): PW_F0402 times 8 dw F_0_402 PW_MF0228 times 8 dw -F_0_228 PW_MF0344_F0285 times 4 dw -F_0_344, F_0_285 PW_ONE times 8 dw 1 PD_ONEHALF times 4 dd 1 << (SCALEBITS - 1) alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 %include "jdcolext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGB_RED %define RGB_GREEN EXT_RGB_GREEN %define RGB_BLUE EXT_RGB_BLUE %define RGB_PIXELSIZE EXT_RGB_PIXELSIZE %define jsimd_ycc_rgb_convert_sse2 jsimd_ycc_extrgb_convert_sse2 %include "jdcolext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGBX_RED %define RGB_GREEN EXT_RGBX_GREEN %define RGB_BLUE EXT_RGBX_BLUE %define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE %define jsimd_ycc_rgb_convert_sse2 jsimd_ycc_extrgbx_convert_sse2 %include "jdcolext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGR_RED %define RGB_GREEN EXT_BGR_GREEN %define RGB_BLUE EXT_BGR_BLUE %define RGB_PIXELSIZE EXT_BGR_PIXELSIZE %define jsimd_ycc_rgb_convert_sse2 jsimd_ycc_extbgr_convert_sse2 %include "jdcolext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGRX_RED %define RGB_GREEN EXT_BGRX_GREEN %define RGB_BLUE EXT_BGRX_BLUE %define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE %define jsimd_ycc_rgb_convert_sse2 jsimd_ycc_extbgrx_convert_sse2 %include "jdcolext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XBGR_RED %define RGB_GREEN EXT_XBGR_GREEN %define RGB_BLUE EXT_XBGR_BLUE %define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE %define jsimd_ycc_rgb_convert_sse2 jsimd_ycc_extxbgr_convert_sse2 %include "jdcolext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XRGB_RED %define RGB_GREEN EXT_XRGB_GREEN %define RGB_BLUE EXT_XRGB_BLUE %define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE %define jsimd_ycc_rgb_convert_sse2 jsimd_ycc_extxrgb_convert_sse2 %include "jdcolext-sse2.asm" libjpeg-turbo-2.1.5/simd/i386/jdmerge-avx2.asm000066400000000000000000000101131436506551100207100ustar00rootroot00000000000000; ; jdmerge.asm - merged upsampling/color conversion (AVX2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2009, 2016, D. R. Commander. ; Copyright (C) 2015, Intel Corporation. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jsimdext.inc" ; -------------------------------------------------------------------------- %define SCALEBITS 16 F_0_344 equ 22554 ; FIX(0.34414) F_0_714 equ 46802 ; FIX(0.71414) F_1_402 equ 91881 ; FIX(1.40200) F_1_772 equ 116130 ; FIX(1.77200) F_0_402 equ (F_1_402 - 65536) ; FIX(1.40200) - FIX(1) F_0_285 equ ( 65536 - F_0_714) ; FIX(1) - FIX(0.71414) F_0_228 equ (131072 - F_1_772) ; FIX(2) - FIX(1.77200) ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 32 GLOBAL_DATA(jconst_merged_upsample_avx2) EXTN(jconst_merged_upsample_avx2): PW_F0402 times 16 dw F_0_402 PW_MF0228 times 16 dw -F_0_228 PW_MF0344_F0285 times 8 dw -F_0_344, F_0_285 PW_ONE times 16 dw 1 PD_ONEHALF times 8 dd 1 << (SCALEBITS - 1) alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 %include "jdmrgext-avx2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGB_RED %define RGB_GREEN EXT_RGB_GREEN %define RGB_BLUE EXT_RGB_BLUE %define RGB_PIXELSIZE EXT_RGB_PIXELSIZE %define jsimd_h2v1_merged_upsample_avx2 \ jsimd_h2v1_extrgb_merged_upsample_avx2 %define jsimd_h2v2_merged_upsample_avx2 \ jsimd_h2v2_extrgb_merged_upsample_avx2 %include "jdmrgext-avx2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGBX_RED %define RGB_GREEN EXT_RGBX_GREEN %define RGB_BLUE EXT_RGBX_BLUE %define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE %define jsimd_h2v1_merged_upsample_avx2 \ jsimd_h2v1_extrgbx_merged_upsample_avx2 %define jsimd_h2v2_merged_upsample_avx2 \ jsimd_h2v2_extrgbx_merged_upsample_avx2 %include "jdmrgext-avx2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGR_RED %define RGB_GREEN EXT_BGR_GREEN %define RGB_BLUE EXT_BGR_BLUE %define RGB_PIXELSIZE EXT_BGR_PIXELSIZE %define jsimd_h2v1_merged_upsample_avx2 \ jsimd_h2v1_extbgr_merged_upsample_avx2 %define jsimd_h2v2_merged_upsample_avx2 \ jsimd_h2v2_extbgr_merged_upsample_avx2 %include "jdmrgext-avx2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGRX_RED %define RGB_GREEN EXT_BGRX_GREEN %define RGB_BLUE EXT_BGRX_BLUE %define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE %define jsimd_h2v1_merged_upsample_avx2 \ jsimd_h2v1_extbgrx_merged_upsample_avx2 %define jsimd_h2v2_merged_upsample_avx2 \ jsimd_h2v2_extbgrx_merged_upsample_avx2 %include "jdmrgext-avx2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XBGR_RED %define RGB_GREEN EXT_XBGR_GREEN %define RGB_BLUE EXT_XBGR_BLUE %define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE %define jsimd_h2v1_merged_upsample_avx2 \ jsimd_h2v1_extxbgr_merged_upsample_avx2 %define jsimd_h2v2_merged_upsample_avx2 \ jsimd_h2v2_extxbgr_merged_upsample_avx2 %include "jdmrgext-avx2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XRGB_RED %define RGB_GREEN EXT_XRGB_GREEN %define RGB_BLUE EXT_XRGB_BLUE %define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE %define jsimd_h2v1_merged_upsample_avx2 \ jsimd_h2v1_extxrgb_merged_upsample_avx2 %define jsimd_h2v2_merged_upsample_avx2 \ jsimd_h2v2_extxrgb_merged_upsample_avx2 %include "jdmrgext-avx2.asm" libjpeg-turbo-2.1.5/simd/i386/jdmerge-mmx.asm000066400000000000000000000077271436506551100206520ustar00rootroot00000000000000; ; jdmerge.asm - merged upsampling/color conversion (MMX) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2009, 2016, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jsimdext.inc" ; -------------------------------------------------------------------------- %define SCALEBITS 16 F_0_344 equ 22554 ; FIX(0.34414) F_0_714 equ 46802 ; FIX(0.71414) F_1_402 equ 91881 ; FIX(1.40200) F_1_772 equ 116130 ; FIX(1.77200) F_0_402 equ (F_1_402 - 65536) ; FIX(1.40200) - FIX(1) F_0_285 equ ( 65536 - F_0_714) ; FIX(1) - FIX(0.71414) F_0_228 equ (131072 - F_1_772) ; FIX(2) - FIX(1.77200) ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 32 GLOBAL_DATA(jconst_merged_upsample_mmx) EXTN(jconst_merged_upsample_mmx): PW_F0402 times 4 dw F_0_402 PW_MF0228 times 4 dw -F_0_228 PW_MF0344_F0285 times 2 dw -F_0_344, F_0_285 PW_ONE times 4 dw 1 PD_ONEHALF times 2 dd 1 << (SCALEBITS - 1) alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 %include "jdmrgext-mmx.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGB_RED %define RGB_GREEN EXT_RGB_GREEN %define RGB_BLUE EXT_RGB_BLUE %define RGB_PIXELSIZE EXT_RGB_PIXELSIZE %define jsimd_h2v1_merged_upsample_mmx jsimd_h2v1_extrgb_merged_upsample_mmx %define jsimd_h2v2_merged_upsample_mmx jsimd_h2v2_extrgb_merged_upsample_mmx %include "jdmrgext-mmx.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGBX_RED %define RGB_GREEN EXT_RGBX_GREEN %define RGB_BLUE EXT_RGBX_BLUE %define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE %define jsimd_h2v1_merged_upsample_mmx jsimd_h2v1_extrgbx_merged_upsample_mmx %define jsimd_h2v2_merged_upsample_mmx jsimd_h2v2_extrgbx_merged_upsample_mmx %include "jdmrgext-mmx.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGR_RED %define RGB_GREEN EXT_BGR_GREEN %define RGB_BLUE EXT_BGR_BLUE %define RGB_PIXELSIZE EXT_BGR_PIXELSIZE %define jsimd_h2v1_merged_upsample_mmx jsimd_h2v1_extbgr_merged_upsample_mmx %define jsimd_h2v2_merged_upsample_mmx jsimd_h2v2_extbgr_merged_upsample_mmx %include "jdmrgext-mmx.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGRX_RED %define RGB_GREEN EXT_BGRX_GREEN %define RGB_BLUE EXT_BGRX_BLUE %define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE %define jsimd_h2v1_merged_upsample_mmx jsimd_h2v1_extbgrx_merged_upsample_mmx %define jsimd_h2v2_merged_upsample_mmx jsimd_h2v2_extbgrx_merged_upsample_mmx %include "jdmrgext-mmx.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XBGR_RED %define RGB_GREEN EXT_XBGR_GREEN %define RGB_BLUE EXT_XBGR_BLUE %define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE %define jsimd_h2v1_merged_upsample_mmx jsimd_h2v1_extxbgr_merged_upsample_mmx %define jsimd_h2v2_merged_upsample_mmx jsimd_h2v2_extxbgr_merged_upsample_mmx %include "jdmrgext-mmx.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XRGB_RED %define RGB_GREEN EXT_XRGB_GREEN %define RGB_BLUE EXT_XRGB_BLUE %define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE %define jsimd_h2v1_merged_upsample_mmx jsimd_h2v1_extxrgb_merged_upsample_mmx %define jsimd_h2v2_merged_upsample_mmx jsimd_h2v2_extxrgb_merged_upsample_mmx %include "jdmrgext-mmx.asm" libjpeg-turbo-2.1.5/simd/i386/jdmerge-sse2.asm000066400000000000000000000100351436506551100207070ustar00rootroot00000000000000; ; jdmerge.asm - merged upsampling/color conversion (SSE2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2009, 2016, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jsimdext.inc" ; -------------------------------------------------------------------------- %define SCALEBITS 16 F_0_344 equ 22554 ; FIX(0.34414) F_0_714 equ 46802 ; FIX(0.71414) F_1_402 equ 91881 ; FIX(1.40200) F_1_772 equ 116130 ; FIX(1.77200) F_0_402 equ (F_1_402 - 65536) ; FIX(1.40200) - FIX(1) F_0_285 equ ( 65536 - F_0_714) ; FIX(1) - FIX(0.71414) F_0_228 equ (131072 - F_1_772) ; FIX(2) - FIX(1.77200) ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 32 GLOBAL_DATA(jconst_merged_upsample_sse2) EXTN(jconst_merged_upsample_sse2): PW_F0402 times 8 dw F_0_402 PW_MF0228 times 8 dw -F_0_228 PW_MF0344_F0285 times 4 dw -F_0_344, F_0_285 PW_ONE times 8 dw 1 PD_ONEHALF times 4 dd 1 << (SCALEBITS - 1) alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 %include "jdmrgext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGB_RED %define RGB_GREEN EXT_RGB_GREEN %define RGB_BLUE EXT_RGB_BLUE %define RGB_PIXELSIZE EXT_RGB_PIXELSIZE %define jsimd_h2v1_merged_upsample_sse2 \ jsimd_h2v1_extrgb_merged_upsample_sse2 %define jsimd_h2v2_merged_upsample_sse2 \ jsimd_h2v2_extrgb_merged_upsample_sse2 %include "jdmrgext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGBX_RED %define RGB_GREEN EXT_RGBX_GREEN %define RGB_BLUE EXT_RGBX_BLUE %define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE %define jsimd_h2v1_merged_upsample_sse2 \ jsimd_h2v1_extrgbx_merged_upsample_sse2 %define jsimd_h2v2_merged_upsample_sse2 \ jsimd_h2v2_extrgbx_merged_upsample_sse2 %include "jdmrgext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGR_RED %define RGB_GREEN EXT_BGR_GREEN %define RGB_BLUE EXT_BGR_BLUE %define RGB_PIXELSIZE EXT_BGR_PIXELSIZE %define jsimd_h2v1_merged_upsample_sse2 \ jsimd_h2v1_extbgr_merged_upsample_sse2 %define jsimd_h2v2_merged_upsample_sse2 \ jsimd_h2v2_extbgr_merged_upsample_sse2 %include "jdmrgext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGRX_RED %define RGB_GREEN EXT_BGRX_GREEN %define RGB_BLUE EXT_BGRX_BLUE %define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE %define jsimd_h2v1_merged_upsample_sse2 \ jsimd_h2v1_extbgrx_merged_upsample_sse2 %define jsimd_h2v2_merged_upsample_sse2 \ jsimd_h2v2_extbgrx_merged_upsample_sse2 %include "jdmrgext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XBGR_RED %define RGB_GREEN EXT_XBGR_GREEN %define RGB_BLUE EXT_XBGR_BLUE %define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE %define jsimd_h2v1_merged_upsample_sse2 \ jsimd_h2v1_extxbgr_merged_upsample_sse2 %define jsimd_h2v2_merged_upsample_sse2 \ jsimd_h2v2_extxbgr_merged_upsample_sse2 %include "jdmrgext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XRGB_RED %define RGB_GREEN EXT_XRGB_GREEN %define RGB_BLUE EXT_XRGB_BLUE %define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE %define jsimd_h2v1_merged_upsample_sse2 \ jsimd_h2v1_extxrgb_merged_upsample_sse2 %define jsimd_h2v2_merged_upsample_sse2 \ jsimd_h2v2_extxrgb_merged_upsample_sse2 %include "jdmrgext-sse2.asm" libjpeg-turbo-2.1.5/simd/i386/jdmrgext-avx2.asm000066400000000000000000000655221436506551100211350ustar00rootroot00000000000000; ; jdmrgext.asm - merged upsampling/color conversion (AVX2) ; ; Copyright 2009, 2012 Pierre Ossman for Cendio AB ; Copyright (C) 2012, 2016, D. R. Commander. ; Copyright (C) 2015, Intel Corporation. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jcolsamp.inc" ; -------------------------------------------------------------------------- ; ; Upsample and color convert for the case of 2:1 horizontal and 1:1 vertical. ; ; GLOBAL(void) ; jsimd_h2v1_merged_upsample_avx2(JDIMENSION output_width, ; JSAMPIMAGE input_buf, ; JDIMENSION in_row_group_ctr, ; JSAMPARRAY output_buf); ; %define output_width(b) (b) + 8 ; JDIMENSION output_width %define input_buf(b) (b) + 12 ; JSAMPIMAGE input_buf %define in_row_group_ctr(b) (b) + 16 ; JDIMENSION in_row_group_ctr %define output_buf(b) (b) + 20 ; JSAMPARRAY output_buf %define original_ebp ebp + 0 %define wk(i) ebp - (WK_NUM - (i)) * SIZEOF_YMMWORD ; ymmword wk[WK_NUM] %define WK_NUM 3 %define gotptr wk(0) - SIZEOF_POINTER ; void * gotptr align 32 GLOBAL_FUNCTION(jsimd_h2v1_merged_upsample_avx2) EXTN(jsimd_h2v1_merged_upsample_avx2): push ebp mov eax, esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_YMMWORD) ; align to 256 bits mov [esp], eax mov ebp, esp ; ebp = aligned ebp lea esp, [wk(0)] pushpic eax ; make a room for GOT address push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address movpic POINTER [gotptr], ebx ; save GOT address mov ecx, JDIMENSION [output_width(eax)] ; col test ecx, ecx jz near .return push ecx mov edi, JSAMPIMAGE [input_buf(eax)] mov ecx, JDIMENSION [in_row_group_ctr(eax)] mov esi, JSAMPARRAY [edi+0*SIZEOF_JSAMPARRAY] mov ebx, JSAMPARRAY [edi+1*SIZEOF_JSAMPARRAY] mov edx, JSAMPARRAY [edi+2*SIZEOF_JSAMPARRAY] mov edi, JSAMPARRAY [output_buf(eax)] mov esi, JSAMPROW [esi+ecx*SIZEOF_JSAMPROW] ; inptr0 mov ebx, JSAMPROW [ebx+ecx*SIZEOF_JSAMPROW] ; inptr1 mov edx, JSAMPROW [edx+ecx*SIZEOF_JSAMPROW] ; inptr2 mov edi, JSAMPROW [edi] ; outptr pop ecx ; col alignx 16, 7 .columnloop: movpic eax, POINTER [gotptr] ; load GOT address (eax) vmovdqu ymm6, YMMWORD [ebx] ; ymm6=Cb(0123456789ABCDEFGHIJKLMNOPQRSTUV) vmovdqu ymm7, YMMWORD [edx] ; ymm7=Cr(0123456789ABCDEFGHIJKLMNOPQRSTUV) vpxor ymm1, ymm1, ymm1 ; ymm1=(all 0's) vpcmpeqw ymm3, ymm3, ymm3 vpsllw ymm3, ymm3, 7 ; ymm3={0xFF80 0xFF80 0xFF80 0xFF80 ..} vpermq ymm6, ymm6, 0xd8 ; ymm6=Cb(01234567GHIJKLMN89ABCDEFOPQRSTUV) vpermq ymm7, ymm7, 0xd8 ; ymm7=Cr(01234567GHIJKLMN89ABCDEFOPQRSTUV) vpunpcklbw ymm4, ymm6, ymm1 ; ymm4=Cb(0123456789ABCDEF)=CbL vpunpckhbw ymm6, ymm6, ymm1 ; ymm6=Cb(GHIJKLMNOPQRSTUV)=CbH vpunpcklbw ymm0, ymm7, ymm1 ; ymm0=Cr(0123456789ABCDEF)=CrL vpunpckhbw ymm7, ymm7, ymm1 ; ymm7=Cr(GHIJKLMNOPQRSTUV)=CrH vpaddw ymm5, ymm6, ymm3 vpaddw ymm2, ymm4, ymm3 vpaddw ymm1, ymm7, ymm3 vpaddw ymm3, ymm0, ymm3 ; (Original) ; R = Y + 1.40200 * Cr ; G = Y - 0.34414 * Cb - 0.71414 * Cr ; B = Y + 1.77200 * Cb ; ; (This implementation) ; R = Y + 0.40200 * Cr + Cr ; G = Y - 0.34414 * Cb + 0.28586 * Cr - Cr ; B = Y - 0.22800 * Cb + Cb + Cb vpaddw ymm6, ymm5, ymm5 ; ymm6=2*CbH vpaddw ymm4, ymm2, ymm2 ; ymm4=2*CbL vpaddw ymm7, ymm1, ymm1 ; ymm7=2*CrH vpaddw ymm0, ymm3, ymm3 ; ymm0=2*CrL vpmulhw ymm6, ymm6, [GOTOFF(eax,PW_MF0228)] ; ymm6=(2*CbH * -FIX(0.22800)) vpmulhw ymm4, ymm4, [GOTOFF(eax,PW_MF0228)] ; ymm4=(2*CbL * -FIX(0.22800)) vpmulhw ymm7, ymm7, [GOTOFF(eax,PW_F0402)] ; ymm7=(2*CrH * FIX(0.40200)) vpmulhw ymm0, ymm0, [GOTOFF(eax,PW_F0402)] ; ymm0=(2*CrL * FIX(0.40200)) vpaddw ymm6, ymm6, [GOTOFF(eax,PW_ONE)] vpaddw ymm4, ymm4, [GOTOFF(eax,PW_ONE)] vpsraw ymm6, ymm6, 1 ; ymm6=(CbH * -FIX(0.22800)) vpsraw ymm4, ymm4, 1 ; ymm4=(CbL * -FIX(0.22800)) vpaddw ymm7, ymm7, [GOTOFF(eax,PW_ONE)] vpaddw ymm0, ymm0, [GOTOFF(eax,PW_ONE)] vpsraw ymm7, ymm7, 1 ; ymm7=(CrH * FIX(0.40200)) vpsraw ymm0, ymm0, 1 ; ymm0=(CrL * FIX(0.40200)) vpaddw ymm6, ymm6, ymm5 vpaddw ymm4, ymm4, ymm2 vpaddw ymm6, ymm6, ymm5 ; ymm6=(CbH * FIX(1.77200))=(B-Y)H vpaddw ymm4, ymm4, ymm2 ; ymm4=(CbL * FIX(1.77200))=(B-Y)L vpaddw ymm7, ymm7, ymm1 ; ymm7=(CrH * FIX(1.40200))=(R-Y)H vpaddw ymm0, ymm0, ymm3 ; ymm0=(CrL * FIX(1.40200))=(R-Y)L vmovdqa YMMWORD [wk(0)], ymm6 ; wk(0)=(B-Y)H vmovdqa YMMWORD [wk(1)], ymm7 ; wk(1)=(R-Y)H vpunpckhwd ymm6, ymm5, ymm1 vpunpcklwd ymm5, ymm5, ymm1 vpmaddwd ymm5, ymm5, [GOTOFF(eax,PW_MF0344_F0285)] vpmaddwd ymm6, ymm6, [GOTOFF(eax,PW_MF0344_F0285)] vpunpckhwd ymm7, ymm2, ymm3 vpunpcklwd ymm2, ymm2, ymm3 vpmaddwd ymm2, ymm2, [GOTOFF(eax,PW_MF0344_F0285)] vpmaddwd ymm7, ymm7, [GOTOFF(eax,PW_MF0344_F0285)] vpaddd ymm5, ymm5, [GOTOFF(eax,PD_ONEHALF)] vpaddd ymm6, ymm6, [GOTOFF(eax,PD_ONEHALF)] vpsrad ymm5, ymm5, SCALEBITS vpsrad ymm6, ymm6, SCALEBITS vpaddd ymm2, ymm2, [GOTOFF(eax,PD_ONEHALF)] vpaddd ymm7, ymm7, [GOTOFF(eax,PD_ONEHALF)] vpsrad ymm2, ymm2, SCALEBITS vpsrad ymm7, ymm7, SCALEBITS vpackssdw ymm5, ymm5, ymm6 ; ymm5=CbH*-FIX(0.344)+CrH*FIX(0.285) vpackssdw ymm2, ymm2, ymm7 ; ymm2=CbL*-FIX(0.344)+CrL*FIX(0.285) vpsubw ymm5, ymm5, ymm1 ; ymm5=CbH*-FIX(0.344)+CrH*-FIX(0.714)=(G-Y)H vpsubw ymm2, ymm2, ymm3 ; ymm2=CbL*-FIX(0.344)+CrL*-FIX(0.714)=(G-Y)L vmovdqa YMMWORD [wk(2)], ymm5 ; wk(2)=(G-Y)H mov al, 2 ; Yctr jmp short .Yloop_1st alignx 16, 7 .Yloop_2nd: vmovdqa ymm0, YMMWORD [wk(1)] ; ymm0=(R-Y)H vmovdqa ymm2, YMMWORD [wk(2)] ; ymm2=(G-Y)H vmovdqa ymm4, YMMWORD [wk(0)] ; ymm4=(B-Y)H alignx 16, 7 .Yloop_1st: vmovdqu ymm7, YMMWORD [esi] ; ymm7=Y(0123456789ABCDEFGHIJKLMNOPQRSTUV) vpcmpeqw ymm6, ymm6, ymm6 vpsrlw ymm6, ymm6, BYTE_BIT ; ymm6={0xFF 0x00 0xFF 0x00 ..} vpand ymm6, ymm6, ymm7 ; ymm6=Y(02468ACEGIKMOQSU)=YE vpsrlw ymm7, ymm7, BYTE_BIT ; ymm7=Y(13579BDFHJLNPRTV)=YO vmovdqa ymm1, ymm0 ; ymm1=ymm0=(R-Y)(L/H) vmovdqa ymm3, ymm2 ; ymm3=ymm2=(G-Y)(L/H) vmovdqa ymm5, ymm4 ; ymm5=ymm4=(B-Y)(L/H) vpaddw ymm0, ymm0, ymm6 ; ymm0=((R-Y)+YE)=RE=R(02468ACEGIKMOQSU) vpaddw ymm1, ymm1, ymm7 ; ymm1=((R-Y)+YO)=RO=R(13579BDFHJLNPRTV) vpackuswb ymm0, ymm0, ymm0 ; ymm0=R(02468ACE********GIKMOQSU********) vpackuswb ymm1, ymm1, ymm1 ; ymm1=R(13579BDF********HJLNPRTV********) vpaddw ymm2, ymm2, ymm6 ; ymm2=((G-Y)+YE)=GE=G(02468ACEGIKMOQSU) vpaddw ymm3, ymm3, ymm7 ; ymm3=((G-Y)+YO)=GO=G(13579BDFHJLNPRTV) vpackuswb ymm2, ymm2, ymm2 ; ymm2=G(02468ACE********GIKMOQSU********) vpackuswb ymm3, ymm3, ymm3 ; ymm3=G(13579BDF********HJLNPRTV********) vpaddw ymm4, ymm4, ymm6 ; ymm4=((B-Y)+YE)=BE=B(02468ACEGIKMOQSU) vpaddw ymm5, ymm5, ymm7 ; ymm5=((B-Y)+YO)=BO=B(13579BDFHJLNPRTV) vpackuswb ymm4, ymm4, ymm4 ; ymm4=B(02468ACE********GIKMOQSU********) vpackuswb ymm5, ymm5, ymm5 ; ymm5=B(13579BDF********HJLNPRTV********) %if RGB_PIXELSIZE == 3 ; --------------- ; ymmA=(00 02 04 06 08 0A 0C 0E ** 0G 0I 0K 0M 0O 0Q 0S 0U **) ; ymmB=(01 03 05 07 09 0B 0D 0F ** 0H 0J 0L 0N 0P 0R 0T 0V **) ; ymmC=(10 12 14 16 18 1A 1C 1E ** 1G 1I 1K 1M 1O 1Q 1S 1U **) ; ymmD=(11 13 15 17 19 1B 1D 1F ** 1H 1J 1L 1N 1P 1R 1T 1V **) ; ymmE=(20 22 24 26 28 2A 2C 2E ** 2G 2I 2K 2M 2O 2Q 2S 2U **) ; ymmF=(21 23 25 27 29 2B 2D 2F ** 2H 2J 2L 2N 2P 2R 2T 2V **) ; ymmG=(** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **) ; ymmH=(** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **) vpunpcklbw ymmA, ymmA, ymmC ; ymmA=(00 10 02 12 04 14 06 16 08 18 0A 1A 0C 1C 0E 1E ; 0G 1G 0I 1I 0K 1K 0M 1M 0O 1O 0Q 1Q 0S 1S 0U 1U) vpunpcklbw ymmE, ymmE, ymmB ; ymmE=(20 01 22 03 24 05 26 07 28 09 2A 0B 2C 0D 2E 0F ; 2G 0H 2I 0J 2K 0L 2M 0N 2O 0P 2Q 0R 2S 0T 2U 0V) vpunpcklbw ymmD, ymmD, ymmF ; ymmD=(11 21 13 23 15 25 17 27 19 29 1B 2B 1D 2D 1F 2F ; 1H 2H 1J 2J 1L 2L 1N 2N 1P 2P 1R 2R 1T 2T 1V 2V) vpsrldq ymmH, ymmA, 2 ; ymmH=(02 12 04 14 06 16 08 18 0A 1A 0C 1C 0E 1E 0G 1G ; 0I 1I 0K 1K 0M 1M 0O 1O 0Q 1Q 0S 1S 0U 1U -- --) vpunpckhwd ymmG, ymmA, ymmE ; ymmG=(08 18 28 09 0A 1A 2A 0B 0C 1C 2C 0D 0E 1E 2E 0F ; 0O 1O 2O 0P 0Q 1Q 2Q 0R 0S 1S 2S 0T 0U 1U 2U 0V) vpunpcklwd ymmA, ymmA, ymmE ; ymmA=(00 10 20 01 02 12 22 03 04 14 24 05 06 16 26 07 ; 0G 1G 2G 0H 0I 1I 2I 0J 0K 1K 2K 0L 0M 1M 2M 0N) vpsrldq ymmE, ymmE, 2 ; ymmE=(22 03 24 05 26 07 28 09 2A 0B 2C 0D 2E 0F 2G 0H ; 2I 0J 2K 0L 2M 0N 2O 0P 2Q 0R 2S 0T 2U 0V -- --) vpsrldq ymmB, ymmD, 2 ; ymmB=(13 23 15 25 17 27 19 29 1B 2B 1D 2D 1F 2F 1H 2H ; 1J 2J 1L 2L 1N 2N 1P 2P 1R 2R 1T 2T 1V 2V -- --) vpunpckhwd ymmC, ymmD, ymmH ; ymmC=(19 29 0A 1A 1B 2B 0C 1C 1D 2D 0E 1E 1F 2F 0G 1G ; 1P 2P 0Q 1Q 1R 2R 0S 1S 1T 2T 0U 1U 1V 2V -- --) vpunpcklwd ymmD, ymmD, ymmH ; ymmD=(11 21 02 12 13 23 04 14 15 25 06 16 17 27 08 18 ; 1H 2H 0I 1I 1J 2J 0K 1K 1L 2L 0M 1M 1N 2N 0O 1O) vpunpckhwd ymmF, ymmE, ymmB ; ymmF=(2A 0B 1B 2B 2C 0D 1D 2D 2E 0F 1F 2F 2G 0H 1H 2H ; 2Q 0R 1R 2R 2S 0T 1T 2T 2U 0V 1V 2V -- -- -- --) vpunpcklwd ymmE, ymmE, ymmB ; ymmE=(22 03 13 23 24 05 15 25 26 07 17 27 28 09 19 29 ; 2I 0J 1J 2J 2K 0L 1L 2L 2M 0N 1N 2N 2O 0P 1P 2P) vpshufd ymmH, ymmA, 0x4E ; ymmH=(04 14 24 05 06 16 26 07 00 10 20 01 02 12 22 03 ; 0K 1K 2K 0L 0M 1M 2M 0N 0G 1G 2G 0H 0I 1I 2I 0J) vpunpckldq ymmA, ymmA, ymmD ; ymmA=(00 10 20 01 11 21 02 12 02 12 22 03 13 23 04 14 ; 0G 1G 2G 0H 1H 2H 0I 1I 0I 1I 2I 0J 1J 2J 0K 1K) vpunpckhdq ymmD, ymmD, ymmE ; ymmD=(15 25 06 16 26 07 17 27 17 27 08 18 28 09 19 29 ; 1L 2L 0M 1M 2M 0N 1N 2N 1N 2N 0O 1O 2O 0P 1P 2P) vpunpckldq ymmE, ymmE, ymmH ; ymmE=(22 03 13 23 04 14 24 05 24 05 15 25 06 16 26 07 ; 2I 0J 1J 2J 0K 1K 2K 0L 2K 0L 1L 2L 0M 1M 2M 0N) vpshufd ymmH, ymmG, 0x4E ; ymmH=(0C 1C 2C 0D 0E 1E 2E 0F 08 18 28 09 0A 1A 2A 0B ; 0S 1S 2S 0T 0U 1U 2U 0V 0O 1O 2O 0P 0Q 1Q 2Q 0R) vpunpckldq ymmG, ymmG, ymmC ; ymmG=(08 18 28 09 19 29 0A 1A 0A 1A 2A 0B 1B 2B 0C 1C ; 0O 1O 2O 0P 1P 2P 0Q 1Q 0Q 1Q 2Q 0R 1R 2R 0S 1S) vpunpckhdq ymmC, ymmC, ymmF ; ymmC=(1D 2D 0E 1E 2E 0F 1F 2F 1F 2F 0G 1G 2G 0H 1H 2H ; 1T 2T 0U 1U 2U 0V 1V 2V 1V 2V -- -- -- -- -- --) vpunpckldq ymmF, ymmF, ymmH ; ymmF=(2A 0B 1B 2B 0C 1C 2C 0D 2C 0D 1D 2D 0E 1E 2E 0F ; 2Q 0R 1R 2R 0S 1S 2S 0T 2S 0T 1T 2T 0U 1U 2U 0V) vpunpcklqdq ymmH, ymmA, ymmE ; ymmH=(00 10 20 01 11 21 02 12 22 03 13 23 04 14 24 05 ; 0G 1G 2G 0H 1H 2H 0I 1I 2I 0J 1J 2J 0K 1K 2K 0L) vpunpcklqdq ymmG, ymmD, ymmG ; ymmG=(15 25 06 16 26 07 17 27 08 18 28 09 19 29 0A 1A ; 1L 2L 0M 1M 2M 0N 1N 2N 0O 1O 2O 0P 1P 2P 0Q 1Q) vpunpcklqdq ymmC, ymmF, ymmC ; ymmC=(2A 0B 1B 2B 0C 1C 2C 0D 1D 2D 0E 1E 2E 0F 1F 2F ; 2Q 0R 1R 2R 0S 1S 2S 0T 1T 2T 0U 1U 2U 0V 1V 2V) vperm2i128 ymmA, ymmH, ymmG, 0x20 ; ymmA=(00 10 20 01 11 21 02 12 22 03 13 23 04 14 24 05 ; 15 25 06 16 26 07 17 27 08 18 28 09 19 29 0A 1A) vperm2i128 ymmD, ymmC, ymmH, 0x30 ; ymmD=(2A 0B 1B 2B 0C 1C 2C 0D 1D 2D 0E 1E 2E 0F 1F 2F ; 0G 1G 2G 0H 1H 2H 0I 1I 2I 0J 1J 2J 0K 1K 2K 0L) vperm2i128 ymmF, ymmG, ymmC, 0x31 ; ymmF=(1L 2L 0M 1M 2M 0N 1N 2N 0O 1O 2O 0P 1P 2P 0Q 1Q ; 2Q 0R 1R 2R 0S 1S 2S 0T 1T 2T 0U 1U 2U 0V 1V 2V) cmp ecx, byte SIZEOF_YMMWORD jb short .column_st64 test edi, SIZEOF_YMMWORD-1 jnz short .out1 ; --(aligned)------------------- vmovntdq YMMWORD [edi+0*SIZEOF_YMMWORD], ymmA vmovntdq YMMWORD [edi+1*SIZEOF_YMMWORD], ymmD vmovntdq YMMWORD [edi+2*SIZEOF_YMMWORD], ymmF jmp short .out0 .out1: ; --(unaligned)----------------- vmovdqu YMMWORD [edi+0*SIZEOF_YMMWORD], ymmA vmovdqu YMMWORD [edi+1*SIZEOF_YMMWORD], ymmD vmovdqu YMMWORD [edi+2*SIZEOF_YMMWORD], ymmF .out0: add edi, byte RGB_PIXELSIZE*SIZEOF_YMMWORD ; outptr sub ecx, byte SIZEOF_YMMWORD jz near .endcolumn add esi, byte SIZEOF_YMMWORD ; inptr0 dec al ; Yctr jnz near .Yloop_2nd add ebx, byte SIZEOF_YMMWORD ; inptr1 add edx, byte SIZEOF_YMMWORD ; inptr2 jmp near .columnloop alignx 16, 7 .column_st64: lea ecx, [ecx+ecx*2] ; imul ecx, RGB_PIXELSIZE cmp ecx, byte 2*SIZEOF_YMMWORD jb short .column_st32 vmovdqu YMMWORD [edi+0*SIZEOF_YMMWORD], ymmA vmovdqu YMMWORD [edi+1*SIZEOF_YMMWORD], ymmD add edi, byte 2*SIZEOF_YMMWORD ; outptr vmovdqa ymmA, ymmF sub ecx, byte 2*SIZEOF_YMMWORD jmp short .column_st31 .column_st32: cmp ecx, byte SIZEOF_YMMWORD jb short .column_st31 vmovdqu YMMWORD [edi+0*SIZEOF_YMMWORD], ymmA add edi, byte SIZEOF_YMMWORD ; outptr vmovdqa ymmA, ymmD sub ecx, byte SIZEOF_YMMWORD jmp short .column_st31 .column_st31: cmp ecx, byte SIZEOF_XMMWORD jb short .column_st15 vmovdqu XMMWORD [edi+0*SIZEOF_XMMWORD], xmmA add edi, byte SIZEOF_XMMWORD ; outptr vperm2i128 ymmA, ymmA, ymmA, 1 sub ecx, byte SIZEOF_XMMWORD .column_st15: ; Store the lower 8 bytes of xmmA to the output when it has enough ; space. cmp ecx, byte SIZEOF_MMWORD jb short .column_st7 vmovq XMM_MMWORD [edi], xmmA add edi, byte SIZEOF_MMWORD sub ecx, byte SIZEOF_MMWORD vpsrldq xmmA, xmmA, SIZEOF_MMWORD .column_st7: ; Store the lower 4 bytes of xmmA to the output when it has enough ; space. cmp ecx, byte SIZEOF_DWORD jb short .column_st3 vmovd XMM_DWORD [edi], xmmA add edi, byte SIZEOF_DWORD sub ecx, byte SIZEOF_DWORD vpsrldq xmmA, xmmA, SIZEOF_DWORD .column_st3: ; Store the lower 2 bytes of eax to the output when it has enough ; space. vmovd eax, xmmA cmp ecx, byte SIZEOF_WORD jb short .column_st1 mov word [edi], ax add edi, byte SIZEOF_WORD sub ecx, byte SIZEOF_WORD shr eax, 16 .column_st1: ; Store the lower 1 byte of eax to the output when it has enough ; space. test ecx, ecx jz short .endcolumn mov byte [edi], al %else ; RGB_PIXELSIZE == 4 ; ----------- %ifdef RGBX_FILLER_0XFF vpcmpeqb ymm6, ymm6, ymm6 ; ymm6=XE=X(02468ACE********GIKMOQSU********) vpcmpeqb ymm7, ymm7, ymm7 ; ymm7=XO=X(13579BDF********HJLNPRTV********) %else vpxor ymm6, ymm6, ymm6 ; ymm6=XE=X(02468ACE********GIKMOQSU********) vpxor ymm7, ymm7, ymm7 ; ymm7=XO=X(13579BDF********HJLNPRTV********) %endif ; ymmA=(00 02 04 06 08 0A 0C 0E ** 0G 0I 0K 0M 0O 0Q 0S 0U **) ; ymmB=(01 03 05 07 09 0B 0D 0F ** 0H 0J 0L 0N 0P 0R 0T 0V **) ; ymmC=(10 12 14 16 18 1A 1C 1E ** 1G 1I 1K 1M 1O 1Q 1S 1U **) ; ymmD=(11 13 15 17 19 1B 1D 1F ** 1H 1J 1L 1N 1P 1R 1T 1V **) ; ymmE=(20 22 24 26 28 2A 2C 2E ** 2G 2I 2K 2M 2O 2Q 2S 2U **) ; ymmF=(21 23 25 27 29 2B 2D 2F ** 2H 2J 2L 2N 2P 2R 2T 2V **) ; ymmG=(30 32 34 36 38 3A 3C 3E ** 3G 3I 3K 3M 3O 3Q 3S 3U **) ; ymmH=(31 33 35 37 39 3B 3D 3F ** 3H 3J 3L 3N 3P 3R 3T 3V **) vpunpcklbw ymmA, ymmA, ymmC ; ymmA=(00 10 02 12 04 14 06 16 08 18 0A 1A 0C 1C 0E 1E ; 0G 1G 0I 1I 0K 1K 0M 1M 0O 1O 0Q 1Q 0S 1S 0U 1U) vpunpcklbw ymmE, ymmE, ymmG ; ymmE=(20 30 22 32 24 34 26 36 28 38 2A 3A 2C 3C 2E 3E ; 2G 3G 2I 3I 2K 3K 2M 3M 2O 3O 2Q 3Q 2S 3S 2U 3U) vpunpcklbw ymmB, ymmB, ymmD ; ymmB=(01 11 03 13 05 15 07 17 09 19 0B 1B 0D 1D 0F 1F ; 0H 1H 0J 1J 0L 1L 0N 1N 0P 1P 0R 1R 0T 1T 0V 1V) vpunpcklbw ymmF, ymmF, ymmH ; ymmF=(21 31 23 33 25 35 27 37 29 39 2B 3B 2D 3D 2F 3F ; 2H 3H 2J 3J 2L 3L 2N 3N 2P 3P 2R 3R 2T 3T 2V 3V) vpunpckhwd ymmC, ymmA, ymmE ; ymmC=(08 18 28 38 0A 1A 2A 3A 0C 1C 2C 3C 0E 1E 2E 3E ; 0O 1O 2O 3O 0Q 1Q 2Q 3Q 0S 1S 2S 3S 0U 1U 2U 3U) vpunpcklwd ymmA, ymmA, ymmE ; ymmA=(00 10 20 30 02 12 22 32 04 14 24 34 06 16 26 36 ; 0G 1G 2G 3G 0I 1I 2I 3I 0K 1K 2K 3K 0M 1M 2M 3M) vpunpckhwd ymmG, ymmB, ymmF ; ymmG=(09 19 29 39 0B 1B 2B 3B 0D 1D 2D 3D 0F 1F 2F 3F ; 0P 1P 2P 3P 0R 1R 2R 3R 0T 1T 2T 3T 0V 1V 2V 3V) vpunpcklwd ymmB, ymmB, ymmF ; ymmB=(01 11 21 31 03 13 23 33 05 15 25 35 07 17 27 37 ; 0H 1H 2H 3H 0J 1J 2J 3J 0L 1L 2L 3L 0N 1N 2N 3N) vpunpckhdq ymmE, ymmA, ymmB ; ymmE=(04 14 24 34 05 15 25 35 06 16 26 36 07 17 27 37 ; 0K 1K 2K 3K 0L 1L 2L 3L 0M 1M 2M 3M 0N 1N 2N 3N) vpunpckldq ymmB, ymmA, ymmB ; ymmB=(00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33 ; 0G 1G 2G 3G 0H 1H 2H 3H 0I 1I 2I 3I 0J 1J 2J 3J) vpunpckhdq ymmF, ymmC, ymmG ; ymmF=(0C 1C 2C 3C 0D 1D 2D 3D 0E 1E 2E 3E 0F 1F 2F 3F ; 0S 1S 2S 3S 0T 1T 2T 3T 0U 1U 2U 3U 0V 1V 2V 3V) vpunpckldq ymmG, ymmC, ymmG ; ymmG=(08 18 28 38 09 19 29 39 0A 1A 2A 3A 0B 1B 2B 3B ; 0O 1O 2O 3O 0P 1P 2P 3P 0Q 1Q 2Q 3Q 0R 1R 2R 3R) vperm2i128 ymmA, ymmB, ymmE, 0x20 ; ymmA=(00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33 ; 04 14 24 34 05 15 25 35 06 16 26 36 07 17 27 37) vperm2i128 ymmD, ymmG, ymmF, 0x20 ; ymmD=(08 18 28 38 09 19 29 39 0A 1A 2A 3A 0B 1B 2B 3B ; 0C 1C 2C 3C 0D 1D 2D 3D 0E 1E 2E 3E 0F 1F 2F 3F) vperm2i128 ymmC, ymmB, ymmE, 0x31 ; ymmC=(0G 1G 2G 3G 0H 1H 2H 3H 0I 1I 2I 3I 0J 1J 2J 3J ; 0K 1K 2K 3K 0L 1L 2L 3L 0M 1M 2M 3M 0N 1N 2N 3N) vperm2i128 ymmH, ymmG, ymmF, 0x31 ; ymmH=(0O 1O 2O 3O 0P 1P 2P 3P 0Q 1Q 2Q 3Q 0R 1R 2R 3R ; 0S 1S 2S 3S 0T 1T 2T 3T 0U 1U 2U 3U 0V 1V 2V 3V) cmp ecx, byte SIZEOF_YMMWORD jb short .column_st64 test edi, SIZEOF_YMMWORD-1 jnz short .out1 ; --(aligned)------------------- vmovntdq YMMWORD [edi+0*SIZEOF_YMMWORD], ymmA vmovntdq YMMWORD [edi+1*SIZEOF_YMMWORD], ymmD vmovntdq YMMWORD [edi+2*SIZEOF_YMMWORD], ymmC vmovntdq YMMWORD [edi+3*SIZEOF_YMMWORD], ymmH jmp short .out0 .out1: ; --(unaligned)----------------- vmovdqu YMMWORD [edi+0*SIZEOF_YMMWORD], ymmA vmovdqu YMMWORD [edi+1*SIZEOF_YMMWORD], ymmD vmovdqu YMMWORD [edi+2*SIZEOF_YMMWORD], ymmC vmovdqu YMMWORD [edi+3*SIZEOF_YMMWORD], ymmH .out0: add edi, RGB_PIXELSIZE*SIZEOF_YMMWORD ; outptr sub ecx, byte SIZEOF_YMMWORD jz near .endcolumn add esi, byte SIZEOF_YMMWORD ; inptr0 dec al jnz near .Yloop_2nd add ebx, byte SIZEOF_YMMWORD ; inptr1 add edx, byte SIZEOF_YMMWORD ; inptr2 jmp near .columnloop alignx 16, 7 .column_st64: cmp ecx, byte SIZEOF_YMMWORD/2 jb short .column_st32 vmovdqu YMMWORD [edi+0*SIZEOF_YMMWORD], ymmA vmovdqu YMMWORD [edi+1*SIZEOF_YMMWORD], ymmD add edi, byte 2*SIZEOF_YMMWORD ; outptr vmovdqa ymmA, ymmC vmovdqa ymmD, ymmH sub ecx, byte SIZEOF_YMMWORD/2 .column_st32: cmp ecx, byte SIZEOF_YMMWORD/4 jb short .column_st16 vmovdqu YMMWORD [edi+0*SIZEOF_YMMWORD], ymmA add edi, byte SIZEOF_YMMWORD ; outptr vmovdqa ymmA, ymmD sub ecx, byte SIZEOF_YMMWORD/4 .column_st16: cmp ecx, byte SIZEOF_YMMWORD/8 jb short .column_st15 vmovdqu XMMWORD [edi+0*SIZEOF_XMMWORD], xmmA add edi, byte SIZEOF_XMMWORD ; outptr vperm2i128 ymmA, ymmA, ymmA, 1 sub ecx, byte SIZEOF_YMMWORD/8 .column_st15: ; Store two pixels (8 bytes) of ymmA to the output when it has enough ; space. cmp ecx, byte SIZEOF_YMMWORD/16 jb short .column_st7 vmovq MMWORD [edi], xmmA add edi, byte SIZEOF_YMMWORD/16*4 sub ecx, byte SIZEOF_YMMWORD/16 vpsrldq xmmA, SIZEOF_YMMWORD/16*4 .column_st7: ; Store one pixel (4 bytes) of ymmA to the output when it has enough ; space. test ecx, ecx jz short .endcolumn vmovd XMM_DWORD [edi], xmmA %endif ; RGB_PIXELSIZE ; --------------- .endcolumn: sfence ; flush the write buffer .return: vzeroupper pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx mov esp, ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; -------------------------------------------------------------------------- ; ; Upsample and color convert for the case of 2:1 horizontal and 2:1 vertical. ; ; GLOBAL(void) ; jsimd_h2v2_merged_upsample_avx2(JDIMENSION output_width, ; JSAMPIMAGE input_buf, ; JDIMENSION in_row_group_ctr, ; JSAMPARRAY output_buf); ; %define output_width(b) (b) + 8 ; JDIMENSION output_width %define input_buf(b) (b) + 12 ; JSAMPIMAGE input_buf %define in_row_group_ctr(b) (b) + 16 ; JDIMENSION in_row_group_ctr %define output_buf(b) (b) + 20 ; JSAMPARRAY output_buf align 32 GLOBAL_FUNCTION(jsimd_h2v2_merged_upsample_avx2) EXTN(jsimd_h2v2_merged_upsample_avx2): push ebp mov ebp, esp push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi mov eax, POINTER [output_width(ebp)] mov edi, JSAMPIMAGE [input_buf(ebp)] mov ecx, JDIMENSION [in_row_group_ctr(ebp)] mov esi, JSAMPARRAY [edi+0*SIZEOF_JSAMPARRAY] mov ebx, JSAMPARRAY [edi+1*SIZEOF_JSAMPARRAY] mov edx, JSAMPARRAY [edi+2*SIZEOF_JSAMPARRAY] mov edi, JSAMPARRAY [output_buf(ebp)] lea esi, [esi+ecx*SIZEOF_JSAMPROW] push edx ; inptr2 push ebx ; inptr1 push esi ; inptr00 mov ebx, esp push edi ; output_buf (outptr0) push ecx ; in_row_group_ctr push ebx ; input_buf push eax ; output_width call near EXTN(jsimd_h2v1_merged_upsample_avx2) add esi, byte SIZEOF_JSAMPROW ; inptr01 add edi, byte SIZEOF_JSAMPROW ; outptr1 mov POINTER [ebx+0*SIZEOF_POINTER], esi mov POINTER [ebx-1*SIZEOF_POINTER], edi call near EXTN(jsimd_h2v1_merged_upsample_avx2) add esp, byte 7*SIZEOF_DWORD pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/i386/jdmrgext-mmx.asm000066400000000000000000000431401436506551100210460ustar00rootroot00000000000000; ; jdmrgext.asm - merged upsampling/color conversion (MMX) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2016, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jcolsamp.inc" ; -------------------------------------------------------------------------- ; ; Upsample and color convert for the case of 2:1 horizontal and 1:1 vertical. ; ; GLOBAL(void) ; jsimd_h2v1_merged_upsample_mmx(JDIMENSION output_width, JSAMPIMAGE input_buf, ; JDIMENSION in_row_group_ctr, ; JSAMPARRAY output_buf); ; %define output_width(b) (b) + 8 ; JDIMENSION output_width %define input_buf(b) (b) + 12 ; JSAMPIMAGE input_buf %define in_row_group_ctr(b) (b) + 16 ; JDIMENSION in_row_group_ctr %define output_buf(b) (b) + 20 ; JSAMPARRAY output_buf %define original_ebp ebp + 0 %define wk(i) ebp - (WK_NUM - (i)) * SIZEOF_MMWORD ; mmword wk[WK_NUM] %define WK_NUM 3 %define gotptr wk(0) - SIZEOF_POINTER ; void * gotptr align 32 GLOBAL_FUNCTION(jsimd_h2v1_merged_upsample_mmx) EXTN(jsimd_h2v1_merged_upsample_mmx): push ebp mov eax, esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_MMWORD) ; align to 64 bits mov [esp], eax mov ebp, esp ; ebp = aligned ebp lea esp, [wk(0)] pushpic eax ; make a room for GOT address push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address movpic POINTER [gotptr], ebx ; save GOT address mov ecx, JDIMENSION [output_width(eax)] ; col test ecx, ecx jz near .return push ecx mov edi, JSAMPIMAGE [input_buf(eax)] mov ecx, JDIMENSION [in_row_group_ctr(eax)] mov esi, JSAMPARRAY [edi+0*SIZEOF_JSAMPARRAY] mov ebx, JSAMPARRAY [edi+1*SIZEOF_JSAMPARRAY] mov edx, JSAMPARRAY [edi+2*SIZEOF_JSAMPARRAY] mov edi, JSAMPARRAY [output_buf(eax)] mov esi, JSAMPROW [esi+ecx*SIZEOF_JSAMPROW] ; inptr0 mov ebx, JSAMPROW [ebx+ecx*SIZEOF_JSAMPROW] ; inptr1 mov edx, JSAMPROW [edx+ecx*SIZEOF_JSAMPROW] ; inptr2 mov edi, JSAMPROW [edi] ; outptr pop ecx ; col alignx 16, 7 .columnloop: movpic eax, POINTER [gotptr] ; load GOT address (eax) movq mm6, MMWORD [ebx] ; mm6=Cb(01234567) movq mm7, MMWORD [edx] ; mm7=Cr(01234567) pxor mm1, mm1 ; mm1=(all 0's) pcmpeqw mm3, mm3 psllw mm3, 7 ; mm3={0xFF80 0xFF80 0xFF80 0xFF80} movq mm4, mm6 punpckhbw mm6, mm1 ; mm6=Cb(4567)=CbH punpcklbw mm4, mm1 ; mm4=Cb(0123)=CbL movq mm0, mm7 punpckhbw mm7, mm1 ; mm7=Cr(4567)=CrH punpcklbw mm0, mm1 ; mm0=Cr(0123)=CrL paddw mm6, mm3 paddw mm4, mm3 paddw mm7, mm3 paddw mm0, mm3 ; (Original) ; R = Y + 1.40200 * Cr ; G = Y - 0.34414 * Cb - 0.71414 * Cr ; B = Y + 1.77200 * Cb ; ; (This implementation) ; R = Y + 0.40200 * Cr + Cr ; G = Y - 0.34414 * Cb + 0.28586 * Cr - Cr ; B = Y - 0.22800 * Cb + Cb + Cb movq mm5, mm6 ; mm5=CbH movq mm2, mm4 ; mm2=CbL paddw mm6, mm6 ; mm6=2*CbH paddw mm4, mm4 ; mm4=2*CbL movq mm1, mm7 ; mm1=CrH movq mm3, mm0 ; mm3=CrL paddw mm7, mm7 ; mm7=2*CrH paddw mm0, mm0 ; mm0=2*CrL pmulhw mm6, [GOTOFF(eax,PW_MF0228)] ; mm6=(2*CbH * -FIX(0.22800)) pmulhw mm4, [GOTOFF(eax,PW_MF0228)] ; mm4=(2*CbL * -FIX(0.22800)) pmulhw mm7, [GOTOFF(eax,PW_F0402)] ; mm7=(2*CrH * FIX(0.40200)) pmulhw mm0, [GOTOFF(eax,PW_F0402)] ; mm0=(2*CrL * FIX(0.40200)) paddw mm6, [GOTOFF(eax,PW_ONE)] paddw mm4, [GOTOFF(eax,PW_ONE)] psraw mm6, 1 ; mm6=(CbH * -FIX(0.22800)) psraw mm4, 1 ; mm4=(CbL * -FIX(0.22800)) paddw mm7, [GOTOFF(eax,PW_ONE)] paddw mm0, [GOTOFF(eax,PW_ONE)] psraw mm7, 1 ; mm7=(CrH * FIX(0.40200)) psraw mm0, 1 ; mm0=(CrL * FIX(0.40200)) paddw mm6, mm5 paddw mm4, mm2 paddw mm6, mm5 ; mm6=(CbH * FIX(1.77200))=(B-Y)H paddw mm4, mm2 ; mm4=(CbL * FIX(1.77200))=(B-Y)L paddw mm7, mm1 ; mm7=(CrH * FIX(1.40200))=(R-Y)H paddw mm0, mm3 ; mm0=(CrL * FIX(1.40200))=(R-Y)L movq MMWORD [wk(0)], mm6 ; wk(0)=(B-Y)H movq MMWORD [wk(1)], mm7 ; wk(1)=(R-Y)H movq mm6, mm5 movq mm7, mm2 punpcklwd mm5, mm1 punpckhwd mm6, mm1 pmaddwd mm5, [GOTOFF(eax,PW_MF0344_F0285)] pmaddwd mm6, [GOTOFF(eax,PW_MF0344_F0285)] punpcklwd mm2, mm3 punpckhwd mm7, mm3 pmaddwd mm2, [GOTOFF(eax,PW_MF0344_F0285)] pmaddwd mm7, [GOTOFF(eax,PW_MF0344_F0285)] paddd mm5, [GOTOFF(eax,PD_ONEHALF)] paddd mm6, [GOTOFF(eax,PD_ONEHALF)] psrad mm5, SCALEBITS psrad mm6, SCALEBITS paddd mm2, [GOTOFF(eax,PD_ONEHALF)] paddd mm7, [GOTOFF(eax,PD_ONEHALF)] psrad mm2, SCALEBITS psrad mm7, SCALEBITS packssdw mm5, mm6 ; mm5=CbH*-FIX(0.344)+CrH*FIX(0.285) packssdw mm2, mm7 ; mm2=CbL*-FIX(0.344)+CrL*FIX(0.285) psubw mm5, mm1 ; mm5=CbH*-FIX(0.344)+CrH*-FIX(0.714)=(G-Y)H psubw mm2, mm3 ; mm2=CbL*-FIX(0.344)+CrL*-FIX(0.714)=(G-Y)L movq MMWORD [wk(2)], mm5 ; wk(2)=(G-Y)H mov al, 2 ; Yctr jmp short .Yloop_1st alignx 16, 7 .Yloop_2nd: movq mm0, MMWORD [wk(1)] ; mm0=(R-Y)H movq mm2, MMWORD [wk(2)] ; mm2=(G-Y)H movq mm4, MMWORD [wk(0)] ; mm4=(B-Y)H alignx 16, 7 .Yloop_1st: movq mm7, MMWORD [esi] ; mm7=Y(01234567) pcmpeqw mm6, mm6 psrlw mm6, BYTE_BIT ; mm6={0xFF 0x00 0xFF 0x00 ..} pand mm6, mm7 ; mm6=Y(0246)=YE psrlw mm7, BYTE_BIT ; mm7=Y(1357)=YO movq mm1, mm0 ; mm1=mm0=(R-Y)(L/H) movq mm3, mm2 ; mm3=mm2=(G-Y)(L/H) movq mm5, mm4 ; mm5=mm4=(B-Y)(L/H) paddw mm0, mm6 ; mm0=((R-Y)+YE)=RE=(R0 R2 R4 R6) paddw mm1, mm7 ; mm1=((R-Y)+YO)=RO=(R1 R3 R5 R7) packuswb mm0, mm0 ; mm0=(R0 R2 R4 R6 ** ** ** **) packuswb mm1, mm1 ; mm1=(R1 R3 R5 R7 ** ** ** **) paddw mm2, mm6 ; mm2=((G-Y)+YE)=GE=(G0 G2 G4 G6) paddw mm3, mm7 ; mm3=((G-Y)+YO)=GO=(G1 G3 G5 G7) packuswb mm2, mm2 ; mm2=(G0 G2 G4 G6 ** ** ** **) packuswb mm3, mm3 ; mm3=(G1 G3 G5 G7 ** ** ** **) paddw mm4, mm6 ; mm4=((B-Y)+YE)=BE=(B0 B2 B4 B6) paddw mm5, mm7 ; mm5=((B-Y)+YO)=BO=(B1 B3 B5 B7) packuswb mm4, mm4 ; mm4=(B0 B2 B4 B6 ** ** ** **) packuswb mm5, mm5 ; mm5=(B1 B3 B5 B7 ** ** ** **) %if RGB_PIXELSIZE == 3 ; --------------- ; mmA=(00 02 04 06 ** ** ** **), mmB=(01 03 05 07 ** ** ** **) ; mmC=(10 12 14 16 ** ** ** **), mmD=(11 13 15 17 ** ** ** **) ; mmE=(20 22 24 26 ** ** ** **), mmF=(21 23 25 27 ** ** ** **) ; mmG=(** ** ** ** ** ** ** **), mmH=(** ** ** ** ** ** ** **) punpcklbw mmA, mmC ; mmA=(00 10 02 12 04 14 06 16) punpcklbw mmE, mmB ; mmE=(20 01 22 03 24 05 26 07) punpcklbw mmD, mmF ; mmD=(11 21 13 23 15 25 17 27) movq mmG, mmA movq mmH, mmA punpcklwd mmA, mmE ; mmA=(00 10 20 01 02 12 22 03) punpckhwd mmG, mmE ; mmG=(04 14 24 05 06 16 26 07) psrlq mmH, 2*BYTE_BIT ; mmH=(02 12 04 14 06 16 -- --) psrlq mmE, 2*BYTE_BIT ; mmE=(22 03 24 05 26 07 -- --) movq mmC, mmD movq mmB, mmD punpcklwd mmD, mmH ; mmD=(11 21 02 12 13 23 04 14) punpckhwd mmC, mmH ; mmC=(15 25 06 16 17 27 -- --) psrlq mmB, 2*BYTE_BIT ; mmB=(13 23 15 25 17 27 -- --) movq mmF, mmE punpcklwd mmE, mmB ; mmE=(22 03 13 23 24 05 15 25) punpckhwd mmF, mmB ; mmF=(26 07 17 27 -- -- -- --) punpckldq mmA, mmD ; mmA=(00 10 20 01 11 21 02 12) punpckldq mmE, mmG ; mmE=(22 03 13 23 04 14 24 05) punpckldq mmC, mmF ; mmC=(15 25 06 16 26 07 17 27) cmp ecx, byte SIZEOF_MMWORD jb short .column_st16 movq MMWORD [edi+0*SIZEOF_MMWORD], mmA movq MMWORD [edi+1*SIZEOF_MMWORD], mmE movq MMWORD [edi+2*SIZEOF_MMWORD], mmC sub ecx, byte SIZEOF_MMWORD jz near .endcolumn add edi, byte RGB_PIXELSIZE*SIZEOF_MMWORD ; outptr add esi, byte SIZEOF_MMWORD ; inptr0 dec al ; Yctr jnz near .Yloop_2nd add ebx, byte SIZEOF_MMWORD ; inptr1 add edx, byte SIZEOF_MMWORD ; inptr2 jmp near .columnloop alignx 16, 7 .column_st16: lea ecx, [ecx+ecx*2] ; imul ecx, RGB_PIXELSIZE cmp ecx, byte 2*SIZEOF_MMWORD jb short .column_st8 movq MMWORD [edi+0*SIZEOF_MMWORD], mmA movq MMWORD [edi+1*SIZEOF_MMWORD], mmE movq mmA, mmC sub ecx, byte 2*SIZEOF_MMWORD add edi, byte 2*SIZEOF_MMWORD jmp short .column_st4 .column_st8: cmp ecx, byte SIZEOF_MMWORD jb short .column_st4 movq MMWORD [edi+0*SIZEOF_MMWORD], mmA movq mmA, mmE sub ecx, byte SIZEOF_MMWORD add edi, byte SIZEOF_MMWORD .column_st4: movd eax, mmA cmp ecx, byte SIZEOF_DWORD jb short .column_st2 mov dword [edi+0*SIZEOF_DWORD], eax psrlq mmA, DWORD_BIT movd eax, mmA sub ecx, byte SIZEOF_DWORD add edi, byte SIZEOF_DWORD .column_st2: cmp ecx, byte SIZEOF_WORD jb short .column_st1 mov word [edi+0*SIZEOF_WORD], ax shr eax, WORD_BIT sub ecx, byte SIZEOF_WORD add edi, byte SIZEOF_WORD .column_st1: cmp ecx, byte SIZEOF_BYTE jb short .endcolumn mov byte [edi+0*SIZEOF_BYTE], al %else ; RGB_PIXELSIZE == 4 ; ----------- %ifdef RGBX_FILLER_0XFF pcmpeqb mm6, mm6 ; mm6=(X0 X2 X4 X6 ** ** ** **) pcmpeqb mm7, mm7 ; mm7=(X1 X3 X5 X7 ** ** ** **) %else pxor mm6, mm6 ; mm6=(X0 X2 X4 X6 ** ** ** **) pxor mm7, mm7 ; mm7=(X1 X3 X5 X7 ** ** ** **) %endif ; mmA=(00 02 04 06 ** ** ** **), mmB=(01 03 05 07 ** ** ** **) ; mmC=(10 12 14 16 ** ** ** **), mmD=(11 13 15 17 ** ** ** **) ; mmE=(20 22 24 26 ** ** ** **), mmF=(21 23 25 27 ** ** ** **) ; mmG=(30 32 34 36 ** ** ** **), mmH=(31 33 35 37 ** ** ** **) punpcklbw mmA, mmC ; mmA=(00 10 02 12 04 14 06 16) punpcklbw mmE, mmG ; mmE=(20 30 22 32 24 34 26 36) punpcklbw mmB, mmD ; mmB=(01 11 03 13 05 15 07 17) punpcklbw mmF, mmH ; mmF=(21 31 23 33 25 35 27 37) movq mmC, mmA punpcklwd mmA, mmE ; mmA=(00 10 20 30 02 12 22 32) punpckhwd mmC, mmE ; mmC=(04 14 24 34 06 16 26 36) movq mmG, mmB punpcklwd mmB, mmF ; mmB=(01 11 21 31 03 13 23 33) punpckhwd mmG, mmF ; mmG=(05 15 25 35 07 17 27 37) movq mmD, mmA punpckldq mmA, mmB ; mmA=(00 10 20 30 01 11 21 31) punpckhdq mmD, mmB ; mmD=(02 12 22 32 03 13 23 33) movq mmH, mmC punpckldq mmC, mmG ; mmC=(04 14 24 34 05 15 25 35) punpckhdq mmH, mmG ; mmH=(06 16 26 36 07 17 27 37) cmp ecx, byte SIZEOF_MMWORD jb short .column_st16 movq MMWORD [edi+0*SIZEOF_MMWORD], mmA movq MMWORD [edi+1*SIZEOF_MMWORD], mmD movq MMWORD [edi+2*SIZEOF_MMWORD], mmC movq MMWORD [edi+3*SIZEOF_MMWORD], mmH sub ecx, byte SIZEOF_MMWORD jz short .endcolumn add edi, byte RGB_PIXELSIZE*SIZEOF_MMWORD ; outptr add esi, byte SIZEOF_MMWORD ; inptr0 dec al ; Yctr jnz near .Yloop_2nd add ebx, byte SIZEOF_MMWORD ; inptr1 add edx, byte SIZEOF_MMWORD ; inptr2 jmp near .columnloop alignx 16, 7 .column_st16: cmp ecx, byte SIZEOF_MMWORD/2 jb short .column_st8 movq MMWORD [edi+0*SIZEOF_MMWORD], mmA movq MMWORD [edi+1*SIZEOF_MMWORD], mmD movq mmA, mmC movq mmD, mmH sub ecx, byte SIZEOF_MMWORD/2 add edi, byte 2*SIZEOF_MMWORD .column_st8: cmp ecx, byte SIZEOF_MMWORD/4 jb short .column_st4 movq MMWORD [edi+0*SIZEOF_MMWORD], mmA movq mmA, mmD sub ecx, byte SIZEOF_MMWORD/4 add edi, byte 1*SIZEOF_MMWORD .column_st4: cmp ecx, byte SIZEOF_MMWORD/8 jb short .endcolumn movd dword [edi+0*SIZEOF_DWORD], mmA %endif ; RGB_PIXELSIZE ; --------------- .endcolumn: emms ; empty MMX state .return: pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx mov esp, ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; -------------------------------------------------------------------------- ; ; Upsample and color convert for the case of 2:1 horizontal and 2:1 vertical. ; ; GLOBAL(void) ; jsimd_h2v2_merged_upsample_mmx(JDIMENSION output_width, JSAMPIMAGE input_buf, ; JDIMENSION in_row_group_ctr, ; JSAMPARRAY output_buf); ; %define output_width(b) (b) + 8 ; JDIMENSION output_width %define input_buf(b) (b) + 12 ; JSAMPIMAGE input_buf %define in_row_group_ctr(b) (b) + 16 ; JDIMENSION in_row_group_ctr %define output_buf(b) (b) + 20 ; JSAMPARRAY output_buf align 32 GLOBAL_FUNCTION(jsimd_h2v2_merged_upsample_mmx) EXTN(jsimd_h2v2_merged_upsample_mmx): push ebp mov ebp, esp push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi mov eax, JDIMENSION [output_width(ebp)] mov edi, JSAMPIMAGE [input_buf(ebp)] mov ecx, JDIMENSION [in_row_group_ctr(ebp)] mov esi, JSAMPARRAY [edi+0*SIZEOF_JSAMPARRAY] mov ebx, JSAMPARRAY [edi+1*SIZEOF_JSAMPARRAY] mov edx, JSAMPARRAY [edi+2*SIZEOF_JSAMPARRAY] mov edi, JSAMPARRAY [output_buf(ebp)] lea esi, [esi+ecx*SIZEOF_JSAMPROW] push edx ; inptr2 push ebx ; inptr1 push esi ; inptr00 mov ebx, esp push edi ; output_buf (outptr0) push ecx ; in_row_group_ctr push ebx ; input_buf push eax ; output_width call near EXTN(jsimd_h2v1_merged_upsample_mmx) add esi, byte SIZEOF_JSAMPROW ; inptr01 add edi, byte SIZEOF_JSAMPROW ; outptr1 mov POINTER [ebx+0*SIZEOF_POINTER], esi mov POINTER [ebx-1*SIZEOF_POINTER], edi call near EXTN(jsimd_h2v1_merged_upsample_mmx) add esp, byte 7*SIZEOF_DWORD pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/i386/jdmrgext-sse2.asm000066400000000000000000000513371436506551100211300ustar00rootroot00000000000000; ; jdmrgext.asm - merged upsampling/color conversion (SSE2) ; ; Copyright 2009, 2012 Pierre Ossman for Cendio AB ; Copyright (C) 2012, 2016, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jcolsamp.inc" ; -------------------------------------------------------------------------- ; ; Upsample and color convert for the case of 2:1 horizontal and 1:1 vertical. ; ; GLOBAL(void) ; jsimd_h2v1_merged_upsample_sse2(JDIMENSION output_width, ; JSAMPIMAGE input_buf, ; JDIMENSION in_row_group_ctr, ; JSAMPARRAY output_buf); ; %define output_width(b) (b) + 8 ; JDIMENSION output_width %define input_buf(b) (b) + 12 ; JSAMPIMAGE input_buf %define in_row_group_ctr(b) (b) + 16 ; JDIMENSION in_row_group_ctr %define output_buf(b) (b) + 20 ; JSAMPARRAY output_buf %define original_ebp ebp + 0 %define wk(i) ebp - (WK_NUM - (i)) * SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 3 %define gotptr wk(0) - SIZEOF_POINTER ; void * gotptr align 32 GLOBAL_FUNCTION(jsimd_h2v1_merged_upsample_sse2) EXTN(jsimd_h2v1_merged_upsample_sse2): push ebp mov eax, esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [esp], eax mov ebp, esp ; ebp = aligned ebp lea esp, [wk(0)] pushpic eax ; make a room for GOT address push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address movpic POINTER [gotptr], ebx ; save GOT address mov ecx, JDIMENSION [output_width(eax)] ; col test ecx, ecx jz near .return push ecx mov edi, JSAMPIMAGE [input_buf(eax)] mov ecx, JDIMENSION [in_row_group_ctr(eax)] mov esi, JSAMPARRAY [edi+0*SIZEOF_JSAMPARRAY] mov ebx, JSAMPARRAY [edi+1*SIZEOF_JSAMPARRAY] mov edx, JSAMPARRAY [edi+2*SIZEOF_JSAMPARRAY] mov edi, JSAMPARRAY [output_buf(eax)] mov esi, JSAMPROW [esi+ecx*SIZEOF_JSAMPROW] ; inptr0 mov ebx, JSAMPROW [ebx+ecx*SIZEOF_JSAMPROW] ; inptr1 mov edx, JSAMPROW [edx+ecx*SIZEOF_JSAMPROW] ; inptr2 mov edi, JSAMPROW [edi] ; outptr pop ecx ; col alignx 16, 7 .columnloop: movpic eax, POINTER [gotptr] ; load GOT address (eax) movdqa xmm6, XMMWORD [ebx] ; xmm6=Cb(0123456789ABCDEF) movdqa xmm7, XMMWORD [edx] ; xmm7=Cr(0123456789ABCDEF) pxor xmm1, xmm1 ; xmm1=(all 0's) pcmpeqw xmm3, xmm3 psllw xmm3, 7 ; xmm3={0xFF80 0xFF80 0xFF80 0xFF80 ..} movdqa xmm4, xmm6 punpckhbw xmm6, xmm1 ; xmm6=Cb(89ABCDEF)=CbH punpcklbw xmm4, xmm1 ; xmm4=Cb(01234567)=CbL movdqa xmm0, xmm7 punpckhbw xmm7, xmm1 ; xmm7=Cr(89ABCDEF)=CrH punpcklbw xmm0, xmm1 ; xmm0=Cr(01234567)=CrL paddw xmm6, xmm3 paddw xmm4, xmm3 paddw xmm7, xmm3 paddw xmm0, xmm3 ; (Original) ; R = Y + 1.40200 * Cr ; G = Y - 0.34414 * Cb - 0.71414 * Cr ; B = Y + 1.77200 * Cb ; ; (This implementation) ; R = Y + 0.40200 * Cr + Cr ; G = Y - 0.34414 * Cb + 0.28586 * Cr - Cr ; B = Y - 0.22800 * Cb + Cb + Cb movdqa xmm5, xmm6 ; xmm5=CbH movdqa xmm2, xmm4 ; xmm2=CbL paddw xmm6, xmm6 ; xmm6=2*CbH paddw xmm4, xmm4 ; xmm4=2*CbL movdqa xmm1, xmm7 ; xmm1=CrH movdqa xmm3, xmm0 ; xmm3=CrL paddw xmm7, xmm7 ; xmm7=2*CrH paddw xmm0, xmm0 ; xmm0=2*CrL pmulhw xmm6, [GOTOFF(eax,PW_MF0228)] ; xmm6=(2*CbH * -FIX(0.22800)) pmulhw xmm4, [GOTOFF(eax,PW_MF0228)] ; xmm4=(2*CbL * -FIX(0.22800)) pmulhw xmm7, [GOTOFF(eax,PW_F0402)] ; xmm7=(2*CrH * FIX(0.40200)) pmulhw xmm0, [GOTOFF(eax,PW_F0402)] ; xmm0=(2*CrL * FIX(0.40200)) paddw xmm6, [GOTOFF(eax,PW_ONE)] paddw xmm4, [GOTOFF(eax,PW_ONE)] psraw xmm6, 1 ; xmm6=(CbH * -FIX(0.22800)) psraw xmm4, 1 ; xmm4=(CbL * -FIX(0.22800)) paddw xmm7, [GOTOFF(eax,PW_ONE)] paddw xmm0, [GOTOFF(eax,PW_ONE)] psraw xmm7, 1 ; xmm7=(CrH * FIX(0.40200)) psraw xmm0, 1 ; xmm0=(CrL * FIX(0.40200)) paddw xmm6, xmm5 paddw xmm4, xmm2 paddw xmm6, xmm5 ; xmm6=(CbH * FIX(1.77200))=(B-Y)H paddw xmm4, xmm2 ; xmm4=(CbL * FIX(1.77200))=(B-Y)L paddw xmm7, xmm1 ; xmm7=(CrH * FIX(1.40200))=(R-Y)H paddw xmm0, xmm3 ; xmm0=(CrL * FIX(1.40200))=(R-Y)L movdqa XMMWORD [wk(0)], xmm6 ; wk(0)=(B-Y)H movdqa XMMWORD [wk(1)], xmm7 ; wk(1)=(R-Y)H movdqa xmm6, xmm5 movdqa xmm7, xmm2 punpcklwd xmm5, xmm1 punpckhwd xmm6, xmm1 pmaddwd xmm5, [GOTOFF(eax,PW_MF0344_F0285)] pmaddwd xmm6, [GOTOFF(eax,PW_MF0344_F0285)] punpcklwd xmm2, xmm3 punpckhwd xmm7, xmm3 pmaddwd xmm2, [GOTOFF(eax,PW_MF0344_F0285)] pmaddwd xmm7, [GOTOFF(eax,PW_MF0344_F0285)] paddd xmm5, [GOTOFF(eax,PD_ONEHALF)] paddd xmm6, [GOTOFF(eax,PD_ONEHALF)] psrad xmm5, SCALEBITS psrad xmm6, SCALEBITS paddd xmm2, [GOTOFF(eax,PD_ONEHALF)] paddd xmm7, [GOTOFF(eax,PD_ONEHALF)] psrad xmm2, SCALEBITS psrad xmm7, SCALEBITS packssdw xmm5, xmm6 ; xmm5=CbH*-FIX(0.344)+CrH*FIX(0.285) packssdw xmm2, xmm7 ; xmm2=CbL*-FIX(0.344)+CrL*FIX(0.285) psubw xmm5, xmm1 ; xmm5=CbH*-FIX(0.344)+CrH*-FIX(0.714)=(G-Y)H psubw xmm2, xmm3 ; xmm2=CbL*-FIX(0.344)+CrL*-FIX(0.714)=(G-Y)L movdqa XMMWORD [wk(2)], xmm5 ; wk(2)=(G-Y)H mov al, 2 ; Yctr jmp short .Yloop_1st alignx 16, 7 .Yloop_2nd: movdqa xmm0, XMMWORD [wk(1)] ; xmm0=(R-Y)H movdqa xmm2, XMMWORD [wk(2)] ; xmm2=(G-Y)H movdqa xmm4, XMMWORD [wk(0)] ; xmm4=(B-Y)H alignx 16, 7 .Yloop_1st: movdqa xmm7, XMMWORD [esi] ; xmm7=Y(0123456789ABCDEF) pcmpeqw xmm6, xmm6 psrlw xmm6, BYTE_BIT ; xmm6={0xFF 0x00 0xFF 0x00 ..} pand xmm6, xmm7 ; xmm6=Y(02468ACE)=YE psrlw xmm7, BYTE_BIT ; xmm7=Y(13579BDF)=YO movdqa xmm1, xmm0 ; xmm1=xmm0=(R-Y)(L/H) movdqa xmm3, xmm2 ; xmm3=xmm2=(G-Y)(L/H) movdqa xmm5, xmm4 ; xmm5=xmm4=(B-Y)(L/H) paddw xmm0, xmm6 ; xmm0=((R-Y)+YE)=RE=R(02468ACE) paddw xmm1, xmm7 ; xmm1=((R-Y)+YO)=RO=R(13579BDF) packuswb xmm0, xmm0 ; xmm0=R(02468ACE********) packuswb xmm1, xmm1 ; xmm1=R(13579BDF********) paddw xmm2, xmm6 ; xmm2=((G-Y)+YE)=GE=G(02468ACE) paddw xmm3, xmm7 ; xmm3=((G-Y)+YO)=GO=G(13579BDF) packuswb xmm2, xmm2 ; xmm2=G(02468ACE********) packuswb xmm3, xmm3 ; xmm3=G(13579BDF********) paddw xmm4, xmm6 ; xmm4=((B-Y)+YE)=BE=B(02468ACE) paddw xmm5, xmm7 ; xmm5=((B-Y)+YO)=BO=B(13579BDF) packuswb xmm4, xmm4 ; xmm4=B(02468ACE********) packuswb xmm5, xmm5 ; xmm5=B(13579BDF********) %if RGB_PIXELSIZE == 3 ; --------------- ; xmmA=(00 02 04 06 08 0A 0C 0E **), xmmB=(01 03 05 07 09 0B 0D 0F **) ; xmmC=(10 12 14 16 18 1A 1C 1E **), xmmD=(11 13 15 17 19 1B 1D 1F **) ; xmmE=(20 22 24 26 28 2A 2C 2E **), xmmF=(21 23 25 27 29 2B 2D 2F **) ; xmmG=(** ** ** ** ** ** ** ** **), xmmH=(** ** ** ** ** ** ** ** **) punpcklbw xmmA, xmmC ; xmmA=(00 10 02 12 04 14 06 16 08 18 0A 1A 0C 1C 0E 1E) punpcklbw xmmE, xmmB ; xmmE=(20 01 22 03 24 05 26 07 28 09 2A 0B 2C 0D 2E 0F) punpcklbw xmmD, xmmF ; xmmD=(11 21 13 23 15 25 17 27 19 29 1B 2B 1D 2D 1F 2F) movdqa xmmG, xmmA movdqa xmmH, xmmA punpcklwd xmmA, xmmE ; xmmA=(00 10 20 01 02 12 22 03 04 14 24 05 06 16 26 07) punpckhwd xmmG, xmmE ; xmmG=(08 18 28 09 0A 1A 2A 0B 0C 1C 2C 0D 0E 1E 2E 0F) psrldq xmmH, 2 ; xmmH=(02 12 04 14 06 16 08 18 0A 1A 0C 1C 0E 1E -- --) psrldq xmmE, 2 ; xmmE=(22 03 24 05 26 07 28 09 2A 0B 2C 0D 2E 0F -- --) movdqa xmmC, xmmD movdqa xmmB, xmmD punpcklwd xmmD, xmmH ; xmmD=(11 21 02 12 13 23 04 14 15 25 06 16 17 27 08 18) punpckhwd xmmC, xmmH ; xmmC=(19 29 0A 1A 1B 2B 0C 1C 1D 2D 0E 1E 1F 2F -- --) psrldq xmmB, 2 ; xmmB=(13 23 15 25 17 27 19 29 1B 2B 1D 2D 1F 2F -- --) movdqa xmmF, xmmE punpcklwd xmmE, xmmB ; xmmE=(22 03 13 23 24 05 15 25 26 07 17 27 28 09 19 29) punpckhwd xmmF, xmmB ; xmmF=(2A 0B 1B 2B 2C 0D 1D 2D 2E 0F 1F 2F -- -- -- --) pshufd xmmH, xmmA, 0x4E ; xmmH=(04 14 24 05 06 16 26 07 00 10 20 01 02 12 22 03) movdqa xmmB, xmmE punpckldq xmmA, xmmD ; xmmA=(00 10 20 01 11 21 02 12 02 12 22 03 13 23 04 14) punpckldq xmmE, xmmH ; xmmE=(22 03 13 23 04 14 24 05 24 05 15 25 06 16 26 07) punpckhdq xmmD, xmmB ; xmmD=(15 25 06 16 26 07 17 27 17 27 08 18 28 09 19 29) pshufd xmmH, xmmG, 0x4E ; xmmH=(0C 1C 2C 0D 0E 1E 2E 0F 08 18 28 09 0A 1A 2A 0B) movdqa xmmB, xmmF punpckldq xmmG, xmmC ; xmmG=(08 18 28 09 19 29 0A 1A 0A 1A 2A 0B 1B 2B 0C 1C) punpckldq xmmF, xmmH ; xmmF=(2A 0B 1B 2B 0C 1C 2C 0D 2C 0D 1D 2D 0E 1E 2E 0F) punpckhdq xmmC, xmmB ; xmmC=(1D 2D 0E 1E 2E 0F 1F 2F 1F 2F -- -- -- -- -- --) punpcklqdq xmmA, xmmE ; xmmA=(00 10 20 01 11 21 02 12 22 03 13 23 04 14 24 05) punpcklqdq xmmD, xmmG ; xmmD=(15 25 06 16 26 07 17 27 08 18 28 09 19 29 0A 1A) punpcklqdq xmmF, xmmC ; xmmF=(2A 0B 1B 2B 0C 1C 2C 0D 1D 2D 0E 1E 2E 0F 1F 2F) cmp ecx, byte SIZEOF_XMMWORD jb short .column_st32 test edi, SIZEOF_XMMWORD-1 jnz short .out1 ; --(aligned)------------------- movntdq XMMWORD [edi+0*SIZEOF_XMMWORD], xmmA movntdq XMMWORD [edi+1*SIZEOF_XMMWORD], xmmD movntdq XMMWORD [edi+2*SIZEOF_XMMWORD], xmmF jmp short .out0 .out1: ; --(unaligned)----------------- movdqu XMMWORD [edi+0*SIZEOF_XMMWORD], xmmA movdqu XMMWORD [edi+1*SIZEOF_XMMWORD], xmmD movdqu XMMWORD [edi+2*SIZEOF_XMMWORD], xmmF .out0: add edi, byte RGB_PIXELSIZE*SIZEOF_XMMWORD ; outptr sub ecx, byte SIZEOF_XMMWORD jz near .endcolumn add esi, byte SIZEOF_XMMWORD ; inptr0 dec al ; Yctr jnz near .Yloop_2nd add ebx, byte SIZEOF_XMMWORD ; inptr1 add edx, byte SIZEOF_XMMWORD ; inptr2 jmp near .columnloop alignx 16, 7 .column_st32: lea ecx, [ecx+ecx*2] ; imul ecx, RGB_PIXELSIZE cmp ecx, byte 2*SIZEOF_XMMWORD jb short .column_st16 movdqu XMMWORD [edi+0*SIZEOF_XMMWORD], xmmA movdqu XMMWORD [edi+1*SIZEOF_XMMWORD], xmmD add edi, byte 2*SIZEOF_XMMWORD ; outptr movdqa xmmA, xmmF sub ecx, byte 2*SIZEOF_XMMWORD jmp short .column_st15 .column_st16: cmp ecx, byte SIZEOF_XMMWORD jb short .column_st15 movdqu XMMWORD [edi+0*SIZEOF_XMMWORD], xmmA add edi, byte SIZEOF_XMMWORD ; outptr movdqa xmmA, xmmD sub ecx, byte SIZEOF_XMMWORD .column_st15: ; Store the lower 8 bytes of xmmA to the output when it has enough ; space. cmp ecx, byte SIZEOF_MMWORD jb short .column_st7 movq XMM_MMWORD [edi], xmmA add edi, byte SIZEOF_MMWORD sub ecx, byte SIZEOF_MMWORD psrldq xmmA, SIZEOF_MMWORD .column_st7: ; Store the lower 4 bytes of xmmA to the output when it has enough ; space. cmp ecx, byte SIZEOF_DWORD jb short .column_st3 movd XMM_DWORD [edi], xmmA add edi, byte SIZEOF_DWORD sub ecx, byte SIZEOF_DWORD psrldq xmmA, SIZEOF_DWORD .column_st3: ; Store the lower 2 bytes of eax to the output when it has enough ; space. movd eax, xmmA cmp ecx, byte SIZEOF_WORD jb short .column_st1 mov word [edi], ax add edi, byte SIZEOF_WORD sub ecx, byte SIZEOF_WORD shr eax, 16 .column_st1: ; Store the lower 1 byte of eax to the output when it has enough ; space. test ecx, ecx jz short .endcolumn mov byte [edi], al %else ; RGB_PIXELSIZE == 4 ; ----------- %ifdef RGBX_FILLER_0XFF pcmpeqb xmm6, xmm6 ; xmm6=XE=X(02468ACE********) pcmpeqb xmm7, xmm7 ; xmm7=XO=X(13579BDF********) %else pxor xmm6, xmm6 ; xmm6=XE=X(02468ACE********) pxor xmm7, xmm7 ; xmm7=XO=X(13579BDF********) %endif ; xmmA=(00 02 04 06 08 0A 0C 0E **), xmmB=(01 03 05 07 09 0B 0D 0F **) ; xmmC=(10 12 14 16 18 1A 1C 1E **), xmmD=(11 13 15 17 19 1B 1D 1F **) ; xmmE=(20 22 24 26 28 2A 2C 2E **), xmmF=(21 23 25 27 29 2B 2D 2F **) ; xmmG=(30 32 34 36 38 3A 3C 3E **), xmmH=(31 33 35 37 39 3B 3D 3F **) punpcklbw xmmA, xmmC ; xmmA=(00 10 02 12 04 14 06 16 08 18 0A 1A 0C 1C 0E 1E) punpcklbw xmmE, xmmG ; xmmE=(20 30 22 32 24 34 26 36 28 38 2A 3A 2C 3C 2E 3E) punpcklbw xmmB, xmmD ; xmmB=(01 11 03 13 05 15 07 17 09 19 0B 1B 0D 1D 0F 1F) punpcklbw xmmF, xmmH ; xmmF=(21 31 23 33 25 35 27 37 29 39 2B 3B 2D 3D 2F 3F) movdqa xmmC, xmmA punpcklwd xmmA, xmmE ; xmmA=(00 10 20 30 02 12 22 32 04 14 24 34 06 16 26 36) punpckhwd xmmC, xmmE ; xmmC=(08 18 28 38 0A 1A 2A 3A 0C 1C 2C 3C 0E 1E 2E 3E) movdqa xmmG, xmmB punpcklwd xmmB, xmmF ; xmmB=(01 11 21 31 03 13 23 33 05 15 25 35 07 17 27 37) punpckhwd xmmG, xmmF ; xmmG=(09 19 29 39 0B 1B 2B 3B 0D 1D 2D 3D 0F 1F 2F 3F) movdqa xmmD, xmmA punpckldq xmmA, xmmB ; xmmA=(00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33) punpckhdq xmmD, xmmB ; xmmD=(04 14 24 34 05 15 25 35 06 16 26 36 07 17 27 37) movdqa xmmH, xmmC punpckldq xmmC, xmmG ; xmmC=(08 18 28 38 09 19 29 39 0A 1A 2A 3A 0B 1B 2B 3B) punpckhdq xmmH, xmmG ; xmmH=(0C 1C 2C 3C 0D 1D 2D 3D 0E 1E 2E 3E 0F 1F 2F 3F) cmp ecx, byte SIZEOF_XMMWORD jb short .column_st32 test edi, SIZEOF_XMMWORD-1 jnz short .out1 ; --(aligned)------------------- movntdq XMMWORD [edi+0*SIZEOF_XMMWORD], xmmA movntdq XMMWORD [edi+1*SIZEOF_XMMWORD], xmmD movntdq XMMWORD [edi+2*SIZEOF_XMMWORD], xmmC movntdq XMMWORD [edi+3*SIZEOF_XMMWORD], xmmH jmp short .out0 .out1: ; --(unaligned)----------------- movdqu XMMWORD [edi+0*SIZEOF_XMMWORD], xmmA movdqu XMMWORD [edi+1*SIZEOF_XMMWORD], xmmD movdqu XMMWORD [edi+2*SIZEOF_XMMWORD], xmmC movdqu XMMWORD [edi+3*SIZEOF_XMMWORD], xmmH .out0: add edi, byte RGB_PIXELSIZE*SIZEOF_XMMWORD ; outptr sub ecx, byte SIZEOF_XMMWORD jz near .endcolumn add esi, byte SIZEOF_XMMWORD ; inptr0 dec al ; Yctr jnz near .Yloop_2nd add ebx, byte SIZEOF_XMMWORD ; inptr1 add edx, byte SIZEOF_XMMWORD ; inptr2 jmp near .columnloop alignx 16, 7 .column_st32: cmp ecx, byte SIZEOF_XMMWORD/2 jb short .column_st16 movdqu XMMWORD [edi+0*SIZEOF_XMMWORD], xmmA movdqu XMMWORD [edi+1*SIZEOF_XMMWORD], xmmD add edi, byte 2*SIZEOF_XMMWORD ; outptr movdqa xmmA, xmmC movdqa xmmD, xmmH sub ecx, byte SIZEOF_XMMWORD/2 .column_st16: cmp ecx, byte SIZEOF_XMMWORD/4 jb short .column_st15 movdqu XMMWORD [edi+0*SIZEOF_XMMWORD], xmmA add edi, byte SIZEOF_XMMWORD ; outptr movdqa xmmA, xmmD sub ecx, byte SIZEOF_XMMWORD/4 .column_st15: ; Store two pixels (8 bytes) of xmmA to the output when it has enough ; space. cmp ecx, byte SIZEOF_XMMWORD/8 jb short .column_st7 movq XMM_MMWORD [edi], xmmA add edi, byte SIZEOF_XMMWORD/8*4 sub ecx, byte SIZEOF_XMMWORD/8 psrldq xmmA, SIZEOF_XMMWORD/8*4 .column_st7: ; Store one pixel (4 bytes) of xmmA to the output when it has enough ; space. test ecx, ecx jz short .endcolumn movd XMM_DWORD [edi], xmmA %endif ; RGB_PIXELSIZE ; --------------- .endcolumn: sfence ; flush the write buffer .return: pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx mov esp, ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; -------------------------------------------------------------------------- ; ; Upsample and color convert for the case of 2:1 horizontal and 2:1 vertical. ; ; GLOBAL(void) ; jsimd_h2v2_merged_upsample_sse2(JDIMENSION output_width, ; JSAMPIMAGE input_buf, ; JDIMENSION in_row_group_ctr, ; JSAMPARRAY output_buf); ; %define output_width(b) (b) + 8 ; JDIMENSION output_width %define input_buf(b) (b) + 12 ; JSAMPIMAGE input_buf %define in_row_group_ctr(b) (b) + 16 ; JDIMENSION in_row_group_ctr %define output_buf(b) (b) + 20 ; JSAMPARRAY output_buf align 32 GLOBAL_FUNCTION(jsimd_h2v2_merged_upsample_sse2) EXTN(jsimd_h2v2_merged_upsample_sse2): push ebp mov ebp, esp push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi mov eax, POINTER [output_width(ebp)] mov edi, JSAMPIMAGE [input_buf(ebp)] mov ecx, JDIMENSION [in_row_group_ctr(ebp)] mov esi, JSAMPARRAY [edi+0*SIZEOF_JSAMPARRAY] mov ebx, JSAMPARRAY [edi+1*SIZEOF_JSAMPARRAY] mov edx, JSAMPARRAY [edi+2*SIZEOF_JSAMPARRAY] mov edi, JSAMPARRAY [output_buf(ebp)] lea esi, [esi+ecx*SIZEOF_JSAMPROW] push edx ; inptr2 push ebx ; inptr1 push esi ; inptr00 mov ebx, esp push edi ; output_buf (outptr0) push ecx ; in_row_group_ctr push ebx ; input_buf push eax ; output_width call near EXTN(jsimd_h2v1_merged_upsample_sse2) add esi, byte SIZEOF_JSAMPROW ; inptr01 add edi, byte SIZEOF_JSAMPROW ; outptr1 mov POINTER [ebx+0*SIZEOF_POINTER], esi mov POINTER [ebx-1*SIZEOF_POINTER], edi call near EXTN(jsimd_h2v1_merged_upsample_sse2) add esp, byte 7*SIZEOF_DWORD pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/i386/jdsample-avx2.asm000066400000000000000000000750011436506551100211010ustar00rootroot00000000000000; ; jdsample.asm - upsampling (AVX2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2015, Intel Corporation. ; Copyright (C) 2016, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jsimdext.inc" ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 32 GLOBAL_DATA(jconst_fancy_upsample_avx2) EXTN(jconst_fancy_upsample_avx2): PW_ONE times 16 dw 1 PW_TWO times 16 dw 2 PW_THREE times 16 dw 3 PW_SEVEN times 16 dw 7 PW_EIGHT times 16 dw 8 alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Fancy processing for the common case of 2:1 horizontal and 1:1 vertical. ; ; The upsampling algorithm is linear interpolation between pixel centers, ; also known as a "triangle filter". This is a good compromise between ; speed and visual quality. The centers of the output pixels are 1/4 and 3/4 ; of the way between input pixel centers. ; ; GLOBAL(void) ; jsimd_h2v1_fancy_upsample_avx2(int max_v_samp_factor, ; JDIMENSION downsampled_width, ; JSAMPARRAY input_data, ; JSAMPARRAY *output_data_ptr); ; %define max_v_samp(b) (b) + 8 ; int max_v_samp_factor %define downsamp_width(b) (b) + 12 ; JDIMENSION downsampled_width %define input_data(b) (b) + 16 ; JSAMPARRAY input_data %define output_data_ptr(b) (b) + 20 ; JSAMPARRAY *output_data_ptr align 32 GLOBAL_FUNCTION(jsimd_h2v1_fancy_upsample_avx2) EXTN(jsimd_h2v1_fancy_upsample_avx2): push ebp mov ebp, esp pushpic ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address mov eax, JDIMENSION [downsamp_width(ebp)] ; colctr test eax, eax jz near .return mov ecx, INT [max_v_samp(ebp)] ; rowctr test ecx, ecx jz near .return mov esi, JSAMPARRAY [input_data(ebp)] ; input_data mov edi, POINTER [output_data_ptr(ebp)] mov edi, JSAMPARRAY [edi] ; output_data alignx 16, 7 .rowloop: push eax ; colctr push edi push esi mov esi, JSAMPROW [esi] ; inptr mov edi, JSAMPROW [edi] ; outptr test eax, SIZEOF_YMMWORD-1 jz short .skip mov dl, JSAMPLE [esi+(eax-1)*SIZEOF_JSAMPLE] mov JSAMPLE [esi+eax*SIZEOF_JSAMPLE], dl ; insert a dummy sample .skip: vpxor ymm0, ymm0, ymm0 ; ymm0=(all 0's) vpcmpeqb xmm7, xmm7, xmm7 vpsrldq xmm7, xmm7, (SIZEOF_XMMWORD-1) ; (ff -- -- -- ... -- --) LSB is ff vpand ymm7, ymm7, YMMWORD [esi+0*SIZEOF_YMMWORD] add eax, byte SIZEOF_YMMWORD-1 and eax, byte -SIZEOF_YMMWORD cmp eax, byte SIZEOF_YMMWORD ja short .columnloop alignx 16, 7 .columnloop_last: vpcmpeqb xmm6, xmm6, xmm6 vpslldq xmm6, xmm6, (SIZEOF_XMMWORD-1) vperm2i128 ymm6, ymm6, ymm6, 1 ; (---- ---- ... ---- ---- ff) MSB is ff vpand ymm6, ymm6, YMMWORD [esi+0*SIZEOF_YMMWORD] jmp short .upsample alignx 16, 7 .columnloop: vmovdqu ymm6, YMMWORD [esi+1*SIZEOF_YMMWORD] vperm2i128 ymm6, ymm0, ymm6, 0x20 vpslldq ymm6, ymm6, 15 .upsample: vmovdqu ymm1, YMMWORD [esi+0*SIZEOF_YMMWORD] ; ymm1=( 0 1 2 ... 29 30 31) vperm2i128 ymm2, ymm0, ymm1, 0x20 vpalignr ymm2, ymm1, ymm2, 15 ; ymm2=(-- 0 1 ... 28 29 30) vperm2i128 ymm4, ymm0, ymm1, 0x03 vpalignr ymm3, ymm4, ymm1, 1 ; ymm3=( 1 2 3 ... 30 31 --) vpor ymm2, ymm2, ymm7 ; ymm2=(-1 0 1 ... 28 29 30) vpor ymm3, ymm3, ymm6 ; ymm3=( 1 2 3 ... 30 31 32) vpsrldq ymm7, ymm4, (SIZEOF_XMMWORD-1) ; ymm7=(31 -- -- ... -- -- --) vpunpckhbw ymm4, ymm1, ymm0 ; ymm4=( 8 9 10 11 12 13 14 15 24 25 26 27 28 29 30 31) vpunpcklbw ymm5, ymm1, ymm0 ; ymm5=( 0 1 2 3 4 5 6 7 16 17 18 19 20 21 22 23) vperm2i128 ymm1, ymm5, ymm4, 0x20 ; ymm1=( 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15) vperm2i128 ymm4, ymm5, ymm4, 0x31 ; ymm4=(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31) vpunpckhbw ymm5, ymm2, ymm0 ; ymm5=( 7 8 9 10 11 12 13 14 23 24 25 26 27 28 29 30) vpunpcklbw ymm6, ymm2, ymm0 ; ymm6=(-1 0 1 2 3 4 5 6 15 16 17 18 19 20 21 22) vperm2i128 ymm2, ymm6, ymm5, 0x20 ; ymm2=(-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14) vperm2i128 ymm5, ymm6, ymm5, 0x31 ; ymm5=(15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30) vpunpckhbw ymm6, ymm3, ymm0 ; ymm6=( 1 2 3 4 5 6 7 8 17 18 19 20 21 22 23 24) vpunpcklbw ymm0, ymm3, ymm0 ; ymm0=( 9 10 11 12 13 14 15 16 25 26 27 28 29 30 31 32) vperm2i128 ymm3, ymm0, ymm6, 0x20 ; ymm3=( 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16) vperm2i128 ymm6, ymm0, ymm6, 0x31 ; ymm6=(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32) vpxor ymm0, ymm0, ymm0 ; ymm0=(all 0's) vpmullw ymm1, ymm1, [GOTOFF(ebx,PW_THREE)] vpmullw ymm4, ymm4, [GOTOFF(ebx,PW_THREE)] vpaddw ymm2, ymm2, [GOTOFF(ebx,PW_ONE)] vpaddw ymm5, ymm5, [GOTOFF(ebx,PW_ONE)] vpaddw ymm3, ymm3, [GOTOFF(ebx,PW_TWO)] vpaddw ymm6, ymm6, [GOTOFF(ebx,PW_TWO)] vpaddw ymm2, ymm2, ymm1 vpaddw ymm5, ymm5, ymm4 vpsrlw ymm2, ymm2, 2 ; ymm2=OutLE=( 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30) vpsrlw ymm5, ymm5, 2 ; ymm5=OutHE=(32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62) vpaddw ymm3, ymm3, ymm1 vpaddw ymm6, ymm6, ymm4 vpsrlw ymm3, ymm3, 2 ; ymm3=OutLO=( 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31) vpsrlw ymm6, ymm6, 2 ; ymm6=OutHO=(33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63) vpsllw ymm3, ymm3, BYTE_BIT vpsllw ymm6, ymm6, BYTE_BIT vpor ymm2, ymm2, ymm3 ; ymm2=OutL=( 0 1 2 ... 29 30 31) vpor ymm5, ymm5, ymm6 ; ymm5=OutH=(32 33 34 ... 61 62 63) vmovdqu YMMWORD [edi+0*SIZEOF_YMMWORD], ymm2 vmovdqu YMMWORD [edi+1*SIZEOF_YMMWORD], ymm5 sub eax, byte SIZEOF_YMMWORD add esi, byte 1*SIZEOF_YMMWORD ; inptr add edi, byte 2*SIZEOF_YMMWORD ; outptr cmp eax, byte SIZEOF_YMMWORD ja near .columnloop test eax, eax jnz near .columnloop_last pop esi pop edi pop eax add esi, byte SIZEOF_JSAMPROW ; input_data add edi, byte SIZEOF_JSAMPROW ; output_data dec ecx ; rowctr jg near .rowloop .return: vzeroupper pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved poppic ebx pop ebp ret ; -------------------------------------------------------------------------- ; ; Fancy processing for the common case of 2:1 horizontal and 2:1 vertical. ; Again a triangle filter; see comments for h2v1 case, above. ; ; GLOBAL(void) ; jsimd_h2v2_fancy_upsample_avx2(int max_v_samp_factor, ; JDIMENSION downsampled_width, ; JSAMPARRAY input_data, ; JSAMPARRAY *output_data_ptr); ; %define max_v_samp(b) (b) + 8 ; int max_v_samp_factor %define downsamp_width(b) (b) + 12 ; JDIMENSION downsampled_width %define input_data(b) (b) + 16 ; JSAMPARRAY input_data %define output_data_ptr(b) (b) + 20 ; JSAMPARRAY *output_data_ptr %define original_ebp ebp + 0 %define wk(i) ebp - (WK_NUM - (i)) * SIZEOF_YMMWORD ; ymmword wk[WK_NUM] %define WK_NUM 4 %define gotptr wk(0) - SIZEOF_POINTER ; void *gotptr align 32 GLOBAL_FUNCTION(jsimd_h2v2_fancy_upsample_avx2) EXTN(jsimd_h2v2_fancy_upsample_avx2): push ebp mov eax, esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_YMMWORD) ; align to 256 bits mov [esp], eax mov ebp, esp ; ebp = aligned ebp lea esp, [wk(0)] pushpic eax ; make a room for GOT address push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address movpic POINTER [gotptr], ebx ; save GOT address mov edx, eax ; edx = original ebp mov eax, JDIMENSION [downsamp_width(edx)] ; colctr test eax, eax jz near .return mov ecx, INT [max_v_samp(edx)] ; rowctr test ecx, ecx jz near .return mov esi, JSAMPARRAY [input_data(edx)] ; input_data mov edi, POINTER [output_data_ptr(edx)] mov edi, JSAMPARRAY [edi] ; output_data alignx 16, 7 .rowloop: push eax ; colctr push ecx push edi push esi mov ecx, JSAMPROW [esi-1*SIZEOF_JSAMPROW] ; inptr1(above) mov ebx, JSAMPROW [esi+0*SIZEOF_JSAMPROW] ; inptr0 mov esi, JSAMPROW [esi+1*SIZEOF_JSAMPROW] ; inptr1(below) mov edx, JSAMPROW [edi+0*SIZEOF_JSAMPROW] ; outptr0 mov edi, JSAMPROW [edi+1*SIZEOF_JSAMPROW] ; outptr1 test eax, SIZEOF_YMMWORD-1 jz short .skip push edx mov dl, JSAMPLE [ecx+(eax-1)*SIZEOF_JSAMPLE] mov JSAMPLE [ecx+eax*SIZEOF_JSAMPLE], dl mov dl, JSAMPLE [ebx+(eax-1)*SIZEOF_JSAMPLE] mov JSAMPLE [ebx+eax*SIZEOF_JSAMPLE], dl mov dl, JSAMPLE [esi+(eax-1)*SIZEOF_JSAMPLE] mov JSAMPLE [esi+eax*SIZEOF_JSAMPLE], dl ; insert a dummy sample pop edx .skip: ; -- process the first column block vmovdqu ymm0, YMMWORD [ebx+0*SIZEOF_YMMWORD] ; ymm0=row[ 0][0] vmovdqu ymm1, YMMWORD [ecx+0*SIZEOF_YMMWORD] ; ymm1=row[-1][0] vmovdqu ymm2, YMMWORD [esi+0*SIZEOF_YMMWORD] ; ymm2=row[+1][0] pushpic ebx movpic ebx, POINTER [gotptr] ; load GOT address vpxor ymm3, ymm3, ymm3 ; ymm3=(all 0's) vpunpckhbw ymm4, ymm0, ymm3 ; ymm4=row[ 0]( 8 9 10 11 12 13 14 15 24 25 26 27 28 29 30 31) vpunpcklbw ymm5, ymm0, ymm3 ; ymm5=row[ 0]( 0 1 2 3 4 5 6 7 16 17 18 19 20 21 22 23) vperm2i128 ymm0, ymm5, ymm4, 0x20 ; ymm0=row[ 0]( 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15) vperm2i128 ymm4, ymm5, ymm4, 0x31 ; ymm4=row[ 0](16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31) vpunpckhbw ymm5, ymm1, ymm3 ; ymm5=row[-1]( 8 9 10 11 12 13 14 15 24 25 26 27 28 29 30 31) vpunpcklbw ymm6, ymm1, ymm3 ; ymm6=row[-1]( 0 1 2 3 4 5 6 7 16 17 18 19 20 21 22 23) vperm2i128 ymm1, ymm6, ymm5, 0x20 ; ymm1=row[-1]( 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15) vperm2i128 ymm5, ymm6, ymm5, 0x31 ; ymm5=row[-1](16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31) vpunpckhbw ymm6, ymm2, ymm3 ; ymm6=row[+1]( 8 9 10 11 12 13 14 15 24 25 26 27 28 29 30 31) vpunpcklbw ymm3, ymm2, ymm3 ; ymm3=row[+1]( 0 1 2 3 4 5 6 7 16 17 18 19 20 21 22 23) vperm2i128 ymm2, ymm3, ymm6, 0x20 ; ymm2=row[+1]( 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15) vperm2i128 ymm6, ymm3, ymm6, 0x31 ; ymm6=row[+1](16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31) vpmullw ymm0, ymm0, [GOTOFF(ebx,PW_THREE)] vpmullw ymm4, ymm4, [GOTOFF(ebx,PW_THREE)] vpcmpeqb xmm7, xmm7, xmm7 vpsrldq xmm7, xmm7, (SIZEOF_XMMWORD-2) ; (ffff ---- ---- ... ---- ----) LSB is ffff vpaddw ymm1, ymm1, ymm0 ; ymm1=Int0L=( 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15) vpaddw ymm5, ymm5, ymm4 ; ymm5=Int0H=(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31) vpaddw ymm2, ymm2, ymm0 ; ymm2=Int1L=( 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15) vpaddw ymm6, ymm6, ymm4 ; ymm6=Int1H=(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31) vmovdqu YMMWORD [edx+0*SIZEOF_YMMWORD], ymm1 ; temporarily save vmovdqu YMMWORD [edx+1*SIZEOF_YMMWORD], ymm5 ; the intermediate data vmovdqu YMMWORD [edi+0*SIZEOF_YMMWORD], ymm2 vmovdqu YMMWORD [edi+1*SIZEOF_YMMWORD], ymm6 vpand ymm1, ymm1, ymm7 ; ymm1=( 0 -- -- -- -- -- -- -- -- -- -- -- -- -- -- --) vpand ymm2, ymm2, ymm7 ; ymm2=( 0 -- -- -- -- -- -- -- -- -- -- -- -- -- -- --) vmovdqa YMMWORD [wk(0)], ymm1 vmovdqa YMMWORD [wk(1)], ymm2 poppic ebx add eax, byte SIZEOF_YMMWORD-1 and eax, byte -SIZEOF_YMMWORD cmp eax, byte SIZEOF_YMMWORD ja short .columnloop alignx 16, 7 .columnloop_last: ; -- process the last column block pushpic ebx movpic ebx, POINTER [gotptr] ; load GOT address vpcmpeqb xmm1, xmm1, xmm1 vpslldq xmm1, xmm1, (SIZEOF_XMMWORD-2) vperm2i128 ymm1, ymm1, ymm1, 1 ; (---- ---- ... ---- ---- ffff) MSB is ffff vpand ymm2, ymm1, YMMWORD [edi+1*SIZEOF_YMMWORD] vpand ymm1, ymm1, YMMWORD [edx+1*SIZEOF_YMMWORD] vmovdqa YMMWORD [wk(2)], ymm1 ; ymm1=(-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 31) vmovdqa YMMWORD [wk(3)], ymm2 ; ymm2=(-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 31) jmp near .upsample alignx 16, 7 .columnloop: ; -- process the next column block vmovdqu ymm0, YMMWORD [ebx+1*SIZEOF_YMMWORD] ; ymm0=row[ 0][1] vmovdqu ymm1, YMMWORD [ecx+1*SIZEOF_YMMWORD] ; ymm1=row[-1][1] vmovdqu ymm2, YMMWORD [esi+1*SIZEOF_YMMWORD] ; ymm2=row[+1][1] pushpic ebx movpic ebx, POINTER [gotptr] ; load GOT address vpxor ymm3, ymm3, ymm3 ; ymm3=(all 0's) vpunpckhbw ymm4, ymm0, ymm3 ; ymm4=row[ 0]( 8 9 10 11 12 13 14 15 24 25 26 27 28 29 30 31) vpunpcklbw ymm5, ymm0, ymm3 ; ymm5=row[ 0]( 0 1 2 3 4 5 6 7 16 17 18 19 20 21 22 23) vperm2i128 ymm0, ymm5, ymm4, 0x20 ; ymm0=row[ 0]( 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15) vperm2i128 ymm4, ymm5, ymm4, 0x31 ; ymm4=row[ 0](16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31) vpunpckhbw ymm5, ymm1, ymm3 ; ymm5=row[-1]( 8 9 10 11 12 13 14 15 24 25 26 27 28 29 30 31) vpunpcklbw ymm6, ymm1, ymm3 ; ymm6=row[-1]( 0 1 2 3 4 5 6 7 16 17 18 19 20 21 22 23) vperm2i128 ymm1, ymm6, ymm5, 0x20 ; ymm1=row[-1]( 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15) vperm2i128 ymm5, ymm6, ymm5, 0x31 ; ymm5=row[-1](16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31) vpunpckhbw ymm6, ymm2, ymm3 ; ymm6=row[+1]( 8 9 10 11 12 13 14 15 24 25 26 27 28 29 30 31) vpunpcklbw ymm7, ymm2, ymm3 ; ymm7=row[+1]( 0 1 2 3 4 5 6 7 16 17 18 19 20 21 22 23) vperm2i128 ymm2, ymm7, ymm6, 0x20 ; ymm2=row[+1]( 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15) vperm2i128 ymm6, ymm7, ymm6, 0x31 ; ymm6=row[+1](16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31) vpmullw ymm0, ymm0, [GOTOFF(ebx,PW_THREE)] vpmullw ymm4, ymm4, [GOTOFF(ebx,PW_THREE)] vpaddw ymm1, ymm1, ymm0 ; ymm1=Int0L=( 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15) vpaddw ymm5, ymm5, ymm4 ; ymm5=Int0H=(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31) vpaddw ymm2, ymm2, ymm0 ; ymm2=Int1L=( 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15) vpaddw ymm6, ymm6, ymm4 ; ymm6=Int1H=(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31) vmovdqu YMMWORD [edx+2*SIZEOF_YMMWORD], ymm1 ; temporarily save vmovdqu YMMWORD [edx+3*SIZEOF_YMMWORD], ymm5 ; the intermediate data vmovdqu YMMWORD [edi+2*SIZEOF_YMMWORD], ymm2 vmovdqu YMMWORD [edi+3*SIZEOF_YMMWORD], ymm6 vperm2i128 ymm1, ymm3, ymm1, 0x20 vpslldq ymm1, ymm1, 14 ; ymm1=(-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 0) vperm2i128 ymm2, ymm3, ymm2, 0x20 vpslldq ymm2, ymm2, 14 ; ymm2=(-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 0) vmovdqa YMMWORD [wk(2)], ymm1 vmovdqa YMMWORD [wk(3)], ymm2 .upsample: ; -- process the upper row vmovdqu ymm7, YMMWORD [edx+0*SIZEOF_YMMWORD] ; ymm7=Int0L=( 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15) vmovdqu ymm3, YMMWORD [edx+1*SIZEOF_YMMWORD] ; ymm3=Int0H=(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31) vpxor ymm1, ymm1, ymm1 ; ymm1=(all 0's) vperm2i128 ymm0, ymm1, ymm7, 0x03 vpalignr ymm0, ymm0, ymm7, 2 ; ymm0=( 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 --) vperm2i128 ymm4, ymm1, ymm3, 0x20 vpslldq ymm4, ymm4, 14 ; ymm4=(-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 16) vperm2i128 ymm5, ymm1, ymm7, 0x03 vpsrldq ymm5, ymm5, 14 ; ymm5=(15 -- -- -- -- -- -- -- -- -- -- -- -- -- -- --) vperm2i128 ymm6, ymm1, ymm3, 0x20 vpalignr ymm6, ymm3, ymm6, 14 ; ymm6=(-- 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30) vpor ymm0, ymm0, ymm4 ; ymm0=( 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16) vpor ymm5, ymm5, ymm6 ; ymm5=(15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30) vperm2i128 ymm2, ymm1, ymm3, 0x03 vpalignr ymm2, ymm2, ymm3, 2 ; ymm2=(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 --) vperm2i128 ymm4, ymm1, ymm3, 0x03 vpsrldq ymm4, ymm4, 14 ; ymm4=(31 -- -- -- -- -- -- -- -- -- -- -- -- -- -- --) vperm2i128 ymm1, ymm1, ymm7, 0x20 vpalignr ymm1, ymm7, ymm1, 14 ; ymm1=(-- 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14) vpor ymm1, ymm1, YMMWORD [wk(0)] ; ymm1=(-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14) vpor ymm2, ymm2, YMMWORD [wk(2)] ; ymm2=(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32) vmovdqa YMMWORD [wk(0)], ymm4 vpmullw ymm7, ymm7, [GOTOFF(ebx,PW_THREE)] vpmullw ymm3, ymm3, [GOTOFF(ebx,PW_THREE)] vpaddw ymm1, ymm1, [GOTOFF(ebx,PW_EIGHT)] vpaddw ymm5, ymm5, [GOTOFF(ebx,PW_EIGHT)] vpaddw ymm0, ymm0, [GOTOFF(ebx,PW_SEVEN)] vpaddw ymm2, [GOTOFF(ebx,PW_SEVEN)] vpaddw ymm1, ymm1, ymm7 vpaddw ymm5, ymm5, ymm3 vpsrlw ymm1, ymm1, 4 ; ymm1=Out0LE=( 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30) vpsrlw ymm5, ymm5, 4 ; ymm5=Out0HE=(32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62) vpaddw ymm0, ymm0, ymm7 vpaddw ymm2, ymm2, ymm3 vpsrlw ymm0, ymm0, 4 ; ymm0=Out0LO=( 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31) vpsrlw ymm2, ymm2, 4 ; ymm2=Out0HO=(33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63) vpsllw ymm0, ymm0, BYTE_BIT vpsllw ymm2, ymm2, BYTE_BIT vpor ymm1, ymm1, ymm0 ; ymm1=Out0L=( 0 1 2 ... 29 30 31) vpor ymm5, ymm5, ymm2 ; ymm5=Out0H=(32 33 34 ... 61 62 63) vmovdqu YMMWORD [edx+0*SIZEOF_YMMWORD], ymm1 vmovdqu YMMWORD [edx+1*SIZEOF_YMMWORD], ymm5 ; -- process the lower row vmovdqu ymm6, YMMWORD [edi+0*SIZEOF_YMMWORD] ; ymm6=Int1L=( 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15) vmovdqu ymm4, YMMWORD [edi+1*SIZEOF_YMMWORD] ; ymm4=Int1H=(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31) vpxor ymm1, ymm1, ymm1 ; ymm1=(all 0's) vperm2i128 ymm7, ymm1, ymm6, 0x03 vpalignr ymm7, ymm7, ymm6, 2 ; ymm7=( 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 --) vperm2i128 ymm3, ymm1, ymm4, 0x20 vpslldq ymm3, ymm3, 14 ; ymm3=(-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 16) vperm2i128 ymm0, ymm1, ymm6, 0x03 vpsrldq ymm0, ymm0, 14 ; ymm0=(15 -- -- -- -- -- -- -- -- -- -- -- -- -- -- --) vperm2i128 ymm2, ymm1, ymm4, 0x20 vpalignr ymm2, ymm4, ymm2, 14 ; ymm2=(-- 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30) vpor ymm7, ymm7, ymm3 ; ymm7=( 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16) vpor ymm0, ymm0, ymm2 ; ymm0=(15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30) vperm2i128 ymm5, ymm1, ymm4, 0x03 vpalignr ymm5, ymm5, ymm4, 2 ; ymm5=(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 --) vperm2i128 ymm3, ymm1, ymm4, 0x03 vpsrldq ymm3, ymm3, 14 ; ymm3=(31 -- -- -- -- -- -- -- -- -- -- -- -- -- -- --) vperm2i128 ymm1, ymm1, ymm6, 0x20 vpalignr ymm1, ymm6, ymm1, 14 ; ymm1=(-- 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14) vpor ymm1, ymm1, YMMWORD [wk(1)] ; ymm1=(-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14) vpor ymm5, ymm5, YMMWORD [wk(3)] ; ymm5=(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32) vmovdqa YMMWORD [wk(1)], ymm3 vpmullw ymm6, ymm6, [GOTOFF(ebx,PW_THREE)] vpmullw ymm4, ymm4, [GOTOFF(ebx,PW_THREE)] vpaddw ymm1, ymm1, [GOTOFF(ebx,PW_EIGHT)] vpaddw ymm0, ymm0, [GOTOFF(ebx,PW_EIGHT)] vpaddw ymm7, ymm7, [GOTOFF(ebx,PW_SEVEN)] vpaddw ymm5, ymm5, [GOTOFF(ebx,PW_SEVEN)] vpaddw ymm1, ymm1, ymm6 vpaddw ymm0, ymm0, ymm4 vpsrlw ymm1, ymm1, 4 ; ymm1=Out1LE=( 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30) vpsrlw ymm0, ymm0, 4 ; ymm0=Out1HE=(32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62) vpaddw ymm7, ymm7, ymm6 vpaddw ymm5, ymm5, ymm4 vpsrlw ymm7, ymm7, 4 ; ymm7=Out1LO=( 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31) vpsrlw ymm5, ymm5, 4 ; ymm5=Out1HO=(33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63) vpsllw ymm7, ymm7, BYTE_BIT vpsllw ymm5, ymm5, BYTE_BIT vpor ymm1, ymm1, ymm7 ; ymm1=Out1L=( 0 1 2 ... 29 30 31) vpor ymm0, ymm0, ymm5 ; ymm0=Out1H=(32 33 34 ... 61 62 63) vmovdqu YMMWORD [edi+0*SIZEOF_YMMWORD], ymm1 vmovdqu YMMWORD [edi+1*SIZEOF_YMMWORD], ymm0 poppic ebx sub eax, byte SIZEOF_YMMWORD add ecx, byte 1*SIZEOF_YMMWORD ; inptr1(above) add ebx, byte 1*SIZEOF_YMMWORD ; inptr0 add esi, byte 1*SIZEOF_YMMWORD ; inptr1(below) add edx, byte 2*SIZEOF_YMMWORD ; outptr0 add edi, byte 2*SIZEOF_YMMWORD ; outptr1 cmp eax, byte SIZEOF_YMMWORD ja near .columnloop test eax, eax jnz near .columnloop_last pop esi pop edi pop ecx pop eax add esi, byte 1*SIZEOF_JSAMPROW ; input_data add edi, byte 2*SIZEOF_JSAMPROW ; output_data sub ecx, byte 2 ; rowctr jg near .rowloop .return: vzeroupper pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx mov esp, ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; -------------------------------------------------------------------------- ; ; Fast processing for the common case of 2:1 horizontal and 1:1 vertical. ; It's still a box filter. ; ; GLOBAL(void) ; jsimd_h2v1_upsample_avx2(int max_v_samp_factor, JDIMENSION output_width, ; JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); ; %define max_v_samp(b) (b) + 8 ; int max_v_samp_factor %define output_width(b) (b) + 12 ; JDIMENSION output_width %define input_data(b) (b) + 16 ; JSAMPARRAY input_data %define output_data_ptr(b) (b) + 20 ; JSAMPARRAY *output_data_ptr align 32 GLOBAL_FUNCTION(jsimd_h2v1_upsample_avx2) EXTN(jsimd_h2v1_upsample_avx2): push ebp mov ebp, esp ; push ebx ; unused ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi mov edx, JDIMENSION [output_width(ebp)] add edx, byte (SIZEOF_YMMWORD-1) and edx, -SIZEOF_YMMWORD jz short .return mov ecx, INT [max_v_samp(ebp)] ; rowctr test ecx, ecx jz short .return mov esi, JSAMPARRAY [input_data(ebp)] ; input_data mov edi, POINTER [output_data_ptr(ebp)] mov edi, JSAMPARRAY [edi] ; output_data alignx 16, 7 .rowloop: push edi push esi mov esi, JSAMPROW [esi] ; inptr mov edi, JSAMPROW [edi] ; outptr mov eax, edx ; colctr alignx 16, 7 .columnloop: cmp eax, byte SIZEOF_YMMWORD ja near .above_16 vmovdqu xmm0, XMMWORD [esi+0*SIZEOF_YMMWORD] vpunpckhbw xmm1, xmm0, xmm0 vpunpcklbw xmm0, xmm0, xmm0 vmovdqu XMMWORD [edi+0*SIZEOF_XMMWORD], xmm0 vmovdqu XMMWORD [edi+1*SIZEOF_XMMWORD], xmm1 jmp short .nextrow .above_16: vmovdqu ymm0, YMMWORD [esi+0*SIZEOF_YMMWORD] vpermq ymm0, ymm0, 0xd8 vpunpckhbw ymm1, ymm0, ymm0 vpunpcklbw ymm0, ymm0, ymm0 vmovdqu YMMWORD [edi+0*SIZEOF_YMMWORD], ymm0 vmovdqu YMMWORD [edi+1*SIZEOF_YMMWORD], ymm1 sub eax, byte 2*SIZEOF_YMMWORD jz short .nextrow add esi, byte SIZEOF_YMMWORD ; inptr add edi, byte 2*SIZEOF_YMMWORD ; outptr jmp short .columnloop alignx 16, 7 .nextrow: pop esi pop edi add esi, byte SIZEOF_JSAMPROW ; input_data add edi, byte SIZEOF_JSAMPROW ; output_data dec ecx ; rowctr jg short .rowloop .return: vzeroupper pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved ; pop ebx ; unused pop ebp ret ; -------------------------------------------------------------------------- ; ; Fast processing for the common case of 2:1 horizontal and 2:1 vertical. ; It's still a box filter. ; ; GLOBAL(void) ; jsimd_h2v2_upsample_avx2(int max_v_samp_factor, JDIMENSION output_width, ; JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); ; %define max_v_samp(b) (b) + 8 ; int max_v_samp_factor %define output_width(b) (b) + 12 ; JDIMENSION output_width %define input_data(b) (b) + 16 ; JSAMPARRAY input_data %define output_data_ptr(b) (b) + 20 ; JSAMPARRAY *output_data_ptr align 32 GLOBAL_FUNCTION(jsimd_h2v2_upsample_avx2) EXTN(jsimd_h2v2_upsample_avx2): push ebp mov ebp, esp push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi mov edx, JDIMENSION [output_width(ebp)] add edx, byte (SIZEOF_YMMWORD-1) and edx, -SIZEOF_YMMWORD jz near .return mov ecx, INT [max_v_samp(ebp)] ; rowctr test ecx, ecx jz near .return mov esi, JSAMPARRAY [input_data(ebp)] ; input_data mov edi, POINTER [output_data_ptr(ebp)] mov edi, JSAMPARRAY [edi] ; output_data alignx 16, 7 .rowloop: push edi push esi mov esi, JSAMPROW [esi] ; inptr mov ebx, JSAMPROW [edi+0*SIZEOF_JSAMPROW] ; outptr0 mov edi, JSAMPROW [edi+1*SIZEOF_JSAMPROW] ; outptr1 mov eax, edx ; colctr alignx 16, 7 .columnloop: cmp eax, byte SIZEOF_YMMWORD ja short .above_16 vmovdqu xmm0, XMMWORD [esi+0*SIZEOF_XMMWORD] vpunpckhbw xmm1, xmm0, xmm0 vpunpcklbw xmm0, xmm0, xmm0 vmovdqu XMMWORD [ebx+0*SIZEOF_XMMWORD], xmm0 vmovdqu XMMWORD [ebx+1*SIZEOF_XMMWORD], xmm1 vmovdqu XMMWORD [edi+0*SIZEOF_XMMWORD], xmm0 vmovdqu XMMWORD [edi+1*SIZEOF_XMMWORD], xmm1 jmp near .nextrow .above_16: vmovdqu ymm0, YMMWORD [esi+0*SIZEOF_YMMWORD] vpermq ymm0, ymm0, 0xd8 vpunpckhbw ymm1, ymm0, ymm0 vpunpcklbw ymm0, ymm0, ymm0 vmovdqu YMMWORD [ebx+0*SIZEOF_YMMWORD], ymm0 vmovdqu YMMWORD [ebx+1*SIZEOF_YMMWORD], ymm1 vmovdqu YMMWORD [edi+0*SIZEOF_YMMWORD], ymm0 vmovdqu YMMWORD [edi+1*SIZEOF_YMMWORD], ymm1 sub eax, byte 2*SIZEOF_YMMWORD jz short .nextrow add esi, byte SIZEOF_YMMWORD ; inptr add ebx, 2*SIZEOF_YMMWORD ; outptr0 add edi, 2*SIZEOF_YMMWORD ; outptr1 jmp short .columnloop alignx 16, 7 .nextrow: pop esi pop edi add esi, byte 1*SIZEOF_JSAMPROW ; input_data add edi, byte 2*SIZEOF_JSAMPROW ; output_data sub ecx, byte 2 ; rowctr jg near .rowloop .return: vzeroupper pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/i386/jdsample-mmx.asm000066400000000000000000000620001436506551100210150ustar00rootroot00000000000000; ; jdsample.asm - upsampling (MMX) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2016, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jsimdext.inc" ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 32 GLOBAL_DATA(jconst_fancy_upsample_mmx) EXTN(jconst_fancy_upsample_mmx): PW_ONE times 4 dw 1 PW_TWO times 4 dw 2 PW_THREE times 4 dw 3 PW_SEVEN times 4 dw 7 PW_EIGHT times 4 dw 8 alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Fancy processing for the common case of 2:1 horizontal and 1:1 vertical. ; ; The upsampling algorithm is linear interpolation between pixel centers, ; also known as a "triangle filter". This is a good compromise between ; speed and visual quality. The centers of the output pixels are 1/4 and 3/4 ; of the way between input pixel centers. ; ; GLOBAL(void) ; jsimd_h2v1_fancy_upsample_mmx(int max_v_samp_factor, ; JDIMENSION downsampled_width, ; JSAMPARRAY input_data, ; JSAMPARRAY *output_data_ptr); ; %define max_v_samp(b) (b) + 8 ; int max_v_samp_factor %define downsamp_width(b) (b) + 12 ; JDIMENSION downsampled_width %define input_data(b) (b) + 16 ; JSAMPARRAY input_data %define output_data_ptr(b) (b) + 20 ; JSAMPARRAY *output_data_ptr align 32 GLOBAL_FUNCTION(jsimd_h2v1_fancy_upsample_mmx) EXTN(jsimd_h2v1_fancy_upsample_mmx): push ebp mov ebp, esp pushpic ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address mov eax, JDIMENSION [downsamp_width(ebp)] ; colctr test eax, eax jz near .return mov ecx, INT [max_v_samp(ebp)] ; rowctr test ecx, ecx jz near .return mov esi, JSAMPARRAY [input_data(ebp)] ; input_data mov edi, POINTER [output_data_ptr(ebp)] mov edi, JSAMPARRAY [edi] ; output_data alignx 16, 7 .rowloop: push eax ; colctr push edi push esi mov esi, JSAMPROW [esi] ; inptr mov edi, JSAMPROW [edi] ; outptr test eax, SIZEOF_MMWORD-1 jz short .skip mov dl, JSAMPLE [esi+(eax-1)*SIZEOF_JSAMPLE] mov JSAMPLE [esi+eax*SIZEOF_JSAMPLE], dl ; insert a dummy sample .skip: pxor mm0, mm0 ; mm0=(all 0's) pcmpeqb mm7, mm7 psrlq mm7, (SIZEOF_MMWORD-1)*BYTE_BIT pand mm7, MMWORD [esi+0*SIZEOF_MMWORD] add eax, byte SIZEOF_MMWORD-1 and eax, byte -SIZEOF_MMWORD cmp eax, byte SIZEOF_MMWORD ja short .columnloop alignx 16, 7 .columnloop_last: pcmpeqb mm6, mm6 psllq mm6, (SIZEOF_MMWORD-1)*BYTE_BIT pand mm6, MMWORD [esi+0*SIZEOF_MMWORD] jmp short .upsample alignx 16, 7 .columnloop: movq mm6, MMWORD [esi+1*SIZEOF_MMWORD] psllq mm6, (SIZEOF_MMWORD-1)*BYTE_BIT .upsample: movq mm1, MMWORD [esi+0*SIZEOF_MMWORD] movq mm2, mm1 movq mm3, mm1 ; mm1=( 0 1 2 3 4 5 6 7) psllq mm2, BYTE_BIT ; mm2=( - 0 1 2 3 4 5 6) psrlq mm3, BYTE_BIT ; mm3=( 1 2 3 4 5 6 7 -) por mm2, mm7 ; mm2=(-1 0 1 2 3 4 5 6) por mm3, mm6 ; mm3=( 1 2 3 4 5 6 7 8) movq mm7, mm1 psrlq mm7, (SIZEOF_MMWORD-1)*BYTE_BIT ; mm7=( 7 - - - - - - -) movq mm4, mm1 punpcklbw mm1, mm0 ; mm1=( 0 1 2 3) punpckhbw mm4, mm0 ; mm4=( 4 5 6 7) movq mm5, mm2 punpcklbw mm2, mm0 ; mm2=(-1 0 1 2) punpckhbw mm5, mm0 ; mm5=( 3 4 5 6) movq mm6, mm3 punpcklbw mm3, mm0 ; mm3=( 1 2 3 4) punpckhbw mm6, mm0 ; mm6=( 5 6 7 8) pmullw mm1, [GOTOFF(ebx,PW_THREE)] pmullw mm4, [GOTOFF(ebx,PW_THREE)] paddw mm2, [GOTOFF(ebx,PW_ONE)] paddw mm5, [GOTOFF(ebx,PW_ONE)] paddw mm3, [GOTOFF(ebx,PW_TWO)] paddw mm6, [GOTOFF(ebx,PW_TWO)] paddw mm2, mm1 paddw mm5, mm4 psrlw mm2, 2 ; mm2=OutLE=( 0 2 4 6) psrlw mm5, 2 ; mm5=OutHE=( 8 10 12 14) paddw mm3, mm1 paddw mm6, mm4 psrlw mm3, 2 ; mm3=OutLO=( 1 3 5 7) psrlw mm6, 2 ; mm6=OutHO=( 9 11 13 15) psllw mm3, BYTE_BIT psllw mm6, BYTE_BIT por mm2, mm3 ; mm2=OutL=( 0 1 2 3 4 5 6 7) por mm5, mm6 ; mm5=OutH=( 8 9 10 11 12 13 14 15) movq MMWORD [edi+0*SIZEOF_MMWORD], mm2 movq MMWORD [edi+1*SIZEOF_MMWORD], mm5 sub eax, byte SIZEOF_MMWORD add esi, byte 1*SIZEOF_MMWORD ; inptr add edi, byte 2*SIZEOF_MMWORD ; outptr cmp eax, byte SIZEOF_MMWORD ja near .columnloop test eax, eax jnz near .columnloop_last pop esi pop edi pop eax add esi, byte SIZEOF_JSAMPROW ; input_data add edi, byte SIZEOF_JSAMPROW ; output_data dec ecx ; rowctr jg near .rowloop emms ; empty MMX state .return: pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved poppic ebx pop ebp ret ; -------------------------------------------------------------------------- ; ; Fancy processing for the common case of 2:1 horizontal and 2:1 vertical. ; Again a triangle filter; see comments for h2v1 case, above. ; ; GLOBAL(void) ; jsimd_h2v2_fancy_upsample_mmx(int max_v_samp_factor, ; JDIMENSION downsampled_width, ; JSAMPARRAY input_data, ; JSAMPARRAY *output_data_ptr); ; %define max_v_samp(b) (b) + 8 ; int max_v_samp_factor %define downsamp_width(b) (b) + 12 ; JDIMENSION downsampled_width %define input_data(b) (b) + 16 ; JSAMPARRAY input_data %define output_data_ptr(b) (b) + 20 ; JSAMPARRAY *output_data_ptr %define original_ebp ebp + 0 %define wk(i) ebp - (WK_NUM - (i)) * SIZEOF_MMWORD ; mmword wk[WK_NUM] %define WK_NUM 4 %define gotptr wk(0) - SIZEOF_POINTER ; void *gotptr align 32 GLOBAL_FUNCTION(jsimd_h2v2_fancy_upsample_mmx) EXTN(jsimd_h2v2_fancy_upsample_mmx): push ebp mov eax, esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_MMWORD) ; align to 64 bits mov [esp], eax mov ebp, esp ; ebp = aligned ebp lea esp, [wk(0)] pushpic eax ; make a room for GOT address push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address movpic POINTER [gotptr], ebx ; save GOT address mov edx, eax ; edx = original ebp mov eax, JDIMENSION [downsamp_width(edx)] ; colctr test eax, eax jz near .return mov ecx, INT [max_v_samp(edx)] ; rowctr test ecx, ecx jz near .return mov esi, JSAMPARRAY [input_data(edx)] ; input_data mov edi, POINTER [output_data_ptr(edx)] mov edi, JSAMPARRAY [edi] ; output_data alignx 16, 7 .rowloop: push eax ; colctr push ecx push edi push esi mov ecx, JSAMPROW [esi-1*SIZEOF_JSAMPROW] ; inptr1(above) mov ebx, JSAMPROW [esi+0*SIZEOF_JSAMPROW] ; inptr0 mov esi, JSAMPROW [esi+1*SIZEOF_JSAMPROW] ; inptr1(below) mov edx, JSAMPROW [edi+0*SIZEOF_JSAMPROW] ; outptr0 mov edi, JSAMPROW [edi+1*SIZEOF_JSAMPROW] ; outptr1 test eax, SIZEOF_MMWORD-1 jz short .skip push edx mov dl, JSAMPLE [ecx+(eax-1)*SIZEOF_JSAMPLE] mov JSAMPLE [ecx+eax*SIZEOF_JSAMPLE], dl mov dl, JSAMPLE [ebx+(eax-1)*SIZEOF_JSAMPLE] mov JSAMPLE [ebx+eax*SIZEOF_JSAMPLE], dl mov dl, JSAMPLE [esi+(eax-1)*SIZEOF_JSAMPLE] mov JSAMPLE [esi+eax*SIZEOF_JSAMPLE], dl ; insert a dummy sample pop edx .skip: ; -- process the first column block movq mm0, MMWORD [ebx+0*SIZEOF_MMWORD] ; mm0=row[ 0][0] movq mm1, MMWORD [ecx+0*SIZEOF_MMWORD] ; mm1=row[-1][0] movq mm2, MMWORD [esi+0*SIZEOF_MMWORD] ; mm2=row[+1][0] pushpic ebx movpic ebx, POINTER [gotptr] ; load GOT address pxor mm3, mm3 ; mm3=(all 0's) movq mm4, mm0 punpcklbw mm0, mm3 ; mm0=row[ 0][0]( 0 1 2 3) punpckhbw mm4, mm3 ; mm4=row[ 0][0]( 4 5 6 7) movq mm5, mm1 punpcklbw mm1, mm3 ; mm1=row[-1][0]( 0 1 2 3) punpckhbw mm5, mm3 ; mm5=row[-1][0]( 4 5 6 7) movq mm6, mm2 punpcklbw mm2, mm3 ; mm2=row[+1][0]( 0 1 2 3) punpckhbw mm6, mm3 ; mm6=row[+1][0]( 4 5 6 7) pmullw mm0, [GOTOFF(ebx,PW_THREE)] pmullw mm4, [GOTOFF(ebx,PW_THREE)] pcmpeqb mm7, mm7 psrlq mm7, (SIZEOF_MMWORD-2)*BYTE_BIT paddw mm1, mm0 ; mm1=Int0L=( 0 1 2 3) paddw mm5, mm4 ; mm5=Int0H=( 4 5 6 7) paddw mm2, mm0 ; mm2=Int1L=( 0 1 2 3) paddw mm6, mm4 ; mm6=Int1H=( 4 5 6 7) movq MMWORD [edx+0*SIZEOF_MMWORD], mm1 ; temporarily save movq MMWORD [edx+1*SIZEOF_MMWORD], mm5 ; the intermediate data movq MMWORD [edi+0*SIZEOF_MMWORD], mm2 movq MMWORD [edi+1*SIZEOF_MMWORD], mm6 pand mm1, mm7 ; mm1=( 0 - - -) pand mm2, mm7 ; mm2=( 0 - - -) movq MMWORD [wk(0)], mm1 movq MMWORD [wk(1)], mm2 poppic ebx add eax, byte SIZEOF_MMWORD-1 and eax, byte -SIZEOF_MMWORD cmp eax, byte SIZEOF_MMWORD ja short .columnloop alignx 16, 7 .columnloop_last: ; -- process the last column block pushpic ebx movpic ebx, POINTER [gotptr] ; load GOT address pcmpeqb mm1, mm1 psllq mm1, (SIZEOF_MMWORD-2)*BYTE_BIT movq mm2, mm1 pand mm1, MMWORD [edx+1*SIZEOF_MMWORD] ; mm1=( - - - 7) pand mm2, MMWORD [edi+1*SIZEOF_MMWORD] ; mm2=( - - - 7) movq MMWORD [wk(2)], mm1 movq MMWORD [wk(3)], mm2 jmp short .upsample alignx 16, 7 .columnloop: ; -- process the next column block movq mm0, MMWORD [ebx+1*SIZEOF_MMWORD] ; mm0=row[ 0][1] movq mm1, MMWORD [ecx+1*SIZEOF_MMWORD] ; mm1=row[-1][1] movq mm2, MMWORD [esi+1*SIZEOF_MMWORD] ; mm2=row[+1][1] pushpic ebx movpic ebx, POINTER [gotptr] ; load GOT address pxor mm3, mm3 ; mm3=(all 0's) movq mm4, mm0 punpcklbw mm0, mm3 ; mm0=row[ 0][1]( 0 1 2 3) punpckhbw mm4, mm3 ; mm4=row[ 0][1]( 4 5 6 7) movq mm5, mm1 punpcklbw mm1, mm3 ; mm1=row[-1][1]( 0 1 2 3) punpckhbw mm5, mm3 ; mm5=row[-1][1]( 4 5 6 7) movq mm6, mm2 punpcklbw mm2, mm3 ; mm2=row[+1][1]( 0 1 2 3) punpckhbw mm6, mm3 ; mm6=row[+1][1]( 4 5 6 7) pmullw mm0, [GOTOFF(ebx,PW_THREE)] pmullw mm4, [GOTOFF(ebx,PW_THREE)] paddw mm1, mm0 ; mm1=Int0L=( 0 1 2 3) paddw mm5, mm4 ; mm5=Int0H=( 4 5 6 7) paddw mm2, mm0 ; mm2=Int1L=( 0 1 2 3) paddw mm6, mm4 ; mm6=Int1H=( 4 5 6 7) movq MMWORD [edx+2*SIZEOF_MMWORD], mm1 ; temporarily save movq MMWORD [edx+3*SIZEOF_MMWORD], mm5 ; the intermediate data movq MMWORD [edi+2*SIZEOF_MMWORD], mm2 movq MMWORD [edi+3*SIZEOF_MMWORD], mm6 psllq mm1, (SIZEOF_MMWORD-2)*BYTE_BIT ; mm1=( - - - 0) psllq mm2, (SIZEOF_MMWORD-2)*BYTE_BIT ; mm2=( - - - 0) movq MMWORD [wk(2)], mm1 movq MMWORD [wk(3)], mm2 .upsample: ; -- process the upper row movq mm7, MMWORD [edx+0*SIZEOF_MMWORD] ; mm7=Int0L=( 0 1 2 3) movq mm3, MMWORD [edx+1*SIZEOF_MMWORD] ; mm3=Int0H=( 4 5 6 7) movq mm0, mm7 movq mm4, mm3 psrlq mm0, 2*BYTE_BIT ; mm0=( 1 2 3 -) psllq mm4, (SIZEOF_MMWORD-2)*BYTE_BIT ; mm4=( - - - 4) movq mm5, mm7 movq mm6, mm3 psrlq mm5, (SIZEOF_MMWORD-2)*BYTE_BIT ; mm5=( 3 - - -) psllq mm6, 2*BYTE_BIT ; mm6=( - 4 5 6) por mm0, mm4 ; mm0=( 1 2 3 4) por mm5, mm6 ; mm5=( 3 4 5 6) movq mm1, mm7 movq mm2, mm3 psllq mm1, 2*BYTE_BIT ; mm1=( - 0 1 2) psrlq mm2, 2*BYTE_BIT ; mm2=( 5 6 7 -) movq mm4, mm3 psrlq mm4, (SIZEOF_MMWORD-2)*BYTE_BIT ; mm4=( 7 - - -) por mm1, MMWORD [wk(0)] ; mm1=(-1 0 1 2) por mm2, MMWORD [wk(2)] ; mm2=( 5 6 7 8) movq MMWORD [wk(0)], mm4 pmullw mm7, [GOTOFF(ebx,PW_THREE)] pmullw mm3, [GOTOFF(ebx,PW_THREE)] paddw mm1, [GOTOFF(ebx,PW_EIGHT)] paddw mm5, [GOTOFF(ebx,PW_EIGHT)] paddw mm0, [GOTOFF(ebx,PW_SEVEN)] paddw mm2, [GOTOFF(ebx,PW_SEVEN)] paddw mm1, mm7 paddw mm5, mm3 psrlw mm1, 4 ; mm1=Out0LE=( 0 2 4 6) psrlw mm5, 4 ; mm5=Out0HE=( 8 10 12 14) paddw mm0, mm7 paddw mm2, mm3 psrlw mm0, 4 ; mm0=Out0LO=( 1 3 5 7) psrlw mm2, 4 ; mm2=Out0HO=( 9 11 13 15) psllw mm0, BYTE_BIT psllw mm2, BYTE_BIT por mm1, mm0 ; mm1=Out0L=( 0 1 2 3 4 5 6 7) por mm5, mm2 ; mm5=Out0H=( 8 9 10 11 12 13 14 15) movq MMWORD [edx+0*SIZEOF_MMWORD], mm1 movq MMWORD [edx+1*SIZEOF_MMWORD], mm5 ; -- process the lower row movq mm6, MMWORD [edi+0*SIZEOF_MMWORD] ; mm6=Int1L=( 0 1 2 3) movq mm4, MMWORD [edi+1*SIZEOF_MMWORD] ; mm4=Int1H=( 4 5 6 7) movq mm7, mm6 movq mm3, mm4 psrlq mm7, 2*BYTE_BIT ; mm7=( 1 2 3 -) psllq mm3, (SIZEOF_MMWORD-2)*BYTE_BIT ; mm3=( - - - 4) movq mm0, mm6 movq mm2, mm4 psrlq mm0, (SIZEOF_MMWORD-2)*BYTE_BIT ; mm0=( 3 - - -) psllq mm2, 2*BYTE_BIT ; mm2=( - 4 5 6) por mm7, mm3 ; mm7=( 1 2 3 4) por mm0, mm2 ; mm0=( 3 4 5 6) movq mm1, mm6 movq mm5, mm4 psllq mm1, 2*BYTE_BIT ; mm1=( - 0 1 2) psrlq mm5, 2*BYTE_BIT ; mm5=( 5 6 7 -) movq mm3, mm4 psrlq mm3, (SIZEOF_MMWORD-2)*BYTE_BIT ; mm3=( 7 - - -) por mm1, MMWORD [wk(1)] ; mm1=(-1 0 1 2) por mm5, MMWORD [wk(3)] ; mm5=( 5 6 7 8) movq MMWORD [wk(1)], mm3 pmullw mm6, [GOTOFF(ebx,PW_THREE)] pmullw mm4, [GOTOFF(ebx,PW_THREE)] paddw mm1, [GOTOFF(ebx,PW_EIGHT)] paddw mm0, [GOTOFF(ebx,PW_EIGHT)] paddw mm7, [GOTOFF(ebx,PW_SEVEN)] paddw mm5, [GOTOFF(ebx,PW_SEVEN)] paddw mm1, mm6 paddw mm0, mm4 psrlw mm1, 4 ; mm1=Out1LE=( 0 2 4 6) psrlw mm0, 4 ; mm0=Out1HE=( 8 10 12 14) paddw mm7, mm6 paddw mm5, mm4 psrlw mm7, 4 ; mm7=Out1LO=( 1 3 5 7) psrlw mm5, 4 ; mm5=Out1HO=( 9 11 13 15) psllw mm7, BYTE_BIT psllw mm5, BYTE_BIT por mm1, mm7 ; mm1=Out1L=( 0 1 2 3 4 5 6 7) por mm0, mm5 ; mm0=Out1H=( 8 9 10 11 12 13 14 15) movq MMWORD [edi+0*SIZEOF_MMWORD], mm1 movq MMWORD [edi+1*SIZEOF_MMWORD], mm0 poppic ebx sub eax, byte SIZEOF_MMWORD add ecx, byte 1*SIZEOF_MMWORD ; inptr1(above) add ebx, byte 1*SIZEOF_MMWORD ; inptr0 add esi, byte 1*SIZEOF_MMWORD ; inptr1(below) add edx, byte 2*SIZEOF_MMWORD ; outptr0 add edi, byte 2*SIZEOF_MMWORD ; outptr1 cmp eax, byte SIZEOF_MMWORD ja near .columnloop test eax, eax jnz near .columnloop_last pop esi pop edi pop ecx pop eax add esi, byte 1*SIZEOF_JSAMPROW ; input_data add edi, byte 2*SIZEOF_JSAMPROW ; output_data sub ecx, byte 2 ; rowctr jg near .rowloop emms ; empty MMX state .return: pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx mov esp, ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; -------------------------------------------------------------------------- ; ; Fast processing for the common case of 2:1 horizontal and 1:1 vertical. ; It's still a box filter. ; ; GLOBAL(void) ; jsimd_h2v1_upsample_mmx(int max_v_samp_factor, JDIMENSION output_width, ; JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); ; %define max_v_samp(b) (b) + 8 ; int max_v_samp_factor %define output_width(b) (b) + 12 ; JDIMENSION output_width %define input_data(b) (b) + 16 ; JSAMPARRAY input_data %define output_data_ptr(b) (b) + 20 ; JSAMPARRAY *output_data_ptr align 32 GLOBAL_FUNCTION(jsimd_h2v1_upsample_mmx) EXTN(jsimd_h2v1_upsample_mmx): push ebp mov ebp, esp ; push ebx ; unused ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi mov edx, JDIMENSION [output_width(ebp)] add edx, byte (2*SIZEOF_MMWORD)-1 and edx, byte -(2*SIZEOF_MMWORD) jz short .return mov ecx, INT [max_v_samp(ebp)] ; rowctr test ecx, ecx jz short .return mov esi, JSAMPARRAY [input_data(ebp)] ; input_data mov edi, POINTER [output_data_ptr(ebp)] mov edi, JSAMPARRAY [edi] ; output_data alignx 16, 7 .rowloop: push edi push esi mov esi, JSAMPROW [esi] ; inptr mov edi, JSAMPROW [edi] ; outptr mov eax, edx ; colctr alignx 16, 7 .columnloop: movq mm0, MMWORD [esi+0*SIZEOF_MMWORD] movq mm1, mm0 punpcklbw mm0, mm0 punpckhbw mm1, mm1 movq MMWORD [edi+0*SIZEOF_MMWORD], mm0 movq MMWORD [edi+1*SIZEOF_MMWORD], mm1 sub eax, byte 2*SIZEOF_MMWORD jz short .nextrow movq mm2, MMWORD [esi+1*SIZEOF_MMWORD] movq mm3, mm2 punpcklbw mm2, mm2 punpckhbw mm3, mm3 movq MMWORD [edi+2*SIZEOF_MMWORD], mm2 movq MMWORD [edi+3*SIZEOF_MMWORD], mm3 sub eax, byte 2*SIZEOF_MMWORD jz short .nextrow add esi, byte 2*SIZEOF_MMWORD ; inptr add edi, byte 4*SIZEOF_MMWORD ; outptr jmp short .columnloop alignx 16, 7 .nextrow: pop esi pop edi add esi, byte SIZEOF_JSAMPROW ; input_data add edi, byte SIZEOF_JSAMPROW ; output_data dec ecx ; rowctr jg short .rowloop emms ; empty MMX state .return: pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved ; pop ebx ; unused pop ebp ret ; -------------------------------------------------------------------------- ; ; Fast processing for the common case of 2:1 horizontal and 2:1 vertical. ; It's still a box filter. ; ; GLOBAL(void) ; jsimd_h2v2_upsample_mmx(int max_v_samp_factor, JDIMENSION output_width, ; JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); ; %define max_v_samp(b) (b) + 8 ; int max_v_samp_factor %define output_width(b) (b) + 12 ; JDIMENSION output_width %define input_data(b) (b) + 16 ; JSAMPARRAY input_data %define output_data_ptr(b) (b) + 20 ; JSAMPARRAY *output_data_ptr align 32 GLOBAL_FUNCTION(jsimd_h2v2_upsample_mmx) EXTN(jsimd_h2v2_upsample_mmx): push ebp mov ebp, esp push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi mov edx, JDIMENSION [output_width(ebp)] add edx, byte (2*SIZEOF_MMWORD)-1 and edx, byte -(2*SIZEOF_MMWORD) jz near .return mov ecx, INT [max_v_samp(ebp)] ; rowctr test ecx, ecx jz short .return mov esi, JSAMPARRAY [input_data(ebp)] ; input_data mov edi, POINTER [output_data_ptr(ebp)] mov edi, JSAMPARRAY [edi] ; output_data alignx 16, 7 .rowloop: push edi push esi mov esi, JSAMPROW [esi] ; inptr mov ebx, JSAMPROW [edi+0*SIZEOF_JSAMPROW] ; outptr0 mov edi, JSAMPROW [edi+1*SIZEOF_JSAMPROW] ; outptr1 mov eax, edx ; colctr alignx 16, 7 .columnloop: movq mm0, MMWORD [esi+0*SIZEOF_MMWORD] movq mm1, mm0 punpcklbw mm0, mm0 punpckhbw mm1, mm1 movq MMWORD [ebx+0*SIZEOF_MMWORD], mm0 movq MMWORD [ebx+1*SIZEOF_MMWORD], mm1 movq MMWORD [edi+0*SIZEOF_MMWORD], mm0 movq MMWORD [edi+1*SIZEOF_MMWORD], mm1 sub eax, byte 2*SIZEOF_MMWORD jz short .nextrow movq mm2, MMWORD [esi+1*SIZEOF_MMWORD] movq mm3, mm2 punpcklbw mm2, mm2 punpckhbw mm3, mm3 movq MMWORD [ebx+2*SIZEOF_MMWORD], mm2 movq MMWORD [ebx+3*SIZEOF_MMWORD], mm3 movq MMWORD [edi+2*SIZEOF_MMWORD], mm2 movq MMWORD [edi+3*SIZEOF_MMWORD], mm3 sub eax, byte 2*SIZEOF_MMWORD jz short .nextrow add esi, byte 2*SIZEOF_MMWORD ; inptr add ebx, byte 4*SIZEOF_MMWORD ; outptr0 add edi, byte 4*SIZEOF_MMWORD ; outptr1 jmp short .columnloop alignx 16, 7 .nextrow: pop esi pop edi add esi, byte 1*SIZEOF_JSAMPROW ; input_data add edi, byte 2*SIZEOF_JSAMPROW ; output_data sub ecx, byte 2 ; rowctr jg short .rowloop emms ; empty MMX state .return: pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/i386/jdsample-sse2.asm000066400000000000000000000641241436506551100211010ustar00rootroot00000000000000; ; jdsample.asm - upsampling (SSE2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2016, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jsimdext.inc" ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 32 GLOBAL_DATA(jconst_fancy_upsample_sse2) EXTN(jconst_fancy_upsample_sse2): PW_ONE times 8 dw 1 PW_TWO times 8 dw 2 PW_THREE times 8 dw 3 PW_SEVEN times 8 dw 7 PW_EIGHT times 8 dw 8 alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Fancy processing for the common case of 2:1 horizontal and 1:1 vertical. ; ; The upsampling algorithm is linear interpolation between pixel centers, ; also known as a "triangle filter". This is a good compromise between ; speed and visual quality. The centers of the output pixels are 1/4 and 3/4 ; of the way between input pixel centers. ; ; GLOBAL(void) ; jsimd_h2v1_fancy_upsample_sse2(int max_v_samp_factor, ; JDIMENSION downsampled_width, ; JSAMPARRAY input_data, ; JSAMPARRAY *output_data_ptr); ; %define max_v_samp(b) (b) + 8 ; int max_v_samp_factor %define downsamp_width(b) (b) + 12 ; JDIMENSION downsampled_width %define input_data(b) (b) + 16 ; JSAMPARRAY input_data %define output_data_ptr(b) (b) + 20 ; JSAMPARRAY *output_data_ptr align 32 GLOBAL_FUNCTION(jsimd_h2v1_fancy_upsample_sse2) EXTN(jsimd_h2v1_fancy_upsample_sse2): push ebp mov ebp, esp pushpic ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address mov eax, JDIMENSION [downsamp_width(ebp)] ; colctr test eax, eax jz near .return mov ecx, INT [max_v_samp(ebp)] ; rowctr test ecx, ecx jz near .return mov esi, JSAMPARRAY [input_data(ebp)] ; input_data mov edi, POINTER [output_data_ptr(ebp)] mov edi, JSAMPARRAY [edi] ; output_data alignx 16, 7 .rowloop: push eax ; colctr push edi push esi mov esi, JSAMPROW [esi] ; inptr mov edi, JSAMPROW [edi] ; outptr test eax, SIZEOF_XMMWORD-1 jz short .skip mov dl, JSAMPLE [esi+(eax-1)*SIZEOF_JSAMPLE] mov JSAMPLE [esi+eax*SIZEOF_JSAMPLE], dl ; insert a dummy sample .skip: pxor xmm0, xmm0 ; xmm0=(all 0's) pcmpeqb xmm7, xmm7 psrldq xmm7, (SIZEOF_XMMWORD-1) pand xmm7, XMMWORD [esi+0*SIZEOF_XMMWORD] add eax, byte SIZEOF_XMMWORD-1 and eax, byte -SIZEOF_XMMWORD cmp eax, byte SIZEOF_XMMWORD ja short .columnloop alignx 16, 7 .columnloop_last: pcmpeqb xmm6, xmm6 pslldq xmm6, (SIZEOF_XMMWORD-1) pand xmm6, XMMWORD [esi+0*SIZEOF_XMMWORD] jmp short .upsample alignx 16, 7 .columnloop: movdqa xmm6, XMMWORD [esi+1*SIZEOF_XMMWORD] pslldq xmm6, (SIZEOF_XMMWORD-1) .upsample: movdqa xmm1, XMMWORD [esi+0*SIZEOF_XMMWORD] movdqa xmm2, xmm1 movdqa xmm3, xmm1 ; xmm1=( 0 1 2 ... 13 14 15) pslldq xmm2, 1 ; xmm2=(-- 0 1 ... 12 13 14) psrldq xmm3, 1 ; xmm3=( 1 2 3 ... 14 15 --) por xmm2, xmm7 ; xmm2=(-1 0 1 ... 12 13 14) por xmm3, xmm6 ; xmm3=( 1 2 3 ... 14 15 16) movdqa xmm7, xmm1 psrldq xmm7, (SIZEOF_XMMWORD-1) ; xmm7=(15 -- -- ... -- -- --) movdqa xmm4, xmm1 punpcklbw xmm1, xmm0 ; xmm1=( 0 1 2 3 4 5 6 7) punpckhbw xmm4, xmm0 ; xmm4=( 8 9 10 11 12 13 14 15) movdqa xmm5, xmm2 punpcklbw xmm2, xmm0 ; xmm2=(-1 0 1 2 3 4 5 6) punpckhbw xmm5, xmm0 ; xmm5=( 7 8 9 10 11 12 13 14) movdqa xmm6, xmm3 punpcklbw xmm3, xmm0 ; xmm3=( 1 2 3 4 5 6 7 8) punpckhbw xmm6, xmm0 ; xmm6=( 9 10 11 12 13 14 15 16) pmullw xmm1, [GOTOFF(ebx,PW_THREE)] pmullw xmm4, [GOTOFF(ebx,PW_THREE)] paddw xmm2, [GOTOFF(ebx,PW_ONE)] paddw xmm5, [GOTOFF(ebx,PW_ONE)] paddw xmm3, [GOTOFF(ebx,PW_TWO)] paddw xmm6, [GOTOFF(ebx,PW_TWO)] paddw xmm2, xmm1 paddw xmm5, xmm4 psrlw xmm2, 2 ; xmm2=OutLE=( 0 2 4 6 8 10 12 14) psrlw xmm5, 2 ; xmm5=OutHE=(16 18 20 22 24 26 28 30) paddw xmm3, xmm1 paddw xmm6, xmm4 psrlw xmm3, 2 ; xmm3=OutLO=( 1 3 5 7 9 11 13 15) psrlw xmm6, 2 ; xmm6=OutHO=(17 19 21 23 25 27 29 31) psllw xmm3, BYTE_BIT psllw xmm6, BYTE_BIT por xmm2, xmm3 ; xmm2=OutL=( 0 1 2 ... 13 14 15) por xmm5, xmm6 ; xmm5=OutH=(16 17 18 ... 29 30 31) movdqa XMMWORD [edi+0*SIZEOF_XMMWORD], xmm2 movdqa XMMWORD [edi+1*SIZEOF_XMMWORD], xmm5 sub eax, byte SIZEOF_XMMWORD add esi, byte 1*SIZEOF_XMMWORD ; inptr add edi, byte 2*SIZEOF_XMMWORD ; outptr cmp eax, byte SIZEOF_XMMWORD ja near .columnloop test eax, eax jnz near .columnloop_last pop esi pop edi pop eax add esi, byte SIZEOF_JSAMPROW ; input_data add edi, byte SIZEOF_JSAMPROW ; output_data dec ecx ; rowctr jg near .rowloop .return: pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved poppic ebx pop ebp ret ; -------------------------------------------------------------------------- ; ; Fancy processing for the common case of 2:1 horizontal and 2:1 vertical. ; Again a triangle filter; see comments for h2v1 case, above. ; ; GLOBAL(void) ; jsimd_h2v2_fancy_upsample_sse2(int max_v_samp_factor, ; JDIMENSION downsampled_width, ; JSAMPARRAY input_data, ; JSAMPARRAY *output_data_ptr); ; %define max_v_samp(b) (b) + 8 ; int max_v_samp_factor %define downsamp_width(b) (b) + 12 ; JDIMENSION downsampled_width %define input_data(b) (b) + 16 ; JSAMPARRAY input_data %define output_data_ptr(b) (b) + 20 ; JSAMPARRAY *output_data_ptr %define original_ebp ebp + 0 %define wk(i) ebp - (WK_NUM - (i)) * SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 4 %define gotptr wk(0) - SIZEOF_POINTER ; void *gotptr align 32 GLOBAL_FUNCTION(jsimd_h2v2_fancy_upsample_sse2) EXTN(jsimd_h2v2_fancy_upsample_sse2): push ebp mov eax, esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [esp], eax mov ebp, esp ; ebp = aligned ebp lea esp, [wk(0)] pushpic eax ; make a room for GOT address push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address movpic POINTER [gotptr], ebx ; save GOT address mov edx, eax ; edx = original ebp mov eax, JDIMENSION [downsamp_width(edx)] ; colctr test eax, eax jz near .return mov ecx, INT [max_v_samp(edx)] ; rowctr test ecx, ecx jz near .return mov esi, JSAMPARRAY [input_data(edx)] ; input_data mov edi, POINTER [output_data_ptr(edx)] mov edi, JSAMPARRAY [edi] ; output_data alignx 16, 7 .rowloop: push eax ; colctr push ecx push edi push esi mov ecx, JSAMPROW [esi-1*SIZEOF_JSAMPROW] ; inptr1(above) mov ebx, JSAMPROW [esi+0*SIZEOF_JSAMPROW] ; inptr0 mov esi, JSAMPROW [esi+1*SIZEOF_JSAMPROW] ; inptr1(below) mov edx, JSAMPROW [edi+0*SIZEOF_JSAMPROW] ; outptr0 mov edi, JSAMPROW [edi+1*SIZEOF_JSAMPROW] ; outptr1 test eax, SIZEOF_XMMWORD-1 jz short .skip push edx mov dl, JSAMPLE [ecx+(eax-1)*SIZEOF_JSAMPLE] mov JSAMPLE [ecx+eax*SIZEOF_JSAMPLE], dl mov dl, JSAMPLE [ebx+(eax-1)*SIZEOF_JSAMPLE] mov JSAMPLE [ebx+eax*SIZEOF_JSAMPLE], dl mov dl, JSAMPLE [esi+(eax-1)*SIZEOF_JSAMPLE] mov JSAMPLE [esi+eax*SIZEOF_JSAMPLE], dl ; insert a dummy sample pop edx .skip: ; -- process the first column block movdqa xmm0, XMMWORD [ebx+0*SIZEOF_XMMWORD] ; xmm0=row[ 0][0] movdqa xmm1, XMMWORD [ecx+0*SIZEOF_XMMWORD] ; xmm1=row[-1][0] movdqa xmm2, XMMWORD [esi+0*SIZEOF_XMMWORD] ; xmm2=row[+1][0] pushpic ebx movpic ebx, POINTER [gotptr] ; load GOT address pxor xmm3, xmm3 ; xmm3=(all 0's) movdqa xmm4, xmm0 punpcklbw xmm0, xmm3 ; xmm0=row[ 0]( 0 1 2 3 4 5 6 7) punpckhbw xmm4, xmm3 ; xmm4=row[ 0]( 8 9 10 11 12 13 14 15) movdqa xmm5, xmm1 punpcklbw xmm1, xmm3 ; xmm1=row[-1]( 0 1 2 3 4 5 6 7) punpckhbw xmm5, xmm3 ; xmm5=row[-1]( 8 9 10 11 12 13 14 15) movdqa xmm6, xmm2 punpcklbw xmm2, xmm3 ; xmm2=row[+1]( 0 1 2 3 4 5 6 7) punpckhbw xmm6, xmm3 ; xmm6=row[+1]( 8 9 10 11 12 13 14 15) pmullw xmm0, [GOTOFF(ebx,PW_THREE)] pmullw xmm4, [GOTOFF(ebx,PW_THREE)] pcmpeqb xmm7, xmm7 psrldq xmm7, (SIZEOF_XMMWORD-2) paddw xmm1, xmm0 ; xmm1=Int0L=( 0 1 2 3 4 5 6 7) paddw xmm5, xmm4 ; xmm5=Int0H=( 8 9 10 11 12 13 14 15) paddw xmm2, xmm0 ; xmm2=Int1L=( 0 1 2 3 4 5 6 7) paddw xmm6, xmm4 ; xmm6=Int1H=( 8 9 10 11 12 13 14 15) movdqa XMMWORD [edx+0*SIZEOF_XMMWORD], xmm1 ; temporarily save movdqa XMMWORD [edx+1*SIZEOF_XMMWORD], xmm5 ; the intermediate data movdqa XMMWORD [edi+0*SIZEOF_XMMWORD], xmm2 movdqa XMMWORD [edi+1*SIZEOF_XMMWORD], xmm6 pand xmm1, xmm7 ; xmm1=( 0 -- -- -- -- -- -- --) pand xmm2, xmm7 ; xmm2=( 0 -- -- -- -- -- -- --) movdqa XMMWORD [wk(0)], xmm1 movdqa XMMWORD [wk(1)], xmm2 poppic ebx add eax, byte SIZEOF_XMMWORD-1 and eax, byte -SIZEOF_XMMWORD cmp eax, byte SIZEOF_XMMWORD ja short .columnloop alignx 16, 7 .columnloop_last: ; -- process the last column block pushpic ebx movpic ebx, POINTER [gotptr] ; load GOT address pcmpeqb xmm1, xmm1 pslldq xmm1, (SIZEOF_XMMWORD-2) movdqa xmm2, xmm1 pand xmm1, XMMWORD [edx+1*SIZEOF_XMMWORD] pand xmm2, XMMWORD [edi+1*SIZEOF_XMMWORD] movdqa XMMWORD [wk(2)], xmm1 ; xmm1=(-- -- -- -- -- -- -- 15) movdqa XMMWORD [wk(3)], xmm2 ; xmm2=(-- -- -- -- -- -- -- 15) jmp near .upsample alignx 16, 7 .columnloop: ; -- process the next column block movdqa xmm0, XMMWORD [ebx+1*SIZEOF_XMMWORD] ; xmm0=row[ 0][1] movdqa xmm1, XMMWORD [ecx+1*SIZEOF_XMMWORD] ; xmm1=row[-1][1] movdqa xmm2, XMMWORD [esi+1*SIZEOF_XMMWORD] ; xmm2=row[+1][1] pushpic ebx movpic ebx, POINTER [gotptr] ; load GOT address pxor xmm3, xmm3 ; xmm3=(all 0's) movdqa xmm4, xmm0 punpcklbw xmm0, xmm3 ; xmm0=row[ 0]( 0 1 2 3 4 5 6 7) punpckhbw xmm4, xmm3 ; xmm4=row[ 0]( 8 9 10 11 12 13 14 15) movdqa xmm5, xmm1 punpcklbw xmm1, xmm3 ; xmm1=row[-1]( 0 1 2 3 4 5 6 7) punpckhbw xmm5, xmm3 ; xmm5=row[-1]( 8 9 10 11 12 13 14 15) movdqa xmm6, xmm2 punpcklbw xmm2, xmm3 ; xmm2=row[+1]( 0 1 2 3 4 5 6 7) punpckhbw xmm6, xmm3 ; xmm6=row[+1]( 8 9 10 11 12 13 14 15) pmullw xmm0, [GOTOFF(ebx,PW_THREE)] pmullw xmm4, [GOTOFF(ebx,PW_THREE)] paddw xmm1, xmm0 ; xmm1=Int0L=( 0 1 2 3 4 5 6 7) paddw xmm5, xmm4 ; xmm5=Int0H=( 8 9 10 11 12 13 14 15) paddw xmm2, xmm0 ; xmm2=Int1L=( 0 1 2 3 4 5 6 7) paddw xmm6, xmm4 ; xmm6=Int1H=( 8 9 10 11 12 13 14 15) movdqa XMMWORD [edx+2*SIZEOF_XMMWORD], xmm1 ; temporarily save movdqa XMMWORD [edx+3*SIZEOF_XMMWORD], xmm5 ; the intermediate data movdqa XMMWORD [edi+2*SIZEOF_XMMWORD], xmm2 movdqa XMMWORD [edi+3*SIZEOF_XMMWORD], xmm6 pslldq xmm1, (SIZEOF_XMMWORD-2) ; xmm1=(-- -- -- -- -- -- -- 0) pslldq xmm2, (SIZEOF_XMMWORD-2) ; xmm2=(-- -- -- -- -- -- -- 0) movdqa XMMWORD [wk(2)], xmm1 movdqa XMMWORD [wk(3)], xmm2 .upsample: ; -- process the upper row movdqa xmm7, XMMWORD [edx+0*SIZEOF_XMMWORD] movdqa xmm3, XMMWORD [edx+1*SIZEOF_XMMWORD] movdqa xmm0, xmm7 ; xmm7=Int0L=( 0 1 2 3 4 5 6 7) movdqa xmm4, xmm3 ; xmm3=Int0H=( 8 9 10 11 12 13 14 15) psrldq xmm0, 2 ; xmm0=( 1 2 3 4 5 6 7 --) pslldq xmm4, (SIZEOF_XMMWORD-2) ; xmm4=(-- -- -- -- -- -- -- 8) movdqa xmm5, xmm7 movdqa xmm6, xmm3 psrldq xmm5, (SIZEOF_XMMWORD-2) ; xmm5=( 7 -- -- -- -- -- -- --) pslldq xmm6, 2 ; xmm6=(-- 8 9 10 11 12 13 14) por xmm0, xmm4 ; xmm0=( 1 2 3 4 5 6 7 8) por xmm5, xmm6 ; xmm5=( 7 8 9 10 11 12 13 14) movdqa xmm1, xmm7 movdqa xmm2, xmm3 pslldq xmm1, 2 ; xmm1=(-- 0 1 2 3 4 5 6) psrldq xmm2, 2 ; xmm2=( 9 10 11 12 13 14 15 --) movdqa xmm4, xmm3 psrldq xmm4, (SIZEOF_XMMWORD-2) ; xmm4=(15 -- -- -- -- -- -- --) por xmm1, XMMWORD [wk(0)] ; xmm1=(-1 0 1 2 3 4 5 6) por xmm2, XMMWORD [wk(2)] ; xmm2=( 9 10 11 12 13 14 15 16) movdqa XMMWORD [wk(0)], xmm4 pmullw xmm7, [GOTOFF(ebx,PW_THREE)] pmullw xmm3, [GOTOFF(ebx,PW_THREE)] paddw xmm1, [GOTOFF(ebx,PW_EIGHT)] paddw xmm5, [GOTOFF(ebx,PW_EIGHT)] paddw xmm0, [GOTOFF(ebx,PW_SEVEN)] paddw xmm2, [GOTOFF(ebx,PW_SEVEN)] paddw xmm1, xmm7 paddw xmm5, xmm3 psrlw xmm1, 4 ; xmm1=Out0LE=( 0 2 4 6 8 10 12 14) psrlw xmm5, 4 ; xmm5=Out0HE=(16 18 20 22 24 26 28 30) paddw xmm0, xmm7 paddw xmm2, xmm3 psrlw xmm0, 4 ; xmm0=Out0LO=( 1 3 5 7 9 11 13 15) psrlw xmm2, 4 ; xmm2=Out0HO=(17 19 21 23 25 27 29 31) psllw xmm0, BYTE_BIT psllw xmm2, BYTE_BIT por xmm1, xmm0 ; xmm1=Out0L=( 0 1 2 ... 13 14 15) por xmm5, xmm2 ; xmm5=Out0H=(16 17 18 ... 29 30 31) movdqa XMMWORD [edx+0*SIZEOF_XMMWORD], xmm1 movdqa XMMWORD [edx+1*SIZEOF_XMMWORD], xmm5 ; -- process the lower row movdqa xmm6, XMMWORD [edi+0*SIZEOF_XMMWORD] movdqa xmm4, XMMWORD [edi+1*SIZEOF_XMMWORD] movdqa xmm7, xmm6 ; xmm6=Int1L=( 0 1 2 3 4 5 6 7) movdqa xmm3, xmm4 ; xmm4=Int1H=( 8 9 10 11 12 13 14 15) psrldq xmm7, 2 ; xmm7=( 1 2 3 4 5 6 7 --) pslldq xmm3, (SIZEOF_XMMWORD-2) ; xmm3=(-- -- -- -- -- -- -- 8) movdqa xmm0, xmm6 movdqa xmm2, xmm4 psrldq xmm0, (SIZEOF_XMMWORD-2) ; xmm0=( 7 -- -- -- -- -- -- --) pslldq xmm2, 2 ; xmm2=(-- 8 9 10 11 12 13 14) por xmm7, xmm3 ; xmm7=( 1 2 3 4 5 6 7 8) por xmm0, xmm2 ; xmm0=( 7 8 9 10 11 12 13 14) movdqa xmm1, xmm6 movdqa xmm5, xmm4 pslldq xmm1, 2 ; xmm1=(-- 0 1 2 3 4 5 6) psrldq xmm5, 2 ; xmm5=( 9 10 11 12 13 14 15 --) movdqa xmm3, xmm4 psrldq xmm3, (SIZEOF_XMMWORD-2) ; xmm3=(15 -- -- -- -- -- -- --) por xmm1, XMMWORD [wk(1)] ; xmm1=(-1 0 1 2 3 4 5 6) por xmm5, XMMWORD [wk(3)] ; xmm5=( 9 10 11 12 13 14 15 16) movdqa XMMWORD [wk(1)], xmm3 pmullw xmm6, [GOTOFF(ebx,PW_THREE)] pmullw xmm4, [GOTOFF(ebx,PW_THREE)] paddw xmm1, [GOTOFF(ebx,PW_EIGHT)] paddw xmm0, [GOTOFF(ebx,PW_EIGHT)] paddw xmm7, [GOTOFF(ebx,PW_SEVEN)] paddw xmm5, [GOTOFF(ebx,PW_SEVEN)] paddw xmm1, xmm6 paddw xmm0, xmm4 psrlw xmm1, 4 ; xmm1=Out1LE=( 0 2 4 6 8 10 12 14) psrlw xmm0, 4 ; xmm0=Out1HE=(16 18 20 22 24 26 28 30) paddw xmm7, xmm6 paddw xmm5, xmm4 psrlw xmm7, 4 ; xmm7=Out1LO=( 1 3 5 7 9 11 13 15) psrlw xmm5, 4 ; xmm5=Out1HO=(17 19 21 23 25 27 29 31) psllw xmm7, BYTE_BIT psllw xmm5, BYTE_BIT por xmm1, xmm7 ; xmm1=Out1L=( 0 1 2 ... 13 14 15) por xmm0, xmm5 ; xmm0=Out1H=(16 17 18 ... 29 30 31) movdqa XMMWORD [edi+0*SIZEOF_XMMWORD], xmm1 movdqa XMMWORD [edi+1*SIZEOF_XMMWORD], xmm0 poppic ebx sub eax, byte SIZEOF_XMMWORD add ecx, byte 1*SIZEOF_XMMWORD ; inptr1(above) add ebx, byte 1*SIZEOF_XMMWORD ; inptr0 add esi, byte 1*SIZEOF_XMMWORD ; inptr1(below) add edx, byte 2*SIZEOF_XMMWORD ; outptr0 add edi, byte 2*SIZEOF_XMMWORD ; outptr1 cmp eax, byte SIZEOF_XMMWORD ja near .columnloop test eax, eax jnz near .columnloop_last pop esi pop edi pop ecx pop eax add esi, byte 1*SIZEOF_JSAMPROW ; input_data add edi, byte 2*SIZEOF_JSAMPROW ; output_data sub ecx, byte 2 ; rowctr jg near .rowloop .return: pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx mov esp, ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; -------------------------------------------------------------------------- ; ; Fast processing for the common case of 2:1 horizontal and 1:1 vertical. ; It's still a box filter. ; ; GLOBAL(void) ; jsimd_h2v1_upsample_sse2(int max_v_samp_factor, JDIMENSION output_width, ; JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); ; %define max_v_samp(b) (b) + 8 ; int max_v_samp_factor %define output_width(b) (b) + 12 ; JDIMENSION output_width %define input_data(b) (b) + 16 ; JSAMPARRAY input_data %define output_data_ptr(b) (b) + 20 ; JSAMPARRAY *output_data_ptr align 32 GLOBAL_FUNCTION(jsimd_h2v1_upsample_sse2) EXTN(jsimd_h2v1_upsample_sse2): push ebp mov ebp, esp ; push ebx ; unused ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi mov edx, JDIMENSION [output_width(ebp)] add edx, byte (2*SIZEOF_XMMWORD)-1 and edx, byte -(2*SIZEOF_XMMWORD) jz short .return mov ecx, INT [max_v_samp(ebp)] ; rowctr test ecx, ecx jz short .return mov esi, JSAMPARRAY [input_data(ebp)] ; input_data mov edi, POINTER [output_data_ptr(ebp)] mov edi, JSAMPARRAY [edi] ; output_data alignx 16, 7 .rowloop: push edi push esi mov esi, JSAMPROW [esi] ; inptr mov edi, JSAMPROW [edi] ; outptr mov eax, edx ; colctr alignx 16, 7 .columnloop: movdqa xmm0, XMMWORD [esi+0*SIZEOF_XMMWORD] movdqa xmm1, xmm0 punpcklbw xmm0, xmm0 punpckhbw xmm1, xmm1 movdqa XMMWORD [edi+0*SIZEOF_XMMWORD], xmm0 movdqa XMMWORD [edi+1*SIZEOF_XMMWORD], xmm1 sub eax, byte 2*SIZEOF_XMMWORD jz short .nextrow movdqa xmm2, XMMWORD [esi+1*SIZEOF_XMMWORD] movdqa xmm3, xmm2 punpcklbw xmm2, xmm2 punpckhbw xmm3, xmm3 movdqa XMMWORD [edi+2*SIZEOF_XMMWORD], xmm2 movdqa XMMWORD [edi+3*SIZEOF_XMMWORD], xmm3 sub eax, byte 2*SIZEOF_XMMWORD jz short .nextrow add esi, byte 2*SIZEOF_XMMWORD ; inptr add edi, byte 4*SIZEOF_XMMWORD ; outptr jmp short .columnloop alignx 16, 7 .nextrow: pop esi pop edi add esi, byte SIZEOF_JSAMPROW ; input_data add edi, byte SIZEOF_JSAMPROW ; output_data dec ecx ; rowctr jg short .rowloop .return: pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved ; pop ebx ; unused pop ebp ret ; -------------------------------------------------------------------------- ; ; Fast processing for the common case of 2:1 horizontal and 2:1 vertical. ; It's still a box filter. ; ; GLOBAL(void) ; jsimd_h2v2_upsample_sse2(int max_v_samp_factor, JDIMENSION output_width, ; JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); ; %define max_v_samp(b) (b) + 8 ; int max_v_samp_factor %define output_width(b) (b) + 12 ; JDIMENSION output_width %define input_data(b) (b) + 16 ; JSAMPARRAY input_data %define output_data_ptr(b) (b) + 20 ; JSAMPARRAY *output_data_ptr align 32 GLOBAL_FUNCTION(jsimd_h2v2_upsample_sse2) EXTN(jsimd_h2v2_upsample_sse2): push ebp mov ebp, esp push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi mov edx, JDIMENSION [output_width(ebp)] add edx, byte (2*SIZEOF_XMMWORD)-1 and edx, byte -(2*SIZEOF_XMMWORD) jz near .return mov ecx, INT [max_v_samp(ebp)] ; rowctr test ecx, ecx jz near .return mov esi, JSAMPARRAY [input_data(ebp)] ; input_data mov edi, POINTER [output_data_ptr(ebp)] mov edi, JSAMPARRAY [edi] ; output_data alignx 16, 7 .rowloop: push edi push esi mov esi, JSAMPROW [esi] ; inptr mov ebx, JSAMPROW [edi+0*SIZEOF_JSAMPROW] ; outptr0 mov edi, JSAMPROW [edi+1*SIZEOF_JSAMPROW] ; outptr1 mov eax, edx ; colctr alignx 16, 7 .columnloop: movdqa xmm0, XMMWORD [esi+0*SIZEOF_XMMWORD] movdqa xmm1, xmm0 punpcklbw xmm0, xmm0 punpckhbw xmm1, xmm1 movdqa XMMWORD [ebx+0*SIZEOF_XMMWORD], xmm0 movdqa XMMWORD [ebx+1*SIZEOF_XMMWORD], xmm1 movdqa XMMWORD [edi+0*SIZEOF_XMMWORD], xmm0 movdqa XMMWORD [edi+1*SIZEOF_XMMWORD], xmm1 sub eax, byte 2*SIZEOF_XMMWORD jz short .nextrow movdqa xmm2, XMMWORD [esi+1*SIZEOF_XMMWORD] movdqa xmm3, xmm2 punpcklbw xmm2, xmm2 punpckhbw xmm3, xmm3 movdqa XMMWORD [ebx+2*SIZEOF_XMMWORD], xmm2 movdqa XMMWORD [ebx+3*SIZEOF_XMMWORD], xmm3 movdqa XMMWORD [edi+2*SIZEOF_XMMWORD], xmm2 movdqa XMMWORD [edi+3*SIZEOF_XMMWORD], xmm3 sub eax, byte 2*SIZEOF_XMMWORD jz short .nextrow add esi, byte 2*SIZEOF_XMMWORD ; inptr add ebx, byte 4*SIZEOF_XMMWORD ; outptr0 add edi, byte 4*SIZEOF_XMMWORD ; outptr1 jmp short .columnloop alignx 16, 7 .nextrow: pop esi pop edi add esi, byte 1*SIZEOF_JSAMPROW ; input_data add edi, byte 2*SIZEOF_JSAMPROW ; output_data sub ecx, byte 2 ; rowctr jg short .rowloop .return: pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/i386/jfdctflt-3dn.asm000066400000000000000000000277711436506551100207210ustar00rootroot00000000000000; ; jfdctflt.asm - floating-point FDCT (3DNow!) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2016, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains a floating-point implementation of the forward DCT ; (Discrete Cosine Transform). The following code is based directly on ; the IJG's original jfdctflt.c; see the jfdctflt.c for more details. %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 32 GLOBAL_DATA(jconst_fdct_float_3dnow) EXTN(jconst_fdct_float_3dnow): PD_0_382 times 2 dd 0.382683432365089771728460 PD_0_707 times 2 dd 0.707106781186547524400844 PD_0_541 times 2 dd 0.541196100146196984399723 PD_1_306 times 2 dd 1.306562964876376527856643 alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Perform the forward DCT on one block of samples. ; ; GLOBAL(void) ; jsimd_fdct_float_3dnow(FAST_FLOAT *data) ; %define data(b) (b) + 8 ; FAST_FLOAT *data %define original_ebp ebp + 0 %define wk(i) ebp - (WK_NUM - (i)) * SIZEOF_MMWORD ; mmword wk[WK_NUM] %define WK_NUM 2 align 32 GLOBAL_FUNCTION(jsimd_fdct_float_3dnow) EXTN(jsimd_fdct_float_3dnow): push ebp mov eax, esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_MMWORD) ; align to 64 bits mov [esp], eax mov ebp, esp ; ebp = aligned ebp lea esp, [wk(0)] pushpic ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved ; push esi ; unused ; push edi ; unused get_GOT ebx ; get GOT address ; ---- Pass 1: process rows. mov edx, POINTER [data(eax)] ; (FAST_FLOAT *) mov ecx, DCTSIZE/2 alignx 16, 7 .rowloop: movq mm0, MMWORD [MMBLOCK(0,0,edx,SIZEOF_FAST_FLOAT)] movq mm1, MMWORD [MMBLOCK(1,0,edx,SIZEOF_FAST_FLOAT)] movq mm2, MMWORD [MMBLOCK(0,3,edx,SIZEOF_FAST_FLOAT)] movq mm3, MMWORD [MMBLOCK(1,3,edx,SIZEOF_FAST_FLOAT)] ; mm0=(00 01), mm1=(10 11), mm2=(06 07), mm3=(16 17) movq mm4, mm0 ; transpose coefficients punpckldq mm0, mm1 ; mm0=(00 10)=data0 punpckhdq mm4, mm1 ; mm4=(01 11)=data1 movq mm5, mm2 ; transpose coefficients punpckldq mm2, mm3 ; mm2=(06 16)=data6 punpckhdq mm5, mm3 ; mm5=(07 17)=data7 movq mm6, mm4 movq mm7, mm0 pfsub mm4, mm2 ; mm4=data1-data6=tmp6 pfsub mm0, mm5 ; mm0=data0-data7=tmp7 pfadd mm6, mm2 ; mm6=data1+data6=tmp1 pfadd mm7, mm5 ; mm7=data0+data7=tmp0 movq mm1, MMWORD [MMBLOCK(0,1,edx,SIZEOF_FAST_FLOAT)] movq mm3, MMWORD [MMBLOCK(1,1,edx,SIZEOF_FAST_FLOAT)] movq mm2, MMWORD [MMBLOCK(0,2,edx,SIZEOF_FAST_FLOAT)] movq mm5, MMWORD [MMBLOCK(1,2,edx,SIZEOF_FAST_FLOAT)] ; mm1=(02 03), mm3=(12 13), mm2=(04 05), mm5=(14 15) movq MMWORD [wk(0)], mm4 ; wk(0)=tmp6 movq MMWORD [wk(1)], mm0 ; wk(1)=tmp7 movq mm4, mm1 ; transpose coefficients punpckldq mm1, mm3 ; mm1=(02 12)=data2 punpckhdq mm4, mm3 ; mm4=(03 13)=data3 movq mm0, mm2 ; transpose coefficients punpckldq mm2, mm5 ; mm2=(04 14)=data4 punpckhdq mm0, mm5 ; mm0=(05 15)=data5 movq mm3, mm4 movq mm5, mm1 pfadd mm4, mm2 ; mm4=data3+data4=tmp3 pfadd mm1, mm0 ; mm1=data2+data5=tmp2 pfsub mm3, mm2 ; mm3=data3-data4=tmp4 pfsub mm5, mm0 ; mm5=data2-data5=tmp5 ; -- Even part movq mm2, mm7 movq mm0, mm6 pfsub mm7, mm4 ; mm7=tmp13 pfsub mm6, mm1 ; mm6=tmp12 pfadd mm2, mm4 ; mm2=tmp10 pfadd mm0, mm1 ; mm0=tmp11 pfadd mm6, mm7 pfmul mm6, [GOTOFF(ebx,PD_0_707)] ; mm6=z1 movq mm4, mm2 movq mm1, mm7 pfsub mm2, mm0 ; mm2=data4 pfsub mm7, mm6 ; mm7=data6 pfadd mm4, mm0 ; mm4=data0 pfadd mm1, mm6 ; mm1=data2 movq MMWORD [MMBLOCK(0,2,edx,SIZEOF_FAST_FLOAT)], mm2 movq MMWORD [MMBLOCK(0,3,edx,SIZEOF_FAST_FLOAT)], mm7 movq MMWORD [MMBLOCK(0,0,edx,SIZEOF_FAST_FLOAT)], mm4 movq MMWORD [MMBLOCK(0,1,edx,SIZEOF_FAST_FLOAT)], mm1 ; -- Odd part movq mm0, MMWORD [wk(0)] ; mm0=tmp6 movq mm6, MMWORD [wk(1)] ; mm6=tmp7 pfadd mm3, mm5 ; mm3=tmp10 pfadd mm5, mm0 ; mm5=tmp11 pfadd mm0, mm6 ; mm0=tmp12, mm6=tmp7 pfmul mm5, [GOTOFF(ebx,PD_0_707)] ; mm5=z3 movq mm2, mm3 ; mm2=tmp10 pfsub mm3, mm0 pfmul mm3, [GOTOFF(ebx,PD_0_382)] ; mm3=z5 pfmul mm2, [GOTOFF(ebx,PD_0_541)] ; mm2=MULTIPLY(tmp10,FIX_0_54119610) pfmul mm0, [GOTOFF(ebx,PD_1_306)] ; mm0=MULTIPLY(tmp12,FIX_1_30656296) pfadd mm2, mm3 ; mm2=z2 pfadd mm0, mm3 ; mm0=z4 movq mm7, mm6 pfsub mm6, mm5 ; mm6=z13 pfadd mm7, mm5 ; mm7=z11 movq mm4, mm6 movq mm1, mm7 pfsub mm6, mm2 ; mm6=data3 pfsub mm7, mm0 ; mm7=data7 pfadd mm4, mm2 ; mm4=data5 pfadd mm1, mm0 ; mm1=data1 movq MMWORD [MMBLOCK(1,1,edx,SIZEOF_FAST_FLOAT)], mm6 movq MMWORD [MMBLOCK(1,3,edx,SIZEOF_FAST_FLOAT)], mm7 movq MMWORD [MMBLOCK(1,2,edx,SIZEOF_FAST_FLOAT)], mm4 movq MMWORD [MMBLOCK(1,0,edx,SIZEOF_FAST_FLOAT)], mm1 add edx, byte 2*DCTSIZE*SIZEOF_FAST_FLOAT dec ecx jnz near .rowloop ; ---- Pass 2: process columns. mov edx, POINTER [data(eax)] ; (FAST_FLOAT *) mov ecx, DCTSIZE/2 alignx 16, 7 .columnloop: movq mm0, MMWORD [MMBLOCK(0,0,edx,SIZEOF_FAST_FLOAT)] movq mm1, MMWORD [MMBLOCK(1,0,edx,SIZEOF_FAST_FLOAT)] movq mm2, MMWORD [MMBLOCK(6,0,edx,SIZEOF_FAST_FLOAT)] movq mm3, MMWORD [MMBLOCK(7,0,edx,SIZEOF_FAST_FLOAT)] ; mm0=(00 10), mm1=(01 11), mm2=(60 70), mm3=(61 71) movq mm4, mm0 ; transpose coefficients punpckldq mm0, mm1 ; mm0=(00 01)=data0 punpckhdq mm4, mm1 ; mm4=(10 11)=data1 movq mm5, mm2 ; transpose coefficients punpckldq mm2, mm3 ; mm2=(60 61)=data6 punpckhdq mm5, mm3 ; mm5=(70 71)=data7 movq mm6, mm4 movq mm7, mm0 pfsub mm4, mm2 ; mm4=data1-data6=tmp6 pfsub mm0, mm5 ; mm0=data0-data7=tmp7 pfadd mm6, mm2 ; mm6=data1+data6=tmp1 pfadd mm7, mm5 ; mm7=data0+data7=tmp0 movq mm1, MMWORD [MMBLOCK(2,0,edx,SIZEOF_FAST_FLOAT)] movq mm3, MMWORD [MMBLOCK(3,0,edx,SIZEOF_FAST_FLOAT)] movq mm2, MMWORD [MMBLOCK(4,0,edx,SIZEOF_FAST_FLOAT)] movq mm5, MMWORD [MMBLOCK(5,0,edx,SIZEOF_FAST_FLOAT)] ; mm1=(20 30), mm3=(21 31), mm2=(40 50), mm5=(41 51) movq MMWORD [wk(0)], mm4 ; wk(0)=tmp6 movq MMWORD [wk(1)], mm0 ; wk(1)=tmp7 movq mm4, mm1 ; transpose coefficients punpckldq mm1, mm3 ; mm1=(20 21)=data2 punpckhdq mm4, mm3 ; mm4=(30 31)=data3 movq mm0, mm2 ; transpose coefficients punpckldq mm2, mm5 ; mm2=(40 41)=data4 punpckhdq mm0, mm5 ; mm0=(50 51)=data5 movq mm3, mm4 movq mm5, mm1 pfadd mm4, mm2 ; mm4=data3+data4=tmp3 pfadd mm1, mm0 ; mm1=data2+data5=tmp2 pfsub mm3, mm2 ; mm3=data3-data4=tmp4 pfsub mm5, mm0 ; mm5=data2-data5=tmp5 ; -- Even part movq mm2, mm7 movq mm0, mm6 pfsub mm7, mm4 ; mm7=tmp13 pfsub mm6, mm1 ; mm6=tmp12 pfadd mm2, mm4 ; mm2=tmp10 pfadd mm0, mm1 ; mm0=tmp11 pfadd mm6, mm7 pfmul mm6, [GOTOFF(ebx,PD_0_707)] ; mm6=z1 movq mm4, mm2 movq mm1, mm7 pfsub mm2, mm0 ; mm2=data4 pfsub mm7, mm6 ; mm7=data6 pfadd mm4, mm0 ; mm4=data0 pfadd mm1, mm6 ; mm1=data2 movq MMWORD [MMBLOCK(4,0,edx,SIZEOF_FAST_FLOAT)], mm2 movq MMWORD [MMBLOCK(6,0,edx,SIZEOF_FAST_FLOAT)], mm7 movq MMWORD [MMBLOCK(0,0,edx,SIZEOF_FAST_FLOAT)], mm4 movq MMWORD [MMBLOCK(2,0,edx,SIZEOF_FAST_FLOAT)], mm1 ; -- Odd part movq mm0, MMWORD [wk(0)] ; mm0=tmp6 movq mm6, MMWORD [wk(1)] ; mm6=tmp7 pfadd mm3, mm5 ; mm3=tmp10 pfadd mm5, mm0 ; mm5=tmp11 pfadd mm0, mm6 ; mm0=tmp12, mm6=tmp7 pfmul mm5, [GOTOFF(ebx,PD_0_707)] ; mm5=z3 movq mm2, mm3 ; mm2=tmp10 pfsub mm3, mm0 pfmul mm3, [GOTOFF(ebx,PD_0_382)] ; mm3=z5 pfmul mm2, [GOTOFF(ebx,PD_0_541)] ; mm2=MULTIPLY(tmp10,FIX_0_54119610) pfmul mm0, [GOTOFF(ebx,PD_1_306)] ; mm0=MULTIPLY(tmp12,FIX_1_30656296) pfadd mm2, mm3 ; mm2=z2 pfadd mm0, mm3 ; mm0=z4 movq mm7, mm6 pfsub mm6, mm5 ; mm6=z13 pfadd mm7, mm5 ; mm7=z11 movq mm4, mm6 movq mm1, mm7 pfsub mm6, mm2 ; mm6=data3 pfsub mm7, mm0 ; mm7=data7 pfadd mm4, mm2 ; mm4=data5 pfadd mm1, mm0 ; mm1=data1 movq MMWORD [MMBLOCK(3,0,edx,SIZEOF_FAST_FLOAT)], mm6 movq MMWORD [MMBLOCK(7,0,edx,SIZEOF_FAST_FLOAT)], mm7 movq MMWORD [MMBLOCK(5,0,edx,SIZEOF_FAST_FLOAT)], mm4 movq MMWORD [MMBLOCK(1,0,edx,SIZEOF_FAST_FLOAT)], mm1 add edx, byte 2*SIZEOF_FAST_FLOAT dec ecx jnz near .columnloop femms ; empty MMX/3DNow! state ; pop edi ; unused ; pop esi ; unused ; pop edx ; need not be preserved ; pop ecx ; need not be preserved poppic ebx mov esp, ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/i386/jfdctflt-sse.asm000066400000000000000000000354501436506551100210200ustar00rootroot00000000000000; ; jfdctflt.asm - floating-point FDCT (SSE) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2016, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains a floating-point implementation of the forward DCT ; (Discrete Cosine Transform). The following code is based directly on ; the IJG's original jfdctflt.c; see the jfdctflt.c for more details. %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- %macro unpcklps2 2 ; %1=(0 1 2 3) / %2=(4 5 6 7) => %1=(0 1 4 5) shufps %1, %2, 0x44 %endmacro %macro unpckhps2 2 ; %1=(0 1 2 3) / %2=(4 5 6 7) => %1=(2 3 6 7) shufps %1, %2, 0xEE %endmacro ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 32 GLOBAL_DATA(jconst_fdct_float_sse) EXTN(jconst_fdct_float_sse): PD_0_382 times 4 dd 0.382683432365089771728460 PD_0_707 times 4 dd 0.707106781186547524400844 PD_0_541 times 4 dd 0.541196100146196984399723 PD_1_306 times 4 dd 1.306562964876376527856643 alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Perform the forward DCT on one block of samples. ; ; GLOBAL(void) ; jsimd_fdct_float_sse(FAST_FLOAT *data) ; %define data(b) (b) + 8 ; FAST_FLOAT *data %define original_ebp ebp + 0 %define wk(i) ebp - (WK_NUM - (i)) * SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 2 align 32 GLOBAL_FUNCTION(jsimd_fdct_float_sse) EXTN(jsimd_fdct_float_sse): push ebp mov eax, esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [esp], eax mov ebp, esp ; ebp = aligned ebp lea esp, [wk(0)] pushpic ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved ; push esi ; unused ; push edi ; unused get_GOT ebx ; get GOT address ; ---- Pass 1: process rows. mov edx, POINTER [data(eax)] ; (FAST_FLOAT *) mov ecx, DCTSIZE/4 alignx 16, 7 .rowloop: movaps xmm0, XMMWORD [XMMBLOCK(2,0,edx,SIZEOF_FAST_FLOAT)] movaps xmm1, XMMWORD [XMMBLOCK(3,0,edx,SIZEOF_FAST_FLOAT)] movaps xmm2, XMMWORD [XMMBLOCK(2,1,edx,SIZEOF_FAST_FLOAT)] movaps xmm3, XMMWORD [XMMBLOCK(3,1,edx,SIZEOF_FAST_FLOAT)] ; xmm0=(20 21 22 23), xmm2=(24 25 26 27) ; xmm1=(30 31 32 33), xmm3=(34 35 36 37) movaps xmm4, xmm0 ; transpose coefficients(phase 1) unpcklps xmm0, xmm1 ; xmm0=(20 30 21 31) unpckhps xmm4, xmm1 ; xmm4=(22 32 23 33) movaps xmm5, xmm2 ; transpose coefficients(phase 1) unpcklps xmm2, xmm3 ; xmm2=(24 34 25 35) unpckhps xmm5, xmm3 ; xmm5=(26 36 27 37) movaps xmm6, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_FAST_FLOAT)] movaps xmm7, XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_FAST_FLOAT)] movaps xmm1, XMMWORD [XMMBLOCK(0,1,edx,SIZEOF_FAST_FLOAT)] movaps xmm3, XMMWORD [XMMBLOCK(1,1,edx,SIZEOF_FAST_FLOAT)] ; xmm6=(00 01 02 03), xmm1=(04 05 06 07) ; xmm7=(10 11 12 13), xmm3=(14 15 16 17) movaps XMMWORD [wk(0)], xmm4 ; wk(0)=(22 32 23 33) movaps XMMWORD [wk(1)], xmm2 ; wk(1)=(24 34 25 35) movaps xmm4, xmm6 ; transpose coefficients(phase 1) unpcklps xmm6, xmm7 ; xmm6=(00 10 01 11) unpckhps xmm4, xmm7 ; xmm4=(02 12 03 13) movaps xmm2, xmm1 ; transpose coefficients(phase 1) unpcklps xmm1, xmm3 ; xmm1=(04 14 05 15) unpckhps xmm2, xmm3 ; xmm2=(06 16 07 17) movaps xmm7, xmm6 ; transpose coefficients(phase 2) unpcklps2 xmm6, xmm0 ; xmm6=(00 10 20 30)=data0 unpckhps2 xmm7, xmm0 ; xmm7=(01 11 21 31)=data1 movaps xmm3, xmm2 ; transpose coefficients(phase 2) unpcklps2 xmm2, xmm5 ; xmm2=(06 16 26 36)=data6 unpckhps2 xmm3, xmm5 ; xmm3=(07 17 27 37)=data7 movaps xmm0, xmm7 movaps xmm5, xmm6 subps xmm7, xmm2 ; xmm7=data1-data6=tmp6 subps xmm6, xmm3 ; xmm6=data0-data7=tmp7 addps xmm0, xmm2 ; xmm0=data1+data6=tmp1 addps xmm5, xmm3 ; xmm5=data0+data7=tmp0 movaps xmm2, XMMWORD [wk(0)] ; xmm2=(22 32 23 33) movaps xmm3, XMMWORD [wk(1)] ; xmm3=(24 34 25 35) movaps XMMWORD [wk(0)], xmm7 ; wk(0)=tmp6 movaps XMMWORD [wk(1)], xmm6 ; wk(1)=tmp7 movaps xmm7, xmm4 ; transpose coefficients(phase 2) unpcklps2 xmm4, xmm2 ; xmm4=(02 12 22 32)=data2 unpckhps2 xmm7, xmm2 ; xmm7=(03 13 23 33)=data3 movaps xmm6, xmm1 ; transpose coefficients(phase 2) unpcklps2 xmm1, xmm3 ; xmm1=(04 14 24 34)=data4 unpckhps2 xmm6, xmm3 ; xmm6=(05 15 25 35)=data5 movaps xmm2, xmm7 movaps xmm3, xmm4 addps xmm7, xmm1 ; xmm7=data3+data4=tmp3 addps xmm4, xmm6 ; xmm4=data2+data5=tmp2 subps xmm2, xmm1 ; xmm2=data3-data4=tmp4 subps xmm3, xmm6 ; xmm3=data2-data5=tmp5 ; -- Even part movaps xmm1, xmm5 movaps xmm6, xmm0 subps xmm5, xmm7 ; xmm5=tmp13 subps xmm0, xmm4 ; xmm0=tmp12 addps xmm1, xmm7 ; xmm1=tmp10 addps xmm6, xmm4 ; xmm6=tmp11 addps xmm0, xmm5 mulps xmm0, [GOTOFF(ebx,PD_0_707)] ; xmm0=z1 movaps xmm7, xmm1 movaps xmm4, xmm5 subps xmm1, xmm6 ; xmm1=data4 subps xmm5, xmm0 ; xmm5=data6 addps xmm7, xmm6 ; xmm7=data0 addps xmm4, xmm0 ; xmm4=data2 movaps XMMWORD [XMMBLOCK(0,1,edx,SIZEOF_FAST_FLOAT)], xmm1 movaps XMMWORD [XMMBLOCK(2,1,edx,SIZEOF_FAST_FLOAT)], xmm5 movaps XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_FAST_FLOAT)], xmm7 movaps XMMWORD [XMMBLOCK(2,0,edx,SIZEOF_FAST_FLOAT)], xmm4 ; -- Odd part movaps xmm6, XMMWORD [wk(0)] ; xmm6=tmp6 movaps xmm0, XMMWORD [wk(1)] ; xmm0=tmp7 addps xmm2, xmm3 ; xmm2=tmp10 addps xmm3, xmm6 ; xmm3=tmp11 addps xmm6, xmm0 ; xmm6=tmp12, xmm0=tmp7 mulps xmm3, [GOTOFF(ebx,PD_0_707)] ; xmm3=z3 movaps xmm1, xmm2 ; xmm1=tmp10 subps xmm2, xmm6 mulps xmm2, [GOTOFF(ebx,PD_0_382)] ; xmm2=z5 mulps xmm1, [GOTOFF(ebx,PD_0_541)] ; xmm1=MULTIPLY(tmp10,FIX_0_541196) mulps xmm6, [GOTOFF(ebx,PD_1_306)] ; xmm6=MULTIPLY(tmp12,FIX_1_306562) addps xmm1, xmm2 ; xmm1=z2 addps xmm6, xmm2 ; xmm6=z4 movaps xmm5, xmm0 subps xmm0, xmm3 ; xmm0=z13 addps xmm5, xmm3 ; xmm5=z11 movaps xmm7, xmm0 movaps xmm4, xmm5 subps xmm0, xmm1 ; xmm0=data3 subps xmm5, xmm6 ; xmm5=data7 addps xmm7, xmm1 ; xmm7=data5 addps xmm4, xmm6 ; xmm4=data1 movaps XMMWORD [XMMBLOCK(3,0,edx,SIZEOF_FAST_FLOAT)], xmm0 movaps XMMWORD [XMMBLOCK(3,1,edx,SIZEOF_FAST_FLOAT)], xmm5 movaps XMMWORD [XMMBLOCK(1,1,edx,SIZEOF_FAST_FLOAT)], xmm7 movaps XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_FAST_FLOAT)], xmm4 add edx, 4*DCTSIZE*SIZEOF_FAST_FLOAT dec ecx jnz near .rowloop ; ---- Pass 2: process columns. mov edx, POINTER [data(eax)] ; (FAST_FLOAT *) mov ecx, DCTSIZE/4 alignx 16, 7 .columnloop: movaps xmm0, XMMWORD [XMMBLOCK(2,0,edx,SIZEOF_FAST_FLOAT)] movaps xmm1, XMMWORD [XMMBLOCK(3,0,edx,SIZEOF_FAST_FLOAT)] movaps xmm2, XMMWORD [XMMBLOCK(6,0,edx,SIZEOF_FAST_FLOAT)] movaps xmm3, XMMWORD [XMMBLOCK(7,0,edx,SIZEOF_FAST_FLOAT)] ; xmm0=(02 12 22 32), xmm2=(42 52 62 72) ; xmm1=(03 13 23 33), xmm3=(43 53 63 73) movaps xmm4, xmm0 ; transpose coefficients(phase 1) unpcklps xmm0, xmm1 ; xmm0=(02 03 12 13) unpckhps xmm4, xmm1 ; xmm4=(22 23 32 33) movaps xmm5, xmm2 ; transpose coefficients(phase 1) unpcklps xmm2, xmm3 ; xmm2=(42 43 52 53) unpckhps xmm5, xmm3 ; xmm5=(62 63 72 73) movaps xmm6, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_FAST_FLOAT)] movaps xmm7, XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_FAST_FLOAT)] movaps xmm1, XMMWORD [XMMBLOCK(4,0,edx,SIZEOF_FAST_FLOAT)] movaps xmm3, XMMWORD [XMMBLOCK(5,0,edx,SIZEOF_FAST_FLOAT)] ; xmm6=(00 10 20 30), xmm1=(40 50 60 70) ; xmm7=(01 11 21 31), xmm3=(41 51 61 71) movaps XMMWORD [wk(0)], xmm4 ; wk(0)=(22 23 32 33) movaps XMMWORD [wk(1)], xmm2 ; wk(1)=(42 43 52 53) movaps xmm4, xmm6 ; transpose coefficients(phase 1) unpcklps xmm6, xmm7 ; xmm6=(00 01 10 11) unpckhps xmm4, xmm7 ; xmm4=(20 21 30 31) movaps xmm2, xmm1 ; transpose coefficients(phase 1) unpcklps xmm1, xmm3 ; xmm1=(40 41 50 51) unpckhps xmm2, xmm3 ; xmm2=(60 61 70 71) movaps xmm7, xmm6 ; transpose coefficients(phase 2) unpcklps2 xmm6, xmm0 ; xmm6=(00 01 02 03)=data0 unpckhps2 xmm7, xmm0 ; xmm7=(10 11 12 13)=data1 movaps xmm3, xmm2 ; transpose coefficients(phase 2) unpcklps2 xmm2, xmm5 ; xmm2=(60 61 62 63)=data6 unpckhps2 xmm3, xmm5 ; xmm3=(70 71 72 73)=data7 movaps xmm0, xmm7 movaps xmm5, xmm6 subps xmm7, xmm2 ; xmm7=data1-data6=tmp6 subps xmm6, xmm3 ; xmm6=data0-data7=tmp7 addps xmm0, xmm2 ; xmm0=data1+data6=tmp1 addps xmm5, xmm3 ; xmm5=data0+data7=tmp0 movaps xmm2, XMMWORD [wk(0)] ; xmm2=(22 23 32 33) movaps xmm3, XMMWORD [wk(1)] ; xmm3=(42 43 52 53) movaps XMMWORD [wk(0)], xmm7 ; wk(0)=tmp6 movaps XMMWORD [wk(1)], xmm6 ; wk(1)=tmp7 movaps xmm7, xmm4 ; transpose coefficients(phase 2) unpcklps2 xmm4, xmm2 ; xmm4=(20 21 22 23)=data2 unpckhps2 xmm7, xmm2 ; xmm7=(30 31 32 33)=data3 movaps xmm6, xmm1 ; transpose coefficients(phase 2) unpcklps2 xmm1, xmm3 ; xmm1=(40 41 42 43)=data4 unpckhps2 xmm6, xmm3 ; xmm6=(50 51 52 53)=data5 movaps xmm2, xmm7 movaps xmm3, xmm4 addps xmm7, xmm1 ; xmm7=data3+data4=tmp3 addps xmm4, xmm6 ; xmm4=data2+data5=tmp2 subps xmm2, xmm1 ; xmm2=data3-data4=tmp4 subps xmm3, xmm6 ; xmm3=data2-data5=tmp5 ; -- Even part movaps xmm1, xmm5 movaps xmm6, xmm0 subps xmm5, xmm7 ; xmm5=tmp13 subps xmm0, xmm4 ; xmm0=tmp12 addps xmm1, xmm7 ; xmm1=tmp10 addps xmm6, xmm4 ; xmm6=tmp11 addps xmm0, xmm5 mulps xmm0, [GOTOFF(ebx,PD_0_707)] ; xmm0=z1 movaps xmm7, xmm1 movaps xmm4, xmm5 subps xmm1, xmm6 ; xmm1=data4 subps xmm5, xmm0 ; xmm5=data6 addps xmm7, xmm6 ; xmm7=data0 addps xmm4, xmm0 ; xmm4=data2 movaps XMMWORD [XMMBLOCK(4,0,edx,SIZEOF_FAST_FLOAT)], xmm1 movaps XMMWORD [XMMBLOCK(6,0,edx,SIZEOF_FAST_FLOAT)], xmm5 movaps XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_FAST_FLOAT)], xmm7 movaps XMMWORD [XMMBLOCK(2,0,edx,SIZEOF_FAST_FLOAT)], xmm4 ; -- Odd part movaps xmm6, XMMWORD [wk(0)] ; xmm6=tmp6 movaps xmm0, XMMWORD [wk(1)] ; xmm0=tmp7 addps xmm2, xmm3 ; xmm2=tmp10 addps xmm3, xmm6 ; xmm3=tmp11 addps xmm6, xmm0 ; xmm6=tmp12, xmm0=tmp7 mulps xmm3, [GOTOFF(ebx,PD_0_707)] ; xmm3=z3 movaps xmm1, xmm2 ; xmm1=tmp10 subps xmm2, xmm6 mulps xmm2, [GOTOFF(ebx,PD_0_382)] ; xmm2=z5 mulps xmm1, [GOTOFF(ebx,PD_0_541)] ; xmm1=MULTIPLY(tmp10,FIX_0_541196) mulps xmm6, [GOTOFF(ebx,PD_1_306)] ; xmm6=MULTIPLY(tmp12,FIX_1_306562) addps xmm1, xmm2 ; xmm1=z2 addps xmm6, xmm2 ; xmm6=z4 movaps xmm5, xmm0 subps xmm0, xmm3 ; xmm0=z13 addps xmm5, xmm3 ; xmm5=z11 movaps xmm7, xmm0 movaps xmm4, xmm5 subps xmm0, xmm1 ; xmm0=data3 subps xmm5, xmm6 ; xmm5=data7 addps xmm7, xmm1 ; xmm7=data5 addps xmm4, xmm6 ; xmm4=data1 movaps XMMWORD [XMMBLOCK(3,0,edx,SIZEOF_FAST_FLOAT)], xmm0 movaps XMMWORD [XMMBLOCK(7,0,edx,SIZEOF_FAST_FLOAT)], xmm5 movaps XMMWORD [XMMBLOCK(5,0,edx,SIZEOF_FAST_FLOAT)], xmm7 movaps XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_FAST_FLOAT)], xmm4 add edx, byte 4*SIZEOF_FAST_FLOAT dec ecx jnz near .columnloop ; pop edi ; unused ; pop esi ; unused ; pop edx ; need not be preserved ; pop ecx ; need not be preserved poppic ebx mov esp, ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/i386/jfdctfst-mmx.asm000066400000000000000000000366371436506551100210460ustar00rootroot00000000000000; ; jfdctfst.asm - fast integer FDCT (MMX) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2016, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains a fast, not so accurate integer implementation of ; the forward DCT (Discrete Cosine Transform). The following code is ; based directly on the IJG's original jfdctfst.c; see the jfdctfst.c ; for more details. %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- %define CONST_BITS 8 ; 14 is also OK. %if CONST_BITS == 8 F_0_382 equ 98 ; FIX(0.382683433) F_0_541 equ 139 ; FIX(0.541196100) F_0_707 equ 181 ; FIX(0.707106781) F_1_306 equ 334 ; FIX(1.306562965) %else ; NASM cannot do compile-time arithmetic on floating-point constants. %define DESCALE(x, n) (((x) + (1 << ((n) - 1))) >> (n)) F_0_382 equ DESCALE( 410903207, 30 - CONST_BITS) ; FIX(0.382683433) F_0_541 equ DESCALE( 581104887, 30 - CONST_BITS) ; FIX(0.541196100) F_0_707 equ DESCALE( 759250124, 30 - CONST_BITS) ; FIX(0.707106781) F_1_306 equ DESCALE(1402911301, 30 - CONST_BITS) ; FIX(1.306562965) %endif ; -------------------------------------------------------------------------- SECTION SEG_CONST ; PRE_MULTIPLY_SCALE_BITS <= 2 (to avoid overflow) ; CONST_BITS + CONST_SHIFT + PRE_MULTIPLY_SCALE_BITS == 16 (for pmulhw) %define PRE_MULTIPLY_SCALE_BITS 2 %define CONST_SHIFT (16 - PRE_MULTIPLY_SCALE_BITS - CONST_BITS) alignz 32 GLOBAL_DATA(jconst_fdct_ifast_mmx) EXTN(jconst_fdct_ifast_mmx): PW_F0707 times 4 dw F_0_707 << CONST_SHIFT PW_F0382 times 4 dw F_0_382 << CONST_SHIFT PW_F0541 times 4 dw F_0_541 << CONST_SHIFT PW_F1306 times 4 dw F_1_306 << CONST_SHIFT alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Perform the forward DCT on one block of samples. ; ; GLOBAL(void) ; jsimd_fdct_ifast_mmx(DCTELEM *data) ; %define data(b) (b) + 8 ; DCTELEM *data %define original_ebp ebp + 0 %define wk(i) ebp - (WK_NUM - (i)) * SIZEOF_MMWORD ; mmword wk[WK_NUM] %define WK_NUM 2 align 32 GLOBAL_FUNCTION(jsimd_fdct_ifast_mmx) EXTN(jsimd_fdct_ifast_mmx): push ebp mov eax, esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_MMWORD) ; align to 64 bits mov [esp], eax mov ebp, esp ; ebp = aligned ebp lea esp, [wk(0)] pushpic ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved ; push esi ; unused ; push edi ; unused get_GOT ebx ; get GOT address ; ---- Pass 1: process rows. mov edx, POINTER [data(eax)] ; (DCTELEM *) mov ecx, DCTSIZE/4 alignx 16, 7 .rowloop: movq mm0, MMWORD [MMBLOCK(2,0,edx,SIZEOF_DCTELEM)] movq mm1, MMWORD [MMBLOCK(3,0,edx,SIZEOF_DCTELEM)] movq mm2, MMWORD [MMBLOCK(2,1,edx,SIZEOF_DCTELEM)] movq mm3, MMWORD [MMBLOCK(3,1,edx,SIZEOF_DCTELEM)] ; mm0=(20 21 22 23), mm2=(24 25 26 27) ; mm1=(30 31 32 33), mm3=(34 35 36 37) movq mm4, mm0 ; transpose coefficients(phase 1) punpcklwd mm0, mm1 ; mm0=(20 30 21 31) punpckhwd mm4, mm1 ; mm4=(22 32 23 33) movq mm5, mm2 ; transpose coefficients(phase 1) punpcklwd mm2, mm3 ; mm2=(24 34 25 35) punpckhwd mm5, mm3 ; mm5=(26 36 27 37) movq mm6, MMWORD [MMBLOCK(0,0,edx,SIZEOF_DCTELEM)] movq mm7, MMWORD [MMBLOCK(1,0,edx,SIZEOF_DCTELEM)] movq mm1, MMWORD [MMBLOCK(0,1,edx,SIZEOF_DCTELEM)] movq mm3, MMWORD [MMBLOCK(1,1,edx,SIZEOF_DCTELEM)] ; mm6=(00 01 02 03), mm1=(04 05 06 07) ; mm7=(10 11 12 13), mm3=(14 15 16 17) movq MMWORD [wk(0)], mm4 ; wk(0)=(22 32 23 33) movq MMWORD [wk(1)], mm2 ; wk(1)=(24 34 25 35) movq mm4, mm6 ; transpose coefficients(phase 1) punpcklwd mm6, mm7 ; mm6=(00 10 01 11) punpckhwd mm4, mm7 ; mm4=(02 12 03 13) movq mm2, mm1 ; transpose coefficients(phase 1) punpcklwd mm1, mm3 ; mm1=(04 14 05 15) punpckhwd mm2, mm3 ; mm2=(06 16 07 17) movq mm7, mm6 ; transpose coefficients(phase 2) punpckldq mm6, mm0 ; mm6=(00 10 20 30)=data0 punpckhdq mm7, mm0 ; mm7=(01 11 21 31)=data1 movq mm3, mm2 ; transpose coefficients(phase 2) punpckldq mm2, mm5 ; mm2=(06 16 26 36)=data6 punpckhdq mm3, mm5 ; mm3=(07 17 27 37)=data7 movq mm0, mm7 movq mm5, mm6 psubw mm7, mm2 ; mm7=data1-data6=tmp6 psubw mm6, mm3 ; mm6=data0-data7=tmp7 paddw mm0, mm2 ; mm0=data1+data6=tmp1 paddw mm5, mm3 ; mm5=data0+data7=tmp0 movq mm2, MMWORD [wk(0)] ; mm2=(22 32 23 33) movq mm3, MMWORD [wk(1)] ; mm3=(24 34 25 35) movq MMWORD [wk(0)], mm7 ; wk(0)=tmp6 movq MMWORD [wk(1)], mm6 ; wk(1)=tmp7 movq mm7, mm4 ; transpose coefficients(phase 2) punpckldq mm4, mm2 ; mm4=(02 12 22 32)=data2 punpckhdq mm7, mm2 ; mm7=(03 13 23 33)=data3 movq mm6, mm1 ; transpose coefficients(phase 2) punpckldq mm1, mm3 ; mm1=(04 14 24 34)=data4 punpckhdq mm6, mm3 ; mm6=(05 15 25 35)=data5 movq mm2, mm7 movq mm3, mm4 paddw mm7, mm1 ; mm7=data3+data4=tmp3 paddw mm4, mm6 ; mm4=data2+data5=tmp2 psubw mm2, mm1 ; mm2=data3-data4=tmp4 psubw mm3, mm6 ; mm3=data2-data5=tmp5 ; -- Even part movq mm1, mm5 movq mm6, mm0 psubw mm5, mm7 ; mm5=tmp13 psubw mm0, mm4 ; mm0=tmp12 paddw mm1, mm7 ; mm1=tmp10 paddw mm6, mm4 ; mm6=tmp11 paddw mm0, mm5 psllw mm0, PRE_MULTIPLY_SCALE_BITS pmulhw mm0, [GOTOFF(ebx,PW_F0707)] ; mm0=z1 movq mm7, mm1 movq mm4, mm5 psubw mm1, mm6 ; mm1=data4 psubw mm5, mm0 ; mm5=data6 paddw mm7, mm6 ; mm7=data0 paddw mm4, mm0 ; mm4=data2 movq MMWORD [MMBLOCK(0,1,edx,SIZEOF_DCTELEM)], mm1 movq MMWORD [MMBLOCK(2,1,edx,SIZEOF_DCTELEM)], mm5 movq MMWORD [MMBLOCK(0,0,edx,SIZEOF_DCTELEM)], mm7 movq MMWORD [MMBLOCK(2,0,edx,SIZEOF_DCTELEM)], mm4 ; -- Odd part movq mm6, MMWORD [wk(0)] ; mm6=tmp6 movq mm0, MMWORD [wk(1)] ; mm0=tmp7 paddw mm2, mm3 ; mm2=tmp10 paddw mm3, mm6 ; mm3=tmp11 paddw mm6, mm0 ; mm6=tmp12, mm0=tmp7 psllw mm2, PRE_MULTIPLY_SCALE_BITS psllw mm6, PRE_MULTIPLY_SCALE_BITS psllw mm3, PRE_MULTIPLY_SCALE_BITS pmulhw mm3, [GOTOFF(ebx,PW_F0707)] ; mm3=z3 movq mm1, mm2 ; mm1=tmp10 psubw mm2, mm6 pmulhw mm2, [GOTOFF(ebx,PW_F0382)] ; mm2=z5 pmulhw mm1, [GOTOFF(ebx,PW_F0541)] ; mm1=MULTIPLY(tmp10,FIX_0_54119610) pmulhw mm6, [GOTOFF(ebx,PW_F1306)] ; mm6=MULTIPLY(tmp12,FIX_1_30656296) paddw mm1, mm2 ; mm1=z2 paddw mm6, mm2 ; mm6=z4 movq mm5, mm0 psubw mm0, mm3 ; mm0=z13 paddw mm5, mm3 ; mm5=z11 movq mm7, mm0 movq mm4, mm5 psubw mm0, mm1 ; mm0=data3 psubw mm5, mm6 ; mm5=data7 paddw mm7, mm1 ; mm7=data5 paddw mm4, mm6 ; mm4=data1 movq MMWORD [MMBLOCK(3,0,edx,SIZEOF_DCTELEM)], mm0 movq MMWORD [MMBLOCK(3,1,edx,SIZEOF_DCTELEM)], mm5 movq MMWORD [MMBLOCK(1,1,edx,SIZEOF_DCTELEM)], mm7 movq MMWORD [MMBLOCK(1,0,edx,SIZEOF_DCTELEM)], mm4 add edx, byte 4*DCTSIZE*SIZEOF_DCTELEM dec ecx jnz near .rowloop ; ---- Pass 2: process columns. mov edx, POINTER [data(eax)] ; (DCTELEM *) mov ecx, DCTSIZE/4 alignx 16, 7 .columnloop: movq mm0, MMWORD [MMBLOCK(2,0,edx,SIZEOF_DCTELEM)] movq mm1, MMWORD [MMBLOCK(3,0,edx,SIZEOF_DCTELEM)] movq mm2, MMWORD [MMBLOCK(6,0,edx,SIZEOF_DCTELEM)] movq mm3, MMWORD [MMBLOCK(7,0,edx,SIZEOF_DCTELEM)] ; mm0=(02 12 22 32), mm2=(42 52 62 72) ; mm1=(03 13 23 33), mm3=(43 53 63 73) movq mm4, mm0 ; transpose coefficients(phase 1) punpcklwd mm0, mm1 ; mm0=(02 03 12 13) punpckhwd mm4, mm1 ; mm4=(22 23 32 33) movq mm5, mm2 ; transpose coefficients(phase 1) punpcklwd mm2, mm3 ; mm2=(42 43 52 53) punpckhwd mm5, mm3 ; mm5=(62 63 72 73) movq mm6, MMWORD [MMBLOCK(0,0,edx,SIZEOF_DCTELEM)] movq mm7, MMWORD [MMBLOCK(1,0,edx,SIZEOF_DCTELEM)] movq mm1, MMWORD [MMBLOCK(4,0,edx,SIZEOF_DCTELEM)] movq mm3, MMWORD [MMBLOCK(5,0,edx,SIZEOF_DCTELEM)] ; mm6=(00 10 20 30), mm1=(40 50 60 70) ; mm7=(01 11 21 31), mm3=(41 51 61 71) movq MMWORD [wk(0)], mm4 ; wk(0)=(22 23 32 33) movq MMWORD [wk(1)], mm2 ; wk(1)=(42 43 52 53) movq mm4, mm6 ; transpose coefficients(phase 1) punpcklwd mm6, mm7 ; mm6=(00 01 10 11) punpckhwd mm4, mm7 ; mm4=(20 21 30 31) movq mm2, mm1 ; transpose coefficients(phase 1) punpcklwd mm1, mm3 ; mm1=(40 41 50 51) punpckhwd mm2, mm3 ; mm2=(60 61 70 71) movq mm7, mm6 ; transpose coefficients(phase 2) punpckldq mm6, mm0 ; mm6=(00 01 02 03)=data0 punpckhdq mm7, mm0 ; mm7=(10 11 12 13)=data1 movq mm3, mm2 ; transpose coefficients(phase 2) punpckldq mm2, mm5 ; mm2=(60 61 62 63)=data6 punpckhdq mm3, mm5 ; mm3=(70 71 72 73)=data7 movq mm0, mm7 movq mm5, mm6 psubw mm7, mm2 ; mm7=data1-data6=tmp6 psubw mm6, mm3 ; mm6=data0-data7=tmp7 paddw mm0, mm2 ; mm0=data1+data6=tmp1 paddw mm5, mm3 ; mm5=data0+data7=tmp0 movq mm2, MMWORD [wk(0)] ; mm2=(22 23 32 33) movq mm3, MMWORD [wk(1)] ; mm3=(42 43 52 53) movq MMWORD [wk(0)], mm7 ; wk(0)=tmp6 movq MMWORD [wk(1)], mm6 ; wk(1)=tmp7 movq mm7, mm4 ; transpose coefficients(phase 2) punpckldq mm4, mm2 ; mm4=(20 21 22 23)=data2 punpckhdq mm7, mm2 ; mm7=(30 31 32 33)=data3 movq mm6, mm1 ; transpose coefficients(phase 2) punpckldq mm1, mm3 ; mm1=(40 41 42 43)=data4 punpckhdq mm6, mm3 ; mm6=(50 51 52 53)=data5 movq mm2, mm7 movq mm3, mm4 paddw mm7, mm1 ; mm7=data3+data4=tmp3 paddw mm4, mm6 ; mm4=data2+data5=tmp2 psubw mm2, mm1 ; mm2=data3-data4=tmp4 psubw mm3, mm6 ; mm3=data2-data5=tmp5 ; -- Even part movq mm1, mm5 movq mm6, mm0 psubw mm5, mm7 ; mm5=tmp13 psubw mm0, mm4 ; mm0=tmp12 paddw mm1, mm7 ; mm1=tmp10 paddw mm6, mm4 ; mm6=tmp11 paddw mm0, mm5 psllw mm0, PRE_MULTIPLY_SCALE_BITS pmulhw mm0, [GOTOFF(ebx,PW_F0707)] ; mm0=z1 movq mm7, mm1 movq mm4, mm5 psubw mm1, mm6 ; mm1=data4 psubw mm5, mm0 ; mm5=data6 paddw mm7, mm6 ; mm7=data0 paddw mm4, mm0 ; mm4=data2 movq MMWORD [MMBLOCK(4,0,edx,SIZEOF_DCTELEM)], mm1 movq MMWORD [MMBLOCK(6,0,edx,SIZEOF_DCTELEM)], mm5 movq MMWORD [MMBLOCK(0,0,edx,SIZEOF_DCTELEM)], mm7 movq MMWORD [MMBLOCK(2,0,edx,SIZEOF_DCTELEM)], mm4 ; -- Odd part movq mm6, MMWORD [wk(0)] ; mm6=tmp6 movq mm0, MMWORD [wk(1)] ; mm0=tmp7 paddw mm2, mm3 ; mm2=tmp10 paddw mm3, mm6 ; mm3=tmp11 paddw mm6, mm0 ; mm6=tmp12, mm0=tmp7 psllw mm2, PRE_MULTIPLY_SCALE_BITS psllw mm6, PRE_MULTIPLY_SCALE_BITS psllw mm3, PRE_MULTIPLY_SCALE_BITS pmulhw mm3, [GOTOFF(ebx,PW_F0707)] ; mm3=z3 movq mm1, mm2 ; mm1=tmp10 psubw mm2, mm6 pmulhw mm2, [GOTOFF(ebx,PW_F0382)] ; mm2=z5 pmulhw mm1, [GOTOFF(ebx,PW_F0541)] ; mm1=MULTIPLY(tmp10,FIX_0_54119610) pmulhw mm6, [GOTOFF(ebx,PW_F1306)] ; mm6=MULTIPLY(tmp12,FIX_1_30656296) paddw mm1, mm2 ; mm1=z2 paddw mm6, mm2 ; mm6=z4 movq mm5, mm0 psubw mm0, mm3 ; mm0=z13 paddw mm5, mm3 ; mm5=z11 movq mm7, mm0 movq mm4, mm5 psubw mm0, mm1 ; mm0=data3 psubw mm5, mm6 ; mm5=data7 paddw mm7, mm1 ; mm7=data5 paddw mm4, mm6 ; mm4=data1 movq MMWORD [MMBLOCK(3,0,edx,SIZEOF_DCTELEM)], mm0 movq MMWORD [MMBLOCK(7,0,edx,SIZEOF_DCTELEM)], mm5 movq MMWORD [MMBLOCK(5,0,edx,SIZEOF_DCTELEM)], mm7 movq MMWORD [MMBLOCK(1,0,edx,SIZEOF_DCTELEM)], mm4 add edx, byte 4*SIZEOF_DCTELEM dec ecx jnz near .columnloop emms ; empty MMX state ; pop edi ; unused ; pop esi ; unused ; pop edx ; need not be preserved ; pop ecx ; need not be preserved poppic ebx mov esp, ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/i386/jfdctfst-sse2.asm000066400000000000000000000427441436506551100211150ustar00rootroot00000000000000; ; jfdctfst.asm - fast integer FDCT (SSE2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2016, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains a fast, not so accurate integer implementation of ; the forward DCT (Discrete Cosine Transform). The following code is ; based directly on the IJG's original jfdctfst.c; see the jfdctfst.c ; for more details. %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- %define CONST_BITS 8 ; 14 is also OK. %if CONST_BITS == 8 F_0_382 equ 98 ; FIX(0.382683433) F_0_541 equ 139 ; FIX(0.541196100) F_0_707 equ 181 ; FIX(0.707106781) F_1_306 equ 334 ; FIX(1.306562965) %else ; NASM cannot do compile-time arithmetic on floating-point constants. %define DESCALE(x, n) (((x) + (1 << ((n) - 1))) >> (n)) F_0_382 equ DESCALE( 410903207, 30 - CONST_BITS) ; FIX(0.382683433) F_0_541 equ DESCALE( 581104887, 30 - CONST_BITS) ; FIX(0.541196100) F_0_707 equ DESCALE( 759250124, 30 - CONST_BITS) ; FIX(0.707106781) F_1_306 equ DESCALE(1402911301, 30 - CONST_BITS) ; FIX(1.306562965) %endif ; -------------------------------------------------------------------------- SECTION SEG_CONST ; PRE_MULTIPLY_SCALE_BITS <= 2 (to avoid overflow) ; CONST_BITS + CONST_SHIFT + PRE_MULTIPLY_SCALE_BITS == 16 (for pmulhw) %define PRE_MULTIPLY_SCALE_BITS 2 %define CONST_SHIFT (16 - PRE_MULTIPLY_SCALE_BITS - CONST_BITS) alignz 32 GLOBAL_DATA(jconst_fdct_ifast_sse2) EXTN(jconst_fdct_ifast_sse2): PW_F0707 times 8 dw F_0_707 << CONST_SHIFT PW_F0382 times 8 dw F_0_382 << CONST_SHIFT PW_F0541 times 8 dw F_0_541 << CONST_SHIFT PW_F1306 times 8 dw F_1_306 << CONST_SHIFT alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Perform the forward DCT on one block of samples. ; ; GLOBAL(void) ; jsimd_fdct_ifast_sse2(DCTELEM *data) ; %define data(b) (b) + 8 ; DCTELEM *data %define original_ebp ebp + 0 %define wk(i) ebp - (WK_NUM - (i)) * SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 2 align 32 GLOBAL_FUNCTION(jsimd_fdct_ifast_sse2) EXTN(jsimd_fdct_ifast_sse2): push ebp mov eax, esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [esp], eax mov ebp, esp ; ebp = aligned ebp lea esp, [wk(0)] pushpic ebx ; push ecx ; unused ; push edx ; need not be preserved ; push esi ; unused ; push edi ; unused get_GOT ebx ; get GOT address ; ---- Pass 1: process rows. mov edx, POINTER [data(eax)] ; (DCTELEM *) movdqa xmm0, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_DCTELEM)] movdqa xmm1, XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_DCTELEM)] movdqa xmm2, XMMWORD [XMMBLOCK(2,0,edx,SIZEOF_DCTELEM)] movdqa xmm3, XMMWORD [XMMBLOCK(3,0,edx,SIZEOF_DCTELEM)] ; xmm0=(00 01 02 03 04 05 06 07), xmm2=(20 21 22 23 24 25 26 27) ; xmm1=(10 11 12 13 14 15 16 17), xmm3=(30 31 32 33 34 35 36 37) movdqa xmm4, xmm0 ; transpose coefficients(phase 1) punpcklwd xmm0, xmm1 ; xmm0=(00 10 01 11 02 12 03 13) punpckhwd xmm4, xmm1 ; xmm4=(04 14 05 15 06 16 07 17) movdqa xmm5, xmm2 ; transpose coefficients(phase 1) punpcklwd xmm2, xmm3 ; xmm2=(20 30 21 31 22 32 23 33) punpckhwd xmm5, xmm3 ; xmm5=(24 34 25 35 26 36 27 37) movdqa xmm6, XMMWORD [XMMBLOCK(4,0,edx,SIZEOF_DCTELEM)] movdqa xmm7, XMMWORD [XMMBLOCK(5,0,edx,SIZEOF_DCTELEM)] movdqa xmm1, XMMWORD [XMMBLOCK(6,0,edx,SIZEOF_DCTELEM)] movdqa xmm3, XMMWORD [XMMBLOCK(7,0,edx,SIZEOF_DCTELEM)] ; xmm6=( 4 12 20 28 36 44 52 60), xmm1=( 6 14 22 30 38 46 54 62) ; xmm7=( 5 13 21 29 37 45 53 61), xmm3=( 7 15 23 31 39 47 55 63) movdqa XMMWORD [wk(0)], xmm2 ; wk(0)=(20 30 21 31 22 32 23 33) movdqa XMMWORD [wk(1)], xmm5 ; wk(1)=(24 34 25 35 26 36 27 37) movdqa xmm2, xmm6 ; transpose coefficients(phase 1) punpcklwd xmm6, xmm7 ; xmm6=(40 50 41 51 42 52 43 53) punpckhwd xmm2, xmm7 ; xmm2=(44 54 45 55 46 56 47 57) movdqa xmm5, xmm1 ; transpose coefficients(phase 1) punpcklwd xmm1, xmm3 ; xmm1=(60 70 61 71 62 72 63 73) punpckhwd xmm5, xmm3 ; xmm5=(64 74 65 75 66 76 67 77) movdqa xmm7, xmm6 ; transpose coefficients(phase 2) punpckldq xmm6, xmm1 ; xmm6=(40 50 60 70 41 51 61 71) punpckhdq xmm7, xmm1 ; xmm7=(42 52 62 72 43 53 63 73) movdqa xmm3, xmm2 ; transpose coefficients(phase 2) punpckldq xmm2, xmm5 ; xmm2=(44 54 64 74 45 55 65 75) punpckhdq xmm3, xmm5 ; xmm3=(46 56 66 76 47 57 67 77) movdqa xmm1, XMMWORD [wk(0)] ; xmm1=(20 30 21 31 22 32 23 33) movdqa xmm5, XMMWORD [wk(1)] ; xmm5=(24 34 25 35 26 36 27 37) movdqa XMMWORD [wk(0)], xmm7 ; wk(0)=(42 52 62 72 43 53 63 73) movdqa XMMWORD [wk(1)], xmm2 ; wk(1)=(44 54 64 74 45 55 65 75) movdqa xmm7, xmm0 ; transpose coefficients(phase 2) punpckldq xmm0, xmm1 ; xmm0=(00 10 20 30 01 11 21 31) punpckhdq xmm7, xmm1 ; xmm7=(02 12 22 32 03 13 23 33) movdqa xmm2, xmm4 ; transpose coefficients(phase 2) punpckldq xmm4, xmm5 ; xmm4=(04 14 24 34 05 15 25 35) punpckhdq xmm2, xmm5 ; xmm2=(06 16 26 36 07 17 27 37) movdqa xmm1, xmm0 ; transpose coefficients(phase 3) punpcklqdq xmm0, xmm6 ; xmm0=(00 10 20 30 40 50 60 70)=data0 punpckhqdq xmm1, xmm6 ; xmm1=(01 11 21 31 41 51 61 71)=data1 movdqa xmm5, xmm2 ; transpose coefficients(phase 3) punpcklqdq xmm2, xmm3 ; xmm2=(06 16 26 36 46 56 66 76)=data6 punpckhqdq xmm5, xmm3 ; xmm5=(07 17 27 37 47 57 67 77)=data7 movdqa xmm6, xmm1 movdqa xmm3, xmm0 psubw xmm1, xmm2 ; xmm1=data1-data6=tmp6 psubw xmm0, xmm5 ; xmm0=data0-data7=tmp7 paddw xmm6, xmm2 ; xmm6=data1+data6=tmp1 paddw xmm3, xmm5 ; xmm3=data0+data7=tmp0 movdqa xmm2, XMMWORD [wk(0)] ; xmm2=(42 52 62 72 43 53 63 73) movdqa xmm5, XMMWORD [wk(1)] ; xmm5=(44 54 64 74 45 55 65 75) movdqa XMMWORD [wk(0)], xmm1 ; wk(0)=tmp6 movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=tmp7 movdqa xmm1, xmm7 ; transpose coefficients(phase 3) punpcklqdq xmm7, xmm2 ; xmm7=(02 12 22 32 42 52 62 72)=data2 punpckhqdq xmm1, xmm2 ; xmm1=(03 13 23 33 43 53 63 73)=data3 movdqa xmm0, xmm4 ; transpose coefficients(phase 3) punpcklqdq xmm4, xmm5 ; xmm4=(04 14 24 34 44 54 64 74)=data4 punpckhqdq xmm0, xmm5 ; xmm0=(05 15 25 35 45 55 65 75)=data5 movdqa xmm2, xmm1 movdqa xmm5, xmm7 paddw xmm1, xmm4 ; xmm1=data3+data4=tmp3 paddw xmm7, xmm0 ; xmm7=data2+data5=tmp2 psubw xmm2, xmm4 ; xmm2=data3-data4=tmp4 psubw xmm5, xmm0 ; xmm5=data2-data5=tmp5 ; -- Even part movdqa xmm4, xmm3 movdqa xmm0, xmm6 psubw xmm3, xmm1 ; xmm3=tmp13 psubw xmm6, xmm7 ; xmm6=tmp12 paddw xmm4, xmm1 ; xmm4=tmp10 paddw xmm0, xmm7 ; xmm0=tmp11 paddw xmm6, xmm3 psllw xmm6, PRE_MULTIPLY_SCALE_BITS pmulhw xmm6, [GOTOFF(ebx,PW_F0707)] ; xmm6=z1 movdqa xmm1, xmm4 movdqa xmm7, xmm3 psubw xmm4, xmm0 ; xmm4=data4 psubw xmm3, xmm6 ; xmm3=data6 paddw xmm1, xmm0 ; xmm1=data0 paddw xmm7, xmm6 ; xmm7=data2 movdqa xmm0, XMMWORD [wk(0)] ; xmm0=tmp6 movdqa xmm6, XMMWORD [wk(1)] ; xmm6=tmp7 movdqa XMMWORD [wk(0)], xmm4 ; wk(0)=data4 movdqa XMMWORD [wk(1)], xmm3 ; wk(1)=data6 ; -- Odd part paddw xmm2, xmm5 ; xmm2=tmp10 paddw xmm5, xmm0 ; xmm5=tmp11 paddw xmm0, xmm6 ; xmm0=tmp12, xmm6=tmp7 psllw xmm2, PRE_MULTIPLY_SCALE_BITS psllw xmm0, PRE_MULTIPLY_SCALE_BITS psllw xmm5, PRE_MULTIPLY_SCALE_BITS pmulhw xmm5, [GOTOFF(ebx,PW_F0707)] ; xmm5=z3 movdqa xmm4, xmm2 ; xmm4=tmp10 psubw xmm2, xmm0 pmulhw xmm2, [GOTOFF(ebx,PW_F0382)] ; xmm2=z5 pmulhw xmm4, [GOTOFF(ebx,PW_F0541)] ; xmm4=MULTIPLY(tmp10,FIX_0_541196) pmulhw xmm0, [GOTOFF(ebx,PW_F1306)] ; xmm0=MULTIPLY(tmp12,FIX_1_306562) paddw xmm4, xmm2 ; xmm4=z2 paddw xmm0, xmm2 ; xmm0=z4 movdqa xmm3, xmm6 psubw xmm6, xmm5 ; xmm6=z13 paddw xmm3, xmm5 ; xmm3=z11 movdqa xmm2, xmm6 movdqa xmm5, xmm3 psubw xmm6, xmm4 ; xmm6=data3 psubw xmm3, xmm0 ; xmm3=data7 paddw xmm2, xmm4 ; xmm2=data5 paddw xmm5, xmm0 ; xmm5=data1 ; ---- Pass 2: process columns. ; mov edx, POINTER [data(eax)] ; (DCTELEM *) ; xmm1=(00 10 20 30 40 50 60 70), xmm7=(02 12 22 32 42 52 62 72) ; xmm5=(01 11 21 31 41 51 61 71), xmm6=(03 13 23 33 43 53 63 73) movdqa xmm4, xmm1 ; transpose coefficients(phase 1) punpcklwd xmm1, xmm5 ; xmm1=(00 01 10 11 20 21 30 31) punpckhwd xmm4, xmm5 ; xmm4=(40 41 50 51 60 61 70 71) movdqa xmm0, xmm7 ; transpose coefficients(phase 1) punpcklwd xmm7, xmm6 ; xmm7=(02 03 12 13 22 23 32 33) punpckhwd xmm0, xmm6 ; xmm0=(42 43 52 53 62 63 72 73) movdqa xmm5, XMMWORD [wk(0)] ; xmm5=col4 movdqa xmm6, XMMWORD [wk(1)] ; xmm6=col6 ; xmm5=(04 14 24 34 44 54 64 74), xmm6=(06 16 26 36 46 56 66 76) ; xmm2=(05 15 25 35 45 55 65 75), xmm3=(07 17 27 37 47 57 67 77) movdqa XMMWORD [wk(0)], xmm7 ; wk(0)=(02 03 12 13 22 23 32 33) movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=(42 43 52 53 62 63 72 73) movdqa xmm7, xmm5 ; transpose coefficients(phase 1) punpcklwd xmm5, xmm2 ; xmm5=(04 05 14 15 24 25 34 35) punpckhwd xmm7, xmm2 ; xmm7=(44 45 54 55 64 65 74 75) movdqa xmm0, xmm6 ; transpose coefficients(phase 1) punpcklwd xmm6, xmm3 ; xmm6=(06 07 16 17 26 27 36 37) punpckhwd xmm0, xmm3 ; xmm0=(46 47 56 57 66 67 76 77) movdqa xmm2, xmm5 ; transpose coefficients(phase 2) punpckldq xmm5, xmm6 ; xmm5=(04 05 06 07 14 15 16 17) punpckhdq xmm2, xmm6 ; xmm2=(24 25 26 27 34 35 36 37) movdqa xmm3, xmm7 ; transpose coefficients(phase 2) punpckldq xmm7, xmm0 ; xmm7=(44 45 46 47 54 55 56 57) punpckhdq xmm3, xmm0 ; xmm3=(64 65 66 67 74 75 76 77) movdqa xmm6, XMMWORD [wk(0)] ; xmm6=(02 03 12 13 22 23 32 33) movdqa xmm0, XMMWORD [wk(1)] ; xmm0=(42 43 52 53 62 63 72 73) movdqa XMMWORD [wk(0)], xmm2 ; wk(0)=(24 25 26 27 34 35 36 37) movdqa XMMWORD [wk(1)], xmm7 ; wk(1)=(44 45 46 47 54 55 56 57) movdqa xmm2, xmm1 ; transpose coefficients(phase 2) punpckldq xmm1, xmm6 ; xmm1=(00 01 02 03 10 11 12 13) punpckhdq xmm2, xmm6 ; xmm2=(20 21 22 23 30 31 32 33) movdqa xmm7, xmm4 ; transpose coefficients(phase 2) punpckldq xmm4, xmm0 ; xmm4=(40 41 42 43 50 51 52 53) punpckhdq xmm7, xmm0 ; xmm7=(60 61 62 63 70 71 72 73) movdqa xmm6, xmm1 ; transpose coefficients(phase 3) punpcklqdq xmm1, xmm5 ; xmm1=(00 01 02 03 04 05 06 07)=data0 punpckhqdq xmm6, xmm5 ; xmm6=(10 11 12 13 14 15 16 17)=data1 movdqa xmm0, xmm7 ; transpose coefficients(phase 3) punpcklqdq xmm7, xmm3 ; xmm7=(60 61 62 63 64 65 66 67)=data6 punpckhqdq xmm0, xmm3 ; xmm0=(70 71 72 73 74 75 76 77)=data7 movdqa xmm5, xmm6 movdqa xmm3, xmm1 psubw xmm6, xmm7 ; xmm6=data1-data6=tmp6 psubw xmm1, xmm0 ; xmm1=data0-data7=tmp7 paddw xmm5, xmm7 ; xmm5=data1+data6=tmp1 paddw xmm3, xmm0 ; xmm3=data0+data7=tmp0 movdqa xmm7, XMMWORD [wk(0)] ; xmm7=(24 25 26 27 34 35 36 37) movdqa xmm0, XMMWORD [wk(1)] ; xmm0=(44 45 46 47 54 55 56 57) movdqa XMMWORD [wk(0)], xmm6 ; wk(0)=tmp6 movdqa XMMWORD [wk(1)], xmm1 ; wk(1)=tmp7 movdqa xmm6, xmm2 ; transpose coefficients(phase 3) punpcklqdq xmm2, xmm7 ; xmm2=(20 21 22 23 24 25 26 27)=data2 punpckhqdq xmm6, xmm7 ; xmm6=(30 31 32 33 34 35 36 37)=data3 movdqa xmm1, xmm4 ; transpose coefficients(phase 3) punpcklqdq xmm4, xmm0 ; xmm4=(40 41 42 43 44 45 46 47)=data4 punpckhqdq xmm1, xmm0 ; xmm1=(50 51 52 53 54 55 56 57)=data5 movdqa xmm7, xmm6 movdqa xmm0, xmm2 paddw xmm6, xmm4 ; xmm6=data3+data4=tmp3 paddw xmm2, xmm1 ; xmm2=data2+data5=tmp2 psubw xmm7, xmm4 ; xmm7=data3-data4=tmp4 psubw xmm0, xmm1 ; xmm0=data2-data5=tmp5 ; -- Even part movdqa xmm4, xmm3 movdqa xmm1, xmm5 psubw xmm3, xmm6 ; xmm3=tmp13 psubw xmm5, xmm2 ; xmm5=tmp12 paddw xmm4, xmm6 ; xmm4=tmp10 paddw xmm1, xmm2 ; xmm1=tmp11 paddw xmm5, xmm3 psllw xmm5, PRE_MULTIPLY_SCALE_BITS pmulhw xmm5, [GOTOFF(ebx,PW_F0707)] ; xmm5=z1 movdqa xmm6, xmm4 movdqa xmm2, xmm3 psubw xmm4, xmm1 ; xmm4=data4 psubw xmm3, xmm5 ; xmm3=data6 paddw xmm6, xmm1 ; xmm6=data0 paddw xmm2, xmm5 ; xmm2=data2 movdqa XMMWORD [XMMBLOCK(4,0,edx,SIZEOF_DCTELEM)], xmm4 movdqa XMMWORD [XMMBLOCK(6,0,edx,SIZEOF_DCTELEM)], xmm3 movdqa XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_DCTELEM)], xmm6 movdqa XMMWORD [XMMBLOCK(2,0,edx,SIZEOF_DCTELEM)], xmm2 ; -- Odd part movdqa xmm1, XMMWORD [wk(0)] ; xmm1=tmp6 movdqa xmm5, XMMWORD [wk(1)] ; xmm5=tmp7 paddw xmm7, xmm0 ; xmm7=tmp10 paddw xmm0, xmm1 ; xmm0=tmp11 paddw xmm1, xmm5 ; xmm1=tmp12, xmm5=tmp7 psllw xmm7, PRE_MULTIPLY_SCALE_BITS psllw xmm1, PRE_MULTIPLY_SCALE_BITS psllw xmm0, PRE_MULTIPLY_SCALE_BITS pmulhw xmm0, [GOTOFF(ebx,PW_F0707)] ; xmm0=z3 movdqa xmm4, xmm7 ; xmm4=tmp10 psubw xmm7, xmm1 pmulhw xmm7, [GOTOFF(ebx,PW_F0382)] ; xmm7=z5 pmulhw xmm4, [GOTOFF(ebx,PW_F0541)] ; xmm4=MULTIPLY(tmp10,FIX_0_541196) pmulhw xmm1, [GOTOFF(ebx,PW_F1306)] ; xmm1=MULTIPLY(tmp12,FIX_1_306562) paddw xmm4, xmm7 ; xmm4=z2 paddw xmm1, xmm7 ; xmm1=z4 movdqa xmm3, xmm5 psubw xmm5, xmm0 ; xmm5=z13 paddw xmm3, xmm0 ; xmm3=z11 movdqa xmm6, xmm5 movdqa xmm2, xmm3 psubw xmm5, xmm4 ; xmm5=data3 psubw xmm3, xmm1 ; xmm3=data7 paddw xmm6, xmm4 ; xmm6=data5 paddw xmm2, xmm1 ; xmm2=data1 movdqa XMMWORD [XMMBLOCK(3,0,edx,SIZEOF_DCTELEM)], xmm5 movdqa XMMWORD [XMMBLOCK(7,0,edx,SIZEOF_DCTELEM)], xmm3 movdqa XMMWORD [XMMBLOCK(5,0,edx,SIZEOF_DCTELEM)], xmm6 movdqa XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_DCTELEM)], xmm2 ; pop edi ; unused ; pop esi ; unused ; pop edx ; need not be preserved ; pop ecx ; unused poppic ebx mov esp, ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/i386/jfdctint-avx2.asm000066400000000000000000000313241436506551100211070ustar00rootroot00000000000000; ; jfdctint.asm - accurate integer FDCT (AVX2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2009, 2016, 2018, 2020, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains a slower but more accurate integer implementation of the ; forward DCT (Discrete Cosine Transform). The following code is based ; directly on the IJG's original jfdctint.c; see the jfdctint.c for ; more details. %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- %define CONST_BITS 13 %define PASS1_BITS 2 %define DESCALE_P1 (CONST_BITS - PASS1_BITS) %define DESCALE_P2 (CONST_BITS + PASS1_BITS) %if CONST_BITS == 13 F_0_298 equ 2446 ; FIX(0.298631336) F_0_390 equ 3196 ; FIX(0.390180644) F_0_541 equ 4433 ; FIX(0.541196100) F_0_765 equ 6270 ; FIX(0.765366865) F_0_899 equ 7373 ; FIX(0.899976223) F_1_175 equ 9633 ; FIX(1.175875602) F_1_501 equ 12299 ; FIX(1.501321110) F_1_847 equ 15137 ; FIX(1.847759065) F_1_961 equ 16069 ; FIX(1.961570560) F_2_053 equ 16819 ; FIX(2.053119869) F_2_562 equ 20995 ; FIX(2.562915447) F_3_072 equ 25172 ; FIX(3.072711026) %else ; NASM cannot do compile-time arithmetic on floating-point constants. %define DESCALE(x, n) (((x) + (1 << ((n) - 1))) >> (n)) F_0_298 equ DESCALE( 320652955, 30 - CONST_BITS) ; FIX(0.298631336) F_0_390 equ DESCALE( 418953276, 30 - CONST_BITS) ; FIX(0.390180644) F_0_541 equ DESCALE( 581104887, 30 - CONST_BITS) ; FIX(0.541196100) F_0_765 equ DESCALE( 821806413, 30 - CONST_BITS) ; FIX(0.765366865) F_0_899 equ DESCALE( 966342111, 30 - CONST_BITS) ; FIX(0.899976223) F_1_175 equ DESCALE(1262586813, 30 - CONST_BITS) ; FIX(1.175875602) F_1_501 equ DESCALE(1612031267, 30 - CONST_BITS) ; FIX(1.501321110) F_1_847 equ DESCALE(1984016188, 30 - CONST_BITS) ; FIX(1.847759065) F_1_961 equ DESCALE(2106220350, 30 - CONST_BITS) ; FIX(1.961570560) F_2_053 equ DESCALE(2204520673, 30 - CONST_BITS) ; FIX(2.053119869) F_2_562 equ DESCALE(2751909506, 30 - CONST_BITS) ; FIX(2.562915447) F_3_072 equ DESCALE(3299298341, 30 - CONST_BITS) ; FIX(3.072711026) %endif ; -------------------------------------------------------------------------- ; In-place 8x8x16-bit matrix transpose using AVX2 instructions ; %1-%4: Input/output registers ; %5-%8: Temp registers %macro dotranspose 8 ; %1=(00 01 02 03 04 05 06 07 40 41 42 43 44 45 46 47) ; %2=(10 11 12 13 14 15 16 17 50 51 52 53 54 55 56 57) ; %3=(20 21 22 23 24 25 26 27 60 61 62 63 64 65 66 67) ; %4=(30 31 32 33 34 35 36 37 70 71 72 73 74 75 76 77) vpunpcklwd %5, %1, %2 vpunpckhwd %6, %1, %2 vpunpcklwd %7, %3, %4 vpunpckhwd %8, %3, %4 ; transpose coefficients(phase 1) ; %5=(00 10 01 11 02 12 03 13 40 50 41 51 42 52 43 53) ; %6=(04 14 05 15 06 16 07 17 44 54 45 55 46 56 47 57) ; %7=(20 30 21 31 22 32 23 33 60 70 61 71 62 72 63 73) ; %8=(24 34 25 35 26 36 27 37 64 74 65 75 66 76 67 77) vpunpckldq %1, %5, %7 vpunpckhdq %2, %5, %7 vpunpckldq %3, %6, %8 vpunpckhdq %4, %6, %8 ; transpose coefficients(phase 2) ; %1=(00 10 20 30 01 11 21 31 40 50 60 70 41 51 61 71) ; %2=(02 12 22 32 03 13 23 33 42 52 62 72 43 53 63 73) ; %3=(04 14 24 34 05 15 25 35 44 54 64 74 45 55 65 75) ; %4=(06 16 26 36 07 17 27 37 46 56 66 76 47 57 67 77) vpermq %1, %1, 0x8D vpermq %2, %2, 0x8D vpermq %3, %3, 0xD8 vpermq %4, %4, 0xD8 ; transpose coefficients(phase 3) ; %1=(01 11 21 31 41 51 61 71 00 10 20 30 40 50 60 70) ; %2=(03 13 23 33 43 53 63 73 02 12 22 32 42 52 62 72) ; %3=(04 14 24 34 44 54 64 74 05 15 25 35 45 55 65 75) ; %4=(06 16 26 36 46 56 66 76 07 17 27 37 47 57 67 77) %endmacro ; -------------------------------------------------------------------------- ; In-place 8x8x16-bit accurate integer forward DCT using AVX2 instructions ; %1-%4: Input/output registers ; %5-%8: Temp registers ; %9: Pass (1 or 2) %macro dodct 9 vpsubw %5, %1, %4 ; %5=data1_0-data6_7=tmp6_7 vpaddw %6, %1, %4 ; %6=data1_0+data6_7=tmp1_0 vpaddw %7, %2, %3 ; %7=data3_2+data4_5=tmp3_2 vpsubw %8, %2, %3 ; %8=data3_2-data4_5=tmp4_5 ; -- Even part vperm2i128 %6, %6, %6, 0x01 ; %6=tmp0_1 vpaddw %1, %6, %7 ; %1=tmp0_1+tmp3_2=tmp10_11 vpsubw %6, %6, %7 ; %6=tmp0_1-tmp3_2=tmp13_12 vperm2i128 %7, %1, %1, 0x01 ; %7=tmp11_10 vpsignw %1, %1, [GOTOFF(ebx, PW_1_NEG1)] ; %1=tmp10_neg11 vpaddw %7, %7, %1 ; %7=(tmp10+tmp11)_(tmp10-tmp11) %if %9 == 1 vpsllw %1, %7, PASS1_BITS ; %1=data0_4 %else vpaddw %7, %7, [GOTOFF(ebx, PW_DESCALE_P2X)] vpsraw %1, %7, PASS1_BITS ; %1=data0_4 %endif ; (Original) ; z1 = (tmp12 + tmp13) * 0.541196100; ; data2 = z1 + tmp13 * 0.765366865; ; data6 = z1 + tmp12 * -1.847759065; ; ; (This implementation) ; data2 = tmp13 * (0.541196100 + 0.765366865) + tmp12 * 0.541196100; ; data6 = tmp13 * 0.541196100 + tmp12 * (0.541196100 - 1.847759065); vperm2i128 %7, %6, %6, 0x01 ; %7=tmp12_13 vpunpcklwd %2, %6, %7 vpunpckhwd %6, %6, %7 vpmaddwd %2, %2, [GOTOFF(ebx, PW_F130_F054_MF130_F054)] ; %2=data2_6L vpmaddwd %6, %6, [GOTOFF(ebx, PW_F130_F054_MF130_F054)] ; %6=data2_6H vpaddd %2, %2, [GOTOFF(ebx, PD_DESCALE_P %+ %9)] vpaddd %6, %6, [GOTOFF(ebx, PD_DESCALE_P %+ %9)] vpsrad %2, %2, DESCALE_P %+ %9 vpsrad %6, %6, DESCALE_P %+ %9 vpackssdw %3, %2, %6 ; %6=data2_6 ; -- Odd part vpaddw %7, %8, %5 ; %7=tmp4_5+tmp6_7=z3_4 ; (Original) ; z5 = (z3 + z4) * 1.175875602; ; z3 = z3 * -1.961570560; z4 = z4 * -0.390180644; ; z3 += z5; z4 += z5; ; ; (This implementation) ; z3 = z3 * (1.175875602 - 1.961570560) + z4 * 1.175875602; ; z4 = z3 * 1.175875602 + z4 * (1.175875602 - 0.390180644); vperm2i128 %2, %7, %7, 0x01 ; %2=z4_3 vpunpcklwd %6, %7, %2 vpunpckhwd %7, %7, %2 vpmaddwd %6, %6, [GOTOFF(ebx, PW_MF078_F117_F078_F117)] ; %6=z3_4L vpmaddwd %7, %7, [GOTOFF(ebx, PW_MF078_F117_F078_F117)] ; %7=z3_4H ; (Original) ; z1 = tmp4 + tmp7; z2 = tmp5 + tmp6; ; tmp4 = tmp4 * 0.298631336; tmp5 = tmp5 * 2.053119869; ; tmp6 = tmp6 * 3.072711026; tmp7 = tmp7 * 1.501321110; ; z1 = z1 * -0.899976223; z2 = z2 * -2.562915447; ; data7 = tmp4 + z1 + z3; data5 = tmp5 + z2 + z4; ; data3 = tmp6 + z2 + z3; data1 = tmp7 + z1 + z4; ; ; (This implementation) ; tmp4 = tmp4 * (0.298631336 - 0.899976223) + tmp7 * -0.899976223; ; tmp5 = tmp5 * (2.053119869 - 2.562915447) + tmp6 * -2.562915447; ; tmp6 = tmp5 * -2.562915447 + tmp6 * (3.072711026 - 2.562915447); ; tmp7 = tmp4 * -0.899976223 + tmp7 * (1.501321110 - 0.899976223); ; data7 = tmp4 + z3; data5 = tmp5 + z4; ; data3 = tmp6 + z3; data1 = tmp7 + z4; vperm2i128 %4, %5, %5, 0x01 ; %4=tmp7_6 vpunpcklwd %2, %8, %4 vpunpckhwd %4, %8, %4 vpmaddwd %2, %2, [GOTOFF(ebx, PW_MF060_MF089_MF050_MF256)] ; %2=tmp4_5L vpmaddwd %4, %4, [GOTOFF(ebx, PW_MF060_MF089_MF050_MF256)] ; %4=tmp4_5H vpaddd %2, %2, %6 ; %2=data7_5L vpaddd %4, %4, %7 ; %4=data7_5H vpaddd %2, %2, [GOTOFF(ebx, PD_DESCALE_P %+ %9)] vpaddd %4, %4, [GOTOFF(ebx, PD_DESCALE_P %+ %9)] vpsrad %2, %2, DESCALE_P %+ %9 vpsrad %4, %4, DESCALE_P %+ %9 vpackssdw %4, %2, %4 ; %4=data7_5 vperm2i128 %2, %8, %8, 0x01 ; %2=tmp5_4 vpunpcklwd %8, %5, %2 vpunpckhwd %5, %5, %2 vpmaddwd %8, %8, [GOTOFF(ebx, PW_F050_MF256_F060_MF089)] ; %8=tmp6_7L vpmaddwd %5, %5, [GOTOFF(ebx, PW_F050_MF256_F060_MF089)] ; %5=tmp6_7H vpaddd %8, %8, %6 ; %8=data3_1L vpaddd %5, %5, %7 ; %5=data3_1H vpaddd %8, %8, [GOTOFF(ebx, PD_DESCALE_P %+ %9)] vpaddd %5, %5, [GOTOFF(ebx, PD_DESCALE_P %+ %9)] vpsrad %8, %8, DESCALE_P %+ %9 vpsrad %5, %5, DESCALE_P %+ %9 vpackssdw %2, %8, %5 ; %2=data3_1 %endmacro ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 32 GLOBAL_DATA(jconst_fdct_islow_avx2) EXTN(jconst_fdct_islow_avx2): PW_F130_F054_MF130_F054 times 4 dw (F_0_541 + F_0_765), F_0_541 times 4 dw (F_0_541 - F_1_847), F_0_541 PW_MF078_F117_F078_F117 times 4 dw (F_1_175 - F_1_961), F_1_175 times 4 dw (F_1_175 - F_0_390), F_1_175 PW_MF060_MF089_MF050_MF256 times 4 dw (F_0_298 - F_0_899), -F_0_899 times 4 dw (F_2_053 - F_2_562), -F_2_562 PW_F050_MF256_F060_MF089 times 4 dw (F_3_072 - F_2_562), -F_2_562 times 4 dw (F_1_501 - F_0_899), -F_0_899 PD_DESCALE_P1 times 8 dd 1 << (DESCALE_P1 - 1) PD_DESCALE_P2 times 8 dd 1 << (DESCALE_P2 - 1) PW_DESCALE_P2X times 16 dw 1 << (PASS1_BITS - 1) PW_1_NEG1 times 8 dw 1 times 8 dw -1 alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Perform the forward DCT on one block of samples. ; ; GLOBAL(void) ; jsimd_fdct_islow_avx2(DCTELEM *data) ; %define data(b) (b) + 8 ; DCTELEM *data align 32 GLOBAL_FUNCTION(jsimd_fdct_islow_avx2) EXTN(jsimd_fdct_islow_avx2): push ebp mov ebp, esp pushpic ebx ; push ecx ; unused ; push edx ; need not be preserved ; push esi ; unused ; push edi ; unused get_GOT ebx ; get GOT address ; ---- Pass 1: process rows. mov edx, POINTER [data(ebp)] ; (DCTELEM *) vmovdqu ymm4, YMMWORD [YMMBLOCK(0,0,edx,SIZEOF_DCTELEM)] vmovdqu ymm5, YMMWORD [YMMBLOCK(2,0,edx,SIZEOF_DCTELEM)] vmovdqu ymm6, YMMWORD [YMMBLOCK(4,0,edx,SIZEOF_DCTELEM)] vmovdqu ymm7, YMMWORD [YMMBLOCK(6,0,edx,SIZEOF_DCTELEM)] ; ymm4=(00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17) ; ymm5=(20 21 22 23 24 25 26 27 30 31 32 33 34 35 36 37) ; ymm6=(40 41 42 43 44 45 46 47 50 51 52 53 54 55 56 57) ; ymm7=(60 61 62 63 64 65 66 67 70 71 72 73 74 75 76 77) vperm2i128 ymm0, ymm4, ymm6, 0x20 vperm2i128 ymm1, ymm4, ymm6, 0x31 vperm2i128 ymm2, ymm5, ymm7, 0x20 vperm2i128 ymm3, ymm5, ymm7, 0x31 ; ymm0=(00 01 02 03 04 05 06 07 40 41 42 43 44 45 46 47) ; ymm1=(10 11 12 13 14 15 16 17 50 51 52 53 54 55 56 57) ; ymm2=(20 21 22 23 24 25 26 27 60 61 62 63 64 65 66 67) ; ymm3=(30 31 32 33 34 35 36 37 70 71 72 73 74 75 76 77) dotranspose ymm0, ymm1, ymm2, ymm3, ymm4, ymm5, ymm6, ymm7 dodct ymm0, ymm1, ymm2, ymm3, ymm4, ymm5, ymm6, ymm7, 1 ; ymm0=data0_4, ymm1=data3_1, ymm2=data2_6, ymm3=data7_5 ; ---- Pass 2: process columns. vperm2i128 ymm4, ymm1, ymm3, 0x20 ; ymm4=data3_7 vperm2i128 ymm1, ymm1, ymm3, 0x31 ; ymm1=data1_5 dotranspose ymm0, ymm1, ymm2, ymm4, ymm3, ymm5, ymm6, ymm7 dodct ymm0, ymm1, ymm2, ymm4, ymm3, ymm5, ymm6, ymm7, 2 ; ymm0=data0_4, ymm1=data3_1, ymm2=data2_6, ymm4=data7_5 vperm2i128 ymm3, ymm0, ymm1, 0x30 ; ymm3=data0_1 vperm2i128 ymm5, ymm2, ymm1, 0x20 ; ymm5=data2_3 vperm2i128 ymm6, ymm0, ymm4, 0x31 ; ymm6=data4_5 vperm2i128 ymm7, ymm2, ymm4, 0x21 ; ymm7=data6_7 vmovdqu YMMWORD [YMMBLOCK(0,0,edx,SIZEOF_DCTELEM)], ymm3 vmovdqu YMMWORD [YMMBLOCK(2,0,edx,SIZEOF_DCTELEM)], ymm5 vmovdqu YMMWORD [YMMBLOCK(4,0,edx,SIZEOF_DCTELEM)], ymm6 vmovdqu YMMWORD [YMMBLOCK(6,0,edx,SIZEOF_DCTELEM)], ymm7 vzeroupper ; pop edi ; unused ; pop esi ; unused ; pop edx ; need not be preserved ; pop ecx ; unused poppic ebx pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/i386/jfdctint-mmx.asm000066400000000000000000000577711436506551100210460ustar00rootroot00000000000000; ; jfdctint.asm - accurate integer FDCT (MMX) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2016, 2020, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains a slower but more accurate integer implementation of the ; forward DCT (Discrete Cosine Transform). The following code is based ; directly on the IJG's original jfdctint.c; see the jfdctint.c for ; more details. %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- %define CONST_BITS 13 %define PASS1_BITS 2 %define DESCALE_P1 (CONST_BITS - PASS1_BITS) %define DESCALE_P2 (CONST_BITS + PASS1_BITS) %if CONST_BITS == 13 F_0_298 equ 2446 ; FIX(0.298631336) F_0_390 equ 3196 ; FIX(0.390180644) F_0_541 equ 4433 ; FIX(0.541196100) F_0_765 equ 6270 ; FIX(0.765366865) F_0_899 equ 7373 ; FIX(0.899976223) F_1_175 equ 9633 ; FIX(1.175875602) F_1_501 equ 12299 ; FIX(1.501321110) F_1_847 equ 15137 ; FIX(1.847759065) F_1_961 equ 16069 ; FIX(1.961570560) F_2_053 equ 16819 ; FIX(2.053119869) F_2_562 equ 20995 ; FIX(2.562915447) F_3_072 equ 25172 ; FIX(3.072711026) %else ; NASM cannot do compile-time arithmetic on floating-point constants. %define DESCALE(x, n) (((x) + (1 << ((n) - 1))) >> (n)) F_0_298 equ DESCALE( 320652955, 30 - CONST_BITS) ; FIX(0.298631336) F_0_390 equ DESCALE( 418953276, 30 - CONST_BITS) ; FIX(0.390180644) F_0_541 equ DESCALE( 581104887, 30 - CONST_BITS) ; FIX(0.541196100) F_0_765 equ DESCALE( 821806413, 30 - CONST_BITS) ; FIX(0.765366865) F_0_899 equ DESCALE( 966342111, 30 - CONST_BITS) ; FIX(0.899976223) F_1_175 equ DESCALE(1262586813, 30 - CONST_BITS) ; FIX(1.175875602) F_1_501 equ DESCALE(1612031267, 30 - CONST_BITS) ; FIX(1.501321110) F_1_847 equ DESCALE(1984016188, 30 - CONST_BITS) ; FIX(1.847759065) F_1_961 equ DESCALE(2106220350, 30 - CONST_BITS) ; FIX(1.961570560) F_2_053 equ DESCALE(2204520673, 30 - CONST_BITS) ; FIX(2.053119869) F_2_562 equ DESCALE(2751909506, 30 - CONST_BITS) ; FIX(2.562915447) F_3_072 equ DESCALE(3299298341, 30 - CONST_BITS) ; FIX(3.072711026) %endif ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 32 GLOBAL_DATA(jconst_fdct_islow_mmx) EXTN(jconst_fdct_islow_mmx): PW_F130_F054 times 2 dw (F_0_541 + F_0_765), F_0_541 PW_F054_MF130 times 2 dw F_0_541, (F_0_541 - F_1_847) PW_MF078_F117 times 2 dw (F_1_175 - F_1_961), F_1_175 PW_F117_F078 times 2 dw F_1_175, (F_1_175 - F_0_390) PW_MF060_MF089 times 2 dw (F_0_298 - F_0_899), -F_0_899 PW_MF089_F060 times 2 dw -F_0_899, (F_1_501 - F_0_899) PW_MF050_MF256 times 2 dw (F_2_053 - F_2_562), -F_2_562 PW_MF256_F050 times 2 dw -F_2_562, (F_3_072 - F_2_562) PD_DESCALE_P1 times 2 dd 1 << (DESCALE_P1 - 1) PD_DESCALE_P2 times 2 dd 1 << (DESCALE_P2 - 1) PW_DESCALE_P2X times 4 dw 1 << (PASS1_BITS - 1) alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Perform the forward DCT on one block of samples. ; ; GLOBAL(void) ; jsimd_fdct_islow_mmx(DCTELEM *data) ; %define data(b) (b) + 8 ; DCTELEM *data %define original_ebp ebp + 0 %define wk(i) ebp - (WK_NUM - (i)) * SIZEOF_MMWORD ; mmword wk[WK_NUM] %define WK_NUM 2 align 32 GLOBAL_FUNCTION(jsimd_fdct_islow_mmx) EXTN(jsimd_fdct_islow_mmx): push ebp mov eax, esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_MMWORD) ; align to 64 bits mov [esp], eax mov ebp, esp ; ebp = aligned ebp lea esp, [wk(0)] pushpic ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved ; push esi ; unused ; push edi ; unused get_GOT ebx ; get GOT address ; ---- Pass 1: process rows. mov edx, POINTER [data(eax)] ; (DCTELEM *) mov ecx, DCTSIZE/4 alignx 16, 7 .rowloop: movq mm0, MMWORD [MMBLOCK(2,0,edx,SIZEOF_DCTELEM)] movq mm1, MMWORD [MMBLOCK(3,0,edx,SIZEOF_DCTELEM)] movq mm2, MMWORD [MMBLOCK(2,1,edx,SIZEOF_DCTELEM)] movq mm3, MMWORD [MMBLOCK(3,1,edx,SIZEOF_DCTELEM)] ; mm0=(20 21 22 23), mm2=(24 25 26 27) ; mm1=(30 31 32 33), mm3=(34 35 36 37) movq mm4, mm0 ; transpose coefficients(phase 1) punpcklwd mm0, mm1 ; mm0=(20 30 21 31) punpckhwd mm4, mm1 ; mm4=(22 32 23 33) movq mm5, mm2 ; transpose coefficients(phase 1) punpcklwd mm2, mm3 ; mm2=(24 34 25 35) punpckhwd mm5, mm3 ; mm5=(26 36 27 37) movq mm6, MMWORD [MMBLOCK(0,0,edx,SIZEOF_DCTELEM)] movq mm7, MMWORD [MMBLOCK(1,0,edx,SIZEOF_DCTELEM)] movq mm1, MMWORD [MMBLOCK(0,1,edx,SIZEOF_DCTELEM)] movq mm3, MMWORD [MMBLOCK(1,1,edx,SIZEOF_DCTELEM)] ; mm6=(00 01 02 03), mm1=(04 05 06 07) ; mm7=(10 11 12 13), mm3=(14 15 16 17) movq MMWORD [wk(0)], mm4 ; wk(0)=(22 32 23 33) movq MMWORD [wk(1)], mm2 ; wk(1)=(24 34 25 35) movq mm4, mm6 ; transpose coefficients(phase 1) punpcklwd mm6, mm7 ; mm6=(00 10 01 11) punpckhwd mm4, mm7 ; mm4=(02 12 03 13) movq mm2, mm1 ; transpose coefficients(phase 1) punpcklwd mm1, mm3 ; mm1=(04 14 05 15) punpckhwd mm2, mm3 ; mm2=(06 16 07 17) movq mm7, mm6 ; transpose coefficients(phase 2) punpckldq mm6, mm0 ; mm6=(00 10 20 30)=data0 punpckhdq mm7, mm0 ; mm7=(01 11 21 31)=data1 movq mm3, mm2 ; transpose coefficients(phase 2) punpckldq mm2, mm5 ; mm2=(06 16 26 36)=data6 punpckhdq mm3, mm5 ; mm3=(07 17 27 37)=data7 movq mm0, mm7 movq mm5, mm6 psubw mm7, mm2 ; mm7=data1-data6=tmp6 psubw mm6, mm3 ; mm6=data0-data7=tmp7 paddw mm0, mm2 ; mm0=data1+data6=tmp1 paddw mm5, mm3 ; mm5=data0+data7=tmp0 movq mm2, MMWORD [wk(0)] ; mm2=(22 32 23 33) movq mm3, MMWORD [wk(1)] ; mm3=(24 34 25 35) movq MMWORD [wk(0)], mm7 ; wk(0)=tmp6 movq MMWORD [wk(1)], mm6 ; wk(1)=tmp7 movq mm7, mm4 ; transpose coefficients(phase 2) punpckldq mm4, mm2 ; mm4=(02 12 22 32)=data2 punpckhdq mm7, mm2 ; mm7=(03 13 23 33)=data3 movq mm6, mm1 ; transpose coefficients(phase 2) punpckldq mm1, mm3 ; mm1=(04 14 24 34)=data4 punpckhdq mm6, mm3 ; mm6=(05 15 25 35)=data5 movq mm2, mm7 movq mm3, mm4 paddw mm7, mm1 ; mm7=data3+data4=tmp3 paddw mm4, mm6 ; mm4=data2+data5=tmp2 psubw mm2, mm1 ; mm2=data3-data4=tmp4 psubw mm3, mm6 ; mm3=data2-data5=tmp5 ; -- Even part movq mm1, mm5 movq mm6, mm0 paddw mm5, mm7 ; mm5=tmp10 paddw mm0, mm4 ; mm0=tmp11 psubw mm1, mm7 ; mm1=tmp13 psubw mm6, mm4 ; mm6=tmp12 movq mm7, mm5 paddw mm5, mm0 ; mm5=tmp10+tmp11 psubw mm7, mm0 ; mm7=tmp10-tmp11 psllw mm5, PASS1_BITS ; mm5=data0 psllw mm7, PASS1_BITS ; mm7=data4 movq MMWORD [MMBLOCK(0,0,edx,SIZEOF_DCTELEM)], mm5 movq MMWORD [MMBLOCK(0,1,edx,SIZEOF_DCTELEM)], mm7 ; (Original) ; z1 = (tmp12 + tmp13) * 0.541196100; ; data2 = z1 + tmp13 * 0.765366865; ; data6 = z1 + tmp12 * -1.847759065; ; ; (This implementation) ; data2 = tmp13 * (0.541196100 + 0.765366865) + tmp12 * 0.541196100; ; data6 = tmp13 * 0.541196100 + tmp12 * (0.541196100 - 1.847759065); movq mm4, mm1 ; mm1=tmp13 movq mm0, mm1 punpcklwd mm4, mm6 ; mm6=tmp12 punpckhwd mm0, mm6 movq mm1, mm4 movq mm6, mm0 pmaddwd mm4, [GOTOFF(ebx,PW_F130_F054)] ; mm4=data2L pmaddwd mm0, [GOTOFF(ebx,PW_F130_F054)] ; mm0=data2H pmaddwd mm1, [GOTOFF(ebx,PW_F054_MF130)] ; mm1=data6L pmaddwd mm6, [GOTOFF(ebx,PW_F054_MF130)] ; mm6=data6H paddd mm4, [GOTOFF(ebx,PD_DESCALE_P1)] paddd mm0, [GOTOFF(ebx,PD_DESCALE_P1)] psrad mm4, DESCALE_P1 psrad mm0, DESCALE_P1 paddd mm1, [GOTOFF(ebx,PD_DESCALE_P1)] paddd mm6, [GOTOFF(ebx,PD_DESCALE_P1)] psrad mm1, DESCALE_P1 psrad mm6, DESCALE_P1 packssdw mm4, mm0 ; mm4=data2 packssdw mm1, mm6 ; mm1=data6 movq MMWORD [MMBLOCK(2,0,edx,SIZEOF_DCTELEM)], mm4 movq MMWORD [MMBLOCK(2,1,edx,SIZEOF_DCTELEM)], mm1 ; -- Odd part movq mm5, MMWORD [wk(0)] ; mm5=tmp6 movq mm7, MMWORD [wk(1)] ; mm7=tmp7 movq mm0, mm2 ; mm2=tmp4 movq mm6, mm3 ; mm3=tmp5 paddw mm0, mm5 ; mm0=z3 paddw mm6, mm7 ; mm6=z4 ; (Original) ; z5 = (z3 + z4) * 1.175875602; ; z3 = z3 * -1.961570560; z4 = z4 * -0.390180644; ; z3 += z5; z4 += z5; ; ; (This implementation) ; z3 = z3 * (1.175875602 - 1.961570560) + z4 * 1.175875602; ; z4 = z3 * 1.175875602 + z4 * (1.175875602 - 0.390180644); movq mm4, mm0 movq mm1, mm0 punpcklwd mm4, mm6 punpckhwd mm1, mm6 movq mm0, mm4 movq mm6, mm1 pmaddwd mm4, [GOTOFF(ebx,PW_MF078_F117)] ; mm4=z3L pmaddwd mm1, [GOTOFF(ebx,PW_MF078_F117)] ; mm1=z3H pmaddwd mm0, [GOTOFF(ebx,PW_F117_F078)] ; mm0=z4L pmaddwd mm6, [GOTOFF(ebx,PW_F117_F078)] ; mm6=z4H movq MMWORD [wk(0)], mm4 ; wk(0)=z3L movq MMWORD [wk(1)], mm1 ; wk(1)=z3H ; (Original) ; z1 = tmp4 + tmp7; z2 = tmp5 + tmp6; ; tmp4 = tmp4 * 0.298631336; tmp5 = tmp5 * 2.053119869; ; tmp6 = tmp6 * 3.072711026; tmp7 = tmp7 * 1.501321110; ; z1 = z1 * -0.899976223; z2 = z2 * -2.562915447; ; data7 = tmp4 + z1 + z3; data5 = tmp5 + z2 + z4; ; data3 = tmp6 + z2 + z3; data1 = tmp7 + z1 + z4; ; ; (This implementation) ; tmp4 = tmp4 * (0.298631336 - 0.899976223) + tmp7 * -0.899976223; ; tmp5 = tmp5 * (2.053119869 - 2.562915447) + tmp6 * -2.562915447; ; tmp6 = tmp5 * -2.562915447 + tmp6 * (3.072711026 - 2.562915447); ; tmp7 = tmp4 * -0.899976223 + tmp7 * (1.501321110 - 0.899976223); ; data7 = tmp4 + z3; data5 = tmp5 + z4; ; data3 = tmp6 + z3; data1 = tmp7 + z4; movq mm4, mm2 movq mm1, mm2 punpcklwd mm4, mm7 punpckhwd mm1, mm7 movq mm2, mm4 movq mm7, mm1 pmaddwd mm4, [GOTOFF(ebx,PW_MF060_MF089)] ; mm4=tmp4L pmaddwd mm1, [GOTOFF(ebx,PW_MF060_MF089)] ; mm1=tmp4H pmaddwd mm2, [GOTOFF(ebx,PW_MF089_F060)] ; mm2=tmp7L pmaddwd mm7, [GOTOFF(ebx,PW_MF089_F060)] ; mm7=tmp7H paddd mm4, MMWORD [wk(0)] ; mm4=data7L paddd mm1, MMWORD [wk(1)] ; mm1=data7H paddd mm2, mm0 ; mm2=data1L paddd mm7, mm6 ; mm7=data1H paddd mm4, [GOTOFF(ebx,PD_DESCALE_P1)] paddd mm1, [GOTOFF(ebx,PD_DESCALE_P1)] psrad mm4, DESCALE_P1 psrad mm1, DESCALE_P1 paddd mm2, [GOTOFF(ebx,PD_DESCALE_P1)] paddd mm7, [GOTOFF(ebx,PD_DESCALE_P1)] psrad mm2, DESCALE_P1 psrad mm7, DESCALE_P1 packssdw mm4, mm1 ; mm4=data7 packssdw mm2, mm7 ; mm2=data1 movq MMWORD [MMBLOCK(3,1,edx,SIZEOF_DCTELEM)], mm4 movq MMWORD [MMBLOCK(1,0,edx,SIZEOF_DCTELEM)], mm2 movq mm1, mm3 movq mm7, mm3 punpcklwd mm1, mm5 punpckhwd mm7, mm5 movq mm3, mm1 movq mm5, mm7 pmaddwd mm1, [GOTOFF(ebx,PW_MF050_MF256)] ; mm1=tmp5L pmaddwd mm7, [GOTOFF(ebx,PW_MF050_MF256)] ; mm7=tmp5H pmaddwd mm3, [GOTOFF(ebx,PW_MF256_F050)] ; mm3=tmp6L pmaddwd mm5, [GOTOFF(ebx,PW_MF256_F050)] ; mm5=tmp6H paddd mm1, mm0 ; mm1=data5L paddd mm7, mm6 ; mm7=data5H paddd mm3, MMWORD [wk(0)] ; mm3=data3L paddd mm5, MMWORD [wk(1)] ; mm5=data3H paddd mm1, [GOTOFF(ebx,PD_DESCALE_P1)] paddd mm7, [GOTOFF(ebx,PD_DESCALE_P1)] psrad mm1, DESCALE_P1 psrad mm7, DESCALE_P1 paddd mm3, [GOTOFF(ebx,PD_DESCALE_P1)] paddd mm5, [GOTOFF(ebx,PD_DESCALE_P1)] psrad mm3, DESCALE_P1 psrad mm5, DESCALE_P1 packssdw mm1, mm7 ; mm1=data5 packssdw mm3, mm5 ; mm3=data3 movq MMWORD [MMBLOCK(1,1,edx,SIZEOF_DCTELEM)], mm1 movq MMWORD [MMBLOCK(3,0,edx,SIZEOF_DCTELEM)], mm3 add edx, byte 4*DCTSIZE*SIZEOF_DCTELEM dec ecx jnz near .rowloop ; ---- Pass 2: process columns. mov edx, POINTER [data(eax)] ; (DCTELEM *) mov ecx, DCTSIZE/4 alignx 16, 7 .columnloop: movq mm0, MMWORD [MMBLOCK(2,0,edx,SIZEOF_DCTELEM)] movq mm1, MMWORD [MMBLOCK(3,0,edx,SIZEOF_DCTELEM)] movq mm2, MMWORD [MMBLOCK(6,0,edx,SIZEOF_DCTELEM)] movq mm3, MMWORD [MMBLOCK(7,0,edx,SIZEOF_DCTELEM)] ; mm0=(02 12 22 32), mm2=(42 52 62 72) ; mm1=(03 13 23 33), mm3=(43 53 63 73) movq mm4, mm0 ; transpose coefficients(phase 1) punpcklwd mm0, mm1 ; mm0=(02 03 12 13) punpckhwd mm4, mm1 ; mm4=(22 23 32 33) movq mm5, mm2 ; transpose coefficients(phase 1) punpcklwd mm2, mm3 ; mm2=(42 43 52 53) punpckhwd mm5, mm3 ; mm5=(62 63 72 73) movq mm6, MMWORD [MMBLOCK(0,0,edx,SIZEOF_DCTELEM)] movq mm7, MMWORD [MMBLOCK(1,0,edx,SIZEOF_DCTELEM)] movq mm1, MMWORD [MMBLOCK(4,0,edx,SIZEOF_DCTELEM)] movq mm3, MMWORD [MMBLOCK(5,0,edx,SIZEOF_DCTELEM)] ; mm6=(00 10 20 30), mm1=(40 50 60 70) ; mm7=(01 11 21 31), mm3=(41 51 61 71) movq MMWORD [wk(0)], mm4 ; wk(0)=(22 23 32 33) movq MMWORD [wk(1)], mm2 ; wk(1)=(42 43 52 53) movq mm4, mm6 ; transpose coefficients(phase 1) punpcklwd mm6, mm7 ; mm6=(00 01 10 11) punpckhwd mm4, mm7 ; mm4=(20 21 30 31) movq mm2, mm1 ; transpose coefficients(phase 1) punpcklwd mm1, mm3 ; mm1=(40 41 50 51) punpckhwd mm2, mm3 ; mm2=(60 61 70 71) movq mm7, mm6 ; transpose coefficients(phase 2) punpckldq mm6, mm0 ; mm6=(00 01 02 03)=data0 punpckhdq mm7, mm0 ; mm7=(10 11 12 13)=data1 movq mm3, mm2 ; transpose coefficients(phase 2) punpckldq mm2, mm5 ; mm2=(60 61 62 63)=data6 punpckhdq mm3, mm5 ; mm3=(70 71 72 73)=data7 movq mm0, mm7 movq mm5, mm6 psubw mm7, mm2 ; mm7=data1-data6=tmp6 psubw mm6, mm3 ; mm6=data0-data7=tmp7 paddw mm0, mm2 ; mm0=data1+data6=tmp1 paddw mm5, mm3 ; mm5=data0+data7=tmp0 movq mm2, MMWORD [wk(0)] ; mm2=(22 23 32 33) movq mm3, MMWORD [wk(1)] ; mm3=(42 43 52 53) movq MMWORD [wk(0)], mm7 ; wk(0)=tmp6 movq MMWORD [wk(1)], mm6 ; wk(1)=tmp7 movq mm7, mm4 ; transpose coefficients(phase 2) punpckldq mm4, mm2 ; mm4=(20 21 22 23)=data2 punpckhdq mm7, mm2 ; mm7=(30 31 32 33)=data3 movq mm6, mm1 ; transpose coefficients(phase 2) punpckldq mm1, mm3 ; mm1=(40 41 42 43)=data4 punpckhdq mm6, mm3 ; mm6=(50 51 52 53)=data5 movq mm2, mm7 movq mm3, mm4 paddw mm7, mm1 ; mm7=data3+data4=tmp3 paddw mm4, mm6 ; mm4=data2+data5=tmp2 psubw mm2, mm1 ; mm2=data3-data4=tmp4 psubw mm3, mm6 ; mm3=data2-data5=tmp5 ; -- Even part movq mm1, mm5 movq mm6, mm0 paddw mm5, mm7 ; mm5=tmp10 paddw mm0, mm4 ; mm0=tmp11 psubw mm1, mm7 ; mm1=tmp13 psubw mm6, mm4 ; mm6=tmp12 movq mm7, mm5 paddw mm5, mm0 ; mm5=tmp10+tmp11 psubw mm7, mm0 ; mm7=tmp10-tmp11 paddw mm5, [GOTOFF(ebx,PW_DESCALE_P2X)] paddw mm7, [GOTOFF(ebx,PW_DESCALE_P2X)] psraw mm5, PASS1_BITS ; mm5=data0 psraw mm7, PASS1_BITS ; mm7=data4 movq MMWORD [MMBLOCK(0,0,edx,SIZEOF_DCTELEM)], mm5 movq MMWORD [MMBLOCK(4,0,edx,SIZEOF_DCTELEM)], mm7 ; (Original) ; z1 = (tmp12 + tmp13) * 0.541196100; ; data2 = z1 + tmp13 * 0.765366865; ; data6 = z1 + tmp12 * -1.847759065; ; ; (This implementation) ; data2 = tmp13 * (0.541196100 + 0.765366865) + tmp12 * 0.541196100; ; data6 = tmp13 * 0.541196100 + tmp12 * (0.541196100 - 1.847759065); movq mm4, mm1 ; mm1=tmp13 movq mm0, mm1 punpcklwd mm4, mm6 ; mm6=tmp12 punpckhwd mm0, mm6 movq mm1, mm4 movq mm6, mm0 pmaddwd mm4, [GOTOFF(ebx,PW_F130_F054)] ; mm4=data2L pmaddwd mm0, [GOTOFF(ebx,PW_F130_F054)] ; mm0=data2H pmaddwd mm1, [GOTOFF(ebx,PW_F054_MF130)] ; mm1=data6L pmaddwd mm6, [GOTOFF(ebx,PW_F054_MF130)] ; mm6=data6H paddd mm4, [GOTOFF(ebx,PD_DESCALE_P2)] paddd mm0, [GOTOFF(ebx,PD_DESCALE_P2)] psrad mm4, DESCALE_P2 psrad mm0, DESCALE_P2 paddd mm1, [GOTOFF(ebx,PD_DESCALE_P2)] paddd mm6, [GOTOFF(ebx,PD_DESCALE_P2)] psrad mm1, DESCALE_P2 psrad mm6, DESCALE_P2 packssdw mm4, mm0 ; mm4=data2 packssdw mm1, mm6 ; mm1=data6 movq MMWORD [MMBLOCK(2,0,edx,SIZEOF_DCTELEM)], mm4 movq MMWORD [MMBLOCK(6,0,edx,SIZEOF_DCTELEM)], mm1 ; -- Odd part movq mm5, MMWORD [wk(0)] ; mm5=tmp6 movq mm7, MMWORD [wk(1)] ; mm7=tmp7 movq mm0, mm2 ; mm2=tmp4 movq mm6, mm3 ; mm3=tmp5 paddw mm0, mm5 ; mm0=z3 paddw mm6, mm7 ; mm6=z4 ; (Original) ; z5 = (z3 + z4) * 1.175875602; ; z3 = z3 * -1.961570560; z4 = z4 * -0.390180644; ; z3 += z5; z4 += z5; ; ; (This implementation) ; z3 = z3 * (1.175875602 - 1.961570560) + z4 * 1.175875602; ; z4 = z3 * 1.175875602 + z4 * (1.175875602 - 0.390180644); movq mm4, mm0 movq mm1, mm0 punpcklwd mm4, mm6 punpckhwd mm1, mm6 movq mm0, mm4 movq mm6, mm1 pmaddwd mm4, [GOTOFF(ebx,PW_MF078_F117)] ; mm4=z3L pmaddwd mm1, [GOTOFF(ebx,PW_MF078_F117)] ; mm1=z3H pmaddwd mm0, [GOTOFF(ebx,PW_F117_F078)] ; mm0=z4L pmaddwd mm6, [GOTOFF(ebx,PW_F117_F078)] ; mm6=z4H movq MMWORD [wk(0)], mm4 ; wk(0)=z3L movq MMWORD [wk(1)], mm1 ; wk(1)=z3H ; (Original) ; z1 = tmp4 + tmp7; z2 = tmp5 + tmp6; ; tmp4 = tmp4 * 0.298631336; tmp5 = tmp5 * 2.053119869; ; tmp6 = tmp6 * 3.072711026; tmp7 = tmp7 * 1.501321110; ; z1 = z1 * -0.899976223; z2 = z2 * -2.562915447; ; data7 = tmp4 + z1 + z3; data5 = tmp5 + z2 + z4; ; data3 = tmp6 + z2 + z3; data1 = tmp7 + z1 + z4; ; ; (This implementation) ; tmp4 = tmp4 * (0.298631336 - 0.899976223) + tmp7 * -0.899976223; ; tmp5 = tmp5 * (2.053119869 - 2.562915447) + tmp6 * -2.562915447; ; tmp6 = tmp5 * -2.562915447 + tmp6 * (3.072711026 - 2.562915447); ; tmp7 = tmp4 * -0.899976223 + tmp7 * (1.501321110 - 0.899976223); ; data7 = tmp4 + z3; data5 = tmp5 + z4; ; data3 = tmp6 + z3; data1 = tmp7 + z4; movq mm4, mm2 movq mm1, mm2 punpcklwd mm4, mm7 punpckhwd mm1, mm7 movq mm2, mm4 movq mm7, mm1 pmaddwd mm4, [GOTOFF(ebx,PW_MF060_MF089)] ; mm4=tmp4L pmaddwd mm1, [GOTOFF(ebx,PW_MF060_MF089)] ; mm1=tmp4H pmaddwd mm2, [GOTOFF(ebx,PW_MF089_F060)] ; mm2=tmp7L pmaddwd mm7, [GOTOFF(ebx,PW_MF089_F060)] ; mm7=tmp7H paddd mm4, MMWORD [wk(0)] ; mm4=data7L paddd mm1, MMWORD [wk(1)] ; mm1=data7H paddd mm2, mm0 ; mm2=data1L paddd mm7, mm6 ; mm7=data1H paddd mm4, [GOTOFF(ebx,PD_DESCALE_P2)] paddd mm1, [GOTOFF(ebx,PD_DESCALE_P2)] psrad mm4, DESCALE_P2 psrad mm1, DESCALE_P2 paddd mm2, [GOTOFF(ebx,PD_DESCALE_P2)] paddd mm7, [GOTOFF(ebx,PD_DESCALE_P2)] psrad mm2, DESCALE_P2 psrad mm7, DESCALE_P2 packssdw mm4, mm1 ; mm4=data7 packssdw mm2, mm7 ; mm2=data1 movq MMWORD [MMBLOCK(7,0,edx,SIZEOF_DCTELEM)], mm4 movq MMWORD [MMBLOCK(1,0,edx,SIZEOF_DCTELEM)], mm2 movq mm1, mm3 movq mm7, mm3 punpcklwd mm1, mm5 punpckhwd mm7, mm5 movq mm3, mm1 movq mm5, mm7 pmaddwd mm1, [GOTOFF(ebx,PW_MF050_MF256)] ; mm1=tmp5L pmaddwd mm7, [GOTOFF(ebx,PW_MF050_MF256)] ; mm7=tmp5H pmaddwd mm3, [GOTOFF(ebx,PW_MF256_F050)] ; mm3=tmp6L pmaddwd mm5, [GOTOFF(ebx,PW_MF256_F050)] ; mm5=tmp6H paddd mm1, mm0 ; mm1=data5L paddd mm7, mm6 ; mm7=data5H paddd mm3, MMWORD [wk(0)] ; mm3=data3L paddd mm5, MMWORD [wk(1)] ; mm5=data3H paddd mm1, [GOTOFF(ebx,PD_DESCALE_P2)] paddd mm7, [GOTOFF(ebx,PD_DESCALE_P2)] psrad mm1, DESCALE_P2 psrad mm7, DESCALE_P2 paddd mm3, [GOTOFF(ebx,PD_DESCALE_P2)] paddd mm5, [GOTOFF(ebx,PD_DESCALE_P2)] psrad mm3, DESCALE_P2 psrad mm5, DESCALE_P2 packssdw mm1, mm7 ; mm1=data5 packssdw mm3, mm5 ; mm3=data3 movq MMWORD [MMBLOCK(5,0,edx,SIZEOF_DCTELEM)], mm1 movq MMWORD [MMBLOCK(3,0,edx,SIZEOF_DCTELEM)], mm3 add edx, byte 4*SIZEOF_DCTELEM dec ecx jnz near .columnloop emms ; empty MMX state ; pop edi ; unused ; pop esi ; unused ; pop edx ; need not be preserved ; pop ecx ; need not be preserved poppic ebx mov esp, ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/i386/jfdctint-sse2.asm000066400000000000000000000646711436506551100211160ustar00rootroot00000000000000; ; jfdctint.asm - accurate integer FDCT (SSE2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2016, 2020, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains a slower but more accurate integer implementation of the ; forward DCT (Discrete Cosine Transform). The following code is based ; directly on the IJG's original jfdctint.c; see the jfdctint.c for ; more details. %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- %define CONST_BITS 13 %define PASS1_BITS 2 %define DESCALE_P1 (CONST_BITS - PASS1_BITS) %define DESCALE_P2 (CONST_BITS + PASS1_BITS) %if CONST_BITS == 13 F_0_298 equ 2446 ; FIX(0.298631336) F_0_390 equ 3196 ; FIX(0.390180644) F_0_541 equ 4433 ; FIX(0.541196100) F_0_765 equ 6270 ; FIX(0.765366865) F_0_899 equ 7373 ; FIX(0.899976223) F_1_175 equ 9633 ; FIX(1.175875602) F_1_501 equ 12299 ; FIX(1.501321110) F_1_847 equ 15137 ; FIX(1.847759065) F_1_961 equ 16069 ; FIX(1.961570560) F_2_053 equ 16819 ; FIX(2.053119869) F_2_562 equ 20995 ; FIX(2.562915447) F_3_072 equ 25172 ; FIX(3.072711026) %else ; NASM cannot do compile-time arithmetic on floating-point constants. %define DESCALE(x, n) (((x) + (1 << ((n) - 1))) >> (n)) F_0_298 equ DESCALE( 320652955, 30 - CONST_BITS) ; FIX(0.298631336) F_0_390 equ DESCALE( 418953276, 30 - CONST_BITS) ; FIX(0.390180644) F_0_541 equ DESCALE( 581104887, 30 - CONST_BITS) ; FIX(0.541196100) F_0_765 equ DESCALE( 821806413, 30 - CONST_BITS) ; FIX(0.765366865) F_0_899 equ DESCALE( 966342111, 30 - CONST_BITS) ; FIX(0.899976223) F_1_175 equ DESCALE(1262586813, 30 - CONST_BITS) ; FIX(1.175875602) F_1_501 equ DESCALE(1612031267, 30 - CONST_BITS) ; FIX(1.501321110) F_1_847 equ DESCALE(1984016188, 30 - CONST_BITS) ; FIX(1.847759065) F_1_961 equ DESCALE(2106220350, 30 - CONST_BITS) ; FIX(1.961570560) F_2_053 equ DESCALE(2204520673, 30 - CONST_BITS) ; FIX(2.053119869) F_2_562 equ DESCALE(2751909506, 30 - CONST_BITS) ; FIX(2.562915447) F_3_072 equ DESCALE(3299298341, 30 - CONST_BITS) ; FIX(3.072711026) %endif ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 32 GLOBAL_DATA(jconst_fdct_islow_sse2) EXTN(jconst_fdct_islow_sse2): PW_F130_F054 times 4 dw (F_0_541 + F_0_765), F_0_541 PW_F054_MF130 times 4 dw F_0_541, (F_0_541 - F_1_847) PW_MF078_F117 times 4 dw (F_1_175 - F_1_961), F_1_175 PW_F117_F078 times 4 dw F_1_175, (F_1_175 - F_0_390) PW_MF060_MF089 times 4 dw (F_0_298 - F_0_899), -F_0_899 PW_MF089_F060 times 4 dw -F_0_899, (F_1_501 - F_0_899) PW_MF050_MF256 times 4 dw (F_2_053 - F_2_562), -F_2_562 PW_MF256_F050 times 4 dw -F_2_562, (F_3_072 - F_2_562) PD_DESCALE_P1 times 4 dd 1 << (DESCALE_P1 - 1) PD_DESCALE_P2 times 4 dd 1 << (DESCALE_P2 - 1) PW_DESCALE_P2X times 8 dw 1 << (PASS1_BITS - 1) alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Perform the forward DCT on one block of samples. ; ; GLOBAL(void) ; jsimd_fdct_islow_sse2(DCTELEM *data) ; %define data(b) (b) + 8 ; DCTELEM *data %define original_ebp ebp + 0 %define wk(i) ebp - (WK_NUM - (i)) * SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 6 align 32 GLOBAL_FUNCTION(jsimd_fdct_islow_sse2) EXTN(jsimd_fdct_islow_sse2): push ebp mov eax, esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [esp], eax mov ebp, esp ; ebp = aligned ebp lea esp, [wk(0)] pushpic ebx ; push ecx ; unused ; push edx ; need not be preserved ; push esi ; unused ; push edi ; unused get_GOT ebx ; get GOT address ; ---- Pass 1: process rows. mov edx, POINTER [data(eax)] ; (DCTELEM *) movdqa xmm0, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_DCTELEM)] movdqa xmm1, XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_DCTELEM)] movdqa xmm2, XMMWORD [XMMBLOCK(2,0,edx,SIZEOF_DCTELEM)] movdqa xmm3, XMMWORD [XMMBLOCK(3,0,edx,SIZEOF_DCTELEM)] ; xmm0=(00 01 02 03 04 05 06 07), xmm2=(20 21 22 23 24 25 26 27) ; xmm1=(10 11 12 13 14 15 16 17), xmm3=(30 31 32 33 34 35 36 37) movdqa xmm4, xmm0 ; transpose coefficients(phase 1) punpcklwd xmm0, xmm1 ; xmm0=(00 10 01 11 02 12 03 13) punpckhwd xmm4, xmm1 ; xmm4=(04 14 05 15 06 16 07 17) movdqa xmm5, xmm2 ; transpose coefficients(phase 1) punpcklwd xmm2, xmm3 ; xmm2=(20 30 21 31 22 32 23 33) punpckhwd xmm5, xmm3 ; xmm5=(24 34 25 35 26 36 27 37) movdqa xmm6, XMMWORD [XMMBLOCK(4,0,edx,SIZEOF_DCTELEM)] movdqa xmm7, XMMWORD [XMMBLOCK(5,0,edx,SIZEOF_DCTELEM)] movdqa xmm1, XMMWORD [XMMBLOCK(6,0,edx,SIZEOF_DCTELEM)] movdqa xmm3, XMMWORD [XMMBLOCK(7,0,edx,SIZEOF_DCTELEM)] ; xmm6=( 4 12 20 28 36 44 52 60), xmm1=( 6 14 22 30 38 46 54 62) ; xmm7=( 5 13 21 29 37 45 53 61), xmm3=( 7 15 23 31 39 47 55 63) movdqa XMMWORD [wk(0)], xmm2 ; wk(0)=(20 30 21 31 22 32 23 33) movdqa XMMWORD [wk(1)], xmm5 ; wk(1)=(24 34 25 35 26 36 27 37) movdqa xmm2, xmm6 ; transpose coefficients(phase 1) punpcklwd xmm6, xmm7 ; xmm6=(40 50 41 51 42 52 43 53) punpckhwd xmm2, xmm7 ; xmm2=(44 54 45 55 46 56 47 57) movdqa xmm5, xmm1 ; transpose coefficients(phase 1) punpcklwd xmm1, xmm3 ; xmm1=(60 70 61 71 62 72 63 73) punpckhwd xmm5, xmm3 ; xmm5=(64 74 65 75 66 76 67 77) movdqa xmm7, xmm6 ; transpose coefficients(phase 2) punpckldq xmm6, xmm1 ; xmm6=(40 50 60 70 41 51 61 71) punpckhdq xmm7, xmm1 ; xmm7=(42 52 62 72 43 53 63 73) movdqa xmm3, xmm2 ; transpose coefficients(phase 2) punpckldq xmm2, xmm5 ; xmm2=(44 54 64 74 45 55 65 75) punpckhdq xmm3, xmm5 ; xmm3=(46 56 66 76 47 57 67 77) movdqa xmm1, XMMWORD [wk(0)] ; xmm1=(20 30 21 31 22 32 23 33) movdqa xmm5, XMMWORD [wk(1)] ; xmm5=(24 34 25 35 26 36 27 37) movdqa XMMWORD [wk(2)], xmm7 ; wk(2)=(42 52 62 72 43 53 63 73) movdqa XMMWORD [wk(3)], xmm2 ; wk(3)=(44 54 64 74 45 55 65 75) movdqa xmm7, xmm0 ; transpose coefficients(phase 2) punpckldq xmm0, xmm1 ; xmm0=(00 10 20 30 01 11 21 31) punpckhdq xmm7, xmm1 ; xmm7=(02 12 22 32 03 13 23 33) movdqa xmm2, xmm4 ; transpose coefficients(phase 2) punpckldq xmm4, xmm5 ; xmm4=(04 14 24 34 05 15 25 35) punpckhdq xmm2, xmm5 ; xmm2=(06 16 26 36 07 17 27 37) movdqa xmm1, xmm0 ; transpose coefficients(phase 3) punpcklqdq xmm0, xmm6 ; xmm0=(00 10 20 30 40 50 60 70)=data0 punpckhqdq xmm1, xmm6 ; xmm1=(01 11 21 31 41 51 61 71)=data1 movdqa xmm5, xmm2 ; transpose coefficients(phase 3) punpcklqdq xmm2, xmm3 ; xmm2=(06 16 26 36 46 56 66 76)=data6 punpckhqdq xmm5, xmm3 ; xmm5=(07 17 27 37 47 57 67 77)=data7 movdqa xmm6, xmm1 movdqa xmm3, xmm0 psubw xmm1, xmm2 ; xmm1=data1-data6=tmp6 psubw xmm0, xmm5 ; xmm0=data0-data7=tmp7 paddw xmm6, xmm2 ; xmm6=data1+data6=tmp1 paddw xmm3, xmm5 ; xmm3=data0+data7=tmp0 movdqa xmm2, XMMWORD [wk(2)] ; xmm2=(42 52 62 72 43 53 63 73) movdqa xmm5, XMMWORD [wk(3)] ; xmm5=(44 54 64 74 45 55 65 75) movdqa XMMWORD [wk(0)], xmm1 ; wk(0)=tmp6 movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=tmp7 movdqa xmm1, xmm7 ; transpose coefficients(phase 3) punpcklqdq xmm7, xmm2 ; xmm7=(02 12 22 32 42 52 62 72)=data2 punpckhqdq xmm1, xmm2 ; xmm1=(03 13 23 33 43 53 63 73)=data3 movdqa xmm0, xmm4 ; transpose coefficients(phase 3) punpcklqdq xmm4, xmm5 ; xmm4=(04 14 24 34 44 54 64 74)=data4 punpckhqdq xmm0, xmm5 ; xmm0=(05 15 25 35 45 55 65 75)=data5 movdqa xmm2, xmm1 movdqa xmm5, xmm7 paddw xmm1, xmm4 ; xmm1=data3+data4=tmp3 paddw xmm7, xmm0 ; xmm7=data2+data5=tmp2 psubw xmm2, xmm4 ; xmm2=data3-data4=tmp4 psubw xmm5, xmm0 ; xmm5=data2-data5=tmp5 ; -- Even part movdqa xmm4, xmm3 movdqa xmm0, xmm6 paddw xmm3, xmm1 ; xmm3=tmp10 paddw xmm6, xmm7 ; xmm6=tmp11 psubw xmm4, xmm1 ; xmm4=tmp13 psubw xmm0, xmm7 ; xmm0=tmp12 movdqa xmm1, xmm3 paddw xmm3, xmm6 ; xmm3=tmp10+tmp11 psubw xmm1, xmm6 ; xmm1=tmp10-tmp11 psllw xmm3, PASS1_BITS ; xmm3=data0 psllw xmm1, PASS1_BITS ; xmm1=data4 movdqa XMMWORD [wk(2)], xmm3 ; wk(2)=data0 movdqa XMMWORD [wk(3)], xmm1 ; wk(3)=data4 ; (Original) ; z1 = (tmp12 + tmp13) * 0.541196100; ; data2 = z1 + tmp13 * 0.765366865; ; data6 = z1 + tmp12 * -1.847759065; ; ; (This implementation) ; data2 = tmp13 * (0.541196100 + 0.765366865) + tmp12 * 0.541196100; ; data6 = tmp13 * 0.541196100 + tmp12 * (0.541196100 - 1.847759065); movdqa xmm7, xmm4 ; xmm4=tmp13 movdqa xmm6, xmm4 punpcklwd xmm7, xmm0 ; xmm0=tmp12 punpckhwd xmm6, xmm0 movdqa xmm4, xmm7 movdqa xmm0, xmm6 pmaddwd xmm7, [GOTOFF(ebx,PW_F130_F054)] ; xmm7=data2L pmaddwd xmm6, [GOTOFF(ebx,PW_F130_F054)] ; xmm6=data2H pmaddwd xmm4, [GOTOFF(ebx,PW_F054_MF130)] ; xmm4=data6L pmaddwd xmm0, [GOTOFF(ebx,PW_F054_MF130)] ; xmm0=data6H paddd xmm7, [GOTOFF(ebx,PD_DESCALE_P1)] paddd xmm6, [GOTOFF(ebx,PD_DESCALE_P1)] psrad xmm7, DESCALE_P1 psrad xmm6, DESCALE_P1 paddd xmm4, [GOTOFF(ebx,PD_DESCALE_P1)] paddd xmm0, [GOTOFF(ebx,PD_DESCALE_P1)] psrad xmm4, DESCALE_P1 psrad xmm0, DESCALE_P1 packssdw xmm7, xmm6 ; xmm7=data2 packssdw xmm4, xmm0 ; xmm4=data6 movdqa XMMWORD [wk(4)], xmm7 ; wk(4)=data2 movdqa XMMWORD [wk(5)], xmm4 ; wk(5)=data6 ; -- Odd part movdqa xmm3, XMMWORD [wk(0)] ; xmm3=tmp6 movdqa xmm1, XMMWORD [wk(1)] ; xmm1=tmp7 movdqa xmm6, xmm2 ; xmm2=tmp4 movdqa xmm0, xmm5 ; xmm5=tmp5 paddw xmm6, xmm3 ; xmm6=z3 paddw xmm0, xmm1 ; xmm0=z4 ; (Original) ; z5 = (z3 + z4) * 1.175875602; ; z3 = z3 * -1.961570560; z4 = z4 * -0.390180644; ; z3 += z5; z4 += z5; ; ; (This implementation) ; z3 = z3 * (1.175875602 - 1.961570560) + z4 * 1.175875602; ; z4 = z3 * 1.175875602 + z4 * (1.175875602 - 0.390180644); movdqa xmm7, xmm6 movdqa xmm4, xmm6 punpcklwd xmm7, xmm0 punpckhwd xmm4, xmm0 movdqa xmm6, xmm7 movdqa xmm0, xmm4 pmaddwd xmm7, [GOTOFF(ebx,PW_MF078_F117)] ; xmm7=z3L pmaddwd xmm4, [GOTOFF(ebx,PW_MF078_F117)] ; xmm4=z3H pmaddwd xmm6, [GOTOFF(ebx,PW_F117_F078)] ; xmm6=z4L pmaddwd xmm0, [GOTOFF(ebx,PW_F117_F078)] ; xmm0=z4H movdqa XMMWORD [wk(0)], xmm7 ; wk(0)=z3L movdqa XMMWORD [wk(1)], xmm4 ; wk(1)=z3H ; (Original) ; z1 = tmp4 + tmp7; z2 = tmp5 + tmp6; ; tmp4 = tmp4 * 0.298631336; tmp5 = tmp5 * 2.053119869; ; tmp6 = tmp6 * 3.072711026; tmp7 = tmp7 * 1.501321110; ; z1 = z1 * -0.899976223; z2 = z2 * -2.562915447; ; data7 = tmp4 + z1 + z3; data5 = tmp5 + z2 + z4; ; data3 = tmp6 + z2 + z3; data1 = tmp7 + z1 + z4; ; ; (This implementation) ; tmp4 = tmp4 * (0.298631336 - 0.899976223) + tmp7 * -0.899976223; ; tmp5 = tmp5 * (2.053119869 - 2.562915447) + tmp6 * -2.562915447; ; tmp6 = tmp5 * -2.562915447 + tmp6 * (3.072711026 - 2.562915447); ; tmp7 = tmp4 * -0.899976223 + tmp7 * (1.501321110 - 0.899976223); ; data7 = tmp4 + z3; data5 = tmp5 + z4; ; data3 = tmp6 + z3; data1 = tmp7 + z4; movdqa xmm7, xmm2 movdqa xmm4, xmm2 punpcklwd xmm7, xmm1 punpckhwd xmm4, xmm1 movdqa xmm2, xmm7 movdqa xmm1, xmm4 pmaddwd xmm7, [GOTOFF(ebx,PW_MF060_MF089)] ; xmm7=tmp4L pmaddwd xmm4, [GOTOFF(ebx,PW_MF060_MF089)] ; xmm4=tmp4H pmaddwd xmm2, [GOTOFF(ebx,PW_MF089_F060)] ; xmm2=tmp7L pmaddwd xmm1, [GOTOFF(ebx,PW_MF089_F060)] ; xmm1=tmp7H paddd xmm7, XMMWORD [wk(0)] ; xmm7=data7L paddd xmm4, XMMWORD [wk(1)] ; xmm4=data7H paddd xmm2, xmm6 ; xmm2=data1L paddd xmm1, xmm0 ; xmm1=data1H paddd xmm7, [GOTOFF(ebx,PD_DESCALE_P1)] paddd xmm4, [GOTOFF(ebx,PD_DESCALE_P1)] psrad xmm7, DESCALE_P1 psrad xmm4, DESCALE_P1 paddd xmm2, [GOTOFF(ebx,PD_DESCALE_P1)] paddd xmm1, [GOTOFF(ebx,PD_DESCALE_P1)] psrad xmm2, DESCALE_P1 psrad xmm1, DESCALE_P1 packssdw xmm7, xmm4 ; xmm7=data7 packssdw xmm2, xmm1 ; xmm2=data1 movdqa xmm4, xmm5 movdqa xmm1, xmm5 punpcklwd xmm4, xmm3 punpckhwd xmm1, xmm3 movdqa xmm5, xmm4 movdqa xmm3, xmm1 pmaddwd xmm4, [GOTOFF(ebx,PW_MF050_MF256)] ; xmm4=tmp5L pmaddwd xmm1, [GOTOFF(ebx,PW_MF050_MF256)] ; xmm1=tmp5H pmaddwd xmm5, [GOTOFF(ebx,PW_MF256_F050)] ; xmm5=tmp6L pmaddwd xmm3, [GOTOFF(ebx,PW_MF256_F050)] ; xmm3=tmp6H paddd xmm4, xmm6 ; xmm4=data5L paddd xmm1, xmm0 ; xmm1=data5H paddd xmm5, XMMWORD [wk(0)] ; xmm5=data3L paddd xmm3, XMMWORD [wk(1)] ; xmm3=data3H paddd xmm4, [GOTOFF(ebx,PD_DESCALE_P1)] paddd xmm1, [GOTOFF(ebx,PD_DESCALE_P1)] psrad xmm4, DESCALE_P1 psrad xmm1, DESCALE_P1 paddd xmm5, [GOTOFF(ebx,PD_DESCALE_P1)] paddd xmm3, [GOTOFF(ebx,PD_DESCALE_P1)] psrad xmm5, DESCALE_P1 psrad xmm3, DESCALE_P1 packssdw xmm4, xmm1 ; xmm4=data5 packssdw xmm5, xmm3 ; xmm5=data3 ; ---- Pass 2: process columns. ; mov edx, POINTER [data(eax)] ; (DCTELEM *) movdqa xmm6, XMMWORD [wk(2)] ; xmm6=col0 movdqa xmm0, XMMWORD [wk(4)] ; xmm0=col2 ; xmm6=(00 10 20 30 40 50 60 70), xmm0=(02 12 22 32 42 52 62 72) ; xmm2=(01 11 21 31 41 51 61 71), xmm5=(03 13 23 33 43 53 63 73) movdqa xmm1, xmm6 ; transpose coefficients(phase 1) punpcklwd xmm6, xmm2 ; xmm6=(00 01 10 11 20 21 30 31) punpckhwd xmm1, xmm2 ; xmm1=(40 41 50 51 60 61 70 71) movdqa xmm3, xmm0 ; transpose coefficients(phase 1) punpcklwd xmm0, xmm5 ; xmm0=(02 03 12 13 22 23 32 33) punpckhwd xmm3, xmm5 ; xmm3=(42 43 52 53 62 63 72 73) movdqa xmm2, XMMWORD [wk(3)] ; xmm2=col4 movdqa xmm5, XMMWORD [wk(5)] ; xmm5=col6 ; xmm2=(04 14 24 34 44 54 64 74), xmm5=(06 16 26 36 46 56 66 76) ; xmm4=(05 15 25 35 45 55 65 75), xmm7=(07 17 27 37 47 57 67 77) movdqa XMMWORD [wk(0)], xmm0 ; wk(0)=(02 03 12 13 22 23 32 33) movdqa XMMWORD [wk(1)], xmm3 ; wk(1)=(42 43 52 53 62 63 72 73) movdqa xmm0, xmm2 ; transpose coefficients(phase 1) punpcklwd xmm2, xmm4 ; xmm2=(04 05 14 15 24 25 34 35) punpckhwd xmm0, xmm4 ; xmm0=(44 45 54 55 64 65 74 75) movdqa xmm3, xmm5 ; transpose coefficients(phase 1) punpcklwd xmm5, xmm7 ; xmm5=(06 07 16 17 26 27 36 37) punpckhwd xmm3, xmm7 ; xmm3=(46 47 56 57 66 67 76 77) movdqa xmm4, xmm2 ; transpose coefficients(phase 2) punpckldq xmm2, xmm5 ; xmm2=(04 05 06 07 14 15 16 17) punpckhdq xmm4, xmm5 ; xmm4=(24 25 26 27 34 35 36 37) movdqa xmm7, xmm0 ; transpose coefficients(phase 2) punpckldq xmm0, xmm3 ; xmm0=(44 45 46 47 54 55 56 57) punpckhdq xmm7, xmm3 ; xmm7=(64 65 66 67 74 75 76 77) movdqa xmm5, XMMWORD [wk(0)] ; xmm5=(02 03 12 13 22 23 32 33) movdqa xmm3, XMMWORD [wk(1)] ; xmm3=(42 43 52 53 62 63 72 73) movdqa XMMWORD [wk(2)], xmm4 ; wk(2)=(24 25 26 27 34 35 36 37) movdqa XMMWORD [wk(3)], xmm0 ; wk(3)=(44 45 46 47 54 55 56 57) movdqa xmm4, xmm6 ; transpose coefficients(phase 2) punpckldq xmm6, xmm5 ; xmm6=(00 01 02 03 10 11 12 13) punpckhdq xmm4, xmm5 ; xmm4=(20 21 22 23 30 31 32 33) movdqa xmm0, xmm1 ; transpose coefficients(phase 2) punpckldq xmm1, xmm3 ; xmm1=(40 41 42 43 50 51 52 53) punpckhdq xmm0, xmm3 ; xmm0=(60 61 62 63 70 71 72 73) movdqa xmm5, xmm6 ; transpose coefficients(phase 3) punpcklqdq xmm6, xmm2 ; xmm6=(00 01 02 03 04 05 06 07)=data0 punpckhqdq xmm5, xmm2 ; xmm5=(10 11 12 13 14 15 16 17)=data1 movdqa xmm3, xmm0 ; transpose coefficients(phase 3) punpcklqdq xmm0, xmm7 ; xmm0=(60 61 62 63 64 65 66 67)=data6 punpckhqdq xmm3, xmm7 ; xmm3=(70 71 72 73 74 75 76 77)=data7 movdqa xmm2, xmm5 movdqa xmm7, xmm6 psubw xmm5, xmm0 ; xmm5=data1-data6=tmp6 psubw xmm6, xmm3 ; xmm6=data0-data7=tmp7 paddw xmm2, xmm0 ; xmm2=data1+data6=tmp1 paddw xmm7, xmm3 ; xmm7=data0+data7=tmp0 movdqa xmm0, XMMWORD [wk(2)] ; xmm0=(24 25 26 27 34 35 36 37) movdqa xmm3, XMMWORD [wk(3)] ; xmm3=(44 45 46 47 54 55 56 57) movdqa XMMWORD [wk(0)], xmm5 ; wk(0)=tmp6 movdqa XMMWORD [wk(1)], xmm6 ; wk(1)=tmp7 movdqa xmm5, xmm4 ; transpose coefficients(phase 3) punpcklqdq xmm4, xmm0 ; xmm4=(20 21 22 23 24 25 26 27)=data2 punpckhqdq xmm5, xmm0 ; xmm5=(30 31 32 33 34 35 36 37)=data3 movdqa xmm6, xmm1 ; transpose coefficients(phase 3) punpcklqdq xmm1, xmm3 ; xmm1=(40 41 42 43 44 45 46 47)=data4 punpckhqdq xmm6, xmm3 ; xmm6=(50 51 52 53 54 55 56 57)=data5 movdqa xmm0, xmm5 movdqa xmm3, xmm4 paddw xmm5, xmm1 ; xmm5=data3+data4=tmp3 paddw xmm4, xmm6 ; xmm4=data2+data5=tmp2 psubw xmm0, xmm1 ; xmm0=data3-data4=tmp4 psubw xmm3, xmm6 ; xmm3=data2-data5=tmp5 ; -- Even part movdqa xmm1, xmm7 movdqa xmm6, xmm2 paddw xmm7, xmm5 ; xmm7=tmp10 paddw xmm2, xmm4 ; xmm2=tmp11 psubw xmm1, xmm5 ; xmm1=tmp13 psubw xmm6, xmm4 ; xmm6=tmp12 movdqa xmm5, xmm7 paddw xmm7, xmm2 ; xmm7=tmp10+tmp11 psubw xmm5, xmm2 ; xmm5=tmp10-tmp11 paddw xmm7, [GOTOFF(ebx,PW_DESCALE_P2X)] paddw xmm5, [GOTOFF(ebx,PW_DESCALE_P2X)] psraw xmm7, PASS1_BITS ; xmm7=data0 psraw xmm5, PASS1_BITS ; xmm5=data4 movdqa XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_DCTELEM)], xmm7 movdqa XMMWORD [XMMBLOCK(4,0,edx,SIZEOF_DCTELEM)], xmm5 ; (Original) ; z1 = (tmp12 + tmp13) * 0.541196100; ; data2 = z1 + tmp13 * 0.765366865; ; data6 = z1 + tmp12 * -1.847759065; ; ; (This implementation) ; data2 = tmp13 * (0.541196100 + 0.765366865) + tmp12 * 0.541196100; ; data6 = tmp13 * 0.541196100 + tmp12 * (0.541196100 - 1.847759065); movdqa xmm4, xmm1 ; xmm1=tmp13 movdqa xmm2, xmm1 punpcklwd xmm4, xmm6 ; xmm6=tmp12 punpckhwd xmm2, xmm6 movdqa xmm1, xmm4 movdqa xmm6, xmm2 pmaddwd xmm4, [GOTOFF(ebx,PW_F130_F054)] ; xmm4=data2L pmaddwd xmm2, [GOTOFF(ebx,PW_F130_F054)] ; xmm2=data2H pmaddwd xmm1, [GOTOFF(ebx,PW_F054_MF130)] ; xmm1=data6L pmaddwd xmm6, [GOTOFF(ebx,PW_F054_MF130)] ; xmm6=data6H paddd xmm4, [GOTOFF(ebx,PD_DESCALE_P2)] paddd xmm2, [GOTOFF(ebx,PD_DESCALE_P2)] psrad xmm4, DESCALE_P2 psrad xmm2, DESCALE_P2 paddd xmm1, [GOTOFF(ebx,PD_DESCALE_P2)] paddd xmm6, [GOTOFF(ebx,PD_DESCALE_P2)] psrad xmm1, DESCALE_P2 psrad xmm6, DESCALE_P2 packssdw xmm4, xmm2 ; xmm4=data2 packssdw xmm1, xmm6 ; xmm1=data6 movdqa XMMWORD [XMMBLOCK(2,0,edx,SIZEOF_DCTELEM)], xmm4 movdqa XMMWORD [XMMBLOCK(6,0,edx,SIZEOF_DCTELEM)], xmm1 ; -- Odd part movdqa xmm7, XMMWORD [wk(0)] ; xmm7=tmp6 movdqa xmm5, XMMWORD [wk(1)] ; xmm5=tmp7 movdqa xmm2, xmm0 ; xmm0=tmp4 movdqa xmm6, xmm3 ; xmm3=tmp5 paddw xmm2, xmm7 ; xmm2=z3 paddw xmm6, xmm5 ; xmm6=z4 ; (Original) ; z5 = (z3 + z4) * 1.175875602; ; z3 = z3 * -1.961570560; z4 = z4 * -0.390180644; ; z3 += z5; z4 += z5; ; ; (This implementation) ; z3 = z3 * (1.175875602 - 1.961570560) + z4 * 1.175875602; ; z4 = z3 * 1.175875602 + z4 * (1.175875602 - 0.390180644); movdqa xmm4, xmm2 movdqa xmm1, xmm2 punpcklwd xmm4, xmm6 punpckhwd xmm1, xmm6 movdqa xmm2, xmm4 movdqa xmm6, xmm1 pmaddwd xmm4, [GOTOFF(ebx,PW_MF078_F117)] ; xmm4=z3L pmaddwd xmm1, [GOTOFF(ebx,PW_MF078_F117)] ; xmm1=z3H pmaddwd xmm2, [GOTOFF(ebx,PW_F117_F078)] ; xmm2=z4L pmaddwd xmm6, [GOTOFF(ebx,PW_F117_F078)] ; xmm6=z4H movdqa XMMWORD [wk(0)], xmm4 ; wk(0)=z3L movdqa XMMWORD [wk(1)], xmm1 ; wk(1)=z3H ; (Original) ; z1 = tmp4 + tmp7; z2 = tmp5 + tmp6; ; tmp4 = tmp4 * 0.298631336; tmp5 = tmp5 * 2.053119869; ; tmp6 = tmp6 * 3.072711026; tmp7 = tmp7 * 1.501321110; ; z1 = z1 * -0.899976223; z2 = z2 * -2.562915447; ; data7 = tmp4 + z1 + z3; data5 = tmp5 + z2 + z4; ; data3 = tmp6 + z2 + z3; data1 = tmp7 + z1 + z4; ; ; (This implementation) ; tmp4 = tmp4 * (0.298631336 - 0.899976223) + tmp7 * -0.899976223; ; tmp5 = tmp5 * (2.053119869 - 2.562915447) + tmp6 * -2.562915447; ; tmp6 = tmp5 * -2.562915447 + tmp6 * (3.072711026 - 2.562915447); ; tmp7 = tmp4 * -0.899976223 + tmp7 * (1.501321110 - 0.899976223); ; data7 = tmp4 + z3; data5 = tmp5 + z4; ; data3 = tmp6 + z3; data1 = tmp7 + z4; movdqa xmm4, xmm0 movdqa xmm1, xmm0 punpcklwd xmm4, xmm5 punpckhwd xmm1, xmm5 movdqa xmm0, xmm4 movdqa xmm5, xmm1 pmaddwd xmm4, [GOTOFF(ebx,PW_MF060_MF089)] ; xmm4=tmp4L pmaddwd xmm1, [GOTOFF(ebx,PW_MF060_MF089)] ; xmm1=tmp4H pmaddwd xmm0, [GOTOFF(ebx,PW_MF089_F060)] ; xmm0=tmp7L pmaddwd xmm5, [GOTOFF(ebx,PW_MF089_F060)] ; xmm5=tmp7H paddd xmm4, XMMWORD [wk(0)] ; xmm4=data7L paddd xmm1, XMMWORD [wk(1)] ; xmm1=data7H paddd xmm0, xmm2 ; xmm0=data1L paddd xmm5, xmm6 ; xmm5=data1H paddd xmm4, [GOTOFF(ebx,PD_DESCALE_P2)] paddd xmm1, [GOTOFF(ebx,PD_DESCALE_P2)] psrad xmm4, DESCALE_P2 psrad xmm1, DESCALE_P2 paddd xmm0, [GOTOFF(ebx,PD_DESCALE_P2)] paddd xmm5, [GOTOFF(ebx,PD_DESCALE_P2)] psrad xmm0, DESCALE_P2 psrad xmm5, DESCALE_P2 packssdw xmm4, xmm1 ; xmm4=data7 packssdw xmm0, xmm5 ; xmm0=data1 movdqa XMMWORD [XMMBLOCK(7,0,edx,SIZEOF_DCTELEM)], xmm4 movdqa XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_DCTELEM)], xmm0 movdqa xmm1, xmm3 movdqa xmm5, xmm3 punpcklwd xmm1, xmm7 punpckhwd xmm5, xmm7 movdqa xmm3, xmm1 movdqa xmm7, xmm5 pmaddwd xmm1, [GOTOFF(ebx,PW_MF050_MF256)] ; xmm1=tmp5L pmaddwd xmm5, [GOTOFF(ebx,PW_MF050_MF256)] ; xmm5=tmp5H pmaddwd xmm3, [GOTOFF(ebx,PW_MF256_F050)] ; xmm3=tmp6L pmaddwd xmm7, [GOTOFF(ebx,PW_MF256_F050)] ; xmm7=tmp6H paddd xmm1, xmm2 ; xmm1=data5L paddd xmm5, xmm6 ; xmm5=data5H paddd xmm3, XMMWORD [wk(0)] ; xmm3=data3L paddd xmm7, XMMWORD [wk(1)] ; xmm7=data3H paddd xmm1, [GOTOFF(ebx,PD_DESCALE_P2)] paddd xmm5, [GOTOFF(ebx,PD_DESCALE_P2)] psrad xmm1, DESCALE_P2 psrad xmm5, DESCALE_P2 paddd xmm3, [GOTOFF(ebx,PD_DESCALE_P2)] paddd xmm7, [GOTOFF(ebx,PD_DESCALE_P2)] psrad xmm3, DESCALE_P2 psrad xmm7, DESCALE_P2 packssdw xmm1, xmm5 ; xmm1=data5 packssdw xmm3, xmm7 ; xmm3=data3 movdqa XMMWORD [XMMBLOCK(5,0,edx,SIZEOF_DCTELEM)], xmm1 movdqa XMMWORD [XMMBLOCK(3,0,edx,SIZEOF_DCTELEM)], xmm3 ; pop edi ; unused ; pop esi ; unused ; pop edx ; need not be preserved ; pop ecx ; unused poppic ebx mov esp, ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/i386/jidctflt-3dn.asm000066400000000000000000000423131436506551100207110ustar00rootroot00000000000000; ; jidctflt.asm - floating-point IDCT (3DNow! & MMX) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2016, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains a floating-point implementation of the inverse DCT ; (Discrete Cosine Transform). The following code is based directly on ; the IJG's original jidctflt.c; see the jidctflt.c for more details. %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 32 GLOBAL_DATA(jconst_idct_float_3dnow) EXTN(jconst_idct_float_3dnow): PD_1_414 times 2 dd 1.414213562373095048801689 PD_1_847 times 2 dd 1.847759065022573512256366 PD_1_082 times 2 dd 1.082392200292393968799446 PD_2_613 times 2 dd 2.613125929752753055713286 PD_RNDINT_MAGIC times 2 dd 100663296.0 ; (float)(0x00C00000 << 3) PB_CENTERJSAMP times 8 db CENTERJSAMPLE alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Perform dequantization and inverse DCT on one block of coefficients. ; ; GLOBAL(void) ; jsimd_idct_float_3dnow(void *dct_table, JCOEFPTR coef_block, ; JSAMPARRAY output_buf, JDIMENSION output_col) ; %define dct_table(b) (b) + 8 ; void *dct_table %define coef_block(b) (b) + 12 ; JCOEFPTR coef_block %define output_buf(b) (b) + 16 ; JSAMPARRAY output_buf %define output_col(b) (b) + 20 ; JDIMENSION output_col %define original_ebp ebp + 0 %define wk(i) ebp - (WK_NUM - (i)) * SIZEOF_MMWORD ; mmword wk[WK_NUM] %define WK_NUM 2 %define workspace wk(0) - DCTSIZE2 * SIZEOF_FAST_FLOAT ; FAST_FLOAT workspace[DCTSIZE2] align 32 GLOBAL_FUNCTION(jsimd_idct_float_3dnow) EXTN(jsimd_idct_float_3dnow): push ebp mov eax, esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_MMWORD) ; align to 64 bits mov [esp], eax mov ebp, esp ; ebp = aligned ebp lea esp, [workspace] push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address ; ---- Pass 1: process columns from input, store into work array. ; mov eax, [original_ebp] mov edx, POINTER [dct_table(eax)] ; quantptr mov esi, JCOEFPTR [coef_block(eax)] ; inptr lea edi, [workspace] ; FAST_FLOAT *wsptr mov ecx, DCTSIZE/2 ; ctr alignx 16, 7 .columnloop: %ifndef NO_ZERO_COLUMN_TEST_FLOAT_3DNOW mov eax, dword [DWBLOCK(1,0,esi,SIZEOF_JCOEF)] or eax, dword [DWBLOCK(2,0,esi,SIZEOF_JCOEF)] jnz short .columnDCT pushpic ebx ; save GOT address mov ebx, dword [DWBLOCK(3,0,esi,SIZEOF_JCOEF)] mov eax, dword [DWBLOCK(4,0,esi,SIZEOF_JCOEF)] or ebx, dword [DWBLOCK(5,0,esi,SIZEOF_JCOEF)] or eax, dword [DWBLOCK(6,0,esi,SIZEOF_JCOEF)] or ebx, dword [DWBLOCK(7,0,esi,SIZEOF_JCOEF)] or eax, ebx poppic ebx ; restore GOT address jnz short .columnDCT ; -- AC terms all zero movd mm0, dword [DWBLOCK(0,0,esi,SIZEOF_JCOEF)] punpcklwd mm0, mm0 psrad mm0, (DWORD_BIT-WORD_BIT) pi2fd mm0, mm0 pfmul mm0, MMWORD [MMBLOCK(0,0,edx,SIZEOF_FLOAT_MULT_TYPE)] movq mm1, mm0 punpckldq mm0, mm0 punpckhdq mm1, mm1 movq MMWORD [MMBLOCK(0,0,edi,SIZEOF_FAST_FLOAT)], mm0 movq MMWORD [MMBLOCK(0,1,edi,SIZEOF_FAST_FLOAT)], mm0 movq MMWORD [MMBLOCK(0,2,edi,SIZEOF_FAST_FLOAT)], mm0 movq MMWORD [MMBLOCK(0,3,edi,SIZEOF_FAST_FLOAT)], mm0 movq MMWORD [MMBLOCK(1,0,edi,SIZEOF_FAST_FLOAT)], mm1 movq MMWORD [MMBLOCK(1,1,edi,SIZEOF_FAST_FLOAT)], mm1 movq MMWORD [MMBLOCK(1,2,edi,SIZEOF_FAST_FLOAT)], mm1 movq MMWORD [MMBLOCK(1,3,edi,SIZEOF_FAST_FLOAT)], mm1 jmp near .nextcolumn alignx 16, 7 %endif .columnDCT: ; -- Even part movd mm0, dword [DWBLOCK(0,0,esi,SIZEOF_JCOEF)] movd mm1, dword [DWBLOCK(2,0,esi,SIZEOF_JCOEF)] movd mm2, dword [DWBLOCK(4,0,esi,SIZEOF_JCOEF)] movd mm3, dword [DWBLOCK(6,0,esi,SIZEOF_JCOEF)] punpcklwd mm0, mm0 punpcklwd mm1, mm1 psrad mm0, (DWORD_BIT-WORD_BIT) psrad mm1, (DWORD_BIT-WORD_BIT) pi2fd mm0, mm0 pi2fd mm1, mm1 pfmul mm0, MMWORD [MMBLOCK(0,0,edx,SIZEOF_FLOAT_MULT_TYPE)] pfmul mm1, MMWORD [MMBLOCK(2,0,edx,SIZEOF_FLOAT_MULT_TYPE)] punpcklwd mm2, mm2 punpcklwd mm3, mm3 psrad mm2, (DWORD_BIT-WORD_BIT) psrad mm3, (DWORD_BIT-WORD_BIT) pi2fd mm2, mm2 pi2fd mm3, mm3 pfmul mm2, MMWORD [MMBLOCK(4,0,edx,SIZEOF_FLOAT_MULT_TYPE)] pfmul mm3, MMWORD [MMBLOCK(6,0,edx,SIZEOF_FLOAT_MULT_TYPE)] movq mm4, mm0 movq mm5, mm1 pfsub mm0, mm2 ; mm0=tmp11 pfsub mm1, mm3 pfadd mm4, mm2 ; mm4=tmp10 pfadd mm5, mm3 ; mm5=tmp13 pfmul mm1, [GOTOFF(ebx,PD_1_414)] pfsub mm1, mm5 ; mm1=tmp12 movq mm6, mm4 movq mm7, mm0 pfsub mm4, mm5 ; mm4=tmp3 pfsub mm0, mm1 ; mm0=tmp2 pfadd mm6, mm5 ; mm6=tmp0 pfadd mm7, mm1 ; mm7=tmp1 movq MMWORD [wk(1)], mm4 ; tmp3 movq MMWORD [wk(0)], mm0 ; tmp2 ; -- Odd part movd mm2, dword [DWBLOCK(1,0,esi,SIZEOF_JCOEF)] movd mm3, dword [DWBLOCK(3,0,esi,SIZEOF_JCOEF)] movd mm5, dword [DWBLOCK(5,0,esi,SIZEOF_JCOEF)] movd mm1, dword [DWBLOCK(7,0,esi,SIZEOF_JCOEF)] punpcklwd mm2, mm2 punpcklwd mm3, mm3 psrad mm2, (DWORD_BIT-WORD_BIT) psrad mm3, (DWORD_BIT-WORD_BIT) pi2fd mm2, mm2 pi2fd mm3, mm3 pfmul mm2, MMWORD [MMBLOCK(1,0,edx,SIZEOF_FLOAT_MULT_TYPE)] pfmul mm3, MMWORD [MMBLOCK(3,0,edx,SIZEOF_FLOAT_MULT_TYPE)] punpcklwd mm5, mm5 punpcklwd mm1, mm1 psrad mm5, (DWORD_BIT-WORD_BIT) psrad mm1, (DWORD_BIT-WORD_BIT) pi2fd mm5, mm5 pi2fd mm1, mm1 pfmul mm5, MMWORD [MMBLOCK(5,0,edx,SIZEOF_FLOAT_MULT_TYPE)] pfmul mm1, MMWORD [MMBLOCK(7,0,edx,SIZEOF_FLOAT_MULT_TYPE)] movq mm4, mm2 movq mm0, mm5 pfadd mm2, mm1 ; mm2=z11 pfadd mm5, mm3 ; mm5=z13 pfsub mm4, mm1 ; mm4=z12 pfsub mm0, mm3 ; mm0=z10 movq mm1, mm2 pfsub mm2, mm5 pfadd mm1, mm5 ; mm1=tmp7 pfmul mm2, [GOTOFF(ebx,PD_1_414)] ; mm2=tmp11 movq mm3, mm0 pfadd mm0, mm4 pfmul mm0, [GOTOFF(ebx,PD_1_847)] ; mm0=z5 pfmul mm3, [GOTOFF(ebx,PD_2_613)] ; mm3=(z10 * 2.613125930) pfmul mm4, [GOTOFF(ebx,PD_1_082)] ; mm4=(z12 * 1.082392200) pfsubr mm3, mm0 ; mm3=tmp12 pfsub mm4, mm0 ; mm4=tmp10 ; -- Final output stage pfsub mm3, mm1 ; mm3=tmp6 movq mm5, mm6 movq mm0, mm7 pfadd mm6, mm1 ; mm6=data0=(00 01) pfadd mm7, mm3 ; mm7=data1=(10 11) pfsub mm5, mm1 ; mm5=data7=(70 71) pfsub mm0, mm3 ; mm0=data6=(60 61) pfsub mm2, mm3 ; mm2=tmp5 movq mm1, mm6 ; transpose coefficients punpckldq mm6, mm7 ; mm6=(00 10) punpckhdq mm1, mm7 ; mm1=(01 11) movq mm3, mm0 ; transpose coefficients punpckldq mm0, mm5 ; mm0=(60 70) punpckhdq mm3, mm5 ; mm3=(61 71) movq MMWORD [MMBLOCK(0,0,edi,SIZEOF_FAST_FLOAT)], mm6 movq MMWORD [MMBLOCK(1,0,edi,SIZEOF_FAST_FLOAT)], mm1 movq MMWORD [MMBLOCK(0,3,edi,SIZEOF_FAST_FLOAT)], mm0 movq MMWORD [MMBLOCK(1,3,edi,SIZEOF_FAST_FLOAT)], mm3 movq mm7, MMWORD [wk(0)] ; mm7=tmp2 movq mm5, MMWORD [wk(1)] ; mm5=tmp3 pfadd mm4, mm2 ; mm4=tmp4 movq mm6, mm7 movq mm1, mm5 pfadd mm7, mm2 ; mm7=data2=(20 21) pfadd mm5, mm4 ; mm5=data4=(40 41) pfsub mm6, mm2 ; mm6=data5=(50 51) pfsub mm1, mm4 ; mm1=data3=(30 31) movq mm0, mm7 ; transpose coefficients punpckldq mm7, mm1 ; mm7=(20 30) punpckhdq mm0, mm1 ; mm0=(21 31) movq mm3, mm5 ; transpose coefficients punpckldq mm5, mm6 ; mm5=(40 50) punpckhdq mm3, mm6 ; mm3=(41 51) movq MMWORD [MMBLOCK(0,1,edi,SIZEOF_FAST_FLOAT)], mm7 movq MMWORD [MMBLOCK(1,1,edi,SIZEOF_FAST_FLOAT)], mm0 movq MMWORD [MMBLOCK(0,2,edi,SIZEOF_FAST_FLOAT)], mm5 movq MMWORD [MMBLOCK(1,2,edi,SIZEOF_FAST_FLOAT)], mm3 .nextcolumn: add esi, byte 2*SIZEOF_JCOEF ; coef_block add edx, byte 2*SIZEOF_FLOAT_MULT_TYPE ; quantptr add edi, byte 2*DCTSIZE*SIZEOF_FAST_FLOAT ; wsptr dec ecx ; ctr jnz near .columnloop ; -- Prefetch the next coefficient block prefetch [esi + (DCTSIZE2-8)*SIZEOF_JCOEF + 0*32] prefetch [esi + (DCTSIZE2-8)*SIZEOF_JCOEF + 1*32] prefetch [esi + (DCTSIZE2-8)*SIZEOF_JCOEF + 2*32] prefetch [esi + (DCTSIZE2-8)*SIZEOF_JCOEF + 3*32] ; ---- Pass 2: process rows from work array, store into output array. mov eax, [original_ebp] lea esi, [workspace] ; FAST_FLOAT *wsptr mov edi, JSAMPARRAY [output_buf(eax)] ; (JSAMPROW *) mov eax, JDIMENSION [output_col(eax)] mov ecx, DCTSIZE/2 ; ctr alignx 16, 7 .rowloop: ; -- Even part movq mm0, MMWORD [MMBLOCK(0,0,esi,SIZEOF_FAST_FLOAT)] movq mm1, MMWORD [MMBLOCK(2,0,esi,SIZEOF_FAST_FLOAT)] movq mm2, MMWORD [MMBLOCK(4,0,esi,SIZEOF_FAST_FLOAT)] movq mm3, MMWORD [MMBLOCK(6,0,esi,SIZEOF_FAST_FLOAT)] movq mm4, mm0 movq mm5, mm1 pfsub mm0, mm2 ; mm0=tmp11 pfsub mm1, mm3 pfadd mm4, mm2 ; mm4=tmp10 pfadd mm5, mm3 ; mm5=tmp13 pfmul mm1, [GOTOFF(ebx,PD_1_414)] pfsub mm1, mm5 ; mm1=tmp12 movq mm6, mm4 movq mm7, mm0 pfsub mm4, mm5 ; mm4=tmp3 pfsub mm0, mm1 ; mm0=tmp2 pfadd mm6, mm5 ; mm6=tmp0 pfadd mm7, mm1 ; mm7=tmp1 movq MMWORD [wk(1)], mm4 ; tmp3 movq MMWORD [wk(0)], mm0 ; tmp2 ; -- Odd part movq mm2, MMWORD [MMBLOCK(1,0,esi,SIZEOF_FAST_FLOAT)] movq mm3, MMWORD [MMBLOCK(3,0,esi,SIZEOF_FAST_FLOAT)] movq mm5, MMWORD [MMBLOCK(5,0,esi,SIZEOF_FAST_FLOAT)] movq mm1, MMWORD [MMBLOCK(7,0,esi,SIZEOF_FAST_FLOAT)] movq mm4, mm2 movq mm0, mm5 pfadd mm2, mm1 ; mm2=z11 pfadd mm5, mm3 ; mm5=z13 pfsub mm4, mm1 ; mm4=z12 pfsub mm0, mm3 ; mm0=z10 movq mm1, mm2 pfsub mm2, mm5 pfadd mm1, mm5 ; mm1=tmp7 pfmul mm2, [GOTOFF(ebx,PD_1_414)] ; mm2=tmp11 movq mm3, mm0 pfadd mm0, mm4 pfmul mm0, [GOTOFF(ebx,PD_1_847)] ; mm0=z5 pfmul mm3, [GOTOFF(ebx,PD_2_613)] ; mm3=(z10 * 2.613125930) pfmul mm4, [GOTOFF(ebx,PD_1_082)] ; mm4=(z12 * 1.082392200) pfsubr mm3, mm0 ; mm3=tmp12 pfsub mm4, mm0 ; mm4=tmp10 ; -- Final output stage pfsub mm3, mm1 ; mm3=tmp6 movq mm5, mm6 movq mm0, mm7 pfadd mm6, mm1 ; mm6=data0=(00 10) pfadd mm7, mm3 ; mm7=data1=(01 11) pfsub mm5, mm1 ; mm5=data7=(07 17) pfsub mm0, mm3 ; mm0=data6=(06 16) pfsub mm2, mm3 ; mm2=tmp5 movq mm1, [GOTOFF(ebx,PD_RNDINT_MAGIC)] ; mm1=[PD_RNDINT_MAGIC] pcmpeqd mm3, mm3 psrld mm3, WORD_BIT ; mm3={0xFFFF 0x0000 0xFFFF 0x0000} pfadd mm6, mm1 ; mm6=roundint(data0/8)=(00 ** 10 **) pfadd mm7, mm1 ; mm7=roundint(data1/8)=(01 ** 11 **) pfadd mm0, mm1 ; mm0=roundint(data6/8)=(06 ** 16 **) pfadd mm5, mm1 ; mm5=roundint(data7/8)=(07 ** 17 **) pand mm6, mm3 ; mm6=(00 -- 10 --) pslld mm7, WORD_BIT ; mm7=(-- 01 -- 11) pand mm0, mm3 ; mm0=(06 -- 16 --) pslld mm5, WORD_BIT ; mm5=(-- 07 -- 17) por mm6, mm7 ; mm6=(00 01 10 11) por mm0, mm5 ; mm0=(06 07 16 17) movq mm1, MMWORD [wk(0)] ; mm1=tmp2 movq mm3, MMWORD [wk(1)] ; mm3=tmp3 pfadd mm4, mm2 ; mm4=tmp4 movq mm7, mm1 movq mm5, mm3 pfadd mm1, mm2 ; mm1=data2=(02 12) pfadd mm3, mm4 ; mm3=data4=(04 14) pfsub mm7, mm2 ; mm7=data5=(05 15) pfsub mm5, mm4 ; mm5=data3=(03 13) movq mm2, [GOTOFF(ebx,PD_RNDINT_MAGIC)] ; mm2=[PD_RNDINT_MAGIC] pcmpeqd mm4, mm4 psrld mm4, WORD_BIT ; mm4={0xFFFF 0x0000 0xFFFF 0x0000} pfadd mm3, mm2 ; mm3=roundint(data4/8)=(04 ** 14 **) pfadd mm7, mm2 ; mm7=roundint(data5/8)=(05 ** 15 **) pfadd mm1, mm2 ; mm1=roundint(data2/8)=(02 ** 12 **) pfadd mm5, mm2 ; mm5=roundint(data3/8)=(03 ** 13 **) pand mm3, mm4 ; mm3=(04 -- 14 --) pslld mm7, WORD_BIT ; mm7=(-- 05 -- 15) pand mm1, mm4 ; mm1=(02 -- 12 --) pslld mm5, WORD_BIT ; mm5=(-- 03 -- 13) por mm3, mm7 ; mm3=(04 05 14 15) por mm1, mm5 ; mm1=(02 03 12 13) movq mm2, [GOTOFF(ebx,PB_CENTERJSAMP)] ; mm2=[PB_CENTERJSAMP] packsswb mm6, mm3 ; mm6=(00 01 10 11 04 05 14 15) packsswb mm1, mm0 ; mm1=(02 03 12 13 06 07 16 17) paddb mm6, mm2 paddb mm1, mm2 movq mm4, mm6 ; transpose coefficients(phase 2) punpcklwd mm6, mm1 ; mm6=(00 01 02 03 10 11 12 13) punpckhwd mm4, mm1 ; mm4=(04 05 06 07 14 15 16 17) movq mm7, mm6 ; transpose coefficients(phase 3) punpckldq mm6, mm4 ; mm6=(00 01 02 03 04 05 06 07) punpckhdq mm7, mm4 ; mm7=(10 11 12 13 14 15 16 17) pushpic ebx ; save GOT address mov edx, JSAMPROW [edi+0*SIZEOF_JSAMPROW] mov ebx, JSAMPROW [edi+1*SIZEOF_JSAMPROW] movq MMWORD [edx+eax*SIZEOF_JSAMPLE], mm6 movq MMWORD [ebx+eax*SIZEOF_JSAMPLE], mm7 poppic ebx ; restore GOT address add esi, byte 2*SIZEOF_FAST_FLOAT ; wsptr add edi, byte 2*SIZEOF_JSAMPROW dec ecx ; ctr jnz near .rowloop femms ; empty MMX/3DNow! state pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx mov esp, ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/i386/jidctflt-sse.asm000066400000000000000000000605451436506551100210260ustar00rootroot00000000000000; ; jidctflt.asm - floating-point IDCT (SSE & MMX) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2016, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains a floating-point implementation of the inverse DCT ; (Discrete Cosine Transform). The following code is based directly on ; the IJG's original jidctflt.c; see the jidctflt.c for more details. %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- %macro unpcklps2 2 ; %1=(0 1 2 3) / %2=(4 5 6 7) => %1=(0 1 4 5) shufps %1, %2, 0x44 %endmacro %macro unpckhps2 2 ; %1=(0 1 2 3) / %2=(4 5 6 7) => %1=(2 3 6 7) shufps %1, %2, 0xEE %endmacro ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 32 GLOBAL_DATA(jconst_idct_float_sse) EXTN(jconst_idct_float_sse): PD_1_414 times 4 dd 1.414213562373095048801689 PD_1_847 times 4 dd 1.847759065022573512256366 PD_1_082 times 4 dd 1.082392200292393968799446 PD_M2_613 times 4 dd -2.613125929752753055713286 PD_0_125 times 4 dd 0.125 ; 1/8 PB_CENTERJSAMP times 8 db CENTERJSAMPLE alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Perform dequantization and inverse DCT on one block of coefficients. ; ; GLOBAL(void) ; jsimd_idct_float_sse(void *dct_table, JCOEFPTR coef_block, ; JSAMPARRAY output_buf, JDIMENSION output_col) ; %define dct_table(b) (b) + 8 ; void *dct_table %define coef_block(b) (b) + 12 ; JCOEFPTR coef_block %define output_buf(b) (b) + 16 ; JSAMPARRAY output_buf %define output_col(b) (b) + 20 ; JDIMENSION output_col %define original_ebp ebp + 0 %define wk(i) ebp - (WK_NUM - (i)) * SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 2 %define workspace wk(0) - DCTSIZE2 * SIZEOF_FAST_FLOAT ; FAST_FLOAT workspace[DCTSIZE2] align 32 GLOBAL_FUNCTION(jsimd_idct_float_sse) EXTN(jsimd_idct_float_sse): push ebp mov eax, esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [esp], eax mov ebp, esp ; ebp = aligned ebp lea esp, [workspace] push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address ; ---- Pass 1: process columns from input, store into work array. ; mov eax, [original_ebp] mov edx, POINTER [dct_table(eax)] ; quantptr mov esi, JCOEFPTR [coef_block(eax)] ; inptr lea edi, [workspace] ; FAST_FLOAT *wsptr mov ecx, DCTSIZE/4 ; ctr alignx 16, 7 .columnloop: %ifndef NO_ZERO_COLUMN_TEST_FLOAT_SSE mov eax, dword [DWBLOCK(1,0,esi,SIZEOF_JCOEF)] or eax, dword [DWBLOCK(2,0,esi,SIZEOF_JCOEF)] jnz near .columnDCT movq mm0, MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)] movq mm1, MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)] por mm0, MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)] por mm1, MMWORD [MMBLOCK(4,0,esi,SIZEOF_JCOEF)] por mm0, MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)] por mm1, MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)] por mm0, MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)] por mm1, mm0 packsswb mm1, mm1 movd eax, mm1 test eax, eax jnz short .columnDCT ; -- AC terms all zero movq mm0, MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)] punpckhwd mm1, mm0 ; mm1=(** 02 ** 03) punpcklwd mm0, mm0 ; mm0=(00 00 01 01) psrad mm1, (DWORD_BIT-WORD_BIT) ; mm1=in0H=(02 03) psrad mm0, (DWORD_BIT-WORD_BIT) ; mm0=in0L=(00 01) cvtpi2ps xmm3, mm1 ; xmm3=(02 03 ** **) cvtpi2ps xmm0, mm0 ; xmm0=(00 01 ** **) movlhps xmm0, xmm3 ; xmm0=in0=(00 01 02 03) mulps xmm0, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_FLOAT_MULT_TYPE)] movaps xmm1, xmm0 movaps xmm2, xmm0 movaps xmm3, xmm0 shufps xmm0, xmm0, 0x00 ; xmm0=(00 00 00 00) shufps xmm1, xmm1, 0x55 ; xmm1=(01 01 01 01) shufps xmm2, xmm2, 0xAA ; xmm2=(02 02 02 02) shufps xmm3, xmm3, 0xFF ; xmm3=(03 03 03 03) movaps XMMWORD [XMMBLOCK(0,0,edi,SIZEOF_FAST_FLOAT)], xmm0 movaps XMMWORD [XMMBLOCK(0,1,edi,SIZEOF_FAST_FLOAT)], xmm0 movaps XMMWORD [XMMBLOCK(1,0,edi,SIZEOF_FAST_FLOAT)], xmm1 movaps XMMWORD [XMMBLOCK(1,1,edi,SIZEOF_FAST_FLOAT)], xmm1 movaps XMMWORD [XMMBLOCK(2,0,edi,SIZEOF_FAST_FLOAT)], xmm2 movaps XMMWORD [XMMBLOCK(2,1,edi,SIZEOF_FAST_FLOAT)], xmm2 movaps XMMWORD [XMMBLOCK(3,0,edi,SIZEOF_FAST_FLOAT)], xmm3 movaps XMMWORD [XMMBLOCK(3,1,edi,SIZEOF_FAST_FLOAT)], xmm3 jmp near .nextcolumn alignx 16, 7 %endif .columnDCT: ; -- Even part movq mm0, MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)] movq mm1, MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)] movq mm2, MMWORD [MMBLOCK(4,0,esi,SIZEOF_JCOEF)] movq mm3, MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)] punpckhwd mm4, mm0 ; mm4=(** 02 ** 03) punpcklwd mm0, mm0 ; mm0=(00 00 01 01) punpckhwd mm5, mm1 ; mm5=(** 22 ** 23) punpcklwd mm1, mm1 ; mm1=(20 20 21 21) psrad mm4, (DWORD_BIT-WORD_BIT) ; mm4=in0H=(02 03) psrad mm0, (DWORD_BIT-WORD_BIT) ; mm0=in0L=(00 01) cvtpi2ps xmm4, mm4 ; xmm4=(02 03 ** **) cvtpi2ps xmm0, mm0 ; xmm0=(00 01 ** **) psrad mm5, (DWORD_BIT-WORD_BIT) ; mm5=in2H=(22 23) psrad mm1, (DWORD_BIT-WORD_BIT) ; mm1=in2L=(20 21) cvtpi2ps xmm5, mm5 ; xmm5=(22 23 ** **) cvtpi2ps xmm1, mm1 ; xmm1=(20 21 ** **) punpckhwd mm6, mm2 ; mm6=(** 42 ** 43) punpcklwd mm2, mm2 ; mm2=(40 40 41 41) punpckhwd mm7, mm3 ; mm7=(** 62 ** 63) punpcklwd mm3, mm3 ; mm3=(60 60 61 61) psrad mm6, (DWORD_BIT-WORD_BIT) ; mm6=in4H=(42 43) psrad mm2, (DWORD_BIT-WORD_BIT) ; mm2=in4L=(40 41) cvtpi2ps xmm6, mm6 ; xmm6=(42 43 ** **) cvtpi2ps xmm2, mm2 ; xmm2=(40 41 ** **) psrad mm7, (DWORD_BIT-WORD_BIT) ; mm7=in6H=(62 63) psrad mm3, (DWORD_BIT-WORD_BIT) ; mm3=in6L=(60 61) cvtpi2ps xmm7, mm7 ; xmm7=(62 63 ** **) cvtpi2ps xmm3, mm3 ; xmm3=(60 61 ** **) movlhps xmm0, xmm4 ; xmm0=in0=(00 01 02 03) movlhps xmm1, xmm5 ; xmm1=in2=(20 21 22 23) mulps xmm0, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_FLOAT_MULT_TYPE)] mulps xmm1, XMMWORD [XMMBLOCK(2,0,edx,SIZEOF_FLOAT_MULT_TYPE)] movlhps xmm2, xmm6 ; xmm2=in4=(40 41 42 43) movlhps xmm3, xmm7 ; xmm3=in6=(60 61 62 63) mulps xmm2, XMMWORD [XMMBLOCK(4,0,edx,SIZEOF_FLOAT_MULT_TYPE)] mulps xmm3, XMMWORD [XMMBLOCK(6,0,edx,SIZEOF_FLOAT_MULT_TYPE)] movaps xmm4, xmm0 movaps xmm5, xmm1 subps xmm0, xmm2 ; xmm0=tmp11 subps xmm1, xmm3 addps xmm4, xmm2 ; xmm4=tmp10 addps xmm5, xmm3 ; xmm5=tmp13 mulps xmm1, [GOTOFF(ebx,PD_1_414)] subps xmm1, xmm5 ; xmm1=tmp12 movaps xmm6, xmm4 movaps xmm7, xmm0 subps xmm4, xmm5 ; xmm4=tmp3 subps xmm0, xmm1 ; xmm0=tmp2 addps xmm6, xmm5 ; xmm6=tmp0 addps xmm7, xmm1 ; xmm7=tmp1 movaps XMMWORD [wk(1)], xmm4 ; tmp3 movaps XMMWORD [wk(0)], xmm0 ; tmp2 ; -- Odd part movq mm4, MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)] movq mm0, MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)] movq mm5, MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)] movq mm1, MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)] punpckhwd mm6, mm4 ; mm6=(** 12 ** 13) punpcklwd mm4, mm4 ; mm4=(10 10 11 11) punpckhwd mm2, mm0 ; mm2=(** 32 ** 33) punpcklwd mm0, mm0 ; mm0=(30 30 31 31) psrad mm6, (DWORD_BIT-WORD_BIT) ; mm6=in1H=(12 13) psrad mm4, (DWORD_BIT-WORD_BIT) ; mm4=in1L=(10 11) cvtpi2ps xmm4, mm6 ; xmm4=(12 13 ** **) cvtpi2ps xmm2, mm4 ; xmm2=(10 11 ** **) psrad mm2, (DWORD_BIT-WORD_BIT) ; mm2=in3H=(32 33) psrad mm0, (DWORD_BIT-WORD_BIT) ; mm0=in3L=(30 31) cvtpi2ps xmm0, mm2 ; xmm0=(32 33 ** **) cvtpi2ps xmm3, mm0 ; xmm3=(30 31 ** **) punpckhwd mm7, mm5 ; mm7=(** 52 ** 53) punpcklwd mm5, mm5 ; mm5=(50 50 51 51) punpckhwd mm3, mm1 ; mm3=(** 72 ** 73) punpcklwd mm1, mm1 ; mm1=(70 70 71 71) movlhps xmm2, xmm4 ; xmm2=in1=(10 11 12 13) movlhps xmm3, xmm0 ; xmm3=in3=(30 31 32 33) psrad mm7, (DWORD_BIT-WORD_BIT) ; mm7=in5H=(52 53) psrad mm5, (DWORD_BIT-WORD_BIT) ; mm5=in5L=(50 51) cvtpi2ps xmm4, mm7 ; xmm4=(52 53 ** **) cvtpi2ps xmm5, mm5 ; xmm5=(50 51 ** **) psrad mm3, (DWORD_BIT-WORD_BIT) ; mm3=in7H=(72 73) psrad mm1, (DWORD_BIT-WORD_BIT) ; mm1=in7L=(70 71) cvtpi2ps xmm0, mm3 ; xmm0=(72 73 ** **) cvtpi2ps xmm1, mm1 ; xmm1=(70 71 ** **) mulps xmm2, XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_FLOAT_MULT_TYPE)] mulps xmm3, XMMWORD [XMMBLOCK(3,0,edx,SIZEOF_FLOAT_MULT_TYPE)] movlhps xmm5, xmm4 ; xmm5=in5=(50 51 52 53) movlhps xmm1, xmm0 ; xmm1=in7=(70 71 72 73) mulps xmm5, XMMWORD [XMMBLOCK(5,0,edx,SIZEOF_FLOAT_MULT_TYPE)] mulps xmm1, XMMWORD [XMMBLOCK(7,0,edx,SIZEOF_FLOAT_MULT_TYPE)] movaps xmm4, xmm2 movaps xmm0, xmm5 addps xmm2, xmm1 ; xmm2=z11 addps xmm5, xmm3 ; xmm5=z13 subps xmm4, xmm1 ; xmm4=z12 subps xmm0, xmm3 ; xmm0=z10 movaps xmm1, xmm2 subps xmm2, xmm5 addps xmm1, xmm5 ; xmm1=tmp7 mulps xmm2, [GOTOFF(ebx,PD_1_414)] ; xmm2=tmp11 movaps xmm3, xmm0 addps xmm0, xmm4 mulps xmm0, [GOTOFF(ebx,PD_1_847)] ; xmm0=z5 mulps xmm3, [GOTOFF(ebx,PD_M2_613)] ; xmm3=(z10 * -2.613125930) mulps xmm4, [GOTOFF(ebx,PD_1_082)] ; xmm4=(z12 * 1.082392200) addps xmm3, xmm0 ; xmm3=tmp12 subps xmm4, xmm0 ; xmm4=tmp10 ; -- Final output stage subps xmm3, xmm1 ; xmm3=tmp6 movaps xmm5, xmm6 movaps xmm0, xmm7 addps xmm6, xmm1 ; xmm6=data0=(00 01 02 03) addps xmm7, xmm3 ; xmm7=data1=(10 11 12 13) subps xmm5, xmm1 ; xmm5=data7=(70 71 72 73) subps xmm0, xmm3 ; xmm0=data6=(60 61 62 63) subps xmm2, xmm3 ; xmm2=tmp5 movaps xmm1, xmm6 ; transpose coefficients(phase 1) unpcklps xmm6, xmm7 ; xmm6=(00 10 01 11) unpckhps xmm1, xmm7 ; xmm1=(02 12 03 13) movaps xmm3, xmm0 ; transpose coefficients(phase 1) unpcklps xmm0, xmm5 ; xmm0=(60 70 61 71) unpckhps xmm3, xmm5 ; xmm3=(62 72 63 73) movaps xmm7, XMMWORD [wk(0)] ; xmm7=tmp2 movaps xmm5, XMMWORD [wk(1)] ; xmm5=tmp3 movaps XMMWORD [wk(0)], xmm0 ; wk(0)=(60 70 61 71) movaps XMMWORD [wk(1)], xmm3 ; wk(1)=(62 72 63 73) addps xmm4, xmm2 ; xmm4=tmp4 movaps xmm0, xmm7 movaps xmm3, xmm5 addps xmm7, xmm2 ; xmm7=data2=(20 21 22 23) addps xmm5, xmm4 ; xmm5=data4=(40 41 42 43) subps xmm0, xmm2 ; xmm0=data5=(50 51 52 53) subps xmm3, xmm4 ; xmm3=data3=(30 31 32 33) movaps xmm2, xmm7 ; transpose coefficients(phase 1) unpcklps xmm7, xmm3 ; xmm7=(20 30 21 31) unpckhps xmm2, xmm3 ; xmm2=(22 32 23 33) movaps xmm4, xmm5 ; transpose coefficients(phase 1) unpcklps xmm5, xmm0 ; xmm5=(40 50 41 51) unpckhps xmm4, xmm0 ; xmm4=(42 52 43 53) movaps xmm3, xmm6 ; transpose coefficients(phase 2) unpcklps2 xmm6, xmm7 ; xmm6=(00 10 20 30) unpckhps2 xmm3, xmm7 ; xmm3=(01 11 21 31) movaps xmm0, xmm1 ; transpose coefficients(phase 2) unpcklps2 xmm1, xmm2 ; xmm1=(02 12 22 32) unpckhps2 xmm0, xmm2 ; xmm0=(03 13 23 33) movaps xmm7, XMMWORD [wk(0)] ; xmm7=(60 70 61 71) movaps xmm2, XMMWORD [wk(1)] ; xmm2=(62 72 63 73) movaps XMMWORD [XMMBLOCK(0,0,edi,SIZEOF_FAST_FLOAT)], xmm6 movaps XMMWORD [XMMBLOCK(1,0,edi,SIZEOF_FAST_FLOAT)], xmm3 movaps XMMWORD [XMMBLOCK(2,0,edi,SIZEOF_FAST_FLOAT)], xmm1 movaps XMMWORD [XMMBLOCK(3,0,edi,SIZEOF_FAST_FLOAT)], xmm0 movaps xmm6, xmm5 ; transpose coefficients(phase 2) unpcklps2 xmm5, xmm7 ; xmm5=(40 50 60 70) unpckhps2 xmm6, xmm7 ; xmm6=(41 51 61 71) movaps xmm3, xmm4 ; transpose coefficients(phase 2) unpcklps2 xmm4, xmm2 ; xmm4=(42 52 62 72) unpckhps2 xmm3, xmm2 ; xmm3=(43 53 63 73) movaps XMMWORD [XMMBLOCK(0,1,edi,SIZEOF_FAST_FLOAT)], xmm5 movaps XMMWORD [XMMBLOCK(1,1,edi,SIZEOF_FAST_FLOAT)], xmm6 movaps XMMWORD [XMMBLOCK(2,1,edi,SIZEOF_FAST_FLOAT)], xmm4 movaps XMMWORD [XMMBLOCK(3,1,edi,SIZEOF_FAST_FLOAT)], xmm3 .nextcolumn: add esi, byte 4*SIZEOF_JCOEF ; coef_block add edx, byte 4*SIZEOF_FLOAT_MULT_TYPE ; quantptr add edi, 4*DCTSIZE*SIZEOF_FAST_FLOAT ; wsptr dec ecx ; ctr jnz near .columnloop ; -- Prefetch the next coefficient block prefetchnta [esi + (DCTSIZE2-8)*SIZEOF_JCOEF + 0*32] prefetchnta [esi + (DCTSIZE2-8)*SIZEOF_JCOEF + 1*32] prefetchnta [esi + (DCTSIZE2-8)*SIZEOF_JCOEF + 2*32] prefetchnta [esi + (DCTSIZE2-8)*SIZEOF_JCOEF + 3*32] ; ---- Pass 2: process rows from work array, store into output array. mov eax, [original_ebp] lea esi, [workspace] ; FAST_FLOAT *wsptr mov edi, JSAMPARRAY [output_buf(eax)] ; (JSAMPROW *) mov eax, JDIMENSION [output_col(eax)] mov ecx, DCTSIZE/4 ; ctr alignx 16, 7 .rowloop: ; -- Even part movaps xmm0, XMMWORD [XMMBLOCK(0,0,esi,SIZEOF_FAST_FLOAT)] movaps xmm1, XMMWORD [XMMBLOCK(2,0,esi,SIZEOF_FAST_FLOAT)] movaps xmm2, XMMWORD [XMMBLOCK(4,0,esi,SIZEOF_FAST_FLOAT)] movaps xmm3, XMMWORD [XMMBLOCK(6,0,esi,SIZEOF_FAST_FLOAT)] movaps xmm4, xmm0 movaps xmm5, xmm1 subps xmm0, xmm2 ; xmm0=tmp11 subps xmm1, xmm3 addps xmm4, xmm2 ; xmm4=tmp10 addps xmm5, xmm3 ; xmm5=tmp13 mulps xmm1, [GOTOFF(ebx,PD_1_414)] subps xmm1, xmm5 ; xmm1=tmp12 movaps xmm6, xmm4 movaps xmm7, xmm0 subps xmm4, xmm5 ; xmm4=tmp3 subps xmm0, xmm1 ; xmm0=tmp2 addps xmm6, xmm5 ; xmm6=tmp0 addps xmm7, xmm1 ; xmm7=tmp1 movaps XMMWORD [wk(1)], xmm4 ; tmp3 movaps XMMWORD [wk(0)], xmm0 ; tmp2 ; -- Odd part movaps xmm2, XMMWORD [XMMBLOCK(1,0,esi,SIZEOF_FAST_FLOAT)] movaps xmm3, XMMWORD [XMMBLOCK(3,0,esi,SIZEOF_FAST_FLOAT)] movaps xmm5, XMMWORD [XMMBLOCK(5,0,esi,SIZEOF_FAST_FLOAT)] movaps xmm1, XMMWORD [XMMBLOCK(7,0,esi,SIZEOF_FAST_FLOAT)] movaps xmm4, xmm2 movaps xmm0, xmm5 addps xmm2, xmm1 ; xmm2=z11 addps xmm5, xmm3 ; xmm5=z13 subps xmm4, xmm1 ; xmm4=z12 subps xmm0, xmm3 ; xmm0=z10 movaps xmm1, xmm2 subps xmm2, xmm5 addps xmm1, xmm5 ; xmm1=tmp7 mulps xmm2, [GOTOFF(ebx,PD_1_414)] ; xmm2=tmp11 movaps xmm3, xmm0 addps xmm0, xmm4 mulps xmm0, [GOTOFF(ebx,PD_1_847)] ; xmm0=z5 mulps xmm3, [GOTOFF(ebx,PD_M2_613)] ; xmm3=(z10 * -2.613125930) mulps xmm4, [GOTOFF(ebx,PD_1_082)] ; xmm4=(z12 * 1.082392200) addps xmm3, xmm0 ; xmm3=tmp12 subps xmm4, xmm0 ; xmm4=tmp10 ; -- Final output stage subps xmm3, xmm1 ; xmm3=tmp6 movaps xmm5, xmm6 movaps xmm0, xmm7 addps xmm6, xmm1 ; xmm6=data0=(00 10 20 30) addps xmm7, xmm3 ; xmm7=data1=(01 11 21 31) subps xmm5, xmm1 ; xmm5=data7=(07 17 27 37) subps xmm0, xmm3 ; xmm0=data6=(06 16 26 36) subps xmm2, xmm3 ; xmm2=tmp5 movaps xmm1, [GOTOFF(ebx,PD_0_125)] ; xmm1=[PD_0_125] mulps xmm6, xmm1 ; descale(1/8) mulps xmm7, xmm1 ; descale(1/8) mulps xmm5, xmm1 ; descale(1/8) mulps xmm0, xmm1 ; descale(1/8) movhlps xmm3, xmm6 movhlps xmm1, xmm7 cvtps2pi mm0, xmm6 ; round to int32, mm0=data0L=(00 10) cvtps2pi mm1, xmm7 ; round to int32, mm1=data1L=(01 11) cvtps2pi mm2, xmm3 ; round to int32, mm2=data0H=(20 30) cvtps2pi mm3, xmm1 ; round to int32, mm3=data1H=(21 31) packssdw mm0, mm2 ; mm0=data0=(00 10 20 30) packssdw mm1, mm3 ; mm1=data1=(01 11 21 31) movhlps xmm6, xmm5 movhlps xmm7, xmm0 cvtps2pi mm4, xmm5 ; round to int32, mm4=data7L=(07 17) cvtps2pi mm5, xmm0 ; round to int32, mm5=data6L=(06 16) cvtps2pi mm6, xmm6 ; round to int32, mm6=data7H=(27 37) cvtps2pi mm7, xmm7 ; round to int32, mm7=data6H=(26 36) packssdw mm4, mm6 ; mm4=data7=(07 17 27 37) packssdw mm5, mm7 ; mm5=data6=(06 16 26 36) packsswb mm0, mm5 ; mm0=(00 10 20 30 06 16 26 36) packsswb mm1, mm4 ; mm1=(01 11 21 31 07 17 27 37) movaps xmm3, XMMWORD [wk(0)] ; xmm3=tmp2 movaps xmm1, XMMWORD [wk(1)] ; xmm1=tmp3 movaps xmm6, [GOTOFF(ebx,PD_0_125)] ; xmm6=[PD_0_125] addps xmm4, xmm2 ; xmm4=tmp4 movaps xmm5, xmm3 movaps xmm0, xmm1 addps xmm3, xmm2 ; xmm3=data2=(02 12 22 32) addps xmm1, xmm4 ; xmm1=data4=(04 14 24 34) subps xmm5, xmm2 ; xmm5=data5=(05 15 25 35) subps xmm0, xmm4 ; xmm0=data3=(03 13 23 33) mulps xmm3, xmm6 ; descale(1/8) mulps xmm1, xmm6 ; descale(1/8) mulps xmm5, xmm6 ; descale(1/8) mulps xmm0, xmm6 ; descale(1/8) movhlps xmm7, xmm3 movhlps xmm2, xmm1 cvtps2pi mm2, xmm3 ; round to int32, mm2=data2L=(02 12) cvtps2pi mm3, xmm1 ; round to int32, mm3=data4L=(04 14) cvtps2pi mm6, xmm7 ; round to int32, mm6=data2H=(22 32) cvtps2pi mm7, xmm2 ; round to int32, mm7=data4H=(24 34) packssdw mm2, mm6 ; mm2=data2=(02 12 22 32) packssdw mm3, mm7 ; mm3=data4=(04 14 24 34) movhlps xmm4, xmm5 movhlps xmm6, xmm0 cvtps2pi mm5, xmm5 ; round to int32, mm5=data5L=(05 15) cvtps2pi mm4, xmm0 ; round to int32, mm4=data3L=(03 13) cvtps2pi mm6, xmm4 ; round to int32, mm6=data5H=(25 35) cvtps2pi mm7, xmm6 ; round to int32, mm7=data3H=(23 33) packssdw mm5, mm6 ; mm5=data5=(05 15 25 35) packssdw mm4, mm7 ; mm4=data3=(03 13 23 33) movq mm6, [GOTOFF(ebx,PB_CENTERJSAMP)] ; mm6=[PB_CENTERJSAMP] packsswb mm2, mm3 ; mm2=(02 12 22 32 04 14 24 34) packsswb mm4, mm5 ; mm4=(03 13 23 33 05 15 25 35) paddb mm0, mm6 paddb mm1, mm6 paddb mm2, mm6 paddb mm4, mm6 movq mm7, mm0 ; transpose coefficients(phase 1) punpcklbw mm0, mm1 ; mm0=(00 01 10 11 20 21 30 31) punpckhbw mm7, mm1 ; mm7=(06 07 16 17 26 27 36 37) movq mm3, mm2 ; transpose coefficients(phase 1) punpcklbw mm2, mm4 ; mm2=(02 03 12 13 22 23 32 33) punpckhbw mm3, mm4 ; mm3=(04 05 14 15 24 25 34 35) movq mm5, mm0 ; transpose coefficients(phase 2) punpcklwd mm0, mm2 ; mm0=(00 01 02 03 10 11 12 13) punpckhwd mm5, mm2 ; mm5=(20 21 22 23 30 31 32 33) movq mm6, mm3 ; transpose coefficients(phase 2) punpcklwd mm3, mm7 ; mm3=(04 05 06 07 14 15 16 17) punpckhwd mm6, mm7 ; mm6=(24 25 26 27 34 35 36 37) movq mm1, mm0 ; transpose coefficients(phase 3) punpckldq mm0, mm3 ; mm0=(00 01 02 03 04 05 06 07) punpckhdq mm1, mm3 ; mm1=(10 11 12 13 14 15 16 17) movq mm4, mm5 ; transpose coefficients(phase 3) punpckldq mm5, mm6 ; mm5=(20 21 22 23 24 25 26 27) punpckhdq mm4, mm6 ; mm4=(30 31 32 33 34 35 36 37) pushpic ebx ; save GOT address mov edx, JSAMPROW [edi+0*SIZEOF_JSAMPROW] mov ebx, JSAMPROW [edi+1*SIZEOF_JSAMPROW] movq MMWORD [edx+eax*SIZEOF_JSAMPLE], mm0 movq MMWORD [ebx+eax*SIZEOF_JSAMPLE], mm1 mov edx, JSAMPROW [edi+2*SIZEOF_JSAMPROW] mov ebx, JSAMPROW [edi+3*SIZEOF_JSAMPROW] movq MMWORD [edx+eax*SIZEOF_JSAMPLE], mm5 movq MMWORD [ebx+eax*SIZEOF_JSAMPLE], mm4 poppic ebx ; restore GOT address add esi, byte 4*SIZEOF_FAST_FLOAT ; wsptr add edi, byte 4*SIZEOF_JSAMPROW dec ecx ; ctr jnz near .rowloop emms ; empty MMX state pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx mov esp, ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/i386/jidctflt-sse2.asm000066400000000000000000000524361436506551100211100ustar00rootroot00000000000000; ; jidctflt.asm - floating-point IDCT (SSE & SSE2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2016, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains a floating-point implementation of the inverse DCT ; (Discrete Cosine Transform). The following code is based directly on ; the IJG's original jidctflt.c; see the jidctflt.c for more details. %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- %macro unpcklps2 2 ; %1=(0 1 2 3) / %2=(4 5 6 7) => %1=(0 1 4 5) shufps %1, %2, 0x44 %endmacro %macro unpckhps2 2 ; %1=(0 1 2 3) / %2=(4 5 6 7) => %1=(2 3 6 7) shufps %1, %2, 0xEE %endmacro ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 32 GLOBAL_DATA(jconst_idct_float_sse2) EXTN(jconst_idct_float_sse2): PD_1_414 times 4 dd 1.414213562373095048801689 PD_1_847 times 4 dd 1.847759065022573512256366 PD_1_082 times 4 dd 1.082392200292393968799446 PD_M2_613 times 4 dd -2.613125929752753055713286 PD_RNDINT_MAGIC times 4 dd 100663296.0 ; (float)(0x00C00000 << 3) PB_CENTERJSAMP times 16 db CENTERJSAMPLE alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Perform dequantization and inverse DCT on one block of coefficients. ; ; GLOBAL(void) ; jsimd_idct_float_sse2(void *dct_table, JCOEFPTR coef_block, ; JSAMPARRAY output_buf, JDIMENSION output_col) ; %define dct_table(b) (b) + 8 ; void *dct_table %define coef_block(b) (b) + 12 ; JCOEFPTR coef_block %define output_buf(b) (b) + 16 ; JSAMPARRAY output_buf %define output_col(b) (b) + 20 ; JDIMENSION output_col %define original_ebp ebp + 0 %define wk(i) ebp - (WK_NUM - (i)) * SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 2 %define workspace wk(0) - DCTSIZE2 * SIZEOF_FAST_FLOAT ; FAST_FLOAT workspace[DCTSIZE2] align 32 GLOBAL_FUNCTION(jsimd_idct_float_sse2) EXTN(jsimd_idct_float_sse2): push ebp mov eax, esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [esp], eax mov ebp, esp ; ebp = aligned ebp lea esp, [workspace] push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address ; ---- Pass 1: process columns from input, store into work array. ; mov eax, [original_ebp] mov edx, POINTER [dct_table(eax)] ; quantptr mov esi, JCOEFPTR [coef_block(eax)] ; inptr lea edi, [workspace] ; FAST_FLOAT *wsptr mov ecx, DCTSIZE/4 ; ctr alignx 16, 7 .columnloop: %ifndef NO_ZERO_COLUMN_TEST_FLOAT_SSE mov eax, dword [DWBLOCK(1,0,esi,SIZEOF_JCOEF)] or eax, dword [DWBLOCK(2,0,esi,SIZEOF_JCOEF)] jnz near .columnDCT movq xmm1, XMM_MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)] movq xmm2, XMM_MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)] movq xmm3, XMM_MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)] movq xmm4, XMM_MMWORD [MMBLOCK(4,0,esi,SIZEOF_JCOEF)] movq xmm5, XMM_MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)] movq xmm6, XMM_MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)] movq xmm7, XMM_MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)] por xmm1, xmm2 por xmm3, xmm4 por xmm5, xmm6 por xmm1, xmm3 por xmm5, xmm7 por xmm1, xmm5 packsswb xmm1, xmm1 movd eax, xmm1 test eax, eax jnz short .columnDCT ; -- AC terms all zero movq xmm0, XMM_MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)] punpcklwd xmm0, xmm0 ; xmm0=(00 00 01 01 02 02 03 03) psrad xmm0, (DWORD_BIT-WORD_BIT) ; xmm0=in0=(00 01 02 03) cvtdq2ps xmm0, xmm0 ; xmm0=in0=(00 01 02 03) mulps xmm0, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_FLOAT_MULT_TYPE)] movaps xmm1, xmm0 movaps xmm2, xmm0 movaps xmm3, xmm0 shufps xmm0, xmm0, 0x00 ; xmm0=(00 00 00 00) shufps xmm1, xmm1, 0x55 ; xmm1=(01 01 01 01) shufps xmm2, xmm2, 0xAA ; xmm2=(02 02 02 02) shufps xmm3, xmm3, 0xFF ; xmm3=(03 03 03 03) movaps XMMWORD [XMMBLOCK(0,0,edi,SIZEOF_FAST_FLOAT)], xmm0 movaps XMMWORD [XMMBLOCK(0,1,edi,SIZEOF_FAST_FLOAT)], xmm0 movaps XMMWORD [XMMBLOCK(1,0,edi,SIZEOF_FAST_FLOAT)], xmm1 movaps XMMWORD [XMMBLOCK(1,1,edi,SIZEOF_FAST_FLOAT)], xmm1 movaps XMMWORD [XMMBLOCK(2,0,edi,SIZEOF_FAST_FLOAT)], xmm2 movaps XMMWORD [XMMBLOCK(2,1,edi,SIZEOF_FAST_FLOAT)], xmm2 movaps XMMWORD [XMMBLOCK(3,0,edi,SIZEOF_FAST_FLOAT)], xmm3 movaps XMMWORD [XMMBLOCK(3,1,edi,SIZEOF_FAST_FLOAT)], xmm3 jmp near .nextcolumn alignx 16, 7 %endif .columnDCT: ; -- Even part movq xmm0, XMM_MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)] movq xmm1, XMM_MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)] movq xmm2, XMM_MMWORD [MMBLOCK(4,0,esi,SIZEOF_JCOEF)] movq xmm3, XMM_MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)] punpcklwd xmm0, xmm0 ; xmm0=(00 00 01 01 02 02 03 03) punpcklwd xmm1, xmm1 ; xmm1=(20 20 21 21 22 22 23 23) psrad xmm0, (DWORD_BIT-WORD_BIT) ; xmm0=in0=(00 01 02 03) psrad xmm1, (DWORD_BIT-WORD_BIT) ; xmm1=in2=(20 21 22 23) cvtdq2ps xmm0, xmm0 ; xmm0=in0=(00 01 02 03) cvtdq2ps xmm1, xmm1 ; xmm1=in2=(20 21 22 23) punpcklwd xmm2, xmm2 ; xmm2=(40 40 41 41 42 42 43 43) punpcklwd xmm3, xmm3 ; xmm3=(60 60 61 61 62 62 63 63) psrad xmm2, (DWORD_BIT-WORD_BIT) ; xmm2=in4=(40 41 42 43) psrad xmm3, (DWORD_BIT-WORD_BIT) ; xmm3=in6=(60 61 62 63) cvtdq2ps xmm2, xmm2 ; xmm2=in4=(40 41 42 43) cvtdq2ps xmm3, xmm3 ; xmm3=in6=(60 61 62 63) mulps xmm0, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_FLOAT_MULT_TYPE)] mulps xmm1, XMMWORD [XMMBLOCK(2,0,edx,SIZEOF_FLOAT_MULT_TYPE)] mulps xmm2, XMMWORD [XMMBLOCK(4,0,edx,SIZEOF_FLOAT_MULT_TYPE)] mulps xmm3, XMMWORD [XMMBLOCK(6,0,edx,SIZEOF_FLOAT_MULT_TYPE)] movaps xmm4, xmm0 movaps xmm5, xmm1 subps xmm0, xmm2 ; xmm0=tmp11 subps xmm1, xmm3 addps xmm4, xmm2 ; xmm4=tmp10 addps xmm5, xmm3 ; xmm5=tmp13 mulps xmm1, [GOTOFF(ebx,PD_1_414)] subps xmm1, xmm5 ; xmm1=tmp12 movaps xmm6, xmm4 movaps xmm7, xmm0 subps xmm4, xmm5 ; xmm4=tmp3 subps xmm0, xmm1 ; xmm0=tmp2 addps xmm6, xmm5 ; xmm6=tmp0 addps xmm7, xmm1 ; xmm7=tmp1 movaps XMMWORD [wk(1)], xmm4 ; tmp3 movaps XMMWORD [wk(0)], xmm0 ; tmp2 ; -- Odd part movq xmm2, XMM_MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)] movq xmm3, XMM_MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)] movq xmm5, XMM_MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)] movq xmm1, XMM_MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)] punpcklwd xmm2, xmm2 ; xmm2=(10 10 11 11 12 12 13 13) punpcklwd xmm3, xmm3 ; xmm3=(30 30 31 31 32 32 33 33) psrad xmm2, (DWORD_BIT-WORD_BIT) ; xmm2=in1=(10 11 12 13) psrad xmm3, (DWORD_BIT-WORD_BIT) ; xmm3=in3=(30 31 32 33) cvtdq2ps xmm2, xmm2 ; xmm2=in1=(10 11 12 13) cvtdq2ps xmm3, xmm3 ; xmm3=in3=(30 31 32 33) punpcklwd xmm5, xmm5 ; xmm5=(50 50 51 51 52 52 53 53) punpcklwd xmm1, xmm1 ; xmm1=(70 70 71 71 72 72 73 73) psrad xmm5, (DWORD_BIT-WORD_BIT) ; xmm5=in5=(50 51 52 53) psrad xmm1, (DWORD_BIT-WORD_BIT) ; xmm1=in7=(70 71 72 73) cvtdq2ps xmm5, xmm5 ; xmm5=in5=(50 51 52 53) cvtdq2ps xmm1, xmm1 ; xmm1=in7=(70 71 72 73) mulps xmm2, XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_FLOAT_MULT_TYPE)] mulps xmm3, XMMWORD [XMMBLOCK(3,0,edx,SIZEOF_FLOAT_MULT_TYPE)] mulps xmm5, XMMWORD [XMMBLOCK(5,0,edx,SIZEOF_FLOAT_MULT_TYPE)] mulps xmm1, XMMWORD [XMMBLOCK(7,0,edx,SIZEOF_FLOAT_MULT_TYPE)] movaps xmm4, xmm2 movaps xmm0, xmm5 addps xmm2, xmm1 ; xmm2=z11 addps xmm5, xmm3 ; xmm5=z13 subps xmm4, xmm1 ; xmm4=z12 subps xmm0, xmm3 ; xmm0=z10 movaps xmm1, xmm2 subps xmm2, xmm5 addps xmm1, xmm5 ; xmm1=tmp7 mulps xmm2, [GOTOFF(ebx,PD_1_414)] ; xmm2=tmp11 movaps xmm3, xmm0 addps xmm0, xmm4 mulps xmm0, [GOTOFF(ebx,PD_1_847)] ; xmm0=z5 mulps xmm3, [GOTOFF(ebx,PD_M2_613)] ; xmm3=(z10 * -2.613125930) mulps xmm4, [GOTOFF(ebx,PD_1_082)] ; xmm4=(z12 * 1.082392200) addps xmm3, xmm0 ; xmm3=tmp12 subps xmm4, xmm0 ; xmm4=tmp10 ; -- Final output stage subps xmm3, xmm1 ; xmm3=tmp6 movaps xmm5, xmm6 movaps xmm0, xmm7 addps xmm6, xmm1 ; xmm6=data0=(00 01 02 03) addps xmm7, xmm3 ; xmm7=data1=(10 11 12 13) subps xmm5, xmm1 ; xmm5=data7=(70 71 72 73) subps xmm0, xmm3 ; xmm0=data6=(60 61 62 63) subps xmm2, xmm3 ; xmm2=tmp5 movaps xmm1, xmm6 ; transpose coefficients(phase 1) unpcklps xmm6, xmm7 ; xmm6=(00 10 01 11) unpckhps xmm1, xmm7 ; xmm1=(02 12 03 13) movaps xmm3, xmm0 ; transpose coefficients(phase 1) unpcklps xmm0, xmm5 ; xmm0=(60 70 61 71) unpckhps xmm3, xmm5 ; xmm3=(62 72 63 73) movaps xmm7, XMMWORD [wk(0)] ; xmm7=tmp2 movaps xmm5, XMMWORD [wk(1)] ; xmm5=tmp3 movaps XMMWORD [wk(0)], xmm0 ; wk(0)=(60 70 61 71) movaps XMMWORD [wk(1)], xmm3 ; wk(1)=(62 72 63 73) addps xmm4, xmm2 ; xmm4=tmp4 movaps xmm0, xmm7 movaps xmm3, xmm5 addps xmm7, xmm2 ; xmm7=data2=(20 21 22 23) addps xmm5, xmm4 ; xmm5=data4=(40 41 42 43) subps xmm0, xmm2 ; xmm0=data5=(50 51 52 53) subps xmm3, xmm4 ; xmm3=data3=(30 31 32 33) movaps xmm2, xmm7 ; transpose coefficients(phase 1) unpcklps xmm7, xmm3 ; xmm7=(20 30 21 31) unpckhps xmm2, xmm3 ; xmm2=(22 32 23 33) movaps xmm4, xmm5 ; transpose coefficients(phase 1) unpcklps xmm5, xmm0 ; xmm5=(40 50 41 51) unpckhps xmm4, xmm0 ; xmm4=(42 52 43 53) movaps xmm3, xmm6 ; transpose coefficients(phase 2) unpcklps2 xmm6, xmm7 ; xmm6=(00 10 20 30) unpckhps2 xmm3, xmm7 ; xmm3=(01 11 21 31) movaps xmm0, xmm1 ; transpose coefficients(phase 2) unpcklps2 xmm1, xmm2 ; xmm1=(02 12 22 32) unpckhps2 xmm0, xmm2 ; xmm0=(03 13 23 33) movaps xmm7, XMMWORD [wk(0)] ; xmm7=(60 70 61 71) movaps xmm2, XMMWORD [wk(1)] ; xmm2=(62 72 63 73) movaps XMMWORD [XMMBLOCK(0,0,edi,SIZEOF_FAST_FLOAT)], xmm6 movaps XMMWORD [XMMBLOCK(1,0,edi,SIZEOF_FAST_FLOAT)], xmm3 movaps XMMWORD [XMMBLOCK(2,0,edi,SIZEOF_FAST_FLOAT)], xmm1 movaps XMMWORD [XMMBLOCK(3,0,edi,SIZEOF_FAST_FLOAT)], xmm0 movaps xmm6, xmm5 ; transpose coefficients(phase 2) unpcklps2 xmm5, xmm7 ; xmm5=(40 50 60 70) unpckhps2 xmm6, xmm7 ; xmm6=(41 51 61 71) movaps xmm3, xmm4 ; transpose coefficients(phase 2) unpcklps2 xmm4, xmm2 ; xmm4=(42 52 62 72) unpckhps2 xmm3, xmm2 ; xmm3=(43 53 63 73) movaps XMMWORD [XMMBLOCK(0,1,edi,SIZEOF_FAST_FLOAT)], xmm5 movaps XMMWORD [XMMBLOCK(1,1,edi,SIZEOF_FAST_FLOAT)], xmm6 movaps XMMWORD [XMMBLOCK(2,1,edi,SIZEOF_FAST_FLOAT)], xmm4 movaps XMMWORD [XMMBLOCK(3,1,edi,SIZEOF_FAST_FLOAT)], xmm3 .nextcolumn: add esi, byte 4*SIZEOF_JCOEF ; coef_block add edx, byte 4*SIZEOF_FLOAT_MULT_TYPE ; quantptr add edi, 4*DCTSIZE*SIZEOF_FAST_FLOAT ; wsptr dec ecx ; ctr jnz near .columnloop ; -- Prefetch the next coefficient block prefetchnta [esi + (DCTSIZE2-8)*SIZEOF_JCOEF + 0*32] prefetchnta [esi + (DCTSIZE2-8)*SIZEOF_JCOEF + 1*32] prefetchnta [esi + (DCTSIZE2-8)*SIZEOF_JCOEF + 2*32] prefetchnta [esi + (DCTSIZE2-8)*SIZEOF_JCOEF + 3*32] ; ---- Pass 2: process rows from work array, store into output array. mov eax, [original_ebp] lea esi, [workspace] ; FAST_FLOAT *wsptr mov edi, JSAMPARRAY [output_buf(eax)] ; (JSAMPROW *) mov eax, JDIMENSION [output_col(eax)] mov ecx, DCTSIZE/4 ; ctr alignx 16, 7 .rowloop: ; -- Even part movaps xmm0, XMMWORD [XMMBLOCK(0,0,esi,SIZEOF_FAST_FLOAT)] movaps xmm1, XMMWORD [XMMBLOCK(2,0,esi,SIZEOF_FAST_FLOAT)] movaps xmm2, XMMWORD [XMMBLOCK(4,0,esi,SIZEOF_FAST_FLOAT)] movaps xmm3, XMMWORD [XMMBLOCK(6,0,esi,SIZEOF_FAST_FLOAT)] movaps xmm4, xmm0 movaps xmm5, xmm1 subps xmm0, xmm2 ; xmm0=tmp11 subps xmm1, xmm3 addps xmm4, xmm2 ; xmm4=tmp10 addps xmm5, xmm3 ; xmm5=tmp13 mulps xmm1, [GOTOFF(ebx,PD_1_414)] subps xmm1, xmm5 ; xmm1=tmp12 movaps xmm6, xmm4 movaps xmm7, xmm0 subps xmm4, xmm5 ; xmm4=tmp3 subps xmm0, xmm1 ; xmm0=tmp2 addps xmm6, xmm5 ; xmm6=tmp0 addps xmm7, xmm1 ; xmm7=tmp1 movaps XMMWORD [wk(1)], xmm4 ; tmp3 movaps XMMWORD [wk(0)], xmm0 ; tmp2 ; -- Odd part movaps xmm2, XMMWORD [XMMBLOCK(1,0,esi,SIZEOF_FAST_FLOAT)] movaps xmm3, XMMWORD [XMMBLOCK(3,0,esi,SIZEOF_FAST_FLOAT)] movaps xmm5, XMMWORD [XMMBLOCK(5,0,esi,SIZEOF_FAST_FLOAT)] movaps xmm1, XMMWORD [XMMBLOCK(7,0,esi,SIZEOF_FAST_FLOAT)] movaps xmm4, xmm2 movaps xmm0, xmm5 addps xmm2, xmm1 ; xmm2=z11 addps xmm5, xmm3 ; xmm5=z13 subps xmm4, xmm1 ; xmm4=z12 subps xmm0, xmm3 ; xmm0=z10 movaps xmm1, xmm2 subps xmm2, xmm5 addps xmm1, xmm5 ; xmm1=tmp7 mulps xmm2, [GOTOFF(ebx,PD_1_414)] ; xmm2=tmp11 movaps xmm3, xmm0 addps xmm0, xmm4 mulps xmm0, [GOTOFF(ebx,PD_1_847)] ; xmm0=z5 mulps xmm3, [GOTOFF(ebx,PD_M2_613)] ; xmm3=(z10 * -2.613125930) mulps xmm4, [GOTOFF(ebx,PD_1_082)] ; xmm4=(z12 * 1.082392200) addps xmm3, xmm0 ; xmm3=tmp12 subps xmm4, xmm0 ; xmm4=tmp10 ; -- Final output stage subps xmm3, xmm1 ; xmm3=tmp6 movaps xmm5, xmm6 movaps xmm0, xmm7 addps xmm6, xmm1 ; xmm6=data0=(00 10 20 30) addps xmm7, xmm3 ; xmm7=data1=(01 11 21 31) subps xmm5, xmm1 ; xmm5=data7=(07 17 27 37) subps xmm0, xmm3 ; xmm0=data6=(06 16 26 36) subps xmm2, xmm3 ; xmm2=tmp5 movaps xmm1, [GOTOFF(ebx,PD_RNDINT_MAGIC)] ; xmm1=[PD_RNDINT_MAGIC] pcmpeqd xmm3, xmm3 psrld xmm3, WORD_BIT ; xmm3={0xFFFF 0x0000 0xFFFF 0x0000 ..} addps xmm6, xmm1 ; xmm6=roundint(data0/8)=(00 ** 10 ** 20 ** 30 **) addps xmm7, xmm1 ; xmm7=roundint(data1/8)=(01 ** 11 ** 21 ** 31 **) addps xmm0, xmm1 ; xmm0=roundint(data6/8)=(06 ** 16 ** 26 ** 36 **) addps xmm5, xmm1 ; xmm5=roundint(data7/8)=(07 ** 17 ** 27 ** 37 **) pand xmm6, xmm3 ; xmm6=(00 -- 10 -- 20 -- 30 --) pslld xmm7, WORD_BIT ; xmm7=(-- 01 -- 11 -- 21 -- 31) pand xmm0, xmm3 ; xmm0=(06 -- 16 -- 26 -- 36 --) pslld xmm5, WORD_BIT ; xmm5=(-- 07 -- 17 -- 27 -- 37) por xmm6, xmm7 ; xmm6=(00 01 10 11 20 21 30 31) por xmm0, xmm5 ; xmm0=(06 07 16 17 26 27 36 37) movaps xmm1, XMMWORD [wk(0)] ; xmm1=tmp2 movaps xmm3, XMMWORD [wk(1)] ; xmm3=tmp3 addps xmm4, xmm2 ; xmm4=tmp4 movaps xmm7, xmm1 movaps xmm5, xmm3 addps xmm1, xmm2 ; xmm1=data2=(02 12 22 32) addps xmm3, xmm4 ; xmm3=data4=(04 14 24 34) subps xmm7, xmm2 ; xmm7=data5=(05 15 25 35) subps xmm5, xmm4 ; xmm5=data3=(03 13 23 33) movaps xmm2, [GOTOFF(ebx,PD_RNDINT_MAGIC)] ; xmm2=[PD_RNDINT_MAGIC] pcmpeqd xmm4, xmm4 psrld xmm4, WORD_BIT ; xmm4={0xFFFF 0x0000 0xFFFF 0x0000 ..} addps xmm3, xmm2 ; xmm3=roundint(data4/8)=(04 ** 14 ** 24 ** 34 **) addps xmm7, xmm2 ; xmm7=roundint(data5/8)=(05 ** 15 ** 25 ** 35 **) addps xmm1, xmm2 ; xmm1=roundint(data2/8)=(02 ** 12 ** 22 ** 32 **) addps xmm5, xmm2 ; xmm5=roundint(data3/8)=(03 ** 13 ** 23 ** 33 **) pand xmm3, xmm4 ; xmm3=(04 -- 14 -- 24 -- 34 --) pslld xmm7, WORD_BIT ; xmm7=(-- 05 -- 15 -- 25 -- 35) pand xmm1, xmm4 ; xmm1=(02 -- 12 -- 22 -- 32 --) pslld xmm5, WORD_BIT ; xmm5=(-- 03 -- 13 -- 23 -- 33) por xmm3, xmm7 ; xmm3=(04 05 14 15 24 25 34 35) por xmm1, xmm5 ; xmm1=(02 03 12 13 22 23 32 33) movdqa xmm2, [GOTOFF(ebx,PB_CENTERJSAMP)] ; xmm2=[PB_CENTERJSAMP] packsswb xmm6, xmm3 ; xmm6=(00 01 10 11 20 21 30 31 04 05 14 15 24 25 34 35) packsswb xmm1, xmm0 ; xmm1=(02 03 12 13 22 23 32 33 06 07 16 17 26 27 36 37) paddb xmm6, xmm2 paddb xmm1, xmm2 movdqa xmm4, xmm6 ; transpose coefficients(phase 2) punpcklwd xmm6, xmm1 ; xmm6=(00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33) punpckhwd xmm4, xmm1 ; xmm4=(04 05 06 07 14 15 16 17 24 25 26 27 34 35 36 37) movdqa xmm7, xmm6 ; transpose coefficients(phase 3) punpckldq xmm6, xmm4 ; xmm6=(00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17) punpckhdq xmm7, xmm4 ; xmm7=(20 21 22 23 24 25 26 27 30 31 32 33 34 35 36 37) pshufd xmm5, xmm6, 0x4E ; xmm5=(10 11 12 13 14 15 16 17 00 01 02 03 04 05 06 07) pshufd xmm3, xmm7, 0x4E ; xmm3=(30 31 32 33 34 35 36 37 20 21 22 23 24 25 26 27) pushpic ebx ; save GOT address mov edx, JSAMPROW [edi+0*SIZEOF_JSAMPROW] mov ebx, JSAMPROW [edi+2*SIZEOF_JSAMPROW] movq XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE], xmm6 movq XMM_MMWORD [ebx+eax*SIZEOF_JSAMPLE], xmm7 mov edx, JSAMPROW [edi+1*SIZEOF_JSAMPROW] mov ebx, JSAMPROW [edi+3*SIZEOF_JSAMPROW] movq XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE], xmm5 movq XMM_MMWORD [ebx+eax*SIZEOF_JSAMPLE], xmm3 poppic ebx ; restore GOT address add esi, byte 4*SIZEOF_FAST_FLOAT ; wsptr add edi, byte 4*SIZEOF_JSAMPROW dec ecx ; ctr jnz near .rowloop pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx mov esp, ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/i386/jidctfst-mmx.asm000066400000000000000000000471121436506551100210370ustar00rootroot00000000000000; ; jidctfst.asm - fast integer IDCT (MMX) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2016, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains a fast, not so accurate integer implementation of ; the inverse DCT (Discrete Cosine Transform). The following code is ; based directly on the IJG's original jidctfst.c; see the jidctfst.c ; for more details. %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- %define CONST_BITS 8 ; 14 is also OK. %define PASS1_BITS 2 %if IFAST_SCALE_BITS != PASS1_BITS %error "'IFAST_SCALE_BITS' must be equal to 'PASS1_BITS'." %endif %if CONST_BITS == 8 F_1_082 equ 277 ; FIX(1.082392200) F_1_414 equ 362 ; FIX(1.414213562) F_1_847 equ 473 ; FIX(1.847759065) F_2_613 equ 669 ; FIX(2.613125930) F_1_613 equ (F_2_613 - 256) ; FIX(2.613125930) - FIX(1) %else ; NASM cannot do compile-time arithmetic on floating-point constants. %define DESCALE(x, n) (((x) + (1 << ((n) - 1))) >> (n)) F_1_082 equ DESCALE(1162209775, 30 - CONST_BITS) ; FIX(1.082392200) F_1_414 equ DESCALE(1518500249, 30 - CONST_BITS) ; FIX(1.414213562) F_1_847 equ DESCALE(1984016188, 30 - CONST_BITS) ; FIX(1.847759065) F_2_613 equ DESCALE(2805822602, 30 - CONST_BITS) ; FIX(2.613125930) F_1_613 equ (F_2_613 - (1 << CONST_BITS)) ; FIX(2.613125930) - FIX(1) %endif ; -------------------------------------------------------------------------- SECTION SEG_CONST ; PRE_MULTIPLY_SCALE_BITS <= 2 (to avoid overflow) ; CONST_BITS + CONST_SHIFT + PRE_MULTIPLY_SCALE_BITS == 16 (for pmulhw) %define PRE_MULTIPLY_SCALE_BITS 2 %define CONST_SHIFT (16 - PRE_MULTIPLY_SCALE_BITS - CONST_BITS) alignz 32 GLOBAL_DATA(jconst_idct_ifast_mmx) EXTN(jconst_idct_ifast_mmx): PW_F1414 times 4 dw F_1_414 << CONST_SHIFT PW_F1847 times 4 dw F_1_847 << CONST_SHIFT PW_MF1613 times 4 dw -F_1_613 << CONST_SHIFT PW_F1082 times 4 dw F_1_082 << CONST_SHIFT PB_CENTERJSAMP times 8 db CENTERJSAMPLE alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Perform dequantization and inverse DCT on one block of coefficients. ; ; GLOBAL(void) ; jsimd_idct_ifast_mmx(void *dct_table, JCOEFPTR coef_block, ; JSAMPARRAY output_buf, JDIMENSION output_col) ; %define dct_table(b) (b) + 8 ; jpeg_component_info *compptr %define coef_block(b) (b) + 12 ; JCOEFPTR coef_block %define output_buf(b) (b) + 16 ; JSAMPARRAY output_buf %define output_col(b) (b) + 20 ; JDIMENSION output_col %define original_ebp ebp + 0 %define wk(i) ebp - (WK_NUM - (i)) * SIZEOF_MMWORD ; mmword wk[WK_NUM] %define WK_NUM 2 %define workspace wk(0) - DCTSIZE2 * SIZEOF_JCOEF ; JCOEF workspace[DCTSIZE2] align 32 GLOBAL_FUNCTION(jsimd_idct_ifast_mmx) EXTN(jsimd_idct_ifast_mmx): push ebp mov eax, esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_MMWORD) ; align to 64 bits mov [esp], eax mov ebp, esp ; ebp = aligned ebp lea esp, [workspace] push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address ; ---- Pass 1: process columns from input, store into work array. ; mov eax, [original_ebp] mov edx, POINTER [dct_table(eax)] ; quantptr mov esi, JCOEFPTR [coef_block(eax)] ; inptr lea edi, [workspace] ; JCOEF *wsptr mov ecx, DCTSIZE/4 ; ctr alignx 16, 7 .columnloop: %ifndef NO_ZERO_COLUMN_TEST_IFAST_MMX mov eax, dword [DWBLOCK(1,0,esi,SIZEOF_JCOEF)] or eax, dword [DWBLOCK(2,0,esi,SIZEOF_JCOEF)] jnz short .columnDCT movq mm0, MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)] movq mm1, MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)] por mm0, MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)] por mm1, MMWORD [MMBLOCK(4,0,esi,SIZEOF_JCOEF)] por mm0, MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)] por mm1, MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)] por mm0, MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)] por mm1, mm0 packsswb mm1, mm1 movd eax, mm1 test eax, eax jnz short .columnDCT ; -- AC terms all zero movq mm0, MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)] pmullw mm0, MMWORD [MMBLOCK(0,0,edx,SIZEOF_IFAST_MULT_TYPE)] movq mm2, mm0 ; mm0=in0=(00 01 02 03) punpcklwd mm0, mm0 ; mm0=(00 00 01 01) punpckhwd mm2, mm2 ; mm2=(02 02 03 03) movq mm1, mm0 punpckldq mm0, mm0 ; mm0=(00 00 00 00) punpckhdq mm1, mm1 ; mm1=(01 01 01 01) movq mm3, mm2 punpckldq mm2, mm2 ; mm2=(02 02 02 02) punpckhdq mm3, mm3 ; mm3=(03 03 03 03) movq MMWORD [MMBLOCK(0,0,edi,SIZEOF_JCOEF)], mm0 movq MMWORD [MMBLOCK(0,1,edi,SIZEOF_JCOEF)], mm0 movq MMWORD [MMBLOCK(1,0,edi,SIZEOF_JCOEF)], mm1 movq MMWORD [MMBLOCK(1,1,edi,SIZEOF_JCOEF)], mm1 movq MMWORD [MMBLOCK(2,0,edi,SIZEOF_JCOEF)], mm2 movq MMWORD [MMBLOCK(2,1,edi,SIZEOF_JCOEF)], mm2 movq MMWORD [MMBLOCK(3,0,edi,SIZEOF_JCOEF)], mm3 movq MMWORD [MMBLOCK(3,1,edi,SIZEOF_JCOEF)], mm3 jmp near .nextcolumn alignx 16, 7 %endif .columnDCT: ; -- Even part movq mm0, MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)] movq mm1, MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)] pmullw mm0, MMWORD [MMBLOCK(0,0,edx,SIZEOF_IFAST_MULT_TYPE)] pmullw mm1, MMWORD [MMBLOCK(2,0,edx,SIZEOF_IFAST_MULT_TYPE)] movq mm2, MMWORD [MMBLOCK(4,0,esi,SIZEOF_JCOEF)] movq mm3, MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)] pmullw mm2, MMWORD [MMBLOCK(4,0,edx,SIZEOF_IFAST_MULT_TYPE)] pmullw mm3, MMWORD [MMBLOCK(6,0,edx,SIZEOF_IFAST_MULT_TYPE)] movq mm4, mm0 movq mm5, mm1 psubw mm0, mm2 ; mm0=tmp11 psubw mm1, mm3 paddw mm4, mm2 ; mm4=tmp10 paddw mm5, mm3 ; mm5=tmp13 psllw mm1, PRE_MULTIPLY_SCALE_BITS pmulhw mm1, [GOTOFF(ebx,PW_F1414)] psubw mm1, mm5 ; mm1=tmp12 movq mm6, mm4 movq mm7, mm0 psubw mm4, mm5 ; mm4=tmp3 psubw mm0, mm1 ; mm0=tmp2 paddw mm6, mm5 ; mm6=tmp0 paddw mm7, mm1 ; mm7=tmp1 movq MMWORD [wk(1)], mm4 ; wk(1)=tmp3 movq MMWORD [wk(0)], mm0 ; wk(0)=tmp2 ; -- Odd part movq mm2, MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)] movq mm3, MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)] pmullw mm2, MMWORD [MMBLOCK(1,0,edx,SIZEOF_IFAST_MULT_TYPE)] pmullw mm3, MMWORD [MMBLOCK(3,0,edx,SIZEOF_IFAST_MULT_TYPE)] movq mm5, MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)] movq mm1, MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)] pmullw mm5, MMWORD [MMBLOCK(5,0,edx,SIZEOF_IFAST_MULT_TYPE)] pmullw mm1, MMWORD [MMBLOCK(7,0,edx,SIZEOF_IFAST_MULT_TYPE)] movq mm4, mm2 movq mm0, mm5 psubw mm2, mm1 ; mm2=z12 psubw mm5, mm3 ; mm5=z10 paddw mm4, mm1 ; mm4=z11 paddw mm0, mm3 ; mm0=z13 movq mm1, mm5 ; mm1=z10(unscaled) psllw mm2, PRE_MULTIPLY_SCALE_BITS psllw mm5, PRE_MULTIPLY_SCALE_BITS movq mm3, mm4 psubw mm4, mm0 paddw mm3, mm0 ; mm3=tmp7 psllw mm4, PRE_MULTIPLY_SCALE_BITS pmulhw mm4, [GOTOFF(ebx,PW_F1414)] ; mm4=tmp11 ; To avoid overflow... ; ; (Original) ; tmp12 = -2.613125930 * z10 + z5; ; ; (This implementation) ; tmp12 = (-1.613125930 - 1) * z10 + z5; ; = -1.613125930 * z10 - z10 + z5; movq mm0, mm5 paddw mm5, mm2 pmulhw mm5, [GOTOFF(ebx,PW_F1847)] ; mm5=z5 pmulhw mm0, [GOTOFF(ebx,PW_MF1613)] pmulhw mm2, [GOTOFF(ebx,PW_F1082)] psubw mm0, mm1 psubw mm2, mm5 ; mm2=tmp10 paddw mm0, mm5 ; mm0=tmp12 ; -- Final output stage psubw mm0, mm3 ; mm0=tmp6 movq mm1, mm6 movq mm5, mm7 paddw mm6, mm3 ; mm6=data0=(00 01 02 03) paddw mm7, mm0 ; mm7=data1=(10 11 12 13) psubw mm1, mm3 ; mm1=data7=(70 71 72 73) psubw mm5, mm0 ; mm5=data6=(60 61 62 63) psubw mm4, mm0 ; mm4=tmp5 movq mm3, mm6 ; transpose coefficients(phase 1) punpcklwd mm6, mm7 ; mm6=(00 10 01 11) punpckhwd mm3, mm7 ; mm3=(02 12 03 13) movq mm0, mm5 ; transpose coefficients(phase 1) punpcklwd mm5, mm1 ; mm5=(60 70 61 71) punpckhwd mm0, mm1 ; mm0=(62 72 63 73) movq mm7, MMWORD [wk(0)] ; mm7=tmp2 movq mm1, MMWORD [wk(1)] ; mm1=tmp3 movq MMWORD [wk(0)], mm5 ; wk(0)=(60 70 61 71) movq MMWORD [wk(1)], mm0 ; wk(1)=(62 72 63 73) paddw mm2, mm4 ; mm2=tmp4 movq mm5, mm7 movq mm0, mm1 paddw mm7, mm4 ; mm7=data2=(20 21 22 23) paddw mm1, mm2 ; mm1=data4=(40 41 42 43) psubw mm5, mm4 ; mm5=data5=(50 51 52 53) psubw mm0, mm2 ; mm0=data3=(30 31 32 33) movq mm4, mm7 ; transpose coefficients(phase 1) punpcklwd mm7, mm0 ; mm7=(20 30 21 31) punpckhwd mm4, mm0 ; mm4=(22 32 23 33) movq mm2, mm1 ; transpose coefficients(phase 1) punpcklwd mm1, mm5 ; mm1=(40 50 41 51) punpckhwd mm2, mm5 ; mm2=(42 52 43 53) movq mm0, mm6 ; transpose coefficients(phase 2) punpckldq mm6, mm7 ; mm6=(00 10 20 30) punpckhdq mm0, mm7 ; mm0=(01 11 21 31) movq mm5, mm3 ; transpose coefficients(phase 2) punpckldq mm3, mm4 ; mm3=(02 12 22 32) punpckhdq mm5, mm4 ; mm5=(03 13 23 33) movq mm7, MMWORD [wk(0)] ; mm7=(60 70 61 71) movq mm4, MMWORD [wk(1)] ; mm4=(62 72 63 73) movq MMWORD [MMBLOCK(0,0,edi,SIZEOF_JCOEF)], mm6 movq MMWORD [MMBLOCK(1,0,edi,SIZEOF_JCOEF)], mm0 movq MMWORD [MMBLOCK(2,0,edi,SIZEOF_JCOEF)], mm3 movq MMWORD [MMBLOCK(3,0,edi,SIZEOF_JCOEF)], mm5 movq mm6, mm1 ; transpose coefficients(phase 2) punpckldq mm1, mm7 ; mm1=(40 50 60 70) punpckhdq mm6, mm7 ; mm6=(41 51 61 71) movq mm0, mm2 ; transpose coefficients(phase 2) punpckldq mm2, mm4 ; mm2=(42 52 62 72) punpckhdq mm0, mm4 ; mm0=(43 53 63 73) movq MMWORD [MMBLOCK(0,1,edi,SIZEOF_JCOEF)], mm1 movq MMWORD [MMBLOCK(1,1,edi,SIZEOF_JCOEF)], mm6 movq MMWORD [MMBLOCK(2,1,edi,SIZEOF_JCOEF)], mm2 movq MMWORD [MMBLOCK(3,1,edi,SIZEOF_JCOEF)], mm0 .nextcolumn: add esi, byte 4*SIZEOF_JCOEF ; coef_block add edx, byte 4*SIZEOF_IFAST_MULT_TYPE ; quantptr add edi, byte 4*DCTSIZE*SIZEOF_JCOEF ; wsptr dec ecx ; ctr jnz near .columnloop ; ---- Pass 2: process rows from work array, store into output array. mov eax, [original_ebp] lea esi, [workspace] ; JCOEF *wsptr mov edi, JSAMPARRAY [output_buf(eax)] ; (JSAMPROW *) mov eax, JDIMENSION [output_col(eax)] mov ecx, DCTSIZE/4 ; ctr alignx 16, 7 .rowloop: ; -- Even part movq mm0, MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)] movq mm1, MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)] movq mm2, MMWORD [MMBLOCK(4,0,esi,SIZEOF_JCOEF)] movq mm3, MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)] movq mm4, mm0 movq mm5, mm1 psubw mm0, mm2 ; mm0=tmp11 psubw mm1, mm3 paddw mm4, mm2 ; mm4=tmp10 paddw mm5, mm3 ; mm5=tmp13 psllw mm1, PRE_MULTIPLY_SCALE_BITS pmulhw mm1, [GOTOFF(ebx,PW_F1414)] psubw mm1, mm5 ; mm1=tmp12 movq mm6, mm4 movq mm7, mm0 psubw mm4, mm5 ; mm4=tmp3 psubw mm0, mm1 ; mm0=tmp2 paddw mm6, mm5 ; mm6=tmp0 paddw mm7, mm1 ; mm7=tmp1 movq MMWORD [wk(1)], mm4 ; wk(1)=tmp3 movq MMWORD [wk(0)], mm0 ; wk(0)=tmp2 ; -- Odd part movq mm2, MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)] movq mm3, MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)] movq mm5, MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)] movq mm1, MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)] movq mm4, mm2 movq mm0, mm5 psubw mm2, mm1 ; mm2=z12 psubw mm5, mm3 ; mm5=z10 paddw mm4, mm1 ; mm4=z11 paddw mm0, mm3 ; mm0=z13 movq mm1, mm5 ; mm1=z10(unscaled) psllw mm2, PRE_MULTIPLY_SCALE_BITS psllw mm5, PRE_MULTIPLY_SCALE_BITS movq mm3, mm4 psubw mm4, mm0 paddw mm3, mm0 ; mm3=tmp7 psllw mm4, PRE_MULTIPLY_SCALE_BITS pmulhw mm4, [GOTOFF(ebx,PW_F1414)] ; mm4=tmp11 ; To avoid overflow... ; ; (Original) ; tmp12 = -2.613125930 * z10 + z5; ; ; (This implementation) ; tmp12 = (-1.613125930 - 1) * z10 + z5; ; = -1.613125930 * z10 - z10 + z5; movq mm0, mm5 paddw mm5, mm2 pmulhw mm5, [GOTOFF(ebx,PW_F1847)] ; mm5=z5 pmulhw mm0, [GOTOFF(ebx,PW_MF1613)] pmulhw mm2, [GOTOFF(ebx,PW_F1082)] psubw mm0, mm1 psubw mm2, mm5 ; mm2=tmp10 paddw mm0, mm5 ; mm0=tmp12 ; -- Final output stage psubw mm0, mm3 ; mm0=tmp6 movq mm1, mm6 movq mm5, mm7 paddw mm6, mm3 ; mm6=data0=(00 10 20 30) paddw mm7, mm0 ; mm7=data1=(01 11 21 31) psraw mm6, (PASS1_BITS+3) ; descale psraw mm7, (PASS1_BITS+3) ; descale psubw mm1, mm3 ; mm1=data7=(07 17 27 37) psubw mm5, mm0 ; mm5=data6=(06 16 26 36) psraw mm1, (PASS1_BITS+3) ; descale psraw mm5, (PASS1_BITS+3) ; descale psubw mm4, mm0 ; mm4=tmp5 packsswb mm6, mm5 ; mm6=(00 10 20 30 06 16 26 36) packsswb mm7, mm1 ; mm7=(01 11 21 31 07 17 27 37) movq mm3, MMWORD [wk(0)] ; mm3=tmp2 movq mm0, MMWORD [wk(1)] ; mm0=tmp3 paddw mm2, mm4 ; mm2=tmp4 movq mm5, mm3 movq mm1, mm0 paddw mm3, mm4 ; mm3=data2=(02 12 22 32) paddw mm0, mm2 ; mm0=data4=(04 14 24 34) psraw mm3, (PASS1_BITS+3) ; descale psraw mm0, (PASS1_BITS+3) ; descale psubw mm5, mm4 ; mm5=data5=(05 15 25 35) psubw mm1, mm2 ; mm1=data3=(03 13 23 33) psraw mm5, (PASS1_BITS+3) ; descale psraw mm1, (PASS1_BITS+3) ; descale movq mm4, [GOTOFF(ebx,PB_CENTERJSAMP)] ; mm4=[PB_CENTERJSAMP] packsswb mm3, mm0 ; mm3=(02 12 22 32 04 14 24 34) packsswb mm1, mm5 ; mm1=(03 13 23 33 05 15 25 35) paddb mm6, mm4 paddb mm7, mm4 paddb mm3, mm4 paddb mm1, mm4 movq mm2, mm6 ; transpose coefficients(phase 1) punpcklbw mm6, mm7 ; mm6=(00 01 10 11 20 21 30 31) punpckhbw mm2, mm7 ; mm2=(06 07 16 17 26 27 36 37) movq mm0, mm3 ; transpose coefficients(phase 1) punpcklbw mm3, mm1 ; mm3=(02 03 12 13 22 23 32 33) punpckhbw mm0, mm1 ; mm0=(04 05 14 15 24 25 34 35) movq mm5, mm6 ; transpose coefficients(phase 2) punpcklwd mm6, mm3 ; mm6=(00 01 02 03 10 11 12 13) punpckhwd mm5, mm3 ; mm5=(20 21 22 23 30 31 32 33) movq mm4, mm0 ; transpose coefficients(phase 2) punpcklwd mm0, mm2 ; mm0=(04 05 06 07 14 15 16 17) punpckhwd mm4, mm2 ; mm4=(24 25 26 27 34 35 36 37) movq mm7, mm6 ; transpose coefficients(phase 3) punpckldq mm6, mm0 ; mm6=(00 01 02 03 04 05 06 07) punpckhdq mm7, mm0 ; mm7=(10 11 12 13 14 15 16 17) movq mm1, mm5 ; transpose coefficients(phase 3) punpckldq mm5, mm4 ; mm5=(20 21 22 23 24 25 26 27) punpckhdq mm1, mm4 ; mm1=(30 31 32 33 34 35 36 37) pushpic ebx ; save GOT address mov edx, JSAMPROW [edi+0*SIZEOF_JSAMPROW] mov ebx, JSAMPROW [edi+1*SIZEOF_JSAMPROW] movq MMWORD [edx+eax*SIZEOF_JSAMPLE], mm6 movq MMWORD [ebx+eax*SIZEOF_JSAMPLE], mm7 mov edx, JSAMPROW [edi+2*SIZEOF_JSAMPROW] mov ebx, JSAMPROW [edi+3*SIZEOF_JSAMPROW] movq MMWORD [edx+eax*SIZEOF_JSAMPLE], mm5 movq MMWORD [ebx+eax*SIZEOF_JSAMPLE], mm1 poppic ebx ; restore GOT address add esi, byte 4*SIZEOF_JCOEF ; wsptr add edi, byte 4*SIZEOF_JSAMPROW dec ecx ; ctr jnz near .rowloop emms ; empty MMX state pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx mov esp, ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/i386/jidctfst-sse2.asm000066400000000000000000000521001436506551100211030ustar00rootroot00000000000000; ; jidctfst.asm - fast integer IDCT (SSE2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2016, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains a fast, not so accurate integer implementation of ; the inverse DCT (Discrete Cosine Transform). The following code is ; based directly on the IJG's original jidctfst.c; see the jidctfst.c ; for more details. %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- %define CONST_BITS 8 ; 14 is also OK. %define PASS1_BITS 2 %if IFAST_SCALE_BITS != PASS1_BITS %error "'IFAST_SCALE_BITS' must be equal to 'PASS1_BITS'." %endif %if CONST_BITS == 8 F_1_082 equ 277 ; FIX(1.082392200) F_1_414 equ 362 ; FIX(1.414213562) F_1_847 equ 473 ; FIX(1.847759065) F_2_613 equ 669 ; FIX(2.613125930) F_1_613 equ (F_2_613 - 256) ; FIX(2.613125930) - FIX(1) %else ; NASM cannot do compile-time arithmetic on floating-point constants. %define DESCALE(x, n) (((x) + (1 << ((n) - 1))) >> (n)) F_1_082 equ DESCALE(1162209775, 30 - CONST_BITS) ; FIX(1.082392200) F_1_414 equ DESCALE(1518500249, 30 - CONST_BITS) ; FIX(1.414213562) F_1_847 equ DESCALE(1984016188, 30 - CONST_BITS) ; FIX(1.847759065) F_2_613 equ DESCALE(2805822602, 30 - CONST_BITS) ; FIX(2.613125930) F_1_613 equ (F_2_613 - (1 << CONST_BITS)) ; FIX(2.613125930) - FIX(1) %endif ; -------------------------------------------------------------------------- SECTION SEG_CONST ; PRE_MULTIPLY_SCALE_BITS <= 2 (to avoid overflow) ; CONST_BITS + CONST_SHIFT + PRE_MULTIPLY_SCALE_BITS == 16 (for pmulhw) %define PRE_MULTIPLY_SCALE_BITS 2 %define CONST_SHIFT (16 - PRE_MULTIPLY_SCALE_BITS - CONST_BITS) alignz 32 GLOBAL_DATA(jconst_idct_ifast_sse2) EXTN(jconst_idct_ifast_sse2): PW_F1414 times 8 dw F_1_414 << CONST_SHIFT PW_F1847 times 8 dw F_1_847 << CONST_SHIFT PW_MF1613 times 8 dw -F_1_613 << CONST_SHIFT PW_F1082 times 8 dw F_1_082 << CONST_SHIFT PB_CENTERJSAMP times 16 db CENTERJSAMPLE alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Perform dequantization and inverse DCT on one block of coefficients. ; ; GLOBAL(void) ; jsimd_idct_ifast_sse2(void *dct_table, JCOEFPTR coef_block, ; JSAMPARRAY output_buf, JDIMENSION output_col) ; %define dct_table(b) (b) + 8 ; jpeg_component_info *compptr %define coef_block(b) (b) + 12 ; JCOEFPTR coef_block %define output_buf(b) (b) + 16 ; JSAMPARRAY output_buf %define output_col(b) (b) + 20 ; JDIMENSION output_col %define original_ebp ebp + 0 %define wk(i) ebp - (WK_NUM - (i)) * SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 2 align 32 GLOBAL_FUNCTION(jsimd_idct_ifast_sse2) EXTN(jsimd_idct_ifast_sse2): push ebp mov eax, esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [esp], eax mov ebp, esp ; ebp = aligned ebp lea esp, [wk(0)] pushpic ebx ; push ecx ; unused ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address ; ---- Pass 1: process columns from input. ; mov eax, [original_ebp] mov edx, POINTER [dct_table(eax)] ; quantptr mov esi, JCOEFPTR [coef_block(eax)] ; inptr %ifndef NO_ZERO_COLUMN_TEST_IFAST_SSE2 mov eax, dword [DWBLOCK(1,0,esi,SIZEOF_JCOEF)] or eax, dword [DWBLOCK(2,0,esi,SIZEOF_JCOEF)] jnz near .columnDCT movdqa xmm0, XMMWORD [XMMBLOCK(1,0,esi,SIZEOF_JCOEF)] movdqa xmm1, XMMWORD [XMMBLOCK(2,0,esi,SIZEOF_JCOEF)] por xmm0, XMMWORD [XMMBLOCK(3,0,esi,SIZEOF_JCOEF)] por xmm1, XMMWORD [XMMBLOCK(4,0,esi,SIZEOF_JCOEF)] por xmm0, XMMWORD [XMMBLOCK(5,0,esi,SIZEOF_JCOEF)] por xmm1, XMMWORD [XMMBLOCK(6,0,esi,SIZEOF_JCOEF)] por xmm0, XMMWORD [XMMBLOCK(7,0,esi,SIZEOF_JCOEF)] por xmm1, xmm0 packsswb xmm1, xmm1 packsswb xmm1, xmm1 movd eax, xmm1 test eax, eax jnz short .columnDCT ; -- AC terms all zero movdqa xmm0, XMMWORD [XMMBLOCK(0,0,esi,SIZEOF_JCOEF)] pmullw xmm0, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_ISLOW_MULT_TYPE)] movdqa xmm7, xmm0 ; xmm0=in0=(00 01 02 03 04 05 06 07) punpcklwd xmm0, xmm0 ; xmm0=(00 00 01 01 02 02 03 03) punpckhwd xmm7, xmm7 ; xmm7=(04 04 05 05 06 06 07 07) pshufd xmm6, xmm0, 0x00 ; xmm6=col0=(00 00 00 00 00 00 00 00) pshufd xmm2, xmm0, 0x55 ; xmm2=col1=(01 01 01 01 01 01 01 01) pshufd xmm5, xmm0, 0xAA ; xmm5=col2=(02 02 02 02 02 02 02 02) pshufd xmm0, xmm0, 0xFF ; xmm0=col3=(03 03 03 03 03 03 03 03) pshufd xmm1, xmm7, 0x00 ; xmm1=col4=(04 04 04 04 04 04 04 04) pshufd xmm4, xmm7, 0x55 ; xmm4=col5=(05 05 05 05 05 05 05 05) pshufd xmm3, xmm7, 0xAA ; xmm3=col6=(06 06 06 06 06 06 06 06) pshufd xmm7, xmm7, 0xFF ; xmm7=col7=(07 07 07 07 07 07 07 07) movdqa XMMWORD [wk(0)], xmm2 ; wk(0)=col1 movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=col3 jmp near .column_end alignx 16, 7 %endif .columnDCT: ; -- Even part movdqa xmm0, XMMWORD [XMMBLOCK(0,0,esi,SIZEOF_JCOEF)] movdqa xmm1, XMMWORD [XMMBLOCK(2,0,esi,SIZEOF_JCOEF)] pmullw xmm0, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_IFAST_MULT_TYPE)] pmullw xmm1, XMMWORD [XMMBLOCK(2,0,edx,SIZEOF_IFAST_MULT_TYPE)] movdqa xmm2, XMMWORD [XMMBLOCK(4,0,esi,SIZEOF_JCOEF)] movdqa xmm3, XMMWORD [XMMBLOCK(6,0,esi,SIZEOF_JCOEF)] pmullw xmm2, XMMWORD [XMMBLOCK(4,0,edx,SIZEOF_IFAST_MULT_TYPE)] pmullw xmm3, XMMWORD [XMMBLOCK(6,0,edx,SIZEOF_IFAST_MULT_TYPE)] movdqa xmm4, xmm0 movdqa xmm5, xmm1 psubw xmm0, xmm2 ; xmm0=tmp11 psubw xmm1, xmm3 paddw xmm4, xmm2 ; xmm4=tmp10 paddw xmm5, xmm3 ; xmm5=tmp13 psllw xmm1, PRE_MULTIPLY_SCALE_BITS pmulhw xmm1, [GOTOFF(ebx,PW_F1414)] psubw xmm1, xmm5 ; xmm1=tmp12 movdqa xmm6, xmm4 movdqa xmm7, xmm0 psubw xmm4, xmm5 ; xmm4=tmp3 psubw xmm0, xmm1 ; xmm0=tmp2 paddw xmm6, xmm5 ; xmm6=tmp0 paddw xmm7, xmm1 ; xmm7=tmp1 movdqa XMMWORD [wk(1)], xmm4 ; wk(1)=tmp3 movdqa XMMWORD [wk(0)], xmm0 ; wk(0)=tmp2 ; -- Odd part movdqa xmm2, XMMWORD [XMMBLOCK(1,0,esi,SIZEOF_JCOEF)] movdqa xmm3, XMMWORD [XMMBLOCK(3,0,esi,SIZEOF_JCOEF)] pmullw xmm2, XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_IFAST_MULT_TYPE)] pmullw xmm3, XMMWORD [XMMBLOCK(3,0,edx,SIZEOF_IFAST_MULT_TYPE)] movdqa xmm5, XMMWORD [XMMBLOCK(5,0,esi,SIZEOF_JCOEF)] movdqa xmm1, XMMWORD [XMMBLOCK(7,0,esi,SIZEOF_JCOEF)] pmullw xmm5, XMMWORD [XMMBLOCK(5,0,edx,SIZEOF_IFAST_MULT_TYPE)] pmullw xmm1, XMMWORD [XMMBLOCK(7,0,edx,SIZEOF_IFAST_MULT_TYPE)] movdqa xmm4, xmm2 movdqa xmm0, xmm5 psubw xmm2, xmm1 ; xmm2=z12 psubw xmm5, xmm3 ; xmm5=z10 paddw xmm4, xmm1 ; xmm4=z11 paddw xmm0, xmm3 ; xmm0=z13 movdqa xmm1, xmm5 ; xmm1=z10(unscaled) psllw xmm2, PRE_MULTIPLY_SCALE_BITS psllw xmm5, PRE_MULTIPLY_SCALE_BITS movdqa xmm3, xmm4 psubw xmm4, xmm0 paddw xmm3, xmm0 ; xmm3=tmp7 psllw xmm4, PRE_MULTIPLY_SCALE_BITS pmulhw xmm4, [GOTOFF(ebx,PW_F1414)] ; xmm4=tmp11 ; To avoid overflow... ; ; (Original) ; tmp12 = -2.613125930 * z10 + z5; ; ; (This implementation) ; tmp12 = (-1.613125930 - 1) * z10 + z5; ; = -1.613125930 * z10 - z10 + z5; movdqa xmm0, xmm5 paddw xmm5, xmm2 pmulhw xmm5, [GOTOFF(ebx,PW_F1847)] ; xmm5=z5 pmulhw xmm0, [GOTOFF(ebx,PW_MF1613)] pmulhw xmm2, [GOTOFF(ebx,PW_F1082)] psubw xmm0, xmm1 psubw xmm2, xmm5 ; xmm2=tmp10 paddw xmm0, xmm5 ; xmm0=tmp12 ; -- Final output stage psubw xmm0, xmm3 ; xmm0=tmp6 movdqa xmm1, xmm6 movdqa xmm5, xmm7 paddw xmm6, xmm3 ; xmm6=data0=(00 01 02 03 04 05 06 07) paddw xmm7, xmm0 ; xmm7=data1=(10 11 12 13 14 15 16 17) psubw xmm1, xmm3 ; xmm1=data7=(70 71 72 73 74 75 76 77) psubw xmm5, xmm0 ; xmm5=data6=(60 61 62 63 64 65 66 67) psubw xmm4, xmm0 ; xmm4=tmp5 movdqa xmm3, xmm6 ; transpose coefficients(phase 1) punpcklwd xmm6, xmm7 ; xmm6=(00 10 01 11 02 12 03 13) punpckhwd xmm3, xmm7 ; xmm3=(04 14 05 15 06 16 07 17) movdqa xmm0, xmm5 ; transpose coefficients(phase 1) punpcklwd xmm5, xmm1 ; xmm5=(60 70 61 71 62 72 63 73) punpckhwd xmm0, xmm1 ; xmm0=(64 74 65 75 66 76 67 77) movdqa xmm7, XMMWORD [wk(0)] ; xmm7=tmp2 movdqa xmm1, XMMWORD [wk(1)] ; xmm1=tmp3 movdqa XMMWORD [wk(0)], xmm5 ; wk(0)=(60 70 61 71 62 72 63 73) movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=(64 74 65 75 66 76 67 77) paddw xmm2, xmm4 ; xmm2=tmp4 movdqa xmm5, xmm7 movdqa xmm0, xmm1 paddw xmm7, xmm4 ; xmm7=data2=(20 21 22 23 24 25 26 27) paddw xmm1, xmm2 ; xmm1=data4=(40 41 42 43 44 45 46 47) psubw xmm5, xmm4 ; xmm5=data5=(50 51 52 53 54 55 56 57) psubw xmm0, xmm2 ; xmm0=data3=(30 31 32 33 34 35 36 37) movdqa xmm4, xmm7 ; transpose coefficients(phase 1) punpcklwd xmm7, xmm0 ; xmm7=(20 30 21 31 22 32 23 33) punpckhwd xmm4, xmm0 ; xmm4=(24 34 25 35 26 36 27 37) movdqa xmm2, xmm1 ; transpose coefficients(phase 1) punpcklwd xmm1, xmm5 ; xmm1=(40 50 41 51 42 52 43 53) punpckhwd xmm2, xmm5 ; xmm2=(44 54 45 55 46 56 47 57) movdqa xmm0, xmm3 ; transpose coefficients(phase 2) punpckldq xmm3, xmm4 ; xmm3=(04 14 24 34 05 15 25 35) punpckhdq xmm0, xmm4 ; xmm0=(06 16 26 36 07 17 27 37) movdqa xmm5, xmm6 ; transpose coefficients(phase 2) punpckldq xmm6, xmm7 ; xmm6=(00 10 20 30 01 11 21 31) punpckhdq xmm5, xmm7 ; xmm5=(02 12 22 32 03 13 23 33) movdqa xmm4, XMMWORD [wk(0)] ; xmm4=(60 70 61 71 62 72 63 73) movdqa xmm7, XMMWORD [wk(1)] ; xmm7=(64 74 65 75 66 76 67 77) movdqa XMMWORD [wk(0)], xmm3 ; wk(0)=(04 14 24 34 05 15 25 35) movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=(06 16 26 36 07 17 27 37) movdqa xmm3, xmm1 ; transpose coefficients(phase 2) punpckldq xmm1, xmm4 ; xmm1=(40 50 60 70 41 51 61 71) punpckhdq xmm3, xmm4 ; xmm3=(42 52 62 72 43 53 63 73) movdqa xmm0, xmm2 ; transpose coefficients(phase 2) punpckldq xmm2, xmm7 ; xmm2=(44 54 64 74 45 55 65 75) punpckhdq xmm0, xmm7 ; xmm0=(46 56 66 76 47 57 67 77) movdqa xmm4, xmm6 ; transpose coefficients(phase 3) punpcklqdq xmm6, xmm1 ; xmm6=col0=(00 10 20 30 40 50 60 70) punpckhqdq xmm4, xmm1 ; xmm4=col1=(01 11 21 31 41 51 61 71) movdqa xmm7, xmm5 ; transpose coefficients(phase 3) punpcklqdq xmm5, xmm3 ; xmm5=col2=(02 12 22 32 42 52 62 72) punpckhqdq xmm7, xmm3 ; xmm7=col3=(03 13 23 33 43 53 63 73) movdqa xmm1, XMMWORD [wk(0)] ; xmm1=(04 14 24 34 05 15 25 35) movdqa xmm3, XMMWORD [wk(1)] ; xmm3=(06 16 26 36 07 17 27 37) movdqa XMMWORD [wk(0)], xmm4 ; wk(0)=col1 movdqa XMMWORD [wk(1)], xmm7 ; wk(1)=col3 movdqa xmm4, xmm1 ; transpose coefficients(phase 3) punpcklqdq xmm1, xmm2 ; xmm1=col4=(04 14 24 34 44 54 64 74) punpckhqdq xmm4, xmm2 ; xmm4=col5=(05 15 25 35 45 55 65 75) movdqa xmm7, xmm3 ; transpose coefficients(phase 3) punpcklqdq xmm3, xmm0 ; xmm3=col6=(06 16 26 36 46 56 66 76) punpckhqdq xmm7, xmm0 ; xmm7=col7=(07 17 27 37 47 57 67 77) .column_end: ; -- Prefetch the next coefficient block prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 0*32] prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 1*32] prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 2*32] prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 3*32] ; ---- Pass 2: process rows from work array, store into output array. mov eax, [original_ebp] mov edi, JSAMPARRAY [output_buf(eax)] ; (JSAMPROW *) mov eax, JDIMENSION [output_col(eax)] ; -- Even part ; xmm6=col0, xmm5=col2, xmm1=col4, xmm3=col6 movdqa xmm2, xmm6 movdqa xmm0, xmm5 psubw xmm6, xmm1 ; xmm6=tmp11 psubw xmm5, xmm3 paddw xmm2, xmm1 ; xmm2=tmp10 paddw xmm0, xmm3 ; xmm0=tmp13 psllw xmm5, PRE_MULTIPLY_SCALE_BITS pmulhw xmm5, [GOTOFF(ebx,PW_F1414)] psubw xmm5, xmm0 ; xmm5=tmp12 movdqa xmm1, xmm2 movdqa xmm3, xmm6 psubw xmm2, xmm0 ; xmm2=tmp3 psubw xmm6, xmm5 ; xmm6=tmp2 paddw xmm1, xmm0 ; xmm1=tmp0 paddw xmm3, xmm5 ; xmm3=tmp1 movdqa xmm0, XMMWORD [wk(0)] ; xmm0=col1 movdqa xmm5, XMMWORD [wk(1)] ; xmm5=col3 movdqa XMMWORD [wk(0)], xmm2 ; wk(0)=tmp3 movdqa XMMWORD [wk(1)], xmm6 ; wk(1)=tmp2 ; -- Odd part ; xmm0=col1, xmm5=col3, xmm4=col5, xmm7=col7 movdqa xmm2, xmm0 movdqa xmm6, xmm4 psubw xmm0, xmm7 ; xmm0=z12 psubw xmm4, xmm5 ; xmm4=z10 paddw xmm2, xmm7 ; xmm2=z11 paddw xmm6, xmm5 ; xmm6=z13 movdqa xmm7, xmm4 ; xmm7=z10(unscaled) psllw xmm0, PRE_MULTIPLY_SCALE_BITS psllw xmm4, PRE_MULTIPLY_SCALE_BITS movdqa xmm5, xmm2 psubw xmm2, xmm6 paddw xmm5, xmm6 ; xmm5=tmp7 psllw xmm2, PRE_MULTIPLY_SCALE_BITS pmulhw xmm2, [GOTOFF(ebx,PW_F1414)] ; xmm2=tmp11 ; To avoid overflow... ; ; (Original) ; tmp12 = -2.613125930 * z10 + z5; ; ; (This implementation) ; tmp12 = (-1.613125930 - 1) * z10 + z5; ; = -1.613125930 * z10 - z10 + z5; movdqa xmm6, xmm4 paddw xmm4, xmm0 pmulhw xmm4, [GOTOFF(ebx,PW_F1847)] ; xmm4=z5 pmulhw xmm6, [GOTOFF(ebx,PW_MF1613)] pmulhw xmm0, [GOTOFF(ebx,PW_F1082)] psubw xmm6, xmm7 psubw xmm0, xmm4 ; xmm0=tmp10 paddw xmm6, xmm4 ; xmm6=tmp12 ; -- Final output stage psubw xmm6, xmm5 ; xmm6=tmp6 movdqa xmm7, xmm1 movdqa xmm4, xmm3 paddw xmm1, xmm5 ; xmm1=data0=(00 10 20 30 40 50 60 70) paddw xmm3, xmm6 ; xmm3=data1=(01 11 21 31 41 51 61 71) psraw xmm1, (PASS1_BITS+3) ; descale psraw xmm3, (PASS1_BITS+3) ; descale psubw xmm7, xmm5 ; xmm7=data7=(07 17 27 37 47 57 67 77) psubw xmm4, xmm6 ; xmm4=data6=(06 16 26 36 46 56 66 76) psraw xmm7, (PASS1_BITS+3) ; descale psraw xmm4, (PASS1_BITS+3) ; descale psubw xmm2, xmm6 ; xmm2=tmp5 packsswb xmm1, xmm4 ; xmm1=(00 10 20 30 40 50 60 70 06 16 26 36 46 56 66 76) packsswb xmm3, xmm7 ; xmm3=(01 11 21 31 41 51 61 71 07 17 27 37 47 57 67 77) movdqa xmm5, XMMWORD [wk(1)] ; xmm5=tmp2 movdqa xmm6, XMMWORD [wk(0)] ; xmm6=tmp3 paddw xmm0, xmm2 ; xmm0=tmp4 movdqa xmm4, xmm5 movdqa xmm7, xmm6 paddw xmm5, xmm2 ; xmm5=data2=(02 12 22 32 42 52 62 72) paddw xmm6, xmm0 ; xmm6=data4=(04 14 24 34 44 54 64 74) psraw xmm5, (PASS1_BITS+3) ; descale psraw xmm6, (PASS1_BITS+3) ; descale psubw xmm4, xmm2 ; xmm4=data5=(05 15 25 35 45 55 65 75) psubw xmm7, xmm0 ; xmm7=data3=(03 13 23 33 43 53 63 73) psraw xmm4, (PASS1_BITS+3) ; descale psraw xmm7, (PASS1_BITS+3) ; descale movdqa xmm2, [GOTOFF(ebx,PB_CENTERJSAMP)] ; xmm2=[PB_CENTERJSAMP] packsswb xmm5, xmm6 ; xmm5=(02 12 22 32 42 52 62 72 04 14 24 34 44 54 64 74) packsswb xmm7, xmm4 ; xmm7=(03 13 23 33 43 53 63 73 05 15 25 35 45 55 65 75) paddb xmm1, xmm2 paddb xmm3, xmm2 paddb xmm5, xmm2 paddb xmm7, xmm2 movdqa xmm0, xmm1 ; transpose coefficients(phase 1) punpcklbw xmm1, xmm3 ; xmm1=(00 01 10 11 20 21 30 31 40 41 50 51 60 61 70 71) punpckhbw xmm0, xmm3 ; xmm0=(06 07 16 17 26 27 36 37 46 47 56 57 66 67 76 77) movdqa xmm6, xmm5 ; transpose coefficients(phase 1) punpcklbw xmm5, xmm7 ; xmm5=(02 03 12 13 22 23 32 33 42 43 52 53 62 63 72 73) punpckhbw xmm6, xmm7 ; xmm6=(04 05 14 15 24 25 34 35 44 45 54 55 64 65 74 75) movdqa xmm4, xmm1 ; transpose coefficients(phase 2) punpcklwd xmm1, xmm5 ; xmm1=(00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33) punpckhwd xmm4, xmm5 ; xmm4=(40 41 42 43 50 51 52 53 60 61 62 63 70 71 72 73) movdqa xmm2, xmm6 ; transpose coefficients(phase 2) punpcklwd xmm6, xmm0 ; xmm6=(04 05 06 07 14 15 16 17 24 25 26 27 34 35 36 37) punpckhwd xmm2, xmm0 ; xmm2=(44 45 46 47 54 55 56 57 64 65 66 67 74 75 76 77) movdqa xmm3, xmm1 ; transpose coefficients(phase 3) punpckldq xmm1, xmm6 ; xmm1=(00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17) punpckhdq xmm3, xmm6 ; xmm3=(20 21 22 23 24 25 26 27 30 31 32 33 34 35 36 37) movdqa xmm7, xmm4 ; transpose coefficients(phase 3) punpckldq xmm4, xmm2 ; xmm4=(40 41 42 43 44 45 46 47 50 51 52 53 54 55 56 57) punpckhdq xmm7, xmm2 ; xmm7=(60 61 62 63 64 65 66 67 70 71 72 73 74 75 76 77) pshufd xmm5, xmm1, 0x4E ; xmm5=(10 11 12 13 14 15 16 17 00 01 02 03 04 05 06 07) pshufd xmm0, xmm3, 0x4E ; xmm0=(30 31 32 33 34 35 36 37 20 21 22 23 24 25 26 27) pshufd xmm6, xmm4, 0x4E ; xmm6=(50 51 52 53 54 55 56 57 40 41 42 43 44 45 46 47) pshufd xmm2, xmm7, 0x4E ; xmm2=(70 71 72 73 74 75 76 77 60 61 62 63 64 65 66 67) mov edx, JSAMPROW [edi+0*SIZEOF_JSAMPROW] mov esi, JSAMPROW [edi+2*SIZEOF_JSAMPROW] movq XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE], xmm1 movq XMM_MMWORD [esi+eax*SIZEOF_JSAMPLE], xmm3 mov edx, JSAMPROW [edi+4*SIZEOF_JSAMPROW] mov esi, JSAMPROW [edi+6*SIZEOF_JSAMPROW] movq XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE], xmm4 movq XMM_MMWORD [esi+eax*SIZEOF_JSAMPLE], xmm7 mov edx, JSAMPROW [edi+1*SIZEOF_JSAMPROW] mov esi, JSAMPROW [edi+3*SIZEOF_JSAMPROW] movq XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE], xmm5 movq XMM_MMWORD [esi+eax*SIZEOF_JSAMPLE], xmm0 mov edx, JSAMPROW [edi+5*SIZEOF_JSAMPROW] mov esi, JSAMPROW [edi+7*SIZEOF_JSAMPROW] movq XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE], xmm6 movq XMM_MMWORD [esi+eax*SIZEOF_JSAMPLE], xmm2 pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; unused poppic ebx mov esp, ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/i386/jidctint-avx2.asm000066400000000000000000000451051436506551100211140ustar00rootroot00000000000000; ; jidctint.asm - accurate integer IDCT (AVX2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2009, 2016, 2018, 2020, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains a slower but more accurate integer implementation of the ; inverse DCT (Discrete Cosine Transform). The following code is based ; directly on the IJG's original jidctint.c; see the jidctint.c for ; more details. %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- %define CONST_BITS 13 %define PASS1_BITS 2 %define DESCALE_P1 (CONST_BITS - PASS1_BITS) %define DESCALE_P2 (CONST_BITS + PASS1_BITS + 3) %if CONST_BITS == 13 F_0_298 equ 2446 ; FIX(0.298631336) F_0_390 equ 3196 ; FIX(0.390180644) F_0_541 equ 4433 ; FIX(0.541196100) F_0_765 equ 6270 ; FIX(0.765366865) F_0_899 equ 7373 ; FIX(0.899976223) F_1_175 equ 9633 ; FIX(1.175875602) F_1_501 equ 12299 ; FIX(1.501321110) F_1_847 equ 15137 ; FIX(1.847759065) F_1_961 equ 16069 ; FIX(1.961570560) F_2_053 equ 16819 ; FIX(2.053119869) F_2_562 equ 20995 ; FIX(2.562915447) F_3_072 equ 25172 ; FIX(3.072711026) %else ; NASM cannot do compile-time arithmetic on floating-point constants. %define DESCALE(x, n) (((x) + (1 << ((n) - 1))) >> (n)) F_0_298 equ DESCALE( 320652955, 30 - CONST_BITS) ; FIX(0.298631336) F_0_390 equ DESCALE( 418953276, 30 - CONST_BITS) ; FIX(0.390180644) F_0_541 equ DESCALE( 581104887, 30 - CONST_BITS) ; FIX(0.541196100) F_0_765 equ DESCALE( 821806413, 30 - CONST_BITS) ; FIX(0.765366865) F_0_899 equ DESCALE( 966342111, 30 - CONST_BITS) ; FIX(0.899976223) F_1_175 equ DESCALE(1262586813, 30 - CONST_BITS) ; FIX(1.175875602) F_1_501 equ DESCALE(1612031267, 30 - CONST_BITS) ; FIX(1.501321110) F_1_847 equ DESCALE(1984016188, 30 - CONST_BITS) ; FIX(1.847759065) F_1_961 equ DESCALE(2106220350, 30 - CONST_BITS) ; FIX(1.961570560) F_2_053 equ DESCALE(2204520673, 30 - CONST_BITS) ; FIX(2.053119869) F_2_562 equ DESCALE(2751909506, 30 - CONST_BITS) ; FIX(2.562915447) F_3_072 equ DESCALE(3299298341, 30 - CONST_BITS) ; FIX(3.072711026) %endif ; -------------------------------------------------------------------------- ; In-place 8x8x16-bit inverse matrix transpose using AVX2 instructions ; %1-%4: Input/output registers ; %5-%8: Temp registers %macro dotranspose 8 ; %5=(00 10 20 30 40 50 60 70 01 11 21 31 41 51 61 71) ; %6=(03 13 23 33 43 53 63 73 02 12 22 32 42 52 62 72) ; %7=(04 14 24 34 44 54 64 74 05 15 25 35 45 55 65 75) ; %8=(07 17 27 37 47 57 67 77 06 16 26 36 46 56 66 76) vpermq %5, %1, 0xD8 vpermq %6, %2, 0x72 vpermq %7, %3, 0xD8 vpermq %8, %4, 0x72 ; transpose coefficients(phase 1) ; %5=(00 10 20 30 01 11 21 31 40 50 60 70 41 51 61 71) ; %6=(02 12 22 32 03 13 23 33 42 52 62 72 43 53 63 73) ; %7=(04 14 24 34 05 15 25 35 44 54 64 74 45 55 65 75) ; %8=(06 16 26 36 07 17 27 37 46 56 66 76 47 57 67 77) vpunpcklwd %1, %5, %6 vpunpckhwd %2, %5, %6 vpunpcklwd %3, %7, %8 vpunpckhwd %4, %7, %8 ; transpose coefficients(phase 2) ; %1=(00 02 10 12 20 22 30 32 40 42 50 52 60 62 70 72) ; %2=(01 03 11 13 21 23 31 33 41 43 51 53 61 63 71 73) ; %3=(04 06 14 16 24 26 34 36 44 46 54 56 64 66 74 76) ; %4=(05 07 15 17 25 27 35 37 45 47 55 57 65 67 75 77) vpunpcklwd %5, %1, %2 vpunpcklwd %6, %3, %4 vpunpckhwd %7, %1, %2 vpunpckhwd %8, %3, %4 ; transpose coefficients(phase 3) ; %5=(00 01 02 03 10 11 12 13 40 41 42 43 50 51 52 53) ; %6=(04 05 06 07 14 15 16 17 44 45 46 47 54 55 56 57) ; %7=(20 21 22 23 30 31 32 33 60 61 62 63 70 71 72 73) ; %8=(24 25 26 27 34 35 36 37 64 65 66 67 74 75 76 77) vpunpcklqdq %1, %5, %6 vpunpckhqdq %2, %5, %6 vpunpcklqdq %3, %7, %8 vpunpckhqdq %4, %7, %8 ; transpose coefficients(phase 4) ; %1=(00 01 02 03 04 05 06 07 40 41 42 43 44 45 46 47) ; %2=(10 11 12 13 14 15 16 17 50 51 52 53 54 55 56 57) ; %3=(20 21 22 23 24 25 26 27 60 61 62 63 64 65 66 67) ; %4=(30 31 32 33 34 35 36 37 70 71 72 73 74 75 76 77) %endmacro ; -------------------------------------------------------------------------- ; In-place 8x8x16-bit accurate integer inverse DCT using AVX2 instructions ; %1-%4: Input/output registers ; %5-%12: Temp registers ; %9: Pass (1 or 2) %macro dodct 13 ; -- Even part ; (Original) ; z1 = (z2 + z3) * 0.541196100; ; tmp2 = z1 + z3 * -1.847759065; ; tmp3 = z1 + z2 * 0.765366865; ; ; (This implementation) ; tmp2 = z2 * 0.541196100 + z3 * (0.541196100 - 1.847759065); ; tmp3 = z2 * (0.541196100 + 0.765366865) + z3 * 0.541196100; vperm2i128 %6, %3, %3, 0x01 ; %6=in6_2 vpunpcklwd %5, %3, %6 ; %5=in26_62L vpunpckhwd %6, %3, %6 ; %6=in26_62H vpmaddwd %5, %5, [GOTOFF(ebx,PW_F130_F054_MF130_F054)] ; %5=tmp3_2L vpmaddwd %6, %6, [GOTOFF(ebx,PW_F130_F054_MF130_F054)] ; %6=tmp3_2H vperm2i128 %7, %1, %1, 0x01 ; %7=in4_0 vpsignw %1, %1, [GOTOFF(ebx,PW_1_NEG1)] vpaddw %7, %7, %1 ; %7=(in0+in4)_(in0-in4) vpxor %1, %1, %1 vpunpcklwd %8, %1, %7 ; %8=tmp0_1L vpunpckhwd %1, %1, %7 ; %1=tmp0_1H vpsrad %8, %8, (16-CONST_BITS) ; vpsrad %8,16 & vpslld %8,CONST_BITS vpsrad %1, %1, (16-CONST_BITS) ; vpsrad %1,16 & vpslld %1,CONST_BITS vpsubd %3, %8, %5 vmovdqu %11, %3 ; %11=tmp0_1L-tmp3_2L=tmp13_12L vpaddd %3, %8, %5 vmovdqu %9, %3 ; %9=tmp0_1L+tmp3_2L=tmp10_11L vpsubd %3, %1, %6 vmovdqu %12, %3 ; %12=tmp0_1H-tmp3_2H=tmp13_12H vpaddd %3, %1, %6 vmovdqu %10, %3 ; %10=tmp0_1H+tmp3_2H=tmp10_11H ; -- Odd part vpaddw %1, %4, %2 ; %1=in7_5+in3_1=z3_4 ; (Original) ; z5 = (z3 + z4) * 1.175875602; ; z3 = z3 * -1.961570560; z4 = z4 * -0.390180644; ; z3 += z5; z4 += z5; ; ; (This implementation) ; z3 = z3 * (1.175875602 - 1.961570560) + z4 * 1.175875602; ; z4 = z3 * 1.175875602 + z4 * (1.175875602 - 0.390180644); vperm2i128 %8, %1, %1, 0x01 ; %8=z4_3 vpunpcklwd %7, %1, %8 ; %7=z34_43L vpunpckhwd %8, %1, %8 ; %8=z34_43H vpmaddwd %7, %7, [GOTOFF(ebx,PW_MF078_F117_F078_F117)] ; %7=z3_4L vpmaddwd %8, %8, [GOTOFF(ebx,PW_MF078_F117_F078_F117)] ; %8=z3_4H ; (Original) ; z1 = tmp0 + tmp3; z2 = tmp1 + tmp2; ; tmp0 = tmp0 * 0.298631336; tmp1 = tmp1 * 2.053119869; ; tmp2 = tmp2 * 3.072711026; tmp3 = tmp3 * 1.501321110; ; z1 = z1 * -0.899976223; z2 = z2 * -2.562915447; ; tmp0 += z1 + z3; tmp1 += z2 + z4; ; tmp2 += z2 + z3; tmp3 += z1 + z4; ; ; (This implementation) ; tmp0 = tmp0 * (0.298631336 - 0.899976223) + tmp3 * -0.899976223; ; tmp1 = tmp1 * (2.053119869 - 2.562915447) + tmp2 * -2.562915447; ; tmp2 = tmp1 * -2.562915447 + tmp2 * (3.072711026 - 2.562915447); ; tmp3 = tmp0 * -0.899976223 + tmp3 * (1.501321110 - 0.899976223); ; tmp0 += z3; tmp1 += z4; ; tmp2 += z3; tmp3 += z4; vperm2i128 %2, %2, %2, 0x01 ; %2=in1_3 vpunpcklwd %3, %4, %2 ; %3=in71_53L vpunpckhwd %4, %4, %2 ; %4=in71_53H vpmaddwd %5, %3, [GOTOFF(ebx,PW_MF060_MF089_MF050_MF256)] ; %5=tmp0_1L vpmaddwd %6, %4, [GOTOFF(ebx,PW_MF060_MF089_MF050_MF256)] ; %6=tmp0_1H vpaddd %5, %5, %7 ; %5=tmp0_1L+z3_4L=tmp0_1L vpaddd %6, %6, %8 ; %6=tmp0_1H+z3_4H=tmp0_1H vpmaddwd %3, %3, [GOTOFF(ebx,PW_MF089_F060_MF256_F050)] ; %3=tmp3_2L vpmaddwd %4, %4, [GOTOFF(ebx,PW_MF089_F060_MF256_F050)] ; %4=tmp3_2H vperm2i128 %7, %7, %7, 0x01 ; %7=z4_3L vperm2i128 %8, %8, %8, 0x01 ; %8=z4_3H vpaddd %7, %3, %7 ; %7=tmp3_2L+z4_3L=tmp3_2L vpaddd %8, %4, %8 ; %8=tmp3_2H+z4_3H=tmp3_2H ; -- Final output stage vmovdqu %3, %9 vmovdqu %4, %10 vpaddd %1, %3, %7 ; %1=tmp10_11L+tmp3_2L=data0_1L vpaddd %2, %4, %8 ; %2=tmp10_11H+tmp3_2H=data0_1H vpaddd %1, %1, [GOTOFF(ebx,PD_DESCALE_P %+ %13)] vpaddd %2, %2, [GOTOFF(ebx,PD_DESCALE_P %+ %13)] vpsrad %1, %1, DESCALE_P %+ %13 vpsrad %2, %2, DESCALE_P %+ %13 vpackssdw %1, %1, %2 ; %1=data0_1 vpsubd %3, %3, %7 ; %3=tmp10_11L-tmp3_2L=data7_6L vpsubd %4, %4, %8 ; %4=tmp10_11H-tmp3_2H=data7_6H vpaddd %3, %3, [GOTOFF(ebx,PD_DESCALE_P %+ %13)] vpaddd %4, %4, [GOTOFF(ebx,PD_DESCALE_P %+ %13)] vpsrad %3, %3, DESCALE_P %+ %13 vpsrad %4, %4, DESCALE_P %+ %13 vpackssdw %4, %3, %4 ; %4=data7_6 vmovdqu %7, %11 vmovdqu %8, %12 vpaddd %2, %7, %5 ; %7=tmp13_12L+tmp0_1L=data3_2L vpaddd %3, %8, %6 ; %8=tmp13_12H+tmp0_1H=data3_2H vpaddd %2, %2, [GOTOFF(ebx,PD_DESCALE_P %+ %13)] vpaddd %3, %3, [GOTOFF(ebx,PD_DESCALE_P %+ %13)] vpsrad %2, %2, DESCALE_P %+ %13 vpsrad %3, %3, DESCALE_P %+ %13 vpackssdw %2, %2, %3 ; %2=data3_2 vpsubd %3, %7, %5 ; %7=tmp13_12L-tmp0_1L=data4_5L vpsubd %6, %8, %6 ; %8=tmp13_12H-tmp0_1H=data4_5H vpaddd %3, %3, [GOTOFF(ebx,PD_DESCALE_P %+ %13)] vpaddd %6, %6, [GOTOFF(ebx,PD_DESCALE_P %+ %13)] vpsrad %3, %3, DESCALE_P %+ %13 vpsrad %6, %6, DESCALE_P %+ %13 vpackssdw %3, %3, %6 ; %3=data4_5 %endmacro ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 32 GLOBAL_DATA(jconst_idct_islow_avx2) EXTN(jconst_idct_islow_avx2): PW_F130_F054_MF130_F054 times 4 dw (F_0_541 + F_0_765), F_0_541 times 4 dw (F_0_541 - F_1_847), F_0_541 PW_MF078_F117_F078_F117 times 4 dw (F_1_175 - F_1_961), F_1_175 times 4 dw (F_1_175 - F_0_390), F_1_175 PW_MF060_MF089_MF050_MF256 times 4 dw (F_0_298 - F_0_899), -F_0_899 times 4 dw (F_2_053 - F_2_562), -F_2_562 PW_MF089_F060_MF256_F050 times 4 dw -F_0_899, (F_1_501 - F_0_899) times 4 dw -F_2_562, (F_3_072 - F_2_562) PD_DESCALE_P1 times 8 dd 1 << (DESCALE_P1 - 1) PD_DESCALE_P2 times 8 dd 1 << (DESCALE_P2 - 1) PB_CENTERJSAMP times 32 db CENTERJSAMPLE PW_1_NEG1 times 8 dw 1 times 8 dw -1 alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Perform dequantization and inverse DCT on one block of coefficients. ; ; GLOBAL(void) ; jsimd_idct_islow_avx2(void *dct_table, JCOEFPTR coef_block, ; JSAMPARRAY output_buf, JDIMENSION output_col) ; %define dct_table(b) (b) + 8 ; jpeg_component_info *compptr %define coef_block(b) (b) + 12 ; JCOEFPTR coef_block %define output_buf(b) (b) + 16 ; JSAMPARRAY output_buf %define output_col(b) (b) + 20 ; JDIMENSION output_col %define original_ebp ebp + 0 %define wk(i) ebp - (WK_NUM - (i)) * SIZEOF_YMMWORD ; ymmword wk[WK_NUM] %define WK_NUM 4 align 32 GLOBAL_FUNCTION(jsimd_idct_islow_avx2) EXTN(jsimd_idct_islow_avx2): push ebp mov eax, esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [esp], eax mov ebp, esp ; ebp = aligned ebp lea esp, [wk(0)] pushpic ebx ; push ecx ; unused ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address ; ---- Pass 1: process columns. ; mov eax, [original_ebp] mov edx, POINTER [dct_table(eax)] ; quantptr mov esi, JCOEFPTR [coef_block(eax)] ; inptr %ifndef NO_ZERO_COLUMN_TEST_ISLOW_AVX2 mov eax, dword [DWBLOCK(1,0,esi,SIZEOF_JCOEF)] or eax, dword [DWBLOCK(2,0,esi,SIZEOF_JCOEF)] jnz near .columnDCT movdqa xmm0, XMMWORD [XMMBLOCK(1,0,esi,SIZEOF_JCOEF)] movdqa xmm1, XMMWORD [XMMBLOCK(2,0,esi,SIZEOF_JCOEF)] vpor xmm0, xmm0, XMMWORD [XMMBLOCK(3,0,esi,SIZEOF_JCOEF)] vpor xmm1, xmm1, XMMWORD [XMMBLOCK(4,0,esi,SIZEOF_JCOEF)] vpor xmm0, xmm0, XMMWORD [XMMBLOCK(5,0,esi,SIZEOF_JCOEF)] vpor xmm1, xmm1, XMMWORD [XMMBLOCK(6,0,esi,SIZEOF_JCOEF)] vpor xmm0, xmm0, XMMWORD [XMMBLOCK(7,0,esi,SIZEOF_JCOEF)] vpor xmm1, xmm1, xmm0 vpacksswb xmm1, xmm1, xmm1 vpacksswb xmm1, xmm1, xmm1 movd eax, xmm1 test eax, eax jnz short .columnDCT ; -- AC terms all zero movdqa xmm5, XMMWORD [XMMBLOCK(0,0,esi,SIZEOF_JCOEF)] vpmullw xmm5, xmm5, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_ISLOW_MULT_TYPE)] vpsllw xmm5, xmm5, PASS1_BITS vpunpcklwd xmm4, xmm5, xmm5 ; xmm4=(00 00 01 01 02 02 03 03) vpunpckhwd xmm5, xmm5, xmm5 ; xmm5=(04 04 05 05 06 06 07 07) vinserti128 ymm4, ymm4, xmm5, 1 vpshufd ymm0, ymm4, 0x00 ; ymm0=col0_4=(00 00 00 00 00 00 00 00 04 04 04 04 04 04 04 04) vpshufd ymm1, ymm4, 0x55 ; ymm1=col1_5=(01 01 01 01 01 01 01 01 05 05 05 05 05 05 05 05) vpshufd ymm2, ymm4, 0xAA ; ymm2=col2_6=(02 02 02 02 02 02 02 02 06 06 06 06 06 06 06 06) vpshufd ymm3, ymm4, 0xFF ; ymm3=col3_7=(03 03 03 03 03 03 03 03 07 07 07 07 07 07 07 07) jmp near .column_end alignx 16, 7 %endif .columnDCT: vmovdqu ymm4, YMMWORD [YMMBLOCK(0,0,esi,SIZEOF_JCOEF)] ; ymm4=in0_1 vmovdqu ymm5, YMMWORD [YMMBLOCK(2,0,esi,SIZEOF_JCOEF)] ; ymm5=in2_3 vmovdqu ymm6, YMMWORD [YMMBLOCK(4,0,esi,SIZEOF_JCOEF)] ; ymm6=in4_5 vmovdqu ymm7, YMMWORD [YMMBLOCK(6,0,esi,SIZEOF_JCOEF)] ; ymm7=in6_7 vpmullw ymm4, ymm4, YMMWORD [YMMBLOCK(0,0,edx,SIZEOF_ISLOW_MULT_TYPE)] vpmullw ymm5, ymm5, YMMWORD [YMMBLOCK(2,0,edx,SIZEOF_ISLOW_MULT_TYPE)] vpmullw ymm6, ymm6, YMMWORD [YMMBLOCK(4,0,edx,SIZEOF_ISLOW_MULT_TYPE)] vpmullw ymm7, ymm7, YMMWORD [YMMBLOCK(6,0,edx,SIZEOF_ISLOW_MULT_TYPE)] vperm2i128 ymm0, ymm4, ymm6, 0x20 ; ymm0=in0_4 vperm2i128 ymm1, ymm5, ymm4, 0x31 ; ymm1=in3_1 vperm2i128 ymm2, ymm5, ymm7, 0x20 ; ymm2=in2_6 vperm2i128 ymm3, ymm7, ymm6, 0x31 ; ymm3=in7_5 dodct ymm0, ymm1, ymm2, ymm3, ymm4, ymm5, ymm6, ymm7, XMMWORD [wk(0)], XMMWORD [wk(1)], XMMWORD [wk(2)], XMMWORD [wk(3)], 1 ; ymm0=data0_1, ymm1=data3_2, ymm2=data4_5, ymm3=data7_6 dotranspose ymm0, ymm1, ymm2, ymm3, ymm4, ymm5, ymm6, ymm7 ; ymm0=data0_4, ymm1=data1_5, ymm2=data2_6, ymm3=data3_7 .column_end: ; -- Prefetch the next coefficient block prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 0*32] prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 1*32] prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 2*32] prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 3*32] ; ---- Pass 2: process rows. mov eax, [original_ebp] mov edi, JSAMPARRAY [output_buf(eax)] ; (JSAMPROW *) mov eax, JDIMENSION [output_col(eax)] vperm2i128 ymm4, ymm3, ymm1, 0x31 ; ymm3=in7_5 vperm2i128 ymm1, ymm3, ymm1, 0x20 ; ymm1=in3_1 dodct ymm0, ymm1, ymm2, ymm4, ymm3, ymm5, ymm6, ymm7, XMMWORD [wk(0)], XMMWORD [wk(1)], XMMWORD [wk(2)], XMMWORD [wk(3)], 2 ; ymm0=data0_1, ymm1=data3_2, ymm2=data4_5, ymm4=data7_6 dotranspose ymm0, ymm1, ymm2, ymm4, ymm3, ymm5, ymm6, ymm7 ; ymm0=data0_4, ymm1=data1_5, ymm2=data2_6, ymm4=data3_7 vpacksswb ymm0, ymm0, ymm1 ; ymm0=data01_45 vpacksswb ymm1, ymm2, ymm4 ; ymm1=data23_67 vpaddb ymm0, ymm0, [GOTOFF(ebx,PB_CENTERJSAMP)] vpaddb ymm1, ymm1, [GOTOFF(ebx,PB_CENTERJSAMP)] vextracti128 xmm6, ymm1, 1 ; xmm3=data67 vextracti128 xmm4, ymm0, 1 ; xmm2=data45 vextracti128 xmm2, ymm1, 0 ; xmm1=data23 vextracti128 xmm0, ymm0, 0 ; xmm0=data01 vpshufd xmm1, xmm0, 0x4E ; xmm1=(10 11 12 13 14 15 16 17 00 01 02 03 04 05 06 07) vpshufd xmm3, xmm2, 0x4E ; xmm3=(30 31 32 33 34 35 36 37 20 21 22 23 24 25 26 27) vpshufd xmm5, xmm4, 0x4E ; xmm5=(50 51 52 53 54 55 56 57 40 41 42 43 44 45 46 47) vpshufd xmm7, xmm6, 0x4E ; xmm7=(70 71 72 73 74 75 76 77 60 61 62 63 64 65 66 67) vzeroupper mov edx, JSAMPROW [edi+0*SIZEOF_JSAMPROW] ; (JSAMPLE *) mov esi, JSAMPROW [edi+1*SIZEOF_JSAMPROW] ; (JSAMPLE *) movq XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE], xmm0 movq XMM_MMWORD [esi+eax*SIZEOF_JSAMPLE], xmm1 mov edx, JSAMPROW [edi+2*SIZEOF_JSAMPROW] ; (JSAMPLE *) mov esi, JSAMPROW [edi+3*SIZEOF_JSAMPROW] ; (JSAMPLE *) movq XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE], xmm2 movq XMM_MMWORD [esi+eax*SIZEOF_JSAMPLE], xmm3 mov edx, JSAMPROW [edi+4*SIZEOF_JSAMPROW] ; (JSAMPLE *) mov esi, JSAMPROW [edi+5*SIZEOF_JSAMPROW] ; (JSAMPLE *) movq XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE], xmm4 movq XMM_MMWORD [esi+eax*SIZEOF_JSAMPLE], xmm5 mov edx, JSAMPROW [edi+6*SIZEOF_JSAMPROW] ; (JSAMPLE *) mov esi, JSAMPROW [edi+7*SIZEOF_JSAMPROW] ; (JSAMPLE *) movq XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE], xmm6 movq XMM_MMWORD [esi+eax*SIZEOF_JSAMPLE], xmm7 pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; unused poppic ebx mov esp, ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/i386/jidctint-mmx.asm000066400000000000000000001012471436506551100210350ustar00rootroot00000000000000; ; jidctint.asm - accurate integer IDCT (MMX) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2016, 2020, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains a slower but more accurate integer implementation of the ; inverse DCT (Discrete Cosine Transform). The following code is based ; directly on the IJG's original jidctint.c; see the jidctint.c for ; more details. %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- %define CONST_BITS 13 %define PASS1_BITS 2 %define DESCALE_P1 (CONST_BITS - PASS1_BITS) %define DESCALE_P2 (CONST_BITS + PASS1_BITS + 3) %if CONST_BITS == 13 F_0_298 equ 2446 ; FIX(0.298631336) F_0_390 equ 3196 ; FIX(0.390180644) F_0_541 equ 4433 ; FIX(0.541196100) F_0_765 equ 6270 ; FIX(0.765366865) F_0_899 equ 7373 ; FIX(0.899976223) F_1_175 equ 9633 ; FIX(1.175875602) F_1_501 equ 12299 ; FIX(1.501321110) F_1_847 equ 15137 ; FIX(1.847759065) F_1_961 equ 16069 ; FIX(1.961570560) F_2_053 equ 16819 ; FIX(2.053119869) F_2_562 equ 20995 ; FIX(2.562915447) F_3_072 equ 25172 ; FIX(3.072711026) %else ; NASM cannot do compile-time arithmetic on floating-point constants. %define DESCALE(x, n) (((x) + (1 << ((n) - 1))) >> (n)) F_0_298 equ DESCALE( 320652955, 30 - CONST_BITS) ; FIX(0.298631336) F_0_390 equ DESCALE( 418953276, 30 - CONST_BITS) ; FIX(0.390180644) F_0_541 equ DESCALE( 581104887, 30 - CONST_BITS) ; FIX(0.541196100) F_0_765 equ DESCALE( 821806413, 30 - CONST_BITS) ; FIX(0.765366865) F_0_899 equ DESCALE( 966342111, 30 - CONST_BITS) ; FIX(0.899976223) F_1_175 equ DESCALE(1262586813, 30 - CONST_BITS) ; FIX(1.175875602) F_1_501 equ DESCALE(1612031267, 30 - CONST_BITS) ; FIX(1.501321110) F_1_847 equ DESCALE(1984016188, 30 - CONST_BITS) ; FIX(1.847759065) F_1_961 equ DESCALE(2106220350, 30 - CONST_BITS) ; FIX(1.961570560) F_2_053 equ DESCALE(2204520673, 30 - CONST_BITS) ; FIX(2.053119869) F_2_562 equ DESCALE(2751909506, 30 - CONST_BITS) ; FIX(2.562915447) F_3_072 equ DESCALE(3299298341, 30 - CONST_BITS) ; FIX(3.072711026) %endif ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 32 GLOBAL_DATA(jconst_idct_islow_mmx) EXTN(jconst_idct_islow_mmx): PW_F130_F054 times 2 dw (F_0_541 + F_0_765), F_0_541 PW_F054_MF130 times 2 dw F_0_541, (F_0_541 - F_1_847) PW_MF078_F117 times 2 dw (F_1_175 - F_1_961), F_1_175 PW_F117_F078 times 2 dw F_1_175, (F_1_175 - F_0_390) PW_MF060_MF089 times 2 dw (F_0_298 - F_0_899), -F_0_899 PW_MF089_F060 times 2 dw -F_0_899, (F_1_501 - F_0_899) PW_MF050_MF256 times 2 dw (F_2_053 - F_2_562), -F_2_562 PW_MF256_F050 times 2 dw -F_2_562, (F_3_072 - F_2_562) PD_DESCALE_P1 times 2 dd 1 << (DESCALE_P1 - 1) PD_DESCALE_P2 times 2 dd 1 << (DESCALE_P2 - 1) PB_CENTERJSAMP times 8 db CENTERJSAMPLE alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Perform dequantization and inverse DCT on one block of coefficients. ; ; GLOBAL(void) ; jsimd_idct_islow_mmx(void *dct_table, JCOEFPTR coef_block, ; JSAMPARRAY output_buf, JDIMENSION output_col) ; %define dct_table(b) (b) + 8 ; jpeg_component_info *compptr %define coef_block(b) (b) + 12 ; JCOEFPTR coef_block %define output_buf(b) (b) + 16 ; JSAMPARRAY output_buf %define output_col(b) (b) + 20 ; JDIMENSION output_col %define original_ebp ebp + 0 %define wk(i) ebp - (WK_NUM - (i)) * SIZEOF_MMWORD ; mmword wk[WK_NUM] %define WK_NUM 12 %define workspace wk(0) - DCTSIZE2 * SIZEOF_JCOEF ; JCOEF workspace[DCTSIZE2] align 32 GLOBAL_FUNCTION(jsimd_idct_islow_mmx) EXTN(jsimd_idct_islow_mmx): push ebp mov eax, esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_MMWORD) ; align to 64 bits mov [esp], eax mov ebp, esp ; ebp = aligned ebp lea esp, [workspace] push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address ; ---- Pass 1: process columns from input, store into work array. ; mov eax, [original_ebp] mov edx, POINTER [dct_table(eax)] ; quantptr mov esi, JCOEFPTR [coef_block(eax)] ; inptr lea edi, [workspace] ; JCOEF *wsptr mov ecx, DCTSIZE/4 ; ctr alignx 16, 7 .columnloop: %ifndef NO_ZERO_COLUMN_TEST_ISLOW_MMX mov eax, dword [DWBLOCK(1,0,esi,SIZEOF_JCOEF)] or eax, dword [DWBLOCK(2,0,esi,SIZEOF_JCOEF)] jnz short .columnDCT movq mm0, MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)] movq mm1, MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)] por mm0, MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)] por mm1, MMWORD [MMBLOCK(4,0,esi,SIZEOF_JCOEF)] por mm0, MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)] por mm1, MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)] por mm0, MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)] por mm1, mm0 packsswb mm1, mm1 movd eax, mm1 test eax, eax jnz short .columnDCT ; -- AC terms all zero movq mm0, MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)] pmullw mm0, MMWORD [MMBLOCK(0,0,edx,SIZEOF_ISLOW_MULT_TYPE)] psllw mm0, PASS1_BITS movq mm2, mm0 ; mm0=in0=(00 01 02 03) punpcklwd mm0, mm0 ; mm0=(00 00 01 01) punpckhwd mm2, mm2 ; mm2=(02 02 03 03) movq mm1, mm0 punpckldq mm0, mm0 ; mm0=(00 00 00 00) punpckhdq mm1, mm1 ; mm1=(01 01 01 01) movq mm3, mm2 punpckldq mm2, mm2 ; mm2=(02 02 02 02) punpckhdq mm3, mm3 ; mm3=(03 03 03 03) movq MMWORD [MMBLOCK(0,0,edi,SIZEOF_JCOEF)], mm0 movq MMWORD [MMBLOCK(0,1,edi,SIZEOF_JCOEF)], mm0 movq MMWORD [MMBLOCK(1,0,edi,SIZEOF_JCOEF)], mm1 movq MMWORD [MMBLOCK(1,1,edi,SIZEOF_JCOEF)], mm1 movq MMWORD [MMBLOCK(2,0,edi,SIZEOF_JCOEF)], mm2 movq MMWORD [MMBLOCK(2,1,edi,SIZEOF_JCOEF)], mm2 movq MMWORD [MMBLOCK(3,0,edi,SIZEOF_JCOEF)], mm3 movq MMWORD [MMBLOCK(3,1,edi,SIZEOF_JCOEF)], mm3 jmp near .nextcolumn alignx 16, 7 %endif .columnDCT: ; -- Even part movq mm0, MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)] movq mm1, MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)] pmullw mm0, MMWORD [MMBLOCK(0,0,edx,SIZEOF_ISLOW_MULT_TYPE)] pmullw mm1, MMWORD [MMBLOCK(2,0,edx,SIZEOF_ISLOW_MULT_TYPE)] movq mm2, MMWORD [MMBLOCK(4,0,esi,SIZEOF_JCOEF)] movq mm3, MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)] pmullw mm2, MMWORD [MMBLOCK(4,0,edx,SIZEOF_ISLOW_MULT_TYPE)] pmullw mm3, MMWORD [MMBLOCK(6,0,edx,SIZEOF_ISLOW_MULT_TYPE)] ; (Original) ; z1 = (z2 + z3) * 0.541196100; ; tmp2 = z1 + z3 * -1.847759065; ; tmp3 = z1 + z2 * 0.765366865; ; ; (This implementation) ; tmp2 = z2 * 0.541196100 + z3 * (0.541196100 - 1.847759065); ; tmp3 = z2 * (0.541196100 + 0.765366865) + z3 * 0.541196100; movq mm4, mm1 ; mm1=in2=z2 movq mm5, mm1 punpcklwd mm4, mm3 ; mm3=in6=z3 punpckhwd mm5, mm3 movq mm1, mm4 movq mm3, mm5 pmaddwd mm4, [GOTOFF(ebx,PW_F130_F054)] ; mm4=tmp3L pmaddwd mm5, [GOTOFF(ebx,PW_F130_F054)] ; mm5=tmp3H pmaddwd mm1, [GOTOFF(ebx,PW_F054_MF130)] ; mm1=tmp2L pmaddwd mm3, [GOTOFF(ebx,PW_F054_MF130)] ; mm3=tmp2H movq mm6, mm0 paddw mm0, mm2 ; mm0=in0+in4 psubw mm6, mm2 ; mm6=in0-in4 pxor mm7, mm7 pxor mm2, mm2 punpcklwd mm7, mm0 ; mm7=tmp0L punpckhwd mm2, mm0 ; mm2=tmp0H psrad mm7, (16-CONST_BITS) ; psrad mm7,16 & pslld mm7,CONST_BITS psrad mm2, (16-CONST_BITS) ; psrad mm2,16 & pslld mm2,CONST_BITS movq mm0, mm7 paddd mm7, mm4 ; mm7=tmp10L psubd mm0, mm4 ; mm0=tmp13L movq mm4, mm2 paddd mm2, mm5 ; mm2=tmp10H psubd mm4, mm5 ; mm4=tmp13H movq MMWORD [wk(0)], mm7 ; wk(0)=tmp10L movq MMWORD [wk(1)], mm2 ; wk(1)=tmp10H movq MMWORD [wk(2)], mm0 ; wk(2)=tmp13L movq MMWORD [wk(3)], mm4 ; wk(3)=tmp13H pxor mm5, mm5 pxor mm7, mm7 punpcklwd mm5, mm6 ; mm5=tmp1L punpckhwd mm7, mm6 ; mm7=tmp1H psrad mm5, (16-CONST_BITS) ; psrad mm5,16 & pslld mm5,CONST_BITS psrad mm7, (16-CONST_BITS) ; psrad mm7,16 & pslld mm7,CONST_BITS movq mm2, mm5 paddd mm5, mm1 ; mm5=tmp11L psubd mm2, mm1 ; mm2=tmp12L movq mm0, mm7 paddd mm7, mm3 ; mm7=tmp11H psubd mm0, mm3 ; mm0=tmp12H movq MMWORD [wk(4)], mm5 ; wk(4)=tmp11L movq MMWORD [wk(5)], mm7 ; wk(5)=tmp11H movq MMWORD [wk(6)], mm2 ; wk(6)=tmp12L movq MMWORD [wk(7)], mm0 ; wk(7)=tmp12H ; -- Odd part movq mm4, MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)] movq mm6, MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)] pmullw mm4, MMWORD [MMBLOCK(1,0,edx,SIZEOF_ISLOW_MULT_TYPE)] pmullw mm6, MMWORD [MMBLOCK(3,0,edx,SIZEOF_ISLOW_MULT_TYPE)] movq mm1, MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)] movq mm3, MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)] pmullw mm1, MMWORD [MMBLOCK(5,0,edx,SIZEOF_ISLOW_MULT_TYPE)] pmullw mm3, MMWORD [MMBLOCK(7,0,edx,SIZEOF_ISLOW_MULT_TYPE)] movq mm5, mm6 movq mm7, mm4 paddw mm5, mm3 ; mm5=z3 paddw mm7, mm1 ; mm7=z4 ; (Original) ; z5 = (z3 + z4) * 1.175875602; ; z3 = z3 * -1.961570560; z4 = z4 * -0.390180644; ; z3 += z5; z4 += z5; ; ; (This implementation) ; z3 = z3 * (1.175875602 - 1.961570560) + z4 * 1.175875602; ; z4 = z3 * 1.175875602 + z4 * (1.175875602 - 0.390180644); movq mm2, mm5 movq mm0, mm5 punpcklwd mm2, mm7 punpckhwd mm0, mm7 movq mm5, mm2 movq mm7, mm0 pmaddwd mm2, [GOTOFF(ebx,PW_MF078_F117)] ; mm2=z3L pmaddwd mm0, [GOTOFF(ebx,PW_MF078_F117)] ; mm0=z3H pmaddwd mm5, [GOTOFF(ebx,PW_F117_F078)] ; mm5=z4L pmaddwd mm7, [GOTOFF(ebx,PW_F117_F078)] ; mm7=z4H movq MMWORD [wk(10)], mm2 ; wk(10)=z3L movq MMWORD [wk(11)], mm0 ; wk(11)=z3H ; (Original) ; z1 = tmp0 + tmp3; z2 = tmp1 + tmp2; ; tmp0 = tmp0 * 0.298631336; tmp1 = tmp1 * 2.053119869; ; tmp2 = tmp2 * 3.072711026; tmp3 = tmp3 * 1.501321110; ; z1 = z1 * -0.899976223; z2 = z2 * -2.562915447; ; tmp0 += z1 + z3; tmp1 += z2 + z4; ; tmp2 += z2 + z3; tmp3 += z1 + z4; ; ; (This implementation) ; tmp0 = tmp0 * (0.298631336 - 0.899976223) + tmp3 * -0.899976223; ; tmp1 = tmp1 * (2.053119869 - 2.562915447) + tmp2 * -2.562915447; ; tmp2 = tmp1 * -2.562915447 + tmp2 * (3.072711026 - 2.562915447); ; tmp3 = tmp0 * -0.899976223 + tmp3 * (1.501321110 - 0.899976223); ; tmp0 += z3; tmp1 += z4; ; tmp2 += z3; tmp3 += z4; movq mm2, mm3 movq mm0, mm3 punpcklwd mm2, mm4 punpckhwd mm0, mm4 movq mm3, mm2 movq mm4, mm0 pmaddwd mm2, [GOTOFF(ebx,PW_MF060_MF089)] ; mm2=tmp0L pmaddwd mm0, [GOTOFF(ebx,PW_MF060_MF089)] ; mm0=tmp0H pmaddwd mm3, [GOTOFF(ebx,PW_MF089_F060)] ; mm3=tmp3L pmaddwd mm4, [GOTOFF(ebx,PW_MF089_F060)] ; mm4=tmp3H paddd mm2, MMWORD [wk(10)] ; mm2=tmp0L paddd mm0, MMWORD [wk(11)] ; mm0=tmp0H paddd mm3, mm5 ; mm3=tmp3L paddd mm4, mm7 ; mm4=tmp3H movq MMWORD [wk(8)], mm2 ; wk(8)=tmp0L movq MMWORD [wk(9)], mm0 ; wk(9)=tmp0H movq mm2, mm1 movq mm0, mm1 punpcklwd mm2, mm6 punpckhwd mm0, mm6 movq mm1, mm2 movq mm6, mm0 pmaddwd mm2, [GOTOFF(ebx,PW_MF050_MF256)] ; mm2=tmp1L pmaddwd mm0, [GOTOFF(ebx,PW_MF050_MF256)] ; mm0=tmp1H pmaddwd mm1, [GOTOFF(ebx,PW_MF256_F050)] ; mm1=tmp2L pmaddwd mm6, [GOTOFF(ebx,PW_MF256_F050)] ; mm6=tmp2H paddd mm2, mm5 ; mm2=tmp1L paddd mm0, mm7 ; mm0=tmp1H paddd mm1, MMWORD [wk(10)] ; mm1=tmp2L paddd mm6, MMWORD [wk(11)] ; mm6=tmp2H movq MMWORD [wk(10)], mm2 ; wk(10)=tmp1L movq MMWORD [wk(11)], mm0 ; wk(11)=tmp1H ; -- Final output stage movq mm5, MMWORD [wk(0)] ; mm5=tmp10L movq mm7, MMWORD [wk(1)] ; mm7=tmp10H movq mm2, mm5 movq mm0, mm7 paddd mm5, mm3 ; mm5=data0L paddd mm7, mm4 ; mm7=data0H psubd mm2, mm3 ; mm2=data7L psubd mm0, mm4 ; mm0=data7H movq mm3, [GOTOFF(ebx,PD_DESCALE_P1)] ; mm3=[PD_DESCALE_P1] paddd mm5, mm3 paddd mm7, mm3 psrad mm5, DESCALE_P1 psrad mm7, DESCALE_P1 paddd mm2, mm3 paddd mm0, mm3 psrad mm2, DESCALE_P1 psrad mm0, DESCALE_P1 packssdw mm5, mm7 ; mm5=data0=(00 01 02 03) packssdw mm2, mm0 ; mm2=data7=(70 71 72 73) movq mm4, MMWORD [wk(4)] ; mm4=tmp11L movq mm3, MMWORD [wk(5)] ; mm3=tmp11H movq mm7, mm4 movq mm0, mm3 paddd mm4, mm1 ; mm4=data1L paddd mm3, mm6 ; mm3=data1H psubd mm7, mm1 ; mm7=data6L psubd mm0, mm6 ; mm0=data6H movq mm1, [GOTOFF(ebx,PD_DESCALE_P1)] ; mm1=[PD_DESCALE_P1] paddd mm4, mm1 paddd mm3, mm1 psrad mm4, DESCALE_P1 psrad mm3, DESCALE_P1 paddd mm7, mm1 paddd mm0, mm1 psrad mm7, DESCALE_P1 psrad mm0, DESCALE_P1 packssdw mm4, mm3 ; mm4=data1=(10 11 12 13) packssdw mm7, mm0 ; mm7=data6=(60 61 62 63) movq mm6, mm5 ; transpose coefficients(phase 1) punpcklwd mm5, mm4 ; mm5=(00 10 01 11) punpckhwd mm6, mm4 ; mm6=(02 12 03 13) movq mm1, mm7 ; transpose coefficients(phase 1) punpcklwd mm7, mm2 ; mm7=(60 70 61 71) punpckhwd mm1, mm2 ; mm1=(62 72 63 73) movq mm3, MMWORD [wk(6)] ; mm3=tmp12L movq mm0, MMWORD [wk(7)] ; mm0=tmp12H movq mm4, MMWORD [wk(10)] ; mm4=tmp1L movq mm2, MMWORD [wk(11)] ; mm2=tmp1H movq MMWORD [wk(0)], mm5 ; wk(0)=(00 10 01 11) movq MMWORD [wk(1)], mm6 ; wk(1)=(02 12 03 13) movq MMWORD [wk(4)], mm7 ; wk(4)=(60 70 61 71) movq MMWORD [wk(5)], mm1 ; wk(5)=(62 72 63 73) movq mm5, mm3 movq mm6, mm0 paddd mm3, mm4 ; mm3=data2L paddd mm0, mm2 ; mm0=data2H psubd mm5, mm4 ; mm5=data5L psubd mm6, mm2 ; mm6=data5H movq mm7, [GOTOFF(ebx,PD_DESCALE_P1)] ; mm7=[PD_DESCALE_P1] paddd mm3, mm7 paddd mm0, mm7 psrad mm3, DESCALE_P1 psrad mm0, DESCALE_P1 paddd mm5, mm7 paddd mm6, mm7 psrad mm5, DESCALE_P1 psrad mm6, DESCALE_P1 packssdw mm3, mm0 ; mm3=data2=(20 21 22 23) packssdw mm5, mm6 ; mm5=data5=(50 51 52 53) movq mm1, MMWORD [wk(2)] ; mm1=tmp13L movq mm4, MMWORD [wk(3)] ; mm4=tmp13H movq mm2, MMWORD [wk(8)] ; mm2=tmp0L movq mm7, MMWORD [wk(9)] ; mm7=tmp0H movq mm0, mm1 movq mm6, mm4 paddd mm1, mm2 ; mm1=data3L paddd mm4, mm7 ; mm4=data3H psubd mm0, mm2 ; mm0=data4L psubd mm6, mm7 ; mm6=data4H movq mm2, [GOTOFF(ebx,PD_DESCALE_P1)] ; mm2=[PD_DESCALE_P1] paddd mm1, mm2 paddd mm4, mm2 psrad mm1, DESCALE_P1 psrad mm4, DESCALE_P1 paddd mm0, mm2 paddd mm6, mm2 psrad mm0, DESCALE_P1 psrad mm6, DESCALE_P1 packssdw mm1, mm4 ; mm1=data3=(30 31 32 33) packssdw mm0, mm6 ; mm0=data4=(40 41 42 43) movq mm7, MMWORD [wk(0)] ; mm7=(00 10 01 11) movq mm2, MMWORD [wk(1)] ; mm2=(02 12 03 13) movq mm4, mm3 ; transpose coefficients(phase 1) punpcklwd mm3, mm1 ; mm3=(20 30 21 31) punpckhwd mm4, mm1 ; mm4=(22 32 23 33) movq mm6, mm0 ; transpose coefficients(phase 1) punpcklwd mm0, mm5 ; mm0=(40 50 41 51) punpckhwd mm6, mm5 ; mm6=(42 52 43 53) movq mm1, mm7 ; transpose coefficients(phase 2) punpckldq mm7, mm3 ; mm7=(00 10 20 30) punpckhdq mm1, mm3 ; mm1=(01 11 21 31) movq mm5, mm2 ; transpose coefficients(phase 2) punpckldq mm2, mm4 ; mm2=(02 12 22 32) punpckhdq mm5, mm4 ; mm5=(03 13 23 33) movq mm3, MMWORD [wk(4)] ; mm3=(60 70 61 71) movq mm4, MMWORD [wk(5)] ; mm4=(62 72 63 73) movq MMWORD [MMBLOCK(0,0,edi,SIZEOF_JCOEF)], mm7 movq MMWORD [MMBLOCK(1,0,edi,SIZEOF_JCOEF)], mm1 movq MMWORD [MMBLOCK(2,0,edi,SIZEOF_JCOEF)], mm2 movq MMWORD [MMBLOCK(3,0,edi,SIZEOF_JCOEF)], mm5 movq mm7, mm0 ; transpose coefficients(phase 2) punpckldq mm0, mm3 ; mm0=(40 50 60 70) punpckhdq mm7, mm3 ; mm7=(41 51 61 71) movq mm1, mm6 ; transpose coefficients(phase 2) punpckldq mm6, mm4 ; mm6=(42 52 62 72) punpckhdq mm1, mm4 ; mm1=(43 53 63 73) movq MMWORD [MMBLOCK(0,1,edi,SIZEOF_JCOEF)], mm0 movq MMWORD [MMBLOCK(1,1,edi,SIZEOF_JCOEF)], mm7 movq MMWORD [MMBLOCK(2,1,edi,SIZEOF_JCOEF)], mm6 movq MMWORD [MMBLOCK(3,1,edi,SIZEOF_JCOEF)], mm1 .nextcolumn: add esi, byte 4*SIZEOF_JCOEF ; coef_block add edx, byte 4*SIZEOF_ISLOW_MULT_TYPE ; quantptr add edi, byte 4*DCTSIZE*SIZEOF_JCOEF ; wsptr dec ecx ; ctr jnz near .columnloop ; ---- Pass 2: process rows from work array, store into output array. mov eax, [original_ebp] lea esi, [workspace] ; JCOEF *wsptr mov edi, JSAMPARRAY [output_buf(eax)] ; (JSAMPROW *) mov eax, JDIMENSION [output_col(eax)] mov ecx, DCTSIZE/4 ; ctr alignx 16, 7 .rowloop: ; -- Even part movq mm0, MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)] movq mm1, MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)] movq mm2, MMWORD [MMBLOCK(4,0,esi,SIZEOF_JCOEF)] movq mm3, MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)] ; (Original) ; z1 = (z2 + z3) * 0.541196100; ; tmp2 = z1 + z3 * -1.847759065; ; tmp3 = z1 + z2 * 0.765366865; ; ; (This implementation) ; tmp2 = z2 * 0.541196100 + z3 * (0.541196100 - 1.847759065); ; tmp3 = z2 * (0.541196100 + 0.765366865) + z3 * 0.541196100; movq mm4, mm1 ; mm1=in2=z2 movq mm5, mm1 punpcklwd mm4, mm3 ; mm3=in6=z3 punpckhwd mm5, mm3 movq mm1, mm4 movq mm3, mm5 pmaddwd mm4, [GOTOFF(ebx,PW_F130_F054)] ; mm4=tmp3L pmaddwd mm5, [GOTOFF(ebx,PW_F130_F054)] ; mm5=tmp3H pmaddwd mm1, [GOTOFF(ebx,PW_F054_MF130)] ; mm1=tmp2L pmaddwd mm3, [GOTOFF(ebx,PW_F054_MF130)] ; mm3=tmp2H movq mm6, mm0 paddw mm0, mm2 ; mm0=in0+in4 psubw mm6, mm2 ; mm6=in0-in4 pxor mm7, mm7 pxor mm2, mm2 punpcklwd mm7, mm0 ; mm7=tmp0L punpckhwd mm2, mm0 ; mm2=tmp0H psrad mm7, (16-CONST_BITS) ; psrad mm7,16 & pslld mm7,CONST_BITS psrad mm2, (16-CONST_BITS) ; psrad mm2,16 & pslld mm2,CONST_BITS movq mm0, mm7 paddd mm7, mm4 ; mm7=tmp10L psubd mm0, mm4 ; mm0=tmp13L movq mm4, mm2 paddd mm2, mm5 ; mm2=tmp10H psubd mm4, mm5 ; mm4=tmp13H movq MMWORD [wk(0)], mm7 ; wk(0)=tmp10L movq MMWORD [wk(1)], mm2 ; wk(1)=tmp10H movq MMWORD [wk(2)], mm0 ; wk(2)=tmp13L movq MMWORD [wk(3)], mm4 ; wk(3)=tmp13H pxor mm5, mm5 pxor mm7, mm7 punpcklwd mm5, mm6 ; mm5=tmp1L punpckhwd mm7, mm6 ; mm7=tmp1H psrad mm5, (16-CONST_BITS) ; psrad mm5,16 & pslld mm5,CONST_BITS psrad mm7, (16-CONST_BITS) ; psrad mm7,16 & pslld mm7,CONST_BITS movq mm2, mm5 paddd mm5, mm1 ; mm5=tmp11L psubd mm2, mm1 ; mm2=tmp12L movq mm0, mm7 paddd mm7, mm3 ; mm7=tmp11H psubd mm0, mm3 ; mm0=tmp12H movq MMWORD [wk(4)], mm5 ; wk(4)=tmp11L movq MMWORD [wk(5)], mm7 ; wk(5)=tmp11H movq MMWORD [wk(6)], mm2 ; wk(6)=tmp12L movq MMWORD [wk(7)], mm0 ; wk(7)=tmp12H ; -- Odd part movq mm4, MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)] movq mm6, MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)] movq mm1, MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)] movq mm3, MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)] movq mm5, mm6 movq mm7, mm4 paddw mm5, mm3 ; mm5=z3 paddw mm7, mm1 ; mm7=z4 ; (Original) ; z5 = (z3 + z4) * 1.175875602; ; z3 = z3 * -1.961570560; z4 = z4 * -0.390180644; ; z3 += z5; z4 += z5; ; ; (This implementation) ; z3 = z3 * (1.175875602 - 1.961570560) + z4 * 1.175875602; ; z4 = z3 * 1.175875602 + z4 * (1.175875602 - 0.390180644); movq mm2, mm5 movq mm0, mm5 punpcklwd mm2, mm7 punpckhwd mm0, mm7 movq mm5, mm2 movq mm7, mm0 pmaddwd mm2, [GOTOFF(ebx,PW_MF078_F117)] ; mm2=z3L pmaddwd mm0, [GOTOFF(ebx,PW_MF078_F117)] ; mm0=z3H pmaddwd mm5, [GOTOFF(ebx,PW_F117_F078)] ; mm5=z4L pmaddwd mm7, [GOTOFF(ebx,PW_F117_F078)] ; mm7=z4H movq MMWORD [wk(10)], mm2 ; wk(10)=z3L movq MMWORD [wk(11)], mm0 ; wk(11)=z3H ; (Original) ; z1 = tmp0 + tmp3; z2 = tmp1 + tmp2; ; tmp0 = tmp0 * 0.298631336; tmp1 = tmp1 * 2.053119869; ; tmp2 = tmp2 * 3.072711026; tmp3 = tmp3 * 1.501321110; ; z1 = z1 * -0.899976223; z2 = z2 * -2.562915447; ; tmp0 += z1 + z3; tmp1 += z2 + z4; ; tmp2 += z2 + z3; tmp3 += z1 + z4; ; ; (This implementation) ; tmp0 = tmp0 * (0.298631336 - 0.899976223) + tmp3 * -0.899976223; ; tmp1 = tmp1 * (2.053119869 - 2.562915447) + tmp2 * -2.562915447; ; tmp2 = tmp1 * -2.562915447 + tmp2 * (3.072711026 - 2.562915447); ; tmp3 = tmp0 * -0.899976223 + tmp3 * (1.501321110 - 0.899976223); ; tmp0 += z3; tmp1 += z4; ; tmp2 += z3; tmp3 += z4; movq mm2, mm3 movq mm0, mm3 punpcklwd mm2, mm4 punpckhwd mm0, mm4 movq mm3, mm2 movq mm4, mm0 pmaddwd mm2, [GOTOFF(ebx,PW_MF060_MF089)] ; mm2=tmp0L pmaddwd mm0, [GOTOFF(ebx,PW_MF060_MF089)] ; mm0=tmp0H pmaddwd mm3, [GOTOFF(ebx,PW_MF089_F060)] ; mm3=tmp3L pmaddwd mm4, [GOTOFF(ebx,PW_MF089_F060)] ; mm4=tmp3H paddd mm2, MMWORD [wk(10)] ; mm2=tmp0L paddd mm0, MMWORD [wk(11)] ; mm0=tmp0H paddd mm3, mm5 ; mm3=tmp3L paddd mm4, mm7 ; mm4=tmp3H movq MMWORD [wk(8)], mm2 ; wk(8)=tmp0L movq MMWORD [wk(9)], mm0 ; wk(9)=tmp0H movq mm2, mm1 movq mm0, mm1 punpcklwd mm2, mm6 punpckhwd mm0, mm6 movq mm1, mm2 movq mm6, mm0 pmaddwd mm2, [GOTOFF(ebx,PW_MF050_MF256)] ; mm2=tmp1L pmaddwd mm0, [GOTOFF(ebx,PW_MF050_MF256)] ; mm0=tmp1H pmaddwd mm1, [GOTOFF(ebx,PW_MF256_F050)] ; mm1=tmp2L pmaddwd mm6, [GOTOFF(ebx,PW_MF256_F050)] ; mm6=tmp2H paddd mm2, mm5 ; mm2=tmp1L paddd mm0, mm7 ; mm0=tmp1H paddd mm1, MMWORD [wk(10)] ; mm1=tmp2L paddd mm6, MMWORD [wk(11)] ; mm6=tmp2H movq MMWORD [wk(10)], mm2 ; wk(10)=tmp1L movq MMWORD [wk(11)], mm0 ; wk(11)=tmp1H ; -- Final output stage movq mm5, MMWORD [wk(0)] ; mm5=tmp10L movq mm7, MMWORD [wk(1)] ; mm7=tmp10H movq mm2, mm5 movq mm0, mm7 paddd mm5, mm3 ; mm5=data0L paddd mm7, mm4 ; mm7=data0H psubd mm2, mm3 ; mm2=data7L psubd mm0, mm4 ; mm0=data7H movq mm3, [GOTOFF(ebx,PD_DESCALE_P2)] ; mm3=[PD_DESCALE_P2] paddd mm5, mm3 paddd mm7, mm3 psrad mm5, DESCALE_P2 psrad mm7, DESCALE_P2 paddd mm2, mm3 paddd mm0, mm3 psrad mm2, DESCALE_P2 psrad mm0, DESCALE_P2 packssdw mm5, mm7 ; mm5=data0=(00 10 20 30) packssdw mm2, mm0 ; mm2=data7=(07 17 27 37) movq mm4, MMWORD [wk(4)] ; mm4=tmp11L movq mm3, MMWORD [wk(5)] ; mm3=tmp11H movq mm7, mm4 movq mm0, mm3 paddd mm4, mm1 ; mm4=data1L paddd mm3, mm6 ; mm3=data1H psubd mm7, mm1 ; mm7=data6L psubd mm0, mm6 ; mm0=data6H movq mm1, [GOTOFF(ebx,PD_DESCALE_P2)] ; mm1=[PD_DESCALE_P2] paddd mm4, mm1 paddd mm3, mm1 psrad mm4, DESCALE_P2 psrad mm3, DESCALE_P2 paddd mm7, mm1 paddd mm0, mm1 psrad mm7, DESCALE_P2 psrad mm0, DESCALE_P2 packssdw mm4, mm3 ; mm4=data1=(01 11 21 31) packssdw mm7, mm0 ; mm7=data6=(06 16 26 36) packsswb mm5, mm7 ; mm5=(00 10 20 30 06 16 26 36) packsswb mm4, mm2 ; mm4=(01 11 21 31 07 17 27 37) movq mm6, MMWORD [wk(6)] ; mm6=tmp12L movq mm1, MMWORD [wk(7)] ; mm1=tmp12H movq mm3, MMWORD [wk(10)] ; mm3=tmp1L movq mm0, MMWORD [wk(11)] ; mm0=tmp1H movq MMWORD [wk(0)], mm5 ; wk(0)=(00 10 20 30 06 16 26 36) movq MMWORD [wk(1)], mm4 ; wk(1)=(01 11 21 31 07 17 27 37) movq mm7, mm6 movq mm2, mm1 paddd mm6, mm3 ; mm6=data2L paddd mm1, mm0 ; mm1=data2H psubd mm7, mm3 ; mm7=data5L psubd mm2, mm0 ; mm2=data5H movq mm5, [GOTOFF(ebx,PD_DESCALE_P2)] ; mm5=[PD_DESCALE_P2] paddd mm6, mm5 paddd mm1, mm5 psrad mm6, DESCALE_P2 psrad mm1, DESCALE_P2 paddd mm7, mm5 paddd mm2, mm5 psrad mm7, DESCALE_P2 psrad mm2, DESCALE_P2 packssdw mm6, mm1 ; mm6=data2=(02 12 22 32) packssdw mm7, mm2 ; mm7=data5=(05 15 25 35) movq mm4, MMWORD [wk(2)] ; mm4=tmp13L movq mm3, MMWORD [wk(3)] ; mm3=tmp13H movq mm0, MMWORD [wk(8)] ; mm0=tmp0L movq mm5, MMWORD [wk(9)] ; mm5=tmp0H movq mm1, mm4 movq mm2, mm3 paddd mm4, mm0 ; mm4=data3L paddd mm3, mm5 ; mm3=data3H psubd mm1, mm0 ; mm1=data4L psubd mm2, mm5 ; mm2=data4H movq mm0, [GOTOFF(ebx,PD_DESCALE_P2)] ; mm0=[PD_DESCALE_P2] paddd mm4, mm0 paddd mm3, mm0 psrad mm4, DESCALE_P2 psrad mm3, DESCALE_P2 paddd mm1, mm0 paddd mm2, mm0 psrad mm1, DESCALE_P2 psrad mm2, DESCALE_P2 movq mm5, [GOTOFF(ebx,PB_CENTERJSAMP)] ; mm5=[PB_CENTERJSAMP] packssdw mm4, mm3 ; mm4=data3=(03 13 23 33) packssdw mm1, mm2 ; mm1=data4=(04 14 24 34) movq mm0, MMWORD [wk(0)] ; mm0=(00 10 20 30 06 16 26 36) movq mm3, MMWORD [wk(1)] ; mm3=(01 11 21 31 07 17 27 37) packsswb mm6, mm1 ; mm6=(02 12 22 32 04 14 24 34) packsswb mm4, mm7 ; mm4=(03 13 23 33 05 15 25 35) paddb mm0, mm5 paddb mm3, mm5 paddb mm6, mm5 paddb mm4, mm5 movq mm2, mm0 ; transpose coefficients(phase 1) punpcklbw mm0, mm3 ; mm0=(00 01 10 11 20 21 30 31) punpckhbw mm2, mm3 ; mm2=(06 07 16 17 26 27 36 37) movq mm1, mm6 ; transpose coefficients(phase 1) punpcklbw mm6, mm4 ; mm6=(02 03 12 13 22 23 32 33) punpckhbw mm1, mm4 ; mm1=(04 05 14 15 24 25 34 35) movq mm7, mm0 ; transpose coefficients(phase 2) punpcklwd mm0, mm6 ; mm0=(00 01 02 03 10 11 12 13) punpckhwd mm7, mm6 ; mm7=(20 21 22 23 30 31 32 33) movq mm5, mm1 ; transpose coefficients(phase 2) punpcklwd mm1, mm2 ; mm1=(04 05 06 07 14 15 16 17) punpckhwd mm5, mm2 ; mm5=(24 25 26 27 34 35 36 37) movq mm3, mm0 ; transpose coefficients(phase 3) punpckldq mm0, mm1 ; mm0=(00 01 02 03 04 05 06 07) punpckhdq mm3, mm1 ; mm3=(10 11 12 13 14 15 16 17) movq mm4, mm7 ; transpose coefficients(phase 3) punpckldq mm7, mm5 ; mm7=(20 21 22 23 24 25 26 27) punpckhdq mm4, mm5 ; mm4=(30 31 32 33 34 35 36 37) pushpic ebx ; save GOT address mov edx, JSAMPROW [edi+0*SIZEOF_JSAMPROW] mov ebx, JSAMPROW [edi+1*SIZEOF_JSAMPROW] movq MMWORD [edx+eax*SIZEOF_JSAMPLE], mm0 movq MMWORD [ebx+eax*SIZEOF_JSAMPLE], mm3 mov edx, JSAMPROW [edi+2*SIZEOF_JSAMPROW] mov ebx, JSAMPROW [edi+3*SIZEOF_JSAMPROW] movq MMWORD [edx+eax*SIZEOF_JSAMPLE], mm7 movq MMWORD [ebx+eax*SIZEOF_JSAMPLE], mm4 poppic ebx ; restore GOT address add esi, byte 4*SIZEOF_JCOEF ; wsptr add edi, byte 4*SIZEOF_JSAMPROW dec ecx ; ctr jnz near .rowloop emms ; empty MMX state pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx mov esp, ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/i386/jidctint-sse2.asm000066400000000000000000001056511436506551100211130ustar00rootroot00000000000000; ; jidctint.asm - accurate integer IDCT (SSE2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2016, 2020, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains a slower but more accurate integer implementation of the ; inverse DCT (Discrete Cosine Transform). The following code is based ; directly on the IJG's original jidctint.c; see the jidctint.c for ; more details. %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- %define CONST_BITS 13 %define PASS1_BITS 2 %define DESCALE_P1 (CONST_BITS - PASS1_BITS) %define DESCALE_P2 (CONST_BITS + PASS1_BITS + 3) %if CONST_BITS == 13 F_0_298 equ 2446 ; FIX(0.298631336) F_0_390 equ 3196 ; FIX(0.390180644) F_0_541 equ 4433 ; FIX(0.541196100) F_0_765 equ 6270 ; FIX(0.765366865) F_0_899 equ 7373 ; FIX(0.899976223) F_1_175 equ 9633 ; FIX(1.175875602) F_1_501 equ 12299 ; FIX(1.501321110) F_1_847 equ 15137 ; FIX(1.847759065) F_1_961 equ 16069 ; FIX(1.961570560) F_2_053 equ 16819 ; FIX(2.053119869) F_2_562 equ 20995 ; FIX(2.562915447) F_3_072 equ 25172 ; FIX(3.072711026) %else ; NASM cannot do compile-time arithmetic on floating-point constants. %define DESCALE(x, n) (((x) + (1 << ((n) - 1))) >> (n)) F_0_298 equ DESCALE( 320652955, 30 - CONST_BITS) ; FIX(0.298631336) F_0_390 equ DESCALE( 418953276, 30 - CONST_BITS) ; FIX(0.390180644) F_0_541 equ DESCALE( 581104887, 30 - CONST_BITS) ; FIX(0.541196100) F_0_765 equ DESCALE( 821806413, 30 - CONST_BITS) ; FIX(0.765366865) F_0_899 equ DESCALE( 966342111, 30 - CONST_BITS) ; FIX(0.899976223) F_1_175 equ DESCALE(1262586813, 30 - CONST_BITS) ; FIX(1.175875602) F_1_501 equ DESCALE(1612031267, 30 - CONST_BITS) ; FIX(1.501321110) F_1_847 equ DESCALE(1984016188, 30 - CONST_BITS) ; FIX(1.847759065) F_1_961 equ DESCALE(2106220350, 30 - CONST_BITS) ; FIX(1.961570560) F_2_053 equ DESCALE(2204520673, 30 - CONST_BITS) ; FIX(2.053119869) F_2_562 equ DESCALE(2751909506, 30 - CONST_BITS) ; FIX(2.562915447) F_3_072 equ DESCALE(3299298341, 30 - CONST_BITS) ; FIX(3.072711026) %endif ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 32 GLOBAL_DATA(jconst_idct_islow_sse2) EXTN(jconst_idct_islow_sse2): PW_F130_F054 times 4 dw (F_0_541 + F_0_765), F_0_541 PW_F054_MF130 times 4 dw F_0_541, (F_0_541 - F_1_847) PW_MF078_F117 times 4 dw (F_1_175 - F_1_961), F_1_175 PW_F117_F078 times 4 dw F_1_175, (F_1_175 - F_0_390) PW_MF060_MF089 times 4 dw (F_0_298 - F_0_899), -F_0_899 PW_MF089_F060 times 4 dw -F_0_899, (F_1_501 - F_0_899) PW_MF050_MF256 times 4 dw (F_2_053 - F_2_562), -F_2_562 PW_MF256_F050 times 4 dw -F_2_562, (F_3_072 - F_2_562) PD_DESCALE_P1 times 4 dd 1 << (DESCALE_P1 - 1) PD_DESCALE_P2 times 4 dd 1 << (DESCALE_P2 - 1) PB_CENTERJSAMP times 16 db CENTERJSAMPLE alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Perform dequantization and inverse DCT on one block of coefficients. ; ; GLOBAL(void) ; jsimd_idct_islow_sse2(void *dct_table, JCOEFPTR coef_block, ; JSAMPARRAY output_buf, JDIMENSION output_col) ; %define dct_table(b) (b) + 8 ; jpeg_component_info *compptr %define coef_block(b) (b) + 12 ; JCOEFPTR coef_block %define output_buf(b) (b) + 16 ; JSAMPARRAY output_buf %define output_col(b) (b) + 20 ; JDIMENSION output_col %define original_ebp ebp + 0 %define wk(i) ebp - (WK_NUM - (i)) * SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 12 align 32 GLOBAL_FUNCTION(jsimd_idct_islow_sse2) EXTN(jsimd_idct_islow_sse2): push ebp mov eax, esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [esp], eax mov ebp, esp ; ebp = aligned ebp lea esp, [wk(0)] pushpic ebx ; push ecx ; unused ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address ; ---- Pass 1: process columns from input. ; mov eax, [original_ebp] mov edx, POINTER [dct_table(eax)] ; quantptr mov esi, JCOEFPTR [coef_block(eax)] ; inptr %ifndef NO_ZERO_COLUMN_TEST_ISLOW_SSE2 mov eax, dword [DWBLOCK(1,0,esi,SIZEOF_JCOEF)] or eax, dword [DWBLOCK(2,0,esi,SIZEOF_JCOEF)] jnz near .columnDCT movdqa xmm0, XMMWORD [XMMBLOCK(1,0,esi,SIZEOF_JCOEF)] movdqa xmm1, XMMWORD [XMMBLOCK(2,0,esi,SIZEOF_JCOEF)] por xmm0, XMMWORD [XMMBLOCK(3,0,esi,SIZEOF_JCOEF)] por xmm1, XMMWORD [XMMBLOCK(4,0,esi,SIZEOF_JCOEF)] por xmm0, XMMWORD [XMMBLOCK(5,0,esi,SIZEOF_JCOEF)] por xmm1, XMMWORD [XMMBLOCK(6,0,esi,SIZEOF_JCOEF)] por xmm0, XMMWORD [XMMBLOCK(7,0,esi,SIZEOF_JCOEF)] por xmm1, xmm0 packsswb xmm1, xmm1 packsswb xmm1, xmm1 movd eax, xmm1 test eax, eax jnz short .columnDCT ; -- AC terms all zero movdqa xmm5, XMMWORD [XMMBLOCK(0,0,esi,SIZEOF_JCOEF)] pmullw xmm5, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_ISLOW_MULT_TYPE)] psllw xmm5, PASS1_BITS movdqa xmm4, xmm5 ; xmm5=in0=(00 01 02 03 04 05 06 07) punpcklwd xmm5, xmm5 ; xmm5=(00 00 01 01 02 02 03 03) punpckhwd xmm4, xmm4 ; xmm4=(04 04 05 05 06 06 07 07) pshufd xmm7, xmm5, 0x00 ; xmm7=col0=(00 00 00 00 00 00 00 00) pshufd xmm6, xmm5, 0x55 ; xmm6=col1=(01 01 01 01 01 01 01 01) pshufd xmm1, xmm5, 0xAA ; xmm1=col2=(02 02 02 02 02 02 02 02) pshufd xmm5, xmm5, 0xFF ; xmm5=col3=(03 03 03 03 03 03 03 03) pshufd xmm0, xmm4, 0x00 ; xmm0=col4=(04 04 04 04 04 04 04 04) pshufd xmm3, xmm4, 0x55 ; xmm3=col5=(05 05 05 05 05 05 05 05) pshufd xmm2, xmm4, 0xAA ; xmm2=col6=(06 06 06 06 06 06 06 06) pshufd xmm4, xmm4, 0xFF ; xmm4=col7=(07 07 07 07 07 07 07 07) movdqa XMMWORD [wk(8)], xmm6 ; wk(8)=col1 movdqa XMMWORD [wk(9)], xmm5 ; wk(9)=col3 movdqa XMMWORD [wk(10)], xmm3 ; wk(10)=col5 movdqa XMMWORD [wk(11)], xmm4 ; wk(11)=col7 jmp near .column_end alignx 16, 7 %endif .columnDCT: ; -- Even part movdqa xmm0, XMMWORD [XMMBLOCK(0,0,esi,SIZEOF_JCOEF)] movdqa xmm1, XMMWORD [XMMBLOCK(2,0,esi,SIZEOF_JCOEF)] pmullw xmm0, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_ISLOW_MULT_TYPE)] pmullw xmm1, XMMWORD [XMMBLOCK(2,0,edx,SIZEOF_ISLOW_MULT_TYPE)] movdqa xmm2, XMMWORD [XMMBLOCK(4,0,esi,SIZEOF_JCOEF)] movdqa xmm3, XMMWORD [XMMBLOCK(6,0,esi,SIZEOF_JCOEF)] pmullw xmm2, XMMWORD [XMMBLOCK(4,0,edx,SIZEOF_ISLOW_MULT_TYPE)] pmullw xmm3, XMMWORD [XMMBLOCK(6,0,edx,SIZEOF_ISLOW_MULT_TYPE)] ; (Original) ; z1 = (z2 + z3) * 0.541196100; ; tmp2 = z1 + z3 * -1.847759065; ; tmp3 = z1 + z2 * 0.765366865; ; ; (This implementation) ; tmp2 = z2 * 0.541196100 + z3 * (0.541196100 - 1.847759065); ; tmp3 = z2 * (0.541196100 + 0.765366865) + z3 * 0.541196100; movdqa xmm4, xmm1 ; xmm1=in2=z2 movdqa xmm5, xmm1 punpcklwd xmm4, xmm3 ; xmm3=in6=z3 punpckhwd xmm5, xmm3 movdqa xmm1, xmm4 movdqa xmm3, xmm5 pmaddwd xmm4, [GOTOFF(ebx,PW_F130_F054)] ; xmm4=tmp3L pmaddwd xmm5, [GOTOFF(ebx,PW_F130_F054)] ; xmm5=tmp3H pmaddwd xmm1, [GOTOFF(ebx,PW_F054_MF130)] ; xmm1=tmp2L pmaddwd xmm3, [GOTOFF(ebx,PW_F054_MF130)] ; xmm3=tmp2H movdqa xmm6, xmm0 paddw xmm0, xmm2 ; xmm0=in0+in4 psubw xmm6, xmm2 ; xmm6=in0-in4 pxor xmm7, xmm7 pxor xmm2, xmm2 punpcklwd xmm7, xmm0 ; xmm7=tmp0L punpckhwd xmm2, xmm0 ; xmm2=tmp0H psrad xmm7, (16-CONST_BITS) ; psrad xmm7,16 & pslld xmm7,CONST_BITS psrad xmm2, (16-CONST_BITS) ; psrad xmm2,16 & pslld xmm2,CONST_BITS movdqa xmm0, xmm7 paddd xmm7, xmm4 ; xmm7=tmp10L psubd xmm0, xmm4 ; xmm0=tmp13L movdqa xmm4, xmm2 paddd xmm2, xmm5 ; xmm2=tmp10H psubd xmm4, xmm5 ; xmm4=tmp13H movdqa XMMWORD [wk(0)], xmm7 ; wk(0)=tmp10L movdqa XMMWORD [wk(1)], xmm2 ; wk(1)=tmp10H movdqa XMMWORD [wk(2)], xmm0 ; wk(2)=tmp13L movdqa XMMWORD [wk(3)], xmm4 ; wk(3)=tmp13H pxor xmm5, xmm5 pxor xmm7, xmm7 punpcklwd xmm5, xmm6 ; xmm5=tmp1L punpckhwd xmm7, xmm6 ; xmm7=tmp1H psrad xmm5, (16-CONST_BITS) ; psrad xmm5,16 & pslld xmm5,CONST_BITS psrad xmm7, (16-CONST_BITS) ; psrad xmm7,16 & pslld xmm7,CONST_BITS movdqa xmm2, xmm5 paddd xmm5, xmm1 ; xmm5=tmp11L psubd xmm2, xmm1 ; xmm2=tmp12L movdqa xmm0, xmm7 paddd xmm7, xmm3 ; xmm7=tmp11H psubd xmm0, xmm3 ; xmm0=tmp12H movdqa XMMWORD [wk(4)], xmm5 ; wk(4)=tmp11L movdqa XMMWORD [wk(5)], xmm7 ; wk(5)=tmp11H movdqa XMMWORD [wk(6)], xmm2 ; wk(6)=tmp12L movdqa XMMWORD [wk(7)], xmm0 ; wk(7)=tmp12H ; -- Odd part movdqa xmm4, XMMWORD [XMMBLOCK(1,0,esi,SIZEOF_JCOEF)] movdqa xmm6, XMMWORD [XMMBLOCK(3,0,esi,SIZEOF_JCOEF)] pmullw xmm4, XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_ISLOW_MULT_TYPE)] pmullw xmm6, XMMWORD [XMMBLOCK(3,0,edx,SIZEOF_ISLOW_MULT_TYPE)] movdqa xmm1, XMMWORD [XMMBLOCK(5,0,esi,SIZEOF_JCOEF)] movdqa xmm3, XMMWORD [XMMBLOCK(7,0,esi,SIZEOF_JCOEF)] pmullw xmm1, XMMWORD [XMMBLOCK(5,0,edx,SIZEOF_ISLOW_MULT_TYPE)] pmullw xmm3, XMMWORD [XMMBLOCK(7,0,edx,SIZEOF_ISLOW_MULT_TYPE)] movdqa xmm5, xmm6 movdqa xmm7, xmm4 paddw xmm5, xmm3 ; xmm5=z3 paddw xmm7, xmm1 ; xmm7=z4 ; (Original) ; z5 = (z3 + z4) * 1.175875602; ; z3 = z3 * -1.961570560; z4 = z4 * -0.390180644; ; z3 += z5; z4 += z5; ; ; (This implementation) ; z3 = z3 * (1.175875602 - 1.961570560) + z4 * 1.175875602; ; z4 = z3 * 1.175875602 + z4 * (1.175875602 - 0.390180644); movdqa xmm2, xmm5 movdqa xmm0, xmm5 punpcklwd xmm2, xmm7 punpckhwd xmm0, xmm7 movdqa xmm5, xmm2 movdqa xmm7, xmm0 pmaddwd xmm2, [GOTOFF(ebx,PW_MF078_F117)] ; xmm2=z3L pmaddwd xmm0, [GOTOFF(ebx,PW_MF078_F117)] ; xmm0=z3H pmaddwd xmm5, [GOTOFF(ebx,PW_F117_F078)] ; xmm5=z4L pmaddwd xmm7, [GOTOFF(ebx,PW_F117_F078)] ; xmm7=z4H movdqa XMMWORD [wk(10)], xmm2 ; wk(10)=z3L movdqa XMMWORD [wk(11)], xmm0 ; wk(11)=z3H ; (Original) ; z1 = tmp0 + tmp3; z2 = tmp1 + tmp2; ; tmp0 = tmp0 * 0.298631336; tmp1 = tmp1 * 2.053119869; ; tmp2 = tmp2 * 3.072711026; tmp3 = tmp3 * 1.501321110; ; z1 = z1 * -0.899976223; z2 = z2 * -2.562915447; ; tmp0 += z1 + z3; tmp1 += z2 + z4; ; tmp2 += z2 + z3; tmp3 += z1 + z4; ; ; (This implementation) ; tmp0 = tmp0 * (0.298631336 - 0.899976223) + tmp3 * -0.899976223; ; tmp1 = tmp1 * (2.053119869 - 2.562915447) + tmp2 * -2.562915447; ; tmp2 = tmp1 * -2.562915447 + tmp2 * (3.072711026 - 2.562915447); ; tmp3 = tmp0 * -0.899976223 + tmp3 * (1.501321110 - 0.899976223); ; tmp0 += z3; tmp1 += z4; ; tmp2 += z3; tmp3 += z4; movdqa xmm2, xmm3 movdqa xmm0, xmm3 punpcklwd xmm2, xmm4 punpckhwd xmm0, xmm4 movdqa xmm3, xmm2 movdqa xmm4, xmm0 pmaddwd xmm2, [GOTOFF(ebx,PW_MF060_MF089)] ; xmm2=tmp0L pmaddwd xmm0, [GOTOFF(ebx,PW_MF060_MF089)] ; xmm0=tmp0H pmaddwd xmm3, [GOTOFF(ebx,PW_MF089_F060)] ; xmm3=tmp3L pmaddwd xmm4, [GOTOFF(ebx,PW_MF089_F060)] ; xmm4=tmp3H paddd xmm2, XMMWORD [wk(10)] ; xmm2=tmp0L paddd xmm0, XMMWORD [wk(11)] ; xmm0=tmp0H paddd xmm3, xmm5 ; xmm3=tmp3L paddd xmm4, xmm7 ; xmm4=tmp3H movdqa XMMWORD [wk(8)], xmm2 ; wk(8)=tmp0L movdqa XMMWORD [wk(9)], xmm0 ; wk(9)=tmp0H movdqa xmm2, xmm1 movdqa xmm0, xmm1 punpcklwd xmm2, xmm6 punpckhwd xmm0, xmm6 movdqa xmm1, xmm2 movdqa xmm6, xmm0 pmaddwd xmm2, [GOTOFF(ebx,PW_MF050_MF256)] ; xmm2=tmp1L pmaddwd xmm0, [GOTOFF(ebx,PW_MF050_MF256)] ; xmm0=tmp1H pmaddwd xmm1, [GOTOFF(ebx,PW_MF256_F050)] ; xmm1=tmp2L pmaddwd xmm6, [GOTOFF(ebx,PW_MF256_F050)] ; xmm6=tmp2H paddd xmm2, xmm5 ; xmm2=tmp1L paddd xmm0, xmm7 ; xmm0=tmp1H paddd xmm1, XMMWORD [wk(10)] ; xmm1=tmp2L paddd xmm6, XMMWORD [wk(11)] ; xmm6=tmp2H movdqa XMMWORD [wk(10)], xmm2 ; wk(10)=tmp1L movdqa XMMWORD [wk(11)], xmm0 ; wk(11)=tmp1H ; -- Final output stage movdqa xmm5, XMMWORD [wk(0)] ; xmm5=tmp10L movdqa xmm7, XMMWORD [wk(1)] ; xmm7=tmp10H movdqa xmm2, xmm5 movdqa xmm0, xmm7 paddd xmm5, xmm3 ; xmm5=data0L paddd xmm7, xmm4 ; xmm7=data0H psubd xmm2, xmm3 ; xmm2=data7L psubd xmm0, xmm4 ; xmm0=data7H movdqa xmm3, [GOTOFF(ebx,PD_DESCALE_P1)] ; xmm3=[PD_DESCALE_P1] paddd xmm5, xmm3 paddd xmm7, xmm3 psrad xmm5, DESCALE_P1 psrad xmm7, DESCALE_P1 paddd xmm2, xmm3 paddd xmm0, xmm3 psrad xmm2, DESCALE_P1 psrad xmm0, DESCALE_P1 packssdw xmm5, xmm7 ; xmm5=data0=(00 01 02 03 04 05 06 07) packssdw xmm2, xmm0 ; xmm2=data7=(70 71 72 73 74 75 76 77) movdqa xmm4, XMMWORD [wk(4)] ; xmm4=tmp11L movdqa xmm3, XMMWORD [wk(5)] ; xmm3=tmp11H movdqa xmm7, xmm4 movdqa xmm0, xmm3 paddd xmm4, xmm1 ; xmm4=data1L paddd xmm3, xmm6 ; xmm3=data1H psubd xmm7, xmm1 ; xmm7=data6L psubd xmm0, xmm6 ; xmm0=data6H movdqa xmm1, [GOTOFF(ebx,PD_DESCALE_P1)] ; xmm1=[PD_DESCALE_P1] paddd xmm4, xmm1 paddd xmm3, xmm1 psrad xmm4, DESCALE_P1 psrad xmm3, DESCALE_P1 paddd xmm7, xmm1 paddd xmm0, xmm1 psrad xmm7, DESCALE_P1 psrad xmm0, DESCALE_P1 packssdw xmm4, xmm3 ; xmm4=data1=(10 11 12 13 14 15 16 17) packssdw xmm7, xmm0 ; xmm7=data6=(60 61 62 63 64 65 66 67) movdqa xmm6, xmm5 ; transpose coefficients(phase 1) punpcklwd xmm5, xmm4 ; xmm5=(00 10 01 11 02 12 03 13) punpckhwd xmm6, xmm4 ; xmm6=(04 14 05 15 06 16 07 17) movdqa xmm1, xmm7 ; transpose coefficients(phase 1) punpcklwd xmm7, xmm2 ; xmm7=(60 70 61 71 62 72 63 73) punpckhwd xmm1, xmm2 ; xmm1=(64 74 65 75 66 76 67 77) movdqa xmm3, XMMWORD [wk(6)] ; xmm3=tmp12L movdqa xmm0, XMMWORD [wk(7)] ; xmm0=tmp12H movdqa xmm4, XMMWORD [wk(10)] ; xmm4=tmp1L movdqa xmm2, XMMWORD [wk(11)] ; xmm2=tmp1H movdqa XMMWORD [wk(0)], xmm5 ; wk(0)=(00 10 01 11 02 12 03 13) movdqa XMMWORD [wk(1)], xmm6 ; wk(1)=(04 14 05 15 06 16 07 17) movdqa XMMWORD [wk(4)], xmm7 ; wk(4)=(60 70 61 71 62 72 63 73) movdqa XMMWORD [wk(5)], xmm1 ; wk(5)=(64 74 65 75 66 76 67 77) movdqa xmm5, xmm3 movdqa xmm6, xmm0 paddd xmm3, xmm4 ; xmm3=data2L paddd xmm0, xmm2 ; xmm0=data2H psubd xmm5, xmm4 ; xmm5=data5L psubd xmm6, xmm2 ; xmm6=data5H movdqa xmm7, [GOTOFF(ebx,PD_DESCALE_P1)] ; xmm7=[PD_DESCALE_P1] paddd xmm3, xmm7 paddd xmm0, xmm7 psrad xmm3, DESCALE_P1 psrad xmm0, DESCALE_P1 paddd xmm5, xmm7 paddd xmm6, xmm7 psrad xmm5, DESCALE_P1 psrad xmm6, DESCALE_P1 packssdw xmm3, xmm0 ; xmm3=data2=(20 21 22 23 24 25 26 27) packssdw xmm5, xmm6 ; xmm5=data5=(50 51 52 53 54 55 56 57) movdqa xmm1, XMMWORD [wk(2)] ; xmm1=tmp13L movdqa xmm4, XMMWORD [wk(3)] ; xmm4=tmp13H movdqa xmm2, XMMWORD [wk(8)] ; xmm2=tmp0L movdqa xmm7, XMMWORD [wk(9)] ; xmm7=tmp0H movdqa xmm0, xmm1 movdqa xmm6, xmm4 paddd xmm1, xmm2 ; xmm1=data3L paddd xmm4, xmm7 ; xmm4=data3H psubd xmm0, xmm2 ; xmm0=data4L psubd xmm6, xmm7 ; xmm6=data4H movdqa xmm2, [GOTOFF(ebx,PD_DESCALE_P1)] ; xmm2=[PD_DESCALE_P1] paddd xmm1, xmm2 paddd xmm4, xmm2 psrad xmm1, DESCALE_P1 psrad xmm4, DESCALE_P1 paddd xmm0, xmm2 paddd xmm6, xmm2 psrad xmm0, DESCALE_P1 psrad xmm6, DESCALE_P1 packssdw xmm1, xmm4 ; xmm1=data3=(30 31 32 33 34 35 36 37) packssdw xmm0, xmm6 ; xmm0=data4=(40 41 42 43 44 45 46 47) movdqa xmm7, XMMWORD [wk(0)] ; xmm7=(00 10 01 11 02 12 03 13) movdqa xmm2, XMMWORD [wk(1)] ; xmm2=(04 14 05 15 06 16 07 17) movdqa xmm4, xmm3 ; transpose coefficients(phase 1) punpcklwd xmm3, xmm1 ; xmm3=(20 30 21 31 22 32 23 33) punpckhwd xmm4, xmm1 ; xmm4=(24 34 25 35 26 36 27 37) movdqa xmm6, xmm0 ; transpose coefficients(phase 1) punpcklwd xmm0, xmm5 ; xmm0=(40 50 41 51 42 52 43 53) punpckhwd xmm6, xmm5 ; xmm6=(44 54 45 55 46 56 47 57) movdqa xmm1, xmm7 ; transpose coefficients(phase 2) punpckldq xmm7, xmm3 ; xmm7=(00 10 20 30 01 11 21 31) punpckhdq xmm1, xmm3 ; xmm1=(02 12 22 32 03 13 23 33) movdqa xmm5, xmm2 ; transpose coefficients(phase 2) punpckldq xmm2, xmm4 ; xmm2=(04 14 24 34 05 15 25 35) punpckhdq xmm5, xmm4 ; xmm5=(06 16 26 36 07 17 27 37) movdqa xmm3, XMMWORD [wk(4)] ; xmm3=(60 70 61 71 62 72 63 73) movdqa xmm4, XMMWORD [wk(5)] ; xmm4=(64 74 65 75 66 76 67 77) movdqa XMMWORD [wk(6)], xmm2 ; wk(6)=(04 14 24 34 05 15 25 35) movdqa XMMWORD [wk(7)], xmm5 ; wk(7)=(06 16 26 36 07 17 27 37) movdqa xmm2, xmm0 ; transpose coefficients(phase 2) punpckldq xmm0, xmm3 ; xmm0=(40 50 60 70 41 51 61 71) punpckhdq xmm2, xmm3 ; xmm2=(42 52 62 72 43 53 63 73) movdqa xmm5, xmm6 ; transpose coefficients(phase 2) punpckldq xmm6, xmm4 ; xmm6=(44 54 64 74 45 55 65 75) punpckhdq xmm5, xmm4 ; xmm5=(46 56 66 76 47 57 67 77) movdqa xmm3, xmm7 ; transpose coefficients(phase 3) punpcklqdq xmm7, xmm0 ; xmm7=col0=(00 10 20 30 40 50 60 70) punpckhqdq xmm3, xmm0 ; xmm3=col1=(01 11 21 31 41 51 61 71) movdqa xmm4, xmm1 ; transpose coefficients(phase 3) punpcklqdq xmm1, xmm2 ; xmm1=col2=(02 12 22 32 42 52 62 72) punpckhqdq xmm4, xmm2 ; xmm4=col3=(03 13 23 33 43 53 63 73) movdqa xmm0, XMMWORD [wk(6)] ; xmm0=(04 14 24 34 05 15 25 35) movdqa xmm2, XMMWORD [wk(7)] ; xmm2=(06 16 26 36 07 17 27 37) movdqa XMMWORD [wk(8)], xmm3 ; wk(8)=col1 movdqa XMMWORD [wk(9)], xmm4 ; wk(9)=col3 movdqa xmm3, xmm0 ; transpose coefficients(phase 3) punpcklqdq xmm0, xmm6 ; xmm0=col4=(04 14 24 34 44 54 64 74) punpckhqdq xmm3, xmm6 ; xmm3=col5=(05 15 25 35 45 55 65 75) movdqa xmm4, xmm2 ; transpose coefficients(phase 3) punpcklqdq xmm2, xmm5 ; xmm2=col6=(06 16 26 36 46 56 66 76) punpckhqdq xmm4, xmm5 ; xmm4=col7=(07 17 27 37 47 57 67 77) movdqa XMMWORD [wk(10)], xmm3 ; wk(10)=col5 movdqa XMMWORD [wk(11)], xmm4 ; wk(11)=col7 .column_end: ; -- Prefetch the next coefficient block prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 0*32] prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 1*32] prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 2*32] prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 3*32] ; ---- Pass 2: process rows from work array, store into output array. mov eax, [original_ebp] mov edi, JSAMPARRAY [output_buf(eax)] ; (JSAMPROW *) mov eax, JDIMENSION [output_col(eax)] ; -- Even part ; xmm7=col0, xmm1=col2, xmm0=col4, xmm2=col6 ; (Original) ; z1 = (z2 + z3) * 0.541196100; ; tmp2 = z1 + z3 * -1.847759065; ; tmp3 = z1 + z2 * 0.765366865; ; ; (This implementation) ; tmp2 = z2 * 0.541196100 + z3 * (0.541196100 - 1.847759065); ; tmp3 = z2 * (0.541196100 + 0.765366865) + z3 * 0.541196100; movdqa xmm6, xmm1 ; xmm1=in2=z2 movdqa xmm5, xmm1 punpcklwd xmm6, xmm2 ; xmm2=in6=z3 punpckhwd xmm5, xmm2 movdqa xmm1, xmm6 movdqa xmm2, xmm5 pmaddwd xmm6, [GOTOFF(ebx,PW_F130_F054)] ; xmm6=tmp3L pmaddwd xmm5, [GOTOFF(ebx,PW_F130_F054)] ; xmm5=tmp3H pmaddwd xmm1, [GOTOFF(ebx,PW_F054_MF130)] ; xmm1=tmp2L pmaddwd xmm2, [GOTOFF(ebx,PW_F054_MF130)] ; xmm2=tmp2H movdqa xmm3, xmm7 paddw xmm7, xmm0 ; xmm7=in0+in4 psubw xmm3, xmm0 ; xmm3=in0-in4 pxor xmm4, xmm4 pxor xmm0, xmm0 punpcklwd xmm4, xmm7 ; xmm4=tmp0L punpckhwd xmm0, xmm7 ; xmm0=tmp0H psrad xmm4, (16-CONST_BITS) ; psrad xmm4,16 & pslld xmm4,CONST_BITS psrad xmm0, (16-CONST_BITS) ; psrad xmm0,16 & pslld xmm0,CONST_BITS movdqa xmm7, xmm4 paddd xmm4, xmm6 ; xmm4=tmp10L psubd xmm7, xmm6 ; xmm7=tmp13L movdqa xmm6, xmm0 paddd xmm0, xmm5 ; xmm0=tmp10H psubd xmm6, xmm5 ; xmm6=tmp13H movdqa XMMWORD [wk(0)], xmm4 ; wk(0)=tmp10L movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=tmp10H movdqa XMMWORD [wk(2)], xmm7 ; wk(2)=tmp13L movdqa XMMWORD [wk(3)], xmm6 ; wk(3)=tmp13H pxor xmm5, xmm5 pxor xmm4, xmm4 punpcklwd xmm5, xmm3 ; xmm5=tmp1L punpckhwd xmm4, xmm3 ; xmm4=tmp1H psrad xmm5, (16-CONST_BITS) ; psrad xmm5,16 & pslld xmm5,CONST_BITS psrad xmm4, (16-CONST_BITS) ; psrad xmm4,16 & pslld xmm4,CONST_BITS movdqa xmm0, xmm5 paddd xmm5, xmm1 ; xmm5=tmp11L psubd xmm0, xmm1 ; xmm0=tmp12L movdqa xmm7, xmm4 paddd xmm4, xmm2 ; xmm4=tmp11H psubd xmm7, xmm2 ; xmm7=tmp12H movdqa XMMWORD [wk(4)], xmm5 ; wk(4)=tmp11L movdqa XMMWORD [wk(5)], xmm4 ; wk(5)=tmp11H movdqa XMMWORD [wk(6)], xmm0 ; wk(6)=tmp12L movdqa XMMWORD [wk(7)], xmm7 ; wk(7)=tmp12H ; -- Odd part movdqa xmm6, XMMWORD [wk(9)] ; xmm6=col3 movdqa xmm3, XMMWORD [wk(8)] ; xmm3=col1 movdqa xmm1, XMMWORD [wk(11)] ; xmm1=col7 movdqa xmm2, XMMWORD [wk(10)] ; xmm2=col5 movdqa xmm5, xmm6 movdqa xmm4, xmm3 paddw xmm5, xmm1 ; xmm5=z3 paddw xmm4, xmm2 ; xmm4=z4 ; (Original) ; z5 = (z3 + z4) * 1.175875602; ; z3 = z3 * -1.961570560; z4 = z4 * -0.390180644; ; z3 += z5; z4 += z5; ; ; (This implementation) ; z3 = z3 * (1.175875602 - 1.961570560) + z4 * 1.175875602; ; z4 = z3 * 1.175875602 + z4 * (1.175875602 - 0.390180644); movdqa xmm0, xmm5 movdqa xmm7, xmm5 punpcklwd xmm0, xmm4 punpckhwd xmm7, xmm4 movdqa xmm5, xmm0 movdqa xmm4, xmm7 pmaddwd xmm0, [GOTOFF(ebx,PW_MF078_F117)] ; xmm0=z3L pmaddwd xmm7, [GOTOFF(ebx,PW_MF078_F117)] ; xmm7=z3H pmaddwd xmm5, [GOTOFF(ebx,PW_F117_F078)] ; xmm5=z4L pmaddwd xmm4, [GOTOFF(ebx,PW_F117_F078)] ; xmm4=z4H movdqa XMMWORD [wk(10)], xmm0 ; wk(10)=z3L movdqa XMMWORD [wk(11)], xmm7 ; wk(11)=z3H ; (Original) ; z1 = tmp0 + tmp3; z2 = tmp1 + tmp2; ; tmp0 = tmp0 * 0.298631336; tmp1 = tmp1 * 2.053119869; ; tmp2 = tmp2 * 3.072711026; tmp3 = tmp3 * 1.501321110; ; z1 = z1 * -0.899976223; z2 = z2 * -2.562915447; ; tmp0 += z1 + z3; tmp1 += z2 + z4; ; tmp2 += z2 + z3; tmp3 += z1 + z4; ; ; (This implementation) ; tmp0 = tmp0 * (0.298631336 - 0.899976223) + tmp3 * -0.899976223; ; tmp1 = tmp1 * (2.053119869 - 2.562915447) + tmp2 * -2.562915447; ; tmp2 = tmp1 * -2.562915447 + tmp2 * (3.072711026 - 2.562915447); ; tmp3 = tmp0 * -0.899976223 + tmp3 * (1.501321110 - 0.899976223); ; tmp0 += z3; tmp1 += z4; ; tmp2 += z3; tmp3 += z4; movdqa xmm0, xmm1 movdqa xmm7, xmm1 punpcklwd xmm0, xmm3 punpckhwd xmm7, xmm3 movdqa xmm1, xmm0 movdqa xmm3, xmm7 pmaddwd xmm0, [GOTOFF(ebx,PW_MF060_MF089)] ; xmm0=tmp0L pmaddwd xmm7, [GOTOFF(ebx,PW_MF060_MF089)] ; xmm7=tmp0H pmaddwd xmm1, [GOTOFF(ebx,PW_MF089_F060)] ; xmm1=tmp3L pmaddwd xmm3, [GOTOFF(ebx,PW_MF089_F060)] ; xmm3=tmp3H paddd xmm0, XMMWORD [wk(10)] ; xmm0=tmp0L paddd xmm7, XMMWORD [wk(11)] ; xmm7=tmp0H paddd xmm1, xmm5 ; xmm1=tmp3L paddd xmm3, xmm4 ; xmm3=tmp3H movdqa XMMWORD [wk(8)], xmm0 ; wk(8)=tmp0L movdqa XMMWORD [wk(9)], xmm7 ; wk(9)=tmp0H movdqa xmm0, xmm2 movdqa xmm7, xmm2 punpcklwd xmm0, xmm6 punpckhwd xmm7, xmm6 movdqa xmm2, xmm0 movdqa xmm6, xmm7 pmaddwd xmm0, [GOTOFF(ebx,PW_MF050_MF256)] ; xmm0=tmp1L pmaddwd xmm7, [GOTOFF(ebx,PW_MF050_MF256)] ; xmm7=tmp1H pmaddwd xmm2, [GOTOFF(ebx,PW_MF256_F050)] ; xmm2=tmp2L pmaddwd xmm6, [GOTOFF(ebx,PW_MF256_F050)] ; xmm6=tmp2H paddd xmm0, xmm5 ; xmm0=tmp1L paddd xmm7, xmm4 ; xmm7=tmp1H paddd xmm2, XMMWORD [wk(10)] ; xmm2=tmp2L paddd xmm6, XMMWORD [wk(11)] ; xmm6=tmp2H movdqa XMMWORD [wk(10)], xmm0 ; wk(10)=tmp1L movdqa XMMWORD [wk(11)], xmm7 ; wk(11)=tmp1H ; -- Final output stage movdqa xmm5, XMMWORD [wk(0)] ; xmm5=tmp10L movdqa xmm4, XMMWORD [wk(1)] ; xmm4=tmp10H movdqa xmm0, xmm5 movdqa xmm7, xmm4 paddd xmm5, xmm1 ; xmm5=data0L paddd xmm4, xmm3 ; xmm4=data0H psubd xmm0, xmm1 ; xmm0=data7L psubd xmm7, xmm3 ; xmm7=data7H movdqa xmm1, [GOTOFF(ebx,PD_DESCALE_P2)] ; xmm1=[PD_DESCALE_P2] paddd xmm5, xmm1 paddd xmm4, xmm1 psrad xmm5, DESCALE_P2 psrad xmm4, DESCALE_P2 paddd xmm0, xmm1 paddd xmm7, xmm1 psrad xmm0, DESCALE_P2 psrad xmm7, DESCALE_P2 packssdw xmm5, xmm4 ; xmm5=data0=(00 10 20 30 40 50 60 70) packssdw xmm0, xmm7 ; xmm0=data7=(07 17 27 37 47 57 67 77) movdqa xmm3, XMMWORD [wk(4)] ; xmm3=tmp11L movdqa xmm1, XMMWORD [wk(5)] ; xmm1=tmp11H movdqa xmm4, xmm3 movdqa xmm7, xmm1 paddd xmm3, xmm2 ; xmm3=data1L paddd xmm1, xmm6 ; xmm1=data1H psubd xmm4, xmm2 ; xmm4=data6L psubd xmm7, xmm6 ; xmm7=data6H movdqa xmm2, [GOTOFF(ebx,PD_DESCALE_P2)] ; xmm2=[PD_DESCALE_P2] paddd xmm3, xmm2 paddd xmm1, xmm2 psrad xmm3, DESCALE_P2 psrad xmm1, DESCALE_P2 paddd xmm4, xmm2 paddd xmm7, xmm2 psrad xmm4, DESCALE_P2 psrad xmm7, DESCALE_P2 packssdw xmm3, xmm1 ; xmm3=data1=(01 11 21 31 41 51 61 71) packssdw xmm4, xmm7 ; xmm4=data6=(06 16 26 36 46 56 66 76) packsswb xmm5, xmm4 ; xmm5=(00 10 20 30 40 50 60 70 06 16 26 36 46 56 66 76) packsswb xmm3, xmm0 ; xmm3=(01 11 21 31 41 51 61 71 07 17 27 37 47 57 67 77) movdqa xmm6, XMMWORD [wk(6)] ; xmm6=tmp12L movdqa xmm2, XMMWORD [wk(7)] ; xmm2=tmp12H movdqa xmm1, XMMWORD [wk(10)] ; xmm1=tmp1L movdqa xmm7, XMMWORD [wk(11)] ; xmm7=tmp1H movdqa XMMWORD [wk(0)], xmm5 ; wk(0)=(00 10 20 30 40 50 60 70 06 16 26 36 46 56 66 76) movdqa XMMWORD [wk(1)], xmm3 ; wk(1)=(01 11 21 31 41 51 61 71 07 17 27 37 47 57 67 77) movdqa xmm4, xmm6 movdqa xmm0, xmm2 paddd xmm6, xmm1 ; xmm6=data2L paddd xmm2, xmm7 ; xmm2=data2H psubd xmm4, xmm1 ; xmm4=data5L psubd xmm0, xmm7 ; xmm0=data5H movdqa xmm5, [GOTOFF(ebx,PD_DESCALE_P2)] ; xmm5=[PD_DESCALE_P2] paddd xmm6, xmm5 paddd xmm2, xmm5 psrad xmm6, DESCALE_P2 psrad xmm2, DESCALE_P2 paddd xmm4, xmm5 paddd xmm0, xmm5 psrad xmm4, DESCALE_P2 psrad xmm0, DESCALE_P2 packssdw xmm6, xmm2 ; xmm6=data2=(02 12 22 32 42 52 62 72) packssdw xmm4, xmm0 ; xmm4=data5=(05 15 25 35 45 55 65 75) movdqa xmm3, XMMWORD [wk(2)] ; xmm3=tmp13L movdqa xmm1, XMMWORD [wk(3)] ; xmm1=tmp13H movdqa xmm7, XMMWORD [wk(8)] ; xmm7=tmp0L movdqa xmm5, XMMWORD [wk(9)] ; xmm5=tmp0H movdqa xmm2, xmm3 movdqa xmm0, xmm1 paddd xmm3, xmm7 ; xmm3=data3L paddd xmm1, xmm5 ; xmm1=data3H psubd xmm2, xmm7 ; xmm2=data4L psubd xmm0, xmm5 ; xmm0=data4H movdqa xmm7, [GOTOFF(ebx,PD_DESCALE_P2)] ; xmm7=[PD_DESCALE_P2] paddd xmm3, xmm7 paddd xmm1, xmm7 psrad xmm3, DESCALE_P2 psrad xmm1, DESCALE_P2 paddd xmm2, xmm7 paddd xmm0, xmm7 psrad xmm2, DESCALE_P2 psrad xmm0, DESCALE_P2 movdqa xmm5, [GOTOFF(ebx,PB_CENTERJSAMP)] ; xmm5=[PB_CENTERJSAMP] packssdw xmm3, xmm1 ; xmm3=data3=(03 13 23 33 43 53 63 73) packssdw xmm2, xmm0 ; xmm2=data4=(04 14 24 34 44 54 64 74) movdqa xmm7, XMMWORD [wk(0)] ; xmm7=(00 10 20 30 40 50 60 70 06 16 26 36 46 56 66 76) movdqa xmm1, XMMWORD [wk(1)] ; xmm1=(01 11 21 31 41 51 61 71 07 17 27 37 47 57 67 77) packsswb xmm6, xmm2 ; xmm6=(02 12 22 32 42 52 62 72 04 14 24 34 44 54 64 74) packsswb xmm3, xmm4 ; xmm3=(03 13 23 33 43 53 63 73 05 15 25 35 45 55 65 75) paddb xmm7, xmm5 paddb xmm1, xmm5 paddb xmm6, xmm5 paddb xmm3, xmm5 movdqa xmm0, xmm7 ; transpose coefficients(phase 1) punpcklbw xmm7, xmm1 ; xmm7=(00 01 10 11 20 21 30 31 40 41 50 51 60 61 70 71) punpckhbw xmm0, xmm1 ; xmm0=(06 07 16 17 26 27 36 37 46 47 56 57 66 67 76 77) movdqa xmm2, xmm6 ; transpose coefficients(phase 1) punpcklbw xmm6, xmm3 ; xmm6=(02 03 12 13 22 23 32 33 42 43 52 53 62 63 72 73) punpckhbw xmm2, xmm3 ; xmm2=(04 05 14 15 24 25 34 35 44 45 54 55 64 65 74 75) movdqa xmm4, xmm7 ; transpose coefficients(phase 2) punpcklwd xmm7, xmm6 ; xmm7=(00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33) punpckhwd xmm4, xmm6 ; xmm4=(40 41 42 43 50 51 52 53 60 61 62 63 70 71 72 73) movdqa xmm5, xmm2 ; transpose coefficients(phase 2) punpcklwd xmm2, xmm0 ; xmm2=(04 05 06 07 14 15 16 17 24 25 26 27 34 35 36 37) punpckhwd xmm5, xmm0 ; xmm5=(44 45 46 47 54 55 56 57 64 65 66 67 74 75 76 77) movdqa xmm1, xmm7 ; transpose coefficients(phase 3) punpckldq xmm7, xmm2 ; xmm7=(00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17) punpckhdq xmm1, xmm2 ; xmm1=(20 21 22 23 24 25 26 27 30 31 32 33 34 35 36 37) movdqa xmm3, xmm4 ; transpose coefficients(phase 3) punpckldq xmm4, xmm5 ; xmm4=(40 41 42 43 44 45 46 47 50 51 52 53 54 55 56 57) punpckhdq xmm3, xmm5 ; xmm3=(60 61 62 63 64 65 66 67 70 71 72 73 74 75 76 77) pshufd xmm6, xmm7, 0x4E ; xmm6=(10 11 12 13 14 15 16 17 00 01 02 03 04 05 06 07) pshufd xmm0, xmm1, 0x4E ; xmm0=(30 31 32 33 34 35 36 37 20 21 22 23 24 25 26 27) pshufd xmm2, xmm4, 0x4E ; xmm2=(50 51 52 53 54 55 56 57 40 41 42 43 44 45 46 47) pshufd xmm5, xmm3, 0x4E ; xmm5=(70 71 72 73 74 75 76 77 60 61 62 63 64 65 66 67) mov edx, JSAMPROW [edi+0*SIZEOF_JSAMPROW] mov esi, JSAMPROW [edi+2*SIZEOF_JSAMPROW] movq XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE], xmm7 movq XMM_MMWORD [esi+eax*SIZEOF_JSAMPLE], xmm1 mov edx, JSAMPROW [edi+4*SIZEOF_JSAMPROW] mov esi, JSAMPROW [edi+6*SIZEOF_JSAMPROW] movq XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE], xmm4 movq XMM_MMWORD [esi+eax*SIZEOF_JSAMPLE], xmm3 mov edx, JSAMPROW [edi+1*SIZEOF_JSAMPROW] mov esi, JSAMPROW [edi+3*SIZEOF_JSAMPROW] movq XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE], xmm6 movq XMM_MMWORD [esi+eax*SIZEOF_JSAMPLE], xmm0 mov edx, JSAMPROW [edi+5*SIZEOF_JSAMPROW] mov esi, JSAMPROW [edi+7*SIZEOF_JSAMPROW] movq XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE], xmm2 movq XMM_MMWORD [esi+eax*SIZEOF_JSAMPLE], xmm5 pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; unused poppic ebx mov esp, ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/i386/jidctred-mmx.asm000066400000000000000000000652761436506551100210300ustar00rootroot00000000000000; ; jidctred.asm - reduced-size IDCT (MMX) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2016, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains inverse-DCT routines that produce reduced-size ; output: either 4x4 or 2x2 pixels from an 8x8 DCT block. ; The following code is based directly on the IJG's original jidctred.c; ; see the jidctred.c for more details. %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- %define CONST_BITS 13 %define PASS1_BITS 2 %define DESCALE_P1_4 (CONST_BITS - PASS1_BITS + 1) %define DESCALE_P2_4 (CONST_BITS + PASS1_BITS + 3 + 1) %define DESCALE_P1_2 (CONST_BITS - PASS1_BITS + 2) %define DESCALE_P2_2 (CONST_BITS + PASS1_BITS + 3 + 2) %if CONST_BITS == 13 F_0_211 equ 1730 ; FIX(0.211164243) F_0_509 equ 4176 ; FIX(0.509795579) F_0_601 equ 4926 ; FIX(0.601344887) F_0_720 equ 5906 ; FIX(0.720959822) F_0_765 equ 6270 ; FIX(0.765366865) F_0_850 equ 6967 ; FIX(0.850430095) F_0_899 equ 7373 ; FIX(0.899976223) F_1_061 equ 8697 ; FIX(1.061594337) F_1_272 equ 10426 ; FIX(1.272758580) F_1_451 equ 11893 ; FIX(1.451774981) F_1_847 equ 15137 ; FIX(1.847759065) F_2_172 equ 17799 ; FIX(2.172734803) F_2_562 equ 20995 ; FIX(2.562915447) F_3_624 equ 29692 ; FIX(3.624509785) %else ; NASM cannot do compile-time arithmetic on floating-point constants. %define DESCALE(x, n) (((x) + (1 << ((n) - 1))) >> (n)) F_0_211 equ DESCALE( 226735879, 30 - CONST_BITS) ; FIX(0.211164243) F_0_509 equ DESCALE( 547388834, 30 - CONST_BITS) ; FIX(0.509795579) F_0_601 equ DESCALE( 645689155, 30 - CONST_BITS) ; FIX(0.601344887) F_0_720 equ DESCALE( 774124714, 30 - CONST_BITS) ; FIX(0.720959822) F_0_765 equ DESCALE( 821806413, 30 - CONST_BITS) ; FIX(0.765366865) F_0_850 equ DESCALE( 913142361, 30 - CONST_BITS) ; FIX(0.850430095) F_0_899 equ DESCALE( 966342111, 30 - CONST_BITS) ; FIX(0.899976223) F_1_061 equ DESCALE(1139878239, 30 - CONST_BITS) ; FIX(1.061594337) F_1_272 equ DESCALE(1366614119, 30 - CONST_BITS) ; FIX(1.272758580) F_1_451 equ DESCALE(1558831516, 30 - CONST_BITS) ; FIX(1.451774981) F_1_847 equ DESCALE(1984016188, 30 - CONST_BITS) ; FIX(1.847759065) F_2_172 equ DESCALE(2332956230, 30 - CONST_BITS) ; FIX(2.172734803) F_2_562 equ DESCALE(2751909506, 30 - CONST_BITS) ; FIX(2.562915447) F_3_624 equ DESCALE(3891787747, 30 - CONST_BITS) ; FIX(3.624509785) %endif ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 32 GLOBAL_DATA(jconst_idct_red_mmx) EXTN(jconst_idct_red_mmx): PW_F184_MF076 times 2 dw F_1_847, -F_0_765 PW_F256_F089 times 2 dw F_2_562, F_0_899 PW_F106_MF217 times 2 dw F_1_061, -F_2_172 PW_MF060_MF050 times 2 dw -F_0_601, -F_0_509 PW_F145_MF021 times 2 dw F_1_451, -F_0_211 PW_F362_MF127 times 2 dw F_3_624, -F_1_272 PW_F085_MF072 times 2 dw F_0_850, -F_0_720 PD_DESCALE_P1_4 times 2 dd 1 << (DESCALE_P1_4 - 1) PD_DESCALE_P2_4 times 2 dd 1 << (DESCALE_P2_4 - 1) PD_DESCALE_P1_2 times 2 dd 1 << (DESCALE_P1_2 - 1) PD_DESCALE_P2_2 times 2 dd 1 << (DESCALE_P2_2 - 1) PB_CENTERJSAMP times 8 db CENTERJSAMPLE alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Perform dequantization and inverse DCT on one block of coefficients, ; producing a reduced-size 4x4 output block. ; ; GLOBAL(void) ; jsimd_idct_4x4_mmx(void *dct_table, JCOEFPTR coef_block, ; JSAMPARRAY output_buf, JDIMENSION output_col) ; %define dct_table(b) (b) + 8 ; void *dct_table %define coef_block(b) (b) + 12 ; JCOEFPTR coef_block %define output_buf(b) (b) + 16 ; JSAMPARRAY output_buf %define output_col(b) (b) + 20 ; JDIMENSION output_col %define original_ebp ebp + 0 %define wk(i) ebp - (WK_NUM - (i)) * SIZEOF_MMWORD ; mmword wk[WK_NUM] %define WK_NUM 2 %define workspace wk(0) - DCTSIZE2 * SIZEOF_JCOEF ; JCOEF workspace[DCTSIZE2] align 32 GLOBAL_FUNCTION(jsimd_idct_4x4_mmx) EXTN(jsimd_idct_4x4_mmx): push ebp mov eax, esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_MMWORD) ; align to 64 bits mov [esp], eax mov ebp, esp ; ebp = aligned ebp lea esp, [workspace] pushpic ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address ; ---- Pass 1: process columns from input, store into work array. ; mov eax, [original_ebp] mov edx, POINTER [dct_table(eax)] ; quantptr mov esi, JCOEFPTR [coef_block(eax)] ; inptr lea edi, [workspace] ; JCOEF *wsptr mov ecx, DCTSIZE/4 ; ctr alignx 16, 7 .columnloop: %ifndef NO_ZERO_COLUMN_TEST_4X4_MMX mov eax, dword [DWBLOCK(1,0,esi,SIZEOF_JCOEF)] or eax, dword [DWBLOCK(2,0,esi,SIZEOF_JCOEF)] jnz short .columnDCT movq mm0, MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)] movq mm1, MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)] por mm0, MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)] por mm1, MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)] por mm0, MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)] por mm1, MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)] por mm0, mm1 packsswb mm0, mm0 movd eax, mm0 test eax, eax jnz short .columnDCT ; -- AC terms all zero movq mm0, MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)] pmullw mm0, MMWORD [MMBLOCK(0,0,edx,SIZEOF_ISLOW_MULT_TYPE)] psllw mm0, PASS1_BITS movq mm2, mm0 ; mm0=in0=(00 01 02 03) punpcklwd mm0, mm0 ; mm0=(00 00 01 01) punpckhwd mm2, mm2 ; mm2=(02 02 03 03) movq mm1, mm0 punpckldq mm0, mm0 ; mm0=(00 00 00 00) punpckhdq mm1, mm1 ; mm1=(01 01 01 01) movq mm3, mm2 punpckldq mm2, mm2 ; mm2=(02 02 02 02) punpckhdq mm3, mm3 ; mm3=(03 03 03 03) movq MMWORD [MMBLOCK(0,0,edi,SIZEOF_JCOEF)], mm0 movq MMWORD [MMBLOCK(1,0,edi,SIZEOF_JCOEF)], mm1 movq MMWORD [MMBLOCK(2,0,edi,SIZEOF_JCOEF)], mm2 movq MMWORD [MMBLOCK(3,0,edi,SIZEOF_JCOEF)], mm3 jmp near .nextcolumn alignx 16, 7 %endif .columnDCT: ; -- Odd part movq mm0, MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)] movq mm1, MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)] pmullw mm0, MMWORD [MMBLOCK(1,0,edx,SIZEOF_ISLOW_MULT_TYPE)] pmullw mm1, MMWORD [MMBLOCK(3,0,edx,SIZEOF_ISLOW_MULT_TYPE)] movq mm2, MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)] movq mm3, MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)] pmullw mm2, MMWORD [MMBLOCK(5,0,edx,SIZEOF_ISLOW_MULT_TYPE)] pmullw mm3, MMWORD [MMBLOCK(7,0,edx,SIZEOF_ISLOW_MULT_TYPE)] movq mm4, mm0 movq mm5, mm0 punpcklwd mm4, mm1 punpckhwd mm5, mm1 movq mm0, mm4 movq mm1, mm5 pmaddwd mm4, [GOTOFF(ebx,PW_F256_F089)] ; mm4=(tmp2L) pmaddwd mm5, [GOTOFF(ebx,PW_F256_F089)] ; mm5=(tmp2H) pmaddwd mm0, [GOTOFF(ebx,PW_F106_MF217)] ; mm0=(tmp0L) pmaddwd mm1, [GOTOFF(ebx,PW_F106_MF217)] ; mm1=(tmp0H) movq mm6, mm2 movq mm7, mm2 punpcklwd mm6, mm3 punpckhwd mm7, mm3 movq mm2, mm6 movq mm3, mm7 pmaddwd mm6, [GOTOFF(ebx,PW_MF060_MF050)] ; mm6=(tmp2L) pmaddwd mm7, [GOTOFF(ebx,PW_MF060_MF050)] ; mm7=(tmp2H) pmaddwd mm2, [GOTOFF(ebx,PW_F145_MF021)] ; mm2=(tmp0L) pmaddwd mm3, [GOTOFF(ebx,PW_F145_MF021)] ; mm3=(tmp0H) paddd mm6, mm4 ; mm6=tmp2L paddd mm7, mm5 ; mm7=tmp2H paddd mm2, mm0 ; mm2=tmp0L paddd mm3, mm1 ; mm3=tmp0H movq MMWORD [wk(0)], mm2 ; wk(0)=tmp0L movq MMWORD [wk(1)], mm3 ; wk(1)=tmp0H ; -- Even part movq mm4, MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)] movq mm5, MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)] movq mm0, MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)] pmullw mm4, MMWORD [MMBLOCK(0,0,edx,SIZEOF_ISLOW_MULT_TYPE)] pmullw mm5, MMWORD [MMBLOCK(2,0,edx,SIZEOF_ISLOW_MULT_TYPE)] pmullw mm0, MMWORD [MMBLOCK(6,0,edx,SIZEOF_ISLOW_MULT_TYPE)] pxor mm1, mm1 pxor mm2, mm2 punpcklwd mm1, mm4 ; mm1=tmp0L punpckhwd mm2, mm4 ; mm2=tmp0H psrad mm1, (16-CONST_BITS-1) ; psrad mm1,16 & pslld mm1,CONST_BITS+1 psrad mm2, (16-CONST_BITS-1) ; psrad mm2,16 & pslld mm2,CONST_BITS+1 movq mm3, mm5 ; mm5=in2=z2 punpcklwd mm5, mm0 ; mm0=in6=z3 punpckhwd mm3, mm0 pmaddwd mm5, [GOTOFF(ebx,PW_F184_MF076)] ; mm5=tmp2L pmaddwd mm3, [GOTOFF(ebx,PW_F184_MF076)] ; mm3=tmp2H movq mm4, mm1 movq mm0, mm2 paddd mm1, mm5 ; mm1=tmp10L paddd mm2, mm3 ; mm2=tmp10H psubd mm4, mm5 ; mm4=tmp12L psubd mm0, mm3 ; mm0=tmp12H ; -- Final output stage movq mm5, mm1 movq mm3, mm2 paddd mm1, mm6 ; mm1=data0L paddd mm2, mm7 ; mm2=data0H psubd mm5, mm6 ; mm5=data3L psubd mm3, mm7 ; mm3=data3H movq mm6, [GOTOFF(ebx,PD_DESCALE_P1_4)] ; mm6=[PD_DESCALE_P1_4] paddd mm1, mm6 paddd mm2, mm6 psrad mm1, DESCALE_P1_4 psrad mm2, DESCALE_P1_4 paddd mm5, mm6 paddd mm3, mm6 psrad mm5, DESCALE_P1_4 psrad mm3, DESCALE_P1_4 packssdw mm1, mm2 ; mm1=data0=(00 01 02 03) packssdw mm5, mm3 ; mm5=data3=(30 31 32 33) movq mm7, MMWORD [wk(0)] ; mm7=tmp0L movq mm6, MMWORD [wk(1)] ; mm6=tmp0H movq mm2, mm4 movq mm3, mm0 paddd mm4, mm7 ; mm4=data1L paddd mm0, mm6 ; mm0=data1H psubd mm2, mm7 ; mm2=data2L psubd mm3, mm6 ; mm3=data2H movq mm7, [GOTOFF(ebx,PD_DESCALE_P1_4)] ; mm7=[PD_DESCALE_P1_4] paddd mm4, mm7 paddd mm0, mm7 psrad mm4, DESCALE_P1_4 psrad mm0, DESCALE_P1_4 paddd mm2, mm7 paddd mm3, mm7 psrad mm2, DESCALE_P1_4 psrad mm3, DESCALE_P1_4 packssdw mm4, mm0 ; mm4=data1=(10 11 12 13) packssdw mm2, mm3 ; mm2=data2=(20 21 22 23) movq mm6, mm1 ; transpose coefficients(phase 1) punpcklwd mm1, mm4 ; mm1=(00 10 01 11) punpckhwd mm6, mm4 ; mm6=(02 12 03 13) movq mm7, mm2 ; transpose coefficients(phase 1) punpcklwd mm2, mm5 ; mm2=(20 30 21 31) punpckhwd mm7, mm5 ; mm7=(22 32 23 33) movq mm0, mm1 ; transpose coefficients(phase 2) punpckldq mm1, mm2 ; mm1=(00 10 20 30) punpckhdq mm0, mm2 ; mm0=(01 11 21 31) movq mm3, mm6 ; transpose coefficients(phase 2) punpckldq mm6, mm7 ; mm6=(02 12 22 32) punpckhdq mm3, mm7 ; mm3=(03 13 23 33) movq MMWORD [MMBLOCK(0,0,edi,SIZEOF_JCOEF)], mm1 movq MMWORD [MMBLOCK(1,0,edi,SIZEOF_JCOEF)], mm0 movq MMWORD [MMBLOCK(2,0,edi,SIZEOF_JCOEF)], mm6 movq MMWORD [MMBLOCK(3,0,edi,SIZEOF_JCOEF)], mm3 .nextcolumn: add esi, byte 4*SIZEOF_JCOEF ; coef_block add edx, byte 4*SIZEOF_ISLOW_MULT_TYPE ; quantptr add edi, byte 4*DCTSIZE*SIZEOF_JCOEF ; wsptr dec ecx ; ctr jnz near .columnloop ; ---- Pass 2: process rows from work array, store into output array. mov eax, [original_ebp] lea esi, [workspace] ; JCOEF *wsptr mov edi, JSAMPARRAY [output_buf(eax)] ; (JSAMPROW *) mov eax, JDIMENSION [output_col(eax)] ; -- Odd part movq mm0, MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)] movq mm1, MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)] movq mm2, MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)] movq mm3, MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)] movq mm4, mm0 movq mm5, mm0 punpcklwd mm4, mm1 punpckhwd mm5, mm1 movq mm0, mm4 movq mm1, mm5 pmaddwd mm4, [GOTOFF(ebx,PW_F256_F089)] ; mm4=(tmp2L) pmaddwd mm5, [GOTOFF(ebx,PW_F256_F089)] ; mm5=(tmp2H) pmaddwd mm0, [GOTOFF(ebx,PW_F106_MF217)] ; mm0=(tmp0L) pmaddwd mm1, [GOTOFF(ebx,PW_F106_MF217)] ; mm1=(tmp0H) movq mm6, mm2 movq mm7, mm2 punpcklwd mm6, mm3 punpckhwd mm7, mm3 movq mm2, mm6 movq mm3, mm7 pmaddwd mm6, [GOTOFF(ebx,PW_MF060_MF050)] ; mm6=(tmp2L) pmaddwd mm7, [GOTOFF(ebx,PW_MF060_MF050)] ; mm7=(tmp2H) pmaddwd mm2, [GOTOFF(ebx,PW_F145_MF021)] ; mm2=(tmp0L) pmaddwd mm3, [GOTOFF(ebx,PW_F145_MF021)] ; mm3=(tmp0H) paddd mm6, mm4 ; mm6=tmp2L paddd mm7, mm5 ; mm7=tmp2H paddd mm2, mm0 ; mm2=tmp0L paddd mm3, mm1 ; mm3=tmp0H movq MMWORD [wk(0)], mm2 ; wk(0)=tmp0L movq MMWORD [wk(1)], mm3 ; wk(1)=tmp0H ; -- Even part movq mm4, MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)] movq mm5, MMWORD [MMBLOCK(2,0,esi,SIZEOF_JCOEF)] movq mm0, MMWORD [MMBLOCK(6,0,esi,SIZEOF_JCOEF)] pxor mm1, mm1 pxor mm2, mm2 punpcklwd mm1, mm4 ; mm1=tmp0L punpckhwd mm2, mm4 ; mm2=tmp0H psrad mm1, (16-CONST_BITS-1) ; psrad mm1,16 & pslld mm1,CONST_BITS+1 psrad mm2, (16-CONST_BITS-1) ; psrad mm2,16 & pslld mm2,CONST_BITS+1 movq mm3, mm5 ; mm5=in2=z2 punpcklwd mm5, mm0 ; mm0=in6=z3 punpckhwd mm3, mm0 pmaddwd mm5, [GOTOFF(ebx,PW_F184_MF076)] ; mm5=tmp2L pmaddwd mm3, [GOTOFF(ebx,PW_F184_MF076)] ; mm3=tmp2H movq mm4, mm1 movq mm0, mm2 paddd mm1, mm5 ; mm1=tmp10L paddd mm2, mm3 ; mm2=tmp10H psubd mm4, mm5 ; mm4=tmp12L psubd mm0, mm3 ; mm0=tmp12H ; -- Final output stage movq mm5, mm1 movq mm3, mm2 paddd mm1, mm6 ; mm1=data0L paddd mm2, mm7 ; mm2=data0H psubd mm5, mm6 ; mm5=data3L psubd mm3, mm7 ; mm3=data3H movq mm6, [GOTOFF(ebx,PD_DESCALE_P2_4)] ; mm6=[PD_DESCALE_P2_4] paddd mm1, mm6 paddd mm2, mm6 psrad mm1, DESCALE_P2_4 psrad mm2, DESCALE_P2_4 paddd mm5, mm6 paddd mm3, mm6 psrad mm5, DESCALE_P2_4 psrad mm3, DESCALE_P2_4 packssdw mm1, mm2 ; mm1=data0=(00 10 20 30) packssdw mm5, mm3 ; mm5=data3=(03 13 23 33) movq mm7, MMWORD [wk(0)] ; mm7=tmp0L movq mm6, MMWORD [wk(1)] ; mm6=tmp0H movq mm2, mm4 movq mm3, mm0 paddd mm4, mm7 ; mm4=data1L paddd mm0, mm6 ; mm0=data1H psubd mm2, mm7 ; mm2=data2L psubd mm3, mm6 ; mm3=data2H movq mm7, [GOTOFF(ebx,PD_DESCALE_P2_4)] ; mm7=[PD_DESCALE_P2_4] paddd mm4, mm7 paddd mm0, mm7 psrad mm4, DESCALE_P2_4 psrad mm0, DESCALE_P2_4 paddd mm2, mm7 paddd mm3, mm7 psrad mm2, DESCALE_P2_4 psrad mm3, DESCALE_P2_4 packssdw mm4, mm0 ; mm4=data1=(01 11 21 31) packssdw mm2, mm3 ; mm2=data2=(02 12 22 32) movq mm6, [GOTOFF(ebx,PB_CENTERJSAMP)] ; mm6=[PB_CENTERJSAMP] packsswb mm1, mm2 ; mm1=(00 10 20 30 02 12 22 32) packsswb mm4, mm5 ; mm4=(01 11 21 31 03 13 23 33) paddb mm1, mm6 paddb mm4, mm6 movq mm7, mm1 ; transpose coefficients(phase 1) punpcklbw mm1, mm4 ; mm1=(00 01 10 11 20 21 30 31) punpckhbw mm7, mm4 ; mm7=(02 03 12 13 22 23 32 33) movq mm0, mm1 ; transpose coefficients(phase 2) punpcklwd mm1, mm7 ; mm1=(00 01 02 03 10 11 12 13) punpckhwd mm0, mm7 ; mm0=(20 21 22 23 30 31 32 33) mov edx, JSAMPROW [edi+0*SIZEOF_JSAMPROW] mov esi, JSAMPROW [edi+2*SIZEOF_JSAMPROW] movd dword [edx+eax*SIZEOF_JSAMPLE], mm1 movd dword [esi+eax*SIZEOF_JSAMPLE], mm0 psrlq mm1, 4*BYTE_BIT psrlq mm0, 4*BYTE_BIT mov edx, JSAMPROW [edi+1*SIZEOF_JSAMPROW] mov esi, JSAMPROW [edi+3*SIZEOF_JSAMPROW] movd dword [edx+eax*SIZEOF_JSAMPLE], mm1 movd dword [esi+eax*SIZEOF_JSAMPLE], mm0 emms ; empty MMX state pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved poppic ebx mov esp, ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; -------------------------------------------------------------------------- ; ; Perform dequantization and inverse DCT on one block of coefficients, ; producing a reduced-size 2x2 output block. ; ; GLOBAL(void) ; jsimd_idct_2x2_mmx(void *dct_table, JCOEFPTR coef_block, ; JSAMPARRAY output_buf, JDIMENSION output_col) ; %define dct_table(b) (b) + 8 ; void *dct_table %define coef_block(b) (b) + 12 ; JCOEFPTR coef_block %define output_buf(b) (b) + 16 ; JSAMPARRAY output_buf %define output_col(b) (b) + 20 ; JDIMENSION output_col align 32 GLOBAL_FUNCTION(jsimd_idct_2x2_mmx) EXTN(jsimd_idct_2x2_mmx): push ebp mov ebp, esp push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address ; ---- Pass 1: process columns from input. mov edx, POINTER [dct_table(ebp)] ; quantptr mov esi, JCOEFPTR [coef_block(ebp)] ; inptr ; | input: | result: | ; | 00 01 ** 03 ** 05 ** 07 | | ; | 10 11 ** 13 ** 15 ** 17 | | ; | ** ** ** ** ** ** ** ** | | ; | 30 31 ** 33 ** 35 ** 37 | A0 A1 A3 A5 A7 | ; | ** ** ** ** ** ** ** ** | B0 B1 B3 B5 B7 | ; | 50 51 ** 53 ** 55 ** 57 | | ; | ** ** ** ** ** ** ** ** | | ; | 70 71 ** 73 ** 75 ** 77 | | ; -- Odd part movq mm0, MMWORD [MMBLOCK(1,0,esi,SIZEOF_JCOEF)] movq mm1, MMWORD [MMBLOCK(3,0,esi,SIZEOF_JCOEF)] pmullw mm0, MMWORD [MMBLOCK(1,0,edx,SIZEOF_ISLOW_MULT_TYPE)] pmullw mm1, MMWORD [MMBLOCK(3,0,edx,SIZEOF_ISLOW_MULT_TYPE)] movq mm2, MMWORD [MMBLOCK(5,0,esi,SIZEOF_JCOEF)] movq mm3, MMWORD [MMBLOCK(7,0,esi,SIZEOF_JCOEF)] pmullw mm2, MMWORD [MMBLOCK(5,0,edx,SIZEOF_ISLOW_MULT_TYPE)] pmullw mm3, MMWORD [MMBLOCK(7,0,edx,SIZEOF_ISLOW_MULT_TYPE)] ; mm0=(10 11 ** 13), mm1=(30 31 ** 33) ; mm2=(50 51 ** 53), mm3=(70 71 ** 73) pcmpeqd mm7, mm7 pslld mm7, WORD_BIT ; mm7={0x0000 0xFFFF 0x0000 0xFFFF} movq mm4, mm0 ; mm4=(10 11 ** 13) movq mm5, mm2 ; mm5=(50 51 ** 53) punpcklwd mm4, mm1 ; mm4=(10 30 11 31) punpcklwd mm5, mm3 ; mm5=(50 70 51 71) pmaddwd mm4, [GOTOFF(ebx,PW_F362_MF127)] pmaddwd mm5, [GOTOFF(ebx,PW_F085_MF072)] psrld mm0, WORD_BIT ; mm0=(11 -- 13 --) pand mm1, mm7 ; mm1=(-- 31 -- 33) psrld mm2, WORD_BIT ; mm2=(51 -- 53 --) pand mm3, mm7 ; mm3=(-- 71 -- 73) por mm0, mm1 ; mm0=(11 31 13 33) por mm2, mm3 ; mm2=(51 71 53 73) pmaddwd mm0, [GOTOFF(ebx,PW_F362_MF127)] pmaddwd mm2, [GOTOFF(ebx,PW_F085_MF072)] paddd mm4, mm5 ; mm4=tmp0[col0 col1] movq mm6, MMWORD [MMBLOCK(1,1,esi,SIZEOF_JCOEF)] movq mm1, MMWORD [MMBLOCK(3,1,esi,SIZEOF_JCOEF)] pmullw mm6, MMWORD [MMBLOCK(1,1,edx,SIZEOF_ISLOW_MULT_TYPE)] pmullw mm1, MMWORD [MMBLOCK(3,1,edx,SIZEOF_ISLOW_MULT_TYPE)] movq mm3, MMWORD [MMBLOCK(5,1,esi,SIZEOF_JCOEF)] movq mm5, MMWORD [MMBLOCK(7,1,esi,SIZEOF_JCOEF)] pmullw mm3, MMWORD [MMBLOCK(5,1,edx,SIZEOF_ISLOW_MULT_TYPE)] pmullw mm5, MMWORD [MMBLOCK(7,1,edx,SIZEOF_ISLOW_MULT_TYPE)] ; mm6=(** 15 ** 17), mm1=(** 35 ** 37) ; mm3=(** 55 ** 57), mm5=(** 75 ** 77) psrld mm6, WORD_BIT ; mm6=(15 -- 17 --) pand mm1, mm7 ; mm1=(-- 35 -- 37) psrld mm3, WORD_BIT ; mm3=(55 -- 57 --) pand mm5, mm7 ; mm5=(-- 75 -- 77) por mm6, mm1 ; mm6=(15 35 17 37) por mm3, mm5 ; mm3=(55 75 57 77) pmaddwd mm6, [GOTOFF(ebx,PW_F362_MF127)] pmaddwd mm3, [GOTOFF(ebx,PW_F085_MF072)] paddd mm0, mm2 ; mm0=tmp0[col1 col3] paddd mm6, mm3 ; mm6=tmp0[col5 col7] ; -- Even part movq mm1, MMWORD [MMBLOCK(0,0,esi,SIZEOF_JCOEF)] movq mm5, MMWORD [MMBLOCK(0,1,esi,SIZEOF_JCOEF)] pmullw mm1, MMWORD [MMBLOCK(0,0,edx,SIZEOF_ISLOW_MULT_TYPE)] pmullw mm5, MMWORD [MMBLOCK(0,1,edx,SIZEOF_ISLOW_MULT_TYPE)] ; mm1=(00 01 ** 03), mm5=(** 05 ** 07) movq mm2, mm1 ; mm2=(00 01 ** 03) pslld mm1, WORD_BIT ; mm1=(-- 00 -- **) psrad mm1, (WORD_BIT-CONST_BITS-2) ; mm1=tmp10[col0 ****] pand mm2, mm7 ; mm2=(-- 01 -- 03) pand mm5, mm7 ; mm5=(-- 05 -- 07) psrad mm2, (WORD_BIT-CONST_BITS-2) ; mm2=tmp10[col1 col3] psrad mm5, (WORD_BIT-CONST_BITS-2) ; mm5=tmp10[col5 col7] ; -- Final output stage movq mm3, mm1 paddd mm1, mm4 ; mm1=data0[col0 ****]=(A0 **) psubd mm3, mm4 ; mm3=data1[col0 ****]=(B0 **) punpckldq mm1, mm3 ; mm1=(A0 B0) movq mm7, [GOTOFF(ebx,PD_DESCALE_P1_2)] ; mm7=[PD_DESCALE_P1_2] movq mm4, mm2 movq mm3, mm5 paddd mm2, mm0 ; mm2=data0[col1 col3]=(A1 A3) paddd mm5, mm6 ; mm5=data0[col5 col7]=(A5 A7) psubd mm4, mm0 ; mm4=data1[col1 col3]=(B1 B3) psubd mm3, mm6 ; mm3=data1[col5 col7]=(B5 B7) paddd mm1, mm7 psrad mm1, DESCALE_P1_2 paddd mm2, mm7 paddd mm5, mm7 psrad mm2, DESCALE_P1_2 psrad mm5, DESCALE_P1_2 paddd mm4, mm7 paddd mm3, mm7 psrad mm4, DESCALE_P1_2 psrad mm3, DESCALE_P1_2 ; ---- Pass 2: process rows, store into output array. mov edi, JSAMPARRAY [output_buf(ebp)] ; (JSAMPROW *) mov eax, JDIMENSION [output_col(ebp)] ; | input:| result:| ; | A0 B0 | | ; | A1 B1 | C0 C1 | ; | A3 B3 | D0 D1 | ; | A5 B5 | | ; | A7 B7 | | ; -- Odd part packssdw mm2, mm4 ; mm2=(A1 A3 B1 B3) packssdw mm5, mm3 ; mm5=(A5 A7 B5 B7) pmaddwd mm2, [GOTOFF(ebx,PW_F362_MF127)] pmaddwd mm5, [GOTOFF(ebx,PW_F085_MF072)] paddd mm2, mm5 ; mm2=tmp0[row0 row1] ; -- Even part pslld mm1, (CONST_BITS+2) ; mm1=tmp10[row0 row1] ; -- Final output stage movq mm0, [GOTOFF(ebx,PD_DESCALE_P2_2)] ; mm0=[PD_DESCALE_P2_2] movq mm6, mm1 paddd mm1, mm2 ; mm1=data0[row0 row1]=(C0 C1) psubd mm6, mm2 ; mm6=data1[row0 row1]=(D0 D1) paddd mm1, mm0 paddd mm6, mm0 psrad mm1, DESCALE_P2_2 psrad mm6, DESCALE_P2_2 movq mm7, mm1 ; transpose coefficients punpckldq mm1, mm6 ; mm1=(C0 D0) punpckhdq mm7, mm6 ; mm7=(C1 D1) packssdw mm1, mm7 ; mm1=(C0 D0 C1 D1) packsswb mm1, mm1 ; mm1=(C0 D0 C1 D1 C0 D0 C1 D1) paddb mm1, [GOTOFF(ebx,PB_CENTERJSAMP)] movd ecx, mm1 movd ebx, mm1 ; ebx=(C0 D0 C1 D1) shr ecx, 2*BYTE_BIT ; ecx=(C1 D1 -- --) mov edx, JSAMPROW [edi+0*SIZEOF_JSAMPROW] mov esi, JSAMPROW [edi+1*SIZEOF_JSAMPROW] mov word [edx+eax*SIZEOF_JSAMPLE], bx mov word [esi+eax*SIZEOF_JSAMPLE], cx emms ; empty MMX state pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/i386/jidctred-sse2.asm000066400000000000000000000556111436506551100210730ustar00rootroot00000000000000; ; jidctred.asm - reduced-size IDCT (SSE2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2016, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains inverse-DCT routines that produce reduced-size ; output: either 4x4 or 2x2 pixels from an 8x8 DCT block. ; The following code is based directly on the IJG's original jidctred.c; ; see the jidctred.c for more details. %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- %define CONST_BITS 13 %define PASS1_BITS 2 %define DESCALE_P1_4 (CONST_BITS - PASS1_BITS + 1) %define DESCALE_P2_4 (CONST_BITS + PASS1_BITS + 3 + 1) %define DESCALE_P1_2 (CONST_BITS - PASS1_BITS + 2) %define DESCALE_P2_2 (CONST_BITS + PASS1_BITS + 3 + 2) %if CONST_BITS == 13 F_0_211 equ 1730 ; FIX(0.211164243) F_0_509 equ 4176 ; FIX(0.509795579) F_0_601 equ 4926 ; FIX(0.601344887) F_0_720 equ 5906 ; FIX(0.720959822) F_0_765 equ 6270 ; FIX(0.765366865) F_0_850 equ 6967 ; FIX(0.850430095) F_0_899 equ 7373 ; FIX(0.899976223) F_1_061 equ 8697 ; FIX(1.061594337) F_1_272 equ 10426 ; FIX(1.272758580) F_1_451 equ 11893 ; FIX(1.451774981) F_1_847 equ 15137 ; FIX(1.847759065) F_2_172 equ 17799 ; FIX(2.172734803) F_2_562 equ 20995 ; FIX(2.562915447) F_3_624 equ 29692 ; FIX(3.624509785) %else ; NASM cannot do compile-time arithmetic on floating-point constants. %define DESCALE(x, n) (((x) + (1 << ((n) - 1))) >> (n)) F_0_211 equ DESCALE( 226735879, 30 - CONST_BITS) ; FIX(0.211164243) F_0_509 equ DESCALE( 547388834, 30 - CONST_BITS) ; FIX(0.509795579) F_0_601 equ DESCALE( 645689155, 30 - CONST_BITS) ; FIX(0.601344887) F_0_720 equ DESCALE( 774124714, 30 - CONST_BITS) ; FIX(0.720959822) F_0_765 equ DESCALE( 821806413, 30 - CONST_BITS) ; FIX(0.765366865) F_0_850 equ DESCALE( 913142361, 30 - CONST_BITS) ; FIX(0.850430095) F_0_899 equ DESCALE( 966342111, 30 - CONST_BITS) ; FIX(0.899976223) F_1_061 equ DESCALE(1139878239, 30 - CONST_BITS) ; FIX(1.061594337) F_1_272 equ DESCALE(1366614119, 30 - CONST_BITS) ; FIX(1.272758580) F_1_451 equ DESCALE(1558831516, 30 - CONST_BITS) ; FIX(1.451774981) F_1_847 equ DESCALE(1984016188, 30 - CONST_BITS) ; FIX(1.847759065) F_2_172 equ DESCALE(2332956230, 30 - CONST_BITS) ; FIX(2.172734803) F_2_562 equ DESCALE(2751909506, 30 - CONST_BITS) ; FIX(2.562915447) F_3_624 equ DESCALE(3891787747, 30 - CONST_BITS) ; FIX(3.624509785) %endif ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 32 GLOBAL_DATA(jconst_idct_red_sse2) EXTN(jconst_idct_red_sse2): PW_F184_MF076 times 4 dw F_1_847, -F_0_765 PW_F256_F089 times 4 dw F_2_562, F_0_899 PW_F106_MF217 times 4 dw F_1_061, -F_2_172 PW_MF060_MF050 times 4 dw -F_0_601, -F_0_509 PW_F145_MF021 times 4 dw F_1_451, -F_0_211 PW_F362_MF127 times 4 dw F_3_624, -F_1_272 PW_F085_MF072 times 4 dw F_0_850, -F_0_720 PD_DESCALE_P1_4 times 4 dd 1 << (DESCALE_P1_4 - 1) PD_DESCALE_P2_4 times 4 dd 1 << (DESCALE_P2_4 - 1) PD_DESCALE_P1_2 times 4 dd 1 << (DESCALE_P1_2 - 1) PD_DESCALE_P2_2 times 4 dd 1 << (DESCALE_P2_2 - 1) PB_CENTERJSAMP times 16 db CENTERJSAMPLE alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Perform dequantization and inverse DCT on one block of coefficients, ; producing a reduced-size 4x4 output block. ; ; GLOBAL(void) ; jsimd_idct_4x4_sse2(void *dct_table, JCOEFPTR coef_block, ; JSAMPARRAY output_buf, JDIMENSION output_col) ; %define dct_table(b) (b) + 8 ; void *dct_table %define coef_block(b) (b) + 12 ; JCOEFPTR coef_block %define output_buf(b) (b) + 16 ; JSAMPARRAY output_buf %define output_col(b) (b) + 20 ; JDIMENSION output_col %define original_ebp ebp + 0 %define wk(i) ebp - (WK_NUM - (i)) * SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 2 align 32 GLOBAL_FUNCTION(jsimd_idct_4x4_sse2) EXTN(jsimd_idct_4x4_sse2): push ebp mov eax, esp ; eax = original ebp sub esp, byte 4 and esp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [esp], eax mov ebp, esp ; ebp = aligned ebp lea esp, [wk(0)] pushpic ebx ; push ecx ; unused ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address ; ---- Pass 1: process columns from input. ; mov eax, [original_ebp] mov edx, POINTER [dct_table(eax)] ; quantptr mov esi, JCOEFPTR [coef_block(eax)] ; inptr %ifndef NO_ZERO_COLUMN_TEST_4X4_SSE2 mov eax, dword [DWBLOCK(1,0,esi,SIZEOF_JCOEF)] or eax, dword [DWBLOCK(2,0,esi,SIZEOF_JCOEF)] jnz short .columnDCT movdqa xmm0, XMMWORD [XMMBLOCK(1,0,esi,SIZEOF_JCOEF)] movdqa xmm1, XMMWORD [XMMBLOCK(2,0,esi,SIZEOF_JCOEF)] por xmm0, XMMWORD [XMMBLOCK(3,0,esi,SIZEOF_JCOEF)] por xmm1, XMMWORD [XMMBLOCK(5,0,esi,SIZEOF_JCOEF)] por xmm0, XMMWORD [XMMBLOCK(6,0,esi,SIZEOF_JCOEF)] por xmm1, XMMWORD [XMMBLOCK(7,0,esi,SIZEOF_JCOEF)] por xmm0, xmm1 packsswb xmm0, xmm0 packsswb xmm0, xmm0 movd eax, xmm0 test eax, eax jnz short .columnDCT ; -- AC terms all zero movdqa xmm0, XMMWORD [XMMBLOCK(0,0,esi,SIZEOF_JCOEF)] pmullw xmm0, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_ISLOW_MULT_TYPE)] psllw xmm0, PASS1_BITS movdqa xmm3, xmm0 ; xmm0=in0=(00 01 02 03 04 05 06 07) punpcklwd xmm0, xmm0 ; xmm0=(00 00 01 01 02 02 03 03) punpckhwd xmm3, xmm3 ; xmm3=(04 04 05 05 06 06 07 07) pshufd xmm1, xmm0, 0x50 ; xmm1=[col0 col1]=(00 00 00 00 01 01 01 01) pshufd xmm0, xmm0, 0xFA ; xmm0=[col2 col3]=(02 02 02 02 03 03 03 03) pshufd xmm6, xmm3, 0x50 ; xmm6=[col4 col5]=(04 04 04 04 05 05 05 05) pshufd xmm3, xmm3, 0xFA ; xmm3=[col6 col7]=(06 06 06 06 07 07 07 07) jmp near .column_end alignx 16, 7 %endif .columnDCT: ; -- Odd part movdqa xmm0, XMMWORD [XMMBLOCK(1,0,esi,SIZEOF_JCOEF)] movdqa xmm1, XMMWORD [XMMBLOCK(3,0,esi,SIZEOF_JCOEF)] pmullw xmm0, XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_ISLOW_MULT_TYPE)] pmullw xmm1, XMMWORD [XMMBLOCK(3,0,edx,SIZEOF_ISLOW_MULT_TYPE)] movdqa xmm2, XMMWORD [XMMBLOCK(5,0,esi,SIZEOF_JCOEF)] movdqa xmm3, XMMWORD [XMMBLOCK(7,0,esi,SIZEOF_JCOEF)] pmullw xmm2, XMMWORD [XMMBLOCK(5,0,edx,SIZEOF_ISLOW_MULT_TYPE)] pmullw xmm3, XMMWORD [XMMBLOCK(7,0,edx,SIZEOF_ISLOW_MULT_TYPE)] movdqa xmm4, xmm0 movdqa xmm5, xmm0 punpcklwd xmm4, xmm1 punpckhwd xmm5, xmm1 movdqa xmm0, xmm4 movdqa xmm1, xmm5 pmaddwd xmm4, [GOTOFF(ebx,PW_F256_F089)] ; xmm4=(tmp2L) pmaddwd xmm5, [GOTOFF(ebx,PW_F256_F089)] ; xmm5=(tmp2H) pmaddwd xmm0, [GOTOFF(ebx,PW_F106_MF217)] ; xmm0=(tmp0L) pmaddwd xmm1, [GOTOFF(ebx,PW_F106_MF217)] ; xmm1=(tmp0H) movdqa xmm6, xmm2 movdqa xmm7, xmm2 punpcklwd xmm6, xmm3 punpckhwd xmm7, xmm3 movdqa xmm2, xmm6 movdqa xmm3, xmm7 pmaddwd xmm6, [GOTOFF(ebx,PW_MF060_MF050)] ; xmm6=(tmp2L) pmaddwd xmm7, [GOTOFF(ebx,PW_MF060_MF050)] ; xmm7=(tmp2H) pmaddwd xmm2, [GOTOFF(ebx,PW_F145_MF021)] ; xmm2=(tmp0L) pmaddwd xmm3, [GOTOFF(ebx,PW_F145_MF021)] ; xmm3=(tmp0H) paddd xmm6, xmm4 ; xmm6=tmp2L paddd xmm7, xmm5 ; xmm7=tmp2H paddd xmm2, xmm0 ; xmm2=tmp0L paddd xmm3, xmm1 ; xmm3=tmp0H movdqa XMMWORD [wk(0)], xmm2 ; wk(0)=tmp0L movdqa XMMWORD [wk(1)], xmm3 ; wk(1)=tmp0H ; -- Even part movdqa xmm4, XMMWORD [XMMBLOCK(0,0,esi,SIZEOF_JCOEF)] movdqa xmm5, XMMWORD [XMMBLOCK(2,0,esi,SIZEOF_JCOEF)] movdqa xmm0, XMMWORD [XMMBLOCK(6,0,esi,SIZEOF_JCOEF)] pmullw xmm4, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_ISLOW_MULT_TYPE)] pmullw xmm5, XMMWORD [XMMBLOCK(2,0,edx,SIZEOF_ISLOW_MULT_TYPE)] pmullw xmm0, XMMWORD [XMMBLOCK(6,0,edx,SIZEOF_ISLOW_MULT_TYPE)] pxor xmm1, xmm1 pxor xmm2, xmm2 punpcklwd xmm1, xmm4 ; xmm1=tmp0L punpckhwd xmm2, xmm4 ; xmm2=tmp0H psrad xmm1, (16-CONST_BITS-1) ; psrad xmm1,16 & pslld xmm1,CONST_BITS+1 psrad xmm2, (16-CONST_BITS-1) ; psrad xmm2,16 & pslld xmm2,CONST_BITS+1 movdqa xmm3, xmm5 ; xmm5=in2=z2 punpcklwd xmm5, xmm0 ; xmm0=in6=z3 punpckhwd xmm3, xmm0 pmaddwd xmm5, [GOTOFF(ebx,PW_F184_MF076)] ; xmm5=tmp2L pmaddwd xmm3, [GOTOFF(ebx,PW_F184_MF076)] ; xmm3=tmp2H movdqa xmm4, xmm1 movdqa xmm0, xmm2 paddd xmm1, xmm5 ; xmm1=tmp10L paddd xmm2, xmm3 ; xmm2=tmp10H psubd xmm4, xmm5 ; xmm4=tmp12L psubd xmm0, xmm3 ; xmm0=tmp12H ; -- Final output stage movdqa xmm5, xmm1 movdqa xmm3, xmm2 paddd xmm1, xmm6 ; xmm1=data0L paddd xmm2, xmm7 ; xmm2=data0H psubd xmm5, xmm6 ; xmm5=data3L psubd xmm3, xmm7 ; xmm3=data3H movdqa xmm6, [GOTOFF(ebx,PD_DESCALE_P1_4)] ; xmm6=[PD_DESCALE_P1_4] paddd xmm1, xmm6 paddd xmm2, xmm6 psrad xmm1, DESCALE_P1_4 psrad xmm2, DESCALE_P1_4 paddd xmm5, xmm6 paddd xmm3, xmm6 psrad xmm5, DESCALE_P1_4 psrad xmm3, DESCALE_P1_4 packssdw xmm1, xmm2 ; xmm1=data0=(00 01 02 03 04 05 06 07) packssdw xmm5, xmm3 ; xmm5=data3=(30 31 32 33 34 35 36 37) movdqa xmm7, XMMWORD [wk(0)] ; xmm7=tmp0L movdqa xmm6, XMMWORD [wk(1)] ; xmm6=tmp0H movdqa xmm2, xmm4 movdqa xmm3, xmm0 paddd xmm4, xmm7 ; xmm4=data1L paddd xmm0, xmm6 ; xmm0=data1H psubd xmm2, xmm7 ; xmm2=data2L psubd xmm3, xmm6 ; xmm3=data2H movdqa xmm7, [GOTOFF(ebx,PD_DESCALE_P1_4)] ; xmm7=[PD_DESCALE_P1_4] paddd xmm4, xmm7 paddd xmm0, xmm7 psrad xmm4, DESCALE_P1_4 psrad xmm0, DESCALE_P1_4 paddd xmm2, xmm7 paddd xmm3, xmm7 psrad xmm2, DESCALE_P1_4 psrad xmm3, DESCALE_P1_4 packssdw xmm4, xmm0 ; xmm4=data1=(10 11 12 13 14 15 16 17) packssdw xmm2, xmm3 ; xmm2=data2=(20 21 22 23 24 25 26 27) movdqa xmm6, xmm1 ; transpose coefficients(phase 1) punpcklwd xmm1, xmm4 ; xmm1=(00 10 01 11 02 12 03 13) punpckhwd xmm6, xmm4 ; xmm6=(04 14 05 15 06 16 07 17) movdqa xmm7, xmm2 ; transpose coefficients(phase 1) punpcklwd xmm2, xmm5 ; xmm2=(20 30 21 31 22 32 23 33) punpckhwd xmm7, xmm5 ; xmm7=(24 34 25 35 26 36 27 37) movdqa xmm0, xmm1 ; transpose coefficients(phase 2) punpckldq xmm1, xmm2 ; xmm1=[col0 col1]=(00 10 20 30 01 11 21 31) punpckhdq xmm0, xmm2 ; xmm0=[col2 col3]=(02 12 22 32 03 13 23 33) movdqa xmm3, xmm6 ; transpose coefficients(phase 2) punpckldq xmm6, xmm7 ; xmm6=[col4 col5]=(04 14 24 34 05 15 25 35) punpckhdq xmm3, xmm7 ; xmm3=[col6 col7]=(06 16 26 36 07 17 27 37) .column_end: ; -- Prefetch the next coefficient block prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 0*32] prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 1*32] prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 2*32] prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 3*32] ; ---- Pass 2: process rows, store into output array. mov eax, [original_ebp] mov edi, JSAMPARRAY [output_buf(eax)] ; (JSAMPROW *) mov eax, JDIMENSION [output_col(eax)] ; -- Even part pxor xmm4, xmm4 punpcklwd xmm4, xmm1 ; xmm4=tmp0 psrad xmm4, (16-CONST_BITS-1) ; psrad xmm4,16 & pslld xmm4,CONST_BITS+1 ; -- Odd part punpckhwd xmm1, xmm0 punpckhwd xmm6, xmm3 movdqa xmm5, xmm1 movdqa xmm2, xmm6 pmaddwd xmm1, [GOTOFF(ebx,PW_F256_F089)] ; xmm1=(tmp2) pmaddwd xmm6, [GOTOFF(ebx,PW_MF060_MF050)] ; xmm6=(tmp2) pmaddwd xmm5, [GOTOFF(ebx,PW_F106_MF217)] ; xmm5=(tmp0) pmaddwd xmm2, [GOTOFF(ebx,PW_F145_MF021)] ; xmm2=(tmp0) paddd xmm6, xmm1 ; xmm6=tmp2 paddd xmm2, xmm5 ; xmm2=tmp0 ; -- Even part punpcklwd xmm0, xmm3 pmaddwd xmm0, [GOTOFF(ebx,PW_F184_MF076)] ; xmm0=tmp2 movdqa xmm7, xmm4 paddd xmm4, xmm0 ; xmm4=tmp10 psubd xmm7, xmm0 ; xmm7=tmp12 ; -- Final output stage movdqa xmm1, [GOTOFF(ebx,PD_DESCALE_P2_4)] ; xmm1=[PD_DESCALE_P2_4] movdqa xmm5, xmm4 movdqa xmm3, xmm7 paddd xmm4, xmm6 ; xmm4=data0=(00 10 20 30) paddd xmm7, xmm2 ; xmm7=data1=(01 11 21 31) psubd xmm5, xmm6 ; xmm5=data3=(03 13 23 33) psubd xmm3, xmm2 ; xmm3=data2=(02 12 22 32) paddd xmm4, xmm1 paddd xmm7, xmm1 psrad xmm4, DESCALE_P2_4 psrad xmm7, DESCALE_P2_4 paddd xmm5, xmm1 paddd xmm3, xmm1 psrad xmm5, DESCALE_P2_4 psrad xmm3, DESCALE_P2_4 packssdw xmm4, xmm3 ; xmm4=(00 10 20 30 02 12 22 32) packssdw xmm7, xmm5 ; xmm7=(01 11 21 31 03 13 23 33) movdqa xmm0, xmm4 ; transpose coefficients(phase 1) punpcklwd xmm4, xmm7 ; xmm4=(00 01 10 11 20 21 30 31) punpckhwd xmm0, xmm7 ; xmm0=(02 03 12 13 22 23 32 33) movdqa xmm6, xmm4 ; transpose coefficients(phase 2) punpckldq xmm4, xmm0 ; xmm4=(00 01 02 03 10 11 12 13) punpckhdq xmm6, xmm0 ; xmm6=(20 21 22 23 30 31 32 33) packsswb xmm4, xmm6 ; xmm4=(00 01 02 03 10 11 12 13 20 ..) paddb xmm4, [GOTOFF(ebx,PB_CENTERJSAMP)] pshufd xmm2, xmm4, 0x39 ; xmm2=(10 11 12 13 20 21 22 23 30 ..) pshufd xmm1, xmm4, 0x4E ; xmm1=(20 21 22 23 30 31 32 33 00 ..) pshufd xmm3, xmm4, 0x93 ; xmm3=(30 31 32 33 00 01 02 03 10 ..) mov edx, JSAMPROW [edi+0*SIZEOF_JSAMPROW] mov esi, JSAMPROW [edi+1*SIZEOF_JSAMPROW] movd XMM_DWORD [edx+eax*SIZEOF_JSAMPLE], xmm4 movd XMM_DWORD [esi+eax*SIZEOF_JSAMPLE], xmm2 mov edx, JSAMPROW [edi+2*SIZEOF_JSAMPROW] mov esi, JSAMPROW [edi+3*SIZEOF_JSAMPROW] movd XMM_DWORD [edx+eax*SIZEOF_JSAMPLE], xmm1 movd XMM_DWORD [esi+eax*SIZEOF_JSAMPLE], xmm3 pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; unused poppic ebx mov esp, ebp ; esp <- aligned ebp pop esp ; esp <- original ebp pop ebp ret ; -------------------------------------------------------------------------- ; ; Perform dequantization and inverse DCT on one block of coefficients, ; producing a reduced-size 2x2 output block. ; ; GLOBAL(void) ; jsimd_idct_2x2_sse2(void *dct_table, JCOEFPTR coef_block, ; JSAMPARRAY output_buf, JDIMENSION output_col) ; %define dct_table(b) (b) + 8 ; void *dct_table %define coef_block(b) (b) + 12 ; JCOEFPTR coef_block %define output_buf(b) (b) + 16 ; JSAMPARRAY output_buf %define output_col(b) (b) + 20 ; JDIMENSION output_col align 32 GLOBAL_FUNCTION(jsimd_idct_2x2_sse2) EXTN(jsimd_idct_2x2_sse2): push ebp mov ebp, esp push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi get_GOT ebx ; get GOT address ; ---- Pass 1: process columns from input. mov edx, POINTER [dct_table(ebp)] ; quantptr mov esi, JCOEFPTR [coef_block(ebp)] ; inptr ; | input: | result: | ; | 00 01 ** 03 ** 05 ** 07 | | ; | 10 11 ** 13 ** 15 ** 17 | | ; | ** ** ** ** ** ** ** ** | | ; | 30 31 ** 33 ** 35 ** 37 | A0 A1 A3 A5 A7 | ; | ** ** ** ** ** ** ** ** | B0 B1 B3 B5 B7 | ; | 50 51 ** 53 ** 55 ** 57 | | ; | ** ** ** ** ** ** ** ** | | ; | 70 71 ** 73 ** 75 ** 77 | | ; -- Odd part movdqa xmm0, XMMWORD [XMMBLOCK(1,0,esi,SIZEOF_JCOEF)] movdqa xmm1, XMMWORD [XMMBLOCK(3,0,esi,SIZEOF_JCOEF)] pmullw xmm0, XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_ISLOW_MULT_TYPE)] pmullw xmm1, XMMWORD [XMMBLOCK(3,0,edx,SIZEOF_ISLOW_MULT_TYPE)] movdqa xmm2, XMMWORD [XMMBLOCK(5,0,esi,SIZEOF_JCOEF)] movdqa xmm3, XMMWORD [XMMBLOCK(7,0,esi,SIZEOF_JCOEF)] pmullw xmm2, XMMWORD [XMMBLOCK(5,0,edx,SIZEOF_ISLOW_MULT_TYPE)] pmullw xmm3, XMMWORD [XMMBLOCK(7,0,edx,SIZEOF_ISLOW_MULT_TYPE)] ; xmm0=(10 11 ** 13 ** 15 ** 17), xmm1=(30 31 ** 33 ** 35 ** 37) ; xmm2=(50 51 ** 53 ** 55 ** 57), xmm3=(70 71 ** 73 ** 75 ** 77) pcmpeqd xmm7, xmm7 pslld xmm7, WORD_BIT ; xmm7={0x0000 0xFFFF 0x0000 0xFFFF ..} movdqa xmm4, xmm0 ; xmm4=(10 11 ** 13 ** 15 ** 17) movdqa xmm5, xmm2 ; xmm5=(50 51 ** 53 ** 55 ** 57) punpcklwd xmm4, xmm1 ; xmm4=(10 30 11 31 ** ** 13 33) punpcklwd xmm5, xmm3 ; xmm5=(50 70 51 71 ** ** 53 73) pmaddwd xmm4, [GOTOFF(ebx,PW_F362_MF127)] pmaddwd xmm5, [GOTOFF(ebx,PW_F085_MF072)] psrld xmm0, WORD_BIT ; xmm0=(11 -- 13 -- 15 -- 17 --) pand xmm1, xmm7 ; xmm1=(-- 31 -- 33 -- 35 -- 37) psrld xmm2, WORD_BIT ; xmm2=(51 -- 53 -- 55 -- 57 --) pand xmm3, xmm7 ; xmm3=(-- 71 -- 73 -- 75 -- 77) por xmm0, xmm1 ; xmm0=(11 31 13 33 15 35 17 37) por xmm2, xmm3 ; xmm2=(51 71 53 73 55 75 57 77) pmaddwd xmm0, [GOTOFF(ebx,PW_F362_MF127)] pmaddwd xmm2, [GOTOFF(ebx,PW_F085_MF072)] paddd xmm4, xmm5 ; xmm4=tmp0[col0 col1 **** col3] paddd xmm0, xmm2 ; xmm0=tmp0[col1 col3 col5 col7] ; -- Even part movdqa xmm6, XMMWORD [XMMBLOCK(0,0,esi,SIZEOF_JCOEF)] pmullw xmm6, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_ISLOW_MULT_TYPE)] ; xmm6=(00 01 ** 03 ** 05 ** 07) movdqa xmm1, xmm6 ; xmm1=(00 01 ** 03 ** 05 ** 07) pslld xmm6, WORD_BIT ; xmm6=(-- 00 -- ** -- ** -- **) pand xmm1, xmm7 ; xmm1=(-- 01 -- 03 -- 05 -- 07) psrad xmm6, (WORD_BIT-CONST_BITS-2) ; xmm6=tmp10[col0 **** **** ****] psrad xmm1, (WORD_BIT-CONST_BITS-2) ; xmm1=tmp10[col1 col3 col5 col7] ; -- Final output stage movdqa xmm3, xmm6 movdqa xmm5, xmm1 paddd xmm6, xmm4 ; xmm6=data0[col0 **** **** ****]=(A0 ** ** **) paddd xmm1, xmm0 ; xmm1=data0[col1 col3 col5 col7]=(A1 A3 A5 A7) psubd xmm3, xmm4 ; xmm3=data1[col0 **** **** ****]=(B0 ** ** **) psubd xmm5, xmm0 ; xmm5=data1[col1 col3 col5 col7]=(B1 B3 B5 B7) movdqa xmm2, [GOTOFF(ebx,PD_DESCALE_P1_2)] ; xmm2=[PD_DESCALE_P1_2] punpckldq xmm6, xmm3 ; xmm6=(A0 B0 ** **) movdqa xmm7, xmm1 punpcklqdq xmm1, xmm5 ; xmm1=(A1 A3 B1 B3) punpckhqdq xmm7, xmm5 ; xmm7=(A5 A7 B5 B7) paddd xmm6, xmm2 psrad xmm6, DESCALE_P1_2 paddd xmm1, xmm2 paddd xmm7, xmm2 psrad xmm1, DESCALE_P1_2 psrad xmm7, DESCALE_P1_2 ; -- Prefetch the next coefficient block prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 0*32] prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 1*32] prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 2*32] prefetchnta [esi + DCTSIZE2*SIZEOF_JCOEF + 3*32] ; ---- Pass 2: process rows, store into output array. mov edi, JSAMPARRAY [output_buf(ebp)] ; (JSAMPROW *) mov eax, JDIMENSION [output_col(ebp)] ; | input:| result:| ; | A0 B0 | | ; | A1 B1 | C0 C1 | ; | A3 B3 | D0 D1 | ; | A5 B5 | | ; | A7 B7 | | ; -- Odd part packssdw xmm1, xmm1 ; xmm1=(A1 A3 B1 B3 A1 A3 B1 B3) packssdw xmm7, xmm7 ; xmm7=(A5 A7 B5 B7 A5 A7 B5 B7) pmaddwd xmm1, [GOTOFF(ebx,PW_F362_MF127)] pmaddwd xmm7, [GOTOFF(ebx,PW_F085_MF072)] paddd xmm1, xmm7 ; xmm1=tmp0[row0 row1 row0 row1] ; -- Even part pslld xmm6, (CONST_BITS+2) ; xmm6=tmp10[row0 row1 **** ****] ; -- Final output stage movdqa xmm4, xmm6 paddd xmm6, xmm1 ; xmm6=data0[row0 row1 **** ****]=(C0 C1 ** **) psubd xmm4, xmm1 ; xmm4=data1[row0 row1 **** ****]=(D0 D1 ** **) punpckldq xmm6, xmm4 ; xmm6=(C0 D0 C1 D1) paddd xmm6, [GOTOFF(ebx,PD_DESCALE_P2_2)] psrad xmm6, DESCALE_P2_2 packssdw xmm6, xmm6 ; xmm6=(C0 D0 C1 D1 C0 D0 C1 D1) packsswb xmm6, xmm6 ; xmm6=(C0 D0 C1 D1 C0 D0 C1 D1 ..) paddb xmm6, [GOTOFF(ebx,PB_CENTERJSAMP)] pextrw ebx, xmm6, 0x00 ; ebx=(C0 D0 -- --) pextrw ecx, xmm6, 0x01 ; ecx=(C1 D1 -- --) mov edx, JSAMPROW [edi+0*SIZEOF_JSAMPROW] mov esi, JSAMPROW [edi+1*SIZEOF_JSAMPROW] mov word [edx+eax*SIZEOF_JSAMPLE], bx mov word [esi+eax*SIZEOF_JSAMPLE], cx pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/i386/jquant-3dn.asm000066400000000000000000000213671436506551100204160ustar00rootroot00000000000000; ; jquant.asm - sample data conversion and quantization (3DNow! & MMX) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2016, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Load data into workspace, applying unsigned->signed conversion ; ; GLOBAL(void) ; jsimd_convsamp_float_3dnow(JSAMPARRAY sample_data, JDIMENSION start_col, ; FAST_FLOAT *workspace); ; %define sample_data ebp + 8 ; JSAMPARRAY sample_data %define start_col ebp + 12 ; JDIMENSION start_col %define workspace ebp + 16 ; FAST_FLOAT *workspace align 32 GLOBAL_FUNCTION(jsimd_convsamp_float_3dnow) EXTN(jsimd_convsamp_float_3dnow): push ebp mov ebp, esp push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi pcmpeqw mm7, mm7 psllw mm7, 7 packsswb mm7, mm7 ; mm7 = PB_CENTERJSAMPLE (0x808080..) mov esi, JSAMPARRAY [sample_data] ; (JSAMPROW *) mov eax, JDIMENSION [start_col] mov edi, POINTER [workspace] ; (DCTELEM *) mov ecx, DCTSIZE/2 alignx 16, 7 .convloop: mov ebx, JSAMPROW [esi+0*SIZEOF_JSAMPROW] ; (JSAMPLE *) mov edx, JSAMPROW [esi+1*SIZEOF_JSAMPROW] ; (JSAMPLE *) movq mm0, MMWORD [ebx+eax*SIZEOF_JSAMPLE] movq mm1, MMWORD [edx+eax*SIZEOF_JSAMPLE] psubb mm0, mm7 ; mm0=(01234567) psubb mm1, mm7 ; mm1=(89ABCDEF) punpcklbw mm2, mm0 ; mm2=(*0*1*2*3) punpckhbw mm0, mm0 ; mm0=(*4*5*6*7) punpcklbw mm3, mm1 ; mm3=(*8*9*A*B) punpckhbw mm1, mm1 ; mm1=(*C*D*E*F) punpcklwd mm4, mm2 ; mm4=(***0***1) punpckhwd mm2, mm2 ; mm2=(***2***3) punpcklwd mm5, mm0 ; mm5=(***4***5) punpckhwd mm0, mm0 ; mm0=(***6***7) psrad mm4, (DWORD_BIT-BYTE_BIT) ; mm4=(01) psrad mm2, (DWORD_BIT-BYTE_BIT) ; mm2=(23) pi2fd mm4, mm4 pi2fd mm2, mm2 psrad mm5, (DWORD_BIT-BYTE_BIT) ; mm5=(45) psrad mm0, (DWORD_BIT-BYTE_BIT) ; mm0=(67) pi2fd mm5, mm5 pi2fd mm0, mm0 movq MMWORD [MMBLOCK(0,0,edi,SIZEOF_FAST_FLOAT)], mm4 movq MMWORD [MMBLOCK(0,1,edi,SIZEOF_FAST_FLOAT)], mm2 movq MMWORD [MMBLOCK(0,2,edi,SIZEOF_FAST_FLOAT)], mm5 movq MMWORD [MMBLOCK(0,3,edi,SIZEOF_FAST_FLOAT)], mm0 punpcklwd mm6, mm3 ; mm6=(***8***9) punpckhwd mm3, mm3 ; mm3=(***A***B) punpcklwd mm4, mm1 ; mm4=(***C***D) punpckhwd mm1, mm1 ; mm1=(***E***F) psrad mm6, (DWORD_BIT-BYTE_BIT) ; mm6=(89) psrad mm3, (DWORD_BIT-BYTE_BIT) ; mm3=(AB) pi2fd mm6, mm6 pi2fd mm3, mm3 psrad mm4, (DWORD_BIT-BYTE_BIT) ; mm4=(CD) psrad mm1, (DWORD_BIT-BYTE_BIT) ; mm1=(EF) pi2fd mm4, mm4 pi2fd mm1, mm1 movq MMWORD [MMBLOCK(1,0,edi,SIZEOF_FAST_FLOAT)], mm6 movq MMWORD [MMBLOCK(1,1,edi,SIZEOF_FAST_FLOAT)], mm3 movq MMWORD [MMBLOCK(1,2,edi,SIZEOF_FAST_FLOAT)], mm4 movq MMWORD [MMBLOCK(1,3,edi,SIZEOF_FAST_FLOAT)], mm1 add esi, byte 2*SIZEOF_JSAMPROW add edi, byte 2*DCTSIZE*SIZEOF_FAST_FLOAT dec ecx jnz near .convloop femms ; empty MMX/3DNow! state pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx pop ebp ret ; -------------------------------------------------------------------------- ; ; Quantize/descale the coefficients, and store into coef_block ; ; GLOBAL(void) ; jsimd_quantize_float_3dnow(JCOEFPTR coef_block, FAST_FLOAT *divisors, ; FAST_FLOAT *workspace); ; %define coef_block ebp + 8 ; JCOEFPTR coef_block %define divisors ebp + 12 ; FAST_FLOAT *divisors %define workspace ebp + 16 ; FAST_FLOAT *workspace align 32 GLOBAL_FUNCTION(jsimd_quantize_float_3dnow) EXTN(jsimd_quantize_float_3dnow): push ebp mov ebp, esp ; push ebx ; unused ; push ecx ; unused ; push edx ; need not be preserved push esi push edi mov eax, 0x4B400000 ; (float)0x00C00000 (rndint_magic) movd mm7, eax punpckldq mm7, mm7 ; mm7={12582912.0F 12582912.0F} mov esi, POINTER [workspace] mov edx, POINTER [divisors] mov edi, JCOEFPTR [coef_block] mov eax, DCTSIZE2/16 alignx 16, 7 .quantloop: movq mm0, MMWORD [MMBLOCK(0,0,esi,SIZEOF_FAST_FLOAT)] movq mm1, MMWORD [MMBLOCK(0,1,esi,SIZEOF_FAST_FLOAT)] pfmul mm0, MMWORD [MMBLOCK(0,0,edx,SIZEOF_FAST_FLOAT)] pfmul mm1, MMWORD [MMBLOCK(0,1,edx,SIZEOF_FAST_FLOAT)] movq mm2, MMWORD [MMBLOCK(0,2,esi,SIZEOF_FAST_FLOAT)] movq mm3, MMWORD [MMBLOCK(0,3,esi,SIZEOF_FAST_FLOAT)] pfmul mm2, MMWORD [MMBLOCK(0,2,edx,SIZEOF_FAST_FLOAT)] pfmul mm3, MMWORD [MMBLOCK(0,3,edx,SIZEOF_FAST_FLOAT)] pfadd mm0, mm7 ; mm0=(00 ** 01 **) pfadd mm1, mm7 ; mm1=(02 ** 03 **) pfadd mm2, mm7 ; mm0=(04 ** 05 **) pfadd mm3, mm7 ; mm1=(06 ** 07 **) movq mm4, mm0 punpcklwd mm0, mm1 ; mm0=(00 02 ** **) punpckhwd mm4, mm1 ; mm4=(01 03 ** **) movq mm5, mm2 punpcklwd mm2, mm3 ; mm2=(04 06 ** **) punpckhwd mm5, mm3 ; mm5=(05 07 ** **) punpcklwd mm0, mm4 ; mm0=(00 01 02 03) punpcklwd mm2, mm5 ; mm2=(04 05 06 07) movq mm6, MMWORD [MMBLOCK(1,0,esi,SIZEOF_FAST_FLOAT)] movq mm1, MMWORD [MMBLOCK(1,1,esi,SIZEOF_FAST_FLOAT)] pfmul mm6, MMWORD [MMBLOCK(1,0,edx,SIZEOF_FAST_FLOAT)] pfmul mm1, MMWORD [MMBLOCK(1,1,edx,SIZEOF_FAST_FLOAT)] movq mm3, MMWORD [MMBLOCK(1,2,esi,SIZEOF_FAST_FLOAT)] movq mm4, MMWORD [MMBLOCK(1,3,esi,SIZEOF_FAST_FLOAT)] pfmul mm3, MMWORD [MMBLOCK(1,2,edx,SIZEOF_FAST_FLOAT)] pfmul mm4, MMWORD [MMBLOCK(1,3,edx,SIZEOF_FAST_FLOAT)] pfadd mm6, mm7 ; mm0=(10 ** 11 **) pfadd mm1, mm7 ; mm4=(12 ** 13 **) pfadd mm3, mm7 ; mm0=(14 ** 15 **) pfadd mm4, mm7 ; mm4=(16 ** 17 **) movq mm5, mm6 punpcklwd mm6, mm1 ; mm6=(10 12 ** **) punpckhwd mm5, mm1 ; mm5=(11 13 ** **) movq mm1, mm3 punpcklwd mm3, mm4 ; mm3=(14 16 ** **) punpckhwd mm1, mm4 ; mm1=(15 17 ** **) punpcklwd mm6, mm5 ; mm6=(10 11 12 13) punpcklwd mm3, mm1 ; mm3=(14 15 16 17) movq MMWORD [MMBLOCK(0,0,edi,SIZEOF_JCOEF)], mm0 movq MMWORD [MMBLOCK(0,1,edi,SIZEOF_JCOEF)], mm2 movq MMWORD [MMBLOCK(1,0,edi,SIZEOF_JCOEF)], mm6 movq MMWORD [MMBLOCK(1,1,edi,SIZEOF_JCOEF)], mm3 add esi, byte 16*SIZEOF_FAST_FLOAT add edx, byte 16*SIZEOF_FAST_FLOAT add edi, byte 16*SIZEOF_JCOEF dec eax jnz near .quantloop femms ; empty MMX/3DNow! state pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; unused ; pop ebx ; unused pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/i386/jquant-mmx.asm000066400000000000000000000223011436506551100205200ustar00rootroot00000000000000; ; jquant.asm - sample data conversion and quantization (MMX) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2016, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Load data into workspace, applying unsigned->signed conversion ; ; GLOBAL(void) ; jsimd_convsamp_mmx(JSAMPARRAY sample_data, JDIMENSION start_col, ; DCTELEM *workspace); ; %define sample_data ebp + 8 ; JSAMPARRAY sample_data %define start_col ebp + 12 ; JDIMENSION start_col %define workspace ebp + 16 ; DCTELEM *workspace align 32 GLOBAL_FUNCTION(jsimd_convsamp_mmx) EXTN(jsimd_convsamp_mmx): push ebp mov ebp, esp push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi pxor mm6, mm6 ; mm6=(all 0's) pcmpeqw mm7, mm7 psllw mm7, 7 ; mm7={0xFF80 0xFF80 0xFF80 0xFF80} mov esi, JSAMPARRAY [sample_data] ; (JSAMPROW *) mov eax, JDIMENSION [start_col] mov edi, POINTER [workspace] ; (DCTELEM *) mov ecx, DCTSIZE/4 alignx 16, 7 .convloop: mov ebx, JSAMPROW [esi+0*SIZEOF_JSAMPROW] ; (JSAMPLE *) mov edx, JSAMPROW [esi+1*SIZEOF_JSAMPROW] ; (JSAMPLE *) movq mm0, MMWORD [ebx+eax*SIZEOF_JSAMPLE] ; mm0=(01234567) movq mm1, MMWORD [edx+eax*SIZEOF_JSAMPLE] ; mm1=(89ABCDEF) mov ebx, JSAMPROW [esi+2*SIZEOF_JSAMPROW] ; (JSAMPLE *) mov edx, JSAMPROW [esi+3*SIZEOF_JSAMPROW] ; (JSAMPLE *) movq mm2, MMWORD [ebx+eax*SIZEOF_JSAMPLE] ; mm2=(GHIJKLMN) movq mm3, MMWORD [edx+eax*SIZEOF_JSAMPLE] ; mm3=(OPQRSTUV) movq mm4, mm0 punpcklbw mm0, mm6 ; mm0=(0123) punpckhbw mm4, mm6 ; mm4=(4567) movq mm5, mm1 punpcklbw mm1, mm6 ; mm1=(89AB) punpckhbw mm5, mm6 ; mm5=(CDEF) paddw mm0, mm7 paddw mm4, mm7 paddw mm1, mm7 paddw mm5, mm7 movq MMWORD [MMBLOCK(0,0,edi,SIZEOF_DCTELEM)], mm0 movq MMWORD [MMBLOCK(0,1,edi,SIZEOF_DCTELEM)], mm4 movq MMWORD [MMBLOCK(1,0,edi,SIZEOF_DCTELEM)], mm1 movq MMWORD [MMBLOCK(1,1,edi,SIZEOF_DCTELEM)], mm5 movq mm0, mm2 punpcklbw mm2, mm6 ; mm2=(GHIJ) punpckhbw mm0, mm6 ; mm0=(KLMN) movq mm4, mm3 punpcklbw mm3, mm6 ; mm3=(OPQR) punpckhbw mm4, mm6 ; mm4=(STUV) paddw mm2, mm7 paddw mm0, mm7 paddw mm3, mm7 paddw mm4, mm7 movq MMWORD [MMBLOCK(2,0,edi,SIZEOF_DCTELEM)], mm2 movq MMWORD [MMBLOCK(2,1,edi,SIZEOF_DCTELEM)], mm0 movq MMWORD [MMBLOCK(3,0,edi,SIZEOF_DCTELEM)], mm3 movq MMWORD [MMBLOCK(3,1,edi,SIZEOF_DCTELEM)], mm4 add esi, byte 4*SIZEOF_JSAMPROW add edi, byte 4*DCTSIZE*SIZEOF_DCTELEM dec ecx jnz short .convloop emms ; empty MMX state pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx pop ebp ret ; -------------------------------------------------------------------------- ; ; Quantize/descale the coefficients, and store into coef_block ; ; This implementation is based on an algorithm described in ; "How to optimize for the Pentium family of microprocessors" ; (http://www.agner.org/assem/). ; ; GLOBAL(void) ; jsimd_quantize_mmx(JCOEFPTR coef_block, DCTELEM *divisors, ; DCTELEM *workspace); ; %define RECIPROCAL(m, n, b) \ MMBLOCK(DCTSIZE * 0 + (m), (n), (b), SIZEOF_DCTELEM) %define CORRECTION(m, n, b) \ MMBLOCK(DCTSIZE * 1 + (m), (n), (b), SIZEOF_DCTELEM) %define SCALE(m, n, b) \ MMBLOCK(DCTSIZE * 2 + (m), (n), (b), SIZEOF_DCTELEM) %define SHIFT(m, n, b) \ MMBLOCK(DCTSIZE * 3 + (m), (n), (b), SIZEOF_DCTELEM) %define coef_block ebp + 8 ; JCOEFPTR coef_block %define divisors ebp + 12 ; DCTELEM *divisors %define workspace ebp + 16 ; DCTELEM *workspace align 32 GLOBAL_FUNCTION(jsimd_quantize_mmx) EXTN(jsimd_quantize_mmx): push ebp mov ebp, esp ; push ebx ; unused ; push ecx ; unused ; push edx ; need not be preserved push esi push edi mov esi, POINTER [workspace] mov edx, POINTER [divisors] mov edi, JCOEFPTR [coef_block] mov ah, 2 alignx 16, 7 .quantloop1: mov al, DCTSIZE2/8/2 alignx 16, 7 .quantloop2: movq mm2, MMWORD [MMBLOCK(0,0,esi,SIZEOF_DCTELEM)] movq mm3, MMWORD [MMBLOCK(0,1,esi,SIZEOF_DCTELEM)] movq mm0, mm2 movq mm1, mm3 psraw mm2, (WORD_BIT-1) ; -1 if value < 0, 0 otherwise psraw mm3, (WORD_BIT-1) pxor mm0, mm2 ; val = -val pxor mm1, mm3 psubw mm0, mm2 psubw mm1, mm3 ; ; MMX is an annoyingly crappy instruction set. It has two ; misfeatures that are causing problems here: ; ; - All multiplications are signed. ; ; - The second operand for the shifts is not treated as packed. ; ; ; We work around the first problem by implementing this algorithm: ; ; unsigned long unsigned_multiply(unsigned short x, unsigned short y) ; { ; enum { SHORT_BIT = 16 }; ; signed short sx = (signed short)x; ; signed short sy = (signed short)y; ; signed long sz; ; ; sz = (long)sx * (long)sy; /* signed multiply */ ; ; if (sx < 0) sz += (long)sy << SHORT_BIT; ; if (sy < 0) sz += (long)sx << SHORT_BIT; ; ; return (unsigned long)sz; ; } ; ; (note that a negative sx adds _sy_ and vice versa) ; ; For the second problem, we replace the shift by a multiplication. ; Unfortunately that means we have to deal with the signed issue again. ; paddw mm0, MMWORD [CORRECTION(0,0,edx)] ; correction + roundfactor paddw mm1, MMWORD [CORRECTION(0,1,edx)] movq mm4, mm0 ; store current value for later movq mm5, mm1 pmulhw mm0, MMWORD [RECIPROCAL(0,0,edx)] ; reciprocal pmulhw mm1, MMWORD [RECIPROCAL(0,1,edx)] paddw mm0, mm4 ; reciprocal is always negative (MSB=1), paddw mm1, mm5 ; so we always need to add the initial value ; (input value is never negative as we ; inverted it at the start of this routine) ; here it gets a bit tricky as both scale ; and mm0/mm1 can be negative movq mm6, MMWORD [SCALE(0,0,edx)] ; scale movq mm7, MMWORD [SCALE(0,1,edx)] movq mm4, mm0 movq mm5, mm1 pmulhw mm0, mm6 pmulhw mm1, mm7 psraw mm6, (WORD_BIT-1) ; determine if scale is negative psraw mm7, (WORD_BIT-1) pand mm6, mm4 ; and add input if it is pand mm7, mm5 paddw mm0, mm6 paddw mm1, mm7 psraw mm4, (WORD_BIT-1) ; then check if negative input psraw mm5, (WORD_BIT-1) pand mm4, MMWORD [SCALE(0,0,edx)] ; and add scale if it is pand mm5, MMWORD [SCALE(0,1,edx)] paddw mm0, mm4 paddw mm1, mm5 pxor mm0, mm2 ; val = -val pxor mm1, mm3 psubw mm0, mm2 psubw mm1, mm3 movq MMWORD [MMBLOCK(0,0,edi,SIZEOF_DCTELEM)], mm0 movq MMWORD [MMBLOCK(0,1,edi,SIZEOF_DCTELEM)], mm1 add esi, byte 8*SIZEOF_DCTELEM add edx, byte 8*SIZEOF_DCTELEM add edi, byte 8*SIZEOF_JCOEF dec al jnz near .quantloop2 dec ah jnz near .quantloop1 ; to avoid branch misprediction emms ; empty MMX state pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; unused ; pop ebx ; unused pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/i386/jquant-sse.asm000066400000000000000000000166441436506551100205260ustar00rootroot00000000000000; ; jquant.asm - sample data conversion and quantization (SSE & MMX) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2016, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Load data into workspace, applying unsigned->signed conversion ; ; GLOBAL(void) ; jsimd_convsamp_float_sse(JSAMPARRAY sample_data, JDIMENSION start_col, ; FAST_FLOAT *workspace); ; %define sample_data ebp + 8 ; JSAMPARRAY sample_data %define start_col ebp + 12 ; JDIMENSION start_col %define workspace ebp + 16 ; FAST_FLOAT *workspace align 32 GLOBAL_FUNCTION(jsimd_convsamp_float_sse) EXTN(jsimd_convsamp_float_sse): push ebp mov ebp, esp push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi pcmpeqw mm7, mm7 psllw mm7, 7 packsswb mm7, mm7 ; mm7 = PB_CENTERJSAMPLE (0x808080..) mov esi, JSAMPARRAY [sample_data] ; (JSAMPROW *) mov eax, JDIMENSION [start_col] mov edi, POINTER [workspace] ; (DCTELEM *) mov ecx, DCTSIZE/2 alignx 16, 7 .convloop: mov ebx, JSAMPROW [esi+0*SIZEOF_JSAMPROW] ; (JSAMPLE *) mov edx, JSAMPROW [esi+1*SIZEOF_JSAMPROW] ; (JSAMPLE *) movq mm0, MMWORD [ebx+eax*SIZEOF_JSAMPLE] movq mm1, MMWORD [edx+eax*SIZEOF_JSAMPLE] psubb mm0, mm7 ; mm0=(01234567) psubb mm1, mm7 ; mm1=(89ABCDEF) punpcklbw mm2, mm0 ; mm2=(*0*1*2*3) punpckhbw mm0, mm0 ; mm0=(*4*5*6*7) punpcklbw mm3, mm1 ; mm3=(*8*9*A*B) punpckhbw mm1, mm1 ; mm1=(*C*D*E*F) punpcklwd mm4, mm2 ; mm4=(***0***1) punpckhwd mm2, mm2 ; mm2=(***2***3) punpcklwd mm5, mm0 ; mm5=(***4***5) punpckhwd mm0, mm0 ; mm0=(***6***7) psrad mm4, (DWORD_BIT-BYTE_BIT) ; mm4=(01) psrad mm2, (DWORD_BIT-BYTE_BIT) ; mm2=(23) cvtpi2ps xmm0, mm4 ; xmm0=(01**) cvtpi2ps xmm1, mm2 ; xmm1=(23**) psrad mm5, (DWORD_BIT-BYTE_BIT) ; mm5=(45) psrad mm0, (DWORD_BIT-BYTE_BIT) ; mm0=(67) cvtpi2ps xmm2, mm5 ; xmm2=(45**) cvtpi2ps xmm3, mm0 ; xmm3=(67**) punpcklwd mm6, mm3 ; mm6=(***8***9) punpckhwd mm3, mm3 ; mm3=(***A***B) punpcklwd mm4, mm1 ; mm4=(***C***D) punpckhwd mm1, mm1 ; mm1=(***E***F) psrad mm6, (DWORD_BIT-BYTE_BIT) ; mm6=(89) psrad mm3, (DWORD_BIT-BYTE_BIT) ; mm3=(AB) cvtpi2ps xmm4, mm6 ; xmm4=(89**) cvtpi2ps xmm5, mm3 ; xmm5=(AB**) psrad mm4, (DWORD_BIT-BYTE_BIT) ; mm4=(CD) psrad mm1, (DWORD_BIT-BYTE_BIT) ; mm1=(EF) cvtpi2ps xmm6, mm4 ; xmm6=(CD**) cvtpi2ps xmm7, mm1 ; xmm7=(EF**) movlhps xmm0, xmm1 ; xmm0=(0123) movlhps xmm2, xmm3 ; xmm2=(4567) movlhps xmm4, xmm5 ; xmm4=(89AB) movlhps xmm6, xmm7 ; xmm6=(CDEF) movaps XMMWORD [XMMBLOCK(0,0,edi,SIZEOF_FAST_FLOAT)], xmm0 movaps XMMWORD [XMMBLOCK(0,1,edi,SIZEOF_FAST_FLOAT)], xmm2 movaps XMMWORD [XMMBLOCK(1,0,edi,SIZEOF_FAST_FLOAT)], xmm4 movaps XMMWORD [XMMBLOCK(1,1,edi,SIZEOF_FAST_FLOAT)], xmm6 add esi, byte 2*SIZEOF_JSAMPROW add edi, byte 2*DCTSIZE*SIZEOF_FAST_FLOAT dec ecx jnz near .convloop emms ; empty MMX state pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx pop ebp ret ; -------------------------------------------------------------------------- ; ; Quantize/descale the coefficients, and store into coef_block ; ; GLOBAL(void) ; jsimd_quantize_float_sse(JCOEFPTR coef_block, FAST_FLOAT *divisors, ; FAST_FLOAT *workspace); ; %define coef_block ebp + 8 ; JCOEFPTR coef_block %define divisors ebp + 12 ; FAST_FLOAT *divisors %define workspace ebp + 16 ; FAST_FLOAT *workspace align 32 GLOBAL_FUNCTION(jsimd_quantize_float_sse) EXTN(jsimd_quantize_float_sse): push ebp mov ebp, esp ; push ebx ; unused ; push ecx ; unused ; push edx ; need not be preserved push esi push edi mov esi, POINTER [workspace] mov edx, POINTER [divisors] mov edi, JCOEFPTR [coef_block] mov eax, DCTSIZE2/16 alignx 16, 7 .quantloop: movaps xmm0, XMMWORD [XMMBLOCK(0,0,esi,SIZEOF_FAST_FLOAT)] movaps xmm1, XMMWORD [XMMBLOCK(0,1,esi,SIZEOF_FAST_FLOAT)] mulps xmm0, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_FAST_FLOAT)] mulps xmm1, XMMWORD [XMMBLOCK(0,1,edx,SIZEOF_FAST_FLOAT)] movaps xmm2, XMMWORD [XMMBLOCK(1,0,esi,SIZEOF_FAST_FLOAT)] movaps xmm3, XMMWORD [XMMBLOCK(1,1,esi,SIZEOF_FAST_FLOAT)] mulps xmm2, XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_FAST_FLOAT)] mulps xmm3, XMMWORD [XMMBLOCK(1,1,edx,SIZEOF_FAST_FLOAT)] movhlps xmm4, xmm0 movhlps xmm5, xmm1 cvtps2pi mm0, xmm0 cvtps2pi mm1, xmm1 cvtps2pi mm4, xmm4 cvtps2pi mm5, xmm5 movhlps xmm6, xmm2 movhlps xmm7, xmm3 cvtps2pi mm2, xmm2 cvtps2pi mm3, xmm3 cvtps2pi mm6, xmm6 cvtps2pi mm7, xmm7 packssdw mm0, mm4 packssdw mm1, mm5 packssdw mm2, mm6 packssdw mm3, mm7 movq MMWORD [MMBLOCK(0,0,edi,SIZEOF_JCOEF)], mm0 movq MMWORD [MMBLOCK(0,1,edi,SIZEOF_JCOEF)], mm1 movq MMWORD [MMBLOCK(1,0,edi,SIZEOF_JCOEF)], mm2 movq MMWORD [MMBLOCK(1,1,edi,SIZEOF_JCOEF)], mm3 add esi, byte 16*SIZEOF_FAST_FLOAT add edx, byte 16*SIZEOF_FAST_FLOAT add edi, byte 16*SIZEOF_JCOEF dec eax jnz short .quantloop emms ; empty MMX state pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; unused ; pop ebx ; unused pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/i386/jquantf-sse2.asm000066400000000000000000000140631436506551100207470ustar00rootroot00000000000000; ; jquantf.asm - sample data conversion and quantization (SSE & SSE2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2016, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Load data into workspace, applying unsigned->signed conversion ; ; GLOBAL(void) ; jsimd_convsamp_float_sse2(JSAMPARRAY sample_data, JDIMENSION start_col, ; FAST_FLOAT *workspace); ; %define sample_data ebp + 8 ; JSAMPARRAY sample_data %define start_col ebp + 12 ; JDIMENSION start_col %define workspace ebp + 16 ; FAST_FLOAT *workspace align 32 GLOBAL_FUNCTION(jsimd_convsamp_float_sse2) EXTN(jsimd_convsamp_float_sse2): push ebp mov ebp, esp push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi pcmpeqw xmm7, xmm7 psllw xmm7, 7 packsswb xmm7, xmm7 ; xmm7 = PB_CENTERJSAMPLE (0x808080..) mov esi, JSAMPARRAY [sample_data] ; (JSAMPROW *) mov eax, JDIMENSION [start_col] mov edi, POINTER [workspace] ; (DCTELEM *) mov ecx, DCTSIZE/2 alignx 16, 7 .convloop: mov ebx, JSAMPROW [esi+0*SIZEOF_JSAMPROW] ; (JSAMPLE *) mov edx, JSAMPROW [esi+1*SIZEOF_JSAMPROW] ; (JSAMPLE *) movq xmm0, XMM_MMWORD [ebx+eax*SIZEOF_JSAMPLE] movq xmm1, XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE] psubb xmm0, xmm7 ; xmm0=(01234567) psubb xmm1, xmm7 ; xmm1=(89ABCDEF) punpcklbw xmm0, xmm0 ; xmm0=(*0*1*2*3*4*5*6*7) punpcklbw xmm1, xmm1 ; xmm1=(*8*9*A*B*C*D*E*F) punpcklwd xmm2, xmm0 ; xmm2=(***0***1***2***3) punpckhwd xmm0, xmm0 ; xmm0=(***4***5***6***7) punpcklwd xmm3, xmm1 ; xmm3=(***8***9***A***B) punpckhwd xmm1, xmm1 ; xmm1=(***C***D***E***F) psrad xmm2, (DWORD_BIT-BYTE_BIT) ; xmm2=(0123) psrad xmm0, (DWORD_BIT-BYTE_BIT) ; xmm0=(4567) cvtdq2ps xmm2, xmm2 ; xmm2=(0123) cvtdq2ps xmm0, xmm0 ; xmm0=(4567) psrad xmm3, (DWORD_BIT-BYTE_BIT) ; xmm3=(89AB) psrad xmm1, (DWORD_BIT-BYTE_BIT) ; xmm1=(CDEF) cvtdq2ps xmm3, xmm3 ; xmm3=(89AB) cvtdq2ps xmm1, xmm1 ; xmm1=(CDEF) movaps XMMWORD [XMMBLOCK(0,0,edi,SIZEOF_FAST_FLOAT)], xmm2 movaps XMMWORD [XMMBLOCK(0,1,edi,SIZEOF_FAST_FLOAT)], xmm0 movaps XMMWORD [XMMBLOCK(1,0,edi,SIZEOF_FAST_FLOAT)], xmm3 movaps XMMWORD [XMMBLOCK(1,1,edi,SIZEOF_FAST_FLOAT)], xmm1 add esi, byte 2*SIZEOF_JSAMPROW add edi, byte 2*DCTSIZE*SIZEOF_FAST_FLOAT dec ecx jnz short .convloop pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx pop ebp ret ; -------------------------------------------------------------------------- ; ; Quantize/descale the coefficients, and store into coef_block ; ; GLOBAL(void) ; jsimd_quantize_float_sse2(JCOEFPTR coef_block, FAST_FLOAT *divisors, ; FAST_FLOAT *workspace); ; %define coef_block ebp + 8 ; JCOEFPTR coef_block %define divisors ebp + 12 ; FAST_FLOAT *divisors %define workspace ebp + 16 ; FAST_FLOAT *workspace align 32 GLOBAL_FUNCTION(jsimd_quantize_float_sse2) EXTN(jsimd_quantize_float_sse2): push ebp mov ebp, esp ; push ebx ; unused ; push ecx ; unused ; push edx ; need not be preserved push esi push edi mov esi, POINTER [workspace] mov edx, POINTER [divisors] mov edi, JCOEFPTR [coef_block] mov eax, DCTSIZE2/16 alignx 16, 7 .quantloop: movaps xmm0, XMMWORD [XMMBLOCK(0,0,esi,SIZEOF_FAST_FLOAT)] movaps xmm1, XMMWORD [XMMBLOCK(0,1,esi,SIZEOF_FAST_FLOAT)] mulps xmm0, XMMWORD [XMMBLOCK(0,0,edx,SIZEOF_FAST_FLOAT)] mulps xmm1, XMMWORD [XMMBLOCK(0,1,edx,SIZEOF_FAST_FLOAT)] movaps xmm2, XMMWORD [XMMBLOCK(1,0,esi,SIZEOF_FAST_FLOAT)] movaps xmm3, XMMWORD [XMMBLOCK(1,1,esi,SIZEOF_FAST_FLOAT)] mulps xmm2, XMMWORD [XMMBLOCK(1,0,edx,SIZEOF_FAST_FLOAT)] mulps xmm3, XMMWORD [XMMBLOCK(1,1,edx,SIZEOF_FAST_FLOAT)] cvtps2dq xmm0, xmm0 cvtps2dq xmm1, xmm1 cvtps2dq xmm2, xmm2 cvtps2dq xmm3, xmm3 packssdw xmm0, xmm1 packssdw xmm2, xmm3 movdqa XMMWORD [XMMBLOCK(0,0,edi,SIZEOF_JCOEF)], xmm0 movdqa XMMWORD [XMMBLOCK(1,0,edi,SIZEOF_JCOEF)], xmm2 add esi, byte 16*SIZEOF_FAST_FLOAT add edx, byte 16*SIZEOF_FAST_FLOAT add edi, byte 16*SIZEOF_JCOEF dec eax jnz short .quantloop pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; unused ; pop ebx ; unused pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/i386/jquanti-avx2.asm000066400000000000000000000153531436506551100207610ustar00rootroot00000000000000; ; jquanti.asm - sample data conversion and quantization (AVX2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2016, 2018, D. R. Commander. ; Copyright (C) 2016, Matthieu Darbois. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Load data into workspace, applying unsigned->signed conversion ; ; GLOBAL(void) ; jsimd_convsamp_avx2(JSAMPARRAY sample_data, JDIMENSION start_col, ; DCTELEM *workspace); ; %define sample_data ebp + 8 ; JSAMPARRAY sample_data %define start_col ebp + 12 ; JDIMENSION start_col %define workspace ebp + 16 ; DCTELEM *workspace align 32 GLOBAL_FUNCTION(jsimd_convsamp_avx2) EXTN(jsimd_convsamp_avx2): push ebp mov ebp, esp push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi mov esi, JSAMPARRAY [sample_data] ; (JSAMPROW *) mov eax, JDIMENSION [start_col] mov edi, POINTER [workspace] ; (DCTELEM *) mov ebx, JSAMPROW [esi+0*SIZEOF_JSAMPROW] ; (JSAMPLE *) mov edx, JSAMPROW [esi+1*SIZEOF_JSAMPROW] ; (JSAMPLE *) movq xmm0, XMM_MMWORD [ebx+eax*SIZEOF_JSAMPLE] movq xmm1, XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE] mov ebx, JSAMPROW [esi+2*SIZEOF_JSAMPROW] ; (JSAMPLE *) mov edx, JSAMPROW [esi+3*SIZEOF_JSAMPROW] ; (JSAMPLE *) movq xmm2, XMM_MMWORD [ebx+eax*SIZEOF_JSAMPLE] movq xmm3, XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE] mov ebx, JSAMPROW [esi+4*SIZEOF_JSAMPROW] ; (JSAMPLE *) mov edx, JSAMPROW [esi+5*SIZEOF_JSAMPROW] ; (JSAMPLE *) movq xmm4, XMM_MMWORD [ebx+eax*SIZEOF_JSAMPLE] movq xmm5, XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE] mov ebx, JSAMPROW [esi+6*SIZEOF_JSAMPROW] ; (JSAMPLE *) mov edx, JSAMPROW [esi+7*SIZEOF_JSAMPROW] ; (JSAMPLE *) movq xmm6, XMM_MMWORD [ebx+eax*SIZEOF_JSAMPLE] movq xmm7, XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE] vinserti128 ymm0, ymm0, xmm1, 1 vinserti128 ymm2, ymm2, xmm3, 1 vinserti128 ymm4, ymm4, xmm5, 1 vinserti128 ymm6, ymm6, xmm7, 1 vpxor ymm1, ymm1, ymm1 ; ymm1=(all 0's) vpunpcklbw ymm0, ymm0, ymm1 vpunpcklbw ymm2, ymm2, ymm1 vpunpcklbw ymm4, ymm4, ymm1 vpunpcklbw ymm6, ymm6, ymm1 vpcmpeqw ymm7, ymm7, ymm7 vpsllw ymm7, ymm7, 7 ; ymm7={0xFF80 0xFF80 0xFF80 0xFF80 ..} vpaddw ymm0, ymm0, ymm7 vpaddw ymm2, ymm2, ymm7 vpaddw ymm4, ymm4, ymm7 vpaddw ymm6, ymm6, ymm7 vmovdqu YMMWORD [YMMBLOCK(0,0,edi,SIZEOF_DCTELEM)], ymm0 vmovdqu YMMWORD [YMMBLOCK(2,0,edi,SIZEOF_DCTELEM)], ymm2 vmovdqu YMMWORD [YMMBLOCK(4,0,edi,SIZEOF_DCTELEM)], ymm4 vmovdqu YMMWORD [YMMBLOCK(6,0,edi,SIZEOF_DCTELEM)], ymm6 vzeroupper pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx pop ebp ret ; -------------------------------------------------------------------------- ; ; Quantize/descale the coefficients, and store into coef_block ; ; This implementation is based on an algorithm described in ; "How to optimize for the Pentium family of microprocessors" ; (http://www.agner.org/assem/). ; ; GLOBAL(void) ; jsimd_quantize_avx2(JCOEFPTR coef_block, DCTELEM *divisors, ; DCTELEM *workspace); ; %define RECIPROCAL(m, n, b) \ YMMBLOCK(DCTSIZE * 0 + (m), (n), (b), SIZEOF_DCTELEM) %define CORRECTION(m, n, b) \ YMMBLOCK(DCTSIZE * 1 + (m), (n), (b), SIZEOF_DCTELEM) %define SCALE(m, n, b) \ YMMBLOCK(DCTSIZE * 2 + (m), (n), (b), SIZEOF_DCTELEM) %define coef_block ebp + 8 ; JCOEFPTR coef_block %define divisors ebp + 12 ; DCTELEM *divisors %define workspace ebp + 16 ; DCTELEM *workspace align 32 GLOBAL_FUNCTION(jsimd_quantize_avx2) EXTN(jsimd_quantize_avx2): push ebp mov ebp, esp ; push ebx ; unused ; push ecx ; unused ; push edx ; need not be preserved push esi push edi mov esi, POINTER [workspace] mov edx, POINTER [divisors] mov edi, JCOEFPTR [coef_block] vmovdqu ymm4, [YMMBLOCK(0,0,esi,SIZEOF_DCTELEM)] vmovdqu ymm5, [YMMBLOCK(2,0,esi,SIZEOF_DCTELEM)] vmovdqu ymm6, [YMMBLOCK(4,0,esi,SIZEOF_DCTELEM)] vmovdqu ymm7, [YMMBLOCK(6,0,esi,SIZEOF_DCTELEM)] vpabsw ymm0, ymm4 vpabsw ymm1, ymm5 vpabsw ymm2, ymm6 vpabsw ymm3, ymm7 vpaddw ymm0, YMMWORD [CORRECTION(0,0,edx)] ; correction + roundfactor vpaddw ymm1, YMMWORD [CORRECTION(2,0,edx)] vpaddw ymm2, YMMWORD [CORRECTION(4,0,edx)] vpaddw ymm3, YMMWORD [CORRECTION(6,0,edx)] vpmulhuw ymm0, YMMWORD [RECIPROCAL(0,0,edx)] ; reciprocal vpmulhuw ymm1, YMMWORD [RECIPROCAL(2,0,edx)] vpmulhuw ymm2, YMMWORD [RECIPROCAL(4,0,edx)] vpmulhuw ymm3, YMMWORD [RECIPROCAL(6,0,edx)] vpmulhuw ymm0, YMMWORD [SCALE(0,0,edx)] ; scale vpmulhuw ymm1, YMMWORD [SCALE(2,0,edx)] vpmulhuw ymm2, YMMWORD [SCALE(4,0,edx)] vpmulhuw ymm3, YMMWORD [SCALE(6,0,edx)] vpsignw ymm0, ymm0, ymm4 vpsignw ymm1, ymm1, ymm5 vpsignw ymm2, ymm2, ymm6 vpsignw ymm3, ymm3, ymm7 vmovdqu [YMMBLOCK(0,0,edi,SIZEOF_DCTELEM)], ymm0 vmovdqu [YMMBLOCK(2,0,edi,SIZEOF_DCTELEM)], ymm1 vmovdqu [YMMBLOCK(4,0,edi,SIZEOF_DCTELEM)], ymm2 vmovdqu [YMMBLOCK(6,0,edi,SIZEOF_DCTELEM)], ymm3 vzeroupper pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; unused ; pop ebx ; unused pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/i386/jquanti-sse2.asm000066400000000000000000000164221436506551100207530ustar00rootroot00000000000000; ; jquanti.asm - sample data conversion and quantization (SSE2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2016, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Load data into workspace, applying unsigned->signed conversion ; ; GLOBAL(void) ; jsimd_convsamp_sse2(JSAMPARRAY sample_data, JDIMENSION start_col, ; DCTELEM *workspace); ; %define sample_data ebp + 8 ; JSAMPARRAY sample_data %define start_col ebp + 12 ; JDIMENSION start_col %define workspace ebp + 16 ; DCTELEM *workspace align 32 GLOBAL_FUNCTION(jsimd_convsamp_sse2) EXTN(jsimd_convsamp_sse2): push ebp mov ebp, esp push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved push esi push edi pxor xmm6, xmm6 ; xmm6=(all 0's) pcmpeqw xmm7, xmm7 psllw xmm7, 7 ; xmm7={0xFF80 0xFF80 0xFF80 0xFF80 ..} mov esi, JSAMPARRAY [sample_data] ; (JSAMPROW *) mov eax, JDIMENSION [start_col] mov edi, POINTER [workspace] ; (DCTELEM *) mov ecx, DCTSIZE/4 alignx 16, 7 .convloop: mov ebx, JSAMPROW [esi+0*SIZEOF_JSAMPROW] ; (JSAMPLE *) mov edx, JSAMPROW [esi+1*SIZEOF_JSAMPROW] ; (JSAMPLE *) movq xmm0, XMM_MMWORD [ebx+eax*SIZEOF_JSAMPLE] ; xmm0=(01234567) movq xmm1, XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE] ; xmm1=(89ABCDEF) mov ebx, JSAMPROW [esi+2*SIZEOF_JSAMPROW] ; (JSAMPLE *) mov edx, JSAMPROW [esi+3*SIZEOF_JSAMPROW] ; (JSAMPLE *) movq xmm2, XMM_MMWORD [ebx+eax*SIZEOF_JSAMPLE] ; xmm2=(GHIJKLMN) movq xmm3, XMM_MMWORD [edx+eax*SIZEOF_JSAMPLE] ; xmm3=(OPQRSTUV) punpcklbw xmm0, xmm6 ; xmm0=(01234567) punpcklbw xmm1, xmm6 ; xmm1=(89ABCDEF) paddw xmm0, xmm7 paddw xmm1, xmm7 punpcklbw xmm2, xmm6 ; xmm2=(GHIJKLMN) punpcklbw xmm3, xmm6 ; xmm3=(OPQRSTUV) paddw xmm2, xmm7 paddw xmm3, xmm7 movdqa XMMWORD [XMMBLOCK(0,0,edi,SIZEOF_DCTELEM)], xmm0 movdqa XMMWORD [XMMBLOCK(1,0,edi,SIZEOF_DCTELEM)], xmm1 movdqa XMMWORD [XMMBLOCK(2,0,edi,SIZEOF_DCTELEM)], xmm2 movdqa XMMWORD [XMMBLOCK(3,0,edi,SIZEOF_DCTELEM)], xmm3 add esi, byte 4*SIZEOF_JSAMPROW add edi, byte 4*DCTSIZE*SIZEOF_DCTELEM dec ecx jnz short .convloop pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx pop ebp ret ; -------------------------------------------------------------------------- ; ; Quantize/descale the coefficients, and store into coef_block ; ; This implementation is based on an algorithm described in ; "How to optimize for the Pentium family of microprocessors" ; (http://www.agner.org/assem/). ; ; GLOBAL(void) ; jsimd_quantize_sse2(JCOEFPTR coef_block, DCTELEM *divisors, ; DCTELEM *workspace); ; %define RECIPROCAL(m, n, b) \ XMMBLOCK(DCTSIZE * 0 + (m), (n), (b), SIZEOF_DCTELEM) %define CORRECTION(m, n, b) \ XMMBLOCK(DCTSIZE * 1 + (m), (n), (b), SIZEOF_DCTELEM) %define SCALE(m, n, b) \ XMMBLOCK(DCTSIZE * 2 + (m), (n), (b), SIZEOF_DCTELEM) %define coef_block ebp + 8 ; JCOEFPTR coef_block %define divisors ebp + 12 ; DCTELEM *divisors %define workspace ebp + 16 ; DCTELEM *workspace align 32 GLOBAL_FUNCTION(jsimd_quantize_sse2) EXTN(jsimd_quantize_sse2): push ebp mov ebp, esp ; push ebx ; unused ; push ecx ; unused ; push edx ; need not be preserved push esi push edi mov esi, POINTER [workspace] mov edx, POINTER [divisors] mov edi, JCOEFPTR [coef_block] mov eax, DCTSIZE2/32 alignx 16, 7 .quantloop: movdqa xmm4, XMMWORD [XMMBLOCK(0,0,esi,SIZEOF_DCTELEM)] movdqa xmm5, XMMWORD [XMMBLOCK(1,0,esi,SIZEOF_DCTELEM)] movdqa xmm6, XMMWORD [XMMBLOCK(2,0,esi,SIZEOF_DCTELEM)] movdqa xmm7, XMMWORD [XMMBLOCK(3,0,esi,SIZEOF_DCTELEM)] movdqa xmm0, xmm4 movdqa xmm1, xmm5 movdqa xmm2, xmm6 movdqa xmm3, xmm7 psraw xmm4, (WORD_BIT-1) psraw xmm5, (WORD_BIT-1) psraw xmm6, (WORD_BIT-1) psraw xmm7, (WORD_BIT-1) pxor xmm0, xmm4 pxor xmm1, xmm5 pxor xmm2, xmm6 pxor xmm3, xmm7 psubw xmm0, xmm4 ; if (xmm0 < 0) xmm0 = -xmm0; psubw xmm1, xmm5 ; if (xmm1 < 0) xmm1 = -xmm1; psubw xmm2, xmm6 ; if (xmm2 < 0) xmm2 = -xmm2; psubw xmm3, xmm7 ; if (xmm3 < 0) xmm3 = -xmm3; paddw xmm0, XMMWORD [CORRECTION(0,0,edx)] ; correction + roundfactor paddw xmm1, XMMWORD [CORRECTION(1,0,edx)] paddw xmm2, XMMWORD [CORRECTION(2,0,edx)] paddw xmm3, XMMWORD [CORRECTION(3,0,edx)] pmulhuw xmm0, XMMWORD [RECIPROCAL(0,0,edx)] ; reciprocal pmulhuw xmm1, XMMWORD [RECIPROCAL(1,0,edx)] pmulhuw xmm2, XMMWORD [RECIPROCAL(2,0,edx)] pmulhuw xmm3, XMMWORD [RECIPROCAL(3,0,edx)] pmulhuw xmm0, XMMWORD [SCALE(0,0,edx)] ; scale pmulhuw xmm1, XMMWORD [SCALE(1,0,edx)] pmulhuw xmm2, XMMWORD [SCALE(2,0,edx)] pmulhuw xmm3, XMMWORD [SCALE(3,0,edx)] pxor xmm0, xmm4 pxor xmm1, xmm5 pxor xmm2, xmm6 pxor xmm3, xmm7 psubw xmm0, xmm4 psubw xmm1, xmm5 psubw xmm2, xmm6 psubw xmm3, xmm7 movdqa XMMWORD [XMMBLOCK(0,0,edi,SIZEOF_DCTELEM)], xmm0 movdqa XMMWORD [XMMBLOCK(1,0,edi,SIZEOF_DCTELEM)], xmm1 movdqa XMMWORD [XMMBLOCK(2,0,edi,SIZEOF_DCTELEM)], xmm2 movdqa XMMWORD [XMMBLOCK(3,0,edi,SIZEOF_DCTELEM)], xmm3 add esi, byte 32*SIZEOF_DCTELEM add edx, byte 32*SIZEOF_DCTELEM add edi, byte 32*SIZEOF_JCOEF dec eax jnz near .quantloop pop edi pop esi ; pop edx ; need not be preserved ; pop ecx ; unused ; pop ebx ; unused pop ebp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/i386/jsimd.c000066400000000000000000001033231436506551100171730ustar00rootroot00000000000000/* * jsimd_i386.c * * Copyright 2009 Pierre Ossman for Cendio AB * Copyright (C) 2009-2011, 2013-2014, 2016, 2018, 2022, D. R. Commander. * Copyright (C) 2015-2016, 2018, 2022, Matthieu Darbois. * * Based on the x86 SIMD extension for IJG JPEG library, * Copyright (C) 1999-2006, MIYASAKA Masaru. * For conditions of distribution and use, see copyright notice in jsimdext.inc * * This file contains the interface between the "normal" portions * of the library and the SIMD implementations when running on a * 32-bit x86 architecture. */ #define JPEG_INTERNALS #include "../../jinclude.h" #include "../../jpeglib.h" #include "../../jsimd.h" #include "../../jdct.h" #include "../../jsimddct.h" #include "../jsimd.h" /* * In the PIC cases, we have no guarantee that constants will keep * their alignment. This macro allows us to verify it at runtime. */ #define IS_ALIGNED(ptr, order) (((unsigned)ptr & ((1 << order) - 1)) == 0) #define IS_ALIGNED_SSE(ptr) (IS_ALIGNED(ptr, 4)) /* 16 byte alignment */ #define IS_ALIGNED_AVX(ptr) (IS_ALIGNED(ptr, 5)) /* 32 byte alignment */ static THREAD_LOCAL unsigned int simd_support = (unsigned int)(~0); static THREAD_LOCAL unsigned int simd_huffman = 1; /* * Check what SIMD accelerations are supported. */ LOCAL(void) init_simd(void) { #ifndef NO_GETENV char env[2] = { 0 }; #endif if (simd_support != ~0U) return; simd_support = jpeg_simd_cpu_support(); #ifndef NO_GETENV /* Force different settings through environment variables */ if (!GETENV_S(env, 2, "JSIMD_FORCEMMX") && !strcmp(env, "1")) simd_support &= JSIMD_MMX; if (!GETENV_S(env, 2, "JSIMD_FORCE3DNOW") && !strcmp(env, "1")) simd_support &= JSIMD_3DNOW | JSIMD_MMX; if (!GETENV_S(env, 2, "JSIMD_FORCESSE") && !strcmp(env, "1")) simd_support &= JSIMD_SSE | JSIMD_MMX; if (!GETENV_S(env, 2, "JSIMD_FORCESSE2") && !strcmp(env, "1")) simd_support &= JSIMD_SSE2; if (!GETENV_S(env, 2, "JSIMD_FORCEAVX2") && !strcmp(env, "1")) simd_support &= JSIMD_AVX2; if (!GETENV_S(env, 2, "JSIMD_FORCENONE") && !strcmp(env, "1")) simd_support = 0; if (!GETENV_S(env, 2, "JSIMD_NOHUFFENC") && !strcmp(env, "1")) simd_huffman = 0; #endif } GLOBAL(int) jsimd_can_rgb_ycc(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if ((RGB_PIXELSIZE != 3) && (RGB_PIXELSIZE != 4)) return 0; if ((simd_support & JSIMD_AVX2) && IS_ALIGNED_AVX(jconst_rgb_ycc_convert_avx2)) return 1; if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_rgb_ycc_convert_sse2)) return 1; if (simd_support & JSIMD_MMX) return 1; return 0; } GLOBAL(int) jsimd_can_rgb_gray(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if ((RGB_PIXELSIZE != 3) && (RGB_PIXELSIZE != 4)) return 0; if ((simd_support & JSIMD_AVX2) && IS_ALIGNED_AVX(jconst_rgb_gray_convert_avx2)) return 1; if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_rgb_gray_convert_sse2)) return 1; if (simd_support & JSIMD_MMX) return 1; return 0; } GLOBAL(int) jsimd_can_ycc_rgb(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if ((RGB_PIXELSIZE != 3) && (RGB_PIXELSIZE != 4)) return 0; if ((simd_support & JSIMD_AVX2) && IS_ALIGNED_AVX(jconst_ycc_rgb_convert_avx2)) return 1; if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_ycc_rgb_convert_sse2)) return 1; if (simd_support & JSIMD_MMX) return 1; return 0; } GLOBAL(int) jsimd_can_ycc_rgb565(void) { return 0; } GLOBAL(void) jsimd_rgb_ycc_convert(j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { void (*avx2fct) (JDIMENSION, JSAMPARRAY, JSAMPIMAGE, JDIMENSION, int); void (*sse2fct) (JDIMENSION, JSAMPARRAY, JSAMPIMAGE, JDIMENSION, int); void (*mmxfct) (JDIMENSION, JSAMPARRAY, JSAMPIMAGE, JDIMENSION, int); switch (cinfo->in_color_space) { case JCS_EXT_RGB: avx2fct = jsimd_extrgb_ycc_convert_avx2; sse2fct = jsimd_extrgb_ycc_convert_sse2; mmxfct = jsimd_extrgb_ycc_convert_mmx; break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: avx2fct = jsimd_extrgbx_ycc_convert_avx2; sse2fct = jsimd_extrgbx_ycc_convert_sse2; mmxfct = jsimd_extrgbx_ycc_convert_mmx; break; case JCS_EXT_BGR: avx2fct = jsimd_extbgr_ycc_convert_avx2; sse2fct = jsimd_extbgr_ycc_convert_sse2; mmxfct = jsimd_extbgr_ycc_convert_mmx; break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: avx2fct = jsimd_extbgrx_ycc_convert_avx2; sse2fct = jsimd_extbgrx_ycc_convert_sse2; mmxfct = jsimd_extbgrx_ycc_convert_mmx; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: avx2fct = jsimd_extxbgr_ycc_convert_avx2; sse2fct = jsimd_extxbgr_ycc_convert_sse2; mmxfct = jsimd_extxbgr_ycc_convert_mmx; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: avx2fct = jsimd_extxrgb_ycc_convert_avx2; sse2fct = jsimd_extxrgb_ycc_convert_sse2; mmxfct = jsimd_extxrgb_ycc_convert_mmx; break; default: avx2fct = jsimd_rgb_ycc_convert_avx2; sse2fct = jsimd_rgb_ycc_convert_sse2; mmxfct = jsimd_rgb_ycc_convert_mmx; break; } if (simd_support & JSIMD_AVX2) avx2fct(cinfo->image_width, input_buf, output_buf, output_row, num_rows); else if (simd_support & JSIMD_SSE2) sse2fct(cinfo->image_width, input_buf, output_buf, output_row, num_rows); else mmxfct(cinfo->image_width, input_buf, output_buf, output_row, num_rows); } GLOBAL(void) jsimd_rgb_gray_convert(j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { void (*avx2fct) (JDIMENSION, JSAMPARRAY, JSAMPIMAGE, JDIMENSION, int); void (*sse2fct) (JDIMENSION, JSAMPARRAY, JSAMPIMAGE, JDIMENSION, int); void (*mmxfct) (JDIMENSION, JSAMPARRAY, JSAMPIMAGE, JDIMENSION, int); switch (cinfo->in_color_space) { case JCS_EXT_RGB: avx2fct = jsimd_extrgb_gray_convert_avx2; sse2fct = jsimd_extrgb_gray_convert_sse2; mmxfct = jsimd_extrgb_gray_convert_mmx; break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: avx2fct = jsimd_extrgbx_gray_convert_avx2; sse2fct = jsimd_extrgbx_gray_convert_sse2; mmxfct = jsimd_extrgbx_gray_convert_mmx; break; case JCS_EXT_BGR: avx2fct = jsimd_extbgr_gray_convert_avx2; sse2fct = jsimd_extbgr_gray_convert_sse2; mmxfct = jsimd_extbgr_gray_convert_mmx; break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: avx2fct = jsimd_extbgrx_gray_convert_avx2; sse2fct = jsimd_extbgrx_gray_convert_sse2; mmxfct = jsimd_extbgrx_gray_convert_mmx; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: avx2fct = jsimd_extxbgr_gray_convert_avx2; sse2fct = jsimd_extxbgr_gray_convert_sse2; mmxfct = jsimd_extxbgr_gray_convert_mmx; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: avx2fct = jsimd_extxrgb_gray_convert_avx2; sse2fct = jsimd_extxrgb_gray_convert_sse2; mmxfct = jsimd_extxrgb_gray_convert_mmx; break; default: avx2fct = jsimd_rgb_gray_convert_avx2; sse2fct = jsimd_rgb_gray_convert_sse2; mmxfct = jsimd_rgb_gray_convert_mmx; break; } if (simd_support & JSIMD_AVX2) avx2fct(cinfo->image_width, input_buf, output_buf, output_row, num_rows); else if (simd_support & JSIMD_SSE2) sse2fct(cinfo->image_width, input_buf, output_buf, output_row, num_rows); else mmxfct(cinfo->image_width, input_buf, output_buf, output_row, num_rows); } GLOBAL(void) jsimd_ycc_rgb_convert(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { void (*avx2fct) (JDIMENSION, JSAMPIMAGE, JDIMENSION, JSAMPARRAY, int); void (*sse2fct) (JDIMENSION, JSAMPIMAGE, JDIMENSION, JSAMPARRAY, int); void (*mmxfct) (JDIMENSION, JSAMPIMAGE, JDIMENSION, JSAMPARRAY, int); switch (cinfo->out_color_space) { case JCS_EXT_RGB: avx2fct = jsimd_ycc_extrgb_convert_avx2; sse2fct = jsimd_ycc_extrgb_convert_sse2; mmxfct = jsimd_ycc_extrgb_convert_mmx; break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: avx2fct = jsimd_ycc_extrgbx_convert_avx2; sse2fct = jsimd_ycc_extrgbx_convert_sse2; mmxfct = jsimd_ycc_extrgbx_convert_mmx; break; case JCS_EXT_BGR: avx2fct = jsimd_ycc_extbgr_convert_avx2; sse2fct = jsimd_ycc_extbgr_convert_sse2; mmxfct = jsimd_ycc_extbgr_convert_mmx; break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: avx2fct = jsimd_ycc_extbgrx_convert_avx2; sse2fct = jsimd_ycc_extbgrx_convert_sse2; mmxfct = jsimd_ycc_extbgrx_convert_mmx; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: avx2fct = jsimd_ycc_extxbgr_convert_avx2; sse2fct = jsimd_ycc_extxbgr_convert_sse2; mmxfct = jsimd_ycc_extxbgr_convert_mmx; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: avx2fct = jsimd_ycc_extxrgb_convert_avx2; sse2fct = jsimd_ycc_extxrgb_convert_sse2; mmxfct = jsimd_ycc_extxrgb_convert_mmx; break; default: avx2fct = jsimd_ycc_rgb_convert_avx2; sse2fct = jsimd_ycc_rgb_convert_sse2; mmxfct = jsimd_ycc_rgb_convert_mmx; break; } if (simd_support & JSIMD_AVX2) avx2fct(cinfo->output_width, input_buf, input_row, output_buf, num_rows); else if (simd_support & JSIMD_SSE2) sse2fct(cinfo->output_width, input_buf, input_row, output_buf, num_rows); else mmxfct(cinfo->output_width, input_buf, input_row, output_buf, num_rows); } GLOBAL(void) jsimd_ycc_rgb565_convert(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { } GLOBAL(int) jsimd_can_h2v2_downsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_AVX2) return 1; if (simd_support & JSIMD_SSE2) return 1; if (simd_support & JSIMD_MMX) return 1; return 0; } GLOBAL(int) jsimd_can_h2v1_downsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_AVX2) return 1; if (simd_support & JSIMD_SSE2) return 1; if (simd_support & JSIMD_MMX) return 1; return 0; } GLOBAL(void) jsimd_h2v2_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY output_data) { if (simd_support & JSIMD_AVX2) jsimd_h2v2_downsample_avx2(cinfo->image_width, cinfo->max_v_samp_factor, compptr->v_samp_factor, compptr->width_in_blocks, input_data, output_data); else if (simd_support & JSIMD_SSE2) jsimd_h2v2_downsample_sse2(cinfo->image_width, cinfo->max_v_samp_factor, compptr->v_samp_factor, compptr->width_in_blocks, input_data, output_data); else jsimd_h2v2_downsample_mmx(cinfo->image_width, cinfo->max_v_samp_factor, compptr->v_samp_factor, compptr->width_in_blocks, input_data, output_data); } GLOBAL(void) jsimd_h2v1_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY output_data) { if (simd_support & JSIMD_AVX2) jsimd_h2v1_downsample_avx2(cinfo->image_width, cinfo->max_v_samp_factor, compptr->v_samp_factor, compptr->width_in_blocks, input_data, output_data); else if (simd_support & JSIMD_SSE2) jsimd_h2v1_downsample_sse2(cinfo->image_width, cinfo->max_v_samp_factor, compptr->v_samp_factor, compptr->width_in_blocks, input_data, output_data); else jsimd_h2v1_downsample_mmx(cinfo->image_width, cinfo->max_v_samp_factor, compptr->v_samp_factor, compptr->width_in_blocks, input_data, output_data); } GLOBAL(int) jsimd_can_h2v2_upsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_AVX2) return 1; if (simd_support & JSIMD_SSE2) return 1; if (simd_support & JSIMD_MMX) return 1; return 0; } GLOBAL(int) jsimd_can_h2v1_upsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_AVX2) return 1; if (simd_support & JSIMD_SSE2) return 1; if (simd_support & JSIMD_MMX) return 1; return 0; } GLOBAL(void) jsimd_h2v2_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { if (simd_support & JSIMD_AVX2) jsimd_h2v2_upsample_avx2(cinfo->max_v_samp_factor, cinfo->output_width, input_data, output_data_ptr); else if (simd_support & JSIMD_SSE2) jsimd_h2v2_upsample_sse2(cinfo->max_v_samp_factor, cinfo->output_width, input_data, output_data_ptr); else jsimd_h2v2_upsample_mmx(cinfo->max_v_samp_factor, cinfo->output_width, input_data, output_data_ptr); } GLOBAL(void) jsimd_h2v1_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { if (simd_support & JSIMD_AVX2) jsimd_h2v1_upsample_avx2(cinfo->max_v_samp_factor, cinfo->output_width, input_data, output_data_ptr); else if (simd_support & JSIMD_SSE2) jsimd_h2v1_upsample_sse2(cinfo->max_v_samp_factor, cinfo->output_width, input_data, output_data_ptr); else jsimd_h2v1_upsample_mmx(cinfo->max_v_samp_factor, cinfo->output_width, input_data, output_data_ptr); } GLOBAL(int) jsimd_can_h2v2_fancy_upsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if ((simd_support & JSIMD_AVX2) && IS_ALIGNED_AVX(jconst_fancy_upsample_avx2)) return 1; if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_fancy_upsample_sse2)) return 1; if (simd_support & JSIMD_MMX) return 1; return 0; } GLOBAL(int) jsimd_can_h2v1_fancy_upsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if ((simd_support & JSIMD_AVX2) && IS_ALIGNED_AVX(jconst_fancy_upsample_avx2)) return 1; if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_fancy_upsample_sse2)) return 1; if (simd_support & JSIMD_MMX) return 1; return 0; } GLOBAL(void) jsimd_h2v2_fancy_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { if (simd_support & JSIMD_AVX2) jsimd_h2v2_fancy_upsample_avx2(cinfo->max_v_samp_factor, compptr->downsampled_width, input_data, output_data_ptr); else if (simd_support & JSIMD_SSE2) jsimd_h2v2_fancy_upsample_sse2(cinfo->max_v_samp_factor, compptr->downsampled_width, input_data, output_data_ptr); else jsimd_h2v2_fancy_upsample_mmx(cinfo->max_v_samp_factor, compptr->downsampled_width, input_data, output_data_ptr); } GLOBAL(void) jsimd_h2v1_fancy_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { if (simd_support & JSIMD_AVX2) jsimd_h2v1_fancy_upsample_avx2(cinfo->max_v_samp_factor, compptr->downsampled_width, input_data, output_data_ptr); else if (simd_support & JSIMD_SSE2) jsimd_h2v1_fancy_upsample_sse2(cinfo->max_v_samp_factor, compptr->downsampled_width, input_data, output_data_ptr); else jsimd_h2v1_fancy_upsample_mmx(cinfo->max_v_samp_factor, compptr->downsampled_width, input_data, output_data_ptr); } GLOBAL(int) jsimd_can_h2v2_merged_upsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if ((simd_support & JSIMD_AVX2) && IS_ALIGNED_AVX(jconst_merged_upsample_avx2)) return 1; if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_merged_upsample_sse2)) return 1; if (simd_support & JSIMD_MMX) return 1; return 0; } GLOBAL(int) jsimd_can_h2v1_merged_upsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if ((simd_support & JSIMD_AVX2) && IS_ALIGNED_AVX(jconst_merged_upsample_avx2)) return 1; if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_merged_upsample_sse2)) return 1; if (simd_support & JSIMD_MMX) return 1; return 0; } GLOBAL(void) jsimd_h2v2_merged_upsample(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { void (*avx2fct) (JDIMENSION, JSAMPIMAGE, JDIMENSION, JSAMPARRAY); void (*sse2fct) (JDIMENSION, JSAMPIMAGE, JDIMENSION, JSAMPARRAY); void (*mmxfct) (JDIMENSION, JSAMPIMAGE, JDIMENSION, JSAMPARRAY); switch (cinfo->out_color_space) { case JCS_EXT_RGB: avx2fct = jsimd_h2v2_extrgb_merged_upsample_avx2; sse2fct = jsimd_h2v2_extrgb_merged_upsample_sse2; mmxfct = jsimd_h2v2_extrgb_merged_upsample_mmx; break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: avx2fct = jsimd_h2v2_extrgbx_merged_upsample_avx2; sse2fct = jsimd_h2v2_extrgbx_merged_upsample_sse2; mmxfct = jsimd_h2v2_extrgbx_merged_upsample_mmx; break; case JCS_EXT_BGR: avx2fct = jsimd_h2v2_extbgr_merged_upsample_avx2; sse2fct = jsimd_h2v2_extbgr_merged_upsample_sse2; mmxfct = jsimd_h2v2_extbgr_merged_upsample_mmx; break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: avx2fct = jsimd_h2v2_extbgrx_merged_upsample_avx2; sse2fct = jsimd_h2v2_extbgrx_merged_upsample_sse2; mmxfct = jsimd_h2v2_extbgrx_merged_upsample_mmx; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: avx2fct = jsimd_h2v2_extxbgr_merged_upsample_avx2; sse2fct = jsimd_h2v2_extxbgr_merged_upsample_sse2; mmxfct = jsimd_h2v2_extxbgr_merged_upsample_mmx; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: avx2fct = jsimd_h2v2_extxrgb_merged_upsample_avx2; sse2fct = jsimd_h2v2_extxrgb_merged_upsample_sse2; mmxfct = jsimd_h2v2_extxrgb_merged_upsample_mmx; break; default: avx2fct = jsimd_h2v2_merged_upsample_avx2; sse2fct = jsimd_h2v2_merged_upsample_sse2; mmxfct = jsimd_h2v2_merged_upsample_mmx; break; } if (simd_support & JSIMD_AVX2) avx2fct(cinfo->output_width, input_buf, in_row_group_ctr, output_buf); else if (simd_support & JSIMD_SSE2) sse2fct(cinfo->output_width, input_buf, in_row_group_ctr, output_buf); else mmxfct(cinfo->output_width, input_buf, in_row_group_ctr, output_buf); } GLOBAL(void) jsimd_h2v1_merged_upsample(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { void (*avx2fct) (JDIMENSION, JSAMPIMAGE, JDIMENSION, JSAMPARRAY); void (*sse2fct) (JDIMENSION, JSAMPIMAGE, JDIMENSION, JSAMPARRAY); void (*mmxfct) (JDIMENSION, JSAMPIMAGE, JDIMENSION, JSAMPARRAY); switch (cinfo->out_color_space) { case JCS_EXT_RGB: avx2fct = jsimd_h2v1_extrgb_merged_upsample_avx2; sse2fct = jsimd_h2v1_extrgb_merged_upsample_sse2; mmxfct = jsimd_h2v1_extrgb_merged_upsample_mmx; break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: avx2fct = jsimd_h2v1_extrgbx_merged_upsample_avx2; sse2fct = jsimd_h2v1_extrgbx_merged_upsample_sse2; mmxfct = jsimd_h2v1_extrgbx_merged_upsample_mmx; break; case JCS_EXT_BGR: avx2fct = jsimd_h2v1_extbgr_merged_upsample_avx2; sse2fct = jsimd_h2v1_extbgr_merged_upsample_sse2; mmxfct = jsimd_h2v1_extbgr_merged_upsample_mmx; break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: avx2fct = jsimd_h2v1_extbgrx_merged_upsample_avx2; sse2fct = jsimd_h2v1_extbgrx_merged_upsample_sse2; mmxfct = jsimd_h2v1_extbgrx_merged_upsample_mmx; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: avx2fct = jsimd_h2v1_extxbgr_merged_upsample_avx2; sse2fct = jsimd_h2v1_extxbgr_merged_upsample_sse2; mmxfct = jsimd_h2v1_extxbgr_merged_upsample_mmx; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: avx2fct = jsimd_h2v1_extxrgb_merged_upsample_avx2; sse2fct = jsimd_h2v1_extxrgb_merged_upsample_sse2; mmxfct = jsimd_h2v1_extxrgb_merged_upsample_mmx; break; default: avx2fct = jsimd_h2v1_merged_upsample_avx2; sse2fct = jsimd_h2v1_merged_upsample_sse2; mmxfct = jsimd_h2v1_merged_upsample_mmx; break; } if (simd_support & JSIMD_AVX2) avx2fct(cinfo->output_width, input_buf, in_row_group_ctr, output_buf); else if (simd_support & JSIMD_SSE2) sse2fct(cinfo->output_width, input_buf, in_row_group_ctr, output_buf); else mmxfct(cinfo->output_width, input_buf, in_row_group_ctr, output_buf); } GLOBAL(int) jsimd_can_convsamp(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(DCTELEM) != 2) return 0; if (simd_support & JSIMD_AVX2) return 1; if (simd_support & JSIMD_SSE2) return 1; if (simd_support & JSIMD_MMX) return 1; return 0; } GLOBAL(int) jsimd_can_convsamp_float(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(FAST_FLOAT) != 4) return 0; if (simd_support & JSIMD_SSE2) return 1; if (simd_support & JSIMD_SSE) return 1; if (simd_support & JSIMD_3DNOW) return 1; return 0; } GLOBAL(void) jsimd_convsamp(JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM *workspace) { if (simd_support & JSIMD_AVX2) jsimd_convsamp_avx2(sample_data, start_col, workspace); else if (simd_support & JSIMD_SSE2) jsimd_convsamp_sse2(sample_data, start_col, workspace); else jsimd_convsamp_mmx(sample_data, start_col, workspace); } GLOBAL(void) jsimd_convsamp_float(JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT *workspace) { if (simd_support & JSIMD_SSE2) jsimd_convsamp_float_sse2(sample_data, start_col, workspace); else if (simd_support & JSIMD_SSE) jsimd_convsamp_float_sse(sample_data, start_col, workspace); else jsimd_convsamp_float_3dnow(sample_data, start_col, workspace); } GLOBAL(int) jsimd_can_fdct_islow(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(DCTELEM) != 2) return 0; if ((simd_support & JSIMD_AVX2) && IS_ALIGNED_AVX(jconst_fdct_islow_avx2)) return 1; if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_fdct_islow_sse2)) return 1; if (simd_support & JSIMD_MMX) return 1; return 0; } GLOBAL(int) jsimd_can_fdct_ifast(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(DCTELEM) != 2) return 0; if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_fdct_ifast_sse2)) return 1; if (simd_support & JSIMD_MMX) return 1; return 0; } GLOBAL(int) jsimd_can_fdct_float(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(FAST_FLOAT) != 4) return 0; if ((simd_support & JSIMD_SSE) && IS_ALIGNED_SSE(jconst_fdct_float_sse)) return 1; if (simd_support & JSIMD_3DNOW) return 1; return 0; } GLOBAL(void) jsimd_fdct_islow(DCTELEM *data) { if (simd_support & JSIMD_AVX2) jsimd_fdct_islow_avx2(data); else if (simd_support & JSIMD_SSE2) jsimd_fdct_islow_sse2(data); else jsimd_fdct_islow_mmx(data); } GLOBAL(void) jsimd_fdct_ifast(DCTELEM *data) { if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_fdct_islow_sse2)) jsimd_fdct_ifast_sse2(data); else jsimd_fdct_ifast_mmx(data); } GLOBAL(void) jsimd_fdct_float(FAST_FLOAT *data) { if ((simd_support & JSIMD_SSE) && IS_ALIGNED_SSE(jconst_fdct_float_sse)) jsimd_fdct_float_sse(data); else if (simd_support & JSIMD_3DNOW) jsimd_fdct_float_3dnow(data); } GLOBAL(int) jsimd_can_quantize(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (sizeof(DCTELEM) != 2) return 0; if (simd_support & JSIMD_AVX2) return 1; if (simd_support & JSIMD_SSE2) return 1; if (simd_support & JSIMD_MMX) return 1; return 0; } GLOBAL(int) jsimd_can_quantize_float(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (sizeof(FAST_FLOAT) != 4) return 0; if (simd_support & JSIMD_SSE2) return 1; if (simd_support & JSIMD_SSE) return 1; if (simd_support & JSIMD_3DNOW) return 1; return 0; } GLOBAL(void) jsimd_quantize(JCOEFPTR coef_block, DCTELEM *divisors, DCTELEM *workspace) { if (simd_support & JSIMD_AVX2) jsimd_quantize_avx2(coef_block, divisors, workspace); else if (simd_support & JSIMD_SSE2) jsimd_quantize_sse2(coef_block, divisors, workspace); else jsimd_quantize_mmx(coef_block, divisors, workspace); } GLOBAL(void) jsimd_quantize_float(JCOEFPTR coef_block, FAST_FLOAT *divisors, FAST_FLOAT *workspace) { if (simd_support & JSIMD_SSE2) jsimd_quantize_float_sse2(coef_block, divisors, workspace); else if (simd_support & JSIMD_SSE) jsimd_quantize_float_sse(coef_block, divisors, workspace); else jsimd_quantize_float_3dnow(coef_block, divisors, workspace); } GLOBAL(int) jsimd_can_idct_2x2(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(ISLOW_MULT_TYPE) != 2) return 0; if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_idct_red_sse2)) return 1; if (simd_support & JSIMD_MMX) return 1; return 0; } GLOBAL(int) jsimd_can_idct_4x4(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(ISLOW_MULT_TYPE) != 2) return 0; if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_idct_red_sse2)) return 1; if (simd_support & JSIMD_MMX) return 1; return 0; } GLOBAL(void) jsimd_idct_2x2(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_idct_red_sse2)) jsimd_idct_2x2_sse2(compptr->dct_table, coef_block, output_buf, output_col); else jsimd_idct_2x2_mmx(compptr->dct_table, coef_block, output_buf, output_col); } GLOBAL(void) jsimd_idct_4x4(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_idct_red_sse2)) jsimd_idct_4x4_sse2(compptr->dct_table, coef_block, output_buf, output_col); else jsimd_idct_4x4_mmx(compptr->dct_table, coef_block, output_buf, output_col); } GLOBAL(int) jsimd_can_idct_islow(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(ISLOW_MULT_TYPE) != 2) return 0; if ((simd_support & JSIMD_AVX2) && IS_ALIGNED_AVX(jconst_idct_islow_avx2)) return 1; if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_idct_islow_sse2)) return 1; if (simd_support & JSIMD_MMX) return 1; return 0; } GLOBAL(int) jsimd_can_idct_ifast(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(IFAST_MULT_TYPE) != 2) return 0; if (IFAST_SCALE_BITS != 2) return 0; if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_idct_ifast_sse2)) return 1; if (simd_support & JSIMD_MMX) return 1; return 0; } GLOBAL(int) jsimd_can_idct_float(void) { init_simd(); if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(FAST_FLOAT) != 4) return 0; if (sizeof(FLOAT_MULT_TYPE) != 4) return 0; if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_idct_float_sse2)) return 1; if ((simd_support & JSIMD_SSE) && IS_ALIGNED_SSE(jconst_idct_float_sse)) return 1; if (simd_support & JSIMD_3DNOW) return 1; return 0; } GLOBAL(void) jsimd_idct_islow(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { if (simd_support & JSIMD_AVX2) jsimd_idct_islow_avx2(compptr->dct_table, coef_block, output_buf, output_col); else if (simd_support & JSIMD_SSE2) jsimd_idct_islow_sse2(compptr->dct_table, coef_block, output_buf, output_col); else jsimd_idct_islow_mmx(compptr->dct_table, coef_block, output_buf, output_col); } GLOBAL(void) jsimd_idct_ifast(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_idct_ifast_sse2)) jsimd_idct_ifast_sse2(compptr->dct_table, coef_block, output_buf, output_col); else jsimd_idct_ifast_mmx(compptr->dct_table, coef_block, output_buf, output_col); } GLOBAL(void) jsimd_idct_float(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_idct_float_sse2)) jsimd_idct_float_sse2(compptr->dct_table, coef_block, output_buf, output_col); else if ((simd_support & JSIMD_SSE) && IS_ALIGNED_SSE(jconst_idct_float_sse)) jsimd_idct_float_sse(compptr->dct_table, coef_block, output_buf, output_col); else jsimd_idct_float_3dnow(compptr->dct_table, coef_block, output_buf, output_col); } GLOBAL(int) jsimd_can_huff_encode_one_block(void) { init_simd(); if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if ((simd_support & JSIMD_SSE2) && simd_huffman && IS_ALIGNED_SSE(jconst_huff_encode_one_block)) return 1; return 0; } GLOBAL(JOCTET *) jsimd_huff_encode_one_block(void *state, JOCTET *buffer, JCOEFPTR block, int last_dc_val, c_derived_tbl *dctbl, c_derived_tbl *actbl) { return jsimd_huff_encode_one_block_sse2(state, buffer, block, last_dc_val, dctbl, actbl); } GLOBAL(int) jsimd_can_encode_mcu_AC_first_prepare(void) { init_simd(); if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (SIZEOF_SIZE_T != 4) return 0; if (simd_support & JSIMD_SSE2) return 1; return 0; } GLOBAL(void) jsimd_encode_mcu_AC_first_prepare(const JCOEF *block, const int *jpeg_natural_order_start, int Sl, int Al, UJCOEF *values, size_t *zerobits) { jsimd_encode_mcu_AC_first_prepare_sse2(block, jpeg_natural_order_start, Sl, Al, values, zerobits); } GLOBAL(int) jsimd_can_encode_mcu_AC_refine_prepare(void) { init_simd(); if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (SIZEOF_SIZE_T != 4) return 0; if (simd_support & JSIMD_SSE2) return 1; return 0; } GLOBAL(int) jsimd_encode_mcu_AC_refine_prepare(const JCOEF *block, const int *jpeg_natural_order_start, int Sl, int Al, UJCOEF *absvalues, size_t *bits) { return jsimd_encode_mcu_AC_refine_prepare_sse2(block, jpeg_natural_order_start, Sl, Al, absvalues, bits); } libjpeg-turbo-2.1.5/simd/i386/jsimdcpu.asm000066400000000000000000000076201436506551100202440ustar00rootroot00000000000000; ; jsimdcpu.asm - SIMD instruction support check ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2016, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jsimdext.inc" ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 32 ; ; Check if the CPU supports SIMD instructions ; ; GLOBAL(unsigned int) ; jpeg_simd_cpu_support(void) ; align 32 GLOBAL_FUNCTION(jpeg_simd_cpu_support) EXTN(jpeg_simd_cpu_support): push ebx ; push ecx ; need not be preserved ; push edx ; need not be preserved ; push esi ; unused push edi xor edi, edi ; simd support flag pushfd pop eax mov edx, eax xor eax, 1<<21 ; flip ID bit in EFLAGS push eax popfd pushfd pop eax xor eax, edx jz near .return ; CPUID is not supported ; Check whether CPUID leaf 07H is supported ; (leaf 07H is used to check for AVX2 instruction support) xor eax, eax cpuid test eax, eax jz near .return cmp eax, 7 jl short .no_avx2 ; Maximum leaf < 07H ; Check for AVX2 instruction support mov eax, 7 xor ecx, ecx cpuid mov eax, ebx test eax, 1<<5 ; bit5:AVX2 jz short .no_avx2 ; Check for AVX2 O/S support mov eax, 1 xor ecx, ecx cpuid test ecx, 1<<27 jz short .no_avx2 ; O/S does not support XSAVE test ecx, 1<<28 jz short .no_avx2 ; CPU does not support AVX2 xor ecx, ecx xgetbv and eax, 6 cmp eax, 6 ; O/S does not manage XMM/YMM state ; using XSAVE jnz short .no_avx2 or edi, JSIMD_AVX2 .no_avx2: ; Check CPUID leaf 01H for MMX, SSE, and SSE2 support xor eax, eax inc eax cpuid mov eax, edx ; eax = Standard feature flags ; Check for MMX instruction support test eax, 1<<23 ; bit23:MMX jz short .no_mmx or edi, byte JSIMD_MMX .no_mmx: test eax, 1<<25 ; bit25:SSE jz short .no_sse or edi, byte JSIMD_SSE .no_sse: test eax, 1<<26 ; bit26:SSE2 jz short .no_sse2 or edi, byte JSIMD_SSE2 .no_sse2: ; Check for 3DNow! instruction support mov eax, 0x80000000 cpuid cmp eax, 0x80000000 jbe short .return mov eax, 0x80000001 cpuid mov eax, edx ; eax = Extended feature flags test eax, 1<<31 ; bit31:3DNow!(vendor independent) jz short .no_3dnow or edi, byte JSIMD_3DNOW .no_3dnow: .return: mov eax, edi pop edi ; pop esi ; unused ; pop edx ; need not be preserved ; pop ecx ; need not be preserved pop ebx ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/jsimd.h000066400000000000000000001571731436506551100165230ustar00rootroot00000000000000/* * simd/jsimd.h * * Copyright 2009 Pierre Ossman for Cendio AB * Copyright (C) 2011, 2014-2016, 2018, 2020, 2022, D. R. Commander. * Copyright (C) 2013-2014, MIPS Technologies, Inc., California. * Copyright (C) 2014, Linaro Limited. * Copyright (C) 2015-2016, 2018, 2022, Matthieu Darbois. * Copyright (C) 2016-2018, Loongson Technology Corporation Limited, BeiJing. * Copyright (C) 2020, Arm Limited. * * Based on the x86 SIMD extension for IJG JPEG library, * Copyright (C) 1999-2006, MIYASAKA Masaru. * For conditions of distribution and use, see copyright notice in jsimdext.inc * */ /* Bitmask for supported acceleration methods */ #define JSIMD_NONE 0x00 #define JSIMD_MMX 0x01 #define JSIMD_3DNOW 0x02 #define JSIMD_SSE 0x04 #define JSIMD_SSE2 0x08 #define JSIMD_NEON 0x10 #define JSIMD_DSPR2 0x20 #define JSIMD_ALTIVEC 0x40 #define JSIMD_AVX2 0x80 #define JSIMD_MMI 0x100 /* SIMD Ext: retrieve SIMD/CPU information */ EXTERN(unsigned int) jpeg_simd_cpu_support(void); /* RGB & extended RGB --> YCC Colorspace Conversion */ EXTERN(void) jsimd_rgb_ycc_convert_mmx (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extrgb_ycc_convert_mmx (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extrgbx_ycc_convert_mmx (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extbgr_ycc_convert_mmx (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extbgrx_ycc_convert_mmx (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extxbgr_ycc_convert_mmx (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extxrgb_ycc_convert_mmx (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); extern const int jconst_rgb_ycc_convert_sse2[]; EXTERN(void) jsimd_rgb_ycc_convert_sse2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extrgb_ycc_convert_sse2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extrgbx_ycc_convert_sse2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extbgr_ycc_convert_sse2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extbgrx_ycc_convert_sse2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extxbgr_ycc_convert_sse2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extxrgb_ycc_convert_sse2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); extern const int jconst_rgb_ycc_convert_avx2[]; EXTERN(void) jsimd_rgb_ycc_convert_avx2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extrgb_ycc_convert_avx2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extrgbx_ycc_convert_avx2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extbgr_ycc_convert_avx2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extbgrx_ycc_convert_avx2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extxbgr_ycc_convert_avx2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extxrgb_ycc_convert_avx2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_rgb_ycc_convert_neon (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extrgb_ycc_convert_neon (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extrgbx_ycc_convert_neon (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extbgr_ycc_convert_neon (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extbgrx_ycc_convert_neon (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extxbgr_ycc_convert_neon (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extxrgb_ycc_convert_neon (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); #ifndef NEON_INTRINSICS EXTERN(void) jsimd_extrgb_ycc_convert_neon_slowld3 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extbgr_ycc_convert_neon_slowld3 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); #endif EXTERN(void) jsimd_rgb_ycc_convert_dspr2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extrgb_ycc_convert_dspr2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extrgbx_ycc_convert_dspr2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extbgr_ycc_convert_dspr2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extbgrx_ycc_convert_dspr2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extxbgr_ycc_convert_dspr2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extxrgb_ycc_convert_dspr2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_rgb_ycc_convert_mmi (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extrgb_ycc_convert_mmi (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extrgbx_ycc_convert_mmi (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extbgr_ycc_convert_mmi (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extbgrx_ycc_convert_mmi (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extxbgr_ycc_convert_mmi (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extxrgb_ycc_convert_mmi (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_rgb_ycc_convert_altivec (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extrgb_ycc_convert_altivec (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extrgbx_ycc_convert_altivec (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extbgr_ycc_convert_altivec (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extbgrx_ycc_convert_altivec (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extxbgr_ycc_convert_altivec (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extxrgb_ycc_convert_altivec (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); /* RGB & extended RGB --> Grayscale Colorspace Conversion */ EXTERN(void) jsimd_rgb_gray_convert_mmx (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extrgb_gray_convert_mmx (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extrgbx_gray_convert_mmx (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extbgr_gray_convert_mmx (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extbgrx_gray_convert_mmx (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extxbgr_gray_convert_mmx (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extxrgb_gray_convert_mmx (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); extern const int jconst_rgb_gray_convert_sse2[]; EXTERN(void) jsimd_rgb_gray_convert_sse2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extrgb_gray_convert_sse2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extrgbx_gray_convert_sse2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extbgr_gray_convert_sse2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extbgrx_gray_convert_sse2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extxbgr_gray_convert_sse2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extxrgb_gray_convert_sse2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); extern const int jconst_rgb_gray_convert_avx2[]; EXTERN(void) jsimd_rgb_gray_convert_avx2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extrgb_gray_convert_avx2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extrgbx_gray_convert_avx2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extbgr_gray_convert_avx2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extbgrx_gray_convert_avx2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extxbgr_gray_convert_avx2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extxrgb_gray_convert_avx2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_rgb_gray_convert_neon (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extrgb_gray_convert_neon (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extrgbx_gray_convert_neon (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extbgr_gray_convert_neon (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extbgrx_gray_convert_neon (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extxbgr_gray_convert_neon (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extxrgb_gray_convert_neon (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_rgb_gray_convert_dspr2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extrgb_gray_convert_dspr2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extrgbx_gray_convert_dspr2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extbgr_gray_convert_dspr2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extbgrx_gray_convert_dspr2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extxbgr_gray_convert_dspr2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extxrgb_gray_convert_dspr2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_rgb_gray_convert_mmi (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extrgb_gray_convert_mmi (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extrgbx_gray_convert_mmi (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extbgr_gray_convert_mmi (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extbgrx_gray_convert_mmi (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extxbgr_gray_convert_mmi (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extxrgb_gray_convert_mmi (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_rgb_gray_convert_altivec (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extrgb_gray_convert_altivec (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extrgbx_gray_convert_altivec (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extbgr_gray_convert_altivec (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extbgrx_gray_convert_altivec (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extxbgr_gray_convert_altivec (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); EXTERN(void) jsimd_extxrgb_gray_convert_altivec (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows); /* YCC --> RGB & extended RGB Colorspace Conversion */ EXTERN(void) jsimd_ycc_rgb_convert_mmx (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extrgb_convert_mmx (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extrgbx_convert_mmx (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extbgr_convert_mmx (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extbgrx_convert_mmx (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extxbgr_convert_mmx (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extxrgb_convert_mmx (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); extern const int jconst_ycc_rgb_convert_sse2[]; EXTERN(void) jsimd_ycc_rgb_convert_sse2 (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extrgb_convert_sse2 (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extrgbx_convert_sse2 (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extbgr_convert_sse2 (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extbgrx_convert_sse2 (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extxbgr_convert_sse2 (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extxrgb_convert_sse2 (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); extern const int jconst_ycc_rgb_convert_avx2[]; EXTERN(void) jsimd_ycc_rgb_convert_avx2 (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extrgb_convert_avx2 (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extrgbx_convert_avx2 (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extbgr_convert_avx2 (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extbgrx_convert_avx2 (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extxbgr_convert_avx2 (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extxrgb_convert_avx2 (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_rgb_convert_neon (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extrgb_convert_neon (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extrgbx_convert_neon (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extbgr_convert_neon (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extbgrx_convert_neon (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extxbgr_convert_neon (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extxrgb_convert_neon (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_rgb565_convert_neon (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); #ifndef NEON_INTRINSICS EXTERN(void) jsimd_ycc_extrgb_convert_neon_slowst3 (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extbgr_convert_neon_slowst3 (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); #endif EXTERN(void) jsimd_ycc_rgb_convert_dspr2 (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extrgb_convert_dspr2 (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extrgbx_convert_dspr2 (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extbgr_convert_dspr2 (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extbgrx_convert_dspr2 (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extxbgr_convert_dspr2 (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extxrgb_convert_dspr2 (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_rgb_convert_mmi (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extrgb_convert_mmi (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extrgbx_convert_mmi (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extbgr_convert_mmi (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extbgrx_convert_mmi (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extxbgr_convert_mmi (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extxrgb_convert_mmi (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_rgb_convert_altivec (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extrgb_convert_altivec (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extrgbx_convert_altivec (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extbgr_convert_altivec (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extbgrx_convert_altivec (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extxbgr_convert_altivec (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); EXTERN(void) jsimd_ycc_extxrgb_convert_altivec (JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows); /* NULL Colorspace Conversion */ EXTERN(void) jsimd_c_null_convert_dspr2 (JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows, int num_components); /* h2v1 Downsampling */ EXTERN(void) jsimd_h2v1_downsample_mmx (JDIMENSION image_width, int max_v_samp_factor, JDIMENSION v_samp_factor, JDIMENSION width_in_blocks, JSAMPARRAY input_data, JSAMPARRAY output_data); EXTERN(void) jsimd_h2v1_downsample_sse2 (JDIMENSION image_width, int max_v_samp_factor, JDIMENSION v_samp_factor, JDIMENSION width_in_blocks, JSAMPARRAY input_data, JSAMPARRAY output_data); EXTERN(void) jsimd_h2v1_downsample_avx2 (JDIMENSION image_width, int max_v_samp_factor, JDIMENSION v_samp_factor, JDIMENSION width_in_blocks, JSAMPARRAY input_data, JSAMPARRAY output_data); EXTERN(void) jsimd_h2v1_downsample_neon (JDIMENSION image_width, int max_v_samp_factor, JDIMENSION v_samp_factor, JDIMENSION width_in_blocks, JSAMPARRAY input_data, JSAMPARRAY output_data); EXTERN(void) jsimd_h2v1_downsample_dspr2 (JDIMENSION image_width, int max_v_samp_factor, JDIMENSION v_samp_factor, JDIMENSION width_in_blocks, JSAMPARRAY input_data, JSAMPARRAY output_data); EXTERN(void) jsimd_h2v1_downsample_altivec (JDIMENSION image_width, int max_v_samp_factor, JDIMENSION v_samp_factor, JDIMENSION width_in_blocks, JSAMPARRAY input_data, JSAMPARRAY output_data); /* h2v2 Downsampling */ EXTERN(void) jsimd_h2v2_downsample_mmx (JDIMENSION image_width, int max_v_samp_factor, JDIMENSION v_samp_factor, JDIMENSION width_in_blocks, JSAMPARRAY input_data, JSAMPARRAY output_data); EXTERN(void) jsimd_h2v2_downsample_sse2 (JDIMENSION image_width, int max_v_samp_factor, JDIMENSION v_samp_factor, JDIMENSION width_in_blocks, JSAMPARRAY input_data, JSAMPARRAY output_data); EXTERN(void) jsimd_h2v2_downsample_avx2 (JDIMENSION image_width, int max_v_samp_factor, JDIMENSION v_samp_factor, JDIMENSION width_in_blocks, JSAMPARRAY input_data, JSAMPARRAY output_data); EXTERN(void) jsimd_h2v2_downsample_neon (JDIMENSION image_width, int max_v_samp_factor, JDIMENSION v_samp_factor, JDIMENSION width_in_blocks, JSAMPARRAY input_data, JSAMPARRAY output_data); EXTERN(void) jsimd_h2v2_downsample_dspr2 (JDIMENSION image_width, int max_v_samp_factor, JDIMENSION v_samp_factor, JDIMENSION width_in_blocks, JSAMPARRAY input_data, JSAMPARRAY output_data); EXTERN(void) jsimd_h2v2_downsample_mmi (JDIMENSION image_width, int max_v_samp_factor, JDIMENSION v_samp_factor, JDIMENSION width_in_blocks, JSAMPARRAY input_data, JSAMPARRAY output_data); EXTERN(void) jsimd_h2v2_downsample_altivec (JDIMENSION image_width, int max_v_samp_factor, JDIMENSION v_samp_factor, JDIMENSION width_in_blocks, JSAMPARRAY input_data, JSAMPARRAY output_data); /* h2v2 Smooth Downsampling */ EXTERN(void) jsimd_h2v2_smooth_downsample_dspr2 (JSAMPARRAY input_data, JSAMPARRAY output_data, JDIMENSION v_samp_factor, int max_v_samp_factor, int smoothing_factor, JDIMENSION width_in_blocks, JDIMENSION image_width); /* Upsampling */ EXTERN(void) jsimd_h2v1_upsample_mmx (int max_v_samp_factor, JDIMENSION output_width, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); EXTERN(void) jsimd_h2v2_upsample_mmx (int max_v_samp_factor, JDIMENSION output_width, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); EXTERN(void) jsimd_h2v1_upsample_sse2 (int max_v_samp_factor, JDIMENSION output_width, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); EXTERN(void) jsimd_h2v2_upsample_sse2 (int max_v_samp_factor, JDIMENSION output_width, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); EXTERN(void) jsimd_h2v1_upsample_avx2 (int max_v_samp_factor, JDIMENSION output_width, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); EXTERN(void) jsimd_h2v2_upsample_avx2 (int max_v_samp_factor, JDIMENSION output_width, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); EXTERN(void) jsimd_h2v1_upsample_neon (int max_v_samp_factor, JDIMENSION output_width, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); EXTERN(void) jsimd_h2v2_upsample_neon (int max_v_samp_factor, JDIMENSION output_width, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); EXTERN(void) jsimd_h2v1_upsample_dspr2 (int max_v_samp_factor, JDIMENSION output_width, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); EXTERN(void) jsimd_h2v2_upsample_dspr2 (int max_v_samp_factor, JDIMENSION output_width, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); EXTERN(void) jsimd_int_upsample_dspr2 (UINT8 h_expand, UINT8 v_expand, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr, JDIMENSION output_width, int max_v_samp_factor); EXTERN(void) jsimd_h2v1_upsample_altivec (int max_v_samp_factor, JDIMENSION output_width, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); EXTERN(void) jsimd_h2v2_upsample_altivec (int max_v_samp_factor, JDIMENSION output_width, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); /* Fancy Upsampling */ EXTERN(void) jsimd_h2v1_fancy_upsample_mmx (int max_v_samp_factor, JDIMENSION downsampled_width, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); EXTERN(void) jsimd_h2v2_fancy_upsample_mmx (int max_v_samp_factor, JDIMENSION downsampled_width, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); extern const int jconst_fancy_upsample_sse2[]; EXTERN(void) jsimd_h2v1_fancy_upsample_sse2 (int max_v_samp_factor, JDIMENSION downsampled_width, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); EXTERN(void) jsimd_h2v2_fancy_upsample_sse2 (int max_v_samp_factor, JDIMENSION downsampled_width, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); extern const int jconst_fancy_upsample_avx2[]; EXTERN(void) jsimd_h2v1_fancy_upsample_avx2 (int max_v_samp_factor, JDIMENSION downsampled_width, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); EXTERN(void) jsimd_h2v2_fancy_upsample_avx2 (int max_v_samp_factor, JDIMENSION downsampled_width, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); EXTERN(void) jsimd_h2v1_fancy_upsample_neon (int max_v_samp_factor, JDIMENSION downsampled_width, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); EXTERN(void) jsimd_h2v2_fancy_upsample_neon (int max_v_samp_factor, JDIMENSION downsampled_width, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); EXTERN(void) jsimd_h1v2_fancy_upsample_neon (int max_v_samp_factor, JDIMENSION downsampled_width, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); EXTERN(void) jsimd_h2v1_fancy_upsample_dspr2 (int max_v_samp_factor, JDIMENSION downsampled_width, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); EXTERN(void) jsimd_h2v2_fancy_upsample_dspr2 (int max_v_samp_factor, JDIMENSION downsampled_width, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); EXTERN(void) jsimd_h2v1_fancy_upsample_mmi (int max_v_samp_factor, JDIMENSION downsampled_width, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); EXTERN(void) jsimd_h2v2_fancy_upsample_mmi (int max_v_samp_factor, JDIMENSION downsampled_width, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); EXTERN(void) jsimd_h2v1_fancy_upsample_altivec (int max_v_samp_factor, JDIMENSION downsampled_width, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); EXTERN(void) jsimd_h2v2_fancy_upsample_altivec (int max_v_samp_factor, JDIMENSION downsampled_width, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); /* Merged Upsampling */ EXTERN(void) jsimd_h2v1_merged_upsample_mmx (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_extrgb_merged_upsample_mmx (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_extrgbx_merged_upsample_mmx (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_extbgr_merged_upsample_mmx (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_extbgrx_merged_upsample_mmx (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_extxbgr_merged_upsample_mmx (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_extxrgb_merged_upsample_mmx (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_merged_upsample_mmx (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_extrgb_merged_upsample_mmx (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_extrgbx_merged_upsample_mmx (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_extbgr_merged_upsample_mmx (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_extbgrx_merged_upsample_mmx (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_extxbgr_merged_upsample_mmx (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_extxrgb_merged_upsample_mmx (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); extern const int jconst_merged_upsample_sse2[]; EXTERN(void) jsimd_h2v1_merged_upsample_sse2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_extrgb_merged_upsample_sse2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_extrgbx_merged_upsample_sse2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_extbgr_merged_upsample_sse2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_extbgrx_merged_upsample_sse2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_extxbgr_merged_upsample_sse2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_extxrgb_merged_upsample_sse2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_merged_upsample_sse2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_extrgb_merged_upsample_sse2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_extrgbx_merged_upsample_sse2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_extbgr_merged_upsample_sse2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_extbgrx_merged_upsample_sse2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_extxbgr_merged_upsample_sse2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_extxrgb_merged_upsample_sse2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); extern const int jconst_merged_upsample_avx2[]; EXTERN(void) jsimd_h2v1_merged_upsample_avx2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_extrgb_merged_upsample_avx2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_extrgbx_merged_upsample_avx2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_extbgr_merged_upsample_avx2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_extbgrx_merged_upsample_avx2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_extxbgr_merged_upsample_avx2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_extxrgb_merged_upsample_avx2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_merged_upsample_avx2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_extrgb_merged_upsample_avx2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_extrgbx_merged_upsample_avx2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_extbgr_merged_upsample_avx2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_extbgrx_merged_upsample_avx2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_extxbgr_merged_upsample_avx2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_extxrgb_merged_upsample_avx2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_merged_upsample_neon (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_extrgb_merged_upsample_neon (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_extrgbx_merged_upsample_neon (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_extbgr_merged_upsample_neon (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_extbgrx_merged_upsample_neon (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_extxbgr_merged_upsample_neon (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_extxrgb_merged_upsample_neon (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_merged_upsample_neon (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_extrgb_merged_upsample_neon (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_extrgbx_merged_upsample_neon (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_extbgr_merged_upsample_neon (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_extbgrx_merged_upsample_neon (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_extxbgr_merged_upsample_neon (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_extxrgb_merged_upsample_neon (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_merged_upsample_dspr2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf, JSAMPLE *range); EXTERN(void) jsimd_h2v1_extrgb_merged_upsample_dspr2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf, JSAMPLE *range); EXTERN(void) jsimd_h2v1_extrgbx_merged_upsample_dspr2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf, JSAMPLE *range); EXTERN(void) jsimd_h2v1_extbgr_merged_upsample_dspr2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf, JSAMPLE *range); EXTERN(void) jsimd_h2v1_extbgrx_merged_upsample_dspr2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf, JSAMPLE *range); EXTERN(void) jsimd_h2v1_extxbgr_merged_upsample_dspr2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf, JSAMPLE *range); EXTERN(void) jsimd_h2v1_extxrgb_merged_upsample_dspr2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf, JSAMPLE *range); EXTERN(void) jsimd_h2v2_merged_upsample_dspr2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf, JSAMPLE *range); EXTERN(void) jsimd_h2v2_extrgb_merged_upsample_dspr2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf, JSAMPLE *range); EXTERN(void) jsimd_h2v2_extrgbx_merged_upsample_dspr2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf, JSAMPLE *range); EXTERN(void) jsimd_h2v2_extbgr_merged_upsample_dspr2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf, JSAMPLE *range); EXTERN(void) jsimd_h2v2_extbgrx_merged_upsample_dspr2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf, JSAMPLE *range); EXTERN(void) jsimd_h2v2_extxbgr_merged_upsample_dspr2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf, JSAMPLE *range); EXTERN(void) jsimd_h2v2_extxrgb_merged_upsample_dspr2 (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf, JSAMPLE *range); EXTERN(void) jsimd_h2v1_merged_upsample_mmi (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_extrgb_merged_upsample_mmi (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_extrgbx_merged_upsample_mmi (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_extbgr_merged_upsample_mmi (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_extbgrx_merged_upsample_mmi (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_extxbgr_merged_upsample_mmi (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_extxrgb_merged_upsample_mmi (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_merged_upsample_mmi (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_extrgb_merged_upsample_mmi (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_extrgbx_merged_upsample_mmi (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_extbgr_merged_upsample_mmi (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_extbgrx_merged_upsample_mmi (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_extxbgr_merged_upsample_mmi (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_extxrgb_merged_upsample_mmi (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_merged_upsample_altivec (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_extrgb_merged_upsample_altivec (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_extrgbx_merged_upsample_altivec (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_extbgr_merged_upsample_altivec (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_extbgrx_merged_upsample_altivec (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_extxbgr_merged_upsample_altivec (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v1_extxrgb_merged_upsample_altivec (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_merged_upsample_altivec (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_extrgb_merged_upsample_altivec (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_extrgbx_merged_upsample_altivec (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_extbgr_merged_upsample_altivec (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_extbgrx_merged_upsample_altivec (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_extxbgr_merged_upsample_altivec (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); EXTERN(void) jsimd_h2v2_extxrgb_merged_upsample_altivec (JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf); /* Sample Conversion */ EXTERN(void) jsimd_convsamp_mmx (JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM *workspace); EXTERN(void) jsimd_convsamp_sse2 (JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM *workspace); EXTERN(void) jsimd_convsamp_avx2 (JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM *workspace); EXTERN(void) jsimd_convsamp_neon (JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM *workspace); EXTERN(void) jsimd_convsamp_dspr2 (JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM *workspace); EXTERN(void) jsimd_convsamp_altivec (JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM *workspace); /* Floating Point Sample Conversion */ EXTERN(void) jsimd_convsamp_float_3dnow (JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT *workspace); EXTERN(void) jsimd_convsamp_float_sse (JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT *workspace); EXTERN(void) jsimd_convsamp_float_sse2 (JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT *workspace); EXTERN(void) jsimd_convsamp_float_dspr2 (JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT *workspace); /* Accurate Integer Forward DCT */ EXTERN(void) jsimd_fdct_islow_mmx(DCTELEM *data); extern const int jconst_fdct_islow_sse2[]; EXTERN(void) jsimd_fdct_islow_sse2(DCTELEM *data); extern const int jconst_fdct_islow_avx2[]; EXTERN(void) jsimd_fdct_islow_avx2(DCTELEM *data); EXTERN(void) jsimd_fdct_islow_neon(DCTELEM *data); EXTERN(void) jsimd_fdct_islow_dspr2(DCTELEM *data); EXTERN(void) jsimd_fdct_islow_mmi(DCTELEM *data); EXTERN(void) jsimd_fdct_islow_altivec(DCTELEM *data); /* Fast Integer Forward DCT */ EXTERN(void) jsimd_fdct_ifast_mmx(DCTELEM *data); extern const int jconst_fdct_ifast_sse2[]; EXTERN(void) jsimd_fdct_ifast_sse2(DCTELEM *data); EXTERN(void) jsimd_fdct_ifast_neon(DCTELEM *data); EXTERN(void) jsimd_fdct_ifast_dspr2(DCTELEM *data); EXTERN(void) jsimd_fdct_ifast_mmi(DCTELEM *data); EXTERN(void) jsimd_fdct_ifast_altivec(DCTELEM *data); /* Floating Point Forward DCT */ EXTERN(void) jsimd_fdct_float_3dnow(FAST_FLOAT *data); extern const int jconst_fdct_float_sse[]; EXTERN(void) jsimd_fdct_float_sse(FAST_FLOAT *data); /* Quantization */ EXTERN(void) jsimd_quantize_mmx (JCOEFPTR coef_block, DCTELEM *divisors, DCTELEM *workspace); EXTERN(void) jsimd_quantize_sse2 (JCOEFPTR coef_block, DCTELEM *divisors, DCTELEM *workspace); EXTERN(void) jsimd_quantize_avx2 (JCOEFPTR coef_block, DCTELEM *divisors, DCTELEM *workspace); EXTERN(void) jsimd_quantize_neon (JCOEFPTR coef_block, DCTELEM *divisors, DCTELEM *workspace); EXTERN(void) jsimd_quantize_dspr2 (JCOEFPTR coef_block, DCTELEM *divisors, DCTELEM *workspace); EXTERN(void) jsimd_quantize_mmi (JCOEFPTR coef_block, DCTELEM *divisors, DCTELEM *workspace); EXTERN(void) jsimd_quantize_altivec (JCOEFPTR coef_block, DCTELEM *divisors, DCTELEM *workspace); /* Floating Point Quantization */ EXTERN(void) jsimd_quantize_float_3dnow (JCOEFPTR coef_block, FAST_FLOAT *divisors, FAST_FLOAT *workspace); EXTERN(void) jsimd_quantize_float_sse (JCOEFPTR coef_block, FAST_FLOAT *divisors, FAST_FLOAT *workspace); EXTERN(void) jsimd_quantize_float_sse2 (JCOEFPTR coef_block, FAST_FLOAT *divisors, FAST_FLOAT *workspace); EXTERN(void) jsimd_quantize_float_dspr2 (JCOEFPTR coef_block, FAST_FLOAT *divisors, FAST_FLOAT *workspace); /* Scaled Inverse DCT */ EXTERN(void) jsimd_idct_2x2_mmx (void *dct_table, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jsimd_idct_4x4_mmx (void *dct_table, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); extern const int jconst_idct_red_sse2[]; EXTERN(void) jsimd_idct_2x2_sse2 (void *dct_table, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jsimd_idct_4x4_sse2 (void *dct_table, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jsimd_idct_2x2_neon (void *dct_table, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jsimd_idct_4x4_neon (void *dct_table, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jsimd_idct_2x2_dspr2 (void *dct_table, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jsimd_idct_4x4_dspr2 (void *dct_table, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col, int *workspace); EXTERN(void) jsimd_idct_6x6_dspr2 (void *dct_table, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jsimd_idct_12x12_pass1_dspr2 (JCOEFPTR coef_block, void *dct_table, int *workspace); EXTERN(void) jsimd_idct_12x12_pass2_dspr2 (int *workspace, int *output); /* Accurate Integer Inverse DCT */ EXTERN(void) jsimd_idct_islow_mmx (void *dct_table, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); extern const int jconst_idct_islow_sse2[]; EXTERN(void) jsimd_idct_islow_sse2 (void *dct_table, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); extern const int jconst_idct_islow_avx2[]; EXTERN(void) jsimd_idct_islow_avx2 (void *dct_table, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jsimd_idct_islow_neon (void *dct_table, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jsimd_idct_islow_dspr2 (void *dct_table, JCOEFPTR coef_block, int *output_buf, JSAMPLE *output_col); EXTERN(void) jsimd_idct_islow_mmi (void *dct_table, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jsimd_idct_islow_altivec (void *dct_table, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); /* Fast Integer Inverse DCT */ EXTERN(void) jsimd_idct_ifast_mmx (void *dct_table, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); extern const int jconst_idct_ifast_sse2[]; EXTERN(void) jsimd_idct_ifast_sse2 (void *dct_table, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jsimd_idct_ifast_neon (void *dct_table, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jsimd_idct_ifast_cols_dspr2 (JCOEF *inptr, IFAST_MULT_TYPE *quantptr, DCTELEM *wsptr, const int *idct_coefs); EXTERN(void) jsimd_idct_ifast_rows_dspr2 (DCTELEM *wsptr, JSAMPARRAY output_buf, JDIMENSION output_col, const int *idct_coefs); EXTERN(void) jsimd_idct_ifast_mmi (void *dct_table, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); EXTERN(void) jsimd_idct_ifast_altivec (void *dct_table, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); /* Floating Point Inverse DCT */ EXTERN(void) jsimd_idct_float_3dnow (void *dct_table, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); extern const int jconst_idct_float_sse[]; EXTERN(void) jsimd_idct_float_sse (void *dct_table, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); extern const int jconst_idct_float_sse2[]; EXTERN(void) jsimd_idct_float_sse2 (void *dct_table, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col); /* Huffman coding */ extern const int jconst_huff_encode_one_block[]; EXTERN(JOCTET *) jsimd_huff_encode_one_block_sse2 (void *state, JOCTET *buffer, JCOEFPTR block, int last_dc_val, c_derived_tbl *dctbl, c_derived_tbl *actbl); EXTERN(JOCTET *) jsimd_huff_encode_one_block_neon (void *state, JOCTET *buffer, JCOEFPTR block, int last_dc_val, c_derived_tbl *dctbl, c_derived_tbl *actbl); #ifndef NEON_INTRINSICS EXTERN(JOCTET *) jsimd_huff_encode_one_block_neon_slowtbl (void *state, JOCTET *buffer, JCOEFPTR block, int last_dc_val, c_derived_tbl *dctbl, c_derived_tbl *actbl); #endif /* Progressive Huffman encoding */ EXTERN(void) jsimd_encode_mcu_AC_first_prepare_sse2 (const JCOEF *block, const int *jpeg_natural_order_start, int Sl, int Al, UJCOEF *values, size_t *zerobits); EXTERN(void) jsimd_encode_mcu_AC_first_prepare_neon (const JCOEF *block, const int *jpeg_natural_order_start, int Sl, int Al, UJCOEF *values, size_t *zerobits); EXTERN(int) jsimd_encode_mcu_AC_refine_prepare_sse2 (const JCOEF *block, const int *jpeg_natural_order_start, int Sl, int Al, UJCOEF *absvalues, size_t *bits); EXTERN(int) jsimd_encode_mcu_AC_refine_prepare_neon (const JCOEF *block, const int *jpeg_natural_order_start, int Sl, int Al, UJCOEF *absvalues, size_t *bits); libjpeg-turbo-2.1.5/simd/mips/000077500000000000000000000000001436506551100161765ustar00rootroot00000000000000libjpeg-turbo-2.1.5/simd/mips/jsimd.c000066400000000000000000000635711436506551100174640ustar00rootroot00000000000000/* * jsimd_mips.c * * Copyright 2009 Pierre Ossman for Cendio AB * Copyright (C) 2009-2011, 2014, 2016, 2018, 2020, 2022, D. R. Commander. * Copyright (C) 2013-2014, MIPS Technologies, Inc., California. * Copyright (C) 2015-2016, 2018, 2022, Matthieu Darbois. * * Based on the x86 SIMD extension for IJG JPEG library, * Copyright (C) 1999-2006, MIYASAKA Masaru. * For conditions of distribution and use, see copyright notice in jsimdext.inc * * This file contains the interface between the "normal" portions * of the library and the SIMD implementations when running on a * MIPS architecture. */ #define JPEG_INTERNALS #include "../../jinclude.h" #include "../../jpeglib.h" #include "../../jsimd.h" #include "../../jdct.h" #include "../../jsimddct.h" #include "../jsimd.h" #include static THREAD_LOCAL unsigned int simd_support = ~0; #if !(defined(__mips_dsp) && (__mips_dsp_rev >= 2)) && defined(__linux__) LOCAL(void) parse_proc_cpuinfo(const char *search_string) { const char *file_name = "/proc/cpuinfo"; char cpuinfo_line[256]; FILE *f = NULL; simd_support = 0; if ((f = fopen(file_name, "r")) != NULL) { while (fgets(cpuinfo_line, sizeof(cpuinfo_line), f) != NULL) { if (strstr(cpuinfo_line, search_string) != NULL) { fclose(f); simd_support |= JSIMD_DSPR2; return; } } fclose(f); } /* Did not find string in the proc file, or not Linux ELF. */ } #endif /* * Check what SIMD accelerations are supported. */ LOCAL(void) init_simd(void) { #ifndef NO_GETENV char *env = NULL; #endif if (simd_support != ~0U) return; simd_support = 0; #if defined(__mips_dsp) && (__mips_dsp_rev >= 2) simd_support |= JSIMD_DSPR2; #elif defined(__linux__) /* We still have a chance to use MIPS DSPR2 regardless of globally used * -mdspr2 options passed to gcc by performing runtime detection via * /proc/cpuinfo parsing on linux */ parse_proc_cpuinfo("MIPS 74K"); #endif #ifndef NO_GETENV /* Force different settings through environment variables */ env = getenv("JSIMD_FORCEDSPR2"); if ((env != NULL) && (strcmp(env, "1") == 0)) simd_support = JSIMD_DSPR2; env = getenv("JSIMD_FORCENONE"); if ((env != NULL) && (strcmp(env, "1") == 0)) simd_support = 0; #endif } static const int mips_idct_ifast_coefs[4] = { 0x45404540, /* FIX( 1.082392200 / 2) = 17734 = 0x4546 */ 0x5A805A80, /* FIX( 1.414213562 / 2) = 23170 = 0x5A82 */ 0x76407640, /* FIX( 1.847759065 / 2) = 30274 = 0x7642 */ 0xAC60AC60 /* FIX(-2.613125930 / 4) = -21407 = 0xAC61 */ }; /* The following struct is borrowed from jdsample.c */ typedef void (*upsample1_ptr) (j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); typedef struct { struct jpeg_upsampler pub; JSAMPARRAY color_buf[MAX_COMPONENTS]; upsample1_ptr methods[MAX_COMPONENTS]; int next_row_out; JDIMENSION rows_to_go; int rowgroup_height[MAX_COMPONENTS]; UINT8 h_expand[MAX_COMPONENTS]; UINT8 v_expand[MAX_COMPONENTS]; } my_upsampler; typedef my_upsampler *my_upsample_ptr; GLOBAL(int) jsimd_can_rgb_ycc(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if ((RGB_PIXELSIZE != 3) && (RGB_PIXELSIZE != 4)) return 0; if (simd_support & JSIMD_DSPR2) return 1; return 0; } GLOBAL(int) jsimd_can_rgb_gray(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if ((RGB_PIXELSIZE != 3) && (RGB_PIXELSIZE != 4)) return 0; if (simd_support & JSIMD_DSPR2) return 1; return 0; } GLOBAL(int) jsimd_can_ycc_rgb(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if ((RGB_PIXELSIZE != 3) && (RGB_PIXELSIZE != 4)) return 0; if (simd_support & JSIMD_DSPR2) return 1; return 0; } GLOBAL(int) jsimd_can_ycc_rgb565(void) { return 0; } GLOBAL(int) jsimd_c_can_null_convert(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_DSPR2) return 1; return 0; } GLOBAL(void) jsimd_rgb_ycc_convert(j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { void (*dspr2fct) (JDIMENSION, JSAMPARRAY, JSAMPIMAGE, JDIMENSION, int); switch (cinfo->in_color_space) { case JCS_EXT_RGB: dspr2fct = jsimd_extrgb_ycc_convert_dspr2; break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: dspr2fct = jsimd_extrgbx_ycc_convert_dspr2; break; case JCS_EXT_BGR: dspr2fct = jsimd_extbgr_ycc_convert_dspr2; break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: dspr2fct = jsimd_extbgrx_ycc_convert_dspr2; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: dspr2fct = jsimd_extxbgr_ycc_convert_dspr2; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: dspr2fct = jsimd_extxrgb_ycc_convert_dspr2; break; default: dspr2fct = jsimd_extrgb_ycc_convert_dspr2; break; } dspr2fct(cinfo->image_width, input_buf, output_buf, output_row, num_rows); } GLOBAL(void) jsimd_rgb_gray_convert(j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { void (*dspr2fct) (JDIMENSION, JSAMPARRAY, JSAMPIMAGE, JDIMENSION, int); switch (cinfo->in_color_space) { case JCS_EXT_RGB: dspr2fct = jsimd_extrgb_gray_convert_dspr2; break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: dspr2fct = jsimd_extrgbx_gray_convert_dspr2; break; case JCS_EXT_BGR: dspr2fct = jsimd_extbgr_gray_convert_dspr2; break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: dspr2fct = jsimd_extbgrx_gray_convert_dspr2; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: dspr2fct = jsimd_extxbgr_gray_convert_dspr2; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: dspr2fct = jsimd_extxrgb_gray_convert_dspr2; break; default: dspr2fct = jsimd_extrgb_gray_convert_dspr2; break; } dspr2fct(cinfo->image_width, input_buf, output_buf, output_row, num_rows); } GLOBAL(void) jsimd_ycc_rgb_convert(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { void (*dspr2fct) (JDIMENSION, JSAMPIMAGE, JDIMENSION, JSAMPARRAY, int); switch (cinfo->out_color_space) { case JCS_EXT_RGB: dspr2fct = jsimd_ycc_extrgb_convert_dspr2; break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: dspr2fct = jsimd_ycc_extrgbx_convert_dspr2; break; case JCS_EXT_BGR: dspr2fct = jsimd_ycc_extbgr_convert_dspr2; break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: dspr2fct = jsimd_ycc_extbgrx_convert_dspr2; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: dspr2fct = jsimd_ycc_extxbgr_convert_dspr2; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: dspr2fct = jsimd_ycc_extxrgb_convert_dspr2; break; default: dspr2fct = jsimd_ycc_extrgb_convert_dspr2; break; } dspr2fct(cinfo->output_width, input_buf, input_row, output_buf, num_rows); } GLOBAL(void) jsimd_ycc_rgb565_convert(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { } GLOBAL(void) jsimd_c_null_convert(j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { jsimd_c_null_convert_dspr2(cinfo->image_width, input_buf, output_buf, output_row, num_rows, cinfo->num_components); } GLOBAL(int) jsimd_can_h2v2_downsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; /* FIXME: jsimd_h2v2_downsample_dspr2() fails some of the TJBench tiling * regression tests, probably because the DSPr2 SIMD implementation predates * those tests. */ #if 0 if (simd_support & JSIMD_DSPR2) return 1; #endif return 0; } GLOBAL(int) jsimd_can_h2v2_smooth_downsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (DCTSIZE != 8) return 0; if (simd_support & JSIMD_DSPR2) return 1; return 0; } GLOBAL(int) jsimd_can_h2v1_downsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; /* FIXME: jsimd_h2v1_downsample_dspr2() fails some of the TJBench tiling * regression tests, probably because the DSPr2 SIMD implementation predates * those tests. */ #if 0 if (simd_support & JSIMD_DSPR2) return 1; #endif return 0; } GLOBAL(void) jsimd_h2v2_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY output_data) { jsimd_h2v2_downsample_dspr2(cinfo->image_width, cinfo->max_v_samp_factor, compptr->v_samp_factor, compptr->width_in_blocks, input_data, output_data); } GLOBAL(void) jsimd_h2v2_smooth_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY output_data) { jsimd_h2v2_smooth_downsample_dspr2(input_data, output_data, compptr->v_samp_factor, cinfo->max_v_samp_factor, cinfo->smoothing_factor, compptr->width_in_blocks, cinfo->image_width); } GLOBAL(void) jsimd_h2v1_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY output_data) { jsimd_h2v1_downsample_dspr2(cinfo->image_width, cinfo->max_v_samp_factor, compptr->v_samp_factor, compptr->width_in_blocks, input_data, output_data); } GLOBAL(int) jsimd_can_h2v2_upsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_DSPR2) return 1; return 0; } GLOBAL(int) jsimd_can_h2v1_upsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; #if defined(__MIPSEL__) if (simd_support & JSIMD_DSPR2) return 1; #endif return 0; } GLOBAL(int) jsimd_can_int_upsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_DSPR2) return 1; return 0; } GLOBAL(void) jsimd_h2v2_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { jsimd_h2v2_upsample_dspr2(cinfo->max_v_samp_factor, cinfo->output_width, input_data, output_data_ptr); } GLOBAL(void) jsimd_h2v1_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { jsimd_h2v1_upsample_dspr2(cinfo->max_v_samp_factor, cinfo->output_width, input_data, output_data_ptr); } GLOBAL(void) jsimd_int_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { my_upsample_ptr upsample = (my_upsample_ptr)cinfo->upsample; jsimd_int_upsample_dspr2(upsample->h_expand[compptr->component_index], upsample->v_expand[compptr->component_index], input_data, output_data_ptr, cinfo->output_width, cinfo->max_v_samp_factor); } GLOBAL(int) jsimd_can_h2v2_fancy_upsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; #if defined(__MIPSEL__) if (simd_support & JSIMD_DSPR2) return 1; #endif return 0; } GLOBAL(int) jsimd_can_h2v1_fancy_upsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; #if defined(__MIPSEL__) if (simd_support & JSIMD_DSPR2) return 1; #endif return 0; } GLOBAL(void) jsimd_h2v2_fancy_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { jsimd_h2v2_fancy_upsample_dspr2(cinfo->max_v_samp_factor, compptr->downsampled_width, input_data, output_data_ptr); } GLOBAL(void) jsimd_h2v1_fancy_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { jsimd_h2v1_fancy_upsample_dspr2(cinfo->max_v_samp_factor, compptr->downsampled_width, input_data, output_data_ptr); } GLOBAL(int) jsimd_can_h2v2_merged_upsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_DSPR2) return 1; return 0; } GLOBAL(int) jsimd_can_h2v1_merged_upsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_DSPR2) return 1; return 0; } GLOBAL(void) jsimd_h2v2_merged_upsample(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { void (*dspr2fct) (JDIMENSION, JSAMPIMAGE, JDIMENSION, JSAMPARRAY, JSAMPLE *); switch (cinfo->out_color_space) { case JCS_EXT_RGB: dspr2fct = jsimd_h2v2_extrgb_merged_upsample_dspr2; break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: dspr2fct = jsimd_h2v2_extrgbx_merged_upsample_dspr2; break; case JCS_EXT_BGR: dspr2fct = jsimd_h2v2_extbgr_merged_upsample_dspr2; break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: dspr2fct = jsimd_h2v2_extbgrx_merged_upsample_dspr2; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: dspr2fct = jsimd_h2v2_extxbgr_merged_upsample_dspr2; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: dspr2fct = jsimd_h2v2_extxrgb_merged_upsample_dspr2; break; default: dspr2fct = jsimd_h2v2_extrgb_merged_upsample_dspr2; break; } dspr2fct(cinfo->output_width, input_buf, in_row_group_ctr, output_buf, cinfo->sample_range_limit); } GLOBAL(void) jsimd_h2v1_merged_upsample(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { void (*dspr2fct) (JDIMENSION, JSAMPIMAGE, JDIMENSION, JSAMPARRAY, JSAMPLE *); switch (cinfo->out_color_space) { case JCS_EXT_RGB: dspr2fct = jsimd_h2v1_extrgb_merged_upsample_dspr2; break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: dspr2fct = jsimd_h2v1_extrgbx_merged_upsample_dspr2; break; case JCS_EXT_BGR: dspr2fct = jsimd_h2v1_extbgr_merged_upsample_dspr2; break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: dspr2fct = jsimd_h2v1_extbgrx_merged_upsample_dspr2; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: dspr2fct = jsimd_h2v1_extxbgr_merged_upsample_dspr2; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: dspr2fct = jsimd_h2v1_extxrgb_merged_upsample_dspr2; break; default: dspr2fct = jsimd_h2v1_extrgb_merged_upsample_dspr2; break; } dspr2fct(cinfo->output_width, input_buf, in_row_group_ctr, output_buf, cinfo->sample_range_limit); } GLOBAL(int) jsimd_can_convsamp(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(DCTELEM) != 2) return 0; #if defined(__MIPSEL__) if (simd_support & JSIMD_DSPR2) return 1; #endif return 0; } GLOBAL(int) jsimd_can_convsamp_float(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(ISLOW_MULT_TYPE) != 2) return 0; #ifndef __mips_soft_float if (simd_support & JSIMD_DSPR2) return 1; #endif return 0; } GLOBAL(void) jsimd_convsamp(JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM *workspace) { jsimd_convsamp_dspr2(sample_data, start_col, workspace); } GLOBAL(void) jsimd_convsamp_float(JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT *workspace) { #ifndef __mips_soft_float jsimd_convsamp_float_dspr2(sample_data, start_col, workspace); #endif } GLOBAL(int) jsimd_can_fdct_islow(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(DCTELEM) != 2) return 0; #if defined(__MIPSEL__) if (simd_support & JSIMD_DSPR2) return 1; #endif return 0; } GLOBAL(int) jsimd_can_fdct_ifast(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(DCTELEM) != 2) return 0; #if defined(__MIPSEL__) if (simd_support & JSIMD_DSPR2) return 1; #endif return 0; } GLOBAL(int) jsimd_can_fdct_float(void) { return 0; } GLOBAL(void) jsimd_fdct_islow(DCTELEM *data) { jsimd_fdct_islow_dspr2(data); } GLOBAL(void) jsimd_fdct_ifast(DCTELEM *data) { jsimd_fdct_ifast_dspr2(data); } GLOBAL(void) jsimd_fdct_float(FAST_FLOAT *data) { } GLOBAL(int) jsimd_can_quantize(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (sizeof(DCTELEM) != 2) return 0; if (simd_support & JSIMD_DSPR2) return 1; return 0; } GLOBAL(int) jsimd_can_quantize_float(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(ISLOW_MULT_TYPE) != 2) return 0; #ifndef __mips_soft_float if (simd_support & JSIMD_DSPR2) return 1; #endif return 0; } GLOBAL(void) jsimd_quantize(JCOEFPTR coef_block, DCTELEM *divisors, DCTELEM *workspace) { jsimd_quantize_dspr2(coef_block, divisors, workspace); } GLOBAL(void) jsimd_quantize_float(JCOEFPTR coef_block, FAST_FLOAT *divisors, FAST_FLOAT *workspace) { #ifndef __mips_soft_float jsimd_quantize_float_dspr2(coef_block, divisors, workspace); #endif } GLOBAL(int) jsimd_can_idct_2x2(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(ISLOW_MULT_TYPE) != 2) return 0; if (simd_support & JSIMD_DSPR2) return 1; return 0; } GLOBAL(int) jsimd_can_idct_4x4(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(ISLOW_MULT_TYPE) != 2) return 0; #if defined(__MIPSEL__) if (simd_support & JSIMD_DSPR2) return 1; #endif return 0; } GLOBAL(int) jsimd_can_idct_6x6(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(ISLOW_MULT_TYPE) != 2) return 0; if (simd_support & JSIMD_DSPR2) return 1; return 0; } GLOBAL(int) jsimd_can_idct_12x12(void) { init_simd(); if (BITS_IN_JSAMPLE != 8) return 0; if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(ISLOW_MULT_TYPE) != 2) return 0; if (simd_support & JSIMD_DSPR2) return 1; return 0; } GLOBAL(void) jsimd_idct_2x2(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { jsimd_idct_2x2_dspr2(compptr->dct_table, coef_block, output_buf, output_col); } GLOBAL(void) jsimd_idct_4x4(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { int workspace[DCTSIZE * 4]; /* buffers data between passes */ jsimd_idct_4x4_dspr2(compptr->dct_table, coef_block, output_buf, output_col, workspace); } GLOBAL(void) jsimd_idct_6x6(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { jsimd_idct_6x6_dspr2(compptr->dct_table, coef_block, output_buf, output_col); } GLOBAL(void) jsimd_idct_12x12(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { int workspace[96]; int output[12] = { (int)(output_buf[0] + output_col), (int)(output_buf[1] + output_col), (int)(output_buf[2] + output_col), (int)(output_buf[3] + output_col), (int)(output_buf[4] + output_col), (int)(output_buf[5] + output_col), (int)(output_buf[6] + output_col), (int)(output_buf[7] + output_col), (int)(output_buf[8] + output_col), (int)(output_buf[9] + output_col), (int)(output_buf[10] + output_col), (int)(output_buf[11] + output_col) }; jsimd_idct_12x12_pass1_dspr2(coef_block, compptr->dct_table, workspace); jsimd_idct_12x12_pass2_dspr2(workspace, output); } GLOBAL(int) jsimd_can_idct_islow(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(ISLOW_MULT_TYPE) != 2) return 0; if (simd_support & JSIMD_DSPR2) return 1; return 0; } GLOBAL(int) jsimd_can_idct_ifast(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(IFAST_MULT_TYPE) != 2) return 0; if (IFAST_SCALE_BITS != 2) return 0; #if defined(__MIPSEL__) if (simd_support & JSIMD_DSPR2) return 1; #endif return 0; } GLOBAL(int) jsimd_can_idct_float(void) { return 0; } GLOBAL(void) jsimd_idct_islow(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { int output[8] = { (int)(output_buf[0] + output_col), (int)(output_buf[1] + output_col), (int)(output_buf[2] + output_col), (int)(output_buf[3] + output_col), (int)(output_buf[4] + output_col), (int)(output_buf[5] + output_col), (int)(output_buf[6] + output_col), (int)(output_buf[7] + output_col) }; jsimd_idct_islow_dspr2(coef_block, compptr->dct_table, output, IDCT_range_limit(cinfo)); } GLOBAL(void) jsimd_idct_ifast(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { JCOEFPTR inptr; IFAST_MULT_TYPE *quantptr; DCTELEM workspace[DCTSIZE2]; /* buffers data between passes */ /* Pass 1: process columns from input, store into work array. */ inptr = coef_block; quantptr = (IFAST_MULT_TYPE *)compptr->dct_table; jsimd_idct_ifast_cols_dspr2(inptr, quantptr, workspace, mips_idct_ifast_coefs); /* Pass 2: process rows from work array, store into output array. */ /* Note that we must descale the results by a factor of 8 == 2**3, */ /* and also undo the PASS1_BITS scaling. */ jsimd_idct_ifast_rows_dspr2(workspace, output_buf, output_col, mips_idct_ifast_coefs); } GLOBAL(void) jsimd_idct_float(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { } GLOBAL(int) jsimd_can_huff_encode_one_block(void) { return 0; } GLOBAL(JOCTET *) jsimd_huff_encode_one_block(void *state, JOCTET *buffer, JCOEFPTR block, int last_dc_val, c_derived_tbl *dctbl, c_derived_tbl *actbl) { return NULL; } GLOBAL(int) jsimd_can_encode_mcu_AC_first_prepare(void) { return 0; } GLOBAL(void) jsimd_encode_mcu_AC_first_prepare(const JCOEF *block, const int *jpeg_natural_order_start, int Sl, int Al, UJCOEF *values, size_t *zerobits) { } GLOBAL(int) jsimd_can_encode_mcu_AC_refine_prepare(void) { return 0; } GLOBAL(int) jsimd_encode_mcu_AC_refine_prepare(const JCOEF *block, const int *jpeg_natural_order_start, int Sl, int Al, UJCOEF *absvalues, size_t *bits) { return 0; } libjpeg-turbo-2.1.5/simd/mips/jsimd_dspr2.S000066400000000000000000004423151436506551100205530ustar00rootroot00000000000000/* * MIPS DSPr2 optimizations for libjpeg-turbo * * Copyright (C) 2013-2014, MIPS Technologies, Inc., California. * All Rights Reserved. * Authors: Teodora Novkovic * Darko Laus * Copyright (C) 2015, D. R. Commander. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #include "jsimd_dspr2_asm.h" /*****************************************************************************/ LEAF_DSPR2(jsimd_c_null_convert_dspr2) /* * a0 = cinfo->image_width * a1 = input_buf * a2 = output_buf * a3 = output_row * 16(sp) = num_rows * 20(sp) = cinfo->num_components * * Null conversion for compression */ SAVE_REGS_ON_STACK 8, s0, s1 lw t9, 24(sp) /* t9 = num_rows */ lw s0, 28(sp) /* s0 = cinfo->num_components */ andi t0, a0, 3 /* t0 = cinfo->image_width & 3 */ beqz t0, 4f /* no residual */ nop 0: addiu t9, t9, -1 bltz t9, 7f li t1, 0 1: sll t3, t1, 2 lwx t5, t3(a2) /* t5 = outptr = output_buf[ci] */ lw t2, 0(a1) /* t2 = inptr = *input_buf */ sll t4, a3, 2 lwx t5, t4(t5) /* t5 = outptr = output_buf[ci][output_row] */ addu t2, t2, t1 addu s1, t5, a0 addu t6, t5, t0 2: lbu t3, 0(t2) addiu t5, t5, 1 sb t3, -1(t5) bne t6, t5, 2b addu t2, t2, s0 3: lbu t3, 0(t2) addu t4, t2, s0 addu t7, t4, s0 addu t8, t7, s0 addu t2, t8, s0 lbu t4, 0(t4) lbu t7, 0(t7) lbu t8, 0(t8) addiu t5, t5, 4 sb t3, -4(t5) sb t4, -3(t5) sb t7, -2(t5) bne s1, t5, 3b sb t8, -1(t5) addiu t1, t1, 1 bne t1, s0, 1b nop addiu a1, a1, 4 bgez t9, 0b addiu a3, a3, 1 b 7f nop 4: addiu t9, t9, -1 bltz t9, 7f li t1, 0 5: sll t3, t1, 2 lwx t5, t3(a2) /* t5 = outptr = output_buf[ci] */ lw t2, 0(a1) /* t2 = inptr = *input_buf */ sll t4, a3, 2 lwx t5, t4(t5) /* t5 = outptr = output_buf[ci][output_row] */ addu t2, t2, t1 addu s1, t5, a0 addu t6, t5, t0 6: lbu t3, 0(t2) addu t4, t2, s0 addu t7, t4, s0 addu t8, t7, s0 addu t2, t8, s0 lbu t4, 0(t4) lbu t7, 0(t7) lbu t8, 0(t8) addiu t5, t5, 4 sb t3, -4(t5) sb t4, -3(t5) sb t7, -2(t5) bne s1, t5, 6b sb t8, -1(t5) addiu t1, t1, 1 bne t1, s0, 5b nop addiu a1, a1, 4 bgez t9, 4b addiu a3, a3, 1 7: RESTORE_REGS_FROM_STACK 8, s0, s1 j ra nop END(jsimd_c_null_convert_dspr2) /*****************************************************************************/ /* * jsimd_extrgb_ycc_convert_dspr2 * jsimd_extbgr_ycc_convert_dspr2 * jsimd_extrgbx_ycc_convert_dspr2 * jsimd_extbgrx_ycc_convert_dspr2 * jsimd_extxbgr_ycc_convert_dspr2 * jsimd_extxrgb_ycc_convert_dspr2 * * Colorspace conversion RGB -> YCbCr */ .macro GENERATE_JSIMD_RGB_YCC_CONVERT_DSPR2 colorid, pixel_size, \ r_offs, g_offs, b_offs .macro DO_RGB_TO_YCC r, g, b, inptr lbu \r, \r_offs(\inptr) lbu \g, \g_offs(\inptr) lbu \b, \b_offs(\inptr) addiu \inptr, \pixel_size .endm LEAF_DSPR2(jsimd_\colorid\()_ycc_convert_dspr2) /* * a0 = cinfo->image_width * a1 = input_buf * a2 = output_buf * a3 = output_row * 16(sp) = num_rows */ SAVE_REGS_ON_STACK 32, s0, s1, s2, s3, s4, s5, s6, s7 lw t7, 48(sp) /* t7 = num_rows */ li s0, 0x4c8b /* FIX(0.29900) */ li s1, 0x9646 /* FIX(0.58700) */ li s2, 0x1d2f /* FIX(0.11400) */ li s3, 0xffffd4cd /* -FIX(0.16874) */ li s4, 0xffffab33 /* -FIX(0.33126) */ li s5, 0x8000 /* FIX(0.50000) */ li s6, 0xffff94d1 /* -FIX(0.41869) */ li s7, 0xffffeb2f /* -FIX(0.08131) */ li t8, 0x807fff /* CBCR_OFFSET + ONE_HALF-1 */ 0: addiu t7, -1 /* --num_rows */ lw t6, 0(a1) /* t6 = input_buf[0] */ lw t0, 0(a2) lw t1, 4(a2) lw t2, 8(a2) sll t3, a3, 2 lwx t0, t3(t0) /* t0 = output_buf[0][output_row] */ lwx t1, t3(t1) /* t1 = output_buf[1][output_row] */ lwx t2, t3(t2) /* t2 = output_buf[2][output_row] */ addu t9, t2, a0 /* t9 = end address */ addiu a3, 1 1: DO_RGB_TO_YCC t3, t4, t5, t6 mtlo s5, $ac0 mtlo t8, $ac1 mtlo t8, $ac2 maddu $ac0, s2, t5 maddu $ac1, s5, t5 maddu $ac2, s5, t3 maddu $ac0, s0, t3 maddu $ac1, s3, t3 maddu $ac2, s6, t4 maddu $ac0, s1, t4 maddu $ac1, s4, t4 maddu $ac2, s7, t5 extr.w t3, $ac0, 16 extr.w t4, $ac1, 16 extr.w t5, $ac2, 16 sb t3, 0(t0) sb t4, 0(t1) sb t5, 0(t2) addiu t0, 1 addiu t2, 1 bne t2, t9, 1b addiu t1, 1 bgtz t7, 0b addiu a1, 4 RESTORE_REGS_FROM_STACK 32, s0, s1, s2, s3, s4, s5, s6, s7 j ra nop END(jsimd_\colorid\()_ycc_convert_dspr2) .purgem DO_RGB_TO_YCC .endm /*-------------------------------------id -- pix R G B */ GENERATE_JSIMD_RGB_YCC_CONVERT_DSPR2 extrgb, 3, 0, 1, 2 GENERATE_JSIMD_RGB_YCC_CONVERT_DSPR2 extbgr, 3, 2, 1, 0 GENERATE_JSIMD_RGB_YCC_CONVERT_DSPR2 extrgbx, 4, 0, 1, 2 GENERATE_JSIMD_RGB_YCC_CONVERT_DSPR2 extbgrx, 4, 2, 1, 0 GENERATE_JSIMD_RGB_YCC_CONVERT_DSPR2 extxbgr, 4, 3, 2, 1 GENERATE_JSIMD_RGB_YCC_CONVERT_DSPR2 extxrgb, 4, 1, 2, 3 /*****************************************************************************/ /* * jsimd_ycc_extrgb_convert_dspr2 * jsimd_ycc_extbgr_convert_dspr2 * jsimd_ycc_extrgbx_convert_dspr2 * jsimd_ycc_extbgrx_convert_dspr2 * jsimd_ycc_extxbgr_convert_dspr2 * jsimd_ycc_extxrgb_convert_dspr2 * * Colorspace conversion YCbCr -> RGB */ .macro GENERATE_JSIMD_YCC_RGB_CONVERT_DSPR2 colorid, pixel_size, \ r_offs, g_offs, b_offs, a_offs .macro STORE_YCC_TO_RGB scratch0 scratch1 scratch2 outptr sb \scratch0, \r_offs(\outptr) sb \scratch1, \g_offs(\outptr) sb \scratch2, \b_offs(\outptr) .if (\pixel_size == 4) li t0, 0xFF sb t0, \a_offs(\outptr) .endif addiu \outptr, \pixel_size .endm LEAF_DSPR2(jsimd_ycc_\colorid\()_convert_dspr2) /* * a0 = cinfo->image_width * a1 = input_buf * a2 = input_row * a3 = output_buf * 16(sp) = num_rows */ SAVE_REGS_ON_STACK 32, s0, s1, s2, s3, s4, s5, s6, s7 lw s1, 48(sp) li t3, 0x8000 li t4, 0x166e9 /* FIX(1.40200) */ li t5, 0x1c5a2 /* FIX(1.77200) */ li t6, 0xffff492e /* -FIX(0.71414) */ li t7, 0xffffa7e6 /* -FIX(0.34414) */ repl.ph t8, 128 0: lw s0, 0(a3) lw t0, 0(a1) lw t1, 4(a1) lw t2, 8(a1) sll s5, a2, 2 addiu s1, -1 lwx s2, s5(t0) lwx s3, s5(t1) lwx s4, s5(t2) addu t9, s2, a0 addiu a2, 1 1: lbu s7, 0(s4) /* cr */ lbu s6, 0(s3) /* cb */ lbu s5, 0(s2) /* y */ addiu s2, 1 addiu s4, 1 addiu s7, -128 addiu s6, -128 mul t2, t7, s6 mul t0, t6, s7 /* Crgtab[cr] */ sll s7, 15 mulq_rs.w t1, t4, s7 /* Crrtab[cr] */ sll s6, 15 addu t2, t3 /* Cbgtab[cb] */ addu t2, t0 mulq_rs.w t0, t5, s6 /* Cbbtab[cb] */ sra t2, 16 addu t1, s5 addu t2, s5 /* add y */ ins t2, t1, 16, 16 subu.ph t2, t2, t8 addu t0, s5 shll_s.ph t2, t2, 8 subu t0, 128 shra.ph t2, t2, 8 shll_s.w t0, t0, 24 addu.ph t2, t2, t8 /* clip & store */ sra t0, t0, 24 sra t1, t2, 16 addiu t0, 128 STORE_YCC_TO_RGB t1, t2, t0, s0 bne s2, t9, 1b addiu s3, 1 bgtz s1, 0b addiu a3, 4 RESTORE_REGS_FROM_STACK 32, s0, s1, s2, s3, s4, s5, s6, s7 j ra nop END(jsimd_ycc_\colorid\()_convert_dspr2) .purgem STORE_YCC_TO_RGB .endm /*-------------------------------------id -- pix R G B A */ GENERATE_JSIMD_YCC_RGB_CONVERT_DSPR2 extrgb, 3, 0, 1, 2, 3 GENERATE_JSIMD_YCC_RGB_CONVERT_DSPR2 extbgr, 3, 2, 1, 0, 3 GENERATE_JSIMD_YCC_RGB_CONVERT_DSPR2 extrgbx, 4, 0, 1, 2, 3 GENERATE_JSIMD_YCC_RGB_CONVERT_DSPR2 extbgrx, 4, 2, 1, 0, 3 GENERATE_JSIMD_YCC_RGB_CONVERT_DSPR2 extxbgr, 4, 3, 2, 1, 0 GENERATE_JSIMD_YCC_RGB_CONVERT_DSPR2 extxrgb, 4, 1, 2, 3, 0 /*****************************************************************************/ /* * jsimd_extrgb_gray_convert_dspr2 * jsimd_extbgr_gray_convert_dspr2 * jsimd_extrgbx_gray_convert_dspr2 * jsimd_extbgrx_gray_convert_dspr2 * jsimd_extxbgr_gray_convert_dspr2 * jsimd_extxrgb_gray_convert_dspr2 * * Colorspace conversion RGB -> GRAY */ .macro GENERATE_JSIMD_RGB_GRAY_CONVERT_DSPR2 colorid, pixel_size, \ r_offs, g_offs, b_offs .macro DO_RGB_TO_GRAY r, g, b, inptr lbu \r, \r_offs(\inptr) lbu \g, \g_offs(\inptr) lbu \b, \b_offs(\inptr) addiu \inptr, \pixel_size .endm LEAF_DSPR2(jsimd_\colorid\()_gray_convert_dspr2) /* * a0 = cinfo->image_width * a1 = input_buf * a2 = output_buf * a3 = output_row * 16(sp) = num_rows */ SAVE_REGS_ON_STACK 32, s0, s1, s2, s3, s4, s5, s6, s7 li s0, 0x4c8b /* s0 = FIX(0.29900) */ li s1, 0x9646 /* s1 = FIX(0.58700) */ li s2, 0x1d2f /* s2 = FIX(0.11400) */ li s7, 0x8000 /* s7 = FIX(0.50000) */ lw s6, 48(sp) andi t7, a0, 3 0: addiu s6, -1 /* s6 = num_rows */ lw t0, 0(a1) lw t1, 0(a2) sll t3, a3, 2 lwx t1, t3(t1) addiu a3, 1 addu t9, t1, a0 subu t8, t9, t7 beq t1, t8, 2f nop 1: DO_RGB_TO_GRAY t3, t4, t5, t0 DO_RGB_TO_GRAY s3, s4, s5, t0 mtlo s7, $ac0 maddu $ac0, s2, t5 maddu $ac0, s1, t4 maddu $ac0, s0, t3 mtlo s7, $ac1 maddu $ac1, s2, s5 maddu $ac1, s1, s4 maddu $ac1, s0, s3 extr.w t6, $ac0, 16 DO_RGB_TO_GRAY t3, t4, t5, t0 DO_RGB_TO_GRAY s3, s4, s5, t0 mtlo s7, $ac0 maddu $ac0, s2, t5 maddu $ac0, s1, t4 extr.w t2, $ac1, 16 maddu $ac0, s0, t3 mtlo s7, $ac1 maddu $ac1, s2, s5 maddu $ac1, s1, s4 maddu $ac1, s0, s3 extr.w t5, $ac0, 16 sb t6, 0(t1) sb t2, 1(t1) extr.w t3, $ac1, 16 addiu t1, 4 sb t5, -2(t1) sb t3, -1(t1) bne t1, t8, 1b nop 2: beqz t7, 4f nop 3: DO_RGB_TO_GRAY t3, t4, t5, t0 mtlo s7, $ac0 maddu $ac0, s2, t5 maddu $ac0, s1, t4 maddu $ac0, s0, t3 extr.w t6, $ac0, 16 sb t6, 0(t1) addiu t1, 1 bne t1, t9, 3b nop 4: bgtz s6, 0b addiu a1, 4 RESTORE_REGS_FROM_STACK 32, s0, s1, s2, s3, s4, s5, s6, s7 j ra nop END(jsimd_\colorid\()_gray_convert_dspr2) .purgem DO_RGB_TO_GRAY .endm /*-------------------------------------id -- pix R G B */ GENERATE_JSIMD_RGB_GRAY_CONVERT_DSPR2 extrgb, 3, 0, 1, 2 GENERATE_JSIMD_RGB_GRAY_CONVERT_DSPR2 extbgr, 3, 2, 1, 0 GENERATE_JSIMD_RGB_GRAY_CONVERT_DSPR2 extrgbx, 4, 0, 1, 2 GENERATE_JSIMD_RGB_GRAY_CONVERT_DSPR2 extbgrx, 4, 2, 1, 0 GENERATE_JSIMD_RGB_GRAY_CONVERT_DSPR2 extxbgr, 4, 3, 2, 1 GENERATE_JSIMD_RGB_GRAY_CONVERT_DSPR2 extxrgb, 4, 1, 2, 3 /*****************************************************************************/ /* * jsimd_h2v2_merged_upsample_dspr2 * jsimd_h2v2_extrgb_merged_upsample_dspr2 * jsimd_h2v2_extrgbx_merged_upsample_dspr2 * jsimd_h2v2_extbgr_merged_upsample_dspr2 * jsimd_h2v2_extbgrx_merged_upsample_dspr2 * jsimd_h2v2_extxbgr_merged_upsample_dspr2 * jsimd_h2v2_extxrgb_merged_upsample_dspr2 * * Merged h2v2 upsample routines */ .macro GENERATE_H2V2_MERGED_UPSAMPLE_DSPR2 colorid, pixel_size, \ r1_offs, g1_offs, \ b1_offs, a1_offs, \ r2_offs, g2_offs, \ b2_offs, a2_offs .macro STORE_H2V2_2_PIXELS scratch0 scratch1 scratch2 scratch3 scratch4 \ scratch5 outptr sb \scratch0, \r1_offs(\outptr) sb \scratch1, \g1_offs(\outptr) sb \scratch2, \b1_offs(\outptr) sb \scratch3, \r2_offs(\outptr) sb \scratch4, \g2_offs(\outptr) sb \scratch5, \b2_offs(\outptr) .if (\pixel_size == 8) li \scratch0, 0xFF sb \scratch0, \a1_offs(\outptr) sb \scratch0, \a2_offs(\outptr) .endif addiu \outptr, \pixel_size .endm .macro STORE_H2V2_1_PIXEL scratch0 scratch1 scratch2 outptr sb \scratch0, \r1_offs(\outptr) sb \scratch1, \g1_offs(\outptr) sb \scratch2, \b1_offs(\outptr) .if (\pixel_size == 8) li t0, 0xFF sb t0, \a1_offs(\outptr) .endif .endm LEAF_DSPR2(jsimd_h2v2_\colorid\()_merged_upsample_dspr2) /* * a0 = cinfo->output_width * a1 = input_buf * a2 = in_row_group_ctr * a3 = output_buf * 16(sp) = cinfo->sample_range_limit */ SAVE_REGS_ON_STACK 40, s0, s1, s2, s3, s4, s5, s6, s7, ra lw t9, 56(sp) /* cinfo->sample_range_limit */ lw v0, 0(a1) lw v1, 4(a1) lw t0, 8(a1) sll t1, a2, 3 addiu t2, t1, 4 sll t3, a2, 2 lw t4, 0(a3) /* t4 = output_buf[0] */ lwx t1, t1(v0) /* t1 = input_buf[0][in_row_group_ctr*2] */ lwx t2, t2(v0) /* t2 = input_buf[0][in_row_group_ctr*2 + 1] */ lwx t5, t3(v1) /* t5 = input_buf[1][in_row_group_ctr] */ lwx t6, t3(t0) /* t6 = input_buf[2][in_row_group_ctr] */ lw t7, 4(a3) /* t7 = output_buf[1] */ li s1, 0xe6ea addiu t8, s1, 0x7fff /* t8 = 0x166e9 [FIX(1.40200)] */ addiu s0, t8, 0x5eb9 /* s0 = 0x1c5a2 [FIX(1.77200)] */ addiu s1, zero, 0xa7e6 /* s4 = 0xffffa7e6 [-FIX(0.34414)] */ xori s2, s1, 0xeec8 /* s3 = 0xffff492e [-FIX(0.71414)] */ srl t3, a0, 1 blez t3, 2f addu t0, t5, t3 /* t0 = end address */ 1: lbu t3, 0(t5) lbu s3, 0(t6) addiu t5, t5, 1 addiu t3, t3, -128 /* (cb - 128) */ addiu s3, s3, -128 /* (cr - 128) */ mult $ac1, s1, t3 madd $ac1, s2, s3 sll s3, s3, 15 sll t3, t3, 15 mulq_rs.w s4, t8, s3 /* s4 = (C1 * cr + ONE_HALF)>> SCALEBITS */ extr_r.w s5, $ac1, 16 mulq_rs.w s6, s0, t3 /* s6 = (C2 * cb + ONE_HALF)>> SCALEBITS */ lbu v0, 0(t1) addiu t6, t6, 1 addiu t1, t1, 2 addu t3, v0, s4 /* y+cred */ addu s3, v0, s5 /* y+cgreen */ addu v1, v0, s6 /* y+cblue */ addu t3, t9, t3 /* y+cred */ addu s3, t9, s3 /* y+cgreen */ addu v1, t9, v1 /* y+cblue */ lbu AT, 0(t3) lbu s7, 0(s3) lbu ra, 0(v1) lbu v0, -1(t1) addu t3, v0, s4 /* y+cred */ addu s3, v0, s5 /* y+cgreen */ addu v1, v0, s6 /* y+cblue */ addu t3, t9, t3 /* y+cred */ addu s3, t9, s3 /* y+cgreen */ addu v1, t9, v1 /* y+cblue */ lbu t3, 0(t3) lbu s3, 0(s3) lbu v1, 0(v1) lbu v0, 0(t2) STORE_H2V2_2_PIXELS AT, s7, ra, t3, s3, v1, t4 addu t3, v0, s4 /* y+cred */ addu s3, v0, s5 /* y+cgreen */ addu v1, v0, s6 /* y+cblue */ addu t3, t9, t3 /* y+cred */ addu s3, t9, s3 /* y+cgreen */ addu v1, t9, v1 /* y+cblue */ lbu AT, 0(t3) lbu s7, 0(s3) lbu ra, 0(v1) lbu v0, 1(t2) addiu t2, t2, 2 addu t3, v0, s4 /* y+cred */ addu s3, v0, s5 /* y+cgreen */ addu v1, v0, s6 /* y+cblue */ addu t3, t9, t3 /* y+cred */ addu s3, t9, s3 /* y+cgreen */ addu v1, t9, v1 /* y+cblue */ lbu t3, 0(t3) lbu s3, 0(s3) lbu v1, 0(v1) STORE_H2V2_2_PIXELS AT, s7, ra, t3, s3, v1, t7 bne t0, t5, 1b nop 2: andi t0, a0, 1 beqz t0, 4f lbu t3, 0(t5) lbu s3, 0(t6) addiu t3, t3, -128 /* (cb - 128) */ addiu s3, s3, -128 /* (cr - 128) */ mult $ac1, s1, t3 madd $ac1, s2, s3 sll s3, s3, 15 sll t3, t3, 15 lbu v0, 0(t1) extr_r.w s5, $ac1, 16 mulq_rs.w s4, t8, s3 /* s4 = (C1 * cr + ONE_HALF)>> SCALEBITS */ mulq_rs.w s6, s0, t3 /* s6 = (C2 * cb + ONE_HALF)>> SCALEBITS */ addu t3, v0, s4 /* y+cred */ addu s3, v0, s5 /* y+cgreen */ addu v1, v0, s6 /* y+cblue */ addu t3, t9, t3 /* y+cred */ addu s3, t9, s3 /* y+cgreen */ addu v1, t9, v1 /* y+cblue */ lbu t3, 0(t3) lbu s3, 0(s3) lbu v1, 0(v1) lbu v0, 0(t2) STORE_H2V2_1_PIXEL t3, s3, v1, t4 addu t3, v0, s4 /* y+cred */ addu s3, v0, s5 /* y+cgreen */ addu v1, v0, s6 /* y+cblue */ addu t3, t9, t3 /* y+cred */ addu s3, t9, s3 /* y+cgreen */ addu v1, t9, v1 /* y+cblue */ lbu t3, 0(t3) lbu s3, 0(s3) lbu v1, 0(v1) STORE_H2V2_1_PIXEL t3, s3, v1, t7 4: RESTORE_REGS_FROM_STACK 40, s0, s1, s2, s3, s4, s5, s6, s7, ra j ra nop END(jsimd_h2v2_\colorid\()_merged_upsample_dspr2) .purgem STORE_H2V2_1_PIXEL .purgem STORE_H2V2_2_PIXELS .endm /*------------------------------------id -- pix R1 G1 B1 A1 R2 G2 B2 A2 */ GENERATE_H2V2_MERGED_UPSAMPLE_DSPR2 extrgb, 6, 0, 1, 2, 6, 3, 4, 5, 6 GENERATE_H2V2_MERGED_UPSAMPLE_DSPR2 extbgr, 6, 2, 1, 0, 3, 5, 4, 3, 6 GENERATE_H2V2_MERGED_UPSAMPLE_DSPR2 extrgbx, 8, 0, 1, 2, 3, 4, 5, 6, 7 GENERATE_H2V2_MERGED_UPSAMPLE_DSPR2 extbgrx, 8, 2, 1, 0, 3, 6, 5, 4, 7 GENERATE_H2V2_MERGED_UPSAMPLE_DSPR2 extxbgr, 8, 3, 2, 1, 0, 7, 6, 5, 4 GENERATE_H2V2_MERGED_UPSAMPLE_DSPR2 extxrgb, 8, 1, 2, 3, 0, 5, 6, 7, 4 /*****************************************************************************/ /* * jsimd_h2v1_merged_upsample_dspr2 * jsimd_h2v1_extrgb_merged_upsample_dspr2 * jsimd_h2v1_extrgbx_merged_upsample_dspr2 * jsimd_h2v1_extbgr_merged_upsample_dspr2 * jsimd_h2v1_extbgrx_merged_upsample_dspr2 * jsimd_h2v1_extxbgr_merged_upsample_dspr2 * jsimd_h2v1_extxrgb_merged_upsample_dspr2 * * Merged h2v1 upsample routines */ .macro GENERATE_H2V1_MERGED_UPSAMPLE_DSPR2 colorid, pixel_size, \ r1_offs, g1_offs, \ b1_offs, a1_offs, \ r2_offs, g2_offs, \ b2_offs, a2_offs .macro STORE_H2V1_2_PIXELS scratch0 scratch1 scratch2 scratch3 scratch4 \ scratch5 outptr sb \scratch0, \r1_offs(\outptr) sb \scratch1, \g1_offs(\outptr) sb \scratch2, \b1_offs(\outptr) sb \scratch3, \r2_offs(\outptr) sb \scratch4, \g2_offs(\outptr) sb \scratch5, \b2_offs(\outptr) .if (\pixel_size == 8) li t0, 0xFF sb t0, \a1_offs(\outptr) sb t0, \a2_offs(\outptr) .endif addiu \outptr, \pixel_size .endm .macro STORE_H2V1_1_PIXEL scratch0 scratch1 scratch2 outptr sb \scratch0, \r1_offs(\outptr) sb \scratch1, \g1_offs(\outptr) sb \scratch2, \b1_offs(\outptr) .if (\pixel_size == 8) li t0, 0xFF sb t0, \a1_offs(\outptr) .endif .endm LEAF_DSPR2(jsimd_h2v1_\colorid\()_merged_upsample_dspr2) /* * a0 = cinfo->output_width * a1 = input_buf * a2 = in_row_group_ctr * a3 = output_buf * 16(sp) = range_limit */ SAVE_REGS_ON_STACK 40, s0, s1, s2, s3, s4, s5, s6, s7, ra li t0, 0xe6ea lw t1, 0(a1) /* t1 = input_buf[0] */ lw t2, 4(a1) /* t2 = input_buf[1] */ lw t3, 8(a1) /* t3 = input_buf[2] */ lw t8, 56(sp) /* t8 = range_limit */ addiu s1, t0, 0x7fff /* s1 = 0x166e9 [FIX(1.40200)] */ addiu s2, s1, 0x5eb9 /* s2 = 0x1c5a2 [FIX(1.77200)] */ addiu s0, t0, 0x9916 /* s0 = 0x8000 */ addiu s4, zero, 0xa7e6 /* s4 = 0xffffa7e6 [-FIX(0.34414)] */ xori s3, s4, 0xeec8 /* s3 = 0xffff492e [-FIX(0.71414)] */ srl t0, a0, 1 sll t4, a2, 2 lwx s5, t4(t1) /* s5 = inptr0 */ lwx s6, t4(t2) /* s6 = inptr1 */ lwx s7, t4(t3) /* s7 = inptr2 */ lw t7, 0(a3) /* t7 = outptr */ blez t0, 2f addu t9, s6, t0 /* t9 = end address */ 1: lbu t2, 0(s6) /* t2 = cb */ lbu t0, 0(s7) /* t0 = cr */ lbu t1, 0(s5) /* t1 = y */ addiu t2, t2, -128 /* t2 = cb - 128 */ addiu t0, t0, -128 /* t0 = cr - 128 */ mult $ac1, s4, t2 madd $ac1, s3, t0 sll t0, t0, 15 sll t2, t2, 15 mulq_rs.w t0, s1, t0 /* t0 = (C1*cr + ONE_HALF)>> SCALEBITS */ extr_r.w t5, $ac1, 16 mulq_rs.w t6, s2, t2 /* t6 = (C2*cb + ONE_HALF)>> SCALEBITS */ addiu s7, s7, 1 addiu s6, s6, 1 addu t2, t1, t0 /* t2 = y + cred */ addu t3, t1, t5 /* t3 = y + cgreen */ addu t4, t1, t6 /* t4 = y + cblue */ addu t2, t8, t2 addu t3, t8, t3 addu t4, t8, t4 lbu t1, 1(s5) lbu v0, 0(t2) lbu v1, 0(t3) lbu ra, 0(t4) addu t2, t1, t0 addu t3, t1, t5 addu t4, t1, t6 addu t2, t8, t2 addu t3, t8, t3 addu t4, t8, t4 lbu t2, 0(t2) lbu t3, 0(t3) lbu t4, 0(t4) STORE_H2V1_2_PIXELS v0, v1, ra, t2, t3, t4, t7 bne t9, s6, 1b addiu s5, s5, 2 2: andi t0, a0, 1 beqz t0, 4f nop 3: lbu t2, 0(s6) lbu t0, 0(s7) lbu t1, 0(s5) addiu t2, t2, -128 /* (cb - 128) */ addiu t0, t0, -128 /* (cr - 128) */ mul t3, s4, t2 mul t4, s3, t0 sll t0, t0, 15 sll t2, t2, 15 mulq_rs.w t0, s1, t0 /* (C1*cr + ONE_HALF)>> SCALEBITS */ mulq_rs.w t6, s2, t2 /* (C2*cb + ONE_HALF)>> SCALEBITS */ addu t3, t3, s0 addu t3, t4, t3 sra t5, t3, 16 /* (C4*cb + ONE_HALF + C3*cr)>> SCALEBITS */ addu t2, t1, t0 /* y + cred */ addu t3, t1, t5 /* y + cgreen */ addu t4, t1, t6 /* y + cblue */ addu t2, t8, t2 addu t3, t8, t3 addu t4, t8, t4 lbu t2, 0(t2) lbu t3, 0(t3) lbu t4, 0(t4) STORE_H2V1_1_PIXEL t2, t3, t4, t7 4: RESTORE_REGS_FROM_STACK 40, s0, s1, s2, s3, s4, s5, s6, s7, ra j ra nop END(jsimd_h2v1_\colorid\()_merged_upsample_dspr2) .purgem STORE_H2V1_1_PIXEL .purgem STORE_H2V1_2_PIXELS .endm /*------------------------------------id -- pix R1 G1 B1 A1 R2 G2 B2 A2 */ GENERATE_H2V1_MERGED_UPSAMPLE_DSPR2 extrgb, 6, 0, 1, 2, 6, 3, 4, 5, 6 GENERATE_H2V1_MERGED_UPSAMPLE_DSPR2 extbgr, 6, 2, 1, 0, 3, 5, 4, 3, 6 GENERATE_H2V1_MERGED_UPSAMPLE_DSPR2 extrgbx, 8, 0, 1, 2, 3, 4, 5, 6, 7 GENERATE_H2V1_MERGED_UPSAMPLE_DSPR2 extbgrx, 8, 2, 1, 0, 3, 6, 5, 4, 7 GENERATE_H2V1_MERGED_UPSAMPLE_DSPR2 extxbgr, 8, 3, 2, 1, 0, 7, 6, 5, 4 GENERATE_H2V1_MERGED_UPSAMPLE_DSPR2 extxrgb, 8, 1, 2, 3, 0, 5, 6, 7, 4 /*****************************************************************************/ /* * jsimd_h2v2_fancy_upsample_dspr2 * * Fancy processing for the common case of 2:1 horizontal and 2:1 vertical. */ LEAF_DSPR2(jsimd_h2v2_fancy_upsample_dspr2) /* * a0 = cinfo->max_v_samp_factor * a1 = downsampled_width * a2 = input_data * a3 = output_data_ptr */ SAVE_REGS_ON_STACK 24, s0, s1, s2, s3, s4, s5 li s4, 0 lw s2, 0(a3) /* s2 = *output_data_ptr */ 0: li t9, 2 lw s1, -4(a2) /* s1 = inptr1 */ 1: lw s0, 0(a2) /* s0 = inptr0 */ lwx s3, s4(s2) addiu s5, a1, -2 /* s5 = downsampled_width - 2 */ srl t4, s5, 1 sll t4, t4, 1 lbu t0, 0(s0) lbu t1, 1(s0) lbu t2, 0(s1) lbu t3, 1(s1) addiu s0, 2 addiu s1, 2 addu t8, s0, t4 /* t8 = end address */ andi s5, s5, 1 /* s5 = residual */ sll t4, t0, 1 sll t6, t1, 1 addu t0, t0, t4 /* t0 = (*inptr0++) * 3 */ addu t1, t1, t6 /* t1 = (*inptr0++) * 3 */ addu t7, t0, t2 /* t7 = thiscolsum */ addu t6, t1, t3 /* t5 = nextcolsum */ sll t0, t7, 2 /* t0 = thiscolsum * 4 */ subu t1, t0, t7 /* t1 = thiscolsum * 3 */ shra_r.w t0, t0, 4 addiu t1, 7 addu t1, t1, t6 srl t1, t1, 4 sb t0, 0(s3) sb t1, 1(s3) beq t8, s0, 22f /* skip to final iteration if width == 3 */ addiu s3, 2 2: lh t0, 0(s0) /* t0 = A3|A2 */ lh t2, 0(s1) /* t2 = B3|B2 */ addiu s0, 2 addiu s1, 2 preceu.ph.qbr t0, t0 /* t0 = 0|A3|0|A2 */ preceu.ph.qbr t2, t2 /* t2 = 0|B3|0|B2 */ shll.ph t1, t0, 1 sll t3, t6, 1 addu.ph t0, t1, t0 /* t0 = A3*3|A2*3 */ addu t3, t3, t6 /* t3 = this * 3 */ addu.ph t0, t0, t2 /* t0 = next2|next1 */ addu t1, t3, t7 andi t7, t0, 0xFFFF /* t7 = next1 */ sll t2, t7, 1 addu t2, t7, t2 /* t2 = next1*3 */ addu t4, t2, t6 srl t6, t0, 16 /* t6 = next2 */ shra_r.w t1, t1, 4 /* t1 = (this*3 + last + 8) >> 4 */ addu t0, t3, t7 addiu t0, 7 srl t0, t0, 4 /* t0 = (this*3 + next1 + 7) >> 4 */ shra_r.w t4, t4, 4 /* t3 = (next1*3 + this + 8) >> 4 */ addu t2, t2, t6 addiu t2, 7 srl t2, t2, 4 /* t2 = (next1*3 + next2 + 7) >> 4 */ sb t1, 0(s3) sb t0, 1(s3) sb t4, 2(s3) sb t2, 3(s3) bne t8, s0, 2b addiu s3, 4 22: beqz s5, 4f addu t8, s0, s5 3: lbu t0, 0(s0) lbu t2, 0(s1) addiu s0, 1 addiu s1, 1 sll t3, t6, 1 sll t1, t0, 1 addu t1, t0, t1 /* t1 = inptr0 * 3 */ addu t3, t3, t6 /* t3 = thiscolsum * 3 */ addu t5, t1, t2 addu t1, t3, t7 shra_r.w t1, t1, 4 addu t0, t3, t5 addiu t0, 7 srl t0, t0, 4 sb t1, 0(s3) sb t0, 1(s3) addiu s3, 2 move t7, t6 bne t8, s0, 3b move t6, t5 4: sll t0, t6, 2 /* t0 = thiscolsum * 4 */ subu t1, t0, t6 /* t1 = thiscolsum * 3 */ addu t1, t1, t7 addiu s4, 4 shra_r.w t1, t1, 4 addiu t0, 7 srl t0, t0, 4 sb t1, 0(s3) sb t0, 1(s3) addiu t9, -1 addiu s3, 2 bnez t9, 1b lw s1, 4(a2) srl t0, s4, 2 subu t0, a0, t0 bgtz t0, 0b addiu a2, 4 RESTORE_REGS_FROM_STACK 24, s0, s1, s2, s3, s4, s5 j ra nop END(jsimd_h2v2_fancy_upsample_dspr2) /*****************************************************************************/ LEAF_DSPR2(jsimd_h2v1_fancy_upsample_dspr2) /* * a0 = cinfo->max_v_samp_factor * a1 = downsampled_width * a2 = input_data * a3 = output_data_ptr */ SAVE_REGS_ON_STACK 16, s0, s1, s2, s3 .set at beqz a0, 3f sll t0, a0, 2 lw s1, 0(a3) li s3, 0x10001 addu s0, s1, t0 0: addiu t8, a1, -2 srl t9, t8, 2 lw t7, 0(a2) lw s2, 0(s1) lbu t0, 0(t7) lbu t1, 1(t7) /* t1 = inptr[1] */ sll t2, t0, 1 addu t2, t2, t0 /* t2 = invalue*3 */ addu t2, t2, t1 shra_r.w t2, t2, 2 sb t0, 0(s2) sb t2, 1(s2) beqz t9, 11f addiu s2, 2 1: ulw t0, 0(t7) /* t0 = |P3|P2|P1|P0| */ ulw t1, 1(t7) ulh t2, 4(t7) /* t2 = |0|0|P5|P4| */ preceu.ph.qbl t3, t0 /* t3 = |0|P3|0|P2| */ preceu.ph.qbr t0, t0 /* t0 = |0|P1|0|P0| */ preceu.ph.qbr t2, t2 /* t2 = |0|P5|0|P4| */ preceu.ph.qbl t4, t1 /* t4 = |0|P4|0|P3| */ preceu.ph.qbr t1, t1 /* t1 = |0|P2|0|P1| */ shll.ph t5, t4, 1 shll.ph t6, t1, 1 addu.ph t5, t5, t4 /* t5 = |P4*3|P3*3| */ addu.ph t6, t6, t1 /* t6 = |P2*3|P1*3| */ addu.ph t4, t3, s3 addu.ph t0, t0, s3 addu.ph t4, t4, t5 addu.ph t0, t0, t6 shrl.ph t4, t4, 2 /* t4 = |0|P3|0|P2| */ shrl.ph t0, t0, 2 /* t0 = |0|P1|0|P0| */ addu.ph t2, t2, t5 addu.ph t3, t3, t6 shra_r.ph t2, t2, 2 /* t2 = |0|P5|0|P4| */ shra_r.ph t3, t3, 2 /* t3 = |0|P3|0|P2| */ shll.ph t2, t2, 8 shll.ph t3, t3, 8 or t2, t4, t2 or t3, t3, t0 addiu t9, -1 usw t3, 0(s2) usw t2, 4(s2) addiu s2, 8 bgtz t9, 1b addiu t7, 4 11: andi t8, 3 beqz t8, 22f addiu t7, 1 2: lbu t0, 0(t7) addiu t7, 1 sll t1, t0, 1 addu t2, t0, t1 /* t2 = invalue */ lbu t3, -2(t7) lbu t4, 0(t7) addiu t3, 1 addiu t4, 2 addu t3, t3, t2 addu t4, t4, t2 srl t3, 2 srl t4, 2 sb t3, 0(s2) sb t4, 1(s2) addiu t8, -1 bgtz t8, 2b addiu s2, 2 22: lbu t0, 0(t7) lbu t2, -1(t7) sll t1, t0, 1 addu t1, t1, t0 /* t1 = invalue * 3 */ addu t1, t1, t2 addiu t1, 1 srl t1, t1, 2 sb t1, 0(s2) sb t0, 1(s2) addiu s1, 4 bne s1, s0, 0b addiu a2, 4 3: RESTORE_REGS_FROM_STACK 16, s0, s1, s2, s3 j ra nop END(jsimd_h2v1_fancy_upsample_dspr2) /*****************************************************************************/ LEAF_DSPR2(jsimd_h2v1_downsample_dspr2) /* * a0 = cinfo->image_width * a1 = cinfo->max_v_samp_factor * a2 = compptr->v_samp_factor * a3 = compptr->width_in_blocks * 16(sp) = input_data * 20(sp) = output_data */ .set at SAVE_REGS_ON_STACK 24, s0, s1, s2, s3, s4 beqz a2, 7f lw s1, 44(sp) /* s1 = output_data */ lw s0, 40(sp) /* s0 = input_data */ srl s2, a0, 2 andi t9, a0, 2 srl t7, t9, 1 addu s2, t7, s2 sll t0, a3, 3 /* t0 = width_in_blocks*DCT */ srl t7, t0, 1 subu s2, t7, s2 0: andi t6, a0, 1 /* t6 = temp_index */ addiu t6, -1 lw t4, 0(s1) /* t4 = outptr */ lw t5, 0(s0) /* t5 = inptr0 */ li s3, 0 /* s3 = bias */ srl t7, a0, 1 /* t7 = image_width1 */ srl s4, t7, 2 andi t8, t7, 3 1: ulhu t0, 0(t5) ulhu t1, 2(t5) ulhu t2, 4(t5) ulhu t3, 6(t5) raddu.w.qb t0, t0 raddu.w.qb t1, t1 raddu.w.qb t2, t2 raddu.w.qb t3, t3 shra.ph t0, t0, 1 shra_r.ph t1, t1, 1 shra.ph t2, t2, 1 shra_r.ph t3, t3, 1 sb t0, 0(t4) sb t1, 1(t4) sb t2, 2(t4) sb t3, 3(t4) addiu s4, -1 addiu t4, 4 bgtz s4, 1b addiu t5, 8 beqz t8, 3f addu s4, t4, t8 2: ulhu t0, 0(t5) raddu.w.qb t0, t0 addqh.w t0, t0, s3 xori s3, s3, 1 sb t0, 0(t4) addiu t4, 1 bne t4, s4, 2b addiu t5, 2 3: lbux t1, t6(t5) sll t1, 1 addqh.w t2, t1, s3 /* t2 = pixval1 */ xori s3, s3, 1 addqh.w t3, t1, s3 /* t3 = pixval2 */ blez s2, 5f append t3, t2, 8 addu t5, t4, s2 /* t5 = loop_end2 */ 4: ush t3, 0(t4) addiu s2, -1 bgtz s2, 4b addiu t4, 2 5: beqz t9, 6f nop sb t2, 0(t4) 6: addiu s1, 4 addiu a2, -1 bnez a2, 0b addiu s0, 4 7: RESTORE_REGS_FROM_STACK 24, s0, s1, s2, s3, s4 j ra nop END(jsimd_h2v1_downsample_dspr2) /*****************************************************************************/ LEAF_DSPR2(jsimd_h2v2_downsample_dspr2) /* * a0 = cinfo->image_width * a1 = cinfo->max_v_samp_factor * a2 = compptr->v_samp_factor * a3 = compptr->width_in_blocks * 16(sp) = input_data * 20(sp) = output_data */ .set at SAVE_REGS_ON_STACK 32, s0, s1, s2, s3, s4, s5, s6, s7 beqz a2, 8f lw s1, 52(sp) /* s1 = output_data */ lw s0, 48(sp) /* s0 = input_data */ andi t6, a0, 1 /* t6 = temp_index */ addiu t6, -1 srl t7, a0, 1 /* t7 = image_width1 */ srl s4, t7, 2 andi t8, t7, 3 andi t9, a0, 2 srl s2, a0, 2 srl t7, t9, 1 addu s2, t7, s2 sll t0, a3, 3 /* s2 = width_in_blocks*DCT */ srl t7, t0, 1 subu s2, t7, s2 0: lw t4, 0(s1) /* t4 = outptr */ lw t5, 0(s0) /* t5 = inptr0 */ lw s7, 4(s0) /* s7 = inptr1 */ li s6, 1 /* s6 = bias */ 2: ulw t0, 0(t5) /* t0 = |P3|P2|P1|P0| */ ulw t1, 0(s7) /* t1 = |Q3|Q2|Q1|Q0| */ ulw t2, 4(t5) ulw t3, 4(s7) precrq.ph.w t7, t0, t1 /* t2 = |P3|P2|Q3|Q2| */ ins t0, t1, 16, 16 /* t0 = |Q1|Q0|P1|P0| */ raddu.w.qb t1, t7 raddu.w.qb t0, t0 shra_r.w t1, t1, 2 addiu t0, 1 srl t0, 2 precrq.ph.w t7, t2, t3 ins t2, t3, 16, 16 raddu.w.qb t7, t7 raddu.w.qb t2, t2 shra_r.w t7, t7, 2 addiu t2, 1 srl t2, 2 sb t0, 0(t4) sb t1, 1(t4) sb t2, 2(t4) sb t7, 3(t4) addiu t4, 4 addiu t5, 8 addiu s4, s4, -1 bgtz s4, 2b addiu s7, 8 beqz t8, 4f addu t8, t4, t8 3: ulhu t0, 0(t5) ulhu t1, 0(s7) ins t0, t1, 16, 16 raddu.w.qb t0, t0 addu t0, t0, s6 srl t0, 2 xori s6, s6, 3 sb t0, 0(t4) addiu t5, 2 addiu t4, 1 bne t8, t4, 3b addiu s7, 2 4: lbux t1, t6(t5) sll t1, 1 lbux t0, t6(s7) sll t0, 1 addu t1, t1, t0 addu t3, t1, s6 srl t0, t3, 2 /* t2 = pixval1 */ xori s6, s6, 3 addu t2, t1, s6 srl t1, t2, 2 /* t3 = pixval2 */ blez s2, 6f append t1, t0, 8 5: ush t1, 0(t4) addiu s2, -1 bgtz s2, 5b addiu t4, 2 6: beqz t9, 7f nop sb t0, 0(t4) 7: addiu s1, 4 addiu a2, -1 bnez a2, 0b addiu s0, 8 8: RESTORE_REGS_FROM_STACK 32, s0, s1, s2, s3, s4, s5, s6, s7 j ra nop END(jsimd_h2v2_downsample_dspr2) /*****************************************************************************/ LEAF_DSPR2(jsimd_h2v2_smooth_downsample_dspr2) /* * a0 = input_data * a1 = output_data * a2 = compptr->v_samp_factor * a3 = cinfo->max_v_samp_factor * 16(sp) = cinfo->smoothing_factor * 20(sp) = compptr->width_in_blocks * 24(sp) = cinfo->image_width */ .set at SAVE_REGS_ON_STACK 32, s0, s1, s2, s3, s4, s5, s6, s7 lw s7, 52(sp) /* compptr->width_in_blocks */ lw s0, 56(sp) /* cinfo->image_width */ lw s6, 48(sp) /* cinfo->smoothing_factor */ sll s7, 3 /* output_cols = width_in_blocks * DCTSIZE */ sll v0, s7, 1 subu v0, v0, s0 blez v0, 2f move v1, zero addiu t0, a3, 2 /* t0 = cinfo->max_v_samp_factor + 2 */ 0: addiu t1, a0, -4 sll t2, v1, 2 lwx t1, t2(t1) move t3, v0 addu t1, t1, s0 lbu t2, -1(t1) 1: addiu t3, t3, -1 sb t2, 0(t1) bgtz t3, 1b addiu t1, t1, 1 addiu v1, v1, 1 bne v1, t0, 0b nop 2: li v0, 80 mul v0, s6, v0 li v1, 16384 move t4, zero move t5, zero subu t6, v1, v0 /* t6 = 16384 - tmp_smoot_f * 80 */ sll t7, s6, 4 /* t7 = tmp_smoot_f * 16 */ 3: /* Special case for first column: pretend column -1 is same as column 0 */ sll v0, t4, 2 lwx t8, v0(a1) /* outptr = output_data[outrow] */ sll v1, t5, 2 addiu t9, v1, 4 addiu s0, v1, -4 addiu s1, v1, 8 lwx s2, v1(a0) /* inptr0 = input_data[inrow] */ lwx t9, t9(a0) /* inptr1 = input_data[inrow+1] */ lwx s0, s0(a0) /* above_ptr = input_data[inrow-1] */ lwx s1, s1(a0) /* below_ptr = input_data[inrow+2] */ lh v0, 0(s2) lh v1, 0(t9) lh t0, 0(s0) lh t1, 0(s1) ins v0, v1, 16, 16 ins t0, t1, 16, 16 raddu.w.qb t2, v0 raddu.w.qb s3, t0 lbu v0, 0(s2) lbu v1, 2(s2) lbu t0, 0(t9) lbu t1, 2(t9) addu v0, v0, v1 mult $ac1, t2, t6 addu t0, t0, t1 lbu t2, 2(s0) addu t0, t0, v0 lbu t3, 2(s1) addu s3, t0, s3 lbu v0, 0(s0) lbu t0, 0(s1) sll s3, s3, 1 addu v0, v0, t2 addu t0, t0, t3 addu t0, t0, v0 addu s3, t0, s3 madd $ac1, s3, t7 extr_r.w v0, $ac1, 16 addiu t8, t8, 1 addiu s2, s2, 2 addiu t9, t9, 2 addiu s0, s0, 2 addiu s1, s1, 2 sb v0, -1(t8) addiu s4, s7, -2 and s4, s4, 3 addu s5, s4, t8 /* end address */ 4: lh v0, 0(s2) lh v1, 0(t9) lh t0, 0(s0) lh t1, 0(s1) ins v0, v1, 16, 16 ins t0, t1, 16, 16 raddu.w.qb t2, v0 raddu.w.qb s3, t0 lbu v0, -1(s2) lbu v1, 2(s2) lbu t0, -1(t9) lbu t1, 2(t9) addu v0, v0, v1 mult $ac1, t2, t6 addu t0, t0, t1 lbu t2, 2(s0) addu t0, t0, v0 lbu t3, 2(s1) addu s3, t0, s3 lbu v0, -1(s0) lbu t0, -1(s1) sll s3, s3, 1 addu v0, v0, t2 addu t0, t0, t3 addu t0, t0, v0 addu s3, t0, s3 madd $ac1, s3, t7 extr_r.w t2, $ac1, 16 addiu t8, t8, 1 addiu s2, s2, 2 addiu t9, t9, 2 addiu s0, s0, 2 sb t2, -1(t8) bne s5, t8, 4b addiu s1, s1, 2 addiu s5, s7, -2 subu s5, s5, s4 addu s5, s5, t8 /* end address */ 5: lh v0, 0(s2) lh v1, 0(t9) lh t0, 0(s0) lh t1, 0(s1) ins v0, v1, 16, 16 ins t0, t1, 16, 16 raddu.w.qb t2, v0 raddu.w.qb s3, t0 lbu v0, -1(s2) lbu v1, 2(s2) lbu t0, -1(t9) lbu t1, 2(t9) addu v0, v0, v1 mult $ac1, t2, t6 addu t0, t0, t1 lbu t2, 2(s0) addu t0, t0, v0 lbu t3, 2(s1) addu s3, t0, s3 lbu v0, -1(s0) lbu t0, -1(s1) sll s3, s3, 1 addu v0, v0, t2 addu t0, t0, t3 lh v1, 2(t9) addu t0, t0, v0 lh v0, 2(s2) addu s3, t0, s3 lh t0, 2(s0) lh t1, 2(s1) madd $ac1, s3, t7 extr_r.w t2, $ac1, 16 ins t0, t1, 16, 16 ins v0, v1, 16, 16 raddu.w.qb s3, t0 lbu v1, 4(s2) lbu t0, 1(t9) lbu t1, 4(t9) sb t2, 0(t8) raddu.w.qb t3, v0 lbu v0, 1(s2) addu t0, t0, t1 mult $ac1, t3, t6 addu v0, v0, v1 lbu t2, 4(s0) addu t0, t0, v0 lbu v0, 1(s0) addu s3, t0, s3 lbu t0, 1(s1) lbu t3, 4(s1) addu v0, v0, t2 sll s3, s3, 1 addu t0, t0, t3 lh v1, 4(t9) addu t0, t0, v0 lh v0, 4(s2) addu s3, t0, s3 lh t0, 4(s0) lh t1, 4(s1) madd $ac1, s3, t7 extr_r.w t2, $ac1, 16 ins t0, t1, 16, 16 ins v0, v1, 16, 16 raddu.w.qb s3, t0 lbu v1, 6(s2) lbu t0, 3(t9) lbu t1, 6(t9) sb t2, 1(t8) raddu.w.qb t3, v0 lbu v0, 3(s2) addu t0, t0, t1 mult $ac1, t3, t6 addu v0, v0, v1 lbu t2, 6(s0) addu t0, t0, v0 lbu v0, 3(s0) addu s3, t0, s3 lbu t0, 3(s1) lbu t3, 6(s1) addu v0, v0, t2 sll s3, s3, 1 addu t0, t0, t3 lh v1, 6(t9) addu t0, t0, v0 lh v0, 6(s2) addu s3, t0, s3 lh t0, 6(s0) lh t1, 6(s1) madd $ac1, s3, t7 extr_r.w t3, $ac1, 16 ins t0, t1, 16, 16 ins v0, v1, 16, 16 raddu.w.qb s3, t0 lbu v1, 8(s2) lbu t0, 5(t9) lbu t1, 8(t9) sb t3, 2(t8) raddu.w.qb t2, v0 lbu v0, 5(s2) addu t0, t0, t1 mult $ac1, t2, t6 addu v0, v0, v1 lbu t2, 8(s0) addu t0, t0, v0 lbu v0, 5(s0) addu s3, t0, s3 lbu t0, 5(s1) lbu t3, 8(s1) addu v0, v0, t2 sll s3, s3, 1 addu t0, t0, t3 addiu t8, t8, 4 addu t0, t0, v0 addiu s2, s2, 8 addu s3, t0, s3 addiu t9, t9, 8 madd $ac1, s3, t7 extr_r.w t1, $ac1, 16 addiu s0, s0, 8 addiu s1, s1, 8 bne s5, t8, 5b sb t1, -1(t8) /* Special case for last column */ lh v0, 0(s2) lh v1, 0(t9) lh t0, 0(s0) lh t1, 0(s1) ins v0, v1, 16, 16 ins t0, t1, 16, 16 raddu.w.qb t2, v0 raddu.w.qb s3, t0 lbu v0, -1(s2) lbu v1, 1(s2) lbu t0, -1(t9) lbu t1, 1(t9) addu v0, v0, v1 mult $ac1, t2, t6 addu t0, t0, t1 lbu t2, 1(s0) addu t0, t0, v0 lbu t3, 1(s1) addu s3, t0, s3 lbu v0, -1(s0) lbu t0, -1(s1) sll s3, s3, 1 addu v0, v0, t2 addu t0, t0, t3 addu t0, t0, v0 addu s3, t0, s3 madd $ac1, s3, t7 extr_r.w t0, $ac1, 16 addiu t5, t5, 2 sb t0, 0(t8) addiu t4, t4, 1 bne t4, a2, 3b addiu t5, t5, 2 RESTORE_REGS_FROM_STACK 32, s0, s1, s2, s3, s4, s5, s6, s7 j ra nop END(jsimd_h2v2_smooth_downsample_dspr2) /*****************************************************************************/ LEAF_DSPR2(jsimd_int_upsample_dspr2) /* * a0 = upsample->h_expand[compptr->component_index] * a1 = upsample->v_expand[compptr->component_index] * a2 = input_data * a3 = output_data_ptr * 16(sp) = cinfo->output_width * 20(sp) = cinfo->max_v_samp_factor */ .set at SAVE_REGS_ON_STACK 16, s0, s1, s2, s3 lw s0, 0(a3) /* s0 = output_data */ lw s1, 32(sp) /* s1 = cinfo->output_width */ lw s2, 36(sp) /* s2 = cinfo->max_v_samp_factor */ li t6, 0 /* t6 = inrow */ beqz s2, 10f li s3, 0 /* s3 = outrow */ 0: addu t0, a2, t6 addu t7, s0, s3 lw t3, 0(t0) /* t3 = inptr */ lw t8, 0(t7) /* t8 = outptr */ beqz s1, 4f addu t5, t8, s1 /* t5 = outend */ 1: lb t2, 0(t3) /* t2 = invalue = *inptr++ */ addiu t3, 1 beqz a0, 3f move t0, a0 /* t0 = h_expand */ 2: sb t2, 0(t8) addiu t0, -1 bgtz t0, 2b addiu t8, 1 3: bgt t5, t8, 1b nop 4: addiu t9, a1, -1 /* t9 = v_expand - 1 */ blez t9, 9f nop 5: lw t3, 0(s0) lw t4, 4(s0) subu t0, s1, 0xF blez t0, 7f addu t5, t3, s1 /* t5 = end address */ andi t7, s1, 0xF /* t7 = residual */ subu t8, t5, t7 6: ulw t0, 0(t3) ulw t1, 4(t3) ulw t2, 8(t3) usw t0, 0(t4) ulw t0, 12(t3) usw t1, 4(t4) usw t2, 8(t4) usw t0, 12(t4) addiu t3, 16 bne t3, t8, 6b addiu t4, 16 beqz t7, 8f nop 7: lbu t0, 0(t3) sb t0, 0(t4) addiu t3, 1 bne t3, t5, 7b addiu t4, 1 8: addiu t9, -1 bgtz t9, 5b addiu s0, 8 9: addu s3, s3, a1 bne s3, s2, 0b addiu t6, 1 10: RESTORE_REGS_FROM_STACK 16, s0, s1, s2, s3 j ra nop END(jsimd_int_upsample_dspr2) /*****************************************************************************/ LEAF_DSPR2(jsimd_h2v1_upsample_dspr2) /* * a0 = cinfo->max_v_samp_factor * a1 = cinfo->output_width * a2 = input_data * a3 = output_data_ptr */ lw t7, 0(a3) /* t7 = output_data */ andi t8, a1, 0xf /* t8 = residual */ sll t0, a0, 2 blez a0, 4f addu t9, t7, t0 /* t9 = output_data end address */ 0: lw t5, 0(t7) /* t5 = outptr */ lw t6, 0(a2) /* t6 = inptr */ addu t3, t5, a1 /* t3 = outptr + output_width (end address) */ subu t3, t8 /* t3 = end address - residual */ beq t5, t3, 2f move t4, t8 1: ulw t0, 0(t6) /* t0 = |P3|P2|P1|P0| */ ulw t2, 4(t6) /* t2 = |P7|P6|P5|P4| */ srl t1, t0, 16 /* t1 = |X|X|P3|P2| */ ins t0, t0, 16, 16 /* t0 = |P1|P0|P1|P0| */ ins t1, t1, 16, 16 /* t1 = |P3|P2|P3|P2| */ ins t0, t0, 8, 16 /* t0 = |P1|P1|P0|P0| */ ins t1, t1, 8, 16 /* t1 = |P3|P3|P2|P2| */ usw t0, 0(t5) usw t1, 4(t5) srl t0, t2, 16 /* t0 = |X|X|P7|P6| */ ins t2, t2, 16, 16 /* t2 = |P5|P4|P5|P4| */ ins t0, t0, 16, 16 /* t0 = |P7|P6|P7|P6| */ ins t2, t2, 8, 16 /* t2 = |P5|P5|P4|P4| */ ins t0, t0, 8, 16 /* t0 = |P7|P7|P6|P6| */ usw t2, 8(t5) usw t0, 12(t5) addiu t5, 16 bne t5, t3, 1b addiu t6, 8 beqz t8, 3f move t4, t8 2: lbu t1, 0(t6) sb t1, 0(t5) sb t1, 1(t5) addiu t4, -2 addiu t6, 1 bgtz t4, 2b addiu t5, 2 3: addiu t7, 4 bne t9, t7, 0b addiu a2, 4 4: j ra nop END(jsimd_h2v1_upsample_dspr2) /*****************************************************************************/ LEAF_DSPR2(jsimd_h2v2_upsample_dspr2) /* * a0 = cinfo->max_v_samp_factor * a1 = cinfo->output_width * a2 = input_data * a3 = output_data_ptr */ lw t7, 0(a3) blez a0, 7f andi t9, a1, 0xf /* t9 = residual */ 0: lw t6, 0(a2) /* t6 = inptr */ lw t5, 0(t7) /* t5 = outptr */ addu t8, t5, a1 /* t8 = outptr end address */ subu t8, t9 /* t8 = end address - residual */ beq t5, t8, 2f move t4, t9 1: ulw t0, 0(t6) srl t1, t0, 16 ins t0, t0, 16, 16 ins t0, t0, 8, 16 ins t1, t1, 16, 16 ins t1, t1, 8, 16 ulw t2, 4(t6) usw t0, 0(t5) usw t1, 4(t5) srl t3, t2, 16 ins t2, t2, 16, 16 ins t2, t2, 8, 16 ins t3, t3, 16, 16 ins t3, t3, 8, 16 usw t2, 8(t5) usw t3, 12(t5) addiu t5, 16 bne t5, t8, 1b addiu t6, 8 beqz t9, 3f move t4, t9 2: lbu t0, 0(t6) sb t0, 0(t5) sb t0, 1(t5) addiu t4, -2 addiu t6, 1 bgtz t4, 2b addiu t5, 2 3: lw t6, 0(t7) /* t6 = outptr[0] */ lw t5, 4(t7) /* t5 = outptr[1] */ addu t4, t6, a1 /* t4 = new end address */ beq a1, t9, 5f subu t8, t4, t9 4: ulw t0, 0(t6) ulw t1, 4(t6) ulw t2, 8(t6) usw t0, 0(t5) ulw t0, 12(t6) usw t1, 4(t5) usw t2, 8(t5) usw t0, 12(t5) addiu t6, 16 bne t6, t8, 4b addiu t5, 16 beqz t9, 6f nop 5: lbu t0, 0(t6) sb t0, 0(t5) addiu t6, 1 bne t6, t4, 5b addiu t5, 1 6: addiu t7, 8 addiu a0, -2 bgtz a0, 0b addiu a2, 4 7: j ra nop END(jsimd_h2v2_upsample_dspr2) /*****************************************************************************/ LEAF_DSPR2(jsimd_idct_islow_dspr2) /* * a0 = coef_block * a1 = compptr->dcttable * a2 = output * a3 = range_limit */ SAVE_REGS_ON_STACK 32, s0, s1, s2, s3, s4, s5, s6, s7 addiu sp, sp, -256 move v0, sp addiu v1, zero, 8 /* v1 = DCTSIZE = 8 */ 1: lh s4, 32(a0) /* s4 = inptr[16] */ lh s5, 64(a0) /* s5 = inptr[32] */ lh s6, 96(a0) /* s6 = inptr[48] */ lh t1, 112(a0) /* t1 = inptr[56] */ lh t7, 16(a0) /* t7 = inptr[8] */ lh t5, 80(a0) /* t5 = inptr[40] */ lh t3, 48(a0) /* t3 = inptr[24] */ or s4, s4, t1 or s4, s4, t3 or s4, s4, t5 or s4, s4, t7 or s4, s4, s5 or s4, s4, s6 bnez s4, 2f addiu v1, v1, -1 lh s5, 0(a1) /* quantptr[DCTSIZE*0] */ lh s6, 0(a0) /* inptr[DCTSIZE*0] */ mul s5, s5, s6 /* DEQUANTIZE(inptr[0], quantptr[0]) */ sll s5, s5, 2 sw s5, 0(v0) sw s5, 32(v0) sw s5, 64(v0) sw s5, 96(v0) sw s5, 128(v0) sw s5, 160(v0) sw s5, 192(v0) b 3f sw s5, 224(v0) 2: lh t0, 112(a1) lh t2, 48(a1) lh t4, 80(a1) lh t6, 16(a1) mul t0, t0, t1 /* DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]) */ mul t1, t2, t3 /* DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]) */ mul t2, t4, t5 /* DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]) */ mul t3, t6, t7 /* DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]) */ lh t4, 32(a1) lh t5, 32(a0) lh t6, 96(a1) lh t7, 96(a0) addu s0, t0, t1 /* z3 = tmp0 + tmp2 */ addu s1, t1, t2 /* z2 = tmp1 + tmp2 */ addu s2, t2, t3 /* z4 = tmp1 + tmp3 */ addu s3, s0, s2 /* z3 + z4 */ addiu t9, zero, 9633 /* FIX_1_175875602 */ mul s3, s3, t9 /* z5 = MULTIPLY(z3 + z4, FIX_1_175875602) */ addu t8, t0, t3 /* z1 = tmp0 + tmp3 */ addiu t9, zero, 2446 /* FIX_0_298631336 */ mul t0, t0, t9 /* tmp0 = MULTIPLY(tmp0, FIX_0_298631336) */ addiu t9, zero, 16819 /* FIX_2_053119869 */ mul t2, t2, t9 /* tmp1 = MULTIPLY(tmp1, FIX_2_053119869) */ addiu t9, zero, 25172 /* FIX_3_072711026 */ mul t1, t1, t9 /* tmp2 = MULTIPLY(tmp2, FIX_3_072711026) */ addiu t9, zero, 12299 /* FIX_1_501321110 */ mul t3, t3, t9 /* tmp3 = MULTIPLY(tmp3, FIX_1_501321110) */ addiu t9, zero, 16069 /* FIX_1_961570560 */ mul s0, s0, t9 /* -z3 = MULTIPLY(z3, FIX_1_961570560) */ addiu t9, zero, 3196 /* FIX_0_390180644 */ mul s2, s2, t9 /* -z4 = MULTIPLY(z4, FIX_0_390180644) */ addiu t9, zero, 7373 /* FIX_0_899976223 */ mul t8, t8, t9 /* -z1 = MULTIPLY(z1, FIX_0_899976223) */ addiu t9, zero, 20995 /* FIX_2_562915447 */ mul s1, s1, t9 /* -z2 = MULTIPLY(z2, FIX_2_562915447) */ subu s0, s3, s0 /* z3 += z5 */ addu t0, t0, s0 /* tmp0 += z3 */ addu t1, t1, s0 /* tmp2 += z3 */ subu s2, s3, s2 /* z4 += z5 */ addu t2, t2, s2 /* tmp1 += z4 */ addu t3, t3, s2 /* tmp3 += z4 */ subu t0, t0, t8 /* tmp0 += z1 */ subu t1, t1, s1 /* tmp2 += z2 */ subu t2, t2, s1 /* tmp1 += z2 */ subu t3, t3, t8 /* tmp3 += z1 */ mul s0, t4, t5 /* DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]) */ addiu t9, zero, 6270 /* FIX_0_765366865 */ mul s1, t6, t7 /* DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]) */ lh t4, 0(a1) lh t5, 0(a0) lh t6, 64(a1) lh t7, 64(a0) mul s2, t9, s0 /* MULTIPLY(z2, FIX_0_765366865) */ mul t5, t4, t5 /* DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) */ mul t6, t6, t7 /* DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]) */ addiu t9, zero, 4433 /* FIX_0_541196100 */ addu s3, s0, s1 /* z2 + z3 */ mul s3, s3, t9 /* z1 = MULTIPLY(z2 + z3, FIX_0_541196100) */ addiu t9, zero, 15137 /* FIX_1_847759065 */ mul t8, s1, t9 /* MULTIPLY(z3, FIX_1_847759065) */ addu t4, t5, t6 subu t5, t5, t6 sll t4, t4, 13 /* tmp0 = (z2 + z3) << CONST_BITS */ sll t5, t5, 13 /* tmp1 = (z2 - z3) << CONST_BITS */ addu t7, s3, s2 /* tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865) */ subu t6, s3, t8 /* tmp2 = z1 + MULTIPLY(z3, -FIX_1_847759065) */ addu s0, t4, t7 subu s1, t4, t7 addu s2, t5, t6 subu s3, t5, t6 addu t4, s0, t3 subu s0, s0, t3 addu t3, s2, t1 subu s2, s2, t1 addu t1, s3, t2 subu s3, s3, t2 addu t2, s1, t0 subu s1, s1, t0 shra_r.w t4, t4, 11 shra_r.w t3, t3, 11 shra_r.w t1, t1, 11 shra_r.w t2, t2, 11 shra_r.w s1, s1, 11 shra_r.w s3, s3, 11 shra_r.w s2, s2, 11 shra_r.w s0, s0, 11 sw t4, 0(v0) sw t3, 32(v0) sw t1, 64(v0) sw t2, 96(v0) sw s1, 128(v0) sw s3, 160(v0) sw s2, 192(v0) sw s0, 224(v0) 3: addiu a1, a1, 2 addiu a0, a0, 2 bgtz v1, 1b addiu v0, v0, 4 move v0, sp addiu v1, zero, 8 4: lw t0, 8(v0) /* z2 = (JLONG)wsptr[2] */ lw t1, 24(v0) /* z3 = (JLONG)wsptr[6] */ lw t2, 0(v0) /* (JLONG)wsptr[0] */ lw t3, 16(v0) /* (JLONG)wsptr[4] */ lw s4, 4(v0) /* (JLONG)wsptr[1] */ lw s5, 12(v0) /* (JLONG)wsptr[3] */ lw s6, 20(v0) /* (JLONG)wsptr[5] */ lw s7, 28(v0) /* (JLONG)wsptr[7] */ or s4, s4, t0 or s4, s4, t1 or s4, s4, t3 or s4, s4, s7 or s4, s4, s5 or s4, s4, s6 bnez s4, 5f addiu v1, v1, -1 shra_r.w s5, t2, 5 andi s5, s5, 0x3ff lbux s5, s5(a3) lw s1, 0(a2) replv.qb s5, s5 usw s5, 0(s1) usw s5, 4(s1) b 6f nop 5: addu t4, t0, t1 /* z2 + z3 */ addiu t8, zero, 4433 /* FIX_0_541196100 */ mul t5, t4, t8 /* z1 = MULTIPLY(z2 + z3, FIX_0_541196100) */ addiu t8, zero, 15137 /* FIX_1_847759065 */ mul t1, t1, t8 /* MULTIPLY(z3, FIX_1_847759065) */ addiu t8, zero, 6270 /* FIX_0_765366865 */ mul t0, t0, t8 /* MULTIPLY(z2, FIX_0_765366865) */ addu t4, t2, t3 /* (JLONG)wsptr[0] + (JLONG)wsptr[4] */ subu t2, t2, t3 /* (JLONG)wsptr[0] - (JLONG)wsptr[4] */ sll t4, t4, 13 /* tmp0 = (wsptr[0] + wsptr[4]) << CONST_BITS */ sll t2, t2, 13 /* tmp1 = (wsptr[0] - wsptr[4]) << CONST_BITS */ subu t1, t5, t1 /* tmp2 = z1 + MULTIPLY(z3, -FIX_1_847759065) */ subu t3, t2, t1 /* tmp12 = tmp1 - tmp2 */ addu t2, t2, t1 /* tmp11 = tmp1 + tmp2 */ addu t5, t5, t0 /* tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865) */ subu t1, t4, t5 /* tmp13 = tmp0 - tmp3 */ addu t0, t4, t5 /* tmp10 = tmp0 + tmp3 */ lw t4, 28(v0) /* tmp0 = (JLONG)wsptr[7] */ lw t6, 12(v0) /* tmp2 = (JLONG)wsptr[3] */ lw t5, 20(v0) /* tmp1 = (JLONG)wsptr[5] */ lw t7, 4(v0) /* tmp3 = (JLONG)wsptr[1] */ addu s0, t4, t6 /* z3 = tmp0 + tmp2 */ addiu t8, zero, 9633 /* FIX_1_175875602 */ addu s1, t5, t7 /* z4 = tmp1 + tmp3 */ addu s2, s0, s1 /* z3 + z4 */ mul s2, s2, t8 /* z5 = MULTIPLY(z3 + z4, FIX_1_175875602) */ addu s3, t4, t7 /* z1 = tmp0 + tmp3 */ addu t9, t5, t6 /* z2 = tmp1 + tmp2 */ addiu t8, zero, 16069 /* FIX_1_961570560 */ mul s0, s0, t8 /* -z3 = MULTIPLY(z3, FIX_1_961570560) */ addiu t8, zero, 3196 /* FIX_0_390180644 */ mul s1, s1, t8 /* -z4 = MULTIPLY(z4, FIX_0_390180644) */ addiu t8, zero, 2446 /* FIX_0_298631336 */ mul t4, t4, t8 /* tmp0 = MULTIPLY(tmp0, FIX_0_298631336) */ addiu t8, zero, 7373 /* FIX_0_899976223 */ mul s3, s3, t8 /* -z1 = MULTIPLY(z1, FIX_0_899976223) */ addiu t8, zero, 16819 /* FIX_2_053119869 */ mul t5, t5, t8 /* tmp1 = MULTIPLY(tmp1, FIX_2_053119869) */ addiu t8, zero, 20995 /* FIX_2_562915447 */ mul t9, t9, t8 /* -z2 = MULTIPLY(z2, FIX_2_562915447) */ addiu t8, zero, 25172 /* FIX_3_072711026 */ mul t6, t6, t8 /* tmp2 = MULTIPLY(tmp2, FIX_3_072711026) */ addiu t8, zero, 12299 /* FIX_1_501321110 */ mul t7, t7, t8 /* tmp3 = MULTIPLY(tmp3, FIX_1_501321110) */ subu s0, s2, s0 /* z3 += z5 */ subu s1, s2, s1 /* z4 += z5 */ addu t4, t4, s0 subu t4, t4, s3 /* tmp0 */ addu t5, t5, s1 subu t5, t5, t9 /* tmp1 */ addu t6, t6, s0 subu t6, t6, t9 /* tmp2 */ addu t7, t7, s1 subu t7, t7, s3 /* tmp3 */ addu s0, t0, t7 subu t0, t0, t7 addu t7, t2, t6 subu t2, t2, t6 addu t6, t3, t5 subu t3, t3, t5 addu t5, t1, t4 subu t1, t1, t4 shra_r.w s0, s0, 18 shra_r.w t7, t7, 18 shra_r.w t6, t6, 18 shra_r.w t5, t5, 18 shra_r.w t1, t1, 18 shra_r.w t3, t3, 18 shra_r.w t2, t2, 18 shra_r.w t0, t0, 18 andi s0, s0, 0x3ff andi t7, t7, 0x3ff andi t6, t6, 0x3ff andi t5, t5, 0x3ff andi t1, t1, 0x3ff andi t3, t3, 0x3ff andi t2, t2, 0x3ff andi t0, t0, 0x3ff lw s1, 0(a2) lbux s0, s0(a3) lbux t7, t7(a3) lbux t6, t6(a3) lbux t5, t5(a3) lbux t1, t1(a3) lbux t3, t3(a3) lbux t2, t2(a3) lbux t0, t0(a3) sb s0, 0(s1) sb t7, 1(s1) sb t6, 2(s1) sb t5, 3(s1) sb t1, 4(s1) sb t3, 5(s1) sb t2, 6(s1) sb t0, 7(s1) 6: addiu v0, v0, 32 bgtz v1, 4b addiu a2, a2, 4 addiu sp, sp, 256 RESTORE_REGS_FROM_STACK 32, s0, s1, s2, s3, s4, s5, s6, s7 j ra nop END(jsimd_idct_islow_dspr2) /*****************************************************************************/ LEAF_DSPR2(jsimd_idct_ifast_cols_dspr2) /* * a0 = inptr * a1 = quantptr * a2 = wsptr * a3 = mips_idct_ifast_coefs */ SAVE_REGS_ON_STACK 32, s0, s1, s2, s3, s4, s5, s6, s7 addiu t9, a0, 16 /* end address */ or AT, a3, zero 0: lw s0, 0(a1) /* quantptr[DCTSIZE*0] */ lw t0, 0(a0) /* inptr[DCTSIZE*0] */ lw t1, 16(a0) /* inptr[DCTSIZE*1] */ muleq_s.w.phl v0, t0, s0 /* tmp0 ... */ lw t2, 32(a0) /* inptr[DCTSIZE*2] */ lw t3, 48(a0) /* inptr[DCTSIZE*3] */ lw t4, 64(a0) /* inptr[DCTSIZE*4] */ lw t5, 80(a0) /* inptr[DCTSIZE*5] */ muleq_s.w.phr t0, t0, s0 /* ... tmp0 ... */ lw t6, 96(a0) /* inptr[DCTSIZE*6] */ lw t7, 112(a0) /* inptr[DCTSIZE*7] */ or s4, t1, t2 or s5, t3, t4 bnez s4, 1f ins t0, v0, 16, 16 /* ... tmp0 */ bnez s5, 1f or s6, t5, t6 or s6, s6, t7 bnez s6, 1f sw t0, 0(a2) /* wsptr[DCTSIZE*0] */ sw t0, 16(a2) /* wsptr[DCTSIZE*1] */ sw t0, 32(a2) /* wsptr[DCTSIZE*2] */ sw t0, 48(a2) /* wsptr[DCTSIZE*3] */ sw t0, 64(a2) /* wsptr[DCTSIZE*4] */ sw t0, 80(a2) /* wsptr[DCTSIZE*5] */ sw t0, 96(a2) /* wsptr[DCTSIZE*6] */ sw t0, 112(a2) /* wsptr[DCTSIZE*7] */ addiu a0, a0, 4 b 2f addiu a1, a1, 4 1: lw s1, 32(a1) /* quantptr[DCTSIZE*2] */ lw s2, 64(a1) /* quantptr[DCTSIZE*4] */ muleq_s.w.phl v0, t2, s1 /* tmp1 ... */ muleq_s.w.phr t2, t2, s1 /* ... tmp1 ... */ lw s0, 16(a1) /* quantptr[DCTSIZE*1] */ lw s1, 48(a1) /* quantptr[DCTSIZE*3] */ lw s3, 96(a1) /* quantptr[DCTSIZE*6] */ muleq_s.w.phl v1, t4, s2 /* tmp2 ... */ muleq_s.w.phr t4, t4, s2 /* ... tmp2 ... */ lw s2, 80(a1) /* quantptr[DCTSIZE*5] */ lw t8, 4(AT) /* FIX(1.414213562) */ ins t2, v0, 16, 16 /* ... tmp1 */ muleq_s.w.phl v0, t6, s3 /* tmp3 ... */ muleq_s.w.phr t6, t6, s3 /* ... tmp3 ... */ ins t4, v1, 16, 16 /* ... tmp2 */ addq.ph s4, t0, t4 /* tmp10 */ subq.ph s5, t0, t4 /* tmp11 */ ins t6, v0, 16, 16 /* ... tmp3 */ subq.ph s6, t2, t6 /* tmp12 ... */ addq.ph s7, t2, t6 /* tmp13 */ mulq_s.ph s6, s6, t8 /* ... tmp12 ... */ addq.ph t0, s4, s7 /* tmp0 */ subq.ph t6, s4, s7 /* tmp3 */ muleq_s.w.phl v0, t1, s0 /* tmp4 ... */ muleq_s.w.phr t1, t1, s0 /* ... tmp4 ... */ shll_s.ph s6, s6, 1 /* x2 */ lw s3, 112(a1) /* quantptr[DCTSIZE*7] */ subq.ph s6, s6, s7 /* ... tmp12 */ muleq_s.w.phl v1, t7, s3 /* tmp7 ... */ muleq_s.w.phr t7, t7, s3 /* ... tmp7 ... */ ins t1, v0, 16, 16 /* ... tmp4 */ addq.ph t2, s5, s6 /* tmp1 */ subq.ph t4, s5, s6 /* tmp2 */ muleq_s.w.phl v0, t5, s2 /* tmp6 ... */ muleq_s.w.phr t5, t5, s2 /* ... tmp6 ... */ ins t7, v1, 16, 16 /* ... tmp7 */ addq.ph s5, t1, t7 /* z11 */ subq.ph s6, t1, t7 /* z12 */ muleq_s.w.phl v1, t3, s1 /* tmp5 ... */ muleq_s.w.phr t3, t3, s1 /* ... tmp5 ... */ ins t5, v0, 16, 16 /* ... tmp6 */ ins t3, v1, 16, 16 /* ... tmp5 */ addq.ph s7, t5, t3 /* z13 */ subq.ph v0, t5, t3 /* z10 */ addq.ph t7, s5, s7 /* tmp7 */ subq.ph s5, s5, s7 /* tmp11 ... */ addq.ph v1, v0, s6 /* z5 ... */ mulq_s.ph s5, s5, t8 /* ... tmp11 */ lw t8, 8(AT) /* FIX(1.847759065) */ lw s4, 0(AT) /* FIX(1.082392200) */ addq.ph s0, t0, t7 subq.ph s1, t0, t7 mulq_s.ph v1, v1, t8 /* ... z5 */ shll_s.ph s5, s5, 1 /* x2 */ lw t8, 12(AT) /* FIX(-2.613125930) */ sw s0, 0(a2) /* wsptr[DCTSIZE*0] */ shll_s.ph v0, v0, 1 /* x4 */ mulq_s.ph v0, v0, t8 /* tmp12 ... */ mulq_s.ph s4, s6, s4 /* tmp10 ... */ shll_s.ph v1, v1, 1 /* x2 */ addiu a0, a0, 4 addiu a1, a1, 4 sw s1, 112(a2) /* wsptr[DCTSIZE*7] */ shll_s.ph s6, v0, 1 /* x4 */ shll_s.ph s4, s4, 1 /* x2 */ addq.ph s6, s6, v1 /* ... tmp12 */ subq.ph t5, s6, t7 /* tmp6 */ subq.ph s4, s4, v1 /* ... tmp10 */ subq.ph t3, s5, t5 /* tmp5 */ addq.ph s2, t2, t5 addq.ph t1, s4, t3 /* tmp4 */ subq.ph s3, t2, t5 sw s2, 16(a2) /* wsptr[DCTSIZE*1] */ sw s3, 96(a2) /* wsptr[DCTSIZE*6] */ addq.ph v0, t4, t3 subq.ph v1, t4, t3 sw v0, 32(a2) /* wsptr[DCTSIZE*2] */ sw v1, 80(a2) /* wsptr[DCTSIZE*5] */ addq.ph v0, t6, t1 subq.ph v1, t6, t1 sw v0, 64(a2) /* wsptr[DCTSIZE*4] */ sw v1, 48(a2) /* wsptr[DCTSIZE*3] */ 2: bne a0, t9, 0b addiu a2, a2, 4 RESTORE_REGS_FROM_STACK 32, s0, s1, s2, s3, s4, s5, s6, s7 j ra nop END(jsimd_idct_ifast_cols_dspr2) /*****************************************************************************/ LEAF_DSPR2(jsimd_idct_ifast_rows_dspr2) /* * a0 = wsptr * a1 = output_buf * a2 = output_col * a3 = mips_idct_ifast_coefs */ SAVE_REGS_ON_STACK 40, s0, s1, s2, s3, s4, s5, s6, s7, s8, a3 addiu t9, a0, 128 /* end address */ lui s8, 0x8080 ori s8, s8, 0x8080 0: lw AT, 36(sp) /* restore $a3 (mips_idct_ifast_coefs) */ lw t0, 0(a0) /* wsptr[DCTSIZE*0+0/1] b a */ lw s0, 16(a0) /* wsptr[DCTSIZE*1+0/1] B A */ lw t2, 4(a0) /* wsptr[DCTSIZE*0+2/3] d c */ lw s2, 20(a0) /* wsptr[DCTSIZE*1+2/3] D C */ lw t4, 8(a0) /* wsptr[DCTSIZE*0+4/5] f e */ lw s4, 24(a0) /* wsptr[DCTSIZE*1+4/5] F E */ lw t6, 12(a0) /* wsptr[DCTSIZE*0+6/7] h g */ lw s6, 28(a0) /* wsptr[DCTSIZE*1+6/7] H G */ precrq.ph.w t1, s0, t0 /* B b */ ins t0, s0, 16, 16 /* A a */ bnez t1, 1f or s0, t2, s2 bnez s0, 1f or s0, t4, s4 bnez s0, 1f or s0, t6, s6 bnez s0, 1f shll_s.ph s0, t0, 2 /* A a */ lw a3, 0(a1) lw AT, 4(a1) precrq.ph.w t0, s0, s0 /* A A */ ins s0, s0, 16, 16 /* a a */ addu a3, a3, a2 addu AT, AT, a2 precrq.qb.ph t0, t0, t0 /* A A A A */ precrq.qb.ph s0, s0, s0 /* a a a a */ addu.qb s0, s0, s8 addu.qb t0, t0, s8 sw s0, 0(a3) sw s0, 4(a3) sw t0, 0(AT) sw t0, 4(AT) addiu a0, a0, 32 bne a0, t9, 0b addiu a1, a1, 8 b 2f nop 1: precrq.ph.w t3, s2, t2 ins t2, s2, 16, 16 precrq.ph.w t5, s4, t4 ins t4, s4, 16, 16 precrq.ph.w t7, s6, t6 ins t6, s6, 16, 16 lw t8, 4(AT) /* FIX(1.414213562) */ addq.ph s4, t0, t4 /* tmp10 */ subq.ph s5, t0, t4 /* tmp11 */ subq.ph s6, t2, t6 /* tmp12 ... */ addq.ph s7, t2, t6 /* tmp13 */ mulq_s.ph s6, s6, t8 /* ... tmp12 ... */ addq.ph t0, s4, s7 /* tmp0 */ subq.ph t6, s4, s7 /* tmp3 */ shll_s.ph s6, s6, 1 /* x2 */ subq.ph s6, s6, s7 /* ... tmp12 */ addq.ph t2, s5, s6 /* tmp1 */ subq.ph t4, s5, s6 /* tmp2 */ addq.ph s5, t1, t7 /* z11 */ subq.ph s6, t1, t7 /* z12 */ addq.ph s7, t5, t3 /* z13 */ subq.ph v0, t5, t3 /* z10 */ addq.ph t7, s5, s7 /* tmp7 */ subq.ph s5, s5, s7 /* tmp11 ... */ addq.ph v1, v0, s6 /* z5 ... */ mulq_s.ph s5, s5, t8 /* ... tmp11 */ lw t8, 8(AT) /* FIX(1.847759065) */ lw s4, 0(AT) /* FIX(1.082392200) */ addq.ph s0, t0, t7 /* tmp0 + tmp7 */ subq.ph s7, t0, t7 /* tmp0 - tmp7 */ mulq_s.ph v1, v1, t8 /* ... z5 */ lw a3, 0(a1) lw t8, 12(AT) /* FIX(-2.613125930) */ shll_s.ph s5, s5, 1 /* x2 */ addu a3, a3, a2 shll_s.ph v0, v0, 1 /* x4 */ mulq_s.ph v0, v0, t8 /* tmp12 ... */ mulq_s.ph s4, s6, s4 /* tmp10 ... */ shll_s.ph v1, v1, 1 /* x2 */ addiu a0, a0, 32 addiu a1, a1, 8 shll_s.ph s6, v0, 1 /* x4 */ shll_s.ph s4, s4, 1 /* x2 */ addq.ph s6, s6, v1 /* ... tmp12 */ shll_s.ph s0, s0, 2 subq.ph t5, s6, t7 /* tmp6 */ subq.ph s4, s4, v1 /* ... tmp10 */ subq.ph t3, s5, t5 /* tmp5 */ shll_s.ph s7, s7, 2 addq.ph t1, s4, t3 /* tmp4 */ addq.ph s1, t2, t5 /* tmp1 + tmp6 */ subq.ph s6, t2, t5 /* tmp1 - tmp6 */ addq.ph s2, t4, t3 /* tmp2 + tmp5 */ subq.ph s5, t4, t3 /* tmp2 - tmp5 */ addq.ph s4, t6, t1 /* tmp3 + tmp4 */ subq.ph s3, t6, t1 /* tmp3 - tmp4 */ shll_s.ph s1, s1, 2 shll_s.ph s2, s2, 2 shll_s.ph s3, s3, 2 shll_s.ph s4, s4, 2 shll_s.ph s5, s5, 2 shll_s.ph s6, s6, 2 precrq.ph.w t0, s1, s0 /* B A */ ins s0, s1, 16, 16 /* b a */ precrq.ph.w t2, s3, s2 /* D C */ ins s2, s3, 16, 16 /* d c */ precrq.ph.w t4, s5, s4 /* F E */ ins s4, s5, 16, 16 /* f e */ precrq.ph.w t6, s7, s6 /* H G */ ins s6, s7, 16, 16 /* h g */ precrq.qb.ph t0, t2, t0 /* D C B A */ precrq.qb.ph s0, s2, s0 /* d c b a */ precrq.qb.ph t4, t6, t4 /* H G F E */ precrq.qb.ph s4, s6, s4 /* h g f e */ addu.qb s0, s0, s8 addu.qb s4, s4, s8 sw s0, 0(a3) /* outptr[0/1/2/3] d c b a */ sw s4, 4(a3) /* outptr[4/5/6/7] h g f e */ lw a3, -4(a1) addu.qb t0, t0, s8 addu a3, a3, a2 addu.qb t4, t4, s8 sw t0, 0(a3) /* outptr[0/1/2/3] D C B A */ bne a0, t9, 0b sw t4, 4(a3) /* outptr[4/5/6/7] H G F E */ 2: RESTORE_REGS_FROM_STACK 40, s0, s1, s2, s3, s4, s5, s6, s7, s8, a3 j ra nop END(jsimd_idct_ifast_rows_dspr2) /*****************************************************************************/ LEAF_DSPR2(jsimd_fdct_islow_dspr2) /* * a0 = data */ SAVE_REGS_ON_STACK 40, s0, s1, s2, s3, s4, s5, s6, s7, s8 lui t0, 6437 ori t0, 2260 lui t1, 9633 ori t1, 11363 lui t2, 0xd39e ori t2, 0xe6dc lui t3, 0xf72d ori t3, 9633 lui t4, 2261 ori t4, 9633 lui t5, 0xd39e ori t5, 6437 lui t6, 9633 ori t6, 0xd39d lui t7, 0xe6dc ori t7, 2260 lui t8, 4433 ori t8, 10703 lui t9, 0xd630 ori t9, 4433 li s8, 8 move a1, a0 1: lw s0, 0(a1) /* tmp0 = 1|0 */ lw s1, 4(a1) /* tmp1 = 3|2 */ lw s2, 8(a1) /* tmp2 = 5|4 */ lw s3, 12(a1) /* tmp3 = 7|6 */ packrl.ph s1, s1, s1 /* tmp1 = 2|3 */ packrl.ph s3, s3, s3 /* tmp3 = 6|7 */ subq.ph s7, s1, s2 /* tmp7 = 2-5|3-4 = t5|t4 */ subq.ph s5, s0, s3 /* tmp5 = 1-6|0-7 = t6|t7 */ mult $0, $0 /* ac0 = 0 */ dpa.w.ph $ac0, s7, t0 /* ac0 += t5* 6437 + t4* 2260 */ dpa.w.ph $ac0, s5, t1 /* ac0 += t6* 9633 + t7* 11363 */ mult $ac1, $0, $0 /* ac1 = 0 */ dpa.w.ph $ac1, s7, t2 /* ac1 += t5*-11362 + t4* -6436 */ dpa.w.ph $ac1, s5, t3 /* ac1 += t6* -2259 + t7* 9633 */ mult $ac2, $0, $0 /* ac2 = 0 */ dpa.w.ph $ac2, s7, t4 /* ac2 += t5* 2261 + t4* 9633 */ dpa.w.ph $ac2, s5, t5 /* ac2 += t6*-11362 + t7* 6437 */ mult $ac3, $0, $0 /* ac3 = 0 */ dpa.w.ph $ac3, s7, t6 /* ac3 += t5* 9633 + t4*-11363 */ dpa.w.ph $ac3, s5, t7 /* ac3 += t6* -6436 + t7* 2260 */ addq.ph s6, s1, s2 /* tmp6 = 2+5|3+4 = t2|t3 */ addq.ph s4, s0, s3 /* tmp4 = 1+6|0+7 = t1|t0 */ extr_r.w s0, $ac0, 11 /* tmp0 = (ac0 + 1024) >> 11 */ extr_r.w s1, $ac1, 11 /* tmp1 = (ac1 + 1024) >> 11 */ extr_r.w s2, $ac2, 11 /* tmp2 = (ac2 + 1024) >> 11 */ extr_r.w s3, $ac3, 11 /* tmp3 = (ac3 + 1024) >> 11 */ addq.ph s5, s4, s6 /* tmp5 = t1+t2|t0+t3 = t11|t10 */ subq.ph s7, s4, s6 /* tmp7 = t1-t2|t0-t3 = t12|t13 */ sh s0, 2(a1) sh s1, 6(a1) sh s2, 10(a1) sh s3, 14(a1) mult $0, $0 /* ac0 = 0 */ dpa.w.ph $ac0, s7, t8 /* ac0 += t12* 4433 + t13* 10703 */ mult $ac1, $0, $0 /* ac1 = 0 */ dpa.w.ph $ac1, s7, t9 /* ac1 += t12*-10704 + t13* 4433 */ sra s4, s5, 16 /* tmp4 = t11 */ addiu a1, a1, 16 addiu s8, s8, -1 extr_r.w s0, $ac0, 11 /* tmp0 = (ac0 + 1024) >> 11 */ extr_r.w s1, $ac1, 11 /* tmp1 = (ac1 + 1024) >> 11 */ addu s2, s5, s4 /* tmp2 = t10 + t11 */ subu s3, s5, s4 /* tmp3 = t10 - t11 */ sll s2, s2, 2 /* tmp2 = (t10 + t11) << 2 */ sll s3, s3, 2 /* tmp3 = (t10 - t11) << 2 */ sh s2, -16(a1) sh s3, -8(a1) sh s0, -12(a1) bgtz s8, 1b sh s1, -4(a1) li t0, 2260 li t1, 11363 li t2, 9633 li t3, 6436 li t4, 6437 li t5, 2261 li t6, 11362 li t7, 2259 li t8, 4433 li t9, 10703 li a1, 10704 li s8, 8 2: lh a2, 0(a0) /* 0 */ lh a3, 16(a0) /* 8 */ lh v0, 32(a0) /* 16 */ lh v1, 48(a0) /* 24 */ lh s4, 64(a0) /* 32 */ lh s5, 80(a0) /* 40 */ lh s6, 96(a0) /* 48 */ lh s7, 112(a0) /* 56 */ addu s2, v0, s5 /* tmp2 = 16 + 40 */ subu s5, v0, s5 /* tmp5 = 16 - 40 */ addu s3, v1, s4 /* tmp3 = 24 + 32 */ subu s4, v1, s4 /* tmp4 = 24 - 32 */ addu s0, a2, s7 /* tmp0 = 0 + 56 */ subu s7, a2, s7 /* tmp7 = 0 - 56 */ addu s1, a3, s6 /* tmp1 = 8 + 48 */ subu s6, a3, s6 /* tmp6 = 8 - 48 */ addu a2, s0, s3 /* tmp10 = tmp0 + tmp3 */ subu v1, s0, s3 /* tmp13 = tmp0 - tmp3 */ addu a3, s1, s2 /* tmp11 = tmp1 + tmp2 */ subu v0, s1, s2 /* tmp12 = tmp1 - tmp2 */ mult s7, t1 /* ac0 = tmp7 * c1 */ madd s4, t0 /* ac0 += tmp4 * c0 */ madd s5, t4 /* ac0 += tmp5 * c4 */ madd s6, t2 /* ac0 += tmp6 * c2 */ mult $ac1, s7, t2 /* ac1 = tmp7 * c2 */ msub $ac1, s4, t3 /* ac1 -= tmp4 * c3 */ msub $ac1, s5, t6 /* ac1 -= tmp5 * c6 */ msub $ac1, s6, t7 /* ac1 -= tmp6 * c7 */ mult $ac2, s7, t4 /* ac2 = tmp7 * c4 */ madd $ac2, s4, t2 /* ac2 += tmp4 * c2 */ madd $ac2, s5, t5 /* ac2 += tmp5 * c5 */ msub $ac2, s6, t6 /* ac2 -= tmp6 * c6 */ mult $ac3, s7, t0 /* ac3 = tmp7 * c0 */ msub $ac3, s4, t1 /* ac3 -= tmp4 * c1 */ madd $ac3, s5, t2 /* ac3 += tmp5 * c2 */ msub $ac3, s6, t3 /* ac3 -= tmp6 * c3 */ extr_r.w s0, $ac0, 15 /* tmp0 = (ac0 + 16384) >> 15 */ extr_r.w s1, $ac1, 15 /* tmp1 = (ac1 + 16384) >> 15 */ extr_r.w s2, $ac2, 15 /* tmp2 = (ac2 + 16384) >> 15 */ extr_r.w s3, $ac3, 15 /* tmp3 = (ac3 + 16384) >> 15 */ addiu s8, s8, -1 addu s4, a2, a3 /* tmp4 = tmp10 + tmp11 */ subu s5, a2, a3 /* tmp5 = tmp10 - tmp11 */ sh s0, 16(a0) sh s1, 48(a0) sh s2, 80(a0) sh s3, 112(a0) mult v0, t8 /* ac0 = tmp12 * c8 */ madd v1, t9 /* ac0 += tmp13 * c9 */ mult $ac1, v1, t8 /* ac1 = tmp13 * c8 */ msub $ac1, v0, a1 /* ac1 -= tmp12 * c10 */ addiu a0, a0, 2 extr_r.w s6, $ac0, 15 /* tmp6 = (ac0 + 16384) >> 15 */ extr_r.w s7, $ac1, 15 /* tmp7 = (ac1 + 16384) >> 15 */ shra_r.w s4, s4, 2 /* tmp4 = (tmp4 + 2) >> 2 */ shra_r.w s5, s5, 2 /* tmp5 = (tmp5 + 2) >> 2 */ sh s4, -2(a0) sh s5, 62(a0) sh s6, 30(a0) bgtz s8, 2b sh s7, 94(a0) RESTORE_REGS_FROM_STACK 40, s0, s1, s2, s3, s4, s5, s6, s7, s8 jr ra nop END(jsimd_fdct_islow_dspr2) /**************************************************************************/ LEAF_DSPR2(jsimd_fdct_ifast_dspr2) /* * a0 = data */ .set at SAVE_REGS_ON_STACK 8, s0, s1 li a1, 0x014e014e /* FIX_1_306562965 (334 << 16) | (334 & 0xffff) */ li a2, 0x008b008b /* FIX_0_541196100 (139 << 16) | (139 & 0xffff) */ li a3, 0x00620062 /* FIX_0_382683433 (98 << 16) | (98 & 0xffff) */ li s1, 0x00b500b5 /* FIX_0_707106781 (181 << 16) | (181 & 0xffff) */ move v0, a0 addiu v1, v0, 128 /* end address */ 0: lw t0, 0(v0) /* tmp0 = 1|0 */ lw t1, 4(v0) /* tmp1 = 3|2 */ lw t2, 8(v0) /* tmp2 = 5|4 */ lw t3, 12(v0) /* tmp3 = 7|6 */ packrl.ph t1, t1, t1 /* tmp1 = 2|3 */ packrl.ph t3, t3, t3 /* tmp3 = 6|7 */ subq.ph t7, t1, t2 /* tmp7 = 2-5|3-4 = t5|t4 */ subq.ph t5, t0, t3 /* tmp5 = 1-6|0-7 = t6|t7 */ addq.ph t6, t1, t2 /* tmp6 = 2+5|3+4 = t2|t3 */ addq.ph t4, t0, t3 /* tmp4 = 1+6|0+7 = t1|t0 */ addq.ph t8, t4, t6 /* tmp5 = t1+t2|t0+t3 = t11|t10 */ subq.ph t9, t4, t6 /* tmp7 = t1-t2|t0-t3 = t12|t13 */ sra t4, t8, 16 /* tmp4 = t11 */ mult $0, $0 /* ac0 = 0 */ dpa.w.ph $ac0, t9, s1 mult $ac1, $0, $0 /* ac1 = 0 */ dpa.w.ph $ac1, t7, a3 /* ac1 += t4*98 + t5*98 */ dpsx.w.ph $ac1, t5, a3 /* ac1 += t6*98 + t7*98 */ mult $ac2, $0, $0 /* ac2 = 0 */ dpa.w.ph $ac2, t7, a2 /* ac2 += t4*139 + t5*139 */ mult $ac3, $0, $0 /* ac3 = 0 */ dpa.w.ph $ac3, t5, a1 /* ac3 += t6*334 + t7*334 */ precrq.ph.w t0, t5, t7 /* t0 = t5|t6 */ addq.ph t2, t8, t4 /* tmp2 = t10 + t11 */ subq.ph t3, t8, t4 /* tmp3 = t10 - t11 */ extr.w t4, $ac0, 8 mult $0, $0 /* ac0 = 0 */ dpa.w.ph $ac0, t0, s1 /* ac0 += t5*181 + t6*181 */ extr.w t0, $ac1, 8 /* t0 = z5 */ extr.w t1, $ac2, 8 /* t1 = MULTIPLY(tmp10, 139) */ extr.w t7, $ac3, 8 /* t2 = MULTIPLY(tmp12, 334) */ extr.w t8, $ac0, 8 /* t8 = z3 = MULTIPLY(tmp11, 181) */ add t6, t1, t0 /* t6 = z2 */ add t7, t7, t0 /* t7 = z4 */ subq.ph t0, t5, t8 /* t0 = z13 = tmp7 - z3 */ addq.ph t8, t5, t8 /* t9 = z11 = tmp7 + z3 */ addq.ph t1, t0, t6 /* t1 = z13 + z2 */ subq.ph t6, t0, t6 /* t6 = z13 - z2 */ addq.ph t0, t8, t7 /* t0 = z11 + z4 */ subq.ph t7, t8, t7 /* t7 = z11 - z4 */ addq.ph t5, t4, t9 subq.ph t4, t9, t4 sh t2, 0(v0) sh t5, 4(v0) sh t3, 8(v0) sh t4, 12(v0) sh t1, 10(v0) sh t6, 6(v0) sh t0, 2(v0) sh t7, 14(v0) addiu v0, 16 bne v1, v0, 0b nop move v0, a0 addiu v1, v0, 16 1: lh t0, 0(v0) /* 0 */ lh t1, 16(v0) /* 8 */ lh t2, 32(v0) /* 16 */ lh t3, 48(v0) /* 24 */ lh t4, 64(v0) /* 32 */ lh t5, 80(v0) /* 40 */ lh t6, 96(v0) /* 48 */ lh t7, 112(v0) /* 56 */ add t8, t0, t7 /* t8 = tmp0 */ sub t7, t0, t7 /* t7 = tmp7 */ add t0, t1, t6 /* t0 = tmp1 */ sub t1, t1, t6 /* t1 = tmp6 */ add t6, t2, t5 /* t6 = tmp2 */ sub t5, t2, t5 /* t5 = tmp5 */ add t2, t3, t4 /* t2 = tmp3 */ sub t3, t3, t4 /* t3 = tmp4 */ add t4, t8, t2 /* t4 = tmp10 = tmp0 + tmp3 */ sub t8, t8, t2 /* t8 = tmp13 = tmp0 - tmp3 */ sub s0, t0, t6 /* s0 = tmp12 = tmp1 - tmp2 */ ins t8, s0, 16, 16 /* t8 = tmp12|tmp13 */ add t2, t0, t6 /* t2 = tmp11 = tmp1 + tmp2 */ mult $0, $0 /* ac0 = 0 */ dpa.w.ph $ac0, t8, s1 /* ac0 += t12*181 + t13*181 */ add s0, t4, t2 /* t8 = tmp10+tmp11 */ sub t4, t4, t2 /* t4 = tmp10-tmp11 */ sh s0, 0(v0) sh t4, 64(v0) extr.w t2, $ac0, 8 /* z1 = MULTIPLY(tmp12+tmp13, FIX_0_707106781) */ addq.ph t4, t8, t2 /* t9 = tmp13 + z1 */ subq.ph t8, t8, t2 /* t2 = tmp13 - z1 */ sh t4, 32(v0) sh t8, 96(v0) add t3, t3, t5 /* t3 = tmp10 = tmp4 + tmp5 */ add t0, t5, t1 /* t0 = tmp11 = tmp5 + tmp6 */ add t1, t1, t7 /* t1 = tmp12 = tmp6 + tmp7 */ andi t4, a1, 0xffff mul s0, t1, t4 sra s0, s0, 8 /* s0 = z4 = MULTIPLY(tmp12, FIX_1_306562965) */ ins t1, t3, 16, 16 /* t1 = tmp10|tmp12 */ mult $0, $0 /* ac0 = 0 */ mulsa.w.ph $ac0, t1, a3 /* ac0 += t10*98 - t12*98 */ extr.w t8, $ac0, 8 /* z5 = MULTIPLY(tmp10-tmp12, FIX_0_382683433) */ add t2, t7, t8 /* t2 = tmp7 + z5 */ sub t7, t7, t8 /* t7 = tmp7 - z5 */ andi t4, a2, 0xffff mul t8, t3, t4 sra t8, t8, 8 /* t8 = z2 = MULTIPLY(tmp10, FIX_0_541196100) */ andi t4, s1, 0xffff mul t6, t0, t4 sra t6, t6, 8 /* t6 = z3 = MULTIPLY(tmp11, FIX_0_707106781) */ add t0, t6, t8 /* t0 = z3 + z2 */ sub t1, t6, t8 /* t1 = z3 - z2 */ add t3, t6, s0 /* t3 = z3 + z4 */ sub t4, t6, s0 /* t4 = z3 - z4 */ sub t5, t2, t1 /* t5 = dataptr[5] */ sub t6, t7, t0 /* t6 = dataptr[3] */ add t3, t2, t3 /* t3 = dataptr[1] */ add t4, t7, t4 /* t4 = dataptr[7] */ sh t5, 80(v0) sh t6, 48(v0) sh t3, 16(v0) sh t4, 112(v0) addiu v0, 2 bne v0, v1, 1b nop RESTORE_REGS_FROM_STACK 8, s0, s1 j ra nop END(jsimd_fdct_ifast_dspr2) /*****************************************************************************/ LEAF_DSPR2(jsimd_quantize_dspr2) /* * a0 = coef_block * a1 = divisors * a2 = workspace */ .set at SAVE_REGS_ON_STACK 16, s0, s1, s2 addiu v0, a2, 124 /* v0 = workspace_end */ lh t0, 0(a2) lh t1, 0(a1) lh t2, 128(a1) sra t3, t0, 15 sll t3, t3, 1 addiu t3, t3, 1 mul t0, t0, t3 lh t4, 384(a1) lh t5, 130(a1) lh t6, 2(a2) lh t7, 2(a1) lh t8, 386(a1) 1: andi t1, 0xffff add t9, t0, t2 andi t9, 0xffff mul v1, t9, t1 sra s0, t6, 15 sll s0, s0, 1 addiu s0, s0, 1 addiu t9, t4, 16 srav v1, v1, t9 mul v1, v1, t3 mul t6, t6, s0 andi t7, 0xffff addiu a2, a2, 4 addiu a1, a1, 4 add s1, t6, t5 andi s1, 0xffff sh v1, 0(a0) mul s2, s1, t7 addiu s1, t8, 16 srav s2, s2, s1 mul s2, s2, s0 lh t0, 0(a2) lh t1, 0(a1) sra t3, t0, 15 sll t3, t3, 1 addiu t3, t3, 1 mul t0, t0, t3 lh t2, 128(a1) lh t4, 384(a1) lh t5, 130(a1) lh t8, 386(a1) lh t6, 2(a2) lh t7, 2(a1) sh s2, 2(a0) lh t0, 0(a2) sra t3, t0, 15 sll t3, t3, 1 addiu t3, t3, 1 mul t0, t0, t3 bne a2, v0, 1b addiu a0, a0, 4 andi t1, 0xffff add t9, t0, t2 andi t9, 0xffff mul v1, t9, t1 sra s0, t6, 15 sll s0, s0, 1 addiu s0, s0, 1 addiu t9, t4, 16 srav v1, v1, t9 mul v1, v1, t3 mul t6, t6, s0 andi t7, 0xffff sh v1, 0(a0) add s1, t6, t5 andi s1, 0xffff mul s2, s1, t7 addiu s1, t8, 16 addiu a2, a2, 4 addiu a1, a1, 4 srav s2, s2, s1 mul s2, s2, s0 sh s2, 2(a0) RESTORE_REGS_FROM_STACK 16, s0, s1, s2 j ra nop END(jsimd_quantize_dspr2) #ifndef __mips_soft_float /*****************************************************************************/ LEAF_DSPR2(jsimd_quantize_float_dspr2) /* * a0 = coef_block * a1 = divisors * a2 = workspace */ .set at li t1, 0x46800100 /* integer representation 16384.5 */ mtc1 t1, f0 li t0, 63 0: lwc1 f2, 0(a2) lwc1 f10, 0(a1) lwc1 f4, 4(a2) lwc1 f12, 4(a1) lwc1 f6, 8(a2) lwc1 f14, 8(a1) lwc1 f8, 12(a2) lwc1 f16, 12(a1) madd.s f2, f0, f2, f10 madd.s f4, f0, f4, f12 madd.s f6, f0, f6, f14 madd.s f8, f0, f8, f16 lwc1 f10, 16(a1) lwc1 f12, 20(a1) trunc.w.s f2, f2 trunc.w.s f4, f4 trunc.w.s f6, f6 trunc.w.s f8, f8 lwc1 f14, 24(a1) lwc1 f16, 28(a1) mfc1 t1, f2 mfc1 t2, f4 mfc1 t3, f6 mfc1 t4, f8 lwc1 f2, 16(a2) lwc1 f4, 20(a2) lwc1 f6, 24(a2) lwc1 f8, 28(a2) madd.s f2, f0, f2, f10 madd.s f4, f0, f4, f12 madd.s f6, f0, f6, f14 madd.s f8, f0, f8, f16 addiu t1, t1, -16384 addiu t2, t2, -16384 addiu t3, t3, -16384 addiu t4, t4, -16384 trunc.w.s f2, f2 trunc.w.s f4, f4 trunc.w.s f6, f6 trunc.w.s f8, f8 sh t1, 0(a0) sh t2, 2(a0) sh t3, 4(a0) sh t4, 6(a0) mfc1 t1, f2 mfc1 t2, f4 mfc1 t3, f6 mfc1 t4, f8 addiu t0, t0, -8 addiu a2, a2, 32 addiu a1, a1, 32 addiu t1, t1, -16384 addiu t2, t2, -16384 addiu t3, t3, -16384 addiu t4, t4, -16384 sh t1, 8(a0) sh t2, 10(a0) sh t3, 12(a0) sh t4, 14(a0) bgez t0, 0b addiu a0, a0, 16 j ra nop END(jsimd_quantize_float_dspr2) #endif /*****************************************************************************/ LEAF_DSPR2(jsimd_idct_2x2_dspr2) /* * a0 = compptr->dct_table * a1 = coef_block * a2 = output_buf * a3 = output_col */ .set at SAVE_REGS_ON_STACK 24, s0, s1, s2, s3, s4, s5 addiu sp, sp, -40 move v0, sp addiu s2, zero, 29692 addiu s3, zero, -10426 addiu s4, zero, 6967 addiu s5, zero, -5906 lh t0, 0(a1) /* t0 = inptr[DCTSIZE*0] */ lh t5, 0(a0) /* t5 = quantptr[DCTSIZE*0] */ lh t1, 48(a1) /* t1 = inptr[DCTSIZE*3] */ lh t6, 48(a0) /* t6 = quantptr[DCTSIZE*3] */ mul t4, t5, t0 lh t0, 16(a1) /* t0 = inptr[DCTSIZE*1] */ lh t5, 16(a0) /* t5 = quantptr[DCTSIZE*1] */ mul t6, t6, t1 mul t5, t5, t0 lh t2, 80(a1) /* t2 = inptr[DCTSIZE*5] */ lh t7, 80(a0) /* t7 = quantptr[DCTSIZE*5] */ lh t3, 112(a1) /* t3 = inptr[DCTSIZE*7] */ lh t8, 112(a0) /* t8 = quantptr[DCTSIZE*7] */ mul t7, t7, t2 mult zero, zero mul t8, t8, t3 li s0, 0x73FCD746 /* s0 = (29692 << 16) | (-10426 & 0xffff) */ li s1, 0x1B37E8EE /* s1 = (6967 << 16) | (-5906 & 0xffff) */ ins t6, t5, 16, 16 /* t6 = t5|t6 */ sll t4, t4, 15 dpa.w.ph $ac0, t6, s0 lh t1, 2(a1) lh t6, 2(a0) ins t8, t7, 16, 16 /* t8 = t7|t8 */ dpa.w.ph $ac0, t8, s1 mflo t0, $ac0 mul t5, t6, t1 lh t1, 18(a1) lh t6, 18(a0) lh t2, 50(a1) lh t7, 50(a0) mul t6, t6, t1 subu t8, t4, t0 mul t7, t7, t2 addu t0, t4, t0 shra_r.w t0, t0, 13 lh t1, 82(a1) lh t2, 82(a0) lh t3, 114(a1) lh t4, 114(a0) shra_r.w t8, t8, 13 mul t1, t1, t2 mul t3, t3, t4 sw t0, 0(v0) sw t8, 20(v0) sll t4, t5, 15 ins t7, t6, 16, 16 mult zero, zero dpa.w.ph $ac0, t7, s0 ins t3, t1, 16, 16 lh t1, 6(a1) lh t6, 6(a0) dpa.w.ph $ac0, t3, s1 mflo t0, $ac0 mul t5, t6, t1 lh t1, 22(a1) lh t6, 22(a0) lh t2, 54(a1) lh t7, 54(a0) mul t6, t6, t1 subu t8, t4, t0 mul t7, t7, t2 addu t0, t4, t0 shra_r.w t0, t0, 13 lh t1, 86(a1) lh t2, 86(a0) lh t3, 118(a1) lh t4, 118(a0) shra_r.w t8, t8, 13 mul t1, t1, t2 mul t3, t3, t4 sw t0, 4(v0) sw t8, 24(v0) sll t4, t5, 15 ins t7, t6, 16, 16 mult zero, zero dpa.w.ph $ac0, t7, s0 ins t3, t1, 16, 16 lh t1, 10(a1) lh t6, 10(a0) dpa.w.ph $ac0, t3, s1 mflo t0, $ac0 mul t5, t6, t1 lh t1, 26(a1) lh t6, 26(a0) lh t2, 58(a1) lh t7, 58(a0) mul t6, t6, t1 subu t8, t4, t0 mul t7, t7, t2 addu t0, t4, t0 shra_r.w t0, t0, 13 lh t1, 90(a1) lh t2, 90(a0) lh t3, 122(a1) lh t4, 122(a0) shra_r.w t8, t8, 13 mul t1, t1, t2 mul t3, t3, t4 sw t0, 8(v0) sw t8, 28(v0) sll t4, t5, 15 ins t7, t6, 16, 16 mult zero, zero dpa.w.ph $ac0, t7, s0 ins t3, t1, 16, 16 lh t1, 14(a1) lh t6, 14(a0) dpa.w.ph $ac0, t3, s1 mflo t0, $ac0 mul t5, t6, t1 lh t1, 30(a1) lh t6, 30(a0) lh t2, 62(a1) lh t7, 62(a0) mul t6, t6, t1 subu t8, t4, t0 mul t7, t7, t2 addu t0, t4, t0 shra_r.w t0, t0, 13 lh t1, 94(a1) lh t2, 94(a0) lh t3, 126(a1) lh t4, 126(a0) shra_r.w t8, t8, 13 mul t1, t1, t2 mul t3, t3, t4 sw t0, 12(v0) sw t8, 32(v0) sll t4, t5, 15 ins t7, t6, 16, 16 mult zero, zero dpa.w.ph $ac0, t7, s0 ins t3, t1, 16, 16 dpa.w.ph $ac0, t3, s1 mflo t0, $ac0 lw t9, 0(a2) lw t3, 0(v0) lw t7, 4(v0) lw t1, 8(v0) addu t9, t9, a3 sll t3, t3, 15 subu t8, t4, t0 addu t0, t4, t0 shra_r.w t0, t0, 13 shra_r.w t8, t8, 13 sw t0, 16(v0) sw t8, 36(v0) lw t5, 12(v0) lw t6, 16(v0) mult t7, s2 madd t1, s3 madd t5, s4 madd t6, s5 lw t5, 24(v0) lw t7, 28(v0) mflo t0, $ac0 lw t8, 32(v0) lw t2, 36(v0) mult $ac1, t5, s2 madd $ac1, t7, s3 madd $ac1, t8, s4 madd $ac1, t2, s5 addu t1, t3, t0 subu t6, t3, t0 shra_r.w t1, t1, 20 shra_r.w t6, t6, 20 mflo t4, $ac1 shll_s.w t1, t1, 24 shll_s.w t6, t6, 24 sra t1, t1, 24 sra t6, t6, 24 addiu t1, t1, 128 addiu t6, t6, 128 lw t0, 20(v0) sb t1, 0(t9) sb t6, 1(t9) sll t0, t0, 15 lw t9, 4(a2) addu t1, t0, t4 subu t6, t0, t4 addu t9, t9, a3 shra_r.w t1, t1, 20 shra_r.w t6, t6, 20 shll_s.w t1, t1, 24 shll_s.w t6, t6, 24 sra t1, t1, 24 sra t6, t6, 24 addiu t1, t1, 128 addiu t6, t6, 128 sb t1, 0(t9) sb t6, 1(t9) addiu sp, sp, 40 RESTORE_REGS_FROM_STACK 24, s0, s1, s2, s3, s4, s5 j ra nop END(jsimd_idct_2x2_dspr2) /*****************************************************************************/ LEAF_DSPR2(jsimd_idct_4x4_dspr2) /* * a0 = compptr->dct_table * a1 = coef_block * a2 = output_buf * a3 = output_col * 16(sp) = workspace[DCTSIZE*4] (buffers data between passes) */ .set at SAVE_REGS_ON_STACK 32, s0, s1, s2, s3, s4, s5, s6, s7 lw v1, 48(sp) move t0, a1 move t1, v1 li t9, 4 li s0, 0x2e75f93e li s1, 0x21f9ba79 li s2, 0xecc2efb0 li s3, 0x52031ccd 0: lh s6, 32(t0) /* inptr[DCTSIZE*2] */ lh t6, 32(a0) /* quantptr[DCTSIZE*2] */ lh s7, 96(t0) /* inptr[DCTSIZE*6] */ lh t7, 96(a0) /* quantptr[DCTSIZE*6] */ mul t6, s6, t6 /* z2 = (inptr[DCTSIZE*2] * quantptr[DCTSIZE*2]) */ lh s4, 0(t0) /* inptr[DCTSIZE*0] */ mul t7, s7, t7 /* z3 = (inptr[DCTSIZE*6] * quantptr[DCTSIZE*6]) */ lh s5, 0(a0) /* quantptr[0] */ li s6, 15137 li s7, 6270 mul t2, s4, s5 /* tmp0 = (inptr[0] * quantptr[0]) */ mul t6, s6, t6 /* z2 = (inptr[DCTSIZE*2] * quantptr[DCTSIZE*2]) */ lh t5, 112(t0) /* inptr[DCTSIZE*7] */ mul t7, s7, t7 /* z3 = (inptr[DCTSIZE*6] * quantptr[DCTSIZE*6]) */ lh s4, 112(a0) /* quantptr[DCTSIZE*7] */ lh v0, 80(t0) /* inptr[DCTSIZE*5] */ lh s5, 80(a0) /* quantptr[DCTSIZE*5] */ lh s6, 48(a0) /* quantptr[DCTSIZE*3] */ sll t2, t2, 14 /* tmp0 <<= (CONST_BITS+1) */ lh s7, 16(a0) /* quantptr[DCTSIZE*1] */ lh t8, 16(t0) /* inptr[DCTSIZE*1] */ subu t6, t6, t7 /* tmp2 = MULTIPLY(z2, t5) - MULTIPLY(z3, t6) */ lh t7, 48(t0) /* inptr[DCTSIZE*3] */ mul t5, s4, t5 /* z1 = (inptr[DCTSIZE*7] * quantptr[DCTSIZE*7]) */ mul v0, s5, v0 /* z2 = (inptr[DCTSIZE*5] * quantptr[DCTSIZE*5]) */ mul t7, s6, t7 /* z3 = (inptr[DCTSIZE*3] * quantptr[DCTSIZE*3]) */ mul t8, s7, t8 /* z4 = (inptr[DCTSIZE*1] * quantptr[DCTSIZE*1]) */ addu t3, t2, t6 /* tmp10 = tmp0 + z2 */ subu t4, t2, t6 /* tmp10 = tmp0 - z2 */ mult $ac0, zero, zero mult $ac1, zero, zero ins t5, v0, 16, 16 ins t7, t8, 16, 16 addiu t9, t9, -1 dpa.w.ph $ac0, t5, s0 dpa.w.ph $ac0, t7, s1 dpa.w.ph $ac1, t5, s2 dpa.w.ph $ac1, t7, s3 mflo s4, $ac0 mflo s5, $ac1 addiu a0, a0, 2 addiu t1, t1, 4 addiu t0, t0, 2 addu t6, t4, s4 subu t5, t4, s4 addu s6, t3, s5 subu s7, t3, s5 shra_r.w t6, t6, 12 /* DESCALE(tmp12 + temp1, 12) */ shra_r.w t5, t5, 12 /* DESCALE(tmp12 - temp1, 12) */ shra_r.w s6, s6, 12 /* DESCALE(tmp10 + temp2, 12) */ shra_r.w s7, s7, 12 /* DESCALE(tmp10 - temp2, 12) */ sw t6, 28(t1) sw t5, 60(t1) sw s6, -4(t1) bgtz t9, 0b sw s7, 92(t1) /* second loop three pass */ li t9, 3 1: lh s6, 34(t0) /* inptr[DCTSIZE*2] */ lh t6, 34(a0) /* quantptr[DCTSIZE*2] */ lh s7, 98(t0) /* inptr[DCTSIZE*6] */ lh t7, 98(a0) /* quantptr[DCTSIZE*6] */ mul t6, s6, t6 /* z2 = (inptr[DCTSIZE*2] * quantptr[DCTSIZE*2]) */ lh s4, 2(t0) /* inptr[DCTSIZE*0] */ mul t7, s7, t7 /* z3 = (inptr[DCTSIZE*6] * quantptr[DCTSIZE*6]) */ lh s5, 2(a0) /* quantptr[DCTSIZE*0] */ li s6, 15137 li s7, 6270 mul t2, s4, s5 /* tmp0 = (inptr[0] * quantptr[0]) */ mul v0, s6, t6 /* z2 = (inptr[DCTSIZE*2] * quantptr[DCTSIZE*2]) */ lh t5, 114(t0) /* inptr[DCTSIZE*7] */ mul t7, s7, t7 /* z3 = (inptr[DCTSIZE*6] * quantptr[DCTSIZE*6]) */ lh s4, 114(a0) /* quantptr[DCTSIZE*7] */ lh s5, 82(a0) /* quantptr[DCTSIZE*5] */ lh t6, 82(t0) /* inptr[DCTSIZE*5] */ sll t2, t2, 14 /* tmp0 <<= (CONST_BITS+1) */ lh s6, 50(a0) /* quantptr[DCTSIZE*3] */ lh t8, 18(t0) /* inptr[DCTSIZE*1] */ subu v0, v0, t7 /* tmp2 = MULTIPLY(z2, t5) - MULTIPLY(z3, t6) */ lh t7, 50(t0) /* inptr[DCTSIZE*3] */ lh s7, 18(a0) /* quantptr[DCTSIZE*1] */ mul t5, s4, t5 /* z1 = (inptr[DCTSIZE*7] * quantptr[DCTSIZE*7]) */ mul t6, s5, t6 /* z2 = (inptr[DCTSIZE*5] * quantptr[DCTSIZE*5]) */ mul t7, s6, t7 /* z3 = (inptr[DCTSIZE*3] * quantptr[DCTSIZE*3]) */ mul t8, s7, t8 /* z4 = (inptr[DCTSIZE*1] * quantptr[DCTSIZE*1]) */ addu t3, t2, v0 /* tmp10 = tmp0 + z2 */ subu t4, t2, v0 /* tmp10 = tmp0 - z2 */ mult $ac0, zero, zero mult $ac1, zero, zero ins t5, t6, 16, 16 ins t7, t8, 16, 16 dpa.w.ph $ac0, t5, s0 dpa.w.ph $ac0, t7, s1 dpa.w.ph $ac1, t5, s2 dpa.w.ph $ac1, t7, s3 mflo t5, $ac0 mflo t6, $ac1 addiu t9, t9, -1 addiu t0, t0, 2 addiu a0, a0, 2 addiu t1, t1, 4 addu s5, t4, t5 subu s4, t4, t5 addu s6, t3, t6 subu s7, t3, t6 shra_r.w s5, s5, 12 /* DESCALE(tmp12 + temp1, 12) */ shra_r.w s4, s4, 12 /* DESCALE(tmp12 - temp1, 12) */ shra_r.w s6, s6, 12 /* DESCALE(tmp10 + temp2, 12) */ shra_r.w s7, s7, 12 /* DESCALE(tmp10 - temp2, 12) */ sw s5, 32(t1) sw s4, 64(t1) sw s6, 0(t1) bgtz t9, 1b sw s7, 96(t1) move t1, v1 li s4, 15137 lw s6, 8(t1) /* wsptr[2] */ li s5, 6270 lw s7, 24(t1) /* wsptr[6] */ mul s4, s4, s6 /* MULTIPLY((JLONG)wsptr[2], FIX_1_847759065) */ lw t2, 0(t1) /* wsptr[0] */ mul s5, s5, s7 /* MULTIPLY((JLONG)wsptr[6], -FIX_0_765366865) */ lh t5, 28(t1) /* wsptr[7] */ lh t6, 20(t1) /* wsptr[5] */ lh t7, 12(t1) /* wsptr[3] */ lh t8, 4(t1) /* wsptr[1] */ ins t5, t6, 16, 16 ins t7, t8, 16, 16 mult $ac0, zero, zero dpa.w.ph $ac0, t5, s0 dpa.w.ph $ac0, t7, s1 mult $ac1, zero, zero dpa.w.ph $ac1, t5, s2 dpa.w.ph $ac1, t7, s3 sll t2, t2, 14 /* tmp0 = ((JLONG)wsptr[0]) << (CONST_BITS+1) */ mflo s6, $ac0 /* MULTIPLY(wsptr[2], FIX_1_847759065) + MULTIPLY(wsptr[6], -FIX_0_765366865) */ subu s4, s4, s5 addu t3, t2, s4 /* tmp10 = tmp0 + z2 */ mflo s7, $ac1 subu t4, t2, s4 /* tmp10 = tmp0 - z2 */ addu t7, t4, s6 subu t8, t4, s6 addu t5, t3, s7 subu t6, t3, s7 shra_r.w t5, t5, 19 /* DESCALE(tmp10 + temp2, 19) */ shra_r.w t6, t6, 19 /* DESCALE(tmp10 - temp2, 19) */ shra_r.w t7, t7, 19 /* DESCALE(tmp12 + temp1, 19) */ shra_r.w t8, t8, 19 /* DESCALE(tmp12 - temp1, 19) */ sll s4, t9, 2 lw v0, 0(a2) /* output_buf[ctr] */ shll_s.w t5, t5, 24 shll_s.w t6, t6, 24 shll_s.w t7, t7, 24 shll_s.w t8, t8, 24 sra t5, t5, 24 sra t6, t6, 24 sra t7, t7, 24 sra t8, t8, 24 addu v0, v0, a3 /* outptr = output_buf[ctr] + output_col */ addiu t5, t5, 128 addiu t6, t6, 128 addiu t7, t7, 128 addiu t8, t8, 128 sb t5, 0(v0) sb t7, 1(v0) sb t8, 2(v0) sb t6, 3(v0) /* 2 */ li s4, 15137 lw s6, 40(t1) /* wsptr[2] */ li s5, 6270 lw s7, 56(t1) /* wsptr[6] */ mul s4, s4, s6 /* MULTIPLY((JLONG)wsptr[2], FIX_1_847759065) */ lw t2, 32(t1) /* wsptr[0] */ mul s5, s5, s7 /* MULTIPLY((JLONG)wsptr[6], -FIX_0_765366865) */ lh t5, 60(t1) /* wsptr[7] */ lh t6, 52(t1) /* wsptr[5] */ lh t7, 44(t1) /* wsptr[3] */ lh t8, 36(t1) /* wsptr[1] */ ins t5, t6, 16, 16 ins t7, t8, 16, 16 mult $ac0, zero, zero dpa.w.ph $ac0, t5, s0 dpa.w.ph $ac0, t7, s1 mult $ac1, zero, zero dpa.w.ph $ac1, t5, s2 dpa.w.ph $ac1, t7, s3 sll t2, t2, 14 /* tmp0 = ((JLONG)wsptr[0]) << (CONST_BITS+1) */ mflo s6, $ac0 /* MULTIPLY(wsptr[2], FIX_1_847759065) + MULTIPLY(wsptr[6], -FIX_0_765366865) */ subu s4, s4, s5 addu t3, t2, s4 /* tmp10 = tmp0 + z2 */ mflo s7, $ac1 subu t4, t2, s4 /* tmp10 = tmp0 - z2 */ addu t7, t4, s6 subu t8, t4, s6 addu t5, t3, s7 subu t6, t3, s7 shra_r.w t5, t5, 19 /* DESCALE(tmp10 + temp2, CONST_BITS-PASS1_BITS+1) */ shra_r.w t6, t6, 19 /* DESCALE(tmp10 - temp2, CONST_BITS-PASS1_BITS+1) */ shra_r.w t7, t7, 19 /* DESCALE(tmp12 + temp1, CONST_BITS-PASS1_BITS+1) */ shra_r.w t8, t8, 19 /* DESCALE(tmp12 - temp1, CONST_BITS-PASS1_BITS+1) */ sll s4, t9, 2 lw v0, 4(a2) /* output_buf[ctr] */ shll_s.w t5, t5, 24 shll_s.w t6, t6, 24 shll_s.w t7, t7, 24 shll_s.w t8, t8, 24 sra t5, t5, 24 sra t6, t6, 24 sra t7, t7, 24 sra t8, t8, 24 addu v0, v0, a3 /* outptr = output_buf[ctr] + output_col */ addiu t5, t5, 128 addiu t6, t6, 128 addiu t7, t7, 128 addiu t8, t8, 128 sb t5, 0(v0) sb t7, 1(v0) sb t8, 2(v0) sb t6, 3(v0) /* 3 */ li s4, 15137 lw s6, 72(t1) /* wsptr[2] */ li s5, 6270 lw s7, 88(t1) /* wsptr[6] */ mul s4, s4, s6 /* MULTIPLY((JLONG)wsptr[2], FIX_1_847759065) */ lw t2, 64(t1) /* wsptr[0] */ mul s5, s5, s7 /* MULTIPLY((JLONG)wsptr[6], -FIX_0_765366865) */ lh t5, 92(t1) /* wsptr[7] */ lh t6, 84(t1) /* wsptr[5] */ lh t7, 76(t1) /* wsptr[3] */ lh t8, 68(t1) /* wsptr[1] */ ins t5, t6, 16, 16 ins t7, t8, 16, 16 mult $ac0, zero, zero dpa.w.ph $ac0, t5, s0 dpa.w.ph $ac0, t7, s1 mult $ac1, zero, zero dpa.w.ph $ac1, t5, s2 dpa.w.ph $ac1, t7, s3 sll t2, t2, 14 /* tmp0 = ((JLONG)wsptr[0]) << (CONST_BITS+1) */ mflo s6, $ac0 /* MULTIPLY(wsptr[2], FIX_1_847759065) + MULTIPLY(wsptr[6], -FIX_0_765366865) */ subu s4, s4, s5 addu t3, t2, s4 /* tmp10 = tmp0 + z2 */ mflo s7, $ac1 subu t4, t2, s4 /* tmp10 = tmp0 - z2 */ addu t7, t4, s6 subu t8, t4, s6 addu t5, t3, s7 subu t6, t3, s7 shra_r.w t5, t5, 19 /* DESCALE(tmp10 + temp2, 19) */ shra_r.w t6, t6, 19 /* DESCALE(tmp10 - temp2, 19) */ shra_r.w t7, t7, 19 /* DESCALE(tmp12 + temp1, 19) */ shra_r.w t8, t8, 19 /* DESCALE(tmp12 - temp1, 19) */ sll s4, t9, 2 lw v0, 8(a2) /* output_buf[ctr] */ shll_s.w t5, t5, 24 shll_s.w t6, t6, 24 shll_s.w t7, t7, 24 shll_s.w t8, t8, 24 sra t5, t5, 24 sra t6, t6, 24 sra t7, t7, 24 sra t8, t8, 24 addu v0, v0, a3 /* outptr = output_buf[ctr] + output_col */ addiu t5, t5, 128 addiu t6, t6, 128 addiu t7, t7, 128 addiu t8, t8, 128 sb t5, 0(v0) sb t7, 1(v0) sb t8, 2(v0) sb t6, 3(v0) li s4, 15137 lw s6, 104(t1) /* wsptr[2] */ li s5, 6270 lw s7, 120(t1) /* wsptr[6] */ mul s4, s4, s6 /* MULTIPLY((JLONG)wsptr[2], FIX_1_847759065) */ lw t2, 96(t1) /* wsptr[0] */ mul s5, s5, s7 /* MULTIPLY((JLONG)wsptr[6], -FIX_0_765366865) */ lh t5, 124(t1) /* wsptr[7] */ lh t6, 116(t1) /* wsptr[5] */ lh t7, 108(t1) /* wsptr[3] */ lh t8, 100(t1) /* wsptr[1] */ ins t5, t6, 16, 16 ins t7, t8, 16, 16 mult $ac0, zero, zero dpa.w.ph $ac0, t5, s0 dpa.w.ph $ac0, t7, s1 mult $ac1, zero, zero dpa.w.ph $ac1, t5, s2 dpa.w.ph $ac1, t7, s3 sll t2, t2, 14 /* tmp0 = ((JLONG)wsptr[0]) << (CONST_BITS+1) */ mflo s6, $ac0 /* MULTIPLY(wsptr[2], FIX_1_847759065) + MULTIPLY(wsptr[6], -FIX_0_765366865) */ subu s4, s4, s5 addu t3, t2, s4 /* tmp10 = tmp0 + z2; */ mflo s7, $ac1 subu t4, t2, s4 /* tmp10 = tmp0 - z2; */ addu t7, t4, s6 subu t8, t4, s6 addu t5, t3, s7 subu t6, t3, s7 shra_r.w t5, t5, 19 /* DESCALE(tmp10 + temp2, 19) */ shra_r.w t6, t6, 19 /* DESCALE(tmp10 - temp2, 19) */ shra_r.w t7, t7, 19 /* DESCALE(tmp12 + temp1, 19) */ shra_r.w t8, t8, 19 /* DESCALE(tmp12 - temp1, 19) */ sll s4, t9, 2 lw v0, 12(a2) /* output_buf[ctr] */ shll_s.w t5, t5, 24 shll_s.w t6, t6, 24 shll_s.w t7, t7, 24 shll_s.w t8, t8, 24 sra t5, t5, 24 sra t6, t6, 24 sra t7, t7, 24 sra t8, t8, 24 addu v0, v0, a3 /* outptr = output_buf[ctr] + output_col */ addiu t5, t5, 128 addiu t6, t6, 128 addiu t7, t7, 128 addiu t8, t8, 128 sb t5, 0(v0) sb t7, 1(v0) sb t8, 2(v0) sb t6, 3(v0) RESTORE_REGS_FROM_STACK 32, s0, s1, s2, s3, s4, s5, s6, s7 j ra nop END(jsimd_idct_4x4_dspr2) /*****************************************************************************/ LEAF_DSPR2(jsimd_idct_6x6_dspr2) /* * a0 = compptr->dct_table * a1 = coef_block * a2 = output_buf * a3 = output_col */ .set at SAVE_REGS_ON_STACK 32, s0, s1, s2, s3, s4, s5, s6, s7 addiu sp, sp, -144 move v0, sp addiu v1, v0, 24 addiu t9, zero, 5793 addiu s0, zero, 10033 addiu s1, zero, 2998 1: lh s2, 0(a0) /* q0 = quantptr[ 0] */ lh s3, 32(a0) /* q1 = quantptr[16] */ lh s4, 64(a0) /* q2 = quantptr[32] */ lh t2, 64(a1) /* tmp2 = inptr[32] */ lh t1, 32(a1) /* tmp1 = inptr[16] */ lh t0, 0(a1) /* tmp0 = inptr[ 0] */ mul t2, t2, s4 /* tmp2 = tmp2 * q2 */ mul t1, t1, s3 /* tmp1 = tmp1 * q1 */ mul t0, t0, s2 /* tmp0 = tmp0 * q0 */ lh t6, 16(a1) /* z1 = inptr[ 8] */ lh t8, 80(a1) /* z3 = inptr[40] */ lh t7, 48(a1) /* z2 = inptr[24] */ lh s2, 16(a0) /* q0 = quantptr[ 8] */ lh s4, 80(a0) /* q2 = quantptr[40] */ lh s3, 48(a0) /* q1 = quantptr[24] */ mul t2, t2, t9 /* tmp2 = tmp2 * 5793 */ mul t1, t1, s0 /* tmp1 = tmp1 * 10033 */ sll t0, t0, 13 /* tmp0 = tmp0 << 13 */ mul t6, t6, s2 /* z1 = z1 * q0 */ mul t8, t8, s4 /* z3 = z3 * q2 */ mul t7, t7, s3 /* z2 = z2 * q1 */ addu t3, t0, t2 /* tmp10 = tmp0 + tmp2 */ sll t2, t2, 1 /* tmp2 = tmp2 << 2 */ subu t4, t0, t2 /* tmp11 = tmp0 - tmp2; */ subu t5, t3, t1 /* tmp12 = tmp10 - tmp1 */ addu t3, t3, t1 /* tmp10 = tmp10 + tmp1 */ addu t1, t6, t8 /* tmp1 = z1 + z3 */ mul t1, t1, s1 /* tmp1 = tmp1 * 2998 */ shra_r.w t4, t4, 11 /* tmp11 = (tmp11 + 1024) >> 11 */ subu t2, t6, t8 /* tmp2 = z1 - z3 */ subu t2, t2, t7 /* tmp2 = tmp2 - z2 */ sll t2, t2, 2 /* tmp2 = tmp2 << 2 */ addu t0, t6, t7 /* tmp0 = z1 + z2 */ sll t0, t0, 13 /* tmp0 = tmp0 << 13 */ subu s2, t8, t7 /* q0 = z3 - z2 */ sll s2, s2, 13 /* q0 = q0 << 13 */ addu t0, t0, t1 /* tmp0 = tmp0 + tmp1 */ addu t1, s2, t1 /* tmp1 = q0 + tmp1 */ addu s2, t4, t2 /* q0 = tmp11 + tmp2 */ subu s3, t4, t2 /* q1 = tmp11 - tmp2 */ addu t6, t3, t0 /* z1 = tmp10 + tmp0 */ subu t7, t3, t0 /* z2 = tmp10 - tmp0 */ addu t4, t5, t1 /* tmp11 = tmp12 + tmp1 */ subu t5, t5, t1 /* tmp12 = tmp12 - tmp1 */ shra_r.w t6, t6, 11 /* z1 = (z1 + 1024) >> 11 */ shra_r.w t7, t7, 11 /* z2 = (z2 + 1024) >> 11 */ shra_r.w t4, t4, 11 /* tmp11 = (tmp11 + 1024) >> 11 */ shra_r.w t5, t5, 11 /* tmp12 = (tmp12 + 1024) >> 11 */ sw s2, 24(v0) sw s3, 96(v0) sw t6, 0(v0) sw t7, 120(v0) sw t4, 48(v0) sw t5, 72(v0) addiu v0, v0, 4 addiu a1, a1, 2 bne v0, v1, 1b addiu a0, a0, 2 /* Pass 2: process 6 rows from work array, store into output array. */ move v0, sp addiu v1, v0, 144 2: lw t0, 0(v0) lw t2, 16(v0) lw s5, 0(a2) addiu t0, t0, 16 sll t0, t0, 13 mul t3, t2, t9 lw t6, 4(v0) lw t8, 20(v0) lw t7, 12(v0) addu s5, s5, a3 addu s6, t6, t8 mul s6, s6, s1 addu t1, t0, t3 subu t4, t0, t3 subu t4, t4, t3 lw t3, 8(v0) mul t0, t3, s0 addu s7, t6, t7 sll s7, s7, 13 addu s7, s6, s7 subu t2, t8, t7 sll t2, t2, 13 addu t2, s6, t2 subu s6, t6, t7 subu s6, s6, t8 sll s6, s6, 13 addu t3, t1, t0 subu t5, t1, t0 addu t6, t3, s7 subu t3, t3, s7 addu t7, t4, s6 subu t4, t4, s6 addu t8, t5, t2 subu t5, t5, t2 shll_s.w t6, t6, 6 shll_s.w t3, t3, 6 shll_s.w t7, t7, 6 shll_s.w t4, t4, 6 shll_s.w t8, t8, 6 shll_s.w t5, t5, 6 sra t6, t6, 24 addiu t6, t6, 128 sra t3, t3, 24 addiu t3, t3, 128 sb t6, 0(s5) sra t7, t7, 24 addiu t7, t7, 128 sb t3, 5(s5) sra t4, t4, 24 addiu t4, t4, 128 sb t7, 1(s5) sra t8, t8, 24 addiu t8, t8, 128 sb t4, 4(s5) addiu v0, v0, 24 sra t5, t5, 24 addiu t5, t5, 128 sb t8, 2(s5) addiu a2, a2, 4 bne v0, v1, 2b sb t5, 3(s5) addiu sp, sp, 144 RESTORE_REGS_FROM_STACK 32, s0, s1, s2, s3, s4, s5, s6, s7 j ra nop END(jsimd_idct_6x6_dspr2) /*****************************************************************************/ LEAF_DSPR2(jsimd_idct_12x12_pass1_dspr2) /* * a0 = compptr->dct_table * a1 = coef_block * a2 = workspace */ SAVE_REGS_ON_STACK 16, s0, s1, s2, s3 li a3, 8 1: /* odd part */ lh t0, 48(a1) lh t1, 48(a0) lh t2, 16(a1) lh t3, 16(a0) lh t4, 80(a1) lh t5, 80(a0) lh t6, 112(a1) lh t7, 112(a0) mul t0, t0, t1 /* z2 */ mul t1, t2, t3 /* z1 */ mul t2, t4, t5 /* z3 */ mul t3, t6, t7 /* z4 */ li t4, 10703 /* FIX(1.306562965) */ li t5, 4433 /* FIX_0_541196100 */ li t6, 7053 /* FIX(0.860918669) */ mul t4, t0, t4 /* tmp11 */ mul t5, t0, t5 /* -tmp14 */ addu t7, t1, t2 /* tmp10 */ addu t8, t7, t3 /* tmp10 + z4 */ mul t6, t6, t8 /* tmp15 */ li t8, 2139 /* FIX(0.261052384) */ mul t8, t7, t8 /* MULTIPLY(tmp10, FIX(0.261052384)) */ li t7, 2295 /* FIX(0.280143716) */ mul t7, t1, t7 /* MULTIPLY(z1, FIX(0.280143716)) */ addu t9, t2, t3 /* z3 + z4 */ li s0, 8565 /* FIX(1.045510580) */ mul t9, t9, s0 /* -tmp13 */ li s0, 12112 /* FIX(1.478575242) */ mul s0, t2, s0 /* MULTIPLY(z3, FIX(1.478575242) */ li s1, 12998 /* FIX(1.586706681) */ mul s1, t3, s1 /* MULTIPLY(z4, FIX(1.586706681)) */ li s2, 5540 /* FIX(0.676326758) */ mul s2, t1, s2 /* MULTIPLY(z1, FIX(0.676326758)) */ li s3, 16244 /* FIX(1.982889723) */ mul s3, t3, s3 /* MULTIPLY(z4, FIX(1.982889723)) */ subu t1, t1, t3 /* z1-=z4 */ subu t0, t0, t2 /* z2-=z3 */ addu t2, t0, t1 /* z1+z2 */ li t3, 4433 /* FIX_0_541196100 */ mul t2, t2, t3 /* z3 */ li t3, 6270 /* FIX_0_765366865 */ mul t1, t1, t3 /* MULTIPLY(z1, FIX_0_765366865) */ li t3, 15137 /* FIX_0_765366865 */ mul t0, t0, t3 /* MULTIPLY(z2, FIX_1_847759065) */ addu t8, t6, t8 /* tmp12 */ addu t3, t8, t4 /* tmp12 + tmp11 */ addu t3, t3, t7 /* tmp10 */ subu t8, t8, t9 /* tmp12 + tmp13 */ addu s0, t5, s0 subu t8, t8, s0 /* tmp12 */ subu t9, t6, t9 subu s1, s1, t4 addu t9, t9, s1 /* tmp13 */ subu t6, t6, t5 subu t6, t6, s2 subu t6, t6, s3 /* tmp15 */ /* even part start */ lh t4, 64(a1) lh t5, 64(a0) lh t7, 32(a1) lh s0, 32(a0) lh s1, 0(a1) lh s2, 0(a0) lh s3, 96(a1) lh v0, 96(a0) mul t4, t4, t5 /* DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]) */ mul t5, t7, s0 /* DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]) */ mul t7, s1, s2 /* DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) */ mul s0, s3, v0 /* DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]) */ /* odd part end */ addu t1, t2, t1 /* tmp11 */ subu t0, t2, t0 /* tmp14 */ /* update counter and pointers */ addiu a3, a3, -1 addiu a0, a0, 2 addiu a1, a1, 2 /* even part rest */ li s1, 10033 li s2, 11190 mul t4, t4, s1 /* z4 */ mul s1, t5, s2 /* z4 */ sll t5, t5, 13 /* z1 */ sll t7, t7, 13 addiu t7, t7, 1024 /* z3 */ sll s0, s0, 13 /* z2 */ addu s2, t7, t4 /* tmp10 */ subu t4, t7, t4 /* tmp11 */ subu s3, t5, s0 /* tmp12 */ addu t2, t7, s3 /* tmp21 */ subu s3, t7, s3 /* tmp24 */ addu t7, s1, s0 /* tmp12 */ addu v0, s2, t7 /* tmp20 */ subu s2, s2, t7 /* tmp25 */ subu s1, s1, t5 /* z4 - z1 */ subu s1, s1, s0 /* tmp12 */ addu s0, t4, s1 /* tmp22 */ subu t4, t4, s1 /* tmp23 */ /* final output stage */ addu t5, v0, t3 subu v0, v0, t3 addu t3, t2, t1 subu t2, t2, t1 addu t1, s0, t8 subu s0, s0, t8 addu t8, t4, t9 subu t4, t4, t9 addu t9, s3, t0 subu s3, s3, t0 addu t0, s2, t6 subu s2, s2, t6 sra t5, t5, 11 sra t3, t3, 11 sra t1, t1, 11 sra t8, t8, 11 sra t9, t9, 11 sra t0, t0, 11 sra s2, s2, 11 sra s3, s3, 11 sra t4, t4, 11 sra s0, s0, 11 sra t2, t2, 11 sra v0, v0, 11 sw t5, 0(a2) sw t3, 32(a2) sw t1, 64(a2) sw t8, 96(a2) sw t9, 128(a2) sw t0, 160(a2) sw s2, 192(a2) sw s3, 224(a2) sw t4, 256(a2) sw s0, 288(a2) sw t2, 320(a2) sw v0, 352(a2) bgtz a3, 1b addiu a2, a2, 4 RESTORE_REGS_FROM_STACK 16, s0, s1, s2, s3 j ra nop END(jsimd_idct_12x12_pass1_dspr2) /*****************************************************************************/ LEAF_DSPR2(jsimd_idct_12x12_pass2_dspr2) /* * a0 = workspace * a1 = output */ SAVE_REGS_ON_STACK 16, s0, s1, s2, s3 li a3, 12 1: /* Odd part */ lw t0, 12(a0) lw t1, 4(a0) lw t2, 20(a0) lw t3, 28(a0) li t4, 10703 /* FIX(1.306562965) */ li t5, 4433 /* FIX_0_541196100 */ mul t4, t0, t4 /* tmp11 */ mul t5, t0, t5 /* -tmp14 */ addu t6, t1, t2 /* tmp10 */ li t7, 2139 /* FIX(0.261052384) */ mul t7, t6, t7 /* MULTIPLY(tmp10, FIX(0.261052384)) */ addu t6, t6, t3 /* tmp10 + z4 */ li t8, 7053 /* FIX(0.860918669) */ mul t6, t6, t8 /* tmp15 */ li t8, 2295 /* FIX(0.280143716) */ mul t8, t1, t8 /* MULTIPLY(z1, FIX(0.280143716)) */ addu t9, t2, t3 /* z3 + z4 */ li s0, 8565 /* FIX(1.045510580) */ mul t9, t9, s0 /* -tmp13 */ li s0, 12112 /* FIX(1.478575242) */ mul s0, t2, s0 /* MULTIPLY(z3, FIX(1.478575242)) */ li s1, 12998 /* FIX(1.586706681) */ mul s1, t3, s1 /* MULTIPLY(z4, FIX(1.586706681)) */ li s2, 5540 /* FIX(0.676326758) */ mul s2, t1, s2 /* MULTIPLY(z1, FIX(0.676326758)) */ li s3, 16244 /* FIX(1.982889723) */ mul s3, t3, s3 /* MULTIPLY(z4, FIX(1.982889723)) */ subu t1, t1, t3 /* z1 -= z4 */ subu t0, t0, t2 /* z2 -= z3 */ addu t2, t1, t0 /* z1 + z2 */ li t3, 4433 /* FIX_0_541196100 */ mul t2, t2, t3 /* z3 */ li t3, 6270 /* FIX_0_765366865 */ mul t1, t1, t3 /* MULTIPLY(z1, FIX_0_765366865) */ li t3, 15137 /* FIX_1_847759065 */ mul t0, t0, t3 /* MULTIPLY(z2, FIX_1_847759065) */ addu t3, t6, t7 /* tmp12 */ addu t7, t3, t4 addu t7, t7, t8 /* tmp10 */ subu t3, t3, t9 subu t3, t3, t5 subu t3, t3, s0 /* tmp12 */ subu t9, t6, t9 subu t9, t9, t4 addu t9, t9, s1 /* tmp13 */ subu t6, t6, t5 subu t6, t6, s2 subu t6, t6, s3 /* tmp15 */ addu t1, t2, t1 /* tmp11 */ subu t0, t2, t0 /* tmp14 */ /* even part */ lw t2, 16(a0) /* z4 */ lw t4, 8(a0) /* z1 */ lw t5, 0(a0) /* z3 */ lw t8, 24(a0) /* z2 */ li s0, 10033 /* FIX(1.224744871) */ li s1, 11190 /* FIX(1.366025404) */ mul t2, t2, s0 /* z4 */ mul s0, t4, s1 /* z4 */ addiu t5, t5, 0x10 sll t5, t5, 13 /* z3 */ sll t4, t4, 13 /* z1 */ sll t8, t8, 13 /* z2 */ subu s1, t4, t8 /* tmp12 */ addu s2, t5, t2 /* tmp10 */ subu t2, t5, t2 /* tmp11 */ addu s3, t5, s1 /* tmp21 */ subu s1, t5, s1 /* tmp24 */ addu t5, s0, t8 /* tmp12 */ addu v0, s2, t5 /* tmp20 */ subu t5, s2, t5 /* tmp25 */ subu t4, s0, t4 subu t4, t4, t8 /* tmp12 */ addu t8, t2, t4 /* tmp22 */ subu t2, t2, t4 /* tmp23 */ /* increment counter and pointers */ addiu a3, a3, -1 addiu a0, a0, 32 /* Final stage */ addu t4, v0, t7 subu v0, v0, t7 addu t7, s3, t1 subu s3, s3, t1 addu t1, t8, t3 subu t8, t8, t3 addu t3, t2, t9 subu t2, t2, t9 addu t9, s1, t0 subu s1, s1, t0 addu t0, t5, t6 subu t5, t5, t6 sll t4, t4, 4 sll t7, t7, 4 sll t1, t1, 4 sll t3, t3, 4 sll t9, t9, 4 sll t0, t0, 4 sll t5, t5, 4 sll s1, s1, 4 sll t2, t2, 4 sll t8, t8, 4 sll s3, s3, 4 sll v0, v0, 4 shll_s.w t4, t4, 2 shll_s.w t7, t7, 2 shll_s.w t1, t1, 2 shll_s.w t3, t3, 2 shll_s.w t9, t9, 2 shll_s.w t0, t0, 2 shll_s.w t5, t5, 2 shll_s.w s1, s1, 2 shll_s.w t2, t2, 2 shll_s.w t8, t8, 2 shll_s.w s3, s3, 2 shll_s.w v0, v0, 2 srl t4, t4, 24 srl t7, t7, 24 srl t1, t1, 24 srl t3, t3, 24 srl t9, t9, 24 srl t0, t0, 24 srl t5, t5, 24 srl s1, s1, 24 srl t2, t2, 24 srl t8, t8, 24 srl s3, s3, 24 srl v0, v0, 24 lw t6, 0(a1) addiu t4, t4, 0x80 addiu t7, t7, 0x80 addiu t1, t1, 0x80 addiu t3, t3, 0x80 addiu t9, t9, 0x80 addiu t0, t0, 0x80 addiu t5, t5, 0x80 addiu s1, s1, 0x80 addiu t2, t2, 0x80 addiu t8, t8, 0x80 addiu s3, s3, 0x80 addiu v0, v0, 0x80 sb t4, 0(t6) sb t7, 1(t6) sb t1, 2(t6) sb t3, 3(t6) sb t9, 4(t6) sb t0, 5(t6) sb t5, 6(t6) sb s1, 7(t6) sb t2, 8(t6) sb t8, 9(t6) sb s3, 10(t6) sb v0, 11(t6) bgtz a3, 1b addiu a1, a1, 4 RESTORE_REGS_FROM_STACK 16, s0, s1, s2, s3 jr ra nop END(jsimd_idct_12x12_pass2_dspr2) /*****************************************************************************/ LEAF_DSPR2(jsimd_convsamp_dspr2) /* * a0 = sample_data * a1 = start_col * a2 = workspace */ lw t0, 0(a0) li t7, 0xff80ff80 addu t0, t0, a1 ulw t1, 0(t0) ulw t2, 4(t0) preceu.ph.qbr t3, t1 preceu.ph.qbl t4, t1 lw t0, 4(a0) preceu.ph.qbr t5, t2 preceu.ph.qbl t6, t2 addu t0, t0, a1 addu.ph t3, t3, t7 addu.ph t4, t4, t7 ulw t1, 0(t0) ulw t2, 4(t0) addu.ph t5, t5, t7 addu.ph t6, t6, t7 usw t3, 0(a2) usw t4, 4(a2) preceu.ph.qbr t3, t1 preceu.ph.qbl t4, t1 usw t5, 8(a2) usw t6, 12(a2) lw t0, 8(a0) preceu.ph.qbr t5, t2 preceu.ph.qbl t6, t2 addu t0, t0, a1 addu.ph t3, t3, t7 addu.ph t4, t4, t7 ulw t1, 0(t0) ulw t2, 4(t0) addu.ph t5, t5, t7 addu.ph t6, t6, t7 usw t3, 16(a2) usw t4, 20(a2) preceu.ph.qbr t3, t1 preceu.ph.qbl t4, t1 usw t5, 24(a2) usw t6, 28(a2) lw t0, 12(a0) preceu.ph.qbr t5, t2 preceu.ph.qbl t6, t2 addu t0, t0, a1 addu.ph t3, t3, t7 addu.ph t4, t4, t7 ulw t1, 0(t0) ulw t2, 4(t0) addu.ph t5, t5, t7 addu.ph t6, t6, t7 usw t3, 32(a2) usw t4, 36(a2) preceu.ph.qbr t3, t1 preceu.ph.qbl t4, t1 usw t5, 40(a2) usw t6, 44(a2) lw t0, 16(a0) preceu.ph.qbr t5, t2 preceu.ph.qbl t6, t2 addu t0, t0, a1 addu.ph t3, t3, t7 addu.ph t4, t4, t7 ulw t1, 0(t0) ulw t2, 4(t0) addu.ph t5, t5, t7 addu.ph t6, t6, t7 usw t3, 48(a2) usw t4, 52(a2) preceu.ph.qbr t3, t1 preceu.ph.qbl t4, t1 usw t5, 56(a2) usw t6, 60(a2) lw t0, 20(a0) preceu.ph.qbr t5, t2 preceu.ph.qbl t6, t2 addu t0, t0, a1 addu.ph t3, t3, t7 addu.ph t4, t4, t7 ulw t1, 0(t0) ulw t2, 4(t0) addu.ph t5, t5, t7 addu.ph t6, t6, t7 usw t3, 64(a2) usw t4, 68(a2) preceu.ph.qbr t3, t1 preceu.ph.qbl t4, t1 usw t5, 72(a2) usw t6, 76(a2) lw t0, 24(a0) preceu.ph.qbr t5, t2 preceu.ph.qbl t6, t2 addu t0, t0, a1 addu.ph t3, t3, t7 addu.ph t4, t4, t7 ulw t1, 0(t0) ulw t2, 4(t0) addu.ph t5, t5, t7 addu.ph t6, t6, t7 usw t3, 80(a2) usw t4, 84(a2) preceu.ph.qbr t3, t1 preceu.ph.qbl t4, t1 usw t5, 88(a2) usw t6, 92(a2) lw t0, 28(a0) preceu.ph.qbr t5, t2 preceu.ph.qbl t6, t2 addu t0, t0, a1 addu.ph t3, t3, t7 addu.ph t4, t4, t7 ulw t1, 0(t0) ulw t2, 4(t0) addu.ph t5, t5, t7 addu.ph t6, t6, t7 usw t3, 96(a2) usw t4, 100(a2) preceu.ph.qbr t3, t1 preceu.ph.qbl t4, t1 usw t5, 104(a2) usw t6, 108(a2) preceu.ph.qbr t5, t2 preceu.ph.qbl t6, t2 addu.ph t3, t3, t7 addu.ph t4, t4, t7 addu.ph t5, t5, t7 addu.ph t6, t6, t7 usw t3, 112(a2) usw t4, 116(a2) usw t5, 120(a2) usw t6, 124(a2) j ra nop END(jsimd_convsamp_dspr2) #ifndef __mips_soft_float /*****************************************************************************/ LEAF_DSPR2(jsimd_convsamp_float_dspr2) /* * a0 = sample_data * a1 = start_col * a2 = workspace */ .set at lw t0, 0(a0) addu t0, t0, a1 lbu t1, 0(t0) lbu t2, 1(t0) lbu t3, 2(t0) lbu t4, 3(t0) lbu t5, 4(t0) lbu t6, 5(t0) lbu t7, 6(t0) lbu t8, 7(t0) addiu t1, t1, -128 addiu t2, t2, -128 addiu t3, t3, -128 addiu t4, t4, -128 addiu t5, t5, -128 addiu t6, t6, -128 addiu t7, t7, -128 addiu t8, t8, -128 mtc1 t1, f2 mtc1 t2, f4 mtc1 t3, f6 mtc1 t4, f8 mtc1 t5, f10 mtc1 t6, f12 mtc1 t7, f14 mtc1 t8, f16 cvt.s.w f2, f2 cvt.s.w f4, f4 cvt.s.w f6, f6 cvt.s.w f8, f8 cvt.s.w f10, f10 cvt.s.w f12, f12 cvt.s.w f14, f14 cvt.s.w f16, f16 lw t0, 4(a0) swc1 f2, 0(a2) swc1 f4, 4(a2) swc1 f6, 8(a2) addu t0, t0, a1 swc1 f8, 12(a2) swc1 f10, 16(a2) swc1 f12, 20(a2) swc1 f14, 24(a2) swc1 f16, 28(a2) /* elemr 1 */ lbu t1, 0(t0) lbu t2, 1(t0) lbu t3, 2(t0) lbu t4, 3(t0) lbu t5, 4(t0) lbu t6, 5(t0) lbu t7, 6(t0) lbu t8, 7(t0) addiu t1, t1, -128 addiu t2, t2, -128 addiu t3, t3, -128 addiu t4, t4, -128 addiu t5, t5, -128 addiu t6, t6, -128 addiu t7, t7, -128 addiu t8, t8, -128 mtc1 t1, f2 mtc1 t2, f4 mtc1 t3, f6 mtc1 t4, f8 mtc1 t5, f10 mtc1 t6, f12 mtc1 t7, f14 mtc1 t8, f16 cvt.s.w f2, f2 cvt.s.w f4, f4 cvt.s.w f6, f6 cvt.s.w f8, f8 cvt.s.w f10, f10 cvt.s.w f12, f12 cvt.s.w f14, f14 cvt.s.w f16, f16 lw t0, 8(a0) swc1 f2, 32(a2) swc1 f4, 36(a2) swc1 f6, 40(a2) addu t0, t0, a1 swc1 f8, 44(a2) swc1 f10, 48(a2) swc1 f12, 52(a2) swc1 f14, 56(a2) swc1 f16, 60(a2) /* elemr 2 */ lbu t1, 0(t0) lbu t2, 1(t0) lbu t3, 2(t0) lbu t4, 3(t0) lbu t5, 4(t0) lbu t6, 5(t0) lbu t7, 6(t0) lbu t8, 7(t0) addiu t1, t1, -128 addiu t2, t2, -128 addiu t3, t3, -128 addiu t4, t4, -128 addiu t5, t5, -128 addiu t6, t6, -128 addiu t7, t7, -128 addiu t8, t8, -128 mtc1 t1, f2 mtc1 t2, f4 mtc1 t3, f6 mtc1 t4, f8 mtc1 t5, f10 mtc1 t6, f12 mtc1 t7, f14 mtc1 t8, f16 cvt.s.w f2, f2 cvt.s.w f4, f4 cvt.s.w f6, f6 cvt.s.w f8, f8 cvt.s.w f10, f10 cvt.s.w f12, f12 cvt.s.w f14, f14 cvt.s.w f16, f16 lw t0, 12(a0) swc1 f2, 64(a2) swc1 f4, 68(a2) swc1 f6, 72(a2) addu t0, t0, a1 swc1 f8, 76(a2) swc1 f10, 80(a2) swc1 f12, 84(a2) swc1 f14, 88(a2) swc1 f16, 92(a2) /* elemr 3 */ lbu t1, 0(t0) lbu t2, 1(t0) lbu t3, 2(t0) lbu t4, 3(t0) lbu t5, 4(t0) lbu t6, 5(t0) lbu t7, 6(t0) lbu t8, 7(t0) addiu t1, t1, -128 addiu t2, t2, -128 addiu t3, t3, -128 addiu t4, t4, -128 addiu t5, t5, -128 addiu t6, t6, -128 addiu t7, t7, -128 addiu t8, t8, -128 mtc1 t1, f2 mtc1 t2, f4 mtc1 t3, f6 mtc1 t4, f8 mtc1 t5, f10 mtc1 t6, f12 mtc1 t7, f14 mtc1 t8, f16 cvt.s.w f2, f2 cvt.s.w f4, f4 cvt.s.w f6, f6 cvt.s.w f8, f8 cvt.s.w f10, f10 cvt.s.w f12, f12 cvt.s.w f14, f14 cvt.s.w f16, f16 lw t0, 16(a0) swc1 f2, 96(a2) swc1 f4, 100(a2) swc1 f6, 104(a2) addu t0, t0, a1 swc1 f8, 108(a2) swc1 f10, 112(a2) swc1 f12, 116(a2) swc1 f14, 120(a2) swc1 f16, 124(a2) /* elemr 4 */ lbu t1, 0(t0) lbu t2, 1(t0) lbu t3, 2(t0) lbu t4, 3(t0) lbu t5, 4(t0) lbu t6, 5(t0) lbu t7, 6(t0) lbu t8, 7(t0) addiu t1, t1, -128 addiu t2, t2, -128 addiu t3, t3, -128 addiu t4, t4, -128 addiu t5, t5, -128 addiu t6, t6, -128 addiu t7, t7, -128 addiu t8, t8, -128 mtc1 t1, f2 mtc1 t2, f4 mtc1 t3, f6 mtc1 t4, f8 mtc1 t5, f10 mtc1 t6, f12 mtc1 t7, f14 mtc1 t8, f16 cvt.s.w f2, f2 cvt.s.w f4, f4 cvt.s.w f6, f6 cvt.s.w f8, f8 cvt.s.w f10, f10 cvt.s.w f12, f12 cvt.s.w f14, f14 cvt.s.w f16, f16 lw t0, 20(a0) swc1 f2, 128(a2) swc1 f4, 132(a2) swc1 f6, 136(a2) addu t0, t0, a1 swc1 f8, 140(a2) swc1 f10, 144(a2) swc1 f12, 148(a2) swc1 f14, 152(a2) swc1 f16, 156(a2) /* elemr 5 */ lbu t1, 0(t0) lbu t2, 1(t0) lbu t3, 2(t0) lbu t4, 3(t0) lbu t5, 4(t0) lbu t6, 5(t0) lbu t7, 6(t0) lbu t8, 7(t0) addiu t1, t1, -128 addiu t2, t2, -128 addiu t3, t3, -128 addiu t4, t4, -128 addiu t5, t5, -128 addiu t6, t6, -128 addiu t7, t7, -128 addiu t8, t8, -128 mtc1 t1, f2 mtc1 t2, f4 mtc1 t3, f6 mtc1 t4, f8 mtc1 t5, f10 mtc1 t6, f12 mtc1 t7, f14 mtc1 t8, f16 cvt.s.w f2, f2 cvt.s.w f4, f4 cvt.s.w f6, f6 cvt.s.w f8, f8 cvt.s.w f10, f10 cvt.s.w f12, f12 cvt.s.w f14, f14 cvt.s.w f16, f16 lw t0, 24(a0) swc1 f2, 160(a2) swc1 f4, 164(a2) swc1 f6, 168(a2) addu t0, t0, a1 swc1 f8, 172(a2) swc1 f10, 176(a2) swc1 f12, 180(a2) swc1 f14, 184(a2) swc1 f16, 188(a2) /* elemr 6 */ lbu t1, 0(t0) lbu t2, 1(t0) lbu t3, 2(t0) lbu t4, 3(t0) lbu t5, 4(t0) lbu t6, 5(t0) lbu t7, 6(t0) lbu t8, 7(t0) addiu t1, t1, -128 addiu t2, t2, -128 addiu t3, t3, -128 addiu t4, t4, -128 addiu t5, t5, -128 addiu t6, t6, -128 addiu t7, t7, -128 addiu t8, t8, -128 mtc1 t1, f2 mtc1 t2, f4 mtc1 t3, f6 mtc1 t4, f8 mtc1 t5, f10 mtc1 t6, f12 mtc1 t7, f14 mtc1 t8, f16 cvt.s.w f2, f2 cvt.s.w f4, f4 cvt.s.w f6, f6 cvt.s.w f8, f8 cvt.s.w f10, f10 cvt.s.w f12, f12 cvt.s.w f14, f14 cvt.s.w f16, f16 lw t0, 28(a0) swc1 f2, 192(a2) swc1 f4, 196(a2) swc1 f6, 200(a2) addu t0, t0, a1 swc1 f8, 204(a2) swc1 f10, 208(a2) swc1 f12, 212(a2) swc1 f14, 216(a2) swc1 f16, 220(a2) /* elemr 7 */ lbu t1, 0(t0) lbu t2, 1(t0) lbu t3, 2(t0) lbu t4, 3(t0) lbu t5, 4(t0) lbu t6, 5(t0) lbu t7, 6(t0) lbu t8, 7(t0) addiu t1, t1, -128 addiu t2, t2, -128 addiu t3, t3, -128 addiu t4, t4, -128 addiu t5, t5, -128 addiu t6, t6, -128 addiu t7, t7, -128 addiu t8, t8, -128 mtc1 t1, f2 mtc1 t2, f4 mtc1 t3, f6 mtc1 t4, f8 mtc1 t5, f10 mtc1 t6, f12 mtc1 t7, f14 mtc1 t8, f16 cvt.s.w f2, f2 cvt.s.w f4, f4 cvt.s.w f6, f6 cvt.s.w f8, f8 cvt.s.w f10, f10 cvt.s.w f12, f12 cvt.s.w f14, f14 cvt.s.w f16, f16 swc1 f2, 224(a2) swc1 f4, 228(a2) swc1 f6, 232(a2) swc1 f8, 236(a2) swc1 f10, 240(a2) swc1 f12, 244(a2) swc1 f14, 248(a2) swc1 f16, 252(a2) j ra nop END(jsimd_convsamp_float_dspr2) #endif /*****************************************************************************/ libjpeg-turbo-2.1.5/simd/mips/jsimd_dspr2_asm.h000066400000000000000000000175401436506551100214360ustar00rootroot00000000000000/* * MIPS DSPr2 optimizations for libjpeg-turbo * * Copyright (C) 2013, MIPS Technologies, Inc., California. * Copyright (C) 2018, Matthieu Darbois. * All Rights Reserved. * Authors: Teodora Novkovic (teodora.novkovic@imgtec.com) * Darko Laus (darko.laus@imgtec.com) * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #define zero $0 #define AT $1 #define v0 $2 #define v1 $3 #define a0 $4 #define a1 $5 #define a2 $6 #define a3 $7 #define t0 $8 #define t1 $9 #define t2 $10 #define t3 $11 #define t4 $12 #define t5 $13 #define t6 $14 #define t7 $15 #define s0 $16 #define s1 $17 #define s2 $18 #define s3 $19 #define s4 $20 #define s5 $21 #define s6 $22 #define s7 $23 #define t8 $24 #define t9 $25 #define k0 $26 #define k1 $27 #define gp $28 #define sp $29 #define fp $30 #define s8 $30 #define ra $31 #define f0 $f0 #define f1 $f1 #define f2 $f2 #define f3 $f3 #define f4 $f4 #define f5 $f5 #define f6 $f6 #define f7 $f7 #define f8 $f8 #define f9 $f9 #define f10 $f10 #define f11 $f11 #define f12 $f12 #define f13 $f13 #define f14 $f14 #define f15 $f15 #define f16 $f16 #define f17 $f17 #define f18 $f18 #define f19 $f19 #define f20 $f20 #define f21 $f21 #define f22 $f22 #define f23 $f23 #define f24 $f24 #define f25 $f25 #define f26 $f26 #define f27 $f27 #define f28 $f28 #define f29 $f29 #define f30 $f30 #define f31 $f31 #ifdef __ELF__ #define HIDDEN_SYMBOL(symbol) .hidden symbol; #else #define HIDDEN_SYMBOL(symbol) #endif /* * LEAF_MIPS32R2 - declare leaf routine for MIPS32r2 */ #define LEAF_MIPS32R2(symbol) \ .globl symbol; \ HIDDEN_SYMBOL(symbol) \ .align 2; \ .type symbol, @function; \ .ent symbol, 0; \ symbol: \ .frame sp, 0, ra; \ .set push; \ .set arch = mips32r2; \ .set noreorder; \ .set noat; /* * LEAF_DSPR2 - declare leaf routine for MIPS DSPr2 */ #define LEAF_DSPR2(symbol) \ LEAF_MIPS32R2(symbol) \ .set dspr2; /* * END - mark end of function */ #define END(function) \ .set pop; \ .end function; \ .size function, .-function /* * Checks if stack offset is big enough for storing/restoring regs_num * number of register to/from stack. Stack offset must be greater than * or equal to the number of bytes needed for storing registers (regs_num*4). * Since MIPS ABI allows usage of first 16 bytes of stack frame (this is * preserved for input arguments of the functions, already stored in a0-a3), * stack size can be further optimized by utilizing this space. */ .macro CHECK_STACK_OFFSET regs_num, stack_offset .if \stack_offset < \regs_num * 4 - 16 .error "Stack offset too small." .endif .endm /* * Saves set of registers on stack. Maximum number of registers that * can be saved on stack is limitted to 14 (a0-a3, v0-v1 and s0-s7). * Stack offset is number of bytes that are added to stack pointer (sp) * before registers are pushed in order to provide enough space on stack * (offset must be multiple of 4, and must be big enough, as described by * CHECK_STACK_OFFSET macro). This macro is intended to be used in * combination with RESTORE_REGS_FROM_STACK macro. Example: * SAVE_REGS_ON_STACK 4, v0, v1, s0, s1 * RESTORE_REGS_FROM_STACK 4, v0, v1, s0, s1 */ .macro SAVE_REGS_ON_STACK stack_offset = 0, r1, \ r2 = 0, r3 = 0, r4 = 0, \ r5 = 0, r6 = 0, r7 = 0, \ r8 = 0, r9 = 0, r10 = 0, \ r11 = 0, r12 = 0, r13 = 0, \ r14 = 0 .if (\stack_offset < 0) || (\stack_offset - (\stack_offset / 4) * 4) .error "Stack offset must be pozitive and multiple of 4." .endif .if \stack_offset != 0 addiu sp, sp, -\stack_offset .endif sw \r1, 0(sp) .if \r2 != 0 sw \r2, 4(sp) .endif .if \r3 != 0 sw \r3, 8(sp) .endif .if \r4 != 0 sw \r4, 12(sp) .endif .if \r5 != 0 CHECK_STACK_OFFSET 5, \stack_offset sw \r5, 16(sp) .endif .if \r6 != 0 CHECK_STACK_OFFSET 6, \stack_offset sw \r6, 20(sp) .endif .if \r7 != 0 CHECK_STACK_OFFSET 7, \stack_offset sw \r7, 24(sp) .endif .if \r8 != 0 CHECK_STACK_OFFSET 8, \stack_offset sw \r8, 28(sp) .endif .if \r9 != 0 CHECK_STACK_OFFSET 9, \stack_offset sw \r9, 32(sp) .endif .if \r10 != 0 CHECK_STACK_OFFSET 10, \stack_offset sw \r10, 36(sp) .endif .if \r11 != 0 CHECK_STACK_OFFSET 11, \stack_offset sw \r11, 40(sp) .endif .if \r12 != 0 CHECK_STACK_OFFSET 12, \stack_offset sw \r12, 44(sp) .endif .if \r13 != 0 CHECK_STACK_OFFSET 13, \stack_offset sw \r13, 48(sp) .endif .if \r14 != 0 CHECK_STACK_OFFSET 14, \stack_offset sw \r14, 52(sp) .endif .endm /* * Restores set of registers from stack. Maximum number of registers that * can be restored from stack is limitted to 14 (a0-a3, v0-v1 and s0-s7). * Stack offset is number of bytes that are added to stack pointer (sp) * after registers are restored (offset must be multiple of 4, and must * be big enough, as described by CHECK_STACK_OFFSET macro). This macro is * intended to be used in combination with RESTORE_REGS_FROM_STACK macro. * Example: * SAVE_REGS_ON_STACK 4, v0, v1, s0, s1 * RESTORE_REGS_FROM_STACK 4, v0, v1, s0, s1 */ .macro RESTORE_REGS_FROM_STACK stack_offset = 0, r1, \ r2 = 0, r3 = 0, r4 = 0, \ r5 = 0, r6 = 0, r7 = 0, \ r8 = 0, r9 = 0, r10 = 0, \ r11 = 0, r12 = 0, r13 = 0, \ r14 = 0 .if (\stack_offset < 0) || (\stack_offset - (\stack_offset / 4) * 4) .error "Stack offset must be pozitive and multiple of 4." .endif lw \r1, 0(sp) .if \r2 != 0 lw \r2, 4(sp) .endif .if \r3 != 0 lw \r3, 8(sp) .endif .if \r4 != 0 lw \r4, 12(sp) .endif .if \r5 != 0 CHECK_STACK_OFFSET 5, \stack_offset lw \r5, 16(sp) .endif .if \r6 != 0 CHECK_STACK_OFFSET 6, \stack_offset lw \r6, 20(sp) .endif .if \r7 != 0 CHECK_STACK_OFFSET 7, \stack_offset lw \r7, 24(sp) .endif .if \r8 != 0 CHECK_STACK_OFFSET 8, \stack_offset lw \r8, 28(sp) .endif .if \r9 != 0 CHECK_STACK_OFFSET 9, \stack_offset lw \r9, 32(sp) .endif .if \r10 != 0 CHECK_STACK_OFFSET 10, \stack_offset lw \r10, 36(sp) .endif .if \r11 != 0 CHECK_STACK_OFFSET 11, \stack_offset lw \r11, 40(sp) .endif .if \r12 != 0 CHECK_STACK_OFFSET 12, \stack_offset lw \r12, 44(sp) .endif .if \r13 != 0 CHECK_STACK_OFFSET 13, \stack_offset lw \r13, 48(sp) .endif .if \r14 != 0 CHECK_STACK_OFFSET 14, \stack_offset lw \r14, 52(sp) .endif .if \stack_offset != 0 addiu sp, sp, \stack_offset .endif .endm libjpeg-turbo-2.1.5/simd/mips64/000077500000000000000000000000001436506551100163505ustar00rootroot00000000000000libjpeg-turbo-2.1.5/simd/mips64/jccolext-mmi.c000066400000000000000000000336371436506551100211230ustar00rootroot00000000000000/* * Loongson MMI optimizations for libjpeg-turbo * * Copyright 2009 Pierre Ossman for Cendio AB * Copyright (C) 2014-2015, 2019, D. R. Commander. All Rights Reserved. * Copyright (C) 2016-2018, Loongson Technology Corporation Limited, BeiJing. * All Rights Reserved. * Authors: ZhuChen * SunZhangzhi * CaiWanwei * ZhangLixia * * Based on the x86 SIMD extension for IJG JPEG library * Copyright (C) 1999-2006, MIYASAKA Masaru. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ /* This file is included by jccolor-mmi.c */ #if RGB_RED == 0 #define mmA re #define mmB ro #elif RGB_GREEN == 0 #define mmA ge #define mmB go #elif RGB_BLUE == 0 #define mmA be #define mmB bo #else #define mmA xe #define mmB xo #endif #if RGB_RED == 1 #define mmC re #define mmD ro #elif RGB_GREEN == 1 #define mmC ge #define mmD go #elif RGB_BLUE == 1 #define mmC be #define mmD bo #else #define mmC xe #define mmD xo #endif #if RGB_RED == 2 #define mmE re #define mmF ro #elif RGB_GREEN == 2 #define mmE ge #define mmF go #elif RGB_BLUE == 2 #define mmE be #define mmF bo #else #define mmE xe #define mmF xo #endif #if RGB_RED == 3 #define mmG re #define mmH ro #elif RGB_GREEN == 3 #define mmG ge #define mmH go #elif RGB_BLUE == 3 #define mmG be #define mmH bo #else #define mmG xe #define mmH xo #endif void jsimd_rgb_ycc_convert_mmi(JDIMENSION image_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { JSAMPROW inptr, outptr0, outptr1, outptr2; int num_cols, col; __m64 re, ro, ge, go, be, bo, xe; #if RGB_PIXELSIZE == 4 __m64 xo; #endif __m64 rgle, rghe, rglo, rgho, bgle, bghe, bglo, bgho; __m64 ble, halfble, bhe, halfbhe, blo, halfblo, bho, halfbho; __m64 rle, halfrle, rhe, halfrhe, rlo, halfrlo, rho, halfrho; __m64 yle_rg, yhe_rg, yle_bg, yhe_bg, yle, yhe, ye; __m64 ylo_rg, yho_rg, ylo_bg, yho_bg, ylo, yho, yo, y; __m64 cble, cbhe, cbe, cblo, cbho, cbo, cb; __m64 crle, crhe, cre, crlo, crho, cro, cr; while (--num_rows >= 0) { inptr = *input_buf++; outptr0 = output_buf[0][output_row]; outptr1 = output_buf[1][output_row]; outptr2 = output_buf[2][output_row]; output_row++; for (num_cols = image_width; num_cols > 0; num_cols -= 8, outptr0 += 8, outptr1 += 8, outptr2 += 8) { #if RGB_PIXELSIZE == 3 if (num_cols < 8) { col = num_cols * 3; asm(".set noreorder\r\n" "li $8, 1\r\n" "move $9, %3\r\n" "and $10, $9, $8\r\n" "beqz $10, 1f\r\n" "nop \r\n" "subu $9, $9, 1\r\n" "xor $12, $12, $12\r\n" "move $13, %5\r\n" PTR_ADDU "$13, $13, $9\r\n" "lbu $12, 0($13)\r\n" "1: \r\n" "li $8, 2\r\n" "and $10, $9, $8\r\n" "beqz $10, 2f\r\n" "nop \r\n" "subu $9, $9, 2\r\n" "xor $11, $11, $11\r\n" "move $13, %5\r\n" PTR_ADDU "$13, $13, $9\r\n" "lhu $11, 0($13)\r\n" "sll $12, $12, 16\r\n" "or $12, $12, $11\r\n" "2: \r\n" "dmtc1 $12, %0\r\n" "li $8, 4\r\n" "and $10, $9, $8\r\n" "beqz $10, 3f\r\n" "nop \r\n" "subu $9, $9, 4\r\n" "move $13, %5\r\n" PTR_ADDU "$13, $13, $9\r\n" "lwu $14, 0($13)\r\n" "dmtc1 $14, %1\r\n" "dsll32 $12, $12, 0\r\n" "or $12, $12, $14\r\n" "dmtc1 $12, %0\r\n" "3: \r\n" "li $8, 8\r\n" "and $10, $9, $8\r\n" "beqz $10, 4f\r\n" "nop \r\n" "mov.s %1, %0\r\n" "ldc1 %0, 0(%5)\r\n" "li $9, 8\r\n" "j 5f\r\n" "nop \r\n" "4: \r\n" "li $8, 16\r\n" "and $10, $9, $8\r\n" "beqz $10, 5f\r\n" "nop \r\n" "mov.s %2, %0\r\n" "ldc1 %0, 0(%5)\r\n" "ldc1 %1, 8(%5)\r\n" "5: \r\n" "nop \r\n" ".set reorder\r\n" : "=f" (mmA), "=f" (mmG), "=f" (mmF) : "r" (col), "r" (num_rows), "r" (inptr) : "$f0", "$f2", "$f4", "$8", "$9", "$10", "$11", "$12", "$13", "$14", "memory" ); } else { if (!(((long)inptr) & 7)) { mmA = _mm_load_si64((__m64 *)&inptr[0]); mmG = _mm_load_si64((__m64 *)&inptr[8]); mmF = _mm_load_si64((__m64 *)&inptr[16]); } else { mmA = _mm_loadu_si64((__m64 *)&inptr[0]); mmG = _mm_loadu_si64((__m64 *)&inptr[8]); mmF = _mm_loadu_si64((__m64 *)&inptr[16]); } inptr += RGB_PIXELSIZE * 8; } mmD = _mm_srli_si64(mmA, 4 * BYTE_BIT); mmA = _mm_slli_si64(mmA, 4 * BYTE_BIT); mmA = _mm_unpackhi_pi8(mmA, mmG); mmG = _mm_slli_si64(mmG, 4 * BYTE_BIT); mmD = _mm_unpacklo_pi8(mmD, mmF); mmG = _mm_unpackhi_pi8(mmG, mmF); mmE = _mm_srli_si64(mmA, 4 * BYTE_BIT); mmA = _mm_slli_si64(mmA, 4 * BYTE_BIT); mmA = _mm_unpackhi_pi8(mmA, mmD); mmD = _mm_slli_si64(mmD, 4 * BYTE_BIT); mmE = _mm_unpacklo_pi8(mmE, mmG); mmD = _mm_unpackhi_pi8(mmD, mmG); mmC = _mm_loadhi_pi8_f(mmA); mmA = _mm_loadlo_pi8_f(mmA); mmB = _mm_loadhi_pi8_f(mmE); mmE = _mm_loadlo_pi8_f(mmE); mmF = _mm_loadhi_pi8_f(mmD); mmD = _mm_loadlo_pi8_f(mmD); #else /* RGB_PIXELSIZE == 4 */ if (num_cols < 8) { col = num_cols; asm(".set noreorder\r\n" "li $8, 1\r\n" "move $9, %4\r\n" "and $10, $9, $8\r\n" "beqz $10, 1f\r\n" "nop \r\n" "subu $9, $9, 1\r\n" PTR_SLL "$11, $9, 2\r\n" "move $13, %5\r\n" PTR_ADDU "$13, $13, $11\r\n" "lwc1 %0, 0($13)\r\n" "1: \r\n" "li $8, 2\r\n" "and $10, $9, $8\r\n" "beqz $10, 2f\r\n" "nop \r\n" "subu $9, $9, 2\r\n" PTR_SLL "$11, $9, 2\r\n" "move $13, %5\r\n" PTR_ADDU "$13, $13, $11\r\n" "mov.s %1, %0\r\n" "ldc1 %0, 0($13)\r\n" "2: \r\n" "li $8, 4\r\n" "and $10, $9, $8\r\n" "beqz $10, 3f\r\n" "nop \r\n" "mov.s %2, %0\r\n" "mov.s %3, %1\r\n" "ldc1 %0, 0(%5)\r\n" "ldc1 %1, 8(%5)\r\n" "3: \r\n" "nop \r\n" ".set reorder\r\n" : "=f" (mmA), "=f" (mmF), "=f" (mmD), "=f" (mmC) : "r" (col), "r" (inptr) : "$f0", "$f2", "$8", "$9", "$10", "$11", "$13", "memory" ); } else { if (!(((long)inptr) & 7)) { mmA = _mm_load_si64((__m64 *)&inptr[0]); mmF = _mm_load_si64((__m64 *)&inptr[8]); mmD = _mm_load_si64((__m64 *)&inptr[16]); mmC = _mm_load_si64((__m64 *)&inptr[24]); } else { mmA = _mm_loadu_si64((__m64 *)&inptr[0]); mmF = _mm_loadu_si64((__m64 *)&inptr[8]); mmD = _mm_loadu_si64((__m64 *)&inptr[16]); mmC = _mm_loadu_si64((__m64 *)&inptr[24]); } inptr += RGB_PIXELSIZE * 8; } mmB = _mm_unpackhi_pi8(mmA, mmF); mmA = _mm_unpacklo_pi8(mmA, mmF); mmG = _mm_unpackhi_pi8(mmD, mmC); mmD = _mm_unpacklo_pi8(mmD, mmC); mmE = _mm_unpackhi_pi16(mmA, mmD); mmA = _mm_unpacklo_pi16(mmA, mmD); mmH = _mm_unpackhi_pi16(mmB, mmG); mmB = _mm_unpacklo_pi16(mmB, mmG); mmC = _mm_loadhi_pi8_f(mmA); mmA = _mm_loadlo_pi8_f(mmA); mmD = _mm_loadhi_pi8_f(mmB); mmB = _mm_loadlo_pi8_f(mmB); mmG = _mm_loadhi_pi8_f(mmE); mmE = _mm_loadlo_pi8_f(mmE); mmF = _mm_unpacklo_pi8(mmH, mmH); mmH = _mm_unpackhi_pi8(mmH, mmH); mmF = _mm_srli_pi16(mmF, BYTE_BIT); mmH = _mm_srli_pi16(mmH, BYTE_BIT); #endif /* re=(R0 R2 R4 R6), ge=(G0 G2 G4 G6), be=(B0 B2 B4 B6) * ro=(R1 R3 R5 R7), go=(G1 G3 G5 G7), bo=(B1 B3 B5 B7) * * (Original) * Y = 0.29900 * R + 0.58700 * G + 0.11400 * B * Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + CENTERJSAMPLE * Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + CENTERJSAMPLE * * (This implementation) * Y = 0.29900 * R + 0.33700 * G + 0.11400 * B + 0.25000 * G * Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + CENTERJSAMPLE * Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + CENTERJSAMPLE */ rglo = _mm_unpacklo_pi16(ro, go); rgho = _mm_unpackhi_pi16(ro, go); ylo_rg = _mm_madd_pi16(rglo, PW_F0299_F0337); yho_rg = _mm_madd_pi16(rgho, PW_F0299_F0337); cblo = _mm_madd_pi16(rglo, PW_MF016_MF033); cbho = _mm_madd_pi16(rgho, PW_MF016_MF033); blo = _mm_loadlo_pi16_f(bo); bho = _mm_loadhi_pi16_f(bo); halfblo = _mm_srli_pi32(blo, 1); halfbho = _mm_srli_pi32(bho, 1); cblo = _mm_add_pi32(cblo, halfblo); cbho = _mm_add_pi32(cbho, halfbho); cblo = _mm_add_pi32(cblo, PD_ONEHALFM1_CJ); cbho = _mm_add_pi32(cbho, PD_ONEHALFM1_CJ); cblo = _mm_srli_pi32(cblo, SCALEBITS); cbho = _mm_srli_pi32(cbho, SCALEBITS); cbo = _mm_packs_pi32(cblo, cbho); rgle = _mm_unpacklo_pi16(re, ge); rghe = _mm_unpackhi_pi16(re, ge); yle_rg = _mm_madd_pi16(rgle, PW_F0299_F0337); yhe_rg = _mm_madd_pi16(rghe, PW_F0299_F0337); cble = _mm_madd_pi16(rgle, PW_MF016_MF033); cbhe = _mm_madd_pi16(rghe, PW_MF016_MF033); ble = _mm_loadlo_pi16_f(be); bhe = _mm_loadhi_pi16_f(be); halfble = _mm_srli_pi32(ble, 1); halfbhe = _mm_srli_pi32(bhe, 1); cble = _mm_add_pi32(cble, halfble); cbhe = _mm_add_pi32(cbhe, halfbhe); cble = _mm_add_pi32(cble, PD_ONEHALFM1_CJ); cbhe = _mm_add_pi32(cbhe, PD_ONEHALFM1_CJ); cble = _mm_srli_pi32(cble, SCALEBITS); cbhe = _mm_srli_pi32(cbhe, SCALEBITS); cbe = _mm_packs_pi32(cble, cbhe); cbo = _mm_slli_pi16(cbo, BYTE_BIT); cb = _mm_or_si64(cbe, cbo); bglo = _mm_unpacklo_pi16(bo, go); bgho = _mm_unpackhi_pi16(bo, go); ylo_bg = _mm_madd_pi16(bglo, PW_F0114_F0250); yho_bg = _mm_madd_pi16(bgho, PW_F0114_F0250); crlo = _mm_madd_pi16(bglo, PW_MF008_MF041); crho = _mm_madd_pi16(bgho, PW_MF008_MF041); ylo = _mm_add_pi32(ylo_bg, ylo_rg); yho = _mm_add_pi32(yho_bg, yho_rg); ylo = _mm_add_pi32(ylo, PD_ONEHALF); yho = _mm_add_pi32(yho, PD_ONEHALF); ylo = _mm_srli_pi32(ylo, SCALEBITS); yho = _mm_srli_pi32(yho, SCALEBITS); yo = _mm_packs_pi32(ylo, yho); rlo = _mm_loadlo_pi16_f(ro); rho = _mm_loadhi_pi16_f(ro); halfrlo = _mm_srli_pi32(rlo, 1); halfrho = _mm_srli_pi32(rho, 1); crlo = _mm_add_pi32(crlo, halfrlo); crho = _mm_add_pi32(crho, halfrho); crlo = _mm_add_pi32(crlo, PD_ONEHALFM1_CJ); crho = _mm_add_pi32(crho, PD_ONEHALFM1_CJ); crlo = _mm_srli_pi32(crlo, SCALEBITS); crho = _mm_srli_pi32(crho, SCALEBITS); cro = _mm_packs_pi32(crlo, crho); bgle = _mm_unpacklo_pi16(be, ge); bghe = _mm_unpackhi_pi16(be, ge); yle_bg = _mm_madd_pi16(bgle, PW_F0114_F0250); yhe_bg = _mm_madd_pi16(bghe, PW_F0114_F0250); crle = _mm_madd_pi16(bgle, PW_MF008_MF041); crhe = _mm_madd_pi16(bghe, PW_MF008_MF041); yle = _mm_add_pi32(yle_bg, yle_rg); yhe = _mm_add_pi32(yhe_bg, yhe_rg); yle = _mm_add_pi32(yle, PD_ONEHALF); yhe = _mm_add_pi32(yhe, PD_ONEHALF); yle = _mm_srli_pi32(yle, SCALEBITS); yhe = _mm_srli_pi32(yhe, SCALEBITS); ye = _mm_packs_pi32(yle, yhe); yo = _mm_slli_pi16(yo, BYTE_BIT); y = _mm_or_si64(ye, yo); rle = _mm_loadlo_pi16_f(re); rhe = _mm_loadhi_pi16_f(re); halfrle = _mm_srli_pi32(rle, 1); halfrhe = _mm_srli_pi32(rhe, 1); crle = _mm_add_pi32(crle, halfrle); crhe = _mm_add_pi32(crhe, halfrhe); crle = _mm_add_pi32(crle, PD_ONEHALFM1_CJ); crhe = _mm_add_pi32(crhe, PD_ONEHALFM1_CJ); crle = _mm_srli_pi32(crle, SCALEBITS); crhe = _mm_srli_pi32(crhe, SCALEBITS); cre = _mm_packs_pi32(crle, crhe); cro = _mm_slli_pi16(cro, BYTE_BIT); cr = _mm_or_si64(cre, cro); _mm_store_si64((__m64 *)&outptr0[0], y); _mm_store_si64((__m64 *)&outptr1[0], cb); _mm_store_si64((__m64 *)&outptr2[0], cr); } } } #undef mmA #undef mmB #undef mmC #undef mmD #undef mmE #undef mmF #undef mmG #undef mmH libjpeg-turbo-2.1.5/simd/mips64/jccolor-mmi.c000066400000000000000000000117731436506551100207400ustar00rootroot00000000000000/* * Loongson MMI optimizations for libjpeg-turbo * * Copyright (C) 2011, 2014, D. R. Commander. All Rights Reserved. * Copyright (C) 2016-2017, Loongson Technology Corporation Limited, BeiJing. * All Rights Reserved. * Authors: ZhuChen * CaiWanwei * SunZhangzhi * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ /* RGB --> YCC CONVERSION */ #include "jsimd_mmi.h" #define F_0_081 ((short)5329) /* FIX(0.08131) */ #define F_0_114 ((short)7471) /* FIX(0.11400) */ #define F_0_168 ((short)11059) /* FIX(0.16874) */ #define F_0_250 ((short)16384) /* FIX(0.25000) */ #define F_0_299 ((short)19595) /* FIX(0.29900) */ #define F_0_331 ((short)21709) /* FIX(0.33126) */ #define F_0_418 ((short)27439) /* FIX(0.41869) */ #define F_0_587 ((short)38470) /* FIX(0.58700) */ #define F_0_337 ((short)(F_0_587 - F_0_250)) /* FIX(0.58700) - FIX(0.25000) */ enum const_index { index_PD_ONEHALF, index_PW_F0299_F0337, index_PW_F0114_F0250, index_PW_MF016_MF033, index_PW_MF008_MF041, index_PD_ONEHALFM1_CJ }; static uint64_t const_value[] = { _uint64_set_pi32((int)(1 << (SCALEBITS - 1)), (int)(1 << (SCALEBITS - 1))), _uint64_set_pi16(F_0_337, F_0_299, F_0_337, F_0_299), _uint64_set_pi16(F_0_250, F_0_114, F_0_250, F_0_114), _uint64_set_pi16(-F_0_331, -F_0_168, -F_0_331, -F_0_168), _uint64_set_pi16(-F_0_418, -F_0_081, -F_0_418, -F_0_081), _uint64_set_pi32(((1 << (SCALEBITS - 1)) - 1 + (CENTERJSAMPLE << SCALEBITS)), ((1 << (SCALEBITS - 1)) - 1 + (CENTERJSAMPLE << SCALEBITS))) }; #define get_const_value(index) (*(__m64 *)&const_value[index]) #define PD_ONEHALF get_const_value(index_PD_ONEHALF) #define PW_F0299_F0337 get_const_value(index_PW_F0299_F0337) #define PW_F0114_F0250 get_const_value(index_PW_F0114_F0250) #define PW_MF016_MF033 get_const_value(index_PW_MF016_MF033) #define PW_MF008_MF041 get_const_value(index_PW_MF008_MF041) #define PD_ONEHALFM1_CJ get_const_value(index_PD_ONEHALFM1_CJ) #include "jccolext-mmi.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #define RGB_RED EXT_RGB_RED #define RGB_GREEN EXT_RGB_GREEN #define RGB_BLUE EXT_RGB_BLUE #define RGB_PIXELSIZE EXT_RGB_PIXELSIZE #define jsimd_rgb_ycc_convert_mmi jsimd_extrgb_ycc_convert_mmi #include "jccolext-mmi.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef jsimd_rgb_ycc_convert_mmi #define RGB_RED EXT_RGBX_RED #define RGB_GREEN EXT_RGBX_GREEN #define RGB_BLUE EXT_RGBX_BLUE #define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE #define jsimd_rgb_ycc_convert_mmi jsimd_extrgbx_ycc_convert_mmi #include "jccolext-mmi.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef jsimd_rgb_ycc_convert_mmi #define RGB_RED EXT_BGR_RED #define RGB_GREEN EXT_BGR_GREEN #define RGB_BLUE EXT_BGR_BLUE #define RGB_PIXELSIZE EXT_BGR_PIXELSIZE #define jsimd_rgb_ycc_convert_mmi jsimd_extbgr_ycc_convert_mmi #include "jccolext-mmi.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef jsimd_rgb_ycc_convert_mmi #define RGB_RED EXT_BGRX_RED #define RGB_GREEN EXT_BGRX_GREEN #define RGB_BLUE EXT_BGRX_BLUE #define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE #define jsimd_rgb_ycc_convert_mmi jsimd_extbgrx_ycc_convert_mmi #include "jccolext-mmi.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef jsimd_rgb_ycc_convert_mmi #define RGB_RED EXT_XBGR_RED #define RGB_GREEN EXT_XBGR_GREEN #define RGB_BLUE EXT_XBGR_BLUE #define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE #define jsimd_rgb_ycc_convert_mmi jsimd_extxbgr_ycc_convert_mmi #include "jccolext-mmi.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef jsimd_rgb_ycc_convert_mmi #define RGB_RED EXT_XRGB_RED #define RGB_GREEN EXT_XRGB_GREEN #define RGB_BLUE EXT_XRGB_BLUE #define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE #define jsimd_rgb_ycc_convert_mmi jsimd_extxrgb_ycc_convert_mmi #include "jccolext-mmi.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef jsimd_rgb_ycc_convert_mmi libjpeg-turbo-2.1.5/simd/mips64/jcgray-mmi.c000066400000000000000000000102151436506551100205520ustar00rootroot00000000000000/* * Loongson MMI optimizations for libjpeg-turbo * * Copyright (C) 2011, 2014, D. R. Commander. All Rights Reserved. * Copyright (C) 2016-2018, Loongson Technology Corporation Limited, BeiJing. * All Rights Reserved. * Authors: ZhangLixia * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ /* RGB --> GRAYSCALE CONVERSION */ #include "jsimd_mmi.h" #define F_0_114 ((short)7471) /* FIX(0.11400) */ #define F_0_250 ((short)16384) /* FIX(0.25000) */ #define F_0_299 ((short)19595) /* FIX(0.29900) */ #define F_0_587 ((short)38470) /* FIX(0.58700) */ #define F_0_337 ((short)(F_0_587 - F_0_250)) /* FIX(0.58700) - FIX(0.25000) */ enum const_index { index_PD_ONEHALF, index_PW_F0299_F0337, index_PW_F0114_F0250 }; static uint64_t const_value[] = { _uint64_set_pi32((int)(1 << (SCALEBITS - 1)), (int)(1 << (SCALEBITS - 1))), _uint64_set_pi16(F_0_337, F_0_299, F_0_337, F_0_299), _uint64_set_pi16(F_0_250, F_0_114, F_0_250, F_0_114) }; #define get_const_value(index) (*(__m64 *)&const_value[index]) #define PD_ONEHALF get_const_value(index_PD_ONEHALF) #define PW_F0299_F0337 get_const_value(index_PW_F0299_F0337) #define PW_F0114_F0250 get_const_value(index_PW_F0114_F0250) #include "jcgryext-mmi.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #define RGB_RED EXT_RGB_RED #define RGB_GREEN EXT_RGB_GREEN #define RGB_BLUE EXT_RGB_BLUE #define RGB_PIXELSIZE EXT_RGB_PIXELSIZE #define jsimd_rgb_gray_convert_mmi jsimd_extrgb_gray_convert_mmi #include "jcgryext-mmi.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef jsimd_rgb_gray_convert_mmi #define RGB_RED EXT_RGBX_RED #define RGB_GREEN EXT_RGBX_GREEN #define RGB_BLUE EXT_RGBX_BLUE #define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE #define jsimd_rgb_gray_convert_mmi jsimd_extrgbx_gray_convert_mmi #include "jcgryext-mmi.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef jsimd_rgb_gray_convert_mmi #define RGB_RED EXT_BGR_RED #define RGB_GREEN EXT_BGR_GREEN #define RGB_BLUE EXT_BGR_BLUE #define RGB_PIXELSIZE EXT_BGR_PIXELSIZE #define jsimd_rgb_gray_convert_mmi jsimd_extbgr_gray_convert_mmi #include "jcgryext-mmi.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef jsimd_rgb_gray_convert_mmi #define RGB_RED EXT_BGRX_RED #define RGB_GREEN EXT_BGRX_GREEN #define RGB_BLUE EXT_BGRX_BLUE #define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE #define jsimd_rgb_gray_convert_mmi jsimd_extbgrx_gray_convert_mmi #include "jcgryext-mmi.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef jsimd_rgb_gray_convert_mmi #define RGB_RED EXT_XBGR_RED #define RGB_GREEN EXT_XBGR_GREEN #define RGB_BLUE EXT_XBGR_BLUE #define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE #define jsimd_rgb_gray_convert_mmi jsimd_extxbgr_gray_convert_mmi #include "jcgryext-mmi.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef jsimd_rgb_gray_convert_mmi #define RGB_RED EXT_XRGB_RED #define RGB_GREEN EXT_XRGB_GREEN #define RGB_BLUE EXT_XRGB_BLUE #define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE #define jsimd_rgb_gray_convert_mmi jsimd_extxrgb_gray_convert_mmi #include "jcgryext-mmi.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef jsimd_rgb_gray_convert_mmi libjpeg-turbo-2.1.5/simd/mips64/jcgryext-mmi.c000066400000000000000000000253041436506551100211370ustar00rootroot00000000000000/* * Loongson MMI optimizations for libjpeg-turbo * * Copyright 2009 Pierre Ossman for Cendio AB * Copyright (C) 2014-2015, 2019, D. R. Commander. All Rights Reserved. * Copyright (C) 2016-2018, Loongson Technology Corporation Limited, BeiJing. * All Rights Reserved. * Authors: ZhangLixia * * Based on the x86 SIMD extension for IJG JPEG library * Copyright (C) 1999-2006, MIYASAKA Masaru. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ /* This file is included by jcgray-mmi.c */ #if RGB_RED == 0 #define mmA re #define mmB ro #elif RGB_GREEN == 0 #define mmA ge #define mmB go #elif RGB_BLUE == 0 #define mmA be #define mmB bo #else #define mmA xe #define mmB xo #endif #if RGB_RED == 1 #define mmC re #define mmD ro #elif RGB_GREEN == 1 #define mmC ge #define mmD go #elif RGB_BLUE == 1 #define mmC be #define mmD bo #else #define mmC xe #define mmD xo #endif #if RGB_RED == 2 #define mmE re #define mmF ro #elif RGB_GREEN == 2 #define mmE ge #define mmF go #elif RGB_BLUE == 2 #define mmE be #define mmF bo #else #define mmE xe #define mmF xo #endif #if RGB_RED == 3 #define mmG re #define mmH ro #elif RGB_GREEN == 3 #define mmG ge #define mmH go #elif RGB_BLUE == 3 #define mmG be #define mmH bo #else #define mmG xe #define mmH xo #endif void jsimd_rgb_gray_convert_mmi(JDIMENSION image_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { JSAMPROW inptr, outptr; int num_cols, col; __m64 re, ro, ge, go, be, bo, xe; #if RGB_PIXELSIZE == 4 __m64 xo; #endif __m64 rgle, rghe, rglo, rgho, bgle, bghe, bglo, bgho; __m64 yle_rg, yhe_rg, yle_bg, yhe_bg, yle, yhe, ye; __m64 ylo_rg, yho_rg, ylo_bg, yho_bg, ylo, yho, yo, y; while (--num_rows >= 0) { inptr = *input_buf++; outptr = output_buf[0][output_row]; output_row++; for (num_cols = image_width; num_cols > 0; num_cols -= 8, outptr += 8) { #if RGB_PIXELSIZE == 3 if (num_cols < 8) { col = num_cols * 3; asm(".set noreorder\r\n" "li $8, 1\r\n" "move $9, %3\r\n" "and $10, $9, $8\r\n" "beqz $10, 1f\r\n" "nop \r\n" "subu $9, $9, 1\r\n" "xor $12, $12, $12\r\n" "move $13, %5\r\n" PTR_ADDU "$13, $13, $9\r\n" "lbu $12, 0($13)\r\n" "1: \r\n" "li $8, 2\r\n" "and $10, $9, $8\r\n" "beqz $10, 2f\r\n" "nop \r\n" "subu $9, $9, 2\r\n" "xor $11, $11, $11\r\n" "move $13, %5\r\n" PTR_ADDU "$13, $13, $9\r\n" "lhu $11, 0($13)\r\n" "sll $12, $12, 16\r\n" "or $12, $12, $11\r\n" "2: \r\n" "dmtc1 $12, %0\r\n" "li $8, 4\r\n" "and $10, $9, $8\r\n" "beqz $10, 3f\r\n" "nop \r\n" "subu $9, $9, 4\r\n" "move $13, %5\r\n" PTR_ADDU "$13, $13, $9\r\n" "lwu $14, 0($13)\r\n" "dmtc1 $14, %1\r\n" "dsll32 $12, $12, 0\r\n" "or $12, $12, $14\r\n" "dmtc1 $12, %0\r\n" "3: \r\n" "li $8, 8\r\n" "and $10, $9, $8\r\n" "beqz $10, 4f\r\n" "nop \r\n" "mov.s %1, %0\r\n" "ldc1 %0, 0(%5)\r\n" "li $9, 8\r\n" "j 5f\r\n" "nop \r\n" "4: \r\n" "li $8, 16\r\n" "and $10, $9, $8\r\n" "beqz $10, 5f\r\n" "nop \r\n" "mov.s %2, %0\r\n" "ldc1 %0, 0(%5)\r\n" "ldc1 %1, 8(%5)\r\n" "5: \r\n" "nop \r\n" ".set reorder\r\n" : "=f" (mmA), "=f" (mmG), "=f" (mmF) : "r" (col), "r" (num_rows), "r" (inptr) : "$f0", "$f2", "$f4", "$8", "$9", "$10", "$11", "$12", "$13", "$14", "memory" ); } else { if (!(((long)inptr) & 7)) { mmA = _mm_load_si64((__m64 *)&inptr[0]); mmG = _mm_load_si64((__m64 *)&inptr[8]); mmF = _mm_load_si64((__m64 *)&inptr[16]); } else { mmA = _mm_loadu_si64((__m64 *)&inptr[0]); mmG = _mm_loadu_si64((__m64 *)&inptr[8]); mmF = _mm_loadu_si64((__m64 *)&inptr[16]); } inptr += RGB_PIXELSIZE * 8; } mmD = _mm_srli_si64(mmA, 4 * BYTE_BIT); mmA = _mm_slli_si64(mmA, 4 * BYTE_BIT); mmA = _mm_unpackhi_pi8(mmA, mmG); mmG = _mm_slli_si64(mmG, 4 * BYTE_BIT); mmD = _mm_unpacklo_pi8(mmD, mmF); mmG = _mm_unpackhi_pi8(mmG, mmF); mmE = _mm_srli_si64(mmA, 4 * BYTE_BIT); mmA = _mm_slli_si64(mmA, 4 * BYTE_BIT); mmA = _mm_unpackhi_pi8(mmA, mmD); mmD = _mm_slli_si64(mmD, 4 * BYTE_BIT); mmE = _mm_unpacklo_pi8(mmE, mmG); mmD = _mm_unpackhi_pi8(mmD, mmG); mmC = _mm_loadhi_pi8_f(mmA); mmA = _mm_loadlo_pi8_f(mmA); mmB = _mm_loadhi_pi8_f(mmE); mmE = _mm_loadlo_pi8_f(mmE); mmF = _mm_loadhi_pi8_f(mmD); mmD = _mm_loadlo_pi8_f(mmD); #else /* RGB_PIXELSIZE == 4 */ if (num_cols < 8) { col = num_cols; asm(".set noreorder\r\n" "li $8, 1\r\n" "move $9, %4\r\n" "and $10, $9, $8\r\n" "beqz $10, 1f\r\n" "nop \r\n" "subu $9, $9, 1\r\n" PTR_SLL "$11, $9, 2\r\n" "move $13, %5\r\n" PTR_ADDU "$13, $13, $11\r\n" "lwc1 %0, 0($13)\r\n" "1: \r\n" "li $8, 2\r\n" "and $10, $9, $8\r\n" "beqz $10, 2f\r\n" "nop \r\n" "subu $9, $9, 2\r\n" PTR_SLL "$11, $9, 2\r\n" "move $13, %5\r\n" PTR_ADDU "$13, $13, $11\r\n" "mov.s %1, %0\r\n" "ldc1 %0, 0($13)\r\n" "2: \r\n" "li $8, 4\r\n" "and $10, $9, $8\r\n" "beqz $10, 3f\r\n" "nop \r\n" "mov.s %2, %0\r\n" "mov.s %3, %1\r\n" "ldc1 %0, 0(%5)\r\n" "ldc1 %1, 8(%5)\r\n" "3: \r\n" "nop \r\n" ".set reorder\r\n" : "=f" (mmA), "=f" (mmF), "=f" (mmD), "=f" (mmC) : "r" (col), "r" (inptr) : "$f0", "$f2", "$8", "$9", "$10", "$11", "$13", "memory" ); } else { if (!(((long)inptr) & 7)) { mmA = _mm_load_si64((__m64 *)&inptr[0]); mmF = _mm_load_si64((__m64 *)&inptr[8]); mmD = _mm_load_si64((__m64 *)&inptr[16]); mmC = _mm_load_si64((__m64 *)&inptr[24]); } else { mmA = _mm_loadu_si64((__m64 *)&inptr[0]); mmF = _mm_loadu_si64((__m64 *)&inptr[8]); mmD = _mm_loadu_si64((__m64 *)&inptr[16]); mmC = _mm_loadu_si64((__m64 *)&inptr[24]); } inptr += RGB_PIXELSIZE * 8; } mmB = _mm_unpackhi_pi8(mmA, mmF); mmA = _mm_unpacklo_pi8(mmA, mmF); mmG = _mm_unpackhi_pi8(mmD, mmC); mmD = _mm_unpacklo_pi8(mmD, mmC); mmE = _mm_unpackhi_pi16(mmA, mmD); mmA = _mm_unpacklo_pi16(mmA, mmD); mmH = _mm_unpackhi_pi16(mmB, mmG); mmB = _mm_unpacklo_pi16(mmB, mmG); mmC = _mm_loadhi_pi8_f(mmA); mmA = _mm_loadlo_pi8_f(mmA); mmD = _mm_loadhi_pi8_f(mmB); mmB = _mm_loadlo_pi8_f(mmB); mmG = _mm_loadhi_pi8_f(mmE); mmE = _mm_loadlo_pi8_f(mmE); mmF = _mm_unpacklo_pi8(mmH, mmH); mmH = _mm_unpackhi_pi8(mmH, mmH); mmF = _mm_srli_pi16(mmF, BYTE_BIT); mmH = _mm_srli_pi16(mmH, BYTE_BIT); #endif /* re=(R0 R2 R4 R6), ge=(G0 G2 G4 G6), be=(B0 B2 B4 B6) * ro=(R1 R3 R5 R7), go=(G1 G3 G5 G7), bo=(B1 B3 B5 B7) * * (Original) * Y = 0.29900 * R + 0.58700 * G + 0.11400 * B * * (This implementation) * Y = 0.29900 * R + 0.33700 * G + 0.11400 * B + 0.25000 * G */ rglo = _mm_unpacklo_pi16(ro, go); rgho = _mm_unpackhi_pi16(ro, go); ylo_rg = _mm_madd_pi16(rglo, PW_F0299_F0337); yho_rg = _mm_madd_pi16(rgho, PW_F0299_F0337); rgle = _mm_unpacklo_pi16(re, ge); rghe = _mm_unpackhi_pi16(re, ge); yle_rg = _mm_madd_pi16(rgle, PW_F0299_F0337); yhe_rg = _mm_madd_pi16(rghe, PW_F0299_F0337); bglo = _mm_unpacklo_pi16(bo, go); bgho = _mm_unpackhi_pi16(bo, go); ylo_bg = _mm_madd_pi16(bglo, PW_F0114_F0250); yho_bg = _mm_madd_pi16(bgho, PW_F0114_F0250); ylo = _mm_add_pi32(ylo_bg, ylo_rg); yho = _mm_add_pi32(yho_bg, yho_rg); ylo = _mm_add_pi32(ylo, PD_ONEHALF); yho = _mm_add_pi32(yho, PD_ONEHALF); ylo = _mm_srli_pi32(ylo, SCALEBITS); yho = _mm_srli_pi32(yho, SCALEBITS); yo = _mm_packs_pi32(ylo, yho); bgle = _mm_unpacklo_pi16(be, ge); bghe = _mm_unpackhi_pi16(be, ge); yle_bg = _mm_madd_pi16(bgle, PW_F0114_F0250); yhe_bg = _mm_madd_pi16(bghe, PW_F0114_F0250); yle = _mm_add_pi32(yle_bg, yle_rg); yhe = _mm_add_pi32(yhe_bg, yhe_rg); yle = _mm_add_pi32(yle, PD_ONEHALF); yhe = _mm_add_pi32(yhe, PD_ONEHALF); yle = _mm_srli_pi32(yle, SCALEBITS); yhe = _mm_srli_pi32(yhe, SCALEBITS); ye = _mm_packs_pi32(yle, yhe); yo = _mm_slli_pi16(yo, BYTE_BIT); y = _mm_or_si64(ye, yo); _mm_store_si64((__m64 *)&outptr[0], y); } } } #undef mmA #undef mmB #undef mmC #undef mmD #undef mmE #undef mmF #undef mmG #undef mmH libjpeg-turbo-2.1.5/simd/mips64/jcsample-mmi.c000066400000000000000000000073761436506551100211070ustar00rootroot00000000000000/* * Loongson MMI optimizations for libjpeg-turbo * * Copyright (C) 2015, 2018-2019, D. R. Commander. All Rights Reserved. * Copyright (C) 2016-2017, Loongson Technology Corporation Limited, BeiJing. * All Rights Reserved. * Authors: ZhuChen * CaiWanwei * SunZhangzhi * * Based on the x86 SIMD extension for IJG JPEG library * Copyright (C) 1999-2006, MIYASAKA Masaru. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ /* CHROMA DOWNSAMPLING */ #include "jsimd_mmi.h" #include "jcsample.h" void jsimd_h2v2_downsample_mmi(JDIMENSION image_width, int max_v_samp_factor, JDIMENSION v_samp_factor, JDIMENSION width_in_blocks, JSAMPARRAY input_data, JSAMPARRAY output_data) { int inrow, outrow, outcol; JDIMENSION output_cols = width_in_blocks * DCTSIZE; JSAMPROW inptr0, inptr1, outptr; __m64 bias, mask = 0.0, thisavg, nextavg, avg; __m64 this0o, this0e, this0, this0sum, next0o, next0e, next0, next0sum; __m64 this1o, this1e, this1, this1sum, next1o, next1e, next1, next1sum; expand_right_edge(input_data, max_v_samp_factor, image_width, output_cols * 2); bias = _mm_set1_pi32((1 << 17) + 1); /* 0x00020001 (32-bit bias pattern) */ /* bias={1, 2, 1, 2} (16-bit) */ mask = _mm_cmpeq_pi16(mask, mask); mask = _mm_srli_pi16(mask, BYTE_BIT); /* {0xFF 0x00 0xFF 0x00 ..} */ for (inrow = 0, outrow = 0; outrow < v_samp_factor; inrow += 2, outrow++) { inptr0 = input_data[inrow]; inptr1 = input_data[inrow + 1]; outptr = output_data[outrow]; for (outcol = output_cols; outcol > 0; outcol -= 8, inptr0 += 16, inptr1 += 16, outptr += 8) { this0 = _mm_load_si64((__m64 *)&inptr0[0]); this1 = _mm_load_si64((__m64 *)&inptr1[0]); next0 = _mm_load_si64((__m64 *)&inptr0[8]); next1 = _mm_load_si64((__m64 *)&inptr1[8]); this0o = _mm_and_si64(this0, mask); this0e = _mm_srli_pi16(this0, BYTE_BIT); this1o = _mm_and_si64(this1, mask); this1e = _mm_srli_pi16(this1, BYTE_BIT); this0sum = _mm_add_pi16(this0o, this0e); this1sum = _mm_add_pi16(this1o, this1e); next0o = _mm_and_si64(next0, mask); next0e = _mm_srli_pi16(next0, BYTE_BIT); next1o = _mm_and_si64(next1, mask); next1e = _mm_srli_pi16(next1, BYTE_BIT); next0sum = _mm_add_pi16(next0o, next0e); next1sum = _mm_add_pi16(next1o, next1e); thisavg = _mm_add_pi16(this0sum, this1sum); nextavg = _mm_add_pi16(next0sum, next1sum); thisavg = _mm_add_pi16(thisavg, bias); nextavg = _mm_add_pi16(nextavg, bias); thisavg = _mm_srli_pi16(thisavg, 2); nextavg = _mm_srli_pi16(nextavg, 2); avg = _mm_packs_pu16(thisavg, nextavg); _mm_store_si64((__m64 *)&outptr[0], avg); } } } libjpeg-turbo-2.1.5/simd/mips64/jcsample.h000066400000000000000000000012751436506551100203240ustar00rootroot00000000000000/* * jcsample.h * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1996, Thomas G. Lane. * For conditions of distribution and use, see the accompanying README.ijg * file. */ LOCAL(void) expand_right_edge(JSAMPARRAY image_data, int num_rows, JDIMENSION input_cols, JDIMENSION output_cols) { register JSAMPROW ptr; register JSAMPLE pixval; register int count; int row; int numcols = (int)(output_cols - input_cols); if (numcols > 0) { for (row = 0; row < num_rows; row++) { ptr = image_data[row] + input_cols; pixval = ptr[-1]; for (count = numcols; count > 0; count--) *ptr++ = pixval; } } } libjpeg-turbo-2.1.5/simd/mips64/jdcolext-mmi.c000066400000000000000000000355411436506551100211200ustar00rootroot00000000000000/* * Loongson MMI optimizations for libjpeg-turbo * * Copyright 2009 Pierre Ossman for Cendio AB * Copyright (C) 2015, 2019, D. R. Commander. All Rights Reserved. * Copyright (C) 2016-2018, Loongson Technology Corporation Limited, BeiJing. * All Rights Reserved. * Authors: ZhuChen * SunZhangzhi * CaiWanwei * * Based on the x86 SIMD extension for IJG JPEG library * Copyright (C) 1999-2006, MIYASAKA Masaru. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ /* This file is included by jdcolor-mmi.c */ #if RGB_RED == 0 #define mmA re #define mmB ro #elif RGB_GREEN == 0 #define mmA ge #define mmB go #elif RGB_BLUE == 0 #define mmA be #define mmB bo #else #define mmA xe #define mmB xo #endif #if RGB_RED == 1 #define mmC re #define mmD ro #elif RGB_GREEN == 1 #define mmC ge #define mmD go #elif RGB_BLUE == 1 #define mmC be #define mmD bo #else #define mmC xe #define mmD xo #endif #if RGB_RED == 2 #define mmE re #define mmF ro #elif RGB_GREEN == 2 #define mmE ge #define mmF go #elif RGB_BLUE == 2 #define mmE be #define mmF bo #else #define mmE xe #define mmF xo #endif #if RGB_RED == 3 #define mmG re #define mmH ro #elif RGB_GREEN == 3 #define mmG ge #define mmH go #elif RGB_BLUE == 3 #define mmG be #define mmH bo #else #define mmG xe #define mmH xo #endif void jsimd_ycc_rgb_convert_mmi(JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { JSAMPROW outptr, inptr0, inptr1, inptr2; int num_cols, col; __m64 ye, yo, y, cbe, cbe2, cbo, cbo2, cb, cre, cre2, cro, cro2, cr; __m64 re, ro, gle, ghe, ge, glo, gho, go, be, bo, xe = 0.0, xo = 0.0; __m64 decenter, mask; while (--num_rows >= 0) { inptr0 = input_buf[0][input_row]; inptr1 = input_buf[1][input_row]; inptr2 = input_buf[2][input_row]; input_row++; outptr = *output_buf++; for (num_cols = out_width; num_cols > 0; num_cols -= 8, inptr0 += 8, inptr1 += 8, inptr2 += 8) { cb = _mm_load_si64((__m64 *)inptr1); cr = _mm_load_si64((__m64 *)inptr2); y = _mm_load_si64((__m64 *)inptr0); mask = decenter = 0.0; mask = _mm_cmpeq_pi16(mask, mask); decenter = _mm_cmpeq_pi16(decenter, decenter); mask = _mm_srli_pi16(mask, BYTE_BIT); /* {0xFF 0x00 0xFF 0x00 ..} */ decenter = _mm_slli_pi16(decenter, 7); /* {0xFF80 0xFF80 0xFF80 0xFF80} */ cbe = _mm_and_si64(mask, cb); /* Cb(0246) */ cbo = _mm_srli_pi16(cb, BYTE_BIT); /* Cb(1357) */ cre = _mm_and_si64(mask, cr); /* Cr(0246) */ cro = _mm_srli_pi16(cr, BYTE_BIT); /* Cr(1357) */ cbe = _mm_add_pi16(cbe, decenter); cbo = _mm_add_pi16(cbo, decenter); cre = _mm_add_pi16(cre, decenter); cro = _mm_add_pi16(cro, decenter); /* (Original) * R = Y + 1.40200 * Cr * G = Y - 0.34414 * Cb - 0.71414 * Cr * B = Y + 1.77200 * Cb * * (This implementation) * R = Y + 0.40200 * Cr + Cr * G = Y - 0.34414 * Cb + 0.28586 * Cr - Cr * B = Y - 0.22800 * Cb + Cb + Cb */ cbe2 = _mm_add_pi16(cbe, cbe); /* 2*CbE */ cbo2 = _mm_add_pi16(cbo, cbo); /* 2*CbO */ cre2 = _mm_add_pi16(cre, cre); /* 2*CrE */ cro2 = _mm_add_pi16(cro, cro); /* 2*CrO */ be = _mm_mulhi_pi16(cbe2, PW_MF0228); /* (2*CbE * -FIX(0.22800) */ bo = _mm_mulhi_pi16(cbo2, PW_MF0228); /* (2*CbO * -FIX(0.22800) */ re = _mm_mulhi_pi16(cre2, PW_F0402); /* (2*CrE * FIX(0.40200)) */ ro = _mm_mulhi_pi16(cro2, PW_F0402); /* (2*CrO * FIX(0.40200)) */ be = _mm_add_pi16(be, PW_ONE); bo = _mm_add_pi16(bo, PW_ONE); be = _mm_srai_pi16(be, 1); /* (CbE * -FIX(0.22800)) */ bo = _mm_srai_pi16(bo, 1); /* (CbO * -FIX(0.22800)) */ re = _mm_add_pi16(re, PW_ONE); ro = _mm_add_pi16(ro, PW_ONE); re = _mm_srai_pi16(re, 1); /* (CrE * FIX(0.40200)) */ ro = _mm_srai_pi16(ro, 1); /* (CrO * FIX(0.40200)) */ be = _mm_add_pi16(be, cbe); bo = _mm_add_pi16(bo, cbo); be = _mm_add_pi16(be, cbe); /* (CbE * FIX(1.77200))=(B-Y)E */ bo = _mm_add_pi16(bo, cbo); /* (CbO * FIX(1.77200))=(B-Y)O */ re = _mm_add_pi16(re, cre); /* (CrE * FIX(1.40200))=(R-Y)E */ ro = _mm_add_pi16(ro, cro); /* (CrO * FIX(1.40200))=(R-Y)O */ gle = _mm_unpacklo_pi16(cbe, cre); ghe = _mm_unpackhi_pi16(cbe, cre); gle = _mm_madd_pi16(gle, PW_MF0344_F0285); ghe = _mm_madd_pi16(ghe, PW_MF0344_F0285); glo = _mm_unpacklo_pi16(cbo, cro); gho = _mm_unpackhi_pi16(cbo, cro); glo = _mm_madd_pi16(glo, PW_MF0344_F0285); gho = _mm_madd_pi16(gho, PW_MF0344_F0285); gle = _mm_add_pi32(gle, PD_ONEHALF); ghe = _mm_add_pi32(ghe, PD_ONEHALF); gle = _mm_srai_pi32(gle, SCALEBITS); ghe = _mm_srai_pi32(ghe, SCALEBITS); glo = _mm_add_pi32(glo, PD_ONEHALF); gho = _mm_add_pi32(gho, PD_ONEHALF); glo = _mm_srai_pi32(glo, SCALEBITS); gho = _mm_srai_pi32(gho, SCALEBITS); ge = _mm_packs_pi32(gle, ghe); /* CbE*-FIX(0.344)+CrE*FIX(0.285) */ go = _mm_packs_pi32(glo, gho); /* CbO*-FIX(0.344)+CrO*FIX(0.285) */ ge = _mm_sub_pi16(ge, cre); /* CbE*-FIX(0.344)+CrE*-FIX(0.714)=(G-Y)E */ go = _mm_sub_pi16(go, cro); /* CbO*-FIX(0.344)+CrO*-FIX(0.714)=(G-Y)O */ ye = _mm_and_si64(mask, y); /* Y(0246) */ yo = _mm_srli_pi16(y, BYTE_BIT); /* Y(1357) */ re = _mm_add_pi16(re, ye); /* ((R-Y)E+YE)=(R0 R2 R4 R6) */ ro = _mm_add_pi16(ro, yo); /* ((R-Y)O+YO)=(R1 R3 R5 R7) */ re = _mm_packs_pu16(re, re); /* (R0 R2 R4 R6 ** ** ** **) */ ro = _mm_packs_pu16(ro, ro); /* (R1 R3 R5 R7 ** ** ** **) */ ge = _mm_add_pi16(ge, ye); /* ((G-Y)E+YE)=(G0 G2 G4 G6) */ go = _mm_add_pi16(go, yo); /* ((G-Y)O+YO)=(G1 G3 G5 G7) */ ge = _mm_packs_pu16(ge, ge); /* (G0 G2 G4 G6 ** ** ** **) */ go = _mm_packs_pu16(go, go); /* (G1 G3 G5 G7 ** ** ** **) */ be = _mm_add_pi16(be, ye); /* (YE+(B-Y)E)=(B0 B2 B4 B6) */ bo = _mm_add_pi16(bo, yo); /* (YO+(B-Y)O)=(B1 B3 B5 B7) */ be = _mm_packs_pu16(be, be); /* (B0 B2 B4 B6 ** ** ** **) */ bo = _mm_packs_pu16(bo, bo); /* (B1 B3 B5 B7 ** ** ** **) */ #if RGB_PIXELSIZE == 3 /* mmA=(00 02 04 06 ** ** ** **), mmB=(01 03 05 07 ** ** ** **) */ /* mmC=(10 12 14 16 ** ** ** **), mmD=(11 13 15 17 ** ** ** **) */ mmA = _mm_unpacklo_pi8(mmA, mmC); /* (00 10 02 12 04 14 06 16) */ mmE = _mm_unpacklo_pi8(mmE, mmB); /* (20 01 22 03 24 05 26 07) */ mmD = _mm_unpacklo_pi8(mmD, mmF); /* (11 21 13 23 15 25 17 27) */ mmH = _mm_srli_si64(mmA, 2 * BYTE_BIT); mmG = _mm_unpackhi_pi16(mmA, mmE); /* (04 14 24 05 06 16 26 07) */ mmA = _mm_unpacklo_pi16(mmA, mmE); /* (00 10 20 01 02 12 22 03) */ mmE = _mm_srli_si64(mmE, 2 * BYTE_BIT); mmB = _mm_srli_si64(mmD, 2 * BYTE_BIT); /* (13 23 15 25 17 27 -- --) */ mmC = _mm_unpackhi_pi16(mmD, mmH); /* (15 25 06 16 17 27 -- --) */ mmD = _mm_unpacklo_pi16(mmD, mmH); /* (11 21 02 12 13 23 04 14) */ mmF = _mm_unpackhi_pi16(mmE, mmB); /* (26 07 17 27 -- -- -- --) */ mmE = _mm_unpacklo_pi16(mmE, mmB); /* (22 03 13 23 24 05 15 25) */ mmA = _mm_unpacklo_pi32(mmA, mmD); /* (00 10 20 01 11 21 02 12) */ mmE = _mm_unpacklo_pi32(mmE, mmG); /* (22 03 13 23 04 14 24 05) */ mmC = _mm_unpacklo_pi32(mmC, mmF); /* (15 25 06 16 26 07 17 27) */ if (num_cols >= 8) { if (!(((long)outptr) & 7)) { _mm_store_si64((__m64 *)outptr, mmA); _mm_store_si64((__m64 *)(outptr + 8), mmE); _mm_store_si64((__m64 *)(outptr + 16), mmC); } else { _mm_storeu_si64((__m64 *)outptr, mmA); _mm_storeu_si64((__m64 *)(outptr + 8), mmE); _mm_storeu_si64((__m64 *)(outptr + 16), mmC); } outptr += RGB_PIXELSIZE * 8; } else { col = num_cols * 3; asm(".set noreorder\r\n" "li $8, 16\r\n" "move $9, %4\r\n" "mov.s $f4, %1\r\n" "mov.s $f6, %3\r\n" "move $10, %5\r\n" "bltu $9, $8, 1f\r\n" "nop \r\n" "gssdlc1 $f4, 7($10)\r\n" "gssdrc1 $f4, 0($10)\r\n" "gssdlc1 $f6, 7+8($10)\r\n" "gssdrc1 $f6, 8($10)\r\n" "mov.s $f4, %2\r\n" "subu $9, $9, 16\r\n" PTR_ADDU "$10, $10, 16\r\n" "b 2f\r\n" "nop \r\n" "1: \r\n" "li $8, 8\r\n" /* st8 */ "bltu $9, $8, 2f\r\n" "nop \r\n" "gssdlc1 $f4, 7($10)\r\n" "gssdrc1 $f4, 0($10)\r\n" "mov.s $f4, %3\r\n" "subu $9, $9, 8\r\n" PTR_ADDU "$10, $10, 8\r\n" "2: \r\n" "li $8, 4\r\n" /* st4 */ "mfc1 $11, $f4\r\n" "bltu $9, $8, 3f\r\n" "nop \r\n" "swl $11, 3($10)\r\n" "swr $11, 0($10)\r\n" "li $8, 32\r\n" "mtc1 $8, $f6\r\n" "dsrl $f4, $f4, $f6\r\n" "mfc1 $11, $f4\r\n" "subu $9, $9, 4\r\n" PTR_ADDU "$10, $10, 4\r\n" "3: \r\n" "li $8, 2\r\n" /* st2 */ "bltu $9, $8, 4f\r\n" "nop \r\n" "ush $11, 0($10)\r\n" "srl $11, 16\r\n" "subu $9, $9, 2\r\n" PTR_ADDU "$10, $10, 2\r\n" "4: \r\n" "li $8, 1\r\n" /* st1 */ "bltu $9, $8, 5f\r\n" "nop \r\n" "sb $11, 0($10)\r\n" "5: \r\n" "nop \r\n" /* end */ : "=m" (*outptr) : "f" (mmA), "f" (mmC), "f" (mmE), "r" (col), "r" (outptr) : "$f4", "$f6", "$8", "$9", "$10", "$11", "memory" ); } #else /* RGB_PIXELSIZE == 4 */ #ifdef RGBX_FILLER_0XFF xe = _mm_cmpeq_pi8(xe, xe); xo = _mm_cmpeq_pi8(xo, xo); #else xe = _mm_xor_si64(xe, xe); xo = _mm_xor_si64(xo, xo); #endif /* mmA=(00 02 04 06 ** ** ** **), mmB=(01 03 05 07 ** ** ** **) */ /* mmC=(10 12 14 16 ** ** ** **), mmD=(11 13 15 17 ** ** ** **) */ /* mmE=(20 22 24 26 ** ** ** **), mmF=(21 23 25 27 ** ** ** **) */ /* mmG=(30 32 34 36 ** ** ** **), mmH=(31 33 35 37 ** ** ** **) */ mmA = _mm_unpacklo_pi8(mmA, mmC); /* (00 10 02 12 04 14 06 16) */ mmE = _mm_unpacklo_pi8(mmE, mmG); /* (20 30 22 32 24 34 26 36) */ mmB = _mm_unpacklo_pi8(mmB, mmD); /* (01 11 03 13 05 15 07 17) */ mmF = _mm_unpacklo_pi8(mmF, mmH); /* (21 31 23 33 25 35 27 37) */ mmC = _mm_unpackhi_pi16(mmA, mmE); /* (04 14 24 34 06 16 26 36) */ mmA = _mm_unpacklo_pi16(mmA, mmE); /* (00 10 20 30 02 12 22 32) */ mmG = _mm_unpackhi_pi16(mmB, mmF); /* (05 15 25 35 07 17 27 37) */ mmB = _mm_unpacklo_pi16(mmB, mmF); /* (01 11 21 31 03 13 23 33) */ mmD = _mm_unpackhi_pi32(mmA, mmB); /* (02 12 22 32 03 13 23 33) */ mmA = _mm_unpacklo_pi32(mmA, mmB); /* (00 10 20 30 01 11 21 31) */ mmH = _mm_unpackhi_pi32(mmC, mmG); /* (06 16 26 36 07 17 27 37) */ mmC = _mm_unpacklo_pi32(mmC, mmG); /* (04 14 24 34 05 15 25 35) */ if (num_cols >= 8) { if (!(((long)outptr) & 7)) { _mm_store_si64((__m64 *)outptr, mmA); _mm_store_si64((__m64 *)(outptr + 8), mmD); _mm_store_si64((__m64 *)(outptr + 16), mmC); _mm_store_si64((__m64 *)(outptr + 24), mmH); } else { _mm_storeu_si64((__m64 *)outptr, mmA); _mm_storeu_si64((__m64 *)(outptr + 8), mmD); _mm_storeu_si64((__m64 *)(outptr + 16), mmC); _mm_storeu_si64((__m64 *)(outptr + 24), mmH); } outptr += RGB_PIXELSIZE * 8; } else { col = num_cols; asm(".set noreorder\r\n" /* st16 */ "li $8, 4\r\n" "move $9, %6\r\n" "move $10, %7\r\n" "mov.s $f4, %2\r\n" "mov.s $f6, %4\r\n" "bltu $9, $8, 1f\r\n" "nop \r\n" "gssdlc1 $f4, 7($10)\r\n" "gssdrc1 $f4, 0($10)\r\n" "gssdlc1 $f6, 7+8($10)\r\n" "gssdrc1 $f6, 8($10)\r\n" "mov.s $f4, %3\r\n" "mov.s $f6, %5\r\n" "subu $9, $9, 4\r\n" PTR_ADDU "$10, $10, 16\r\n" "1: \r\n" "li $8, 2\r\n" /* st8 */ "bltu $9, $8, 2f\r\n" "nop \r\n" "gssdlc1 $f4, 7($10)\r\n" "gssdrc1 $f4, 0($10)\r\n" "mov.s $f4, $f6\r\n" "subu $9, $9, 2\r\n" PTR_ADDU "$10, $10, 8\r\n" "2: \r\n" "li $8, 1\r\n" /* st4 */ "bltu $9, $8, 3f\r\n" "nop \r\n" "gsswlc1 $f4, 3($10)\r\n" "gsswrc1 $f4, 0($10)\r\n" "3: \r\n" "li %1, 0\r\n" /* end */ : "=m" (*outptr), "=r" (col) : "f" (mmA), "f" (mmC), "f" (mmD), "f" (mmH), "r" (col), "r" (outptr) : "$f4", "$f6", "$8", "$9", "$10", "memory" ); } #endif } } } #undef mmA #undef mmB #undef mmC #undef mmD #undef mmE #undef mmF #undef mmG #undef mmH libjpeg-turbo-2.1.5/simd/mips64/jdcolor-mmi.c000066400000000000000000000104621436506551100207330ustar00rootroot00000000000000/* * Loongson MMI optimizations for libjpeg-turbo * * Copyright (C) 2011, 2015, D. R. Commander. All Rights Reserved. * Copyright (C) 2016-2017, Loongson Technology Corporation Limited, BeiJing. * All Rights Reserved. * Authors: ZhuChen * CaiWanwei * SunZhangzhi * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ /* YCC --> RGB CONVERSION */ #include "jsimd_mmi.h" #define F_0_344 ((short)22554) /* FIX(0.34414) */ #define F_0_402 ((short)26345) /* FIX(1.40200) - FIX(1) */ #define F_0_285 ((short)18734) /* FIX(1) - FIX(0.71414) */ #define F_0_228 ((short)14942) /* FIX(2) - FIX(1.77200) */ enum const_index { index_PW_ONE, index_PW_F0402, index_PW_MF0228, index_PW_MF0344_F0285, index_PD_ONEHALF }; static uint64_t const_value[] = { _uint64_set_pi16(1, 1, 1, 1), _uint64_set_pi16(F_0_402, F_0_402, F_0_402, F_0_402), _uint64_set_pi16(-F_0_228, -F_0_228, -F_0_228, -F_0_228), _uint64_set_pi16(F_0_285, -F_0_344, F_0_285, -F_0_344), _uint64_set_pi32((int)(1 << (SCALEBITS - 1)), (int)(1 << (SCALEBITS - 1))) }; #define PW_ONE get_const_value(index_PW_ONE) #define PW_F0402 get_const_value(index_PW_F0402) #define PW_MF0228 get_const_value(index_PW_MF0228) #define PW_MF0344_F0285 get_const_value(index_PW_MF0344_F0285) #define PD_ONEHALF get_const_value(index_PD_ONEHALF) #define RGBX_FILLER_0XFF 1 #include "jdcolext-mmi.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #define RGB_RED EXT_RGB_RED #define RGB_GREEN EXT_RGB_GREEN #define RGB_BLUE EXT_RGB_BLUE #define RGB_PIXELSIZE EXT_RGB_PIXELSIZE #define jsimd_ycc_rgb_convert_mmi jsimd_ycc_extrgb_convert_mmi #include "jdcolext-mmi.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef jsimd_ycc_rgb_convert_mmi #define RGB_RED EXT_RGBX_RED #define RGB_GREEN EXT_RGBX_GREEN #define RGB_BLUE EXT_RGBX_BLUE #define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE #define jsimd_ycc_rgb_convert_mmi jsimd_ycc_extrgbx_convert_mmi #include "jdcolext-mmi.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef jsimd_ycc_rgb_convert_mmi #define RGB_RED EXT_BGR_RED #define RGB_GREEN EXT_BGR_GREEN #define RGB_BLUE EXT_BGR_BLUE #define RGB_PIXELSIZE EXT_BGR_PIXELSIZE #define jsimd_ycc_rgb_convert_mmi jsimd_ycc_extbgr_convert_mmi #include "jdcolext-mmi.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef jsimd_ycc_rgb_convert_mmi #define RGB_RED EXT_BGRX_RED #define RGB_GREEN EXT_BGRX_GREEN #define RGB_BLUE EXT_BGRX_BLUE #define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE #define jsimd_ycc_rgb_convert_mmi jsimd_ycc_extbgrx_convert_mmi #include "jdcolext-mmi.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef jsimd_ycc_rgb_convert_mmi #define RGB_RED EXT_XBGR_RED #define RGB_GREEN EXT_XBGR_GREEN #define RGB_BLUE EXT_XBGR_BLUE #define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE #define jsimd_ycc_rgb_convert_mmi jsimd_ycc_extxbgr_convert_mmi #include "jdcolext-mmi.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef jsimd_ycc_rgb_convert_mmi #define RGB_RED EXT_XRGB_RED #define RGB_GREEN EXT_XRGB_GREEN #define RGB_BLUE EXT_XRGB_BLUE #define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE #define jsimd_ycc_rgb_convert_mmi jsimd_ycc_extxrgb_convert_mmi #include "jdcolext-mmi.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef jsimd_ycc_rgb_convert_mmi libjpeg-turbo-2.1.5/simd/mips64/jdmerge-mmi.c000066400000000000000000000117761436506551100207250ustar00rootroot00000000000000/* * Loongson MMI optimizations for libjpeg-turbo * * Copyright (C) 2011, 2015, D. R. Commander. All Rights Reserved. * Copyright (C) 2016-2018, Loongson Technology Corporation Limited, BeiJing. * All Rights Reserved. * Authors: ZhangLixia * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ /* YCC --> RGB CONVERSION */ #include "jsimd_mmi.h" #define F_0_344 ((short)22554) /* FIX(0.34414) */ #define F_0_402 ((short)26345) /* FIX(1.40200) - FIX(1) */ #define F_0_285 ((short)18734) /* FIX(1) - FIX(0.71414) */ #define F_0_228 ((short)14942) /* FIX(2) - FIX(1.77200) */ enum const_index { index_PW_ONE, index_PW_F0402, index_PW_MF0228, index_PW_MF0344_F0285, index_PD_ONEHALF }; static uint64_t const_value[] = { _uint64_set_pi16(1, 1, 1, 1), _uint64_set_pi16(F_0_402, F_0_402, F_0_402, F_0_402), _uint64_set_pi16(-F_0_228, -F_0_228, -F_0_228, -F_0_228), _uint64_set_pi16(F_0_285, -F_0_344, F_0_285, -F_0_344), _uint64_set_pi32((int)(1 << (SCALEBITS - 1)), (int)(1 << (SCALEBITS - 1))) }; #define PW_ONE get_const_value(index_PW_ONE) #define PW_F0402 get_const_value(index_PW_F0402) #define PW_MF0228 get_const_value(index_PW_MF0228) #define PW_MF0344_F0285 get_const_value(index_PW_MF0344_F0285) #define PD_ONEHALF get_const_value(index_PD_ONEHALF) #define RGBX_FILLER_0XFF 1 #include "jdmrgext-mmi.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #define RGB_RED EXT_RGB_RED #define RGB_GREEN EXT_RGB_GREEN #define RGB_BLUE EXT_RGB_BLUE #define RGB_PIXELSIZE EXT_RGB_PIXELSIZE #define jsimd_h2v1_merged_upsample_mmi jsimd_h2v1_extrgb_merged_upsample_mmi #define jsimd_h2v2_merged_upsample_mmi jsimd_h2v2_extrgb_merged_upsample_mmi #include "jdmrgext-mmi.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef jsimd_h2v1_merged_upsample_mmi #undef jsimd_h2v2_merged_upsample_mmi #define RGB_RED EXT_RGBX_RED #define RGB_GREEN EXT_RGBX_GREEN #define RGB_BLUE EXT_RGBX_BLUE #define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE #define jsimd_h2v1_merged_upsample_mmi jsimd_h2v1_extrgbx_merged_upsample_mmi #define jsimd_h2v2_merged_upsample_mmi jsimd_h2v2_extrgbx_merged_upsample_mmi #include "jdmrgext-mmi.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef jsimd_h2v1_merged_upsample_mmi #undef jsimd_h2v2_merged_upsample_mmi #define RGB_RED EXT_BGR_RED #define RGB_GREEN EXT_BGR_GREEN #define RGB_BLUE EXT_BGR_BLUE #define RGB_PIXELSIZE EXT_BGR_PIXELSIZE #define jsimd_h2v1_merged_upsample_mmi jsimd_h2v1_extbgr_merged_upsample_mmi #define jsimd_h2v2_merged_upsample_mmi jsimd_h2v2_extbgr_merged_upsample_mmi #include "jdmrgext-mmi.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef jsimd_h2v1_merged_upsample_mmi #undef jsimd_h2v2_merged_upsample_mmi #define RGB_RED EXT_BGRX_RED #define RGB_GREEN EXT_BGRX_GREEN #define RGB_BLUE EXT_BGRX_BLUE #define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE #define jsimd_h2v1_merged_upsample_mmi jsimd_h2v1_extbgrx_merged_upsample_mmi #define jsimd_h2v2_merged_upsample_mmi jsimd_h2v2_extbgrx_merged_upsample_mmi #include "jdmrgext-mmi.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef jsimd_h2v1_merged_upsample_mmi #undef jsimd_h2v2_merged_upsample_mmi #define RGB_RED EXT_XBGR_RED #define RGB_GREEN EXT_XBGR_GREEN #define RGB_BLUE EXT_XBGR_BLUE #define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE #define jsimd_h2v1_merged_upsample_mmi jsimd_h2v1_extxbgr_merged_upsample_mmi #define jsimd_h2v2_merged_upsample_mmi jsimd_h2v2_extxbgr_merged_upsample_mmi #include "jdmrgext-mmi.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef jsimd_h2v1_merged_upsample_mmi #undef jsimd_h2v2_merged_upsample_mmi #define RGB_RED EXT_XRGB_RED #define RGB_GREEN EXT_XRGB_GREEN #define RGB_BLUE EXT_XRGB_BLUE #define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE #define jsimd_h2v1_merged_upsample_mmi jsimd_h2v1_extxrgb_merged_upsample_mmi #define jsimd_h2v2_merged_upsample_mmi jsimd_h2v2_extxrgb_merged_upsample_mmi #include "jdmrgext-mmi.c" #undef RGB_RED #undef RGB_GREEN #undef RGB_BLUE #undef RGB_PIXELSIZE #undef jsimd_h2v1_merged_upsample_mmi #undef jsimd_h2v2_merged_upsample_mmi libjpeg-turbo-2.1.5/simd/mips64/jdmrgext-mmi.c000066400000000000000000000555211436506551100211300ustar00rootroot00000000000000/* * Loongson MMI optimizations for libjpeg-turbo * * Copyright 2009 Pierre Ossman for Cendio AB * Copyright (C) 2015, 2019, D. R. Commander. All Rights Reserved. * Copyright (C) 2016-2018, Loongson Technology Corporation Limited, BeiJing. * All Rights Reserved. * Authors: ZhangLixia * * Based on the x86 SIMD extension for IJG JPEG library * Copyright (C) 1999-2006, MIYASAKA Masaru. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ /* This file is included by jdmerge-mmi.c */ #if RGB_RED == 0 #define mmA re #define mmB ro #elif RGB_GREEN == 0 #define mmA ge #define mmB go #elif RGB_BLUE == 0 #define mmA be #define mmB bo #else #define mmA xe #define mmB xo #endif #if RGB_RED == 1 #define mmC re #define mmD ro #elif RGB_GREEN == 1 #define mmC ge #define mmD go #elif RGB_BLUE == 1 #define mmC be #define mmD bo #else #define mmC xe #define mmD xo #endif #if RGB_RED == 2 #define mmE re #define mmF ro #elif RGB_GREEN == 2 #define mmE ge #define mmF go #elif RGB_BLUE == 2 #define mmE be #define mmF bo #else #define mmE xe #define mmF xo #endif #if RGB_RED == 3 #define mmG re #define mmH ro #elif RGB_GREEN == 3 #define mmG ge #define mmH go #elif RGB_BLUE == 3 #define mmG be #define mmH bo #else #define mmG xe #define mmH xo #endif void jsimd_h2v1_merged_upsample_mmi(JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { JSAMPROW outptr, inptr0, inptr1, inptr2; int num_cols, col; __m64 ythise, ythiso, ythis, ynexte, ynexto, ynext, yl, y; __m64 cbl, cbl2, cbh, cbh2, cb, crl, crl2, crh, crh2, cr; __m64 rle, rlo, rl, rhe, rho, rh, re, ro; __m64 ga, gb, gle, glo, gl, gc, gd, ghe, gho, gh, ge, go; __m64 ble, blo, bl, bhe, bho, bh, be, bo, xe = 0.0, xo = 0.0; __m64 decenter, mask, zero = 0.0; #if RGB_PIXELSIZE == 4 __m64 mm8, mm9; #endif inptr0 = input_buf[0][in_row_group_ctr]; inptr1 = input_buf[1][in_row_group_ctr]; inptr2 = input_buf[2][in_row_group_ctr]; outptr = output_buf[0]; for (num_cols = output_width >> 1; num_cols > 0; num_cols -= 8, inptr0 += 16, inptr1 += 8, inptr2 += 8) { cb = _mm_load_si64((__m64 *)inptr1); cr = _mm_load_si64((__m64 *)inptr2); ythis = _mm_load_si64((__m64 *)inptr0); ynext = _mm_load_si64((__m64 *)inptr0 + 1); mask = decenter = 0.0; mask = _mm_cmpeq_pi16(mask, mask); decenter = _mm_cmpeq_pi16(decenter, decenter); mask = _mm_srli_pi16(mask, BYTE_BIT); /* {0xFF 0x00 0xFF 0x00 ..} */ decenter = _mm_slli_pi16(decenter, 7); /* {0xFF80 0xFF80 0xFF80 0xFF80} */ cbl = _mm_unpacklo_pi8(cb, zero); /* Cb(0123) */ cbh = _mm_unpackhi_pi8(cb, zero); /* Cb(4567) */ crl = _mm_unpacklo_pi8(cr, zero); /* Cr(0123) */ crh = _mm_unpackhi_pi8(cr, zero); /* Cr(4567) */ cbl = _mm_add_pi16(cbl, decenter); cbh = _mm_add_pi16(cbh, decenter); crl = _mm_add_pi16(crl, decenter); crh = _mm_add_pi16(crh, decenter); /* (Original) * R = Y + 1.40200 * Cr * G = Y - 0.34414 * Cb - 0.71414 * Cr * B = Y + 1.77200 * Cb * * (This implementation) * R = Y + 0.40200 * Cr + Cr * G = Y - 0.34414 * Cb + 0.28586 * Cr - Cr * B = Y - 0.22800 * Cb + Cb + Cb */ cbl2 = _mm_add_pi16(cbl, cbl); /* 2*CbL */ cbh2 = _mm_add_pi16(cbh, cbh); /* 2*CbH */ crl2 = _mm_add_pi16(crl, crl); /* 2*CrL */ crh2 = _mm_add_pi16(crh, crh); /* 2*CrH */ bl = _mm_mulhi_pi16(cbl2, PW_MF0228); /* (2*CbL * -FIX(0.22800) */ bh = _mm_mulhi_pi16(cbh2, PW_MF0228); /* (2*CbH * -FIX(0.22800) */ rl = _mm_mulhi_pi16(crl2, PW_F0402); /* (2*CrL * FIX(0.40200)) */ rh = _mm_mulhi_pi16(crh2, PW_F0402); /* (2*CrH * FIX(0.40200)) */ bl = _mm_add_pi16(bl, PW_ONE); bh = _mm_add_pi16(bh, PW_ONE); bl = _mm_srai_pi16(bl, 1); /* (CbL * -FIX(0.22800)) */ bh = _mm_srai_pi16(bh, 1); /* (CbH * -FIX(0.22800)) */ rl = _mm_add_pi16(rl, PW_ONE); rh = _mm_add_pi16(rh, PW_ONE); rl = _mm_srai_pi16(rl, 1); /* (CrL * FIX(0.40200)) */ rh = _mm_srai_pi16(rh, 1); /* (CrH * FIX(0.40200)) */ bl = _mm_add_pi16(bl, cbl); bh = _mm_add_pi16(bh, cbh); bl = _mm_add_pi16(bl, cbl); /* (CbL * FIX(1.77200))=(B-Y)L */ bh = _mm_add_pi16(bh, cbh); /* (CbH * FIX(1.77200))=(B-Y)H */ rl = _mm_add_pi16(rl, crl); /* (CrL * FIX(1.40200))=(R-Y)L */ rh = _mm_add_pi16(rh, crh); /* (CrH * FIX(1.40200))=(R-Y)H */ ga = _mm_unpacklo_pi16(cbl, crl); gb = _mm_unpackhi_pi16(cbl, crl); ga = _mm_madd_pi16(ga, PW_MF0344_F0285); gb = _mm_madd_pi16(gb, PW_MF0344_F0285); gc = _mm_unpacklo_pi16(cbh, crh); gd = _mm_unpackhi_pi16(cbh, crh); gc = _mm_madd_pi16(gc, PW_MF0344_F0285); gd = _mm_madd_pi16(gd, PW_MF0344_F0285); ga = _mm_add_pi32(ga, PD_ONEHALF); gb = _mm_add_pi32(gb, PD_ONEHALF); ga = _mm_srai_pi32(ga, SCALEBITS); gb = _mm_srai_pi32(gb, SCALEBITS); gc = _mm_add_pi32(gc, PD_ONEHALF); gd = _mm_add_pi32(gd, PD_ONEHALF); gc = _mm_srai_pi32(gc, SCALEBITS); gd = _mm_srai_pi32(gd, SCALEBITS); gl = _mm_packs_pi32(ga, gb); /* CbL*-FIX(0.344)+CrL*FIX(0.285) */ gh = _mm_packs_pi32(gc, gd); /* CbH*-FIX(0.344)+CrH*FIX(0.285) */ gl = _mm_sub_pi16(gl, crl); /* CbL*-FIX(0.344)+CrL*-FIX(0.714)=(G-Y)L */ gh = _mm_sub_pi16(gh, crh); /* CbH*-FIX(0.344)+CrH*-FIX(0.714)=(G-Y)H */ ythise = _mm_and_si64(mask, ythis); /* Y(0246) */ ythiso = _mm_srli_pi16(ythis, BYTE_BIT); /* Y(1357) */ ynexte = _mm_and_si64(mask, ynext); /* Y(8ACE) */ ynexto = _mm_srli_pi16(ynext, BYTE_BIT); /* Y(9BDF) */ rle = _mm_add_pi16(rl, ythise); /* (R0 R2 R4 R6) */ rlo = _mm_add_pi16(rl, ythiso); /* (R1 R3 R5 R7) */ rhe = _mm_add_pi16(rh, ynexte); /* (R8 RA RC RE) */ rho = _mm_add_pi16(rh, ynexto); /* (R9 RB RD RF) */ re = _mm_packs_pu16(rle, rhe); /* (R0 R2 R4 R6 R8 RA RC RE) */ ro = _mm_packs_pu16(rlo, rho); /* (R1 R3 R5 R7 R9 RB RD RF) */ gle = _mm_add_pi16(gl, ythise); /* (G0 G2 G4 G6) */ glo = _mm_add_pi16(gl, ythiso); /* (G1 G3 G5 G7) */ ghe = _mm_add_pi16(gh, ynexte); /* (G8 GA GC GE) */ gho = _mm_add_pi16(gh, ynexto); /* (G9 GB GD GF) */ ge = _mm_packs_pu16(gle, ghe); /* (G0 G2 G4 G6 G8 GA GC GE) */ go = _mm_packs_pu16(glo, gho); /* (G1 G3 G5 G7 G9 GB GD GF) */ ble = _mm_add_pi16(bl, ythise); /* (B0 B2 B4 B6) */ blo = _mm_add_pi16(bl, ythiso); /* (B1 B3 B5 B7) */ bhe = _mm_add_pi16(bh, ynexte); /* (B8 BA BC BE) */ bho = _mm_add_pi16(bh, ynexto); /* (B9 BB BD BF) */ be = _mm_packs_pu16(ble, bhe); /* (B0 B2 B4 B6 B8 BA BC BE) */ bo = _mm_packs_pu16(blo, bho); /* (B1 B3 B5 B7 B9 BB BD BF) */ #if RGB_PIXELSIZE == 3 /* mmA=(00 02 04 06 08 0A 0C 0E), mmB=(01 03 05 07 09 0B 0D 0F) */ /* mmC=(10 12 14 16 18 1A 1C 1E), mmD=(11 13 15 17 19 1B 1D 1F) */ /* mmE=(20 22 24 26 28 2A 2C 2E), mmF=(21 23 25 27 29 2B 2D 2F) */ mmG = _mm_unpacklo_pi8(mmA, mmC); /* (00 10 02 12 04 14 06 16) */ mmA = _mm_unpackhi_pi8(mmA, mmC); /* (08 18 0A 1A 0C 1C 0E 1E) */ mmH = _mm_unpacklo_pi8(mmE, mmB); /* (20 01 22 03 24 05 26 07) */ mmE = _mm_unpackhi_pi8(mmE, mmB); /* (28 09 2A 0B 2C 0D 2E 0F) */ mmC = _mm_unpacklo_pi8(mmD, mmF); /* (11 21 13 23 15 25 17 27) */ mmD = _mm_unpackhi_pi8(mmD, mmF); /* (19 29 1B 2B 1D 2D 1F 2F) */ mmB = _mm_unpacklo_pi16(mmG, mmA); /* (00 10 08 18 02 12 0A 1A) */ mmA = _mm_unpackhi_pi16(mmG, mmA); /* (04 14 0C 1C 06 16 0E 1E) */ mmF = _mm_unpacklo_pi16(mmH, mmE); /* (20 01 28 09 22 03 2A 0B) */ mmE = _mm_unpackhi_pi16(mmH, mmE); /* (24 05 2C 0D 26 07 2E 0F) */ mmH = _mm_unpacklo_pi16(mmC, mmD); /* (11 21 19 29 13 23 1B 2B) */ mmG = _mm_unpackhi_pi16(mmC, mmD); /* (15 25 1D 2D 17 27 1F 2F) */ mmC = _mm_unpacklo_pi16(mmB, mmF); /* (00 10 20 01 08 18 28 09) */ mmB = _mm_srli_si64(mmB, 4 * BYTE_BIT); mmB = _mm_unpacklo_pi16(mmH, mmB); /* (11 21 02 12 19 29 0A 1A) */ mmD = _mm_unpackhi_pi16(mmF, mmH); /* (22 03 13 23 2A 0B 1B 2B) */ mmF = _mm_unpacklo_pi16(mmA, mmE); /* (04 14 24 05 0C 1C 2C 0D) */ mmA = _mm_srli_si64(mmA, 4 * BYTE_BIT); mmH = _mm_unpacklo_pi16(mmG, mmA); /* (15 25 06 16 1D 2D 0E 1E) */ mmG = _mm_unpackhi_pi16(mmE, mmG); /* (26 07 17 27 2E 0F 1F 2F) */ mmA = _mm_unpacklo_pi32(mmC, mmB); /* (00 10 20 01 11 21 02 12) */ mmE = _mm_unpackhi_pi32(mmC, mmB); /* (08 18 28 09 19 29 0A 1A) */ mmB = _mm_unpacklo_pi32(mmD, mmF); /* (22 03 13 23 04 14 24 05) */ mmF = _mm_unpackhi_pi32(mmD, mmF); /* (2A 0B 1B 2B 0C 1C 2C 0D) */ mmC = _mm_unpacklo_pi32(mmH, mmG); /* (15 25 06 16 26 07 17 27) */ mmG = _mm_unpackhi_pi32(mmH, mmG); /* (1D 2D 0E 1E 2E 0F 1F 2F) */ if (num_cols >= 8) { if (!(((long)outptr) & 7)) { _mm_store_si64((__m64 *)outptr, mmA); _mm_store_si64((__m64 *)(outptr + 8), mmB); _mm_store_si64((__m64 *)(outptr + 16), mmC); _mm_store_si64((__m64 *)(outptr + 24), mmE); _mm_store_si64((__m64 *)(outptr + 32), mmF); _mm_store_si64((__m64 *)(outptr + 40), mmG); } else { _mm_storeu_si64((__m64 *)outptr, mmA); _mm_storeu_si64((__m64 *)(outptr + 8), mmB); _mm_storeu_si64((__m64 *)(outptr + 16), mmC); _mm_storeu_si64((__m64 *)(outptr + 24), mmE); _mm_storeu_si64((__m64 *)(outptr + 32), mmF); _mm_storeu_si64((__m64 *)(outptr + 40), mmG); } outptr += RGB_PIXELSIZE * 16; } else { if (output_width & 1) col = num_cols * 6 + 3; else col = num_cols * 6; asm(".set noreorder\r\n" /* st24 */ "li $8, 24\r\n" "move $9, %7\r\n" "mov.s $f4, %1\r\n" "mov.s $f6, %2\r\n" "mov.s $f8, %3\r\n" "move $10, %8\r\n" "bltu $9, $8, 1f\r\n" "nop \r\n" "gssdlc1 $f4, 7($10)\r\n" "gssdrc1 $f4, 0($10)\r\n" "gssdlc1 $f6, 7+8($10)\r\n" "gssdrc1 $f6, 8($10)\r\n" "gssdlc1 $f8, 7+16($10)\r\n" "gssdrc1 $f8, 16($10)\r\n" "mov.s $f4, %4\r\n" "mov.s $f6, %5\r\n" "mov.s $f8, %6\r\n" "subu $9, $9, 24\r\n" PTR_ADDU "$10, $10, 24\r\n" "1: \r\n" "li $8, 16\r\n" /* st16 */ "bltu $9, $8, 2f\r\n" "nop \r\n" "gssdlc1 $f4, 7($10)\r\n" "gssdrc1 $f4, 0($10)\r\n" "gssdlc1 $f6, 7+8($10)\r\n" "gssdrc1 $f6, 8($10)\r\n" "mov.s $f4, $f8\r\n" "subu $9, $9, 16\r\n" PTR_ADDU "$10, $10, 16\r\n" "2: \r\n" "li $8, 8\r\n" /* st8 */ "bltu $9, $8, 3f\r\n" "nop \r\n" "gssdlc1 $f4, 7($10)\r\n" "gssdrc1 $f4, 0($10)\r\n" "mov.s $f4, $f6\r\n" "subu $9, $9, 8\r\n" PTR_ADDU "$10, $10, 8\r\n" "3: \r\n" "li $8, 4\r\n" /* st4 */ "mfc1 $11, $f4\r\n" "bltu $9, $8, 4f\r\n" "nop \r\n" "swl $11, 3($10)\r\n" "swr $11, 0($10)\r\n" "li $8, 32\r\n" "mtc1 $8, $f6\r\n" "dsrl $f4, $f4, $f6\r\n" "mfc1 $11, $f4\r\n" "subu $9, $9, 4\r\n" PTR_ADDU "$10, $10, 4\r\n" "4: \r\n" "li $8, 2\r\n" /* st2 */ "bltu $9, $8, 5f\r\n" "nop \r\n" "ush $11, 0($10)\r\n" "srl $11, 16\r\n" "subu $9, $9, 2\r\n" PTR_ADDU "$10, $10, 2\r\n" "5: \r\n" "li $8, 1\r\n" /* st1 */ "bltu $9, $8, 6f\r\n" "nop \r\n" "sb $11, 0($10)\r\n" "6: \r\n" "nop \r\n" /* end */ : "=m" (*outptr) : "f" (mmA), "f" (mmB), "f" (mmC), "f" (mmE), "f" (mmF), "f" (mmG), "r" (col), "r" (outptr) : "$f4", "$f6", "$f8", "$8", "$9", "$10", "$11", "memory" ); } #else /* RGB_PIXELSIZE == 4 */ #ifdef RGBX_FILLER_0XFF xe = _mm_cmpeq_pi8(xe, xe); xo = _mm_cmpeq_pi8(xo, xo); #else xe = _mm_xor_si64(xe, xe); xo = _mm_xor_si64(xo, xo); #endif /* mmA=(00 02 04 06 08 0A 0C 0E), mmB=(01 03 05 07 09 0B 0D 0F) */ /* mmC=(10 12 14 16 18 1A 1C 1E), mmD=(11 13 15 17 19 1B 1D 1F) */ /* mmE=(20 22 24 26 28 2A 2C 2E), mmF=(21 23 25 27 29 2B 2D 2F) */ /* mmG=(30 32 34 36 38 3A 3C 3E), mmH=(31 33 35 37 39 3B 3D 3F) */ mm8 = _mm_unpacklo_pi8(mmA, mmC); /* (00 10 02 12 04 14 06 16) */ mm9 = _mm_unpackhi_pi8(mmA, mmC); /* (08 18 0A 1A 0C 1C 0E 1E) */ mmA = _mm_unpacklo_pi8(mmE, mmG); /* (20 30 22 32 24 34 26 36) */ mmE = _mm_unpackhi_pi8(mmE, mmG); /* (28 38 2A 3A 2C 3C 2E 3E) */ mmG = _mm_unpacklo_pi8(mmB, mmD); /* (01 11 03 13 05 15 07 17) */ mmB = _mm_unpackhi_pi8(mmB, mmD); /* (09 19 0B 1B 0D 1D 0F 1F) */ mmD = _mm_unpacklo_pi8(mmF, mmH); /* (21 31 23 33 25 35 27 37) */ mmF = _mm_unpackhi_pi8(mmF, mmH); /* (29 39 2B 3B 2D 3D 2F 3F) */ mmH = _mm_unpacklo_pi16(mm8, mmA); /* (00 10 20 30 02 12 22 32) */ mm8 = _mm_unpackhi_pi16(mm8, mmA); /* (04 14 24 34 06 16 26 36) */ mmA = _mm_unpacklo_pi16(mmG, mmD); /* (01 11 21 31 03 13 23 33) */ mmD = _mm_unpackhi_pi16(mmG, mmD); /* (05 15 25 35 07 17 27 37) */ mmG = _mm_unpackhi_pi16(mm9, mmE); /* (0C 1C 2C 3C 0E 1E 2E 3E) */ mm9 = _mm_unpacklo_pi16(mm9, mmE); /* (08 18 28 38 0A 1A 2A 3A) */ mmE = _mm_unpacklo_pi16(mmB, mmF); /* (09 19 29 39 0B 1B 2B 3B) */ mmF = _mm_unpackhi_pi16(mmB, mmF); /* (0D 1D 2D 3D 0F 1F 2F 3F) */ mmB = _mm_unpackhi_pi32(mmH, mmA); /* (02 12 22 32 03 13 23 33) */ mmA = _mm_unpacklo_pi32(mmH, mmA); /* (00 10 20 30 01 11 21 31) */ mmC = _mm_unpacklo_pi32(mm8, mmD); /* (04 14 24 34 05 15 25 35) */ mmD = _mm_unpackhi_pi32(mm8, mmD); /* (06 16 26 36 07 17 27 37) */ mmH = _mm_unpackhi_pi32(mmG, mmF); /* (0E 1E 2E 3E 0F 1F 2F 3F) */ mmG = _mm_unpacklo_pi32(mmG, mmF); /* (0C 1C 2C 3C 0D 1D 2D 3D) */ mmF = _mm_unpackhi_pi32(mm9, mmE); /* (0A 1A 2A 3A 0B 1B 2B 3B) */ mmE = _mm_unpacklo_pi32(mm9, mmE); /* (08 18 28 38 09 19 29 39) */ if (num_cols >= 8) { if (!(((long)outptr) & 7)) { _mm_store_si64((__m64 *)outptr, mmA); _mm_store_si64((__m64 *)(outptr + 8), mmB); _mm_store_si64((__m64 *)(outptr + 16), mmC); _mm_store_si64((__m64 *)(outptr + 24), mmD); _mm_store_si64((__m64 *)(outptr + 32), mmE); _mm_store_si64((__m64 *)(outptr + 40), mmF); _mm_store_si64((__m64 *)(outptr + 48), mmG); _mm_store_si64((__m64 *)(outptr + 56), mmH); } else { _mm_storeu_si64((__m64 *)outptr, mmA); _mm_storeu_si64((__m64 *)(outptr + 8), mmB); _mm_storeu_si64((__m64 *)(outptr + 16), mmC); _mm_storeu_si64((__m64 *)(outptr + 24), mmD); _mm_storeu_si64((__m64 *)(outptr + 32), mmE); _mm_storeu_si64((__m64 *)(outptr + 40), mmF); _mm_storeu_si64((__m64 *)(outptr + 48), mmG); _mm_storeu_si64((__m64 *)(outptr + 56), mmH); } outptr += RGB_PIXELSIZE * 16; } else { if (output_width & 1) col = num_cols * 2 + 1; else col = num_cols * 2; asm(".set noreorder\r\n" /* st32 */ "li $8, 8\r\n" "move $9, %10\r\n" "move $10, %11\r\n" "mov.s $f4, %2\r\n" "mov.s $f6, %3\r\n" "mov.s $f8, %4\r\n" "mov.s $f10, %5\r\n" "bltu $9, $8, 1f\r\n" "nop \r\n" "gssdlc1 $f4, 7($10)\r\n" "gssdrc1 $f4, 0($10)\r\n" "gssdlc1 $f6, 7+8($10)\r\n" "gssdrc1 $f6, 8($10)\r\n" "gssdlc1 $f8, 7+16($10)\r\n" "gssdrc1 $f8, 16($10)\r\n" "gssdlc1 $f10, 7+24($10)\r\n" "gssdrc1 $f10, 24($10)\r\n" "mov.s $f4, %6\r\n" "mov.s $f6, %7\r\n" "mov.s $f8, %8\r\n" "mov.s $f10, %9\r\n" "subu $9, $9, 8\r\n" PTR_ADDU "$10, $10, 32\r\n" "1: \r\n" "li $8, 4\r\n" /* st16 */ "bltu $9, $8, 2f\r\n" "nop \r\n" "gssdlc1 $f4, 7($10)\r\n" "gssdrc1 $f4, 0($10)\r\n" "gssdlc1 $f6, 7+8($10)\r\n" "gssdrc1 $f6, 8($10)\r\n" "mov.s $f4, $f8\r\n" "mov.s $f6, $f10\r\n" "subu $9, $9, 4\r\n" PTR_ADDU "$10, $10, 16\r\n" "2: \r\n" "li $8, 2\r\n" /* st8 */ "bltu $9, $8, 3f\r\n" "nop \r\n" "gssdlc1 $f4, 7($10)\r\n" "gssdrc1 $f4, 0($10)\r\n" "mov.s $f4, $f6\r\n" "subu $9, $9, 2\r\n" PTR_ADDU "$10, $10, 8\r\n" "3: \r\n" "li $8, 1\r\n" /* st4 */ "bltu $9, $8, 4f\r\n" "nop \r\n" "gsswlc1 $f4, 3($10)\r\n" "gsswrc1 $f4, 0($10)\r\n" "4: \r\n" "li %1, 0\r\n" /* end */ : "=m" (*outptr), "=r" (col) : "f" (mmA), "f" (mmB), "f" (mmC), "f" (mmD), "f" (mmE), "f" (mmF), "f" (mmG), "f" (mmH), "r" (col), "r" (outptr) : "$f4", "$f6", "$f8", "$f10", "$8", "$9", "$10", "memory" ); } #endif } if (!((output_width >> 1) & 7)) { if (output_width & 1) { cb = _mm_load_si64((__m64 *)inptr1); cr = _mm_load_si64((__m64 *)inptr2); y = _mm_load_si64((__m64 *)inptr0); decenter = 0.0; decenter = _mm_cmpeq_pi16(decenter, decenter); decenter = _mm_slli_pi16(decenter, 7); /* {0xFF80 0xFF80 0xFF80 0xFF80} */ cbl = _mm_unpacklo_pi8(cb, zero); /* Cb(0123) */ crl = _mm_unpacklo_pi8(cr, zero); /* Cr(0123) */ cbl = _mm_add_pi16(cbl, decenter); crl = _mm_add_pi16(crl, decenter); cbl2 = _mm_add_pi16(cbl, cbl); /* 2*CbL */ crl2 = _mm_add_pi16(crl, crl); /* 2*CrL */ bl = _mm_mulhi_pi16(cbl2, PW_MF0228); /* (2*CbL * -FIX(0.22800) */ rl = _mm_mulhi_pi16(crl2, PW_F0402); /* (2*CrL * FIX(0.40200)) */ bl = _mm_add_pi16(bl, PW_ONE); bl = _mm_srai_pi16(bl, 1); /* (CbL * -FIX(0.22800)) */ rl = _mm_add_pi16(rl, PW_ONE); rl = _mm_srai_pi16(rl, 1); /* (CrL * FIX(0.40200)) */ bl = _mm_add_pi16(bl, cbl); bl = _mm_add_pi16(bl, cbl); /* (CbL * FIX(1.77200))=(B-Y)L */ rl = _mm_add_pi16(rl, crl); /* (CrL * FIX(1.40200))=(R-Y)L */ gl = _mm_unpacklo_pi16(cbl, crl); gl = _mm_madd_pi16(gl, PW_MF0344_F0285); gl = _mm_add_pi32(gl, PD_ONEHALF); gl = _mm_srai_pi32(gl, SCALEBITS); gl = _mm_packs_pi32(gl, zero); /* CbL*-FIX(0.344)+CrL*FIX(0.285) */ gl = _mm_sub_pi16(gl, crl); /* CbL*-FIX(0.344)+CrL*-FIX(0.714)=(G-Y)L */ yl = _mm_unpacklo_pi8(y, zero); /* Y(0123) */ rl = _mm_add_pi16(rl, yl); /* (R0 R1 R2 R3) */ gl = _mm_add_pi16(gl, yl); /* (G0 G1 G2 G3) */ bl = _mm_add_pi16(bl, yl); /* (B0 B1 B2 B3) */ re = _mm_packs_pu16(rl, rl); ge = _mm_packs_pu16(gl, gl); be = _mm_packs_pu16(bl, bl); #if RGB_PIXELSIZE == 3 mmA = _mm_unpacklo_pi8(mmA, mmC); mmA = _mm_unpacklo_pi16(mmA, mmE); asm(".set noreorder\r\n" "move $8, %2\r\n" "mov.s $f4, %1\r\n" "mfc1 $9, $f4\r\n" "ush $9, 0($8)\r\n" "srl $9, 16\r\n" "sb $9, 2($8)\r\n" : "=m" (*outptr) : "f" (mmA), "r" (outptr) : "$f4", "$8", "$9", "memory" ); #else /* RGB_PIXELSIZE == 4 */ #ifdef RGBX_FILLER_0XFF xe = _mm_cmpeq_pi8(xe, xe); #else xe = _mm_xor_si64(xe, xe); #endif mmA = _mm_unpacklo_pi8(mmA, mmC); mmE = _mm_unpacklo_pi8(mmE, mmG); mmA = _mm_unpacklo_pi16(mmA, mmE); asm(".set noreorder\r\n" "move $8, %2\r\n" "mov.s $f4, %1\r\n" "gsswlc1 $f4, 3($8)\r\n" "gsswrc1 $f4, 0($8)\r\n" : "=m" (*outptr) : "f" (mmA), "r" (outptr) : "$f4", "$8", "memory" ); #endif } } } void jsimd_h2v2_merged_upsample_mmi(JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { JSAMPROW inptr, outptr; inptr = input_buf[0][in_row_group_ctr]; outptr = output_buf[0]; input_buf[0][in_row_group_ctr] = input_buf[0][in_row_group_ctr * 2]; jsimd_h2v1_merged_upsample_mmi(output_width, input_buf, in_row_group_ctr, output_buf); input_buf[0][in_row_group_ctr] = input_buf[0][in_row_group_ctr * 2 + 1]; output_buf[0] = output_buf[1]; jsimd_h2v1_merged_upsample_mmi(output_width, input_buf, in_row_group_ctr, output_buf); input_buf[0][in_row_group_ctr] = inptr; output_buf[0] = outptr; } #undef mmA #undef mmB #undef mmC #undef mmD #undef mmE #undef mmF #undef mmG #undef mmH libjpeg-turbo-2.1.5/simd/mips64/jdsample-mmi.c000066400000000000000000000304771436506551100211060ustar00rootroot00000000000000/* * Loongson MMI optimizations for libjpeg-turbo * * Copyright (C) 2015, 2018-2019, D. R. Commander. All Rights Reserved. * Copyright (C) 2016-2018, Loongson Technology Corporation Limited, BeiJing. * All Rights Reserved. * Authors: ZhuChen * CaiWanwei * SunZhangzhi * ZhangLixia * * Based on the x86 SIMD extension for IJG JPEG library * Copyright (C) 1999-2006, MIYASAKA Masaru. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ /* CHROMA UPSAMPLING */ #include "jsimd_mmi.h" enum const_index { index_PW_ONE, index_PW_TWO, index_PW_THREE, index_PW_SEVEN, index_PW_EIGHT, }; static uint64_t const_value[] = { _uint64_set_pi16(1, 1, 1, 1), _uint64_set_pi16(2, 2, 2, 2), _uint64_set_pi16(3, 3, 3, 3), _uint64_set_pi16(7, 7, 7, 7), _uint64_set_pi16(8, 8, 8, 8), }; #define PW_ONE get_const_value(index_PW_ONE) #define PW_TWO get_const_value(index_PW_TWO) #define PW_THREE get_const_value(index_PW_THREE) #define PW_SEVEN get_const_value(index_PW_SEVEN) #define PW_EIGHT get_const_value(index_PW_EIGHT) #define PROCESS_ROW(row, wkoffset, bias1, bias2, shift) { \ __m64 samp123X, samp3XXX, samp1234, sampX012, samp_1012; \ __m64 sampXXX4, sampX456, samp3456, samp567X, samp7XXX, samp5678; \ __m64 outle, outhe, outlo, outho, outl, outh; \ \ samp123X = _mm_srli_si64(samp0123, 2 * BYTE_BIT); /* ( 1 2 3 -) */ \ sampXXX4 = _mm_slli_si64(samp4567, (SIZEOF_MMWORD - 2) * BYTE_BIT); /* ( - - - 4) */ \ samp3XXX = _mm_srli_si64(samp0123, (SIZEOF_MMWORD - 2) * BYTE_BIT); /* ( 3 - - -) */ \ sampX456 = _mm_slli_si64(samp4567, 2 * BYTE_BIT); /* ( - 4 5 6) */ \ \ samp1234 = _mm_or_si64(samp123X, sampXXX4); /* ( 1 2 3 4) */ \ samp3456 = _mm_or_si64(samp3XXX, sampX456); /* ( 3 4 5 6) */ \ \ sampX012 = _mm_slli_si64(samp0123, 2 * BYTE_BIT); /* ( - 0 1 2) */ \ samp567X = _mm_srli_si64(samp4567, 2 * BYTE_BIT); /* ( 5 6 7 -) */ \ samp7XXX = _mm_srli_si64(samp4567, (SIZEOF_MMWORD - 2) * BYTE_BIT); /* ( 7 - - -) */ \ \ samp_1012 = _mm_or_si64(sampX012, wk[row]); /* (-1 0 1 2) */ \ samp5678 = _mm_or_si64(samp567X, wk[row + wkoffset]); /* ( 5 6 7 8) */ \ \ wk[row] = samp7XXX; \ \ samp0123 = _mm_mullo_pi16(samp0123, PW_THREE); \ samp4567 = _mm_mullo_pi16(samp4567, PW_THREE); \ samp_1012 = _mm_add_pi16(samp_1012, bias1); \ samp3456 = _mm_add_pi16(samp3456, bias1); \ samp1234 = _mm_add_pi16(samp1234, bias2); \ samp5678 = _mm_add_pi16(samp5678, bias2); \ \ outle = _mm_add_pi16(samp_1012, samp0123); \ outhe = _mm_add_pi16(samp3456, samp4567); \ outle = _mm_srli_pi16(outle, shift); /* ( 0 2 4 6) */ \ outhe = _mm_srli_pi16(outhe, shift); /* ( 8 10 12 14) */ \ outlo = _mm_add_pi16(samp1234, samp0123); \ outho = _mm_add_pi16(samp5678, samp4567); \ outlo = _mm_srli_pi16(outlo, shift); /* ( 1 3 5 7) */ \ outho = _mm_srli_pi16(outho, shift); /* ( 9 11 13 15) */ \ \ outlo = _mm_slli_pi16(outlo, BYTE_BIT); \ outho = _mm_slli_pi16(outho, BYTE_BIT); \ outl = _mm_or_si64(outle, outlo); /* ( 0 1 2 3 4 5 6 7) */ \ outh = _mm_or_si64(outhe, outho); /* ( 8 9 10 11 12 13 14 15) */ \ \ _mm_store_si64((__m64 *)outptr##row, outl); \ _mm_store_si64((__m64 *)outptr##row + 1, outh); \ } void jsimd_h2v2_fancy_upsample_mmi(int max_v_samp_factor, JDIMENSION downsampled_width, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { JSAMPARRAY output_data = *output_data_ptr; JSAMPROW inptr_1, inptr0, inptr1, outptr0, outptr1; int inrow, outrow, incol, tmp, tmp1; __m64 this_1l, this_1h, this_1, thiscolsum_1l, thiscolsum_1h; __m64 this0l, this0h, this0; __m64 this1l, this1h, this1, thiscolsum1l, thiscolsum1h; __m64 next_1l, next_1h, next_1, nextcolsum_1l, nextcolsum_1h; __m64 next0l, next0h, next0; __m64 next1l, next1h, next1, nextcolsum1l, nextcolsum1h; __m64 mask0 = 0.0, masklast, samp0123, samp4567, wk[4], zero = 0.0; mask0 = _mm_cmpeq_pi8(mask0, mask0); masklast = _mm_slli_si64(mask0, (SIZEOF_MMWORD - 2) * BYTE_BIT); mask0 = _mm_srli_si64(mask0, (SIZEOF_MMWORD - 2) * BYTE_BIT); for (inrow = 0, outrow = 0; outrow < max_v_samp_factor; inrow++) { inptr_1 = input_data[inrow - 1]; inptr0 = input_data[inrow]; inptr1 = input_data[inrow + 1]; outptr0 = output_data[outrow++]; outptr1 = output_data[outrow++]; if (downsampled_width & 7) { tmp = (downsampled_width - 1) * sizeof(JSAMPLE); tmp1 = downsampled_width * sizeof(JSAMPLE); asm(PTR_ADDU "$8, %3, %6\r\n" "lb $9, ($8)\r\n" PTR_ADDU "$8, %3, %7\r\n" "sb $9, ($8)\r\n" PTR_ADDU "$8, %4, %6\r\n" "lb $9, ($8)\r\n" PTR_ADDU "$8, %4, %7\r\n" "sb $9, ($8)\r\n" PTR_ADDU "$8, %5, %6\r\n" "lb $9, ($8)\r\n" PTR_ADDU "$8, %5, %7\r\n" "sb $9, ($8)\r\n" : "=m" (*inptr_1), "=m" (*inptr0), "=m" (*inptr1) : "r" (inptr_1), "r" (inptr0), "r" (inptr1), "r" (tmp), "r" (tmp1) : "$8", "$9" ); } /* process the first column block */ this0 = _mm_load_si64((__m64 *)inptr0); /* row[ 0][0] */ this_1 = _mm_load_si64((__m64 *)inptr_1); /* row[-1][0] */ this1 = _mm_load_si64((__m64 *)inptr1); /* row[ 1][0] */ this0l = _mm_unpacklo_pi8(this0, zero); /* row[ 0][0]( 0 1 2 3) */ this0h = _mm_unpackhi_pi8(this0, zero); /* row[ 0][0]( 4 5 6 7) */ this_1l = _mm_unpacklo_pi8(this_1, zero); /* row[-1][0]( 0 1 2 3) */ this_1h = _mm_unpackhi_pi8(this_1, zero); /* row[-1][0]( 4 5 6 7) */ this1l = _mm_unpacklo_pi8(this1, zero); /* row[+1][0]( 0 1 2 3) */ this1h = _mm_unpackhi_pi8(this1, zero); /* row[+1][0]( 4 5 6 7) */ this0l = _mm_mullo_pi16(this0l, PW_THREE); this0h = _mm_mullo_pi16(this0h, PW_THREE); thiscolsum_1l = _mm_add_pi16(this_1l, this0l); /* ( 0 1 2 3) */ thiscolsum_1h = _mm_add_pi16(this_1h, this0h); /* ( 4 5 6 7) */ thiscolsum1l = _mm_add_pi16(this0l, this1l); /* ( 0 1 2 3) */ thiscolsum1h = _mm_add_pi16(this0h, this1h); /* ( 4 5 6 7) */ /* temporarily save the intermediate data */ _mm_store_si64((__m64 *)outptr0, thiscolsum_1l); _mm_store_si64((__m64 *)outptr0 + 1, thiscolsum_1h); _mm_store_si64((__m64 *)outptr1, thiscolsum1l); _mm_store_si64((__m64 *)outptr1 + 1, thiscolsum1h); wk[0] = _mm_and_si64(thiscolsum_1l, mask0); /* ( 0 - - -) */ wk[1] = _mm_and_si64(thiscolsum1l, mask0); /* ( 0 - - -) */ for (incol = downsampled_width; incol > 0; incol -= 8, inptr_1 += 8, inptr0 += 8, inptr1 += 8, outptr0 += 16, outptr1 += 16) { if (incol > 8) { /* process the next column block */ next0 = _mm_load_si64((__m64 *)inptr0 + 1); /* row[ 0][1] */ next_1 = _mm_load_si64((__m64 *)inptr_1 + 1); /* row[-1][1] */ next1 = _mm_load_si64((__m64 *)inptr1 + 1); /* row[+1][1] */ next0l = _mm_unpacklo_pi8(next0, zero); /* row[ 0][1]( 0 1 2 3) */ next0h = _mm_unpackhi_pi8(next0, zero); /* row[ 0][1]( 4 5 6 7) */ next_1l = _mm_unpacklo_pi8(next_1, zero); /* row[-1][1]( 0 1 2 3) */ next_1h = _mm_unpackhi_pi8(next_1, zero); /* row[-1][1]( 4 5 6 7) */ next1l = _mm_unpacklo_pi8(next1, zero); /* row[+1][1]( 0 1 2 3) */ next1h = _mm_unpackhi_pi8(next1, zero); /* row[+1][1]( 4 5 6 7) */ next0l = _mm_mullo_pi16(next0l, PW_THREE); next0h = _mm_mullo_pi16(next0h, PW_THREE); nextcolsum_1l = _mm_add_pi16(next_1l, next0l); /* ( 0 1 2 3) */ nextcolsum_1h = _mm_add_pi16(next_1h, next0h); /* ( 4 5 6 7) */ nextcolsum1l = _mm_add_pi16(next0l, next1l); /* ( 0 1 2 3) */ nextcolsum1h = _mm_add_pi16(next0h, next1h); /* ( 4 5 6 7) */ /* temporarily save the intermediate data */ _mm_store_si64((__m64 *)outptr0 + 2, nextcolsum_1l); _mm_store_si64((__m64 *)outptr0 + 3, nextcolsum_1h); _mm_store_si64((__m64 *)outptr1 + 2, nextcolsum1l); _mm_store_si64((__m64 *)outptr1 + 3, nextcolsum1h); wk[2] = _mm_slli_si64(nextcolsum_1l, (SIZEOF_MMWORD - 2) * BYTE_BIT); /* ( - - - 0) */ wk[3] = _mm_slli_si64(nextcolsum1l, (SIZEOF_MMWORD - 2) * BYTE_BIT); /* ( - - - 0) */ } else { __m64 tmp; /* process the last column block */ tmp = _mm_load_si64((__m64 *)outptr0 + 1); wk[2] = _mm_and_si64(masklast, tmp); /* ( - - - 7) */ tmp = _mm_load_si64((__m64 *)outptr1 + 1); wk[3] = _mm_and_si64(masklast, tmp); /* ( - - - 7) */ } /* process the upper row */ samp0123 = _mm_load_si64((__m64 *)outptr0); /* ( 0 1 2 3) */ \ samp4567 = _mm_load_si64((__m64 *)outptr0 + 1); /* ( 4 5 6 7) */ \ PROCESS_ROW(0, 2, PW_EIGHT, PW_SEVEN, 4) /* process the lower row */ samp0123 = _mm_load_si64((__m64 *)outptr1); /* ( 0 1 2 3) */ \ samp4567 = _mm_load_si64((__m64 *)outptr1 + 1); /* ( 4 5 6 7) */ \ PROCESS_ROW(1, 2, PW_EIGHT, PW_SEVEN, 4) } } } void jsimd_h2v1_fancy_upsample_mmi(int max_v_samp_factor, JDIMENSION downsampled_width, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { JSAMPARRAY output_data = *output_data_ptr; JSAMPROW inptr0, outptr0; int inrow, incol, tmp, tmp1; __m64 thisl, this, nextl, next; __m64 mask0 = 0.0, masklast, samp0123, samp4567, wk[2], zero = 0.0; mask0 = _mm_cmpeq_pi8(mask0, mask0); masklast = _mm_slli_si64(mask0, (SIZEOF_MMWORD - 2) * BYTE_BIT); mask0 = _mm_srli_si64(mask0, (SIZEOF_MMWORD - 2) * BYTE_BIT); for (inrow = 0; inrow < max_v_samp_factor; inrow++) { inptr0 = input_data[inrow]; outptr0 = output_data[inrow]; if (downsampled_width & 7) { tmp = (downsampled_width - 1) * sizeof(JSAMPLE); tmp1 = downsampled_width * sizeof(JSAMPLE); asm(PTR_ADDU "$8, %1, %2\r\n" "lb $9, ($8)\r\n" PTR_ADDU "$8, %1, %3\r\n" "sb $9, ($8)\r\n" : "=m" (*inptr0) : "r" (inptr0), "r" (tmp), "r" (tmp1) : "$8", "$9" ); } /* process the first column block */ this = _mm_load_si64((__m64 *)inptr0); /* row[ 0][0] */ thisl = _mm_unpacklo_pi8(this, zero); /* row[ 0][0]( 0 1 2 3) */ wk[0] = _mm_and_si64(thisl, mask0); /* ( 0 - - -) */ for (incol = downsampled_width; incol > 0; incol -= 8, inptr0 += 8, outptr0 += 16) { if (incol > 8) { /* process the next column block */ next = _mm_load_si64((__m64 *)inptr0 + 1); /* row[ 0][1] */ nextl = _mm_unpacklo_pi8(next, zero); /* row[ 0][1]( 0 1 2 3) */ wk[1] = _mm_slli_si64(nextl, (SIZEOF_MMWORD - 2) * BYTE_BIT); /* ( - - - 0) */ } else { __m64 thish; /* process the last column block */ this = _mm_load_si64((__m64 *)inptr0); /* row[ 0][0] */ thish = _mm_unpackhi_pi8(this, zero); /* row[ 0][1]( 4 5 6 7) */ wk[1] = _mm_and_si64(masklast, thish); /* ( - - - 7) */ } /* process the row */ this = _mm_load_si64((__m64 *)inptr0); /* row[ 0][0] */ samp0123 = _mm_unpacklo_pi8(this, zero); /* ( 0 1 2 3) */ samp4567 = _mm_unpackhi_pi8(this, zero); /* ( 4 5 6 7) */ PROCESS_ROW(0, 1, PW_ONE, PW_TWO, 2) } } } libjpeg-turbo-2.1.5/simd/mips64/jfdctfst-mmi.c000066400000000000000000000243001436506551100211020ustar00rootroot00000000000000/* * Loongson MMI optimizations for libjpeg-turbo * * Copyright (C) 2014, 2018-2019, D. R. Commander. All Rights Reserved. * Copyright (C) 2016-2018, Loongson Technology Corporation Limited, BeiJing. * All Rights Reserved. * Authors: LiuQingfa * * Based on the x86 SIMD extension for IJG JPEG library * Copyright (C) 1999-2006, MIYASAKA Masaru. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ /* FAST INTEGER FORWARD DCT */ #include "jsimd_mmi.h" #define CONST_BITS 8 #define F_0_382 ((short)98) /* FIX(0.382683433) */ #define F_0_541 ((short)139) /* FIX(0.541196100) */ #define F_0_707 ((short)181) /* FIX(0.707106781) */ #define F_1_306 ((short)334) /* FIX(1.306562965) */ #define PRE_MULTIPLY_SCALE_BITS 2 #define CONST_SHIFT (16 - PRE_MULTIPLY_SCALE_BITS - CONST_BITS) enum const_index { index_PW_F0707, index_PW_F0382, index_PW_F0541, index_PW_F1306 }; static uint64_t const_value[] = { _uint64_set1_pi16(F_0_707), _uint64_set1_pi16(F_0_382), _uint64_set1_pi16(F_0_541), _uint64_set1_pi16(F_1_306) }; #define PW_F0707 get_const_value(index_PW_F0707) #define PW_F0382 get_const_value(index_PW_F0382) #define PW_F0541 get_const_value(index_PW_F0541) #define PW_F1306 get_const_value(index_PW_F1306) #define DO_FDCT_MULTIPLY(out, in, multiplier) { \ __m64 mulhi, mullo, mul12, mul34; \ \ mullo = _mm_mullo_pi16(in, multiplier); \ mulhi = _mm_mulhi_pi16(in, multiplier); \ mul12 = _mm_unpacklo_pi16(mullo, mulhi); \ mul34 = _mm_unpackhi_pi16(mullo, mulhi); \ mul12 = _mm_srai_pi32(mul12, CONST_BITS); \ mul34 = _mm_srai_pi32(mul34, CONST_BITS); \ out = _mm_packs_pi32(mul12, mul34); \ } #define DO_FDCT_COMMON() { \ \ /* Even part */ \ \ tmp10 = _mm_add_pi16(tmp0, tmp3); \ tmp13 = _mm_sub_pi16(tmp0, tmp3); \ tmp11 = _mm_add_pi16(tmp1, tmp2); \ tmp12 = _mm_sub_pi16(tmp1, tmp2); \ \ out0 = _mm_add_pi16(tmp10, tmp11); \ out4 = _mm_sub_pi16(tmp10, tmp11); \ \ z1 = _mm_add_pi16(tmp12, tmp13); \ DO_FDCT_MULTIPLY(z1, z1, PW_F0707) \ \ out2 = _mm_add_pi16(tmp13, z1); \ out6 = _mm_sub_pi16(tmp13, z1); \ \ /* Odd part */ \ \ tmp10 = _mm_add_pi16(tmp4, tmp5); \ tmp11 = _mm_add_pi16(tmp5, tmp6); \ tmp12 = _mm_add_pi16(tmp6, tmp7); \ \ z5 = _mm_sub_pi16(tmp10, tmp12); \ DO_FDCT_MULTIPLY(z5, z5, PW_F0382) \ \ DO_FDCT_MULTIPLY(z2, tmp10, PW_F0541) \ z2 = _mm_add_pi16(z2, z5); \ \ DO_FDCT_MULTIPLY(z4, tmp12, PW_F1306) \ z4 = _mm_add_pi16(z4, z5); \ \ DO_FDCT_MULTIPLY(z3, tmp11, PW_F0707) \ \ z11 = _mm_add_pi16(tmp7, z3); \ z13 = _mm_sub_pi16(tmp7, z3); \ \ out5 = _mm_add_pi16(z13, z2); \ out3 = _mm_sub_pi16(z13, z2); \ out1 = _mm_add_pi16(z11, z4); \ out7 = _mm_sub_pi16(z11, z4); \ } #define DO_FDCT_PASS1() { \ __m64 row0l, row0h, row1l, row1h, row2l, row2h, row3l, row3h; \ __m64 row01a, row01b, row01c, row01d, row23a, row23b, row23c, row23d; \ __m64 col0, col1, col2, col3, col4, col5, col6, col7; \ \ row0l = _mm_load_si64((__m64 *)&dataptr[DCTSIZE * 0]); /* (00 01 02 03) */ \ row0h = _mm_load_si64((__m64 *)&dataptr[DCTSIZE * 0 + 4]); /* (04 05 06 07) */ \ row1l = _mm_load_si64((__m64 *)&dataptr[DCTSIZE * 1]); /* (10 11 12 13) */ \ row1h = _mm_load_si64((__m64 *)&dataptr[DCTSIZE * 1 + 4]); /* (14 15 16 17) */ \ row2l = _mm_load_si64((__m64 *)&dataptr[DCTSIZE * 2]); /* (20 21 22 23) */ \ row2h = _mm_load_si64((__m64 *)&dataptr[DCTSIZE * 2 + 4]); /* (24 25 26 27) */ \ row3l = _mm_load_si64((__m64 *)&dataptr[DCTSIZE * 3]); /* (30 31 32 33) */ \ row3h = _mm_load_si64((__m64 *)&dataptr[DCTSIZE * 3 + 4]); /* (34 35 36 37) */ \ \ /* Transpose coefficients */ \ \ row23a = _mm_unpacklo_pi16(row2l, row3l); /* row23a=(20 30 21 31) */ \ row23b = _mm_unpackhi_pi16(row2l, row3l); /* row23b=(22 32 23 33) */ \ row23c = _mm_unpacklo_pi16(row2h, row3h); /* row23c=(24 34 25 35) */ \ row23d = _mm_unpackhi_pi16(row2h, row3h); /* row23d=(26 36 27 37) */ \ \ row01a = _mm_unpacklo_pi16(row0l, row1l); /* row01a=(00 10 01 11) */ \ row01b = _mm_unpackhi_pi16(row0l, row1l); /* row01b=(02 12 03 13) */ \ row01c = _mm_unpacklo_pi16(row0h, row1h); /* row01c=(04 14 05 15) */ \ row01d = _mm_unpackhi_pi16(row0h, row1h); /* row01d=(06 16 07 17) */ \ \ col0 = _mm_unpacklo_pi32(row01a, row23a); /* col0=(00 10 20 30) */ \ col1 = _mm_unpackhi_pi32(row01a, row23a); /* col1=(01 11 21 31) */ \ col6 = _mm_unpacklo_pi32(row01d, row23d); /* col6=(06 16 26 36) */ \ col7 = _mm_unpackhi_pi32(row01d, row23d); /* col7=(07 17 27 37) */ \ \ tmp6 = _mm_sub_pi16(col1, col6); /* tmp6=col1-col6 */ \ tmp7 = _mm_sub_pi16(col0, col7); /* tmp7=col0-col7 */ \ tmp1 = _mm_add_pi16(col1, col6); /* tmp1=col1+col6 */ \ tmp0 = _mm_add_pi16(col0, col7); /* tmp0=col0+col7 */ \ \ col2 = _mm_unpacklo_pi32(row01b, row23b); /* col2=(02 12 22 32) */ \ col3 = _mm_unpackhi_pi32(row01b, row23b); /* col3=(03 13 23 33) */ \ col4 = _mm_unpacklo_pi32(row01c, row23c); /* col4=(04 14 24 34) */ \ col5 = _mm_unpackhi_pi32(row01c, row23c); /* col5=(05 15 25 35) */ \ \ tmp3 = _mm_add_pi16(col3, col4); /* tmp3=col3+col4 */ \ tmp2 = _mm_add_pi16(col2, col5); /* tmp2=col2+col5 */ \ tmp4 = _mm_sub_pi16(col3, col4); /* tmp4=col3-col4 */ \ tmp5 = _mm_sub_pi16(col2, col5); /* tmp5=col2-col5 */ \ \ DO_FDCT_COMMON() \ \ _mm_store_si64((__m64 *)&dataptr[DCTSIZE * 0], out0); \ _mm_store_si64((__m64 *)&dataptr[DCTSIZE * 0 + 4], out4); \ _mm_store_si64((__m64 *)&dataptr[DCTSIZE * 1], out1); \ _mm_store_si64((__m64 *)&dataptr[DCTSIZE * 1 + 4], out5); \ _mm_store_si64((__m64 *)&dataptr[DCTSIZE * 2], out2); \ _mm_store_si64((__m64 *)&dataptr[DCTSIZE * 2 + 4], out6); \ _mm_store_si64((__m64 *)&dataptr[DCTSIZE * 3], out3); \ _mm_store_si64((__m64 *)&dataptr[DCTSIZE * 3 + 4], out7); \ } #define DO_FDCT_PASS2() { \ __m64 col0l, col0h, col1l, col1h, col2l, col2h, col3l, col3h; \ __m64 col01a, col01b, col01c, col01d, col23a, col23b, col23c, col23d; \ __m64 row0, row1, row2, row3, row4, row5, row6, row7; \ \ col0l = _mm_load_si64((__m64 *)&dataptr[DCTSIZE * 0]); /* (00 10 20 30) */ \ col1l = _mm_load_si64((__m64 *)&dataptr[DCTSIZE * 1]); /* (01 11 21 31) */ \ col2l = _mm_load_si64((__m64 *)&dataptr[DCTSIZE * 2]); /* (02 12 22 32) */ \ col3l = _mm_load_si64((__m64 *)&dataptr[DCTSIZE * 3]); /* (03 13 23 33) */ \ col0h = _mm_load_si64((__m64 *)&dataptr[DCTSIZE * 4]); /* (40 50 60 70) */ \ col1h = _mm_load_si64((__m64 *)&dataptr[DCTSIZE * 5]); /* (41 51 61 71) */ \ col2h = _mm_load_si64((__m64 *)&dataptr[DCTSIZE * 6]); /* (42 52 62 72) */ \ col3h = _mm_load_si64((__m64 *)&dataptr[DCTSIZE * 7]); /* (43 53 63 73) */ \ \ /* Transpose coefficients */ \ \ col23a = _mm_unpacklo_pi16(col2l, col3l); /* col23a=(02 03 12 13) */ \ col23b = _mm_unpackhi_pi16(col2l, col3l); /* col23b=(22 23 32 33) */ \ col23c = _mm_unpacklo_pi16(col2h, col3h); /* col23c=(42 43 52 53) */ \ col23d = _mm_unpackhi_pi16(col2h, col3h); /* col23d=(62 63 72 73) */ \ \ col01a = _mm_unpacklo_pi16(col0l, col1l); /* col01a=(00 01 10 11) */ \ col01b = _mm_unpackhi_pi16(col0l, col1l); /* col01b=(20 21 30 31) */ \ col01c = _mm_unpacklo_pi16(col0h, col1h); /* col01c=(40 41 50 51) */ \ col01d = _mm_unpackhi_pi16(col0h, col1h); /* col01d=(60 61 70 71) */ \ \ row0 = _mm_unpacklo_pi32(col01a, col23a); /* row0=(00 01 02 03) */ \ row1 = _mm_unpackhi_pi32(col01a, col23a); /* row1=(10 11 12 13) */ \ row6 = _mm_unpacklo_pi32(col01d, col23d); /* row6=(60 61 62 63) */ \ row7 = _mm_unpackhi_pi32(col01d, col23d); /* row7=(70 71 72 73) */ \ \ tmp6 = _mm_sub_pi16(row1, row6); /* tmp6=row1-row6 */ \ tmp7 = _mm_sub_pi16(row0, row7); /* tmp7=row0-row7 */ \ tmp1 = _mm_add_pi16(row1, row6); /* tmp1=row1+row6 */ \ tmp0 = _mm_add_pi16(row0, row7); /* tmp0=row0+row7 */ \ \ row2 = _mm_unpacklo_pi32(col01b, col23b); /* row2=(20 21 22 23) */ \ row3 = _mm_unpackhi_pi32(col01b, col23b); /* row3=(30 31 32 33) */ \ row4 = _mm_unpacklo_pi32(col01c, col23c); /* row4=(40 41 42 43) */ \ row5 = _mm_unpackhi_pi32(col01c, col23c); /* row5=(50 51 52 53) */ \ \ tmp3 = _mm_add_pi16(row3, row4); /* tmp3=row3+row4 */ \ tmp2 = _mm_add_pi16(row2, row5); /* tmp2=row2+row5 */ \ tmp4 = _mm_sub_pi16(row3, row4); /* tmp4=row3-row4 */ \ tmp5 = _mm_sub_pi16(row2, row5); /* tmp5=row2-row5 */ \ \ DO_FDCT_COMMON() \ \ _mm_store_si64((__m64 *)&dataptr[DCTSIZE * 0], out0); \ _mm_store_si64((__m64 *)&dataptr[DCTSIZE * 1], out1); \ _mm_store_si64((__m64 *)&dataptr[DCTSIZE * 2], out2); \ _mm_store_si64((__m64 *)&dataptr[DCTSIZE * 3], out3); \ _mm_store_si64((__m64 *)&dataptr[DCTSIZE * 4], out4); \ _mm_store_si64((__m64 *)&dataptr[DCTSIZE * 5], out5); \ _mm_store_si64((__m64 *)&dataptr[DCTSIZE * 6], out6); \ _mm_store_si64((__m64 *)&dataptr[DCTSIZE * 7], out7); \ } void jsimd_fdct_ifast_mmi(DCTELEM *data) { __m64 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; __m64 out0, out1, out2, out3, out4, out5, out6, out7; __m64 tmp10, tmp11, tmp12, tmp13, z1, z2, z3, z4, z5, z11, z13; DCTELEM *dataptr = data; /* Pass 1: process rows. */ DO_FDCT_PASS1() dataptr += DCTSIZE * 4; DO_FDCT_PASS1() /* Pass 2: process columns. */ dataptr = data; DO_FDCT_PASS2() dataptr += 4; DO_FDCT_PASS2() } libjpeg-turbo-2.1.5/simd/mips64/jfdctint-mmi.c000066400000000000000000000416141436506551100211070ustar00rootroot00000000000000/* * Loongson MMI optimizations for libjpeg-turbo * * Copyright (C) 2014, 2018, 2020, D. R. Commander. All Rights Reserved. * Copyright (C) 2016-2017, Loongson Technology Corporation Limited, BeiJing. * All Rights Reserved. * Authors: ZhuChen * CaiWanwei * SunZhangzhi * * Based on the x86 SIMD extension for IJG JPEG library * Copyright (C) 1999-2006, MIYASAKA Masaru. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ /* ACCURATE INTEGER FORWARD DCT */ #include "jsimd_mmi.h" #define CONST_BITS 13 #define PASS1_BITS 2 #define DESCALE_P1 (CONST_BITS - PASS1_BITS) #define DESCALE_P2 (CONST_BITS + PASS1_BITS) #define FIX_0_298 ((short)2446) /* FIX(0.298631336) */ #define FIX_0_390 ((short)3196) /* FIX(0.390180644) */ #define FIX_0_541 ((short)4433) /* FIX(0.541196100) */ #define FIX_0_765 ((short)6270) /* FIX(0.765366865) */ #define FIX_0_899 ((short)7373) /* FIX(0.899976223) */ #define FIX_1_175 ((short)9633) /* FIX(1.175875602) */ #define FIX_1_501 ((short)12299) /* FIX(1.501321110) */ #define FIX_1_847 ((short)15137) /* FIX(1.847759065) */ #define FIX_1_961 ((short)16069) /* FIX(1.961570560) */ #define FIX_2_053 ((short)16819) /* FIX(2.053119869) */ #define FIX_2_562 ((short)20995) /* FIX(2.562915447) */ #define FIX_3_072 ((short)25172) /* FIX(3.072711026) */ enum const_index { index_PW_F130_F054, index_PW_F054_MF130, index_PW_MF078_F117, index_PW_F117_F078, index_PW_MF060_MF089, index_PW_MF089_F060, index_PW_MF050_MF256, index_PW_MF256_F050, index_PD_DESCALE_P1, index_PD_DESCALE_P2, index_PW_DESCALE_P2X }; static uint64_t const_value[] = { _uint64_set_pi16(FIX_0_541, (FIX_0_541 + FIX_0_765), FIX_0_541, (FIX_0_541 + FIX_0_765)), _uint64_set_pi16((FIX_0_541 - FIX_1_847), FIX_0_541, (FIX_0_541 - FIX_1_847), FIX_0_541), _uint64_set_pi16(FIX_1_175, (FIX_1_175 - FIX_1_961), FIX_1_175, (FIX_1_175 - FIX_1_961)), _uint64_set_pi16((FIX_1_175 - FIX_0_390), FIX_1_175, (FIX_1_175 - FIX_0_390), FIX_1_175), _uint64_set_pi16(-FIX_0_899, (FIX_0_298 - FIX_0_899), -FIX_0_899, (FIX_0_298 - FIX_0_899)), _uint64_set_pi16((FIX_1_501 - FIX_0_899), -FIX_0_899, (FIX_1_501 - FIX_0_899), -FIX_0_899), _uint64_set_pi16(-FIX_2_562, (FIX_2_053 - FIX_2_562), -FIX_2_562, (FIX_2_053 - FIX_2_562)), _uint64_set_pi16((FIX_3_072 - FIX_2_562), -FIX_2_562, (FIX_3_072 - FIX_2_562), -FIX_2_562), _uint64_set_pi32((1 << (DESCALE_P1 - 1)), (1 << (DESCALE_P1 - 1))), _uint64_set_pi32((1 << (DESCALE_P2 - 1)), (1 << (DESCALE_P2 - 1))), _uint64_set_pi16((1 << (PASS1_BITS - 1)), (1 << (PASS1_BITS - 1)), (1 << (PASS1_BITS - 1)), (1 << (PASS1_BITS - 1))) }; #define PW_F130_F054 get_const_value(index_PW_F130_F054) #define PW_F054_MF130 get_const_value(index_PW_F054_MF130) #define PW_MF078_F117 get_const_value(index_PW_MF078_F117) #define PW_F117_F078 get_const_value(index_PW_F117_F078) #define PW_MF060_MF089 get_const_value(index_PW_MF060_MF089) #define PW_MF089_F060 get_const_value(index_PW_MF089_F060) #define PW_MF050_MF256 get_const_value(index_PW_MF050_MF256) #define PW_MF256_F050 get_const_value(index_PW_MF256_F050) #define PD_DESCALE_P1 get_const_value(index_PD_DESCALE_P1) #define PD_DESCALE_P2 get_const_value(index_PD_DESCALE_P2) #define PW_DESCALE_P2X get_const_value(index_PW_DESCALE_P2X) #define DO_FDCT_COMMON(PASS) { \ __m64 tmp1312l, tmp1312h, tmp47l, tmp47h, tmp4l, tmp4h, tmp7l, tmp7h; \ __m64 tmp56l, tmp56h, tmp5l, tmp5h, tmp6l, tmp6h; \ __m64 out1l, out1h, out2l, out2h, out3l, out3h; \ __m64 out5l, out5h, out6l, out6h, out7l, out7h; \ __m64 z34l, z34h, z3l, z3h, z4l, z4h, z3, z4; \ \ /* (Original) \ * z1 = (tmp12 + tmp13) * 0.541196100; \ * out2 = z1 + tmp13 * 0.765366865; \ * out6 = z1 + tmp12 * -1.847759065; \ * \ * (This implementation) \ * out2 = tmp13 * (0.541196100 + 0.765366865) + tmp12 * 0.541196100; \ * out6 = tmp13 * 0.541196100 + tmp12 * (0.541196100 - 1.847759065); \ */ \ \ tmp1312l = _mm_unpacklo_pi16(tmp13, tmp12); \ tmp1312h = _mm_unpackhi_pi16(tmp13, tmp12); \ \ out2l = _mm_madd_pi16(tmp1312l, PW_F130_F054); \ out2h = _mm_madd_pi16(tmp1312h, PW_F130_F054); \ out6l = _mm_madd_pi16(tmp1312l, PW_F054_MF130); \ out6h = _mm_madd_pi16(tmp1312h, PW_F054_MF130); \ \ out2l = _mm_add_pi32(out2l, PD_DESCALE_P##PASS); \ out2h = _mm_add_pi32(out2h, PD_DESCALE_P##PASS); \ out2l = _mm_srai_pi32(out2l, DESCALE_P##PASS); \ out2h = _mm_srai_pi32(out2h, DESCALE_P##PASS); \ \ out6l = _mm_add_pi32(out6l, PD_DESCALE_P##PASS); \ out6h = _mm_add_pi32(out6h, PD_DESCALE_P##PASS); \ out6l = _mm_srai_pi32(out6l, DESCALE_P##PASS); \ out6h = _mm_srai_pi32(out6h, DESCALE_P##PASS); \ \ out2 = _mm_packs_pi32(out2l, out2h); \ out6 = _mm_packs_pi32(out6l, out6h); \ \ /* Odd part */ \ \ z3 = _mm_add_pi16(tmp4, tmp6); \ z4 = _mm_add_pi16(tmp5, tmp7); \ \ /* (Original) \ * z5 = (z3 + z4) * 1.175875602; \ * z3 = z3 * -1.961570560; z4 = z4 * -0.390180644; \ * z3 += z5; z4 += z5; \ * \ * (This implementation) \ * z3 = z3 * (1.175875602 - 1.961570560) + z4 * 1.175875602; \ * z4 = z3 * 1.175875602 + z4 * (1.175875602 - 0.390180644); \ */ \ \ z34l = _mm_unpacklo_pi16(z3, z4); \ z34h = _mm_unpackhi_pi16(z3, z4); \ z3l = _mm_madd_pi16(z34l, PW_MF078_F117); \ z3h = _mm_madd_pi16(z34h, PW_MF078_F117); \ z4l = _mm_madd_pi16(z34l, PW_F117_F078); \ z4h = _mm_madd_pi16(z34h, PW_F117_F078); \ \ /* (Original) \ * z1 = tmp4 + tmp7; z2 = tmp5 + tmp6; \ * tmp4 = tmp4 * 0.298631336; tmp5 = tmp5 * 2.053119869; \ * tmp6 = tmp6 * 3.072711026; tmp7 = tmp7 * 1.501321110; \ * z1 = z1 * -0.899976223; z2 = z2 * -2.562915447; \ * out7 = tmp4 + z1 + z3; out5 = tmp5 + z2 + z4; \ * out3 = tmp6 + z2 + z3; out1 = tmp7 + z1 + z4; \ * \ * (This implementation) \ * tmp4 = tmp4 * (0.298631336 - 0.899976223) + tmp7 * -0.899976223; \ * tmp5 = tmp5 * (2.053119869 - 2.562915447) + tmp6 * -2.562915447; \ * tmp6 = tmp5 * -2.562915447 + tmp6 * (3.072711026 - 2.562915447); \ * tmp7 = tmp4 * -0.899976223 + tmp7 * (1.501321110 - 0.899976223); \ * out7 = tmp4 + z3; out5 = tmp5 + z4; \ * out3 = tmp6 + z3; out1 = tmp7 + z4; \ */ \ \ tmp47l = _mm_unpacklo_pi16(tmp4, tmp7); \ tmp47h = _mm_unpackhi_pi16(tmp4, tmp7); \ \ tmp4l = _mm_madd_pi16(tmp47l, PW_MF060_MF089); \ tmp4h = _mm_madd_pi16(tmp47h, PW_MF060_MF089); \ tmp7l = _mm_madd_pi16(tmp47l, PW_MF089_F060); \ tmp7h = _mm_madd_pi16(tmp47h, PW_MF089_F060); \ \ out7l = _mm_add_pi32(tmp4l, z3l); \ out7h = _mm_add_pi32(tmp4h, z3h); \ out1l = _mm_add_pi32(tmp7l, z4l); \ out1h = _mm_add_pi32(tmp7h, z4h); \ \ out7l = _mm_add_pi32(out7l, PD_DESCALE_P##PASS); \ out7h = _mm_add_pi32(out7h, PD_DESCALE_P##PASS); \ out7l = _mm_srai_pi32(out7l, DESCALE_P##PASS); \ out7h = _mm_srai_pi32(out7h, DESCALE_P##PASS); \ \ out1l = _mm_add_pi32(out1l, PD_DESCALE_P##PASS); \ out1h = _mm_add_pi32(out1h, PD_DESCALE_P##PASS); \ out1l = _mm_srai_pi32(out1l, DESCALE_P##PASS); \ out1h = _mm_srai_pi32(out1h, DESCALE_P##PASS); \ \ out7 = _mm_packs_pi32(out7l, out7h); \ out1 = _mm_packs_pi32(out1l, out1h); \ \ tmp56l = _mm_unpacklo_pi16(tmp5, tmp6); \ tmp56h = _mm_unpackhi_pi16(tmp5, tmp6); \ \ tmp5l = _mm_madd_pi16(tmp56l, PW_MF050_MF256); \ tmp5h = _mm_madd_pi16(tmp56h, PW_MF050_MF256); \ tmp6l = _mm_madd_pi16(tmp56l, PW_MF256_F050); \ tmp6h = _mm_madd_pi16(tmp56h, PW_MF256_F050); \ \ out5l = _mm_add_pi32(tmp5l, z4l); \ out5h = _mm_add_pi32(tmp5h, z4h); \ out3l = _mm_add_pi32(tmp6l, z3l); \ out3h = _mm_add_pi32(tmp6h, z3h); \ \ out5l = _mm_add_pi32(out5l, PD_DESCALE_P##PASS); \ out5h = _mm_add_pi32(out5h, PD_DESCALE_P##PASS); \ out5l = _mm_srai_pi32(out5l, DESCALE_P##PASS); \ out5h = _mm_srai_pi32(out5h, DESCALE_P##PASS); \ \ out3l = _mm_add_pi32(out3l, PD_DESCALE_P##PASS); \ out3h = _mm_add_pi32(out3h, PD_DESCALE_P##PASS); \ out3l = _mm_srai_pi32(out3l, DESCALE_P##PASS); \ out3h = _mm_srai_pi32(out3h, DESCALE_P##PASS); \ \ out5 = _mm_packs_pi32(out5l, out5h); \ out3 = _mm_packs_pi32(out3l, out3h); \ } #define DO_FDCT_PASS1() { \ __m64 row0l, row0h, row1l, row1h, row2l, row2h, row3l, row3h; \ __m64 row01a, row01b, row01c, row01d, row23a, row23b, row23c, row23d; \ __m64 col0, col1, col2, col3, col4, col5, col6, col7; \ __m64 tmp10, tmp11; \ \ row0l = _mm_load_si64((__m64 *)&dataptr[DCTSIZE * 0]); /* (00 01 02 03) */ \ row0h = _mm_load_si64((__m64 *)&dataptr[DCTSIZE * 0 + 4]); /* (04 05 06 07) */ \ row1l = _mm_load_si64((__m64 *)&dataptr[DCTSIZE * 1]); /* (10 11 12 13) */ \ row1h = _mm_load_si64((__m64 *)&dataptr[DCTSIZE * 1 + 4]); /* (14 15 16 17) */ \ row2l = _mm_load_si64((__m64 *)&dataptr[DCTSIZE * 2]); /* (20 21 22 23) */ \ row2h = _mm_load_si64((__m64 *)&dataptr[DCTSIZE * 2 + 4]); /* (24 25 26 27) */ \ row3l = _mm_load_si64((__m64 *)&dataptr[DCTSIZE * 3]); /* (30 31 32 33) */ \ row3h = _mm_load_si64((__m64 *)&dataptr[DCTSIZE * 3 + 4]); /* (34 35 36 37) */ \ \ /* Transpose coefficients */ \ \ row23a = _mm_unpacklo_pi16(row2l, row3l); /* row23a=(20 30 21 31) */ \ row23b = _mm_unpackhi_pi16(row2l, row3l); /* row23b=(22 32 23 33) */ \ row23c = _mm_unpacklo_pi16(row2h, row3h); /* row23c=(24 34 25 35) */ \ row23d = _mm_unpackhi_pi16(row2h, row3h); /* row23d=(26 36 27 37) */ \ \ row01a = _mm_unpacklo_pi16(row0l, row1l); /* row01a=(00 10 01 11) */ \ row01b = _mm_unpackhi_pi16(row0l, row1l); /* row01b=(02 12 03 13) */ \ row01c = _mm_unpacklo_pi16(row0h, row1h); /* row01c=(04 14 05 15) */ \ row01d = _mm_unpackhi_pi16(row0h, row1h); /* row01d=(06 16 07 17) */ \ \ col0 = _mm_unpacklo_pi32(row01a, row23a); /* col0=(00 10 20 30) */ \ col1 = _mm_unpackhi_pi32(row01a, row23a); /* col1=(01 11 21 31) */ \ col6 = _mm_unpacklo_pi32(row01d, row23d); /* col6=(06 16 26 36) */ \ col7 = _mm_unpackhi_pi32(row01d, row23d); /* col7=(07 17 27 37) */ \ \ tmp6 = _mm_sub_pi16(col1, col6); /* tmp6=col1-col6 */ \ tmp7 = _mm_sub_pi16(col0, col7); /* tmp7=col0-col7 */ \ tmp1 = _mm_add_pi16(col1, col6); /* tmp1=col1+col6 */ \ tmp0 = _mm_add_pi16(col0, col7); /* tmp0=col0+col7 */ \ \ col2 = _mm_unpacklo_pi32(row01b, row23b); /* col2=(02 12 22 32) */ \ col3 = _mm_unpackhi_pi32(row01b, row23b); /* col3=(03 13 23 33) */ \ col4 = _mm_unpacklo_pi32(row01c, row23c); /* col4=(04 14 24 34) */ \ col5 = _mm_unpackhi_pi32(row01c, row23c); /* col5=(05 15 25 35) */ \ \ tmp3 = _mm_add_pi16(col3, col4); /* tmp3=col3+col4 */ \ tmp2 = _mm_add_pi16(col2, col5); /* tmp2=col2+col5 */ \ tmp4 = _mm_sub_pi16(col3, col4); /* tmp4=col3-col4 */ \ tmp5 = _mm_sub_pi16(col2, col5); /* tmp5=col2-col5 */ \ \ /* Even part */ \ \ tmp10 = _mm_add_pi16(tmp0, tmp3); /* tmp10=tmp0+tmp3 */ \ tmp13 = _mm_sub_pi16(tmp0, tmp3); /* tmp13=tmp0-tmp3 */ \ tmp11 = _mm_add_pi16(tmp1, tmp2); /* tmp11=tmp1+tmp2 */ \ tmp12 = _mm_sub_pi16(tmp1, tmp2); /* tmp12=tmp1-tmp2 */ \ \ out0 = _mm_add_pi16(tmp10, tmp11); /* out0=tmp10+tmp11 */ \ out4 = _mm_sub_pi16(tmp10, tmp11); /* out4=tmp10-tmp11 */ \ out0 = _mm_slli_pi16(out0, PASS1_BITS); \ out4 = _mm_slli_pi16(out4, PASS1_BITS); \ \ DO_FDCT_COMMON(1) \ \ _mm_store_si64((__m64 *)&dataptr[DCTSIZE * 0], out0); \ _mm_store_si64((__m64 *)&dataptr[DCTSIZE * 0 + 4], out4); \ _mm_store_si64((__m64 *)&dataptr[DCTSIZE * 1], out1); \ _mm_store_si64((__m64 *)&dataptr[DCTSIZE * 1 + 4], out5); \ _mm_store_si64((__m64 *)&dataptr[DCTSIZE * 2], out2); \ _mm_store_si64((__m64 *)&dataptr[DCTSIZE * 2 + 4], out6); \ _mm_store_si64((__m64 *)&dataptr[DCTSIZE * 3], out3); \ _mm_store_si64((__m64 *)&dataptr[DCTSIZE * 3 + 4], out7); \ } #define DO_FDCT_PASS2() { \ __m64 col0l, col0h, col1l, col1h, col2l, col2h, col3l, col3h; \ __m64 col01a, col01b, col01c, col01d, col23a, col23b, col23c, col23d; \ __m64 row0, row1, row2, row3, row4, row5, row6, row7; \ __m64 tmp10, tmp11; \ \ col0l = _mm_load_si64((__m64 *)&dataptr[DCTSIZE * 0]); /* (00 10 20 30) */ \ col1l = _mm_load_si64((__m64 *)&dataptr[DCTSIZE * 1]); /* (01 11 21 31) */ \ col2l = _mm_load_si64((__m64 *)&dataptr[DCTSIZE * 2]); /* (02 12 22 32) */ \ col3l = _mm_load_si64((__m64 *)&dataptr[DCTSIZE * 3]); /* (03 13 23 33) */ \ col0h = _mm_load_si64((__m64 *)&dataptr[DCTSIZE * 4]); /* (40 50 60 70) */ \ col1h = _mm_load_si64((__m64 *)&dataptr[DCTSIZE * 5]); /* (41 51 61 71) */ \ col2h = _mm_load_si64((__m64 *)&dataptr[DCTSIZE * 6]); /* (42 52 62 72) */ \ col3h = _mm_load_si64((__m64 *)&dataptr[DCTSIZE * 7]); /* (43 53 63 73) */ \ \ /* Transpose coefficients */ \ \ col23a = _mm_unpacklo_pi16(col2l, col3l); /* col23a=(02 03 12 13) */ \ col23b = _mm_unpackhi_pi16(col2l, col3l); /* col23b=(22 23 32 33) */ \ col23c = _mm_unpacklo_pi16(col2h, col3h); /* col23c=(42 43 52 53) */ \ col23d = _mm_unpackhi_pi16(col2h, col3h); /* col23d=(62 63 72 73) */ \ \ col01a = _mm_unpacklo_pi16(col0l, col1l); /* col01a=(00 01 10 11) */ \ col01b = _mm_unpackhi_pi16(col0l, col1l); /* col01b=(20 21 30 31) */ \ col01c = _mm_unpacklo_pi16(col0h, col1h); /* col01c=(40 41 50 51) */ \ col01d = _mm_unpackhi_pi16(col0h, col1h); /* col01d=(60 61 70 71) */ \ \ row0 = _mm_unpacklo_pi32(col01a, col23a); /* row0=(00 01 02 03) */ \ row1 = _mm_unpackhi_pi32(col01a, col23a); /* row1=(10 11 12 13) */ \ row6 = _mm_unpacklo_pi32(col01d, col23d); /* row6=(60 61 62 63) */ \ row7 = _mm_unpackhi_pi32(col01d, col23d); /* row7=(70 71 72 73) */ \ \ tmp6 = _mm_sub_pi16(row1, row6); /* tmp6=row1-row6 */ \ tmp7 = _mm_sub_pi16(row0, row7); /* tmp7=row0-row7 */ \ tmp1 = _mm_add_pi16(row1, row6); /* tmp1=row1+row6 */ \ tmp0 = _mm_add_pi16(row0, row7); /* tmp0=row0+row7 */ \ \ row2 = _mm_unpacklo_pi32(col01b, col23b); /* row2=(20 21 22 23) */ \ row3 = _mm_unpackhi_pi32(col01b, col23b); /* row3=(30 31 32 33) */ \ row4 = _mm_unpacklo_pi32(col01c, col23c); /* row4=(40 41 42 43) */ \ row5 = _mm_unpackhi_pi32(col01c, col23c); /* row5=(50 51 52 53) */ \ \ tmp3 = _mm_add_pi16(row3, row4); /* tmp3=row3+row4 */ \ tmp2 = _mm_add_pi16(row2, row5); /* tmp2=row2+row5 */ \ tmp4 = _mm_sub_pi16(row3, row4); /* tmp4=row3-row4 */ \ tmp5 = _mm_sub_pi16(row2, row5); /* tmp5=row2-row5 */ \ \ /* Even part */ \ \ tmp10 = _mm_add_pi16(tmp0, tmp3); /* tmp10=tmp0+tmp3 */ \ tmp13 = _mm_sub_pi16(tmp0, tmp3); /* tmp13=tmp0-tmp3 */ \ tmp11 = _mm_add_pi16(tmp1, tmp2); /* tmp11=tmp1+tmp2 */ \ tmp12 = _mm_sub_pi16(tmp1, tmp2); /* tmp12=tmp1-tmp2 */ \ \ out0 = _mm_add_pi16(tmp10, tmp11); /* out0=tmp10+tmp11 */ \ out4 = _mm_sub_pi16(tmp10, tmp11); /* out4=tmp10-tmp11 */ \ \ out0 = _mm_add_pi16(out0, PW_DESCALE_P2X); \ out4 = _mm_add_pi16(out4, PW_DESCALE_P2X); \ out0 = _mm_srai_pi16(out0, PASS1_BITS); \ out4 = _mm_srai_pi16(out4, PASS1_BITS); \ \ DO_FDCT_COMMON(2) \ \ _mm_store_si64((__m64 *)&dataptr[DCTSIZE * 0], out0); \ _mm_store_si64((__m64 *)&dataptr[DCTSIZE * 1], out1); \ _mm_store_si64((__m64 *)&dataptr[DCTSIZE * 2], out2); \ _mm_store_si64((__m64 *)&dataptr[DCTSIZE * 3], out3); \ _mm_store_si64((__m64 *)&dataptr[DCTSIZE * 4], out4); \ _mm_store_si64((__m64 *)&dataptr[DCTSIZE * 5], out5); \ _mm_store_si64((__m64 *)&dataptr[DCTSIZE * 6], out6); \ _mm_store_si64((__m64 *)&dataptr[DCTSIZE * 7], out7); \ } void jsimd_fdct_islow_mmi(DCTELEM *data) { __m64 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; __m64 out0, out1, out2, out3, out4, out5, out6, out7; __m64 tmp12, tmp13; DCTELEM *dataptr = data; /* Pass 1: process rows. */ DO_FDCT_PASS1() dataptr += DCTSIZE * 4; DO_FDCT_PASS1() /* Pass 2: process columns. */ dataptr = data; DO_FDCT_PASS2() dataptr += 4; DO_FDCT_PASS2() } libjpeg-turbo-2.1.5/simd/mips64/jidctfst-mmi.c000066400000000000000000000363761436506551100211250ustar00rootroot00000000000000/* * Loongson MMI optimizations for libjpeg-turbo * * Copyright (C) 2014-2015, 2018-2019, D. R. Commander. All Rights Reserved. * Copyright (C) 2016-2018, Loongson Technology Corporation Limited, BeiJing. * All Rights Reserved. * Authors: LiuQingfa * * Based on the x86 SIMD extension for IJG JPEG library * Copyright (C) 1999-2006, MIYASAKA Masaru. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ /* FAST INTEGER INVERSE DCT */ #include "jsimd_mmi.h" #define CONST_BITS 8 #define PASS1_BITS 2 #define FIX_1_082 ((short)277) /* FIX(1.082392200) */ #define FIX_1_414 ((short)362) /* FIX(1.414213562) */ #define FIX_1_847 ((short)473) /* FIX(1.847759065) */ #define FIX_2_613 ((short)669) /* FIX(2.613125930) */ #define FIX_1_613 ((short)(FIX_2_613 - 256 * 3)) /* FIX(2.613125930) - FIX(1) */ #define PRE_MULTIPLY_SCALE_BITS 2 #define CONST_SHIFT (16 - PRE_MULTIPLY_SCALE_BITS - CONST_BITS) enum const_index { index_PW_F1082, index_PW_F1414, index_PW_F1847, index_PW_MF1613, index_PB_CENTERJSAMP }; static uint64_t const_value[] = { _uint64_set1_pi16(FIX_1_082 << CONST_SHIFT), _uint64_set1_pi16(FIX_1_414 << CONST_SHIFT), _uint64_set1_pi16(FIX_1_847 << CONST_SHIFT), _uint64_set1_pi16(-FIX_1_613 << CONST_SHIFT), _uint64_set1_pi8(CENTERJSAMPLE) }; #define PW_F1414 get_const_value(index_PW_F1414) #define PW_F1847 get_const_value(index_PW_F1847) #define PW_MF1613 get_const_value(index_PW_MF1613) #define PW_F1082 get_const_value(index_PW_F1082) #define PB_CENTERJSAMP get_const_value(index_PB_CENTERJSAMP) #define test_m32_zero(mm32) (!(*(uint32_t *)&mm32)) #define test_m64_zero(mm64) (!(*(uint64_t *)&mm64)) #define DO_IDCT_COMMON() { \ tmp7 = _mm_add_pi16(z11, z13); \ \ tmp11 = _mm_sub_pi16(z11, z13); \ tmp11 = _mm_slli_pi16(tmp11, PRE_MULTIPLY_SCALE_BITS); \ tmp11 = _mm_mulhi_pi16(tmp11, PW_F1414); \ \ tmp10 = _mm_slli_pi16(z12, PRE_MULTIPLY_SCALE_BITS); \ tmp12 = _mm_slli_pi16(z10, PRE_MULTIPLY_SCALE_BITS); \ \ /* To avoid overflow... \ * \ * (Original) \ * tmp12 = -2.613125930 * z10 + z5; \ * \ * (This implementation) \ * tmp12 = (-1.613125930 - 1) * z10 + z5; \ * = -1.613125930 * z10 - z10 + z5; \ */ \ \ z5 = _mm_add_pi16(tmp10, tmp12); \ z5 = _mm_mulhi_pi16(z5, PW_F1847); \ \ tmp10 = _mm_mulhi_pi16(tmp10, PW_F1082); \ tmp10 = _mm_sub_pi16(tmp10, z5); \ tmp12 = _mm_mulhi_pi16(tmp12, PW_MF1613); \ tmp12 = _mm_sub_pi16(tmp12, z10); \ tmp12 = _mm_sub_pi16(tmp12, z10); \ tmp12 = _mm_sub_pi16(tmp12, z10); \ tmp12 = _mm_add_pi16(tmp12, z5); \ \ /* Final output stage */ \ \ tmp6 = _mm_sub_pi16(tmp12, tmp7); \ tmp5 = _mm_sub_pi16(tmp11, tmp6); \ tmp4 = _mm_add_pi16(tmp10, tmp5); \ \ out0 = _mm_add_pi16(tmp0, tmp7); \ out7 = _mm_sub_pi16(tmp0, tmp7); \ out1 = _mm_add_pi16(tmp1, tmp6); \ out6 = _mm_sub_pi16(tmp1, tmp6); \ \ out2 = _mm_add_pi16(tmp2, tmp5); \ out5 = _mm_sub_pi16(tmp2, tmp5); \ out4 = _mm_add_pi16(tmp3, tmp4); \ out3 = _mm_sub_pi16(tmp3, tmp4); \ } #define DO_IDCT_PASS1(iter) { \ __m64 col0l, col1l, col2l, col3l, col4l, col5l, col6l, col7l; \ __m64 quant0l, quant1l, quant2l, quant3l; \ __m64 quant4l, quant5l, quant6l, quant7l; \ __m64 row01a, row01b, row01c, row01d, row23a, row23b, row23c, row23d; \ __m64 row0l, row0h, row1l, row1h, row2l, row2h, row3l, row3h; \ __m32 col0a, col1a, mm0; \ \ col0a = _mm_load_si32((__m32 *)&inptr[DCTSIZE * 1]); \ col1a = _mm_load_si32((__m32 *)&inptr[DCTSIZE * 2]); \ mm0 = _mm_or_si32(col0a, col1a); \ \ if (test_m32_zero(mm0)) { \ __m64 mm1, mm2; \ \ col0l = _mm_load_si64((__m64 *)&inptr[DCTSIZE * 0]); \ col1l = _mm_load_si64((__m64 *)&inptr[DCTSIZE * 1]); \ col2l = _mm_load_si64((__m64 *)&inptr[DCTSIZE * 2]); \ col3l = _mm_load_si64((__m64 *)&inptr[DCTSIZE * 3]); \ col4l = _mm_load_si64((__m64 *)&inptr[DCTSIZE * 4]); \ col5l = _mm_load_si64((__m64 *)&inptr[DCTSIZE * 5]); \ col6l = _mm_load_si64((__m64 *)&inptr[DCTSIZE * 6]); \ col7l = _mm_load_si64((__m64 *)&inptr[DCTSIZE * 7]); \ \ mm1 = _mm_or_si64(col1l, col3l); \ mm2 = _mm_or_si64(col2l, col4l); \ mm1 = _mm_or_si64(mm1, col5l); \ mm2 = _mm_or_si64(mm2, col6l); \ mm1 = _mm_or_si64(mm1, col7l); \ mm1 = _mm_or_si64(mm1, mm2); \ \ if (test_m64_zero(mm1)) { \ __m64 dcval, dcvall, dcvalh, row0, row1, row2, row3; \ \ /* AC terms all zero */ \ \ quant0l = _mm_load_si64((__m64 *)&quantptr[DCTSIZE * 0]); \ \ dcval = _mm_mullo_pi16(col0l, quant0l); /* dcval=(00 10 20 30) */ \ \ dcvall = _mm_unpacklo_pi16(dcval, dcval); /* dcvall=(00 00 10 10) */ \ dcvalh = _mm_unpackhi_pi16(dcval, dcval); /* dcvalh=(20 20 30 30) */ \ \ row0 = _mm_unpacklo_pi32(dcvall, dcvall); /* row0=(00 00 00 00) */ \ row1 = _mm_unpackhi_pi32(dcvall, dcvall); /* row1=(10 10 10 10) */ \ row2 = _mm_unpacklo_pi32(dcvalh, dcvalh); /* row2=(20 20 20 20) */ \ row3 = _mm_unpackhi_pi32(dcvalh, dcvalh); /* row3=(30 30 30 30) */ \ \ _mm_store_si64((__m64 *)&wsptr[DCTSIZE * 0], row0); \ _mm_store_si64((__m64 *)&wsptr[DCTSIZE * 0 + 4], row0); \ _mm_store_si64((__m64 *)&wsptr[DCTSIZE * 1], row1); \ _mm_store_si64((__m64 *)&wsptr[DCTSIZE * 1 + 4], row1); \ _mm_store_si64((__m64 *)&wsptr[DCTSIZE * 2], row2); \ _mm_store_si64((__m64 *)&wsptr[DCTSIZE * 2 + 4], row2); \ _mm_store_si64((__m64 *)&wsptr[DCTSIZE * 3], row3); \ _mm_store_si64((__m64 *)&wsptr[DCTSIZE * 3 + 4], row3); \ \ goto nextcolumn##iter; \ } \ } \ \ /* Even part */ \ \ col0l = _mm_load_si64((__m64 *)&inptr[DCTSIZE * 0]); /* (00 10 20 30) */ \ col2l = _mm_load_si64((__m64 *)&inptr[DCTSIZE * 2]); /* (02 12 22 32) */ \ col4l = _mm_load_si64((__m64 *)&inptr[DCTSIZE * 4]); /* (04 14 24 34) */ \ col6l = _mm_load_si64((__m64 *)&inptr[DCTSIZE * 6]); /* (06 16 26 36) */ \ \ quant0l = _mm_load_si64((__m64 *)&quantptr[DCTSIZE * 0]); \ quant2l = _mm_load_si64((__m64 *)&quantptr[DCTSIZE * 2]); \ quant4l = _mm_load_si64((__m64 *)&quantptr[DCTSIZE * 4]); \ quant6l = _mm_load_si64((__m64 *)&quantptr[DCTSIZE * 6]); \ \ tmp0 = _mm_mullo_pi16(col0l, quant0l); \ tmp1 = _mm_mullo_pi16(col2l, quant2l); \ tmp2 = _mm_mullo_pi16(col4l, quant4l); \ tmp3 = _mm_mullo_pi16(col6l, quant6l); \ \ tmp10 = _mm_add_pi16(tmp0, tmp2); \ tmp11 = _mm_sub_pi16(tmp0, tmp2); \ tmp13 = _mm_add_pi16(tmp1, tmp3); \ \ tmp12 = _mm_sub_pi16(tmp1, tmp3); \ tmp12 = _mm_slli_pi16(tmp12, PRE_MULTIPLY_SCALE_BITS); \ tmp12 = _mm_mulhi_pi16(tmp12, PW_F1414); \ tmp12 = _mm_sub_pi16(tmp12, tmp13); \ \ tmp0 = _mm_add_pi16(tmp10, tmp13); \ tmp3 = _mm_sub_pi16(tmp10, tmp13); \ tmp1 = _mm_add_pi16(tmp11, tmp12); \ tmp2 = _mm_sub_pi16(tmp11, tmp12); \ \ /* Odd part */ \ \ col1l = _mm_load_si64((__m64 *)&inptr[DCTSIZE * 1]); /* (01 11 21 31) */ \ col3l = _mm_load_si64((__m64 *)&inptr[DCTSIZE * 3]); /* (03 13 23 33) */ \ col5l = _mm_load_si64((__m64 *)&inptr[DCTSIZE * 5]); /* (05 15 25 35) */ \ col7l = _mm_load_si64((__m64 *)&inptr[DCTSIZE * 7]); /* (07 17 27 37) */ \ \ quant1l = _mm_load_si64((__m64 *)&quantptr[DCTSIZE * 1]); \ quant3l = _mm_load_si64((__m64 *)&quantptr[DCTSIZE * 3]); \ quant5l = _mm_load_si64((__m64 *)&quantptr[DCTSIZE * 5]); \ quant7l = _mm_load_si64((__m64 *)&quantptr[DCTSIZE * 7]); \ \ tmp4 = _mm_mullo_pi16(col1l, quant1l); \ tmp5 = _mm_mullo_pi16(col3l, quant3l); \ tmp6 = _mm_mullo_pi16(col5l, quant5l); \ tmp7 = _mm_mullo_pi16(col7l, quant7l); \ \ z13 = _mm_add_pi16(tmp6, tmp5); \ z10 = _mm_sub_pi16(tmp6, tmp5); \ z11 = _mm_add_pi16(tmp4, tmp7); \ z12 = _mm_sub_pi16(tmp4, tmp7); \ \ DO_IDCT_COMMON() \ \ /* out0=(00 10 20 30), out1=(01 11 21 31) */ \ /* out2=(02 12 22 32), out3=(03 13 23 33) */ \ /* out4=(04 14 24 34), out5=(05 15 25 35) */ \ /* out6=(06 16 26 36), out7=(07 17 27 37) */ \ \ /* Transpose coefficients */ \ \ row01a = _mm_unpacklo_pi16(out0, out1); /* row01a=(00 01 10 11) */ \ row23a = _mm_unpackhi_pi16(out0, out1); /* row23a=(20 21 30 31) */ \ row01d = _mm_unpacklo_pi16(out6, out7); /* row01d=(06 07 16 17) */ \ row23d = _mm_unpackhi_pi16(out6, out7); /* row23d=(26 27 36 37) */ \ \ row01b = _mm_unpacklo_pi16(out2, out3); /* row01b=(02 03 12 13) */ \ row23b = _mm_unpackhi_pi16(out2, out3); /* row23b=(22 23 32 33) */ \ row01c = _mm_unpacklo_pi16(out4, out5); /* row01c=(04 05 14 15) */ \ row23c = _mm_unpackhi_pi16(out4, out5); /* row23c=(24 25 34 35) */ \ \ row0l = _mm_unpacklo_pi32(row01a, row01b); /* row0l=(00 01 02 03) */ \ row1l = _mm_unpackhi_pi32(row01a, row01b); /* row1l=(10 11 12 13) */ \ row2l = _mm_unpacklo_pi32(row23a, row23b); /* row2l=(20 21 22 23) */ \ row3l = _mm_unpackhi_pi32(row23a, row23b); /* row3l=(30 31 32 33) */ \ \ row0h = _mm_unpacklo_pi32(row01c, row01d); /* row0h=(04 05 06 07) */ \ row1h = _mm_unpackhi_pi32(row01c, row01d); /* row1h=(14 15 16 17) */ \ row2h = _mm_unpacklo_pi32(row23c, row23d); /* row2h=(24 25 26 27) */ \ row3h = _mm_unpackhi_pi32(row23c, row23d); /* row3h=(34 35 36 37) */ \ \ _mm_store_si64((__m64 *)&wsptr[DCTSIZE * 0], row0l); \ _mm_store_si64((__m64 *)&wsptr[DCTSIZE * 0 + 4], row0h); \ _mm_store_si64((__m64 *)&wsptr[DCTSIZE * 1], row1l); \ _mm_store_si64((__m64 *)&wsptr[DCTSIZE * 1 + 4], row1h); \ _mm_store_si64((__m64 *)&wsptr[DCTSIZE * 2], row2l); \ _mm_store_si64((__m64 *)&wsptr[DCTSIZE * 2 + 4], row2h); \ _mm_store_si64((__m64 *)&wsptr[DCTSIZE * 3], row3l); \ _mm_store_si64((__m64 *)&wsptr[DCTSIZE * 3 + 4], row3h); \ } #define DO_IDCT_PASS2(ctr) { \ __m64 row0l, row1l, row2l, row3l, row4l, row5l, row6l, row7l; \ __m64 col0123a, col0123b, col0123c, col0123d; \ __m64 col01l, col01h, col23l, col23h; \ __m64 col0, col1, col2, col3; \ __m64 row06, row17, row24, row35; \ \ row0l = _mm_load_si64((__m64 *)&wsptr[DCTSIZE * 0]); /* (00 01 02 03) */ \ row1l = _mm_load_si64((__m64 *)&wsptr[DCTSIZE * 1]); /* (10 11 12 13) */ \ row2l = _mm_load_si64((__m64 *)&wsptr[DCTSIZE * 2]); /* (20 21 22 23) */ \ row3l = _mm_load_si64((__m64 *)&wsptr[DCTSIZE * 3]); /* (30 31 32 33) */ \ row4l = _mm_load_si64((__m64 *)&wsptr[DCTSIZE * 4]); /* (40 41 42 43) */ \ row5l = _mm_load_si64((__m64 *)&wsptr[DCTSIZE * 5]); /* (50 51 52 53) */ \ row6l = _mm_load_si64((__m64 *)&wsptr[DCTSIZE * 6]); /* (60 61 62 63) */ \ row7l = _mm_load_si64((__m64 *)&wsptr[DCTSIZE * 7]); /* (70 71 72 73) */ \ \ /* Even part */ \ \ tmp10 = _mm_add_pi16(row0l, row4l); \ tmp11 = _mm_sub_pi16(row0l, row4l); \ tmp13 = _mm_add_pi16(row2l, row6l); \ \ tmp12 = _mm_sub_pi16(row2l, row6l); \ tmp12 = _mm_slli_pi16(tmp12, PRE_MULTIPLY_SCALE_BITS); \ tmp12 = _mm_mulhi_pi16(tmp12, PW_F1414); \ tmp12 = _mm_sub_pi16(tmp12, tmp13); \ \ tmp0 = _mm_add_pi16(tmp10, tmp13); \ tmp3 = _mm_sub_pi16(tmp10, tmp13); \ tmp1 = _mm_add_pi16(tmp11, tmp12); \ tmp2 = _mm_sub_pi16(tmp11, tmp12); \ \ /* Odd part */ \ \ z13 = _mm_add_pi16(row5l, row3l); \ z10 = _mm_sub_pi16(row5l, row3l); \ z11 = _mm_add_pi16(row1l, row7l); \ z12 = _mm_sub_pi16(row1l, row7l); \ \ DO_IDCT_COMMON() \ \ /* out0=(00 01 02 03), out1=(10 11 12 13) */ \ /* out2=(20 21 22 23), out3=(30 31 32 33) */ \ /* out4=(40 41 42 43), out5=(50 51 52 53) */ \ /* out6=(60 61 62 63), out7=(70 71 72 73) */ \ \ out0 = _mm_srai_pi16(out0, PASS1_BITS + 3); \ out1 = _mm_srai_pi16(out1, PASS1_BITS + 3); \ out2 = _mm_srai_pi16(out2, PASS1_BITS + 3); \ out3 = _mm_srai_pi16(out3, PASS1_BITS + 3); \ out4 = _mm_srai_pi16(out4, PASS1_BITS + 3); \ out5 = _mm_srai_pi16(out5, PASS1_BITS + 3); \ out6 = _mm_srai_pi16(out6, PASS1_BITS + 3); \ out7 = _mm_srai_pi16(out7, PASS1_BITS + 3); \ \ row06 = _mm_packs_pi16(out0, out6); /* row06=(00 01 02 03 60 61 62 63) */ \ row17 = _mm_packs_pi16(out1, out7); /* row17=(10 11 12 13 70 71 72 73) */ \ row24 = _mm_packs_pi16(out2, out4); /* row24=(20 21 22 23 40 41 42 43) */ \ row35 = _mm_packs_pi16(out3, out5); /* row35=(30 31 32 33 50 51 52 53) */ \ \ row06 = _mm_add_pi8(row06, PB_CENTERJSAMP); \ row17 = _mm_add_pi8(row17, PB_CENTERJSAMP); \ row24 = _mm_add_pi8(row24, PB_CENTERJSAMP); \ row35 = _mm_add_pi8(row35, PB_CENTERJSAMP); \ \ /* Transpose coefficients */ \ \ col0123a = _mm_unpacklo_pi8(row06, row17); /* col0123a=(00 10 01 11 02 12 03 13) */ \ col0123d = _mm_unpackhi_pi8(row06, row17); /* col0123d=(60 70 61 71 62 72 63 73) */ \ col0123b = _mm_unpacklo_pi8(row24, row35); /* col0123b=(20 30 21 31 22 32 23 33) */ \ col0123c = _mm_unpackhi_pi8(row24, row35); /* col0123c=(40 50 41 51 42 52 43 53) */ \ \ col01l = _mm_unpacklo_pi16(col0123a, col0123b); /* col01l=(00 10 20 30 01 11 21 31) */ \ col23l = _mm_unpackhi_pi16(col0123a, col0123b); /* col23l=(02 12 22 32 03 13 23 33) */ \ col01h = _mm_unpacklo_pi16(col0123c, col0123d); /* col01h=(40 50 60 70 41 51 61 71) */ \ col23h = _mm_unpackhi_pi16(col0123c, col0123d); /* col23h=(42 52 62 72 43 53 63 73) */ \ \ col0 = _mm_unpacklo_pi32(col01l, col01h); /* col0=(00 10 20 30 40 50 60 70) */ \ col1 = _mm_unpackhi_pi32(col01l, col01h); /* col1=(01 11 21 31 41 51 61 71) */ \ col2 = _mm_unpacklo_pi32(col23l, col23h); /* col2=(02 12 22 32 42 52 62 72) */ \ col3 = _mm_unpackhi_pi32(col23l, col23h); /* col3=(03 13 23 33 43 53 63 73) */ \ \ _mm_store_si64((__m64 *)(output_buf[ctr + 0] + output_col), col0); \ _mm_store_si64((__m64 *)(output_buf[ctr + 1] + output_col), col1); \ _mm_store_si64((__m64 *)(output_buf[ctr + 2] + output_col), col2); \ _mm_store_si64((__m64 *)(output_buf[ctr + 3] + output_col), col3); \ } void jsimd_idct_ifast_mmi(void *dct_table, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { __m64 tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; __m64 tmp10, tmp11, tmp12, tmp13; __m64 out0, out1, out2, out3, out4, out5, out6, out7; __m64 z5, z10, z11, z12, z13; JCOEFPTR inptr; ISLOW_MULT_TYPE *quantptr; JCOEF *wsptr; JCOEF workspace[DCTSIZE2]; /* buffers data between passes */ /* Pass 1: process columns. */ inptr = coef_block; quantptr = (ISLOW_MULT_TYPE *)dct_table; wsptr = workspace; DO_IDCT_PASS1(1) nextcolumn1: inptr += 4; quantptr += 4; wsptr += DCTSIZE * 4; DO_IDCT_PASS1(2) nextcolumn2: /* Pass 2: process rows. */ wsptr = workspace; DO_IDCT_PASS2(0) wsptr += 4; DO_IDCT_PASS2(4) } libjpeg-turbo-2.1.5/simd/mips64/jidctint-mmi.c000066400000000000000000000547461436506551100211240ustar00rootroot00000000000000/* * Loongson MMI optimizations for libjpeg-turbo * * Copyright (C) 2014-2015, 2018, 2020, D. R. Commander. All Rights Reserved. * Copyright (C) 2016-2017, Loongson Technology Corporation Limited, BeiJing. * All Rights Reserved. * Authors: ZhuChen * CaiWanwei * SunZhangzhi * * Based on the x86 SIMD extension for IJG JPEG library * Copyright (C) 1999-2006, MIYASAKA Masaru. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ /* ACCUATE INTEGER INVERSE DCT */ #include "jsimd_mmi.h" #define CONST_BITS 13 #define PASS1_BITS 2 #define DESCALE_P1 (CONST_BITS - PASS1_BITS) #define DESCALE_P2 (CONST_BITS + PASS1_BITS + 3) #define CENTERJSAMPLE 128 #define FIX_0_298 ((short)2446) /* FIX(0.298631336) */ #define FIX_0_390 ((short)3196) /* FIX(0.390180644) */ #define FIX_0_899 ((short)7373) /* FIX(0.899976223) */ #define FIX_0_541 ((short)4433) /* FIX(0.541196100) */ #define FIX_0_765 ((short)6270) /* FIX(0.765366865) */ #define FIX_1_175 ((short)9633) /* FIX(1.175875602) */ #define FIX_1_501 ((short)12299) /* FIX(1.501321110) */ #define FIX_1_847 ((short)15137) /* FIX(1.847759065) */ #define FIX_1_961 ((short)16069) /* FIX(1.961570560) */ #define FIX_2_053 ((short)16819) /* FIX(2.053119869) */ #define FIX_2_562 ((short)20995) /* FIX(2.562915447) */ #define FIX_3_072 ((short)25172) /* FIX(3.072711026) */ enum const_index { index_PW_F130_F054, index_PW_F054_MF130, index_PW_MF078_F117, index_PW_F117_F078, index_PW_MF060_MF089, index_PW_MF089_F060, index_PW_MF050_MF256, index_PW_MF256_F050, index_PD_DESCALE_P1, index_PD_DESCALE_P2, index_PB_CENTERJSAMP }; static uint64_t const_value[] = { _uint64_set_pi16(FIX_0_541, (FIX_0_541 + FIX_0_765), FIX_0_541, (FIX_0_541 + FIX_0_765)), _uint64_set_pi16((FIX_0_541 - FIX_1_847), FIX_0_541, (FIX_0_541 - FIX_1_847), FIX_0_541), _uint64_set_pi16(FIX_1_175, (FIX_1_175 - FIX_1_961), FIX_1_175, (FIX_1_175 - FIX_1_961)), _uint64_set_pi16((FIX_1_175 - FIX_0_390), FIX_1_175, (FIX_1_175 - FIX_0_390), FIX_1_175), _uint64_set_pi16(-FIX_0_899, (FIX_0_298 - FIX_0_899), -FIX_0_899, (FIX_0_298 - FIX_0_899)), _uint64_set_pi16((FIX_1_501 - FIX_0_899), -FIX_0_899, (FIX_1_501 - FIX_0_899), -FIX_0_899), _uint64_set_pi16(-FIX_2_562, (FIX_2_053 - FIX_2_562), -FIX_2_562, (FIX_2_053 - FIX_2_562)), _uint64_set_pi16((FIX_3_072 - FIX_2_562), -FIX_2_562, (FIX_3_072 - FIX_2_562), -FIX_2_562), _uint64_set_pi32((1 << (DESCALE_P1 - 1)), (1 << (DESCALE_P1 - 1))), _uint64_set_pi32((1 << (DESCALE_P2 - 1)), (1 << (DESCALE_P2 - 1))), _uint64_set_pi8(CENTERJSAMPLE, CENTERJSAMPLE, CENTERJSAMPLE, CENTERJSAMPLE, CENTERJSAMPLE, CENTERJSAMPLE, CENTERJSAMPLE, CENTERJSAMPLE) }; #define PW_F130_F054 get_const_value(index_PW_F130_F054) #define PW_F054_MF130 get_const_value(index_PW_F054_MF130) #define PW_MF078_F117 get_const_value(index_PW_MF078_F117) #define PW_F117_F078 get_const_value(index_PW_F117_F078) #define PW_MF060_MF089 get_const_value(index_PW_MF060_MF089) #define PW_MF089_F060 get_const_value(index_PW_MF089_F060) #define PW_MF050_MF256 get_const_value(index_PW_MF050_MF256) #define PW_MF256_F050 get_const_value(index_PW_MF256_F050) #define PD_DESCALE_P1 get_const_value(index_PD_DESCALE_P1) #define PD_DESCALE_P2 get_const_value(index_PD_DESCALE_P2) #define PB_CENTERJSAMP get_const_value(index_PB_CENTERJSAMP) #define test_m32_zero(mm32) (!(*(uint32_t *)&mm32)) #define test_m64_zero(mm64) (!(*(uint64_t *)&mm64)) #define DO_IDCT_COMMON(PASS) { \ __m64 tmp0_3l, tmp0_3h, tmp1_2l, tmp1_2h; \ __m64 tmp0l, tmp0h, tmp1l, tmp1h, tmp2l, tmp2h, tmp3l, tmp3h; \ __m64 z34l, z34h, z3l, z3h, z4l, z4h, z3, z4; \ __m64 out0l, out0h, out1l, out1h, out2l, out2h, out3l, out3h; \ __m64 out4l, out4h, out5l, out5h, out6l, out6h, out7l, out7h; \ \ z3 = _mm_add_pi16(tmp0, tmp2); \ z4 = _mm_add_pi16(tmp1, tmp3); \ \ /* (Original) \ * z5 = (z3 + z4) * 1.175875602; \ * z3 = z3 * -1.961570560; z4 = z4 * -0.390180644; \ * z3 += z5; z4 += z5; \ * \ * (This implementation) \ * z3 = z3 * (1.175875602 - 1.961570560) + z4 * 1.175875602; \ * z4 = z3 * 1.175875602 + z4 * (1.175875602 - 0.390180644); \ */ \ \ z34l = _mm_unpacklo_pi16(z3, z4); \ z34h = _mm_unpackhi_pi16(z3, z4); \ z3l = _mm_madd_pi16(z34l, PW_MF078_F117); \ z3h = _mm_madd_pi16(z34h, PW_MF078_F117); \ z4l = _mm_madd_pi16(z34l, PW_F117_F078); \ z4h = _mm_madd_pi16(z34h, PW_F117_F078); \ \ /* (Original) \ * z1 = tmp0 + tmp3; z2 = tmp1 + tmp2; \ * tmp0 = tmp0 * 0.298631336; tmp1 = tmp1 * 2.053119869; \ * tmp2 = tmp2 * 3.072711026; tmp3 = tmp3 * 1.501321110; \ * z1 = z1 * -0.899976223; z2 = z2 * -2.562915447; \ * tmp0 += z1 + z3; tmp1 += z2 + z4; \ * tmp2 += z2 + z3; tmp3 += z1 + z4; \ * \ * (This implementation) \ * tmp0 = tmp0 * (0.298631336 - 0.899976223) + tmp3 * -0.899976223; \ * tmp1 = tmp1 * (2.053119869 - 2.562915447) + tmp2 * -2.562915447; \ * tmp2 = tmp1 * -2.562915447 + tmp2 * (3.072711026 - 2.562915447); \ * tmp3 = tmp0 * -0.899976223 + tmp3 * (1.501321110 - 0.899976223); \ * tmp0 += z3; tmp1 += z4; \ * tmp2 += z3; tmp3 += z4; \ */ \ \ tmp0_3l = _mm_unpacklo_pi16(tmp0, tmp3); \ tmp0_3h = _mm_unpackhi_pi16(tmp0, tmp3); \ \ tmp0l = _mm_madd_pi16(tmp0_3l, PW_MF060_MF089); \ tmp0h = _mm_madd_pi16(tmp0_3h, PW_MF060_MF089); \ tmp3l = _mm_madd_pi16(tmp0_3l, PW_MF089_F060); \ tmp3h = _mm_madd_pi16(tmp0_3h, PW_MF089_F060); \ \ tmp0l = _mm_add_pi32(tmp0l, z3l); \ tmp0h = _mm_add_pi32(tmp0h, z3h); \ tmp3l = _mm_add_pi32(tmp3l, z4l); \ tmp3h = _mm_add_pi32(tmp3h, z4h); \ \ tmp1_2l = _mm_unpacklo_pi16(tmp1, tmp2); \ tmp1_2h = _mm_unpackhi_pi16(tmp1, tmp2); \ \ tmp1l = _mm_madd_pi16(tmp1_2l, PW_MF050_MF256); \ tmp1h = _mm_madd_pi16(tmp1_2h, PW_MF050_MF256); \ tmp2l = _mm_madd_pi16(tmp1_2l, PW_MF256_F050); \ tmp2h = _mm_madd_pi16(tmp1_2h, PW_MF256_F050); \ \ tmp1l = _mm_add_pi32(tmp1l, z4l); \ tmp1h = _mm_add_pi32(tmp1h, z4h); \ tmp2l = _mm_add_pi32(tmp2l, z3l); \ tmp2h = _mm_add_pi32(tmp2h, z3h); \ \ /* Final output stage */ \ \ out0l = _mm_add_pi32(tmp10l, tmp3l); \ out0h = _mm_add_pi32(tmp10h, tmp3h); \ out7l = _mm_sub_pi32(tmp10l, tmp3l); \ out7h = _mm_sub_pi32(tmp10h, tmp3h); \ \ out0l = _mm_add_pi32(out0l, PD_DESCALE_P##PASS); \ out0h = _mm_add_pi32(out0h, PD_DESCALE_P##PASS); \ out0l = _mm_srai_pi32(out0l, DESCALE_P##PASS); \ out0h = _mm_srai_pi32(out0h, DESCALE_P##PASS); \ \ out7l = _mm_add_pi32(out7l, PD_DESCALE_P##PASS); \ out7h = _mm_add_pi32(out7h, PD_DESCALE_P##PASS); \ out7l = _mm_srai_pi32(out7l, DESCALE_P##PASS); \ out7h = _mm_srai_pi32(out7h, DESCALE_P##PASS); \ \ out0 = _mm_packs_pi32(out0l, out0h); \ out7 = _mm_packs_pi32(out7l, out7h); \ \ out1l = _mm_add_pi32(tmp11l, tmp2l); \ out1h = _mm_add_pi32(tmp11h, tmp2h); \ out6l = _mm_sub_pi32(tmp11l, tmp2l); \ out6h = _mm_sub_pi32(tmp11h, tmp2h); \ \ out1l = _mm_add_pi32(out1l, PD_DESCALE_P##PASS); \ out1h = _mm_add_pi32(out1h, PD_DESCALE_P##PASS); \ out1l = _mm_srai_pi32(out1l, DESCALE_P##PASS); \ out1h = _mm_srai_pi32(out1h, DESCALE_P##PASS); \ \ out6l = _mm_add_pi32(out6l, PD_DESCALE_P##PASS); \ out6h = _mm_add_pi32(out6h, PD_DESCALE_P##PASS); \ out6l = _mm_srai_pi32(out6l, DESCALE_P##PASS); \ out6h = _mm_srai_pi32(out6h, DESCALE_P##PASS); \ \ out1 = _mm_packs_pi32(out1l, out1h); \ out6 = _mm_packs_pi32(out6l, out6h); \ \ out2l = _mm_add_pi32(tmp12l, tmp1l); \ out2h = _mm_add_pi32(tmp12h, tmp1h); \ out5l = _mm_sub_pi32(tmp12l, tmp1l); \ out5h = _mm_sub_pi32(tmp12h, tmp1h); \ \ out2l = _mm_add_pi32(out2l, PD_DESCALE_P##PASS); \ out2h = _mm_add_pi32(out2h, PD_DESCALE_P##PASS); \ out2l = _mm_srai_pi32(out2l, DESCALE_P##PASS); \ out2h = _mm_srai_pi32(out2h, DESCALE_P##PASS); \ \ out5l = _mm_add_pi32(out5l, PD_DESCALE_P##PASS); \ out5h = _mm_add_pi32(out5h, PD_DESCALE_P##PASS); \ out5l = _mm_srai_pi32(out5l, DESCALE_P##PASS); \ out5h = _mm_srai_pi32(out5h, DESCALE_P##PASS); \ \ out2 = _mm_packs_pi32(out2l, out2h); \ out5 = _mm_packs_pi32(out5l, out5h); \ \ out3l = _mm_add_pi32(tmp13l, tmp0l); \ out3h = _mm_add_pi32(tmp13h, tmp0h); \ \ out4l = _mm_sub_pi32(tmp13l, tmp0l); \ out4h = _mm_sub_pi32(tmp13h, tmp0h); \ \ out3l = _mm_add_pi32(out3l, PD_DESCALE_P##PASS); \ out3h = _mm_add_pi32(out3h, PD_DESCALE_P##PASS); \ out3l = _mm_srai_pi32(out3l, DESCALE_P##PASS); \ out3h = _mm_srai_pi32(out3h, DESCALE_P##PASS); \ \ out4l = _mm_add_pi32(out4l, PD_DESCALE_P##PASS); \ out4h = _mm_add_pi32(out4h, PD_DESCALE_P##PASS); \ out4l = _mm_srai_pi32(out4l, DESCALE_P##PASS); \ out4h = _mm_srai_pi32(out4h, DESCALE_P##PASS); \ \ out3 = _mm_packs_pi32(out3l, out3h); \ out4 = _mm_packs_pi32(out4l, out4h); \ } #define DO_IDCT_PASS1(iter) { \ __m64 col0l, col1l, col2l, col3l, col4l, col5l, col6l, col7l; \ __m64 quant0l, quant1l, quant2l, quant3l; \ __m64 quant4l, quant5l, quant6l, quant7l; \ __m64 z23, z2, z3, z23l, z23h; \ __m64 row01a, row01b, row01c, row01d, row23a, row23b, row23c, row23d; \ __m64 row0l, row0h, row1l, row1h, row2l, row2h, row3l, row3h; \ __m64 tmp0l, tmp0h, tmp1l, tmp1h, tmp2l, tmp2h, tmp3l, tmp3h; \ __m64 tmp10l, tmp10h, tmp11l, tmp11h, tmp12l, tmp12h, tmp13l, tmp13h; \ __m32 col0a, col1a, mm0; \ \ col0a = _mm_load_si32((__m32 *)&inptr[DCTSIZE * 1]); \ col1a = _mm_load_si32((__m32 *)&inptr[DCTSIZE * 2]); \ mm0 = _mm_or_si32(col0a, col1a); \ \ if (test_m32_zero(mm0)) { \ __m64 mm1, mm2; \ \ col0l = _mm_load_si64((__m64 *)&inptr[DCTSIZE * 0]); \ col1l = _mm_load_si64((__m64 *)&inptr[DCTSIZE * 1]); \ col2l = _mm_load_si64((__m64 *)&inptr[DCTSIZE * 2]); \ col3l = _mm_load_si64((__m64 *)&inptr[DCTSIZE * 3]); \ col4l = _mm_load_si64((__m64 *)&inptr[DCTSIZE * 4]); \ col5l = _mm_load_si64((__m64 *)&inptr[DCTSIZE * 5]); \ col6l = _mm_load_si64((__m64 *)&inptr[DCTSIZE * 6]); \ col7l = _mm_load_si64((__m64 *)&inptr[DCTSIZE * 7]); \ \ mm1 = _mm_or_si64(col1l, col3l); \ mm2 = _mm_or_si64(col2l, col4l); \ mm1 = _mm_or_si64(mm1, col5l); \ mm2 = _mm_or_si64(mm2, col6l); \ mm1 = _mm_or_si64(mm1, col7l); \ mm1 = _mm_or_si64(mm1, mm2); \ \ if (test_m64_zero(mm1)) { \ __m64 dcval, dcvall, dcvalh, row0, row1, row2, row3; \ \ /* AC terms all zero */ \ \ quant0l = _mm_load_si64((__m64 *)&quantptr[DCTSIZE * 0]); \ \ dcval = _mm_mullo_pi16(col0l, quant0l); \ dcval = _mm_slli_pi16(dcval, PASS1_BITS); /* dcval=(00 10 20 30) */ \ \ dcvall = _mm_unpacklo_pi16(dcval, dcval); /* dcvall=(00 00 10 10) */ \ dcvalh = _mm_unpackhi_pi16(dcval, dcval); /* dcvalh=(20 20 30 30) */ \ \ row0 = _mm_unpacklo_pi32(dcvall, dcvall); /* row0=(00 00 00 00) */ \ row1 = _mm_unpackhi_pi32(dcvall, dcvall); /* row1=(10 10 10 10) */ \ row2 = _mm_unpacklo_pi32(dcvalh, dcvalh); /* row2=(20 20 20 20) */ \ row3 = _mm_unpackhi_pi32(dcvalh, dcvalh); /* row3=(30 30 30 30) */ \ \ _mm_store_si64((__m64 *)&wsptr[DCTSIZE * 0], row0); \ _mm_store_si64((__m64 *)&wsptr[DCTSIZE * 0 + 4], row0); \ _mm_store_si64((__m64 *)&wsptr[DCTSIZE * 1], row1); \ _mm_store_si64((__m64 *)&wsptr[DCTSIZE * 1 + 4], row1); \ _mm_store_si64((__m64 *)&wsptr[DCTSIZE * 2], row2); \ _mm_store_si64((__m64 *)&wsptr[DCTSIZE * 2 + 4], row2); \ _mm_store_si64((__m64 *)&wsptr[DCTSIZE * 3], row3); \ _mm_store_si64((__m64 *)&wsptr[DCTSIZE * 3 + 4], row3); \ \ goto nextcolumn##iter; \ } \ } \ \ /* Even part \ * \ * (Original) \ * z1 = (z2 + z3) * 0.541196100; \ * tmp2 = z1 + z3 * -1.847759065; \ * tmp3 = z1 + z2 * 0.765366865; \ * \ * (This implementation) \ * tmp2 = z2 * 0.541196100 + z3 * (0.541196100 - 1.847759065); \ * tmp3 = z2 * (0.541196100 + 0.765366865) + z3 * 0.541196100; \ */ \ \ col0l = _mm_load_si64((__m64 *)&inptr[DCTSIZE * 0]); /* (00 10 20 30) */ \ col2l = _mm_load_si64((__m64 *)&inptr[DCTSIZE * 2]); /* (02 12 22 32) */ \ col4l = _mm_load_si64((__m64 *)&inptr[DCTSIZE * 4]); /* (04 14 24 34) */ \ col6l = _mm_load_si64((__m64 *)&inptr[DCTSIZE * 6]); /* (06 16 26 36) */ \ \ quant0l = _mm_load_si64((__m64 *)&quantptr[DCTSIZE * 0]); \ quant2l = _mm_load_si64((__m64 *)&quantptr[DCTSIZE * 2]); \ quant4l = _mm_load_si64((__m64 *)&quantptr[DCTSIZE * 4]); \ quant6l = _mm_load_si64((__m64 *)&quantptr[DCTSIZE * 6]); \ \ z2 = _mm_mullo_pi16(col2l, quant2l); \ z3 = _mm_mullo_pi16(col6l, quant6l); \ \ z23l = _mm_unpacklo_pi16(z2, z3); \ z23h = _mm_unpackhi_pi16(z2, z3); \ tmp3l = _mm_madd_pi16(z23l, PW_F130_F054); \ tmp3h = _mm_madd_pi16(z23h, PW_F130_F054); \ tmp2l = _mm_madd_pi16(z23l, PW_F054_MF130); \ tmp2h = _mm_madd_pi16(z23h, PW_F054_MF130); \ \ z2 = _mm_mullo_pi16(col0l, quant0l); \ z3 = _mm_mullo_pi16(col4l, quant4l); \ \ z23 = _mm_add_pi16(z2, z3); \ tmp0l = _mm_loadlo_pi16_f(z23); \ tmp0h = _mm_loadhi_pi16_f(z23); \ tmp0l = _mm_srai_pi32(tmp0l, (16 - CONST_BITS)); \ tmp0h = _mm_srai_pi32(tmp0h, (16 - CONST_BITS)); \ \ tmp10l = _mm_add_pi32(tmp0l, tmp3l); \ tmp10h = _mm_add_pi32(tmp0h, tmp3h); \ tmp13l = _mm_sub_pi32(tmp0l, tmp3l); \ tmp13h = _mm_sub_pi32(tmp0h, tmp3h); \ \ z23 = _mm_sub_pi16(z2, z3); \ tmp1l = _mm_loadlo_pi16_f(z23); \ tmp1h = _mm_loadhi_pi16_f(z23); \ tmp1l = _mm_srai_pi32(tmp1l, (16 - CONST_BITS)); \ tmp1h = _mm_srai_pi32(tmp1h, (16 - CONST_BITS)); \ \ tmp11l = _mm_add_pi32(tmp1l, tmp2l); \ tmp11h = _mm_add_pi32(tmp1h, tmp2h); \ tmp12l = _mm_sub_pi32(tmp1l, tmp2l); \ tmp12h = _mm_sub_pi32(tmp1h, tmp2h); \ \ /* Odd part */ \ \ col1l = _mm_load_si64((__m64 *)&inptr[DCTSIZE * 1]); /* (01 11 21 31) */ \ col3l = _mm_load_si64((__m64 *)&inptr[DCTSIZE * 3]); /* (03 13 23 33) */ \ col5l = _mm_load_si64((__m64 *)&inptr[DCTSIZE * 5]); /* (05 15 25 35) */ \ col7l = _mm_load_si64((__m64 *)&inptr[DCTSIZE * 7]); /* (07 17 27 37) */ \ \ quant1l = _mm_load_si64((__m64 *)&quantptr[DCTSIZE * 1]); \ quant3l = _mm_load_si64((__m64 *)&quantptr[DCTSIZE * 3]); \ quant5l = _mm_load_si64((__m64 *)&quantptr[DCTSIZE * 5]); \ quant7l = _mm_load_si64((__m64 *)&quantptr[DCTSIZE * 7]); \ \ tmp0 = _mm_mullo_pi16(col7l, quant7l); \ tmp1 = _mm_mullo_pi16(col5l, quant5l); \ tmp2 = _mm_mullo_pi16(col3l, quant3l); \ tmp3 = _mm_mullo_pi16(col1l, quant1l); \ \ DO_IDCT_COMMON(1) \ \ /* out0=(00 10 20 30), out1=(01 11 21 31) */ \ /* out2=(02 12 22 32), out3=(03 13 23 33) */ \ /* out4=(04 14 24 34), out5=(05 15 25 35) */ \ /* out6=(06 16 26 36), out7=(07 17 27 37) */ \ \ /* Transpose coefficients */ \ \ row01a = _mm_unpacklo_pi16(out0, out1); /* row01a=(00 01 10 11) */ \ row23a = _mm_unpackhi_pi16(out0, out1); /* row23a=(20 21 30 31) */ \ row01d = _mm_unpacklo_pi16(out6, out7); /* row01d=(06 07 16 17) */ \ row23d = _mm_unpackhi_pi16(out6, out7); /* row23d=(26 27 36 37) */ \ \ row01b = _mm_unpacklo_pi16(out2, out3); /* row01b=(02 03 12 13) */ \ row23b = _mm_unpackhi_pi16(out2, out3); /* row23b=(22 23 32 33) */ \ row01c = _mm_unpacklo_pi16(out4, out5); /* row01c=(04 05 14 15) */ \ row23c = _mm_unpackhi_pi16(out4, out5); /* row23c=(24 25 34 35) */ \ \ row0l = _mm_unpacklo_pi32(row01a, row01b); /* row0l=(00 01 02 03) */ \ row1l = _mm_unpackhi_pi32(row01a, row01b); /* row1l=(10 11 12 13) */ \ row2l = _mm_unpacklo_pi32(row23a, row23b); /* row2l=(20 21 22 23) */ \ row3l = _mm_unpackhi_pi32(row23a, row23b); /* row3l=(30 31 32 33) */ \ \ row0h = _mm_unpacklo_pi32(row01c, row01d); /* row0h=(04 05 06 07) */ \ row1h = _mm_unpackhi_pi32(row01c, row01d); /* row1h=(14 15 16 17) */ \ row2h = _mm_unpacklo_pi32(row23c, row23d); /* row2h=(24 25 26 27) */ \ row3h = _mm_unpackhi_pi32(row23c, row23d); /* row3h=(34 35 36 37) */ \ \ _mm_store_si64((__m64 *)&wsptr[DCTSIZE * 0], row0l); \ _mm_store_si64((__m64 *)&wsptr[DCTSIZE * 0 + 4], row0h); \ _mm_store_si64((__m64 *)&wsptr[DCTSIZE * 1], row1l); \ _mm_store_si64((__m64 *)&wsptr[DCTSIZE * 1 + 4], row1h); \ _mm_store_si64((__m64 *)&wsptr[DCTSIZE * 2], row2l); \ _mm_store_si64((__m64 *)&wsptr[DCTSIZE * 2 + 4], row2h); \ _mm_store_si64((__m64 *)&wsptr[DCTSIZE * 3], row3l); \ _mm_store_si64((__m64 *)&wsptr[DCTSIZE * 3 + 4], row3h); \ } #define DO_IDCT_PASS2(ctr) { \ __m64 row0l, row1l, row2l, row3l, row4l, row5l, row6l, row7l; \ __m64 z23, z23l, z23h; \ __m64 col0123a, col0123b, col0123c, col0123d; \ __m64 col01l, col01h, col23l, col23h, row06, row17, row24, row35; \ __m64 col0, col1, col2, col3; \ __m64 tmp0l, tmp0h, tmp1l, tmp1h, tmp2l, tmp2h, tmp3l, tmp3h; \ __m64 tmp10l, tmp10h, tmp11l, tmp11h, tmp12l, tmp12h, tmp13l, tmp13h; \ \ row0l = _mm_load_si64((__m64 *)&wsptr[DCTSIZE * 0]); /* (00 01 02 03) */ \ row1l = _mm_load_si64((__m64 *)&wsptr[DCTSIZE * 1]); /* (10 11 12 13) */ \ row2l = _mm_load_si64((__m64 *)&wsptr[DCTSIZE * 2]); /* (20 21 22 23) */ \ row3l = _mm_load_si64((__m64 *)&wsptr[DCTSIZE * 3]); /* (30 31 32 33) */ \ row4l = _mm_load_si64((__m64 *)&wsptr[DCTSIZE * 4]); /* (40 41 42 43) */ \ row5l = _mm_load_si64((__m64 *)&wsptr[DCTSIZE * 5]); /* (50 51 52 53) */ \ row6l = _mm_load_si64((__m64 *)&wsptr[DCTSIZE * 6]); /* (60 61 62 63) */ \ row7l = _mm_load_si64((__m64 *)&wsptr[DCTSIZE * 7]); /* (70 71 72 73) */ \ \ /* Even part \ * \ * (Original) \ * z1 = (z2 + z3) * 0.541196100; \ * tmp2 = z1 + z3 * -1.847759065; \ * tmp3 = z1 + z2 * 0.765366865; \ * \ * (This implementation) \ * tmp2 = z2 * 0.541196100 + z3 * (0.541196100 - 1.847759065); \ * tmp3 = z2 * (0.541196100 + 0.765366865) + z3 * 0.541196100; \ */ \ \ z23l = _mm_unpacklo_pi16(row2l, row6l); \ z23h = _mm_unpackhi_pi16(row2l, row6l); \ \ tmp3l = _mm_madd_pi16(z23l, PW_F130_F054); \ tmp3h = _mm_madd_pi16(z23h, PW_F130_F054); \ tmp2l = _mm_madd_pi16(z23l, PW_F054_MF130); \ tmp2h = _mm_madd_pi16(z23h, PW_F054_MF130); \ \ z23 = _mm_add_pi16(row0l, row4l); \ tmp0l = _mm_loadlo_pi16_f(z23); \ tmp0h = _mm_loadhi_pi16_f(z23); \ tmp0l = _mm_srai_pi32(tmp0l, (16 - CONST_BITS)); \ tmp0h = _mm_srai_pi32(tmp0h, (16 - CONST_BITS)); \ \ tmp10l = _mm_add_pi32(tmp0l, tmp3l); \ tmp10h = _mm_add_pi32(tmp0h, tmp3h); \ tmp13l = _mm_sub_pi32(tmp0l, tmp3l); \ tmp13h = _mm_sub_pi32(tmp0h, tmp3h); \ \ z23 = _mm_sub_pi16(row0l, row4l); \ tmp1l = _mm_loadlo_pi16_f(z23); \ tmp1h = _mm_loadhi_pi16_f(z23); \ tmp1l = _mm_srai_pi32(tmp1l, (16 - CONST_BITS)); \ tmp1h = _mm_srai_pi32(tmp1h, (16 - CONST_BITS)); \ \ tmp11l = _mm_add_pi32(tmp1l, tmp2l); \ tmp11h = _mm_add_pi32(tmp1h, tmp2h); \ tmp12l = _mm_sub_pi32(tmp1l, tmp2l); \ tmp12h = _mm_sub_pi32(tmp1h, tmp2h); \ \ /* Odd part */ \ \ tmp0 = row7l; \ tmp1 = row5l; \ tmp2 = row3l; \ tmp3 = row1l; \ \ DO_IDCT_COMMON(2) \ \ /* out0=(00 01 02 03), out1=(10 11 12 13) */ \ /* out2=(20 21 22 23), out3=(30 31 32 33) */ \ /* out4=(40 41 42 43), out5=(50 51 52 53) */ \ /* out6=(60 61 62 63), out7=(70 71 72 73) */ \ \ row06 = _mm_packs_pi16(out0, out6); /* row06=(00 01 02 03 60 61 62 63) */ \ row17 = _mm_packs_pi16(out1, out7); /* row17=(10 11 12 13 70 71 72 73) */ \ row24 = _mm_packs_pi16(out2, out4); /* row24=(20 21 22 23 40 41 42 43) */ \ row35 = _mm_packs_pi16(out3, out5); /* row35=(30 31 32 33 50 51 52 53) */ \ \ row06 = _mm_add_pi8(row06, PB_CENTERJSAMP); \ row17 = _mm_add_pi8(row17, PB_CENTERJSAMP); \ row24 = _mm_add_pi8(row24, PB_CENTERJSAMP); \ row35 = _mm_add_pi8(row35, PB_CENTERJSAMP); \ \ /* Transpose coefficients */ \ \ col0123a = _mm_unpacklo_pi8(row06, row17); /* col0123a=(00 10 01 11 02 12 03 13) */ \ col0123d = _mm_unpackhi_pi8(row06, row17); /* col0123d=(60 70 61 71 62 72 63 73) */ \ col0123b = _mm_unpacklo_pi8(row24, row35); /* col0123b=(20 30 21 31 22 32 23 33) */ \ col0123c = _mm_unpackhi_pi8(row24, row35); /* col0123c=(40 50 41 51 42 52 43 53) */ \ \ col01l = _mm_unpacklo_pi16(col0123a, col0123b); /* col01l=(00 10 20 30 01 11 21 31) */ \ col23l = _mm_unpackhi_pi16(col0123a, col0123b); /* col23l=(02 12 22 32 03 13 23 33) */ \ col01h = _mm_unpacklo_pi16(col0123c, col0123d); /* col01h=(40 50 60 70 41 51 61 71) */ \ col23h = _mm_unpackhi_pi16(col0123c, col0123d); /* col23h=(42 52 62 72 43 53 63 73) */ \ \ col0 = _mm_unpacklo_pi32(col01l, col01h); /* col0=(00 10 20 30 40 50 60 70) */ \ col1 = _mm_unpackhi_pi32(col01l, col01h); /* col1=(01 11 21 31 41 51 61 71) */ \ col2 = _mm_unpacklo_pi32(col23l, col23h); /* col2=(02 12 22 32 42 52 62 72) */ \ col3 = _mm_unpackhi_pi32(col23l, col23h); /* col3=(03 13 23 33 43 53 63 73) */ \ \ _mm_store_si64((__m64 *)(output_buf[ctr + 0] + output_col), col0); \ _mm_store_si64((__m64 *)(output_buf[ctr + 1] + output_col), col1); \ _mm_store_si64((__m64 *)(output_buf[ctr + 2] + output_col), col2); \ _mm_store_si64((__m64 *)(output_buf[ctr + 3] + output_col), col3); \ } void jsimd_idct_islow_mmi(void *dct_table, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { __m64 tmp0, tmp1, tmp2, tmp3; __m64 out0, out1, out2, out3, out4, out5, out6, out7; JCOEFPTR inptr; ISLOW_MULT_TYPE *quantptr; JCOEF *wsptr; JCOEF workspace[DCTSIZE2]; /* buffers data between passes */ /* Pass 1: process columns. */ inptr = coef_block; quantptr = (ISLOW_MULT_TYPE *)dct_table; wsptr = workspace; DO_IDCT_PASS1(1) nextcolumn1: inptr += 4; quantptr += 4; wsptr += DCTSIZE * 4; DO_IDCT_PASS1(2) nextcolumn2: /* Pass 2: process rows. */ wsptr = workspace; DO_IDCT_PASS2(0) wsptr += 4; DO_IDCT_PASS2(4) } libjpeg-turbo-2.1.5/simd/mips64/jquanti-mmi.c000066400000000000000000000106221436506551100207500ustar00rootroot00000000000000/* * Loongson MMI optimizations for libjpeg-turbo * * Copyright (C) 2016-2017, Loongson Technology Corporation Limited, BeiJing. * All Rights Reserved. * Authors: ZhuChen * CaiWanwei * SunZhangzhi * Copyright (C) 2018-2019, D. R. Commander. All Rights Reserved. * * Based on the x86 SIMD extension for IJG JPEG library * Copyright (C) 1999-2006, MIYASAKA Masaru. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ /* INTEGER QUANTIZATION AND SAMPLE CONVERSION */ #include "jsimd_mmi.h" #define DO_QUANT() { \ __m64 rowl, rowh, rowls, rowhs, rowlsave, rowhsave; \ __m64 corrl, corrh, recipl, reciph, scalel, scaleh; \ \ rowl = _mm_load_si64((__m64 *)&workspace[0]); \ rowh = _mm_load_si64((__m64 *)&workspace[4]); \ \ /* Branch-less absolute value */ \ rowls = _mm_srai_pi16(rowl, (WORD_BIT - 1)); /* -1 if value < 0, */ \ /* 0 otherwise */ \ rowhs = _mm_srai_pi16(rowh, (WORD_BIT - 1)); \ \ rowl = _mm_xor_si64(rowl, rowls); /* val = -val */ \ rowh = _mm_xor_si64(rowh, rowhs); \ rowl = _mm_sub_pi16(rowl, rowls); \ rowh = _mm_sub_pi16(rowh, rowhs); \ \ corrl = _mm_load_si64((__m64 *)&divisors[DCTSIZE2 * 1]); /* correction */ \ corrh = _mm_load_si64((__m64 *)&divisors[DCTSIZE2 * 1 + 4]); \ \ rowlsave = rowl = _mm_add_pi16(rowl, corrl); /* correction + roundfactor */ \ rowhsave = rowh = _mm_add_pi16(rowh, corrh); \ \ recipl = _mm_load_si64((__m64 *)&divisors[DCTSIZE2 * 0]); /* reciprocal */ \ reciph = _mm_load_si64((__m64 *)&divisors[DCTSIZE2 * 0 + 4]); \ \ rowl = _mm_mulhi_pi16(rowl, recipl); \ rowh = _mm_mulhi_pi16(rowh, reciph); \ \ /* reciprocal is always negative (MSB=1), so we always need to add the */ \ /* initial value (input value is never negative as we inverted it at the */ \ /* start of this routine) */ \ rowlsave = rowl = _mm_add_pi16(rowl, rowlsave); \ rowhsave = rowh = _mm_add_pi16(rowh, rowhsave); \ \ scalel = _mm_load_si64((__m64 *)&divisors[DCTSIZE2 * 2]); /* scale */ \ scaleh = _mm_load_si64((__m64 *)&divisors[DCTSIZE2 * 2 + 4]); \ \ rowl = _mm_mulhi_pi16(rowl, scalel); \ rowh = _mm_mulhi_pi16(rowh, scaleh); \ \ /* determine if scale is negative */ \ scalel = _mm_srai_pi16(scalel, (WORD_BIT - 1)); \ scaleh = _mm_srai_pi16(scaleh, (WORD_BIT - 1)); \ \ /* and add input if it is */ \ scalel = _mm_and_si64(scalel, rowlsave); \ scaleh = _mm_and_si64(scaleh, rowhsave); \ rowl = _mm_add_pi16(rowl, scalel); \ rowh = _mm_add_pi16(rowh, scaleh); \ \ /* then check if negative input */ \ rowlsave = _mm_srai_pi16(rowlsave, (WORD_BIT - 1)); \ rowhsave = _mm_srai_pi16(rowhsave, (WORD_BIT - 1)); \ \ /* and add scale if it is */ \ rowlsave = _mm_and_si64(rowlsave, scalel); \ rowhsave = _mm_and_si64(rowhsave, scaleh); \ rowl = _mm_add_pi16(rowl, rowlsave); \ rowh = _mm_add_pi16(rowh, rowhsave); \ \ rowl = _mm_xor_si64(rowl, rowls); /* val = -val */ \ rowh = _mm_xor_si64(rowh, rowhs); \ rowl = _mm_sub_pi16(rowl, rowls); \ rowh = _mm_sub_pi16(rowh, rowhs); \ \ _mm_store_si64((__m64 *)&output_ptr[0], rowl); \ _mm_store_si64((__m64 *)&output_ptr[4], rowh); \ \ workspace += DCTSIZE; \ divisors += DCTSIZE; \ output_ptr += DCTSIZE; \ } void jsimd_quantize_mmi(JCOEFPTR coef_block, DCTELEM *divisors, DCTELEM *workspace) { JCOEFPTR output_ptr = coef_block; DO_QUANT() DO_QUANT() DO_QUANT() DO_QUANT() DO_QUANT() DO_QUANT() DO_QUANT() DO_QUANT() } libjpeg-turbo-2.1.5/simd/mips64/jsimd.c000066400000000000000000000436071436506551100176340ustar00rootroot00000000000000/* * jsimd_mips64.c * * Copyright 2009 Pierre Ossman for Cendio AB * Copyright (C) 2009-2011, 2014, 2016, 2018, 2022, D. R. Commander. * Copyright (C) 2013-2014, MIPS Technologies, Inc., California. * Copyright (C) 2015, 2018, 2022, Matthieu Darbois. * Copyright (C) 2016-2018, Loongson Technology Corporation Limited, BeiJing. * * Based on the x86 SIMD extension for IJG JPEG library, * Copyright (C) 1999-2006, MIYASAKA Masaru. * For conditions of distribution and use, see copyright notice in jsimdext.inc * * This file contains the interface between the "normal" portions * of the library and the SIMD implementations when running on a * 64-bit MIPS architecture. */ #define JPEG_INTERNALS #include "../../jinclude.h" #include "../../jpeglib.h" #include "../../jsimd.h" #include "../../jdct.h" #include "../../jsimddct.h" #include "../jsimd.h" #include static THREAD_LOCAL unsigned int simd_support = ~0; #if defined(__linux__) #define SOMEWHAT_SANE_PROC_CPUINFO_SIZE_LIMIT (1024 * 1024) LOCAL(int) check_feature(char *buffer, char *feature) { char *p; if (*feature == 0) return 0; if (strncmp(buffer, "ASEs implemented", 16) != 0) return 0; buffer += 16; while (isspace(*buffer)) buffer++; /* Check if 'feature' is present in the buffer as a separate word */ while ((p = strstr(buffer, feature))) { if (p > buffer && !isspace(*(p - 1))) { buffer++; continue; } p += strlen(feature); if (*p != 0 && !isspace(*p)) { buffer++; continue; } return 1; } return 0; } LOCAL(int) parse_proc_cpuinfo(int bufsize) { char *buffer = (char *)malloc(bufsize); FILE *fd; simd_support = 0; if (!buffer) return 0; fd = fopen("/proc/cpuinfo", "r"); if (fd) { while (fgets(buffer, bufsize, fd)) { if (!strchr(buffer, '\n') && !feof(fd)) { /* "impossible" happened - insufficient size of the buffer! */ fclose(fd); free(buffer); return 0; } if (check_feature(buffer, "loongson-mmi")) simd_support |= JSIMD_MMI; } fclose(fd); } free(buffer); return 1; } #endif /* * Check what SIMD accelerations are supported. */ LOCAL(void) init_simd(void) { #ifndef NO_GETENV char *env = NULL; #endif #if defined(__linux__) int bufsize = 1024; /* an initial guess for the line buffer size limit */ #endif if (simd_support != ~0U) return; simd_support = 0; #if defined(__linux__) while (!parse_proc_cpuinfo(bufsize)) { bufsize *= 2; if (bufsize > SOMEWHAT_SANE_PROC_CPUINFO_SIZE_LIMIT) break; } #elif defined(__mips_loongson_vector_rev) /* Only enable MMI by default on non-Linux platforms when the compiler flags * support it. */ simd_support |= JSIMD_MMI; #endif #ifndef NO_GETENV /* Force different settings through environment variables */ env = getenv("JSIMD_FORCEMMI"); if ((env != NULL) && (strcmp(env, "1") == 0)) simd_support = JSIMD_MMI; env = getenv("JSIMD_FORCENONE"); if ((env != NULL) && (strcmp(env, "1") == 0)) simd_support = 0; #endif } GLOBAL(int) jsimd_can_rgb_ycc(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if ((RGB_PIXELSIZE != 3) && (RGB_PIXELSIZE != 4)) return 0; if (simd_support & JSIMD_MMI) return 1; return 0; } GLOBAL(int) jsimd_can_rgb_gray(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if ((RGB_PIXELSIZE != 3) && (RGB_PIXELSIZE != 4)) return 0; if (simd_support & JSIMD_MMI) return 1; return 0; } GLOBAL(int) jsimd_can_ycc_rgb(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if ((RGB_PIXELSIZE != 3) && (RGB_PIXELSIZE != 4)) return 0; if (simd_support & JSIMD_MMI) return 1; return 0; } GLOBAL(int) jsimd_can_ycc_rgb565(void) { return 0; } GLOBAL(int) jsimd_c_can_null_convert(void) { return 0; } GLOBAL(void) jsimd_rgb_ycc_convert(j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { void (*mmifct) (JDIMENSION, JSAMPARRAY, JSAMPIMAGE, JDIMENSION, int); switch (cinfo->in_color_space) { case JCS_EXT_RGB: mmifct = jsimd_extrgb_ycc_convert_mmi; break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: mmifct = jsimd_extrgbx_ycc_convert_mmi; break; case JCS_EXT_BGR: mmifct = jsimd_extbgr_ycc_convert_mmi; break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: mmifct = jsimd_extbgrx_ycc_convert_mmi; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: mmifct = jsimd_extxbgr_ycc_convert_mmi; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: mmifct = jsimd_extxrgb_ycc_convert_mmi; break; default: mmifct = jsimd_rgb_ycc_convert_mmi; break; } mmifct(cinfo->image_width, input_buf, output_buf, output_row, num_rows); } GLOBAL(void) jsimd_rgb_gray_convert(j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { void (*mmifct) (JDIMENSION, JSAMPARRAY, JSAMPIMAGE, JDIMENSION, int); switch (cinfo->in_color_space) { case JCS_EXT_RGB: mmifct = jsimd_extrgb_gray_convert_mmi; break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: mmifct = jsimd_extrgbx_gray_convert_mmi; break; case JCS_EXT_BGR: mmifct = jsimd_extbgr_gray_convert_mmi; break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: mmifct = jsimd_extbgrx_gray_convert_mmi; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: mmifct = jsimd_extxbgr_gray_convert_mmi; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: mmifct = jsimd_extxrgb_gray_convert_mmi; break; default: mmifct = jsimd_rgb_gray_convert_mmi; break; } mmifct(cinfo->image_width, input_buf, output_buf, output_row, num_rows); } GLOBAL(void) jsimd_ycc_rgb_convert(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { void (*mmifct) (JDIMENSION, JSAMPIMAGE, JDIMENSION, JSAMPARRAY, int); switch (cinfo->out_color_space) { case JCS_EXT_RGB: mmifct = jsimd_ycc_extrgb_convert_mmi; break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: mmifct = jsimd_ycc_extrgbx_convert_mmi; break; case JCS_EXT_BGR: mmifct = jsimd_ycc_extbgr_convert_mmi; break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: mmifct = jsimd_ycc_extbgrx_convert_mmi; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: mmifct = jsimd_ycc_extxbgr_convert_mmi; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: mmifct = jsimd_ycc_extxrgb_convert_mmi; break; default: mmifct = jsimd_ycc_rgb_convert_mmi; break; } mmifct(cinfo->output_width, input_buf, input_row, output_buf, num_rows); } GLOBAL(void) jsimd_ycc_rgb565_convert(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { } GLOBAL(void) jsimd_c_null_convert(j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { } GLOBAL(int) jsimd_can_h2v2_downsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_MMI) return 1; return 0; } GLOBAL(int) jsimd_can_h2v2_smooth_downsample(void) { return 0; } GLOBAL(int) jsimd_can_h2v1_downsample(void) { return 0; } GLOBAL(void) jsimd_h2v2_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY output_data) { jsimd_h2v2_downsample_mmi(cinfo->image_width, cinfo->max_v_samp_factor, compptr->v_samp_factor, compptr->width_in_blocks, input_data, output_data); } GLOBAL(void) jsimd_h2v2_smooth_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY output_data) { } GLOBAL(void) jsimd_h2v1_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY output_data) { } GLOBAL(int) jsimd_can_h2v2_upsample(void) { return 0; } GLOBAL(int) jsimd_can_h2v1_upsample(void) { return 0; } GLOBAL(int) jsimd_can_int_upsample(void) { return 0; } GLOBAL(void) jsimd_h2v2_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { } GLOBAL(void) jsimd_h2v1_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { } GLOBAL(void) jsimd_int_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { } GLOBAL(int) jsimd_can_h2v2_fancy_upsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_MMI) return 1; return 0; } GLOBAL(int) jsimd_can_h2v1_fancy_upsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_MMI) return 1; return 0; } GLOBAL(void) jsimd_h2v2_fancy_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { jsimd_h2v2_fancy_upsample_mmi(cinfo->max_v_samp_factor, compptr->downsampled_width, input_data, output_data_ptr); } GLOBAL(void) jsimd_h2v1_fancy_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { jsimd_h2v1_fancy_upsample_mmi(cinfo->max_v_samp_factor, compptr->downsampled_width, input_data, output_data_ptr); } GLOBAL(int) jsimd_can_h2v2_merged_upsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_MMI) return 1; return 0; } GLOBAL(int) jsimd_can_h2v1_merged_upsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_MMI) return 1; return 0; } GLOBAL(void) jsimd_h2v2_merged_upsample(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { void (*mmifct) (JDIMENSION, JSAMPIMAGE, JDIMENSION, JSAMPARRAY); switch (cinfo->out_color_space) { case JCS_EXT_RGB: mmifct = jsimd_h2v2_extrgb_merged_upsample_mmi; break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: mmifct = jsimd_h2v2_extrgbx_merged_upsample_mmi; break; case JCS_EXT_BGR: mmifct = jsimd_h2v2_extbgr_merged_upsample_mmi; break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: mmifct = jsimd_h2v2_extbgrx_merged_upsample_mmi; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: mmifct = jsimd_h2v2_extxbgr_merged_upsample_mmi; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: mmifct = jsimd_h2v2_extxrgb_merged_upsample_mmi; break; default: mmifct = jsimd_h2v2_merged_upsample_mmi; break; } mmifct(cinfo->output_width, input_buf, in_row_group_ctr, output_buf); } GLOBAL(void) jsimd_h2v1_merged_upsample(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { void (*mmifct) (JDIMENSION, JSAMPIMAGE, JDIMENSION, JSAMPARRAY); switch (cinfo->out_color_space) { case JCS_EXT_RGB: mmifct = jsimd_h2v1_extrgb_merged_upsample_mmi; break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: mmifct = jsimd_h2v1_extrgbx_merged_upsample_mmi; break; case JCS_EXT_BGR: mmifct = jsimd_h2v1_extbgr_merged_upsample_mmi; break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: mmifct = jsimd_h2v1_extbgrx_merged_upsample_mmi; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: mmifct = jsimd_h2v1_extxbgr_merged_upsample_mmi; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: mmifct = jsimd_h2v1_extxrgb_merged_upsample_mmi; break; default: mmifct = jsimd_h2v1_merged_upsample_mmi; break; } mmifct(cinfo->output_width, input_buf, in_row_group_ctr, output_buf); } GLOBAL(int) jsimd_can_convsamp(void) { return 0; } GLOBAL(int) jsimd_can_convsamp_float(void) { return 0; } GLOBAL(void) jsimd_convsamp(JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM *workspace) { } GLOBAL(void) jsimd_convsamp_float(JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT *workspace) { } GLOBAL(int) jsimd_can_fdct_islow(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(DCTELEM) != 2) return 0; if (simd_support & JSIMD_MMI) return 1; return 0; } GLOBAL(int) jsimd_can_fdct_ifast(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(DCTELEM) != 2) return 0; if (simd_support & JSIMD_MMI) return 1; return 0; } GLOBAL(int) jsimd_can_fdct_float(void) { return 0; } GLOBAL(void) jsimd_fdct_islow(DCTELEM *data) { jsimd_fdct_islow_mmi(data); } GLOBAL(void) jsimd_fdct_ifast(DCTELEM *data) { jsimd_fdct_ifast_mmi(data); } GLOBAL(void) jsimd_fdct_float(FAST_FLOAT *data) { } GLOBAL(int) jsimd_can_quantize(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (sizeof(DCTELEM) != 2) return 0; if (simd_support & JSIMD_MMI) return 1; return 0; } GLOBAL(int) jsimd_can_quantize_float(void) { return 0; } GLOBAL(void) jsimd_quantize(JCOEFPTR coef_block, DCTELEM *divisors, DCTELEM *workspace) { jsimd_quantize_mmi(coef_block, divisors, workspace); } GLOBAL(void) jsimd_quantize_float(JCOEFPTR coef_block, FAST_FLOAT *divisors, FAST_FLOAT *workspace) { } GLOBAL(int) jsimd_can_idct_2x2(void) { return 0; } GLOBAL(int) jsimd_can_idct_4x4(void) { return 0; } GLOBAL(int) jsimd_can_idct_6x6(void) { return 0; } GLOBAL(int) jsimd_can_idct_12x12(void) { return 0; } GLOBAL(void) jsimd_idct_2x2(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { } GLOBAL(void) jsimd_idct_4x4(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { } GLOBAL(void) jsimd_idct_6x6(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { } GLOBAL(void) jsimd_idct_12x12(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { } GLOBAL(int) jsimd_can_idct_islow(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(ISLOW_MULT_TYPE) != 2) return 0; if (simd_support & JSIMD_MMI) return 1; return 0; } GLOBAL(int) jsimd_can_idct_ifast(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(IFAST_MULT_TYPE) != 2) return 0; if (IFAST_SCALE_BITS != 2) return 0; if (simd_support & JSIMD_MMI) return 1; return 0; } GLOBAL(int) jsimd_can_idct_float(void) { return 0; } GLOBAL(void) jsimd_idct_islow(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { jsimd_idct_islow_mmi(compptr->dct_table, coef_block, output_buf, output_col); } GLOBAL(void) jsimd_idct_ifast(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { jsimd_idct_ifast_mmi(compptr->dct_table, coef_block, output_buf, output_col); } GLOBAL(void) jsimd_idct_float(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { } GLOBAL(int) jsimd_can_huff_encode_one_block(void) { return 0; } GLOBAL(JOCTET *) jsimd_huff_encode_one_block(void *state, JOCTET *buffer, JCOEFPTR block, int last_dc_val, c_derived_tbl *dctbl, c_derived_tbl *actbl) { return NULL; } GLOBAL(int) jsimd_can_encode_mcu_AC_first_prepare(void) { return 0; } GLOBAL(void) jsimd_encode_mcu_AC_first_prepare(const JCOEF *block, const int *jpeg_natural_order_start, int Sl, int Al, UJCOEF *values, size_t *zerobits) { } GLOBAL(int) jsimd_can_encode_mcu_AC_refine_prepare(void) { return 0; } GLOBAL(int) jsimd_encode_mcu_AC_refine_prepare(const JCOEF *block, const int *jpeg_natural_order_start, int Sl, int Al, UJCOEF *absvalues, size_t *bits) { return 0; } libjpeg-turbo-2.1.5/simd/mips64/jsimd_mmi.h000066400000000000000000000046321436506551100204760ustar00rootroot00000000000000/* * Loongson MMI optimizations for libjpeg-turbo * * Copyright (C) 2016-2018, Loongson Technology Corporation Limited, BeiJing. * All Rights Reserved. * Authors: ZhuChen * CaiWanwei * SunZhangzhi * QingfaLiu * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #define JPEG_INTERNALS #include "../../jinclude.h" #include "../../jpeglib.h" #include "../../jdct.h" #include "loongson-mmintrin.h" /* Common code */ #if defined(_ABI64) && _MIPS_SIM == _ABI64 # define PTR_ADDU "daddu " # define PTR_SLL "dsll " #else # define PTR_ADDU "addu " # define PTR_SLL "sll " #endif #define SIZEOF_MMWORD 8 #define BYTE_BIT 8 #define WORD_BIT 16 #define SCALEBITS 16 #define _uint64_set_pi8(a, b, c, d, e, f, g, h) \ (((uint64_t)(uint8_t)a << 56) | \ ((uint64_t)(uint8_t)b << 48) | \ ((uint64_t)(uint8_t)c << 40) | \ ((uint64_t)(uint8_t)d << 32) | \ ((uint64_t)(uint8_t)e << 24) | \ ((uint64_t)(uint8_t)f << 16) | \ ((uint64_t)(uint8_t)g << 8) | \ ((uint64_t)(uint8_t)h)) #define _uint64_set1_pi8(a) _uint64_set_pi8(a, a, a, a, a, a, a, a) #define _uint64_set_pi16(a, b, c, d) \ (((uint64_t)(uint16_t)a << 48) | \ ((uint64_t)(uint16_t)b << 32) | \ ((uint64_t)(uint16_t)c << 16) | \ ((uint64_t)(uint16_t)d)) #define _uint64_set1_pi16(a) _uint64_set_pi16(a, a, a, a) #define _uint64_set_pi32(a, b) \ (((uint64_t)(uint32_t)a << 32) | \ ((uint64_t)(uint32_t)b)) #define get_const_value(index) (*(__m64 *)&const_value[index]) libjpeg-turbo-2.1.5/simd/mips64/loongson-mmintrin.h000066400000000000000000000547461436506551100222320ustar00rootroot00000000000000/* * Loongson MMI optimizations for libjpeg-turbo * * Copyright (C) 2016-2018, Loongson Technology Corporation Limited, BeiJing. * All Rights Reserved. * Copyright (C) 2019, D. R. Commander. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #ifndef __LOONGSON_MMINTRIN_H__ #define __LOONGSON_MMINTRIN_H__ #include #define FUNCTION_ATTRIBS \ __attribute__((__gnu_inline__, __always_inline__, __artificial__)) /* Vectors are stored in 64-bit floating-point registers. */ typedef double __m64; /* Having a 32-bit datatype allows us to use 32-bit loads in places like load8888. */ typedef float __m32; /********** Set Operations **********/ extern __inline __m64 FUNCTION_ATTRIBS _mm_setzero_si64(void) { return 0.0; } extern __inline __m64 FUNCTION_ATTRIBS _mm_set_pi8(uint8_t __b7, uint8_t __b6, uint8_t __b5, uint8_t __b4, uint8_t __b3, uint8_t __b2, uint8_t __b1, uint8_t __b0) { __m64 ret; uint32_t lo = ((uint32_t)__b6 << 24) | ((uint32_t)__b4 << 16) | ((uint32_t)__b2 << 8) | (uint32_t)__b0; uint32_t hi = ((uint32_t)__b7 << 24) | ((uint32_t)__b5 << 16) | ((uint32_t)__b3 << 8) | (uint32_t)__b1; asm("mtc1 %1, %0\n\t" "mtc1 %2, $f0\n\t" "punpcklbh %0, %0, $f0\n\t" : "=f" (ret) : "r" (lo), "r" (hi) : "$f0" ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_set_pi16(uint16_t __h3, uint16_t __h2, uint16_t __h1, uint16_t __h0) { __m64 ret; uint32_t lo = ((uint32_t)__h2 << 16) | (uint32_t)__h0; uint32_t hi = ((uint32_t)__h3 << 16) | (uint32_t)__h1; asm("mtc1 %1, %0\n\t" "mtc1 %2, $f0\n\t" "punpcklhw %0, %0, $f0\n\t" : "=f" (ret) : "r" (lo), "r" (hi) : "$f0" ); return ret; } #define _MM_SHUFFLE(fp3, fp2, fp1, fp0) \ (((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | (fp0)) extern __inline __m64 FUNCTION_ATTRIBS _mm_set_pi32(uint32_t __i1, uint32_t __i0) { if (__builtin_constant_p(__i1) && __builtin_constant_p(__i0)) { uint64_t val = ((uint64_t)__i1 << 32) | ((uint64_t)__i0 << 0); return *(__m64 *)&val; } else if (__i1 == __i0) { uint64_t imm = _MM_SHUFFLE(1, 0, 1, 0); __m64 ret; asm("pshufh %0, %1, %2\n\t" : "=f" (ret) : "f" (*(__m32 *)&__i1), "f" (*(__m64 *)&imm) ); return ret; } else { uint64_t val = ((uint64_t)__i1 << 32) | ((uint64_t)__i0 << 0); return *(__m64 *)&val; } } extern __inline __m64 FUNCTION_ATTRIBS _mm_set1_pi8(uint8_t __b0) { __m64 ret; asm("sll $8, %1, 8\n\t" "or %1, %1, $8\n\t" "mtc1 %1, %0\n\t" "mtc1 $0, $f0\n\t" "pshufh %0, %0, $f0\n\t" : "=f" (ret) : "r" (__b0) : "$8", "$f0" ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_set1_pi16(uint16_t __h0) { __m64 ret; asm("mtc1 %1, %0\n\t" "mtc1 $0, $f0\n\t" "pshufh %0, %0, $f0\n\t" : "=f" (ret) : "r" (__h0) : "$8", "$f0" ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_set1_pi32(unsigned __i0) { return _mm_set_pi32(__i0, __i0); } extern __inline __m64 FUNCTION_ATTRIBS _mm_setr_pi8(uint8_t __h0, uint8_t __h1, uint8_t __h2, uint8_t __h3, uint8_t __h4, uint8_t __h5, uint8_t __h6, uint8_t __h7) { return _mm_set_pi8(__h7, __h6, __h5, __h4, __h3, __h2, __h1, __h0); } extern __inline __m64 FUNCTION_ATTRIBS _mm_setr_pi16(uint16_t __w0, uint16_t __w1, uint16_t __w2, uint16_t __w3) { return _mm_set_pi16(__w3, __w2, __w1, __w0); } extern __inline __m64 FUNCTION_ATTRIBS _mm_setr_pi32(uint32_t __i0, uint32_t __i1) { return _mm_set_pi32(__i1, __i0); } /********** Arithmetic Operations **********/ extern __inline __m64 FUNCTION_ATTRIBS _mm_add_pi8(__m64 __m1, __m64 __m2) { __m64 ret; asm("paddb %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_add_pi16(__m64 __m1, __m64 __m2) { __m64 ret; asm("paddh %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_add_pi32(__m64 __m1, __m64 __m2) { __m64 ret; asm("paddw %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_add_si64(__m64 __m1, __m64 __m2) { __m64 ret; asm("paddd %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_adds_pi8(__m64 __m1, __m64 __m2) { __m64 ret; asm("paddsb %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_adds_pi16(__m64 __m1, __m64 __m2) { __m64 ret; asm("paddsh %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_adds_pu8(__m64 __m1, __m64 __m2) { __m64 ret; asm("paddusb %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_adds_pu16(__m64 __m1, __m64 __m2) { __m64 ret; asm("paddush %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_avg_pu8(__m64 __m1, __m64 __m2) { __m64 ret; asm("pavgb %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_avg_pu16(__m64 __m1, __m64 __m2) { __m64 ret; asm("pavgh %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_madd_pi16(__m64 __m1, __m64 __m2) { __m64 ret; asm("pmaddhw %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_max_pi16(__m64 __m1, __m64 __m2) { __m64 ret; asm("pmaxsh %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_max_pu8(__m64 __m1, __m64 __m2) { __m64 ret; asm("pmaxub %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_min_pi16(__m64 __m1, __m64 __m2) { __m64 ret; asm("pminsh %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_min_pu8(__m64 __m1, __m64 __m2) { __m64 ret; asm("pminub %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline int FUNCTION_ATTRIBS _mm_movemask_pi8(__m64 __m1) { int ret; asm("pmovmskb %0, %1\n\t" : "=r" (ret) : "y" (__m1) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_mulhi_pi16(__m64 __m1, __m64 __m2) { __m64 ret; asm("pmulhh %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_mulhi_pu16(__m64 __m1, __m64 __m2) { __m64 ret; asm("pmulhuh %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_mullo_pi16(__m64 __m1, __m64 __m2) { __m64 ret; asm("pmullh %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_mul_pu32(__m64 __m1, __m64 __m2) { __m64 ret; asm("pmuluw %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_sad_pu8(__m64 __m1, __m64 __m2) { __m64 ret; asm("psadbh %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_asub_pu8(__m64 __m1, __m64 __m2) { __m64 ret; asm("pasubub %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_biadd_pu8(__m64 __m1, __m64 __m2) { __m64 ret; asm("biadd %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_sub_pi8(__m64 __m1, __m64 __m2) { __m64 ret; asm("psubb %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_sub_pi16(__m64 __m1, __m64 __m2) { __m64 ret; asm("psubh %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_sub_pi32(__m64 __m1, __m64 __m2) { __m64 ret; asm("psubw %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_sub_si64(__m64 __m1, __m64 __m2) { __m64 ret; asm("psubd %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_subs_pi8(__m64 __m1, __m64 __m2) { __m64 ret; asm("psubsb %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_subs_pi16(__m64 __m1, __m64 __m2) { __m64 ret; asm("psubsh %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_subs_pu8(__m64 __m1, __m64 __m2) { __m64 ret; asm("psubusb %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_subs_pu16(__m64 __m1, __m64 __m2) { __m64 ret; asm("psubush %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } /********** Logical Operations **********/ extern __inline __m64 FUNCTION_ATTRIBS _mm_and_si64(__m64 __m1, __m64 __m2) { __m64 ret; asm("and %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_andnot_si64(__m64 __m1, __m64 __m2) { __m64 ret; asm("andn %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_or_si32(__m32 __m1, __m32 __m2) { __m32 ret; asm("or %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_or_si64(__m64 __m1, __m64 __m2) { __m64 ret; asm("or %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_xor_si64(__m64 __m1, __m64 __m2) { __m64 ret; asm("xor %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } /********** Shift Operations **********/ extern __inline __m64 FUNCTION_ATTRIBS _mm_slli_pi16(__m64 __m, int64_t __count) { __m64 ret; asm("psllh %0, %1, %2\n\t" : "=f" (ret) : "f" (__m), "f" (*(__m64 *)&__count) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_slli_pi32(__m64 __m, int64_t __count) { __m64 ret; asm("psllw %0, %1, %2\n\t" : "=f" (ret) : "f" (__m), "f" (*(__m64 *)&__count) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_slli_si64(__m64 __m, int64_t __count) { __m64 ret; asm("dsll %0, %1, %2\n\t" : "=f" (ret) : "f" (__m), "f" (*(__m64 *)&__count) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_srli_pi16(__m64 __m, int64_t __count) { __m64 ret; asm("psrlh %0, %1, %2\n\t" : "=f" (ret) : "f" (__m), "f" (*(__m64 *)&__count) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_srli_pi32(__m64 __m, int64_t __count) { __m64 ret; asm("psrlw %0, %1, %2\n\t" : "=f" (ret) : "f" (__m), "f" (*(__m64 *)&__count) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_srli_si64(__m64 __m, int64_t __count) { __m64 ret; asm("dsrl %0, %1, %2\n\t" : "=f" (ret) : "f" (__m), "f" (*(__m64 *)&__count) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_srai_pi16(__m64 __m, int64_t __count) { __m64 ret; asm("psrah %0, %1, %2\n\t" : "=f" (ret) : "f" (__m), "f" (*(__m64 *)&__count) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_srai_pi32(__m64 __m, int64_t __count) { __m64 ret; asm("psraw %0, %1, %2\n\t" : "=f" (ret) : "f" (__m), "f" (*(__m64 *)&__count) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_srai_si64(__m64 __m, int64_t __count) { __m64 ret; asm("dsra %0, %1, %2\n\t" : "=f" (ret) : "f" (__m), "f" (*(__m64 *)&__count) ); return ret; } /********** Conversion Intrinsics **********/ extern __inline __m64 FUNCTION_ATTRIBS to_m64(uint64_t x) { return *(__m64 *)&x; } extern __inline uint64_t FUNCTION_ATTRIBS to_uint64(__m64 x) { return *(uint64_t *)&x; } /********** Comparison Intrinsics **********/ extern __inline __m64 FUNCTION_ATTRIBS _mm_cmpeq_pi8(__m64 __m1, __m64 __m2) { __m64 ret; asm("pcmpeqb %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_cmpeq_pi16(__m64 __m1, __m64 __m2) { __m64 ret; asm("pcmpeqh %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_cmpeq_pi32(__m64 __m1, __m64 __m2) { __m64 ret; asm("pcmpeqw %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_cmpgt_pi8(__m64 __m1, __m64 __m2) { __m64 ret; asm("pcmpgtb %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_cmpgt_pi16(__m64 __m1, __m64 __m2) { __m64 ret; asm("pcmpgth %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_cmpgt_pi32(__m64 __m1, __m64 __m2) { __m64 ret; asm("pcmpgtw %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_cmplt_pi8(__m64 __m1, __m64 __m2) { __m64 ret; asm("pcmpltb %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_cmplt_pi16(__m64 __m1, __m64 __m2) { __m64 ret; asm("pcmplth %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_cmplt_pi32(__m64 __m1, __m64 __m2) { __m64 ret; asm("pcmpltw %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } /********** Miscellaneous Operations **********/ extern __inline __m64 FUNCTION_ATTRIBS _mm_packs_pi16(__m64 __m1, __m64 __m2) { __m64 ret; asm("packsshb %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_packs_pi32(__m64 __m1, __m64 __m2) { __m64 ret; asm("packsswh %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_packs_pi32_f(__m64 __m1, __m64 __m2) { __m64 ret; asm("packsswh %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_packs_pu16(__m64 __m1, __m64 __m2) { __m64 ret; asm("packushb %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_extract_pi16(__m64 __m, int64_t __pos) { __m64 ret; asm("pextrh %0, %1, %2\n\t" : "=f" (ret) : "f" (__m), "f" (*(__m64 *)&__pos) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_insert_pi16(__m64 __m1, __m64 __m2, int64_t __pos) { __m64 ret; switch (__pos) { case 0: asm("pinsrh_0 %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2), "i" (__pos) ); break; case 1: asm("pinsrh_1 %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2), "i" (__pos) ); break; case 2: asm("pinsrh_2 %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2), "i" (__pos) ); break; case 3: asm("pinsrh_3 %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2), "i" (__pos) ); break; } return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_shuffle_pi16(__m64 __m, int64_t __n) { __m64 ret; asm("pshufh %0, %1, %2\n\t" : "=f" (ret) : "f" (__m), "f" (*(__m64 *)&__n) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_unpackhi_pi8(__m64 __m1, __m64 __m2) { __m64 ret; asm("punpckhbh %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_unpackhi_pi8_f(__m64 __m1, __m64 __m2) { __m64 ret; asm("punpckhbh %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_unpackhi_pi16(__m64 __m1, __m64 __m2) { __m64 ret; asm("punpckhhw %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_unpackhi_pi16_f(__m64 __m1, __m64 __m2) { __m64 ret; asm("punpckhhw %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_unpackhi_pi32(__m64 __m1, __m64 __m2) { __m64 ret; asm("punpckhwd %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_unpacklo_pi8(__m64 __m1, __m64 __m2) { __m64 ret; asm("punpcklbh %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } /* Since punpcklbh cares about the high 32-bits, we use the __m64 datatype, which preserves the data. */ extern __inline __m64 FUNCTION_ATTRIBS _mm_unpacklo_pi8_f64(__m64 __m1, __m64 __m2) { __m64 ret; asm("punpcklbh %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } /* Since punpcklbh doesn't care about the high 32-bits, we use the __m32, datatype, which allows load8888 to use 32-bit loads. */ extern __inline __m64 FUNCTION_ATTRIBS _mm_unpacklo_pi8_f(__m32 __m1, __m64 __m2) { __m64 ret; asm("punpcklbh %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_unpacklo_pi16(__m64 __m1, __m64 __m2) { __m64 ret; asm("punpcklhw %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_unpacklo_pi16_f(__m64 __m1, __m64 __m2) { __m64 ret; asm("punpcklhw %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_unpacklo_pi32(__m64 __m1, __m64 __m2) { __m64 ret; asm("punpcklwd %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_unpacklo_pi32_f(__m64 __m1, __m64 __m2) { __m64 ret; asm("punpcklwd %0, %1, %2\n\t" : "=f" (ret) : "f" (__m1), "f" (__m2) ); return ret; } extern __inline void FUNCTION_ATTRIBS _mm_store_pi32(__m32 *dest, __m64 src) { src = _mm_packs_pu16(src, _mm_setzero_si64()); asm("swc1 %1, %0\n\t" : "=m" (*dest) : "f" (src) : "memory" ); } extern __inline void FUNCTION_ATTRIBS _mm_store_si64(__m64 *dest, __m64 src) { asm("sdc1 %1, %0 \n\t" : "=m" (*dest) : "f" (src) : "memory" ); } extern __inline void FUNCTION_ATTRIBS _mm_storeu_si64(__m64 *dest, __m64 src) { asm("gssdlc1 %1, 7(%0) \n\t" "gssdrc1 %1, 0(%0) \n\t" : : "r" (dest), "f" (src) : "memory" ); } extern __inline __m64 FUNCTION_ATTRIBS _mm_load_si32(const __m32 *src) { __m32 ret; asm("lwc1 %0, %1\n\t" : "=f" (ret) : "m" (*src) ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_load_si64(const __m64 *src) { __m64 ret; asm("ldc1 %0, %1\n\t" : "=f" (ret) : "m" (*src) : "memory" ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_loadu_si64(const __m64 *src) { __m64 ret; asm("gsldlc1 %0, 7(%1)\n\t" "gsldrc1 %0, 0(%1)\n\t" : "=f" (ret) : "r" (src) : "memory" ); return ret; } extern __inline __m64 FUNCTION_ATTRIBS _mm_loadlo_pi8(const uint32_t *src) { return _mm_unpacklo_pi8_f(*(__m32 *)src, _mm_setzero_si64()); } extern __inline __m64 FUNCTION_ATTRIBS _mm_loadlo_pi8_f(__m64 src) { return _mm_unpacklo_pi8_f64(src, _mm_setzero_si64()); } extern __inline __m64 FUNCTION_ATTRIBS _mm_loadhi_pi8_f(__m64 src) { return _mm_unpackhi_pi8_f(src, _mm_setzero_si64()); } extern __inline __m64 FUNCTION_ATTRIBS _mm_loadlo_pi16(__m64 src) { return _mm_unpacklo_pi16(src, _mm_setzero_si64()); } extern __inline __m64 FUNCTION_ATTRIBS _mm_loadlo_pi16_f(__m64 src) { return _mm_unpacklo_pi16_f(_mm_setzero_si64(), src); } extern __inline __m64 FUNCTION_ATTRIBS _mm_loadhi_pi16(__m64 src) { return _mm_unpackhi_pi16(src, _mm_setzero_si64()); } extern __inline __m64 FUNCTION_ATTRIBS _mm_loadhi_pi16_f(__m64 src) { return _mm_unpackhi_pi16_f(_mm_setzero_si64(), src); } extern __inline __m64 FUNCTION_ATTRIBS _mm_expand_alpha(__m64 pixel) { return _mm_shuffle_pi16(pixel, _MM_SHUFFLE(3, 3, 3, 3)); } extern __inline __m64 FUNCTION_ATTRIBS _mm_expand_alpha_rev(__m64 pixel) { return _mm_shuffle_pi16(pixel, _MM_SHUFFLE(0, 0, 0, 0)); } #endif /* __LOONGSON_MMINTRIN_H__ */ libjpeg-turbo-2.1.5/simd/nasm/000077500000000000000000000000001436506551100161645ustar00rootroot00000000000000libjpeg-turbo-2.1.5/simd/nasm/jcolsamp.inc000066400000000000000000000051041436506551100204670ustar00rootroot00000000000000; ; jcolsamp.inc - private declarations for color conversion & up/downsampling ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2015, Intel Corporation. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; -------------------------------------------------------------------------- ; pseudo-resisters to make ordering of RGB configurable ; %if RGB_RED == 0 %define mmA mm0 %define mmB mm1 %define xmmA xmm0 %define xmmB xmm1 %define ymmA ymm0 %define ymmB ymm1 %elif RGB_GREEN == 0 %define mmA mm2 %define mmB mm3 %define xmmA xmm2 %define xmmB xmm3 %define ymmA ymm2 %define ymmB ymm3 %elif RGB_BLUE == 0 %define mmA mm4 %define mmB mm5 %define xmmA xmm4 %define xmmB xmm5 %define ymmA ymm4 %define ymmB ymm5 %else %define mmA mm6 %define mmB mm7 %define xmmA xmm6 %define xmmB xmm7 %define ymmA ymm6 %define ymmB ymm7 %endif %if RGB_RED == 1 %define mmC mm0 %define mmD mm1 %define xmmC xmm0 %define xmmD xmm1 %define ymmC ymm0 %define ymmD ymm1 %elif RGB_GREEN == 1 %define mmC mm2 %define mmD mm3 %define xmmC xmm2 %define xmmD xmm3 %define ymmC ymm2 %define ymmD ymm3 %elif RGB_BLUE == 1 %define mmC mm4 %define mmD mm5 %define xmmC xmm4 %define xmmD xmm5 %define ymmC ymm4 %define ymmD ymm5 %else %define mmC mm6 %define mmD mm7 %define xmmC xmm6 %define xmmD xmm7 %define ymmC ymm6 %define ymmD ymm7 %endif %if RGB_RED == 2 %define mmE mm0 %define mmF mm1 %define xmmE xmm0 %define xmmF xmm1 %define ymmE ymm0 %define ymmF ymm1 %elif RGB_GREEN == 2 %define mmE mm2 %define mmF mm3 %define xmmE xmm2 %define xmmF xmm3 %define ymmE ymm2 %define ymmF ymm3 %elif RGB_BLUE == 2 %define mmE mm4 %define mmF mm5 %define xmmE xmm4 %define xmmF xmm5 %define ymmE ymm4 %define ymmF ymm5 %else %define mmE mm6 %define mmF mm7 %define xmmE xmm6 %define xmmF xmm7 %define ymmE ymm6 %define ymmF ymm7 %endif %if RGB_RED == 3 %define mmG mm0 %define mmH mm1 %define xmmG xmm0 %define xmmH xmm1 %define ymmG ymm0 %define ymmH ymm1 %elif RGB_GREEN == 3 %define mmG mm2 %define mmH mm3 %define xmmG xmm2 %define xmmH xmm3 %define ymmG ymm2 %define ymmH ymm3 %elif RGB_BLUE == 3 %define mmG mm4 %define mmH mm5 %define xmmG xmm4 %define xmmH xmm5 %define ymmG ymm4 %define ymmH ymm5 %else %define mmG mm6 %define mmH mm7 %define xmmG xmm6 %define xmmH xmm7 %define ymmG ymm6 %define ymmH ymm7 %endif ; -------------------------------------------------------------------------- libjpeg-turbo-2.1.5/simd/nasm/jdct.inc000066400000000000000000000023711436506551100176060ustar00rootroot00000000000000; ; jdct.inc - private declarations for forward & reverse DCT subsystems ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2018, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; Each IDCT routine is responsible for range-limiting its results and ; converting them to unsigned form (0..MAXJSAMPLE). The raw outputs could ; be quite far out of range if the input data is corrupt, so a bulletproof ; range-limiting step is required. We use a mask-and-table-lookup method ; to do the combined operations quickly. ; %define RANGE_MASK (MAXJSAMPLE * 4 + 3) ; 2 bits wider than legal samples %define ROW(n, b, s) ((b) + (n) * (s)) %define COL(n, b, s) ((b) + (n) * (s) * DCTSIZE) %define DWBLOCK(m, n, b, s) \ ((b) + (m) * DCTSIZE * (s) + (n) * SIZEOF_DWORD) %define MMBLOCK(m, n, b, s) \ ((b) + (m) * DCTSIZE * (s) + (n) * SIZEOF_MMWORD) %define XMMBLOCK(m, n, b, s) \ ((b) + (m) * DCTSIZE * (s) + (n) * SIZEOF_XMMWORD) %define YMMBLOCK(m, n, b, s) \ ((b) + (m) * DCTSIZE * (s) + (n) * SIZEOF_YMMWORD) ; -------------------------------------------------------------------------- libjpeg-turbo-2.1.5/simd/nasm/jsimdcfg.inc000066400000000000000000000055521436506551100204540ustar00rootroot00000000000000; ; Automatically generated include file from jsimdcfg.inc.h ; ; ; -- jpeglib.h ; %define DCTSIZE 8 %define DCTSIZE2 64 ; ; -- jmorecfg.h ; %define RGB_RED 0 %define RGB_GREEN 1 %define RGB_BLUE 2 %define RGB_PIXELSIZE 3 %define EXT_RGB_RED 0 %define EXT_RGB_GREEN 1 %define EXT_RGB_BLUE 2 %define EXT_RGB_PIXELSIZE 3 %define EXT_RGBX_RED 0 %define EXT_RGBX_GREEN 1 %define EXT_RGBX_BLUE 2 %define EXT_RGBX_PIXELSIZE 4 %define EXT_BGR_RED 2 %define EXT_BGR_GREEN 1 %define EXT_BGR_BLUE 0 %define EXT_BGR_PIXELSIZE 3 %define EXT_BGRX_RED 2 %define EXT_BGRX_GREEN 1 %define EXT_BGRX_BLUE 0 %define EXT_BGRX_PIXELSIZE 4 %define EXT_XBGR_RED 3 %define EXT_XBGR_GREEN 2 %define EXT_XBGR_BLUE 1 %define EXT_XBGR_PIXELSIZE 4 %define EXT_XRGB_RED 1 %define EXT_XRGB_GREEN 2 %define EXT_XRGB_BLUE 3 %define EXT_XRGB_PIXELSIZE 4 %define RGBX_FILLER_0XFF 1 ; Representation of a single sample (pixel element value). ; On this SIMD implementation, this must be 'unsigned char'. ; %define JSAMPLE byte ; unsigned char %define SIZEOF_JSAMPLE SIZEOF_BYTE ; sizeof(JSAMPLE) %define CENTERJSAMPLE 128 ; Representation of a DCT frequency coefficient. ; On this SIMD implementation, this must be 'short'. ; %define JCOEF word ; short %define SIZEOF_JCOEF SIZEOF_WORD ; sizeof(JCOEF) ; Datatype used for image dimensions. ; On this SIMD implementation, this must be 'unsigned int'. ; %define JDIMENSION dword ; unsigned int %define SIZEOF_JDIMENSION SIZEOF_DWORD ; sizeof(JDIMENSION) %define JSAMPROW POINTER ; JSAMPLE * (jpeglib.h) %define JSAMPARRAY POINTER ; JSAMPROW * (jpeglib.h) %define JSAMPIMAGE POINTER ; JSAMPARRAY * (jpeglib.h) %define JCOEFPTR POINTER ; JCOEF * (jpeglib.h) %define SIZEOF_JSAMPROW SIZEOF_POINTER ; sizeof(JSAMPROW) %define SIZEOF_JSAMPARRAY SIZEOF_POINTER ; sizeof(JSAMPARRAY) %define SIZEOF_JSAMPIMAGE SIZEOF_POINTER ; sizeof(JSAMPIMAGE) %define SIZEOF_JCOEFPTR SIZEOF_POINTER ; sizeof(JCOEFPTR) ; ; -- jdct.h ; ; A forward DCT routine is given a pointer to a work area of type DCTELEM[]; ; the DCT is to be performed in-place in that buffer. ; To maximize parallelism, Type DCTELEM is changed to short (originally, int). ; %define DCTELEM word ; short %define SIZEOF_DCTELEM SIZEOF_WORD ; sizeof(DCTELEM) %define float FP32 ; float %define SIZEOF_FAST_FLOAT SIZEOF_FP32 ; sizeof(float) ; To maximize parallelism, Type short is changed to short. ; %define ISLOW_MULT_TYPE word ; must be short %define SIZEOF_ISLOW_MULT_TYPE SIZEOF_WORD ; sizeof(ISLOW_MULT_TYPE) %define IFAST_MULT_TYPE word ; must be short %define SIZEOF_IFAST_MULT_TYPE SIZEOF_WORD ; sizeof(IFAST_MULT_TYPE) %define IFAST_SCALE_BITS 2 ; fractional bits in scale factors %define FLOAT_MULT_TYPE FP32 ; must be float %define SIZEOF_FLOAT_MULT_TYPE SIZEOF_FP32 ; sizeof(FLOAT_MULT_TYPE) ; ; -- jsimd.h ; %define JSIMD_NONE 0x00 %define JSIMD_MMX 0x01 %define JSIMD_3DNOW 0x02 %define JSIMD_SSE 0x04 %define JSIMD_SSE2 0x08 %define JSIMD_AVX2 0x80 libjpeg-turbo-2.1.5/simd/nasm/jsimdcfg.inc.h000066400000000000000000000112401436506551100206710ustar00rootroot00000000000000/* * This file generates the include file for the assembly * implementations by abusing the C preprocessor. * * Note: Some things are manually defined as they need to * be mapped to NASM types. */ ; ; Automatically generated include file from jsimdcfg.inc.h ; #define JPEG_INTERNALS #include "../jpeglib.h" #include "../jconfig.h" #include "../jmorecfg.h" #include "jsimd.h" ; ; -- jpeglib.h ; %define _cpp_protection_DCTSIZE DCTSIZE %define _cpp_protection_DCTSIZE2 DCTSIZE2 ; ; -- jmorecfg.h ; %define _cpp_protection_RGB_RED RGB_RED %define _cpp_protection_RGB_GREEN RGB_GREEN %define _cpp_protection_RGB_BLUE RGB_BLUE %define _cpp_protection_RGB_PIXELSIZE RGB_PIXELSIZE %define _cpp_protection_EXT_RGB_RED EXT_RGB_RED %define _cpp_protection_EXT_RGB_GREEN EXT_RGB_GREEN %define _cpp_protection_EXT_RGB_BLUE EXT_RGB_BLUE %define _cpp_protection_EXT_RGB_PIXELSIZE EXT_RGB_PIXELSIZE %define _cpp_protection_EXT_RGBX_RED EXT_RGBX_RED %define _cpp_protection_EXT_RGBX_GREEN EXT_RGBX_GREEN %define _cpp_protection_EXT_RGBX_BLUE EXT_RGBX_BLUE %define _cpp_protection_EXT_RGBX_PIXELSIZE EXT_RGBX_PIXELSIZE %define _cpp_protection_EXT_BGR_RED EXT_BGR_RED %define _cpp_protection_EXT_BGR_GREEN EXT_BGR_GREEN %define _cpp_protection_EXT_BGR_BLUE EXT_BGR_BLUE %define _cpp_protection_EXT_BGR_PIXELSIZE EXT_BGR_PIXELSIZE %define _cpp_protection_EXT_BGRX_RED EXT_BGRX_RED %define _cpp_protection_EXT_BGRX_GREEN EXT_BGRX_GREEN %define _cpp_protection_EXT_BGRX_BLUE EXT_BGRX_BLUE %define _cpp_protection_EXT_BGRX_PIXELSIZE EXT_BGRX_PIXELSIZE %define _cpp_protection_EXT_XBGR_RED EXT_XBGR_RED %define _cpp_protection_EXT_XBGR_GREEN EXT_XBGR_GREEN %define _cpp_protection_EXT_XBGR_BLUE EXT_XBGR_BLUE %define _cpp_protection_EXT_XBGR_PIXELSIZE EXT_XBGR_PIXELSIZE %define _cpp_protection_EXT_XRGB_RED EXT_XRGB_RED %define _cpp_protection_EXT_XRGB_GREEN EXT_XRGB_GREEN %define _cpp_protection_EXT_XRGB_BLUE EXT_XRGB_BLUE %define _cpp_protection_EXT_XRGB_PIXELSIZE EXT_XRGB_PIXELSIZE %define RGBX_FILLER_0XFF 1 ; Representation of a single sample (pixel element value). ; On this SIMD implementation, this must be 'unsigned char'. ; %define JSAMPLE byte ; unsigned char %define SIZEOF_JSAMPLE SIZEOF_BYTE ; sizeof(JSAMPLE) %define _cpp_protection_CENTERJSAMPLE CENTERJSAMPLE ; Representation of a DCT frequency coefficient. ; On this SIMD implementation, this must be 'short'. ; %define JCOEF word ; short %define SIZEOF_JCOEF SIZEOF_WORD ; sizeof(JCOEF) ; Datatype used for image dimensions. ; On this SIMD implementation, this must be 'unsigned int'. ; %define JDIMENSION dword ; unsigned int %define SIZEOF_JDIMENSION SIZEOF_DWORD ; sizeof(JDIMENSION) %define JSAMPROW POINTER ; JSAMPLE * (jpeglib.h) %define JSAMPARRAY POINTER ; JSAMPROW * (jpeglib.h) %define JSAMPIMAGE POINTER ; JSAMPARRAY * (jpeglib.h) %define JCOEFPTR POINTER ; JCOEF * (jpeglib.h) %define SIZEOF_JSAMPROW SIZEOF_POINTER ; sizeof(JSAMPROW) %define SIZEOF_JSAMPARRAY SIZEOF_POINTER ; sizeof(JSAMPARRAY) %define SIZEOF_JSAMPIMAGE SIZEOF_POINTER ; sizeof(JSAMPIMAGE) %define SIZEOF_JCOEFPTR SIZEOF_POINTER ; sizeof(JCOEFPTR) ; ; -- jdct.h ; ; A forward DCT routine is given a pointer to a work area of type DCTELEM[]; ; the DCT is to be performed in-place in that buffer. ; To maximize parallelism, Type DCTELEM is changed to short (originally, int). ; %define DCTELEM word ; short %define SIZEOF_DCTELEM SIZEOF_WORD ; sizeof(DCTELEM) %define FAST_FLOAT FP32 ; float %define SIZEOF_FAST_FLOAT SIZEOF_FP32 ; sizeof(FAST_FLOAT) ; To maximize parallelism, Type MULTIPLIER is changed to short. ; %define ISLOW_MULT_TYPE word ; must be short %define SIZEOF_ISLOW_MULT_TYPE SIZEOF_WORD ; sizeof(ISLOW_MULT_TYPE) %define IFAST_MULT_TYPE word ; must be short %define SIZEOF_IFAST_MULT_TYPE SIZEOF_WORD ; sizeof(IFAST_MULT_TYPE) %define IFAST_SCALE_BITS 2 ; fractional bits in scale factors %define FLOAT_MULT_TYPE FP32 ; must be float %define SIZEOF_FLOAT_MULT_TYPE SIZEOF_FP32 ; sizeof(FLOAT_MULT_TYPE) ; ; -- jsimd.h ; %define _cpp_protection_JSIMD_NONE JSIMD_NONE %define _cpp_protection_JSIMD_MMX JSIMD_MMX %define _cpp_protection_JSIMD_3DNOW JSIMD_3DNOW %define _cpp_protection_JSIMD_SSE JSIMD_SSE %define _cpp_protection_JSIMD_SSE2 JSIMD_SSE2 %define _cpp_protection_JSIMD_AVX2 JSIMD_AVX2 libjpeg-turbo-2.1.5/simd/nasm/jsimdext.inc000066400000000000000000000352671436506551100205230ustar00rootroot00000000000000; ; jsimdext.inc - common declarations ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2010, 2016, 2018-2019, D. R. Commander. ; Copyright (C) 2018, Matthieu Darbois. ; Copyright (C) 2018, Matthias Räncker. ; ; Based on the x86 SIMD extension for IJG JPEG library - version 1.02 ; ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; ; This software is provided 'as-is', without any express or implied ; warranty. In no event will the authors be held liable for any damages ; arising from the use of this software. ; ; Permission is granted to anyone to use this software for any purpose, ; including commercial applications, and to alter it and redistribute it ; freely, subject to the following restrictions: ; ; 1. The origin of this software must not be misrepresented; you must not ; claim that you wrote the original software. If you use this software ; in a product, an acknowledgment in the product documentation would be ; appreciated but is not required. ; 2. Altered source versions must be plainly marked as such, and must not be ; misrepresented as being the original software. ; 3. This notice may not be removed or altered from any source distribution. ; ========================================================================== ; System-dependent configurations %ifdef WIN32 ; ----(nasm -fwin32 -DWIN32 ...)-------- ; * Microsoft Visual C++ ; * MinGW (Minimalist GNU for Windows) ; * CygWin ; * LCC-Win32 ; -- segment definition -- ; %ifdef __YASM_VER__ %define SEG_TEXT .text align=32 %define SEG_CONST .rdata align=32 %else %define SEG_TEXT .text align=32 public use32 class=CODE %define SEG_CONST .rdata align=32 public use32 class=CONST %endif %elifdef WIN64 ; ----(nasm -fwin64 -DWIN64 ...)-------- ; * Microsoft Visual C++ ; -- segment definition -- ; %ifdef __YASM_VER__ %define SEG_TEXT .text align=32 %define SEG_CONST .rdata align=32 %else %define SEG_TEXT .text align=32 public use64 class=CODE %define SEG_CONST .rdata align=32 public use64 class=CONST %endif %define EXTN(name) name ; foo() -> foo %elifdef OBJ32 ; ----(nasm -fobj -DOBJ32 ...)---------- ; * Borland C++ (Win32) ; -- segment definition -- ; %define SEG_TEXT _text align=32 public use32 class=CODE %define SEG_CONST _data align=32 public use32 class=DATA %elifdef ELF ; ----(nasm -felf[64] -DELF ...)------------ ; * Linux ; * *BSD family Unix using elf format ; * Unix System V, including Solaris x86, UnixWare and SCO Unix ; mark stack as non-executable section .note.GNU-stack noalloc noexec nowrite progbits ; -- segment definition -- ; %ifdef __x86_64__ %define SEG_TEXT .text progbits align=32 %define SEG_CONST .rodata progbits align=32 %else %define SEG_TEXT .text progbits alloc exec nowrite align=32 %define SEG_CONST .rodata progbits alloc noexec nowrite align=32 %endif ; To make the code position-independent, append -DPIC to the commandline ; %define GOT_SYMBOL _GLOBAL_OFFSET_TABLE_ ; ELF supports PIC %define EXTN(name) name ; foo() -> foo %elifdef AOUT ; ----(nasm -faoutb/aout -DAOUT ...)---- ; * Older Linux using a.out format (nasm -f aout -DAOUT ...) ; * *BSD family Unix using a.out format (nasm -f aoutb -DAOUT ...) ; -- segment definition -- ; %define SEG_TEXT .text %define SEG_CONST .data ; To make the code position-independent, append -DPIC to the commandline ; %define GOT_SYMBOL __GLOBAL_OFFSET_TABLE_ ; BSD-style a.out supports PIC %elifdef MACHO ; ----(nasm -fmacho -DMACHO ...)-------- ; * NeXTstep/OpenStep/Rhapsody/Darwin/MacOS X (Mach-O format) ; -- segment definition -- ; %define SEG_TEXT .text ;align=32 ; nasm doesn't accept align=32. why? %define SEG_CONST .rodata align=32 ; The generation of position-independent code (PIC) is the default on Darwin. ; %define PIC %define GOT_SYMBOL _MACHO_PIC_ ; Mach-O style code-relative addressing %else ; ----(Other case)---------------------- ; -- segment definition -- ; %define SEG_TEXT .text %define SEG_CONST .data %endif ; ---------------------------------------------- ; ========================================================================== ; -------------------------------------------------------------------------- ; Common types ; %ifdef __x86_64__ %ifnidn __OUTPUT_FORMAT__, elfx32 %define POINTER qword ; general pointer type %define SIZEOF_POINTER SIZEOF_QWORD ; sizeof(POINTER) %define POINTER_BIT QWORD_BIT ; sizeof(POINTER)*BYTE_BIT %define resp resq %define dp dq %define raxp rax %define rbxp rbx %define rcxp rcx %define rdxp rdx %define rsip rsi %define rdip rdi %define rbpp rbp %define rspp rsp %define r8p r8 %define r9p r9 %define r10p r10 %define r11p r11 %define r12p r12 %define r13p r13 %define r14p r14 %define r15p r15 %endif %endif %ifndef raxp %define POINTER dword ; general pointer type %define SIZEOF_POINTER SIZEOF_DWORD ; sizeof(POINTER) %define POINTER_BIT DWORD_BIT ; sizeof(POINTER)*BYTE_BIT %define resp resd %define dp dd ; x86_64 ILP32 ABI (x32) %define raxp eax %define rbxp ebx %define rcxp ecx %define rdxp edx %define rsip esi %define rdip edi %define rbpp ebp %define rspp esp %define r8p r8d %define r9p r9d %define r10p r10d %define r11p r11d %define r12p r12d %define r13p r13d %define r14p r14d %define r15p r15d %endif %define INT dword ; signed integer type %define SIZEOF_INT SIZEOF_DWORD ; sizeof(INT) %define INT_BIT DWORD_BIT ; sizeof(INT)*BYTE_BIT %define FP32 dword ; IEEE754 single %define SIZEOF_FP32 SIZEOF_DWORD ; sizeof(FP32) %define FP32_BIT DWORD_BIT ; sizeof(FP32)*BYTE_BIT %define MMWORD qword ; int64 (MMX register) %define SIZEOF_MMWORD SIZEOF_QWORD ; sizeof(MMWORD) %define MMWORD_BIT QWORD_BIT ; sizeof(MMWORD)*BYTE_BIT ; NASM is buggy and doesn't properly handle operand sizes for SSE ; instructions, so for now we have to define XMMWORD as blank. %define XMMWORD ; int128 (SSE register) %define SIZEOF_XMMWORD SIZEOF_OWORD ; sizeof(XMMWORD) %define XMMWORD_BIT OWORD_BIT ; sizeof(XMMWORD)*BYTE_BIT %define YMMWORD ; int256 (AVX register) %define SIZEOF_YMMWORD SIZEOF_YWORD ; sizeof(YMMWORD) %define YMMWORD_BIT YWORD_BIT ; sizeof(YMMWORD)*BYTE_BIT ; Similar hacks for when we load a dword or MMWORD into an xmm# register %define XMM_DWORD %define XMM_MMWORD %define SIZEOF_BYTE 1 ; sizeof(byte) %define SIZEOF_WORD 2 ; sizeof(word) %define SIZEOF_DWORD 4 ; sizeof(dword) %define SIZEOF_QWORD 8 ; sizeof(qword) %define SIZEOF_OWORD 16 ; sizeof(oword) %define SIZEOF_YWORD 32 ; sizeof(yword) %define BYTE_BIT 8 ; CHAR_BIT in C %define WORD_BIT 16 ; sizeof(word)*BYTE_BIT %define DWORD_BIT 32 ; sizeof(dword)*BYTE_BIT %define QWORD_BIT 64 ; sizeof(qword)*BYTE_BIT %define OWORD_BIT 128 ; sizeof(oword)*BYTE_BIT %define YWORD_BIT 256 ; sizeof(yword)*BYTE_BIT ; -------------------------------------------------------------------------- ; External Symbol Name ; %ifndef EXTN %define EXTN(name) _ %+ name ; foo() -> _foo %endif ; -------------------------------------------------------------------------- ; Hidden symbols ; %ifdef ELF ; ----(nasm -felf[64] -DELF ...)-------- %define GLOBAL_FUNCTION(name) global EXTN(name):function hidden %define GLOBAL_DATA(name) global EXTN(name):data hidden %elifdef MACHO ; ----(nasm -fmacho -DMACHO ...)-------- %ifdef __YASM_VER__ %define GLOBAL_FUNCTION(name) global EXTN(name):private_extern %define GLOBAL_DATA(name) global EXTN(name):private_extern %else %if __NASM_VERSION_ID__ >= 0x020E0000 %define GLOBAL_FUNCTION(name) global EXTN(name):private_extern %define GLOBAL_DATA(name) global EXTN(name):private_extern %endif %endif %endif %ifndef GLOBAL_FUNCTION %define GLOBAL_FUNCTION(name) global EXTN(name) %endif %ifndef GLOBAL_DATA %define GLOBAL_DATA(name) global EXTN(name) %endif ; -------------------------------------------------------------------------- ; Macros for position-independent code (PIC) support ; %ifndef GOT_SYMBOL %undef PIC %endif %ifdef PIC ; ------------------------------------------- %ifidn GOT_SYMBOL, _MACHO_PIC_ ; -------------------- ; At present, nasm doesn't seem to support PIC generation for Mach-O. ; The PIC support code below is a little tricky. SECTION SEG_CONST const_base: %define GOTOFF(got, sym) (got) + (sym) - const_base %imacro get_GOT 1 ; NOTE: this macro destroys ecx resister. call %%geteip add ecx, byte (%%ref - $) jmp short %%adjust %%geteip: mov ecx, POINTER [esp] ret %%adjust: push ebp xor ebp, ebp ; ebp = 0 %ifidni %1, ebx ; (%1 == ebx) ; db 0x8D,0x9C + jmp near const_base = ; lea ebx, [ecx+ebp*8+(const_base-%%ref)] ; 8D,9C,E9,(offset32) db 0x8D, 0x9C ; 8D,9C jmp near const_base ; E9,(const_base-%%ref) %%ref: %else ; (%1 != ebx) ; db 0x8D,0x8C + jmp near const_base = ; lea ecx, [ecx+ebp*8+(const_base-%%ref)] ; 8D,8C,E9,(offset32) db 0x8D, 0x8C ; 8D,8C jmp near const_base ; E9,(const_base-%%ref) %%ref: mov %1, ecx %endif ; (%1 == ebx) pop ebp %endmacro %else ; GOT_SYMBOL != _MACHO_PIC_ ---------------- %define GOTOFF(got, sym) (got) + (sym) wrt ..gotoff %imacro get_GOT 1 extern GOT_SYMBOL call %%geteip add %1, GOT_SYMBOL + $$ - $ wrt ..gotpc jmp short %%done %%geteip: mov %1, POINTER [esp] ret %%done: %endmacro %endif ; GOT_SYMBOL == _MACHO_PIC_ ---------------- %imacro pushpic 1.nolist push %1 %endmacro %imacro poppic 1.nolist pop %1 %endmacro %imacro movpic 2.nolist mov %1, %2 %endmacro %else ; !PIC ----------------------------------------- %define GOTOFF(got, sym) (sym) %imacro get_GOT 1.nolist %endmacro %imacro pushpic 1.nolist %endmacro %imacro poppic 1.nolist %endmacro %imacro movpic 2.nolist %endmacro %endif ; PIC ----------------------------------------- ; -------------------------------------------------------------------------- ; Align the next instruction on {2,4,8,16,..}-byte boundary. ; ".balign n,,m" in GNU as ; %define MSKLE(x, y) (~(((y) & 0xFFFF) - ((x) & 0xFFFF)) >> 16) %define FILLB(b, n) (($$-(b)) & ((n)-1)) %imacro alignx 1-2.nolist 0xFFFF %%bs: \ times MSKLE(FILLB(%%bs, %1), %2) & MSKLE(16, FILLB($, %1)) & FILLB($, %1) \ db 0x90 ; nop times MSKLE(FILLB(%%bs, %1), %2) & FILLB($, %1) / 9 \ db 0x8D, 0x9C, 0x23, 0x00, 0x00, 0x00, 0x00 ; lea ebx,[ebx+0x00000000] times MSKLE(FILLB(%%bs, %1), %2) & FILLB($, %1) / 7 \ db 0x8D, 0xAC, 0x25, 0x00, 0x00, 0x00, 0x00 ; lea ebp,[ebp+0x00000000] times MSKLE(FILLB(%%bs, %1), %2) & FILLB($, %1) / 6 \ db 0x8D, 0xAD, 0x00, 0x00, 0x00, 0x00 ; lea ebp,[ebp+0x00000000] times MSKLE(FILLB(%%bs, %1), %2) & FILLB($, %1) / 4 \ db 0x8D, 0x6C, 0x25, 0x00 ; lea ebp,[ebp+0x00] times MSKLE(FILLB(%%bs, %1), %2) & FILLB($, %1) / 3 \ db 0x8D, 0x6D, 0x00 ; lea ebp,[ebp+0x00] times MSKLE(FILLB(%%bs, %1), %2) & FILLB($, %1) / 2 \ db 0x8B, 0xED ; mov ebp,ebp times MSKLE(FILLB(%%bs, %1), %2) & FILLB($, %1) / 1 \ db 0x90 ; nop %endmacro ; Align the next data on {2,4,8,16,..}-byte boundary. ; %imacro alignz 1.nolist align %1, db 0 ; filling zeros %endmacro %ifdef __x86_64__ %ifdef WIN64 %imacro collect_args 1 sub rsp, SIZEOF_XMMWORD movaps XMMWORD [rsp], xmm6 sub rsp, SIZEOF_XMMWORD movaps XMMWORD [rsp], xmm7 mov r10, rcx %if %1 > 1 mov r11, rdx %endif %if %1 > 2 push r12 mov r12, r8 %endif %if %1 > 3 push r13 mov r13, r9 %endif %if %1 > 4 push r14 mov r14, [rax+48] %endif %if %1 > 5 push r15 mov r15, [rax+56] %endif push rsi push rdi %endmacro %imacro uncollect_args 1 pop rdi pop rsi %if %1 > 5 pop r15 %endif %if %1 > 4 pop r14 %endif %if %1 > 3 pop r13 %endif %if %1 > 2 pop r12 %endif movaps xmm7, XMMWORD [rsp] add rsp, SIZEOF_XMMWORD movaps xmm6, XMMWORD [rsp] add rsp, SIZEOF_XMMWORD %endmacro %imacro push_xmm 1 sub rsp, %1 * SIZEOF_XMMWORD movaps XMMWORD [rsp+0*SIZEOF_XMMWORD], xmm8 %if %1 > 1 movaps XMMWORD [rsp+1*SIZEOF_XMMWORD], xmm9 %endif %if %1 > 2 movaps XMMWORD [rsp+2*SIZEOF_XMMWORD], xmm10 %endif %if %1 > 3 movaps XMMWORD [rsp+3*SIZEOF_XMMWORD], xmm11 %endif %endmacro %imacro pop_xmm 1 movaps xmm8, XMMWORD [rsp+0*SIZEOF_XMMWORD] %if %1 > 1 movaps xmm9, XMMWORD [rsp+1*SIZEOF_XMMWORD] %endif %if %1 > 2 movaps xmm10, XMMWORD [rsp+2*SIZEOF_XMMWORD] %endif %if %1 > 3 movaps xmm11, XMMWORD [rsp+3*SIZEOF_XMMWORD] %endif add rsp, %1 * SIZEOF_XMMWORD %endmacro %else %imacro collect_args 1 push r10 mov r10, rdi %if %1 > 1 push r11 mov r11, rsi %endif %if %1 > 2 push r12 mov r12, rdx %endif %if %1 > 3 push r13 mov r13, rcx %endif %if %1 > 4 push r14 mov r14, r8 %endif %if %1 > 5 push r15 mov r15, r9 %endif %endmacro %imacro uncollect_args 1 %if %1 > 5 pop r15 %endif %if %1 > 4 pop r14 %endif %if %1 > 3 pop r13 %endif %if %1 > 2 pop r12 %endif %if %1 > 1 pop r11 %endif pop r10 %endmacro %imacro push_xmm 1 %endmacro %imacro pop_xmm 1 %endmacro %endif %endif ; -------------------------------------------------------------------------- ; Defines picked up from the C headers ; %include "jsimdcfg.inc" ; -------------------------------------------------------------------------- libjpeg-turbo-2.1.5/simd/powerpc/000077500000000000000000000000001436506551100167055ustar00rootroot00000000000000libjpeg-turbo-2.1.5/simd/powerpc/jccolext-altivec.c000066400000000000000000000264371436506551100223250ustar00rootroot00000000000000/* * AltiVec optimizations for libjpeg-turbo * * Copyright (C) 2014-2015, D. R. Commander. All Rights Reserved. * Copyright (C) 2014, Jay Foad. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ /* This file is included by jccolor-altivec.c */ void jsimd_rgb_ycc_convert_altivec(JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { JSAMPROW inptr, outptr0, outptr1, outptr2; int pitch = img_width * RGB_PIXELSIZE, num_cols; #if __BIG_ENDIAN__ int offset; #endif unsigned char __attribute__((aligned(16))) tmpbuf[RGB_PIXELSIZE * 16]; __vector unsigned char rgb0, rgb1 = { 0 }, rgb2 = { 0 }, rgbg0, rgbg1, rgbg2, rgbg3, y, cb, cr; #if __BIG_ENDIAN__ || RGB_PIXELSIZE == 4 __vector unsigned char rgb3 = { 0 }; #endif #if __BIG_ENDIAN__ && RGB_PIXELSIZE == 4 __vector unsigned char rgb4 = { 0 }; #endif __vector short rg0, rg1, rg2, rg3, bg0, bg1, bg2, bg3; __vector unsigned short yl, yh, crl, crh, cbl, cbh; __vector int y0, y1, y2, y3, cr0, cr1, cr2, cr3, cb0, cb1, cb2, cb3; /* Constants */ __vector short pw_f0299_f0337 = { __4X2(F_0_299, F_0_337) }, pw_f0114_f0250 = { __4X2(F_0_114, F_0_250) }, pw_mf016_mf033 = { __4X2(-F_0_168, -F_0_331) }, pw_mf008_mf041 = { __4X2(-F_0_081, -F_0_418) }; __vector unsigned short pw_f050_f000 = { __4X2(F_0_500, 0) }; __vector int pd_onehalf = { __4X(ONE_HALF) }, pd_onehalfm1_cj = { __4X(ONE_HALF - 1 + (CENTERJSAMPLE << SCALEBITS)) }; __vector unsigned char pb_zero = { __16X(0) }, #if __BIG_ENDIAN__ shift_pack_index = { 0, 1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29 }; #else shift_pack_index = { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 }; #endif while (--num_rows >= 0) { inptr = *input_buf++; outptr0 = output_buf[0][output_row]; outptr1 = output_buf[1][output_row]; outptr2 = output_buf[2][output_row]; output_row++; for (num_cols = pitch; num_cols > 0; num_cols -= RGB_PIXELSIZE * 16, inptr += RGB_PIXELSIZE * 16, outptr0 += 16, outptr1 += 16, outptr2 += 16) { #if __BIG_ENDIAN__ /* Load 16 pixels == 48 or 64 bytes */ offset = (size_t)inptr & 15; if (offset) { __vector unsigned char unaligned_shift_index; int bytes = num_cols + offset; if (bytes < (RGB_PIXELSIZE + 1) * 16 && (bytes & 15)) { /* Slow path to prevent buffer overread. Since there is no way to * read a partial AltiVec register, overread would occur on the last * chunk of the last image row if the right edge is not on a 16-byte * boundary. It could also occur on other rows if the bytes per row * is low enough. Since we can't determine whether we're on the last * image row, we have to assume every row is the last. */ memcpy(tmpbuf, inptr, min(num_cols, RGB_PIXELSIZE * 16)); rgb0 = vec_ld(0, tmpbuf); rgb1 = vec_ld(16, tmpbuf); rgb2 = vec_ld(32, tmpbuf); #if RGB_PIXELSIZE == 4 rgb3 = vec_ld(48, tmpbuf); #endif } else { /* Fast path */ rgb0 = vec_ld(0, inptr); if (bytes > 16) rgb1 = vec_ld(16, inptr); if (bytes > 32) rgb2 = vec_ld(32, inptr); if (bytes > 48) rgb3 = vec_ld(48, inptr); #if RGB_PIXELSIZE == 4 if (bytes > 64) rgb4 = vec_ld(64, inptr); #endif unaligned_shift_index = vec_lvsl(0, inptr); rgb0 = vec_perm(rgb0, rgb1, unaligned_shift_index); rgb1 = vec_perm(rgb1, rgb2, unaligned_shift_index); rgb2 = vec_perm(rgb2, rgb3, unaligned_shift_index); #if RGB_PIXELSIZE == 4 rgb3 = vec_perm(rgb3, rgb4, unaligned_shift_index); #endif } } else { #endif /* __BIG_ENDIAN__ */ if (num_cols < RGB_PIXELSIZE * 16 && (num_cols & 15)) { /* Slow path */ memcpy(tmpbuf, inptr, min(num_cols, RGB_PIXELSIZE * 16)); rgb0 = VEC_LD(0, tmpbuf); rgb1 = VEC_LD(16, tmpbuf); rgb2 = VEC_LD(32, tmpbuf); #if RGB_PIXELSIZE == 4 rgb3 = VEC_LD(48, tmpbuf); #endif } else { /* Fast path */ rgb0 = VEC_LD(0, inptr); if (num_cols > 16) rgb1 = VEC_LD(16, inptr); if (num_cols > 32) rgb2 = VEC_LD(32, inptr); #if RGB_PIXELSIZE == 4 if (num_cols > 48) rgb3 = VEC_LD(48, inptr); #endif } #if __BIG_ENDIAN__ } #endif #if RGB_PIXELSIZE == 3 /* rgb0 = R0 G0 B0 R1 G1 B1 R2 G2 B2 R3 G3 B3 R4 G4 B4 R5 * rgb1 = G5 B5 R6 G6 B6 R7 G7 B7 R8 G8 B8 R9 G9 B9 Ra Ga * rgb2 = Ba Rb Gb Bb Rc Gc Bc Rd Gd Bd Re Ge Be Rf Gf Bf * * rgbg0 = R0 G0 R1 G1 R2 G2 R3 G3 B0 G0 B1 G1 B2 G2 B3 G3 * rgbg1 = R4 G4 R5 G5 R6 G6 R7 G7 B4 G4 B5 G5 B6 G6 B7 G7 * rgbg2 = R8 G8 R9 G9 Ra Ga Rb Gb B8 G8 B9 G9 Ba Ga Bb Gb * rgbg3 = Rc Gc Rd Gd Re Ge Rf Gf Bc Gc Bd Gd Be Ge Bf Gf */ rgbg0 = vec_perm(rgb0, rgb0, (__vector unsigned char)RGBG_INDEX0); rgbg1 = vec_perm(rgb0, rgb1, (__vector unsigned char)RGBG_INDEX1); rgbg2 = vec_perm(rgb1, rgb2, (__vector unsigned char)RGBG_INDEX2); rgbg3 = vec_perm(rgb2, rgb2, (__vector unsigned char)RGBG_INDEX3); #else /* rgb0 = R0 G0 B0 X0 R1 G1 B1 X1 R2 G2 B2 X2 R3 G3 B3 X3 * rgb1 = R4 G4 B4 X4 R5 G5 B5 X5 R6 G6 B6 X6 R7 G7 B7 X7 * rgb2 = R8 G8 B8 X8 R9 G9 B9 X9 Ra Ga Ba Xa Rb Gb Bb Xb * rgb3 = Rc Gc Bc Xc Rd Gd Bd Xd Re Ge Be Xe Rf Gf Bf Xf * * rgbg0 = R0 G0 R1 G1 R2 G2 R3 G3 B0 G0 B1 G1 B2 G2 B3 G3 * rgbg1 = R4 G4 R5 G5 R6 G6 R7 G7 B4 G4 B5 G5 B6 G6 B7 G7 * rgbg2 = R8 G8 R9 G9 Ra Ga Rb Gb B8 G8 B9 G9 Ba Ga Bb Gb * rgbg3 = Rc Gc Rd Gd Re Ge Rf Gf Bc Gc Bd Gd Be Ge Bf Gf */ rgbg0 = vec_perm(rgb0, rgb0, (__vector unsigned char)RGBG_INDEX); rgbg1 = vec_perm(rgb1, rgb1, (__vector unsigned char)RGBG_INDEX); rgbg2 = vec_perm(rgb2, rgb2, (__vector unsigned char)RGBG_INDEX); rgbg3 = vec_perm(rgb3, rgb3, (__vector unsigned char)RGBG_INDEX); #endif /* rg0 = R0 G0 R1 G1 R2 G2 R3 G3 * bg0 = B0 G0 B1 G1 B2 G2 B3 G3 * ... * * NOTE: We have to use vec_merge*() here because vec_unpack*() doesn't * support unsigned vectors. */ rg0 = (__vector signed short)VEC_UNPACKHU(rgbg0); bg0 = (__vector signed short)VEC_UNPACKLU(rgbg0); rg1 = (__vector signed short)VEC_UNPACKHU(rgbg1); bg1 = (__vector signed short)VEC_UNPACKLU(rgbg1); rg2 = (__vector signed short)VEC_UNPACKHU(rgbg2); bg2 = (__vector signed short)VEC_UNPACKLU(rgbg2); rg3 = (__vector signed short)VEC_UNPACKHU(rgbg3); bg3 = (__vector signed short)VEC_UNPACKLU(rgbg3); /* (Original) * Y = 0.29900 * R + 0.58700 * G + 0.11400 * B * Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + CENTERJSAMPLE * Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + CENTERJSAMPLE * * (This implementation) * Y = 0.29900 * R + 0.33700 * G + 0.11400 * B + 0.25000 * G * Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + CENTERJSAMPLE * Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + CENTERJSAMPLE */ /* Calculate Y values */ y0 = vec_msums(rg0, pw_f0299_f0337, pd_onehalf); y1 = vec_msums(rg1, pw_f0299_f0337, pd_onehalf); y2 = vec_msums(rg2, pw_f0299_f0337, pd_onehalf); y3 = vec_msums(rg3, pw_f0299_f0337, pd_onehalf); y0 = vec_msums(bg0, pw_f0114_f0250, y0); y1 = vec_msums(bg1, pw_f0114_f0250, y1); y2 = vec_msums(bg2, pw_f0114_f0250, y2); y3 = vec_msums(bg3, pw_f0114_f0250, y3); /* Clever way to avoid 4 shifts + 2 packs. This packs the high word from * each dword into a new 16-bit vector, which is the equivalent of * descaling the 32-bit results (right-shifting by 16 bits) and then * packing them. */ yl = vec_perm((__vector unsigned short)y0, (__vector unsigned short)y1, shift_pack_index); yh = vec_perm((__vector unsigned short)y2, (__vector unsigned short)y3, shift_pack_index); y = vec_pack(yl, yh); vec_st(y, 0, outptr0); /* Calculate Cb values */ cb0 = vec_msums(rg0, pw_mf016_mf033, pd_onehalfm1_cj); cb1 = vec_msums(rg1, pw_mf016_mf033, pd_onehalfm1_cj); cb2 = vec_msums(rg2, pw_mf016_mf033, pd_onehalfm1_cj); cb3 = vec_msums(rg3, pw_mf016_mf033, pd_onehalfm1_cj); cb0 = (__vector int)vec_msum((__vector unsigned short)bg0, pw_f050_f000, (__vector unsigned int)cb0); cb1 = (__vector int)vec_msum((__vector unsigned short)bg1, pw_f050_f000, (__vector unsigned int)cb1); cb2 = (__vector int)vec_msum((__vector unsigned short)bg2, pw_f050_f000, (__vector unsigned int)cb2); cb3 = (__vector int)vec_msum((__vector unsigned short)bg3, pw_f050_f000, (__vector unsigned int)cb3); cbl = vec_perm((__vector unsigned short)cb0, (__vector unsigned short)cb1, shift_pack_index); cbh = vec_perm((__vector unsigned short)cb2, (__vector unsigned short)cb3, shift_pack_index); cb = vec_pack(cbl, cbh); vec_st(cb, 0, outptr1); /* Calculate Cr values */ cr0 = vec_msums(bg0, pw_mf008_mf041, pd_onehalfm1_cj); cr1 = vec_msums(bg1, pw_mf008_mf041, pd_onehalfm1_cj); cr2 = vec_msums(bg2, pw_mf008_mf041, pd_onehalfm1_cj); cr3 = vec_msums(bg3, pw_mf008_mf041, pd_onehalfm1_cj); cr0 = (__vector int)vec_msum((__vector unsigned short)rg0, pw_f050_f000, (__vector unsigned int)cr0); cr1 = (__vector int)vec_msum((__vector unsigned short)rg1, pw_f050_f000, (__vector unsigned int)cr1); cr2 = (__vector int)vec_msum((__vector unsigned short)rg2, pw_f050_f000, (__vector unsigned int)cr2); cr3 = (__vector int)vec_msum((__vector unsigned short)rg3, pw_f050_f000, (__vector unsigned int)cr3); crl = vec_perm((__vector unsigned short)cr0, (__vector unsigned short)cr1, shift_pack_index); crh = vec_perm((__vector unsigned short)cr2, (__vector unsigned short)cr3, shift_pack_index); cr = vec_pack(crl, crh); vec_st(cr, 0, outptr2); } } } libjpeg-turbo-2.1.5/simd/powerpc/jccolor-altivec.c000066400000000000000000000102621436506551100221320ustar00rootroot00000000000000/* * AltiVec optimizations for libjpeg-turbo * * Copyright (C) 2014, D. R. Commander. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ /* RGB --> YCC CONVERSION */ #include "jsimd_altivec.h" #define F_0_081 5329 /* FIX(0.08131) */ #define F_0_114 7471 /* FIX(0.11400) */ #define F_0_168 11059 /* FIX(0.16874) */ #define F_0_250 16384 /* FIX(0.25000) */ #define F_0_299 19595 /* FIX(0.29900) */ #define F_0_331 21709 /* FIX(0.33126) */ #define F_0_418 27439 /* FIX(0.41869) */ #define F_0_500 32768 /* FIX(0.50000) */ #define F_0_587 38470 /* FIX(0.58700) */ #define F_0_337 (F_0_587 - F_0_250) /* FIX(0.58700) - FIX(0.25000) */ #define SCALEBITS 16 #define ONE_HALF (1 << (SCALEBITS - 1)) #define RGBG_INDEX0 \ { 0, 1, 3, 4, 6, 7, 9, 10, 2, 1, 5, 4, 8, 7, 11, 10 } #define RGBG_INDEX1 \ { 12, 13, 15, 16, 18, 19, 21, 22, 14, 13, 17, 16, 20, 19, 23, 22 } #define RGBG_INDEX2 \ { 8, 9, 11, 12, 14, 15, 17, 18, 10, 9, 13, 12, 16, 15, 19, 18 } #define RGBG_INDEX3 \ { 4, 5, 7, 8, 10, 11, 13, 14, 6, 5, 9, 8, 12, 11, 15, 14 } #include "jccolext-altivec.c" #undef RGB_PIXELSIZE #define RGB_PIXELSIZE EXT_RGB_PIXELSIZE #define jsimd_rgb_ycc_convert_altivec jsimd_extrgb_ycc_convert_altivec #include "jccolext-altivec.c" #undef RGB_PIXELSIZE #undef RGBG_INDEX0 #undef RGBG_INDEX1 #undef RGBG_INDEX2 #undef RGBG_INDEX3 #undef jsimd_rgb_ycc_convert_altivec #define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE #define RGBG_INDEX \ { 0, 1, 4, 5, 8, 9, 12, 13, 2, 1, 6, 5, 10, 9, 14, 13 } #define jsimd_rgb_ycc_convert_altivec jsimd_extrgbx_ycc_convert_altivec #include "jccolext-altivec.c" #undef RGB_PIXELSIZE #undef RGBG_INDEX #undef jsimd_rgb_ycc_convert_altivec #define RGB_PIXELSIZE EXT_BGR_PIXELSIZE #define RGBG_INDEX0 \ { 2, 1, 5, 4, 8, 7, 11, 10, 0, 1, 3, 4, 6, 7, 9, 10 } #define RGBG_INDEX1 \ { 14, 13, 17, 16, 20, 19, 23, 22, 12, 13, 15, 16, 18, 19, 21, 22 } #define RGBG_INDEX2 \ { 10, 9, 13, 12, 16, 15, 19, 18, 8, 9, 11, 12, 14, 15, 17, 18 } #define RGBG_INDEX3 \ { 6, 5, 9, 8, 12, 11, 15, 14, 4, 5, 7, 8, 10, 11, 13, 14 } #define jsimd_rgb_ycc_convert_altivec jsimd_extbgr_ycc_convert_altivec #include "jccolext-altivec.c" #undef RGB_PIXELSIZE #undef RGBG_INDEX0 #undef RGBG_INDEX1 #undef RGBG_INDEX2 #undef RGBG_INDEX3 #undef jsimd_rgb_ycc_convert_altivec #define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE #define RGBG_INDEX \ { 2, 1, 6, 5, 10, 9, 14, 13, 0, 1, 4, 5, 8, 9, 12, 13 } #define jsimd_rgb_ycc_convert_altivec jsimd_extbgrx_ycc_convert_altivec #include "jccolext-altivec.c" #undef RGB_PIXELSIZE #undef RGBG_INDEX #undef jsimd_rgb_ycc_convert_altivec #define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE #define RGBG_INDEX \ { 3, 2, 7, 6, 11, 10, 15, 14, 1, 2, 5, 6, 9, 10, 13, 14 } #define jsimd_rgb_ycc_convert_altivec jsimd_extxbgr_ycc_convert_altivec #include "jccolext-altivec.c" #undef RGB_PIXELSIZE #undef RGBG_INDEX #undef jsimd_rgb_ycc_convert_altivec #define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE #define RGBG_INDEX \ { 1, 2, 5, 6, 9, 10, 13, 14, 3, 2, 7, 6, 11, 10, 15, 14 } #define jsimd_rgb_ycc_convert_altivec jsimd_extxrgb_ycc_convert_altivec #include "jccolext-altivec.c" #undef RGB_PIXELSIZE #undef RGBG_INDEX #undef jsimd_rgb_ycc_convert_altivec libjpeg-turbo-2.1.5/simd/powerpc/jcgray-altivec.c000066400000000000000000000076551436506551100217720ustar00rootroot00000000000000/* * AltiVec optimizations for libjpeg-turbo * * Copyright (C) 2014, D. R. Commander. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ /* RGB --> GRAYSCALE CONVERSION */ #include "jsimd_altivec.h" #define F_0_114 7471 /* FIX(0.11400) */ #define F_0_250 16384 /* FIX(0.25000) */ #define F_0_299 19595 /* FIX(0.29900) */ #define F_0_587 38470 /* FIX(0.58700) */ #define F_0_337 (F_0_587 - F_0_250) /* FIX(0.58700) - FIX(0.25000) */ #define SCALEBITS 16 #define ONE_HALF (1 << (SCALEBITS - 1)) #define RGBG_INDEX0 \ { 0, 1, 3, 4, 6, 7, 9, 10, 2, 1, 5, 4, 8, 7, 11, 10 } #define RGBG_INDEX1 \ { 12, 13, 15, 16, 18, 19, 21, 22, 14, 13, 17, 16, 20, 19, 23, 22 } #define RGBG_INDEX2 \ { 8, 9, 11, 12, 14, 15, 17, 18, 10, 9, 13, 12, 16, 15, 19, 18 } #define RGBG_INDEX3 \ { 4, 5, 7, 8, 10, 11, 13, 14, 6, 5, 9, 8, 12, 11, 15, 14 } #include "jcgryext-altivec.c" #undef RGB_PIXELSIZE #define RGB_PIXELSIZE EXT_RGB_PIXELSIZE #define jsimd_rgb_gray_convert_altivec jsimd_extrgb_gray_convert_altivec #include "jcgryext-altivec.c" #undef RGB_PIXELSIZE #undef RGBG_INDEX0 #undef RGBG_INDEX1 #undef RGBG_INDEX2 #undef RGBG_INDEX3 #undef jsimd_rgb_gray_convert_altivec #define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE #define RGBG_INDEX \ { 0, 1, 4, 5, 8, 9, 12, 13, 2, 1, 6, 5, 10, 9, 14, 13 } #define jsimd_rgb_gray_convert_altivec jsimd_extrgbx_gray_convert_altivec #include "jcgryext-altivec.c" #undef RGB_PIXELSIZE #undef RGBG_INDEX #undef jsimd_rgb_gray_convert_altivec #define RGB_PIXELSIZE EXT_BGR_PIXELSIZE #define RGBG_INDEX0 \ { 2, 1, 5, 4, 8, 7, 11, 10, 0, 1, 3, 4, 6, 7, 9, 10 } #define RGBG_INDEX1 \ { 14, 13, 17, 16, 20, 19, 23, 22, 12, 13, 15, 16, 18, 19, 21, 22 } #define RGBG_INDEX2 \ { 10, 9, 13, 12, 16, 15, 19, 18, 8, 9, 11, 12, 14, 15, 17, 18 } #define RGBG_INDEX3 \ { 6, 5, 9, 8, 12, 11, 15, 14, 4, 5, 7, 8, 10, 11, 13, 14 } #define jsimd_rgb_gray_convert_altivec jsimd_extbgr_gray_convert_altivec #include "jcgryext-altivec.c" #undef RGB_PIXELSIZE #undef RGBG_INDEX0 #undef RGBG_INDEX1 #undef RGBG_INDEX2 #undef RGBG_INDEX3 #undef jsimd_rgb_gray_convert_altivec #define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE #define RGBG_INDEX \ { 2, 1, 6, 5, 10, 9, 14, 13, 0, 1, 4, 5, 8, 9, 12, 13 } #define jsimd_rgb_gray_convert_altivec jsimd_extbgrx_gray_convert_altivec #include "jcgryext-altivec.c" #undef RGB_PIXELSIZE #undef RGBG_INDEX #undef jsimd_rgb_gray_convert_altivec #define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE #define RGBG_INDEX \ { 3, 2, 7, 6, 11, 10, 15, 14, 1, 2, 5, 6, 9, 10, 13, 14 } #define jsimd_rgb_gray_convert_altivec jsimd_extxbgr_gray_convert_altivec #include "jcgryext-altivec.c" #undef RGB_PIXELSIZE #undef RGBG_INDEX #undef jsimd_rgb_gray_convert_altivec #define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE #define RGBG_INDEX \ { 1, 2, 5, 6, 9, 10, 13, 14, 3, 2, 7, 6, 11, 10, 15, 14 } #define jsimd_rgb_gray_convert_altivec jsimd_extxrgb_gray_convert_altivec #include "jcgryext-altivec.c" #undef RGB_PIXELSIZE #undef RGBG_INDEX #undef jsimd_rgb_gray_convert_altivec libjpeg-turbo-2.1.5/simd/powerpc/jcgryext-altivec.c000066400000000000000000000210551436506551100223400ustar00rootroot00000000000000/* * AltiVec optimizations for libjpeg-turbo * * Copyright (C) 2014-2015, D. R. Commander. All Rights Reserved. * Copyright (C) 2014, Jay Foad. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ /* This file is included by jcgray-altivec.c */ void jsimd_rgb_gray_convert_altivec(JDIMENSION img_width, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { JSAMPROW inptr, outptr; int pitch = img_width * RGB_PIXELSIZE, num_cols; #if __BIG_ENDIAN__ int offset; unsigned char __attribute__((aligned(16))) tmpbuf[RGB_PIXELSIZE * 16]; #endif __vector unsigned char rgb0, rgb1 = { 0 }, rgb2 = { 0 }, rgbg0, rgbg1, rgbg2, rgbg3, y; #if __BIG_ENDIAN__ || RGB_PIXELSIZE == 4 __vector unsigned char rgb3 = { 0 }; #endif #if __BIG_ENDIAN__ && RGB_PIXELSIZE == 4 __vector unsigned char rgb4 = { 0 }; #endif __vector short rg0, rg1, rg2, rg3, bg0, bg1, bg2, bg3; __vector unsigned short yl, yh; __vector int y0, y1, y2, y3; /* Constants */ __vector short pw_f0299_f0337 = { __4X2(F_0_299, F_0_337) }, pw_f0114_f0250 = { __4X2(F_0_114, F_0_250) }; __vector int pd_onehalf = { __4X(ONE_HALF) }; __vector unsigned char pb_zero = { __16X(0) }, #if __BIG_ENDIAN__ shift_pack_index = { 0, 1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29 }; #else shift_pack_index = { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 }; #endif while (--num_rows >= 0) { inptr = *input_buf++; outptr = output_buf[0][output_row]; output_row++; for (num_cols = pitch; num_cols > 0; num_cols -= RGB_PIXELSIZE * 16, inptr += RGB_PIXELSIZE * 16, outptr += 16) { #if __BIG_ENDIAN__ /* Load 16 pixels == 48 or 64 bytes */ offset = (size_t)inptr & 15; if (offset) { __vector unsigned char unaligned_shift_index; int bytes = num_cols + offset; if (bytes < (RGB_PIXELSIZE + 1) * 16 && (bytes & 15)) { /* Slow path to prevent buffer overread. Since there is no way to * read a partial AltiVec register, overread would occur on the last * chunk of the last image row if the right edge is not on a 16-byte * boundary. It could also occur on other rows if the bytes per row * is low enough. Since we can't determine whether we're on the last * image row, we have to assume every row is the last. */ memcpy(tmpbuf, inptr, min(num_cols, RGB_PIXELSIZE * 16)); rgb0 = vec_ld(0, tmpbuf); rgb1 = vec_ld(16, tmpbuf); rgb2 = vec_ld(32, tmpbuf); #if RGB_PIXELSIZE == 4 rgb3 = vec_ld(48, tmpbuf); #endif } else { /* Fast path */ rgb0 = vec_ld(0, inptr); if (bytes > 16) rgb1 = vec_ld(16, inptr); if (bytes > 32) rgb2 = vec_ld(32, inptr); if (bytes > 48) rgb3 = vec_ld(48, inptr); #if RGB_PIXELSIZE == 4 if (bytes > 64) rgb4 = vec_ld(64, inptr); #endif unaligned_shift_index = vec_lvsl(0, inptr); rgb0 = vec_perm(rgb0, rgb1, unaligned_shift_index); rgb1 = vec_perm(rgb1, rgb2, unaligned_shift_index); rgb2 = vec_perm(rgb2, rgb3, unaligned_shift_index); #if RGB_PIXELSIZE == 4 rgb3 = vec_perm(rgb3, rgb4, unaligned_shift_index); #endif } } else { if (num_cols < RGB_PIXELSIZE * 16 && (num_cols & 15)) { /* Slow path */ memcpy(tmpbuf, inptr, min(num_cols, RGB_PIXELSIZE * 16)); rgb0 = vec_ld(0, tmpbuf); rgb1 = vec_ld(16, tmpbuf); rgb2 = vec_ld(32, tmpbuf); #if RGB_PIXELSIZE == 4 rgb3 = vec_ld(48, tmpbuf); #endif } else { /* Fast path */ rgb0 = vec_ld(0, inptr); if (num_cols > 16) rgb1 = vec_ld(16, inptr); if (num_cols > 32) rgb2 = vec_ld(32, inptr); #if RGB_PIXELSIZE == 4 if (num_cols > 48) rgb3 = vec_ld(48, inptr); #endif } } #else /* Little endian */ rgb0 = vec_vsx_ld(0, inptr); if (num_cols > 16) rgb1 = vec_vsx_ld(16, inptr); if (num_cols > 32) rgb2 = vec_vsx_ld(32, inptr); #if RGB_PIXELSIZE == 4 if (num_cols > 48) rgb3 = vec_vsx_ld(48, inptr); #endif #endif #if RGB_PIXELSIZE == 3 /* rgb0 = R0 G0 B0 R1 G1 B1 R2 G2 B2 R3 G3 B3 R4 G4 B4 R5 * rgb1 = G5 B5 R6 G6 B6 R7 G7 B7 R8 G8 B8 R9 G9 B9 Ra Ga * rgb2 = Ba Rb Gb Bb Rc Gc Bc Rd Gd Bd Re Ge Be Rf Gf Bf * * rgbg0 = R0 G0 R1 G1 R2 G2 R3 G3 B0 G0 B1 G1 B2 G2 B3 G3 * rgbg1 = R4 G4 R5 G5 R6 G6 R7 G7 B4 G4 B5 G5 B6 G6 B7 G7 * rgbg2 = R8 G8 R9 G9 Ra Ga Rb Gb B8 G8 B9 G9 Ba Ga Bb Gb * rgbg3 = Rc Gc Rd Gd Re Ge Rf Gf Bc Gc Bd Gd Be Ge Bf Gf */ rgbg0 = vec_perm(rgb0, rgb0, (__vector unsigned char)RGBG_INDEX0); rgbg1 = vec_perm(rgb0, rgb1, (__vector unsigned char)RGBG_INDEX1); rgbg2 = vec_perm(rgb1, rgb2, (__vector unsigned char)RGBG_INDEX2); rgbg3 = vec_perm(rgb2, rgb2, (__vector unsigned char)RGBG_INDEX3); #else /* rgb0 = R0 G0 B0 X0 R1 G1 B1 X1 R2 G2 B2 X2 R3 G3 B3 X3 * rgb1 = R4 G4 B4 X4 R5 G5 B5 X5 R6 G6 B6 X6 R7 G7 B7 X7 * rgb2 = R8 G8 B8 X8 R9 G9 B9 X9 Ra Ga Ba Xa Rb Gb Bb Xb * rgb3 = Rc Gc Bc Xc Rd Gd Bd Xd Re Ge Be Xe Rf Gf Bf Xf * * rgbg0 = R0 G0 R1 G1 R2 G2 R3 G3 B0 G0 B1 G1 B2 G2 B3 G3 * rgbg1 = R4 G4 R5 G5 R6 G6 R7 G7 B4 G4 B5 G5 B6 G6 B7 G7 * rgbg2 = R8 G8 R9 G9 Ra Ga Rb Gb B8 G8 B9 G9 Ba Ga Bb Gb * rgbg3 = Rc Gc Rd Gd Re Ge Rf Gf Bc Gc Bd Gd Be Ge Bf Gf */ rgbg0 = vec_perm(rgb0, rgb0, (__vector unsigned char)RGBG_INDEX); rgbg1 = vec_perm(rgb1, rgb1, (__vector unsigned char)RGBG_INDEX); rgbg2 = vec_perm(rgb2, rgb2, (__vector unsigned char)RGBG_INDEX); rgbg3 = vec_perm(rgb3, rgb3, (__vector unsigned char)RGBG_INDEX); #endif /* rg0 = R0 G0 R1 G1 R2 G2 R3 G3 * bg0 = B0 G0 B1 G1 B2 G2 B3 G3 * ... * * NOTE: We have to use vec_merge*() here because vec_unpack*() doesn't * support unsigned vectors. */ rg0 = (__vector signed short)VEC_UNPACKHU(rgbg0); bg0 = (__vector signed short)VEC_UNPACKLU(rgbg0); rg1 = (__vector signed short)VEC_UNPACKHU(rgbg1); bg1 = (__vector signed short)VEC_UNPACKLU(rgbg1); rg2 = (__vector signed short)VEC_UNPACKHU(rgbg2); bg2 = (__vector signed short)VEC_UNPACKLU(rgbg2); rg3 = (__vector signed short)VEC_UNPACKHU(rgbg3); bg3 = (__vector signed short)VEC_UNPACKLU(rgbg3); /* (Original) * Y = 0.29900 * R + 0.58700 * G + 0.11400 * B * * (This implementation) * Y = 0.29900 * R + 0.33700 * G + 0.11400 * B + 0.25000 * G */ /* Calculate Y values */ y0 = vec_msums(rg0, pw_f0299_f0337, pd_onehalf); y1 = vec_msums(rg1, pw_f0299_f0337, pd_onehalf); y2 = vec_msums(rg2, pw_f0299_f0337, pd_onehalf); y3 = vec_msums(rg3, pw_f0299_f0337, pd_onehalf); y0 = vec_msums(bg0, pw_f0114_f0250, y0); y1 = vec_msums(bg1, pw_f0114_f0250, y1); y2 = vec_msums(bg2, pw_f0114_f0250, y2); y3 = vec_msums(bg3, pw_f0114_f0250, y3); /* Clever way to avoid 4 shifts + 2 packs. This packs the high word from * each dword into a new 16-bit vector, which is the equivalent of * descaling the 32-bit results (right-shifting by 16 bits) and then * packing them. */ yl = vec_perm((__vector unsigned short)y0, (__vector unsigned short)y1, shift_pack_index); yh = vec_perm((__vector unsigned short)y2, (__vector unsigned short)y3, shift_pack_index); y = vec_pack(yl, yh); vec_st(y, 0, outptr); } } } libjpeg-turbo-2.1.5/simd/powerpc/jcsample-altivec.c000066400000000000000000000127611436506551100223030ustar00rootroot00000000000000/* * AltiVec optimizations for libjpeg-turbo * * Copyright (C) 2015, D. R. Commander. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ /* CHROMA DOWNSAMPLING */ #include "jsimd_altivec.h" #include "jcsample.h" void jsimd_h2v1_downsample_altivec(JDIMENSION image_width, int max_v_samp_factor, JDIMENSION v_samp_factor, JDIMENSION width_in_blocks, JSAMPARRAY input_data, JSAMPARRAY output_data) { int outrow, outcol; JDIMENSION output_cols = width_in_blocks * DCTSIZE; JSAMPROW inptr, outptr; __vector unsigned char this0, next0, out; __vector unsigned short this0e, this0o, next0e, next0o, outl, outh; /* Constants */ __vector unsigned short pw_bias = { __4X2(0, 1) }, pw_one = { __8X(1) }; __vector unsigned char even_odd_index = { 0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 15 }, pb_zero = { __16X(0) }; expand_right_edge(input_data, max_v_samp_factor, image_width, output_cols * 2); for (outrow = 0; outrow < v_samp_factor; outrow++) { outptr = output_data[outrow]; inptr = input_data[outrow]; for (outcol = output_cols; outcol > 0; outcol -= 16, inptr += 32, outptr += 16) { this0 = vec_ld(0, inptr); this0 = vec_perm(this0, this0, even_odd_index); this0e = (__vector unsigned short)VEC_UNPACKHU(this0); this0o = (__vector unsigned short)VEC_UNPACKLU(this0); outl = vec_add(this0e, this0o); outl = vec_add(outl, pw_bias); outl = vec_sr(outl, pw_one); if (outcol > 8) { next0 = vec_ld(16, inptr); next0 = vec_perm(next0, next0, even_odd_index); next0e = (__vector unsigned short)VEC_UNPACKHU(next0); next0o = (__vector unsigned short)VEC_UNPACKLU(next0); outh = vec_add(next0e, next0o); outh = vec_add(outh, pw_bias); outh = vec_sr(outh, pw_one); } else outh = vec_splat_u16(0); out = vec_pack(outl, outh); vec_st(out, 0, outptr); } } } void jsimd_h2v2_downsample_altivec(JDIMENSION image_width, int max_v_samp_factor, JDIMENSION v_samp_factor, JDIMENSION width_in_blocks, JSAMPARRAY input_data, JSAMPARRAY output_data) { int inrow, outrow, outcol; JDIMENSION output_cols = width_in_blocks * DCTSIZE; JSAMPROW inptr0, inptr1, outptr; __vector unsigned char this0, next0, this1, next1, out; __vector unsigned short this0e, this0o, next0e, next0o, this1e, this1o, next1e, next1o, out0l, out0h, out1l, out1h, outl, outh; /* Constants */ __vector unsigned short pw_bias = { __4X2(1, 2) }, pw_two = { __8X(2) }; __vector unsigned char even_odd_index = { 0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 15 }, pb_zero = { __16X(0) }; expand_right_edge(input_data, max_v_samp_factor, image_width, output_cols * 2); for (inrow = 0, outrow = 0; outrow < v_samp_factor; inrow += 2, outrow++) { inptr0 = input_data[inrow]; inptr1 = input_data[inrow + 1]; outptr = output_data[outrow]; for (outcol = output_cols; outcol > 0; outcol -= 16, inptr0 += 32, inptr1 += 32, outptr += 16) { this0 = vec_ld(0, inptr0); this0 = vec_perm(this0, this0, even_odd_index); this0e = (__vector unsigned short)VEC_UNPACKHU(this0); this0o = (__vector unsigned short)VEC_UNPACKLU(this0); out0l = vec_add(this0e, this0o); this1 = vec_ld(0, inptr1); this1 = vec_perm(this1, this1, even_odd_index); this1e = (__vector unsigned short)VEC_UNPACKHU(this1); this1o = (__vector unsigned short)VEC_UNPACKLU(this1); out1l = vec_add(this1e, this1o); outl = vec_add(out0l, out1l); outl = vec_add(outl, pw_bias); outl = vec_sr(outl, pw_two); if (outcol > 8) { next0 = vec_ld(16, inptr0); next0 = vec_perm(next0, next0, even_odd_index); next0e = (__vector unsigned short)VEC_UNPACKHU(next0); next0o = (__vector unsigned short)VEC_UNPACKLU(next0); out0h = vec_add(next0e, next0o); next1 = vec_ld(16, inptr1); next1 = vec_perm(next1, next1, even_odd_index); next1e = (__vector unsigned short)VEC_UNPACKHU(next1); next1o = (__vector unsigned short)VEC_UNPACKLU(next1); out1h = vec_add(next1e, next1o); outh = vec_add(out0h, out1h); outh = vec_add(outh, pw_bias); outh = vec_sr(outh, pw_two); } else outh = vec_splat_u16(0); out = vec_pack(outl, outh); vec_st(out, 0, outptr); } } } libjpeg-turbo-2.1.5/simd/powerpc/jcsample.h000066400000000000000000000012751436506551100206610ustar00rootroot00000000000000/* * jcsample.h * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1996, Thomas G. Lane. * For conditions of distribution and use, see the accompanying README.ijg * file. */ LOCAL(void) expand_right_edge(JSAMPARRAY image_data, int num_rows, JDIMENSION input_cols, JDIMENSION output_cols) { register JSAMPROW ptr; register JSAMPLE pixval; register int count; int row; int numcols = (int)(output_cols - input_cols); if (numcols > 0) { for (row = 0; row < num_rows; row++) { ptr = image_data[row] + input_cols; pixval = ptr[-1]; for (count = numcols; count > 0; count--) *ptr++ = pixval; } } } libjpeg-turbo-2.1.5/simd/powerpc/jdcolext-altivec.c000066400000000000000000000242221436506551100223140ustar00rootroot00000000000000/* * AltiVec optimizations for libjpeg-turbo * * Copyright (C) 2015, D. R. Commander. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ /* This file is included by jdcolor-altivec.c */ void jsimd_ycc_rgb_convert_altivec(JDIMENSION out_width, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { JSAMPROW outptr, inptr0, inptr1, inptr2; int pitch = out_width * RGB_PIXELSIZE, num_cols; #if __BIG_ENDIAN__ int offset; #endif unsigned char __attribute__((aligned(16))) tmpbuf[RGB_PIXELSIZE * 16]; __vector unsigned char rgb0, rgb1, rgb2, rgbx0, rgbx1, rgbx2, rgbx3, y, cb, cr; #if __BIG_ENDIAN__ __vector unsigned char edgel, edgeh, edges, out0, out1, out2, out3; #if RGB_PIXELSIZE == 4 __vector unsigned char out4; #endif #endif #if RGB_PIXELSIZE == 4 __vector unsigned char rgb3; #endif __vector short rg0, rg1, rg2, rg3, bx0, bx1, bx2, bx3, yl, yh, cbl, cbh, crl, crh, rl, rh, gl, gh, bl, bh, g0w, g1w, g2w, g3w; __vector int g0, g1, g2, g3; /* Constants * NOTE: The >> 1 is to compensate for the fact that vec_madds() returns 17 * high-order bits, not 16. */ __vector short pw_f0402 = { __8X(F_0_402 >> 1) }, pw_mf0228 = { __8X(-F_0_228 >> 1) }, pw_mf0344_f0285 = { __4X2(-F_0_344, F_0_285) }, pw_one = { __8X(1) }, pw_255 = { __8X(255) }, pw_cj = { __8X(CENTERJSAMPLE) }; __vector int pd_onehalf = { __4X(ONE_HALF) }; __vector unsigned char pb_zero = { __16X(0) }, #if __BIG_ENDIAN__ shift_pack_index = { 0, 1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29 }; #else shift_pack_index = { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 }; #endif while (--num_rows >= 0) { inptr0 = input_buf[0][input_row]; inptr1 = input_buf[1][input_row]; inptr2 = input_buf[2][input_row]; input_row++; outptr = *output_buf++; for (num_cols = pitch; num_cols > 0; num_cols -= RGB_PIXELSIZE * 16, outptr += RGB_PIXELSIZE * 16, inptr0 += 16, inptr1 += 16, inptr2 += 16) { y = vec_ld(0, inptr0); /* NOTE: We have to use vec_merge*() here because vec_unpack*() doesn't * support unsigned vectors. */ yl = (__vector signed short)VEC_UNPACKHU(y); yh = (__vector signed short)VEC_UNPACKLU(y); cb = vec_ld(0, inptr1); cbl = (__vector signed short)VEC_UNPACKHU(cb); cbh = (__vector signed short)VEC_UNPACKLU(cb); cbl = vec_sub(cbl, pw_cj); cbh = vec_sub(cbh, pw_cj); cr = vec_ld(0, inptr2); crl = (__vector signed short)VEC_UNPACKHU(cr); crh = (__vector signed short)VEC_UNPACKLU(cr); crl = vec_sub(crl, pw_cj); crh = vec_sub(crh, pw_cj); /* (Original) * R = Y + 1.40200 * Cr * G = Y - 0.34414 * Cb - 0.71414 * Cr * B = Y + 1.77200 * Cb * * (This implementation) * R = Y + 0.40200 * Cr + Cr * G = Y - 0.34414 * Cb + 0.28586 * Cr - Cr * B = Y - 0.22800 * Cb + Cb + Cb */ bl = vec_add(cbl, cbl); bh = vec_add(cbh, cbh); bl = vec_madds(bl, pw_mf0228, pw_one); bh = vec_madds(bh, pw_mf0228, pw_one); bl = vec_sra(bl, (__vector unsigned short)pw_one); bh = vec_sra(bh, (__vector unsigned short)pw_one); bl = vec_add(bl, cbl); bh = vec_add(bh, cbh); bl = vec_add(bl, cbl); bh = vec_add(bh, cbh); bl = vec_add(bl, yl); bh = vec_add(bh, yh); rl = vec_add(crl, crl); rh = vec_add(crh, crh); rl = vec_madds(rl, pw_f0402, pw_one); rh = vec_madds(rh, pw_f0402, pw_one); rl = vec_sra(rl, (__vector unsigned short)pw_one); rh = vec_sra(rh, (__vector unsigned short)pw_one); rl = vec_add(rl, crl); rh = vec_add(rh, crh); rl = vec_add(rl, yl); rh = vec_add(rh, yh); g0w = vec_mergeh(cbl, crl); g1w = vec_mergel(cbl, crl); g0 = vec_msums(g0w, pw_mf0344_f0285, pd_onehalf); g1 = vec_msums(g1w, pw_mf0344_f0285, pd_onehalf); g2w = vec_mergeh(cbh, crh); g3w = vec_mergel(cbh, crh); g2 = vec_msums(g2w, pw_mf0344_f0285, pd_onehalf); g3 = vec_msums(g3w, pw_mf0344_f0285, pd_onehalf); /* Clever way to avoid 4 shifts + 2 packs. This packs the high word from * each dword into a new 16-bit vector, which is the equivalent of * descaling the 32-bit results (right-shifting by 16 bits) and then * packing them. */ gl = vec_perm((__vector short)g0, (__vector short)g1, shift_pack_index); gh = vec_perm((__vector short)g2, (__vector short)g3, shift_pack_index); gl = vec_sub(gl, crl); gh = vec_sub(gh, crh); gl = vec_add(gl, yl); gh = vec_add(gh, yh); rg0 = vec_mergeh(rl, gl); bx0 = vec_mergeh(bl, pw_255); rg1 = vec_mergel(rl, gl); bx1 = vec_mergel(bl, pw_255); rg2 = vec_mergeh(rh, gh); bx2 = vec_mergeh(bh, pw_255); rg3 = vec_mergel(rh, gh); bx3 = vec_mergel(bh, pw_255); rgbx0 = vec_packsu(rg0, bx0); rgbx1 = vec_packsu(rg1, bx1); rgbx2 = vec_packsu(rg2, bx2); rgbx3 = vec_packsu(rg3, bx3); #if RGB_PIXELSIZE == 3 /* rgbx0 = R0 G0 R1 G1 R2 G2 R3 G3 B0 X0 B1 X1 B2 X2 B3 X3 * rgbx1 = R4 G4 R5 G5 R6 G6 R7 G7 B4 X4 B5 X5 B6 X6 B7 X7 * rgbx2 = R8 G8 R9 G9 Ra Ga Rb Gb B8 X8 B9 X9 Ba Xa Bb Xb * rgbx3 = Rc Gc Rd Gd Re Ge Rf Gf Bc Xc Bd Xd Be Xe Bf Xf * * rgb0 = R0 G0 B0 R1 G1 B1 R2 G2 B2 R3 G3 B3 R4 G4 B4 R5 * rgb1 = G5 B5 R6 G6 B6 R7 G7 B7 R8 G8 B8 R9 G9 B9 Ra Ga * rgb2 = Ba Rb Gb Bb Rc Gc Bc Rd Gd Bd Re Ge Be Rf Gf Bf */ rgb0 = vec_perm(rgbx0, rgbx1, (__vector unsigned char)RGB_INDEX0); rgb1 = vec_perm(rgbx1, rgbx2, (__vector unsigned char)RGB_INDEX1); rgb2 = vec_perm(rgbx2, rgbx3, (__vector unsigned char)RGB_INDEX2); #else /* rgbx0 = R0 G0 R1 G1 R2 G2 R3 G3 B0 X0 B1 X1 B2 X2 B3 X3 * rgbx1 = R4 G4 R5 G5 R6 G6 R7 G7 B4 X4 B5 X5 B6 X6 B7 X7 * rgbx2 = R8 G8 R9 G9 Ra Ga Rb Gb B8 X8 B9 X9 Ba Xa Bb Xb * rgbx3 = Rc Gc Rd Gd Re Ge Rf Gf Bc Xc Bd Xd Be Xe Bf Xf * * rgb0 = R0 G0 B0 X0 R1 G1 B1 X1 R2 G2 B2 X2 R3 G3 B3 X3 * rgb1 = R4 G4 B4 X4 R5 G5 B5 X5 R6 G6 B6 X6 R7 G7 B7 X7 * rgb2 = R8 G8 B8 X8 R9 G9 B9 X9 Ra Ga Ba Xa Rb Gb Bb Xb * rgb3 = Rc Gc Bc Xc Rd Gd Bd Xd Re Ge Be Xe Rf Gf Bf Xf */ rgb0 = vec_perm(rgbx0, rgbx0, (__vector unsigned char)RGB_INDEX); rgb1 = vec_perm(rgbx1, rgbx1, (__vector unsigned char)RGB_INDEX); rgb2 = vec_perm(rgbx2, rgbx2, (__vector unsigned char)RGB_INDEX); rgb3 = vec_perm(rgbx3, rgbx3, (__vector unsigned char)RGB_INDEX); #endif #if __BIG_ENDIAN__ offset = (size_t)outptr & 15; if (offset) { __vector unsigned char unaligned_shift_index; int bytes = num_cols + offset; if (bytes < (RGB_PIXELSIZE + 1) * 16 && (bytes & 15)) { /* Slow path to prevent buffer overwrite. Since there is no way to * write a partial AltiVec register, overwrite would occur on the * last chunk of the last image row if the right edge is not on a * 16-byte boundary. It could also occur on other rows if the bytes * per row is low enough. Since we can't determine whether we're on * the last image row, we have to assume every row is the last. */ vec_st(rgb0, 0, tmpbuf); vec_st(rgb1, 16, tmpbuf); vec_st(rgb2, 32, tmpbuf); #if RGB_PIXELSIZE == 4 vec_st(rgb3, 48, tmpbuf); #endif memcpy(outptr, tmpbuf, min(num_cols, RGB_PIXELSIZE * 16)); } else { /* Fast path */ unaligned_shift_index = vec_lvsl(0, outptr); edgel = vec_ld(0, outptr); edgeh = vec_ld(min(num_cols - 1, RGB_PIXELSIZE * 16), outptr); edges = vec_perm(edgeh, edgel, unaligned_shift_index); unaligned_shift_index = vec_lvsr(0, outptr); out0 = vec_perm(edges, rgb0, unaligned_shift_index); out1 = vec_perm(rgb0, rgb1, unaligned_shift_index); out2 = vec_perm(rgb1, rgb2, unaligned_shift_index); #if RGB_PIXELSIZE == 4 out3 = vec_perm(rgb2, rgb3, unaligned_shift_index); out4 = vec_perm(rgb3, edges, unaligned_shift_index); #else out3 = vec_perm(rgb2, edges, unaligned_shift_index); #endif vec_st(out0, 0, outptr); if (bytes > 16) vec_st(out1, 16, outptr); if (bytes > 32) vec_st(out2, 32, outptr); if (bytes > 48) vec_st(out3, 48, outptr); #if RGB_PIXELSIZE == 4 if (bytes > 64) vec_st(out4, 64, outptr); #endif } } else { #endif /* __BIG_ENDIAN__ */ if (num_cols < RGB_PIXELSIZE * 16 && (num_cols & 15)) { /* Slow path */ VEC_ST(rgb0, 0, tmpbuf); VEC_ST(rgb1, 16, tmpbuf); VEC_ST(rgb2, 32, tmpbuf); #if RGB_PIXELSIZE == 4 VEC_ST(rgb3, 48, tmpbuf); #endif memcpy(outptr, tmpbuf, min(num_cols, RGB_PIXELSIZE * 16)); } else { /* Fast path */ VEC_ST(rgb0, 0, outptr); if (num_cols > 16) VEC_ST(rgb1, 16, outptr); if (num_cols > 32) VEC_ST(rgb2, 32, outptr); #if RGB_PIXELSIZE == 4 if (num_cols > 48) VEC_ST(rgb3, 48, outptr); #endif } #if __BIG_ENDIAN__ } #endif } } } libjpeg-turbo-2.1.5/simd/powerpc/jdcolor-altivec.c000066400000000000000000000074241436506551100221410ustar00rootroot00000000000000/* * AltiVec optimizations for libjpeg-turbo * * Copyright (C) 2015, D. R. Commander. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ /* YCC --> RGB CONVERSION */ #include "jsimd_altivec.h" #define F_0_344 22554 /* FIX(0.34414) */ #define F_0_714 46802 /* FIX(0.71414) */ #define F_1_402 91881 /* FIX(1.40200) */ #define F_1_772 116130 /* FIX(1.77200) */ #define F_0_402 (F_1_402 - 65536) /* FIX(1.40200) - FIX(1) */ #define F_0_285 (65536 - F_0_714) /* FIX(1) - FIX(0.71414) */ #define F_0_228 (131072 - F_1_772) /* FIX(2) - FIX(1.77200) */ #define SCALEBITS 16 #define ONE_HALF (1 << (SCALEBITS - 1)) #define RGB_INDEX0 \ { 0, 1, 8, 2, 3, 10, 4, 5, 12, 6, 7, 14, 16, 17, 24, 18 } #define RGB_INDEX1 \ { 3, 10, 4, 5, 12, 6, 7, 14, 16, 17, 24, 18, 19, 26, 20, 21 } #define RGB_INDEX2 \ { 12, 6, 7, 14, 16, 17, 24, 18, 19, 26, 20, 21, 28, 22, 23, 30 } #include "jdcolext-altivec.c" #undef RGB_PIXELSIZE #define RGB_PIXELSIZE EXT_RGB_PIXELSIZE #define jsimd_ycc_rgb_convert_altivec jsimd_ycc_extrgb_convert_altivec #include "jdcolext-altivec.c" #undef RGB_PIXELSIZE #undef RGB_INDEX0 #undef RGB_INDEX1 #undef RGB_INDEX2 #undef jsimd_ycc_rgb_convert_altivec #define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE #define RGB_INDEX \ { 0, 1, 8, 9, 2, 3, 10, 11, 4, 5, 12, 13, 6, 7, 14, 15 } #define jsimd_ycc_rgb_convert_altivec jsimd_ycc_extrgbx_convert_altivec #include "jdcolext-altivec.c" #undef RGB_PIXELSIZE #undef RGB_INDEX #undef jsimd_ycc_rgb_convert_altivec #define RGB_PIXELSIZE EXT_BGR_PIXELSIZE #define RGB_INDEX0 \ { 8, 1, 0, 10, 3, 2, 12, 5, 4, 14, 7, 6, 24, 17, 16, 26 } #define RGB_INDEX1 \ { 3, 2, 12, 5, 4, 14, 7, 6, 24, 17, 16, 26, 19, 18, 28, 21 } #define RGB_INDEX2 \ { 4, 14, 7, 6, 24, 17, 16, 26, 19, 18, 28, 21, 20, 30, 23, 22 } #define jsimd_ycc_rgb_convert_altivec jsimd_ycc_extbgr_convert_altivec #include "jdcolext-altivec.c" #undef RGB_PIXELSIZE #undef RGB_INDEX0 #undef RGB_INDEX1 #undef RGB_INDEX2 #undef jsimd_ycc_rgb_convert_altivec #define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE #define RGB_INDEX \ { 8, 1, 0, 9, 10, 3, 2, 11, 12, 5, 4, 13, 14, 7, 6, 15 } #define jsimd_ycc_rgb_convert_altivec jsimd_ycc_extbgrx_convert_altivec #include "jdcolext-altivec.c" #undef RGB_PIXELSIZE #undef RGB_INDEX #undef jsimd_ycc_rgb_convert_altivec #define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE #define RGB_INDEX \ { 9, 8, 1, 0, 11, 10, 3, 2, 13, 12, 5, 4, 15, 14, 7, 6 } #define jsimd_ycc_rgb_convert_altivec jsimd_ycc_extxbgr_convert_altivec #include "jdcolext-altivec.c" #undef RGB_PIXELSIZE #undef RGB_INDEX #undef jsimd_ycc_rgb_convert_altivec #define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE #define RGB_INDEX \ { 9, 0, 1, 8, 11, 2, 3, 10, 13, 4, 5, 12, 15, 6, 7, 14 } #define jsimd_ycc_rgb_convert_altivec jsimd_ycc_extxrgb_convert_altivec #include "jdcolext-altivec.c" #undef RGB_PIXELSIZE #undef RGB_INDEX #undef jsimd_ycc_rgb_convert_altivec libjpeg-turbo-2.1.5/simd/powerpc/jdmerge-altivec.c000066400000000000000000000113041436506551100221120ustar00rootroot00000000000000/* * AltiVec optimizations for libjpeg-turbo * * Copyright (C) 2015, D. R. Commander. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ /* MERGED YCC --> RGB CONVERSION AND UPSAMPLING */ #include "jsimd_altivec.h" #define F_0_344 22554 /* FIX(0.34414) */ #define F_0_714 46802 /* FIX(0.71414) */ #define F_1_402 91881 /* FIX(1.40200) */ #define F_1_772 116130 /* FIX(1.77200) */ #define F_0_402 (F_1_402 - 65536) /* FIX(1.40200) - FIX(1) */ #define F_0_285 (65536 - F_0_714) /* FIX(1) - FIX(0.71414) */ #define F_0_228 (131072 - F_1_772) /* FIX(2) - FIX(1.77200) */ #define SCALEBITS 16 #define ONE_HALF (1 << (SCALEBITS - 1)) #define RGB_INDEX0 \ { 0, 1, 8, 2, 3, 10, 4, 5, 12, 6, 7, 14, 16, 17, 24, 18 } #define RGB_INDEX1 \ { 3, 10, 4, 5, 12, 6, 7, 14, 16, 17, 24, 18, 19, 26, 20, 21 } #define RGB_INDEX2 \ { 12, 6, 7, 14, 16, 17, 24, 18, 19, 26, 20, 21, 28, 22, 23, 30 } #include "jdmrgext-altivec.c" #undef RGB_PIXELSIZE #define RGB_PIXELSIZE EXT_RGB_PIXELSIZE #define jsimd_h2v1_merged_upsample_altivec \ jsimd_h2v1_extrgb_merged_upsample_altivec #define jsimd_h2v2_merged_upsample_altivec \ jsimd_h2v2_extrgb_merged_upsample_altivec #include "jdmrgext-altivec.c" #undef RGB_PIXELSIZE #undef RGB_INDEX0 #undef RGB_INDEX1 #undef RGB_INDEX2 #undef jsimd_h2v1_merged_upsample_altivec #undef jsimd_h2v2_merged_upsample_altivec #define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE #define RGB_INDEX \ { 0, 1, 8, 9, 2, 3, 10, 11, 4, 5, 12, 13, 6, 7, 14, 15 } #define jsimd_h2v1_merged_upsample_altivec \ jsimd_h2v1_extrgbx_merged_upsample_altivec #define jsimd_h2v2_merged_upsample_altivec \ jsimd_h2v2_extrgbx_merged_upsample_altivec #include "jdmrgext-altivec.c" #undef RGB_PIXELSIZE #undef RGB_INDEX #undef jsimd_h2v1_merged_upsample_altivec #undef jsimd_h2v2_merged_upsample_altivec #define RGB_PIXELSIZE EXT_BGR_PIXELSIZE #define RGB_INDEX0 \ { 8, 1, 0, 10, 3, 2, 12, 5, 4, 14, 7, 6, 24, 17, 16, 26 } #define RGB_INDEX1 \ { 3, 2, 12, 5, 4, 14, 7, 6, 24, 17, 16, 26, 19, 18, 28, 21 } #define RGB_INDEX2 \ { 4, 14, 7, 6, 24, 17, 16, 26, 19, 18, 28, 21, 20, 30, 23, 22 } #define jsimd_h2v1_merged_upsample_altivec \ jsimd_h2v1_extbgr_merged_upsample_altivec #define jsimd_h2v2_merged_upsample_altivec \ jsimd_h2v2_extbgr_merged_upsample_altivec #include "jdmrgext-altivec.c" #undef RGB_PIXELSIZE #undef RGB_INDEX0 #undef RGB_INDEX1 #undef RGB_INDEX2 #undef jsimd_h2v1_merged_upsample_altivec #undef jsimd_h2v2_merged_upsample_altivec #define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE #define RGB_INDEX \ { 8, 1, 0, 9, 10, 3, 2, 11, 12, 5, 4, 13, 14, 7, 6, 15 } #define jsimd_h2v1_merged_upsample_altivec \ jsimd_h2v1_extbgrx_merged_upsample_altivec #define jsimd_h2v2_merged_upsample_altivec \ jsimd_h2v2_extbgrx_merged_upsample_altivec #include "jdmrgext-altivec.c" #undef RGB_PIXELSIZE #undef RGB_INDEX #undef jsimd_h2v1_merged_upsample_altivec #undef jsimd_h2v2_merged_upsample_altivec #define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE #define RGB_INDEX \ { 9, 8, 1, 0, 11, 10, 3, 2, 13, 12, 5, 4, 15, 14, 7, 6 } #define jsimd_h2v1_merged_upsample_altivec \ jsimd_h2v1_extxbgr_merged_upsample_altivec #define jsimd_h2v2_merged_upsample_altivec \ jsimd_h2v2_extxbgr_merged_upsample_altivec #include "jdmrgext-altivec.c" #undef RGB_PIXELSIZE #undef RGB_INDEX #undef jsimd_h2v1_merged_upsample_altivec #undef jsimd_h2v2_merged_upsample_altivec #define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE #define RGB_INDEX \ { 9, 0, 1, 8, 11, 2, 3, 10, 13, 4, 5, 12, 15, 6, 7, 14 } #define jsimd_h2v1_merged_upsample_altivec \ jsimd_h2v1_extxrgb_merged_upsample_altivec #define jsimd_h2v2_merged_upsample_altivec \ jsimd_h2v2_extxrgb_merged_upsample_altivec #include "jdmrgext-altivec.c" #undef RGB_PIXELSIZE #undef RGB_INDEX #undef jsimd_h2v1_merged_upsample_altivec #undef jsimd_h2v2_merged_upsample_altivec libjpeg-turbo-2.1.5/simd/powerpc/jdmrgext-altivec.c000066400000000000000000000300141436506551100223200ustar00rootroot00000000000000/* * AltiVec optimizations for libjpeg-turbo * * Copyright (C) 2015, D. R. Commander. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ /* This file is included by jdmerge-altivec.c */ void jsimd_h2v1_merged_upsample_altivec(JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { JSAMPROW outptr, inptr0, inptr1, inptr2; int pitch = output_width * RGB_PIXELSIZE, num_cols, yloop; #if __BIG_ENDIAN__ int offset; #endif unsigned char __attribute__((aligned(16))) tmpbuf[RGB_PIXELSIZE * 16]; __vector unsigned char rgb0, rgb1, rgb2, rgbx0, rgbx1, rgbx2, rgbx3, y, cb, cr; #if __BIG_ENDIAN__ __vector unsigned char edgel, edgeh, edges, out0, out1, out2, out3; #if RGB_PIXELSIZE == 4 __vector unsigned char out4; #endif #endif #if RGB_PIXELSIZE == 4 __vector unsigned char rgb3; #endif __vector short rg0, rg1, rg2, rg3, bx0, bx1, bx2, bx3, ye, yo, cbl, cbh, crl, crh, r_yl, r_yh, g_yl, g_yh, b_yl, b_yh, g_y0w, g_y1w, g_y2w, g_y3w, rl, rh, gl, gh, bl, bh, re, ro, ge, go, be, bo; __vector int g_y0, g_y1, g_y2, g_y3; /* Constants * NOTE: The >> 1 is to compensate for the fact that vec_madds() returns 17 * high-order bits, not 16. */ __vector short pw_f0402 = { __8X(F_0_402 >> 1) }, pw_mf0228 = { __8X(-F_0_228 >> 1) }, pw_mf0344_f0285 = { __4X2(-F_0_344, F_0_285) }, pw_one = { __8X(1) }, pw_255 = { __8X(255) }, pw_cj = { __8X(CENTERJSAMPLE) }; __vector int pd_onehalf = { __4X(ONE_HALF) }; __vector unsigned char pb_zero = { __16X(0) }, #if __BIG_ENDIAN__ shift_pack_index = { 0, 1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29 }, even_index = { 0, 16, 0, 18, 0, 20, 0, 22, 0, 24, 0, 26, 0, 28, 0, 30 }, odd_index = { 0, 17, 0, 19, 0, 21, 0, 23, 0, 25, 0, 27, 0, 29, 0, 31 }; #else shift_pack_index = { 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31 }, even_index = { 16, 0, 18, 0, 20, 0, 22, 0, 24, 0, 26, 0, 28, 0, 30, 0 }, odd_index = { 17, 0, 19, 0, 21, 0, 23, 0, 25, 0, 27, 0, 29, 0, 31, 0 }; #endif inptr0 = input_buf[0][in_row_group_ctr]; inptr1 = input_buf[1][in_row_group_ctr]; inptr2 = input_buf[2][in_row_group_ctr]; outptr = output_buf[0]; for (num_cols = pitch; num_cols > 0; inptr1 += 16, inptr2 += 16) { cb = vec_ld(0, inptr1); /* NOTE: We have to use vec_merge*() here because vec_unpack*() doesn't * support unsigned vectors. */ cbl = (__vector signed short)VEC_UNPACKHU(cb); cbh = (__vector signed short)VEC_UNPACKLU(cb); cbl = vec_sub(cbl, pw_cj); cbh = vec_sub(cbh, pw_cj); cr = vec_ld(0, inptr2); crl = (__vector signed short)VEC_UNPACKHU(cr); crh = (__vector signed short)VEC_UNPACKLU(cr); crl = vec_sub(crl, pw_cj); crh = vec_sub(crh, pw_cj); /* (Original) * R = Y + 1.40200 * Cr * G = Y - 0.34414 * Cb - 0.71414 * Cr * B = Y + 1.77200 * Cb * * (This implementation) * R = Y + 0.40200 * Cr + Cr * G = Y - 0.34414 * Cb + 0.28586 * Cr - Cr * B = Y - 0.22800 * Cb + Cb + Cb */ b_yl = vec_add(cbl, cbl); b_yh = vec_add(cbh, cbh); b_yl = vec_madds(b_yl, pw_mf0228, pw_one); b_yh = vec_madds(b_yh, pw_mf0228, pw_one); b_yl = vec_sra(b_yl, (__vector unsigned short)pw_one); b_yh = vec_sra(b_yh, (__vector unsigned short)pw_one); b_yl = vec_add(b_yl, cbl); b_yh = vec_add(b_yh, cbh); b_yl = vec_add(b_yl, cbl); b_yh = vec_add(b_yh, cbh); r_yl = vec_add(crl, crl); r_yh = vec_add(crh, crh); r_yl = vec_madds(r_yl, pw_f0402, pw_one); r_yh = vec_madds(r_yh, pw_f0402, pw_one); r_yl = vec_sra(r_yl, (__vector unsigned short)pw_one); r_yh = vec_sra(r_yh, (__vector unsigned short)pw_one); r_yl = vec_add(r_yl, crl); r_yh = vec_add(r_yh, crh); g_y0w = vec_mergeh(cbl, crl); g_y1w = vec_mergel(cbl, crl); g_y0 = vec_msums(g_y0w, pw_mf0344_f0285, pd_onehalf); g_y1 = vec_msums(g_y1w, pw_mf0344_f0285, pd_onehalf); g_y2w = vec_mergeh(cbh, crh); g_y3w = vec_mergel(cbh, crh); g_y2 = vec_msums(g_y2w, pw_mf0344_f0285, pd_onehalf); g_y3 = vec_msums(g_y3w, pw_mf0344_f0285, pd_onehalf); /* Clever way to avoid 4 shifts + 2 packs. This packs the high word from * each dword into a new 16-bit vector, which is the equivalent of * descaling the 32-bit results (right-shifting by 16 bits) and then * packing them. */ g_yl = vec_perm((__vector short)g_y0, (__vector short)g_y1, shift_pack_index); g_yh = vec_perm((__vector short)g_y2, (__vector short)g_y3, shift_pack_index); g_yl = vec_sub(g_yl, crl); g_yh = vec_sub(g_yh, crh); for (yloop = 0; yloop < 2 && num_cols > 0; yloop++, num_cols -= RGB_PIXELSIZE * 16, outptr += RGB_PIXELSIZE * 16, inptr0 += 16) { y = vec_ld(0, inptr0); ye = (__vector signed short)vec_perm(pb_zero, y, even_index); yo = (__vector signed short)vec_perm(pb_zero, y, odd_index); if (yloop == 0) { be = vec_add(b_yl, ye); bo = vec_add(b_yl, yo); re = vec_add(r_yl, ye); ro = vec_add(r_yl, yo); ge = vec_add(g_yl, ye); go = vec_add(g_yl, yo); } else { be = vec_add(b_yh, ye); bo = vec_add(b_yh, yo); re = vec_add(r_yh, ye); ro = vec_add(r_yh, yo); ge = vec_add(g_yh, ye); go = vec_add(g_yh, yo); } rl = vec_mergeh(re, ro); rh = vec_mergel(re, ro); gl = vec_mergeh(ge, go); gh = vec_mergel(ge, go); bl = vec_mergeh(be, bo); bh = vec_mergel(be, bo); rg0 = vec_mergeh(rl, gl); bx0 = vec_mergeh(bl, pw_255); rg1 = vec_mergel(rl, gl); bx1 = vec_mergel(bl, pw_255); rg2 = vec_mergeh(rh, gh); bx2 = vec_mergeh(bh, pw_255); rg3 = vec_mergel(rh, gh); bx3 = vec_mergel(bh, pw_255); rgbx0 = vec_packsu(rg0, bx0); rgbx1 = vec_packsu(rg1, bx1); rgbx2 = vec_packsu(rg2, bx2); rgbx3 = vec_packsu(rg3, bx3); #if RGB_PIXELSIZE == 3 /* rgbx0 = R0 G0 R1 G1 R2 G2 R3 G3 B0 X0 B1 X1 B2 X2 B3 X3 * rgbx1 = R4 G4 R5 G5 R6 G6 R7 G7 B4 X4 B5 X5 B6 X6 B7 X7 * rgbx2 = R8 G8 R9 G9 Ra Ga Rb Gb B8 X8 B9 X9 Ba Xa Bb Xb * rgbx3 = Rc Gc Rd Gd Re Ge Rf Gf Bc Xc Bd Xd Be Xe Bf Xf * * rgb0 = R0 G0 B0 R1 G1 B1 R2 G2 B2 R3 G3 B3 R4 G4 B4 R5 * rgb1 = G5 B5 R6 G6 B6 R7 G7 B7 R8 G8 B8 R9 G9 B9 Ra Ga * rgb2 = Ba Rb Gb Bb Rc Gc Bc Rd Gd Bd Re Ge Be Rf Gf Bf */ rgb0 = vec_perm(rgbx0, rgbx1, (__vector unsigned char)RGB_INDEX0); rgb1 = vec_perm(rgbx1, rgbx2, (__vector unsigned char)RGB_INDEX1); rgb2 = vec_perm(rgbx2, rgbx3, (__vector unsigned char)RGB_INDEX2); #else /* rgbx0 = R0 G0 R1 G1 R2 G2 R3 G3 B0 X0 B1 X1 B2 X2 B3 X3 * rgbx1 = R4 G4 R5 G5 R6 G6 R7 G7 B4 X4 B5 X5 B6 X6 B7 X7 * rgbx2 = R8 G8 R9 G9 Ra Ga Rb Gb B8 X8 B9 X9 Ba Xa Bb Xb * rgbx3 = Rc Gc Rd Gd Re Ge Rf Gf Bc Xc Bd Xd Be Xe Bf Xf * * rgb0 = R0 G0 B0 X0 R1 G1 B1 X1 R2 G2 B2 X2 R3 G3 B3 X3 * rgb1 = R4 G4 B4 X4 R5 G5 B5 X5 R6 G6 B6 X6 R7 G7 B7 X7 * rgb2 = R8 G8 B8 X8 R9 G9 B9 X9 Ra Ga Ba Xa Rb Gb Bb Xb * rgb3 = Rc Gc Bc Xc Rd Gd Bd Xd Re Ge Be Xe Rf Gf Bf Xf */ rgb0 = vec_perm(rgbx0, rgbx0, (__vector unsigned char)RGB_INDEX); rgb1 = vec_perm(rgbx1, rgbx1, (__vector unsigned char)RGB_INDEX); rgb2 = vec_perm(rgbx2, rgbx2, (__vector unsigned char)RGB_INDEX); rgb3 = vec_perm(rgbx3, rgbx3, (__vector unsigned char)RGB_INDEX); #endif #if __BIG_ENDIAN__ offset = (size_t)outptr & 15; if (offset) { __vector unsigned char unaligned_shift_index; int bytes = num_cols + offset; if (bytes < (RGB_PIXELSIZE + 1) * 16 && (bytes & 15)) { /* Slow path to prevent buffer overwrite. Since there is no way to * write a partial AltiVec register, overwrite would occur on the * last chunk of the last image row if the right edge is not on a * 16-byte boundary. It could also occur on other rows if the bytes * per row is low enough. Since we can't determine whether we're on * the last image row, we have to assume every row is the last. */ vec_st(rgb0, 0, tmpbuf); vec_st(rgb1, 16, tmpbuf); vec_st(rgb2, 32, tmpbuf); #if RGB_PIXELSIZE == 4 vec_st(rgb3, 48, tmpbuf); #endif memcpy(outptr, tmpbuf, min(num_cols, RGB_PIXELSIZE * 16)); } else { /* Fast path */ unaligned_shift_index = vec_lvsl(0, outptr); edgel = vec_ld(0, outptr); edgeh = vec_ld(min(num_cols - 1, RGB_PIXELSIZE * 16), outptr); edges = vec_perm(edgeh, edgel, unaligned_shift_index); unaligned_shift_index = vec_lvsr(0, outptr); out0 = vec_perm(edges, rgb0, unaligned_shift_index); out1 = vec_perm(rgb0, rgb1, unaligned_shift_index); out2 = vec_perm(rgb1, rgb2, unaligned_shift_index); #if RGB_PIXELSIZE == 4 out3 = vec_perm(rgb2, rgb3, unaligned_shift_index); out4 = vec_perm(rgb3, edges, unaligned_shift_index); #else out3 = vec_perm(rgb2, edges, unaligned_shift_index); #endif vec_st(out0, 0, outptr); if (bytes > 16) vec_st(out1, 16, outptr); if (bytes > 32) vec_st(out2, 32, outptr); if (bytes > 48) vec_st(out3, 48, outptr); #if RGB_PIXELSIZE == 4 if (bytes > 64) vec_st(out4, 64, outptr); #endif } } else { #endif /* __BIG_ENDIAN__ */ if (num_cols < RGB_PIXELSIZE * 16 && (num_cols & 15)) { /* Slow path */ VEC_ST(rgb0, 0, tmpbuf); VEC_ST(rgb1, 16, tmpbuf); VEC_ST(rgb2, 32, tmpbuf); #if RGB_PIXELSIZE == 4 VEC_ST(rgb3, 48, tmpbuf); #endif memcpy(outptr, tmpbuf, min(num_cols, RGB_PIXELSIZE * 16)); } else { /* Fast path */ VEC_ST(rgb0, 0, outptr); if (num_cols > 16) VEC_ST(rgb1, 16, outptr); if (num_cols > 32) VEC_ST(rgb2, 32, outptr); #if RGB_PIXELSIZE == 4 if (num_cols > 48) VEC_ST(rgb3, 48, outptr); #endif } #if __BIG_ENDIAN__ } #endif } } } void jsimd_h2v2_merged_upsample_altivec(JDIMENSION output_width, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { JSAMPROW inptr, outptr; inptr = input_buf[0][in_row_group_ctr]; outptr = output_buf[0]; input_buf[0][in_row_group_ctr] = input_buf[0][in_row_group_ctr * 2]; jsimd_h2v1_merged_upsample_altivec(output_width, input_buf, in_row_group_ctr, output_buf); input_buf[0][in_row_group_ctr] = input_buf[0][in_row_group_ctr * 2 + 1]; output_buf[0] = output_buf[1]; jsimd_h2v1_merged_upsample_altivec(output_width, input_buf, in_row_group_ctr, output_buf); input_buf[0][in_row_group_ctr] = inptr; output_buf[0] = outptr; } libjpeg-turbo-2.1.5/simd/powerpc/jdsample-altivec.c000066400000000000000000000335711436506551100223060ustar00rootroot00000000000000/* * AltiVec optimizations for libjpeg-turbo * * Copyright (C) 2015, D. R. Commander. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ /* CHROMA UPSAMPLING */ #include "jsimd_altivec.h" void jsimd_h2v1_fancy_upsample_altivec(int max_v_samp_factor, JDIMENSION downsampled_width, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { JSAMPARRAY output_data = *output_data_ptr; JSAMPROW inptr, outptr; int inrow, incol; __vector unsigned char this0, last0, p_last0, next0 = { 0 }, p_next0, out; __vector short this0e, this0o, this0l, this0h, last0l, last0h, next0l, next0h, outle, outhe, outlo, outho; /* Constants */ __vector unsigned char pb_zero = { __16X(0) }, pb_three = { __16X(3) }, last_index_col0 = { 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 }, last_index = { 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 }, next_index = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 }, next_index_lastcol = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 15 }, #if __BIG_ENDIAN__ merge_pack_index = { 1, 17, 3, 19, 5, 21, 7, 23, 9, 25, 11, 27, 13, 29, 15, 31 }; #else merge_pack_index = { 0, 16, 2, 18, 4, 20, 6, 22, 8, 24, 10, 26, 12, 28, 14, 30 }; #endif __vector short pw_one = { __8X(1) }, pw_two = { __8X(2) }; for (inrow = 0; inrow < max_v_samp_factor; inrow++) { inptr = input_data[inrow]; outptr = output_data[inrow]; if (downsampled_width & 15) inptr[downsampled_width] = inptr[downsampled_width - 1]; this0 = vec_ld(0, inptr); p_last0 = vec_perm(this0, this0, last_index_col0); last0 = this0; for (incol = downsampled_width; incol > 0; incol -= 16, inptr += 16, outptr += 32) { if (downsampled_width - incol > 0) { p_last0 = vec_perm(last0, this0, last_index); last0 = this0; } if (incol <= 16) p_next0 = vec_perm(this0, this0, next_index_lastcol); else { next0 = vec_ld(16, inptr); p_next0 = vec_perm(this0, next0, next_index); } this0e = (__vector short)vec_mule(this0, pb_three); this0o = (__vector short)vec_mulo(this0, pb_three); this0l = vec_mergeh(this0e, this0o); this0h = vec_mergel(this0e, this0o); last0l = (__vector short)VEC_UNPACKHU(p_last0); last0h = (__vector short)VEC_UNPACKLU(p_last0); last0l = vec_add(last0l, pw_one); next0l = (__vector short)VEC_UNPACKHU(p_next0); next0h = (__vector short)VEC_UNPACKLU(p_next0); next0l = vec_add(next0l, pw_two); outle = vec_add(this0l, last0l); outlo = vec_add(this0l, next0l); outle = vec_sr(outle, (__vector unsigned short)pw_two); outlo = vec_sr(outlo, (__vector unsigned short)pw_two); out = vec_perm((__vector unsigned char)outle, (__vector unsigned char)outlo, merge_pack_index); vec_st(out, 0, outptr); if (incol > 8) { last0h = vec_add(last0h, pw_one); next0h = vec_add(next0h, pw_two); outhe = vec_add(this0h, last0h); outho = vec_add(this0h, next0h); outhe = vec_sr(outhe, (__vector unsigned short)pw_two); outho = vec_sr(outho, (__vector unsigned short)pw_two); out = vec_perm((__vector unsigned char)outhe, (__vector unsigned char)outho, merge_pack_index); vec_st(out, 16, outptr); } this0 = next0; } } } void jsimd_h2v2_fancy_upsample_altivec(int max_v_samp_factor, JDIMENSION downsampled_width, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { JSAMPARRAY output_data = *output_data_ptr; JSAMPROW inptr_1, inptr0, inptr1, outptr0, outptr1; int inrow, outrow, incol; __vector unsigned char this_1, this0, this1, out; __vector short this_1l, this_1h, this0l, this0h, this1l, this1h, lastcolsum_1h, lastcolsum1h, p_lastcolsum_1l, p_lastcolsum_1h, p_lastcolsum1l, p_lastcolsum1h, thiscolsum_1l, thiscolsum_1h, thiscolsum1l, thiscolsum1h, nextcolsum_1l = { 0 }, nextcolsum_1h = { 0 }, nextcolsum1l = { 0 }, nextcolsum1h = { 0 }, p_nextcolsum_1l, p_nextcolsum_1h, p_nextcolsum1l, p_nextcolsum1h, tmpl, tmph, outle, outhe, outlo, outho; /* Constants */ __vector unsigned char pb_zero = { __16X(0) }, last_index_col0 = { 0, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 }, last_index = { 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 }, next_index = { 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 }, next_index_lastcol = { 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 14, 15 }, #if __BIG_ENDIAN__ merge_pack_index = { 1, 17, 3, 19, 5, 21, 7, 23, 9, 25, 11, 27, 13, 29, 15, 31 }; #else merge_pack_index = { 0, 16, 2, 18, 4, 20, 6, 22, 8, 24, 10, 26, 12, 28, 14, 30 }; #endif __vector short pw_zero = { __8X(0) }, pw_three = { __8X(3) }, pw_seven = { __8X(7) }, pw_eight = { __8X(8) }; __vector unsigned short pw_four = { __8X(4) }; for (inrow = 0, outrow = 0; outrow < max_v_samp_factor; inrow++) { inptr_1 = input_data[inrow - 1]; inptr0 = input_data[inrow]; inptr1 = input_data[inrow + 1]; outptr0 = output_data[outrow++]; outptr1 = output_data[outrow++]; if (downsampled_width & 15) { inptr_1[downsampled_width] = inptr_1[downsampled_width - 1]; inptr0[downsampled_width] = inptr0[downsampled_width - 1]; inptr1[downsampled_width] = inptr1[downsampled_width - 1]; } this0 = vec_ld(0, inptr0); this0l = (__vector short)VEC_UNPACKHU(this0); this0h = (__vector short)VEC_UNPACKLU(this0); this0l = vec_mladd(this0l, pw_three, pw_zero); this0h = vec_mladd(this0h, pw_three, pw_zero); this_1 = vec_ld(0, inptr_1); this_1l = (__vector short)VEC_UNPACKHU(this_1); this_1h = (__vector short)VEC_UNPACKLU(this_1); thiscolsum_1l = vec_add(this0l, this_1l); thiscolsum_1h = vec_add(this0h, this_1h); lastcolsum_1h = thiscolsum_1h; p_lastcolsum_1l = vec_perm(thiscolsum_1l, thiscolsum_1l, last_index_col0); p_lastcolsum_1h = vec_perm(thiscolsum_1l, thiscolsum_1h, last_index); this1 = vec_ld(0, inptr1); this1l = (__vector short)VEC_UNPACKHU(this1); this1h = (__vector short)VEC_UNPACKLU(this1); thiscolsum1l = vec_add(this0l, this1l); thiscolsum1h = vec_add(this0h, this1h); lastcolsum1h = thiscolsum1h; p_lastcolsum1l = vec_perm(thiscolsum1l, thiscolsum1l, last_index_col0); p_lastcolsum1h = vec_perm(thiscolsum1l, thiscolsum1h, last_index); for (incol = downsampled_width; incol > 0; incol -= 16, inptr_1 += 16, inptr0 += 16, inptr1 += 16, outptr0 += 32, outptr1 += 32) { if (downsampled_width - incol > 0) { p_lastcolsum_1l = vec_perm(lastcolsum_1h, thiscolsum_1l, last_index); p_lastcolsum_1h = vec_perm(thiscolsum_1l, thiscolsum_1h, last_index); p_lastcolsum1l = vec_perm(lastcolsum1h, thiscolsum1l, last_index); p_lastcolsum1h = vec_perm(thiscolsum1l, thiscolsum1h, last_index); lastcolsum_1h = thiscolsum_1h; lastcolsum1h = thiscolsum1h; } if (incol <= 16) { p_nextcolsum_1l = vec_perm(thiscolsum_1l, thiscolsum_1h, next_index); p_nextcolsum_1h = vec_perm(thiscolsum_1h, thiscolsum_1h, next_index_lastcol); p_nextcolsum1l = vec_perm(thiscolsum1l, thiscolsum1h, next_index); p_nextcolsum1h = vec_perm(thiscolsum1h, thiscolsum1h, next_index_lastcol); } else { this0 = vec_ld(16, inptr0); this0l = (__vector short)VEC_UNPACKHU(this0); this0h = (__vector short)VEC_UNPACKLU(this0); this0l = vec_mladd(this0l, pw_three, pw_zero); this0h = vec_mladd(this0h, pw_three, pw_zero); this_1 = vec_ld(16, inptr_1); this_1l = (__vector short)VEC_UNPACKHU(this_1); this_1h = (__vector short)VEC_UNPACKLU(this_1); nextcolsum_1l = vec_add(this0l, this_1l); nextcolsum_1h = vec_add(this0h, this_1h); p_nextcolsum_1l = vec_perm(thiscolsum_1l, thiscolsum_1h, next_index); p_nextcolsum_1h = vec_perm(thiscolsum_1h, nextcolsum_1l, next_index); this1 = vec_ld(16, inptr1); this1l = (__vector short)VEC_UNPACKHU(this1); this1h = (__vector short)VEC_UNPACKLU(this1); nextcolsum1l = vec_add(this0l, this1l); nextcolsum1h = vec_add(this0h, this1h); p_nextcolsum1l = vec_perm(thiscolsum1l, thiscolsum1h, next_index); p_nextcolsum1h = vec_perm(thiscolsum1h, nextcolsum1l, next_index); } /* Process the upper row */ tmpl = vec_mladd(thiscolsum_1l, pw_three, pw_zero); outle = vec_add(tmpl, p_lastcolsum_1l); outle = vec_add(outle, pw_eight); outle = vec_sr(outle, pw_four); outlo = vec_add(tmpl, p_nextcolsum_1l); outlo = vec_add(outlo, pw_seven); outlo = vec_sr(outlo, pw_four); out = vec_perm((__vector unsigned char)outle, (__vector unsigned char)outlo, merge_pack_index); vec_st(out, 0, outptr0); if (incol > 8) { tmph = vec_mladd(thiscolsum_1h, pw_three, pw_zero); outhe = vec_add(tmph, p_lastcolsum_1h); outhe = vec_add(outhe, pw_eight); outhe = vec_sr(outhe, pw_four); outho = vec_add(tmph, p_nextcolsum_1h); outho = vec_add(outho, pw_seven); outho = vec_sr(outho, pw_four); out = vec_perm((__vector unsigned char)outhe, (__vector unsigned char)outho, merge_pack_index); vec_st(out, 16, outptr0); } /* Process the lower row */ tmpl = vec_mladd(thiscolsum1l, pw_three, pw_zero); outle = vec_add(tmpl, p_lastcolsum1l); outle = vec_add(outle, pw_eight); outle = vec_sr(outle, pw_four); outlo = vec_add(tmpl, p_nextcolsum1l); outlo = vec_add(outlo, pw_seven); outlo = vec_sr(outlo, pw_four); out = vec_perm((__vector unsigned char)outle, (__vector unsigned char)outlo, merge_pack_index); vec_st(out, 0, outptr1); if (incol > 8) { tmph = vec_mladd(thiscolsum1h, pw_three, pw_zero); outhe = vec_add(tmph, p_lastcolsum1h); outhe = vec_add(outhe, pw_eight); outhe = vec_sr(outhe, pw_four); outho = vec_add(tmph, p_nextcolsum1h); outho = vec_add(outho, pw_seven); outho = vec_sr(outho, pw_four); out = vec_perm((__vector unsigned char)outhe, (__vector unsigned char)outho, merge_pack_index); vec_st(out, 16, outptr1); } thiscolsum_1l = nextcolsum_1l; thiscolsum_1h = nextcolsum_1h; thiscolsum1l = nextcolsum1l; thiscolsum1h = nextcolsum1h; } } } /* These are rarely used (mainly just for decompressing YCCK images) */ void jsimd_h2v1_upsample_altivec(int max_v_samp_factor, JDIMENSION output_width, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { JSAMPARRAY output_data = *output_data_ptr; JSAMPROW inptr, outptr; int inrow, incol; __vector unsigned char in, inl, inh; for (inrow = 0; inrow < max_v_samp_factor; inrow++) { inptr = input_data[inrow]; outptr = output_data[inrow]; for (incol = (output_width + 31) & (~31); incol > 0; incol -= 64, inptr += 32, outptr += 64) { in = vec_ld(0, inptr); inl = vec_mergeh(in, in); inh = vec_mergel(in, in); vec_st(inl, 0, outptr); vec_st(inh, 16, outptr); if (incol > 32) { in = vec_ld(16, inptr); inl = vec_mergeh(in, in); inh = vec_mergel(in, in); vec_st(inl, 32, outptr); vec_st(inh, 48, outptr); } } } } void jsimd_h2v2_upsample_altivec(int max_v_samp_factor, JDIMENSION output_width, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { JSAMPARRAY output_data = *output_data_ptr; JSAMPROW inptr, outptr0, outptr1; int inrow, outrow, incol; __vector unsigned char in, inl, inh; for (inrow = 0, outrow = 0; outrow < max_v_samp_factor; inrow++) { inptr = input_data[inrow]; outptr0 = output_data[outrow++]; outptr1 = output_data[outrow++]; for (incol = (output_width + 31) & (~31); incol > 0; incol -= 64, inptr += 32, outptr0 += 64, outptr1 += 64) { in = vec_ld(0, inptr); inl = vec_mergeh(in, in); inh = vec_mergel(in, in); vec_st(inl, 0, outptr0); vec_st(inl, 0, outptr1); vec_st(inh, 16, outptr0); vec_st(inh, 16, outptr1); if (incol > 32) { in = vec_ld(16, inptr); inl = vec_mergeh(in, in); inh = vec_mergel(in, in); vec_st(inl, 32, outptr0); vec_st(inl, 32, outptr1); vec_st(inh, 48, outptr0); vec_st(inh, 48, outptr1); } } } } libjpeg-turbo-2.1.5/simd/powerpc/jfdctfst-altivec.c000066400000000000000000000106571436506551100223160ustar00rootroot00000000000000/* * AltiVec optimizations for libjpeg-turbo * * Copyright (C) 2014, D. R. Commander. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ /* FAST INTEGER FORWARD DCT * * This is similar to the SSE2 implementation, except that we left-shift the * constants by 1 less bit (the -1 in CONST_SHIFT.) This is because * vec_madds(arg1, arg2, arg3) generates the 16-bit saturated sum of: * the elements in arg3 + the most significant 17 bits of * (the elements in arg1 * the elements in arg2). */ #include "jsimd_altivec.h" #define F_0_382 98 /* FIX(0.382683433) */ #define F_0_541 139 /* FIX(0.541196100) */ #define F_0_707 181 /* FIX(0.707106781) */ #define F_1_306 334 /* FIX(1.306562965) */ #define CONST_BITS 8 #define PRE_MULTIPLY_SCALE_BITS 2 #define CONST_SHIFT (16 - PRE_MULTIPLY_SCALE_BITS - CONST_BITS - 1) #define DO_FDCT() { \ /* Even part */ \ \ tmp10 = vec_add(tmp0, tmp3); \ tmp13 = vec_sub(tmp0, tmp3); \ tmp11 = vec_add(tmp1, tmp2); \ tmp12 = vec_sub(tmp1, tmp2); \ \ out0 = vec_add(tmp10, tmp11); \ out4 = vec_sub(tmp10, tmp11); \ \ z1 = vec_add(tmp12, tmp13); \ z1 = vec_sl(z1, pre_multiply_scale_bits); \ z1 = vec_madds(z1, pw_0707, pw_zero); \ \ out2 = vec_add(tmp13, z1); \ out6 = vec_sub(tmp13, z1); \ \ /* Odd part */ \ \ tmp10 = vec_add(tmp4, tmp5); \ tmp11 = vec_add(tmp5, tmp6); \ tmp12 = vec_add(tmp6, tmp7); \ \ tmp10 = vec_sl(tmp10, pre_multiply_scale_bits); \ tmp12 = vec_sl(tmp12, pre_multiply_scale_bits); \ z5 = vec_sub(tmp10, tmp12); \ z5 = vec_madds(z5, pw_0382, pw_zero); \ \ z2 = vec_madds(tmp10, pw_0541, z5); \ z4 = vec_madds(tmp12, pw_1306, z5); \ \ tmp11 = vec_sl(tmp11, pre_multiply_scale_bits); \ z3 = vec_madds(tmp11, pw_0707, pw_zero); \ \ z11 = vec_add(tmp7, z3); \ z13 = vec_sub(tmp7, z3); \ \ out5 = vec_add(z13, z2); \ out3 = vec_sub(z13, z2); \ out1 = vec_add(z11, z4); \ out7 = vec_sub(z11, z4); \ } void jsimd_fdct_ifast_altivec(DCTELEM *data) { __vector short row0, row1, row2, row3, row4, row5, row6, row7, col0, col1, col2, col3, col4, col5, col6, col7, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp10, tmp11, tmp12, tmp13, z1, z2, z3, z4, z5, z11, z13, out0, out1, out2, out3, out4, out5, out6, out7; /* Constants */ __vector short pw_zero = { __8X(0) }, pw_0382 = { __8X(F_0_382 << CONST_SHIFT) }, pw_0541 = { __8X(F_0_541 << CONST_SHIFT) }, pw_0707 = { __8X(F_0_707 << CONST_SHIFT) }, pw_1306 = { __8X(F_1_306 << CONST_SHIFT) }; __vector unsigned short pre_multiply_scale_bits = { __8X(PRE_MULTIPLY_SCALE_BITS) }; /* Pass 1: process rows */ row0 = vec_ld(0, data); row1 = vec_ld(16, data); row2 = vec_ld(32, data); row3 = vec_ld(48, data); row4 = vec_ld(64, data); row5 = vec_ld(80, data); row6 = vec_ld(96, data); row7 = vec_ld(112, data); TRANSPOSE(row, col); tmp0 = vec_add(col0, col7); tmp7 = vec_sub(col0, col7); tmp1 = vec_add(col1, col6); tmp6 = vec_sub(col1, col6); tmp2 = vec_add(col2, col5); tmp5 = vec_sub(col2, col5); tmp3 = vec_add(col3, col4); tmp4 = vec_sub(col3, col4); DO_FDCT(); /* Pass 2: process columns */ TRANSPOSE(out, row); tmp0 = vec_add(row0, row7); tmp7 = vec_sub(row0, row7); tmp1 = vec_add(row1, row6); tmp6 = vec_sub(row1, row6); tmp2 = vec_add(row2, row5); tmp5 = vec_sub(row2, row5); tmp3 = vec_add(row3, row4); tmp4 = vec_sub(row3, row4); DO_FDCT(); vec_st(out0, 0, data); vec_st(out1, 16, data); vec_st(out2, 32, data); vec_st(out3, 48, data); vec_st(out4, 64, data); vec_st(out5, 80, data); vec_st(out6, 96, data); vec_st(out7, 112, data); } libjpeg-turbo-2.1.5/simd/powerpc/jfdctint-altivec.c000066400000000000000000000205631436506551100223110ustar00rootroot00000000000000/* * AltiVec optimizations for libjpeg-turbo * * Copyright (C) 2014, 2020, D. R. Commander. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ /* ACCURATE INTEGER FORWARD DCT */ #include "jsimd_altivec.h" #define F_0_298 2446 /* FIX(0.298631336) */ #define F_0_390 3196 /* FIX(0.390180644) */ #define F_0_541 4433 /* FIX(0.541196100) */ #define F_0_765 6270 /* FIX(0.765366865) */ #define F_0_899 7373 /* FIX(0.899976223) */ #define F_1_175 9633 /* FIX(1.175875602) */ #define F_1_501 12299 /* FIX(1.501321110) */ #define F_1_847 15137 /* FIX(1.847759065) */ #define F_1_961 16069 /* FIX(1.961570560) */ #define F_2_053 16819 /* FIX(2.053119869) */ #define F_2_562 20995 /* FIX(2.562915447) */ #define F_3_072 25172 /* FIX(3.072711026) */ #define CONST_BITS 13 #define PASS1_BITS 2 #define DESCALE_P1 (CONST_BITS - PASS1_BITS) #define DESCALE_P2 (CONST_BITS + PASS1_BITS) #define DO_FDCT_COMMON(PASS) { \ /* (Original) \ * z1 = (tmp12 + tmp13) * 0.541196100; \ * data2 = z1 + tmp13 * 0.765366865; \ * data6 = z1 + tmp12 * -1.847759065; \ * \ * (This implementation) \ * data2 = tmp13 * (0.541196100 + 0.765366865) + tmp12 * 0.541196100; \ * data6 = tmp13 * 0.541196100 + tmp12 * (0.541196100 - 1.847759065); \ */ \ \ tmp1312l = vec_mergeh(tmp13, tmp12); \ tmp1312h = vec_mergel(tmp13, tmp12); \ \ out2l = vec_msums(tmp1312l, pw_f130_f054, pd_descale_p##PASS); \ out2h = vec_msums(tmp1312h, pw_f130_f054, pd_descale_p##PASS); \ out6l = vec_msums(tmp1312l, pw_f054_mf130, pd_descale_p##PASS); \ out6h = vec_msums(tmp1312h, pw_f054_mf130, pd_descale_p##PASS); \ \ out2l = vec_sra(out2l, descale_p##PASS); \ out2h = vec_sra(out2h, descale_p##PASS); \ out6l = vec_sra(out6l, descale_p##PASS); \ out6h = vec_sra(out6h, descale_p##PASS); \ \ out2 = vec_pack(out2l, out2h); \ out6 = vec_pack(out6l, out6h); \ \ /* Odd part */ \ \ z3 = vec_add(tmp4, tmp6); \ z4 = vec_add(tmp5, tmp7); \ \ /* (Original) \ * z5 = (z3 + z4) * 1.175875602; \ * z3 = z3 * -1.961570560; z4 = z4 * -0.390180644; \ * z3 += z5; z4 += z5; \ * \ * (This implementation) \ * z3 = z3 * (1.175875602 - 1.961570560) + z4 * 1.175875602; \ * z4 = z3 * 1.175875602 + z4 * (1.175875602 - 0.390180644); \ */ \ \ z34l = vec_mergeh(z3, z4); \ z34h = vec_mergel(z3, z4); \ \ z3l = vec_msums(z34l, pw_mf078_f117, pd_descale_p##PASS); \ z3h = vec_msums(z34h, pw_mf078_f117, pd_descale_p##PASS); \ z4l = vec_msums(z34l, pw_f117_f078, pd_descale_p##PASS); \ z4h = vec_msums(z34h, pw_f117_f078, pd_descale_p##PASS); \ \ /* (Original) \ * z1 = tmp4 + tmp7; z2 = tmp5 + tmp6; \ * tmp4 = tmp4 * 0.298631336; tmp5 = tmp5 * 2.053119869; \ * tmp6 = tmp6 * 3.072711026; tmp7 = tmp7 * 1.501321110; \ * z1 = z1 * -0.899976223; z2 = z2 * -2.562915447; \ * data7 = tmp4 + z1 + z3; data5 = tmp5 + z2 + z4; \ * data3 = tmp6 + z2 + z3; data1 = tmp7 + z1 + z4; \ * \ * (This implementation) \ * tmp4 = tmp4 * (0.298631336 - 0.899976223) + tmp7 * -0.899976223; \ * tmp5 = tmp5 * (2.053119869 - 2.562915447) + tmp6 * -2.562915447; \ * tmp6 = tmp5 * -2.562915447 + tmp6 * (3.072711026 - 2.562915447); \ * tmp7 = tmp4 * -0.899976223 + tmp7 * (1.501321110 - 0.899976223); \ * data7 = tmp4 + z3; data5 = tmp5 + z4; \ * data3 = tmp6 + z3; data1 = tmp7 + z4; \ */ \ \ tmp47l = vec_mergeh(tmp4, tmp7); \ tmp47h = vec_mergel(tmp4, tmp7); \ \ out7l = vec_msums(tmp47l, pw_mf060_mf089, z3l); \ out7h = vec_msums(tmp47h, pw_mf060_mf089, z3h); \ out1l = vec_msums(tmp47l, pw_mf089_f060, z4l); \ out1h = vec_msums(tmp47h, pw_mf089_f060, z4h); \ \ out7l = vec_sra(out7l, descale_p##PASS); \ out7h = vec_sra(out7h, descale_p##PASS); \ out1l = vec_sra(out1l, descale_p##PASS); \ out1h = vec_sra(out1h, descale_p##PASS); \ \ out7 = vec_pack(out7l, out7h); \ out1 = vec_pack(out1l, out1h); \ \ tmp56l = vec_mergeh(tmp5, tmp6); \ tmp56h = vec_mergel(tmp5, tmp6); \ \ out5l = vec_msums(tmp56l, pw_mf050_mf256, z4l); \ out5h = vec_msums(tmp56h, pw_mf050_mf256, z4h); \ out3l = vec_msums(tmp56l, pw_mf256_f050, z3l); \ out3h = vec_msums(tmp56h, pw_mf256_f050, z3h); \ \ out5l = vec_sra(out5l, descale_p##PASS); \ out5h = vec_sra(out5h, descale_p##PASS); \ out3l = vec_sra(out3l, descale_p##PASS); \ out3h = vec_sra(out3h, descale_p##PASS); \ \ out5 = vec_pack(out5l, out5h); \ out3 = vec_pack(out3l, out3h); \ } #define DO_FDCT_PASS1() { \ /* Even part */ \ \ tmp10 = vec_add(tmp0, tmp3); \ tmp13 = vec_sub(tmp0, tmp3); \ tmp11 = vec_add(tmp1, tmp2); \ tmp12 = vec_sub(tmp1, tmp2); \ \ out0 = vec_add(tmp10, tmp11); \ out0 = vec_sl(out0, pass1_bits); \ out4 = vec_sub(tmp10, tmp11); \ out4 = vec_sl(out4, pass1_bits); \ \ DO_FDCT_COMMON(1); \ } #define DO_FDCT_PASS2() { \ /* Even part */ \ \ tmp10 = vec_add(tmp0, tmp3); \ tmp13 = vec_sub(tmp0, tmp3); \ tmp11 = vec_add(tmp1, tmp2); \ tmp12 = vec_sub(tmp1, tmp2); \ \ out0 = vec_add(tmp10, tmp11); \ out0 = vec_add(out0, pw_descale_p2x); \ out0 = vec_sra(out0, pass1_bits); \ out4 = vec_sub(tmp10, tmp11); \ out4 = vec_add(out4, pw_descale_p2x); \ out4 = vec_sra(out4, pass1_bits); \ \ DO_FDCT_COMMON(2); \ } void jsimd_fdct_islow_altivec(DCTELEM *data) { __vector short row0, row1, row2, row3, row4, row5, row6, row7, col0, col1, col2, col3, col4, col5, col6, col7, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp10, tmp11, tmp12, tmp13, tmp47l, tmp47h, tmp56l, tmp56h, tmp1312l, tmp1312h, z3, z4, z34l, z34h, out0, out1, out2, out3, out4, out5, out6, out7; __vector int z3l, z3h, z4l, z4h, out1l, out1h, out2l, out2h, out3l, out3h, out5l, out5h, out6l, out6h, out7l, out7h; /* Constants */ __vector short pw_f130_f054 = { __4X2(F_0_541 + F_0_765, F_0_541) }, pw_f054_mf130 = { __4X2(F_0_541, F_0_541 - F_1_847) }, pw_mf078_f117 = { __4X2(F_1_175 - F_1_961, F_1_175) }, pw_f117_f078 = { __4X2(F_1_175, F_1_175 - F_0_390) }, pw_mf060_mf089 = { __4X2(F_0_298 - F_0_899, -F_0_899) }, pw_mf089_f060 = { __4X2(-F_0_899, F_1_501 - F_0_899) }, pw_mf050_mf256 = { __4X2(F_2_053 - F_2_562, -F_2_562) }, pw_mf256_f050 = { __4X2(-F_2_562, F_3_072 - F_2_562) }, pw_descale_p2x = { __8X(1 << (PASS1_BITS - 1)) }; __vector unsigned short pass1_bits = { __8X(PASS1_BITS) }; __vector int pd_descale_p1 = { __4X(1 << (DESCALE_P1 - 1)) }, pd_descale_p2 = { __4X(1 << (DESCALE_P2 - 1)) }; __vector unsigned int descale_p1 = { __4X(DESCALE_P1) }, descale_p2 = { __4X(DESCALE_P2) }; /* Pass 1: process rows */ row0 = vec_ld(0, data); row1 = vec_ld(16, data); row2 = vec_ld(32, data); row3 = vec_ld(48, data); row4 = vec_ld(64, data); row5 = vec_ld(80, data); row6 = vec_ld(96, data); row7 = vec_ld(112, data); TRANSPOSE(row, col); tmp0 = vec_add(col0, col7); tmp7 = vec_sub(col0, col7); tmp1 = vec_add(col1, col6); tmp6 = vec_sub(col1, col6); tmp2 = vec_add(col2, col5); tmp5 = vec_sub(col2, col5); tmp3 = vec_add(col3, col4); tmp4 = vec_sub(col3, col4); DO_FDCT_PASS1(); /* Pass 2: process columns */ TRANSPOSE(out, row); tmp0 = vec_add(row0, row7); tmp7 = vec_sub(row0, row7); tmp1 = vec_add(row1, row6); tmp6 = vec_sub(row1, row6); tmp2 = vec_add(row2, row5); tmp5 = vec_sub(row2, row5); tmp3 = vec_add(row3, row4); tmp4 = vec_sub(row3, row4); DO_FDCT_PASS2(); vec_st(out0, 0, data); vec_st(out1, 16, data); vec_st(out2, 32, data); vec_st(out3, 48, data); vec_st(out4, 64, data); vec_st(out5, 80, data); vec_st(out6, 96, data); vec_st(out7, 112, data); } libjpeg-turbo-2.1.5/simd/powerpc/jidctfst-altivec.c000066400000000000000000000176551436506551100223260ustar00rootroot00000000000000/* * AltiVec optimizations for libjpeg-turbo * * Copyright (C) 2014-2015, D. R. Commander. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ /* FAST INTEGER INVERSE DCT * * This is similar to the SSE2 implementation, except that we left-shift the * constants by 1 less bit (the -1 in CONST_SHIFT.) This is because * vec_madds(arg1, arg2, arg3) generates the 16-bit saturated sum of: * the elements in arg3 + the most significant 17 bits of * (the elements in arg1 * the elements in arg2). */ #include "jsimd_altivec.h" #define F_1_082 277 /* FIX(1.082392200) */ #define F_1_414 362 /* FIX(1.414213562) */ #define F_1_847 473 /* FIX(1.847759065) */ #define F_2_613 669 /* FIX(2.613125930) */ #define F_1_613 (F_2_613 - 256) /* FIX(2.613125930) - FIX(1) */ #define CONST_BITS 8 #define PASS1_BITS 2 #define PRE_MULTIPLY_SCALE_BITS 2 #define CONST_SHIFT (16 - PRE_MULTIPLY_SCALE_BITS - CONST_BITS - 1) #define DO_IDCT(in) { \ /* Even part */ \ \ tmp10 = vec_add(in##0, in##4); \ tmp11 = vec_sub(in##0, in##4); \ tmp13 = vec_add(in##2, in##6); \ \ tmp12 = vec_sub(in##2, in##6); \ tmp12 = vec_sl(tmp12, pre_multiply_scale_bits); \ tmp12 = vec_madds(tmp12, pw_F1414, pw_zero); \ tmp12 = vec_sub(tmp12, tmp13); \ \ tmp0 = vec_add(tmp10, tmp13); \ tmp3 = vec_sub(tmp10, tmp13); \ tmp1 = vec_add(tmp11, tmp12); \ tmp2 = vec_sub(tmp11, tmp12); \ \ /* Odd part */ \ \ z13 = vec_add(in##5, in##3); \ z10 = vec_sub(in##5, in##3); \ z10s = vec_sl(z10, pre_multiply_scale_bits); \ z11 = vec_add(in##1, in##7); \ z12s = vec_sub(in##1, in##7); \ z12s = vec_sl(z12s, pre_multiply_scale_bits); \ \ tmp11 = vec_sub(z11, z13); \ tmp11 = vec_sl(tmp11, pre_multiply_scale_bits); \ tmp11 = vec_madds(tmp11, pw_F1414, pw_zero); \ \ tmp7 = vec_add(z11, z13); \ \ /* To avoid overflow... \ * \ * (Original) \ * tmp12 = -2.613125930 * z10 + z5; \ * \ * (This implementation) \ * tmp12 = (-1.613125930 - 1) * z10 + z5; \ * = -1.613125930 * z10 - z10 + z5; \ */ \ \ z5 = vec_add(z10s, z12s); \ z5 = vec_madds(z5, pw_F1847, pw_zero); \ \ tmp10 = vec_madds(z12s, pw_F1082, pw_zero); \ tmp10 = vec_sub(tmp10, z5); \ tmp12 = vec_madds(z10s, pw_MF1613, z5); \ tmp12 = vec_sub(tmp12, z10); \ \ tmp6 = vec_sub(tmp12, tmp7); \ tmp5 = vec_sub(tmp11, tmp6); \ tmp4 = vec_add(tmp10, tmp5); \ \ out0 = vec_add(tmp0, tmp7); \ out1 = vec_add(tmp1, tmp6); \ out2 = vec_add(tmp2, tmp5); \ out3 = vec_sub(tmp3, tmp4); \ out4 = vec_add(tmp3, tmp4); \ out5 = vec_sub(tmp2, tmp5); \ out6 = vec_sub(tmp1, tmp6); \ out7 = vec_sub(tmp0, tmp7); \ } void jsimd_idct_ifast_altivec(void *dct_table_, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { short *dct_table = (short *)dct_table_; int *outptr; __vector short row0, row1, row2, row3, row4, row5, row6, row7, col0, col1, col2, col3, col4, col5, col6, col7, quant0, quant1, quant2, quant3, quant4, quant5, quant6, quant7, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp10, tmp11, tmp12, tmp13, z5, z10, z10s, z11, z12s, z13, out0, out1, out2, out3, out4, out5, out6, out7; __vector signed char outb; /* Constants */ __vector short pw_zero = { __8X(0) }, pw_F1414 = { __8X(F_1_414 << CONST_SHIFT) }, pw_F1847 = { __8X(F_1_847 << CONST_SHIFT) }, pw_MF1613 = { __8X(-F_1_613 << CONST_SHIFT) }, pw_F1082 = { __8X(F_1_082 << CONST_SHIFT) }; __vector unsigned short pre_multiply_scale_bits = { __8X(PRE_MULTIPLY_SCALE_BITS) }, pass1_bits3 = { __8X(PASS1_BITS + 3) }; __vector signed char pb_centerjsamp = { __16X(CENTERJSAMPLE) }; /* Pass 1: process columns */ col0 = vec_ld(0, coef_block); col1 = vec_ld(16, coef_block); col2 = vec_ld(32, coef_block); col3 = vec_ld(48, coef_block); col4 = vec_ld(64, coef_block); col5 = vec_ld(80, coef_block); col6 = vec_ld(96, coef_block); col7 = vec_ld(112, coef_block); tmp1 = vec_or(col1, col2); tmp2 = vec_or(col3, col4); tmp1 = vec_or(tmp1, tmp2); tmp3 = vec_or(col5, col6); tmp3 = vec_or(tmp3, col7); tmp1 = vec_or(tmp1, tmp3); quant0 = vec_ld(0, dct_table); col0 = vec_mladd(col0, quant0, pw_zero); if (vec_all_eq(tmp1, pw_zero)) { /* AC terms all zero */ row0 = vec_splat(col0, 0); row1 = vec_splat(col0, 1); row2 = vec_splat(col0, 2); row3 = vec_splat(col0, 3); row4 = vec_splat(col0, 4); row5 = vec_splat(col0, 5); row6 = vec_splat(col0, 6); row7 = vec_splat(col0, 7); } else { quant1 = vec_ld(16, dct_table); quant2 = vec_ld(32, dct_table); quant3 = vec_ld(48, dct_table); quant4 = vec_ld(64, dct_table); quant5 = vec_ld(80, dct_table); quant6 = vec_ld(96, dct_table); quant7 = vec_ld(112, dct_table); col1 = vec_mladd(col1, quant1, pw_zero); col2 = vec_mladd(col2, quant2, pw_zero); col3 = vec_mladd(col3, quant3, pw_zero); col4 = vec_mladd(col4, quant4, pw_zero); col5 = vec_mladd(col5, quant5, pw_zero); col6 = vec_mladd(col6, quant6, pw_zero); col7 = vec_mladd(col7, quant7, pw_zero); DO_IDCT(col); TRANSPOSE(out, row); } /* Pass 2: process rows */ DO_IDCT(row); out0 = vec_sra(out0, pass1_bits3); out1 = vec_sra(out1, pass1_bits3); out2 = vec_sra(out2, pass1_bits3); out3 = vec_sra(out3, pass1_bits3); out4 = vec_sra(out4, pass1_bits3); out5 = vec_sra(out5, pass1_bits3); out6 = vec_sra(out6, pass1_bits3); out7 = vec_sra(out7, pass1_bits3); TRANSPOSE(out, col); outb = vec_packs(col0, col0); outb = vec_add(outb, pb_centerjsamp); outptr = (int *)(output_buf[0] + output_col); vec_ste((__vector int)outb, 0, outptr); vec_ste((__vector int)outb, 4, outptr); outb = vec_packs(col1, col1); outb = vec_add(outb, pb_centerjsamp); outptr = (int *)(output_buf[1] + output_col); vec_ste((__vector int)outb, 0, outptr); vec_ste((__vector int)outb, 4, outptr); outb = vec_packs(col2, col2); outb = vec_add(outb, pb_centerjsamp); outptr = (int *)(output_buf[2] + output_col); vec_ste((__vector int)outb, 0, outptr); vec_ste((__vector int)outb, 4, outptr); outb = vec_packs(col3, col3); outb = vec_add(outb, pb_centerjsamp); outptr = (int *)(output_buf[3] + output_col); vec_ste((__vector int)outb, 0, outptr); vec_ste((__vector int)outb, 4, outptr); outb = vec_packs(col4, col4); outb = vec_add(outb, pb_centerjsamp); outptr = (int *)(output_buf[4] + output_col); vec_ste((__vector int)outb, 0, outptr); vec_ste((__vector int)outb, 4, outptr); outb = vec_packs(col5, col5); outb = vec_add(outb, pb_centerjsamp); outptr = (int *)(output_buf[5] + output_col); vec_ste((__vector int)outb, 0, outptr); vec_ste((__vector int)outb, 4, outptr); outb = vec_packs(col6, col6); outb = vec_add(outb, pb_centerjsamp); outptr = (int *)(output_buf[6] + output_col); vec_ste((__vector int)outb, 0, outptr); vec_ste((__vector int)outb, 4, outptr); outb = vec_packs(col7, col7); outb = vec_add(outb, pb_centerjsamp); outptr = (int *)(output_buf[7] + output_col); vec_ste((__vector int)outb, 0, outptr); vec_ste((__vector int)outb, 4, outptr); } libjpeg-turbo-2.1.5/simd/powerpc/jidctint-altivec.c000066400000000000000000000274201436506551100223130ustar00rootroot00000000000000/* * AltiVec optimizations for libjpeg-turbo * * Copyright (C) 2014-2015, 2020, D. R. Commander. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ /* ACCURATE INTEGER INVERSE DCT */ #include "jsimd_altivec.h" #define F_0_298 2446 /* FIX(0.298631336) */ #define F_0_390 3196 /* FIX(0.390180644) */ #define F_0_541 4433 /* FIX(0.541196100) */ #define F_0_765 6270 /* FIX(0.765366865) */ #define F_0_899 7373 /* FIX(0.899976223) */ #define F_1_175 9633 /* FIX(1.175875602) */ #define F_1_501 12299 /* FIX(1.501321110) */ #define F_1_847 15137 /* FIX(1.847759065) */ #define F_1_961 16069 /* FIX(1.961570560) */ #define F_2_053 16819 /* FIX(2.053119869) */ #define F_2_562 20995 /* FIX(2.562915447) */ #define F_3_072 25172 /* FIX(3.072711026) */ #define CONST_BITS 13 #define PASS1_BITS 2 #define DESCALE_P1 (CONST_BITS - PASS1_BITS) #define DESCALE_P2 (CONST_BITS + PASS1_BITS + 3) #define DO_IDCT(in, PASS) { \ /* Even part \ * \ * (Original) \ * z1 = (z2 + z3) * 0.541196100; \ * tmp2 = z1 + z3 * -1.847759065; \ * tmp3 = z1 + z2 * 0.765366865; \ * \ * (This implementation) \ * tmp2 = z2 * 0.541196100 + z3 * (0.541196100 - 1.847759065); \ * tmp3 = z2 * (0.541196100 + 0.765366865) + z3 * 0.541196100; \ */ \ \ in##26l = vec_mergeh(in##2, in##6); \ in##26h = vec_mergel(in##2, in##6); \ \ tmp3l = vec_msums(in##26l, pw_f130_f054, pd_zero); \ tmp3h = vec_msums(in##26h, pw_f130_f054, pd_zero); \ tmp2l = vec_msums(in##26l, pw_f054_mf130, pd_zero); \ tmp2h = vec_msums(in##26h, pw_f054_mf130, pd_zero); \ \ tmp0 = vec_add(in##0, in##4); \ tmp1 = vec_sub(in##0, in##4); \ \ tmp0l = vec_unpackh(tmp0); \ tmp0h = vec_unpackl(tmp0); \ tmp0l = vec_sl(tmp0l, const_bits); \ tmp0h = vec_sl(tmp0h, const_bits); \ tmp0l = vec_add(tmp0l, pd_descale_p##PASS); \ tmp0h = vec_add(tmp0h, pd_descale_p##PASS); \ \ tmp10l = vec_add(tmp0l, tmp3l); \ tmp10h = vec_add(tmp0h, tmp3h); \ tmp13l = vec_sub(tmp0l, tmp3l); \ tmp13h = vec_sub(tmp0h, tmp3h); \ \ tmp1l = vec_unpackh(tmp1); \ tmp1h = vec_unpackl(tmp1); \ tmp1l = vec_sl(tmp1l, const_bits); \ tmp1h = vec_sl(tmp1h, const_bits); \ tmp1l = vec_add(tmp1l, pd_descale_p##PASS); \ tmp1h = vec_add(tmp1h, pd_descale_p##PASS); \ \ tmp11l = vec_add(tmp1l, tmp2l); \ tmp11h = vec_add(tmp1h, tmp2h); \ tmp12l = vec_sub(tmp1l, tmp2l); \ tmp12h = vec_sub(tmp1h, tmp2h); \ \ /* Odd part */ \ \ z3 = vec_add(in##3, in##7); \ z4 = vec_add(in##1, in##5); \ \ /* (Original) \ * z5 = (z3 + z4) * 1.175875602; \ * z3 = z3 * -1.961570560; z4 = z4 * -0.390180644; \ * z3 += z5; z4 += z5; \ * \ * (This implementation) \ * z3 = z3 * (1.175875602 - 1.961570560) + z4 * 1.175875602; \ * z4 = z3 * 1.175875602 + z4 * (1.175875602 - 0.390180644); \ */ \ \ z34l = vec_mergeh(z3, z4); \ z34h = vec_mergel(z3, z4); \ \ z3l = vec_msums(z34l, pw_mf078_f117, pd_zero); \ z3h = vec_msums(z34h, pw_mf078_f117, pd_zero); \ z4l = vec_msums(z34l, pw_f117_f078, pd_zero); \ z4h = vec_msums(z34h, pw_f117_f078, pd_zero); \ \ /* (Original) \ * z1 = tmp0 + tmp3; z2 = tmp1 + tmp2; \ * tmp0 = tmp0 * 0.298631336; tmp1 = tmp1 * 2.053119869; \ * tmp2 = tmp2 * 3.072711026; tmp3 = tmp3 * 1.501321110; \ * z1 = z1 * -0.899976223; z2 = z2 * -2.562915447; \ * tmp0 += z1 + z3; tmp1 += z2 + z4; \ * tmp2 += z2 + z3; tmp3 += z1 + z4; \ * \ * (This implementation) \ * tmp0 = tmp0 * (0.298631336 - 0.899976223) + tmp3 * -0.899976223; \ * tmp1 = tmp1 * (2.053119869 - 2.562915447) + tmp2 * -2.562915447; \ * tmp2 = tmp1 * -2.562915447 + tmp2 * (3.072711026 - 2.562915447); \ * tmp3 = tmp0 * -0.899976223 + tmp3 * (1.501321110 - 0.899976223); \ * tmp0 += z3; tmp1 += z4; \ * tmp2 += z3; tmp3 += z4; \ */ \ \ in##71l = vec_mergeh(in##7, in##1); \ in##71h = vec_mergel(in##7, in##1); \ \ tmp0l = vec_msums(in##71l, pw_mf060_mf089, z3l); \ tmp0h = vec_msums(in##71h, pw_mf060_mf089, z3h); \ tmp3l = vec_msums(in##71l, pw_mf089_f060, z4l); \ tmp3h = vec_msums(in##71h, pw_mf089_f060, z4h); \ \ in##53l = vec_mergeh(in##5, in##3); \ in##53h = vec_mergel(in##5, in##3); \ \ tmp1l = vec_msums(in##53l, pw_mf050_mf256, z4l); \ tmp1h = vec_msums(in##53h, pw_mf050_mf256, z4h); \ tmp2l = vec_msums(in##53l, pw_mf256_f050, z3l); \ tmp2h = vec_msums(in##53h, pw_mf256_f050, z3h); \ \ /* Final output stage */ \ \ out0l = vec_add(tmp10l, tmp3l); \ out0h = vec_add(tmp10h, tmp3h); \ out7l = vec_sub(tmp10l, tmp3l); \ out7h = vec_sub(tmp10h, tmp3h); \ \ out0l = vec_sra(out0l, descale_p##PASS); \ out0h = vec_sra(out0h, descale_p##PASS); \ out7l = vec_sra(out7l, descale_p##PASS); \ out7h = vec_sra(out7h, descale_p##PASS); \ \ out0 = vec_pack(out0l, out0h); \ out7 = vec_pack(out7l, out7h); \ \ out1l = vec_add(tmp11l, tmp2l); \ out1h = vec_add(tmp11h, tmp2h); \ out6l = vec_sub(tmp11l, tmp2l); \ out6h = vec_sub(tmp11h, tmp2h); \ \ out1l = vec_sra(out1l, descale_p##PASS); \ out1h = vec_sra(out1h, descale_p##PASS); \ out6l = vec_sra(out6l, descale_p##PASS); \ out6h = vec_sra(out6h, descale_p##PASS); \ \ out1 = vec_pack(out1l, out1h); \ out6 = vec_pack(out6l, out6h); \ \ out2l = vec_add(tmp12l, tmp1l); \ out2h = vec_add(tmp12h, tmp1h); \ out5l = vec_sub(tmp12l, tmp1l); \ out5h = vec_sub(tmp12h, tmp1h); \ \ out2l = vec_sra(out2l, descale_p##PASS); \ out2h = vec_sra(out2h, descale_p##PASS); \ out5l = vec_sra(out5l, descale_p##PASS); \ out5h = vec_sra(out5h, descale_p##PASS); \ \ out2 = vec_pack(out2l, out2h); \ out5 = vec_pack(out5l, out5h); \ \ out3l = vec_add(tmp13l, tmp0l); \ out3h = vec_add(tmp13h, tmp0h); \ out4l = vec_sub(tmp13l, tmp0l); \ out4h = vec_sub(tmp13h, tmp0h); \ \ out3l = vec_sra(out3l, descale_p##PASS); \ out3h = vec_sra(out3h, descale_p##PASS); \ out4l = vec_sra(out4l, descale_p##PASS); \ out4h = vec_sra(out4h, descale_p##PASS); \ \ out3 = vec_pack(out3l, out3h); \ out4 = vec_pack(out4l, out4h); \ } void jsimd_idct_islow_altivec(void *dct_table_, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { short *dct_table = (short *)dct_table_; int *outptr; __vector short row0, row1, row2, row3, row4, row5, row6, row7, col0, col1, col2, col3, col4, col5, col6, col7, quant0, quant1, quant2, quant3, quant4, quant5, quant6, quant7, tmp0, tmp1, tmp2, tmp3, z3, z4, z34l, z34h, col71l, col71h, col26l, col26h, col53l, col53h, row71l, row71h, row26l, row26h, row53l, row53h, out0, out1, out2, out3, out4, out5, out6, out7; __vector int tmp0l, tmp0h, tmp1l, tmp1h, tmp2l, tmp2h, tmp3l, tmp3h, tmp10l, tmp10h, tmp11l, tmp11h, tmp12l, tmp12h, tmp13l, tmp13h, z3l, z3h, z4l, z4h, out0l, out0h, out1l, out1h, out2l, out2h, out3l, out3h, out4l, out4h, out5l, out5h, out6l, out6h, out7l, out7h; __vector signed char outb; /* Constants */ __vector short pw_zero = { __8X(0) }, pw_f130_f054 = { __4X2(F_0_541 + F_0_765, F_0_541) }, pw_f054_mf130 = { __4X2(F_0_541, F_0_541 - F_1_847) }, pw_mf078_f117 = { __4X2(F_1_175 - F_1_961, F_1_175) }, pw_f117_f078 = { __4X2(F_1_175, F_1_175 - F_0_390) }, pw_mf060_mf089 = { __4X2(F_0_298 - F_0_899, -F_0_899) }, pw_mf089_f060 = { __4X2(-F_0_899, F_1_501 - F_0_899) }, pw_mf050_mf256 = { __4X2(F_2_053 - F_2_562, -F_2_562) }, pw_mf256_f050 = { __4X2(-F_2_562, F_3_072 - F_2_562) }; __vector unsigned short pass1_bits = { __8X(PASS1_BITS) }; __vector int pd_zero = { __4X(0) }, pd_descale_p1 = { __4X(1 << (DESCALE_P1 - 1)) }, pd_descale_p2 = { __4X(1 << (DESCALE_P2 - 1)) }; __vector unsigned int descale_p1 = { __4X(DESCALE_P1) }, descale_p2 = { __4X(DESCALE_P2) }, const_bits = { __4X(CONST_BITS) }; __vector signed char pb_centerjsamp = { __16X(CENTERJSAMPLE) }; /* Pass 1: process columns */ col0 = vec_ld(0, coef_block); col1 = vec_ld(16, coef_block); col2 = vec_ld(32, coef_block); col3 = vec_ld(48, coef_block); col4 = vec_ld(64, coef_block); col5 = vec_ld(80, coef_block); col6 = vec_ld(96, coef_block); col7 = vec_ld(112, coef_block); tmp1 = vec_or(col1, col2); tmp2 = vec_or(col3, col4); tmp1 = vec_or(tmp1, tmp2); tmp3 = vec_or(col5, col6); tmp3 = vec_or(tmp3, col7); tmp1 = vec_or(tmp1, tmp3); quant0 = vec_ld(0, dct_table); col0 = vec_mladd(col0, quant0, pw_zero); if (vec_all_eq(tmp1, pw_zero)) { /* AC terms all zero */ col0 = vec_sl(col0, pass1_bits); row0 = vec_splat(col0, 0); row1 = vec_splat(col0, 1); row2 = vec_splat(col0, 2); row3 = vec_splat(col0, 3); row4 = vec_splat(col0, 4); row5 = vec_splat(col0, 5); row6 = vec_splat(col0, 6); row7 = vec_splat(col0, 7); } else { quant1 = vec_ld(16, dct_table); quant2 = vec_ld(32, dct_table); quant3 = vec_ld(48, dct_table); quant4 = vec_ld(64, dct_table); quant5 = vec_ld(80, dct_table); quant6 = vec_ld(96, dct_table); quant7 = vec_ld(112, dct_table); col1 = vec_mladd(col1, quant1, pw_zero); col2 = vec_mladd(col2, quant2, pw_zero); col3 = vec_mladd(col3, quant3, pw_zero); col4 = vec_mladd(col4, quant4, pw_zero); col5 = vec_mladd(col5, quant5, pw_zero); col6 = vec_mladd(col6, quant6, pw_zero); col7 = vec_mladd(col7, quant7, pw_zero); DO_IDCT(col, 1); TRANSPOSE(out, row); } /* Pass 2: process rows */ DO_IDCT(row, 2); TRANSPOSE(out, col); outb = vec_packs(col0, col0); outb = vec_add(outb, pb_centerjsamp); outptr = (int *)(output_buf[0] + output_col); vec_ste((__vector int)outb, 0, outptr); vec_ste((__vector int)outb, 4, outptr); outb = vec_packs(col1, col1); outb = vec_add(outb, pb_centerjsamp); outptr = (int *)(output_buf[1] + output_col); vec_ste((__vector int)outb, 0, outptr); vec_ste((__vector int)outb, 4, outptr); outb = vec_packs(col2, col2); outb = vec_add(outb, pb_centerjsamp); outptr = (int *)(output_buf[2] + output_col); vec_ste((__vector int)outb, 0, outptr); vec_ste((__vector int)outb, 4, outptr); outb = vec_packs(col3, col3); outb = vec_add(outb, pb_centerjsamp); outptr = (int *)(output_buf[3] + output_col); vec_ste((__vector int)outb, 0, outptr); vec_ste((__vector int)outb, 4, outptr); outb = vec_packs(col4, col4); outb = vec_add(outb, pb_centerjsamp); outptr = (int *)(output_buf[4] + output_col); vec_ste((__vector int)outb, 0, outptr); vec_ste((__vector int)outb, 4, outptr); outb = vec_packs(col5, col5); outb = vec_add(outb, pb_centerjsamp); outptr = (int *)(output_buf[5] + output_col); vec_ste((__vector int)outb, 0, outptr); vec_ste((__vector int)outb, 4, outptr); outb = vec_packs(col6, col6); outb = vec_add(outb, pb_centerjsamp); outptr = (int *)(output_buf[6] + output_col); vec_ste((__vector int)outb, 0, outptr); vec_ste((__vector int)outb, 4, outptr); outb = vec_packs(col7, col7); outb = vec_add(outb, pb_centerjsamp); outptr = (int *)(output_buf[7] + output_col); vec_ste((__vector int)outb, 0, outptr); vec_ste((__vector int)outb, 4, outptr); } libjpeg-turbo-2.1.5/simd/powerpc/jquanti-altivec.c000066400000000000000000000176711436506551100221650ustar00rootroot00000000000000/* * AltiVec optimizations for libjpeg-turbo * * Copyright (C) 2014-2015, D. R. Commander. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ /* INTEGER QUANTIZATION AND SAMPLE CONVERSION */ #include "jsimd_altivec.h" /* NOTE: The address will either be aligned or offset by 8 bytes, so we can * always get the data we want by using a single vector load (although we may * have to permute the result.) */ #if __BIG_ENDIAN__ #define LOAD_ROW(row) { \ elemptr = sample_data[row] + start_col; \ in##row = vec_ld(0, elemptr); \ if ((size_t)elemptr & 15) \ in##row = vec_perm(in##row, in##row, vec_lvsl(0, elemptr)); \ } #else #define LOAD_ROW(row) { \ elemptr = sample_data[row] + start_col; \ in##row = vec_vsx_ld(0, elemptr); \ } #endif void jsimd_convsamp_altivec(JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM *workspace) { JSAMPROW elemptr; __vector unsigned char in0, in1, in2, in3, in4, in5, in6, in7; __vector short out0, out1, out2, out3, out4, out5, out6, out7; /* Constants */ __vector short pw_centerjsamp = { __8X(CENTERJSAMPLE) }; __vector unsigned char pb_zero = { __16X(0) }; LOAD_ROW(0); LOAD_ROW(1); LOAD_ROW(2); LOAD_ROW(3); LOAD_ROW(4); LOAD_ROW(5); LOAD_ROW(6); LOAD_ROW(7); out0 = (__vector short)VEC_UNPACKHU(in0); out1 = (__vector short)VEC_UNPACKHU(in1); out2 = (__vector short)VEC_UNPACKHU(in2); out3 = (__vector short)VEC_UNPACKHU(in3); out4 = (__vector short)VEC_UNPACKHU(in4); out5 = (__vector short)VEC_UNPACKHU(in5); out6 = (__vector short)VEC_UNPACKHU(in6); out7 = (__vector short)VEC_UNPACKHU(in7); out0 = vec_sub(out0, pw_centerjsamp); out1 = vec_sub(out1, pw_centerjsamp); out2 = vec_sub(out2, pw_centerjsamp); out3 = vec_sub(out3, pw_centerjsamp); out4 = vec_sub(out4, pw_centerjsamp); out5 = vec_sub(out5, pw_centerjsamp); out6 = vec_sub(out6, pw_centerjsamp); out7 = vec_sub(out7, pw_centerjsamp); vec_st(out0, 0, workspace); vec_st(out1, 16, workspace); vec_st(out2, 32, workspace); vec_st(out3, 48, workspace); vec_st(out4, 64, workspace); vec_st(out5, 80, workspace); vec_st(out6, 96, workspace); vec_st(out7, 112, workspace); } #define WORD_BIT 16 /* There is no AltiVec 16-bit unsigned multiply instruction, hence this. We basically need an unsigned equivalent of vec_madds(). */ #define MULTIPLY(vs0, vs1, out) { \ tmpe = vec_mule((__vector unsigned short)vs0, \ (__vector unsigned short)vs1); \ tmpo = vec_mulo((__vector unsigned short)vs0, \ (__vector unsigned short)vs1); \ out = (__vector short)vec_perm((__vector unsigned short)tmpe, \ (__vector unsigned short)tmpo, \ shift_pack_index); \ } void jsimd_quantize_altivec(JCOEFPTR coef_block, DCTELEM *divisors, DCTELEM *workspace) { __vector short row0, row1, row2, row3, row4, row5, row6, row7, row0s, row1s, row2s, row3s, row4s, row5s, row6s, row7s, corr0, corr1, corr2, corr3, corr4, corr5, corr6, corr7, recip0, recip1, recip2, recip3, recip4, recip5, recip6, recip7, scale0, scale1, scale2, scale3, scale4, scale5, scale6, scale7; __vector unsigned int tmpe, tmpo; /* Constants */ __vector unsigned short pw_word_bit_m1 = { __8X(WORD_BIT - 1) }; #if __BIG_ENDIAN__ __vector unsigned char shift_pack_index = { 0, 1, 16, 17, 4, 5, 20, 21, 8, 9, 24, 25, 12, 13, 28, 29 }; #else __vector unsigned char shift_pack_index = { 2, 3, 18, 19, 6, 7, 22, 23, 10, 11, 26, 27, 14, 15, 30, 31 }; #endif row0 = vec_ld(0, workspace); row1 = vec_ld(16, workspace); row2 = vec_ld(32, workspace); row3 = vec_ld(48, workspace); row4 = vec_ld(64, workspace); row5 = vec_ld(80, workspace); row6 = vec_ld(96, workspace); row7 = vec_ld(112, workspace); /* Branch-less absolute value */ row0s = vec_sra(row0, pw_word_bit_m1); row1s = vec_sra(row1, pw_word_bit_m1); row2s = vec_sra(row2, pw_word_bit_m1); row3s = vec_sra(row3, pw_word_bit_m1); row4s = vec_sra(row4, pw_word_bit_m1); row5s = vec_sra(row5, pw_word_bit_m1); row6s = vec_sra(row6, pw_word_bit_m1); row7s = vec_sra(row7, pw_word_bit_m1); row0 = vec_xor(row0, row0s); row1 = vec_xor(row1, row1s); row2 = vec_xor(row2, row2s); row3 = vec_xor(row3, row3s); row4 = vec_xor(row4, row4s); row5 = vec_xor(row5, row5s); row6 = vec_xor(row6, row6s); row7 = vec_xor(row7, row7s); row0 = vec_sub(row0, row0s); row1 = vec_sub(row1, row1s); row2 = vec_sub(row2, row2s); row3 = vec_sub(row3, row3s); row4 = vec_sub(row4, row4s); row5 = vec_sub(row5, row5s); row6 = vec_sub(row6, row6s); row7 = vec_sub(row7, row7s); corr0 = vec_ld(DCTSIZE2 * 2, divisors); corr1 = vec_ld(DCTSIZE2 * 2 + 16, divisors); corr2 = vec_ld(DCTSIZE2 * 2 + 32, divisors); corr3 = vec_ld(DCTSIZE2 * 2 + 48, divisors); corr4 = vec_ld(DCTSIZE2 * 2 + 64, divisors); corr5 = vec_ld(DCTSIZE2 * 2 + 80, divisors); corr6 = vec_ld(DCTSIZE2 * 2 + 96, divisors); corr7 = vec_ld(DCTSIZE2 * 2 + 112, divisors); row0 = vec_add(row0, corr0); row1 = vec_add(row1, corr1); row2 = vec_add(row2, corr2); row3 = vec_add(row3, corr3); row4 = vec_add(row4, corr4); row5 = vec_add(row5, corr5); row6 = vec_add(row6, corr6); row7 = vec_add(row7, corr7); recip0 = vec_ld(0, divisors); recip1 = vec_ld(16, divisors); recip2 = vec_ld(32, divisors); recip3 = vec_ld(48, divisors); recip4 = vec_ld(64, divisors); recip5 = vec_ld(80, divisors); recip6 = vec_ld(96, divisors); recip7 = vec_ld(112, divisors); MULTIPLY(row0, recip0, row0); MULTIPLY(row1, recip1, row1); MULTIPLY(row2, recip2, row2); MULTIPLY(row3, recip3, row3); MULTIPLY(row4, recip4, row4); MULTIPLY(row5, recip5, row5); MULTIPLY(row6, recip6, row6); MULTIPLY(row7, recip7, row7); scale0 = vec_ld(DCTSIZE2 * 4, divisors); scale1 = vec_ld(DCTSIZE2 * 4 + 16, divisors); scale2 = vec_ld(DCTSIZE2 * 4 + 32, divisors); scale3 = vec_ld(DCTSIZE2 * 4 + 48, divisors); scale4 = vec_ld(DCTSIZE2 * 4 + 64, divisors); scale5 = vec_ld(DCTSIZE2 * 4 + 80, divisors); scale6 = vec_ld(DCTSIZE2 * 4 + 96, divisors); scale7 = vec_ld(DCTSIZE2 * 4 + 112, divisors); MULTIPLY(row0, scale0, row0); MULTIPLY(row1, scale1, row1); MULTIPLY(row2, scale2, row2); MULTIPLY(row3, scale3, row3); MULTIPLY(row4, scale4, row4); MULTIPLY(row5, scale5, row5); MULTIPLY(row6, scale6, row6); MULTIPLY(row7, scale7, row7); row0 = vec_xor(row0, row0s); row1 = vec_xor(row1, row1s); row2 = vec_xor(row2, row2s); row3 = vec_xor(row3, row3s); row4 = vec_xor(row4, row4s); row5 = vec_xor(row5, row5s); row6 = vec_xor(row6, row6s); row7 = vec_xor(row7, row7s); row0 = vec_sub(row0, row0s); row1 = vec_sub(row1, row1s); row2 = vec_sub(row2, row2s); row3 = vec_sub(row3, row3s); row4 = vec_sub(row4, row4s); row5 = vec_sub(row5, row5s); row6 = vec_sub(row6, row6s); row7 = vec_sub(row7, row7s); vec_st(row0, 0, coef_block); vec_st(row1, 16, coef_block); vec_st(row2, 32, coef_block); vec_st(row3, 48, coef_block); vec_st(row4, 64, coef_block); vec_st(row5, 80, coef_block); vec_st(row6, 96, coef_block); vec_st(row7, 112, coef_block); } libjpeg-turbo-2.1.5/simd/powerpc/jsimd.c000066400000000000000000000466711436506551100201750ustar00rootroot00000000000000/* * jsimd_powerpc.c * * Copyright 2009 Pierre Ossman for Cendio AB * Copyright (C) 2009-2011, 2014-2016, 2018, 2022, D. R. Commander. * Copyright (C) 2015-2016, 2018, 2022, Matthieu Darbois. * * Based on the x86 SIMD extension for IJG JPEG library, * Copyright (C) 1999-2006, MIYASAKA Masaru. * For conditions of distribution and use, see copyright notice in jsimdext.inc * * This file contains the interface between the "normal" portions * of the library and the SIMD implementations when running on a * PowerPC architecture. */ #ifdef __amigaos4__ /* This must be defined first as it re-defines GLOBAL otherwise */ #include #endif #define JPEG_INTERNALS #include "../../jinclude.h" #include "../../jpeglib.h" #include "../../jsimd.h" #include "../../jdct.h" #include "../../jsimddct.h" #include "../jsimd.h" #include #if defined(__APPLE__) #include #include #elif defined(__OpenBSD__) #include #include #include #elif defined(__FreeBSD__) #include #include #endif static THREAD_LOCAL unsigned int simd_support = ~0; #if !defined(__ALTIVEC__) && (defined(__linux__) || defined(ANDROID) || defined(__ANDROID__)) #define SOMEWHAT_SANE_PROC_CPUINFO_SIZE_LIMIT (1024 * 1024) LOCAL(int) check_feature(char *buffer, char *feature) { char *p; if (*feature == 0) return 0; if (strncmp(buffer, "cpu", 3) != 0) return 0; buffer += 3; while (isspace(*buffer)) buffer++; /* Check if 'feature' is present in the buffer as a separate word */ while ((p = strstr(buffer, feature))) { if (p > buffer && !isspace(*(p - 1))) { buffer++; continue; } p += strlen(feature); if (*p != 0 && !isspace(*p)) { buffer++; continue; } return 1; } return 0; } LOCAL(int) parse_proc_cpuinfo(int bufsize) { char *buffer = (char *)malloc(bufsize); FILE *fd; simd_support = 0; if (!buffer) return 0; fd = fopen("/proc/cpuinfo", "r"); if (fd) { while (fgets(buffer, bufsize, fd)) { if (!strchr(buffer, '\n') && !feof(fd)) { /* "impossible" happened - insufficient size of the buffer! */ fclose(fd); free(buffer); return 0; } if (check_feature(buffer, "altivec")) simd_support |= JSIMD_ALTIVEC; } fclose(fd); } free(buffer); return 1; } #endif /* * Check what SIMD accelerations are supported. */ LOCAL(void) init_simd(void) { #ifndef NO_GETENV char *env = NULL; #endif #if !defined(__ALTIVEC__) && (defined(__linux__) || defined(ANDROID) || defined(__ANDROID__)) int bufsize = 1024; /* an initial guess for the line buffer size limit */ #elif defined(__amigaos4__) uint32 altivec = 0; #elif defined(__APPLE__) int mib[2] = { CTL_HW, HW_VECTORUNIT }; int altivec; size_t len = sizeof(altivec); #elif defined(__OpenBSD__) int mib[2] = { CTL_MACHDEP, CPU_ALTIVEC }; int altivec; size_t len = sizeof(altivec); #elif defined(__FreeBSD__) unsigned long cpufeatures = 0; #endif if (simd_support != ~0U) return; simd_support = 0; #if defined(__ALTIVEC__) simd_support |= JSIMD_ALTIVEC; #elif defined(__linux__) || defined(ANDROID) || defined(__ANDROID__) while (!parse_proc_cpuinfo(bufsize)) { bufsize *= 2; if (bufsize > SOMEWHAT_SANE_PROC_CPUINFO_SIZE_LIMIT) break; } #elif defined(__amigaos4__) IExec->GetCPUInfoTags(GCIT_VectorUnit, &altivec, TAG_DONE); if (altivec == VECTORTYPE_ALTIVEC) simd_support |= JSIMD_ALTIVEC; #elif defined(__APPLE__) || defined(__OpenBSD__) if (sysctl(mib, 2, &altivec, &len, NULL, 0) == 0 && altivec != 0) simd_support |= JSIMD_ALTIVEC; #elif defined(__FreeBSD__) elf_aux_info(AT_HWCAP, &cpufeatures, sizeof(cpufeatures)); if (cpufeatures & PPC_FEATURE_HAS_ALTIVEC) simd_support |= JSIMD_ALTIVEC; #endif #ifndef NO_GETENV /* Force different settings through environment variables */ env = getenv("JSIMD_FORCEALTIVEC"); if ((env != NULL) && (strcmp(env, "1") == 0)) simd_support = JSIMD_ALTIVEC; env = getenv("JSIMD_FORCENONE"); if ((env != NULL) && (strcmp(env, "1") == 0)) simd_support = 0; #endif } GLOBAL(int) jsimd_can_rgb_ycc(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if ((RGB_PIXELSIZE != 3) && (RGB_PIXELSIZE != 4)) return 0; if (simd_support & JSIMD_ALTIVEC) return 1; return 0; } GLOBAL(int) jsimd_can_rgb_gray(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if ((RGB_PIXELSIZE != 3) && (RGB_PIXELSIZE != 4)) return 0; if (simd_support & JSIMD_ALTIVEC) return 1; return 0; } GLOBAL(int) jsimd_can_ycc_rgb(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if ((RGB_PIXELSIZE != 3) && (RGB_PIXELSIZE != 4)) return 0; if (simd_support & JSIMD_ALTIVEC) return 1; return 0; } GLOBAL(int) jsimd_can_ycc_rgb565(void) { return 0; } GLOBAL(void) jsimd_rgb_ycc_convert(j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { void (*altivecfct) (JDIMENSION, JSAMPARRAY, JSAMPIMAGE, JDIMENSION, int); switch (cinfo->in_color_space) { case JCS_EXT_RGB: altivecfct = jsimd_extrgb_ycc_convert_altivec; break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: altivecfct = jsimd_extrgbx_ycc_convert_altivec; break; case JCS_EXT_BGR: altivecfct = jsimd_extbgr_ycc_convert_altivec; break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: altivecfct = jsimd_extbgrx_ycc_convert_altivec; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: altivecfct = jsimd_extxbgr_ycc_convert_altivec; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: altivecfct = jsimd_extxrgb_ycc_convert_altivec; break; default: altivecfct = jsimd_rgb_ycc_convert_altivec; break; } altivecfct(cinfo->image_width, input_buf, output_buf, output_row, num_rows); } GLOBAL(void) jsimd_rgb_gray_convert(j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { void (*altivecfct) (JDIMENSION, JSAMPARRAY, JSAMPIMAGE, JDIMENSION, int); switch (cinfo->in_color_space) { case JCS_EXT_RGB: altivecfct = jsimd_extrgb_gray_convert_altivec; break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: altivecfct = jsimd_extrgbx_gray_convert_altivec; break; case JCS_EXT_BGR: altivecfct = jsimd_extbgr_gray_convert_altivec; break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: altivecfct = jsimd_extbgrx_gray_convert_altivec; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: altivecfct = jsimd_extxbgr_gray_convert_altivec; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: altivecfct = jsimd_extxrgb_gray_convert_altivec; break; default: altivecfct = jsimd_rgb_gray_convert_altivec; break; } altivecfct(cinfo->image_width, input_buf, output_buf, output_row, num_rows); } GLOBAL(void) jsimd_ycc_rgb_convert(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { void (*altivecfct) (JDIMENSION, JSAMPIMAGE, JDIMENSION, JSAMPARRAY, int); switch (cinfo->out_color_space) { case JCS_EXT_RGB: altivecfct = jsimd_ycc_extrgb_convert_altivec; break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: altivecfct = jsimd_ycc_extrgbx_convert_altivec; break; case JCS_EXT_BGR: altivecfct = jsimd_ycc_extbgr_convert_altivec; break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: altivecfct = jsimd_ycc_extbgrx_convert_altivec; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: altivecfct = jsimd_ycc_extxbgr_convert_altivec; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: altivecfct = jsimd_ycc_extxrgb_convert_altivec; break; default: altivecfct = jsimd_ycc_rgb_convert_altivec; break; } altivecfct(cinfo->output_width, input_buf, input_row, output_buf, num_rows); } GLOBAL(void) jsimd_ycc_rgb565_convert(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { } GLOBAL(int) jsimd_can_h2v2_downsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_ALTIVEC) return 1; return 0; } GLOBAL(int) jsimd_can_h2v1_downsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_ALTIVEC) return 1; return 0; } GLOBAL(void) jsimd_h2v2_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY output_data) { jsimd_h2v2_downsample_altivec(cinfo->image_width, cinfo->max_v_samp_factor, compptr->v_samp_factor, compptr->width_in_blocks, input_data, output_data); } GLOBAL(void) jsimd_h2v1_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY output_data) { jsimd_h2v1_downsample_altivec(cinfo->image_width, cinfo->max_v_samp_factor, compptr->v_samp_factor, compptr->width_in_blocks, input_data, output_data); } GLOBAL(int) jsimd_can_h2v2_upsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_ALTIVEC) return 1; return 0; } GLOBAL(int) jsimd_can_h2v1_upsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_ALTIVEC) return 1; return 0; } GLOBAL(void) jsimd_h2v2_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { jsimd_h2v2_upsample_altivec(cinfo->max_v_samp_factor, cinfo->output_width, input_data, output_data_ptr); } GLOBAL(void) jsimd_h2v1_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { jsimd_h2v1_upsample_altivec(cinfo->max_v_samp_factor, cinfo->output_width, input_data, output_data_ptr); } GLOBAL(int) jsimd_can_h2v2_fancy_upsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_ALTIVEC) return 1; return 0; } GLOBAL(int) jsimd_can_h2v1_fancy_upsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_ALTIVEC) return 1; return 0; } GLOBAL(void) jsimd_h2v2_fancy_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { jsimd_h2v2_fancy_upsample_altivec(cinfo->max_v_samp_factor, compptr->downsampled_width, input_data, output_data_ptr); } GLOBAL(void) jsimd_h2v1_fancy_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { jsimd_h2v1_fancy_upsample_altivec(cinfo->max_v_samp_factor, compptr->downsampled_width, input_data, output_data_ptr); } GLOBAL(int) jsimd_can_h2v2_merged_upsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_ALTIVEC) return 1; return 0; } GLOBAL(int) jsimd_can_h2v1_merged_upsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_ALTIVEC) return 1; return 0; } GLOBAL(void) jsimd_h2v2_merged_upsample(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { void (*altivecfct) (JDIMENSION, JSAMPIMAGE, JDIMENSION, JSAMPARRAY); switch (cinfo->out_color_space) { case JCS_EXT_RGB: altivecfct = jsimd_h2v2_extrgb_merged_upsample_altivec; break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: altivecfct = jsimd_h2v2_extrgbx_merged_upsample_altivec; break; case JCS_EXT_BGR: altivecfct = jsimd_h2v2_extbgr_merged_upsample_altivec; break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: altivecfct = jsimd_h2v2_extbgrx_merged_upsample_altivec; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: altivecfct = jsimd_h2v2_extxbgr_merged_upsample_altivec; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: altivecfct = jsimd_h2v2_extxrgb_merged_upsample_altivec; break; default: altivecfct = jsimd_h2v2_merged_upsample_altivec; break; } altivecfct(cinfo->output_width, input_buf, in_row_group_ctr, output_buf); } GLOBAL(void) jsimd_h2v1_merged_upsample(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { void (*altivecfct) (JDIMENSION, JSAMPIMAGE, JDIMENSION, JSAMPARRAY); switch (cinfo->out_color_space) { case JCS_EXT_RGB: altivecfct = jsimd_h2v1_extrgb_merged_upsample_altivec; break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: altivecfct = jsimd_h2v1_extrgbx_merged_upsample_altivec; break; case JCS_EXT_BGR: altivecfct = jsimd_h2v1_extbgr_merged_upsample_altivec; break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: altivecfct = jsimd_h2v1_extbgrx_merged_upsample_altivec; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: altivecfct = jsimd_h2v1_extxbgr_merged_upsample_altivec; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: altivecfct = jsimd_h2v1_extxrgb_merged_upsample_altivec; break; default: altivecfct = jsimd_h2v1_merged_upsample_altivec; break; } altivecfct(cinfo->output_width, input_buf, in_row_group_ctr, output_buf); } GLOBAL(int) jsimd_can_convsamp(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(DCTELEM) != 2) return 0; if (simd_support & JSIMD_ALTIVEC) return 1; return 0; } GLOBAL(int) jsimd_can_convsamp_float(void) { return 0; } GLOBAL(void) jsimd_convsamp(JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM *workspace) { jsimd_convsamp_altivec(sample_data, start_col, workspace); } GLOBAL(void) jsimd_convsamp_float(JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT *workspace) { } GLOBAL(int) jsimd_can_fdct_islow(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(DCTELEM) != 2) return 0; if (simd_support & JSIMD_ALTIVEC) return 1; return 0; } GLOBAL(int) jsimd_can_fdct_ifast(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(DCTELEM) != 2) return 0; if (simd_support & JSIMD_ALTIVEC) return 1; return 0; } GLOBAL(int) jsimd_can_fdct_float(void) { return 0; } GLOBAL(void) jsimd_fdct_islow(DCTELEM *data) { jsimd_fdct_islow_altivec(data); } GLOBAL(void) jsimd_fdct_ifast(DCTELEM *data) { jsimd_fdct_ifast_altivec(data); } GLOBAL(void) jsimd_fdct_float(FAST_FLOAT *data) { } GLOBAL(int) jsimd_can_quantize(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (sizeof(DCTELEM) != 2) return 0; if (simd_support & JSIMD_ALTIVEC) return 1; return 0; } GLOBAL(int) jsimd_can_quantize_float(void) { return 0; } GLOBAL(void) jsimd_quantize(JCOEFPTR coef_block, DCTELEM *divisors, DCTELEM *workspace) { jsimd_quantize_altivec(coef_block, divisors, workspace); } GLOBAL(void) jsimd_quantize_float(JCOEFPTR coef_block, FAST_FLOAT *divisors, FAST_FLOAT *workspace) { } GLOBAL(int) jsimd_can_idct_2x2(void) { return 0; } GLOBAL(int) jsimd_can_idct_4x4(void) { return 0; } GLOBAL(void) jsimd_idct_2x2(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { } GLOBAL(void) jsimd_idct_4x4(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { } GLOBAL(int) jsimd_can_idct_islow(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (simd_support & JSIMD_ALTIVEC) return 1; return 0; } GLOBAL(int) jsimd_can_idct_ifast(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (simd_support & JSIMD_ALTIVEC) return 1; return 0; } GLOBAL(int) jsimd_can_idct_float(void) { return 0; } GLOBAL(void) jsimd_idct_islow(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { jsimd_idct_islow_altivec(compptr->dct_table, coef_block, output_buf, output_col); } GLOBAL(void) jsimd_idct_ifast(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { jsimd_idct_ifast_altivec(compptr->dct_table, coef_block, output_buf, output_col); } GLOBAL(void) jsimd_idct_float(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { } GLOBAL(int) jsimd_can_huff_encode_one_block(void) { return 0; } GLOBAL(JOCTET *) jsimd_huff_encode_one_block(void *state, JOCTET *buffer, JCOEFPTR block, int last_dc_val, c_derived_tbl *dctbl, c_derived_tbl *actbl) { return NULL; } GLOBAL(int) jsimd_can_encode_mcu_AC_first_prepare(void) { return 0; } GLOBAL(void) jsimd_encode_mcu_AC_first_prepare(const JCOEF *block, const int *jpeg_natural_order_start, int Sl, int Al, UJCOEF *values, size_t *zerobits) { } GLOBAL(int) jsimd_can_encode_mcu_AC_refine_prepare(void) { return 0; } GLOBAL(int) jsimd_encode_mcu_AC_refine_prepare(const JCOEF *block, const int *jpeg_natural_order_start, int Sl, int Al, UJCOEF *absvalues, size_t *bits) { return 0; } libjpeg-turbo-2.1.5/simd/powerpc/jsimd_altivec.h000066400000000000000000000102551436506551100216760ustar00rootroot00000000000000/* * AltiVec optimizations for libjpeg-turbo * * Copyright (C) 2014-2015, D. R. Commander. All Rights Reserved. * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ #define JPEG_INTERNALS #include "../../jinclude.h" #include "../../jpeglib.h" #include "../../jsimd.h" #include "../../jdct.h" #include "../../jsimddct.h" #include "../jsimd.h" #include /* Common code */ #define __4X(a) a, a, a, a #define __4X2(a, b) a, b, a, b, a, b, a, b #define __8X(a) __4X(a), __4X(a) #define __16X(a) __8X(a), __8X(a) #define TRANSPOSE(row, col) { \ __vector short row04l, row04h, row15l, row15h, \ row26l, row26h, row37l, row37h; \ __vector short col01e, col01o, col23e, col23o, \ col45e, col45o, col67e, col67o; \ \ /* transpose coefficients (phase 1) */ \ row04l = vec_mergeh(row##0, row##4); /* row04l=(00 40 01 41 02 42 03 43) */ \ row04h = vec_mergel(row##0, row##4); /* row04h=(04 44 05 45 06 46 07 47) */ \ row15l = vec_mergeh(row##1, row##5); /* row15l=(10 50 11 51 12 52 13 53) */ \ row15h = vec_mergel(row##1, row##5); /* row15h=(14 54 15 55 16 56 17 57) */ \ row26l = vec_mergeh(row##2, row##6); /* row26l=(20 60 21 61 22 62 23 63) */ \ row26h = vec_mergel(row##2, row##6); /* row26h=(24 64 25 65 26 66 27 67) */ \ row37l = vec_mergeh(row##3, row##7); /* row37l=(30 70 31 71 32 72 33 73) */ \ row37h = vec_mergel(row##3, row##7); /* row37h=(34 74 35 75 36 76 37 77) */ \ \ /* transpose coefficients (phase 2) */ \ col01e = vec_mergeh(row04l, row26l); /* col01e=(00 20 40 60 01 21 41 61) */ \ col23e = vec_mergel(row04l, row26l); /* col23e=(02 22 42 62 03 23 43 63) */ \ col45e = vec_mergeh(row04h, row26h); /* col45e=(04 24 44 64 05 25 45 65) */ \ col67e = vec_mergel(row04h, row26h); /* col67e=(06 26 46 66 07 27 47 67) */ \ col01o = vec_mergeh(row15l, row37l); /* col01o=(10 30 50 70 11 31 51 71) */ \ col23o = vec_mergel(row15l, row37l); /* col23o=(12 32 52 72 13 33 53 73) */ \ col45o = vec_mergeh(row15h, row37h); /* col45o=(14 34 54 74 15 35 55 75) */ \ col67o = vec_mergel(row15h, row37h); /* col67o=(16 36 56 76 17 37 57 77) */ \ \ /* transpose coefficients (phase 3) */ \ col##0 = vec_mergeh(col01e, col01o); /* col0=(00 10 20 30 40 50 60 70) */ \ col##1 = vec_mergel(col01e, col01o); /* col1=(01 11 21 31 41 51 61 71) */ \ col##2 = vec_mergeh(col23e, col23o); /* col2=(02 12 22 32 42 52 62 72) */ \ col##3 = vec_mergel(col23e, col23o); /* col3=(03 13 23 33 43 53 63 73) */ \ col##4 = vec_mergeh(col45e, col45o); /* col4=(04 14 24 34 44 54 64 74) */ \ col##5 = vec_mergel(col45e, col45o); /* col5=(05 15 25 35 45 55 65 75) */ \ col##6 = vec_mergeh(col67e, col67o); /* col6=(06 16 26 36 46 56 66 76) */ \ col##7 = vec_mergel(col67e, col67o); /* col7=(07 17 27 37 47 57 67 77) */ \ } #ifndef min #define min(a, b) ((a) < (b) ? (a) : (b)) #endif /* Macros to abstract big/little endian bit twiddling */ #if __BIG_ENDIAN__ #define VEC_LD(a, b) vec_ld(a, b) #define VEC_ST(a, b, c) vec_st(a, b, c) #define VEC_UNPACKHU(a) vec_mergeh(pb_zero, a) #define VEC_UNPACKLU(a) vec_mergel(pb_zero, a) #else #define VEC_LD(a, b) vec_vsx_ld(a, b) #define VEC_ST(a, b, c) vec_vsx_st(a, b, c) #define VEC_UNPACKHU(a) vec_mergeh(a, pb_zero) #define VEC_UNPACKLU(a) vec_mergel(a, pb_zero) #endif libjpeg-turbo-2.1.5/simd/x86_64/000077500000000000000000000000001436506551100161645ustar00rootroot00000000000000libjpeg-turbo-2.1.5/simd/x86_64/jccolext-avx2.asm000066400000000000000000000575601436506551100213740ustar00rootroot00000000000000; ; jccolext.asm - colorspace conversion (64-bit AVX2) ; ; Copyright (C) 2009, 2016, D. R. Commander. ; Copyright (C) 2015, Intel Corporation. ; Copyright (C) 2018, Matthias Räncker. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jcolsamp.inc" ; -------------------------------------------------------------------------- ; ; Convert some rows of samples to the output colorspace. ; ; GLOBAL(void) ; jsimd_rgb_ycc_convert_avx2(JDIMENSION img_width, JSAMPARRAY input_buf, ; JSAMPIMAGE output_buf, JDIMENSION output_row, ; int num_rows); ; ; r10d = JDIMENSION img_width ; r11 = JSAMPARRAY input_buf ; r12 = JSAMPIMAGE output_buf ; r13d = JDIMENSION output_row ; r14d = int num_rows %define wk(i) rbp - (WK_NUM - (i)) * SIZEOF_YMMWORD ; ymmword wk[WK_NUM] %define WK_NUM 8 align 32 GLOBAL_FUNCTION(jsimd_rgb_ycc_convert_avx2) EXTN(jsimd_rgb_ycc_convert_avx2): push rbp mov rax, rsp ; rax = original rbp sub rsp, byte 4 and rsp, byte (-SIZEOF_YMMWORD) ; align to 256 bits mov [rsp], rax mov rbp, rsp ; rbp = aligned rbp lea rsp, [wk(0)] collect_args 5 push rbx mov ecx, r10d test rcx, rcx jz near .return push rcx mov rsi, r12 mov ecx, r13d mov rdip, JSAMPARRAY [rsi+0*SIZEOF_JSAMPARRAY] mov rbxp, JSAMPARRAY [rsi+1*SIZEOF_JSAMPARRAY] mov rdxp, JSAMPARRAY [rsi+2*SIZEOF_JSAMPARRAY] lea rdi, [rdi+rcx*SIZEOF_JSAMPROW] lea rbx, [rbx+rcx*SIZEOF_JSAMPROW] lea rdx, [rdx+rcx*SIZEOF_JSAMPROW] pop rcx mov rsi, r11 mov eax, r14d test rax, rax jle near .return .rowloop: push rdx push rbx push rdi push rsi push rcx ; col mov rsip, JSAMPROW [rsi] ; inptr mov rdip, JSAMPROW [rdi] ; outptr0 mov rbxp, JSAMPROW [rbx] ; outptr1 mov rdxp, JSAMPROW [rdx] ; outptr2 cmp rcx, byte SIZEOF_YMMWORD jae near .columnloop %if RGB_PIXELSIZE == 3 ; --------------- .column_ld1: push rax push rdx lea rcx, [rcx+rcx*2] ; imul ecx,RGB_PIXELSIZE test cl, SIZEOF_BYTE jz short .column_ld2 sub rcx, byte SIZEOF_BYTE movzx rax, byte [rsi+rcx] .column_ld2: test cl, SIZEOF_WORD jz short .column_ld4 sub rcx, byte SIZEOF_WORD movzx rdx, word [rsi+rcx] shl rax, WORD_BIT or rax, rdx .column_ld4: vmovd xmmA, eax pop rdx pop rax test cl, SIZEOF_DWORD jz short .column_ld8 sub rcx, byte SIZEOF_DWORD vmovd xmmF, XMM_DWORD [rsi+rcx] vpslldq xmmA, xmmA, SIZEOF_DWORD vpor xmmA, xmmA, xmmF .column_ld8: test cl, SIZEOF_MMWORD jz short .column_ld16 sub rcx, byte SIZEOF_MMWORD vmovq xmmB, XMM_MMWORD [rsi+rcx] vpslldq xmmA, xmmA, SIZEOF_MMWORD vpor xmmA, xmmA, xmmB .column_ld16: test cl, SIZEOF_XMMWORD jz short .column_ld32 sub rcx, byte SIZEOF_XMMWORD vmovdqu xmmB, XMM_MMWORD [rsi+rcx] vperm2i128 ymmA, ymmA, ymmA, 1 vpor ymmA, ymmB .column_ld32: test cl, SIZEOF_YMMWORD jz short .column_ld64 sub rcx, byte SIZEOF_YMMWORD vmovdqa ymmF, ymmA vmovdqu ymmA, YMMWORD [rsi+0*SIZEOF_YMMWORD] .column_ld64: test cl, 2*SIZEOF_YMMWORD mov rcx, SIZEOF_YMMWORD jz short .rgb_ycc_cnv vmovdqa ymmB, ymmA vmovdqu ymmA, YMMWORD [rsi+0*SIZEOF_YMMWORD] vmovdqu ymmF, YMMWORD [rsi+1*SIZEOF_YMMWORD] jmp short .rgb_ycc_cnv .columnloop: vmovdqu ymmA, YMMWORD [rsi+0*SIZEOF_YMMWORD] vmovdqu ymmF, YMMWORD [rsi+1*SIZEOF_YMMWORD] vmovdqu ymmB, YMMWORD [rsi+2*SIZEOF_YMMWORD] .rgb_ycc_cnv: ; ymmA=(00 10 20 01 11 21 02 12 22 03 13 23 04 14 24 05 ; 15 25 06 16 26 07 17 27 08 18 28 09 19 29 0A 1A) ; ymmF=(2A 0B 1B 2B 0C 1C 2C 0D 1D 2D 0E 1E 2E 0F 1F 2F ; 0G 1G 2G 0H 1H 2H 0I 1I 2I 0J 1J 2J 0K 1K 2K 0L) ; ymmB=(1L 2L 0M 1M 2M 0N 1N 2N 0O 1O 2O 0P 1P 2P 0Q 1Q ; 2Q 0R 1R 2R 0S 1S 2S 0T 1T 2T 0U 1U 2U 0V 1V 2V) vmovdqu ymmC, ymmA vinserti128 ymmA, ymmF, xmmA, 0 ; ymmA=(00 10 20 01 11 21 02 12 22 03 13 23 04 14 24 05 ; 0G 1G 2G 0H 1H 2H 0I 1I 2I 0J 1J 2J 0K 1K 2K 0L) vinserti128 ymmC, ymmC, xmmB, 0 ; ymmC=(1L 2L 0M 1M 2M 0N 1N 2N 0O 1O 2O 0P 1P 2P 0Q 1Q ; 15 25 06 16 26 07 17 27 08 18 28 09 19 29 0A 1A) vinserti128 ymmB, ymmB, xmmF, 0 ; ymmB=(2A 0B 1B 2B 0C 1C 2C 0D 1D 2D 0E 1E 2E 0F 1F 2F ; 2Q 0R 1R 2R 0S 1S 2S 0T 1T 2T 0U 1U 2U 0V 1V 2V) vperm2i128 ymmF, ymmC, ymmC, 1 ; ymmF=(15 25 06 16 26 07 17 27 08 18 28 09 19 29 0A 1A ; 1L 2L 0M 1M 2M 0N 1N 2N 0O 1O 2O 0P 1P 2P 0Q 1Q) vmovdqa ymmG, ymmA vpslldq ymmA, ymmA, 8 ; ymmA=(-- -- -- -- -- -- -- -- 00 10 20 01 11 21 02 12 ; 22 03 13 23 04 14 24 05 0G 1G 2G 0H 1H 2H 0I 1I) vpsrldq ymmG, ymmG, 8 ; ymmG=(22 03 13 23 04 14 24 05 0G 1G 2G 0H 1H 2H 0I 1I ; 2I 0J 1J 2J 0K 1K 2K 0L -- -- -- -- -- -- -- --) vpunpckhbw ymmA, ymmA, ymmF ; ymmA=(00 08 10 18 20 28 01 09 11 19 21 29 02 0A 12 1A ; 0G 0O 1G 1O 2G 2O 0H 0P 1H 1P 2H 2P 0I 0Q 1I 1Q) vpslldq ymmF, ymmF, 8 ; ymmF=(-- -- -- -- -- -- -- -- 15 25 06 16 26 07 17 27 ; 08 18 28 09 19 29 0A 1A 1L 2L 0M 1M 2M 0N 1N 2N) vpunpcklbw ymmG, ymmG, ymmB ; ymmG=(22 2A 03 0B 13 1B 23 2B 04 0C 14 1C 24 2C 05 0D ; 2I 2Q 0J 0R 1J 1R 2J 2R 0K 0S 1K 1S 2K 2S 0L 0T) vpunpckhbw ymmF, ymmF, ymmB ; ymmF=(15 1D 25 2D 06 0E 16 1E 26 2E 07 0F 17 1F 27 2F ; 1L 1T 2L 2T 0M 0U 1M 1U 2M 2U 0N 0V 1N 1V 2N 2V) vmovdqa ymmD, ymmA vpslldq ymmA, ymmA, 8 ; ymmA=(-- -- -- -- -- -- -- -- 00 08 10 18 20 28 01 09 ; 11 19 21 29 02 0A 12 1A 0G 0O 1G 1O 2G 2O 0H 0P) vpsrldq ymmD, ymmD, 8 ; ymmD=(11 19 21 29 02 0A 12 1A 0G 0O 1G 1O 2G 2O 0H 0P ; 1H 1P 2H 2P 0I 0Q 1I 1Q -- -- -- -- -- -- -- --) vpunpckhbw ymmA, ymmA, ymmG ; ymmA=(00 04 08 0C 10 14 18 1C 20 24 28 2C 01 05 09 0D ; 0G 0K 0O 0S 1G 1K 1O 1S 2G 2K 2O 2S 0H 0L 0P 0T) vpslldq ymmG, ymmG, 8 ; ymmG=(-- -- -- -- -- -- -- -- 22 2A 03 0B 13 1B 23 2B ; 04 0C 14 1C 24 2C 05 0D 2I 2Q 0J 0R 1J 1R 2J 2R) vpunpcklbw ymmD, ymmD, ymmF ; ymmD=(11 15 19 1D 21 25 29 2D 02 06 0A 0E 12 16 1A 1E ; 1H 1L 1P 1T 2H 2L 2P 2T 0I 0M 0Q 0U 1I 1M 1Q 1U) vpunpckhbw ymmG, ymmG, ymmF ; ymmG=(22 26 2A 2E 03 07 0B 0F 13 17 1B 1F 23 27 2B 2F ; 2I 2M 2Q 2U 0J 0N 0R 0V 1J 1N 1R 1V 2J 2N 2R 2V) vmovdqa ymmE, ymmA vpslldq ymmA, ymmA, 8 ; ymmA=(-- -- -- -- -- -- -- -- 00 04 08 0C 10 14 18 1C ; 20 24 28 2C 01 05 09 0D 0G 0K 0O 0S 1G 1K 1O 1S) vpsrldq ymmE, ymmE, 8 ; ymmE=(20 24 28 2C 01 05 09 0D 0G 0K 0O 0S 1G 1K 1O 1S ; 2G 2K 2O 2S 0H 0L 0P 0T -- -- -- -- -- -- -- --) vpunpckhbw ymmA, ymmA, ymmD ; ymmA=(00 02 04 06 08 0A 0C 0E 10 12 14 16 18 1A 1C 1E ; 0G 0I 0K 0M 0O 0Q 0S 0U 1G 1I 1K 1M 1O 1Q 1S 1U) vpslldq ymmD, ymmD, 8 ; ymmD=(-- -- -- -- -- -- -- -- 11 15 19 1D 21 25 29 2D ; 02 06 0A 0E 12 16 1A 1E 1H 1L 1P 1T 2H 2L 2P 2T) vpunpcklbw ymmE, ymmE, ymmG ; ymmE=(20 22 24 26 28 2A 2C 2E 01 03 05 07 09 0B 0D 0F ; 2G 2I 2K 2M 2O 2Q 2S 2U 0H 0J 0L 0N 0P 0R 0T 0V) vpunpckhbw ymmD, ymmD, ymmG ; ymmD=(11 13 15 17 19 1B 1D 1F 21 23 25 27 29 2B 2D 2F ; 1H 1J 1L 1N 1P 1R 1T 1V 2H 2J 2L 2N 2P 2R 2T 2V) vpxor ymmH, ymmH, ymmH vmovdqa ymmC, ymmA vpunpcklbw ymmA, ymmA, ymmH ; ymmA=(00 02 04 06 08 0A 0C 0E 0G 0I 0K 0M 0O 0Q 0S 0U) vpunpckhbw ymmC, ymmC, ymmH ; ymmC=(10 12 14 16 18 1A 1C 1E 1G 1I 1K 1M 1O 1Q 1S 1U) vmovdqa ymmB, ymmE vpunpcklbw ymmE, ymmE, ymmH ; ymmE=(20 22 24 26 28 2A 2C 2E 2G 2I 2K 2M 2O 2Q 2S 2U) vpunpckhbw ymmB, ymmB, ymmH ; ymmB=(01 03 05 07 09 0B 0D 0F 0H 0J 0L 0N 0P 0R 0T 0V) vmovdqa ymmF, ymmD vpunpcklbw ymmD, ymmD, ymmH ; ymmD=(11 13 15 17 19 1B 1D 1F 1H 1J 1L 1N 1P 1R 1T 1V) vpunpckhbw ymmF, ymmF, ymmH ; ymmF=(21 23 25 27 29 2B 2D 2F 2H 2J 2L 2N 2P 2R 2T 2V) %else ; RGB_PIXELSIZE == 4 ; ----------- .column_ld1: test cl, SIZEOF_XMMWORD/16 jz short .column_ld2 sub rcx, byte SIZEOF_XMMWORD/16 vmovd xmmA, XMM_DWORD [rsi+rcx*RGB_PIXELSIZE] .column_ld2: test cl, SIZEOF_XMMWORD/8 jz short .column_ld4 sub rcx, byte SIZEOF_XMMWORD/8 vmovq xmmF, XMM_MMWORD [rsi+rcx*RGB_PIXELSIZE] vpslldq xmmA, xmmA, SIZEOF_MMWORD vpor xmmA, xmmA, xmmF .column_ld4: test cl, SIZEOF_XMMWORD/4 jz short .column_ld8 sub rcx, byte SIZEOF_XMMWORD/4 vmovdqa xmmF, xmmA vperm2i128 ymmF, ymmF, ymmF, 1 vmovdqu xmmA, XMMWORD [rsi+rcx*RGB_PIXELSIZE] vpor ymmA, ymmA, ymmF .column_ld8: test cl, SIZEOF_XMMWORD/2 jz short .column_ld16 sub rcx, byte SIZEOF_XMMWORD/2 vmovdqa ymmF, ymmA vmovdqu ymmA, YMMWORD [rsi+rcx*RGB_PIXELSIZE] .column_ld16: test cl, SIZEOF_XMMWORD mov rcx, SIZEOF_YMMWORD jz short .rgb_ycc_cnv vmovdqa ymmE, ymmA vmovdqa ymmH, ymmF vmovdqu ymmA, YMMWORD [rsi+0*SIZEOF_YMMWORD] vmovdqu ymmF, YMMWORD [rsi+1*SIZEOF_YMMWORD] jmp short .rgb_ycc_cnv .columnloop: vmovdqu ymmA, YMMWORD [rsi+0*SIZEOF_YMMWORD] vmovdqu ymmF, YMMWORD [rsi+1*SIZEOF_YMMWORD] vmovdqu ymmE, YMMWORD [rsi+2*SIZEOF_YMMWORD] vmovdqu ymmH, YMMWORD [rsi+3*SIZEOF_YMMWORD] .rgb_ycc_cnv: ; ymmA=(00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33 ; 04 14 24 34 05 15 25 35 06 16 26 36 07 17 27 37) ; ymmF=(08 18 28 38 09 19 29 39 0A 1A 2A 3A 0B 1B 2B 3B ; 0C 1C 2C 3C 0D 1D 2D 3D 0E 1E 2E 3E 0F 1F 2F 3F) ; ymmE=(0G 1G 2G 3G 0H 1H 2H 3H 0I 1I 2I 3I 0J 1J 2J 3J ; 0K 1K 2K 3K 0L 1L 2L 3L 0M 1M 2M 3M 0N 1N 2N 3N) ; ymmH=(0O 1O 2O 3O 0P 1P 2P 3P 0Q 1Q 2Q 3Q 0R 1R 2R 3R ; 0S 1S 2S 3S 0T 1T 2T 3T 0U 1U 2U 3U 0V 1V 2V 3V) vmovdqa ymmB, ymmA vinserti128 ymmA, ymmA, xmmE, 1 ; ymmA=(00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33 ; 0G 1G 2G 3G 0H 1H 2H 3H 0I 1I 2I 3I 0J 1J 2J 3J) vperm2i128 ymmE, ymmB, ymmE, 0x31 ; ymmE=(04 14 24 34 05 15 25 35 06 16 26 36 07 17 27 37 ; 0K 1K 2K 3K 0L 1L 2L 3L 0M 1M 2M 3M 0N 1N 2N 3N) vmovdqa ymmB, ymmF vinserti128 ymmF, ymmF, xmmH, 1 ; ymmF=(08 18 28 38 09 19 29 39 0A 1A 2A 3A 0B 1B 2B 3B ; 0O 1O 2O 3O 0P 1P 2P 3P 0Q 1Q 2Q 3Q 0R 1R 2R 3R) vperm2i128 ymmH, ymmB, ymmH, 0x31 ; ymmH=(0C 1C 2C 3C 0D 1D 2D 3D 0E 1E 2E 3E 0F 1F 2F 3F ; 0S 1S 2S 3S 0T 1T 2T 3T 0U 1U 2U 3U 0V 1V 2V 3V) vmovdqa ymmD, ymmA vpunpcklbw ymmA, ymmA, ymmE ; ymmA=(00 04 10 14 20 24 30 34 01 05 11 15 21 25 31 35 ; 0G 0K 1G 1K 2G 2K 3G 3K 0H 0L 1H 1L 2H 2L 3H 3L) vpunpckhbw ymmD, ymmD, ymmE ; ymmD=(02 06 12 16 22 26 32 36 03 07 13 17 23 27 33 37 ; 0I 0M 1I 1M 2I 2M 3I 3M 0J 0N 1J 1N 2J 2N 3J 3N) vmovdqa ymmC, ymmF vpunpcklbw ymmF, ymmF, ymmH ; ymmF=(08 0C 18 1C 28 2C 38 3C 09 0D 19 1D 29 2D 39 3D ; 0O 0S 1O 1S 2O 2S 3O 3S 0P 0T 1P 1T 2P 2T 3P 3T) vpunpckhbw ymmC, ymmC, ymmH ; ymmC=(0A 0E 1A 1E 2A 2E 3A 3E 0B 0F 1B 1F 2B 2F 3B 3F ; 0Q 0U 1Q 1U 2Q 2U 3Q 3U 0R 0V 1R 1V 2R 2V 3R 3V) vmovdqa ymmB, ymmA vpunpcklwd ymmA, ymmA, ymmF ; ymmA=(00 04 08 0C 10 14 18 1C 20 24 28 2C 30 34 38 3C ; 0G 0K 0O 0S 1G 1K 1O 1S 2G 2K 2O 2S 3G 3K 3O 3S) vpunpckhwd ymmB, ymmB, ymmF ; ymmB=(01 05 09 0D 11 15 19 1D 21 25 29 2D 31 35 39 3D ; 0H 0L 0P 0T 1H 1L 1P 1T 2H 2L 2P 2T 3H 3L 3P 3T) vmovdqa ymmG, ymmD vpunpcklwd ymmD, ymmD, ymmC ; ymmD=(02 06 0A 0E 12 16 1A 1E 22 26 2A 2E 32 36 3A 3E ; 0I 0M 0Q 0U 1I 1M 1Q 1U 2I 2M 2Q 2U 3I 3M 3Q 3U) vpunpckhwd ymmG, ymmG, ymmC ; ymmG=(03 07 0B 0F 13 17 1B 1F 23 27 2B 2F 33 37 3B 3F ; 0J 0N 0R 0V 1J 1N 1R 1V 2J 2N 2R 2V 3J 3N 3R 3V) vmovdqa ymmE, ymmA vpunpcklbw ymmA, ymmA, ymmD ; ymmA=(00 02 04 06 08 0A 0C 0E 10 12 14 16 18 1A 1C 1E ; 0G 0I 0K 0M 0O 0Q 0S 0U 1G 1I 1K 1M 1O 1Q 1S 1U) vpunpckhbw ymmE, ymmE, ymmD ; ymmE=(20 22 24 26 28 2A 2C 2E 30 32 34 36 38 3A 3C 3E ; 2G 2I 2K 2M 2O 2Q 2S 2U 3G 3I 3K 3M 3O 3Q 3S 3U) vmovdqa ymmH, ymmB vpunpcklbw ymmB, ymmB, ymmG ; ymmB=(01 03 05 07 09 0B 0D 0F 11 13 15 17 19 1B 1D 1F ; 0H 0J 0L 0N 0P 0R 0T 0V 1H 1J 1L 1N 1P 1R 1T 1V) vpunpckhbw ymmH, ymmH, ymmG ; ymmH=(21 23 25 27 29 2B 2D 2F 31 33 35 37 39 3B 3D 3F ; 2H 2J 2L 2N 2P 2R 2T 2V 3H 3J 3L 3N 3P 3R 3T 3V) vpxor ymmF, ymmF, ymmF vmovdqa ymmC, ymmA vpunpcklbw ymmA, ymmA, ymmF ; ymmA=(00 02 04 06 08 0A 0C 0E 0G 0I 0K 0M 0O 0Q 0S 0U) vpunpckhbw ymmC, ymmC, ymmF ; ymmC=(10 12 14 16 18 1A 1C 1E 1G 1I 1K 1M 1O 1Q 1S 1U) vmovdqa ymmD, ymmB vpunpcklbw ymmB, ymmB, ymmF ; ymmB=(01 03 05 07 09 0B 0D 0F 0H 0J 0L 0N 0P 0R 0T 0V) vpunpckhbw ymmD, ymmD, ymmF ; ymmD=(11 13 15 17 19 1B 1D 1F 1H 1J 1L 1N 1P 1R 1T 1V) vmovdqa ymmG, ymmE vpunpcklbw ymmE, ymmE, ymmF ; ymmE=(20 22 24 26 28 2A 2C 2E 2G 2I 2K 2M 2O 2Q 2S 2U) vpunpckhbw ymmG, ymmG, ymmF ; ymmG=(30 32 34 36 38 3A 3C 3E 3G 3I 3K 3M 3O 3Q 3S 3U) vpunpcklbw ymmF, ymmF, ymmH vpunpckhbw ymmH, ymmH, ymmH vpsrlw ymmF, ymmF, BYTE_BIT ; ymmF=(21 23 25 27 29 2B 2D 2F 2H 2J 2L 2N 2P 2R 2T 2V) vpsrlw ymmH, ymmH, BYTE_BIT ; ymmH=(31 33 35 37 39 3B 3D 3F 3H 3J 3L 3N 3P 3R 3T 3V) %endif ; RGB_PIXELSIZE ; --------------- ; ymm0=R(02468ACEGIKMOQSU)=RE, ymm2=G(02468ACEGIKMOQSU)=GE, ymm4=B(02468ACEGIKMOQSU)=BE ; ymm1=R(13579BDFHJLNPRTV)=RO, ymm3=G(13579BDFHJLNPRTV)=GO, ymm5=B(13579BDFHJLNPRTV)=BO ; (Original) ; Y = 0.29900 * R + 0.58700 * G + 0.11400 * B ; Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + CENTERJSAMPLE ; Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + CENTERJSAMPLE ; ; (This implementation) ; Y = 0.29900 * R + 0.33700 * G + 0.11400 * B + 0.25000 * G ; Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + CENTERJSAMPLE ; Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + CENTERJSAMPLE vmovdqa YMMWORD [wk(0)], ymm0 ; wk(0)=RE vmovdqa YMMWORD [wk(1)], ymm1 ; wk(1)=RO vmovdqa YMMWORD [wk(2)], ymm4 ; wk(2)=BE vmovdqa YMMWORD [wk(3)], ymm5 ; wk(3)=BO vmovdqa ymm6, ymm1 vpunpcklwd ymm1, ymm1, ymm3 vpunpckhwd ymm6, ymm6, ymm3 vmovdqa ymm7, ymm1 vmovdqa ymm4, ymm6 vpmaddwd ymm1, ymm1, [rel PW_F0299_F0337] ; ymm1=ROL*FIX(0.299)+GOL*FIX(0.337) vpmaddwd ymm6, ymm6, [rel PW_F0299_F0337] ; ymm6=ROH*FIX(0.299)+GOH*FIX(0.337) vpmaddwd ymm7, ymm7, [rel PW_MF016_MF033] ; ymm7=ROL*-FIX(0.168)+GOL*-FIX(0.331) vpmaddwd ymm4, ymm4, [rel PW_MF016_MF033] ; ymm4=ROH*-FIX(0.168)+GOH*-FIX(0.331) vmovdqa YMMWORD [wk(4)], ymm1 ; wk(4)=ROL*FIX(0.299)+GOL*FIX(0.337) vmovdqa YMMWORD [wk(5)], ymm6 ; wk(5)=ROH*FIX(0.299)+GOH*FIX(0.337) vpxor ymm1, ymm1, ymm1 vpxor ymm6, ymm6, ymm6 vpunpcklwd ymm1, ymm1, ymm5 ; ymm1=BOL vpunpckhwd ymm6, ymm6, ymm5 ; ymm6=BOH vpsrld ymm1, ymm1, 1 ; ymm1=BOL*FIX(0.500) vpsrld ymm6, ymm6, 1 ; ymm6=BOH*FIX(0.500) vmovdqa ymm5, [rel PD_ONEHALFM1_CJ] ; ymm5=[PD_ONEHALFM1_CJ] vpaddd ymm7, ymm7, ymm1 vpaddd ymm4, ymm4, ymm6 vpaddd ymm7, ymm7, ymm5 vpaddd ymm4, ymm4, ymm5 vpsrld ymm7, ymm7, SCALEBITS ; ymm7=CbOL vpsrld ymm4, ymm4, SCALEBITS ; ymm4=CbOH vpackssdw ymm7, ymm7, ymm4 ; ymm7=CbO vmovdqa ymm1, YMMWORD [wk(2)] ; ymm1=BE vmovdqa ymm6, ymm0 vpunpcklwd ymm0, ymm0, ymm2 vpunpckhwd ymm6, ymm6, ymm2 vmovdqa ymm5, ymm0 vmovdqa ymm4, ymm6 vpmaddwd ymm0, ymm0, [rel PW_F0299_F0337] ; ymm0=REL*FIX(0.299)+GEL*FIX(0.337) vpmaddwd ymm6, ymm6, [rel PW_F0299_F0337] ; ymm6=REH*FIX(0.299)+GEH*FIX(0.337) vpmaddwd ymm5, ymm5, [rel PW_MF016_MF033] ; ymm5=REL*-FIX(0.168)+GEL*-FIX(0.331) vpmaddwd ymm4, ymm4, [rel PW_MF016_MF033] ; ymm4=REH*-FIX(0.168)+GEH*-FIX(0.331) vmovdqa YMMWORD [wk(6)], ymm0 ; wk(6)=REL*FIX(0.299)+GEL*FIX(0.337) vmovdqa YMMWORD [wk(7)], ymm6 ; wk(7)=REH*FIX(0.299)+GEH*FIX(0.337) vpxor ymm0, ymm0, ymm0 vpxor ymm6, ymm6, ymm6 vpunpcklwd ymm0, ymm0, ymm1 ; ymm0=BEL vpunpckhwd ymm6, ymm6, ymm1 ; ymm6=BEH vpsrld ymm0, ymm0, 1 ; ymm0=BEL*FIX(0.500) vpsrld ymm6, ymm6, 1 ; ymm6=BEH*FIX(0.500) vmovdqa ymm1, [rel PD_ONEHALFM1_CJ] ; ymm1=[PD_ONEHALFM1_CJ] vpaddd ymm5, ymm5, ymm0 vpaddd ymm4, ymm4, ymm6 vpaddd ymm5, ymm5, ymm1 vpaddd ymm4, ymm4, ymm1 vpsrld ymm5, ymm5, SCALEBITS ; ymm5=CbEL vpsrld ymm4, ymm4, SCALEBITS ; ymm4=CbEH vpackssdw ymm5, ymm5, ymm4 ; ymm5=CbE vpsllw ymm7, ymm7, BYTE_BIT vpor ymm5, ymm5, ymm7 ; ymm5=Cb vmovdqu YMMWORD [rbx], ymm5 ; Save Cb vmovdqa ymm0, YMMWORD [wk(3)] ; ymm0=BO vmovdqa ymm6, YMMWORD [wk(2)] ; ymm6=BE vmovdqa ymm1, YMMWORD [wk(1)] ; ymm1=RO vmovdqa ymm4, ymm0 vpunpcklwd ymm0, ymm0, ymm3 vpunpckhwd ymm4, ymm4, ymm3 vmovdqa ymm7, ymm0 vmovdqa ymm5, ymm4 vpmaddwd ymm0, ymm0, [rel PW_F0114_F0250] ; ymm0=BOL*FIX(0.114)+GOL*FIX(0.250) vpmaddwd ymm4, ymm4, [rel PW_F0114_F0250] ; ymm4=BOH*FIX(0.114)+GOH*FIX(0.250) vpmaddwd ymm7, ymm7, [rel PW_MF008_MF041] ; ymm7=BOL*-FIX(0.081)+GOL*-FIX(0.418) vpmaddwd ymm5, ymm5, [rel PW_MF008_MF041] ; ymm5=BOH*-FIX(0.081)+GOH*-FIX(0.418) vmovdqa ymm3, [rel PD_ONEHALF] ; ymm3=[PD_ONEHALF] vpaddd ymm0, ymm0, YMMWORD [wk(4)] vpaddd ymm4, ymm4, YMMWORD [wk(5)] vpaddd ymm0, ymm0, ymm3 vpaddd ymm4, ymm4, ymm3 vpsrld ymm0, ymm0, SCALEBITS ; ymm0=YOL vpsrld ymm4, ymm4, SCALEBITS ; ymm4=YOH vpackssdw ymm0, ymm0, ymm4 ; ymm0=YO vpxor ymm3, ymm3, ymm3 vpxor ymm4, ymm4, ymm4 vpunpcklwd ymm3, ymm3, ymm1 ; ymm3=ROL vpunpckhwd ymm4, ymm4, ymm1 ; ymm4=ROH vpsrld ymm3, ymm3, 1 ; ymm3=ROL*FIX(0.500) vpsrld ymm4, ymm4, 1 ; ymm4=ROH*FIX(0.500) vmovdqa ymm1, [rel PD_ONEHALFM1_CJ] ; ymm1=[PD_ONEHALFM1_CJ] vpaddd ymm7, ymm7, ymm3 vpaddd ymm5, ymm5, ymm4 vpaddd ymm7, ymm7, ymm1 vpaddd ymm5, ymm5, ymm1 vpsrld ymm7, ymm7, SCALEBITS ; ymm7=CrOL vpsrld ymm5, ymm5, SCALEBITS ; ymm5=CrOH vpackssdw ymm7, ymm7, ymm5 ; ymm7=CrO vmovdqa ymm3, YMMWORD [wk(0)] ; ymm3=RE vmovdqa ymm4, ymm6 vpunpcklwd ymm6, ymm6, ymm2 vpunpckhwd ymm4, ymm4, ymm2 vmovdqa ymm1, ymm6 vmovdqa ymm5, ymm4 vpmaddwd ymm6, ymm6, [rel PW_F0114_F0250] ; ymm6=BEL*FIX(0.114)+GEL*FIX(0.250) vpmaddwd ymm4, ymm4, [rel PW_F0114_F0250] ; ymm4=BEH*FIX(0.114)+GEH*FIX(0.250) vpmaddwd ymm1, ymm1, [rel PW_MF008_MF041] ; ymm1=BEL*-FIX(0.081)+GEL*-FIX(0.418) vpmaddwd ymm5, ymm5, [rel PW_MF008_MF041] ; ymm5=BEH*-FIX(0.081)+GEH*-FIX(0.418) vmovdqa ymm2, [rel PD_ONEHALF] ; ymm2=[PD_ONEHALF] vpaddd ymm6, ymm6, YMMWORD [wk(6)] vpaddd ymm4, ymm4, YMMWORD [wk(7)] vpaddd ymm6, ymm6, ymm2 vpaddd ymm4, ymm4, ymm2 vpsrld ymm6, ymm6, SCALEBITS ; ymm6=YEL vpsrld ymm4, ymm4, SCALEBITS ; ymm4=YEH vpackssdw ymm6, ymm6, ymm4 ; ymm6=YE vpsllw ymm0, ymm0, BYTE_BIT vpor ymm6, ymm6, ymm0 ; ymm6=Y vmovdqu YMMWORD [rdi], ymm6 ; Save Y vpxor ymm2, ymm2, ymm2 vpxor ymm4, ymm4, ymm4 vpunpcklwd ymm2, ymm2, ymm3 ; ymm2=REL vpunpckhwd ymm4, ymm4, ymm3 ; ymm4=REH vpsrld ymm2, ymm2, 1 ; ymm2=REL*FIX(0.500) vpsrld ymm4, ymm4, 1 ; ymm4=REH*FIX(0.500) vmovdqa ymm0, [rel PD_ONEHALFM1_CJ] ; ymm0=[PD_ONEHALFM1_CJ] vpaddd ymm1, ymm1, ymm2 vpaddd ymm5, ymm5, ymm4 vpaddd ymm1, ymm1, ymm0 vpaddd ymm5, ymm5, ymm0 vpsrld ymm1, ymm1, SCALEBITS ; ymm1=CrEL vpsrld ymm5, ymm5, SCALEBITS ; ymm5=CrEH vpackssdw ymm1, ymm1, ymm5 ; ymm1=CrE vpsllw ymm7, ymm7, BYTE_BIT vpor ymm1, ymm1, ymm7 ; ymm1=Cr vmovdqu YMMWORD [rdx], ymm1 ; Save Cr sub rcx, byte SIZEOF_YMMWORD add rsi, RGB_PIXELSIZE*SIZEOF_YMMWORD ; inptr add rdi, byte SIZEOF_YMMWORD ; outptr0 add rbx, byte SIZEOF_YMMWORD ; outptr1 add rdx, byte SIZEOF_YMMWORD ; outptr2 cmp rcx, byte SIZEOF_YMMWORD jae near .columnloop test rcx, rcx jnz near .column_ld1 pop rcx ; col pop rsi pop rdi pop rbx pop rdx add rsi, byte SIZEOF_JSAMPROW ; input_buf add rdi, byte SIZEOF_JSAMPROW add rbx, byte SIZEOF_JSAMPROW add rdx, byte SIZEOF_JSAMPROW dec rax ; num_rows jg near .rowloop .return: pop rbx vzeroupper uncollect_args 5 mov rsp, rbp ; rsp <- aligned rbp pop rsp ; rsp <- original rbp pop rbp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/x86_64/jccolext-sse2.asm000066400000000000000000000432301436506551100213550ustar00rootroot00000000000000; ; jccolext.asm - colorspace conversion (64-bit SSE2) ; ; Copyright (C) 2009, 2016, D. R. Commander. ; Copyright (C) 2018, Matthias Räncker. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jcolsamp.inc" ; -------------------------------------------------------------------------- ; ; Convert some rows of samples to the output colorspace. ; ; GLOBAL(void) ; jsimd_rgb_ycc_convert_sse2(JDIMENSION img_width, JSAMPARRAY input_buf, ; JSAMPIMAGE output_buf, JDIMENSION output_row, ; int num_rows); ; ; r10d = JDIMENSION img_width ; r11 = JSAMPARRAY input_buf ; r12 = JSAMPIMAGE output_buf ; r13d = JDIMENSION output_row ; r14d = int num_rows %define wk(i) rbp - (WK_NUM - (i)) * SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 8 align 32 GLOBAL_FUNCTION(jsimd_rgb_ycc_convert_sse2) EXTN(jsimd_rgb_ycc_convert_sse2): push rbp mov rax, rsp ; rax = original rbp sub rsp, byte 4 and rsp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [rsp], rax mov rbp, rsp ; rbp = aligned rbp lea rsp, [wk(0)] collect_args 5 push rbx mov ecx, r10d test rcx, rcx jz near .return push rcx mov rsi, r12 mov ecx, r13d mov rdip, JSAMPARRAY [rsi+0*SIZEOF_JSAMPARRAY] mov rbxp, JSAMPARRAY [rsi+1*SIZEOF_JSAMPARRAY] mov rdxp, JSAMPARRAY [rsi+2*SIZEOF_JSAMPARRAY] lea rdi, [rdi+rcx*SIZEOF_JSAMPROW] lea rbx, [rbx+rcx*SIZEOF_JSAMPROW] lea rdx, [rdx+rcx*SIZEOF_JSAMPROW] pop rcx mov rsi, r11 mov eax, r14d test rax, rax jle near .return .rowloop: push rdx push rbx push rdi push rsi push rcx ; col mov rsip, JSAMPROW [rsi] ; inptr mov rdip, JSAMPROW [rdi] ; outptr0 mov rbxp, JSAMPROW [rbx] ; outptr1 mov rdxp, JSAMPROW [rdx] ; outptr2 cmp rcx, byte SIZEOF_XMMWORD jae near .columnloop %if RGB_PIXELSIZE == 3 ; --------------- .column_ld1: push rax push rdx lea rcx, [rcx+rcx*2] ; imul ecx,RGB_PIXELSIZE test cl, SIZEOF_BYTE jz short .column_ld2 sub rcx, byte SIZEOF_BYTE movzx rax, byte [rsi+rcx] .column_ld2: test cl, SIZEOF_WORD jz short .column_ld4 sub rcx, byte SIZEOF_WORD movzx rdx, word [rsi+rcx] shl rax, WORD_BIT or rax, rdx .column_ld4: movd xmmA, eax pop rdx pop rax test cl, SIZEOF_DWORD jz short .column_ld8 sub rcx, byte SIZEOF_DWORD movd xmmF, XMM_DWORD [rsi+rcx] pslldq xmmA, SIZEOF_DWORD por xmmA, xmmF .column_ld8: test cl, SIZEOF_MMWORD jz short .column_ld16 sub rcx, byte SIZEOF_MMWORD movq xmmB, XMM_MMWORD [rsi+rcx] pslldq xmmA, SIZEOF_MMWORD por xmmA, xmmB .column_ld16: test cl, SIZEOF_XMMWORD jz short .column_ld32 movdqa xmmF, xmmA movdqu xmmA, XMMWORD [rsi+0*SIZEOF_XMMWORD] mov rcx, SIZEOF_XMMWORD jmp short .rgb_ycc_cnv .column_ld32: test cl, 2*SIZEOF_XMMWORD mov rcx, SIZEOF_XMMWORD jz short .rgb_ycc_cnv movdqa xmmB, xmmA movdqu xmmA, XMMWORD [rsi+0*SIZEOF_XMMWORD] movdqu xmmF, XMMWORD [rsi+1*SIZEOF_XMMWORD] jmp short .rgb_ycc_cnv .columnloop: movdqu xmmA, XMMWORD [rsi+0*SIZEOF_XMMWORD] movdqu xmmF, XMMWORD [rsi+1*SIZEOF_XMMWORD] movdqu xmmB, XMMWORD [rsi+2*SIZEOF_XMMWORD] .rgb_ycc_cnv: ; xmmA=(00 10 20 01 11 21 02 12 22 03 13 23 04 14 24 05) ; xmmF=(15 25 06 16 26 07 17 27 08 18 28 09 19 29 0A 1A) ; xmmB=(2A 0B 1B 2B 0C 1C 2C 0D 1D 2D 0E 1E 2E 0F 1F 2F) movdqa xmmG, xmmA pslldq xmmA, 8 ; xmmA=(-- -- -- -- -- -- -- -- 00 10 20 01 11 21 02 12) psrldq xmmG, 8 ; xmmG=(22 03 13 23 04 14 24 05 -- -- -- -- -- -- -- --) punpckhbw xmmA, xmmF ; xmmA=(00 08 10 18 20 28 01 09 11 19 21 29 02 0A 12 1A) pslldq xmmF, 8 ; xmmF=(-- -- -- -- -- -- -- -- 15 25 06 16 26 07 17 27) punpcklbw xmmG, xmmB ; xmmG=(22 2A 03 0B 13 1B 23 2B 04 0C 14 1C 24 2C 05 0D) punpckhbw xmmF, xmmB ; xmmF=(15 1D 25 2D 06 0E 16 1E 26 2E 07 0F 17 1F 27 2F) movdqa xmmD, xmmA pslldq xmmA, 8 ; xmmA=(-- -- -- -- -- -- -- -- 00 08 10 18 20 28 01 09) psrldq xmmD, 8 ; xmmD=(11 19 21 29 02 0A 12 1A -- -- -- -- -- -- -- --) punpckhbw xmmA, xmmG ; xmmA=(00 04 08 0C 10 14 18 1C 20 24 28 2C 01 05 09 0D) pslldq xmmG, 8 ; xmmG=(-- -- -- -- -- -- -- -- 22 2A 03 0B 13 1B 23 2B) punpcklbw xmmD, xmmF ; xmmD=(11 15 19 1D 21 25 29 2D 02 06 0A 0E 12 16 1A 1E) punpckhbw xmmG, xmmF ; xmmG=(22 26 2A 2E 03 07 0B 0F 13 17 1B 1F 23 27 2B 2F) movdqa xmmE, xmmA pslldq xmmA, 8 ; xmmA=(-- -- -- -- -- -- -- -- 00 04 08 0C 10 14 18 1C) psrldq xmmE, 8 ; xmmE=(20 24 28 2C 01 05 09 0D -- -- -- -- -- -- -- --) punpckhbw xmmA, xmmD ; xmmA=(00 02 04 06 08 0A 0C 0E 10 12 14 16 18 1A 1C 1E) pslldq xmmD, 8 ; xmmD=(-- -- -- -- -- -- -- -- 11 15 19 1D 21 25 29 2D) punpcklbw xmmE, xmmG ; xmmE=(20 22 24 26 28 2A 2C 2E 01 03 05 07 09 0B 0D 0F) punpckhbw xmmD, xmmG ; xmmD=(11 13 15 17 19 1B 1D 1F 21 23 25 27 29 2B 2D 2F) pxor xmmH, xmmH movdqa xmmC, xmmA punpcklbw xmmA, xmmH ; xmmA=(00 02 04 06 08 0A 0C 0E) punpckhbw xmmC, xmmH ; xmmC=(10 12 14 16 18 1A 1C 1E) movdqa xmmB, xmmE punpcklbw xmmE, xmmH ; xmmE=(20 22 24 26 28 2A 2C 2E) punpckhbw xmmB, xmmH ; xmmB=(01 03 05 07 09 0B 0D 0F) movdqa xmmF, xmmD punpcklbw xmmD, xmmH ; xmmD=(11 13 15 17 19 1B 1D 1F) punpckhbw xmmF, xmmH ; xmmF=(21 23 25 27 29 2B 2D 2F) %else ; RGB_PIXELSIZE == 4 ; ----------- .column_ld1: test cl, SIZEOF_XMMWORD/16 jz short .column_ld2 sub rcx, byte SIZEOF_XMMWORD/16 movd xmmA, XMM_DWORD [rsi+rcx*RGB_PIXELSIZE] .column_ld2: test cl, SIZEOF_XMMWORD/8 jz short .column_ld4 sub rcx, byte SIZEOF_XMMWORD/8 movq xmmE, XMM_MMWORD [rsi+rcx*RGB_PIXELSIZE] pslldq xmmA, SIZEOF_MMWORD por xmmA, xmmE .column_ld4: test cl, SIZEOF_XMMWORD/4 jz short .column_ld8 sub rcx, byte SIZEOF_XMMWORD/4 movdqa xmmE, xmmA movdqu xmmA, XMMWORD [rsi+rcx*RGB_PIXELSIZE] .column_ld8: test cl, SIZEOF_XMMWORD/2 mov rcx, SIZEOF_XMMWORD jz short .rgb_ycc_cnv movdqa xmmF, xmmA movdqa xmmH, xmmE movdqu xmmA, XMMWORD [rsi+0*SIZEOF_XMMWORD] movdqu xmmE, XMMWORD [rsi+1*SIZEOF_XMMWORD] jmp short .rgb_ycc_cnv .columnloop: movdqu xmmA, XMMWORD [rsi+0*SIZEOF_XMMWORD] movdqu xmmE, XMMWORD [rsi+1*SIZEOF_XMMWORD] movdqu xmmF, XMMWORD [rsi+2*SIZEOF_XMMWORD] movdqu xmmH, XMMWORD [rsi+3*SIZEOF_XMMWORD] .rgb_ycc_cnv: ; xmmA=(00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33) ; xmmE=(04 14 24 34 05 15 25 35 06 16 26 36 07 17 27 37) ; xmmF=(08 18 28 38 09 19 29 39 0A 1A 2A 3A 0B 1B 2B 3B) ; xmmH=(0C 1C 2C 3C 0D 1D 2D 3D 0E 1E 2E 3E 0F 1F 2F 3F) movdqa xmmD, xmmA punpcklbw xmmA, xmmE ; xmmA=(00 04 10 14 20 24 30 34 01 05 11 15 21 25 31 35) punpckhbw xmmD, xmmE ; xmmD=(02 06 12 16 22 26 32 36 03 07 13 17 23 27 33 37) movdqa xmmC, xmmF punpcklbw xmmF, xmmH ; xmmF=(08 0C 18 1C 28 2C 38 3C 09 0D 19 1D 29 2D 39 3D) punpckhbw xmmC, xmmH ; xmmC=(0A 0E 1A 1E 2A 2E 3A 3E 0B 0F 1B 1F 2B 2F 3B 3F) movdqa xmmB, xmmA punpcklwd xmmA, xmmF ; xmmA=(00 04 08 0C 10 14 18 1C 20 24 28 2C 30 34 38 3C) punpckhwd xmmB, xmmF ; xmmB=(01 05 09 0D 11 15 19 1D 21 25 29 2D 31 35 39 3D) movdqa xmmG, xmmD punpcklwd xmmD, xmmC ; xmmD=(02 06 0A 0E 12 16 1A 1E 22 26 2A 2E 32 36 3A 3E) punpckhwd xmmG, xmmC ; xmmG=(03 07 0B 0F 13 17 1B 1F 23 27 2B 2F 33 37 3B 3F) movdqa xmmE, xmmA punpcklbw xmmA, xmmD ; xmmA=(00 02 04 06 08 0A 0C 0E 10 12 14 16 18 1A 1C 1E) punpckhbw xmmE, xmmD ; xmmE=(20 22 24 26 28 2A 2C 2E 30 32 34 36 38 3A 3C 3E) movdqa xmmH, xmmB punpcklbw xmmB, xmmG ; xmmB=(01 03 05 07 09 0B 0D 0F 11 13 15 17 19 1B 1D 1F) punpckhbw xmmH, xmmG ; xmmH=(21 23 25 27 29 2B 2D 2F 31 33 35 37 39 3B 3D 3F) pxor xmmF, xmmF movdqa xmmC, xmmA punpcklbw xmmA, xmmF ; xmmA=(00 02 04 06 08 0A 0C 0E) punpckhbw xmmC, xmmF ; xmmC=(10 12 14 16 18 1A 1C 1E) movdqa xmmD, xmmB punpcklbw xmmB, xmmF ; xmmB=(01 03 05 07 09 0B 0D 0F) punpckhbw xmmD, xmmF ; xmmD=(11 13 15 17 19 1B 1D 1F) movdqa xmmG, xmmE punpcklbw xmmE, xmmF ; xmmE=(20 22 24 26 28 2A 2C 2E) punpckhbw xmmG, xmmF ; xmmG=(30 32 34 36 38 3A 3C 3E) punpcklbw xmmF, xmmH punpckhbw xmmH, xmmH psrlw xmmF, BYTE_BIT ; xmmF=(21 23 25 27 29 2B 2D 2F) psrlw xmmH, BYTE_BIT ; xmmH=(31 33 35 37 39 3B 3D 3F) %endif ; RGB_PIXELSIZE ; --------------- ; xmm0=R(02468ACE)=RE, xmm2=G(02468ACE)=GE, xmm4=B(02468ACE)=BE ; xmm1=R(13579BDF)=RO, xmm3=G(13579BDF)=GO, xmm5=B(13579BDF)=BO ; (Original) ; Y = 0.29900 * R + 0.58700 * G + 0.11400 * B ; Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + CENTERJSAMPLE ; Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + CENTERJSAMPLE ; ; (This implementation) ; Y = 0.29900 * R + 0.33700 * G + 0.11400 * B + 0.25000 * G ; Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + CENTERJSAMPLE ; Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + CENTERJSAMPLE movdqa XMMWORD [wk(0)], xmm0 ; wk(0)=RE movdqa XMMWORD [wk(1)], xmm1 ; wk(1)=RO movdqa XMMWORD [wk(2)], xmm4 ; wk(2)=BE movdqa XMMWORD [wk(3)], xmm5 ; wk(3)=BO movdqa xmm6, xmm1 punpcklwd xmm1, xmm3 punpckhwd xmm6, xmm3 movdqa xmm7, xmm1 movdqa xmm4, xmm6 pmaddwd xmm1, [rel PW_F0299_F0337] ; xmm1=ROL*FIX(0.299)+GOL*FIX(0.337) pmaddwd xmm6, [rel PW_F0299_F0337] ; xmm6=ROH*FIX(0.299)+GOH*FIX(0.337) pmaddwd xmm7, [rel PW_MF016_MF033] ; xmm7=ROL*-FIX(0.168)+GOL*-FIX(0.331) pmaddwd xmm4, [rel PW_MF016_MF033] ; xmm4=ROH*-FIX(0.168)+GOH*-FIX(0.331) movdqa XMMWORD [wk(4)], xmm1 ; wk(4)=ROL*FIX(0.299)+GOL*FIX(0.337) movdqa XMMWORD [wk(5)], xmm6 ; wk(5)=ROH*FIX(0.299)+GOH*FIX(0.337) pxor xmm1, xmm1 pxor xmm6, xmm6 punpcklwd xmm1, xmm5 ; xmm1=BOL punpckhwd xmm6, xmm5 ; xmm6=BOH psrld xmm1, 1 ; xmm1=BOL*FIX(0.500) psrld xmm6, 1 ; xmm6=BOH*FIX(0.500) movdqa xmm5, [rel PD_ONEHALFM1_CJ] ; xmm5=[PD_ONEHALFM1_CJ] paddd xmm7, xmm1 paddd xmm4, xmm6 paddd xmm7, xmm5 paddd xmm4, xmm5 psrld xmm7, SCALEBITS ; xmm7=CbOL psrld xmm4, SCALEBITS ; xmm4=CbOH packssdw xmm7, xmm4 ; xmm7=CbO movdqa xmm1, XMMWORD [wk(2)] ; xmm1=BE movdqa xmm6, xmm0 punpcklwd xmm0, xmm2 punpckhwd xmm6, xmm2 movdqa xmm5, xmm0 movdqa xmm4, xmm6 pmaddwd xmm0, [rel PW_F0299_F0337] ; xmm0=REL*FIX(0.299)+GEL*FIX(0.337) pmaddwd xmm6, [rel PW_F0299_F0337] ; xmm6=REH*FIX(0.299)+GEH*FIX(0.337) pmaddwd xmm5, [rel PW_MF016_MF033] ; xmm5=REL*-FIX(0.168)+GEL*-FIX(0.331) pmaddwd xmm4, [rel PW_MF016_MF033] ; xmm4=REH*-FIX(0.168)+GEH*-FIX(0.331) movdqa XMMWORD [wk(6)], xmm0 ; wk(6)=REL*FIX(0.299)+GEL*FIX(0.337) movdqa XMMWORD [wk(7)], xmm6 ; wk(7)=REH*FIX(0.299)+GEH*FIX(0.337) pxor xmm0, xmm0 pxor xmm6, xmm6 punpcklwd xmm0, xmm1 ; xmm0=BEL punpckhwd xmm6, xmm1 ; xmm6=BEH psrld xmm0, 1 ; xmm0=BEL*FIX(0.500) psrld xmm6, 1 ; xmm6=BEH*FIX(0.500) movdqa xmm1, [rel PD_ONEHALFM1_CJ] ; xmm1=[PD_ONEHALFM1_CJ] paddd xmm5, xmm0 paddd xmm4, xmm6 paddd xmm5, xmm1 paddd xmm4, xmm1 psrld xmm5, SCALEBITS ; xmm5=CbEL psrld xmm4, SCALEBITS ; xmm4=CbEH packssdw xmm5, xmm4 ; xmm5=CbE psllw xmm7, BYTE_BIT por xmm5, xmm7 ; xmm5=Cb movdqa XMMWORD [rbx], xmm5 ; Save Cb movdqa xmm0, XMMWORD [wk(3)] ; xmm0=BO movdqa xmm6, XMMWORD [wk(2)] ; xmm6=BE movdqa xmm1, XMMWORD [wk(1)] ; xmm1=RO movdqa xmm4, xmm0 punpcklwd xmm0, xmm3 punpckhwd xmm4, xmm3 movdqa xmm7, xmm0 movdqa xmm5, xmm4 pmaddwd xmm0, [rel PW_F0114_F0250] ; xmm0=BOL*FIX(0.114)+GOL*FIX(0.250) pmaddwd xmm4, [rel PW_F0114_F0250] ; xmm4=BOH*FIX(0.114)+GOH*FIX(0.250) pmaddwd xmm7, [rel PW_MF008_MF041] ; xmm7=BOL*-FIX(0.081)+GOL*-FIX(0.418) pmaddwd xmm5, [rel PW_MF008_MF041] ; xmm5=BOH*-FIX(0.081)+GOH*-FIX(0.418) movdqa xmm3, [rel PD_ONEHALF] ; xmm3=[PD_ONEHALF] paddd xmm0, XMMWORD [wk(4)] paddd xmm4, XMMWORD [wk(5)] paddd xmm0, xmm3 paddd xmm4, xmm3 psrld xmm0, SCALEBITS ; xmm0=YOL psrld xmm4, SCALEBITS ; xmm4=YOH packssdw xmm0, xmm4 ; xmm0=YO pxor xmm3, xmm3 pxor xmm4, xmm4 punpcklwd xmm3, xmm1 ; xmm3=ROL punpckhwd xmm4, xmm1 ; xmm4=ROH psrld xmm3, 1 ; xmm3=ROL*FIX(0.500) psrld xmm4, 1 ; xmm4=ROH*FIX(0.500) movdqa xmm1, [rel PD_ONEHALFM1_CJ] ; xmm1=[PD_ONEHALFM1_CJ] paddd xmm7, xmm3 paddd xmm5, xmm4 paddd xmm7, xmm1 paddd xmm5, xmm1 psrld xmm7, SCALEBITS ; xmm7=CrOL psrld xmm5, SCALEBITS ; xmm5=CrOH packssdw xmm7, xmm5 ; xmm7=CrO movdqa xmm3, XMMWORD [wk(0)] ; xmm3=RE movdqa xmm4, xmm6 punpcklwd xmm6, xmm2 punpckhwd xmm4, xmm2 movdqa xmm1, xmm6 movdqa xmm5, xmm4 pmaddwd xmm6, [rel PW_F0114_F0250] ; xmm6=BEL*FIX(0.114)+GEL*FIX(0.250) pmaddwd xmm4, [rel PW_F0114_F0250] ; xmm4=BEH*FIX(0.114)+GEH*FIX(0.250) pmaddwd xmm1, [rel PW_MF008_MF041] ; xmm1=BEL*-FIX(0.081)+GEL*-FIX(0.418) pmaddwd xmm5, [rel PW_MF008_MF041] ; xmm5=BEH*-FIX(0.081)+GEH*-FIX(0.418) movdqa xmm2, [rel PD_ONEHALF] ; xmm2=[PD_ONEHALF] paddd xmm6, XMMWORD [wk(6)] paddd xmm4, XMMWORD [wk(7)] paddd xmm6, xmm2 paddd xmm4, xmm2 psrld xmm6, SCALEBITS ; xmm6=YEL psrld xmm4, SCALEBITS ; xmm4=YEH packssdw xmm6, xmm4 ; xmm6=YE psllw xmm0, BYTE_BIT por xmm6, xmm0 ; xmm6=Y movdqa XMMWORD [rdi], xmm6 ; Save Y pxor xmm2, xmm2 pxor xmm4, xmm4 punpcklwd xmm2, xmm3 ; xmm2=REL punpckhwd xmm4, xmm3 ; xmm4=REH psrld xmm2, 1 ; xmm2=REL*FIX(0.500) psrld xmm4, 1 ; xmm4=REH*FIX(0.500) movdqa xmm0, [rel PD_ONEHALFM1_CJ] ; xmm0=[PD_ONEHALFM1_CJ] paddd xmm1, xmm2 paddd xmm5, xmm4 paddd xmm1, xmm0 paddd xmm5, xmm0 psrld xmm1, SCALEBITS ; xmm1=CrEL psrld xmm5, SCALEBITS ; xmm5=CrEH packssdw xmm1, xmm5 ; xmm1=CrE psllw xmm7, BYTE_BIT por xmm1, xmm7 ; xmm1=Cr movdqa XMMWORD [rdx], xmm1 ; Save Cr sub rcx, byte SIZEOF_XMMWORD add rsi, byte RGB_PIXELSIZE*SIZEOF_XMMWORD ; inptr add rdi, byte SIZEOF_XMMWORD ; outptr0 add rbx, byte SIZEOF_XMMWORD ; outptr1 add rdx, byte SIZEOF_XMMWORD ; outptr2 cmp rcx, byte SIZEOF_XMMWORD jae near .columnloop test rcx, rcx jnz near .column_ld1 pop rcx ; col pop rsi pop rdi pop rbx pop rdx add rsi, byte SIZEOF_JSAMPROW ; input_buf add rdi, byte SIZEOF_JSAMPROW add rbx, byte SIZEOF_JSAMPROW add rdx, byte SIZEOF_JSAMPROW dec rax ; num_rows jg near .rowloop .return: pop rbx uncollect_args 5 mov rsp, rbp ; rsp <- aligned rbp pop rsp ; rsp <- original rbp pop rbp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/x86_64/jccolor-avx2.asm000066400000000000000000000072321436506551100212030ustar00rootroot00000000000000; ; jccolor.asm - colorspace conversion (64-bit AVX2) ; ; Copyright (C) 2009, 2016, D. R. Commander. ; Copyright (C) 2015, Intel Corporation. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jsimdext.inc" ; -------------------------------------------------------------------------- %define SCALEBITS 16 F_0_081 equ 5329 ; FIX(0.08131) F_0_114 equ 7471 ; FIX(0.11400) F_0_168 equ 11059 ; FIX(0.16874) F_0_250 equ 16384 ; FIX(0.25000) F_0_299 equ 19595 ; FIX(0.29900) F_0_331 equ 21709 ; FIX(0.33126) F_0_418 equ 27439 ; FIX(0.41869) F_0_587 equ 38470 ; FIX(0.58700) F_0_337 equ (F_0_587 - F_0_250) ; FIX(0.58700) - FIX(0.25000) ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 32 GLOBAL_DATA(jconst_rgb_ycc_convert_avx2) EXTN(jconst_rgb_ycc_convert_avx2): PW_F0299_F0337 times 8 dw F_0_299, F_0_337 PW_F0114_F0250 times 8 dw F_0_114, F_0_250 PW_MF016_MF033 times 8 dw -F_0_168, -F_0_331 PW_MF008_MF041 times 8 dw -F_0_081, -F_0_418 PD_ONEHALFM1_CJ times 8 dd (1 << (SCALEBITS - 1)) - 1 + \ (CENTERJSAMPLE << SCALEBITS) PD_ONEHALF times 8 dd (1 << (SCALEBITS - 1)) alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 64 %include "jccolext-avx2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGB_RED %define RGB_GREEN EXT_RGB_GREEN %define RGB_BLUE EXT_RGB_BLUE %define RGB_PIXELSIZE EXT_RGB_PIXELSIZE %define jsimd_rgb_ycc_convert_avx2 jsimd_extrgb_ycc_convert_avx2 %include "jccolext-avx2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGBX_RED %define RGB_GREEN EXT_RGBX_GREEN %define RGB_BLUE EXT_RGBX_BLUE %define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE %define jsimd_rgb_ycc_convert_avx2 jsimd_extrgbx_ycc_convert_avx2 %include "jccolext-avx2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGR_RED %define RGB_GREEN EXT_BGR_GREEN %define RGB_BLUE EXT_BGR_BLUE %define RGB_PIXELSIZE EXT_BGR_PIXELSIZE %define jsimd_rgb_ycc_convert_avx2 jsimd_extbgr_ycc_convert_avx2 %include "jccolext-avx2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGRX_RED %define RGB_GREEN EXT_BGRX_GREEN %define RGB_BLUE EXT_BGRX_BLUE %define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE %define jsimd_rgb_ycc_convert_avx2 jsimd_extbgrx_ycc_convert_avx2 %include "jccolext-avx2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XBGR_RED %define RGB_GREEN EXT_XBGR_GREEN %define RGB_BLUE EXT_XBGR_BLUE %define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE %define jsimd_rgb_ycc_convert_avx2 jsimd_extxbgr_ycc_convert_avx2 %include "jccolext-avx2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XRGB_RED %define RGB_GREEN EXT_XRGB_GREEN %define RGB_BLUE EXT_XRGB_BLUE %define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE %define jsimd_rgb_ycc_convert_avx2 jsimd_extxrgb_ycc_convert_avx2 %include "jccolext-avx2.asm" libjpeg-turbo-2.1.5/simd/x86_64/jccolor-sse2.asm000066400000000000000000000071611436506551100212000ustar00rootroot00000000000000; ; jccolor.asm - colorspace conversion (64-bit SSE2) ; ; Copyright (C) 2009, 2016, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jsimdext.inc" ; -------------------------------------------------------------------------- %define SCALEBITS 16 F_0_081 equ 5329 ; FIX(0.08131) F_0_114 equ 7471 ; FIX(0.11400) F_0_168 equ 11059 ; FIX(0.16874) F_0_250 equ 16384 ; FIX(0.25000) F_0_299 equ 19595 ; FIX(0.29900) F_0_331 equ 21709 ; FIX(0.33126) F_0_418 equ 27439 ; FIX(0.41869) F_0_587 equ 38470 ; FIX(0.58700) F_0_337 equ (F_0_587 - F_0_250) ; FIX(0.58700) - FIX(0.25000) ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 32 GLOBAL_DATA(jconst_rgb_ycc_convert_sse2) EXTN(jconst_rgb_ycc_convert_sse2): PW_F0299_F0337 times 4 dw F_0_299, F_0_337 PW_F0114_F0250 times 4 dw F_0_114, F_0_250 PW_MF016_MF033 times 4 dw -F_0_168, -F_0_331 PW_MF008_MF041 times 4 dw -F_0_081, -F_0_418 PD_ONEHALFM1_CJ times 4 dd (1 << (SCALEBITS - 1)) - 1 + \ (CENTERJSAMPLE << SCALEBITS) PD_ONEHALF times 4 dd (1 << (SCALEBITS - 1)) alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 64 %include "jccolext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGB_RED %define RGB_GREEN EXT_RGB_GREEN %define RGB_BLUE EXT_RGB_BLUE %define RGB_PIXELSIZE EXT_RGB_PIXELSIZE %define jsimd_rgb_ycc_convert_sse2 jsimd_extrgb_ycc_convert_sse2 %include "jccolext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGBX_RED %define RGB_GREEN EXT_RGBX_GREEN %define RGB_BLUE EXT_RGBX_BLUE %define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE %define jsimd_rgb_ycc_convert_sse2 jsimd_extrgbx_ycc_convert_sse2 %include "jccolext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGR_RED %define RGB_GREEN EXT_BGR_GREEN %define RGB_BLUE EXT_BGR_BLUE %define RGB_PIXELSIZE EXT_BGR_PIXELSIZE %define jsimd_rgb_ycc_convert_sse2 jsimd_extbgr_ycc_convert_sse2 %include "jccolext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGRX_RED %define RGB_GREEN EXT_BGRX_GREEN %define RGB_BLUE EXT_BGRX_BLUE %define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE %define jsimd_rgb_ycc_convert_sse2 jsimd_extbgrx_ycc_convert_sse2 %include "jccolext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XBGR_RED %define RGB_GREEN EXT_XBGR_GREEN %define RGB_BLUE EXT_XBGR_BLUE %define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE %define jsimd_rgb_ycc_convert_sse2 jsimd_extxbgr_ycc_convert_sse2 %include "jccolext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XRGB_RED %define RGB_GREEN EXT_XRGB_GREEN %define RGB_BLUE EXT_XRGB_BLUE %define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE %define jsimd_rgb_ycc_convert_sse2 jsimd_extxrgb_ycc_convert_sse2 %include "jccolext-sse2.asm" libjpeg-turbo-2.1.5/simd/x86_64/jcgray-avx2.asm000066400000000000000000000064311436506551100210270ustar00rootroot00000000000000; ; jcgray.asm - grayscale colorspace conversion (64-bit AVX2) ; ; Copyright (C) 2011, 2016, D. R. Commander. ; Copyright (C) 2015, Intel Corporation. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jsimdext.inc" ; -------------------------------------------------------------------------- %define SCALEBITS 16 F_0_114 equ 7471 ; FIX(0.11400) F_0_250 equ 16384 ; FIX(0.25000) F_0_299 equ 19595 ; FIX(0.29900) F_0_587 equ 38470 ; FIX(0.58700) F_0_337 equ (F_0_587 - F_0_250) ; FIX(0.58700) - FIX(0.25000) ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 32 GLOBAL_DATA(jconst_rgb_gray_convert_avx2) EXTN(jconst_rgb_gray_convert_avx2): PW_F0299_F0337 times 8 dw F_0_299, F_0_337 PW_F0114_F0250 times 8 dw F_0_114, F_0_250 PD_ONEHALF times 8 dd (1 << (SCALEBITS - 1)) alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 64 %include "jcgryext-avx2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGB_RED %define RGB_GREEN EXT_RGB_GREEN %define RGB_BLUE EXT_RGB_BLUE %define RGB_PIXELSIZE EXT_RGB_PIXELSIZE %define jsimd_rgb_gray_convert_avx2 jsimd_extrgb_gray_convert_avx2 %include "jcgryext-avx2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGBX_RED %define RGB_GREEN EXT_RGBX_GREEN %define RGB_BLUE EXT_RGBX_BLUE %define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE %define jsimd_rgb_gray_convert_avx2 jsimd_extrgbx_gray_convert_avx2 %include "jcgryext-avx2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGR_RED %define RGB_GREEN EXT_BGR_GREEN %define RGB_BLUE EXT_BGR_BLUE %define RGB_PIXELSIZE EXT_BGR_PIXELSIZE %define jsimd_rgb_gray_convert_avx2 jsimd_extbgr_gray_convert_avx2 %include "jcgryext-avx2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGRX_RED %define RGB_GREEN EXT_BGRX_GREEN %define RGB_BLUE EXT_BGRX_BLUE %define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE %define jsimd_rgb_gray_convert_avx2 jsimd_extbgrx_gray_convert_avx2 %include "jcgryext-avx2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XBGR_RED %define RGB_GREEN EXT_XBGR_GREEN %define RGB_BLUE EXT_XBGR_BLUE %define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE %define jsimd_rgb_gray_convert_avx2 jsimd_extxbgr_gray_convert_avx2 %include "jcgryext-avx2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XRGB_RED %define RGB_GREEN EXT_XRGB_GREEN %define RGB_BLUE EXT_XRGB_BLUE %define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE %define jsimd_rgb_gray_convert_avx2 jsimd_extxrgb_gray_convert_avx2 %include "jcgryext-avx2.asm" libjpeg-turbo-2.1.5/simd/x86_64/jcgray-sse2.asm000066400000000000000000000063601436506551100210240ustar00rootroot00000000000000; ; jcgray.asm - grayscale colorspace conversion (64-bit SSE2) ; ; Copyright (C) 2011, 2016, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jsimdext.inc" ; -------------------------------------------------------------------------- %define SCALEBITS 16 F_0_114 equ 7471 ; FIX(0.11400) F_0_250 equ 16384 ; FIX(0.25000) F_0_299 equ 19595 ; FIX(0.29900) F_0_587 equ 38470 ; FIX(0.58700) F_0_337 equ (F_0_587 - F_0_250) ; FIX(0.58700) - FIX(0.25000) ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 32 GLOBAL_DATA(jconst_rgb_gray_convert_sse2) EXTN(jconst_rgb_gray_convert_sse2): PW_F0299_F0337 times 4 dw F_0_299, F_0_337 PW_F0114_F0250 times 4 dw F_0_114, F_0_250 PD_ONEHALF times 4 dd (1 << (SCALEBITS - 1)) alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 64 %include "jcgryext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGB_RED %define RGB_GREEN EXT_RGB_GREEN %define RGB_BLUE EXT_RGB_BLUE %define RGB_PIXELSIZE EXT_RGB_PIXELSIZE %define jsimd_rgb_gray_convert_sse2 jsimd_extrgb_gray_convert_sse2 %include "jcgryext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGBX_RED %define RGB_GREEN EXT_RGBX_GREEN %define RGB_BLUE EXT_RGBX_BLUE %define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE %define jsimd_rgb_gray_convert_sse2 jsimd_extrgbx_gray_convert_sse2 %include "jcgryext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGR_RED %define RGB_GREEN EXT_BGR_GREEN %define RGB_BLUE EXT_BGR_BLUE %define RGB_PIXELSIZE EXT_BGR_PIXELSIZE %define jsimd_rgb_gray_convert_sse2 jsimd_extbgr_gray_convert_sse2 %include "jcgryext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGRX_RED %define RGB_GREEN EXT_BGRX_GREEN %define RGB_BLUE EXT_BGRX_BLUE %define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE %define jsimd_rgb_gray_convert_sse2 jsimd_extbgrx_gray_convert_sse2 %include "jcgryext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XBGR_RED %define RGB_GREEN EXT_XBGR_GREEN %define RGB_BLUE EXT_XBGR_BLUE %define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE %define jsimd_rgb_gray_convert_sse2 jsimd_extxbgr_gray_convert_sse2 %include "jcgryext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XRGB_RED %define RGB_GREEN EXT_XRGB_GREEN %define RGB_BLUE EXT_XRGB_BLUE %define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE %define jsimd_rgb_gray_convert_sse2 jsimd_extxrgb_gray_convert_sse2 %include "jcgryext-sse2.asm" libjpeg-turbo-2.1.5/simd/x86_64/jcgryext-avx2.asm000066400000000000000000000455611436506551100214160ustar00rootroot00000000000000; ; jcgryext.asm - grayscale colorspace conversion (64-bit AVX2) ; ; Copyright (C) 2011, 2016, D. R. Commander. ; Copyright (C) 2015, Intel Corporation. ; Copyright (C) 2018, Matthias Räncker. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jcolsamp.inc" ; -------------------------------------------------------------------------- ; ; Convert some rows of samples to the output colorspace. ; ; GLOBAL(void) ; jsimd_rgb_gray_convert_avx2(JDIMENSION img_width, JSAMPARRAY input_buf, ; JSAMPIMAGE output_buf, JDIMENSION output_row, ; int num_rows); ; ; r10d = JDIMENSION img_width ; r11 = JSAMPARRAY input_buf ; r12 = JSAMPIMAGE output_buf ; r13d = JDIMENSION output_row ; r14d = int num_rows %define wk(i) rbp - (WK_NUM - (i)) * SIZEOF_YMMWORD ; ymmword wk[WK_NUM] %define WK_NUM 2 align 32 GLOBAL_FUNCTION(jsimd_rgb_gray_convert_avx2) EXTN(jsimd_rgb_gray_convert_avx2): push rbp mov rax, rsp ; rax = original rbp sub rsp, byte 4 and rsp, byte (-SIZEOF_YMMWORD) ; align to 256 bits mov [rsp], rax mov rbp, rsp ; rbp = aligned rbp lea rsp, [wk(0)] collect_args 5 push rbx mov ecx, r10d test rcx, rcx jz near .return push rcx mov rsi, r12 mov ecx, r13d mov rdip, JSAMPARRAY [rsi+0*SIZEOF_JSAMPARRAY] lea rdi, [rdi+rcx*SIZEOF_JSAMPROW] pop rcx mov rsi, r11 mov eax, r14d test rax, rax jle near .return .rowloop: push rdi push rsi push rcx ; col mov rsip, JSAMPROW [rsi] ; inptr mov rdip, JSAMPROW [rdi] ; outptr0 cmp rcx, byte SIZEOF_YMMWORD jae near .columnloop %if RGB_PIXELSIZE == 3 ; --------------- .column_ld1: push rax push rdx lea rcx, [rcx+rcx*2] ; imul ecx,RGB_PIXELSIZE test cl, SIZEOF_BYTE jz short .column_ld2 sub rcx, byte SIZEOF_BYTE movzx rax, byte [rsi+rcx] .column_ld2: test cl, SIZEOF_WORD jz short .column_ld4 sub rcx, byte SIZEOF_WORD movzx rdx, word [rsi+rcx] shl rax, WORD_BIT or rax, rdx .column_ld4: vmovd xmmA, eax pop rdx pop rax test cl, SIZEOF_DWORD jz short .column_ld8 sub rcx, byte SIZEOF_DWORD vmovd xmmF, XMM_DWORD [rsi+rcx] vpslldq xmmA, xmmA, SIZEOF_DWORD vpor xmmA, xmmA, xmmF .column_ld8: test cl, SIZEOF_MMWORD jz short .column_ld16 sub rcx, byte SIZEOF_MMWORD vmovq xmmB, XMM_MMWORD [rsi+rcx] vpslldq xmmA, xmmA, SIZEOF_MMWORD vpor xmmA, xmmA, xmmB .column_ld16: test cl, SIZEOF_XMMWORD jz short .column_ld32 sub rcx, byte SIZEOF_XMMWORD vmovdqu xmmB, XMM_MMWORD [rsi+rcx] vperm2i128 ymmA, ymmA, ymmA, 1 vpor ymmA, ymmB .column_ld32: test cl, SIZEOF_YMMWORD jz short .column_ld64 sub rcx, byte SIZEOF_YMMWORD vmovdqa ymmF, ymmA vmovdqu ymmA, YMMWORD [rsi+0*SIZEOF_YMMWORD] .column_ld64: test cl, 2*SIZEOF_YMMWORD mov rcx, SIZEOF_YMMWORD jz short .rgb_gray_cnv vmovdqa ymmB, ymmA vmovdqu ymmA, YMMWORD [rsi+0*SIZEOF_YMMWORD] vmovdqu ymmF, YMMWORD [rsi+1*SIZEOF_YMMWORD] jmp short .rgb_gray_cnv .columnloop: vmovdqu ymmA, YMMWORD [rsi+0*SIZEOF_YMMWORD] vmovdqu ymmF, YMMWORD [rsi+1*SIZEOF_YMMWORD] vmovdqu ymmB, YMMWORD [rsi+2*SIZEOF_YMMWORD] .rgb_gray_cnv: ; ymmA=(00 10 20 01 11 21 02 12 22 03 13 23 04 14 24 05 ; 15 25 06 16 26 07 17 27 08 18 28 09 19 29 0A 1A) ; ymmF=(2A 0B 1B 2B 0C 1C 2C 0D 1D 2D 0E 1E 2E 0F 1F 2F ; 0G 1G 2G 0H 1H 2H 0I 1I 2I 0J 1J 2J 0K 1K 2K 0L) ; ymmB=(1L 2L 0M 1M 2M 0N 1N 2N 0O 1O 2O 0P 1P 2P 0Q 1Q ; 2Q 0R 1R 2R 0S 1S 2S 0T 1T 2T 0U 1U 2U 0V 1V 2V) vmovdqu ymmC, ymmA vinserti128 ymmA, ymmF, xmmA, 0 ; ymmA=(00 10 20 01 11 21 02 12 22 03 13 23 04 14 24 05 ; 0G 1G 2G 0H 1H 2H 0I 1I 2I 0J 1J 2J 0K 1K 2K 0L) vinserti128 ymmC, ymmC, xmmB, 0 ; ymmC=(1L 2L 0M 1M 2M 0N 1N 2N 0O 1O 2O 0P 1P 2P 0Q 1Q ; 15 25 06 16 26 07 17 27 08 18 28 09 19 29 0A 1A) vinserti128 ymmB, ymmB, xmmF, 0 ; ymmB=(2A 0B 1B 2B 0C 1C 2C 0D 1D 2D 0E 1E 2E 0F 1F 2F ; 2Q 0R 1R 2R 0S 1S 2S 0T 1T 2T 0U 1U 2U 0V 1V 2V) vperm2i128 ymmF, ymmC, ymmC, 1 ; ymmF=(15 25 06 16 26 07 17 27 08 18 28 09 19 29 0A 1A ; 1L 2L 0M 1M 2M 0N 1N 2N 0O 1O 2O 0P 1P 2P 0Q 1Q) vmovdqa ymmG, ymmA vpslldq ymmA, ymmA, 8 ; ymmA=(-- -- -- -- -- -- -- -- 00 10 20 01 11 21 02 12 ; 22 03 13 23 04 14 24 05 0G 1G 2G 0H 1H 2H 0I 1I) vpsrldq ymmG, ymmG, 8 ; ymmG=(22 03 13 23 04 14 24 05 0G 1G 2G 0H 1H 2H 0I 1I ; 2I 0J 1J 2J 0K 1K 2K 0L -- -- -- -- -- -- -- --) vpunpckhbw ymmA, ymmA, ymmF ; ymmA=(00 08 10 18 20 28 01 09 11 19 21 29 02 0A 12 1A ; 0G 0O 1G 1O 2G 2O 0H 0P 1H 1P 2H 2P 0I 0Q 1I 1Q) vpslldq ymmF, ymmF, 8 ; ymmF=(-- -- -- -- -- -- -- -- 15 25 06 16 26 07 17 27 ; 08 18 28 09 19 29 0A 1A 1L 2L 0M 1M 2M 0N 1N 2N) vpunpcklbw ymmG, ymmG, ymmB ; ymmG=(22 2A 03 0B 13 1B 23 2B 04 0C 14 1C 24 2C 05 0D ; 2I 2Q 0J 0R 1J 1R 2J 2R 0K 0S 1K 1S 2K 2S 0L 0T) vpunpckhbw ymmF, ymmF, ymmB ; ymmF=(15 1D 25 2D 06 0E 16 1E 26 2E 07 0F 17 1F 27 2F ; 1L 1T 2L 2T 0M 0U 1M 1U 2M 2U 0N 0V 1N 1V 2N 2V) vmovdqa ymmD, ymmA vpslldq ymmA, ymmA, 8 ; ymmA=(-- -- -- -- -- -- -- -- 00 08 10 18 20 28 01 09 ; 11 19 21 29 02 0A 12 1A 0G 0O 1G 1O 2G 2O 0H 0P) vpsrldq ymmD, ymmD, 8 ; ymmD=(11 19 21 29 02 0A 12 1A 0G 0O 1G 1O 2G 2O 0H 0P ; 1H 1P 2H 2P 0I 0Q 1I 1Q -- -- -- -- -- -- -- --) vpunpckhbw ymmA, ymmA, ymmG ; ymmA=(00 04 08 0C 10 14 18 1C 20 24 28 2C 01 05 09 0D ; 0G 0K 0O 0S 1G 1K 1O 1S 2G 2K 2O 2S 0H 0L 0P 0T) vpslldq ymmG, ymmG, 8 ; ymmG=(-- -- -- -- -- -- -- -- 22 2A 03 0B 13 1B 23 2B ; 04 0C 14 1C 24 2C 05 0D 2I 2Q 0J 0R 1J 1R 2J 2R) vpunpcklbw ymmD, ymmD, ymmF ; ymmD=(11 15 19 1D 21 25 29 2D 02 06 0A 0E 12 16 1A 1E ; 1H 1L 1P 1T 2H 2L 2P 2T 0I 0M 0Q 0U 1I 1M 1Q 1U) vpunpckhbw ymmG, ymmG, ymmF ; ymmG=(22 26 2A 2E 03 07 0B 0F 13 17 1B 1F 23 27 2B 2F ; 2I 2M 2Q 2U 0J 0N 0R 0V 1J 1N 1R 1V 2J 2N 2R 2V) vmovdqa ymmE, ymmA vpslldq ymmA, ymmA, 8 ; ymmA=(-- -- -- -- -- -- -- -- 00 04 08 0C 10 14 18 1C ; 20 24 28 2C 01 05 09 0D 0G 0K 0O 0S 1G 1K 1O 1S) vpsrldq ymmE, ymmE, 8 ; ymmE=(20 24 28 2C 01 05 09 0D 0G 0K 0O 0S 1G 1K 1O 1S ; 2G 2K 2O 2S 0H 0L 0P 0T -- -- -- -- -- -- -- --) vpunpckhbw ymmA, ymmA, ymmD ; ymmA=(00 02 04 06 08 0A 0C 0E 10 12 14 16 18 1A 1C 1E ; 0G 0I 0K 0M 0O 0Q 0S 0U 1G 1I 1K 1M 1O 1Q 1S 1U) vpslldq ymmD, ymmD, 8 ; ymmD=(-- -- -- -- -- -- -- -- 11 15 19 1D 21 25 29 2D ; 02 06 0A 0E 12 16 1A 1E 1H 1L 1P 1T 2H 2L 2P 2T) vpunpcklbw ymmE, ymmE, ymmG ; ymmE=(20 22 24 26 28 2A 2C 2E 01 03 05 07 09 0B 0D 0F ; 2G 2I 2K 2M 2O 2Q 2S 2U 0H 0J 0L 0N 0P 0R 0T 0V) vpunpckhbw ymmD, ymmD, ymmG ; ymmD=(11 13 15 17 19 1B 1D 1F 21 23 25 27 29 2B 2D 2F ; 1H 1J 1L 1N 1P 1R 1T 1V 2H 2J 2L 2N 2P 2R 2T 2V) vpxor ymmH, ymmH, ymmH vmovdqa ymmC, ymmA vpunpcklbw ymmA, ymmA, ymmH ; ymmA=(00 02 04 06 08 0A 0C 0E 0G 0I 0K 0M 0O 0Q 0S 0U) vpunpckhbw ymmC, ymmC, ymmH ; ymmC=(10 12 14 16 18 1A 1C 1E 1G 1I 1K 1M 1O 1Q 1S 1U) vmovdqa ymmB, ymmE vpunpcklbw ymmE, ymmE, ymmH ; ymmE=(20 22 24 26 28 2A 2C 2E 2G 2I 2K 2M 2O 2Q 2S 2U) vpunpckhbw ymmB, ymmB, ymmH ; ymmB=(01 03 05 07 09 0B 0D 0F 0H 0J 0L 0N 0P 0R 0T 0V) vmovdqa ymmF, ymmD vpunpcklbw ymmD, ymmD, ymmH ; ymmD=(11 13 15 17 19 1B 1D 1F 1H 1J 1L 1N 1P 1R 1T 1V) vpunpckhbw ymmF, ymmF, ymmH ; ymmF=(21 23 25 27 29 2B 2D 2F 2H 2J 2L 2N 2P 2R 2T 2V) %else ; RGB_PIXELSIZE == 4 ; ----------- .column_ld1: test cl, SIZEOF_XMMWORD/16 jz short .column_ld2 sub rcx, byte SIZEOF_XMMWORD/16 vmovd xmmA, XMM_DWORD [rsi+rcx*RGB_PIXELSIZE] .column_ld2: test cl, SIZEOF_XMMWORD/8 jz short .column_ld4 sub rcx, byte SIZEOF_XMMWORD/8 vmovq xmmF, XMM_MMWORD [rsi+rcx*RGB_PIXELSIZE] vpslldq xmmA, xmmA, SIZEOF_MMWORD vpor xmmA, xmmA, xmmF .column_ld4: test cl, SIZEOF_XMMWORD/4 jz short .column_ld8 sub rcx, byte SIZEOF_XMMWORD/4 vmovdqa xmmF, xmmA vperm2i128 ymmF, ymmF, ymmF, 1 vmovdqu xmmA, XMMWORD [rsi+rcx*RGB_PIXELSIZE] vpor ymmA, ymmA, ymmF .column_ld8: test cl, SIZEOF_XMMWORD/2 jz short .column_ld16 sub rcx, byte SIZEOF_XMMWORD/2 vmovdqa ymmF, ymmA vmovdqu ymmA, YMMWORD [rsi+rcx*RGB_PIXELSIZE] .column_ld16: test cl, SIZEOF_XMMWORD mov rcx, SIZEOF_YMMWORD jz short .rgb_gray_cnv vmovdqa ymmE, ymmA vmovdqa ymmH, ymmF vmovdqu ymmA, YMMWORD [rsi+0*SIZEOF_YMMWORD] vmovdqu ymmF, YMMWORD [rsi+1*SIZEOF_YMMWORD] jmp short .rgb_gray_cnv .columnloop: vmovdqu ymmA, YMMWORD [rsi+0*SIZEOF_YMMWORD] vmovdqu ymmF, YMMWORD [rsi+1*SIZEOF_YMMWORD] vmovdqu ymmE, YMMWORD [rsi+2*SIZEOF_YMMWORD] vmovdqu ymmH, YMMWORD [rsi+3*SIZEOF_YMMWORD] .rgb_gray_cnv: ; ymmA=(00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33 ; 04 14 24 34 05 15 25 35 06 16 26 36 07 17 27 37) ; ymmF=(08 18 28 38 09 19 29 39 0A 1A 2A 3A 0B 1B 2B 3B ; 0C 1C 2C 3C 0D 1D 2D 3D 0E 1E 2E 3E 0F 1F 2F 3F) ; ymmE=(0G 1G 2G 3G 0H 1H 2H 3H 0I 1I 2I 3I 0J 1J 2J 3J ; 0K 1K 2K 3K 0L 1L 2L 3L 0M 1M 2M 3M 0N 1N 2N 3N) ; ymmH=(0O 1O 2O 3O 0P 1P 2P 3P 0Q 1Q 2Q 3Q 0R 1R 2R 3R ; 0S 1S 2S 3S 0T 1T 2T 3T 0U 1U 2U 3U 0V 1V 2V 3V) vmovdqa ymmB, ymmA vinserti128 ymmA, ymmA, xmmE, 1 ; ymmA=(00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33 ; 0G 1G 2G 3G 0H 1H 2H 3H 0I 1I 2I 3I 0J 1J 2J 3J) vperm2i128 ymmE, ymmB, ymmE, 0x31 ; ymmE=(04 14 24 34 05 15 25 35 06 16 26 36 07 17 27 37 ; 0K 1K 2K 3K 0L 1L 2L 3L 0M 1M 2M 3M 0N 1N 2N 3N) vmovdqa ymmB, ymmF vinserti128 ymmF, ymmF, xmmH, 1 ; ymmF=(08 18 28 38 09 19 29 39 0A 1A 2A 3A 0B 1B 2B 3B ; 0O 1O 2O 3O 0P 1P 2P 3P 0Q 1Q 2Q 3Q 0R 1R 2R 3R) vperm2i128 ymmH, ymmB, ymmH, 0x31 ; ymmH=(0C 1C 2C 3C 0D 1D 2D 3D 0E 1E 2E 3E 0F 1F 2F 3F ; 0S 1S 2S 3S 0T 1T 2T 3T 0U 1U 2U 3U 0V 1V 2V 3V) vmovdqa ymmD, ymmA vpunpcklbw ymmA, ymmA, ymmE ; ymmA=(00 04 10 14 20 24 30 34 01 05 11 15 21 25 31 35 ; 0G 0K 1G 1K 2G 2K 3G 3K 0H 0L 1H 1L 2H 2L 3H 3L) vpunpckhbw ymmD, ymmD, ymmE ; ymmD=(02 06 12 16 22 26 32 36 03 07 13 17 23 27 33 37 ; 0I 0M 1I 1M 2I 2M 3I 3M 0J 0N 1J 1N 2J 2N 3J 3N) vmovdqa ymmC, ymmF vpunpcklbw ymmF, ymmF, ymmH ; ymmF=(08 0C 18 1C 28 2C 38 3C 09 0D 19 1D 29 2D 39 3D ; 0O 0S 1O 1S 2O 2S 3O 3S 0P 0T 1P 1T 2P 2T 3P 3T) vpunpckhbw ymmC, ymmC, ymmH ; ymmC=(0A 0E 1A 1E 2A 2E 3A 3E 0B 0F 1B 1F 2B 2F 3B 3F ; 0Q 0U 1Q 1U 2Q 2U 3Q 3U 0R 0V 1R 1V 2R 2V 3R 3V) vmovdqa ymmB, ymmA vpunpcklwd ymmA, ymmA, ymmF ; ymmA=(00 04 08 0C 10 14 18 1C 20 24 28 2C 30 34 38 3C ; 0G 0K 0O 0S 1G 1K 1O 1S 2G 2K 2O 2S 3G 3K 3O 3S) vpunpckhwd ymmB, ymmB, ymmF ; ymmB=(01 05 09 0D 11 15 19 1D 21 25 29 2D 31 35 39 3D ; 0H 0L 0P 0T 1H 1L 1P 1T 2H 2L 2P 2T 3H 3L 3P 3T) vmovdqa ymmG, ymmD vpunpcklwd ymmD, ymmD, ymmC ; ymmD=(02 06 0A 0E 12 16 1A 1E 22 26 2A 2E 32 36 3A 3E ; 0I 0M 0Q 0U 1I 1M 1Q 1U 2I 2M 2Q 2U 3I 3M 3Q 3U) vpunpckhwd ymmG, ymmG, ymmC ; ymmG=(03 07 0B 0F 13 17 1B 1F 23 27 2B 2F 33 37 3B 3F ; 0J 0N 0R 0V 1J 1N 1R 1V 2J 2N 2R 2V 3J 3N 3R 3V) vmovdqa ymmE, ymmA vpunpcklbw ymmA, ymmA, ymmD ; ymmA=(00 02 04 06 08 0A 0C 0E 10 12 14 16 18 1A 1C 1E ; 0G 0I 0K 0M 0O 0Q 0S 0U 1G 1I 1K 1M 1O 1Q 1S 1U) vpunpckhbw ymmE, ymmE, ymmD ; ymmE=(20 22 24 26 28 2A 2C 2E 30 32 34 36 38 3A 3C 3E ; 2G 2I 2K 2M 2O 2Q 2S 2U 3G 3I 3K 3M 3O 3Q 3S 3U) vmovdqa ymmH, ymmB vpunpcklbw ymmB, ymmB, ymmG ; ymmB=(01 03 05 07 09 0B 0D 0F 11 13 15 17 19 1B 1D 1F ; 0H 0J 0L 0N 0P 0R 0T 0V 1H 1J 1L 1N 1P 1R 1T 1V) vpunpckhbw ymmH, ymmH, ymmG ; ymmH=(21 23 25 27 29 2B 2D 2F 31 33 35 37 39 3B 3D 3F ; 2H 2J 2L 2N 2P 2R 2T 2V 3H 3J 3L 3N 3P 3R 3T 3V) vpxor ymmF, ymmF, ymmF vmovdqa ymmC, ymmA vpunpcklbw ymmA, ymmA, ymmF ; ymmA=(00 02 04 06 08 0A 0C 0E 0G 0I 0K 0M 0O 0Q 0S 0U) vpunpckhbw ymmC, ymmC, ymmF ; ymmC=(10 12 14 16 18 1A 1C 1E 1G 1I 1K 1M 1O 1Q 1S 1U) vmovdqa ymmD, ymmB vpunpcklbw ymmB, ymmB, ymmF ; ymmB=(01 03 05 07 09 0B 0D 0F 0H 0J 0L 0N 0P 0R 0T 0V) vpunpckhbw ymmD, ymmD, ymmF ; ymmD=(11 13 15 17 19 1B 1D 1F 1H 1J 1L 1N 1P 1R 1T 1V) vmovdqa ymmG, ymmE vpunpcklbw ymmE, ymmE, ymmF ; ymmE=(20 22 24 26 28 2A 2C 2E 2G 2I 2K 2M 2O 2Q 2S 2U) vpunpckhbw ymmG, ymmG, ymmF ; ymmG=(30 32 34 36 38 3A 3C 3E 3G 3I 3K 3M 3O 3Q 3S 3U) vpunpcklbw ymmF, ymmF, ymmH vpunpckhbw ymmH, ymmH, ymmH vpsrlw ymmF, ymmF, BYTE_BIT ; ymmF=(21 23 25 27 29 2B 2D 2F 2H 2J 2L 2N 2P 2R 2T 2V) vpsrlw ymmH, ymmH, BYTE_BIT ; ymmH=(31 33 35 37 39 3B 3D 3F 3H 3J 3L 3N 3P 3R 3T 3V) %endif ; RGB_PIXELSIZE ; --------------- ; ymm0=R(02468ACEGIKMOQSU)=RE, ymm2=G(02468ACEGIKMOQSU)=GE, ymm4=B(02468ACEGIKMOQSU)=BE ; ymm1=R(13579BDFHJLNPRTV)=RO, ymm3=G(13579BDFHJLNPRTV)=GO, ymm5=B(13579BDFHJLNPRTV)=BO ; (Original) ; Y = 0.29900 * R + 0.58700 * G + 0.11400 * B ; ; (This implementation) ; Y = 0.29900 * R + 0.33700 * G + 0.11400 * B + 0.25000 * G vmovdqa ymm6, ymm1 vpunpcklwd ymm1, ymm1, ymm3 vpunpckhwd ymm6, ymm6, ymm3 vpmaddwd ymm1, ymm1, [rel PW_F0299_F0337] ; ymm1=ROL*FIX(0.299)+GOL*FIX(0.337) vpmaddwd ymm6, ymm6, [rel PW_F0299_F0337] ; ymm6=ROH*FIX(0.299)+GOH*FIX(0.337) vmovdqa ymm7, ymm6 ; ymm7=ROH*FIX(0.299)+GOH*FIX(0.337) vmovdqa ymm6, ymm0 vpunpcklwd ymm0, ymm0, ymm2 vpunpckhwd ymm6, ymm6, ymm2 vpmaddwd ymm0, ymm0, [rel PW_F0299_F0337] ; ymm0=REL*FIX(0.299)+GEL*FIX(0.337) vpmaddwd ymm6, ymm6, [rel PW_F0299_F0337] ; ymm6=REH*FIX(0.299)+GEH*FIX(0.337) vmovdqa YMMWORD [wk(0)], ymm0 ; wk(0)=REL*FIX(0.299)+GEL*FIX(0.337) vmovdqa YMMWORD [wk(1)], ymm6 ; wk(1)=REH*FIX(0.299)+GEH*FIX(0.337) vmovdqa ymm0, ymm5 ; ymm0=BO vmovdqa ymm6, ymm4 ; ymm6=BE vmovdqa ymm4, ymm0 vpunpcklwd ymm0, ymm0, ymm3 vpunpckhwd ymm4, ymm4, ymm3 vpmaddwd ymm0, ymm0, [rel PW_F0114_F0250] ; ymm0=BOL*FIX(0.114)+GOL*FIX(0.250) vpmaddwd ymm4, ymm4, [rel PW_F0114_F0250] ; ymm4=BOH*FIX(0.114)+GOH*FIX(0.250) vmovdqa ymm3, [rel PD_ONEHALF] ; ymm3=[PD_ONEHALF] vpaddd ymm0, ymm0, ymm1 vpaddd ymm4, ymm4, ymm7 vpaddd ymm0, ymm0, ymm3 vpaddd ymm4, ymm4, ymm3 vpsrld ymm0, ymm0, SCALEBITS ; ymm0=YOL vpsrld ymm4, ymm4, SCALEBITS ; ymm4=YOH vpackssdw ymm0, ymm0, ymm4 ; ymm0=YO vmovdqa ymm4, ymm6 vpunpcklwd ymm6, ymm6, ymm2 vpunpckhwd ymm4, ymm4, ymm2 vpmaddwd ymm6, ymm6, [rel PW_F0114_F0250] ; ymm6=BEL*FIX(0.114)+GEL*FIX(0.250) vpmaddwd ymm4, ymm4, [rel PW_F0114_F0250] ; ymm4=BEH*FIX(0.114)+GEH*FIX(0.250) vmovdqa ymm2, [rel PD_ONEHALF] ; ymm2=[PD_ONEHALF] vpaddd ymm6, ymm6, YMMWORD [wk(0)] vpaddd ymm4, ymm4, YMMWORD [wk(1)] vpaddd ymm6, ymm6, ymm2 vpaddd ymm4, ymm4, ymm2 vpsrld ymm6, ymm6, SCALEBITS ; ymm6=YEL vpsrld ymm4, ymm4, SCALEBITS ; ymm4=YEH vpackssdw ymm6, ymm6, ymm4 ; ymm6=YE vpsllw ymm0, ymm0, BYTE_BIT vpor ymm6, ymm6, ymm0 ; ymm6=Y vmovdqu YMMWORD [rdi], ymm6 ; Save Y sub rcx, byte SIZEOF_YMMWORD add rsi, RGB_PIXELSIZE*SIZEOF_YMMWORD ; inptr add rdi, byte SIZEOF_YMMWORD ; outptr0 cmp rcx, byte SIZEOF_YMMWORD jae near .columnloop test rcx, rcx jnz near .column_ld1 pop rcx ; col pop rsi pop rdi add rsi, byte SIZEOF_JSAMPROW ; input_buf add rdi, byte SIZEOF_JSAMPROW dec rax ; num_rows jg near .rowloop .return: pop rbx vzeroupper uncollect_args 5 mov rsp, rbp ; rsp <- aligned rbp pop rsp ; rsp <- original rbp pop rbp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/x86_64/jcgryext-sse2.asm000066400000000000000000000315341436506551100214050ustar00rootroot00000000000000; ; jcgryext.asm - grayscale colorspace conversion (64-bit SSE2) ; ; Copyright (C) 2011, 2016, D. R. Commander. ; Copyright (C) 2018, Matthias Räncker. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jcolsamp.inc" ; -------------------------------------------------------------------------- ; ; Convert some rows of samples to the output colorspace. ; ; GLOBAL(void) ; jsimd_rgb_gray_convert_sse2(JDIMENSION img_width, JSAMPARRAY input_buf, ; JSAMPIMAGE output_buf, JDIMENSION output_row, ; int num_rows); ; ; r10d = JDIMENSION img_width ; r11 = JSAMPARRAY input_buf ; r12 = JSAMPIMAGE output_buf ; r13d = JDIMENSION output_row ; r14d = int num_rows %define wk(i) rbp - (WK_NUM - (i)) * SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 2 align 32 GLOBAL_FUNCTION(jsimd_rgb_gray_convert_sse2) EXTN(jsimd_rgb_gray_convert_sse2): push rbp mov rax, rsp ; rax = original rbp sub rsp, byte 4 and rsp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [rsp], rax mov rbp, rsp ; rbp = aligned rbp lea rsp, [wk(0)] collect_args 5 push rbx mov ecx, r10d test rcx, rcx jz near .return push rcx mov rsi, r12 mov ecx, r13d mov rdip, JSAMPARRAY [rsi+0*SIZEOF_JSAMPARRAY] lea rdi, [rdi+rcx*SIZEOF_JSAMPROW] pop rcx mov rsi, r11 mov eax, r14d test rax, rax jle near .return .rowloop: push rdi push rsi push rcx ; col mov rsip, JSAMPROW [rsi] ; inptr mov rdip, JSAMPROW [rdi] ; outptr0 cmp rcx, byte SIZEOF_XMMWORD jae near .columnloop %if RGB_PIXELSIZE == 3 ; --------------- .column_ld1: push rax push rdx lea rcx, [rcx+rcx*2] ; imul ecx,RGB_PIXELSIZE test cl, SIZEOF_BYTE jz short .column_ld2 sub rcx, byte SIZEOF_BYTE movzx rax, byte [rsi+rcx] .column_ld2: test cl, SIZEOF_WORD jz short .column_ld4 sub rcx, byte SIZEOF_WORD movzx rdx, word [rsi+rcx] shl rax, WORD_BIT or rax, rdx .column_ld4: movd xmmA, eax pop rdx pop rax test cl, SIZEOF_DWORD jz short .column_ld8 sub rcx, byte SIZEOF_DWORD movd xmmF, XMM_DWORD [rsi+rcx] pslldq xmmA, SIZEOF_DWORD por xmmA, xmmF .column_ld8: test cl, SIZEOF_MMWORD jz short .column_ld16 sub rcx, byte SIZEOF_MMWORD movq xmmB, XMM_MMWORD [rsi+rcx] pslldq xmmA, SIZEOF_MMWORD por xmmA, xmmB .column_ld16: test cl, SIZEOF_XMMWORD jz short .column_ld32 movdqa xmmF, xmmA movdqu xmmA, XMMWORD [rsi+0*SIZEOF_XMMWORD] mov rcx, SIZEOF_XMMWORD jmp short .rgb_gray_cnv .column_ld32: test cl, 2*SIZEOF_XMMWORD mov rcx, SIZEOF_XMMWORD jz short .rgb_gray_cnv movdqa xmmB, xmmA movdqu xmmA, XMMWORD [rsi+0*SIZEOF_XMMWORD] movdqu xmmF, XMMWORD [rsi+1*SIZEOF_XMMWORD] jmp short .rgb_gray_cnv .columnloop: movdqu xmmA, XMMWORD [rsi+0*SIZEOF_XMMWORD] movdqu xmmF, XMMWORD [rsi+1*SIZEOF_XMMWORD] movdqu xmmB, XMMWORD [rsi+2*SIZEOF_XMMWORD] .rgb_gray_cnv: ; xmmA=(00 10 20 01 11 21 02 12 22 03 13 23 04 14 24 05) ; xmmF=(15 25 06 16 26 07 17 27 08 18 28 09 19 29 0A 1A) ; xmmB=(2A 0B 1B 2B 0C 1C 2C 0D 1D 2D 0E 1E 2E 0F 1F 2F) movdqa xmmG, xmmA pslldq xmmA, 8 ; xmmA=(-- -- -- -- -- -- -- -- 00 10 20 01 11 21 02 12) psrldq xmmG, 8 ; xmmG=(22 03 13 23 04 14 24 05 -- -- -- -- -- -- -- --) punpckhbw xmmA, xmmF ; xmmA=(00 08 10 18 20 28 01 09 11 19 21 29 02 0A 12 1A) pslldq xmmF, 8 ; xmmF=(-- -- -- -- -- -- -- -- 15 25 06 16 26 07 17 27) punpcklbw xmmG, xmmB ; xmmG=(22 2A 03 0B 13 1B 23 2B 04 0C 14 1C 24 2C 05 0D) punpckhbw xmmF, xmmB ; xmmF=(15 1D 25 2D 06 0E 16 1E 26 2E 07 0F 17 1F 27 2F) movdqa xmmD, xmmA pslldq xmmA, 8 ; xmmA=(-- -- -- -- -- -- -- -- 00 08 10 18 20 28 01 09) psrldq xmmD, 8 ; xmmD=(11 19 21 29 02 0A 12 1A -- -- -- -- -- -- -- --) punpckhbw xmmA, xmmG ; xmmA=(00 04 08 0C 10 14 18 1C 20 24 28 2C 01 05 09 0D) pslldq xmmG, 8 ; xmmG=(-- -- -- -- -- -- -- -- 22 2A 03 0B 13 1B 23 2B) punpcklbw xmmD, xmmF ; xmmD=(11 15 19 1D 21 25 29 2D 02 06 0A 0E 12 16 1A 1E) punpckhbw xmmG, xmmF ; xmmG=(22 26 2A 2E 03 07 0B 0F 13 17 1B 1F 23 27 2B 2F) movdqa xmmE, xmmA pslldq xmmA, 8 ; xmmA=(-- -- -- -- -- -- -- -- 00 04 08 0C 10 14 18 1C) psrldq xmmE, 8 ; xmmE=(20 24 28 2C 01 05 09 0D -- -- -- -- -- -- -- --) punpckhbw xmmA, xmmD ; xmmA=(00 02 04 06 08 0A 0C 0E 10 12 14 16 18 1A 1C 1E) pslldq xmmD, 8 ; xmmD=(-- -- -- -- -- -- -- -- 11 15 19 1D 21 25 29 2D) punpcklbw xmmE, xmmG ; xmmE=(20 22 24 26 28 2A 2C 2E 01 03 05 07 09 0B 0D 0F) punpckhbw xmmD, xmmG ; xmmD=(11 13 15 17 19 1B 1D 1F 21 23 25 27 29 2B 2D 2F) pxor xmmH, xmmH movdqa xmmC, xmmA punpcklbw xmmA, xmmH ; xmmA=(00 02 04 06 08 0A 0C 0E) punpckhbw xmmC, xmmH ; xmmC=(10 12 14 16 18 1A 1C 1E) movdqa xmmB, xmmE punpcklbw xmmE, xmmH ; xmmE=(20 22 24 26 28 2A 2C 2E) punpckhbw xmmB, xmmH ; xmmB=(01 03 05 07 09 0B 0D 0F) movdqa xmmF, xmmD punpcklbw xmmD, xmmH ; xmmD=(11 13 15 17 19 1B 1D 1F) punpckhbw xmmF, xmmH ; xmmF=(21 23 25 27 29 2B 2D 2F) %else ; RGB_PIXELSIZE == 4 ; ----------- .column_ld1: test cl, SIZEOF_XMMWORD/16 jz short .column_ld2 sub rcx, byte SIZEOF_XMMWORD/16 movd xmmA, XMM_DWORD [rsi+rcx*RGB_PIXELSIZE] .column_ld2: test cl, SIZEOF_XMMWORD/8 jz short .column_ld4 sub rcx, byte SIZEOF_XMMWORD/8 movq xmmE, XMM_MMWORD [rsi+rcx*RGB_PIXELSIZE] pslldq xmmA, SIZEOF_MMWORD por xmmA, xmmE .column_ld4: test cl, SIZEOF_XMMWORD/4 jz short .column_ld8 sub rcx, byte SIZEOF_XMMWORD/4 movdqa xmmE, xmmA movdqu xmmA, XMMWORD [rsi+rcx*RGB_PIXELSIZE] .column_ld8: test cl, SIZEOF_XMMWORD/2 mov rcx, SIZEOF_XMMWORD jz short .rgb_gray_cnv movdqa xmmF, xmmA movdqa xmmH, xmmE movdqu xmmA, XMMWORD [rsi+0*SIZEOF_XMMWORD] movdqu xmmE, XMMWORD [rsi+1*SIZEOF_XMMWORD] jmp short .rgb_gray_cnv .columnloop: movdqu xmmA, XMMWORD [rsi+0*SIZEOF_XMMWORD] movdqu xmmE, XMMWORD [rsi+1*SIZEOF_XMMWORD] movdqu xmmF, XMMWORD [rsi+2*SIZEOF_XMMWORD] movdqu xmmH, XMMWORD [rsi+3*SIZEOF_XMMWORD] .rgb_gray_cnv: ; xmmA=(00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33) ; xmmE=(04 14 24 34 05 15 25 35 06 16 26 36 07 17 27 37) ; xmmF=(08 18 28 38 09 19 29 39 0A 1A 2A 3A 0B 1B 2B 3B) ; xmmH=(0C 1C 2C 3C 0D 1D 2D 3D 0E 1E 2E 3E 0F 1F 2F 3F) movdqa xmmD, xmmA punpcklbw xmmA, xmmE ; xmmA=(00 04 10 14 20 24 30 34 01 05 11 15 21 25 31 35) punpckhbw xmmD, xmmE ; xmmD=(02 06 12 16 22 26 32 36 03 07 13 17 23 27 33 37) movdqa xmmC, xmmF punpcklbw xmmF, xmmH ; xmmF=(08 0C 18 1C 28 2C 38 3C 09 0D 19 1D 29 2D 39 3D) punpckhbw xmmC, xmmH ; xmmC=(0A 0E 1A 1E 2A 2E 3A 3E 0B 0F 1B 1F 2B 2F 3B 3F) movdqa xmmB, xmmA punpcklwd xmmA, xmmF ; xmmA=(00 04 08 0C 10 14 18 1C 20 24 28 2C 30 34 38 3C) punpckhwd xmmB, xmmF ; xmmB=(01 05 09 0D 11 15 19 1D 21 25 29 2D 31 35 39 3D) movdqa xmmG, xmmD punpcklwd xmmD, xmmC ; xmmD=(02 06 0A 0E 12 16 1A 1E 22 26 2A 2E 32 36 3A 3E) punpckhwd xmmG, xmmC ; xmmG=(03 07 0B 0F 13 17 1B 1F 23 27 2B 2F 33 37 3B 3F) movdqa xmmE, xmmA punpcklbw xmmA, xmmD ; xmmA=(00 02 04 06 08 0A 0C 0E 10 12 14 16 18 1A 1C 1E) punpckhbw xmmE, xmmD ; xmmE=(20 22 24 26 28 2A 2C 2E 30 32 34 36 38 3A 3C 3E) movdqa xmmH, xmmB punpcklbw xmmB, xmmG ; xmmB=(01 03 05 07 09 0B 0D 0F 11 13 15 17 19 1B 1D 1F) punpckhbw xmmH, xmmG ; xmmH=(21 23 25 27 29 2B 2D 2F 31 33 35 37 39 3B 3D 3F) pxor xmmF, xmmF movdqa xmmC, xmmA punpcklbw xmmA, xmmF ; xmmA=(00 02 04 06 08 0A 0C 0E) punpckhbw xmmC, xmmF ; xmmC=(10 12 14 16 18 1A 1C 1E) movdqa xmmD, xmmB punpcklbw xmmB, xmmF ; xmmB=(01 03 05 07 09 0B 0D 0F) punpckhbw xmmD, xmmF ; xmmD=(11 13 15 17 19 1B 1D 1F) movdqa xmmG, xmmE punpcklbw xmmE, xmmF ; xmmE=(20 22 24 26 28 2A 2C 2E) punpckhbw xmmG, xmmF ; xmmG=(30 32 34 36 38 3A 3C 3E) punpcklbw xmmF, xmmH punpckhbw xmmH, xmmH psrlw xmmF, BYTE_BIT ; xmmF=(21 23 25 27 29 2B 2D 2F) psrlw xmmH, BYTE_BIT ; xmmH=(31 33 35 37 39 3B 3D 3F) %endif ; RGB_PIXELSIZE ; --------------- ; xmm0=R(02468ACE)=RE, xmm2=G(02468ACE)=GE, xmm4=B(02468ACE)=BE ; xmm1=R(13579BDF)=RO, xmm3=G(13579BDF)=GO, xmm5=B(13579BDF)=BO ; (Original) ; Y = 0.29900 * R + 0.58700 * G + 0.11400 * B ; ; (This implementation) ; Y = 0.29900 * R + 0.33700 * G + 0.11400 * B + 0.25000 * G movdqa xmm6, xmm1 punpcklwd xmm1, xmm3 punpckhwd xmm6, xmm3 pmaddwd xmm1, [rel PW_F0299_F0337] ; xmm1=ROL*FIX(0.299)+GOL*FIX(0.337) pmaddwd xmm6, [rel PW_F0299_F0337] ; xmm6=ROH*FIX(0.299)+GOH*FIX(0.337) movdqa xmm7, xmm6 ; xmm7=ROH*FIX(0.299)+GOH*FIX(0.337) movdqa xmm6, xmm0 punpcklwd xmm0, xmm2 punpckhwd xmm6, xmm2 pmaddwd xmm0, [rel PW_F0299_F0337] ; xmm0=REL*FIX(0.299)+GEL*FIX(0.337) pmaddwd xmm6, [rel PW_F0299_F0337] ; xmm6=REH*FIX(0.299)+GEH*FIX(0.337) movdqa XMMWORD [wk(0)], xmm0 ; wk(0)=REL*FIX(0.299)+GEL*FIX(0.337) movdqa XMMWORD [wk(1)], xmm6 ; wk(1)=REH*FIX(0.299)+GEH*FIX(0.337) movdqa xmm0, xmm5 ; xmm0=BO movdqa xmm6, xmm4 ; xmm6=BE movdqa xmm4, xmm0 punpcklwd xmm0, xmm3 punpckhwd xmm4, xmm3 pmaddwd xmm0, [rel PW_F0114_F0250] ; xmm0=BOL*FIX(0.114)+GOL*FIX(0.250) pmaddwd xmm4, [rel PW_F0114_F0250] ; xmm4=BOH*FIX(0.114)+GOH*FIX(0.250) movdqa xmm3, [rel PD_ONEHALF] ; xmm3=[PD_ONEHALF] paddd xmm0, xmm1 paddd xmm4, xmm7 paddd xmm0, xmm3 paddd xmm4, xmm3 psrld xmm0, SCALEBITS ; xmm0=YOL psrld xmm4, SCALEBITS ; xmm4=YOH packssdw xmm0, xmm4 ; xmm0=YO movdqa xmm4, xmm6 punpcklwd xmm6, xmm2 punpckhwd xmm4, xmm2 pmaddwd xmm6, [rel PW_F0114_F0250] ; xmm6=BEL*FIX(0.114)+GEL*FIX(0.250) pmaddwd xmm4, [rel PW_F0114_F0250] ; xmm4=BEH*FIX(0.114)+GEH*FIX(0.250) movdqa xmm2, [rel PD_ONEHALF] ; xmm2=[PD_ONEHALF] paddd xmm6, XMMWORD [wk(0)] paddd xmm4, XMMWORD [wk(1)] paddd xmm6, xmm2 paddd xmm4, xmm2 psrld xmm6, SCALEBITS ; xmm6=YEL psrld xmm4, SCALEBITS ; xmm4=YEH packssdw xmm6, xmm4 ; xmm6=YE psllw xmm0, BYTE_BIT por xmm6, xmm0 ; xmm6=Y movdqa XMMWORD [rdi], xmm6 ; Save Y sub rcx, byte SIZEOF_XMMWORD add rsi, byte RGB_PIXELSIZE*SIZEOF_XMMWORD ; inptr add rdi, byte SIZEOF_XMMWORD ; outptr0 cmp rcx, byte SIZEOF_XMMWORD jae near .columnloop test rcx, rcx jnz near .column_ld1 pop rcx ; col pop rsi pop rdi add rsi, byte SIZEOF_JSAMPROW ; input_buf add rdi, byte SIZEOF_JSAMPROW dec rax ; num_rows jg near .rowloop .return: pop rbx uncollect_args 5 mov rsp, rbp ; rsp <- aligned rbp pop rsp ; rsp <- original rbp pop rbp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/x86_64/jchuff-sse2.asm000066400000000000000000000757271436506551100210270ustar00rootroot00000000000000; ; jchuff-sse2.asm - Huffman entropy encoding (64-bit SSE2) ; ; Copyright (C) 2009-2011, 2014-2016, 2019, 2021, D. R. Commander. ; Copyright (C) 2015, Matthieu Darbois. ; Copyright (C) 2018, Matthias Räncker. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains an SSE2 implementation for Huffman coding of one block. ; The following code is based on jchuff.c; see jchuff.c for more details. %include "jsimdext.inc" struc working_state .next_output_byte: resp 1 ; => next byte to write in buffer .free_in_buffer: resp 1 ; # of byte spaces remaining in buffer .cur.put_buffer.simd resq 1 ; current bit accumulation buffer .cur.free_bits resd 1 ; # of bits available in it .cur.last_dc_val resd 4 ; last DC coef for each component .cinfo: resp 1 ; dump_buffer needs access to this endstruc struc c_derived_tbl .ehufco: resd 256 ; code for each symbol .ehufsi: resb 256 ; length of code for each symbol ; If no code has been allocated for a symbol S, ehufsi[S] contains 0 endstruc ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 32 GLOBAL_DATA(jconst_huff_encode_one_block) EXTN(jconst_huff_encode_one_block): jpeg_mask_bits dd 0x0000, 0x0001, 0x0003, 0x0007 dd 0x000f, 0x001f, 0x003f, 0x007f dd 0x00ff, 0x01ff, 0x03ff, 0x07ff dd 0x0fff, 0x1fff, 0x3fff, 0x7fff alignz 32 times 1 << 14 db 15 times 1 << 13 db 14 times 1 << 12 db 13 times 1 << 11 db 12 times 1 << 10 db 11 times 1 << 9 db 10 times 1 << 8 db 9 times 1 << 7 db 8 times 1 << 6 db 7 times 1 << 5 db 6 times 1 << 4 db 5 times 1 << 3 db 4 times 1 << 2 db 3 times 1 << 1 db 2 times 1 << 0 db 1 times 1 db 0 jpeg_nbits_table: times 1 db 0 times 1 << 0 db 1 times 1 << 1 db 2 times 1 << 2 db 3 times 1 << 3 db 4 times 1 << 4 db 5 times 1 << 5 db 6 times 1 << 6 db 7 times 1 << 7 db 8 times 1 << 8 db 9 times 1 << 9 db 10 times 1 << 10 db 11 times 1 << 11 db 12 times 1 << 12 db 13 times 1 << 13 db 14 times 1 << 14 db 15 times 1 << 15 db 16 alignz 32 %define NBITS(x) nbits_base + x %define MASK_BITS(x) NBITS((x) * 4) + (jpeg_mask_bits - jpeg_nbits_table) ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 64 ; Shorthand used to describe SIMD operations: ; wN: xmmN treated as eight signed 16-bit values ; wN[i]: perform the same operation on all eight signed 16-bit values, i=0..7 ; bN: xmmN treated as 16 unsigned 8-bit values ; bN[i]: perform the same operation on all 16 unsigned 8-bit values, i=0..15 ; Contents of SIMD registers are shown in memory order. ; Fill the bit buffer to capacity with the leading bits from code, then output ; the bit buffer and put the remaining bits from code into the bit buffer. ; ; Usage: ; code - contains the bits to shift into the bit buffer (LSB-aligned) ; %1 - the label to which to jump when the macro completes ; %2 (optional) - extra instructions to execute after nbits has been set ; ; Upon completion, free_bits will be set to the number of remaining bits from ; code, and put_buffer will contain those remaining bits. temp and code will ; be clobbered. ; ; This macro encodes any 0xFF bytes as 0xFF 0x00, as does the EMIT_BYTE() ; macro in jchuff.c. %macro EMIT_QWORD 1-2 add nbitsb, free_bitsb ; nbits += free_bits; neg free_bitsb ; free_bits = -free_bits; mov tempd, code ; temp = code; shl put_buffer, nbitsb ; put_buffer <<= nbits; mov nbitsb, free_bitsb ; nbits = free_bits; neg free_bitsb ; free_bits = -free_bits; shr tempd, nbitsb ; temp >>= nbits; or tempq, put_buffer ; temp |= put_buffer; movq xmm0, tempq ; xmm0.u64 = { temp, 0 }; bswap tempq ; temp = htonl(temp); mov put_buffer, codeq ; put_buffer = code; pcmpeqb xmm0, xmm1 ; b0[i] = (b0[i] == 0xFF ? 0xFF : 0); %2 pmovmskb code, xmm0 ; code = 0; code |= ((b0[i] >> 7) << i); mov qword [buffer], tempq ; memcpy(buffer, &temp, 8); ; (speculative; will be overwritten if ; code contains any 0xFF bytes) add free_bitsb, 64 ; free_bits += 64; add bufferp, 8 ; buffer += 8; test code, code ; if (code == 0) /* No 0xFF bytes */ jz %1 ; return; ; Execute the equivalent of the EMIT_BYTE() macro in jchuff.c for all 8 ; bytes in the qword. cmp tempb, 0xFF ; Set CF if temp[0] < 0xFF mov byte [buffer-7], 0 ; buffer[-7] = 0; sbb bufferp, 6 ; buffer -= (6 + (temp[0] < 0xFF ? 1 : 0)); mov byte [buffer], temph ; buffer[0] = temp[1]; cmp temph, 0xFF ; Set CF if temp[1] < 0xFF mov byte [buffer+1], 0 ; buffer[1] = 0; sbb bufferp, -2 ; buffer -= (-2 + (temp[1] < 0xFF ? 1 : 0)); shr tempq, 16 ; temp >>= 16; mov byte [buffer], tempb ; buffer[0] = temp[0]; cmp tempb, 0xFF ; Set CF if temp[0] < 0xFF mov byte [buffer+1], 0 ; buffer[1] = 0; sbb bufferp, -2 ; buffer -= (-2 + (temp[0] < 0xFF ? 1 : 0)); mov byte [buffer], temph ; buffer[0] = temp[1]; cmp temph, 0xFF ; Set CF if temp[1] < 0xFF mov byte [buffer+1], 0 ; buffer[1] = 0; sbb bufferp, -2 ; buffer -= (-2 + (temp[1] < 0xFF ? 1 : 0)); shr tempq, 16 ; temp >>= 16; mov byte [buffer], tempb ; buffer[0] = temp[0]; cmp tempb, 0xFF ; Set CF if temp[0] < 0xFF mov byte [buffer+1], 0 ; buffer[1] = 0; sbb bufferp, -2 ; buffer -= (-2 + (temp[0] < 0xFF ? 1 : 0)); mov byte [buffer], temph ; buffer[0] = temp[1]; cmp temph, 0xFF ; Set CF if temp[1] < 0xFF mov byte [buffer+1], 0 ; buffer[1] = 0; sbb bufferp, -2 ; buffer -= (-2 + (temp[1] < 0xFF ? 1 : 0)); shr tempd, 16 ; temp >>= 16; mov byte [buffer], tempb ; buffer[0] = temp[0]; cmp tempb, 0xFF ; Set CF if temp[0] < 0xFF mov byte [buffer+1], 0 ; buffer[1] = 0; sbb bufferp, -2 ; buffer -= (-2 + (temp[0] < 0xFF ? 1 : 0)); mov byte [buffer], temph ; buffer[0] = temp[1]; cmp temph, 0xFF ; Set CF if temp[1] < 0xFF mov byte [buffer+1], 0 ; buffer[1] = 0; sbb bufferp, -2 ; buffer -= (-2 + (temp[1] < 0xFF ? 1 : 0)); jmp %1 ; return; %endmacro ; ; Encode a single block's worth of coefficients. ; ; GLOBAL(JOCTET *) ; jsimd_huff_encode_one_block_sse2(working_state *state, JOCTET *buffer, ; JCOEFPTR block, int last_dc_val, ; c_derived_tbl *dctbl, c_derived_tbl *actbl) ; ; NOTES: ; When shuffling data, we try to avoid pinsrw as much as possible, since it is ; slow on many CPUs. Its reciprocal throughput (issue latency) is 1 even on ; modern CPUs, so chains of pinsrw instructions (even with different outputs) ; can limit performance. pinsrw is a VectorPath instruction on AMD K8 and ; requires 2 µops (with memory operand) on Intel. In either case, only one ; pinsrw instruction can be decoded per cycle (and nothing else if they are ; back-to-back), so out-of-order execution cannot be used to work around long ; pinsrw chains (though for Sandy Bridge and later, this may be less of a ; problem if the code runs from the µop cache.) ; ; We use tzcnt instead of bsf without checking for support. The instruction is ; executed as bsf on CPUs that don't support tzcnt (encoding is equivalent to ; rep bsf.) The destination (first) operand of bsf (and tzcnt on some CPUs) is ; an input dependency (although the behavior is not formally defined, Intel ; CPUs usually leave the destination unmodified if the source is zero.) This ; can prevent out-of-order execution, so we clear the destination before ; invoking tzcnt. ; ; Initial register allocation ; rax - buffer ; rbx - temp ; rcx - nbits ; rdx - block --> free_bits ; rsi - nbits_base ; rdi - t ; rbp - code ; r8 - dctbl --> code_temp ; r9 - actbl ; r10 - state ; r11 - index ; r12 - put_buffer %define buffer rax %ifdef WIN64 %define bufferp rax %else %define bufferp raxp %endif %define tempq rbx %define tempd ebx %define tempb bl %define temph bh %define nbitsq rcx %define nbits ecx %define nbitsb cl %define block rdx %define nbits_base rsi %define t rdi %define td edi %define codeq rbp %define code ebp %define dctbl r8 %define actbl r9 %define state r10 %define index r11 %define indexd r11d %define put_buffer r12 %define put_bufferd r12d ; Step 1: Re-arrange input data according to jpeg_natural_order ; xx 01 02 03 04 05 06 07 xx 01 08 16 09 02 03 10 ; 08 09 10 11 12 13 14 15 17 24 32 25 18 11 04 05 ; 16 17 18 19 20 21 22 23 12 19 26 33 40 48 41 34 ; 24 25 26 27 28 29 30 31 ==> 27 20 13 06 07 14 21 28 ; 32 33 34 35 36 37 38 39 35 42 49 56 57 50 43 36 ; 40 41 42 43 44 45 46 47 29 22 15 23 30 37 44 51 ; 48 49 50 51 52 53 54 55 58 59 52 45 38 31 39 46 ; 56 57 58 59 60 61 62 63 53 60 61 54 47 55 62 63 align 32 GLOBAL_FUNCTION(jsimd_huff_encode_one_block_sse2) EXTN(jsimd_huff_encode_one_block_sse2): %ifdef WIN64 ; rcx = working_state *state ; rdx = JOCTET *buffer ; r8 = JCOEFPTR block ; r9 = int last_dc_val ; [rax+48] = c_derived_tbl *dctbl ; [rax+56] = c_derived_tbl *actbl ;X: X = code stream mov buffer, rdx mov block, r8 movups xmm3, XMMWORD [block + 0 * SIZEOF_WORD] ;D: w3 = xx 01 02 03 04 05 06 07 push rbx push rbp movdqa xmm0, xmm3 ;A: w0 = xx 01 02 03 04 05 06 07 push rsi push rdi push r12 movups xmm1, XMMWORD [block + 8 * SIZEOF_WORD] ;B: w1 = 08 09 10 11 12 13 14 15 mov state, rcx movsx code, word [block] ;Z: code = block[0]; pxor xmm4, xmm4 ;A: w4[i] = 0; sub code, r9d ;Z: code -= last_dc_val; mov dctbl, POINTER [rsp+6*8+4*8] mov actbl, POINTER [rsp+6*8+5*8] punpckldq xmm0, xmm1 ;A: w0 = xx 01 08 09 02 03 10 11 lea nbits_base, [rel jpeg_nbits_table] add rsp, -DCTSIZE2 * SIZEOF_WORD mov t, rsp %else ; rdi = working_state *state ; rsi = JOCTET *buffer ; rdx = JCOEFPTR block ; rcx = int last_dc_val ; r8 = c_derived_tbl *dctbl ; r9 = c_derived_tbl *actbl ;X: X = code stream movups xmm3, XMMWORD [block + 0 * SIZEOF_WORD] ;D: w3 = xx 01 02 03 04 05 06 07 push rbx push rbp movdqa xmm0, xmm3 ;A: w0 = xx 01 02 03 04 05 06 07 push r12 mov state, rdi mov buffer, rsi movups xmm1, XMMWORD [block + 8 * SIZEOF_WORD] ;B: w1 = 08 09 10 11 12 13 14 15 movsx codeq, word [block] ;Z: code = block[0]; lea nbits_base, [rel jpeg_nbits_table] pxor xmm4, xmm4 ;A: w4[i] = 0; sub codeq, rcx ;Z: code -= last_dc_val; punpckldq xmm0, xmm1 ;A: w0 = xx 01 08 09 02 03 10 11 lea t, [rsp - DCTSIZE2 * SIZEOF_WORD] ; use red zone for t_ %endif pshuflw xmm0, xmm0, 11001001b ;A: w0 = 01 08 xx 09 02 03 10 11 pinsrw xmm0, word [block + 16 * SIZEOF_WORD], 2 ;A: w0 = 01 08 16 09 02 03 10 11 punpckhdq xmm3, xmm1 ;D: w3 = 04 05 12 13 06 07 14 15 punpcklqdq xmm1, xmm3 ;B: w1 = 08 09 10 11 04 05 12 13 pinsrw xmm0, word [block + 17 * SIZEOF_WORD], 7 ;A: w0 = 01 08 16 09 02 03 10 17 ;A: (Row 0, offset 1) pcmpgtw xmm4, xmm0 ;A: w4[i] = (w0[i] < 0 ? -1 : 0); paddw xmm0, xmm4 ;A: w0[i] += w4[i]; movaps XMMWORD [t + 0 * SIZEOF_WORD], xmm0 ;A: t[i] = w0[i]; movq xmm2, qword [block + 24 * SIZEOF_WORD] ;B: w2 = 24 25 26 27 -- -- -- -- pshuflw xmm2, xmm2, 11011000b ;B: w2 = 24 26 25 27 -- -- -- -- pslldq xmm1, 1 * SIZEOF_WORD ;B: w1 = -- 08 09 10 11 04 05 12 movups xmm5, XMMWORD [block + 48 * SIZEOF_WORD] ;H: w5 = 48 49 50 51 52 53 54 55 movsd xmm1, xmm2 ;B: w1 = 24 26 25 27 11 04 05 12 punpcklqdq xmm2, xmm5 ;C: w2 = 24 26 25 27 48 49 50 51 pinsrw xmm1, word [block + 32 * SIZEOF_WORD], 1 ;B: w1 = 24 32 25 27 11 04 05 12 pxor xmm4, xmm4 ;A: w4[i] = 0; psrldq xmm3, 2 * SIZEOF_WORD ;D: w3 = 12 13 06 07 14 15 -- -- pcmpeqw xmm0, xmm4 ;A: w0[i] = (w0[i] == 0 ? -1 : 0); pinsrw xmm1, word [block + 18 * SIZEOF_WORD], 3 ;B: w1 = 24 32 25 18 11 04 05 12 ; (Row 1, offset 1) pcmpgtw xmm4, xmm1 ;B: w4[i] = (w1[i] < 0 ? -1 : 0); paddw xmm1, xmm4 ;B: w1[i] += w4[i]; movaps XMMWORD [t + 8 * SIZEOF_WORD], xmm1 ;B: t[i+8] = w1[i]; pxor xmm4, xmm4 ;B: w4[i] = 0; pcmpeqw xmm1, xmm4 ;B: w1[i] = (w1[i] == 0 ? -1 : 0); packsswb xmm0, xmm1 ;AB: b0[i] = w0[i], b0[i+8] = w1[i] ; w/ signed saturation pinsrw xmm3, word [block + 20 * SIZEOF_WORD], 0 ;D: w3 = 20 13 06 07 14 15 -- -- pinsrw xmm3, word [block + 21 * SIZEOF_WORD], 5 ;D: w3 = 20 13 06 07 14 21 -- -- pinsrw xmm3, word [block + 28 * SIZEOF_WORD], 6 ;D: w3 = 20 13 06 07 14 21 28 -- pinsrw xmm3, word [block + 35 * SIZEOF_WORD], 7 ;D: w3 = 20 13 06 07 14 21 28 35 ; (Row 3, offset 1) pcmpgtw xmm4, xmm3 ;D: w4[i] = (w3[i] < 0 ? -1 : 0); paddw xmm3, xmm4 ;D: w3[i] += w4[i]; movaps XMMWORD [t + 24 * SIZEOF_WORD], xmm3 ;D: t[i+24] = w3[i]; pxor xmm4, xmm4 ;D: w4[i] = 0; pcmpeqw xmm3, xmm4 ;D: w3[i] = (w3[i] == 0 ? -1 : 0); pinsrw xmm2, word [block + 19 * SIZEOF_WORD], 0 ;C: w2 = 19 26 25 27 48 49 50 51 cmp code, 1 << 31 ;Z: Set CF if code < 0x80000000, ;Z: i.e. if code is positive pinsrw xmm2, word [block + 33 * SIZEOF_WORD], 2 ;C: w2 = 19 26 33 27 48 49 50 51 pinsrw xmm2, word [block + 40 * SIZEOF_WORD], 3 ;C: w2 = 19 26 33 40 48 49 50 51 adc code, -1 ;Z: code += -1 + (code >= 0 ? 1 : 0); pinsrw xmm2, word [block + 41 * SIZEOF_WORD], 5 ;C: w2 = 19 26 33 40 48 41 50 51 pinsrw xmm2, word [block + 34 * SIZEOF_WORD], 6 ;C: w2 = 19 26 33 40 48 41 34 51 movsxd codeq, code ;Z: sign extend code pinsrw xmm2, word [block + 27 * SIZEOF_WORD], 7 ;C: w2 = 19 26 33 40 48 41 34 27 ; (Row 2, offset 1) pcmpgtw xmm4, xmm2 ;C: w4[i] = (w2[i] < 0 ? -1 : 0); paddw xmm2, xmm4 ;C: w2[i] += w4[i]; movaps XMMWORD [t + 16 * SIZEOF_WORD], xmm2 ;C: t[i+16] = w2[i]; pxor xmm4, xmm4 ;C: w4[i] = 0; pcmpeqw xmm2, xmm4 ;C: w2[i] = (w2[i] == 0 ? -1 : 0); packsswb xmm2, xmm3 ;CD: b2[i] = w2[i], b2[i+8] = w3[i] ; w/ signed saturation movzx nbitsq, byte [NBITS(codeq)] ;Z: nbits = JPEG_NBITS(code); movdqa xmm3, xmm5 ;H: w3 = 48 49 50 51 52 53 54 55 pmovmskb tempd, xmm2 ;Z: temp = 0; temp |= ((b2[i] >> 7) << i); pmovmskb put_bufferd, xmm0 ;Z: put_buffer = 0; put_buffer |= ((b0[i] >> 7) << i); movups xmm0, XMMWORD [block + 56 * SIZEOF_WORD] ;H: w0 = 56 57 58 59 60 61 62 63 punpckhdq xmm3, xmm0 ;H: w3 = 52 53 60 61 54 55 62 63 shl tempd, 16 ;Z: temp <<= 16; psrldq xmm3, 1 * SIZEOF_WORD ;H: w3 = 53 60 61 54 55 62 63 -- pxor xmm2, xmm2 ;H: w2[i] = 0; or put_bufferd, tempd ;Z: put_buffer |= temp; pshuflw xmm3, xmm3, 00111001b ;H: w3 = 60 61 54 53 55 62 63 -- movq xmm1, qword [block + 44 * SIZEOF_WORD] ;G: w1 = 44 45 46 47 -- -- -- -- unpcklps xmm5, xmm0 ;E: w5 = 48 49 56 57 50 51 58 59 pxor xmm0, xmm0 ;H: w0[i] = 0; pinsrw xmm3, word [block + 47 * SIZEOF_WORD], 3 ;H: w3 = 60 61 54 47 55 62 63 -- ; (Row 7, offset 1) pcmpgtw xmm2, xmm3 ;H: w2[i] = (w3[i] < 0 ? -1 : 0); paddw xmm3, xmm2 ;H: w3[i] += w2[i]; movaps XMMWORD [t + 56 * SIZEOF_WORD], xmm3 ;H: t[i+56] = w3[i]; movq xmm4, qword [block + 36 * SIZEOF_WORD] ;G: w4 = 36 37 38 39 -- -- -- -- pcmpeqw xmm3, xmm0 ;H: w3[i] = (w3[i] == 0 ? -1 : 0); punpckldq xmm4, xmm1 ;G: w4 = 36 37 44 45 38 39 46 47 mov tempd, [dctbl + c_derived_tbl.ehufco + nbitsq * 4] ;Z: temp = dctbl->ehufco[nbits]; movdqa xmm1, xmm4 ;F: w1 = 36 37 44 45 38 39 46 47 psrldq xmm4, 1 * SIZEOF_WORD ;G: w4 = 37 44 45 38 39 46 47 -- shufpd xmm1, xmm5, 10b ;F: w1 = 36 37 44 45 50 51 58 59 and code, dword [MASK_BITS(nbitsq)] ;Z: code &= (1 << nbits) - 1; pshufhw xmm4, xmm4, 11010011b ;G: w4 = 37 44 45 38 -- 39 46 -- pslldq xmm1, 1 * SIZEOF_WORD ;F: w1 = -- 36 37 44 45 50 51 58 shl tempq, nbitsb ;Z: temp <<= nbits; pinsrw xmm4, word [block + 59 * SIZEOF_WORD], 0 ;G: w4 = 59 44 45 38 -- 39 46 -- pshufd xmm1, xmm1, 11011000b ;F: w1 = -- 36 45 50 37 44 51 58 pinsrw xmm4, word [block + 52 * SIZEOF_WORD], 1 ;G: w4 = 59 52 45 38 -- 39 46 -- or code, tempd ;Z: code |= temp; movlps xmm1, qword [block + 20 * SIZEOF_WORD] ;F: w1 = 20 21 22 23 37 44 51 58 pinsrw xmm4, word [block + 31 * SIZEOF_WORD], 4 ;G: w4 = 59 52 45 38 31 39 46 -- pshuflw xmm1, xmm1, 01110010b ;F: w1 = 22 20 23 21 37 44 51 58 pinsrw xmm4, word [block + 53 * SIZEOF_WORD], 7 ;G: w4 = 59 52 45 38 31 39 46 53 ; (Row 6, offset 1) pxor xmm2, xmm2 ;G: w2[i] = 0; pcmpgtw xmm0, xmm4 ;G: w0[i] = (w4[i] < 0 ? -1 : 0); pinsrw xmm1, word [block + 15 * SIZEOF_WORD], 1 ;F: w1 = 22 15 23 21 37 44 51 58 paddw xmm4, xmm0 ;G: w4[i] += w0[i]; movaps XMMWORD [t + 48 * SIZEOF_WORD], xmm4 ;G: t[48+i] = w4[i]; pinsrw xmm1, word [block + 30 * SIZEOF_WORD], 3 ;F: w1 = 22 15 23 30 37 44 51 58 ; (Row 5, offset 1) pcmpeqw xmm4, xmm2 ;G: w4[i] = (w4[i] == 0 ? -1 : 0); pinsrw xmm5, word [block + 42 * SIZEOF_WORD], 0 ;E: w5 = 42 49 56 57 50 51 58 59 packsswb xmm4, xmm3 ;GH: b4[i] = w4[i], b4[i+8] = w3[i] ; w/ signed saturation pxor xmm0, xmm0 ;F: w0[i] = 0; pinsrw xmm5, word [block + 43 * SIZEOF_WORD], 5 ;E: w5 = 42 49 56 57 50 43 58 59 pcmpgtw xmm2, xmm1 ;F: w2[i] = (w1[i] < 0 ? -1 : 0); pmovmskb tempd, xmm4 ;Z: temp = 0; temp |= ((b4[i] >> 7) << i); pinsrw xmm5, word [block + 36 * SIZEOF_WORD], 6 ;E: w5 = 42 49 56 57 50 43 36 59 paddw xmm1, xmm2 ;F: w1[i] += w2[i]; movaps XMMWORD [t + 40 * SIZEOF_WORD], xmm1 ;F: t[40+i] = w1[i]; pinsrw xmm5, word [block + 29 * SIZEOF_WORD], 7 ;E: w5 = 42 49 56 57 50 43 36 29 ; (Row 4, offset 1) %undef block %define free_bitsq rdx %define free_bitsd edx %define free_bitsb dl pcmpeqw xmm1, xmm0 ;F: w1[i] = (w1[i] == 0 ? -1 : 0); shl tempq, 48 ;Z: temp <<= 48; pxor xmm2, xmm2 ;E: w2[i] = 0; pcmpgtw xmm0, xmm5 ;E: w0[i] = (w5[i] < 0 ? -1 : 0); paddw xmm5, xmm0 ;E: w5[i] += w0[i]; or tempq, put_buffer ;Z: temp |= put_buffer; movaps XMMWORD [t + 32 * SIZEOF_WORD], xmm5 ;E: t[32+i] = w5[i]; lea t, [dword t - 2] ;Z: t = &t[-1]; pcmpeqw xmm5, xmm2 ;E: w5[i] = (w5[i] == 0 ? -1 : 0); packsswb xmm5, xmm1 ;EF: b5[i] = w5[i], b5[i+8] = w1[i] ; w/ signed saturation add nbitsb, byte [dctbl + c_derived_tbl.ehufsi + nbitsq] ;Z: nbits += dctbl->ehufsi[nbits]; %undef dctbl %define code_temp r8d pmovmskb indexd, xmm5 ;Z: index = 0; index |= ((b5[i] >> 7) << i); mov free_bitsd, [state+working_state.cur.free_bits] ;Z: free_bits = state->cur.free_bits; pcmpeqw xmm1, xmm1 ;Z: b1[i] = 0xFF; shl index, 32 ;Z: index <<= 32; mov put_buffer, [state+working_state.cur.put_buffer.simd] ;Z: put_buffer = state->cur.put_buffer.simd; or index, tempq ;Z: index |= temp; not index ;Z: index = ~index; sub free_bitsb, nbitsb ;Z: if ((free_bits -= nbits) >= 0) jnl .ENTRY_SKIP_EMIT_CODE ;Z: goto .ENTRY_SKIP_EMIT_CODE; align 16 .EMIT_CODE: ;Z: .EMIT_CODE: EMIT_QWORD .BLOOP_COND ;Z: insert code, flush buffer, goto .BLOOP_COND ; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ align 16 .BRLOOP: ; do { lea code_temp, [nbitsq - 16] ; code_temp = nbits - 16; movzx nbits, byte [actbl + c_derived_tbl.ehufsi + 0xf0] ; nbits = actbl->ehufsi[0xf0]; mov code, [actbl + c_derived_tbl.ehufco + 0xf0 * 4] ; code = actbl->ehufco[0xf0]; sub free_bitsb, nbitsb ; if ((free_bits -= nbits) <= 0) jle .EMIT_BRLOOP_CODE ; goto .EMIT_BRLOOP_CODE; shl put_buffer, nbitsb ; put_buffer <<= nbits; mov nbits, code_temp ; nbits = code_temp; or put_buffer, codeq ; put_buffer |= code; cmp nbits, 16 ; if (nbits <= 16) jle .ERLOOP ; break; jmp .BRLOOP ; } while (1); ; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ align 16 times 5 nop .ENTRY_SKIP_EMIT_CODE: ; .ENTRY_SKIP_EMIT_CODE: shl put_buffer, nbitsb ; put_buffer <<= nbits; or put_buffer, codeq ; put_buffer |= code; .BLOOP_COND: ; .BLOOP_COND: test index, index ; if (index != 0) jz .ELOOP ; { .BLOOP: ; do { xor nbits, nbits ; nbits = 0; /* kill tzcnt input dependency */ tzcnt nbitsq, index ; nbits = # of trailing 0 bits in index inc nbits ; ++nbits; lea t, [t + nbitsq * 2] ; t = &t[nbits]; shr index, nbitsb ; index >>= nbits; .EMIT_BRLOOP_CODE_END: ; .EMIT_BRLOOP_CODE_END: cmp nbits, 16 ; if (nbits > 16) jg .BRLOOP ; goto .BRLOOP; .ERLOOP: ; .ERLOOP: movsx codeq, word [t] ; code = *t; lea tempd, [nbitsq * 2] ; temp = nbits * 2; movzx nbits, byte [NBITS(codeq)] ; nbits = JPEG_NBITS(code); lea tempd, [nbitsq + tempq * 8] ; temp = temp * 8 + nbits; mov code_temp, [actbl + c_derived_tbl.ehufco + (tempq - 16) * 4] ; code_temp = actbl->ehufco[temp-16]; shl code_temp, nbitsb ; code_temp <<= nbits; and code, dword [MASK_BITS(nbitsq)] ; code &= (1 << nbits) - 1; add nbitsb, [actbl + c_derived_tbl.ehufsi + (tempq - 16)] ; free_bits -= actbl->ehufsi[temp-16]; or code, code_temp ; code |= code_temp; sub free_bitsb, nbitsb ; if ((free_bits -= nbits) <= 0) jle .EMIT_CODE ; goto .EMIT_CODE; shl put_buffer, nbitsb ; put_buffer <<= nbits; or put_buffer, codeq ; put_buffer |= code; test index, index jnz .BLOOP ; } while (index != 0); .ELOOP: ; } /* index != 0 */ sub td, esp ; t -= (WIN64: &t_[0], UNIX: &t_[64]); %ifdef WIN64 cmp td, (DCTSIZE2 - 2) * SIZEOF_WORD ; if (t != 62) %else cmp td, -2 * SIZEOF_WORD ; if (t != -2) %endif je .EFN ; { movzx nbits, byte [actbl + c_derived_tbl.ehufsi + 0] ; nbits = actbl->ehufsi[0]; mov code, [actbl + c_derived_tbl.ehufco + 0] ; code = actbl->ehufco[0]; sub free_bitsb, nbitsb ; if ((free_bits -= nbits) <= 0) jg .EFN_SKIP_EMIT_CODE ; { EMIT_QWORD .EFN ; insert code, flush buffer align 16 .EFN_SKIP_EMIT_CODE: ; } else { shl put_buffer, nbitsb ; put_buffer <<= nbits; or put_buffer, codeq ; put_buffer |= code; .EFN: ; } } mov [state + working_state.cur.put_buffer.simd], put_buffer ; state->cur.put_buffer.simd = put_buffer; mov byte [state + working_state.cur.free_bits], free_bitsb ; state->cur.free_bits = free_bits; %ifdef WIN64 sub rsp, -DCTSIZE2 * SIZEOF_WORD pop r12 pop rdi pop rsi pop rbp pop rbx %else pop r12 pop rbp pop rbx %endif ret ; ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ align 16 .EMIT_BRLOOP_CODE: EMIT_QWORD .EMIT_BRLOOP_CODE_END, { mov nbits, code_temp } ; insert code, flush buffer, ; nbits = code_temp, goto .EMIT_BRLOOP_CODE_END ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/x86_64/jcphuff-sse2.asm000066400000000000000000000426111436506551100211710ustar00rootroot00000000000000; ; jcphuff-sse2.asm - prepare data for progressive Huffman encoding ; (64-bit SSE2) ; ; Copyright (C) 2016, 2018, Matthieu Darbois ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains an SSE2 implementation of data preparation for progressive ; Huffman encoding. See jcphuff.c for more details. %include "jsimdext.inc" ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 64 ; -------------------------------------------------------------------------- ; Macros to load data for jsimd_encode_mcu_AC_first_prepare_sse2() and ; jsimd_encode_mcu_AC_refine_prepare_sse2() %macro LOAD16 0 pxor N0, N0 pxor N1, N1 mov T0d, INT [LUT + 0*SIZEOF_INT] mov T1d, INT [LUT + 8*SIZEOF_INT] pinsrw X0, word [BLOCK + T0 * 2], 0 pinsrw X1, word [BLOCK + T1 * 2], 0 mov T0d, INT [LUT + 1*SIZEOF_INT] mov T1d, INT [LUT + 9*SIZEOF_INT] pinsrw X0, word [BLOCK + T0 * 2], 1 pinsrw X1, word [BLOCK + T1 * 2], 1 mov T0d, INT [LUT + 2*SIZEOF_INT] mov T1d, INT [LUT + 10*SIZEOF_INT] pinsrw X0, word [BLOCK + T0 * 2], 2 pinsrw X1, word [BLOCK + T1 * 2], 2 mov T0d, INT [LUT + 3*SIZEOF_INT] mov T1d, INT [LUT + 11*SIZEOF_INT] pinsrw X0, word [BLOCK + T0 * 2], 3 pinsrw X1, word [BLOCK + T1 * 2], 3 mov T0d, INT [LUT + 4*SIZEOF_INT] mov T1d, INT [LUT + 12*SIZEOF_INT] pinsrw X0, word [BLOCK + T0 * 2], 4 pinsrw X1, word [BLOCK + T1 * 2], 4 mov T0d, INT [LUT + 5*SIZEOF_INT] mov T1d, INT [LUT + 13*SIZEOF_INT] pinsrw X0, word [BLOCK + T0 * 2], 5 pinsrw X1, word [BLOCK + T1 * 2], 5 mov T0d, INT [LUT + 6*SIZEOF_INT] mov T1d, INT [LUT + 14*SIZEOF_INT] pinsrw X0, word [BLOCK + T0 * 2], 6 pinsrw X1, word [BLOCK + T1 * 2], 6 mov T0d, INT [LUT + 7*SIZEOF_INT] mov T1d, INT [LUT + 15*SIZEOF_INT] pinsrw X0, word [BLOCK + T0 * 2], 7 pinsrw X1, word [BLOCK + T1 * 2], 7 %endmacro %macro LOAD15 0 pxor N0, N0 pxor N1, N1 pxor X1, X1 mov T0d, INT [LUT + 0*SIZEOF_INT] mov T1d, INT [LUT + 8*SIZEOF_INT] pinsrw X0, word [BLOCK + T0 * 2], 0 pinsrw X1, word [BLOCK + T1 * 2], 0 mov T0d, INT [LUT + 1*SIZEOF_INT] pinsrw X0, word [BLOCK + T0 * 2], 1 mov T0d, INT [LUT + 2*SIZEOF_INT] pinsrw X0, word [BLOCK + T0 * 2], 2 mov T0d, INT [LUT + 3*SIZEOF_INT] pinsrw X0, word [BLOCK + T0 * 2], 3 mov T0d, INT [LUT + 4*SIZEOF_INT] pinsrw X0, word [BLOCK + T0 * 2], 4 mov T0d, INT [LUT + 5*SIZEOF_INT] pinsrw X0, word [BLOCK + T0 * 2], 5 mov T0d, INT [LUT + 6*SIZEOF_INT] pinsrw X0, word [BLOCK + T0 * 2], 6 mov T0d, INT [LUT + 7*SIZEOF_INT] pinsrw X0, word [BLOCK + T0 * 2], 7 cmp LENEND, 2 jl %%.ELOAD15 mov T1d, INT [LUT + 9*SIZEOF_INT] pinsrw X1, word [BLOCK + T1 * 2], 1 cmp LENEND, 3 jl %%.ELOAD15 mov T1d, INT [LUT + 10*SIZEOF_INT] pinsrw X1, word [BLOCK + T1 * 2], 2 cmp LENEND, 4 jl %%.ELOAD15 mov T1d, INT [LUT + 11*SIZEOF_INT] pinsrw X1, word [BLOCK + T1 * 2], 3 cmp LENEND, 5 jl %%.ELOAD15 mov T1d, INT [LUT + 12*SIZEOF_INT] pinsrw X1, word [BLOCK + T1 * 2], 4 cmp LENEND, 6 jl %%.ELOAD15 mov T1d, INT [LUT + 13*SIZEOF_INT] pinsrw X1, word [BLOCK + T1 * 2], 5 cmp LENEND, 7 jl %%.ELOAD15 mov T1d, INT [LUT + 14*SIZEOF_INT] pinsrw X1, word [BLOCK + T1 * 2], 6 %%.ELOAD15: %endmacro %macro LOAD8 0 pxor N0, N0 mov T0d, INT [LUT + 0*SIZEOF_INT] pinsrw X0, word [BLOCK + T0 * 2], 0 mov T0d, INT [LUT + 1*SIZEOF_INT] pinsrw X0, word [BLOCK + T0 * 2], 1 mov T0d, INT [LUT + 2*SIZEOF_INT] pinsrw X0, word [BLOCK + T0 * 2], 2 mov T0d, INT [LUT + 3*SIZEOF_INT] pinsrw X0, word [BLOCK + T0 * 2], 3 mov T0d, INT [LUT + 4*SIZEOF_INT] pinsrw X0, word [BLOCK + T0 * 2], 4 mov T0d, INT [LUT + 5*SIZEOF_INT] pinsrw X0, word [BLOCK + T0 * 2], 5 mov T0d, INT [LUT + 6*SIZEOF_INT] pinsrw X0, word [BLOCK + T0 * 2], 6 mov T0d, INT [LUT + 7*SIZEOF_INT] pinsrw X0, word [BLOCK + T0 * 2], 7 %endmacro %macro LOAD7 0 pxor N0, N0 pxor X0, X0 mov T1d, INT [LUT + 0*SIZEOF_INT] pinsrw X0, word [BLOCK + T1 * 2], 0 cmp LENEND, 2 jl %%.ELOAD7 mov T1d, INT [LUT + 1*SIZEOF_INT] pinsrw X0, word [BLOCK + T1 * 2], 1 cmp LENEND, 3 jl %%.ELOAD7 mov T1d, INT [LUT + 2*SIZEOF_INT] pinsrw X0, word [BLOCK + T1 * 2], 2 cmp LENEND, 4 jl %%.ELOAD7 mov T1d, INT [LUT + 3*SIZEOF_INT] pinsrw X0, word [BLOCK + T1 * 2], 3 cmp LENEND, 5 jl %%.ELOAD7 mov T1d, INT [LUT + 4*SIZEOF_INT] pinsrw X0, word [BLOCK + T1 * 2], 4 cmp LENEND, 6 jl %%.ELOAD7 mov T1d, INT [LUT + 5*SIZEOF_INT] pinsrw X0, word [BLOCK + T1 * 2], 5 cmp LENEND, 7 jl %%.ELOAD7 mov T1d, INT [LUT + 6*SIZEOF_INT] pinsrw X0, word [BLOCK + T1 * 2], 6 %%.ELOAD7: %endmacro %macro REDUCE0 0 movdqa xmm0, XMMWORD [VALUES + ( 0*2)] movdqa xmm1, XMMWORD [VALUES + ( 8*2)] movdqa xmm2, XMMWORD [VALUES + (16*2)] movdqa xmm3, XMMWORD [VALUES + (24*2)] movdqa xmm4, XMMWORD [VALUES + (32*2)] movdqa xmm5, XMMWORD [VALUES + (40*2)] movdqa xmm6, XMMWORD [VALUES + (48*2)] movdqa xmm7, XMMWORD [VALUES + (56*2)] pcmpeqw xmm0, ZERO pcmpeqw xmm1, ZERO pcmpeqw xmm2, ZERO pcmpeqw xmm3, ZERO pcmpeqw xmm4, ZERO pcmpeqw xmm5, ZERO pcmpeqw xmm6, ZERO pcmpeqw xmm7, ZERO packsswb xmm0, xmm1 packsswb xmm2, xmm3 packsswb xmm4, xmm5 packsswb xmm6, xmm7 pmovmskb eax, xmm0 pmovmskb ecx, xmm2 pmovmskb edx, xmm4 pmovmskb esi, xmm6 shl rcx, 16 shl rdx, 32 shl rsi, 48 or rax, rcx or rdx, rsi or rax, rdx not rax mov MMWORD [r15], rax %endmacro ; ; Prepare data for jsimd_encode_mcu_AC_first(). ; ; GLOBAL(void) ; jsimd_encode_mcu_AC_first_prepare_sse2(const JCOEF *block, ; const int *jpeg_natural_order_start, ; int Sl, int Al, JCOEF *values, ; size_t *zerobits) ; ; r10 = const JCOEF *block ; r11 = const int *jpeg_natural_order_start ; r12 = int Sl ; r13 = int Al ; r14 = JCOEF *values ; r15 = size_t *zerobits %define ZERO xmm9 %define X0 xmm0 %define X1 xmm1 %define N0 xmm2 %define N1 xmm3 %define AL xmm4 %define K eax %define LUT r11 %define T0 rcx %define T0d ecx %define T1 rdx %define T1d edx %define BLOCK r10 %define VALUES r14 %define LEN r12d %define LENEND r13d align 32 GLOBAL_FUNCTION(jsimd_encode_mcu_AC_first_prepare_sse2) EXTN(jsimd_encode_mcu_AC_first_prepare_sse2): push rbp mov rax, rsp ; rax = original rbp sub rsp, byte 4 and rsp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [rsp], rax mov rbp, rsp ; rbp = aligned rbp lea rsp, [rbp - 16] collect_args 6 movdqa XMMWORD [rbp - 16], ZERO movd AL, r13d pxor ZERO, ZERO mov K, LEN mov LENEND, LEN and K, -16 and LENEND, 7 shr K, 4 jz .ELOOP16 .BLOOP16: LOAD16 pcmpgtw N0, X0 pcmpgtw N1, X1 paddw X0, N0 paddw X1, N1 pxor X0, N0 pxor X1, N1 psrlw X0, AL psrlw X1, AL pxor N0, X0 pxor N1, X1 movdqa XMMWORD [VALUES + (0) * 2], X0 movdqa XMMWORD [VALUES + (8) * 2], X1 movdqa XMMWORD [VALUES + (0 + DCTSIZE2) * 2], N0 movdqa XMMWORD [VALUES + (8 + DCTSIZE2) * 2], N1 add VALUES, 16*2 add LUT, 16*SIZEOF_INT dec K jnz .BLOOP16 test LEN, 15 je .PADDING .ELOOP16: test LEN, 8 jz .TRY7 test LEN, 7 jz .TRY8 LOAD15 pcmpgtw N0, X0 pcmpgtw N1, X1 paddw X0, N0 paddw X1, N1 pxor X0, N0 pxor X1, N1 psrlw X0, AL psrlw X1, AL pxor N0, X0 pxor N1, X1 movdqa XMMWORD [VALUES + (0) * 2], X0 movdqa XMMWORD [VALUES + (8) * 2], X1 movdqa XMMWORD [VALUES + (0 + DCTSIZE2) * 2], N0 movdqa XMMWORD [VALUES + (8 + DCTSIZE2) * 2], N1 add VALUES, 16*2 jmp .PADDING .TRY8: LOAD8 pcmpgtw N0, X0 paddw X0, N0 pxor X0, N0 psrlw X0, AL pxor N0, X0 movdqa XMMWORD [VALUES + (0) * 2], X0 movdqa XMMWORD [VALUES + (0 + DCTSIZE2) * 2], N0 add VALUES, 8*2 jmp .PADDING .TRY7: LOAD7 pcmpgtw N0, X0 paddw X0, N0 pxor X0, N0 psrlw X0, AL pxor N0, X0 movdqa XMMWORD [VALUES + (0) * 2], X0 movdqa XMMWORD [VALUES + (0 + DCTSIZE2) * 2], N0 add VALUES, 8*2 .PADDING: mov K, LEN add K, 7 and K, -8 shr K, 3 sub K, DCTSIZE2/8 jz .EPADDING align 16 .ZEROLOOP: movdqa XMMWORD [VALUES + 0], ZERO add VALUES, 8*2 inc K jnz .ZEROLOOP .EPADDING: sub VALUES, DCTSIZE2*2 REDUCE0 movdqa ZERO, XMMWORD [rbp - 16] uncollect_args 6 mov rsp, rbp ; rsp <- aligned rbp pop rsp ; rsp <- original rbp pop rbp ret %undef ZERO %undef X0 %undef X1 %undef N0 %undef N1 %undef AL %undef K %undef LUT %undef T0 %undef T0d %undef T1 %undef T1d %undef BLOCK %undef VALUES %undef LEN %undef LENEND ; ; Prepare data for jsimd_encode_mcu_AC_refine(). ; ; GLOBAL(int) ; jsimd_encode_mcu_AC_refine_prepare_sse2(const JCOEF *block, ; const int *jpeg_natural_order_start, ; int Sl, int Al, JCOEF *absvalues, ; size_t *bits) ; ; r10 = const JCOEF *block ; r11 = const int *jpeg_natural_order_start ; r12 = int Sl ; r13 = int Al ; r14 = JCOEF *values ; r15 = size_t *bits %define ZERO xmm9 %define ONE xmm5 %define X0 xmm0 %define X1 xmm1 %define N0 xmm2 %define N1 xmm3 %define AL xmm4 %define K eax %define KK r9d %define EOB r8d %define SIGN rdi %define LUT r11 %define T0 rcx %define T0d ecx %define T1 rdx %define T1d edx %define BLOCK r10 %define VALUES r14 %define LEN r12d %define LENEND r13d align 32 GLOBAL_FUNCTION(jsimd_encode_mcu_AC_refine_prepare_sse2) EXTN(jsimd_encode_mcu_AC_refine_prepare_sse2): push rbp mov rax, rsp ; rax = original rbp sub rsp, byte 4 and rsp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [rsp], rax mov rbp, rsp ; rbp = aligned rbp lea rsp, [rbp - 16] collect_args 6 movdqa XMMWORD [rbp - 16], ZERO xor SIGN, SIGN xor EOB, EOB xor KK, KK movd AL, r13d pxor ZERO, ZERO pcmpeqw ONE, ONE psrlw ONE, 15 mov K, LEN mov LENEND, LEN and K, -16 and LENEND, 7 shr K, 4 jz .ELOOPR16 .BLOOPR16: LOAD16 pcmpgtw N0, X0 pcmpgtw N1, X1 paddw X0, N0 paddw X1, N1 pxor X0, N0 pxor X1, N1 psrlw X0, AL psrlw X1, AL movdqa XMMWORD [VALUES + (0) * 2], X0 movdqa XMMWORD [VALUES + (8) * 2], X1 pcmpeqw X0, ONE pcmpeqw X1, ONE packsswb N0, N1 packsswb X0, X1 pmovmskb T0d, N0 ; lsignbits.val16u[k>>4] = _mm_movemask_epi8(neg); pmovmskb T1d, X0 ; idx = _mm_movemask_epi8(x1); shr SIGN, 16 ; make room for sizebits shl T0, 48 or SIGN, T0 bsr T1d, T1d ; idx = 16 - (__builtin_clz(idx)>>1); jz .CONTINUER16 ; if (idx) { mov EOB, KK add EOB, T1d ; EOB = k + idx; .CONTINUER16: add VALUES, 16*2 add LUT, 16*SIZEOF_INT add KK, 16 dec K jnz .BLOOPR16 test LEN, 15 je .PADDINGR .ELOOPR16: test LEN, 8 jz .TRYR7 test LEN, 7 jz .TRYR8 LOAD15 pcmpgtw N0, X0 pcmpgtw N1, X1 paddw X0, N0 paddw X1, N1 pxor X0, N0 pxor X1, N1 psrlw X0, AL psrlw X1, AL movdqa XMMWORD [VALUES + (0) * 2], X0 movdqa XMMWORD [VALUES + (8) * 2], X1 pcmpeqw X0, ONE pcmpeqw X1, ONE packsswb N0, N1 packsswb X0, X1 pmovmskb T0d, N0 ; lsignbits.val16u[k>>4] = _mm_movemask_epi8(neg); pmovmskb T1d, X0 ; idx = _mm_movemask_epi8(x1); shr SIGN, 16 ; make room for sizebits shl T0, 48 or SIGN, T0 bsr T1d, T1d ; idx = 16 - (__builtin_clz(idx)>>1); jz .CONTINUER15 ; if (idx) { mov EOB, KK add EOB, T1d ; EOB = k + idx; .CONTINUER15: add VALUES, 16*2 jmp .PADDINGR .TRYR8: LOAD8 pcmpgtw N0, X0 paddw X0, N0 pxor X0, N0 psrlw X0, AL movdqa XMMWORD [VALUES + (0) * 2], X0 pcmpeqw X0, ONE packsswb N0, ZERO packsswb X0, ZERO pmovmskb T0d, N0 ; lsignbits.val16u[k>>4] = _mm_movemask_epi8(neg); pmovmskb T1d, X0 ; idx = _mm_movemask_epi8(x1); shr SIGN, 8 ; make room for sizebits shl T0, 56 or SIGN, T0 bsr T1d, T1d ; idx = 16 - (__builtin_clz(idx)>>1); jz .CONTINUER8 ; if (idx) { mov EOB, KK add EOB, T1d ; EOB = k + idx; .CONTINUER8: add VALUES, 8*2 jmp .PADDINGR .TRYR7: LOAD7 pcmpgtw N0, X0 paddw X0, N0 pxor X0, N0 psrlw X0, AL movdqa XMMWORD [VALUES + (0) * 2], X0 pcmpeqw X0, ONE packsswb N0, ZERO packsswb X0, ZERO pmovmskb T0d, N0 ; lsignbits.val16u[k>>4] = _mm_movemask_epi8(neg); pmovmskb T1d, X0 ; idx = _mm_movemask_epi8(x1); shr SIGN, 8 ; make room for sizebits shl T0, 56 or SIGN, T0 bsr T1d, T1d ; idx = 16 - (__builtin_clz(idx)>>1); jz .CONTINUER7 ; if (idx) { mov EOB, KK add EOB, T1d ; EOB = k + idx; .CONTINUER7: add VALUES, 8*2 .PADDINGR: mov K, LEN add K, 7 and K, -8 shr K, 3 sub K, DCTSIZE2/8 jz .EPADDINGR align 16 .ZEROLOOPR: movdqa XMMWORD [VALUES + 0], ZERO shr SIGN, 8 add VALUES, 8*2 inc K jnz .ZEROLOOPR .EPADDINGR: not SIGN sub VALUES, DCTSIZE2*2 mov MMWORD [r15+SIZEOF_MMWORD], SIGN REDUCE0 mov eax, EOB movdqa ZERO, XMMWORD [rbp - 16] uncollect_args 6 mov rsp, rbp ; rsp <- aligned rbp pop rsp ; rsp <- original rbp pop rbp ret %undef ZERO %undef ONE %undef X0 %undef X1 %undef N0 %undef N1 %undef AL %undef K %undef KK %undef EOB %undef SIGN %undef LUT %undef T0 %undef T0d %undef T1 %undef T1d %undef BLOCK %undef VALUES %undef LEN %undef LENEND ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/x86_64/jcsample-avx2.asm000066400000000000000000000245001436506551100213430ustar00rootroot00000000000000; ; jcsample.asm - downsampling (64-bit AVX2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2009, 2016, D. R. Commander. ; Copyright (C) 2015, Intel Corporation. ; Copyright (C) 2018, Matthias Räncker. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jsimdext.inc" ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 64 ; ; Downsample pixel values of a single component. ; This version handles the common case of 2:1 horizontal and 1:1 vertical, ; without smoothing. ; ; GLOBAL(void) ; jsimd_h2v1_downsample_avx2(JDIMENSION image_width, int max_v_samp_factor, ; JDIMENSION v_samp_factor, ; JDIMENSION width_in_blocks, JSAMPARRAY input_data, ; JSAMPARRAY output_data); ; ; r10d = JDIMENSION image_width ; r11 = int max_v_samp_factor ; r12d = JDIMENSION v_samp_factor ; r13d = JDIMENSION width_in_blocks ; r14 = JSAMPARRAY input_data ; r15 = JSAMPARRAY output_data align 32 GLOBAL_FUNCTION(jsimd_h2v1_downsample_avx2) EXTN(jsimd_h2v1_downsample_avx2): push rbp mov rax, rsp mov rbp, rsp collect_args 6 mov ecx, r13d shl rcx, 3 ; imul rcx,DCTSIZE (rcx = output_cols) jz near .return mov edx, r10d ; -- expand_right_edge push rcx shl rcx, 1 ; output_cols * 2 sub rcx, rdx jle short .expand_end mov rax, r11 test rax, rax jle short .expand_end cld mov rsi, r14 ; input_data .expandloop: push rax push rcx mov rdip, JSAMPROW [rsi] add rdi, rdx mov al, JSAMPLE [rdi-1] rep stosb pop rcx pop rax add rsi, byte SIZEOF_JSAMPROW dec rax jg short .expandloop .expand_end: pop rcx ; output_cols ; -- h2v1_downsample mov eax, r12d ; rowctr test eax, eax jle near .return mov rdx, 0x00010000 ; bias pattern vmovd xmm7, edx vpshufd xmm7, xmm7, 0x00 ; xmm7={0, 1, 0, 1, 0, 1, 0, 1} vperm2i128 ymm7, ymm7, ymm7, 0 ; ymm7={xmm7, xmm7} vpcmpeqw ymm6, ymm6, ymm6 vpsrlw ymm6, ymm6, BYTE_BIT ; ymm6={0xFF 0x00 0xFF 0x00 ..} mov rsi, r14 ; input_data mov rdi, r15 ; output_data .rowloop: push rcx push rdi push rsi mov rsip, JSAMPROW [rsi] ; inptr mov rdip, JSAMPROW [rdi] ; outptr cmp rcx, byte SIZEOF_YMMWORD jae short .columnloop .columnloop_r24: ; rcx can possibly be 8, 16, 24 cmp rcx, 24 jne .columnloop_r16 vmovdqu ymm0, YMMWORD [rsi+0*SIZEOF_YMMWORD] vmovdqu xmm1, XMMWORD [rsi+1*SIZEOF_YMMWORD] mov rcx, SIZEOF_YMMWORD jmp short .downsample .columnloop_r16: cmp rcx, 16 jne .columnloop_r8 vmovdqu ymm0, YMMWORD [rsi+0*SIZEOF_YMMWORD] vpxor ymm1, ymm1, ymm1 mov rcx, SIZEOF_YMMWORD jmp short .downsample .columnloop_r8: vmovdqu xmm0, XMMWORD[rsi+0*SIZEOF_YMMWORD] vpxor ymm1, ymm1, ymm1 mov rcx, SIZEOF_YMMWORD jmp short .downsample .columnloop: vmovdqu ymm0, YMMWORD [rsi+0*SIZEOF_YMMWORD] vmovdqu ymm1, YMMWORD [rsi+1*SIZEOF_YMMWORD] .downsample: vpsrlw ymm2, ymm0, BYTE_BIT vpand ymm0, ymm0, ymm6 vpsrlw ymm3, ymm1, BYTE_BIT vpand ymm1, ymm1, ymm6 vpaddw ymm0, ymm0, ymm2 vpaddw ymm1, ymm1, ymm3 vpaddw ymm0, ymm0, ymm7 vpaddw ymm1, ymm1, ymm7 vpsrlw ymm0, ymm0, 1 vpsrlw ymm1, ymm1, 1 vpackuswb ymm0, ymm0, ymm1 vpermq ymm0, ymm0, 0xd8 vmovdqu YMMWORD [rdi+0*SIZEOF_YMMWORD], ymm0 sub rcx, byte SIZEOF_YMMWORD ; outcol add rsi, byte 2*SIZEOF_YMMWORD ; inptr add rdi, byte 1*SIZEOF_YMMWORD ; outptr cmp rcx, byte SIZEOF_YMMWORD jae short .columnloop test rcx, rcx jnz near .columnloop_r24 pop rsi pop rdi pop rcx add rsi, byte SIZEOF_JSAMPROW ; input_data add rdi, byte SIZEOF_JSAMPROW ; output_data dec rax ; rowctr jg near .rowloop .return: vzeroupper uncollect_args 6 pop rbp ret ; -------------------------------------------------------------------------- ; ; Downsample pixel values of a single component. ; This version handles the standard case of 2:1 horizontal and 2:1 vertical, ; without smoothing. ; ; GLOBAL(void) ; jsimd_h2v2_downsample_avx2(JDIMENSION image_width, int max_v_samp_factor, ; JDIMENSION v_samp_factor, ; JDIMENSION width_in_blocks, JSAMPARRAY input_data, ; JSAMPARRAY output_data); ; ; r10d = JDIMENSION image_width ; r11 = int max_v_samp_factor ; r12d = JDIMENSION v_samp_factor ; r13d = JDIMENSION width_in_blocks ; r14 = JSAMPARRAY input_data ; r15 = JSAMPARRAY output_data align 32 GLOBAL_FUNCTION(jsimd_h2v2_downsample_avx2) EXTN(jsimd_h2v2_downsample_avx2): push rbp mov rax, rsp mov rbp, rsp collect_args 6 mov ecx, r13d shl rcx, 3 ; imul rcx,DCTSIZE (rcx = output_cols) jz near .return mov edx, r10d ; -- expand_right_edge push rcx shl rcx, 1 ; output_cols * 2 sub rcx, rdx jle short .expand_end mov rax, r11 test rax, rax jle short .expand_end cld mov rsi, r14 ; input_data .expandloop: push rax push rcx mov rdip, JSAMPROW [rsi] add rdi, rdx mov al, JSAMPLE [rdi-1] rep stosb pop rcx pop rax add rsi, byte SIZEOF_JSAMPROW dec rax jg short .expandloop .expand_end: pop rcx ; output_cols ; -- h2v2_downsample mov eax, r12d ; rowctr test rax, rax jle near .return mov rdx, 0x00020001 ; bias pattern vmovd xmm7, edx vpcmpeqw ymm6, ymm6, ymm6 vpshufd xmm7, xmm7, 0x00 ; ymm7={1, 2, 1, 2, 1, 2, 1, 2} vperm2i128 ymm7, ymm7, ymm7, 0 vpsrlw ymm6, ymm6, BYTE_BIT ; ymm6={0xFF 0x00 0xFF 0x00 ..} mov rsi, r14 ; input_data mov rdi, r15 ; output_data .rowloop: push rcx push rdi push rsi mov rdxp, JSAMPROW [rsi+0*SIZEOF_JSAMPROW] ; inptr0 mov rsip, JSAMPROW [rsi+1*SIZEOF_JSAMPROW] ; inptr1 mov rdip, JSAMPROW [rdi] ; outptr cmp rcx, byte SIZEOF_YMMWORD jae short .columnloop .columnloop_r24: cmp rcx, 24 jne .columnloop_r16 vmovdqu ymm0, YMMWORD [rdx+0*SIZEOF_YMMWORD] vmovdqu ymm1, YMMWORD [rsi+0*SIZEOF_YMMWORD] vmovdqu xmm2, XMMWORD [rdx+1*SIZEOF_YMMWORD] vmovdqu xmm3, XMMWORD [rsi+1*SIZEOF_YMMWORD] mov rcx, SIZEOF_YMMWORD jmp short .downsample .columnloop_r16: cmp rcx, 16 jne .columnloop_r8 vmovdqu ymm0, YMMWORD [rdx+0*SIZEOF_YMMWORD] vmovdqu ymm1, YMMWORD [rsi+0*SIZEOF_YMMWORD] vpxor ymm2, ymm2, ymm2 vpxor ymm3, ymm3, ymm3 mov rcx, SIZEOF_YMMWORD jmp short .downsample .columnloop_r8: vmovdqu xmm0, XMMWORD [rdx+0*SIZEOF_XMMWORD] vmovdqu xmm1, XMMWORD [rsi+0*SIZEOF_XMMWORD] vpxor ymm2, ymm2, ymm2 vpxor ymm3, ymm3, ymm3 mov rcx, SIZEOF_YMMWORD jmp short .downsample .columnloop: vmovdqu ymm0, YMMWORD [rdx+0*SIZEOF_YMMWORD] vmovdqu ymm1, YMMWORD [rsi+0*SIZEOF_YMMWORD] vmovdqu ymm2, YMMWORD [rdx+1*SIZEOF_YMMWORD] vmovdqu ymm3, YMMWORD [rsi+1*SIZEOF_YMMWORD] .downsample: vpand ymm4, ymm0, ymm6 vpsrlw ymm0, ymm0, BYTE_BIT vpand ymm5, ymm1, ymm6 vpsrlw ymm1, ymm1, BYTE_BIT vpaddw ymm0, ymm0, ymm4 vpaddw ymm1, ymm1, ymm5 vpand ymm4, ymm2, ymm6 vpsrlw ymm2, ymm2, BYTE_BIT vpand ymm5, ymm3, ymm6 vpsrlw ymm3, ymm3, BYTE_BIT vpaddw ymm2, ymm2, ymm4 vpaddw ymm3, ymm3, ymm5 vpaddw ymm0, ymm0, ymm1 vpaddw ymm2, ymm2, ymm3 vpaddw ymm0, ymm0, ymm7 vpaddw ymm2, ymm2, ymm7 vpsrlw ymm0, ymm0, 2 vpsrlw ymm2, ymm2, 2 vpackuswb ymm0, ymm0, ymm2 vpermq ymm0, ymm0, 0xd8 vmovdqu YMMWORD [rdi+0*SIZEOF_YMMWORD], ymm0 sub rcx, byte SIZEOF_YMMWORD ; outcol add rdx, byte 2*SIZEOF_YMMWORD ; inptr0 add rsi, byte 2*SIZEOF_YMMWORD ; inptr1 add rdi, byte 1*SIZEOF_YMMWORD ; outptr cmp rcx, byte SIZEOF_YMMWORD jae near .columnloop test rcx, rcx jnz near .columnloop_r24 pop rsi pop rdi pop rcx add rsi, byte 2*SIZEOF_JSAMPROW ; input_data add rdi, byte 1*SIZEOF_JSAMPROW ; output_data dec rax ; rowctr jg near .rowloop .return: vzeroupper uncollect_args 6 pop rbp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/x86_64/jcsample-sse2.asm000066400000000000000000000216061436506551100213430ustar00rootroot00000000000000; ; jcsample.asm - downsampling (64-bit SSE2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2009, 2016, D. R. Commander. ; Copyright (C) 2018, Matthias Räncker. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jsimdext.inc" ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 64 ; ; Downsample pixel values of a single component. ; This version handles the common case of 2:1 horizontal and 1:1 vertical, ; without smoothing. ; ; GLOBAL(void) ; jsimd_h2v1_downsample_sse2(JDIMENSION image_width, int max_v_samp_factor, ; JDIMENSION v_samp_factor, ; JDIMENSION width_in_blocks, JSAMPARRAY input_data, ; JSAMPARRAY output_data); ; ; r10d = JDIMENSION image_width ; r11 = int max_v_samp_factor ; r12d = JDIMENSION v_samp_factor ; r13d = JDIMENSION width_in_blocks ; r14 = JSAMPARRAY input_data ; r15 = JSAMPARRAY output_data align 32 GLOBAL_FUNCTION(jsimd_h2v1_downsample_sse2) EXTN(jsimd_h2v1_downsample_sse2): push rbp mov rax, rsp mov rbp, rsp collect_args 6 mov ecx, r13d shl rcx, 3 ; imul rcx,DCTSIZE (rcx = output_cols) jz near .return mov edx, r10d ; -- expand_right_edge push rcx shl rcx, 1 ; output_cols * 2 sub rcx, rdx jle short .expand_end mov rax, r11 test rax, rax jle short .expand_end cld mov rsi, r14 ; input_data .expandloop: push rax push rcx mov rdip, JSAMPROW [rsi] add rdi, rdx mov al, JSAMPLE [rdi-1] rep stosb pop rcx pop rax add rsi, byte SIZEOF_JSAMPROW dec rax jg short .expandloop .expand_end: pop rcx ; output_cols ; -- h2v1_downsample mov eax, r12d ; rowctr test eax, eax jle near .return mov rdx, 0x00010000 ; bias pattern movd xmm7, edx pcmpeqw xmm6, xmm6 pshufd xmm7, xmm7, 0x00 ; xmm7={0, 1, 0, 1, 0, 1, 0, 1} psrlw xmm6, BYTE_BIT ; xmm6={0xFF 0x00 0xFF 0x00 ..} mov rsi, r14 ; input_data mov rdi, r15 ; output_data .rowloop: push rcx push rdi push rsi mov rsip, JSAMPROW [rsi] ; inptr mov rdip, JSAMPROW [rdi] ; outptr cmp rcx, byte SIZEOF_XMMWORD jae short .columnloop .columnloop_r8: movdqa xmm0, XMMWORD [rsi+0*SIZEOF_XMMWORD] pxor xmm1, xmm1 mov rcx, SIZEOF_XMMWORD jmp short .downsample .columnloop: movdqa xmm0, XMMWORD [rsi+0*SIZEOF_XMMWORD] movdqa xmm1, XMMWORD [rsi+1*SIZEOF_XMMWORD] .downsample: movdqa xmm2, xmm0 movdqa xmm3, xmm1 pand xmm0, xmm6 psrlw xmm2, BYTE_BIT pand xmm1, xmm6 psrlw xmm3, BYTE_BIT paddw xmm0, xmm2 paddw xmm1, xmm3 paddw xmm0, xmm7 paddw xmm1, xmm7 psrlw xmm0, 1 psrlw xmm1, 1 packuswb xmm0, xmm1 movdqa XMMWORD [rdi+0*SIZEOF_XMMWORD], xmm0 sub rcx, byte SIZEOF_XMMWORD ; outcol add rsi, byte 2*SIZEOF_XMMWORD ; inptr add rdi, byte 1*SIZEOF_XMMWORD ; outptr cmp rcx, byte SIZEOF_XMMWORD jae short .columnloop test rcx, rcx jnz short .columnloop_r8 pop rsi pop rdi pop rcx add rsi, byte SIZEOF_JSAMPROW ; input_data add rdi, byte SIZEOF_JSAMPROW ; output_data dec rax ; rowctr jg near .rowloop .return: uncollect_args 6 pop rbp ret ; -------------------------------------------------------------------------- ; ; Downsample pixel values of a single component. ; This version handles the standard case of 2:1 horizontal and 2:1 vertical, ; without smoothing. ; ; GLOBAL(void) ; jsimd_h2v2_downsample_sse2(JDIMENSION image_width, int max_v_samp_factor, ; JDIMENSION v_samp_factor, ; JDIMENSION width_in_blocks, JSAMPARRAY input_data, ; JSAMPARRAY output_data); ; ; r10d = JDIMENSION image_width ; r11 = int max_v_samp_factor ; r12d = JDIMENSION v_samp_factor ; r13d = JDIMENSION width_in_blocks ; r14 = JSAMPARRAY input_data ; r15 = JSAMPARRAY output_data align 32 GLOBAL_FUNCTION(jsimd_h2v2_downsample_sse2) EXTN(jsimd_h2v2_downsample_sse2): push rbp mov rax, rsp mov rbp, rsp collect_args 6 mov ecx, r13d shl rcx, 3 ; imul rcx,DCTSIZE (rcx = output_cols) jz near .return mov edx, r10d ; -- expand_right_edge push rcx shl rcx, 1 ; output_cols * 2 sub rcx, rdx jle short .expand_end mov rax, r11 test rax, rax jle short .expand_end cld mov rsi, r14 ; input_data .expandloop: push rax push rcx mov rdip, JSAMPROW [rsi] add rdi, rdx mov al, JSAMPLE [rdi-1] rep stosb pop rcx pop rax add rsi, byte SIZEOF_JSAMPROW dec rax jg short .expandloop .expand_end: pop rcx ; output_cols ; -- h2v2_downsample mov eax, r12d ; rowctr test rax, rax jle near .return mov rdx, 0x00020001 ; bias pattern movd xmm7, edx pcmpeqw xmm6, xmm6 pshufd xmm7, xmm7, 0x00 ; xmm7={1, 2, 1, 2, 1, 2, 1, 2} psrlw xmm6, BYTE_BIT ; xmm6={0xFF 0x00 0xFF 0x00 ..} mov rsi, r14 ; input_data mov rdi, r15 ; output_data .rowloop: push rcx push rdi push rsi mov rdxp, JSAMPROW [rsi+0*SIZEOF_JSAMPROW] ; inptr0 mov rsip, JSAMPROW [rsi+1*SIZEOF_JSAMPROW] ; inptr1 mov rdip, JSAMPROW [rdi] ; outptr cmp rcx, byte SIZEOF_XMMWORD jae short .columnloop .columnloop_r8: movdqa xmm0, XMMWORD [rdx+0*SIZEOF_XMMWORD] movdqa xmm1, XMMWORD [rsi+0*SIZEOF_XMMWORD] pxor xmm2, xmm2 pxor xmm3, xmm3 mov rcx, SIZEOF_XMMWORD jmp short .downsample .columnloop: movdqa xmm0, XMMWORD [rdx+0*SIZEOF_XMMWORD] movdqa xmm1, XMMWORD [rsi+0*SIZEOF_XMMWORD] movdqa xmm2, XMMWORD [rdx+1*SIZEOF_XMMWORD] movdqa xmm3, XMMWORD [rsi+1*SIZEOF_XMMWORD] .downsample: movdqa xmm4, xmm0 movdqa xmm5, xmm1 pand xmm0, xmm6 psrlw xmm4, BYTE_BIT pand xmm1, xmm6 psrlw xmm5, BYTE_BIT paddw xmm0, xmm4 paddw xmm1, xmm5 movdqa xmm4, xmm2 movdqa xmm5, xmm3 pand xmm2, xmm6 psrlw xmm4, BYTE_BIT pand xmm3, xmm6 psrlw xmm5, BYTE_BIT paddw xmm2, xmm4 paddw xmm3, xmm5 paddw xmm0, xmm1 paddw xmm2, xmm3 paddw xmm0, xmm7 paddw xmm2, xmm7 psrlw xmm0, 2 psrlw xmm2, 2 packuswb xmm0, xmm2 movdqa XMMWORD [rdi+0*SIZEOF_XMMWORD], xmm0 sub rcx, byte SIZEOF_XMMWORD ; outcol add rdx, byte 2*SIZEOF_XMMWORD ; inptr0 add rsi, byte 2*SIZEOF_XMMWORD ; inptr1 add rdi, byte 1*SIZEOF_XMMWORD ; outptr cmp rcx, byte SIZEOF_XMMWORD jae near .columnloop test rcx, rcx jnz near .columnloop_r8 pop rsi pop rdi pop rcx add rsi, byte 2*SIZEOF_JSAMPROW ; input_data add rdi, byte 1*SIZEOF_JSAMPROW ; output_data dec rax ; rowctr jg near .rowloop .return: uncollect_args 6 pop rbp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/x86_64/jdcolext-avx2.asm000066400000000000000000000564001436506551100213650ustar00rootroot00000000000000; ; jdcolext.asm - colorspace conversion (64-bit AVX2) ; ; Copyright 2009, 2012 Pierre Ossman for Cendio AB ; Copyright (C) 2009, 2012, 2016, D. R. Commander. ; Copyright (C) 2015, Intel Corporation. ; Copyright (C) 2018, Matthias Räncker. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jcolsamp.inc" ; -------------------------------------------------------------------------- ; ; Convert some rows of samples to the output colorspace. ; ; GLOBAL(void) ; jsimd_ycc_rgb_convert_avx2(JDIMENSION out_width, JSAMPIMAGE input_buf, ; JDIMENSION input_row, JSAMPARRAY output_buf, ; int num_rows) ; ; r10d = JDIMENSION out_width ; r11 = JSAMPIMAGE input_buf ; r12d = JDIMENSION input_row ; r13 = JSAMPARRAY output_buf ; r14d = int num_rows %define wk(i) rbp - (WK_NUM - (i)) * SIZEOF_YMMWORD ; ymmword wk[WK_NUM] %define WK_NUM 2 align 32 GLOBAL_FUNCTION(jsimd_ycc_rgb_convert_avx2) EXTN(jsimd_ycc_rgb_convert_avx2): push rbp mov rax, rsp ; rax = original rbp sub rsp, byte 4 and rsp, byte (-SIZEOF_YMMWORD) ; align to 256 bits mov [rsp], rax mov rbp, rsp ; rbp = aligned rbp lea rsp, [wk(0)] collect_args 5 push rbx mov ecx, r10d ; num_cols test rcx, rcx jz near .return push rcx mov rdi, r11 mov ecx, r12d mov rsip, JSAMPARRAY [rdi+0*SIZEOF_JSAMPARRAY] mov rbxp, JSAMPARRAY [rdi+1*SIZEOF_JSAMPARRAY] mov rdxp, JSAMPARRAY [rdi+2*SIZEOF_JSAMPARRAY] lea rsi, [rsi+rcx*SIZEOF_JSAMPROW] lea rbx, [rbx+rcx*SIZEOF_JSAMPROW] lea rdx, [rdx+rcx*SIZEOF_JSAMPROW] pop rcx mov rdi, r13 mov eax, r14d test rax, rax jle near .return .rowloop: push rax push rdi push rdx push rbx push rsi push rcx ; col mov rsip, JSAMPROW [rsi] ; inptr0 mov rbxp, JSAMPROW [rbx] ; inptr1 mov rdxp, JSAMPROW [rdx] ; inptr2 mov rdip, JSAMPROW [rdi] ; outptr .columnloop: vmovdqu ymm5, YMMWORD [rbx] ; ymm5=Cb(0123456789ABCDEFGHIJKLMNOPQRSTUV) vmovdqu ymm1, YMMWORD [rdx] ; ymm1=Cr(0123456789ABCDEFGHIJKLMNOPQRSTUV) vpcmpeqw ymm0, ymm0, ymm0 vpcmpeqw ymm7, ymm7, ymm7 vpsrlw ymm0, ymm0, BYTE_BIT ; ymm0={0xFF 0x00 0xFF 0x00 ..} vpsllw ymm7, ymm7, 7 ; ymm7={0xFF80 0xFF80 0xFF80 0xFF80 ..} vpand ymm4, ymm0, ymm5 ; ymm4=Cb(02468ACEGIKMOQSU)=CbE vpsrlw ymm5, ymm5, BYTE_BIT ; ymm5=Cb(13579BDFHJLNPRTV)=CbO vpand ymm0, ymm0, ymm1 ; ymm0=Cr(02468ACEGIKMOQSU)=CrE vpsrlw ymm1, ymm1, BYTE_BIT ; ymm1=Cr(13579BDFHJLNPRTV)=CrO vpaddw ymm2, ymm4, ymm7 vpaddw ymm3, ymm5, ymm7 vpaddw ymm6, ymm0, ymm7 vpaddw ymm7, ymm1, ymm7 ; (Original) ; R = Y + 1.40200 * Cr ; G = Y - 0.34414 * Cb - 0.71414 * Cr ; B = Y + 1.77200 * Cb ; ; (This implementation) ; R = Y + 0.40200 * Cr + Cr ; G = Y - 0.34414 * Cb + 0.28586 * Cr - Cr ; B = Y - 0.22800 * Cb + Cb + Cb vpaddw ymm4, ymm2, ymm2 ; ymm4=2*CbE vpaddw ymm5, ymm3, ymm3 ; ymm5=2*CbO vpaddw ymm0, ymm6, ymm6 ; ymm0=2*CrE vpaddw ymm1, ymm7, ymm7 ; ymm1=2*CrO vpmulhw ymm4, ymm4, [rel PW_MF0228] ; ymm4=(2*CbE * -FIX(0.22800)) vpmulhw ymm5, ymm5, [rel PW_MF0228] ; ymm5=(2*CbO * -FIX(0.22800)) vpmulhw ymm0, ymm0, [rel PW_F0402] ; ymm0=(2*CrE * FIX(0.40200)) vpmulhw ymm1, ymm1, [rel PW_F0402] ; ymm1=(2*CrO * FIX(0.40200)) vpaddw ymm4, ymm4, [rel PW_ONE] vpaddw ymm5, ymm5, [rel PW_ONE] vpsraw ymm4, ymm4, 1 ; ymm4=(CbE * -FIX(0.22800)) vpsraw ymm5, ymm5, 1 ; ymm5=(CbO * -FIX(0.22800)) vpaddw ymm0, ymm0, [rel PW_ONE] vpaddw ymm1, ymm1, [rel PW_ONE] vpsraw ymm0, ymm0, 1 ; ymm0=(CrE * FIX(0.40200)) vpsraw ymm1, ymm1, 1 ; ymm1=(CrO * FIX(0.40200)) vpaddw ymm4, ymm4, ymm2 vpaddw ymm5, ymm5, ymm3 vpaddw ymm4, ymm4, ymm2 ; ymm4=(CbE * FIX(1.77200))=(B-Y)E vpaddw ymm5, ymm5, ymm3 ; ymm5=(CbO * FIX(1.77200))=(B-Y)O vpaddw ymm0, ymm0, ymm6 ; ymm0=(CrE * FIX(1.40200))=(R-Y)E vpaddw ymm1, ymm1, ymm7 ; ymm1=(CrO * FIX(1.40200))=(R-Y)O vmovdqa YMMWORD [wk(0)], ymm4 ; wk(0)=(B-Y)E vmovdqa YMMWORD [wk(1)], ymm5 ; wk(1)=(B-Y)O vpunpckhwd ymm4, ymm2, ymm6 vpunpcklwd ymm2, ymm2, ymm6 vpmaddwd ymm2, ymm2, [rel PW_MF0344_F0285] vpmaddwd ymm4, ymm4, [rel PW_MF0344_F0285] vpunpckhwd ymm5, ymm3, ymm7 vpunpcklwd ymm3, ymm3, ymm7 vpmaddwd ymm3, ymm3, [rel PW_MF0344_F0285] vpmaddwd ymm5, ymm5, [rel PW_MF0344_F0285] vpaddd ymm2, ymm2, [rel PD_ONEHALF] vpaddd ymm4, ymm4, [rel PD_ONEHALF] vpsrad ymm2, ymm2, SCALEBITS vpsrad ymm4, ymm4, SCALEBITS vpaddd ymm3, ymm3, [rel PD_ONEHALF] vpaddd ymm5, ymm5, [rel PD_ONEHALF] vpsrad ymm3, ymm3, SCALEBITS vpsrad ymm5, ymm5, SCALEBITS vpackssdw ymm2, ymm2, ymm4 ; ymm2=CbE*-FIX(0.344)+CrE*FIX(0.285) vpackssdw ymm3, ymm3, ymm5 ; ymm3=CbO*-FIX(0.344)+CrO*FIX(0.285) vpsubw ymm2, ymm2, ymm6 ; ymm2=CbE*-FIX(0.344)+CrE*-FIX(0.714)=(G-Y)E vpsubw ymm3, ymm3, ymm7 ; ymm3=CbO*-FIX(0.344)+CrO*-FIX(0.714)=(G-Y)O vmovdqu ymm5, YMMWORD [rsi] ; ymm5=Y(0123456789ABCDEFGHIJKLMNOPQRSTUV) vpcmpeqw ymm4, ymm4, ymm4 vpsrlw ymm4, ymm4, BYTE_BIT ; ymm4={0xFF 0x00 0xFF 0x00 ..} vpand ymm4, ymm4, ymm5 ; ymm4=Y(02468ACEGIKMOQSU)=YE vpsrlw ymm5, ymm5, BYTE_BIT ; ymm5=Y(13579BDFHJLNPRTV)=YO vpaddw ymm0, ymm0, ymm4 ; ymm0=((R-Y)E+YE)=RE=R(02468ACEGIKMOQSU) vpaddw ymm1, ymm1, ymm5 ; ymm1=((R-Y)O+YO)=RO=R(13579BDFHJLNPRTV) vpackuswb ymm0, ymm0, ymm0 ; ymm0=R(02468ACE********GIKMOQSU********) vpackuswb ymm1, ymm1, ymm1 ; ymm1=R(13579BDF********HJLNPRTV********) vpaddw ymm2, ymm2, ymm4 ; ymm2=((G-Y)E+YE)=GE=G(02468ACEGIKMOQSU) vpaddw ymm3, ymm3, ymm5 ; ymm3=((G-Y)O+YO)=GO=G(13579BDFHJLNPRTV) vpackuswb ymm2, ymm2, ymm2 ; ymm2=G(02468ACE********GIKMOQSU********) vpackuswb ymm3, ymm3, ymm3 ; ymm3=G(13579BDF********HJLNPRTV********) vpaddw ymm4, ymm4, YMMWORD [wk(0)] ; ymm4=(YE+(B-Y)E)=BE=B(02468ACEGIKMOQSU) vpaddw ymm5, ymm5, YMMWORD [wk(1)] ; ymm5=(YO+(B-Y)O)=BO=B(13579BDFHJLNPRTV) vpackuswb ymm4, ymm4, ymm4 ; ymm4=B(02468ACE********GIKMOQSU********) vpackuswb ymm5, ymm5, ymm5 ; ymm5=B(13579BDF********HJLNPRTV********) %if RGB_PIXELSIZE == 3 ; --------------- ; ymmA=(00 02 04 06 08 0A 0C 0E ** 0G 0I 0K 0M 0O 0Q 0S 0U **) ; ymmB=(01 03 05 07 09 0B 0D 0F ** 0H 0J 0L 0N 0P 0R 0T 0V **) ; ymmC=(10 12 14 16 18 1A 1C 1E ** 1G 1I 1K 1M 1O 1Q 1S 1U **) ; ymmD=(11 13 15 17 19 1B 1D 1F ** 1H 1J 1L 1N 1P 1R 1T 1V **) ; ymmE=(20 22 24 26 28 2A 2C 2E ** 2G 2I 2K 2M 2O 2Q 2S 2U **) ; ymmF=(21 23 25 27 29 2B 2D 2F ** 2H 2J 2L 2N 2P 2R 2T 2V **) ; ymmG=(** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **) ; ymmH=(** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **) vpunpcklbw ymmA, ymmA, ymmC ; ymmA=(00 10 02 12 04 14 06 16 08 18 0A 1A 0C 1C 0E 1E ; 0G 1G 0I 1I 0K 1K 0M 1M 0O 1O 0Q 1Q 0S 1S 0U 1U) vpunpcklbw ymmE, ymmE, ymmB ; ymmE=(20 01 22 03 24 05 26 07 28 09 2A 0B 2C 0D 2E 0F ; 2G 0H 2I 0J 2K 0L 2M 0N 2O 0P 2Q 0R 2S 0T 2U 0V) vpunpcklbw ymmD, ymmD, ymmF ; ymmD=(11 21 13 23 15 25 17 27 19 29 1B 2B 1D 2D 1F 2F ; 1H 2H 1J 2J 1L 2L 1N 2N 1P 2P 1R 2R 1T 2T 1V 2V) vpsrldq ymmH, ymmA, 2 ; ymmH=(02 12 04 14 06 16 08 18 0A 1A 0C 1C 0E 1E 0G 1G ; 0I 1I 0K 1K 0M 1M 0O 1O 0Q 1Q 0S 1S 0U 1U -- --) vpunpckhwd ymmG, ymmA, ymmE ; ymmG=(08 18 28 09 0A 1A 2A 0B 0C 1C 2C 0D 0E 1E 2E 0F ; 0O 1O 2O 0P 0Q 1Q 2Q 0R 0S 1S 2S 0T 0U 1U 2U 0V) vpunpcklwd ymmA, ymmA, ymmE ; ymmA=(00 10 20 01 02 12 22 03 04 14 24 05 06 16 26 07 ; 0G 1G 2G 0H 0I 1I 2I 0J 0K 1K 2K 0L 0M 1M 2M 0N) vpsrldq ymmE, ymmE, 2 ; ymmE=(22 03 24 05 26 07 28 09 2A 0B 2C 0D 2E 0F 2G 0H ; 2I 0J 2K 0L 2M 0N 2O 0P 2Q 0R 2S 0T 2U 0V -- --) vpsrldq ymmB, ymmD, 2 ; ymmB=(13 23 15 25 17 27 19 29 1B 2B 1D 2D 1F 2F 1H 2H ; 1J 2J 1L 2L 1N 2N 1P 2P 1R 2R 1T 2T 1V 2V -- --) vpunpckhwd ymmC, ymmD, ymmH ; ymmC=(19 29 0A 1A 1B 2B 0C 1C 1D 2D 0E 1E 1F 2F 0G 1G ; 1P 2P 0Q 1Q 1R 2R 0S 1S 1T 2T 0U 1U 1V 2V -- --) vpunpcklwd ymmD, ymmD, ymmH ; ymmD=(11 21 02 12 13 23 04 14 15 25 06 16 17 27 08 18 ; 1H 2H 0I 1I 1J 2J 0K 1K 1L 2L 0M 1M 1N 2N 0O 1O) vpunpckhwd ymmF, ymmE, ymmB ; ymmF=(2A 0B 1B 2B 2C 0D 1D 2D 2E 0F 1F 2F 2G 0H 1H 2H ; 2Q 0R 1R 2R 2S 0T 1T 2T 2U 0V 1V 2V -- -- -- --) vpunpcklwd ymmE, ymmE, ymmB ; ymmE=(22 03 13 23 24 05 15 25 26 07 17 27 28 09 19 29 ; 2I 0J 1J 2J 2K 0L 1L 2L 2M 0N 1N 2N 2O 0P 1P 2P) vpshufd ymmH, ymmA, 0x4E ; ymmH=(04 14 24 05 06 16 26 07 00 10 20 01 02 12 22 03 ; 0K 1K 2K 0L 0M 1M 2M 0N 0G 1G 2G 0H 0I 1I 2I 0J) vpunpckldq ymmA, ymmA, ymmD ; ymmA=(00 10 20 01 11 21 02 12 02 12 22 03 13 23 04 14 ; 0G 1G 2G 0H 1H 2H 0I 1I 0I 1I 2I 0J 1J 2J 0K 1K) vpunpckhdq ymmD, ymmD, ymmE ; ymmD=(15 25 06 16 26 07 17 27 17 27 08 18 28 09 19 29 ; 1L 2L 0M 1M 2M 0N 1N 2N 1N 2N 0O 1O 2O 0P 1P 2P) vpunpckldq ymmE, ymmE, ymmH ; ymmE=(22 03 13 23 04 14 24 05 24 05 15 25 06 16 26 07 ; 2I 0J 1J 2J 0K 1K 2K 0L 2K 0L 1L 2L 0M 1M 2M 0N) vpshufd ymmH, ymmG, 0x4E ; ymmH=(0C 1C 2C 0D 0E 1E 2E 0F 08 18 28 09 0A 1A 2A 0B ; 0S 1S 2S 0T 0U 1U 2U 0V 0O 1O 2O 0P 0Q 1Q 2Q 0R) vpunpckldq ymmG, ymmG, ymmC ; ymmG=(08 18 28 09 19 29 0A 1A 0A 1A 2A 0B 1B 2B 0C 1C ; 0O 1O 2O 0P 1P 2P 0Q 1Q 0Q 1Q 2Q 0R 1R 2R 0S 1S) vpunpckhdq ymmC, ymmC, ymmF ; ymmC=(1D 2D 0E 1E 2E 0F 1F 2F 1F 2F 0G 1G 2G 0H 1H 2H ; 1T 2T 0U 1U 2U 0V 1V 2V 1V 2V -- -- -- -- -- --) vpunpckldq ymmF, ymmF, ymmH ; ymmF=(2A 0B 1B 2B 0C 1C 2C 0D 2C 0D 1D 2D 0E 1E 2E 0F ; 2Q 0R 1R 2R 0S 1S 2S 0T 2S 0T 1T 2T 0U 1U 2U 0V) vpunpcklqdq ymmH, ymmA, ymmE ; ymmH=(00 10 20 01 11 21 02 12 22 03 13 23 04 14 24 05 ; 0G 1G 2G 0H 1H 2H 0I 1I 2I 0J 1J 2J 0K 1K 2K 0L) vpunpcklqdq ymmG, ymmD, ymmG ; ymmG=(15 25 06 16 26 07 17 27 08 18 28 09 19 29 0A 1A ; 1L 2L 0M 1M 2M 0N 1N 2N 0O 1O 2O 0P 1P 2P 0Q 1Q) vpunpcklqdq ymmC, ymmF, ymmC ; ymmC=(2A 0B 1B 2B 0C 1C 2C 0D 1D 2D 0E 1E 2E 0F 1F 2F ; 2Q 0R 1R 2R 0S 1S 2S 0T 1T 2T 0U 1U 2U 0V 1V 2V) vperm2i128 ymmA, ymmH, ymmG, 0x20 ; ymmA=(00 10 20 01 11 21 02 12 22 03 13 23 04 14 24 05 ; 15 25 06 16 26 07 17 27 08 18 28 09 19 29 0A 1A) vperm2i128 ymmD, ymmC, ymmH, 0x30 ; ymmD=(2A 0B 1B 2B 0C 1C 2C 0D 1D 2D 0E 1E 2E 0F 1F 2F ; 0G 1G 2G 0H 1H 2H 0I 1I 2I 0J 1J 2J 0K 1K 2K 0L) vperm2i128 ymmF, ymmG, ymmC, 0x31 ; ymmF=(1L 2L 0M 1M 2M 0N 1N 2N 0O 1O 2O 0P 1P 2P 0Q 1Q ; 2Q 0R 1R 2R 0S 1S 2S 0T 1T 2T 0U 1U 2U 0V 1V 2V) cmp rcx, byte SIZEOF_YMMWORD jb short .column_st64 test rdi, SIZEOF_YMMWORD-1 jnz short .out1 ; --(aligned)------------------- vmovntdq YMMWORD [rdi+0*SIZEOF_YMMWORD], ymmA vmovntdq YMMWORD [rdi+1*SIZEOF_YMMWORD], ymmD vmovntdq YMMWORD [rdi+2*SIZEOF_YMMWORD], ymmF jmp short .out0 .out1: ; --(unaligned)----------------- vmovdqu YMMWORD [rdi+0*SIZEOF_YMMWORD], ymmA vmovdqu YMMWORD [rdi+1*SIZEOF_YMMWORD], ymmD vmovdqu YMMWORD [rdi+2*SIZEOF_YMMWORD], ymmF .out0: add rdi, byte RGB_PIXELSIZE*SIZEOF_YMMWORD ; outptr sub rcx, byte SIZEOF_YMMWORD jz near .nextrow add rsi, byte SIZEOF_YMMWORD ; inptr0 add rbx, byte SIZEOF_YMMWORD ; inptr1 add rdx, byte SIZEOF_YMMWORD ; inptr2 jmp near .columnloop .column_st64: lea rcx, [rcx+rcx*2] ; imul ecx, RGB_PIXELSIZE cmp rcx, byte 2*SIZEOF_YMMWORD jb short .column_st32 vmovdqu YMMWORD [rdi+0*SIZEOF_YMMWORD], ymmA vmovdqu YMMWORD [rdi+1*SIZEOF_YMMWORD], ymmD add rdi, byte 2*SIZEOF_YMMWORD ; outptr vmovdqa ymmA, ymmF sub rcx, byte 2*SIZEOF_YMMWORD jmp short .column_st31 .column_st32: cmp rcx, byte SIZEOF_YMMWORD jb short .column_st31 vmovdqu YMMWORD [rdi+0*SIZEOF_YMMWORD], ymmA add rdi, byte SIZEOF_YMMWORD ; outptr vmovdqa ymmA, ymmD sub rcx, byte SIZEOF_YMMWORD jmp short .column_st31 .column_st31: cmp rcx, byte SIZEOF_XMMWORD jb short .column_st15 vmovdqu XMMWORD [rdi+0*SIZEOF_XMMWORD], xmmA add rdi, byte SIZEOF_XMMWORD ; outptr vperm2i128 ymmA, ymmA, ymmA, 1 sub rcx, byte SIZEOF_XMMWORD .column_st15: ; Store the lower 8 bytes of xmmA to the output when it has enough ; space. cmp rcx, byte SIZEOF_MMWORD jb short .column_st7 vmovq XMM_MMWORD [rdi], xmmA add rdi, byte SIZEOF_MMWORD sub rcx, byte SIZEOF_MMWORD vpsrldq xmmA, xmmA, SIZEOF_MMWORD .column_st7: ; Store the lower 4 bytes of xmmA to the output when it has enough ; space. cmp rcx, byte SIZEOF_DWORD jb short .column_st3 vmovd XMM_DWORD [rdi], xmmA add rdi, byte SIZEOF_DWORD sub rcx, byte SIZEOF_DWORD vpsrldq xmmA, xmmA, SIZEOF_DWORD .column_st3: ; Store the lower 2 bytes of rax to the output when it has enough ; space. vmovd eax, xmmA cmp rcx, byte SIZEOF_WORD jb short .column_st1 mov word [rdi], ax add rdi, byte SIZEOF_WORD sub rcx, byte SIZEOF_WORD shr rax, 16 .column_st1: ; Store the lower 1 byte of rax to the output when it has enough ; space. test rcx, rcx jz short .nextrow mov byte [rdi], al %else ; RGB_PIXELSIZE == 4 ; ----------- %ifdef RGBX_FILLER_0XFF vpcmpeqb ymm6, ymm6, ymm6 ; ymm6=XE=X(02468ACE********GIKMOQSU********) vpcmpeqb ymm7, ymm7, ymm7 ; ymm7=XO=X(13579BDF********HJLNPRTV********) %else vpxor ymm6, ymm6, ymm6 ; ymm6=XE=X(02468ACE********GIKMOQSU********) vpxor ymm7, ymm7, ymm7 ; ymm7=XO=X(13579BDF********HJLNPRTV********) %endif ; ymmA=(00 02 04 06 08 0A 0C 0E ** 0G 0I 0K 0M 0O 0Q 0S 0U **) ; ymmB=(01 03 05 07 09 0B 0D 0F ** 0H 0J 0L 0N 0P 0R 0T 0V **) ; ymmC=(10 12 14 16 18 1A 1C 1E ** 1G 1I 1K 1M 1O 1Q 1S 1U **) ; ymmD=(11 13 15 17 19 1B 1D 1F ** 1H 1J 1L 1N 1P 1R 1T 1V **) ; ymmE=(20 22 24 26 28 2A 2C 2E ** 2G 2I 2K 2M 2O 2Q 2S 2U **) ; ymmF=(21 23 25 27 29 2B 2D 2F ** 2H 2J 2L 2N 2P 2R 2T 2V **) ; ymmG=(30 32 34 36 38 3A 3C 3E ** 3G 3I 3K 3M 3O 3Q 3S 3U **) ; ymmH=(31 33 35 37 39 3B 3D 3F ** 3H 3J 3L 3N 3P 3R 3T 3V **) vpunpcklbw ymmA, ymmA, ymmC ; ymmA=(00 10 02 12 04 14 06 16 08 18 0A 1A 0C 1C 0E 1E ; 0G 1G 0I 1I 0K 1K 0M 1M 0O 1O 0Q 1Q 0S 1S 0U 1U) vpunpcklbw ymmE, ymmE, ymmG ; ymmE=(20 30 22 32 24 34 26 36 28 38 2A 3A 2C 3C 2E 3E ; 2G 3G 2I 3I 2K 3K 2M 3M 2O 3O 2Q 3Q 2S 3S 2U 3U) vpunpcklbw ymmB, ymmB, ymmD ; ymmB=(01 11 03 13 05 15 07 17 09 19 0B 1B 0D 1D 0F 1F ; 0H 1H 0J 1J 0L 1L 0N 1N 0P 1P 0R 1R 0T 1T 0V 1V) vpunpcklbw ymmF, ymmF, ymmH ; ymmF=(21 31 23 33 25 35 27 37 29 39 2B 3B 2D 3D 2F 3F ; 2H 3H 2J 3J 2L 3L 2N 3N 2P 3P 2R 3R 2T 3T 2V 3V) vpunpckhwd ymmC, ymmA, ymmE ; ymmC=(08 18 28 38 0A 1A 2A 3A 0C 1C 2C 3C 0E 1E 2E 3E ; 0O 1O 2O 3O 0Q 1Q 2Q 3Q 0S 1S 2S 3S 0U 1U 2U 3U) vpunpcklwd ymmA, ymmA, ymmE ; ymmA=(00 10 20 30 02 12 22 32 04 14 24 34 06 16 26 36 ; 0G 1G 2G 3G 0I 1I 2I 3I 0K 1K 2K 3K 0M 1M 2M 3M) vpunpckhwd ymmG, ymmB, ymmF ; ymmG=(09 19 29 39 0B 1B 2B 3B 0D 1D 2D 3D 0F 1F 2F 3F ; 0P 1P 2P 3P 0R 1R 2R 3R 0T 1T 2T 3T 0V 1V 2V 3V) vpunpcklwd ymmB, ymmB, ymmF ; ymmB=(01 11 21 31 03 13 23 33 05 15 25 35 07 17 27 37 ; 0H 1H 2H 3H 0J 1J 2J 3J 0L 1L 2L 3L 0N 1N 2N 3N) vpunpckhdq ymmE, ymmA, ymmB ; ymmE=(04 14 24 34 05 15 25 35 06 16 26 36 07 17 27 37 ; 0K 1K 2K 3K 0L 1L 2L 3L 0M 1M 2M 3M 0N 1N 2N 3N) vpunpckldq ymmB, ymmA, ymmB ; ymmB=(00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33 ; 0G 1G 2G 3G 0H 1H 2H 3H 0I 1I 2I 3I 0J 1J 2J 3J) vpunpckhdq ymmF, ymmC, ymmG ; ymmF=(0C 1C 2C 3C 0D 1D 2D 3D 0E 1E 2E 3E 0F 1F 2F 3F ; 0S 1S 2S 3S 0T 1T 2T 3T 0U 1U 2U 3U 0V 1V 2V 3V) vpunpckldq ymmG, ymmC, ymmG ; ymmG=(08 18 28 38 09 19 29 39 0A 1A 2A 3A 0B 1B 2B 3B ; 0O 1O 2O 3O 0P 1P 2P 3P 0Q 1Q 2Q 3Q 0R 1R 2R 3R) vperm2i128 ymmA, ymmB, ymmE, 0x20 ; ymmA=(00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33 ; 04 14 24 34 05 15 25 35 06 16 26 36 07 17 27 37) vperm2i128 ymmD, ymmG, ymmF, 0x20 ; ymmD=(08 18 28 38 09 19 29 39 0A 1A 2A 3A 0B 1B 2B 3B ; 0C 1C 2C 3C 0D 1D 2D 3D 0E 1E 2E 3E 0F 1F 2F 3F) vperm2i128 ymmC, ymmB, ymmE, 0x31 ; ymmC=(0G 1G 2G 3G 0H 1H 2H 3H 0I 1I 2I 3I 0J 1J 2J 3J ; 0K 1K 2K 3K 0L 1L 2L 3L 0M 1M 2M 3M 0N 1N 2N 3N) vperm2i128 ymmH, ymmG, ymmF, 0x31 ; ymmH=(0O 1O 2O 3O 0P 1P 2P 3P 0Q 1Q 2Q 3Q 0R 1R 2R 3R ; 0S 1S 2S 3S 0T 1T 2T 3T 0U 1U 2U 3U 0V 1V 2V 3V) cmp rcx, byte SIZEOF_YMMWORD jb short .column_st64 test rdi, SIZEOF_YMMWORD-1 jnz short .out1 ; --(aligned)------------------- vmovntdq YMMWORD [rdi+0*SIZEOF_YMMWORD], ymmA vmovntdq YMMWORD [rdi+1*SIZEOF_YMMWORD], ymmD vmovntdq YMMWORD [rdi+2*SIZEOF_YMMWORD], ymmC vmovntdq YMMWORD [rdi+3*SIZEOF_YMMWORD], ymmH jmp short .out0 .out1: ; --(unaligned)----------------- vmovdqu YMMWORD [rdi+0*SIZEOF_YMMWORD], ymmA vmovdqu YMMWORD [rdi+1*SIZEOF_YMMWORD], ymmD vmovdqu YMMWORD [rdi+2*SIZEOF_YMMWORD], ymmC vmovdqu YMMWORD [rdi+3*SIZEOF_YMMWORD], ymmH .out0: add rdi, RGB_PIXELSIZE*SIZEOF_YMMWORD ; outptr sub rcx, byte SIZEOF_YMMWORD jz near .nextrow add rsi, byte SIZEOF_YMMWORD ; inptr0 add rbx, byte SIZEOF_YMMWORD ; inptr1 add rdx, byte SIZEOF_YMMWORD ; inptr2 jmp near .columnloop .column_st64: cmp rcx, byte SIZEOF_YMMWORD/2 jb short .column_st32 vmovdqu YMMWORD [rdi+0*SIZEOF_YMMWORD], ymmA vmovdqu YMMWORD [rdi+1*SIZEOF_YMMWORD], ymmD add rdi, byte 2*SIZEOF_YMMWORD ; outptr vmovdqa ymmA, ymmC vmovdqa ymmD, ymmH sub rcx, byte SIZEOF_YMMWORD/2 .column_st32: cmp rcx, byte SIZEOF_YMMWORD/4 jb short .column_st16 vmovdqu YMMWORD [rdi+0*SIZEOF_YMMWORD], ymmA add rdi, byte SIZEOF_YMMWORD ; outptr vmovdqa ymmA, ymmD sub rcx, byte SIZEOF_YMMWORD/4 .column_st16: cmp rcx, byte SIZEOF_YMMWORD/8 jb short .column_st15 vmovdqu XMMWORD [rdi+0*SIZEOF_XMMWORD], xmmA vperm2i128 ymmA, ymmA, ymmA, 1 add rdi, byte SIZEOF_XMMWORD ; outptr sub rcx, byte SIZEOF_YMMWORD/8 .column_st15: ; Store two pixels (8 bytes) of ymmA to the output when it has enough ; space. cmp rcx, byte SIZEOF_YMMWORD/16 jb short .column_st7 vmovq MMWORD [rdi], xmmA add rdi, byte SIZEOF_YMMWORD/16*4 sub rcx, byte SIZEOF_YMMWORD/16 vpsrldq xmmA, SIZEOF_YMMWORD/16*4 .column_st7: ; Store one pixel (4 bytes) of ymmA to the output when it has enough ; space. test rcx, rcx jz short .nextrow vmovd XMM_DWORD [rdi], xmmA %endif ; RGB_PIXELSIZE ; --------------- .nextrow: pop rcx pop rsi pop rbx pop rdx pop rdi pop rax add rsi, byte SIZEOF_JSAMPROW add rbx, byte SIZEOF_JSAMPROW add rdx, byte SIZEOF_JSAMPROW add rdi, byte SIZEOF_JSAMPROW ; output_buf dec rax ; num_rows jg near .rowloop sfence ; flush the write buffer .return: pop rbx vzeroupper uncollect_args 5 mov rsp, rbp ; rsp <- aligned rbp pop rsp ; rsp <- original rbp pop rbp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/x86_64/jdcolext-sse2.asm000066400000000000000000000423151436506551100213610ustar00rootroot00000000000000; ; jdcolext.asm - colorspace conversion (64-bit SSE2) ; ; Copyright 2009, 2012 Pierre Ossman for Cendio AB ; Copyright (C) 2009, 2012, 2016, D. R. Commander. ; Copyright (C) 2018, Matthias Räncker. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jcolsamp.inc" ; -------------------------------------------------------------------------- ; ; Convert some rows of samples to the output colorspace. ; ; GLOBAL(void) ; jsimd_ycc_rgb_convert_sse2(JDIMENSION out_width, JSAMPIMAGE input_buf, ; JDIMENSION input_row, JSAMPARRAY output_buf, ; int num_rows) ; ; r10d = JDIMENSION out_width ; r11 = JSAMPIMAGE input_buf ; r12d = JDIMENSION input_row ; r13 = JSAMPARRAY output_buf ; r14d = int num_rows %define wk(i) rbp - (WK_NUM - (i)) * SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 2 align 32 GLOBAL_FUNCTION(jsimd_ycc_rgb_convert_sse2) EXTN(jsimd_ycc_rgb_convert_sse2): push rbp mov rax, rsp ; rax = original rbp sub rsp, byte 4 and rsp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [rsp], rax mov rbp, rsp ; rbp = aligned rbp lea rsp, [wk(0)] collect_args 5 push rbx mov ecx, r10d ; num_cols test rcx, rcx jz near .return push rcx mov rdi, r11 mov ecx, r12d mov rsip, JSAMPARRAY [rdi+0*SIZEOF_JSAMPARRAY] mov rbxp, JSAMPARRAY [rdi+1*SIZEOF_JSAMPARRAY] mov rdxp, JSAMPARRAY [rdi+2*SIZEOF_JSAMPARRAY] lea rsi, [rsi+rcx*SIZEOF_JSAMPROW] lea rbx, [rbx+rcx*SIZEOF_JSAMPROW] lea rdx, [rdx+rcx*SIZEOF_JSAMPROW] pop rcx mov rdi, r13 mov eax, r14d test rax, rax jle near .return .rowloop: push rax push rdi push rdx push rbx push rsi push rcx ; col mov rsip, JSAMPROW [rsi] ; inptr0 mov rbxp, JSAMPROW [rbx] ; inptr1 mov rdxp, JSAMPROW [rdx] ; inptr2 mov rdip, JSAMPROW [rdi] ; outptr .columnloop: movdqa xmm5, XMMWORD [rbx] ; xmm5=Cb(0123456789ABCDEF) movdqa xmm1, XMMWORD [rdx] ; xmm1=Cr(0123456789ABCDEF) pcmpeqw xmm4, xmm4 pcmpeqw xmm7, xmm7 psrlw xmm4, BYTE_BIT psllw xmm7, 7 ; xmm7={0xFF80 0xFF80 0xFF80 0xFF80 ..} movdqa xmm0, xmm4 ; xmm0=xmm4={0xFF 0x00 0xFF 0x00 ..} pand xmm4, xmm5 ; xmm4=Cb(02468ACE)=CbE psrlw xmm5, BYTE_BIT ; xmm5=Cb(13579BDF)=CbO pand xmm0, xmm1 ; xmm0=Cr(02468ACE)=CrE psrlw xmm1, BYTE_BIT ; xmm1=Cr(13579BDF)=CrO paddw xmm4, xmm7 paddw xmm5, xmm7 paddw xmm0, xmm7 paddw xmm1, xmm7 ; (Original) ; R = Y + 1.40200 * Cr ; G = Y - 0.34414 * Cb - 0.71414 * Cr ; B = Y + 1.77200 * Cb ; ; (This implementation) ; R = Y + 0.40200 * Cr + Cr ; G = Y - 0.34414 * Cb + 0.28586 * Cr - Cr ; B = Y - 0.22800 * Cb + Cb + Cb movdqa xmm2, xmm4 ; xmm2=CbE movdqa xmm3, xmm5 ; xmm3=CbO paddw xmm4, xmm4 ; xmm4=2*CbE paddw xmm5, xmm5 ; xmm5=2*CbO movdqa xmm6, xmm0 ; xmm6=CrE movdqa xmm7, xmm1 ; xmm7=CrO paddw xmm0, xmm0 ; xmm0=2*CrE paddw xmm1, xmm1 ; xmm1=2*CrO pmulhw xmm4, [rel PW_MF0228] ; xmm4=(2*CbE * -FIX(0.22800)) pmulhw xmm5, [rel PW_MF0228] ; xmm5=(2*CbO * -FIX(0.22800)) pmulhw xmm0, [rel PW_F0402] ; xmm0=(2*CrE * FIX(0.40200)) pmulhw xmm1, [rel PW_F0402] ; xmm1=(2*CrO * FIX(0.40200)) paddw xmm4, [rel PW_ONE] paddw xmm5, [rel PW_ONE] psraw xmm4, 1 ; xmm4=(CbE * -FIX(0.22800)) psraw xmm5, 1 ; xmm5=(CbO * -FIX(0.22800)) paddw xmm0, [rel PW_ONE] paddw xmm1, [rel PW_ONE] psraw xmm0, 1 ; xmm0=(CrE * FIX(0.40200)) psraw xmm1, 1 ; xmm1=(CrO * FIX(0.40200)) paddw xmm4, xmm2 paddw xmm5, xmm3 paddw xmm4, xmm2 ; xmm4=(CbE * FIX(1.77200))=(B-Y)E paddw xmm5, xmm3 ; xmm5=(CbO * FIX(1.77200))=(B-Y)O paddw xmm0, xmm6 ; xmm0=(CrE * FIX(1.40200))=(R-Y)E paddw xmm1, xmm7 ; xmm1=(CrO * FIX(1.40200))=(R-Y)O movdqa XMMWORD [wk(0)], xmm4 ; wk(0)=(B-Y)E movdqa XMMWORD [wk(1)], xmm5 ; wk(1)=(B-Y)O movdqa xmm4, xmm2 movdqa xmm5, xmm3 punpcklwd xmm2, xmm6 punpckhwd xmm4, xmm6 pmaddwd xmm2, [rel PW_MF0344_F0285] pmaddwd xmm4, [rel PW_MF0344_F0285] punpcklwd xmm3, xmm7 punpckhwd xmm5, xmm7 pmaddwd xmm3, [rel PW_MF0344_F0285] pmaddwd xmm5, [rel PW_MF0344_F0285] paddd xmm2, [rel PD_ONEHALF] paddd xmm4, [rel PD_ONEHALF] psrad xmm2, SCALEBITS psrad xmm4, SCALEBITS paddd xmm3, [rel PD_ONEHALF] paddd xmm5, [rel PD_ONEHALF] psrad xmm3, SCALEBITS psrad xmm5, SCALEBITS packssdw xmm2, xmm4 ; xmm2=CbE*-FIX(0.344)+CrE*FIX(0.285) packssdw xmm3, xmm5 ; xmm3=CbO*-FIX(0.344)+CrO*FIX(0.285) psubw xmm2, xmm6 ; xmm2=CbE*-FIX(0.344)+CrE*-FIX(0.714)=(G-Y)E psubw xmm3, xmm7 ; xmm3=CbO*-FIX(0.344)+CrO*-FIX(0.714)=(G-Y)O movdqa xmm5, XMMWORD [rsi] ; xmm5=Y(0123456789ABCDEF) pcmpeqw xmm4, xmm4 psrlw xmm4, BYTE_BIT ; xmm4={0xFF 0x00 0xFF 0x00 ..} pand xmm4, xmm5 ; xmm4=Y(02468ACE)=YE psrlw xmm5, BYTE_BIT ; xmm5=Y(13579BDF)=YO paddw xmm0, xmm4 ; xmm0=((R-Y)E+YE)=RE=R(02468ACE) paddw xmm1, xmm5 ; xmm1=((R-Y)O+YO)=RO=R(13579BDF) packuswb xmm0, xmm0 ; xmm0=R(02468ACE********) packuswb xmm1, xmm1 ; xmm1=R(13579BDF********) paddw xmm2, xmm4 ; xmm2=((G-Y)E+YE)=GE=G(02468ACE) paddw xmm3, xmm5 ; xmm3=((G-Y)O+YO)=GO=G(13579BDF) packuswb xmm2, xmm2 ; xmm2=G(02468ACE********) packuswb xmm3, xmm3 ; xmm3=G(13579BDF********) paddw xmm4, XMMWORD [wk(0)] ; xmm4=(YE+(B-Y)E)=BE=B(02468ACE) paddw xmm5, XMMWORD [wk(1)] ; xmm5=(YO+(B-Y)O)=BO=B(13579BDF) packuswb xmm4, xmm4 ; xmm4=B(02468ACE********) packuswb xmm5, xmm5 ; xmm5=B(13579BDF********) %if RGB_PIXELSIZE == 3 ; --------------- ; xmmA=(00 02 04 06 08 0A 0C 0E **), xmmB=(01 03 05 07 09 0B 0D 0F **) ; xmmC=(10 12 14 16 18 1A 1C 1E **), xmmD=(11 13 15 17 19 1B 1D 1F **) ; xmmE=(20 22 24 26 28 2A 2C 2E **), xmmF=(21 23 25 27 29 2B 2D 2F **) ; xmmG=(** ** ** ** ** ** ** ** **), xmmH=(** ** ** ** ** ** ** ** **) punpcklbw xmmA, xmmC ; xmmA=(00 10 02 12 04 14 06 16 08 18 0A 1A 0C 1C 0E 1E) punpcklbw xmmE, xmmB ; xmmE=(20 01 22 03 24 05 26 07 28 09 2A 0B 2C 0D 2E 0F) punpcklbw xmmD, xmmF ; xmmD=(11 21 13 23 15 25 17 27 19 29 1B 2B 1D 2D 1F 2F) movdqa xmmG, xmmA movdqa xmmH, xmmA punpcklwd xmmA, xmmE ; xmmA=(00 10 20 01 02 12 22 03 04 14 24 05 06 16 26 07) punpckhwd xmmG, xmmE ; xmmG=(08 18 28 09 0A 1A 2A 0B 0C 1C 2C 0D 0E 1E 2E 0F) psrldq xmmH, 2 ; xmmH=(02 12 04 14 06 16 08 18 0A 1A 0C 1C 0E 1E -- --) psrldq xmmE, 2 ; xmmE=(22 03 24 05 26 07 28 09 2A 0B 2C 0D 2E 0F -- --) movdqa xmmC, xmmD movdqa xmmB, xmmD punpcklwd xmmD, xmmH ; xmmD=(11 21 02 12 13 23 04 14 15 25 06 16 17 27 08 18) punpckhwd xmmC, xmmH ; xmmC=(19 29 0A 1A 1B 2B 0C 1C 1D 2D 0E 1E 1F 2F -- --) psrldq xmmB, 2 ; xmmB=(13 23 15 25 17 27 19 29 1B 2B 1D 2D 1F 2F -- --) movdqa xmmF, xmmE punpcklwd xmmE, xmmB ; xmmE=(22 03 13 23 24 05 15 25 26 07 17 27 28 09 19 29) punpckhwd xmmF, xmmB ; xmmF=(2A 0B 1B 2B 2C 0D 1D 2D 2E 0F 1F 2F -- -- -- --) pshufd xmmH, xmmA, 0x4E ; xmmH=(04 14 24 05 06 16 26 07 00 10 20 01 02 12 22 03) movdqa xmmB, xmmE punpckldq xmmA, xmmD ; xmmA=(00 10 20 01 11 21 02 12 02 12 22 03 13 23 04 14) punpckldq xmmE, xmmH ; xmmE=(22 03 13 23 04 14 24 05 24 05 15 25 06 16 26 07) punpckhdq xmmD, xmmB ; xmmD=(15 25 06 16 26 07 17 27 17 27 08 18 28 09 19 29) pshufd xmmH, xmmG, 0x4E ; xmmH=(0C 1C 2C 0D 0E 1E 2E 0F 08 18 28 09 0A 1A 2A 0B) movdqa xmmB, xmmF punpckldq xmmG, xmmC ; xmmG=(08 18 28 09 19 29 0A 1A 0A 1A 2A 0B 1B 2B 0C 1C) punpckldq xmmF, xmmH ; xmmF=(2A 0B 1B 2B 0C 1C 2C 0D 2C 0D 1D 2D 0E 1E 2E 0F) punpckhdq xmmC, xmmB ; xmmC=(1D 2D 0E 1E 2E 0F 1F 2F 1F 2F -- -- -- -- -- --) punpcklqdq xmmA, xmmE ; xmmA=(00 10 20 01 11 21 02 12 22 03 13 23 04 14 24 05) punpcklqdq xmmD, xmmG ; xmmD=(15 25 06 16 26 07 17 27 08 18 28 09 19 29 0A 1A) punpcklqdq xmmF, xmmC ; xmmF=(2A 0B 1B 2B 0C 1C 2C 0D 1D 2D 0E 1E 2E 0F 1F 2F) cmp rcx, byte SIZEOF_XMMWORD jb short .column_st32 test rdi, SIZEOF_XMMWORD-1 jnz short .out1 ; --(aligned)------------------- movntdq XMMWORD [rdi+0*SIZEOF_XMMWORD], xmmA movntdq XMMWORD [rdi+1*SIZEOF_XMMWORD], xmmD movntdq XMMWORD [rdi+2*SIZEOF_XMMWORD], xmmF jmp short .out0 .out1: ; --(unaligned)----------------- movdqu XMMWORD [rdi+0*SIZEOF_XMMWORD], xmmA movdqu XMMWORD [rdi+1*SIZEOF_XMMWORD], xmmD movdqu XMMWORD [rdi+2*SIZEOF_XMMWORD], xmmF .out0: add rdi, byte RGB_PIXELSIZE*SIZEOF_XMMWORD ; outptr sub rcx, byte SIZEOF_XMMWORD jz near .nextrow add rsi, byte SIZEOF_XMMWORD ; inptr0 add rbx, byte SIZEOF_XMMWORD ; inptr1 add rdx, byte SIZEOF_XMMWORD ; inptr2 jmp near .columnloop .column_st32: lea rcx, [rcx+rcx*2] ; imul ecx, RGB_PIXELSIZE cmp rcx, byte 2*SIZEOF_XMMWORD jb short .column_st16 movdqu XMMWORD [rdi+0*SIZEOF_XMMWORD], xmmA movdqu XMMWORD [rdi+1*SIZEOF_XMMWORD], xmmD add rdi, byte 2*SIZEOF_XMMWORD ; outptr movdqa xmmA, xmmF sub rcx, byte 2*SIZEOF_XMMWORD jmp short .column_st15 .column_st16: cmp rcx, byte SIZEOF_XMMWORD jb short .column_st15 movdqu XMMWORD [rdi+0*SIZEOF_XMMWORD], xmmA add rdi, byte SIZEOF_XMMWORD ; outptr movdqa xmmA, xmmD sub rcx, byte SIZEOF_XMMWORD .column_st15: ; Store the lower 8 bytes of xmmA to the output when it has enough ; space. cmp rcx, byte SIZEOF_MMWORD jb short .column_st7 movq XMM_MMWORD [rdi], xmmA add rdi, byte SIZEOF_MMWORD sub rcx, byte SIZEOF_MMWORD psrldq xmmA, SIZEOF_MMWORD .column_st7: ; Store the lower 4 bytes of xmmA to the output when it has enough ; space. cmp rcx, byte SIZEOF_DWORD jb short .column_st3 movd XMM_DWORD [rdi], xmmA add rdi, byte SIZEOF_DWORD sub rcx, byte SIZEOF_DWORD psrldq xmmA, SIZEOF_DWORD .column_st3: ; Store the lower 2 bytes of rax to the output when it has enough ; space. movd eax, xmmA cmp rcx, byte SIZEOF_WORD jb short .column_st1 mov word [rdi], ax add rdi, byte SIZEOF_WORD sub rcx, byte SIZEOF_WORD shr rax, 16 .column_st1: ; Store the lower 1 byte of rax to the output when it has enough ; space. test rcx, rcx jz short .nextrow mov byte [rdi], al %else ; RGB_PIXELSIZE == 4 ; ----------- %ifdef RGBX_FILLER_0XFF pcmpeqb xmm6, xmm6 ; xmm6=XE=X(02468ACE********) pcmpeqb xmm7, xmm7 ; xmm7=XO=X(13579BDF********) %else pxor xmm6, xmm6 ; xmm6=XE=X(02468ACE********) pxor xmm7, xmm7 ; xmm7=XO=X(13579BDF********) %endif ; xmmA=(00 02 04 06 08 0A 0C 0E **), xmmB=(01 03 05 07 09 0B 0D 0F **) ; xmmC=(10 12 14 16 18 1A 1C 1E **), xmmD=(11 13 15 17 19 1B 1D 1F **) ; xmmE=(20 22 24 26 28 2A 2C 2E **), xmmF=(21 23 25 27 29 2B 2D 2F **) ; xmmG=(30 32 34 36 38 3A 3C 3E **), xmmH=(31 33 35 37 39 3B 3D 3F **) punpcklbw xmmA, xmmC ; xmmA=(00 10 02 12 04 14 06 16 08 18 0A 1A 0C 1C 0E 1E) punpcklbw xmmE, xmmG ; xmmE=(20 30 22 32 24 34 26 36 28 38 2A 3A 2C 3C 2E 3E) punpcklbw xmmB, xmmD ; xmmB=(01 11 03 13 05 15 07 17 09 19 0B 1B 0D 1D 0F 1F) punpcklbw xmmF, xmmH ; xmmF=(21 31 23 33 25 35 27 37 29 39 2B 3B 2D 3D 2F 3F) movdqa xmmC, xmmA punpcklwd xmmA, xmmE ; xmmA=(00 10 20 30 02 12 22 32 04 14 24 34 06 16 26 36) punpckhwd xmmC, xmmE ; xmmC=(08 18 28 38 0A 1A 2A 3A 0C 1C 2C 3C 0E 1E 2E 3E) movdqa xmmG, xmmB punpcklwd xmmB, xmmF ; xmmB=(01 11 21 31 03 13 23 33 05 15 25 35 07 17 27 37) punpckhwd xmmG, xmmF ; xmmG=(09 19 29 39 0B 1B 2B 3B 0D 1D 2D 3D 0F 1F 2F 3F) movdqa xmmD, xmmA punpckldq xmmA, xmmB ; xmmA=(00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33) punpckhdq xmmD, xmmB ; xmmD=(04 14 24 34 05 15 25 35 06 16 26 36 07 17 27 37) movdqa xmmH, xmmC punpckldq xmmC, xmmG ; xmmC=(08 18 28 38 09 19 29 39 0A 1A 2A 3A 0B 1B 2B 3B) punpckhdq xmmH, xmmG ; xmmH=(0C 1C 2C 3C 0D 1D 2D 3D 0E 1E 2E 3E 0F 1F 2F 3F) cmp rcx, byte SIZEOF_XMMWORD jb short .column_st32 test rdi, SIZEOF_XMMWORD-1 jnz short .out1 ; --(aligned)------------------- movntdq XMMWORD [rdi+0*SIZEOF_XMMWORD], xmmA movntdq XMMWORD [rdi+1*SIZEOF_XMMWORD], xmmD movntdq XMMWORD [rdi+2*SIZEOF_XMMWORD], xmmC movntdq XMMWORD [rdi+3*SIZEOF_XMMWORD], xmmH jmp short .out0 .out1: ; --(unaligned)----------------- movdqu XMMWORD [rdi+0*SIZEOF_XMMWORD], xmmA movdqu XMMWORD [rdi+1*SIZEOF_XMMWORD], xmmD movdqu XMMWORD [rdi+2*SIZEOF_XMMWORD], xmmC movdqu XMMWORD [rdi+3*SIZEOF_XMMWORD], xmmH .out0: add rdi, byte RGB_PIXELSIZE*SIZEOF_XMMWORD ; outptr sub rcx, byte SIZEOF_XMMWORD jz near .nextrow add rsi, byte SIZEOF_XMMWORD ; inptr0 add rbx, byte SIZEOF_XMMWORD ; inptr1 add rdx, byte SIZEOF_XMMWORD ; inptr2 jmp near .columnloop .column_st32: cmp rcx, byte SIZEOF_XMMWORD/2 jb short .column_st16 movdqu XMMWORD [rdi+0*SIZEOF_XMMWORD], xmmA movdqu XMMWORD [rdi+1*SIZEOF_XMMWORD], xmmD add rdi, byte 2*SIZEOF_XMMWORD ; outptr movdqa xmmA, xmmC movdqa xmmD, xmmH sub rcx, byte SIZEOF_XMMWORD/2 .column_st16: cmp rcx, byte SIZEOF_XMMWORD/4 jb short .column_st15 movdqu XMMWORD [rdi+0*SIZEOF_XMMWORD], xmmA add rdi, byte SIZEOF_XMMWORD ; outptr movdqa xmmA, xmmD sub rcx, byte SIZEOF_XMMWORD/4 .column_st15: ; Store two pixels (8 bytes) of xmmA to the output when it has enough ; space. cmp rcx, byte SIZEOF_XMMWORD/8 jb short .column_st7 movq MMWORD [rdi], xmmA add rdi, byte SIZEOF_XMMWORD/8*4 sub rcx, byte SIZEOF_XMMWORD/8 psrldq xmmA, SIZEOF_XMMWORD/8*4 .column_st7: ; Store one pixel (4 bytes) of xmmA to the output when it has enough ; space. test rcx, rcx jz short .nextrow movd XMM_DWORD [rdi], xmmA %endif ; RGB_PIXELSIZE ; --------------- .nextrow: pop rcx pop rsi pop rbx pop rdx pop rdi pop rax add rsi, byte SIZEOF_JSAMPROW add rbx, byte SIZEOF_JSAMPROW add rdx, byte SIZEOF_JSAMPROW add rdi, byte SIZEOF_JSAMPROW ; output_buf dec rax ; num_rows jg near .rowloop sfence ; flush the write buffer .return: pop rbx uncollect_args 5 mov rsp, rbp ; rsp <- aligned rbp pop rsp ; rsp <- original rbp pop rbp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/x86_64/jdcolor-avx2.asm000066400000000000000000000067511436506551100212110ustar00rootroot00000000000000; ; jdcolor.asm - colorspace conversion (64-bit AVX2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2009, 2016, D. R. Commander. ; Copyright (C) 2015, Intel Corporation. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jsimdext.inc" ; -------------------------------------------------------------------------- %define SCALEBITS 16 F_0_344 equ 22554 ; FIX(0.34414) F_0_714 equ 46802 ; FIX(0.71414) F_1_402 equ 91881 ; FIX(1.40200) F_1_772 equ 116130 ; FIX(1.77200) F_0_402 equ (F_1_402 - 65536) ; FIX(1.40200) - FIX(1) F_0_285 equ ( 65536 - F_0_714) ; FIX(1) - FIX(0.71414) F_0_228 equ (131072 - F_1_772) ; FIX(2) - FIX(1.77200) ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 32 GLOBAL_DATA(jconst_ycc_rgb_convert_avx2) EXTN(jconst_ycc_rgb_convert_avx2): PW_F0402 times 16 dw F_0_402 PW_MF0228 times 16 dw -F_0_228 PW_MF0344_F0285 times 8 dw -F_0_344, F_0_285 PW_ONE times 16 dw 1 PD_ONEHALF times 8 dd 1 << (SCALEBITS - 1) alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 64 %include "jdcolext-avx2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGB_RED %define RGB_GREEN EXT_RGB_GREEN %define RGB_BLUE EXT_RGB_BLUE %define RGB_PIXELSIZE EXT_RGB_PIXELSIZE %define jsimd_ycc_rgb_convert_avx2 jsimd_ycc_extrgb_convert_avx2 %include "jdcolext-avx2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGBX_RED %define RGB_GREEN EXT_RGBX_GREEN %define RGB_BLUE EXT_RGBX_BLUE %define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE %define jsimd_ycc_rgb_convert_avx2 jsimd_ycc_extrgbx_convert_avx2 %include "jdcolext-avx2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGR_RED %define RGB_GREEN EXT_BGR_GREEN %define RGB_BLUE EXT_BGR_BLUE %define RGB_PIXELSIZE EXT_BGR_PIXELSIZE %define jsimd_ycc_rgb_convert_avx2 jsimd_ycc_extbgr_convert_avx2 %include "jdcolext-avx2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGRX_RED %define RGB_GREEN EXT_BGRX_GREEN %define RGB_BLUE EXT_BGRX_BLUE %define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE %define jsimd_ycc_rgb_convert_avx2 jsimd_ycc_extbgrx_convert_avx2 %include "jdcolext-avx2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XBGR_RED %define RGB_GREEN EXT_XBGR_GREEN %define RGB_BLUE EXT_XBGR_BLUE %define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE %define jsimd_ycc_rgb_convert_avx2 jsimd_ycc_extxbgr_convert_avx2 %include "jdcolext-avx2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XRGB_RED %define RGB_GREEN EXT_XRGB_GREEN %define RGB_BLUE EXT_XRGB_BLUE %define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE %define jsimd_ycc_rgb_convert_avx2 jsimd_ycc_extxrgb_convert_avx2 %include "jdcolext-avx2.asm" libjpeg-turbo-2.1.5/simd/x86_64/jdcolor-sse2.asm000066400000000000000000000066731436506551100212100ustar00rootroot00000000000000; ; jdcolor.asm - colorspace conversion (64-bit SSE2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2009, 2016, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jsimdext.inc" ; -------------------------------------------------------------------------- %define SCALEBITS 16 F_0_344 equ 22554 ; FIX(0.34414) F_0_714 equ 46802 ; FIX(0.71414) F_1_402 equ 91881 ; FIX(1.40200) F_1_772 equ 116130 ; FIX(1.77200) F_0_402 equ (F_1_402 - 65536) ; FIX(1.40200) - FIX(1) F_0_285 equ ( 65536 - F_0_714) ; FIX(1) - FIX(0.71414) F_0_228 equ (131072 - F_1_772) ; FIX(2) - FIX(1.77200) ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 32 GLOBAL_DATA(jconst_ycc_rgb_convert_sse2) EXTN(jconst_ycc_rgb_convert_sse2): PW_F0402 times 8 dw F_0_402 PW_MF0228 times 8 dw -F_0_228 PW_MF0344_F0285 times 4 dw -F_0_344, F_0_285 PW_ONE times 8 dw 1 PD_ONEHALF times 4 dd 1 << (SCALEBITS - 1) alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 64 %include "jdcolext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGB_RED %define RGB_GREEN EXT_RGB_GREEN %define RGB_BLUE EXT_RGB_BLUE %define RGB_PIXELSIZE EXT_RGB_PIXELSIZE %define jsimd_ycc_rgb_convert_sse2 jsimd_ycc_extrgb_convert_sse2 %include "jdcolext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGBX_RED %define RGB_GREEN EXT_RGBX_GREEN %define RGB_BLUE EXT_RGBX_BLUE %define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE %define jsimd_ycc_rgb_convert_sse2 jsimd_ycc_extrgbx_convert_sse2 %include "jdcolext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGR_RED %define RGB_GREEN EXT_BGR_GREEN %define RGB_BLUE EXT_BGR_BLUE %define RGB_PIXELSIZE EXT_BGR_PIXELSIZE %define jsimd_ycc_rgb_convert_sse2 jsimd_ycc_extbgr_convert_sse2 %include "jdcolext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGRX_RED %define RGB_GREEN EXT_BGRX_GREEN %define RGB_BLUE EXT_BGRX_BLUE %define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE %define jsimd_ycc_rgb_convert_sse2 jsimd_ycc_extbgrx_convert_sse2 %include "jdcolext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XBGR_RED %define RGB_GREEN EXT_XBGR_GREEN %define RGB_BLUE EXT_XBGR_BLUE %define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE %define jsimd_ycc_rgb_convert_sse2 jsimd_ycc_extxbgr_convert_sse2 %include "jdcolext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XRGB_RED %define RGB_GREEN EXT_XRGB_GREEN %define RGB_BLUE EXT_XRGB_BLUE %define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE %define jsimd_ycc_rgb_convert_sse2 jsimd_ycc_extxrgb_convert_sse2 %include "jdcolext-sse2.asm" libjpeg-turbo-2.1.5/simd/x86_64/jdmerge-avx2.asm000066400000000000000000000101221436506551100211550ustar00rootroot00000000000000; ; jdmerge.asm - merged upsampling/color conversion (64-bit AVX2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2009, 2016, D. R. Commander. ; Copyright (C) 2015, Intel Corporation. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jsimdext.inc" ; -------------------------------------------------------------------------- %define SCALEBITS 16 F_0_344 equ 22554 ; FIX(0.34414) F_0_714 equ 46802 ; FIX(0.71414) F_1_402 equ 91881 ; FIX(1.40200) F_1_772 equ 116130 ; FIX(1.77200) F_0_402 equ (F_1_402 - 65536) ; FIX(1.40200) - FIX(1) F_0_285 equ ( 65536 - F_0_714) ; FIX(1) - FIX(0.71414) F_0_228 equ (131072 - F_1_772) ; FIX(2) - FIX(1.77200) ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 32 GLOBAL_DATA(jconst_merged_upsample_avx2) EXTN(jconst_merged_upsample_avx2): PW_F0402 times 16 dw F_0_402 PW_MF0228 times 16 dw -F_0_228 PW_MF0344_F0285 times 8 dw -F_0_344, F_0_285 PW_ONE times 16 dw 1 PD_ONEHALF times 8 dd 1 << (SCALEBITS - 1) alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 64 %include "jdmrgext-avx2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGB_RED %define RGB_GREEN EXT_RGB_GREEN %define RGB_BLUE EXT_RGB_BLUE %define RGB_PIXELSIZE EXT_RGB_PIXELSIZE %define jsimd_h2v1_merged_upsample_avx2 \ jsimd_h2v1_extrgb_merged_upsample_avx2 %define jsimd_h2v2_merged_upsample_avx2 \ jsimd_h2v2_extrgb_merged_upsample_avx2 %include "jdmrgext-avx2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGBX_RED %define RGB_GREEN EXT_RGBX_GREEN %define RGB_BLUE EXT_RGBX_BLUE %define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE %define jsimd_h2v1_merged_upsample_avx2 \ jsimd_h2v1_extrgbx_merged_upsample_avx2 %define jsimd_h2v2_merged_upsample_avx2 \ jsimd_h2v2_extrgbx_merged_upsample_avx2 %include "jdmrgext-avx2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGR_RED %define RGB_GREEN EXT_BGR_GREEN %define RGB_BLUE EXT_BGR_BLUE %define RGB_PIXELSIZE EXT_BGR_PIXELSIZE %define jsimd_h2v1_merged_upsample_avx2 \ jsimd_h2v1_extbgr_merged_upsample_avx2 %define jsimd_h2v2_merged_upsample_avx2 \ jsimd_h2v2_extbgr_merged_upsample_avx2 %include "jdmrgext-avx2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGRX_RED %define RGB_GREEN EXT_BGRX_GREEN %define RGB_BLUE EXT_BGRX_BLUE %define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE %define jsimd_h2v1_merged_upsample_avx2 \ jsimd_h2v1_extbgrx_merged_upsample_avx2 %define jsimd_h2v2_merged_upsample_avx2 \ jsimd_h2v2_extbgrx_merged_upsample_avx2 %include "jdmrgext-avx2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XBGR_RED %define RGB_GREEN EXT_XBGR_GREEN %define RGB_BLUE EXT_XBGR_BLUE %define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE %define jsimd_h2v1_merged_upsample_avx2 \ jsimd_h2v1_extxbgr_merged_upsample_avx2 %define jsimd_h2v2_merged_upsample_avx2 \ jsimd_h2v2_extxbgr_merged_upsample_avx2 %include "jdmrgext-avx2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XRGB_RED %define RGB_GREEN EXT_XRGB_GREEN %define RGB_BLUE EXT_XRGB_BLUE %define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE %define jsimd_h2v1_merged_upsample_avx2 \ jsimd_h2v1_extxrgb_merged_upsample_avx2 %define jsimd_h2v2_merged_upsample_avx2 \ jsimd_h2v2_extxrgb_merged_upsample_avx2 %include "jdmrgext-avx2.asm" libjpeg-turbo-2.1.5/simd/x86_64/jdmerge-sse2.asm000066400000000000000000000100441436506551100211540ustar00rootroot00000000000000; ; jdmerge.asm - merged upsampling/color conversion (64-bit SSE2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2009, 2016, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jsimdext.inc" ; -------------------------------------------------------------------------- %define SCALEBITS 16 F_0_344 equ 22554 ; FIX(0.34414) F_0_714 equ 46802 ; FIX(0.71414) F_1_402 equ 91881 ; FIX(1.40200) F_1_772 equ 116130 ; FIX(1.77200) F_0_402 equ (F_1_402 - 65536) ; FIX(1.40200) - FIX(1) F_0_285 equ ( 65536 - F_0_714) ; FIX(1) - FIX(0.71414) F_0_228 equ (131072 - F_1_772) ; FIX(2) - FIX(1.77200) ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 32 GLOBAL_DATA(jconst_merged_upsample_sse2) EXTN(jconst_merged_upsample_sse2): PW_F0402 times 8 dw F_0_402 PW_MF0228 times 8 dw -F_0_228 PW_MF0344_F0285 times 4 dw -F_0_344, F_0_285 PW_ONE times 8 dw 1 PD_ONEHALF times 4 dd 1 << (SCALEBITS - 1) alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 64 %include "jdmrgext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGB_RED %define RGB_GREEN EXT_RGB_GREEN %define RGB_BLUE EXT_RGB_BLUE %define RGB_PIXELSIZE EXT_RGB_PIXELSIZE %define jsimd_h2v1_merged_upsample_sse2 \ jsimd_h2v1_extrgb_merged_upsample_sse2 %define jsimd_h2v2_merged_upsample_sse2 \ jsimd_h2v2_extrgb_merged_upsample_sse2 %include "jdmrgext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_RGBX_RED %define RGB_GREEN EXT_RGBX_GREEN %define RGB_BLUE EXT_RGBX_BLUE %define RGB_PIXELSIZE EXT_RGBX_PIXELSIZE %define jsimd_h2v1_merged_upsample_sse2 \ jsimd_h2v1_extrgbx_merged_upsample_sse2 %define jsimd_h2v2_merged_upsample_sse2 \ jsimd_h2v2_extrgbx_merged_upsample_sse2 %include "jdmrgext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGR_RED %define RGB_GREEN EXT_BGR_GREEN %define RGB_BLUE EXT_BGR_BLUE %define RGB_PIXELSIZE EXT_BGR_PIXELSIZE %define jsimd_h2v1_merged_upsample_sse2 \ jsimd_h2v1_extbgr_merged_upsample_sse2 %define jsimd_h2v2_merged_upsample_sse2 \ jsimd_h2v2_extbgr_merged_upsample_sse2 %include "jdmrgext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_BGRX_RED %define RGB_GREEN EXT_BGRX_GREEN %define RGB_BLUE EXT_BGRX_BLUE %define RGB_PIXELSIZE EXT_BGRX_PIXELSIZE %define jsimd_h2v1_merged_upsample_sse2 \ jsimd_h2v1_extbgrx_merged_upsample_sse2 %define jsimd_h2v2_merged_upsample_sse2 \ jsimd_h2v2_extbgrx_merged_upsample_sse2 %include "jdmrgext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XBGR_RED %define RGB_GREEN EXT_XBGR_GREEN %define RGB_BLUE EXT_XBGR_BLUE %define RGB_PIXELSIZE EXT_XBGR_PIXELSIZE %define jsimd_h2v1_merged_upsample_sse2 \ jsimd_h2v1_extxbgr_merged_upsample_sse2 %define jsimd_h2v2_merged_upsample_sse2 \ jsimd_h2v2_extxbgr_merged_upsample_sse2 %include "jdmrgext-sse2.asm" %undef RGB_RED %undef RGB_GREEN %undef RGB_BLUE %undef RGB_PIXELSIZE %define RGB_RED EXT_XRGB_RED %define RGB_GREEN EXT_XRGB_GREEN %define RGB_BLUE EXT_XRGB_BLUE %define RGB_PIXELSIZE EXT_XRGB_PIXELSIZE %define jsimd_h2v1_merged_upsample_sse2 \ jsimd_h2v1_extxrgb_merged_upsample_sse2 %define jsimd_h2v2_merged_upsample_sse2 \ jsimd_h2v2_extxrgb_merged_upsample_sse2 %include "jdmrgext-sse2.asm" libjpeg-turbo-2.1.5/simd/x86_64/jdmrgext-avx2.asm000066400000000000000000000644071436506551100214030ustar00rootroot00000000000000; ; jdmrgext.asm - merged upsampling/color conversion (64-bit AVX2) ; ; Copyright 2009, 2012 Pierre Ossman for Cendio AB ; Copyright (C) 2009, 2012, 2016, D. R. Commander. ; Copyright (C) 2015, Intel Corporation. ; Copyright (C) 2018, Matthias Räncker. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jcolsamp.inc" ; -------------------------------------------------------------------------- ; ; Upsample and color convert for the case of 2:1 horizontal and 1:1 vertical. ; ; GLOBAL(void) ; jsimd_h2v1_merged_upsample_avx2(JDIMENSION output_width, ; JSAMPIMAGE input_buf, ; JDIMENSION in_row_group_ctr, ; JSAMPARRAY output_buf); ; ; r10d = JDIMENSION output_width ; r11 = JSAMPIMAGE input_buf ; r12d = JDIMENSION in_row_group_ctr ; r13 = JSAMPARRAY output_buf %define wk(i) rbp - (WK_NUM - (i)) * SIZEOF_YMMWORD ; ymmword wk[WK_NUM] %define WK_NUM 3 align 32 GLOBAL_FUNCTION(jsimd_h2v1_merged_upsample_avx2) EXTN(jsimd_h2v1_merged_upsample_avx2): push rbp mov rax, rsp ; rax = original rbp sub rsp, byte 4 and rsp, byte (-SIZEOF_YMMWORD) ; align to 256 bits mov [rsp], rax mov rbp, rsp ; rbp = aligned rbp lea rsp, [wk(0)] collect_args 4 push rbx mov ecx, r10d ; col test rcx, rcx jz near .return push rcx mov rdi, r11 mov ecx, r12d mov rsip, JSAMPARRAY [rdi+0*SIZEOF_JSAMPARRAY] mov rbxp, JSAMPARRAY [rdi+1*SIZEOF_JSAMPARRAY] mov rdxp, JSAMPARRAY [rdi+2*SIZEOF_JSAMPARRAY] mov rdi, r13 mov rsip, JSAMPROW [rsi+rcx*SIZEOF_JSAMPROW] ; inptr0 mov rbxp, JSAMPROW [rbx+rcx*SIZEOF_JSAMPROW] ; inptr1 mov rdxp, JSAMPROW [rdx+rcx*SIZEOF_JSAMPROW] ; inptr2 mov rdip, JSAMPROW [rdi] ; outptr pop rcx ; col .columnloop: vmovdqu ymm6, YMMWORD [rbx] ; ymm6=Cb(0123456789ABCDEFGHIJKLMNOPQRSTUV) vmovdqu ymm7, YMMWORD [rdx] ; ymm7=Cr(0123456789ABCDEFGHIJKLMNOPQRSTUV) vpxor ymm1, ymm1, ymm1 ; ymm1=(all 0's) vpcmpeqw ymm3, ymm3, ymm3 vpsllw ymm3, ymm3, 7 ; ymm3={0xFF80 0xFF80 0xFF80 0xFF80 ..} vpermq ymm6, ymm6, 0xd8 ; ymm6=Cb(01234567GHIJKLMN89ABCDEFOPQRSTUV) vpermq ymm7, ymm7, 0xd8 ; ymm7=Cr(01234567GHIJKLMN89ABCDEFOPQRSTUV) vpunpcklbw ymm4, ymm6, ymm1 ; ymm4=Cb(0123456789ABCDEF)=CbL vpunpckhbw ymm6, ymm6, ymm1 ; ymm6=Cb(GHIJKLMNOPQRSTUV)=CbH vpunpcklbw ymm0, ymm7, ymm1 ; ymm0=Cr(0123456789ABCDEF)=CrL vpunpckhbw ymm7, ymm7, ymm1 ; ymm7=Cr(GHIJKLMNOPQRSTUV)=CrH vpaddw ymm5, ymm6, ymm3 vpaddw ymm2, ymm4, ymm3 vpaddw ymm1, ymm7, ymm3 vpaddw ymm3, ymm0, ymm3 ; (Original) ; R = Y + 1.40200 * Cr ; G = Y - 0.34414 * Cb - 0.71414 * Cr ; B = Y + 1.77200 * Cb ; ; (This implementation) ; R = Y + 0.40200 * Cr + Cr ; G = Y - 0.34414 * Cb + 0.28586 * Cr - Cr ; B = Y - 0.22800 * Cb + Cb + Cb vpaddw ymm6, ymm5, ymm5 ; ymm6=2*CbH vpaddw ymm4, ymm2, ymm2 ; ymm4=2*CbL vpaddw ymm7, ymm1, ymm1 ; ymm7=2*CrH vpaddw ymm0, ymm3, ymm3 ; ymm0=2*CrL vpmulhw ymm6, ymm6, [rel PW_MF0228] ; ymm6=(2*CbH * -FIX(0.22800)) vpmulhw ymm4, ymm4, [rel PW_MF0228] ; ymm4=(2*CbL * -FIX(0.22800)) vpmulhw ymm7, ymm7, [rel PW_F0402] ; ymm7=(2*CrH * FIX(0.40200)) vpmulhw ymm0, ymm0, [rel PW_F0402] ; ymm0=(2*CrL * FIX(0.40200)) vpaddw ymm6, ymm6, [rel PW_ONE] vpaddw ymm4, ymm4, [rel PW_ONE] vpsraw ymm6, ymm6, 1 ; ymm6=(CbH * -FIX(0.22800)) vpsraw ymm4, ymm4, 1 ; ymm4=(CbL * -FIX(0.22800)) vpaddw ymm7, ymm7, [rel PW_ONE] vpaddw ymm0, ymm0, [rel PW_ONE] vpsraw ymm7, ymm7, 1 ; ymm7=(CrH * FIX(0.40200)) vpsraw ymm0, ymm0, 1 ; ymm0=(CrL * FIX(0.40200)) vpaddw ymm6, ymm6, ymm5 vpaddw ymm4, ymm4, ymm2 vpaddw ymm6, ymm6, ymm5 ; ymm6=(CbH * FIX(1.77200))=(B-Y)H vpaddw ymm4, ymm4, ymm2 ; ymm4=(CbL * FIX(1.77200))=(B-Y)L vpaddw ymm7, ymm7, ymm1 ; ymm7=(CrH * FIX(1.40200))=(R-Y)H vpaddw ymm0, ymm0, ymm3 ; ymm0=(CrL * FIX(1.40200))=(R-Y)L vmovdqa YMMWORD [wk(0)], ymm6 ; wk(0)=(B-Y)H vmovdqa YMMWORD [wk(1)], ymm7 ; wk(1)=(R-Y)H vpunpckhwd ymm6, ymm5, ymm1 vpunpcklwd ymm5, ymm5, ymm1 vpmaddwd ymm5, ymm5, [rel PW_MF0344_F0285] vpmaddwd ymm6, ymm6, [rel PW_MF0344_F0285] vpunpckhwd ymm7, ymm2, ymm3 vpunpcklwd ymm2, ymm2, ymm3 vpmaddwd ymm2, ymm2, [rel PW_MF0344_F0285] vpmaddwd ymm7, ymm7, [rel PW_MF0344_F0285] vpaddd ymm5, ymm5, [rel PD_ONEHALF] vpaddd ymm6, ymm6, [rel PD_ONEHALF] vpsrad ymm5, ymm5, SCALEBITS vpsrad ymm6, ymm6, SCALEBITS vpaddd ymm2, ymm2, [rel PD_ONEHALF] vpaddd ymm7, ymm7, [rel PD_ONEHALF] vpsrad ymm2, ymm2, SCALEBITS vpsrad ymm7, ymm7, SCALEBITS vpackssdw ymm5, ymm5, ymm6 ; ymm5=CbH*-FIX(0.344)+CrH*FIX(0.285) vpackssdw ymm2, ymm2, ymm7 ; ymm2=CbL*-FIX(0.344)+CrL*FIX(0.285) vpsubw ymm5, ymm5, ymm1 ; ymm5=CbH*-FIX(0.344)+CrH*-FIX(0.714)=(G-Y)H vpsubw ymm2, ymm2, ymm3 ; ymm2=CbL*-FIX(0.344)+CrL*-FIX(0.714)=(G-Y)L vmovdqa YMMWORD [wk(2)], ymm5 ; wk(2)=(G-Y)H mov al, 2 ; Yctr jmp short .Yloop_1st .Yloop_2nd: vmovdqa ymm0, YMMWORD [wk(1)] ; ymm0=(R-Y)H vmovdqa ymm2, YMMWORD [wk(2)] ; ymm2=(G-Y)H vmovdqa ymm4, YMMWORD [wk(0)] ; ymm4=(B-Y)H .Yloop_1st: vmovdqu ymm7, YMMWORD [rsi] ; ymm7=Y(0123456789ABCDEFGHIJKLMNOPQRSTUV) vpcmpeqw ymm6, ymm6, ymm6 vpsrlw ymm6, ymm6, BYTE_BIT ; ymm6={0xFF 0x00 0xFF 0x00 ..} vpand ymm6, ymm6, ymm7 ; ymm6=Y(02468ACEGIKMOQSU)=YE vpsrlw ymm7, ymm7, BYTE_BIT ; ymm7=Y(13579BDFHJLNPRTV)=YO vmovdqa ymm1, ymm0 ; ymm1=ymm0=(R-Y)(L/H) vmovdqa ymm3, ymm2 ; ymm3=ymm2=(G-Y)(L/H) vmovdqa ymm5, ymm4 ; ymm5=ymm4=(B-Y)(L/H) vpaddw ymm0, ymm0, ymm6 ; ymm0=((R-Y)+YE)=RE=R(02468ACEGIKMOQSU) vpaddw ymm1, ymm1, ymm7 ; ymm1=((R-Y)+YO)=RO=R(13579BDFHJLNPRTV) vpackuswb ymm0, ymm0, ymm0 ; ymm0=R(02468ACE********GIKMOQSU********) vpackuswb ymm1, ymm1, ymm1 ; ymm1=R(13579BDF********HJLNPRTV********) vpaddw ymm2, ymm2, ymm6 ; ymm2=((G-Y)+YE)=GE=G(02468ACEGIKMOQSU) vpaddw ymm3, ymm3, ymm7 ; ymm3=((G-Y)+YO)=GO=G(13579BDFHJLNPRTV) vpackuswb ymm2, ymm2, ymm2 ; ymm2=G(02468ACE********GIKMOQSU********) vpackuswb ymm3, ymm3, ymm3 ; ymm3=G(13579BDF********HJLNPRTV********) vpaddw ymm4, ymm4, ymm6 ; ymm4=((B-Y)+YE)=BE=B(02468ACEGIKMOQSU) vpaddw ymm5, ymm5, ymm7 ; ymm5=((B-Y)+YO)=BO=B(13579BDFHJLNPRTV) vpackuswb ymm4, ymm4, ymm4 ; ymm4=B(02468ACE********GIKMOQSU********) vpackuswb ymm5, ymm5, ymm5 ; ymm5=B(13579BDF********HJLNPRTV********) %if RGB_PIXELSIZE == 3 ; --------------- ; ymmA=(00 02 04 06 08 0A 0C 0E ** 0G 0I 0K 0M 0O 0Q 0S 0U **) ; ymmB=(01 03 05 07 09 0B 0D 0F ** 0H 0J 0L 0N 0P 0R 0T 0V **) ; ymmC=(10 12 14 16 18 1A 1C 1E ** 1G 1I 1K 1M 1O 1Q 1S 1U **) ; ymmD=(11 13 15 17 19 1B 1D 1F ** 1H 1J 1L 1N 1P 1R 1T 1V **) ; ymmE=(20 22 24 26 28 2A 2C 2E ** 2G 2I 2K 2M 2O 2Q 2S 2U **) ; ymmF=(21 23 25 27 29 2B 2D 2F ** 2H 2J 2L 2N 2P 2R 2T 2V **) ; ymmG=(** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **) ; ymmH=(** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** **) vpunpcklbw ymmA, ymmA, ymmC ; ymmA=(00 10 02 12 04 14 06 16 08 18 0A 1A 0C 1C 0E 1E ; 0G 1G 0I 1I 0K 1K 0M 1M 0O 1O 0Q 1Q 0S 1S 0U 1U) vpunpcklbw ymmE, ymmE, ymmB ; ymmE=(20 01 22 03 24 05 26 07 28 09 2A 0B 2C 0D 2E 0F ; 2G 0H 2I 0J 2K 0L 2M 0N 2O 0P 2Q 0R 2S 0T 2U 0V) vpunpcklbw ymmD, ymmD, ymmF ; ymmD=(11 21 13 23 15 25 17 27 19 29 1B 2B 1D 2D 1F 2F ; 1H 2H 1J 2J 1L 2L 1N 2N 1P 2P 1R 2R 1T 2T 1V 2V) vpsrldq ymmH, ymmA, 2 ; ymmH=(02 12 04 14 06 16 08 18 0A 1A 0C 1C 0E 1E 0G 1G ; 0I 1I 0K 1K 0M 1M 0O 1O 0Q 1Q 0S 1S 0U 1U -- --) vpunpckhwd ymmG, ymmA, ymmE ; ymmG=(08 18 28 09 0A 1A 2A 0B 0C 1C 2C 0D 0E 1E 2E 0F ; 0O 1O 2O 0P 0Q 1Q 2Q 0R 0S 1S 2S 0T 0U 1U 2U 0V) vpunpcklwd ymmA, ymmA, ymmE ; ymmA=(00 10 20 01 02 12 22 03 04 14 24 05 06 16 26 07 ; 0G 1G 2G 0H 0I 1I 2I 0J 0K 1K 2K 0L 0M 1M 2M 0N) vpsrldq ymmE, ymmE, 2 ; ymmE=(22 03 24 05 26 07 28 09 2A 0B 2C 0D 2E 0F 2G 0H ; 2I 0J 2K 0L 2M 0N 2O 0P 2Q 0R 2S 0T 2U 0V -- --) vpsrldq ymmB, ymmD, 2 ; ymmB=(13 23 15 25 17 27 19 29 1B 2B 1D 2D 1F 2F 1H 2H ; 1J 2J 1L 2L 1N 2N 1P 2P 1R 2R 1T 2T 1V 2V -- --) vpunpckhwd ymmC, ymmD, ymmH ; ymmC=(19 29 0A 1A 1B 2B 0C 1C 1D 2D 0E 1E 1F 2F 0G 1G ; 1P 2P 0Q 1Q 1R 2R 0S 1S 1T 2T 0U 1U 1V 2V -- --) vpunpcklwd ymmD, ymmD, ymmH ; ymmD=(11 21 02 12 13 23 04 14 15 25 06 16 17 27 08 18 ; 1H 2H 0I 1I 1J 2J 0K 1K 1L 2L 0M 1M 1N 2N 0O 1O) vpunpckhwd ymmF, ymmE, ymmB ; ymmF=(2A 0B 1B 2B 2C 0D 1D 2D 2E 0F 1F 2F 2G 0H 1H 2H ; 2Q 0R 1R 2R 2S 0T 1T 2T 2U 0V 1V 2V -- -- -- --) vpunpcklwd ymmE, ymmE, ymmB ; ymmE=(22 03 13 23 24 05 15 25 26 07 17 27 28 09 19 29 ; 2I 0J 1J 2J 2K 0L 1L 2L 2M 0N 1N 2N 2O 0P 1P 2P) vpshufd ymmH, ymmA, 0x4E ; ymmH=(04 14 24 05 06 16 26 07 00 10 20 01 02 12 22 03 ; 0K 1K 2K 0L 0M 1M 2M 0N 0G 1G 2G 0H 0I 1I 2I 0J) vpunpckldq ymmA, ymmA, ymmD ; ymmA=(00 10 20 01 11 21 02 12 02 12 22 03 13 23 04 14 ; 0G 1G 2G 0H 1H 2H 0I 1I 0I 1I 2I 0J 1J 2J 0K 1K) vpunpckhdq ymmD, ymmD, ymmE ; ymmD=(15 25 06 16 26 07 17 27 17 27 08 18 28 09 19 29 ; 1L 2L 0M 1M 2M 0N 1N 2N 1N 2N 0O 1O 2O 0P 1P 2P) vpunpckldq ymmE, ymmE, ymmH ; ymmE=(22 03 13 23 04 14 24 05 24 05 15 25 06 16 26 07 ; 2I 0J 1J 2J 0K 1K 2K 0L 2K 0L 1L 2L 0M 1M 2M 0N) vpshufd ymmH, ymmG, 0x4E ; ymmH=(0C 1C 2C 0D 0E 1E 2E 0F 08 18 28 09 0A 1A 2A 0B ; 0S 1S 2S 0T 0U 1U 2U 0V 0O 1O 2O 0P 0Q 1Q 2Q 0R) vpunpckldq ymmG, ymmG, ymmC ; ymmG=(08 18 28 09 19 29 0A 1A 0A 1A 2A 0B 1B 2B 0C 1C ; 0O 1O 2O 0P 1P 2P 0Q 1Q 0Q 1Q 2Q 0R 1R 2R 0S 1S) vpunpckhdq ymmC, ymmC, ymmF ; ymmC=(1D 2D 0E 1E 2E 0F 1F 2F 1F 2F 0G 1G 2G 0H 1H 2H ; 1T 2T 0U 1U 2U 0V 1V 2V 1V 2V -- -- -- -- -- --) vpunpckldq ymmF, ymmF, ymmH ; ymmF=(2A 0B 1B 2B 0C 1C 2C 0D 2C 0D 1D 2D 0E 1E 2E 0F ; 2Q 0R 1R 2R 0S 1S 2S 0T 2S 0T 1T 2T 0U 1U 2U 0V) vpunpcklqdq ymmH, ymmA, ymmE ; ymmH=(00 10 20 01 11 21 02 12 22 03 13 23 04 14 24 05 ; 0G 1G 2G 0H 1H 2H 0I 1I 2I 0J 1J 2J 0K 1K 2K 0L) vpunpcklqdq ymmG, ymmD, ymmG ; ymmG=(15 25 06 16 26 07 17 27 08 18 28 09 19 29 0A 1A ; 1L 2L 0M 1M 2M 0N 1N 2N 0O 1O 2O 0P 1P 2P 0Q 1Q) vpunpcklqdq ymmC, ymmF, ymmC ; ymmC=(2A 0B 1B 2B 0C 1C 2C 0D 1D 2D 0E 1E 2E 0F 1F 2F ; 2Q 0R 1R 2R 0S 1S 2S 0T 1T 2T 0U 1U 2U 0V 1V 2V) vperm2i128 ymmA, ymmH, ymmG, 0x20 ; ymmA=(00 10 20 01 11 21 02 12 22 03 13 23 04 14 24 05 ; 15 25 06 16 26 07 17 27 08 18 28 09 19 29 0A 1A) vperm2i128 ymmD, ymmC, ymmH, 0x30 ; ymmD=(2A 0B 1B 2B 0C 1C 2C 0D 1D 2D 0E 1E 2E 0F 1F 2F ; 0G 1G 2G 0H 1H 2H 0I 1I 2I 0J 1J 2J 0K 1K 2K 0L) vperm2i128 ymmF, ymmG, ymmC, 0x31 ; ymmF=(1L 2L 0M 1M 2M 0N 1N 2N 0O 1O 2O 0P 1P 2P 0Q 1Q ; 2Q 0R 1R 2R 0S 1S 2S 0T 1T 2T 0U 1U 2U 0V 1V 2V) cmp rcx, byte SIZEOF_YMMWORD jb short .column_st64 test rdi, SIZEOF_YMMWORD-1 jnz short .out1 ; --(aligned)------------------- vmovntdq YMMWORD [rdi+0*SIZEOF_YMMWORD], ymmA vmovntdq YMMWORD [rdi+1*SIZEOF_YMMWORD], ymmD vmovntdq YMMWORD [rdi+2*SIZEOF_YMMWORD], ymmF jmp short .out0 .out1: ; --(unaligned)----------------- vmovdqu YMMWORD [rdi+0*SIZEOF_YMMWORD], ymmA vmovdqu YMMWORD [rdi+1*SIZEOF_YMMWORD], ymmD vmovdqu YMMWORD [rdi+2*SIZEOF_YMMWORD], ymmF .out0: add rdi, byte RGB_PIXELSIZE*SIZEOF_YMMWORD ; outptr sub rcx, byte SIZEOF_YMMWORD jz near .endcolumn add rsi, byte SIZEOF_YMMWORD ; inptr0 dec al ; Yctr jnz near .Yloop_2nd add rbx, byte SIZEOF_YMMWORD ; inptr1 add rdx, byte SIZEOF_YMMWORD ; inptr2 jmp near .columnloop .column_st64: lea rcx, [rcx+rcx*2] ; imul ecx, RGB_PIXELSIZE cmp rcx, byte 2*SIZEOF_YMMWORD jb short .column_st32 vmovdqu YMMWORD [rdi+0*SIZEOF_YMMWORD], ymmA vmovdqu YMMWORD [rdi+1*SIZEOF_YMMWORD], ymmD add rdi, byte 2*SIZEOF_YMMWORD ; outptr vmovdqa ymmA, ymmF sub rcx, byte 2*SIZEOF_YMMWORD jmp short .column_st31 .column_st32: cmp rcx, byte SIZEOF_YMMWORD jb short .column_st31 vmovdqu YMMWORD [rdi+0*SIZEOF_YMMWORD], ymmA add rdi, byte SIZEOF_YMMWORD ; outptr vmovdqa ymmA, ymmD sub rcx, byte SIZEOF_YMMWORD jmp short .column_st31 .column_st31: cmp rcx, byte SIZEOF_XMMWORD jb short .column_st15 vmovdqu XMMWORD [rdi+0*SIZEOF_XMMWORD], xmmA add rdi, byte SIZEOF_XMMWORD ; outptr vperm2i128 ymmA, ymmA, ymmA, 1 sub rcx, byte SIZEOF_XMMWORD .column_st15: ; Store the lower 8 bytes of xmmA to the output when it has enough ; space. cmp rcx, byte SIZEOF_MMWORD jb short .column_st7 vmovq XMM_MMWORD [rdi], xmmA add rdi, byte SIZEOF_MMWORD sub rcx, byte SIZEOF_MMWORD vpsrldq xmmA, xmmA, SIZEOF_MMWORD .column_st7: ; Store the lower 4 bytes of xmmA to the output when it has enough ; space. cmp rcx, byte SIZEOF_DWORD jb short .column_st3 vmovd XMM_DWORD [rdi], xmmA add rdi, byte SIZEOF_DWORD sub rcx, byte SIZEOF_DWORD vpsrldq xmmA, xmmA, SIZEOF_DWORD .column_st3: ; Store the lower 2 bytes of rax to the output when it has enough ; space. vmovd eax, xmmA cmp rcx, byte SIZEOF_WORD jb short .column_st1 mov word [rdi], ax add rdi, byte SIZEOF_WORD sub rcx, byte SIZEOF_WORD shr rax, 16 .column_st1: ; Store the lower 1 byte of rax to the output when it has enough ; space. test rcx, rcx jz short .endcolumn mov byte [rdi], al %else ; RGB_PIXELSIZE == 4 ; ----------- %ifdef RGBX_FILLER_0XFF vpcmpeqb ymm6, ymm6, ymm6 ; ymm6=XE=X(02468ACE********GIKMOQSU********) vpcmpeqb ymm7, ymm7, ymm7 ; ymm7=XO=X(13579BDF********HJLNPRTV********) %else vpxor ymm6, ymm6, ymm6 ; ymm6=XE=X(02468ACE********GIKMOQSU********) vpxor ymm7, ymm7, ymm7 ; ymm7=XO=X(13579BDF********HJLNPRTV********) %endif ; ymmA=(00 02 04 06 08 0A 0C 0E ** 0G 0I 0K 0M 0O 0Q 0S 0U **) ; ymmB=(01 03 05 07 09 0B 0D 0F ** 0H 0J 0L 0N 0P 0R 0T 0V **) ; ymmC=(10 12 14 16 18 1A 1C 1E ** 1G 1I 1K 1M 1O 1Q 1S 1U **) ; ymmD=(11 13 15 17 19 1B 1D 1F ** 1H 1J 1L 1N 1P 1R 1T 1V **) ; ymmE=(20 22 24 26 28 2A 2C 2E ** 2G 2I 2K 2M 2O 2Q 2S 2U **) ; ymmF=(21 23 25 27 29 2B 2D 2F ** 2H 2J 2L 2N 2P 2R 2T 2V **) ; ymmG=(30 32 34 36 38 3A 3C 3E ** 3G 3I 3K 3M 3O 3Q 3S 3U **) ; ymmH=(31 33 35 37 39 3B 3D 3F ** 3H 3J 3L 3N 3P 3R 3T 3V **) vpunpcklbw ymmA, ymmA, ymmC ; ymmA=(00 10 02 12 04 14 06 16 08 18 0A 1A 0C 1C 0E 1E ; 0G 1G 0I 1I 0K 1K 0M 1M 0O 1O 0Q 1Q 0S 1S 0U 1U) vpunpcklbw ymmE, ymmE, ymmG ; ymmE=(20 30 22 32 24 34 26 36 28 38 2A 3A 2C 3C 2E 3E ; 2G 3G 2I 3I 2K 3K 2M 3M 2O 3O 2Q 3Q 2S 3S 2U 3U) vpunpcklbw ymmB, ymmB, ymmD ; ymmB=(01 11 03 13 05 15 07 17 09 19 0B 1B 0D 1D 0F 1F ; 0H 1H 0J 1J 0L 1L 0N 1N 0P 1P 0R 1R 0T 1T 0V 1V) vpunpcklbw ymmF, ymmF, ymmH ; ymmF=(21 31 23 33 25 35 27 37 29 39 2B 3B 2D 3D 2F 3F ; 2H 3H 2J 3J 2L 3L 2N 3N 2P 3P 2R 3R 2T 3T 2V 3V) vpunpckhwd ymmC, ymmA, ymmE ; ymmC=(08 18 28 38 0A 1A 2A 3A 0C 1C 2C 3C 0E 1E 2E 3E ; 0O 1O 2O 3O 0Q 1Q 2Q 3Q 0S 1S 2S 3S 0U 1U 2U 3U) vpunpcklwd ymmA, ymmA, ymmE ; ymmA=(00 10 20 30 02 12 22 32 04 14 24 34 06 16 26 36 ; 0G 1G 2G 3G 0I 1I 2I 3I 0K 1K 2K 3K 0M 1M 2M 3M) vpunpckhwd ymmG, ymmB, ymmF ; ymmG=(09 19 29 39 0B 1B 2B 3B 0D 1D 2D 3D 0F 1F 2F 3F ; 0P 1P 2P 3P 0R 1R 2R 3R 0T 1T 2T 3T 0V 1V 2V 3V) vpunpcklwd ymmB, ymmB, ymmF ; ymmB=(01 11 21 31 03 13 23 33 05 15 25 35 07 17 27 37 ; 0H 1H 2H 3H 0J 1J 2J 3J 0L 1L 2L 3L 0N 1N 2N 3N) vpunpckhdq ymmE, ymmA, ymmB ; ymmE=(04 14 24 34 05 15 25 35 06 16 26 36 07 17 27 37 ; 0K 1K 2K 3K 0L 1L 2L 3L 0M 1M 2M 3M 0N 1N 2N 3N) vpunpckldq ymmB, ymmA, ymmB ; ymmB=(00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33 ; 0G 1G 2G 3G 0H 1H 2H 3H 0I 1I 2I 3I 0J 1J 2J 3J) vpunpckhdq ymmF, ymmC, ymmG ; ymmF=(0C 1C 2C 3C 0D 1D 2D 3D 0E 1E 2E 3E 0F 1F 2F 3F ; 0S 1S 2S 3S 0T 1T 2T 3T 0U 1U 2U 3U 0V 1V 2V 3V) vpunpckldq ymmG, ymmC, ymmG ; ymmG=(08 18 28 38 09 19 29 39 0A 1A 2A 3A 0B 1B 2B 3B ; 0O 1O 2O 3O 0P 1P 2P 3P 0Q 1Q 2Q 3Q 0R 1R 2R 3R) vperm2i128 ymmA, ymmB, ymmE, 0x20 ; ymmA=(00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33 ; 04 14 24 34 05 15 25 35 06 16 26 36 07 17 27 37) vperm2i128 ymmD, ymmG, ymmF, 0x20 ; ymmD=(08 18 28 38 09 19 29 39 0A 1A 2A 3A 0B 1B 2B 3B ; 0C 1C 2C 3C 0D 1D 2D 3D 0E 1E 2E 3E 0F 1F 2F 3F) vperm2i128 ymmC, ymmB, ymmE, 0x31 ; ymmC=(0G 1G 2G 3G 0H 1H 2H 3H 0I 1I 2I 3I 0J 1J 2J 3J ; 0K 1K 2K 3K 0L 1L 2L 3L 0M 1M 2M 3M 0N 1N 2N 3N) vperm2i128 ymmH, ymmG, ymmF, 0x31 ; ymmH=(0O 1O 2O 3O 0P 1P 2P 3P 0Q 1Q 2Q 3Q 0R 1R 2R 3R ; 0S 1S 2S 3S 0T 1T 2T 3T 0U 1U 2U 3U 0V 1V 2V 3V) cmp rcx, byte SIZEOF_YMMWORD jb short .column_st64 test rdi, SIZEOF_YMMWORD-1 jnz short .out1 ; --(aligned)------------------- vmovntdq YMMWORD [rdi+0*SIZEOF_YMMWORD], ymmA vmovntdq YMMWORD [rdi+1*SIZEOF_YMMWORD], ymmD vmovntdq YMMWORD [rdi+2*SIZEOF_YMMWORD], ymmC vmovntdq YMMWORD [rdi+3*SIZEOF_YMMWORD], ymmH jmp short .out0 .out1: ; --(unaligned)----------------- vmovdqu YMMWORD [rdi+0*SIZEOF_YMMWORD], ymmA vmovdqu YMMWORD [rdi+1*SIZEOF_YMMWORD], ymmD vmovdqu YMMWORD [rdi+2*SIZEOF_YMMWORD], ymmC vmovdqu YMMWORD [rdi+3*SIZEOF_YMMWORD], ymmH .out0: add rdi, RGB_PIXELSIZE*SIZEOF_YMMWORD ; outptr sub rcx, byte SIZEOF_YMMWORD jz near .endcolumn add rsi, byte SIZEOF_YMMWORD ; inptr0 dec al jnz near .Yloop_2nd add rbx, byte SIZEOF_YMMWORD ; inptr1 add rdx, byte SIZEOF_YMMWORD ; inptr2 jmp near .columnloop .column_st64: cmp rcx, byte SIZEOF_YMMWORD/2 jb short .column_st32 vmovdqu YMMWORD [rdi+0*SIZEOF_YMMWORD], ymmA vmovdqu YMMWORD [rdi+1*SIZEOF_YMMWORD], ymmD add rdi, byte 2*SIZEOF_YMMWORD ; outptr vmovdqa ymmA, ymmC vmovdqa ymmD, ymmH sub rcx, byte SIZEOF_YMMWORD/2 .column_st32: cmp rcx, byte SIZEOF_YMMWORD/4 jb short .column_st16 vmovdqu YMMWORD [rdi+0*SIZEOF_YMMWORD], ymmA add rdi, byte SIZEOF_YMMWORD ; outptr vmovdqa ymmA, ymmD sub rcx, byte SIZEOF_YMMWORD/4 .column_st16: cmp rcx, byte SIZEOF_YMMWORD/8 jb short .column_st15 vmovdqu XMMWORD [rdi+0*SIZEOF_XMMWORD], xmmA add rdi, byte SIZEOF_XMMWORD ; outptr vperm2i128 ymmA, ymmA, ymmA, 1 sub rcx, byte SIZEOF_YMMWORD/8 .column_st15: ; Store two pixels (8 bytes) of ymmA to the output when it has enough ; space. cmp rcx, byte SIZEOF_YMMWORD/16 jb short .column_st7 vmovq MMWORD [rdi], xmmA add rdi, byte SIZEOF_YMMWORD/16*4 sub rcx, byte SIZEOF_YMMWORD/16 vpsrldq xmmA, SIZEOF_YMMWORD/16*4 .column_st7: ; Store one pixel (4 bytes) of ymmA to the output when it has enough ; space. test rcx, rcx jz short .endcolumn vmovd XMM_DWORD [rdi], xmmA %endif ; RGB_PIXELSIZE ; --------------- .endcolumn: sfence ; flush the write buffer .return: pop rbx vzeroupper uncollect_args 4 mov rsp, rbp ; rsp <- aligned rbp pop rsp ; rsp <- original rbp pop rbp ret ; -------------------------------------------------------------------------- ; ; Upsample and color convert for the case of 2:1 horizontal and 2:1 vertical. ; ; GLOBAL(void) ; jsimd_h2v2_merged_upsample_avx2(JDIMENSION output_width, ; JSAMPIMAGE input_buf, ; JDIMENSION in_row_group_ctr, ; JSAMPARRAY output_buf); ; ; r10d = JDIMENSION output_width ; r11 = JSAMPIMAGE input_buf ; r12d = JDIMENSION in_row_group_ctr ; r13 = JSAMPARRAY output_buf align 32 GLOBAL_FUNCTION(jsimd_h2v2_merged_upsample_avx2) EXTN(jsimd_h2v2_merged_upsample_avx2): push rbp mov rax, rsp mov rbp, rsp collect_args 4 push rbx mov eax, r10d mov rdi, r11 mov ecx, r12d mov rsip, JSAMPARRAY [rdi+0*SIZEOF_JSAMPARRAY] mov rbxp, JSAMPARRAY [rdi+1*SIZEOF_JSAMPARRAY] mov rdxp, JSAMPARRAY [rdi+2*SIZEOF_JSAMPARRAY] mov rdi, r13 lea rsi, [rsi+rcx*SIZEOF_JSAMPROW] sub rsp, SIZEOF_JSAMPARRAY*4 mov JSAMPARRAY [rsp+0*SIZEOF_JSAMPARRAY], rsip ; intpr00 mov JSAMPARRAY [rsp+1*SIZEOF_JSAMPARRAY], rbxp ; intpr1 mov JSAMPARRAY [rsp+2*SIZEOF_JSAMPARRAY], rdxp ; intpr2 mov rbx, rsp push rdi push rcx push rax %ifdef WIN64 mov r8, rcx mov r9, rdi mov rcx, rax mov rdx, rbx %else mov rdx, rcx mov rcx, rdi mov rdi, rax mov rsi, rbx %endif call EXTN(jsimd_h2v1_merged_upsample_avx2) pop rax pop rcx pop rdi mov rsip, JSAMPARRAY [rsp+0*SIZEOF_JSAMPARRAY] mov rbxp, JSAMPARRAY [rsp+1*SIZEOF_JSAMPARRAY] mov rdxp, JSAMPARRAY [rsp+2*SIZEOF_JSAMPARRAY] add rdi, byte SIZEOF_JSAMPROW ; outptr1 add rsi, byte SIZEOF_JSAMPROW ; inptr01 mov JSAMPARRAY [rsp+0*SIZEOF_JSAMPARRAY], rsip ; intpr00 mov JSAMPARRAY [rsp+1*SIZEOF_JSAMPARRAY], rbxp ; intpr1 mov JSAMPARRAY [rsp+2*SIZEOF_JSAMPARRAY], rdxp ; intpr2 mov rbx, rsp push rdi push rcx push rax %ifdef WIN64 mov r8, rcx mov r9, rdi mov rcx, rax mov rdx, rbx %else mov rdx, rcx mov rcx, rdi mov rdi, rax mov rsi, rbx %endif call EXTN(jsimd_h2v1_merged_upsample_avx2) pop rax pop rcx pop rdi mov rsip, JSAMPARRAY [rsp+0*SIZEOF_JSAMPARRAY] mov rbxp, JSAMPARRAY [rsp+1*SIZEOF_JSAMPARRAY] mov rdxp, JSAMPARRAY [rsp+2*SIZEOF_JSAMPARRAY] add rsp, SIZEOF_JSAMPARRAY*4 pop rbx uncollect_args 4 pop rbp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/x86_64/jdmrgext-sse2.asm000066400000000000000000000503121436506551100213650ustar00rootroot00000000000000; ; jdmrgext.asm - merged upsampling/color conversion (64-bit SSE2) ; ; Copyright 2009, 2012 Pierre Ossman for Cendio AB ; Copyright (C) 2009, 2012, 2016, D. R. Commander. ; Copyright (C) 2018, Matthias Räncker. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jcolsamp.inc" ; -------------------------------------------------------------------------- ; ; Upsample and color convert for the case of 2:1 horizontal and 1:1 vertical. ; ; GLOBAL(void) ; jsimd_h2v1_merged_upsample_sse2(JDIMENSION output_width, ; JSAMPIMAGE input_buf, ; JDIMENSION in_row_group_ctr, ; JSAMPARRAY output_buf); ; ; r10d = JDIMENSION output_width ; r11 = JSAMPIMAGE input_buf ; r12d = JDIMENSION in_row_group_ctr ; r13 = JSAMPARRAY output_buf %define wk(i) rbp - (WK_NUM - (i)) * SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 3 align 32 GLOBAL_FUNCTION(jsimd_h2v1_merged_upsample_sse2) EXTN(jsimd_h2v1_merged_upsample_sse2): push rbp mov rax, rsp ; rax = original rbp sub rsp, byte 4 and rsp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [rsp], rax mov rbp, rsp ; rbp = aligned rbp lea rsp, [wk(0)] collect_args 4 push rbx mov ecx, r10d ; col test rcx, rcx jz near .return push rcx mov rdi, r11 mov ecx, r12d mov rsip, JSAMPARRAY [rdi+0*SIZEOF_JSAMPARRAY] mov rbxp, JSAMPARRAY [rdi+1*SIZEOF_JSAMPARRAY] mov rdxp, JSAMPARRAY [rdi+2*SIZEOF_JSAMPARRAY] mov rdi, r13 mov rsip, JSAMPROW [rsi+rcx*SIZEOF_JSAMPROW] ; inptr0 mov rbxp, JSAMPROW [rbx+rcx*SIZEOF_JSAMPROW] ; inptr1 mov rdxp, JSAMPROW [rdx+rcx*SIZEOF_JSAMPROW] ; inptr2 mov rdip, JSAMPROW [rdi] ; outptr pop rcx ; col .columnloop: movdqa xmm6, XMMWORD [rbx] ; xmm6=Cb(0123456789ABCDEF) movdqa xmm7, XMMWORD [rdx] ; xmm7=Cr(0123456789ABCDEF) pxor xmm1, xmm1 ; xmm1=(all 0's) pcmpeqw xmm3, xmm3 psllw xmm3, 7 ; xmm3={0xFF80 0xFF80 0xFF80 0xFF80 ..} movdqa xmm4, xmm6 punpckhbw xmm6, xmm1 ; xmm6=Cb(89ABCDEF)=CbH punpcklbw xmm4, xmm1 ; xmm4=Cb(01234567)=CbL movdqa xmm0, xmm7 punpckhbw xmm7, xmm1 ; xmm7=Cr(89ABCDEF)=CrH punpcklbw xmm0, xmm1 ; xmm0=Cr(01234567)=CrL paddw xmm6, xmm3 paddw xmm4, xmm3 paddw xmm7, xmm3 paddw xmm0, xmm3 ; (Original) ; R = Y + 1.40200 * Cr ; G = Y - 0.34414 * Cb - 0.71414 * Cr ; B = Y + 1.77200 * Cb ; ; (This implementation) ; R = Y + 0.40200 * Cr + Cr ; G = Y - 0.34414 * Cb + 0.28586 * Cr - Cr ; B = Y - 0.22800 * Cb + Cb + Cb movdqa xmm5, xmm6 ; xmm5=CbH movdqa xmm2, xmm4 ; xmm2=CbL paddw xmm6, xmm6 ; xmm6=2*CbH paddw xmm4, xmm4 ; xmm4=2*CbL movdqa xmm1, xmm7 ; xmm1=CrH movdqa xmm3, xmm0 ; xmm3=CrL paddw xmm7, xmm7 ; xmm7=2*CrH paddw xmm0, xmm0 ; xmm0=2*CrL pmulhw xmm6, [rel PW_MF0228] ; xmm6=(2*CbH * -FIX(0.22800)) pmulhw xmm4, [rel PW_MF0228] ; xmm4=(2*CbL * -FIX(0.22800)) pmulhw xmm7, [rel PW_F0402] ; xmm7=(2*CrH * FIX(0.40200)) pmulhw xmm0, [rel PW_F0402] ; xmm0=(2*CrL * FIX(0.40200)) paddw xmm6, [rel PW_ONE] paddw xmm4, [rel PW_ONE] psraw xmm6, 1 ; xmm6=(CbH * -FIX(0.22800)) psraw xmm4, 1 ; xmm4=(CbL * -FIX(0.22800)) paddw xmm7, [rel PW_ONE] paddw xmm0, [rel PW_ONE] psraw xmm7, 1 ; xmm7=(CrH * FIX(0.40200)) psraw xmm0, 1 ; xmm0=(CrL * FIX(0.40200)) paddw xmm6, xmm5 paddw xmm4, xmm2 paddw xmm6, xmm5 ; xmm6=(CbH * FIX(1.77200))=(B-Y)H paddw xmm4, xmm2 ; xmm4=(CbL * FIX(1.77200))=(B-Y)L paddw xmm7, xmm1 ; xmm7=(CrH * FIX(1.40200))=(R-Y)H paddw xmm0, xmm3 ; xmm0=(CrL * FIX(1.40200))=(R-Y)L movdqa XMMWORD [wk(0)], xmm6 ; wk(0)=(B-Y)H movdqa XMMWORD [wk(1)], xmm7 ; wk(1)=(R-Y)H movdqa xmm6, xmm5 movdqa xmm7, xmm2 punpcklwd xmm5, xmm1 punpckhwd xmm6, xmm1 pmaddwd xmm5, [rel PW_MF0344_F0285] pmaddwd xmm6, [rel PW_MF0344_F0285] punpcklwd xmm2, xmm3 punpckhwd xmm7, xmm3 pmaddwd xmm2, [rel PW_MF0344_F0285] pmaddwd xmm7, [rel PW_MF0344_F0285] paddd xmm5, [rel PD_ONEHALF] paddd xmm6, [rel PD_ONEHALF] psrad xmm5, SCALEBITS psrad xmm6, SCALEBITS paddd xmm2, [rel PD_ONEHALF] paddd xmm7, [rel PD_ONEHALF] psrad xmm2, SCALEBITS psrad xmm7, SCALEBITS packssdw xmm5, xmm6 ; xmm5=CbH*-FIX(0.344)+CrH*FIX(0.285) packssdw xmm2, xmm7 ; xmm2=CbL*-FIX(0.344)+CrL*FIX(0.285) psubw xmm5, xmm1 ; xmm5=CbH*-FIX(0.344)+CrH*-FIX(0.714)=(G-Y)H psubw xmm2, xmm3 ; xmm2=CbL*-FIX(0.344)+CrL*-FIX(0.714)=(G-Y)L movdqa XMMWORD [wk(2)], xmm5 ; wk(2)=(G-Y)H mov al, 2 ; Yctr jmp short .Yloop_1st .Yloop_2nd: movdqa xmm0, XMMWORD [wk(1)] ; xmm0=(R-Y)H movdqa xmm2, XMMWORD [wk(2)] ; xmm2=(G-Y)H movdqa xmm4, XMMWORD [wk(0)] ; xmm4=(B-Y)H .Yloop_1st: movdqa xmm7, XMMWORD [rsi] ; xmm7=Y(0123456789ABCDEF) pcmpeqw xmm6, xmm6 psrlw xmm6, BYTE_BIT ; xmm6={0xFF 0x00 0xFF 0x00 ..} pand xmm6, xmm7 ; xmm6=Y(02468ACE)=YE psrlw xmm7, BYTE_BIT ; xmm7=Y(13579BDF)=YO movdqa xmm1, xmm0 ; xmm1=xmm0=(R-Y)(L/H) movdqa xmm3, xmm2 ; xmm3=xmm2=(G-Y)(L/H) movdqa xmm5, xmm4 ; xmm5=xmm4=(B-Y)(L/H) paddw xmm0, xmm6 ; xmm0=((R-Y)+YE)=RE=R(02468ACE) paddw xmm1, xmm7 ; xmm1=((R-Y)+YO)=RO=R(13579BDF) packuswb xmm0, xmm0 ; xmm0=R(02468ACE********) packuswb xmm1, xmm1 ; xmm1=R(13579BDF********) paddw xmm2, xmm6 ; xmm2=((G-Y)+YE)=GE=G(02468ACE) paddw xmm3, xmm7 ; xmm3=((G-Y)+YO)=GO=G(13579BDF) packuswb xmm2, xmm2 ; xmm2=G(02468ACE********) packuswb xmm3, xmm3 ; xmm3=G(13579BDF********) paddw xmm4, xmm6 ; xmm4=((B-Y)+YE)=BE=B(02468ACE) paddw xmm5, xmm7 ; xmm5=((B-Y)+YO)=BO=B(13579BDF) packuswb xmm4, xmm4 ; xmm4=B(02468ACE********) packuswb xmm5, xmm5 ; xmm5=B(13579BDF********) %if RGB_PIXELSIZE == 3 ; --------------- ; xmmA=(00 02 04 06 08 0A 0C 0E **), xmmB=(01 03 05 07 09 0B 0D 0F **) ; xmmC=(10 12 14 16 18 1A 1C 1E **), xmmD=(11 13 15 17 19 1B 1D 1F **) ; xmmE=(20 22 24 26 28 2A 2C 2E **), xmmF=(21 23 25 27 29 2B 2D 2F **) ; xmmG=(** ** ** ** ** ** ** ** **), xmmH=(** ** ** ** ** ** ** ** **) punpcklbw xmmA, xmmC ; xmmA=(00 10 02 12 04 14 06 16 08 18 0A 1A 0C 1C 0E 1E) punpcklbw xmmE, xmmB ; xmmE=(20 01 22 03 24 05 26 07 28 09 2A 0B 2C 0D 2E 0F) punpcklbw xmmD, xmmF ; xmmD=(11 21 13 23 15 25 17 27 19 29 1B 2B 1D 2D 1F 2F) movdqa xmmG, xmmA movdqa xmmH, xmmA punpcklwd xmmA, xmmE ; xmmA=(00 10 20 01 02 12 22 03 04 14 24 05 06 16 26 07) punpckhwd xmmG, xmmE ; xmmG=(08 18 28 09 0A 1A 2A 0B 0C 1C 2C 0D 0E 1E 2E 0F) psrldq xmmH, 2 ; xmmH=(02 12 04 14 06 16 08 18 0A 1A 0C 1C 0E 1E -- --) psrldq xmmE, 2 ; xmmE=(22 03 24 05 26 07 28 09 2A 0B 2C 0D 2E 0F -- --) movdqa xmmC, xmmD movdqa xmmB, xmmD punpcklwd xmmD, xmmH ; xmmD=(11 21 02 12 13 23 04 14 15 25 06 16 17 27 08 18) punpckhwd xmmC, xmmH ; xmmC=(19 29 0A 1A 1B 2B 0C 1C 1D 2D 0E 1E 1F 2F -- --) psrldq xmmB, 2 ; xmmB=(13 23 15 25 17 27 19 29 1B 2B 1D 2D 1F 2F -- --) movdqa xmmF, xmmE punpcklwd xmmE, xmmB ; xmmE=(22 03 13 23 24 05 15 25 26 07 17 27 28 09 19 29) punpckhwd xmmF, xmmB ; xmmF=(2A 0B 1B 2B 2C 0D 1D 2D 2E 0F 1F 2F -- -- -- --) pshufd xmmH, xmmA, 0x4E ; xmmH=(04 14 24 05 06 16 26 07 00 10 20 01 02 12 22 03) movdqa xmmB, xmmE punpckldq xmmA, xmmD ; xmmA=(00 10 20 01 11 21 02 12 02 12 22 03 13 23 04 14) punpckldq xmmE, xmmH ; xmmE=(22 03 13 23 04 14 24 05 24 05 15 25 06 16 26 07) punpckhdq xmmD, xmmB ; xmmD=(15 25 06 16 26 07 17 27 17 27 08 18 28 09 19 29) pshufd xmmH, xmmG, 0x4E ; xmmH=(0C 1C 2C 0D 0E 1E 2E 0F 08 18 28 09 0A 1A 2A 0B) movdqa xmmB, xmmF punpckldq xmmG, xmmC ; xmmG=(08 18 28 09 19 29 0A 1A 0A 1A 2A 0B 1B 2B 0C 1C) punpckldq xmmF, xmmH ; xmmF=(2A 0B 1B 2B 0C 1C 2C 0D 2C 0D 1D 2D 0E 1E 2E 0F) punpckhdq xmmC, xmmB ; xmmC=(1D 2D 0E 1E 2E 0F 1F 2F 1F 2F -- -- -- -- -- --) punpcklqdq xmmA, xmmE ; xmmA=(00 10 20 01 11 21 02 12 22 03 13 23 04 14 24 05) punpcklqdq xmmD, xmmG ; xmmD=(15 25 06 16 26 07 17 27 08 18 28 09 19 29 0A 1A) punpcklqdq xmmF, xmmC ; xmmF=(2A 0B 1B 2B 0C 1C 2C 0D 1D 2D 0E 1E 2E 0F 1F 2F) cmp rcx, byte SIZEOF_XMMWORD jb short .column_st32 test rdi, SIZEOF_XMMWORD-1 jnz short .out1 ; --(aligned)------------------- movntdq XMMWORD [rdi+0*SIZEOF_XMMWORD], xmmA movntdq XMMWORD [rdi+1*SIZEOF_XMMWORD], xmmD movntdq XMMWORD [rdi+2*SIZEOF_XMMWORD], xmmF jmp short .out0 .out1: ; --(unaligned)----------------- movdqu XMMWORD [rdi+0*SIZEOF_XMMWORD], xmmA movdqu XMMWORD [rdi+1*SIZEOF_XMMWORD], xmmD movdqu XMMWORD [rdi+2*SIZEOF_XMMWORD], xmmF .out0: add rdi, byte RGB_PIXELSIZE*SIZEOF_XMMWORD ; outptr sub rcx, byte SIZEOF_XMMWORD jz near .endcolumn add rsi, byte SIZEOF_XMMWORD ; inptr0 dec al ; Yctr jnz near .Yloop_2nd add rbx, byte SIZEOF_XMMWORD ; inptr1 add rdx, byte SIZEOF_XMMWORD ; inptr2 jmp near .columnloop .column_st32: lea rcx, [rcx+rcx*2] ; imul ecx, RGB_PIXELSIZE cmp rcx, byte 2*SIZEOF_XMMWORD jb short .column_st16 movdqu XMMWORD [rdi+0*SIZEOF_XMMWORD], xmmA movdqu XMMWORD [rdi+1*SIZEOF_XMMWORD], xmmD add rdi, byte 2*SIZEOF_XMMWORD ; outptr movdqa xmmA, xmmF sub rcx, byte 2*SIZEOF_XMMWORD jmp short .column_st15 .column_st16: cmp rcx, byte SIZEOF_XMMWORD jb short .column_st15 movdqu XMMWORD [rdi+0*SIZEOF_XMMWORD], xmmA add rdi, byte SIZEOF_XMMWORD ; outptr movdqa xmmA, xmmD sub rcx, byte SIZEOF_XMMWORD .column_st15: ; Store the lower 8 bytes of xmmA to the output when it has enough ; space. cmp rcx, byte SIZEOF_MMWORD jb short .column_st7 movq XMM_MMWORD [rdi], xmmA add rdi, byte SIZEOF_MMWORD sub rcx, byte SIZEOF_MMWORD psrldq xmmA, SIZEOF_MMWORD .column_st7: ; Store the lower 4 bytes of xmmA to the output when it has enough ; space. cmp rcx, byte SIZEOF_DWORD jb short .column_st3 movd XMM_DWORD [rdi], xmmA add rdi, byte SIZEOF_DWORD sub rcx, byte SIZEOF_DWORD psrldq xmmA, SIZEOF_DWORD .column_st3: ; Store the lower 2 bytes of rax to the output when it has enough ; space. movd eax, xmmA cmp rcx, byte SIZEOF_WORD jb short .column_st1 mov word [rdi], ax add rdi, byte SIZEOF_WORD sub rcx, byte SIZEOF_WORD shr rax, 16 .column_st1: ; Store the lower 1 byte of rax to the output when it has enough ; space. test rcx, rcx jz short .endcolumn mov byte [rdi], al %else ; RGB_PIXELSIZE == 4 ; ----------- %ifdef RGBX_FILLER_0XFF pcmpeqb xmm6, xmm6 ; xmm6=XE=X(02468ACE********) pcmpeqb xmm7, xmm7 ; xmm7=XO=X(13579BDF********) %else pxor xmm6, xmm6 ; xmm6=XE=X(02468ACE********) pxor xmm7, xmm7 ; xmm7=XO=X(13579BDF********) %endif ; xmmA=(00 02 04 06 08 0A 0C 0E **), xmmB=(01 03 05 07 09 0B 0D 0F **) ; xmmC=(10 12 14 16 18 1A 1C 1E **), xmmD=(11 13 15 17 19 1B 1D 1F **) ; xmmE=(20 22 24 26 28 2A 2C 2E **), xmmF=(21 23 25 27 29 2B 2D 2F **) ; xmmG=(30 32 34 36 38 3A 3C 3E **), xmmH=(31 33 35 37 39 3B 3D 3F **) punpcklbw xmmA, xmmC ; xmmA=(00 10 02 12 04 14 06 16 08 18 0A 1A 0C 1C 0E 1E) punpcklbw xmmE, xmmG ; xmmE=(20 30 22 32 24 34 26 36 28 38 2A 3A 2C 3C 2E 3E) punpcklbw xmmB, xmmD ; xmmB=(01 11 03 13 05 15 07 17 09 19 0B 1B 0D 1D 0F 1F) punpcklbw xmmF, xmmH ; xmmF=(21 31 23 33 25 35 27 37 29 39 2B 3B 2D 3D 2F 3F) movdqa xmmC, xmmA punpcklwd xmmA, xmmE ; xmmA=(00 10 20 30 02 12 22 32 04 14 24 34 06 16 26 36) punpckhwd xmmC, xmmE ; xmmC=(08 18 28 38 0A 1A 2A 3A 0C 1C 2C 3C 0E 1E 2E 3E) movdqa xmmG, xmmB punpcklwd xmmB, xmmF ; xmmB=(01 11 21 31 03 13 23 33 05 15 25 35 07 17 27 37) punpckhwd xmmG, xmmF ; xmmG=(09 19 29 39 0B 1B 2B 3B 0D 1D 2D 3D 0F 1F 2F 3F) movdqa xmmD, xmmA punpckldq xmmA, xmmB ; xmmA=(00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33) punpckhdq xmmD, xmmB ; xmmD=(04 14 24 34 05 15 25 35 06 16 26 36 07 17 27 37) movdqa xmmH, xmmC punpckldq xmmC, xmmG ; xmmC=(08 18 28 38 09 19 29 39 0A 1A 2A 3A 0B 1B 2B 3B) punpckhdq xmmH, xmmG ; xmmH=(0C 1C 2C 3C 0D 1D 2D 3D 0E 1E 2E 3E 0F 1F 2F 3F) cmp rcx, byte SIZEOF_XMMWORD jb short .column_st32 test rdi, SIZEOF_XMMWORD-1 jnz short .out1 ; --(aligned)------------------- movntdq XMMWORD [rdi+0*SIZEOF_XMMWORD], xmmA movntdq XMMWORD [rdi+1*SIZEOF_XMMWORD], xmmD movntdq XMMWORD [rdi+2*SIZEOF_XMMWORD], xmmC movntdq XMMWORD [rdi+3*SIZEOF_XMMWORD], xmmH jmp short .out0 .out1: ; --(unaligned)----------------- movdqu XMMWORD [rdi+0*SIZEOF_XMMWORD], xmmA movdqu XMMWORD [rdi+1*SIZEOF_XMMWORD], xmmD movdqu XMMWORD [rdi+2*SIZEOF_XMMWORD], xmmC movdqu XMMWORD [rdi+3*SIZEOF_XMMWORD], xmmH .out0: add rdi, byte RGB_PIXELSIZE*SIZEOF_XMMWORD ; outptr sub rcx, byte SIZEOF_XMMWORD jz near .endcolumn add rsi, byte SIZEOF_XMMWORD ; inptr0 dec al ; Yctr jnz near .Yloop_2nd add rbx, byte SIZEOF_XMMWORD ; inptr1 add rdx, byte SIZEOF_XMMWORD ; inptr2 jmp near .columnloop .column_st32: cmp rcx, byte SIZEOF_XMMWORD/2 jb short .column_st16 movdqu XMMWORD [rdi+0*SIZEOF_XMMWORD], xmmA movdqu XMMWORD [rdi+1*SIZEOF_XMMWORD], xmmD add rdi, byte 2*SIZEOF_XMMWORD ; outptr movdqa xmmA, xmmC movdqa xmmD, xmmH sub rcx, byte SIZEOF_XMMWORD/2 .column_st16: cmp rcx, byte SIZEOF_XMMWORD/4 jb short .column_st15 movdqu XMMWORD [rdi+0*SIZEOF_XMMWORD], xmmA add rdi, byte SIZEOF_XMMWORD ; outptr movdqa xmmA, xmmD sub rcx, byte SIZEOF_XMMWORD/4 .column_st15: ; Store two pixels (8 bytes) of xmmA to the output when it has enough ; space. cmp rcx, byte SIZEOF_XMMWORD/8 jb short .column_st7 movq XMM_MMWORD [rdi], xmmA add rdi, byte SIZEOF_XMMWORD/8*4 sub rcx, byte SIZEOF_XMMWORD/8 psrldq xmmA, SIZEOF_XMMWORD/8*4 .column_st7: ; Store one pixel (4 bytes) of xmmA to the output when it has enough ; space. test rcx, rcx jz short .endcolumn movd XMM_DWORD [rdi], xmmA %endif ; RGB_PIXELSIZE ; --------------- .endcolumn: sfence ; flush the write buffer .return: pop rbx uncollect_args 4 mov rsp, rbp ; rsp <- aligned rbp pop rsp ; rsp <- original rbp pop rbp ret ; -------------------------------------------------------------------------- ; ; Upsample and color convert for the case of 2:1 horizontal and 2:1 vertical. ; ; GLOBAL(void) ; jsimd_h2v2_merged_upsample_sse2(JDIMENSION output_width, ; JSAMPIMAGE input_buf, ; JDIMENSION in_row_group_ctr, ; JSAMPARRAY output_buf); ; ; r10d = JDIMENSION output_width ; r11 = JSAMPIMAGE input_buf ; r12d = JDIMENSION in_row_group_ctr ; r13 = JSAMPARRAY output_buf align 32 GLOBAL_FUNCTION(jsimd_h2v2_merged_upsample_sse2) EXTN(jsimd_h2v2_merged_upsample_sse2): push rbp mov rax, rsp mov rbp, rsp collect_args 4 push rbx mov eax, r10d mov rdi, r11 mov ecx, r12d mov rsip, JSAMPARRAY [rdi+0*SIZEOF_JSAMPARRAY] mov rbxp, JSAMPARRAY [rdi+1*SIZEOF_JSAMPARRAY] mov rdxp, JSAMPARRAY [rdi+2*SIZEOF_JSAMPARRAY] mov rdi, r13 lea rsi, [rsi+rcx*SIZEOF_JSAMPROW] sub rsp, SIZEOF_JSAMPARRAY*4 mov JSAMPARRAY [rsp+0*SIZEOF_JSAMPARRAY], rsip ; intpr00 mov JSAMPARRAY [rsp+1*SIZEOF_JSAMPARRAY], rbxp ; intpr1 mov JSAMPARRAY [rsp+2*SIZEOF_JSAMPARRAY], rdxp ; intpr2 mov rbx, rsp push rdi push rcx push rax %ifdef WIN64 mov r8, rcx mov r9, rdi mov rcx, rax mov rdx, rbx %else mov rdx, rcx mov rcx, rdi mov rdi, rax mov rsi, rbx %endif call EXTN(jsimd_h2v1_merged_upsample_sse2) pop rax pop rcx pop rdi mov rsip, JSAMPARRAY [rsp+0*SIZEOF_JSAMPARRAY] mov rbxp, JSAMPARRAY [rsp+1*SIZEOF_JSAMPARRAY] mov rdxp, JSAMPARRAY [rsp+2*SIZEOF_JSAMPARRAY] add rdi, byte SIZEOF_JSAMPROW ; outptr1 add rsi, byte SIZEOF_JSAMPROW ; inptr01 mov JSAMPARRAY [rsp+0*SIZEOF_JSAMPARRAY], rsip ; intpr00 mov JSAMPARRAY [rsp+1*SIZEOF_JSAMPARRAY], rbxp ; intpr1 mov JSAMPARRAY [rsp+2*SIZEOF_JSAMPARRAY], rdxp ; intpr2 mov rbx, rsp push rdi push rcx push rax %ifdef WIN64 mov r8, rcx mov r9, rdi mov rcx, rax mov rdx, rbx %else mov rdx, rcx mov rcx, rdi mov rdi, rax mov rsi, rbx %endif call EXTN(jsimd_h2v1_merged_upsample_sse2) pop rax pop rcx pop rdi mov rsip, JSAMPARRAY [rsp+0*SIZEOF_JSAMPARRAY] mov rbxp, JSAMPARRAY [rsp+1*SIZEOF_JSAMPARRAY] mov rdxp, JSAMPARRAY [rsp+2*SIZEOF_JSAMPARRAY] add rsp, SIZEOF_JSAMPARRAY*4 pop rbx uncollect_args 4 pop rbp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/x86_64/jdsample-avx2.asm000066400000000000000000000662161436506551100213560ustar00rootroot00000000000000; ; jdsample.asm - upsampling (64-bit AVX2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2009, 2016, D. R. Commander. ; Copyright (C) 2015, Intel Corporation. ; Copyright (C) 2018, Matthias Räncker. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jsimdext.inc" ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 32 GLOBAL_DATA(jconst_fancy_upsample_avx2) EXTN(jconst_fancy_upsample_avx2): PW_ONE times 16 dw 1 PW_TWO times 16 dw 2 PW_THREE times 16 dw 3 PW_SEVEN times 16 dw 7 PW_EIGHT times 16 dw 8 alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 64 ; ; Fancy processing for the common case of 2:1 horizontal and 1:1 vertical. ; ; The upsampling algorithm is linear interpolation between pixel centers, ; also known as a "triangle filter". This is a good compromise between ; speed and visual quality. The centers of the output pixels are 1/4 and 3/4 ; of the way between input pixel centers. ; ; GLOBAL(void) ; jsimd_h2v1_fancy_upsample_avx2(int max_v_samp_factor, ; JDIMENSION downsampled_width, ; JSAMPARRAY input_data, ; JSAMPARRAY *output_data_ptr); ; ; r10 = int max_v_samp_factor ; r11d = JDIMENSION downsampled_width ; r12 = JSAMPARRAY input_data ; r13 = JSAMPARRAY *output_data_ptr align 32 GLOBAL_FUNCTION(jsimd_h2v1_fancy_upsample_avx2) EXTN(jsimd_h2v1_fancy_upsample_avx2): push rbp mov rax, rsp mov rbp, rsp push_xmm 3 collect_args 4 mov eax, r11d ; colctr test rax, rax jz near .return mov rcx, r10 ; rowctr test rcx, rcx jz near .return mov rsi, r12 ; input_data mov rdi, r13 mov rdip, JSAMPARRAY [rdi] ; output_data vpxor ymm0, ymm0, ymm0 ; ymm0=(all 0's) vpcmpeqb xmm9, xmm9, xmm9 vpsrldq xmm10, xmm9, (SIZEOF_XMMWORD-1) ; (ff -- -- -- ... -- --) LSB is ff vpslldq xmm9, xmm9, (SIZEOF_XMMWORD-1) vperm2i128 ymm9, ymm9, ymm9, 1 ; (---- ---- ... ---- ---- ff) MSB is ff .rowloop: push rax ; colctr push rdi push rsi mov rsip, JSAMPROW [rsi] ; inptr mov rdip, JSAMPROW [rdi] ; outptr test rax, SIZEOF_YMMWORD-1 jz short .skip mov dl, JSAMPLE [rsi+(rax-1)*SIZEOF_JSAMPLE] mov JSAMPLE [rsi+rax*SIZEOF_JSAMPLE], dl ; insert a dummy sample .skip: vpand ymm7, ymm10, YMMWORD [rsi+0*SIZEOF_YMMWORD] add rax, byte SIZEOF_YMMWORD-1 and rax, byte -SIZEOF_YMMWORD cmp rax, byte SIZEOF_YMMWORD ja short .columnloop .columnloop_last: vpand ymm6, ymm9, YMMWORD [rsi+0*SIZEOF_YMMWORD] jmp short .upsample .columnloop: vmovdqu ymm6, YMMWORD [rsi+1*SIZEOF_YMMWORD] vperm2i128 ymm6, ymm0, ymm6, 0x20 vpslldq ymm6, ymm6, 15 .upsample: vmovdqu ymm1, YMMWORD [rsi+0*SIZEOF_YMMWORD] ; ymm1=( 0 1 2 ... 29 30 31) vperm2i128 ymm2, ymm0, ymm1, 0x20 vpalignr ymm2, ymm1, ymm2, 15 ; ymm2=(-- 0 1 ... 28 29 30) vperm2i128 ymm4, ymm0, ymm1, 0x03 vpalignr ymm3, ymm4, ymm1, 1 ; ymm3=( 1 2 3 ... 30 31 --) vpor ymm2, ymm2, ymm7 ; ymm2=(-1 0 1 ... 28 29 30) vpor ymm3, ymm3, ymm6 ; ymm3=( 1 2 3 ... 30 31 32) vpsrldq ymm7, ymm4, (SIZEOF_XMMWORD-1) ; ymm7=(31 -- -- ... -- -- --) vpunpckhbw ymm4, ymm1, ymm0 ; ymm4=( 8 9 10 11 12 13 14 15 24 25 26 27 28 29 30 31) vpunpcklbw ymm5, ymm1, ymm0 ; ymm5=( 0 1 2 3 4 5 6 7 16 17 18 19 20 21 22 23) vperm2i128 ymm1, ymm5, ymm4, 0x20 ; ymm1=( 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15) vperm2i128 ymm4, ymm5, ymm4, 0x31 ; ymm4=(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31) vpunpckhbw ymm5, ymm2, ymm0 ; ymm5=( 7 8 9 10 11 12 13 14 23 24 25 26 27 28 29 30) vpunpcklbw ymm6, ymm2, ymm0 ; ymm6=(-1 0 1 2 3 4 5 6 15 16 17 18 19 20 21 22) vperm2i128 ymm2, ymm6, ymm5, 0x20 ; ymm2=(-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14) vperm2i128 ymm5, ymm6, ymm5, 0x31 ; ymm5=(15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30) vpunpckhbw ymm6, ymm3, ymm0 ; ymm6=( 1 2 3 4 5 6 7 8 17 18 19 20 21 22 23 24) vpunpcklbw ymm8, ymm3, ymm0 ; ymm8=( 9 10 11 12 13 14 15 16 25 26 27 28 29 30 31 32) vperm2i128 ymm3, ymm8, ymm6, 0x20 ; ymm3=( 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16) vperm2i128 ymm6, ymm8, ymm6, 0x31 ; ymm6=(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32) vpmullw ymm1, ymm1, [rel PW_THREE] vpmullw ymm4, ymm4, [rel PW_THREE] vpaddw ymm2, ymm2, [rel PW_ONE] vpaddw ymm5, ymm5, [rel PW_ONE] vpaddw ymm3, ymm3, [rel PW_TWO] vpaddw ymm6, ymm6, [rel PW_TWO] vpaddw ymm2, ymm2, ymm1 vpaddw ymm5, ymm5, ymm4 vpsrlw ymm2, ymm2, 2 ; ymm2=OutLE=( 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30) vpsrlw ymm5, ymm5, 2 ; ymm5=OutHE=(32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62) vpaddw ymm3, ymm3, ymm1 vpaddw ymm6, ymm6, ymm4 vpsrlw ymm3, ymm3, 2 ; ymm3=OutLO=( 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31) vpsrlw ymm6, ymm6, 2 ; ymm6=OutHO=(33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63) vpsllw ymm3, ymm3, BYTE_BIT vpsllw ymm6, ymm6, BYTE_BIT vpor ymm2, ymm2, ymm3 ; ymm2=OutL=( 0 1 2 ... 29 30 31) vpor ymm5, ymm5, ymm6 ; ymm5=OutH=(32 33 34 ... 61 62 63) vmovdqu YMMWORD [rdi+0*SIZEOF_YMMWORD], ymm2 vmovdqu YMMWORD [rdi+1*SIZEOF_YMMWORD], ymm5 sub rax, byte SIZEOF_YMMWORD add rsi, byte 1*SIZEOF_YMMWORD ; inptr add rdi, byte 2*SIZEOF_YMMWORD ; outptr cmp rax, byte SIZEOF_YMMWORD ja near .columnloop test eax, eax jnz near .columnloop_last pop rsi pop rdi pop rax add rsi, byte SIZEOF_JSAMPROW ; input_data add rdi, byte SIZEOF_JSAMPROW ; output_data dec rcx ; rowctr jg near .rowloop .return: vzeroupper uncollect_args 4 pop_xmm 3 pop rbp ret ; -------------------------------------------------------------------------- ; ; Fancy processing for the common case of 2:1 horizontal and 2:1 vertical. ; Again a triangle filter; see comments for h2v1 case, above. ; ; GLOBAL(void) ; jsimd_h2v2_fancy_upsample_avx2(int max_v_samp_factor, ; JDIMENSION downsampled_width, ; JSAMPARRAY input_data, ; JSAMPARRAY *output_data_ptr); ; ; r10 = int max_v_samp_factor ; r11d = JDIMENSION downsampled_width ; r12 = JSAMPARRAY input_data ; r13 = JSAMPARRAY *output_data_ptr %define wk(i) rbp - (WK_NUM - (i)) * SIZEOF_YMMWORD ; ymmword wk[WK_NUM] %define WK_NUM 4 align 32 GLOBAL_FUNCTION(jsimd_h2v2_fancy_upsample_avx2) EXTN(jsimd_h2v2_fancy_upsample_avx2): push rbp mov rax, rsp ; rax = original rbp sub rsp, byte 4 and rsp, byte (-SIZEOF_YMMWORD) ; align to 256 bits mov [rsp], rax mov rbp, rsp ; rbp = aligned rbp lea rsp, [wk(0)] push_xmm 3 collect_args 4 push rbx mov eax, r11d ; colctr test rax, rax jz near .return mov rcx, r10 ; rowctr test rcx, rcx jz near .return mov rsi, r12 ; input_data mov rdi, r13 mov rdip, JSAMPARRAY [rdi] ; output_data .rowloop: push rax ; colctr push rcx push rdi push rsi mov rcxp, JSAMPROW [rsi-1*SIZEOF_JSAMPROW] ; inptr1(above) mov rbxp, JSAMPROW [rsi+0*SIZEOF_JSAMPROW] ; inptr0 mov rsip, JSAMPROW [rsi+1*SIZEOF_JSAMPROW] ; inptr1(below) mov rdxp, JSAMPROW [rdi+0*SIZEOF_JSAMPROW] ; outptr0 mov rdip, JSAMPROW [rdi+1*SIZEOF_JSAMPROW] ; outptr1 vpxor ymm8, ymm8, ymm8 ; ymm8=(all 0's) vpcmpeqb xmm9, xmm9, xmm9 vpsrldq xmm10, xmm9, (SIZEOF_XMMWORD-2) ; (ffff ---- ---- ... ---- ----) LSB is ffff vpslldq xmm9, xmm9, (SIZEOF_XMMWORD-2) vperm2i128 ymm9, ymm9, ymm9, 1 ; (---- ---- ... ---- ---- ffff) MSB is ffff test rax, SIZEOF_YMMWORD-1 jz short .skip push rdx mov dl, JSAMPLE [rcx+(rax-1)*SIZEOF_JSAMPLE] mov JSAMPLE [rcx+rax*SIZEOF_JSAMPLE], dl mov dl, JSAMPLE [rbx+(rax-1)*SIZEOF_JSAMPLE] mov JSAMPLE [rbx+rax*SIZEOF_JSAMPLE], dl mov dl, JSAMPLE [rsi+(rax-1)*SIZEOF_JSAMPLE] mov JSAMPLE [rsi+rax*SIZEOF_JSAMPLE], dl ; insert a dummy sample pop rdx .skip: ; -- process the first column block vmovdqu ymm0, YMMWORD [rbx+0*SIZEOF_YMMWORD] ; ymm0=row[ 0][0] vmovdqu ymm1, YMMWORD [rcx+0*SIZEOF_YMMWORD] ; ymm1=row[-1][0] vmovdqu ymm2, YMMWORD [rsi+0*SIZEOF_YMMWORD] ; ymm2=row[+1][0] vpunpckhbw ymm4, ymm0, ymm8 ; ymm4=row[ 0]( 8 9 10 11 12 13 14 15 24 25 26 27 28 29 30 31) vpunpcklbw ymm5, ymm0, ymm8 ; ymm5=row[ 0]( 0 1 2 3 4 5 6 7 16 17 18 19 20 21 22 23) vperm2i128 ymm0, ymm5, ymm4, 0x20 ; ymm0=row[ 0]( 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15) vperm2i128 ymm4, ymm5, ymm4, 0x31 ; ymm4=row[ 0](16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31) vpunpckhbw ymm5, ymm1, ymm8 ; ymm5=row[-1]( 8 9 10 11 12 13 14 15 24 25 26 27 28 29 30 31) vpunpcklbw ymm6, ymm1, ymm8 ; ymm6=row[-1]( 0 1 2 3 4 5 6 7 16 17 18 19 20 21 22 23) vperm2i128 ymm1, ymm6, ymm5, 0x20 ; ymm1=row[-1]( 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15) vperm2i128 ymm5, ymm6, ymm5, 0x31 ; ymm5=row[-1](16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31) vpunpckhbw ymm6, ymm2, ymm8 ; ymm6=row[+1]( 8 9 10 11 12 13 14 15 24 25 26 27 28 29 30 31) vpunpcklbw ymm3, ymm2, ymm8 ; ymm3=row[+1]( 0 1 2 3 4 5 6 7 16 17 18 19 20 21 22 23) vperm2i128 ymm2, ymm3, ymm6, 0x20 ; ymm2=row[+1]( 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15) vperm2i128 ymm6, ymm3, ymm6, 0x31 ; ymm6=row[+1](16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31) vpmullw ymm0, ymm0, [rel PW_THREE] vpmullw ymm4, ymm4, [rel PW_THREE] vpaddw ymm1, ymm1, ymm0 ; ymm1=Int0L=( 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15) vpaddw ymm5, ymm5, ymm4 ; ymm5=Int0H=(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31) vpaddw ymm2, ymm2, ymm0 ; ymm2=Int1L=( 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15) vpaddw ymm6, ymm6, ymm4 ; ymm6=Int1H=(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31) vmovdqu YMMWORD [rdx+0*SIZEOF_YMMWORD], ymm1 ; temporarily save vmovdqu YMMWORD [rdx+1*SIZEOF_YMMWORD], ymm5 ; the intermediate data vmovdqu YMMWORD [rdi+0*SIZEOF_YMMWORD], ymm2 vmovdqu YMMWORD [rdi+1*SIZEOF_YMMWORD], ymm6 vpand ymm1, ymm1, ymm10 ; ymm1=( 0 -- -- -- -- -- -- -- -- -- -- -- -- -- -- --) vpand ymm2, ymm2, ymm10 ; ymm2=( 0 -- -- -- -- -- -- -- -- -- -- -- -- -- -- --) vmovdqa YMMWORD [wk(0)], ymm1 vmovdqa YMMWORD [wk(1)], ymm2 add rax, byte SIZEOF_YMMWORD-1 and rax, byte -SIZEOF_YMMWORD cmp rax, byte SIZEOF_YMMWORD ja short .columnloop .columnloop_last: ; -- process the last column block vpand ymm1, ymm9, YMMWORD [rdx+1*SIZEOF_YMMWORD] vpand ymm2, ymm9, YMMWORD [rdi+1*SIZEOF_YMMWORD] vmovdqa YMMWORD [wk(2)], ymm1 ; ymm1=(-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 31) vmovdqa YMMWORD [wk(3)], ymm2 ; ymm2=(-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 31) jmp near .upsample .columnloop: ; -- process the next column block vmovdqu ymm0, YMMWORD [rbx+1*SIZEOF_YMMWORD] ; ymm0=row[ 0][1] vmovdqu ymm1, YMMWORD [rcx+1*SIZEOF_YMMWORD] ; ymm1=row[-1][1] vmovdqu ymm2, YMMWORD [rsi+1*SIZEOF_YMMWORD] ; ymm2=row[+1][1] vpunpckhbw ymm4, ymm0, ymm8 ; ymm4=row[ 0]( 8 9 10 11 12 13 14 15 24 25 26 27 28 29 30 31) vpunpcklbw ymm5, ymm0, ymm8 ; ymm5=row[ 0]( 0 1 2 3 4 5 6 7 16 17 18 19 20 21 22 23) vperm2i128 ymm0, ymm5, ymm4, 0x20 ; ymm0=row[ 0]( 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15) vperm2i128 ymm4, ymm5, ymm4, 0x31 ; ymm4=row[ 0](16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31) vpunpckhbw ymm5, ymm1, ymm8 ; ymm5=row[-1]( 8 9 10 11 12 13 14 15 24 25 26 27 28 29 30 31) vpunpcklbw ymm6, ymm1, ymm8 ; ymm6=row[-1]( 0 1 2 3 4 5 6 7 16 17 18 19 20 21 22 23) vperm2i128 ymm1, ymm6, ymm5, 0x20 ; ymm1=row[-1]( 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15) vperm2i128 ymm5, ymm6, ymm5, 0x31 ; ymm5=row[-1](16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31) vpunpckhbw ymm6, ymm2, ymm8 ; ymm6=row[+1]( 8 9 10 11 12 13 14 15 24 25 26 27 28 29 30 31) vpunpcklbw ymm7, ymm2, ymm8 ; ymm7=row[+1]( 0 1 2 3 4 5 6 7 16 17 18 19 20 21 22 23) vperm2i128 ymm2, ymm7, ymm6, 0x20 ; ymm2=row[+1]( 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15) vperm2i128 ymm6, ymm7, ymm6, 0x31 ; ymm6=row[+1](16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31) vpmullw ymm0, ymm0, [rel PW_THREE] vpmullw ymm4, ymm4, [rel PW_THREE] vpaddw ymm1, ymm1, ymm0 ; ymm1=Int0L=( 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15) vpaddw ymm5, ymm5, ymm4 ; ymm5=Int0H=(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31) vpaddw ymm2, ymm2, ymm0 ; ymm2=Int1L=( 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15) vpaddw ymm6, ymm6, ymm4 ; ymm6=Int1H=(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31) vmovdqu YMMWORD [rdx+2*SIZEOF_YMMWORD], ymm1 ; temporarily save vmovdqu YMMWORD [rdx+3*SIZEOF_YMMWORD], ymm5 ; the intermediate data vmovdqu YMMWORD [rdi+2*SIZEOF_YMMWORD], ymm2 vmovdqu YMMWORD [rdi+3*SIZEOF_YMMWORD], ymm6 vperm2i128 ymm1, ymm8, ymm1, 0x20 vpslldq ymm1, ymm1, 14 ; ymm1=(-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 0) vperm2i128 ymm2, ymm8, ymm2, 0x20 vpslldq ymm2, ymm2, 14 ; ymm2=(-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 0) vmovdqa YMMWORD [wk(2)], ymm1 vmovdqa YMMWORD [wk(3)], ymm2 .upsample: ; -- process the upper row vmovdqu ymm7, YMMWORD [rdx+0*SIZEOF_YMMWORD] ; ymm7=Int0L=( 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15) vmovdqu ymm3, YMMWORD [rdx+1*SIZEOF_YMMWORD] ; ymm3=Int0H=(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31) vperm2i128 ymm0, ymm8, ymm7, 0x03 vpalignr ymm0, ymm0, ymm7, 2 ; ymm0=( 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 --) vperm2i128 ymm4, ymm8, ymm3, 0x20 vpslldq ymm4, ymm4, 14 ; ymm4=(-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 16) vperm2i128 ymm5, ymm8, ymm7, 0x03 vpsrldq ymm5, ymm5, 14 ; ymm5=(15 -- -- -- -- -- -- -- -- -- -- -- -- -- -- --) vperm2i128 ymm6, ymm8, ymm3, 0x20 vpalignr ymm6, ymm3, ymm6, 14 ; ymm6=(-- 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30) vpor ymm0, ymm0, ymm4 ; ymm0=( 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16) vpor ymm5, ymm5, ymm6 ; ymm5=(15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30) vperm2i128 ymm2, ymm8, ymm3, 0x03 vpalignr ymm2, ymm2, ymm3, 2 ; ymm2=(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 --) vperm2i128 ymm4, ymm8, ymm3, 0x03 vpsrldq ymm4, ymm4, 14 ; ymm4=(31 -- -- -- -- -- -- -- -- -- -- -- -- -- -- --) vperm2i128 ymm1, ymm8, ymm7, 0x20 vpalignr ymm1, ymm7, ymm1, 14 ; ymm1=(-- 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14) vpor ymm1, ymm1, YMMWORD [wk(0)] ; ymm1=(-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14) vpor ymm2, ymm2, YMMWORD [wk(2)] ; ymm2=(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32) vmovdqa YMMWORD [wk(0)], ymm4 vpmullw ymm7, ymm7, [rel PW_THREE] vpmullw ymm3, ymm3, [rel PW_THREE] vpaddw ymm1, ymm1, [rel PW_EIGHT] vpaddw ymm5, ymm5, [rel PW_EIGHT] vpaddw ymm0, ymm0, [rel PW_SEVEN] vpaddw ymm2, [rel PW_SEVEN] vpaddw ymm1, ymm1, ymm7 vpaddw ymm5, ymm5, ymm3 vpsrlw ymm1, ymm1, 4 ; ymm1=Out0LE=( 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30) vpsrlw ymm5, ymm5, 4 ; ymm5=Out0HE=(32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62) vpaddw ymm0, ymm0, ymm7 vpaddw ymm2, ymm2, ymm3 vpsrlw ymm0, ymm0, 4 ; ymm0=Out0LO=( 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31) vpsrlw ymm2, ymm2, 4 ; ymm2=Out0HO=(33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63) vpsllw ymm0, ymm0, BYTE_BIT vpsllw ymm2, ymm2, BYTE_BIT vpor ymm1, ymm1, ymm0 ; ymm1=Out0L=( 0 1 2 ... 29 30 31) vpor ymm5, ymm5, ymm2 ; ymm5=Out0H=(32 33 34 ... 61 62 63) vmovdqu YMMWORD [rdx+0*SIZEOF_YMMWORD], ymm1 vmovdqu YMMWORD [rdx+1*SIZEOF_YMMWORD], ymm5 ; -- process the lower row vmovdqu ymm6, YMMWORD [rdi+0*SIZEOF_YMMWORD] ; ymm6=Int1L=( 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15) vmovdqu ymm4, YMMWORD [rdi+1*SIZEOF_YMMWORD] ; ymm4=Int1H=(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31) vperm2i128 ymm7, ymm8, ymm6, 0x03 vpalignr ymm7, ymm7, ymm6, 2 ; ymm7=( 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 --) vperm2i128 ymm3, ymm8, ymm4, 0x20 vpslldq ymm3, ymm3, 14 ; ymm3=(-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- 16) vperm2i128 ymm0, ymm8, ymm6, 0x03 vpsrldq ymm0, ymm0, 14 ; ymm0=(15 -- -- -- -- -- -- -- -- -- -- -- -- -- -- --) vperm2i128 ymm2, ymm8, ymm4, 0x20 vpalignr ymm2, ymm4, ymm2, 14 ; ymm2=(-- 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30) vpor ymm7, ymm7, ymm3 ; ymm7=( 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16) vpor ymm0, ymm0, ymm2 ; ymm0=(15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30) vperm2i128 ymm5, ymm8, ymm4, 0x03 vpalignr ymm5, ymm5, ymm4, 2 ; ymm5=(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 --) vperm2i128 ymm3, ymm8, ymm4, 0x03 vpsrldq ymm3, ymm3, 14 ; ymm3=(31 -- -- -- -- -- -- -- -- -- -- -- -- -- -- --) vperm2i128 ymm1, ymm8, ymm6, 0x20 vpalignr ymm1, ymm6, ymm1, 14 ; ymm1=(-- 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14) vpor ymm1, ymm1, YMMWORD [wk(1)] ; ymm1=(-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14) vpor ymm5, ymm5, YMMWORD [wk(3)] ; ymm5=(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32) vmovdqa YMMWORD [wk(1)], ymm3 vpmullw ymm6, ymm6, [rel PW_THREE] vpmullw ymm4, ymm4, [rel PW_THREE] vpaddw ymm1, ymm1, [rel PW_EIGHT] vpaddw ymm0, ymm0, [rel PW_EIGHT] vpaddw ymm7, ymm7, [rel PW_SEVEN] vpaddw ymm5, ymm5, [rel PW_SEVEN] vpaddw ymm1, ymm1, ymm6 vpaddw ymm0, ymm0, ymm4 vpsrlw ymm1, ymm1, 4 ; ymm1=Out1LE=( 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30) vpsrlw ymm0, ymm0, 4 ; ymm0=Out1HE=(32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62) vpaddw ymm7, ymm7, ymm6 vpaddw ymm5, ymm5, ymm4 vpsrlw ymm7, ymm7, 4 ; ymm7=Out1LO=( 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31) vpsrlw ymm5, ymm5, 4 ; ymm5=Out1HO=(33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63) vpsllw ymm7, ymm7, BYTE_BIT vpsllw ymm5, ymm5, BYTE_BIT vpor ymm1, ymm1, ymm7 ; ymm1=Out1L=( 0 1 2 ... 29 30 31) vpor ymm0, ymm0, ymm5 ; ymm0=Out1H=(32 33 34 ... 61 62 63) vmovdqu YMMWORD [rdi+0*SIZEOF_YMMWORD], ymm1 vmovdqu YMMWORD [rdi+1*SIZEOF_YMMWORD], ymm0 sub rax, byte SIZEOF_YMMWORD add rcx, byte 1*SIZEOF_YMMWORD ; inptr1(above) add rbx, byte 1*SIZEOF_YMMWORD ; inptr0 add rsi, byte 1*SIZEOF_YMMWORD ; inptr1(below) add rdx, byte 2*SIZEOF_YMMWORD ; outptr0 add rdi, byte 2*SIZEOF_YMMWORD ; outptr1 cmp rax, byte SIZEOF_YMMWORD ja near .columnloop test rax, rax jnz near .columnloop_last pop rsi pop rdi pop rcx pop rax add rsi, byte 1*SIZEOF_JSAMPROW ; input_data add rdi, byte 2*SIZEOF_JSAMPROW ; output_data sub rcx, byte 2 ; rowctr jg near .rowloop .return: pop rbx vzeroupper uncollect_args 4 pop_xmm 3 mov rsp, rbp ; rsp <- aligned rbp pop rsp ; rsp <- original rbp pop rbp ret ; -------------------------------------------------------------------------- ; ; Fast processing for the common case of 2:1 horizontal and 1:1 vertical. ; It's still a box filter. ; ; GLOBAL(void) ; jsimd_h2v1_upsample_avx2(int max_v_samp_factor, JDIMENSION output_width, ; JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); ; ; r10 = int max_v_samp_factor ; r11d = JDIMENSION output_width ; r12 = JSAMPARRAY input_data ; r13 = JSAMPARRAY *output_data_ptr align 32 GLOBAL_FUNCTION(jsimd_h2v1_upsample_avx2) EXTN(jsimd_h2v1_upsample_avx2): push rbp mov rax, rsp mov rbp, rsp collect_args 4 mov edx, r11d add rdx, byte (SIZEOF_YMMWORD-1) and rdx, -SIZEOF_YMMWORD jz near .return mov rcx, r10 ; rowctr test rcx, rcx jz short .return mov rsi, r12 ; input_data mov rdi, r13 mov rdip, JSAMPARRAY [rdi] ; output_data .rowloop: push rdi push rsi mov rsip, JSAMPROW [rsi] ; inptr mov rdip, JSAMPROW [rdi] ; outptr mov rax, rdx ; colctr .columnloop: cmp rax, byte SIZEOF_YMMWORD ja near .above_16 vmovdqu xmm0, XMMWORD [rsi+0*SIZEOF_YMMWORD] vpunpckhbw xmm1, xmm0, xmm0 vpunpcklbw xmm0, xmm0, xmm0 vmovdqu XMMWORD [rdi+0*SIZEOF_XMMWORD], xmm0 vmovdqu XMMWORD [rdi+1*SIZEOF_XMMWORD], xmm1 jmp short .nextrow .above_16: vmovdqu ymm0, YMMWORD [rsi+0*SIZEOF_YMMWORD] vpermq ymm0, ymm0, 0xd8 vpunpckhbw ymm1, ymm0, ymm0 vpunpcklbw ymm0, ymm0, ymm0 vmovdqu YMMWORD [rdi+0*SIZEOF_YMMWORD], ymm0 vmovdqu YMMWORD [rdi+1*SIZEOF_YMMWORD], ymm1 sub rax, byte 2*SIZEOF_YMMWORD jz short .nextrow add rsi, byte SIZEOF_YMMWORD ; inptr add rdi, byte 2*SIZEOF_YMMWORD ; outptr jmp short .columnloop .nextrow: pop rsi pop rdi add rsi, byte SIZEOF_JSAMPROW ; input_data add rdi, byte SIZEOF_JSAMPROW ; output_data dec rcx ; rowctr jg short .rowloop .return: vzeroupper uncollect_args 4 pop rbp ret ; -------------------------------------------------------------------------- ; ; Fast processing for the common case of 2:1 horizontal and 2:1 vertical. ; It's still a box filter. ; ; GLOBAL(void) ; jsimd_h2v2_upsample_avx2(int max_v_samp_factor, JDIMENSION output_width, ; JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); ; ; r10 = int max_v_samp_factor ; r11d = JDIMENSION output_width ; r12 = JSAMPARRAY input_data ; r13 = JSAMPARRAY *output_data_ptr align 32 GLOBAL_FUNCTION(jsimd_h2v2_upsample_avx2) EXTN(jsimd_h2v2_upsample_avx2): push rbp mov rax, rsp mov rbp, rsp collect_args 4 push rbx mov edx, r11d add rdx, byte (SIZEOF_YMMWORD-1) and rdx, -SIZEOF_YMMWORD jz near .return mov rcx, r10 ; rowctr test rcx, rcx jz near .return mov rsi, r12 ; input_data mov rdi, r13 mov rdip, JSAMPARRAY [rdi] ; output_data .rowloop: push rdi push rsi mov rsip, JSAMPROW [rsi] ; inptr mov rbxp, JSAMPROW [rdi+0*SIZEOF_JSAMPROW] ; outptr0 mov rdip, JSAMPROW [rdi+1*SIZEOF_JSAMPROW] ; outptr1 mov rax, rdx ; colctr .columnloop: cmp rax, byte SIZEOF_YMMWORD ja short .above_16 vmovdqu xmm0, XMMWORD [rsi+0*SIZEOF_XMMWORD] vpunpckhbw xmm1, xmm0, xmm0 vpunpcklbw xmm0, xmm0, xmm0 vmovdqu XMMWORD [rbx+0*SIZEOF_XMMWORD], xmm0 vmovdqu XMMWORD [rbx+1*SIZEOF_XMMWORD], xmm1 vmovdqu XMMWORD [rdi+0*SIZEOF_XMMWORD], xmm0 vmovdqu XMMWORD [rdi+1*SIZEOF_XMMWORD], xmm1 jmp near .nextrow .above_16: vmovdqu ymm0, YMMWORD [rsi+0*SIZEOF_YMMWORD] vpermq ymm0, ymm0, 0xd8 vpunpckhbw ymm1, ymm0, ymm0 vpunpcklbw ymm0, ymm0, ymm0 vmovdqu YMMWORD [rbx+0*SIZEOF_YMMWORD], ymm0 vmovdqu YMMWORD [rbx+1*SIZEOF_YMMWORD], ymm1 vmovdqu YMMWORD [rdi+0*SIZEOF_YMMWORD], ymm0 vmovdqu YMMWORD [rdi+1*SIZEOF_YMMWORD], ymm1 sub rax, byte 2*SIZEOF_YMMWORD jz short .nextrow add rsi, byte SIZEOF_YMMWORD ; inptr add rbx, 2*SIZEOF_YMMWORD ; outptr0 add rdi, 2*SIZEOF_YMMWORD ; outptr1 jmp short .columnloop .nextrow: pop rsi pop rdi add rsi, byte 1*SIZEOF_JSAMPROW ; input_data add rdi, byte 2*SIZEOF_JSAMPROW ; output_data sub rcx, byte 2 ; rowctr jg near .rowloop .return: pop rbx vzeroupper uncollect_args 4 pop rbp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/x86_64/jdsample-sse2.asm000066400000000000000000000557101436506551100213470ustar00rootroot00000000000000; ; jdsample.asm - upsampling (64-bit SSE2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2009, 2016, D. R. Commander. ; Copyright (C) 2018, Matthias Räncker. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jsimdext.inc" ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 32 GLOBAL_DATA(jconst_fancy_upsample_sse2) EXTN(jconst_fancy_upsample_sse2): PW_ONE times 8 dw 1 PW_TWO times 8 dw 2 PW_THREE times 8 dw 3 PW_SEVEN times 8 dw 7 PW_EIGHT times 8 dw 8 alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 64 ; ; Fancy processing for the common case of 2:1 horizontal and 1:1 vertical. ; ; The upsampling algorithm is linear interpolation between pixel centers, ; also known as a "triangle filter". This is a good compromise between ; speed and visual quality. The centers of the output pixels are 1/4 and 3/4 ; of the way between input pixel centers. ; ; GLOBAL(void) ; jsimd_h2v1_fancy_upsample_sse2(int max_v_samp_factor, ; JDIMENSION downsampled_width, ; JSAMPARRAY input_data, ; JSAMPARRAY *output_data_ptr); ; ; r10 = int max_v_samp_factor ; r11d = JDIMENSION downsampled_width ; r12 = JSAMPARRAY input_data ; r13 = JSAMPARRAY *output_data_ptr align 32 GLOBAL_FUNCTION(jsimd_h2v1_fancy_upsample_sse2) EXTN(jsimd_h2v1_fancy_upsample_sse2): push rbp mov rax, rsp mov rbp, rsp collect_args 4 mov eax, r11d ; colctr test rax, rax jz near .return mov rcx, r10 ; rowctr test rcx, rcx jz near .return mov rsi, r12 ; input_data mov rdi, r13 mov rdip, JSAMPARRAY [rdi] ; output_data .rowloop: push rax ; colctr push rdi push rsi mov rsip, JSAMPROW [rsi] ; inptr mov rdip, JSAMPROW [rdi] ; outptr test rax, SIZEOF_XMMWORD-1 jz short .skip mov dl, JSAMPLE [rsi+(rax-1)*SIZEOF_JSAMPLE] mov JSAMPLE [rsi+rax*SIZEOF_JSAMPLE], dl ; insert a dummy sample .skip: pxor xmm0, xmm0 ; xmm0=(all 0's) pcmpeqb xmm7, xmm7 psrldq xmm7, (SIZEOF_XMMWORD-1) pand xmm7, XMMWORD [rsi+0*SIZEOF_XMMWORD] add rax, byte SIZEOF_XMMWORD-1 and rax, byte -SIZEOF_XMMWORD cmp rax, byte SIZEOF_XMMWORD ja short .columnloop .columnloop_last: pcmpeqb xmm6, xmm6 pslldq xmm6, (SIZEOF_XMMWORD-1) pand xmm6, XMMWORD [rsi+0*SIZEOF_XMMWORD] jmp short .upsample .columnloop: movdqa xmm6, XMMWORD [rsi+1*SIZEOF_XMMWORD] pslldq xmm6, (SIZEOF_XMMWORD-1) .upsample: movdqa xmm1, XMMWORD [rsi+0*SIZEOF_XMMWORD] movdqa xmm2, xmm1 movdqa xmm3, xmm1 ; xmm1=( 0 1 2 ... 13 14 15) pslldq xmm2, 1 ; xmm2=(-- 0 1 ... 12 13 14) psrldq xmm3, 1 ; xmm3=( 1 2 3 ... 14 15 --) por xmm2, xmm7 ; xmm2=(-1 0 1 ... 12 13 14) por xmm3, xmm6 ; xmm3=( 1 2 3 ... 14 15 16) movdqa xmm7, xmm1 psrldq xmm7, (SIZEOF_XMMWORD-1) ; xmm7=(15 -- -- ... -- -- --) movdqa xmm4, xmm1 punpcklbw xmm1, xmm0 ; xmm1=( 0 1 2 3 4 5 6 7) punpckhbw xmm4, xmm0 ; xmm4=( 8 9 10 11 12 13 14 15) movdqa xmm5, xmm2 punpcklbw xmm2, xmm0 ; xmm2=(-1 0 1 2 3 4 5 6) punpckhbw xmm5, xmm0 ; xmm5=( 7 8 9 10 11 12 13 14) movdqa xmm6, xmm3 punpcklbw xmm3, xmm0 ; xmm3=( 1 2 3 4 5 6 7 8) punpckhbw xmm6, xmm0 ; xmm6=( 9 10 11 12 13 14 15 16) pmullw xmm1, [rel PW_THREE] pmullw xmm4, [rel PW_THREE] paddw xmm2, [rel PW_ONE] paddw xmm5, [rel PW_ONE] paddw xmm3, [rel PW_TWO] paddw xmm6, [rel PW_TWO] paddw xmm2, xmm1 paddw xmm5, xmm4 psrlw xmm2, 2 ; xmm2=OutLE=( 0 2 4 6 8 10 12 14) psrlw xmm5, 2 ; xmm5=OutHE=(16 18 20 22 24 26 28 30) paddw xmm3, xmm1 paddw xmm6, xmm4 psrlw xmm3, 2 ; xmm3=OutLO=( 1 3 5 7 9 11 13 15) psrlw xmm6, 2 ; xmm6=OutHO=(17 19 21 23 25 27 29 31) psllw xmm3, BYTE_BIT psllw xmm6, BYTE_BIT por xmm2, xmm3 ; xmm2=OutL=( 0 1 2 ... 13 14 15) por xmm5, xmm6 ; xmm5=OutH=(16 17 18 ... 29 30 31) movdqa XMMWORD [rdi+0*SIZEOF_XMMWORD], xmm2 movdqa XMMWORD [rdi+1*SIZEOF_XMMWORD], xmm5 sub rax, byte SIZEOF_XMMWORD add rsi, byte 1*SIZEOF_XMMWORD ; inptr add rdi, byte 2*SIZEOF_XMMWORD ; outptr cmp rax, byte SIZEOF_XMMWORD ja near .columnloop test eax, eax jnz near .columnloop_last pop rsi pop rdi pop rax add rsi, byte SIZEOF_JSAMPROW ; input_data add rdi, byte SIZEOF_JSAMPROW ; output_data dec rcx ; rowctr jg near .rowloop .return: uncollect_args 4 pop rbp ret ; -------------------------------------------------------------------------- ; ; Fancy processing for the common case of 2:1 horizontal and 2:1 vertical. ; Again a triangle filter; see comments for h2v1 case, above. ; ; GLOBAL(void) ; jsimd_h2v2_fancy_upsample_sse2(int max_v_samp_factor, ; JDIMENSION downsampled_width, ; JSAMPARRAY input_data, ; JSAMPARRAY *output_data_ptr); ; ; r10 = int max_v_samp_factor ; r11d = JDIMENSION downsampled_width ; r12 = JSAMPARRAY input_data ; r13 = JSAMPARRAY *output_data_ptr %define wk(i) rbp - (WK_NUM - (i)) * SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 4 align 32 GLOBAL_FUNCTION(jsimd_h2v2_fancy_upsample_sse2) EXTN(jsimd_h2v2_fancy_upsample_sse2): push rbp mov rax, rsp ; rax = original rbp sub rsp, byte 4 and rsp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [rsp], rax mov rbp, rsp ; rbp = aligned rbp lea rsp, [wk(0)] collect_args 4 push rbx mov eax, r11d ; colctr test rax, rax jz near .return mov rcx, r10 ; rowctr test rcx, rcx jz near .return mov rsi, r12 ; input_data mov rdi, r13 mov rdip, JSAMPARRAY [rdi] ; output_data .rowloop: push rax ; colctr push rcx push rdi push rsi mov rcxp, JSAMPROW [rsi-1*SIZEOF_JSAMPROW] ; inptr1(above) mov rbxp, JSAMPROW [rsi+0*SIZEOF_JSAMPROW] ; inptr0 mov rsip, JSAMPROW [rsi+1*SIZEOF_JSAMPROW] ; inptr1(below) mov rdxp, JSAMPROW [rdi+0*SIZEOF_JSAMPROW] ; outptr0 mov rdip, JSAMPROW [rdi+1*SIZEOF_JSAMPROW] ; outptr1 test rax, SIZEOF_XMMWORD-1 jz short .skip push rdx mov dl, JSAMPLE [rcx+(rax-1)*SIZEOF_JSAMPLE] mov JSAMPLE [rcx+rax*SIZEOF_JSAMPLE], dl mov dl, JSAMPLE [rbx+(rax-1)*SIZEOF_JSAMPLE] mov JSAMPLE [rbx+rax*SIZEOF_JSAMPLE], dl mov dl, JSAMPLE [rsi+(rax-1)*SIZEOF_JSAMPLE] mov JSAMPLE [rsi+rax*SIZEOF_JSAMPLE], dl ; insert a dummy sample pop rdx .skip: ; -- process the first column block movdqa xmm0, XMMWORD [rbx+0*SIZEOF_XMMWORD] ; xmm0=row[ 0][0] movdqa xmm1, XMMWORD [rcx+0*SIZEOF_XMMWORD] ; xmm1=row[-1][0] movdqa xmm2, XMMWORD [rsi+0*SIZEOF_XMMWORD] ; xmm2=row[+1][0] pxor xmm3, xmm3 ; xmm3=(all 0's) movdqa xmm4, xmm0 punpcklbw xmm0, xmm3 ; xmm0=row[ 0]( 0 1 2 3 4 5 6 7) punpckhbw xmm4, xmm3 ; xmm4=row[ 0]( 8 9 10 11 12 13 14 15) movdqa xmm5, xmm1 punpcklbw xmm1, xmm3 ; xmm1=row[-1]( 0 1 2 3 4 5 6 7) punpckhbw xmm5, xmm3 ; xmm5=row[-1]( 8 9 10 11 12 13 14 15) movdqa xmm6, xmm2 punpcklbw xmm2, xmm3 ; xmm2=row[+1]( 0 1 2 3 4 5 6 7) punpckhbw xmm6, xmm3 ; xmm6=row[+1]( 8 9 10 11 12 13 14 15) pmullw xmm0, [rel PW_THREE] pmullw xmm4, [rel PW_THREE] pcmpeqb xmm7, xmm7 psrldq xmm7, (SIZEOF_XMMWORD-2) paddw xmm1, xmm0 ; xmm1=Int0L=( 0 1 2 3 4 5 6 7) paddw xmm5, xmm4 ; xmm5=Int0H=( 8 9 10 11 12 13 14 15) paddw xmm2, xmm0 ; xmm2=Int1L=( 0 1 2 3 4 5 6 7) paddw xmm6, xmm4 ; xmm6=Int1H=( 8 9 10 11 12 13 14 15) movdqa XMMWORD [rdx+0*SIZEOF_XMMWORD], xmm1 ; temporarily save movdqa XMMWORD [rdx+1*SIZEOF_XMMWORD], xmm5 ; the intermediate data movdqa XMMWORD [rdi+0*SIZEOF_XMMWORD], xmm2 movdqa XMMWORD [rdi+1*SIZEOF_XMMWORD], xmm6 pand xmm1, xmm7 ; xmm1=( 0 -- -- -- -- -- -- --) pand xmm2, xmm7 ; xmm2=( 0 -- -- -- -- -- -- --) movdqa XMMWORD [wk(0)], xmm1 movdqa XMMWORD [wk(1)], xmm2 add rax, byte SIZEOF_XMMWORD-1 and rax, byte -SIZEOF_XMMWORD cmp rax, byte SIZEOF_XMMWORD ja short .columnloop .columnloop_last: ; -- process the last column block pcmpeqb xmm1, xmm1 pslldq xmm1, (SIZEOF_XMMWORD-2) movdqa xmm2, xmm1 pand xmm1, XMMWORD [rdx+1*SIZEOF_XMMWORD] pand xmm2, XMMWORD [rdi+1*SIZEOF_XMMWORD] movdqa XMMWORD [wk(2)], xmm1 ; xmm1=(-- -- -- -- -- -- -- 15) movdqa XMMWORD [wk(3)], xmm2 ; xmm2=(-- -- -- -- -- -- -- 15) jmp near .upsample .columnloop: ; -- process the next column block movdqa xmm0, XMMWORD [rbx+1*SIZEOF_XMMWORD] ; xmm0=row[ 0][1] movdqa xmm1, XMMWORD [rcx+1*SIZEOF_XMMWORD] ; xmm1=row[-1][1] movdqa xmm2, XMMWORD [rsi+1*SIZEOF_XMMWORD] ; xmm2=row[+1][1] pxor xmm3, xmm3 ; xmm3=(all 0's) movdqa xmm4, xmm0 punpcklbw xmm0, xmm3 ; xmm0=row[ 0]( 0 1 2 3 4 5 6 7) punpckhbw xmm4, xmm3 ; xmm4=row[ 0]( 8 9 10 11 12 13 14 15) movdqa xmm5, xmm1 punpcklbw xmm1, xmm3 ; xmm1=row[-1]( 0 1 2 3 4 5 6 7) punpckhbw xmm5, xmm3 ; xmm5=row[-1]( 8 9 10 11 12 13 14 15) movdqa xmm6, xmm2 punpcklbw xmm2, xmm3 ; xmm2=row[+1]( 0 1 2 3 4 5 6 7) punpckhbw xmm6, xmm3 ; xmm6=row[+1]( 8 9 10 11 12 13 14 15) pmullw xmm0, [rel PW_THREE] pmullw xmm4, [rel PW_THREE] paddw xmm1, xmm0 ; xmm1=Int0L=( 0 1 2 3 4 5 6 7) paddw xmm5, xmm4 ; xmm5=Int0H=( 8 9 10 11 12 13 14 15) paddw xmm2, xmm0 ; xmm2=Int1L=( 0 1 2 3 4 5 6 7) paddw xmm6, xmm4 ; xmm6=Int1H=( 8 9 10 11 12 13 14 15) movdqa XMMWORD [rdx+2*SIZEOF_XMMWORD], xmm1 ; temporarily save movdqa XMMWORD [rdx+3*SIZEOF_XMMWORD], xmm5 ; the intermediate data movdqa XMMWORD [rdi+2*SIZEOF_XMMWORD], xmm2 movdqa XMMWORD [rdi+3*SIZEOF_XMMWORD], xmm6 pslldq xmm1, (SIZEOF_XMMWORD-2) ; xmm1=(-- -- -- -- -- -- -- 0) pslldq xmm2, (SIZEOF_XMMWORD-2) ; xmm2=(-- -- -- -- -- -- -- 0) movdqa XMMWORD [wk(2)], xmm1 movdqa XMMWORD [wk(3)], xmm2 .upsample: ; -- process the upper row movdqa xmm7, XMMWORD [rdx+0*SIZEOF_XMMWORD] movdqa xmm3, XMMWORD [rdx+1*SIZEOF_XMMWORD] movdqa xmm0, xmm7 ; xmm7=Int0L=( 0 1 2 3 4 5 6 7) movdqa xmm4, xmm3 ; xmm3=Int0H=( 8 9 10 11 12 13 14 15) psrldq xmm0, 2 ; xmm0=( 1 2 3 4 5 6 7 --) pslldq xmm4, (SIZEOF_XMMWORD-2) ; xmm4=(-- -- -- -- -- -- -- 8) movdqa xmm5, xmm7 movdqa xmm6, xmm3 psrldq xmm5, (SIZEOF_XMMWORD-2) ; xmm5=( 7 -- -- -- -- -- -- --) pslldq xmm6, 2 ; xmm6=(-- 8 9 10 11 12 13 14) por xmm0, xmm4 ; xmm0=( 1 2 3 4 5 6 7 8) por xmm5, xmm6 ; xmm5=( 7 8 9 10 11 12 13 14) movdqa xmm1, xmm7 movdqa xmm2, xmm3 pslldq xmm1, 2 ; xmm1=(-- 0 1 2 3 4 5 6) psrldq xmm2, 2 ; xmm2=( 9 10 11 12 13 14 15 --) movdqa xmm4, xmm3 psrldq xmm4, (SIZEOF_XMMWORD-2) ; xmm4=(15 -- -- -- -- -- -- --) por xmm1, XMMWORD [wk(0)] ; xmm1=(-1 0 1 2 3 4 5 6) por xmm2, XMMWORD [wk(2)] ; xmm2=( 9 10 11 12 13 14 15 16) movdqa XMMWORD [wk(0)], xmm4 pmullw xmm7, [rel PW_THREE] pmullw xmm3, [rel PW_THREE] paddw xmm1, [rel PW_EIGHT] paddw xmm5, [rel PW_EIGHT] paddw xmm0, [rel PW_SEVEN] paddw xmm2, [rel PW_SEVEN] paddw xmm1, xmm7 paddw xmm5, xmm3 psrlw xmm1, 4 ; xmm1=Out0LE=( 0 2 4 6 8 10 12 14) psrlw xmm5, 4 ; xmm5=Out0HE=(16 18 20 22 24 26 28 30) paddw xmm0, xmm7 paddw xmm2, xmm3 psrlw xmm0, 4 ; xmm0=Out0LO=( 1 3 5 7 9 11 13 15) psrlw xmm2, 4 ; xmm2=Out0HO=(17 19 21 23 25 27 29 31) psllw xmm0, BYTE_BIT psllw xmm2, BYTE_BIT por xmm1, xmm0 ; xmm1=Out0L=( 0 1 2 ... 13 14 15) por xmm5, xmm2 ; xmm5=Out0H=(16 17 18 ... 29 30 31) movdqa XMMWORD [rdx+0*SIZEOF_XMMWORD], xmm1 movdqa XMMWORD [rdx+1*SIZEOF_XMMWORD], xmm5 ; -- process the lower row movdqa xmm6, XMMWORD [rdi+0*SIZEOF_XMMWORD] movdqa xmm4, XMMWORD [rdi+1*SIZEOF_XMMWORD] movdqa xmm7, xmm6 ; xmm6=Int1L=( 0 1 2 3 4 5 6 7) movdqa xmm3, xmm4 ; xmm4=Int1H=( 8 9 10 11 12 13 14 15) psrldq xmm7, 2 ; xmm7=( 1 2 3 4 5 6 7 --) pslldq xmm3, (SIZEOF_XMMWORD-2) ; xmm3=(-- -- -- -- -- -- -- 8) movdqa xmm0, xmm6 movdqa xmm2, xmm4 psrldq xmm0, (SIZEOF_XMMWORD-2) ; xmm0=( 7 -- -- -- -- -- -- --) pslldq xmm2, 2 ; xmm2=(-- 8 9 10 11 12 13 14) por xmm7, xmm3 ; xmm7=( 1 2 3 4 5 6 7 8) por xmm0, xmm2 ; xmm0=( 7 8 9 10 11 12 13 14) movdqa xmm1, xmm6 movdqa xmm5, xmm4 pslldq xmm1, 2 ; xmm1=(-- 0 1 2 3 4 5 6) psrldq xmm5, 2 ; xmm5=( 9 10 11 12 13 14 15 --) movdqa xmm3, xmm4 psrldq xmm3, (SIZEOF_XMMWORD-2) ; xmm3=(15 -- -- -- -- -- -- --) por xmm1, XMMWORD [wk(1)] ; xmm1=(-1 0 1 2 3 4 5 6) por xmm5, XMMWORD [wk(3)] ; xmm5=( 9 10 11 12 13 14 15 16) movdqa XMMWORD [wk(1)], xmm3 pmullw xmm6, [rel PW_THREE] pmullw xmm4, [rel PW_THREE] paddw xmm1, [rel PW_EIGHT] paddw xmm0, [rel PW_EIGHT] paddw xmm7, [rel PW_SEVEN] paddw xmm5, [rel PW_SEVEN] paddw xmm1, xmm6 paddw xmm0, xmm4 psrlw xmm1, 4 ; xmm1=Out1LE=( 0 2 4 6 8 10 12 14) psrlw xmm0, 4 ; xmm0=Out1HE=(16 18 20 22 24 26 28 30) paddw xmm7, xmm6 paddw xmm5, xmm4 psrlw xmm7, 4 ; xmm7=Out1LO=( 1 3 5 7 9 11 13 15) psrlw xmm5, 4 ; xmm5=Out1HO=(17 19 21 23 25 27 29 31) psllw xmm7, BYTE_BIT psllw xmm5, BYTE_BIT por xmm1, xmm7 ; xmm1=Out1L=( 0 1 2 ... 13 14 15) por xmm0, xmm5 ; xmm0=Out1H=(16 17 18 ... 29 30 31) movdqa XMMWORD [rdi+0*SIZEOF_XMMWORD], xmm1 movdqa XMMWORD [rdi+1*SIZEOF_XMMWORD], xmm0 sub rax, byte SIZEOF_XMMWORD add rcx, byte 1*SIZEOF_XMMWORD ; inptr1(above) add rbx, byte 1*SIZEOF_XMMWORD ; inptr0 add rsi, byte 1*SIZEOF_XMMWORD ; inptr1(below) add rdx, byte 2*SIZEOF_XMMWORD ; outptr0 add rdi, byte 2*SIZEOF_XMMWORD ; outptr1 cmp rax, byte SIZEOF_XMMWORD ja near .columnloop test rax, rax jnz near .columnloop_last pop rsi pop rdi pop rcx pop rax add rsi, byte 1*SIZEOF_JSAMPROW ; input_data add rdi, byte 2*SIZEOF_JSAMPROW ; output_data sub rcx, byte 2 ; rowctr jg near .rowloop .return: pop rbx uncollect_args 4 mov rsp, rbp ; rsp <- aligned rbp pop rsp ; rsp <- original rbp pop rbp ret ; -------------------------------------------------------------------------- ; ; Fast processing for the common case of 2:1 horizontal and 1:1 vertical. ; It's still a box filter. ; ; GLOBAL(void) ; jsimd_h2v1_upsample_sse2(int max_v_samp_factor, JDIMENSION output_width, ; JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); ; ; r10 = int max_v_samp_factor ; r11d = JDIMENSION output_width ; r12 = JSAMPARRAY input_data ; r13 = JSAMPARRAY *output_data_ptr align 32 GLOBAL_FUNCTION(jsimd_h2v1_upsample_sse2) EXTN(jsimd_h2v1_upsample_sse2): push rbp mov rax, rsp mov rbp, rsp collect_args 4 mov edx, r11d add rdx, byte (2*SIZEOF_XMMWORD)-1 and rdx, byte -(2*SIZEOF_XMMWORD) jz near .return mov rcx, r10 ; rowctr test rcx, rcx jz short .return mov rsi, r12 ; input_data mov rdi, r13 mov rdip, JSAMPARRAY [rdi] ; output_data .rowloop: push rdi push rsi mov rsip, JSAMPROW [rsi] ; inptr mov rdip, JSAMPROW [rdi] ; outptr mov rax, rdx ; colctr .columnloop: movdqa xmm0, XMMWORD [rsi+0*SIZEOF_XMMWORD] movdqa xmm1, xmm0 punpcklbw xmm0, xmm0 punpckhbw xmm1, xmm1 movdqa XMMWORD [rdi+0*SIZEOF_XMMWORD], xmm0 movdqa XMMWORD [rdi+1*SIZEOF_XMMWORD], xmm1 sub rax, byte 2*SIZEOF_XMMWORD jz short .nextrow movdqa xmm2, XMMWORD [rsi+1*SIZEOF_XMMWORD] movdqa xmm3, xmm2 punpcklbw xmm2, xmm2 punpckhbw xmm3, xmm3 movdqa XMMWORD [rdi+2*SIZEOF_XMMWORD], xmm2 movdqa XMMWORD [rdi+3*SIZEOF_XMMWORD], xmm3 sub rax, byte 2*SIZEOF_XMMWORD jz short .nextrow add rsi, byte 2*SIZEOF_XMMWORD ; inptr add rdi, byte 4*SIZEOF_XMMWORD ; outptr jmp short .columnloop .nextrow: pop rsi pop rdi add rsi, byte SIZEOF_JSAMPROW ; input_data add rdi, byte SIZEOF_JSAMPROW ; output_data dec rcx ; rowctr jg short .rowloop .return: uncollect_args 4 pop rbp ret ; -------------------------------------------------------------------------- ; ; Fast processing for the common case of 2:1 horizontal and 2:1 vertical. ; It's still a box filter. ; ; GLOBAL(void) ; jsimd_h2v2_upsample_sse2(int max_v_samp_factor, JDIMENSION output_width, ; JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr); ; ; r10 = int max_v_samp_factor ; r11d = JDIMENSION output_width ; r12 = JSAMPARRAY input_data ; r13 = JSAMPARRAY *output_data_ptr align 32 GLOBAL_FUNCTION(jsimd_h2v2_upsample_sse2) EXTN(jsimd_h2v2_upsample_sse2): push rbp mov rax, rsp mov rbp, rsp collect_args 4 push rbx mov edx, r11d add rdx, byte (2*SIZEOF_XMMWORD)-1 and rdx, byte -(2*SIZEOF_XMMWORD) jz near .return mov rcx, r10 ; rowctr test rcx, rcx jz near .return mov rsi, r12 ; input_data mov rdi, r13 mov rdip, JSAMPARRAY [rdi] ; output_data .rowloop: push rdi push rsi mov rsip, JSAMPROW [rsi] ; inptr mov rbxp, JSAMPROW [rdi+0*SIZEOF_JSAMPROW] ; outptr0 mov rdip, JSAMPROW [rdi+1*SIZEOF_JSAMPROW] ; outptr1 mov rax, rdx ; colctr .columnloop: movdqa xmm0, XMMWORD [rsi+0*SIZEOF_XMMWORD] movdqa xmm1, xmm0 punpcklbw xmm0, xmm0 punpckhbw xmm1, xmm1 movdqa XMMWORD [rbx+0*SIZEOF_XMMWORD], xmm0 movdqa XMMWORD [rbx+1*SIZEOF_XMMWORD], xmm1 movdqa XMMWORD [rdi+0*SIZEOF_XMMWORD], xmm0 movdqa XMMWORD [rdi+1*SIZEOF_XMMWORD], xmm1 sub rax, byte 2*SIZEOF_XMMWORD jz short .nextrow movdqa xmm2, XMMWORD [rsi+1*SIZEOF_XMMWORD] movdqa xmm3, xmm2 punpcklbw xmm2, xmm2 punpckhbw xmm3, xmm3 movdqa XMMWORD [rbx+2*SIZEOF_XMMWORD], xmm2 movdqa XMMWORD [rbx+3*SIZEOF_XMMWORD], xmm3 movdqa XMMWORD [rdi+2*SIZEOF_XMMWORD], xmm2 movdqa XMMWORD [rdi+3*SIZEOF_XMMWORD], xmm3 sub rax, byte 2*SIZEOF_XMMWORD jz short .nextrow add rsi, byte 2*SIZEOF_XMMWORD ; inptr add rbx, byte 4*SIZEOF_XMMWORD ; outptr0 add rdi, byte 4*SIZEOF_XMMWORD ; outptr1 jmp short .columnloop .nextrow: pop rsi pop rdi add rsi, byte 1*SIZEOF_JSAMPROW ; input_data add rdi, byte 2*SIZEOF_JSAMPROW ; output_data sub rcx, byte 2 ; rowctr jg near .rowloop .return: pop rbx uncollect_args 4 pop rbp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/x86_64/jfdctflt-sse.asm000066400000000000000000000340631436506551100212640ustar00rootroot00000000000000; ; jfdctflt.asm - floating-point FDCT (64-bit SSE) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2009, 2016, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains a floating-point implementation of the forward DCT ; (Discrete Cosine Transform). The following code is based directly on ; the IJG's original jfdctflt.c; see the jfdctflt.c for more details. %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- %macro unpcklps2 2 ; %1=(0 1 2 3) / %2=(4 5 6 7) => %1=(0 1 4 5) shufps %1, %2, 0x44 %endmacro %macro unpckhps2 2 ; %1=(0 1 2 3) / %2=(4 5 6 7) => %1=(2 3 6 7) shufps %1, %2, 0xEE %endmacro ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 32 GLOBAL_DATA(jconst_fdct_float_sse) EXTN(jconst_fdct_float_sse): PD_0_382 times 4 dd 0.382683432365089771728460 PD_0_707 times 4 dd 0.707106781186547524400844 PD_0_541 times 4 dd 0.541196100146196984399723 PD_1_306 times 4 dd 1.306562964876376527856643 alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 64 ; ; Perform the forward DCT on one block of samples. ; ; GLOBAL(void) ; jsimd_fdct_float_sse(FAST_FLOAT *data) ; ; r10 = FAST_FLOAT *data %define wk(i) rbp - (WK_NUM - (i)) * SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 2 align 32 GLOBAL_FUNCTION(jsimd_fdct_float_sse) EXTN(jsimd_fdct_float_sse): push rbp mov rax, rsp ; rax = original rbp sub rsp, byte 4 and rsp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [rsp], rax mov rbp, rsp ; rbp = aligned rbp lea rsp, [wk(0)] collect_args 1 ; ---- Pass 1: process rows. mov rdx, r10 ; (FAST_FLOAT *) mov rcx, DCTSIZE/4 .rowloop: movaps xmm0, XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_FAST_FLOAT)] movaps xmm1, XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_FAST_FLOAT)] movaps xmm2, XMMWORD [XMMBLOCK(2,1,rdx,SIZEOF_FAST_FLOAT)] movaps xmm3, XMMWORD [XMMBLOCK(3,1,rdx,SIZEOF_FAST_FLOAT)] ; xmm0=(20 21 22 23), xmm2=(24 25 26 27) ; xmm1=(30 31 32 33), xmm3=(34 35 36 37) movaps xmm4, xmm0 ; transpose coefficients(phase 1) unpcklps xmm0, xmm1 ; xmm0=(20 30 21 31) unpckhps xmm4, xmm1 ; xmm4=(22 32 23 33) movaps xmm5, xmm2 ; transpose coefficients(phase 1) unpcklps xmm2, xmm3 ; xmm2=(24 34 25 35) unpckhps xmm5, xmm3 ; xmm5=(26 36 27 37) movaps xmm6, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_FAST_FLOAT)] movaps xmm7, XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_FAST_FLOAT)] movaps xmm1, XMMWORD [XMMBLOCK(0,1,rdx,SIZEOF_FAST_FLOAT)] movaps xmm3, XMMWORD [XMMBLOCK(1,1,rdx,SIZEOF_FAST_FLOAT)] ; xmm6=(00 01 02 03), xmm1=(04 05 06 07) ; xmm7=(10 11 12 13), xmm3=(14 15 16 17) movaps XMMWORD [wk(0)], xmm4 ; wk(0)=(22 32 23 33) movaps XMMWORD [wk(1)], xmm2 ; wk(1)=(24 34 25 35) movaps xmm4, xmm6 ; transpose coefficients(phase 1) unpcklps xmm6, xmm7 ; xmm6=(00 10 01 11) unpckhps xmm4, xmm7 ; xmm4=(02 12 03 13) movaps xmm2, xmm1 ; transpose coefficients(phase 1) unpcklps xmm1, xmm3 ; xmm1=(04 14 05 15) unpckhps xmm2, xmm3 ; xmm2=(06 16 07 17) movaps xmm7, xmm6 ; transpose coefficients(phase 2) unpcklps2 xmm6, xmm0 ; xmm6=(00 10 20 30)=data0 unpckhps2 xmm7, xmm0 ; xmm7=(01 11 21 31)=data1 movaps xmm3, xmm2 ; transpose coefficients(phase 2) unpcklps2 xmm2, xmm5 ; xmm2=(06 16 26 36)=data6 unpckhps2 xmm3, xmm5 ; xmm3=(07 17 27 37)=data7 movaps xmm0, xmm7 movaps xmm5, xmm6 subps xmm7, xmm2 ; xmm7=data1-data6=tmp6 subps xmm6, xmm3 ; xmm6=data0-data7=tmp7 addps xmm0, xmm2 ; xmm0=data1+data6=tmp1 addps xmm5, xmm3 ; xmm5=data0+data7=tmp0 movaps xmm2, XMMWORD [wk(0)] ; xmm2=(22 32 23 33) movaps xmm3, XMMWORD [wk(1)] ; xmm3=(24 34 25 35) movaps XMMWORD [wk(0)], xmm7 ; wk(0)=tmp6 movaps XMMWORD [wk(1)], xmm6 ; wk(1)=tmp7 movaps xmm7, xmm4 ; transpose coefficients(phase 2) unpcklps2 xmm4, xmm2 ; xmm4=(02 12 22 32)=data2 unpckhps2 xmm7, xmm2 ; xmm7=(03 13 23 33)=data3 movaps xmm6, xmm1 ; transpose coefficients(phase 2) unpcklps2 xmm1, xmm3 ; xmm1=(04 14 24 34)=data4 unpckhps2 xmm6, xmm3 ; xmm6=(05 15 25 35)=data5 movaps xmm2, xmm7 movaps xmm3, xmm4 addps xmm7, xmm1 ; xmm7=data3+data4=tmp3 addps xmm4, xmm6 ; xmm4=data2+data5=tmp2 subps xmm2, xmm1 ; xmm2=data3-data4=tmp4 subps xmm3, xmm6 ; xmm3=data2-data5=tmp5 ; -- Even part movaps xmm1, xmm5 movaps xmm6, xmm0 subps xmm5, xmm7 ; xmm5=tmp13 subps xmm0, xmm4 ; xmm0=tmp12 addps xmm1, xmm7 ; xmm1=tmp10 addps xmm6, xmm4 ; xmm6=tmp11 addps xmm0, xmm5 mulps xmm0, [rel PD_0_707] ; xmm0=z1 movaps xmm7, xmm1 movaps xmm4, xmm5 subps xmm1, xmm6 ; xmm1=data4 subps xmm5, xmm0 ; xmm5=data6 addps xmm7, xmm6 ; xmm7=data0 addps xmm4, xmm0 ; xmm4=data2 movaps XMMWORD [XMMBLOCK(0,1,rdx,SIZEOF_FAST_FLOAT)], xmm1 movaps XMMWORD [XMMBLOCK(2,1,rdx,SIZEOF_FAST_FLOAT)], xmm5 movaps XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_FAST_FLOAT)], xmm7 movaps XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_FAST_FLOAT)], xmm4 ; -- Odd part movaps xmm6, XMMWORD [wk(0)] ; xmm6=tmp6 movaps xmm0, XMMWORD [wk(1)] ; xmm0=tmp7 addps xmm2, xmm3 ; xmm2=tmp10 addps xmm3, xmm6 ; xmm3=tmp11 addps xmm6, xmm0 ; xmm6=tmp12, xmm0=tmp7 mulps xmm3, [rel PD_0_707] ; xmm3=z3 movaps xmm1, xmm2 ; xmm1=tmp10 subps xmm2, xmm6 mulps xmm2, [rel PD_0_382] ; xmm2=z5 mulps xmm1, [rel PD_0_541] ; xmm1=MULTIPLY(tmp10,FIX_0_541196) mulps xmm6, [rel PD_1_306] ; xmm6=MULTIPLY(tmp12,FIX_1_306562) addps xmm1, xmm2 ; xmm1=z2 addps xmm6, xmm2 ; xmm6=z4 movaps xmm5, xmm0 subps xmm0, xmm3 ; xmm0=z13 addps xmm5, xmm3 ; xmm5=z11 movaps xmm7, xmm0 movaps xmm4, xmm5 subps xmm0, xmm1 ; xmm0=data3 subps xmm5, xmm6 ; xmm5=data7 addps xmm7, xmm1 ; xmm7=data5 addps xmm4, xmm6 ; xmm4=data1 movaps XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_FAST_FLOAT)], xmm0 movaps XMMWORD [XMMBLOCK(3,1,rdx,SIZEOF_FAST_FLOAT)], xmm5 movaps XMMWORD [XMMBLOCK(1,1,rdx,SIZEOF_FAST_FLOAT)], xmm7 movaps XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_FAST_FLOAT)], xmm4 add rdx, 4*DCTSIZE*SIZEOF_FAST_FLOAT dec rcx jnz near .rowloop ; ---- Pass 2: process columns. mov rdx, r10 ; (FAST_FLOAT *) mov rcx, DCTSIZE/4 .columnloop: movaps xmm0, XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_FAST_FLOAT)] movaps xmm1, XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_FAST_FLOAT)] movaps xmm2, XMMWORD [XMMBLOCK(6,0,rdx,SIZEOF_FAST_FLOAT)] movaps xmm3, XMMWORD [XMMBLOCK(7,0,rdx,SIZEOF_FAST_FLOAT)] ; xmm0=(02 12 22 32), xmm2=(42 52 62 72) ; xmm1=(03 13 23 33), xmm3=(43 53 63 73) movaps xmm4, xmm0 ; transpose coefficients(phase 1) unpcklps xmm0, xmm1 ; xmm0=(02 03 12 13) unpckhps xmm4, xmm1 ; xmm4=(22 23 32 33) movaps xmm5, xmm2 ; transpose coefficients(phase 1) unpcklps xmm2, xmm3 ; xmm2=(42 43 52 53) unpckhps xmm5, xmm3 ; xmm5=(62 63 72 73) movaps xmm6, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_FAST_FLOAT)] movaps xmm7, XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_FAST_FLOAT)] movaps xmm1, XMMWORD [XMMBLOCK(4,0,rdx,SIZEOF_FAST_FLOAT)] movaps xmm3, XMMWORD [XMMBLOCK(5,0,rdx,SIZEOF_FAST_FLOAT)] ; xmm6=(00 10 20 30), xmm1=(40 50 60 70) ; xmm7=(01 11 21 31), xmm3=(41 51 61 71) movaps XMMWORD [wk(0)], xmm4 ; wk(0)=(22 23 32 33) movaps XMMWORD [wk(1)], xmm2 ; wk(1)=(42 43 52 53) movaps xmm4, xmm6 ; transpose coefficients(phase 1) unpcklps xmm6, xmm7 ; xmm6=(00 01 10 11) unpckhps xmm4, xmm7 ; xmm4=(20 21 30 31) movaps xmm2, xmm1 ; transpose coefficients(phase 1) unpcklps xmm1, xmm3 ; xmm1=(40 41 50 51) unpckhps xmm2, xmm3 ; xmm2=(60 61 70 71) movaps xmm7, xmm6 ; transpose coefficients(phase 2) unpcklps2 xmm6, xmm0 ; xmm6=(00 01 02 03)=data0 unpckhps2 xmm7, xmm0 ; xmm7=(10 11 12 13)=data1 movaps xmm3, xmm2 ; transpose coefficients(phase 2) unpcklps2 xmm2, xmm5 ; xmm2=(60 61 62 63)=data6 unpckhps2 xmm3, xmm5 ; xmm3=(70 71 72 73)=data7 movaps xmm0, xmm7 movaps xmm5, xmm6 subps xmm7, xmm2 ; xmm7=data1-data6=tmp6 subps xmm6, xmm3 ; xmm6=data0-data7=tmp7 addps xmm0, xmm2 ; xmm0=data1+data6=tmp1 addps xmm5, xmm3 ; xmm5=data0+data7=tmp0 movaps xmm2, XMMWORD [wk(0)] ; xmm2=(22 23 32 33) movaps xmm3, XMMWORD [wk(1)] ; xmm3=(42 43 52 53) movaps XMMWORD [wk(0)], xmm7 ; wk(0)=tmp6 movaps XMMWORD [wk(1)], xmm6 ; wk(1)=tmp7 movaps xmm7, xmm4 ; transpose coefficients(phase 2) unpcklps2 xmm4, xmm2 ; xmm4=(20 21 22 23)=data2 unpckhps2 xmm7, xmm2 ; xmm7=(30 31 32 33)=data3 movaps xmm6, xmm1 ; transpose coefficients(phase 2) unpcklps2 xmm1, xmm3 ; xmm1=(40 41 42 43)=data4 unpckhps2 xmm6, xmm3 ; xmm6=(50 51 52 53)=data5 movaps xmm2, xmm7 movaps xmm3, xmm4 addps xmm7, xmm1 ; xmm7=data3+data4=tmp3 addps xmm4, xmm6 ; xmm4=data2+data5=tmp2 subps xmm2, xmm1 ; xmm2=data3-data4=tmp4 subps xmm3, xmm6 ; xmm3=data2-data5=tmp5 ; -- Even part movaps xmm1, xmm5 movaps xmm6, xmm0 subps xmm5, xmm7 ; xmm5=tmp13 subps xmm0, xmm4 ; xmm0=tmp12 addps xmm1, xmm7 ; xmm1=tmp10 addps xmm6, xmm4 ; xmm6=tmp11 addps xmm0, xmm5 mulps xmm0, [rel PD_0_707] ; xmm0=z1 movaps xmm7, xmm1 movaps xmm4, xmm5 subps xmm1, xmm6 ; xmm1=data4 subps xmm5, xmm0 ; xmm5=data6 addps xmm7, xmm6 ; xmm7=data0 addps xmm4, xmm0 ; xmm4=data2 movaps XMMWORD [XMMBLOCK(4,0,rdx,SIZEOF_FAST_FLOAT)], xmm1 movaps XMMWORD [XMMBLOCK(6,0,rdx,SIZEOF_FAST_FLOAT)], xmm5 movaps XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_FAST_FLOAT)], xmm7 movaps XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_FAST_FLOAT)], xmm4 ; -- Odd part movaps xmm6, XMMWORD [wk(0)] ; xmm6=tmp6 movaps xmm0, XMMWORD [wk(1)] ; xmm0=tmp7 addps xmm2, xmm3 ; xmm2=tmp10 addps xmm3, xmm6 ; xmm3=tmp11 addps xmm6, xmm0 ; xmm6=tmp12, xmm0=tmp7 mulps xmm3, [rel PD_0_707] ; xmm3=z3 movaps xmm1, xmm2 ; xmm1=tmp10 subps xmm2, xmm6 mulps xmm2, [rel PD_0_382] ; xmm2=z5 mulps xmm1, [rel PD_0_541] ; xmm1=MULTIPLY(tmp10,FIX_0_541196) mulps xmm6, [rel PD_1_306] ; xmm6=MULTIPLY(tmp12,FIX_1_306562) addps xmm1, xmm2 ; xmm1=z2 addps xmm6, xmm2 ; xmm6=z4 movaps xmm5, xmm0 subps xmm0, xmm3 ; xmm0=z13 addps xmm5, xmm3 ; xmm5=z11 movaps xmm7, xmm0 movaps xmm4, xmm5 subps xmm0, xmm1 ; xmm0=data3 subps xmm5, xmm6 ; xmm5=data7 addps xmm7, xmm1 ; xmm7=data5 addps xmm4, xmm6 ; xmm4=data1 movaps XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_FAST_FLOAT)], xmm0 movaps XMMWORD [XMMBLOCK(7,0,rdx,SIZEOF_FAST_FLOAT)], xmm5 movaps XMMWORD [XMMBLOCK(5,0,rdx,SIZEOF_FAST_FLOAT)], xmm7 movaps XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_FAST_FLOAT)], xmm4 add rdx, byte 4*SIZEOF_FAST_FLOAT dec rcx jnz near .columnloop uncollect_args 1 mov rsp, rbp ; rsp <- aligned rbp pop rsp ; rsp <- original rbp pop rbp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/x86_64/jfdctfst-sse2.asm000066400000000000000000000414021436506551100213500ustar00rootroot00000000000000; ; jfdctfst.asm - fast integer FDCT (64-bit SSE2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2009, 2016, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains a fast, not so accurate integer implementation of ; the forward DCT (Discrete Cosine Transform). The following code is ; based directly on the IJG's original jfdctfst.c; see the jfdctfst.c ; for more details. %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- %define CONST_BITS 8 ; 14 is also OK. %if CONST_BITS == 8 F_0_382 equ 98 ; FIX(0.382683433) F_0_541 equ 139 ; FIX(0.541196100) F_0_707 equ 181 ; FIX(0.707106781) F_1_306 equ 334 ; FIX(1.306562965) %else ; NASM cannot do compile-time arithmetic on floating-point constants. %define DESCALE(x, n) (((x) + (1 << ((n) - 1))) >> (n)) F_0_382 equ DESCALE( 410903207, 30 - CONST_BITS) ; FIX(0.382683433) F_0_541 equ DESCALE( 581104887, 30 - CONST_BITS) ; FIX(0.541196100) F_0_707 equ DESCALE( 759250124, 30 - CONST_BITS) ; FIX(0.707106781) F_1_306 equ DESCALE(1402911301, 30 - CONST_BITS) ; FIX(1.306562965) %endif ; -------------------------------------------------------------------------- SECTION SEG_CONST ; PRE_MULTIPLY_SCALE_BITS <= 2 (to avoid overflow) ; CONST_BITS + CONST_SHIFT + PRE_MULTIPLY_SCALE_BITS == 16 (for pmulhw) %define PRE_MULTIPLY_SCALE_BITS 2 %define CONST_SHIFT (16 - PRE_MULTIPLY_SCALE_BITS - CONST_BITS) alignz 32 GLOBAL_DATA(jconst_fdct_ifast_sse2) EXTN(jconst_fdct_ifast_sse2): PW_F0707 times 8 dw F_0_707 << CONST_SHIFT PW_F0382 times 8 dw F_0_382 << CONST_SHIFT PW_F0541 times 8 dw F_0_541 << CONST_SHIFT PW_F1306 times 8 dw F_1_306 << CONST_SHIFT alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 64 ; ; Perform the forward DCT on one block of samples. ; ; GLOBAL(void) ; jsimd_fdct_ifast_sse2(DCTELEM *data) ; ; r10 = DCTELEM *data %define wk(i) rbp - (WK_NUM - (i)) * SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 2 align 32 GLOBAL_FUNCTION(jsimd_fdct_ifast_sse2) EXTN(jsimd_fdct_ifast_sse2): push rbp mov rax, rsp ; rax = original rbp sub rsp, byte 4 and rsp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [rsp], rax mov rbp, rsp ; rbp = aligned rbp lea rsp, [wk(0)] collect_args 1 ; ---- Pass 1: process rows. mov rdx, r10 ; (DCTELEM *) movdqa xmm0, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_DCTELEM)] movdqa xmm1, XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_DCTELEM)] movdqa xmm2, XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_DCTELEM)] movdqa xmm3, XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_DCTELEM)] ; xmm0=(00 01 02 03 04 05 06 07), xmm2=(20 21 22 23 24 25 26 27) ; xmm1=(10 11 12 13 14 15 16 17), xmm3=(30 31 32 33 34 35 36 37) movdqa xmm4, xmm0 ; transpose coefficients(phase 1) punpcklwd xmm0, xmm1 ; xmm0=(00 10 01 11 02 12 03 13) punpckhwd xmm4, xmm1 ; xmm4=(04 14 05 15 06 16 07 17) movdqa xmm5, xmm2 ; transpose coefficients(phase 1) punpcklwd xmm2, xmm3 ; xmm2=(20 30 21 31 22 32 23 33) punpckhwd xmm5, xmm3 ; xmm5=(24 34 25 35 26 36 27 37) movdqa xmm6, XMMWORD [XMMBLOCK(4,0,rdx,SIZEOF_DCTELEM)] movdqa xmm7, XMMWORD [XMMBLOCK(5,0,rdx,SIZEOF_DCTELEM)] movdqa xmm1, XMMWORD [XMMBLOCK(6,0,rdx,SIZEOF_DCTELEM)] movdqa xmm3, XMMWORD [XMMBLOCK(7,0,rdx,SIZEOF_DCTELEM)] ; xmm6=( 4 12 20 28 36 44 52 60), xmm1=( 6 14 22 30 38 46 54 62) ; xmm7=( 5 13 21 29 37 45 53 61), xmm3=( 7 15 23 31 39 47 55 63) movdqa XMMWORD [wk(0)], xmm2 ; wk(0)=(20 30 21 31 22 32 23 33) movdqa XMMWORD [wk(1)], xmm5 ; wk(1)=(24 34 25 35 26 36 27 37) movdqa xmm2, xmm6 ; transpose coefficients(phase 1) punpcklwd xmm6, xmm7 ; xmm6=(40 50 41 51 42 52 43 53) punpckhwd xmm2, xmm7 ; xmm2=(44 54 45 55 46 56 47 57) movdqa xmm5, xmm1 ; transpose coefficients(phase 1) punpcklwd xmm1, xmm3 ; xmm1=(60 70 61 71 62 72 63 73) punpckhwd xmm5, xmm3 ; xmm5=(64 74 65 75 66 76 67 77) movdqa xmm7, xmm6 ; transpose coefficients(phase 2) punpckldq xmm6, xmm1 ; xmm6=(40 50 60 70 41 51 61 71) punpckhdq xmm7, xmm1 ; xmm7=(42 52 62 72 43 53 63 73) movdqa xmm3, xmm2 ; transpose coefficients(phase 2) punpckldq xmm2, xmm5 ; xmm2=(44 54 64 74 45 55 65 75) punpckhdq xmm3, xmm5 ; xmm3=(46 56 66 76 47 57 67 77) movdqa xmm1, XMMWORD [wk(0)] ; xmm1=(20 30 21 31 22 32 23 33) movdqa xmm5, XMMWORD [wk(1)] ; xmm5=(24 34 25 35 26 36 27 37) movdqa XMMWORD [wk(0)], xmm7 ; wk(0)=(42 52 62 72 43 53 63 73) movdqa XMMWORD [wk(1)], xmm2 ; wk(1)=(44 54 64 74 45 55 65 75) movdqa xmm7, xmm0 ; transpose coefficients(phase 2) punpckldq xmm0, xmm1 ; xmm0=(00 10 20 30 01 11 21 31) punpckhdq xmm7, xmm1 ; xmm7=(02 12 22 32 03 13 23 33) movdqa xmm2, xmm4 ; transpose coefficients(phase 2) punpckldq xmm4, xmm5 ; xmm4=(04 14 24 34 05 15 25 35) punpckhdq xmm2, xmm5 ; xmm2=(06 16 26 36 07 17 27 37) movdqa xmm1, xmm0 ; transpose coefficients(phase 3) punpcklqdq xmm0, xmm6 ; xmm0=(00 10 20 30 40 50 60 70)=data0 punpckhqdq xmm1, xmm6 ; xmm1=(01 11 21 31 41 51 61 71)=data1 movdqa xmm5, xmm2 ; transpose coefficients(phase 3) punpcklqdq xmm2, xmm3 ; xmm2=(06 16 26 36 46 56 66 76)=data6 punpckhqdq xmm5, xmm3 ; xmm5=(07 17 27 37 47 57 67 77)=data7 movdqa xmm6, xmm1 movdqa xmm3, xmm0 psubw xmm1, xmm2 ; xmm1=data1-data6=tmp6 psubw xmm0, xmm5 ; xmm0=data0-data7=tmp7 paddw xmm6, xmm2 ; xmm6=data1+data6=tmp1 paddw xmm3, xmm5 ; xmm3=data0+data7=tmp0 movdqa xmm2, XMMWORD [wk(0)] ; xmm2=(42 52 62 72 43 53 63 73) movdqa xmm5, XMMWORD [wk(1)] ; xmm5=(44 54 64 74 45 55 65 75) movdqa XMMWORD [wk(0)], xmm1 ; wk(0)=tmp6 movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=tmp7 movdqa xmm1, xmm7 ; transpose coefficients(phase 3) punpcklqdq xmm7, xmm2 ; xmm7=(02 12 22 32 42 52 62 72)=data2 punpckhqdq xmm1, xmm2 ; xmm1=(03 13 23 33 43 53 63 73)=data3 movdqa xmm0, xmm4 ; transpose coefficients(phase 3) punpcklqdq xmm4, xmm5 ; xmm4=(04 14 24 34 44 54 64 74)=data4 punpckhqdq xmm0, xmm5 ; xmm0=(05 15 25 35 45 55 65 75)=data5 movdqa xmm2, xmm1 movdqa xmm5, xmm7 paddw xmm1, xmm4 ; xmm1=data3+data4=tmp3 paddw xmm7, xmm0 ; xmm7=data2+data5=tmp2 psubw xmm2, xmm4 ; xmm2=data3-data4=tmp4 psubw xmm5, xmm0 ; xmm5=data2-data5=tmp5 ; -- Even part movdqa xmm4, xmm3 movdqa xmm0, xmm6 psubw xmm3, xmm1 ; xmm3=tmp13 psubw xmm6, xmm7 ; xmm6=tmp12 paddw xmm4, xmm1 ; xmm4=tmp10 paddw xmm0, xmm7 ; xmm0=tmp11 paddw xmm6, xmm3 psllw xmm6, PRE_MULTIPLY_SCALE_BITS pmulhw xmm6, [rel PW_F0707] ; xmm6=z1 movdqa xmm1, xmm4 movdqa xmm7, xmm3 psubw xmm4, xmm0 ; xmm4=data4 psubw xmm3, xmm6 ; xmm3=data6 paddw xmm1, xmm0 ; xmm1=data0 paddw xmm7, xmm6 ; xmm7=data2 movdqa xmm0, XMMWORD [wk(0)] ; xmm0=tmp6 movdqa xmm6, XMMWORD [wk(1)] ; xmm6=tmp7 movdqa XMMWORD [wk(0)], xmm4 ; wk(0)=data4 movdqa XMMWORD [wk(1)], xmm3 ; wk(1)=data6 ; -- Odd part paddw xmm2, xmm5 ; xmm2=tmp10 paddw xmm5, xmm0 ; xmm5=tmp11 paddw xmm0, xmm6 ; xmm0=tmp12, xmm6=tmp7 psllw xmm2, PRE_MULTIPLY_SCALE_BITS psllw xmm0, PRE_MULTIPLY_SCALE_BITS psllw xmm5, PRE_MULTIPLY_SCALE_BITS pmulhw xmm5, [rel PW_F0707] ; xmm5=z3 movdqa xmm4, xmm2 ; xmm4=tmp10 psubw xmm2, xmm0 pmulhw xmm2, [rel PW_F0382] ; xmm2=z5 pmulhw xmm4, [rel PW_F0541] ; xmm4=MULTIPLY(tmp10,FIX_0_541196) pmulhw xmm0, [rel PW_F1306] ; xmm0=MULTIPLY(tmp12,FIX_1_306562) paddw xmm4, xmm2 ; xmm4=z2 paddw xmm0, xmm2 ; xmm0=z4 movdqa xmm3, xmm6 psubw xmm6, xmm5 ; xmm6=z13 paddw xmm3, xmm5 ; xmm3=z11 movdqa xmm2, xmm6 movdqa xmm5, xmm3 psubw xmm6, xmm4 ; xmm6=data3 psubw xmm3, xmm0 ; xmm3=data7 paddw xmm2, xmm4 ; xmm2=data5 paddw xmm5, xmm0 ; xmm5=data1 ; ---- Pass 2: process columns. ; xmm1=(00 10 20 30 40 50 60 70), xmm7=(02 12 22 32 42 52 62 72) ; xmm5=(01 11 21 31 41 51 61 71), xmm6=(03 13 23 33 43 53 63 73) movdqa xmm4, xmm1 ; transpose coefficients(phase 1) punpcklwd xmm1, xmm5 ; xmm1=(00 01 10 11 20 21 30 31) punpckhwd xmm4, xmm5 ; xmm4=(40 41 50 51 60 61 70 71) movdqa xmm0, xmm7 ; transpose coefficients(phase 1) punpcklwd xmm7, xmm6 ; xmm7=(02 03 12 13 22 23 32 33) punpckhwd xmm0, xmm6 ; xmm0=(42 43 52 53 62 63 72 73) movdqa xmm5, XMMWORD [wk(0)] ; xmm5=col4 movdqa xmm6, XMMWORD [wk(1)] ; xmm6=col6 ; xmm5=(04 14 24 34 44 54 64 74), xmm6=(06 16 26 36 46 56 66 76) ; xmm2=(05 15 25 35 45 55 65 75), xmm3=(07 17 27 37 47 57 67 77) movdqa XMMWORD [wk(0)], xmm7 ; wk(0)=(02 03 12 13 22 23 32 33) movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=(42 43 52 53 62 63 72 73) movdqa xmm7, xmm5 ; transpose coefficients(phase 1) punpcklwd xmm5, xmm2 ; xmm5=(04 05 14 15 24 25 34 35) punpckhwd xmm7, xmm2 ; xmm7=(44 45 54 55 64 65 74 75) movdqa xmm0, xmm6 ; transpose coefficients(phase 1) punpcklwd xmm6, xmm3 ; xmm6=(06 07 16 17 26 27 36 37) punpckhwd xmm0, xmm3 ; xmm0=(46 47 56 57 66 67 76 77) movdqa xmm2, xmm5 ; transpose coefficients(phase 2) punpckldq xmm5, xmm6 ; xmm5=(04 05 06 07 14 15 16 17) punpckhdq xmm2, xmm6 ; xmm2=(24 25 26 27 34 35 36 37) movdqa xmm3, xmm7 ; transpose coefficients(phase 2) punpckldq xmm7, xmm0 ; xmm7=(44 45 46 47 54 55 56 57) punpckhdq xmm3, xmm0 ; xmm3=(64 65 66 67 74 75 76 77) movdqa xmm6, XMMWORD [wk(0)] ; xmm6=(02 03 12 13 22 23 32 33) movdqa xmm0, XMMWORD [wk(1)] ; xmm0=(42 43 52 53 62 63 72 73) movdqa XMMWORD [wk(0)], xmm2 ; wk(0)=(24 25 26 27 34 35 36 37) movdqa XMMWORD [wk(1)], xmm7 ; wk(1)=(44 45 46 47 54 55 56 57) movdqa xmm2, xmm1 ; transpose coefficients(phase 2) punpckldq xmm1, xmm6 ; xmm1=(00 01 02 03 10 11 12 13) punpckhdq xmm2, xmm6 ; xmm2=(20 21 22 23 30 31 32 33) movdqa xmm7, xmm4 ; transpose coefficients(phase 2) punpckldq xmm4, xmm0 ; xmm4=(40 41 42 43 50 51 52 53) punpckhdq xmm7, xmm0 ; xmm7=(60 61 62 63 70 71 72 73) movdqa xmm6, xmm1 ; transpose coefficients(phase 3) punpcklqdq xmm1, xmm5 ; xmm1=(00 01 02 03 04 05 06 07)=data0 punpckhqdq xmm6, xmm5 ; xmm6=(10 11 12 13 14 15 16 17)=data1 movdqa xmm0, xmm7 ; transpose coefficients(phase 3) punpcklqdq xmm7, xmm3 ; xmm7=(60 61 62 63 64 65 66 67)=data6 punpckhqdq xmm0, xmm3 ; xmm0=(70 71 72 73 74 75 76 77)=data7 movdqa xmm5, xmm6 movdqa xmm3, xmm1 psubw xmm6, xmm7 ; xmm6=data1-data6=tmp6 psubw xmm1, xmm0 ; xmm1=data0-data7=tmp7 paddw xmm5, xmm7 ; xmm5=data1+data6=tmp1 paddw xmm3, xmm0 ; xmm3=data0+data7=tmp0 movdqa xmm7, XMMWORD [wk(0)] ; xmm7=(24 25 26 27 34 35 36 37) movdqa xmm0, XMMWORD [wk(1)] ; xmm0=(44 45 46 47 54 55 56 57) movdqa XMMWORD [wk(0)], xmm6 ; wk(0)=tmp6 movdqa XMMWORD [wk(1)], xmm1 ; wk(1)=tmp7 movdqa xmm6, xmm2 ; transpose coefficients(phase 3) punpcklqdq xmm2, xmm7 ; xmm2=(20 21 22 23 24 25 26 27)=data2 punpckhqdq xmm6, xmm7 ; xmm6=(30 31 32 33 34 35 36 37)=data3 movdqa xmm1, xmm4 ; transpose coefficients(phase 3) punpcklqdq xmm4, xmm0 ; xmm4=(40 41 42 43 44 45 46 47)=data4 punpckhqdq xmm1, xmm0 ; xmm1=(50 51 52 53 54 55 56 57)=data5 movdqa xmm7, xmm6 movdqa xmm0, xmm2 paddw xmm6, xmm4 ; xmm6=data3+data4=tmp3 paddw xmm2, xmm1 ; xmm2=data2+data5=tmp2 psubw xmm7, xmm4 ; xmm7=data3-data4=tmp4 psubw xmm0, xmm1 ; xmm0=data2-data5=tmp5 ; -- Even part movdqa xmm4, xmm3 movdqa xmm1, xmm5 psubw xmm3, xmm6 ; xmm3=tmp13 psubw xmm5, xmm2 ; xmm5=tmp12 paddw xmm4, xmm6 ; xmm4=tmp10 paddw xmm1, xmm2 ; xmm1=tmp11 paddw xmm5, xmm3 psllw xmm5, PRE_MULTIPLY_SCALE_BITS pmulhw xmm5, [rel PW_F0707] ; xmm5=z1 movdqa xmm6, xmm4 movdqa xmm2, xmm3 psubw xmm4, xmm1 ; xmm4=data4 psubw xmm3, xmm5 ; xmm3=data6 paddw xmm6, xmm1 ; xmm6=data0 paddw xmm2, xmm5 ; xmm2=data2 movdqa XMMWORD [XMMBLOCK(4,0,rdx,SIZEOF_DCTELEM)], xmm4 movdqa XMMWORD [XMMBLOCK(6,0,rdx,SIZEOF_DCTELEM)], xmm3 movdqa XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_DCTELEM)], xmm6 movdqa XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_DCTELEM)], xmm2 ; -- Odd part movdqa xmm1, XMMWORD [wk(0)] ; xmm1=tmp6 movdqa xmm5, XMMWORD [wk(1)] ; xmm5=tmp7 paddw xmm7, xmm0 ; xmm7=tmp10 paddw xmm0, xmm1 ; xmm0=tmp11 paddw xmm1, xmm5 ; xmm1=tmp12, xmm5=tmp7 psllw xmm7, PRE_MULTIPLY_SCALE_BITS psllw xmm1, PRE_MULTIPLY_SCALE_BITS psllw xmm0, PRE_MULTIPLY_SCALE_BITS pmulhw xmm0, [rel PW_F0707] ; xmm0=z3 movdqa xmm4, xmm7 ; xmm4=tmp10 psubw xmm7, xmm1 pmulhw xmm7, [rel PW_F0382] ; xmm7=z5 pmulhw xmm4, [rel PW_F0541] ; xmm4=MULTIPLY(tmp10,FIX_0_541196) pmulhw xmm1, [rel PW_F1306] ; xmm1=MULTIPLY(tmp12,FIX_1_306562) paddw xmm4, xmm7 ; xmm4=z2 paddw xmm1, xmm7 ; xmm1=z4 movdqa xmm3, xmm5 psubw xmm5, xmm0 ; xmm5=z13 paddw xmm3, xmm0 ; xmm3=z11 movdqa xmm6, xmm5 movdqa xmm2, xmm3 psubw xmm5, xmm4 ; xmm5=data3 psubw xmm3, xmm1 ; xmm3=data7 paddw xmm6, xmm4 ; xmm6=data5 paddw xmm2, xmm1 ; xmm2=data1 movdqa XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_DCTELEM)], xmm5 movdqa XMMWORD [XMMBLOCK(7,0,rdx,SIZEOF_DCTELEM)], xmm3 movdqa XMMWORD [XMMBLOCK(5,0,rdx,SIZEOF_DCTELEM)], xmm6 movdqa XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_DCTELEM)], xmm2 uncollect_args 1 mov rsp, rbp ; rsp <- aligned rbp pop rsp ; rsp <- original rbp pop rbp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/x86_64/jfdctint-avx2.asm000066400000000000000000000300501436506551100213470ustar00rootroot00000000000000; ; jfdctint.asm - accurate integer FDCT (64-bit AVX2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2009, 2016, 2018, 2020, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains a slower but more accurate integer implementation of the ; forward DCT (Discrete Cosine Transform). The following code is based ; directly on the IJG's original jfdctint.c; see the jfdctint.c for ; more details. %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- %define CONST_BITS 13 %define PASS1_BITS 2 %define DESCALE_P1 (CONST_BITS - PASS1_BITS) %define DESCALE_P2 (CONST_BITS + PASS1_BITS) %if CONST_BITS == 13 F_0_298 equ 2446 ; FIX(0.298631336) F_0_390 equ 3196 ; FIX(0.390180644) F_0_541 equ 4433 ; FIX(0.541196100) F_0_765 equ 6270 ; FIX(0.765366865) F_0_899 equ 7373 ; FIX(0.899976223) F_1_175 equ 9633 ; FIX(1.175875602) F_1_501 equ 12299 ; FIX(1.501321110) F_1_847 equ 15137 ; FIX(1.847759065) F_1_961 equ 16069 ; FIX(1.961570560) F_2_053 equ 16819 ; FIX(2.053119869) F_2_562 equ 20995 ; FIX(2.562915447) F_3_072 equ 25172 ; FIX(3.072711026) %else ; NASM cannot do compile-time arithmetic on floating-point constants. %define DESCALE(x, n) (((x) + (1 << ((n) - 1))) >> (n)) F_0_298 equ DESCALE( 320652955, 30 - CONST_BITS) ; FIX(0.298631336) F_0_390 equ DESCALE( 418953276, 30 - CONST_BITS) ; FIX(0.390180644) F_0_541 equ DESCALE( 581104887, 30 - CONST_BITS) ; FIX(0.541196100) F_0_765 equ DESCALE( 821806413, 30 - CONST_BITS) ; FIX(0.765366865) F_0_899 equ DESCALE( 966342111, 30 - CONST_BITS) ; FIX(0.899976223) F_1_175 equ DESCALE(1262586813, 30 - CONST_BITS) ; FIX(1.175875602) F_1_501 equ DESCALE(1612031267, 30 - CONST_BITS) ; FIX(1.501321110) F_1_847 equ DESCALE(1984016188, 30 - CONST_BITS) ; FIX(1.847759065) F_1_961 equ DESCALE(2106220350, 30 - CONST_BITS) ; FIX(1.961570560) F_2_053 equ DESCALE(2204520673, 30 - CONST_BITS) ; FIX(2.053119869) F_2_562 equ DESCALE(2751909506, 30 - CONST_BITS) ; FIX(2.562915447) F_3_072 equ DESCALE(3299298341, 30 - CONST_BITS) ; FIX(3.072711026) %endif ; -------------------------------------------------------------------------- ; In-place 8x8x16-bit matrix transpose using AVX2 instructions ; %1-%4: Input/output registers ; %5-%8: Temp registers %macro dotranspose 8 ; %1=(00 01 02 03 04 05 06 07 40 41 42 43 44 45 46 47) ; %2=(10 11 12 13 14 15 16 17 50 51 52 53 54 55 56 57) ; %3=(20 21 22 23 24 25 26 27 60 61 62 63 64 65 66 67) ; %4=(30 31 32 33 34 35 36 37 70 71 72 73 74 75 76 77) vpunpcklwd %5, %1, %2 vpunpckhwd %6, %1, %2 vpunpcklwd %7, %3, %4 vpunpckhwd %8, %3, %4 ; transpose coefficients(phase 1) ; %5=(00 10 01 11 02 12 03 13 40 50 41 51 42 52 43 53) ; %6=(04 14 05 15 06 16 07 17 44 54 45 55 46 56 47 57) ; %7=(20 30 21 31 22 32 23 33 60 70 61 71 62 72 63 73) ; %8=(24 34 25 35 26 36 27 37 64 74 65 75 66 76 67 77) vpunpckldq %1, %5, %7 vpunpckhdq %2, %5, %7 vpunpckldq %3, %6, %8 vpunpckhdq %4, %6, %8 ; transpose coefficients(phase 2) ; %1=(00 10 20 30 01 11 21 31 40 50 60 70 41 51 61 71) ; %2=(02 12 22 32 03 13 23 33 42 52 62 72 43 53 63 73) ; %3=(04 14 24 34 05 15 25 35 44 54 64 74 45 55 65 75) ; %4=(06 16 26 36 07 17 27 37 46 56 66 76 47 57 67 77) vpermq %1, %1, 0x8D vpermq %2, %2, 0x8D vpermq %3, %3, 0xD8 vpermq %4, %4, 0xD8 ; transpose coefficients(phase 3) ; %1=(01 11 21 31 41 51 61 71 00 10 20 30 40 50 60 70) ; %2=(03 13 23 33 43 53 63 73 02 12 22 32 42 52 62 72) ; %3=(04 14 24 34 44 54 64 74 05 15 25 35 45 55 65 75) ; %4=(06 16 26 36 46 56 66 76 07 17 27 37 47 57 67 77) %endmacro ; -------------------------------------------------------------------------- ; In-place 8x8x16-bit accurate integer forward DCT using AVX2 instructions ; %1-%4: Input/output registers ; %5-%8: Temp registers ; %9: Pass (1 or 2) %macro dodct 9 vpsubw %5, %1, %4 ; %5=data1_0-data6_7=tmp6_7 vpaddw %6, %1, %4 ; %6=data1_0+data6_7=tmp1_0 vpaddw %7, %2, %3 ; %7=data3_2+data4_5=tmp3_2 vpsubw %8, %2, %3 ; %8=data3_2-data4_5=tmp4_5 ; -- Even part vperm2i128 %6, %6, %6, 0x01 ; %6=tmp0_1 vpaddw %1, %6, %7 ; %1=tmp0_1+tmp3_2=tmp10_11 vpsubw %6, %6, %7 ; %6=tmp0_1-tmp3_2=tmp13_12 vperm2i128 %7, %1, %1, 0x01 ; %7=tmp11_10 vpsignw %1, %1, [rel PW_1_NEG1] ; %1=tmp10_neg11 vpaddw %7, %7, %1 ; %7=(tmp10+tmp11)_(tmp10-tmp11) %if %9 == 1 vpsllw %1, %7, PASS1_BITS ; %1=data0_4 %else vpaddw %7, %7, [rel PW_DESCALE_P2X] vpsraw %1, %7, PASS1_BITS ; %1=data0_4 %endif ; (Original) ; z1 = (tmp12 + tmp13) * 0.541196100; ; data2 = z1 + tmp13 * 0.765366865; ; data6 = z1 + tmp12 * -1.847759065; ; ; (This implementation) ; data2 = tmp13 * (0.541196100 + 0.765366865) + tmp12 * 0.541196100; ; data6 = tmp13 * 0.541196100 + tmp12 * (0.541196100 - 1.847759065); vperm2i128 %7, %6, %6, 0x01 ; %7=tmp12_13 vpunpcklwd %2, %6, %7 vpunpckhwd %6, %6, %7 vpmaddwd %2, %2, [rel PW_F130_F054_MF130_F054] ; %2=data2_6L vpmaddwd %6, %6, [rel PW_F130_F054_MF130_F054] ; %6=data2_6H vpaddd %2, %2, [rel PD_DESCALE_P %+ %9] vpaddd %6, %6, [rel PD_DESCALE_P %+ %9] vpsrad %2, %2, DESCALE_P %+ %9 vpsrad %6, %6, DESCALE_P %+ %9 vpackssdw %3, %2, %6 ; %6=data2_6 ; -- Odd part vpaddw %7, %8, %5 ; %7=tmp4_5+tmp6_7=z3_4 ; (Original) ; z5 = (z3 + z4) * 1.175875602; ; z3 = z3 * -1.961570560; z4 = z4 * -0.390180644; ; z3 += z5; z4 += z5; ; ; (This implementation) ; z3 = z3 * (1.175875602 - 1.961570560) + z4 * 1.175875602; ; z4 = z3 * 1.175875602 + z4 * (1.175875602 - 0.390180644); vperm2i128 %2, %7, %7, 0x01 ; %2=z4_3 vpunpcklwd %6, %7, %2 vpunpckhwd %7, %7, %2 vpmaddwd %6, %6, [rel PW_MF078_F117_F078_F117] ; %6=z3_4L vpmaddwd %7, %7, [rel PW_MF078_F117_F078_F117] ; %7=z3_4H ; (Original) ; z1 = tmp4 + tmp7; z2 = tmp5 + tmp6; ; tmp4 = tmp4 * 0.298631336; tmp5 = tmp5 * 2.053119869; ; tmp6 = tmp6 * 3.072711026; tmp7 = tmp7 * 1.501321110; ; z1 = z1 * -0.899976223; z2 = z2 * -2.562915447; ; data7 = tmp4 + z1 + z3; data5 = tmp5 + z2 + z4; ; data3 = tmp6 + z2 + z3; data1 = tmp7 + z1 + z4; ; ; (This implementation) ; tmp4 = tmp4 * (0.298631336 - 0.899976223) + tmp7 * -0.899976223; ; tmp5 = tmp5 * (2.053119869 - 2.562915447) + tmp6 * -2.562915447; ; tmp6 = tmp5 * -2.562915447 + tmp6 * (3.072711026 - 2.562915447); ; tmp7 = tmp4 * -0.899976223 + tmp7 * (1.501321110 - 0.899976223); ; data7 = tmp4 + z3; data5 = tmp5 + z4; ; data3 = tmp6 + z3; data1 = tmp7 + z4; vperm2i128 %4, %5, %5, 0x01 ; %4=tmp7_6 vpunpcklwd %2, %8, %4 vpunpckhwd %4, %8, %4 vpmaddwd %2, %2, [rel PW_MF060_MF089_MF050_MF256] ; %2=tmp4_5L vpmaddwd %4, %4, [rel PW_MF060_MF089_MF050_MF256] ; %4=tmp4_5H vpaddd %2, %2, %6 ; %2=data7_5L vpaddd %4, %4, %7 ; %4=data7_5H vpaddd %2, %2, [rel PD_DESCALE_P %+ %9] vpaddd %4, %4, [rel PD_DESCALE_P %+ %9] vpsrad %2, %2, DESCALE_P %+ %9 vpsrad %4, %4, DESCALE_P %+ %9 vpackssdw %4, %2, %4 ; %4=data7_5 vperm2i128 %2, %8, %8, 0x01 ; %2=tmp5_4 vpunpcklwd %8, %5, %2 vpunpckhwd %5, %5, %2 vpmaddwd %8, %8, [rel PW_F050_MF256_F060_MF089] ; %8=tmp6_7L vpmaddwd %5, %5, [rel PW_F050_MF256_F060_MF089] ; %5=tmp6_7H vpaddd %8, %8, %6 ; %8=data3_1L vpaddd %5, %5, %7 ; %5=data3_1H vpaddd %8, %8, [rel PD_DESCALE_P %+ %9] vpaddd %5, %5, [rel PD_DESCALE_P %+ %9] vpsrad %8, %8, DESCALE_P %+ %9 vpsrad %5, %5, DESCALE_P %+ %9 vpackssdw %2, %8, %5 ; %2=data3_1 %endmacro ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 32 GLOBAL_DATA(jconst_fdct_islow_avx2) EXTN(jconst_fdct_islow_avx2): PW_F130_F054_MF130_F054 times 4 dw (F_0_541 + F_0_765), F_0_541 times 4 dw (F_0_541 - F_1_847), F_0_541 PW_MF078_F117_F078_F117 times 4 dw (F_1_175 - F_1_961), F_1_175 times 4 dw (F_1_175 - F_0_390), F_1_175 PW_MF060_MF089_MF050_MF256 times 4 dw (F_0_298 - F_0_899), -F_0_899 times 4 dw (F_2_053 - F_2_562), -F_2_562 PW_F050_MF256_F060_MF089 times 4 dw (F_3_072 - F_2_562), -F_2_562 times 4 dw (F_1_501 - F_0_899), -F_0_899 PD_DESCALE_P1 times 8 dd 1 << (DESCALE_P1 - 1) PD_DESCALE_P2 times 8 dd 1 << (DESCALE_P2 - 1) PW_DESCALE_P2X times 16 dw 1 << (PASS1_BITS - 1) PW_1_NEG1 times 8 dw 1 times 8 dw -1 alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 64 ; ; Perform the forward DCT on one block of samples. ; ; GLOBAL(void) ; jsimd_fdct_islow_avx2(DCTELEM *data) ; ; r10 = DCTELEM *data align 32 GLOBAL_FUNCTION(jsimd_fdct_islow_avx2) EXTN(jsimd_fdct_islow_avx2): push rbp mov rax, rsp mov rbp, rsp collect_args 1 ; ---- Pass 1: process rows. vmovdqu ymm4, YMMWORD [YMMBLOCK(0,0,r10,SIZEOF_DCTELEM)] vmovdqu ymm5, YMMWORD [YMMBLOCK(2,0,r10,SIZEOF_DCTELEM)] vmovdqu ymm6, YMMWORD [YMMBLOCK(4,0,r10,SIZEOF_DCTELEM)] vmovdqu ymm7, YMMWORD [YMMBLOCK(6,0,r10,SIZEOF_DCTELEM)] ; ymm4=(00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17) ; ymm5=(20 21 22 23 24 25 26 27 30 31 32 33 34 35 36 37) ; ymm6=(40 41 42 43 44 45 46 47 50 51 52 53 54 55 56 57) ; ymm7=(60 61 62 63 64 65 66 67 70 71 72 73 74 75 76 77) vperm2i128 ymm0, ymm4, ymm6, 0x20 vperm2i128 ymm1, ymm4, ymm6, 0x31 vperm2i128 ymm2, ymm5, ymm7, 0x20 vperm2i128 ymm3, ymm5, ymm7, 0x31 ; ymm0=(00 01 02 03 04 05 06 07 40 41 42 43 44 45 46 47) ; ymm1=(10 11 12 13 14 15 16 17 50 51 52 53 54 55 56 57) ; ymm2=(20 21 22 23 24 25 26 27 60 61 62 63 64 65 66 67) ; ymm3=(30 31 32 33 34 35 36 37 70 71 72 73 74 75 76 77) dotranspose ymm0, ymm1, ymm2, ymm3, ymm4, ymm5, ymm6, ymm7 dodct ymm0, ymm1, ymm2, ymm3, ymm4, ymm5, ymm6, ymm7, 1 ; ymm0=data0_4, ymm1=data3_1, ymm2=data2_6, ymm3=data7_5 ; ---- Pass 2: process columns. vperm2i128 ymm4, ymm1, ymm3, 0x20 ; ymm4=data3_7 vperm2i128 ymm1, ymm1, ymm3, 0x31 ; ymm1=data1_5 dotranspose ymm0, ymm1, ymm2, ymm4, ymm3, ymm5, ymm6, ymm7 dodct ymm0, ymm1, ymm2, ymm4, ymm3, ymm5, ymm6, ymm7, 2 ; ymm0=data0_4, ymm1=data3_1, ymm2=data2_6, ymm4=data7_5 vperm2i128 ymm3, ymm0, ymm1, 0x30 ; ymm3=data0_1 vperm2i128 ymm5, ymm2, ymm1, 0x20 ; ymm5=data2_3 vperm2i128 ymm6, ymm0, ymm4, 0x31 ; ymm6=data4_5 vperm2i128 ymm7, ymm2, ymm4, 0x21 ; ymm7=data6_7 vmovdqu YMMWORD [YMMBLOCK(0,0,r10,SIZEOF_DCTELEM)], ymm3 vmovdqu YMMWORD [YMMBLOCK(2,0,r10,SIZEOF_DCTELEM)], ymm5 vmovdqu YMMWORD [YMMBLOCK(4,0,r10,SIZEOF_DCTELEM)], ymm6 vmovdqu YMMWORD [YMMBLOCK(6,0,r10,SIZEOF_DCTELEM)], ymm7 vzeroupper uncollect_args 1 pop rbp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/x86_64/jfdctint-sse2.asm000066400000000000000000000625471436506551100213630ustar00rootroot00000000000000; ; jfdctint.asm - accurate integer FDCT (64-bit SSE2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2009, 2016, 2020, D. R. Commander. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains a slower but more accurate integer implementation of the ; forward DCT (Discrete Cosine Transform). The following code is based ; directly on the IJG's original jfdctint.c; see the jfdctint.c for ; more details. %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- %define CONST_BITS 13 %define PASS1_BITS 2 %define DESCALE_P1 (CONST_BITS - PASS1_BITS) %define DESCALE_P2 (CONST_BITS + PASS1_BITS) %if CONST_BITS == 13 F_0_298 equ 2446 ; FIX(0.298631336) F_0_390 equ 3196 ; FIX(0.390180644) F_0_541 equ 4433 ; FIX(0.541196100) F_0_765 equ 6270 ; FIX(0.765366865) F_0_899 equ 7373 ; FIX(0.899976223) F_1_175 equ 9633 ; FIX(1.175875602) F_1_501 equ 12299 ; FIX(1.501321110) F_1_847 equ 15137 ; FIX(1.847759065) F_1_961 equ 16069 ; FIX(1.961570560) F_2_053 equ 16819 ; FIX(2.053119869) F_2_562 equ 20995 ; FIX(2.562915447) F_3_072 equ 25172 ; FIX(3.072711026) %else ; NASM cannot do compile-time arithmetic on floating-point constants. %define DESCALE(x, n) (((x) + (1 << ((n) - 1))) >> (n)) F_0_298 equ DESCALE( 320652955, 30 - CONST_BITS) ; FIX(0.298631336) F_0_390 equ DESCALE( 418953276, 30 - CONST_BITS) ; FIX(0.390180644) F_0_541 equ DESCALE( 581104887, 30 - CONST_BITS) ; FIX(0.541196100) F_0_765 equ DESCALE( 821806413, 30 - CONST_BITS) ; FIX(0.765366865) F_0_899 equ DESCALE( 966342111, 30 - CONST_BITS) ; FIX(0.899976223) F_1_175 equ DESCALE(1262586813, 30 - CONST_BITS) ; FIX(1.175875602) F_1_501 equ DESCALE(1612031267, 30 - CONST_BITS) ; FIX(1.501321110) F_1_847 equ DESCALE(1984016188, 30 - CONST_BITS) ; FIX(1.847759065) F_1_961 equ DESCALE(2106220350, 30 - CONST_BITS) ; FIX(1.961570560) F_2_053 equ DESCALE(2204520673, 30 - CONST_BITS) ; FIX(2.053119869) F_2_562 equ DESCALE(2751909506, 30 - CONST_BITS) ; FIX(2.562915447) F_3_072 equ DESCALE(3299298341, 30 - CONST_BITS) ; FIX(3.072711026) %endif ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 32 GLOBAL_DATA(jconst_fdct_islow_sse2) EXTN(jconst_fdct_islow_sse2): PW_F130_F054 times 4 dw (F_0_541 + F_0_765), F_0_541 PW_F054_MF130 times 4 dw F_0_541, (F_0_541 - F_1_847) PW_MF078_F117 times 4 dw (F_1_175 - F_1_961), F_1_175 PW_F117_F078 times 4 dw F_1_175, (F_1_175 - F_0_390) PW_MF060_MF089 times 4 dw (F_0_298 - F_0_899), -F_0_899 PW_MF089_F060 times 4 dw -F_0_899, (F_1_501 - F_0_899) PW_MF050_MF256 times 4 dw (F_2_053 - F_2_562), -F_2_562 PW_MF256_F050 times 4 dw -F_2_562, (F_3_072 - F_2_562) PD_DESCALE_P1 times 4 dd 1 << (DESCALE_P1 - 1) PD_DESCALE_P2 times 4 dd 1 << (DESCALE_P2 - 1) PW_DESCALE_P2X times 8 dw 1 << (PASS1_BITS - 1) alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 64 ; ; Perform the forward DCT on one block of samples. ; ; GLOBAL(void) ; jsimd_fdct_islow_sse2(DCTELEM *data) ; ; r10 = DCTELEM *data %define wk(i) rbp - (WK_NUM - (i)) * SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 6 align 32 GLOBAL_FUNCTION(jsimd_fdct_islow_sse2) EXTN(jsimd_fdct_islow_sse2): push rbp mov rax, rsp ; rax = original rbp sub rsp, byte 4 and rsp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [rsp], rax mov rbp, rsp ; rbp = aligned rbp lea rsp, [wk(0)] collect_args 1 ; ---- Pass 1: process rows. mov rdx, r10 ; (DCTELEM *) movdqa xmm0, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_DCTELEM)] movdqa xmm1, XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_DCTELEM)] movdqa xmm2, XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_DCTELEM)] movdqa xmm3, XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_DCTELEM)] ; xmm0=(00 01 02 03 04 05 06 07), xmm2=(20 21 22 23 24 25 26 27) ; xmm1=(10 11 12 13 14 15 16 17), xmm3=(30 31 32 33 34 35 36 37) movdqa xmm4, xmm0 ; transpose coefficients(phase 1) punpcklwd xmm0, xmm1 ; xmm0=(00 10 01 11 02 12 03 13) punpckhwd xmm4, xmm1 ; xmm4=(04 14 05 15 06 16 07 17) movdqa xmm5, xmm2 ; transpose coefficients(phase 1) punpcklwd xmm2, xmm3 ; xmm2=(20 30 21 31 22 32 23 33) punpckhwd xmm5, xmm3 ; xmm5=(24 34 25 35 26 36 27 37) movdqa xmm6, XMMWORD [XMMBLOCK(4,0,rdx,SIZEOF_DCTELEM)] movdqa xmm7, XMMWORD [XMMBLOCK(5,0,rdx,SIZEOF_DCTELEM)] movdqa xmm1, XMMWORD [XMMBLOCK(6,0,rdx,SIZEOF_DCTELEM)] movdqa xmm3, XMMWORD [XMMBLOCK(7,0,rdx,SIZEOF_DCTELEM)] ; xmm6=( 4 12 20 28 36 44 52 60), xmm1=( 6 14 22 30 38 46 54 62) ; xmm7=( 5 13 21 29 37 45 53 61), xmm3=( 7 15 23 31 39 47 55 63) movdqa XMMWORD [wk(0)], xmm2 ; wk(0)=(20 30 21 31 22 32 23 33) movdqa XMMWORD [wk(1)], xmm5 ; wk(1)=(24 34 25 35 26 36 27 37) movdqa xmm2, xmm6 ; transpose coefficients(phase 1) punpcklwd xmm6, xmm7 ; xmm6=(40 50 41 51 42 52 43 53) punpckhwd xmm2, xmm7 ; xmm2=(44 54 45 55 46 56 47 57) movdqa xmm5, xmm1 ; transpose coefficients(phase 1) punpcklwd xmm1, xmm3 ; xmm1=(60 70 61 71 62 72 63 73) punpckhwd xmm5, xmm3 ; xmm5=(64 74 65 75 66 76 67 77) movdqa xmm7, xmm6 ; transpose coefficients(phase 2) punpckldq xmm6, xmm1 ; xmm6=(40 50 60 70 41 51 61 71) punpckhdq xmm7, xmm1 ; xmm7=(42 52 62 72 43 53 63 73) movdqa xmm3, xmm2 ; transpose coefficients(phase 2) punpckldq xmm2, xmm5 ; xmm2=(44 54 64 74 45 55 65 75) punpckhdq xmm3, xmm5 ; xmm3=(46 56 66 76 47 57 67 77) movdqa xmm1, XMMWORD [wk(0)] ; xmm1=(20 30 21 31 22 32 23 33) movdqa xmm5, XMMWORD [wk(1)] ; xmm5=(24 34 25 35 26 36 27 37) movdqa XMMWORD [wk(2)], xmm7 ; wk(2)=(42 52 62 72 43 53 63 73) movdqa XMMWORD [wk(3)], xmm2 ; wk(3)=(44 54 64 74 45 55 65 75) movdqa xmm7, xmm0 ; transpose coefficients(phase 2) punpckldq xmm0, xmm1 ; xmm0=(00 10 20 30 01 11 21 31) punpckhdq xmm7, xmm1 ; xmm7=(02 12 22 32 03 13 23 33) movdqa xmm2, xmm4 ; transpose coefficients(phase 2) punpckldq xmm4, xmm5 ; xmm4=(04 14 24 34 05 15 25 35) punpckhdq xmm2, xmm5 ; xmm2=(06 16 26 36 07 17 27 37) movdqa xmm1, xmm0 ; transpose coefficients(phase 3) punpcklqdq xmm0, xmm6 ; xmm0=(00 10 20 30 40 50 60 70)=data0 punpckhqdq xmm1, xmm6 ; xmm1=(01 11 21 31 41 51 61 71)=data1 movdqa xmm5, xmm2 ; transpose coefficients(phase 3) punpcklqdq xmm2, xmm3 ; xmm2=(06 16 26 36 46 56 66 76)=data6 punpckhqdq xmm5, xmm3 ; xmm5=(07 17 27 37 47 57 67 77)=data7 movdqa xmm6, xmm1 movdqa xmm3, xmm0 psubw xmm1, xmm2 ; xmm1=data1-data6=tmp6 psubw xmm0, xmm5 ; xmm0=data0-data7=tmp7 paddw xmm6, xmm2 ; xmm6=data1+data6=tmp1 paddw xmm3, xmm5 ; xmm3=data0+data7=tmp0 movdqa xmm2, XMMWORD [wk(2)] ; xmm2=(42 52 62 72 43 53 63 73) movdqa xmm5, XMMWORD [wk(3)] ; xmm5=(44 54 64 74 45 55 65 75) movdqa XMMWORD [wk(0)], xmm1 ; wk(0)=tmp6 movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=tmp7 movdqa xmm1, xmm7 ; transpose coefficients(phase 3) punpcklqdq xmm7, xmm2 ; xmm7=(02 12 22 32 42 52 62 72)=data2 punpckhqdq xmm1, xmm2 ; xmm1=(03 13 23 33 43 53 63 73)=data3 movdqa xmm0, xmm4 ; transpose coefficients(phase 3) punpcklqdq xmm4, xmm5 ; xmm4=(04 14 24 34 44 54 64 74)=data4 punpckhqdq xmm0, xmm5 ; xmm0=(05 15 25 35 45 55 65 75)=data5 movdqa xmm2, xmm1 movdqa xmm5, xmm7 paddw xmm1, xmm4 ; xmm1=data3+data4=tmp3 paddw xmm7, xmm0 ; xmm7=data2+data5=tmp2 psubw xmm2, xmm4 ; xmm2=data3-data4=tmp4 psubw xmm5, xmm0 ; xmm5=data2-data5=tmp5 ; -- Even part movdqa xmm4, xmm3 movdqa xmm0, xmm6 paddw xmm3, xmm1 ; xmm3=tmp10 paddw xmm6, xmm7 ; xmm6=tmp11 psubw xmm4, xmm1 ; xmm4=tmp13 psubw xmm0, xmm7 ; xmm0=tmp12 movdqa xmm1, xmm3 paddw xmm3, xmm6 ; xmm3=tmp10+tmp11 psubw xmm1, xmm6 ; xmm1=tmp10-tmp11 psllw xmm3, PASS1_BITS ; xmm3=data0 psllw xmm1, PASS1_BITS ; xmm1=data4 movdqa XMMWORD [wk(2)], xmm3 ; wk(2)=data0 movdqa XMMWORD [wk(3)], xmm1 ; wk(3)=data4 ; (Original) ; z1 = (tmp12 + tmp13) * 0.541196100; ; data2 = z1 + tmp13 * 0.765366865; ; data6 = z1 + tmp12 * -1.847759065; ; ; (This implementation) ; data2 = tmp13 * (0.541196100 + 0.765366865) + tmp12 * 0.541196100; ; data6 = tmp13 * 0.541196100 + tmp12 * (0.541196100 - 1.847759065); movdqa xmm7, xmm4 ; xmm4=tmp13 movdqa xmm6, xmm4 punpcklwd xmm7, xmm0 ; xmm0=tmp12 punpckhwd xmm6, xmm0 movdqa xmm4, xmm7 movdqa xmm0, xmm6 pmaddwd xmm7, [rel PW_F130_F054] ; xmm7=data2L pmaddwd xmm6, [rel PW_F130_F054] ; xmm6=data2H pmaddwd xmm4, [rel PW_F054_MF130] ; xmm4=data6L pmaddwd xmm0, [rel PW_F054_MF130] ; xmm0=data6H paddd xmm7, [rel PD_DESCALE_P1] paddd xmm6, [rel PD_DESCALE_P1] psrad xmm7, DESCALE_P1 psrad xmm6, DESCALE_P1 paddd xmm4, [rel PD_DESCALE_P1] paddd xmm0, [rel PD_DESCALE_P1] psrad xmm4, DESCALE_P1 psrad xmm0, DESCALE_P1 packssdw xmm7, xmm6 ; xmm7=data2 packssdw xmm4, xmm0 ; xmm4=data6 movdqa XMMWORD [wk(4)], xmm7 ; wk(4)=data2 movdqa XMMWORD [wk(5)], xmm4 ; wk(5)=data6 ; -- Odd part movdqa xmm3, XMMWORD [wk(0)] ; xmm3=tmp6 movdqa xmm1, XMMWORD [wk(1)] ; xmm1=tmp7 movdqa xmm6, xmm2 ; xmm2=tmp4 movdqa xmm0, xmm5 ; xmm5=tmp5 paddw xmm6, xmm3 ; xmm6=z3 paddw xmm0, xmm1 ; xmm0=z4 ; (Original) ; z5 = (z3 + z4) * 1.175875602; ; z3 = z3 * -1.961570560; z4 = z4 * -0.390180644; ; z3 += z5; z4 += z5; ; ; (This implementation) ; z3 = z3 * (1.175875602 - 1.961570560) + z4 * 1.175875602; ; z4 = z3 * 1.175875602 + z4 * (1.175875602 - 0.390180644); movdqa xmm7, xmm6 movdqa xmm4, xmm6 punpcklwd xmm7, xmm0 punpckhwd xmm4, xmm0 movdqa xmm6, xmm7 movdqa xmm0, xmm4 pmaddwd xmm7, [rel PW_MF078_F117] ; xmm7=z3L pmaddwd xmm4, [rel PW_MF078_F117] ; xmm4=z3H pmaddwd xmm6, [rel PW_F117_F078] ; xmm6=z4L pmaddwd xmm0, [rel PW_F117_F078] ; xmm0=z4H movdqa XMMWORD [wk(0)], xmm7 ; wk(0)=z3L movdqa XMMWORD [wk(1)], xmm4 ; wk(1)=z3H ; (Original) ; z1 = tmp4 + tmp7; z2 = tmp5 + tmp6; ; tmp4 = tmp4 * 0.298631336; tmp5 = tmp5 * 2.053119869; ; tmp6 = tmp6 * 3.072711026; tmp7 = tmp7 * 1.501321110; ; z1 = z1 * -0.899976223; z2 = z2 * -2.562915447; ; data7 = tmp4 + z1 + z3; data5 = tmp5 + z2 + z4; ; data3 = tmp6 + z2 + z3; data1 = tmp7 + z1 + z4; ; ; (This implementation) ; tmp4 = tmp4 * (0.298631336 - 0.899976223) + tmp7 * -0.899976223; ; tmp5 = tmp5 * (2.053119869 - 2.562915447) + tmp6 * -2.562915447; ; tmp6 = tmp5 * -2.562915447 + tmp6 * (3.072711026 - 2.562915447); ; tmp7 = tmp4 * -0.899976223 + tmp7 * (1.501321110 - 0.899976223); ; data7 = tmp4 + z3; data5 = tmp5 + z4; ; data3 = tmp6 + z3; data1 = tmp7 + z4; movdqa xmm7, xmm2 movdqa xmm4, xmm2 punpcklwd xmm7, xmm1 punpckhwd xmm4, xmm1 movdqa xmm2, xmm7 movdqa xmm1, xmm4 pmaddwd xmm7, [rel PW_MF060_MF089] ; xmm7=tmp4L pmaddwd xmm4, [rel PW_MF060_MF089] ; xmm4=tmp4H pmaddwd xmm2, [rel PW_MF089_F060] ; xmm2=tmp7L pmaddwd xmm1, [rel PW_MF089_F060] ; xmm1=tmp7H paddd xmm7, XMMWORD [wk(0)] ; xmm7=data7L paddd xmm4, XMMWORD [wk(1)] ; xmm4=data7H paddd xmm2, xmm6 ; xmm2=data1L paddd xmm1, xmm0 ; xmm1=data1H paddd xmm7, [rel PD_DESCALE_P1] paddd xmm4, [rel PD_DESCALE_P1] psrad xmm7, DESCALE_P1 psrad xmm4, DESCALE_P1 paddd xmm2, [rel PD_DESCALE_P1] paddd xmm1, [rel PD_DESCALE_P1] psrad xmm2, DESCALE_P1 psrad xmm1, DESCALE_P1 packssdw xmm7, xmm4 ; xmm7=data7 packssdw xmm2, xmm1 ; xmm2=data1 movdqa xmm4, xmm5 movdqa xmm1, xmm5 punpcklwd xmm4, xmm3 punpckhwd xmm1, xmm3 movdqa xmm5, xmm4 movdqa xmm3, xmm1 pmaddwd xmm4, [rel PW_MF050_MF256] ; xmm4=tmp5L pmaddwd xmm1, [rel PW_MF050_MF256] ; xmm1=tmp5H pmaddwd xmm5, [rel PW_MF256_F050] ; xmm5=tmp6L pmaddwd xmm3, [rel PW_MF256_F050] ; xmm3=tmp6H paddd xmm4, xmm6 ; xmm4=data5L paddd xmm1, xmm0 ; xmm1=data5H paddd xmm5, XMMWORD [wk(0)] ; xmm5=data3L paddd xmm3, XMMWORD [wk(1)] ; xmm3=data3H paddd xmm4, [rel PD_DESCALE_P1] paddd xmm1, [rel PD_DESCALE_P1] psrad xmm4, DESCALE_P1 psrad xmm1, DESCALE_P1 paddd xmm5, [rel PD_DESCALE_P1] paddd xmm3, [rel PD_DESCALE_P1] psrad xmm5, DESCALE_P1 psrad xmm3, DESCALE_P1 packssdw xmm4, xmm1 ; xmm4=data5 packssdw xmm5, xmm3 ; xmm5=data3 ; ---- Pass 2: process columns. movdqa xmm6, XMMWORD [wk(2)] ; xmm6=col0 movdqa xmm0, XMMWORD [wk(4)] ; xmm0=col2 ; xmm6=(00 10 20 30 40 50 60 70), xmm0=(02 12 22 32 42 52 62 72) ; xmm2=(01 11 21 31 41 51 61 71), xmm5=(03 13 23 33 43 53 63 73) movdqa xmm1, xmm6 ; transpose coefficients(phase 1) punpcklwd xmm6, xmm2 ; xmm6=(00 01 10 11 20 21 30 31) punpckhwd xmm1, xmm2 ; xmm1=(40 41 50 51 60 61 70 71) movdqa xmm3, xmm0 ; transpose coefficients(phase 1) punpcklwd xmm0, xmm5 ; xmm0=(02 03 12 13 22 23 32 33) punpckhwd xmm3, xmm5 ; xmm3=(42 43 52 53 62 63 72 73) movdqa xmm2, XMMWORD [wk(3)] ; xmm2=col4 movdqa xmm5, XMMWORD [wk(5)] ; xmm5=col6 ; xmm2=(04 14 24 34 44 54 64 74), xmm5=(06 16 26 36 46 56 66 76) ; xmm4=(05 15 25 35 45 55 65 75), xmm7=(07 17 27 37 47 57 67 77) movdqa XMMWORD [wk(0)], xmm0 ; wk(0)=(02 03 12 13 22 23 32 33) movdqa XMMWORD [wk(1)], xmm3 ; wk(1)=(42 43 52 53 62 63 72 73) movdqa xmm0, xmm2 ; transpose coefficients(phase 1) punpcklwd xmm2, xmm4 ; xmm2=(04 05 14 15 24 25 34 35) punpckhwd xmm0, xmm4 ; xmm0=(44 45 54 55 64 65 74 75) movdqa xmm3, xmm5 ; transpose coefficients(phase 1) punpcklwd xmm5, xmm7 ; xmm5=(06 07 16 17 26 27 36 37) punpckhwd xmm3, xmm7 ; xmm3=(46 47 56 57 66 67 76 77) movdqa xmm4, xmm2 ; transpose coefficients(phase 2) punpckldq xmm2, xmm5 ; xmm2=(04 05 06 07 14 15 16 17) punpckhdq xmm4, xmm5 ; xmm4=(24 25 26 27 34 35 36 37) movdqa xmm7, xmm0 ; transpose coefficients(phase 2) punpckldq xmm0, xmm3 ; xmm0=(44 45 46 47 54 55 56 57) punpckhdq xmm7, xmm3 ; xmm7=(64 65 66 67 74 75 76 77) movdqa xmm5, XMMWORD [wk(0)] ; xmm5=(02 03 12 13 22 23 32 33) movdqa xmm3, XMMWORD [wk(1)] ; xmm3=(42 43 52 53 62 63 72 73) movdqa XMMWORD [wk(2)], xmm4 ; wk(2)=(24 25 26 27 34 35 36 37) movdqa XMMWORD [wk(3)], xmm0 ; wk(3)=(44 45 46 47 54 55 56 57) movdqa xmm4, xmm6 ; transpose coefficients(phase 2) punpckldq xmm6, xmm5 ; xmm6=(00 01 02 03 10 11 12 13) punpckhdq xmm4, xmm5 ; xmm4=(20 21 22 23 30 31 32 33) movdqa xmm0, xmm1 ; transpose coefficients(phase 2) punpckldq xmm1, xmm3 ; xmm1=(40 41 42 43 50 51 52 53) punpckhdq xmm0, xmm3 ; xmm0=(60 61 62 63 70 71 72 73) movdqa xmm5, xmm6 ; transpose coefficients(phase 3) punpcklqdq xmm6, xmm2 ; xmm6=(00 01 02 03 04 05 06 07)=data0 punpckhqdq xmm5, xmm2 ; xmm5=(10 11 12 13 14 15 16 17)=data1 movdqa xmm3, xmm0 ; transpose coefficients(phase 3) punpcklqdq xmm0, xmm7 ; xmm0=(60 61 62 63 64 65 66 67)=data6 punpckhqdq xmm3, xmm7 ; xmm3=(70 71 72 73 74 75 76 77)=data7 movdqa xmm2, xmm5 movdqa xmm7, xmm6 psubw xmm5, xmm0 ; xmm5=data1-data6=tmp6 psubw xmm6, xmm3 ; xmm6=data0-data7=tmp7 paddw xmm2, xmm0 ; xmm2=data1+data6=tmp1 paddw xmm7, xmm3 ; xmm7=data0+data7=tmp0 movdqa xmm0, XMMWORD [wk(2)] ; xmm0=(24 25 26 27 34 35 36 37) movdqa xmm3, XMMWORD [wk(3)] ; xmm3=(44 45 46 47 54 55 56 57) movdqa XMMWORD [wk(0)], xmm5 ; wk(0)=tmp6 movdqa XMMWORD [wk(1)], xmm6 ; wk(1)=tmp7 movdqa xmm5, xmm4 ; transpose coefficients(phase 3) punpcklqdq xmm4, xmm0 ; xmm4=(20 21 22 23 24 25 26 27)=data2 punpckhqdq xmm5, xmm0 ; xmm5=(30 31 32 33 34 35 36 37)=data3 movdqa xmm6, xmm1 ; transpose coefficients(phase 3) punpcklqdq xmm1, xmm3 ; xmm1=(40 41 42 43 44 45 46 47)=data4 punpckhqdq xmm6, xmm3 ; xmm6=(50 51 52 53 54 55 56 57)=data5 movdqa xmm0, xmm5 movdqa xmm3, xmm4 paddw xmm5, xmm1 ; xmm5=data3+data4=tmp3 paddw xmm4, xmm6 ; xmm4=data2+data5=tmp2 psubw xmm0, xmm1 ; xmm0=data3-data4=tmp4 psubw xmm3, xmm6 ; xmm3=data2-data5=tmp5 ; -- Even part movdqa xmm1, xmm7 movdqa xmm6, xmm2 paddw xmm7, xmm5 ; xmm7=tmp10 paddw xmm2, xmm4 ; xmm2=tmp11 psubw xmm1, xmm5 ; xmm1=tmp13 psubw xmm6, xmm4 ; xmm6=tmp12 movdqa xmm5, xmm7 paddw xmm7, xmm2 ; xmm7=tmp10+tmp11 psubw xmm5, xmm2 ; xmm5=tmp10-tmp11 paddw xmm7, [rel PW_DESCALE_P2X] paddw xmm5, [rel PW_DESCALE_P2X] psraw xmm7, PASS1_BITS ; xmm7=data0 psraw xmm5, PASS1_BITS ; xmm5=data4 movdqa XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_DCTELEM)], xmm7 movdqa XMMWORD [XMMBLOCK(4,0,rdx,SIZEOF_DCTELEM)], xmm5 ; (Original) ; z1 = (tmp12 + tmp13) * 0.541196100; ; data2 = z1 + tmp13 * 0.765366865; ; data6 = z1 + tmp12 * -1.847759065; ; ; (This implementation) ; data2 = tmp13 * (0.541196100 + 0.765366865) + tmp12 * 0.541196100; ; data6 = tmp13 * 0.541196100 + tmp12 * (0.541196100 - 1.847759065); movdqa xmm4, xmm1 ; xmm1=tmp13 movdqa xmm2, xmm1 punpcklwd xmm4, xmm6 ; xmm6=tmp12 punpckhwd xmm2, xmm6 movdqa xmm1, xmm4 movdqa xmm6, xmm2 pmaddwd xmm4, [rel PW_F130_F054] ; xmm4=data2L pmaddwd xmm2, [rel PW_F130_F054] ; xmm2=data2H pmaddwd xmm1, [rel PW_F054_MF130] ; xmm1=data6L pmaddwd xmm6, [rel PW_F054_MF130] ; xmm6=data6H paddd xmm4, [rel PD_DESCALE_P2] paddd xmm2, [rel PD_DESCALE_P2] psrad xmm4, DESCALE_P2 psrad xmm2, DESCALE_P2 paddd xmm1, [rel PD_DESCALE_P2] paddd xmm6, [rel PD_DESCALE_P2] psrad xmm1, DESCALE_P2 psrad xmm6, DESCALE_P2 packssdw xmm4, xmm2 ; xmm4=data2 packssdw xmm1, xmm6 ; xmm1=data6 movdqa XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_DCTELEM)], xmm4 movdqa XMMWORD [XMMBLOCK(6,0,rdx,SIZEOF_DCTELEM)], xmm1 ; -- Odd part movdqa xmm7, XMMWORD [wk(0)] ; xmm7=tmp6 movdqa xmm5, XMMWORD [wk(1)] ; xmm5=tmp7 movdqa xmm2, xmm0 ; xmm0=tmp4 movdqa xmm6, xmm3 ; xmm3=tmp5 paddw xmm2, xmm7 ; xmm2=z3 paddw xmm6, xmm5 ; xmm6=z4 ; (Original) ; z5 = (z3 + z4) * 1.175875602; ; z3 = z3 * -1.961570560; z4 = z4 * -0.390180644; ; z3 += z5; z4 += z5; ; ; (This implementation) ; z3 = z3 * (1.175875602 - 1.961570560) + z4 * 1.175875602; ; z4 = z3 * 1.175875602 + z4 * (1.175875602 - 0.390180644); movdqa xmm4, xmm2 movdqa xmm1, xmm2 punpcklwd xmm4, xmm6 punpckhwd xmm1, xmm6 movdqa xmm2, xmm4 movdqa xmm6, xmm1 pmaddwd xmm4, [rel PW_MF078_F117] ; xmm4=z3L pmaddwd xmm1, [rel PW_MF078_F117] ; xmm1=z3H pmaddwd xmm2, [rel PW_F117_F078] ; xmm2=z4L pmaddwd xmm6, [rel PW_F117_F078] ; xmm6=z4H movdqa XMMWORD [wk(0)], xmm4 ; wk(0)=z3L movdqa XMMWORD [wk(1)], xmm1 ; wk(1)=z3H ; (Original) ; z1 = tmp4 + tmp7; z2 = tmp5 + tmp6; ; tmp4 = tmp4 * 0.298631336; tmp5 = tmp5 * 2.053119869; ; tmp6 = tmp6 * 3.072711026; tmp7 = tmp7 * 1.501321110; ; z1 = z1 * -0.899976223; z2 = z2 * -2.562915447; ; data7 = tmp4 + z1 + z3; data5 = tmp5 + z2 + z4; ; data3 = tmp6 + z2 + z3; data1 = tmp7 + z1 + z4; ; ; (This implementation) ; tmp4 = tmp4 * (0.298631336 - 0.899976223) + tmp7 * -0.899976223; ; tmp5 = tmp5 * (2.053119869 - 2.562915447) + tmp6 * -2.562915447; ; tmp6 = tmp5 * -2.562915447 + tmp6 * (3.072711026 - 2.562915447); ; tmp7 = tmp4 * -0.899976223 + tmp7 * (1.501321110 - 0.899976223); ; data7 = tmp4 + z3; data5 = tmp5 + z4; ; data3 = tmp6 + z3; data1 = tmp7 + z4; movdqa xmm4, xmm0 movdqa xmm1, xmm0 punpcklwd xmm4, xmm5 punpckhwd xmm1, xmm5 movdqa xmm0, xmm4 movdqa xmm5, xmm1 pmaddwd xmm4, [rel PW_MF060_MF089] ; xmm4=tmp4L pmaddwd xmm1, [rel PW_MF060_MF089] ; xmm1=tmp4H pmaddwd xmm0, [rel PW_MF089_F060] ; xmm0=tmp7L pmaddwd xmm5, [rel PW_MF089_F060] ; xmm5=tmp7H paddd xmm4, XMMWORD [wk(0)] ; xmm4=data7L paddd xmm1, XMMWORD [wk(1)] ; xmm1=data7H paddd xmm0, xmm2 ; xmm0=data1L paddd xmm5, xmm6 ; xmm5=data1H paddd xmm4, [rel PD_DESCALE_P2] paddd xmm1, [rel PD_DESCALE_P2] psrad xmm4, DESCALE_P2 psrad xmm1, DESCALE_P2 paddd xmm0, [rel PD_DESCALE_P2] paddd xmm5, [rel PD_DESCALE_P2] psrad xmm0, DESCALE_P2 psrad xmm5, DESCALE_P2 packssdw xmm4, xmm1 ; xmm4=data7 packssdw xmm0, xmm5 ; xmm0=data1 movdqa XMMWORD [XMMBLOCK(7,0,rdx,SIZEOF_DCTELEM)], xmm4 movdqa XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_DCTELEM)], xmm0 movdqa xmm1, xmm3 movdqa xmm5, xmm3 punpcklwd xmm1, xmm7 punpckhwd xmm5, xmm7 movdqa xmm3, xmm1 movdqa xmm7, xmm5 pmaddwd xmm1, [rel PW_MF050_MF256] ; xmm1=tmp5L pmaddwd xmm5, [rel PW_MF050_MF256] ; xmm5=tmp5H pmaddwd xmm3, [rel PW_MF256_F050] ; xmm3=tmp6L pmaddwd xmm7, [rel PW_MF256_F050] ; xmm7=tmp6H paddd xmm1, xmm2 ; xmm1=data5L paddd xmm5, xmm6 ; xmm5=data5H paddd xmm3, XMMWORD [wk(0)] ; xmm3=data3L paddd xmm7, XMMWORD [wk(1)] ; xmm7=data3H paddd xmm1, [rel PD_DESCALE_P2] paddd xmm5, [rel PD_DESCALE_P2] psrad xmm1, DESCALE_P2 psrad xmm5, DESCALE_P2 paddd xmm3, [rel PD_DESCALE_P2] paddd xmm7, [rel PD_DESCALE_P2] psrad xmm3, DESCALE_P2 psrad xmm7, DESCALE_P2 packssdw xmm1, xmm5 ; xmm1=data5 packssdw xmm3, xmm7 ; xmm3=data3 movdqa XMMWORD [XMMBLOCK(5,0,rdx,SIZEOF_DCTELEM)], xmm1 movdqa XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_DCTELEM)], xmm3 uncollect_args 1 mov rsp, rbp ; rsp <- aligned rbp pop rsp ; rsp <- original rbp pop rbp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/x86_64/jidctflt-sse2.asm000066400000000000000000000506761436506551100213610ustar00rootroot00000000000000; ; jidctflt.asm - floating-point IDCT (64-bit SSE & SSE2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2009, 2016, D. R. Commander. ; Copyright (C) 2018, Matthias Räncker. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains a floating-point implementation of the inverse DCT ; (Discrete Cosine Transform). The following code is based directly on ; the IJG's original jidctflt.c; see the jidctflt.c for more details. %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- %macro unpcklps2 2 ; %1=(0 1 2 3) / %2=(4 5 6 7) => %1=(0 1 4 5) shufps %1, %2, 0x44 %endmacro %macro unpckhps2 2 ; %1=(0 1 2 3) / %2=(4 5 6 7) => %1=(2 3 6 7) shufps %1, %2, 0xEE %endmacro ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 32 GLOBAL_DATA(jconst_idct_float_sse2) EXTN(jconst_idct_float_sse2): PD_1_414 times 4 dd 1.414213562373095048801689 PD_1_847 times 4 dd 1.847759065022573512256366 PD_1_082 times 4 dd 1.082392200292393968799446 PD_M2_613 times 4 dd -2.613125929752753055713286 PD_RNDINT_MAGIC times 4 dd 100663296.0 ; (float)(0x00C00000 << 3) PB_CENTERJSAMP times 16 db CENTERJSAMPLE alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 64 ; ; Perform dequantization and inverse DCT on one block of coefficients. ; ; GLOBAL(void) ; jsimd_idct_float_sse2(void *dct_table, JCOEFPTR coef_block, ; JSAMPARRAY output_buf, JDIMENSION output_col) ; ; r10 = void *dct_table ; r11 = JCOEFPTR coef_block ; r12 = JSAMPARRAY output_buf ; r13d = JDIMENSION output_col %define original_rbp rbp + 0 %define wk(i) rbp - (WK_NUM - (i)) * SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 2 %define workspace wk(0) - DCTSIZE2 * SIZEOF_FAST_FLOAT ; FAST_FLOAT workspace[DCTSIZE2] align 32 GLOBAL_FUNCTION(jsimd_idct_float_sse2) EXTN(jsimd_idct_float_sse2): push rbp mov rax, rsp ; rax = original rbp sub rsp, byte 4 and rsp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [rsp], rax mov rbp, rsp ; rbp = aligned rbp lea rsp, [workspace] collect_args 4 push rbx ; ---- Pass 1: process columns from input, store into work array. mov rdx, r10 ; quantptr mov rsi, r11 ; inptr lea rdi, [workspace] ; FAST_FLOAT *wsptr mov rcx, DCTSIZE/4 ; ctr .columnloop: %ifndef NO_ZERO_COLUMN_TEST_FLOAT_SSE mov eax, dword [DWBLOCK(1,0,rsi,SIZEOF_JCOEF)] or eax, dword [DWBLOCK(2,0,rsi,SIZEOF_JCOEF)] jnz near .columnDCT movq xmm1, XMM_MMWORD [MMBLOCK(1,0,rsi,SIZEOF_JCOEF)] movq xmm2, XMM_MMWORD [MMBLOCK(2,0,rsi,SIZEOF_JCOEF)] movq xmm3, XMM_MMWORD [MMBLOCK(3,0,rsi,SIZEOF_JCOEF)] movq xmm4, XMM_MMWORD [MMBLOCK(4,0,rsi,SIZEOF_JCOEF)] movq xmm5, XMM_MMWORD [MMBLOCK(5,0,rsi,SIZEOF_JCOEF)] movq xmm6, XMM_MMWORD [MMBLOCK(6,0,rsi,SIZEOF_JCOEF)] movq xmm7, XMM_MMWORD [MMBLOCK(7,0,rsi,SIZEOF_JCOEF)] por xmm1, xmm2 por xmm3, xmm4 por xmm5, xmm6 por xmm1, xmm3 por xmm5, xmm7 por xmm1, xmm5 packsswb xmm1, xmm1 movd eax, xmm1 test rax, rax jnz short .columnDCT ; -- AC terms all zero movq xmm0, XMM_MMWORD [MMBLOCK(0,0,rsi,SIZEOF_JCOEF)] punpcklwd xmm0, xmm0 ; xmm0=(00 00 01 01 02 02 03 03) psrad xmm0, (DWORD_BIT-WORD_BIT) ; xmm0=in0=(00 01 02 03) cvtdq2ps xmm0, xmm0 ; xmm0=in0=(00 01 02 03) mulps xmm0, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_FLOAT_MULT_TYPE)] movaps xmm1, xmm0 movaps xmm2, xmm0 movaps xmm3, xmm0 shufps xmm0, xmm0, 0x00 ; xmm0=(00 00 00 00) shufps xmm1, xmm1, 0x55 ; xmm1=(01 01 01 01) shufps xmm2, xmm2, 0xAA ; xmm2=(02 02 02 02) shufps xmm3, xmm3, 0xFF ; xmm3=(03 03 03 03) movaps XMMWORD [XMMBLOCK(0,0,rdi,SIZEOF_FAST_FLOAT)], xmm0 movaps XMMWORD [XMMBLOCK(0,1,rdi,SIZEOF_FAST_FLOAT)], xmm0 movaps XMMWORD [XMMBLOCK(1,0,rdi,SIZEOF_FAST_FLOAT)], xmm1 movaps XMMWORD [XMMBLOCK(1,1,rdi,SIZEOF_FAST_FLOAT)], xmm1 movaps XMMWORD [XMMBLOCK(2,0,rdi,SIZEOF_FAST_FLOAT)], xmm2 movaps XMMWORD [XMMBLOCK(2,1,rdi,SIZEOF_FAST_FLOAT)], xmm2 movaps XMMWORD [XMMBLOCK(3,0,rdi,SIZEOF_FAST_FLOAT)], xmm3 movaps XMMWORD [XMMBLOCK(3,1,rdi,SIZEOF_FAST_FLOAT)], xmm3 jmp near .nextcolumn %endif .columnDCT: ; -- Even part movq xmm0, XMM_MMWORD [MMBLOCK(0,0,rsi,SIZEOF_JCOEF)] movq xmm1, XMM_MMWORD [MMBLOCK(2,0,rsi,SIZEOF_JCOEF)] movq xmm2, XMM_MMWORD [MMBLOCK(4,0,rsi,SIZEOF_JCOEF)] movq xmm3, XMM_MMWORD [MMBLOCK(6,0,rsi,SIZEOF_JCOEF)] punpcklwd xmm0, xmm0 ; xmm0=(00 00 01 01 02 02 03 03) punpcklwd xmm1, xmm1 ; xmm1=(20 20 21 21 22 22 23 23) psrad xmm0, (DWORD_BIT-WORD_BIT) ; xmm0=in0=(00 01 02 03) psrad xmm1, (DWORD_BIT-WORD_BIT) ; xmm1=in2=(20 21 22 23) cvtdq2ps xmm0, xmm0 ; xmm0=in0=(00 01 02 03) cvtdq2ps xmm1, xmm1 ; xmm1=in2=(20 21 22 23) punpcklwd xmm2, xmm2 ; xmm2=(40 40 41 41 42 42 43 43) punpcklwd xmm3, xmm3 ; xmm3=(60 60 61 61 62 62 63 63) psrad xmm2, (DWORD_BIT-WORD_BIT) ; xmm2=in4=(40 41 42 43) psrad xmm3, (DWORD_BIT-WORD_BIT) ; xmm3=in6=(60 61 62 63) cvtdq2ps xmm2, xmm2 ; xmm2=in4=(40 41 42 43) cvtdq2ps xmm3, xmm3 ; xmm3=in6=(60 61 62 63) mulps xmm0, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_FLOAT_MULT_TYPE)] mulps xmm1, XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_FLOAT_MULT_TYPE)] mulps xmm2, XMMWORD [XMMBLOCK(4,0,rdx,SIZEOF_FLOAT_MULT_TYPE)] mulps xmm3, XMMWORD [XMMBLOCK(6,0,rdx,SIZEOF_FLOAT_MULT_TYPE)] movaps xmm4, xmm0 movaps xmm5, xmm1 subps xmm0, xmm2 ; xmm0=tmp11 subps xmm1, xmm3 addps xmm4, xmm2 ; xmm4=tmp10 addps xmm5, xmm3 ; xmm5=tmp13 mulps xmm1, [rel PD_1_414] subps xmm1, xmm5 ; xmm1=tmp12 movaps xmm6, xmm4 movaps xmm7, xmm0 subps xmm4, xmm5 ; xmm4=tmp3 subps xmm0, xmm1 ; xmm0=tmp2 addps xmm6, xmm5 ; xmm6=tmp0 addps xmm7, xmm1 ; xmm7=tmp1 movaps XMMWORD [wk(1)], xmm4 ; tmp3 movaps XMMWORD [wk(0)], xmm0 ; tmp2 ; -- Odd part movq xmm2, XMM_MMWORD [MMBLOCK(1,0,rsi,SIZEOF_JCOEF)] movq xmm3, XMM_MMWORD [MMBLOCK(3,0,rsi,SIZEOF_JCOEF)] movq xmm5, XMM_MMWORD [MMBLOCK(5,0,rsi,SIZEOF_JCOEF)] movq xmm1, XMM_MMWORD [MMBLOCK(7,0,rsi,SIZEOF_JCOEF)] punpcklwd xmm2, xmm2 ; xmm2=(10 10 11 11 12 12 13 13) punpcklwd xmm3, xmm3 ; xmm3=(30 30 31 31 32 32 33 33) psrad xmm2, (DWORD_BIT-WORD_BIT) ; xmm2=in1=(10 11 12 13) psrad xmm3, (DWORD_BIT-WORD_BIT) ; xmm3=in3=(30 31 32 33) cvtdq2ps xmm2, xmm2 ; xmm2=in1=(10 11 12 13) cvtdq2ps xmm3, xmm3 ; xmm3=in3=(30 31 32 33) punpcklwd xmm5, xmm5 ; xmm5=(50 50 51 51 52 52 53 53) punpcklwd xmm1, xmm1 ; xmm1=(70 70 71 71 72 72 73 73) psrad xmm5, (DWORD_BIT-WORD_BIT) ; xmm5=in5=(50 51 52 53) psrad xmm1, (DWORD_BIT-WORD_BIT) ; xmm1=in7=(70 71 72 73) cvtdq2ps xmm5, xmm5 ; xmm5=in5=(50 51 52 53) cvtdq2ps xmm1, xmm1 ; xmm1=in7=(70 71 72 73) mulps xmm2, XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_FLOAT_MULT_TYPE)] mulps xmm3, XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_FLOAT_MULT_TYPE)] mulps xmm5, XMMWORD [XMMBLOCK(5,0,rdx,SIZEOF_FLOAT_MULT_TYPE)] mulps xmm1, XMMWORD [XMMBLOCK(7,0,rdx,SIZEOF_FLOAT_MULT_TYPE)] movaps xmm4, xmm2 movaps xmm0, xmm5 addps xmm2, xmm1 ; xmm2=z11 addps xmm5, xmm3 ; xmm5=z13 subps xmm4, xmm1 ; xmm4=z12 subps xmm0, xmm3 ; xmm0=z10 movaps xmm1, xmm2 subps xmm2, xmm5 addps xmm1, xmm5 ; xmm1=tmp7 mulps xmm2, [rel PD_1_414] ; xmm2=tmp11 movaps xmm3, xmm0 addps xmm0, xmm4 mulps xmm0, [rel PD_1_847] ; xmm0=z5 mulps xmm3, [rel PD_M2_613] ; xmm3=(z10 * -2.613125930) mulps xmm4, [rel PD_1_082] ; xmm4=(z12 * 1.082392200) addps xmm3, xmm0 ; xmm3=tmp12 subps xmm4, xmm0 ; xmm4=tmp10 ; -- Final output stage subps xmm3, xmm1 ; xmm3=tmp6 movaps xmm5, xmm6 movaps xmm0, xmm7 addps xmm6, xmm1 ; xmm6=data0=(00 01 02 03) addps xmm7, xmm3 ; xmm7=data1=(10 11 12 13) subps xmm5, xmm1 ; xmm5=data7=(70 71 72 73) subps xmm0, xmm3 ; xmm0=data6=(60 61 62 63) subps xmm2, xmm3 ; xmm2=tmp5 movaps xmm1, xmm6 ; transpose coefficients(phase 1) unpcklps xmm6, xmm7 ; xmm6=(00 10 01 11) unpckhps xmm1, xmm7 ; xmm1=(02 12 03 13) movaps xmm3, xmm0 ; transpose coefficients(phase 1) unpcklps xmm0, xmm5 ; xmm0=(60 70 61 71) unpckhps xmm3, xmm5 ; xmm3=(62 72 63 73) movaps xmm7, XMMWORD [wk(0)] ; xmm7=tmp2 movaps xmm5, XMMWORD [wk(1)] ; xmm5=tmp3 movaps XMMWORD [wk(0)], xmm0 ; wk(0)=(60 70 61 71) movaps XMMWORD [wk(1)], xmm3 ; wk(1)=(62 72 63 73) addps xmm4, xmm2 ; xmm4=tmp4 movaps xmm0, xmm7 movaps xmm3, xmm5 addps xmm7, xmm2 ; xmm7=data2=(20 21 22 23) addps xmm5, xmm4 ; xmm5=data4=(40 41 42 43) subps xmm0, xmm2 ; xmm0=data5=(50 51 52 53) subps xmm3, xmm4 ; xmm3=data3=(30 31 32 33) movaps xmm2, xmm7 ; transpose coefficients(phase 1) unpcklps xmm7, xmm3 ; xmm7=(20 30 21 31) unpckhps xmm2, xmm3 ; xmm2=(22 32 23 33) movaps xmm4, xmm5 ; transpose coefficients(phase 1) unpcklps xmm5, xmm0 ; xmm5=(40 50 41 51) unpckhps xmm4, xmm0 ; xmm4=(42 52 43 53) movaps xmm3, xmm6 ; transpose coefficients(phase 2) unpcklps2 xmm6, xmm7 ; xmm6=(00 10 20 30) unpckhps2 xmm3, xmm7 ; xmm3=(01 11 21 31) movaps xmm0, xmm1 ; transpose coefficients(phase 2) unpcklps2 xmm1, xmm2 ; xmm1=(02 12 22 32) unpckhps2 xmm0, xmm2 ; xmm0=(03 13 23 33) movaps xmm7, XMMWORD [wk(0)] ; xmm7=(60 70 61 71) movaps xmm2, XMMWORD [wk(1)] ; xmm2=(62 72 63 73) movaps XMMWORD [XMMBLOCK(0,0,rdi,SIZEOF_FAST_FLOAT)], xmm6 movaps XMMWORD [XMMBLOCK(1,0,rdi,SIZEOF_FAST_FLOAT)], xmm3 movaps XMMWORD [XMMBLOCK(2,0,rdi,SIZEOF_FAST_FLOAT)], xmm1 movaps XMMWORD [XMMBLOCK(3,0,rdi,SIZEOF_FAST_FLOAT)], xmm0 movaps xmm6, xmm5 ; transpose coefficients(phase 2) unpcklps2 xmm5, xmm7 ; xmm5=(40 50 60 70) unpckhps2 xmm6, xmm7 ; xmm6=(41 51 61 71) movaps xmm3, xmm4 ; transpose coefficients(phase 2) unpcklps2 xmm4, xmm2 ; xmm4=(42 52 62 72) unpckhps2 xmm3, xmm2 ; xmm3=(43 53 63 73) movaps XMMWORD [XMMBLOCK(0,1,rdi,SIZEOF_FAST_FLOAT)], xmm5 movaps XMMWORD [XMMBLOCK(1,1,rdi,SIZEOF_FAST_FLOAT)], xmm6 movaps XMMWORD [XMMBLOCK(2,1,rdi,SIZEOF_FAST_FLOAT)], xmm4 movaps XMMWORD [XMMBLOCK(3,1,rdi,SIZEOF_FAST_FLOAT)], xmm3 .nextcolumn: add rsi, byte 4*SIZEOF_JCOEF ; coef_block add rdx, byte 4*SIZEOF_FLOAT_MULT_TYPE ; quantptr add rdi, 4*DCTSIZE*SIZEOF_FAST_FLOAT ; wsptr dec rcx ; ctr jnz near .columnloop ; -- Prefetch the next coefficient block prefetchnta [rsi + (DCTSIZE2-8)*SIZEOF_JCOEF + 0*32] prefetchnta [rsi + (DCTSIZE2-8)*SIZEOF_JCOEF + 1*32] prefetchnta [rsi + (DCTSIZE2-8)*SIZEOF_JCOEF + 2*32] prefetchnta [rsi + (DCTSIZE2-8)*SIZEOF_JCOEF + 3*32] ; ---- Pass 2: process rows from work array, store into output array. mov rax, [original_rbp] lea rsi, [workspace] ; FAST_FLOAT *wsptr mov rdi, r12 ; (JSAMPROW *) mov eax, r13d mov rcx, DCTSIZE/4 ; ctr .rowloop: ; -- Even part movaps xmm0, XMMWORD [XMMBLOCK(0,0,rsi,SIZEOF_FAST_FLOAT)] movaps xmm1, XMMWORD [XMMBLOCK(2,0,rsi,SIZEOF_FAST_FLOAT)] movaps xmm2, XMMWORD [XMMBLOCK(4,0,rsi,SIZEOF_FAST_FLOAT)] movaps xmm3, XMMWORD [XMMBLOCK(6,0,rsi,SIZEOF_FAST_FLOAT)] movaps xmm4, xmm0 movaps xmm5, xmm1 subps xmm0, xmm2 ; xmm0=tmp11 subps xmm1, xmm3 addps xmm4, xmm2 ; xmm4=tmp10 addps xmm5, xmm3 ; xmm5=tmp13 mulps xmm1, [rel PD_1_414] subps xmm1, xmm5 ; xmm1=tmp12 movaps xmm6, xmm4 movaps xmm7, xmm0 subps xmm4, xmm5 ; xmm4=tmp3 subps xmm0, xmm1 ; xmm0=tmp2 addps xmm6, xmm5 ; xmm6=tmp0 addps xmm7, xmm1 ; xmm7=tmp1 movaps XMMWORD [wk(1)], xmm4 ; tmp3 movaps XMMWORD [wk(0)], xmm0 ; tmp2 ; -- Odd part movaps xmm2, XMMWORD [XMMBLOCK(1,0,rsi,SIZEOF_FAST_FLOAT)] movaps xmm3, XMMWORD [XMMBLOCK(3,0,rsi,SIZEOF_FAST_FLOAT)] movaps xmm5, XMMWORD [XMMBLOCK(5,0,rsi,SIZEOF_FAST_FLOAT)] movaps xmm1, XMMWORD [XMMBLOCK(7,0,rsi,SIZEOF_FAST_FLOAT)] movaps xmm4, xmm2 movaps xmm0, xmm5 addps xmm2, xmm1 ; xmm2=z11 addps xmm5, xmm3 ; xmm5=z13 subps xmm4, xmm1 ; xmm4=z12 subps xmm0, xmm3 ; xmm0=z10 movaps xmm1, xmm2 subps xmm2, xmm5 addps xmm1, xmm5 ; xmm1=tmp7 mulps xmm2, [rel PD_1_414] ; xmm2=tmp11 movaps xmm3, xmm0 addps xmm0, xmm4 mulps xmm0, [rel PD_1_847] ; xmm0=z5 mulps xmm3, [rel PD_M2_613] ; xmm3=(z10 * -2.613125930) mulps xmm4, [rel PD_1_082] ; xmm4=(z12 * 1.082392200) addps xmm3, xmm0 ; xmm3=tmp12 subps xmm4, xmm0 ; xmm4=tmp10 ; -- Final output stage subps xmm3, xmm1 ; xmm3=tmp6 movaps xmm5, xmm6 movaps xmm0, xmm7 addps xmm6, xmm1 ; xmm6=data0=(00 10 20 30) addps xmm7, xmm3 ; xmm7=data1=(01 11 21 31) subps xmm5, xmm1 ; xmm5=data7=(07 17 27 37) subps xmm0, xmm3 ; xmm0=data6=(06 16 26 36) subps xmm2, xmm3 ; xmm2=tmp5 movaps xmm1, [rel PD_RNDINT_MAGIC] ; xmm1=[rel PD_RNDINT_MAGIC] pcmpeqd xmm3, xmm3 psrld xmm3, WORD_BIT ; xmm3={0xFFFF 0x0000 0xFFFF 0x0000 ..} addps xmm6, xmm1 ; xmm6=roundint(data0/8)=(00 ** 10 ** 20 ** 30 **) addps xmm7, xmm1 ; xmm7=roundint(data1/8)=(01 ** 11 ** 21 ** 31 **) addps xmm0, xmm1 ; xmm0=roundint(data6/8)=(06 ** 16 ** 26 ** 36 **) addps xmm5, xmm1 ; xmm5=roundint(data7/8)=(07 ** 17 ** 27 ** 37 **) pand xmm6, xmm3 ; xmm6=(00 -- 10 -- 20 -- 30 --) pslld xmm7, WORD_BIT ; xmm7=(-- 01 -- 11 -- 21 -- 31) pand xmm0, xmm3 ; xmm0=(06 -- 16 -- 26 -- 36 --) pslld xmm5, WORD_BIT ; xmm5=(-- 07 -- 17 -- 27 -- 37) por xmm6, xmm7 ; xmm6=(00 01 10 11 20 21 30 31) por xmm0, xmm5 ; xmm0=(06 07 16 17 26 27 36 37) movaps xmm1, XMMWORD [wk(0)] ; xmm1=tmp2 movaps xmm3, XMMWORD [wk(1)] ; xmm3=tmp3 addps xmm4, xmm2 ; xmm4=tmp4 movaps xmm7, xmm1 movaps xmm5, xmm3 addps xmm1, xmm2 ; xmm1=data2=(02 12 22 32) addps xmm3, xmm4 ; xmm3=data4=(04 14 24 34) subps xmm7, xmm2 ; xmm7=data5=(05 15 25 35) subps xmm5, xmm4 ; xmm5=data3=(03 13 23 33) movaps xmm2, [rel PD_RNDINT_MAGIC] ; xmm2=[rel PD_RNDINT_MAGIC] pcmpeqd xmm4, xmm4 psrld xmm4, WORD_BIT ; xmm4={0xFFFF 0x0000 0xFFFF 0x0000 ..} addps xmm3, xmm2 ; xmm3=roundint(data4/8)=(04 ** 14 ** 24 ** 34 **) addps xmm7, xmm2 ; xmm7=roundint(data5/8)=(05 ** 15 ** 25 ** 35 **) addps xmm1, xmm2 ; xmm1=roundint(data2/8)=(02 ** 12 ** 22 ** 32 **) addps xmm5, xmm2 ; xmm5=roundint(data3/8)=(03 ** 13 ** 23 ** 33 **) pand xmm3, xmm4 ; xmm3=(04 -- 14 -- 24 -- 34 --) pslld xmm7, WORD_BIT ; xmm7=(-- 05 -- 15 -- 25 -- 35) pand xmm1, xmm4 ; xmm1=(02 -- 12 -- 22 -- 32 --) pslld xmm5, WORD_BIT ; xmm5=(-- 03 -- 13 -- 23 -- 33) por xmm3, xmm7 ; xmm3=(04 05 14 15 24 25 34 35) por xmm1, xmm5 ; xmm1=(02 03 12 13 22 23 32 33) movdqa xmm2, [rel PB_CENTERJSAMP] ; xmm2=[rel PB_CENTERJSAMP] packsswb xmm6, xmm3 ; xmm6=(00 01 10 11 20 21 30 31 04 05 14 15 24 25 34 35) packsswb xmm1, xmm0 ; xmm1=(02 03 12 13 22 23 32 33 06 07 16 17 26 27 36 37) paddb xmm6, xmm2 paddb xmm1, xmm2 movdqa xmm4, xmm6 ; transpose coefficients(phase 2) punpcklwd xmm6, xmm1 ; xmm6=(00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33) punpckhwd xmm4, xmm1 ; xmm4=(04 05 06 07 14 15 16 17 24 25 26 27 34 35 36 37) movdqa xmm7, xmm6 ; transpose coefficients(phase 3) punpckldq xmm6, xmm4 ; xmm6=(00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17) punpckhdq xmm7, xmm4 ; xmm7=(20 21 22 23 24 25 26 27 30 31 32 33 34 35 36 37) pshufd xmm5, xmm6, 0x4E ; xmm5=(10 11 12 13 14 15 16 17 00 01 02 03 04 05 06 07) pshufd xmm3, xmm7, 0x4E ; xmm3=(30 31 32 33 34 35 36 37 20 21 22 23 24 25 26 27) mov rdxp, JSAMPROW [rdi+0*SIZEOF_JSAMPROW] mov rbxp, JSAMPROW [rdi+2*SIZEOF_JSAMPROW] movq XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE], xmm6 movq XMM_MMWORD [rbx+rax*SIZEOF_JSAMPLE], xmm7 mov rdxp, JSAMPROW [rdi+1*SIZEOF_JSAMPROW] mov rbxp, JSAMPROW [rdi+3*SIZEOF_JSAMPROW] movq XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE], xmm5 movq XMM_MMWORD [rbx+rax*SIZEOF_JSAMPLE], xmm3 add rsi, byte 4*SIZEOF_FAST_FLOAT ; wsptr add rdi, byte 4*SIZEOF_JSAMPROW dec rcx ; ctr jnz near .rowloop pop rbx uncollect_args 4 mov rsp, rbp ; rsp <- aligned rbp pop rsp ; rsp <- original rbp pop rbp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/x86_64/jidctfst-sse2.asm000066400000000000000000000507231436506551100213610ustar00rootroot00000000000000; ; jidctfst.asm - fast integer IDCT (64-bit SSE2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2009, 2016, D. R. Commander. ; Copyright (C) 2018, Matthias Räncker. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains a fast, not so accurate integer implementation of ; the inverse DCT (Discrete Cosine Transform). The following code is ; based directly on the IJG's original jidctfst.c; see the jidctfst.c ; for more details. %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- %define CONST_BITS 8 ; 14 is also OK. %define PASS1_BITS 2 %if IFAST_SCALE_BITS != PASS1_BITS %error "'IFAST_SCALE_BITS' must be equal to 'PASS1_BITS'." %endif %if CONST_BITS == 8 F_1_082 equ 277 ; FIX(1.082392200) F_1_414 equ 362 ; FIX(1.414213562) F_1_847 equ 473 ; FIX(1.847759065) F_2_613 equ 669 ; FIX(2.613125930) F_1_613 equ (F_2_613 - 256) ; FIX(2.613125930) - FIX(1) %else ; NASM cannot do compile-time arithmetic on floating-point constants. %define DESCALE(x, n) (((x) + (1 << ((n) - 1))) >> (n)) F_1_082 equ DESCALE(1162209775, 30 - CONST_BITS) ; FIX(1.082392200) F_1_414 equ DESCALE(1518500249, 30 - CONST_BITS) ; FIX(1.414213562) F_1_847 equ DESCALE(1984016188, 30 - CONST_BITS) ; FIX(1.847759065) F_2_613 equ DESCALE(2805822602, 30 - CONST_BITS) ; FIX(2.613125930) F_1_613 equ (F_2_613 - (1 << CONST_BITS)) ; FIX(2.613125930) - FIX(1) %endif ; -------------------------------------------------------------------------- SECTION SEG_CONST ; PRE_MULTIPLY_SCALE_BITS <= 2 (to avoid overflow) ; CONST_BITS + CONST_SHIFT + PRE_MULTIPLY_SCALE_BITS == 16 (for pmulhw) %define PRE_MULTIPLY_SCALE_BITS 2 %define CONST_SHIFT (16 - PRE_MULTIPLY_SCALE_BITS - CONST_BITS) alignz 32 GLOBAL_DATA(jconst_idct_ifast_sse2) EXTN(jconst_idct_ifast_sse2): PW_F1414 times 8 dw F_1_414 << CONST_SHIFT PW_F1847 times 8 dw F_1_847 << CONST_SHIFT PW_MF1613 times 8 dw -F_1_613 << CONST_SHIFT PW_F1082 times 8 dw F_1_082 << CONST_SHIFT PB_CENTERJSAMP times 16 db CENTERJSAMPLE alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 64 ; ; Perform dequantization and inverse DCT on one block of coefficients. ; ; GLOBAL(void) ; jsimd_idct_ifast_sse2(void *dct_table, JCOEFPTR coef_block, ; JSAMPARRAY output_buf, JDIMENSION output_col) ; ; r10 = jpeg_component_info *compptr ; r11 = JCOEFPTR coef_block ; r12 = JSAMPARRAY output_buf ; r13d = JDIMENSION output_col %define original_rbp rbp + 0 %define wk(i) rbp - (WK_NUM - (i)) * SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 2 align 32 GLOBAL_FUNCTION(jsimd_idct_ifast_sse2) EXTN(jsimd_idct_ifast_sse2): push rbp mov rax, rsp ; rax = original rbp sub rsp, byte 4 and rsp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [rsp], rax mov rbp, rsp ; rbp = aligned rbp lea rsp, [wk(0)] collect_args 4 ; ---- Pass 1: process columns from input. mov rdx, r10 ; quantptr mov rsi, r11 ; inptr %ifndef NO_ZERO_COLUMN_TEST_IFAST_SSE2 mov eax, dword [DWBLOCK(1,0,rsi,SIZEOF_JCOEF)] or eax, dword [DWBLOCK(2,0,rsi,SIZEOF_JCOEF)] jnz near .columnDCT movdqa xmm0, XMMWORD [XMMBLOCK(1,0,rsi,SIZEOF_JCOEF)] movdqa xmm1, XMMWORD [XMMBLOCK(2,0,rsi,SIZEOF_JCOEF)] por xmm0, XMMWORD [XMMBLOCK(3,0,rsi,SIZEOF_JCOEF)] por xmm1, XMMWORD [XMMBLOCK(4,0,rsi,SIZEOF_JCOEF)] por xmm0, XMMWORD [XMMBLOCK(5,0,rsi,SIZEOF_JCOEF)] por xmm1, XMMWORD [XMMBLOCK(6,0,rsi,SIZEOF_JCOEF)] por xmm0, XMMWORD [XMMBLOCK(7,0,rsi,SIZEOF_JCOEF)] por xmm1, xmm0 packsswb xmm1, xmm1 packsswb xmm1, xmm1 movd eax, xmm1 test rax, rax jnz short .columnDCT ; -- AC terms all zero movdqa xmm0, XMMWORD [XMMBLOCK(0,0,rsi,SIZEOF_JCOEF)] pmullw xmm0, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_ISLOW_MULT_TYPE)] movdqa xmm7, xmm0 ; xmm0=in0=(00 01 02 03 04 05 06 07) punpcklwd xmm0, xmm0 ; xmm0=(00 00 01 01 02 02 03 03) punpckhwd xmm7, xmm7 ; xmm7=(04 04 05 05 06 06 07 07) pshufd xmm6, xmm0, 0x00 ; xmm6=col0=(00 00 00 00 00 00 00 00) pshufd xmm2, xmm0, 0x55 ; xmm2=col1=(01 01 01 01 01 01 01 01) pshufd xmm5, xmm0, 0xAA ; xmm5=col2=(02 02 02 02 02 02 02 02) pshufd xmm0, xmm0, 0xFF ; xmm0=col3=(03 03 03 03 03 03 03 03) pshufd xmm1, xmm7, 0x00 ; xmm1=col4=(04 04 04 04 04 04 04 04) pshufd xmm4, xmm7, 0x55 ; xmm4=col5=(05 05 05 05 05 05 05 05) pshufd xmm3, xmm7, 0xAA ; xmm3=col6=(06 06 06 06 06 06 06 06) pshufd xmm7, xmm7, 0xFF ; xmm7=col7=(07 07 07 07 07 07 07 07) movdqa XMMWORD [wk(0)], xmm2 ; wk(0)=col1 movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=col3 jmp near .column_end %endif .columnDCT: ; -- Even part movdqa xmm0, XMMWORD [XMMBLOCK(0,0,rsi,SIZEOF_JCOEF)] movdqa xmm1, XMMWORD [XMMBLOCK(2,0,rsi,SIZEOF_JCOEF)] pmullw xmm0, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_IFAST_MULT_TYPE)] pmullw xmm1, XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_IFAST_MULT_TYPE)] movdqa xmm2, XMMWORD [XMMBLOCK(4,0,rsi,SIZEOF_JCOEF)] movdqa xmm3, XMMWORD [XMMBLOCK(6,0,rsi,SIZEOF_JCOEF)] pmullw xmm2, XMMWORD [XMMBLOCK(4,0,rdx,SIZEOF_IFAST_MULT_TYPE)] pmullw xmm3, XMMWORD [XMMBLOCK(6,0,rdx,SIZEOF_IFAST_MULT_TYPE)] movdqa xmm4, xmm0 movdqa xmm5, xmm1 psubw xmm0, xmm2 ; xmm0=tmp11 psubw xmm1, xmm3 paddw xmm4, xmm2 ; xmm4=tmp10 paddw xmm5, xmm3 ; xmm5=tmp13 psllw xmm1, PRE_MULTIPLY_SCALE_BITS pmulhw xmm1, [rel PW_F1414] psubw xmm1, xmm5 ; xmm1=tmp12 movdqa xmm6, xmm4 movdqa xmm7, xmm0 psubw xmm4, xmm5 ; xmm4=tmp3 psubw xmm0, xmm1 ; xmm0=tmp2 paddw xmm6, xmm5 ; xmm6=tmp0 paddw xmm7, xmm1 ; xmm7=tmp1 movdqa XMMWORD [wk(1)], xmm4 ; wk(1)=tmp3 movdqa XMMWORD [wk(0)], xmm0 ; wk(0)=tmp2 ; -- Odd part movdqa xmm2, XMMWORD [XMMBLOCK(1,0,rsi,SIZEOF_JCOEF)] movdqa xmm3, XMMWORD [XMMBLOCK(3,0,rsi,SIZEOF_JCOEF)] pmullw xmm2, XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_IFAST_MULT_TYPE)] pmullw xmm3, XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_IFAST_MULT_TYPE)] movdqa xmm5, XMMWORD [XMMBLOCK(5,0,rsi,SIZEOF_JCOEF)] movdqa xmm1, XMMWORD [XMMBLOCK(7,0,rsi,SIZEOF_JCOEF)] pmullw xmm5, XMMWORD [XMMBLOCK(5,0,rdx,SIZEOF_IFAST_MULT_TYPE)] pmullw xmm1, XMMWORD [XMMBLOCK(7,0,rdx,SIZEOF_IFAST_MULT_TYPE)] movdqa xmm4, xmm2 movdqa xmm0, xmm5 psubw xmm2, xmm1 ; xmm2=z12 psubw xmm5, xmm3 ; xmm5=z10 paddw xmm4, xmm1 ; xmm4=z11 paddw xmm0, xmm3 ; xmm0=z13 movdqa xmm1, xmm5 ; xmm1=z10(unscaled) psllw xmm2, PRE_MULTIPLY_SCALE_BITS psllw xmm5, PRE_MULTIPLY_SCALE_BITS movdqa xmm3, xmm4 psubw xmm4, xmm0 paddw xmm3, xmm0 ; xmm3=tmp7 psllw xmm4, PRE_MULTIPLY_SCALE_BITS pmulhw xmm4, [rel PW_F1414] ; xmm4=tmp11 ; To avoid overflow... ; ; (Original) ; tmp12 = -2.613125930 * z10 + z5; ; ; (This implementation) ; tmp12 = (-1.613125930 - 1) * z10 + z5; ; = -1.613125930 * z10 - z10 + z5; movdqa xmm0, xmm5 paddw xmm5, xmm2 pmulhw xmm5, [rel PW_F1847] ; xmm5=z5 pmulhw xmm0, [rel PW_MF1613] pmulhw xmm2, [rel PW_F1082] psubw xmm0, xmm1 psubw xmm2, xmm5 ; xmm2=tmp10 paddw xmm0, xmm5 ; xmm0=tmp12 ; -- Final output stage psubw xmm0, xmm3 ; xmm0=tmp6 movdqa xmm1, xmm6 movdqa xmm5, xmm7 paddw xmm6, xmm3 ; xmm6=data0=(00 01 02 03 04 05 06 07) paddw xmm7, xmm0 ; xmm7=data1=(10 11 12 13 14 15 16 17) psubw xmm1, xmm3 ; xmm1=data7=(70 71 72 73 74 75 76 77) psubw xmm5, xmm0 ; xmm5=data6=(60 61 62 63 64 65 66 67) psubw xmm4, xmm0 ; xmm4=tmp5 movdqa xmm3, xmm6 ; transpose coefficients(phase 1) punpcklwd xmm6, xmm7 ; xmm6=(00 10 01 11 02 12 03 13) punpckhwd xmm3, xmm7 ; xmm3=(04 14 05 15 06 16 07 17) movdqa xmm0, xmm5 ; transpose coefficients(phase 1) punpcklwd xmm5, xmm1 ; xmm5=(60 70 61 71 62 72 63 73) punpckhwd xmm0, xmm1 ; xmm0=(64 74 65 75 66 76 67 77) movdqa xmm7, XMMWORD [wk(0)] ; xmm7=tmp2 movdqa xmm1, XMMWORD [wk(1)] ; xmm1=tmp3 movdqa XMMWORD [wk(0)], xmm5 ; wk(0)=(60 70 61 71 62 72 63 73) movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=(64 74 65 75 66 76 67 77) paddw xmm2, xmm4 ; xmm2=tmp4 movdqa xmm5, xmm7 movdqa xmm0, xmm1 paddw xmm7, xmm4 ; xmm7=data2=(20 21 22 23 24 25 26 27) paddw xmm1, xmm2 ; xmm1=data4=(40 41 42 43 44 45 46 47) psubw xmm5, xmm4 ; xmm5=data5=(50 51 52 53 54 55 56 57) psubw xmm0, xmm2 ; xmm0=data3=(30 31 32 33 34 35 36 37) movdqa xmm4, xmm7 ; transpose coefficients(phase 1) punpcklwd xmm7, xmm0 ; xmm7=(20 30 21 31 22 32 23 33) punpckhwd xmm4, xmm0 ; xmm4=(24 34 25 35 26 36 27 37) movdqa xmm2, xmm1 ; transpose coefficients(phase 1) punpcklwd xmm1, xmm5 ; xmm1=(40 50 41 51 42 52 43 53) punpckhwd xmm2, xmm5 ; xmm2=(44 54 45 55 46 56 47 57) movdqa xmm0, xmm3 ; transpose coefficients(phase 2) punpckldq xmm3, xmm4 ; xmm3=(04 14 24 34 05 15 25 35) punpckhdq xmm0, xmm4 ; xmm0=(06 16 26 36 07 17 27 37) movdqa xmm5, xmm6 ; transpose coefficients(phase 2) punpckldq xmm6, xmm7 ; xmm6=(00 10 20 30 01 11 21 31) punpckhdq xmm5, xmm7 ; xmm5=(02 12 22 32 03 13 23 33) movdqa xmm4, XMMWORD [wk(0)] ; xmm4=(60 70 61 71 62 72 63 73) movdqa xmm7, XMMWORD [wk(1)] ; xmm7=(64 74 65 75 66 76 67 77) movdqa XMMWORD [wk(0)], xmm3 ; wk(0)=(04 14 24 34 05 15 25 35) movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=(06 16 26 36 07 17 27 37) movdqa xmm3, xmm1 ; transpose coefficients(phase 2) punpckldq xmm1, xmm4 ; xmm1=(40 50 60 70 41 51 61 71) punpckhdq xmm3, xmm4 ; xmm3=(42 52 62 72 43 53 63 73) movdqa xmm0, xmm2 ; transpose coefficients(phase 2) punpckldq xmm2, xmm7 ; xmm2=(44 54 64 74 45 55 65 75) punpckhdq xmm0, xmm7 ; xmm0=(46 56 66 76 47 57 67 77) movdqa xmm4, xmm6 ; transpose coefficients(phase 3) punpcklqdq xmm6, xmm1 ; xmm6=col0=(00 10 20 30 40 50 60 70) punpckhqdq xmm4, xmm1 ; xmm4=col1=(01 11 21 31 41 51 61 71) movdqa xmm7, xmm5 ; transpose coefficients(phase 3) punpcklqdq xmm5, xmm3 ; xmm5=col2=(02 12 22 32 42 52 62 72) punpckhqdq xmm7, xmm3 ; xmm7=col3=(03 13 23 33 43 53 63 73) movdqa xmm1, XMMWORD [wk(0)] ; xmm1=(04 14 24 34 05 15 25 35) movdqa xmm3, XMMWORD [wk(1)] ; xmm3=(06 16 26 36 07 17 27 37) movdqa XMMWORD [wk(0)], xmm4 ; wk(0)=col1 movdqa XMMWORD [wk(1)], xmm7 ; wk(1)=col3 movdqa xmm4, xmm1 ; transpose coefficients(phase 3) punpcklqdq xmm1, xmm2 ; xmm1=col4=(04 14 24 34 44 54 64 74) punpckhqdq xmm4, xmm2 ; xmm4=col5=(05 15 25 35 45 55 65 75) movdqa xmm7, xmm3 ; transpose coefficients(phase 3) punpcklqdq xmm3, xmm0 ; xmm3=col6=(06 16 26 36 46 56 66 76) punpckhqdq xmm7, xmm0 ; xmm7=col7=(07 17 27 37 47 57 67 77) .column_end: ; -- Prefetch the next coefficient block prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 0*32] prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 1*32] prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 2*32] prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 3*32] ; ---- Pass 2: process rows from work array, store into output array. mov rax, [original_rbp] mov rdi, r12 ; (JSAMPROW *) mov eax, r13d ; -- Even part ; xmm6=col0, xmm5=col2, xmm1=col4, xmm3=col6 movdqa xmm2, xmm6 movdqa xmm0, xmm5 psubw xmm6, xmm1 ; xmm6=tmp11 psubw xmm5, xmm3 paddw xmm2, xmm1 ; xmm2=tmp10 paddw xmm0, xmm3 ; xmm0=tmp13 psllw xmm5, PRE_MULTIPLY_SCALE_BITS pmulhw xmm5, [rel PW_F1414] psubw xmm5, xmm0 ; xmm5=tmp12 movdqa xmm1, xmm2 movdqa xmm3, xmm6 psubw xmm2, xmm0 ; xmm2=tmp3 psubw xmm6, xmm5 ; xmm6=tmp2 paddw xmm1, xmm0 ; xmm1=tmp0 paddw xmm3, xmm5 ; xmm3=tmp1 movdqa xmm0, XMMWORD [wk(0)] ; xmm0=col1 movdqa xmm5, XMMWORD [wk(1)] ; xmm5=col3 movdqa XMMWORD [wk(0)], xmm2 ; wk(0)=tmp3 movdqa XMMWORD [wk(1)], xmm6 ; wk(1)=tmp2 ; -- Odd part ; xmm0=col1, xmm5=col3, xmm4=col5, xmm7=col7 movdqa xmm2, xmm0 movdqa xmm6, xmm4 psubw xmm0, xmm7 ; xmm0=z12 psubw xmm4, xmm5 ; xmm4=z10 paddw xmm2, xmm7 ; xmm2=z11 paddw xmm6, xmm5 ; xmm6=z13 movdqa xmm7, xmm4 ; xmm7=z10(unscaled) psllw xmm0, PRE_MULTIPLY_SCALE_BITS psllw xmm4, PRE_MULTIPLY_SCALE_BITS movdqa xmm5, xmm2 psubw xmm2, xmm6 paddw xmm5, xmm6 ; xmm5=tmp7 psllw xmm2, PRE_MULTIPLY_SCALE_BITS pmulhw xmm2, [rel PW_F1414] ; xmm2=tmp11 ; To avoid overflow... ; ; (Original) ; tmp12 = -2.613125930 * z10 + z5; ; ; (This implementation) ; tmp12 = (-1.613125930 - 1) * z10 + z5; ; = -1.613125930 * z10 - z10 + z5; movdqa xmm6, xmm4 paddw xmm4, xmm0 pmulhw xmm4, [rel PW_F1847] ; xmm4=z5 pmulhw xmm6, [rel PW_MF1613] pmulhw xmm0, [rel PW_F1082] psubw xmm6, xmm7 psubw xmm0, xmm4 ; xmm0=tmp10 paddw xmm6, xmm4 ; xmm6=tmp12 ; -- Final output stage psubw xmm6, xmm5 ; xmm6=tmp6 movdqa xmm7, xmm1 movdqa xmm4, xmm3 paddw xmm1, xmm5 ; xmm1=data0=(00 10 20 30 40 50 60 70) paddw xmm3, xmm6 ; xmm3=data1=(01 11 21 31 41 51 61 71) psraw xmm1, (PASS1_BITS+3) ; descale psraw xmm3, (PASS1_BITS+3) ; descale psubw xmm7, xmm5 ; xmm7=data7=(07 17 27 37 47 57 67 77) psubw xmm4, xmm6 ; xmm4=data6=(06 16 26 36 46 56 66 76) psraw xmm7, (PASS1_BITS+3) ; descale psraw xmm4, (PASS1_BITS+3) ; descale psubw xmm2, xmm6 ; xmm2=tmp5 packsswb xmm1, xmm4 ; xmm1=(00 10 20 30 40 50 60 70 06 16 26 36 46 56 66 76) packsswb xmm3, xmm7 ; xmm3=(01 11 21 31 41 51 61 71 07 17 27 37 47 57 67 77) movdqa xmm5, XMMWORD [wk(1)] ; xmm5=tmp2 movdqa xmm6, XMMWORD [wk(0)] ; xmm6=tmp3 paddw xmm0, xmm2 ; xmm0=tmp4 movdqa xmm4, xmm5 movdqa xmm7, xmm6 paddw xmm5, xmm2 ; xmm5=data2=(02 12 22 32 42 52 62 72) paddw xmm6, xmm0 ; xmm6=data4=(04 14 24 34 44 54 64 74) psraw xmm5, (PASS1_BITS+3) ; descale psraw xmm6, (PASS1_BITS+3) ; descale psubw xmm4, xmm2 ; xmm4=data5=(05 15 25 35 45 55 65 75) psubw xmm7, xmm0 ; xmm7=data3=(03 13 23 33 43 53 63 73) psraw xmm4, (PASS1_BITS+3) ; descale psraw xmm7, (PASS1_BITS+3) ; descale movdqa xmm2, [rel PB_CENTERJSAMP] ; xmm2=[rel PB_CENTERJSAMP] packsswb xmm5, xmm6 ; xmm5=(02 12 22 32 42 52 62 72 04 14 24 34 44 54 64 74) packsswb xmm7, xmm4 ; xmm7=(03 13 23 33 43 53 63 73 05 15 25 35 45 55 65 75) paddb xmm1, xmm2 paddb xmm3, xmm2 paddb xmm5, xmm2 paddb xmm7, xmm2 movdqa xmm0, xmm1 ; transpose coefficients(phase 1) punpcklbw xmm1, xmm3 ; xmm1=(00 01 10 11 20 21 30 31 40 41 50 51 60 61 70 71) punpckhbw xmm0, xmm3 ; xmm0=(06 07 16 17 26 27 36 37 46 47 56 57 66 67 76 77) movdqa xmm6, xmm5 ; transpose coefficients(phase 1) punpcklbw xmm5, xmm7 ; xmm5=(02 03 12 13 22 23 32 33 42 43 52 53 62 63 72 73) punpckhbw xmm6, xmm7 ; xmm6=(04 05 14 15 24 25 34 35 44 45 54 55 64 65 74 75) movdqa xmm4, xmm1 ; transpose coefficients(phase 2) punpcklwd xmm1, xmm5 ; xmm1=(00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33) punpckhwd xmm4, xmm5 ; xmm4=(40 41 42 43 50 51 52 53 60 61 62 63 70 71 72 73) movdqa xmm2, xmm6 ; transpose coefficients(phase 2) punpcklwd xmm6, xmm0 ; xmm6=(04 05 06 07 14 15 16 17 24 25 26 27 34 35 36 37) punpckhwd xmm2, xmm0 ; xmm2=(44 45 46 47 54 55 56 57 64 65 66 67 74 75 76 77) movdqa xmm3, xmm1 ; transpose coefficients(phase 3) punpckldq xmm1, xmm6 ; xmm1=(00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17) punpckhdq xmm3, xmm6 ; xmm3=(20 21 22 23 24 25 26 27 30 31 32 33 34 35 36 37) movdqa xmm7, xmm4 ; transpose coefficients(phase 3) punpckldq xmm4, xmm2 ; xmm4=(40 41 42 43 44 45 46 47 50 51 52 53 54 55 56 57) punpckhdq xmm7, xmm2 ; xmm7=(60 61 62 63 64 65 66 67 70 71 72 73 74 75 76 77) pshufd xmm5, xmm1, 0x4E ; xmm5=(10 11 12 13 14 15 16 17 00 01 02 03 04 05 06 07) pshufd xmm0, xmm3, 0x4E ; xmm0=(30 31 32 33 34 35 36 37 20 21 22 23 24 25 26 27) pshufd xmm6, xmm4, 0x4E ; xmm6=(50 51 52 53 54 55 56 57 40 41 42 43 44 45 46 47) pshufd xmm2, xmm7, 0x4E ; xmm2=(70 71 72 73 74 75 76 77 60 61 62 63 64 65 66 67) mov rdxp, JSAMPROW [rdi+0*SIZEOF_JSAMPROW] mov rsip, JSAMPROW [rdi+2*SIZEOF_JSAMPROW] movq XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE], xmm1 movq XMM_MMWORD [rsi+rax*SIZEOF_JSAMPLE], xmm3 mov rdxp, JSAMPROW [rdi+4*SIZEOF_JSAMPROW] mov rsip, JSAMPROW [rdi+6*SIZEOF_JSAMPROW] movq XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE], xmm4 movq XMM_MMWORD [rsi+rax*SIZEOF_JSAMPLE], xmm7 mov rdxp, JSAMPROW [rdi+1*SIZEOF_JSAMPROW] mov rsip, JSAMPROW [rdi+3*SIZEOF_JSAMPROW] movq XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE], xmm5 movq XMM_MMWORD [rsi+rax*SIZEOF_JSAMPLE], xmm0 mov rdxp, JSAMPROW [rdi+5*SIZEOF_JSAMPROW] mov rsip, JSAMPROW [rdi+7*SIZEOF_JSAMPROW] movq XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE], xmm6 movq XMM_MMWORD [rsi+rax*SIZEOF_JSAMPLE], xmm2 uncollect_args 4 mov rsp, rbp ; rsp <- aligned rbp pop rsp ; rsp <- original rbp pop rbp ret ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/x86_64/jidctint-avx2.asm000066400000000000000000000420031436506551100213530ustar00rootroot00000000000000; ; jidctint.asm - accurate integer IDCT (64-bit AVX2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2009, 2016, 2018, 2020, D. R. Commander. ; Copyright (C) 2018, Matthias Räncker. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains a slower but more accurate integer implementation of the ; inverse DCT (Discrete Cosine Transform). The following code is based ; directly on the IJG's original jidctint.c; see the jidctint.c for ; more details. %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- %define CONST_BITS 13 %define PASS1_BITS 2 %define DESCALE_P1 (CONST_BITS - PASS1_BITS) %define DESCALE_P2 (CONST_BITS + PASS1_BITS + 3) %if CONST_BITS == 13 F_0_298 equ 2446 ; FIX(0.298631336) F_0_390 equ 3196 ; FIX(0.390180644) F_0_541 equ 4433 ; FIX(0.541196100) F_0_765 equ 6270 ; FIX(0.765366865) F_0_899 equ 7373 ; FIX(0.899976223) F_1_175 equ 9633 ; FIX(1.175875602) F_1_501 equ 12299 ; FIX(1.501321110) F_1_847 equ 15137 ; FIX(1.847759065) F_1_961 equ 16069 ; FIX(1.961570560) F_2_053 equ 16819 ; FIX(2.053119869) F_2_562 equ 20995 ; FIX(2.562915447) F_3_072 equ 25172 ; FIX(3.072711026) %else ; NASM cannot do compile-time arithmetic on floating-point constants. %define DESCALE(x, n) (((x) + (1 << ((n) - 1))) >> (n)) F_0_298 equ DESCALE( 320652955, 30 - CONST_BITS) ; FIX(0.298631336) F_0_390 equ DESCALE( 418953276, 30 - CONST_BITS) ; FIX(0.390180644) F_0_541 equ DESCALE( 581104887, 30 - CONST_BITS) ; FIX(0.541196100) F_0_765 equ DESCALE( 821806413, 30 - CONST_BITS) ; FIX(0.765366865) F_0_899 equ DESCALE( 966342111, 30 - CONST_BITS) ; FIX(0.899976223) F_1_175 equ DESCALE(1262586813, 30 - CONST_BITS) ; FIX(1.175875602) F_1_501 equ DESCALE(1612031267, 30 - CONST_BITS) ; FIX(1.501321110) F_1_847 equ DESCALE(1984016188, 30 - CONST_BITS) ; FIX(1.847759065) F_1_961 equ DESCALE(2106220350, 30 - CONST_BITS) ; FIX(1.961570560) F_2_053 equ DESCALE(2204520673, 30 - CONST_BITS) ; FIX(2.053119869) F_2_562 equ DESCALE(2751909506, 30 - CONST_BITS) ; FIX(2.562915447) F_3_072 equ DESCALE(3299298341, 30 - CONST_BITS) ; FIX(3.072711026) %endif ; -------------------------------------------------------------------------- ; In-place 8x8x16-bit inverse matrix transpose using AVX2 instructions ; %1-%4: Input/output registers ; %5-%8: Temp registers %macro dotranspose 8 ; %5=(00 10 20 30 40 50 60 70 01 11 21 31 41 51 61 71) ; %6=(03 13 23 33 43 53 63 73 02 12 22 32 42 52 62 72) ; %7=(04 14 24 34 44 54 64 74 05 15 25 35 45 55 65 75) ; %8=(07 17 27 37 47 57 67 77 06 16 26 36 46 56 66 76) vpermq %5, %1, 0xD8 vpermq %6, %2, 0x72 vpermq %7, %3, 0xD8 vpermq %8, %4, 0x72 ; transpose coefficients(phase 1) ; %5=(00 10 20 30 01 11 21 31 40 50 60 70 41 51 61 71) ; %6=(02 12 22 32 03 13 23 33 42 52 62 72 43 53 63 73) ; %7=(04 14 24 34 05 15 25 35 44 54 64 74 45 55 65 75) ; %8=(06 16 26 36 07 17 27 37 46 56 66 76 47 57 67 77) vpunpcklwd %1, %5, %6 vpunpckhwd %2, %5, %6 vpunpcklwd %3, %7, %8 vpunpckhwd %4, %7, %8 ; transpose coefficients(phase 2) ; %1=(00 02 10 12 20 22 30 32 40 42 50 52 60 62 70 72) ; %2=(01 03 11 13 21 23 31 33 41 43 51 53 61 63 71 73) ; %3=(04 06 14 16 24 26 34 36 44 46 54 56 64 66 74 76) ; %4=(05 07 15 17 25 27 35 37 45 47 55 57 65 67 75 77) vpunpcklwd %5, %1, %2 vpunpcklwd %6, %3, %4 vpunpckhwd %7, %1, %2 vpunpckhwd %8, %3, %4 ; transpose coefficients(phase 3) ; %5=(00 01 02 03 10 11 12 13 40 41 42 43 50 51 52 53) ; %6=(04 05 06 07 14 15 16 17 44 45 46 47 54 55 56 57) ; %7=(20 21 22 23 30 31 32 33 60 61 62 63 70 71 72 73) ; %8=(24 25 26 27 34 35 36 37 64 65 66 67 74 75 76 77) vpunpcklqdq %1, %5, %6 vpunpckhqdq %2, %5, %6 vpunpcklqdq %3, %7, %8 vpunpckhqdq %4, %7, %8 ; transpose coefficients(phase 4) ; %1=(00 01 02 03 04 05 06 07 40 41 42 43 44 45 46 47) ; %2=(10 11 12 13 14 15 16 17 50 51 52 53 54 55 56 57) ; %3=(20 21 22 23 24 25 26 27 60 61 62 63 64 65 66 67) ; %4=(30 31 32 33 34 35 36 37 70 71 72 73 74 75 76 77) %endmacro ; -------------------------------------------------------------------------- ; In-place 8x8x16-bit accurate integer inverse DCT using AVX2 instructions ; %1-%4: Input/output registers ; %5-%12: Temp registers ; %9: Pass (1 or 2) %macro dodct 13 ; -- Even part ; (Original) ; z1 = (z2 + z3) * 0.541196100; ; tmp2 = z1 + z3 * -1.847759065; ; tmp3 = z1 + z2 * 0.765366865; ; ; (This implementation) ; tmp2 = z2 * 0.541196100 + z3 * (0.541196100 - 1.847759065); ; tmp3 = z2 * (0.541196100 + 0.765366865) + z3 * 0.541196100; vperm2i128 %6, %3, %3, 0x01 ; %6=in6_2 vpunpcklwd %5, %3, %6 ; %5=in26_62L vpunpckhwd %6, %3, %6 ; %6=in26_62H vpmaddwd %5, %5, [rel PW_F130_F054_MF130_F054] ; %5=tmp3_2L vpmaddwd %6, %6, [rel PW_F130_F054_MF130_F054] ; %6=tmp3_2H vperm2i128 %7, %1, %1, 0x01 ; %7=in4_0 vpsignw %1, %1, [rel PW_1_NEG1] vpaddw %7, %7, %1 ; %7=(in0+in4)_(in0-in4) vpxor %1, %1, %1 vpunpcklwd %8, %1, %7 ; %8=tmp0_1L vpunpckhwd %1, %1, %7 ; %1=tmp0_1H vpsrad %8, %8, (16-CONST_BITS) ; vpsrad %8,16 & vpslld %8,CONST_BITS vpsrad %1, %1, (16-CONST_BITS) ; vpsrad %1,16 & vpslld %1,CONST_BITS vpsubd %11, %8, %5 ; %11=tmp0_1L-tmp3_2L=tmp13_12L vpaddd %9, %8, %5 ; %9=tmp0_1L+tmp3_2L=tmp10_11L vpsubd %12, %1, %6 ; %12=tmp0_1H-tmp3_2H=tmp13_12H vpaddd %10, %1, %6 ; %10=tmp0_1H+tmp3_2H=tmp10_11H ; -- Odd part vpaddw %1, %4, %2 ; %1=in7_5+in3_1=z3_4 ; (Original) ; z5 = (z3 + z4) * 1.175875602; ; z3 = z3 * -1.961570560; z4 = z4 * -0.390180644; ; z3 += z5; z4 += z5; ; ; (This implementation) ; z3 = z3 * (1.175875602 - 1.961570560) + z4 * 1.175875602; ; z4 = z3 * 1.175875602 + z4 * (1.175875602 - 0.390180644); vperm2i128 %8, %1, %1, 0x01 ; %8=z4_3 vpunpcklwd %7, %1, %8 ; %7=z34_43L vpunpckhwd %8, %1, %8 ; %8=z34_43H vpmaddwd %7, %7, [rel PW_MF078_F117_F078_F117] ; %7=z3_4L vpmaddwd %8, %8, [rel PW_MF078_F117_F078_F117] ; %8=z3_4H ; (Original) ; z1 = tmp0 + tmp3; z2 = tmp1 + tmp2; ; tmp0 = tmp0 * 0.298631336; tmp1 = tmp1 * 2.053119869; ; tmp2 = tmp2 * 3.072711026; tmp3 = tmp3 * 1.501321110; ; z1 = z1 * -0.899976223; z2 = z2 * -2.562915447; ; tmp0 += z1 + z3; tmp1 += z2 + z4; ; tmp2 += z2 + z3; tmp3 += z1 + z4; ; ; (This implementation) ; tmp0 = tmp0 * (0.298631336 - 0.899976223) + tmp3 * -0.899976223; ; tmp1 = tmp1 * (2.053119869 - 2.562915447) + tmp2 * -2.562915447; ; tmp2 = tmp1 * -2.562915447 + tmp2 * (3.072711026 - 2.562915447); ; tmp3 = tmp0 * -0.899976223 + tmp3 * (1.501321110 - 0.899976223); ; tmp0 += z3; tmp1 += z4; ; tmp2 += z3; tmp3 += z4; vperm2i128 %2, %2, %2, 0x01 ; %2=in1_3 vpunpcklwd %3, %4, %2 ; %3=in71_53L vpunpckhwd %4, %4, %2 ; %4=in71_53H vpmaddwd %5, %3, [rel PW_MF060_MF089_MF050_MF256] ; %5=tmp0_1L vpmaddwd %6, %4, [rel PW_MF060_MF089_MF050_MF256] ; %6=tmp0_1H vpaddd %5, %5, %7 ; %5=tmp0_1L+z3_4L=tmp0_1L vpaddd %6, %6, %8 ; %6=tmp0_1H+z3_4H=tmp0_1H vpmaddwd %3, %3, [rel PW_MF089_F060_MF256_F050] ; %3=tmp3_2L vpmaddwd %4, %4, [rel PW_MF089_F060_MF256_F050] ; %4=tmp3_2H vperm2i128 %7, %7, %7, 0x01 ; %7=z4_3L vperm2i128 %8, %8, %8, 0x01 ; %8=z4_3H vpaddd %7, %3, %7 ; %7=tmp3_2L+z4_3L=tmp3_2L vpaddd %8, %4, %8 ; %8=tmp3_2H+z4_3H=tmp3_2H ; -- Final output stage vpaddd %1, %9, %7 ; %1=tmp10_11L+tmp3_2L=data0_1L vpaddd %2, %10, %8 ; %2=tmp10_11H+tmp3_2H=data0_1H vpaddd %1, %1, [rel PD_DESCALE_P %+ %13] vpaddd %2, %2, [rel PD_DESCALE_P %+ %13] vpsrad %1, %1, DESCALE_P %+ %13 vpsrad %2, %2, DESCALE_P %+ %13 vpackssdw %1, %1, %2 ; %1=data0_1 vpsubd %3, %9, %7 ; %3=tmp10_11L-tmp3_2L=data7_6L vpsubd %4, %10, %8 ; %4=tmp10_11H-tmp3_2H=data7_6H vpaddd %3, %3, [rel PD_DESCALE_P %+ %13] vpaddd %4, %4, [rel PD_DESCALE_P %+ %13] vpsrad %3, %3, DESCALE_P %+ %13 vpsrad %4, %4, DESCALE_P %+ %13 vpackssdw %4, %3, %4 ; %4=data7_6 vpaddd %7, %11, %5 ; %7=tmp13_12L+tmp0_1L=data3_2L vpaddd %8, %12, %6 ; %8=tmp13_12H+tmp0_1H=data3_2H vpaddd %7, %7, [rel PD_DESCALE_P %+ %13] vpaddd %8, %8, [rel PD_DESCALE_P %+ %13] vpsrad %7, %7, DESCALE_P %+ %13 vpsrad %8, %8, DESCALE_P %+ %13 vpackssdw %2, %7, %8 ; %2=data3_2 vpsubd %7, %11, %5 ; %7=tmp13_12L-tmp0_1L=data4_5L vpsubd %8, %12, %6 ; %8=tmp13_12H-tmp0_1H=data4_5H vpaddd %7, %7, [rel PD_DESCALE_P %+ %13] vpaddd %8, %8, [rel PD_DESCALE_P %+ %13] vpsrad %7, %7, DESCALE_P %+ %13 vpsrad %8, %8, DESCALE_P %+ %13 vpackssdw %3, %7, %8 ; %3=data4_5 %endmacro ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 32 GLOBAL_DATA(jconst_idct_islow_avx2) EXTN(jconst_idct_islow_avx2): PW_F130_F054_MF130_F054 times 4 dw (F_0_541 + F_0_765), F_0_541 times 4 dw (F_0_541 - F_1_847), F_0_541 PW_MF078_F117_F078_F117 times 4 dw (F_1_175 - F_1_961), F_1_175 times 4 dw (F_1_175 - F_0_390), F_1_175 PW_MF060_MF089_MF050_MF256 times 4 dw (F_0_298 - F_0_899), -F_0_899 times 4 dw (F_2_053 - F_2_562), -F_2_562 PW_MF089_F060_MF256_F050 times 4 dw -F_0_899, (F_1_501 - F_0_899) times 4 dw -F_2_562, (F_3_072 - F_2_562) PD_DESCALE_P1 times 8 dd 1 << (DESCALE_P1 - 1) PD_DESCALE_P2 times 8 dd 1 << (DESCALE_P2 - 1) PB_CENTERJSAMP times 32 db CENTERJSAMPLE PW_1_NEG1 times 8 dw 1 times 8 dw -1 alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 64 ; ; Perform dequantization and inverse DCT on one block of coefficients. ; ; GLOBAL(void) ; jsimd_idct_islow_avx2(void *dct_table, JCOEFPTR coef_block, ; JSAMPARRAY output_buf, JDIMENSION output_col) ; ; r10 = jpeg_component_info *compptr ; r11 = JCOEFPTR coef_block ; r12 = JSAMPARRAY output_buf ; r13d = JDIMENSION output_col align 32 GLOBAL_FUNCTION(jsimd_idct_islow_avx2) EXTN(jsimd_idct_islow_avx2): push rbp mov rax, rsp ; rax = original rbp mov rbp, rsp ; rbp = aligned rbp push_xmm 4 collect_args 4 ; ---- Pass 1: process columns. %ifndef NO_ZERO_COLUMN_TEST_ISLOW_AVX2 mov eax, dword [DWBLOCK(1,0,r11,SIZEOF_JCOEF)] or eax, dword [DWBLOCK(2,0,r11,SIZEOF_JCOEF)] jnz near .columnDCT movdqa xmm0, XMMWORD [XMMBLOCK(1,0,r11,SIZEOF_JCOEF)] movdqa xmm1, XMMWORD [XMMBLOCK(2,0,r11,SIZEOF_JCOEF)] vpor xmm0, xmm0, XMMWORD [XMMBLOCK(3,0,r11,SIZEOF_JCOEF)] vpor xmm1, xmm1, XMMWORD [XMMBLOCK(4,0,r11,SIZEOF_JCOEF)] vpor xmm0, xmm0, XMMWORD [XMMBLOCK(5,0,r11,SIZEOF_JCOEF)] vpor xmm1, xmm1, XMMWORD [XMMBLOCK(6,0,r11,SIZEOF_JCOEF)] vpor xmm0, xmm0, XMMWORD [XMMBLOCK(7,0,r11,SIZEOF_JCOEF)] vpor xmm1, xmm1, xmm0 vpacksswb xmm1, xmm1, xmm1 vpacksswb xmm1, xmm1, xmm1 movd eax, xmm1 test rax, rax jnz short .columnDCT ; -- AC terms all zero movdqa xmm5, XMMWORD [XMMBLOCK(0,0,r11,SIZEOF_JCOEF)] vpmullw xmm5, xmm5, XMMWORD [XMMBLOCK(0,0,r10,SIZEOF_ISLOW_MULT_TYPE)] vpsllw xmm5, xmm5, PASS1_BITS vpunpcklwd xmm4, xmm5, xmm5 ; xmm4=(00 00 01 01 02 02 03 03) vpunpckhwd xmm5, xmm5, xmm5 ; xmm5=(04 04 05 05 06 06 07 07) vinserti128 ymm4, ymm4, xmm5, 1 vpshufd ymm0, ymm4, 0x00 ; ymm0=col0_4=(00 00 00 00 00 00 00 00 04 04 04 04 04 04 04 04) vpshufd ymm1, ymm4, 0x55 ; ymm1=col1_5=(01 01 01 01 01 01 01 01 05 05 05 05 05 05 05 05) vpshufd ymm2, ymm4, 0xAA ; ymm2=col2_6=(02 02 02 02 02 02 02 02 06 06 06 06 06 06 06 06) vpshufd ymm3, ymm4, 0xFF ; ymm3=col3_7=(03 03 03 03 03 03 03 03 07 07 07 07 07 07 07 07) jmp near .column_end %endif .columnDCT: vmovdqu ymm4, YMMWORD [YMMBLOCK(0,0,r11,SIZEOF_JCOEF)] ; ymm4=in0_1 vmovdqu ymm5, YMMWORD [YMMBLOCK(2,0,r11,SIZEOF_JCOEF)] ; ymm5=in2_3 vmovdqu ymm6, YMMWORD [YMMBLOCK(4,0,r11,SIZEOF_JCOEF)] ; ymm6=in4_5 vmovdqu ymm7, YMMWORD [YMMBLOCK(6,0,r11,SIZEOF_JCOEF)] ; ymm7=in6_7 vpmullw ymm4, ymm4, YMMWORD [YMMBLOCK(0,0,r10,SIZEOF_ISLOW_MULT_TYPE)] vpmullw ymm5, ymm5, YMMWORD [YMMBLOCK(2,0,r10,SIZEOF_ISLOW_MULT_TYPE)] vpmullw ymm6, ymm6, YMMWORD [YMMBLOCK(4,0,r10,SIZEOF_ISLOW_MULT_TYPE)] vpmullw ymm7, ymm7, YMMWORD [YMMBLOCK(6,0,r10,SIZEOF_ISLOW_MULT_TYPE)] vperm2i128 ymm0, ymm4, ymm6, 0x20 ; ymm0=in0_4 vperm2i128 ymm1, ymm5, ymm4, 0x31 ; ymm1=in3_1 vperm2i128 ymm2, ymm5, ymm7, 0x20 ; ymm2=in2_6 vperm2i128 ymm3, ymm7, ymm6, 0x31 ; ymm3=in7_5 dodct ymm0, ymm1, ymm2, ymm3, ymm4, ymm5, ymm6, ymm7, ymm8, ymm9, ymm10, ymm11, 1 ; ymm0=data0_1, ymm1=data3_2, ymm2=data4_5, ymm3=data7_6 dotranspose ymm0, ymm1, ymm2, ymm3, ymm4, ymm5, ymm6, ymm7 ; ymm0=data0_4, ymm1=data1_5, ymm2=data2_6, ymm3=data3_7 .column_end: ; -- Prefetch the next coefficient block prefetchnta [r11 + DCTSIZE2*SIZEOF_JCOEF + 0*32] prefetchnta [r11 + DCTSIZE2*SIZEOF_JCOEF + 1*32] prefetchnta [r11 + DCTSIZE2*SIZEOF_JCOEF + 2*32] prefetchnta [r11 + DCTSIZE2*SIZEOF_JCOEF + 3*32] ; ---- Pass 2: process rows. vperm2i128 ymm4, ymm3, ymm1, 0x31 ; ymm3=in7_5 vperm2i128 ymm1, ymm3, ymm1, 0x20 ; ymm1=in3_1 dodct ymm0, ymm1, ymm2, ymm4, ymm3, ymm5, ymm6, ymm7, ymm8, ymm9, ymm10, ymm11, 2 ; ymm0=data0_1, ymm1=data3_2, ymm2=data4_5, ymm4=data7_6 dotranspose ymm0, ymm1, ymm2, ymm4, ymm3, ymm5, ymm6, ymm7 ; ymm0=data0_4, ymm1=data1_5, ymm2=data2_6, ymm4=data3_7 vpacksswb ymm0, ymm0, ymm1 ; ymm0=data01_45 vpacksswb ymm1, ymm2, ymm4 ; ymm1=data23_67 vpaddb ymm0, ymm0, [rel PB_CENTERJSAMP] vpaddb ymm1, ymm1, [rel PB_CENTERJSAMP] vextracti128 xmm6, ymm1, 1 ; xmm3=data67 vextracti128 xmm4, ymm0, 1 ; xmm2=data45 vextracti128 xmm2, ymm1, 0 ; xmm1=data23 vextracti128 xmm0, ymm0, 0 ; xmm0=data01 vpshufd xmm1, xmm0, 0x4E ; xmm1=(10 11 12 13 14 15 16 17 00 01 02 03 04 05 06 07) vpshufd xmm3, xmm2, 0x4E ; xmm3=(30 31 32 33 34 35 36 37 20 21 22 23 24 25 26 27) vpshufd xmm5, xmm4, 0x4E ; xmm5=(50 51 52 53 54 55 56 57 40 41 42 43 44 45 46 47) vpshufd xmm7, xmm6, 0x4E ; xmm7=(70 71 72 73 74 75 76 77 60 61 62 63 64 65 66 67) vzeroupper mov eax, r13d mov rdxp, JSAMPROW [r12+0*SIZEOF_JSAMPROW] ; (JSAMPLE *) mov rsip, JSAMPROW [r12+1*SIZEOF_JSAMPROW] ; (JSAMPLE *) movq XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE], xmm0 movq XMM_MMWORD [rsi+rax*SIZEOF_JSAMPLE], xmm1 mov rdxp, JSAMPROW [r12+2*SIZEOF_JSAMPROW] ; (JSAMPLE *) mov rsip, JSAMPROW [r12+3*SIZEOF_JSAMPROW] ; (JSAMPLE *) movq XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE], xmm2 movq XMM_MMWORD [rsi+rax*SIZEOF_JSAMPLE], xmm3 mov rdxp, JSAMPROW [r12+4*SIZEOF_JSAMPROW] ; (JSAMPLE *) mov rsip, JSAMPROW [r12+5*SIZEOF_JSAMPROW] ; (JSAMPLE *) movq XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE], xmm4 movq XMM_MMWORD [rsi+rax*SIZEOF_JSAMPLE], xmm5 mov rdxp, JSAMPROW [r12+6*SIZEOF_JSAMPROW] ; (JSAMPLE *) mov rsip, JSAMPROW [r12+7*SIZEOF_JSAMPROW] ; (JSAMPLE *) movq XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE], xmm6 movq XMM_MMWORD [rsi+rax*SIZEOF_JSAMPLE], xmm7 uncollect_args 4 pop_xmm 4 pop rbp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/x86_64/jidctint-sse2.asm000066400000000000000000001041351436506551100213540ustar00rootroot00000000000000; ; jidctint.asm - accurate integer IDCT (64-bit SSE2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2009, 2016, 2020, D. R. Commander. ; Copyright (C) 2018, Matthias Räncker. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains a slower but more accurate integer implementation of the ; inverse DCT (Discrete Cosine Transform). The following code is based ; directly on the IJG's original jidctint.c; see the jidctint.c for ; more details. %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- %define CONST_BITS 13 %define PASS1_BITS 2 %define DESCALE_P1 (CONST_BITS - PASS1_BITS) %define DESCALE_P2 (CONST_BITS + PASS1_BITS + 3) %if CONST_BITS == 13 F_0_298 equ 2446 ; FIX(0.298631336) F_0_390 equ 3196 ; FIX(0.390180644) F_0_541 equ 4433 ; FIX(0.541196100) F_0_765 equ 6270 ; FIX(0.765366865) F_0_899 equ 7373 ; FIX(0.899976223) F_1_175 equ 9633 ; FIX(1.175875602) F_1_501 equ 12299 ; FIX(1.501321110) F_1_847 equ 15137 ; FIX(1.847759065) F_1_961 equ 16069 ; FIX(1.961570560) F_2_053 equ 16819 ; FIX(2.053119869) F_2_562 equ 20995 ; FIX(2.562915447) F_3_072 equ 25172 ; FIX(3.072711026) %else ; NASM cannot do compile-time arithmetic on floating-point constants. %define DESCALE(x, n) (((x) + (1 << ((n) - 1))) >> (n)) F_0_298 equ DESCALE( 320652955, 30 - CONST_BITS) ; FIX(0.298631336) F_0_390 equ DESCALE( 418953276, 30 - CONST_BITS) ; FIX(0.390180644) F_0_541 equ DESCALE( 581104887, 30 - CONST_BITS) ; FIX(0.541196100) F_0_765 equ DESCALE( 821806413, 30 - CONST_BITS) ; FIX(0.765366865) F_0_899 equ DESCALE( 966342111, 30 - CONST_BITS) ; FIX(0.899976223) F_1_175 equ DESCALE(1262586813, 30 - CONST_BITS) ; FIX(1.175875602) F_1_501 equ DESCALE(1612031267, 30 - CONST_BITS) ; FIX(1.501321110) F_1_847 equ DESCALE(1984016188, 30 - CONST_BITS) ; FIX(1.847759065) F_1_961 equ DESCALE(2106220350, 30 - CONST_BITS) ; FIX(1.961570560) F_2_053 equ DESCALE(2204520673, 30 - CONST_BITS) ; FIX(2.053119869) F_2_562 equ DESCALE(2751909506, 30 - CONST_BITS) ; FIX(2.562915447) F_3_072 equ DESCALE(3299298341, 30 - CONST_BITS) ; FIX(3.072711026) %endif ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 32 GLOBAL_DATA(jconst_idct_islow_sse2) EXTN(jconst_idct_islow_sse2): PW_F130_F054 times 4 dw (F_0_541 + F_0_765), F_0_541 PW_F054_MF130 times 4 dw F_0_541, (F_0_541 - F_1_847) PW_MF078_F117 times 4 dw (F_1_175 - F_1_961), F_1_175 PW_F117_F078 times 4 dw F_1_175, (F_1_175 - F_0_390) PW_MF060_MF089 times 4 dw (F_0_298 - F_0_899), -F_0_899 PW_MF089_F060 times 4 dw -F_0_899, (F_1_501 - F_0_899) PW_MF050_MF256 times 4 dw (F_2_053 - F_2_562), -F_2_562 PW_MF256_F050 times 4 dw -F_2_562, (F_3_072 - F_2_562) PD_DESCALE_P1 times 4 dd 1 << (DESCALE_P1 - 1) PD_DESCALE_P2 times 4 dd 1 << (DESCALE_P2 - 1) PB_CENTERJSAMP times 16 db CENTERJSAMPLE alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 64 ; ; Perform dequantization and inverse DCT on one block of coefficients. ; ; GLOBAL(void) ; jsimd_idct_islow_sse2(void *dct_table, JCOEFPTR coef_block, ; JSAMPARRAY output_buf, JDIMENSION output_col) ; ; r10 = jpeg_component_info *compptr ; r11 = JCOEFPTR coef_block ; r12 = JSAMPARRAY output_buf ; r13d = JDIMENSION output_col %define original_rbp rbp + 0 %define wk(i) rbp - (WK_NUM - (i)) * SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 12 align 32 GLOBAL_FUNCTION(jsimd_idct_islow_sse2) EXTN(jsimd_idct_islow_sse2): push rbp mov rax, rsp ; rax = original rbp sub rsp, byte 4 and rsp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [rsp], rax mov rbp, rsp ; rbp = aligned rbp lea rsp, [wk(0)] collect_args 4 ; ---- Pass 1: process columns from input. mov rdx, r10 ; quantptr mov rsi, r11 ; inptr %ifndef NO_ZERO_COLUMN_TEST_ISLOW_SSE2 mov eax, dword [DWBLOCK(1,0,rsi,SIZEOF_JCOEF)] or eax, dword [DWBLOCK(2,0,rsi,SIZEOF_JCOEF)] jnz near .columnDCT movdqa xmm0, XMMWORD [XMMBLOCK(1,0,rsi,SIZEOF_JCOEF)] movdqa xmm1, XMMWORD [XMMBLOCK(2,0,rsi,SIZEOF_JCOEF)] por xmm0, XMMWORD [XMMBLOCK(3,0,rsi,SIZEOF_JCOEF)] por xmm1, XMMWORD [XMMBLOCK(4,0,rsi,SIZEOF_JCOEF)] por xmm0, XMMWORD [XMMBLOCK(5,0,rsi,SIZEOF_JCOEF)] por xmm1, XMMWORD [XMMBLOCK(6,0,rsi,SIZEOF_JCOEF)] por xmm0, XMMWORD [XMMBLOCK(7,0,rsi,SIZEOF_JCOEF)] por xmm1, xmm0 packsswb xmm1, xmm1 packsswb xmm1, xmm1 movd eax, xmm1 test rax, rax jnz short .columnDCT ; -- AC terms all zero movdqa xmm5, XMMWORD [XMMBLOCK(0,0,rsi,SIZEOF_JCOEF)] pmullw xmm5, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_ISLOW_MULT_TYPE)] psllw xmm5, PASS1_BITS movdqa xmm4, xmm5 ; xmm5=in0=(00 01 02 03 04 05 06 07) punpcklwd xmm5, xmm5 ; xmm5=(00 00 01 01 02 02 03 03) punpckhwd xmm4, xmm4 ; xmm4=(04 04 05 05 06 06 07 07) pshufd xmm7, xmm5, 0x00 ; xmm7=col0=(00 00 00 00 00 00 00 00) pshufd xmm6, xmm5, 0x55 ; xmm6=col1=(01 01 01 01 01 01 01 01) pshufd xmm1, xmm5, 0xAA ; xmm1=col2=(02 02 02 02 02 02 02 02) pshufd xmm5, xmm5, 0xFF ; xmm5=col3=(03 03 03 03 03 03 03 03) pshufd xmm0, xmm4, 0x00 ; xmm0=col4=(04 04 04 04 04 04 04 04) pshufd xmm3, xmm4, 0x55 ; xmm3=col5=(05 05 05 05 05 05 05 05) pshufd xmm2, xmm4, 0xAA ; xmm2=col6=(06 06 06 06 06 06 06 06) pshufd xmm4, xmm4, 0xFF ; xmm4=col7=(07 07 07 07 07 07 07 07) movdqa XMMWORD [wk(8)], xmm6 ; wk(8)=col1 movdqa XMMWORD [wk(9)], xmm5 ; wk(9)=col3 movdqa XMMWORD [wk(10)], xmm3 ; wk(10)=col5 movdqa XMMWORD [wk(11)], xmm4 ; wk(11)=col7 jmp near .column_end %endif .columnDCT: ; -- Even part movdqa xmm0, XMMWORD [XMMBLOCK(0,0,rsi,SIZEOF_JCOEF)] movdqa xmm1, XMMWORD [XMMBLOCK(2,0,rsi,SIZEOF_JCOEF)] pmullw xmm0, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_ISLOW_MULT_TYPE)] pmullw xmm1, XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_ISLOW_MULT_TYPE)] movdqa xmm2, XMMWORD [XMMBLOCK(4,0,rsi,SIZEOF_JCOEF)] movdqa xmm3, XMMWORD [XMMBLOCK(6,0,rsi,SIZEOF_JCOEF)] pmullw xmm2, XMMWORD [XMMBLOCK(4,0,rdx,SIZEOF_ISLOW_MULT_TYPE)] pmullw xmm3, XMMWORD [XMMBLOCK(6,0,rdx,SIZEOF_ISLOW_MULT_TYPE)] ; (Original) ; z1 = (z2 + z3) * 0.541196100; ; tmp2 = z1 + z3 * -1.847759065; ; tmp3 = z1 + z2 * 0.765366865; ; ; (This implementation) ; tmp2 = z2 * 0.541196100 + z3 * (0.541196100 - 1.847759065); ; tmp3 = z2 * (0.541196100 + 0.765366865) + z3 * 0.541196100; movdqa xmm4, xmm1 ; xmm1=in2=z2 movdqa xmm5, xmm1 punpcklwd xmm4, xmm3 ; xmm3=in6=z3 punpckhwd xmm5, xmm3 movdqa xmm1, xmm4 movdqa xmm3, xmm5 pmaddwd xmm4, [rel PW_F130_F054] ; xmm4=tmp3L pmaddwd xmm5, [rel PW_F130_F054] ; xmm5=tmp3H pmaddwd xmm1, [rel PW_F054_MF130] ; xmm1=tmp2L pmaddwd xmm3, [rel PW_F054_MF130] ; xmm3=tmp2H movdqa xmm6, xmm0 paddw xmm0, xmm2 ; xmm0=in0+in4 psubw xmm6, xmm2 ; xmm6=in0-in4 pxor xmm7, xmm7 pxor xmm2, xmm2 punpcklwd xmm7, xmm0 ; xmm7=tmp0L punpckhwd xmm2, xmm0 ; xmm2=tmp0H psrad xmm7, (16-CONST_BITS) ; psrad xmm7,16 & pslld xmm7,CONST_BITS psrad xmm2, (16-CONST_BITS) ; psrad xmm2,16 & pslld xmm2,CONST_BITS movdqa xmm0, xmm7 paddd xmm7, xmm4 ; xmm7=tmp10L psubd xmm0, xmm4 ; xmm0=tmp13L movdqa xmm4, xmm2 paddd xmm2, xmm5 ; xmm2=tmp10H psubd xmm4, xmm5 ; xmm4=tmp13H movdqa XMMWORD [wk(0)], xmm7 ; wk(0)=tmp10L movdqa XMMWORD [wk(1)], xmm2 ; wk(1)=tmp10H movdqa XMMWORD [wk(2)], xmm0 ; wk(2)=tmp13L movdqa XMMWORD [wk(3)], xmm4 ; wk(3)=tmp13H pxor xmm5, xmm5 pxor xmm7, xmm7 punpcklwd xmm5, xmm6 ; xmm5=tmp1L punpckhwd xmm7, xmm6 ; xmm7=tmp1H psrad xmm5, (16-CONST_BITS) ; psrad xmm5,16 & pslld xmm5,CONST_BITS psrad xmm7, (16-CONST_BITS) ; psrad xmm7,16 & pslld xmm7,CONST_BITS movdqa xmm2, xmm5 paddd xmm5, xmm1 ; xmm5=tmp11L psubd xmm2, xmm1 ; xmm2=tmp12L movdqa xmm0, xmm7 paddd xmm7, xmm3 ; xmm7=tmp11H psubd xmm0, xmm3 ; xmm0=tmp12H movdqa XMMWORD [wk(4)], xmm5 ; wk(4)=tmp11L movdqa XMMWORD [wk(5)], xmm7 ; wk(5)=tmp11H movdqa XMMWORD [wk(6)], xmm2 ; wk(6)=tmp12L movdqa XMMWORD [wk(7)], xmm0 ; wk(7)=tmp12H ; -- Odd part movdqa xmm4, XMMWORD [XMMBLOCK(1,0,rsi,SIZEOF_JCOEF)] movdqa xmm6, XMMWORD [XMMBLOCK(3,0,rsi,SIZEOF_JCOEF)] pmullw xmm4, XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_ISLOW_MULT_TYPE)] pmullw xmm6, XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_ISLOW_MULT_TYPE)] movdqa xmm1, XMMWORD [XMMBLOCK(5,0,rsi,SIZEOF_JCOEF)] movdqa xmm3, XMMWORD [XMMBLOCK(7,0,rsi,SIZEOF_JCOEF)] pmullw xmm1, XMMWORD [XMMBLOCK(5,0,rdx,SIZEOF_ISLOW_MULT_TYPE)] pmullw xmm3, XMMWORD [XMMBLOCK(7,0,rdx,SIZEOF_ISLOW_MULT_TYPE)] movdqa xmm5, xmm6 movdqa xmm7, xmm4 paddw xmm5, xmm3 ; xmm5=z3 paddw xmm7, xmm1 ; xmm7=z4 ; (Original) ; z5 = (z3 + z4) * 1.175875602; ; z3 = z3 * -1.961570560; z4 = z4 * -0.390180644; ; z3 += z5; z4 += z5; ; ; (This implementation) ; z3 = z3 * (1.175875602 - 1.961570560) + z4 * 1.175875602; ; z4 = z3 * 1.175875602 + z4 * (1.175875602 - 0.390180644); movdqa xmm2, xmm5 movdqa xmm0, xmm5 punpcklwd xmm2, xmm7 punpckhwd xmm0, xmm7 movdqa xmm5, xmm2 movdqa xmm7, xmm0 pmaddwd xmm2, [rel PW_MF078_F117] ; xmm2=z3L pmaddwd xmm0, [rel PW_MF078_F117] ; xmm0=z3H pmaddwd xmm5, [rel PW_F117_F078] ; xmm5=z4L pmaddwd xmm7, [rel PW_F117_F078] ; xmm7=z4H movdqa XMMWORD [wk(10)], xmm2 ; wk(10)=z3L movdqa XMMWORD [wk(11)], xmm0 ; wk(11)=z3H ; (Original) ; z1 = tmp0 + tmp3; z2 = tmp1 + tmp2; ; tmp0 = tmp0 * 0.298631336; tmp1 = tmp1 * 2.053119869; ; tmp2 = tmp2 * 3.072711026; tmp3 = tmp3 * 1.501321110; ; z1 = z1 * -0.899976223; z2 = z2 * -2.562915447; ; tmp0 += z1 + z3; tmp1 += z2 + z4; ; tmp2 += z2 + z3; tmp3 += z1 + z4; ; ; (This implementation) ; tmp0 = tmp0 * (0.298631336 - 0.899976223) + tmp3 * -0.899976223; ; tmp1 = tmp1 * (2.053119869 - 2.562915447) + tmp2 * -2.562915447; ; tmp2 = tmp1 * -2.562915447 + tmp2 * (3.072711026 - 2.562915447); ; tmp3 = tmp0 * -0.899976223 + tmp3 * (1.501321110 - 0.899976223); ; tmp0 += z3; tmp1 += z4; ; tmp2 += z3; tmp3 += z4; movdqa xmm2, xmm3 movdqa xmm0, xmm3 punpcklwd xmm2, xmm4 punpckhwd xmm0, xmm4 movdqa xmm3, xmm2 movdqa xmm4, xmm0 pmaddwd xmm2, [rel PW_MF060_MF089] ; xmm2=tmp0L pmaddwd xmm0, [rel PW_MF060_MF089] ; xmm0=tmp0H pmaddwd xmm3, [rel PW_MF089_F060] ; xmm3=tmp3L pmaddwd xmm4, [rel PW_MF089_F060] ; xmm4=tmp3H paddd xmm2, XMMWORD [wk(10)] ; xmm2=tmp0L paddd xmm0, XMMWORD [wk(11)] ; xmm0=tmp0H paddd xmm3, xmm5 ; xmm3=tmp3L paddd xmm4, xmm7 ; xmm4=tmp3H movdqa XMMWORD [wk(8)], xmm2 ; wk(8)=tmp0L movdqa XMMWORD [wk(9)], xmm0 ; wk(9)=tmp0H movdqa xmm2, xmm1 movdqa xmm0, xmm1 punpcklwd xmm2, xmm6 punpckhwd xmm0, xmm6 movdqa xmm1, xmm2 movdqa xmm6, xmm0 pmaddwd xmm2, [rel PW_MF050_MF256] ; xmm2=tmp1L pmaddwd xmm0, [rel PW_MF050_MF256] ; xmm0=tmp1H pmaddwd xmm1, [rel PW_MF256_F050] ; xmm1=tmp2L pmaddwd xmm6, [rel PW_MF256_F050] ; xmm6=tmp2H paddd xmm2, xmm5 ; xmm2=tmp1L paddd xmm0, xmm7 ; xmm0=tmp1H paddd xmm1, XMMWORD [wk(10)] ; xmm1=tmp2L paddd xmm6, XMMWORD [wk(11)] ; xmm6=tmp2H movdqa XMMWORD [wk(10)], xmm2 ; wk(10)=tmp1L movdqa XMMWORD [wk(11)], xmm0 ; wk(11)=tmp1H ; -- Final output stage movdqa xmm5, XMMWORD [wk(0)] ; xmm5=tmp10L movdqa xmm7, XMMWORD [wk(1)] ; xmm7=tmp10H movdqa xmm2, xmm5 movdqa xmm0, xmm7 paddd xmm5, xmm3 ; xmm5=data0L paddd xmm7, xmm4 ; xmm7=data0H psubd xmm2, xmm3 ; xmm2=data7L psubd xmm0, xmm4 ; xmm0=data7H movdqa xmm3, [rel PD_DESCALE_P1] ; xmm3=[rel PD_DESCALE_P1] paddd xmm5, xmm3 paddd xmm7, xmm3 psrad xmm5, DESCALE_P1 psrad xmm7, DESCALE_P1 paddd xmm2, xmm3 paddd xmm0, xmm3 psrad xmm2, DESCALE_P1 psrad xmm0, DESCALE_P1 packssdw xmm5, xmm7 ; xmm5=data0=(00 01 02 03 04 05 06 07) packssdw xmm2, xmm0 ; xmm2=data7=(70 71 72 73 74 75 76 77) movdqa xmm4, XMMWORD [wk(4)] ; xmm4=tmp11L movdqa xmm3, XMMWORD [wk(5)] ; xmm3=tmp11H movdqa xmm7, xmm4 movdqa xmm0, xmm3 paddd xmm4, xmm1 ; xmm4=data1L paddd xmm3, xmm6 ; xmm3=data1H psubd xmm7, xmm1 ; xmm7=data6L psubd xmm0, xmm6 ; xmm0=data6H movdqa xmm1, [rel PD_DESCALE_P1] ; xmm1=[rel PD_DESCALE_P1] paddd xmm4, xmm1 paddd xmm3, xmm1 psrad xmm4, DESCALE_P1 psrad xmm3, DESCALE_P1 paddd xmm7, xmm1 paddd xmm0, xmm1 psrad xmm7, DESCALE_P1 psrad xmm0, DESCALE_P1 packssdw xmm4, xmm3 ; xmm4=data1=(10 11 12 13 14 15 16 17) packssdw xmm7, xmm0 ; xmm7=data6=(60 61 62 63 64 65 66 67) movdqa xmm6, xmm5 ; transpose coefficients(phase 1) punpcklwd xmm5, xmm4 ; xmm5=(00 10 01 11 02 12 03 13) punpckhwd xmm6, xmm4 ; xmm6=(04 14 05 15 06 16 07 17) movdqa xmm1, xmm7 ; transpose coefficients(phase 1) punpcklwd xmm7, xmm2 ; xmm7=(60 70 61 71 62 72 63 73) punpckhwd xmm1, xmm2 ; xmm1=(64 74 65 75 66 76 67 77) movdqa xmm3, XMMWORD [wk(6)] ; xmm3=tmp12L movdqa xmm0, XMMWORD [wk(7)] ; xmm0=tmp12H movdqa xmm4, XMMWORD [wk(10)] ; xmm4=tmp1L movdqa xmm2, XMMWORD [wk(11)] ; xmm2=tmp1H movdqa XMMWORD [wk(0)], xmm5 ; wk(0)=(00 10 01 11 02 12 03 13) movdqa XMMWORD [wk(1)], xmm6 ; wk(1)=(04 14 05 15 06 16 07 17) movdqa XMMWORD [wk(4)], xmm7 ; wk(4)=(60 70 61 71 62 72 63 73) movdqa XMMWORD [wk(5)], xmm1 ; wk(5)=(64 74 65 75 66 76 67 77) movdqa xmm5, xmm3 movdqa xmm6, xmm0 paddd xmm3, xmm4 ; xmm3=data2L paddd xmm0, xmm2 ; xmm0=data2H psubd xmm5, xmm4 ; xmm5=data5L psubd xmm6, xmm2 ; xmm6=data5H movdqa xmm7, [rel PD_DESCALE_P1] ; xmm7=[rel PD_DESCALE_P1] paddd xmm3, xmm7 paddd xmm0, xmm7 psrad xmm3, DESCALE_P1 psrad xmm0, DESCALE_P1 paddd xmm5, xmm7 paddd xmm6, xmm7 psrad xmm5, DESCALE_P1 psrad xmm6, DESCALE_P1 packssdw xmm3, xmm0 ; xmm3=data2=(20 21 22 23 24 25 26 27) packssdw xmm5, xmm6 ; xmm5=data5=(50 51 52 53 54 55 56 57) movdqa xmm1, XMMWORD [wk(2)] ; xmm1=tmp13L movdqa xmm4, XMMWORD [wk(3)] ; xmm4=tmp13H movdqa xmm2, XMMWORD [wk(8)] ; xmm2=tmp0L movdqa xmm7, XMMWORD [wk(9)] ; xmm7=tmp0H movdqa xmm0, xmm1 movdqa xmm6, xmm4 paddd xmm1, xmm2 ; xmm1=data3L paddd xmm4, xmm7 ; xmm4=data3H psubd xmm0, xmm2 ; xmm0=data4L psubd xmm6, xmm7 ; xmm6=data4H movdqa xmm2, [rel PD_DESCALE_P1] ; xmm2=[rel PD_DESCALE_P1] paddd xmm1, xmm2 paddd xmm4, xmm2 psrad xmm1, DESCALE_P1 psrad xmm4, DESCALE_P1 paddd xmm0, xmm2 paddd xmm6, xmm2 psrad xmm0, DESCALE_P1 psrad xmm6, DESCALE_P1 packssdw xmm1, xmm4 ; xmm1=data3=(30 31 32 33 34 35 36 37) packssdw xmm0, xmm6 ; xmm0=data4=(40 41 42 43 44 45 46 47) movdqa xmm7, XMMWORD [wk(0)] ; xmm7=(00 10 01 11 02 12 03 13) movdqa xmm2, XMMWORD [wk(1)] ; xmm2=(04 14 05 15 06 16 07 17) movdqa xmm4, xmm3 ; transpose coefficients(phase 1) punpcklwd xmm3, xmm1 ; xmm3=(20 30 21 31 22 32 23 33) punpckhwd xmm4, xmm1 ; xmm4=(24 34 25 35 26 36 27 37) movdqa xmm6, xmm0 ; transpose coefficients(phase 1) punpcklwd xmm0, xmm5 ; xmm0=(40 50 41 51 42 52 43 53) punpckhwd xmm6, xmm5 ; xmm6=(44 54 45 55 46 56 47 57) movdqa xmm1, xmm7 ; transpose coefficients(phase 2) punpckldq xmm7, xmm3 ; xmm7=(00 10 20 30 01 11 21 31) punpckhdq xmm1, xmm3 ; xmm1=(02 12 22 32 03 13 23 33) movdqa xmm5, xmm2 ; transpose coefficients(phase 2) punpckldq xmm2, xmm4 ; xmm2=(04 14 24 34 05 15 25 35) punpckhdq xmm5, xmm4 ; xmm5=(06 16 26 36 07 17 27 37) movdqa xmm3, XMMWORD [wk(4)] ; xmm3=(60 70 61 71 62 72 63 73) movdqa xmm4, XMMWORD [wk(5)] ; xmm4=(64 74 65 75 66 76 67 77) movdqa XMMWORD [wk(6)], xmm2 ; wk(6)=(04 14 24 34 05 15 25 35) movdqa XMMWORD [wk(7)], xmm5 ; wk(7)=(06 16 26 36 07 17 27 37) movdqa xmm2, xmm0 ; transpose coefficients(phase 2) punpckldq xmm0, xmm3 ; xmm0=(40 50 60 70 41 51 61 71) punpckhdq xmm2, xmm3 ; xmm2=(42 52 62 72 43 53 63 73) movdqa xmm5, xmm6 ; transpose coefficients(phase 2) punpckldq xmm6, xmm4 ; xmm6=(44 54 64 74 45 55 65 75) punpckhdq xmm5, xmm4 ; xmm5=(46 56 66 76 47 57 67 77) movdqa xmm3, xmm7 ; transpose coefficients(phase 3) punpcklqdq xmm7, xmm0 ; xmm7=col0=(00 10 20 30 40 50 60 70) punpckhqdq xmm3, xmm0 ; xmm3=col1=(01 11 21 31 41 51 61 71) movdqa xmm4, xmm1 ; transpose coefficients(phase 3) punpcklqdq xmm1, xmm2 ; xmm1=col2=(02 12 22 32 42 52 62 72) punpckhqdq xmm4, xmm2 ; xmm4=col3=(03 13 23 33 43 53 63 73) movdqa xmm0, XMMWORD [wk(6)] ; xmm0=(04 14 24 34 05 15 25 35) movdqa xmm2, XMMWORD [wk(7)] ; xmm2=(06 16 26 36 07 17 27 37) movdqa XMMWORD [wk(8)], xmm3 ; wk(8)=col1 movdqa XMMWORD [wk(9)], xmm4 ; wk(9)=col3 movdqa xmm3, xmm0 ; transpose coefficients(phase 3) punpcklqdq xmm0, xmm6 ; xmm0=col4=(04 14 24 34 44 54 64 74) punpckhqdq xmm3, xmm6 ; xmm3=col5=(05 15 25 35 45 55 65 75) movdqa xmm4, xmm2 ; transpose coefficients(phase 3) punpcklqdq xmm2, xmm5 ; xmm2=col6=(06 16 26 36 46 56 66 76) punpckhqdq xmm4, xmm5 ; xmm4=col7=(07 17 27 37 47 57 67 77) movdqa XMMWORD [wk(10)], xmm3 ; wk(10)=col5 movdqa XMMWORD [wk(11)], xmm4 ; wk(11)=col7 .column_end: ; -- Prefetch the next coefficient block prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 0*32] prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 1*32] prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 2*32] prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 3*32] ; ---- Pass 2: process rows from work array, store into output array. mov rax, [original_rbp] mov rdi, r12 ; (JSAMPROW *) mov eax, r13d ; -- Even part ; xmm7=col0, xmm1=col2, xmm0=col4, xmm2=col6 ; (Original) ; z1 = (z2 + z3) * 0.541196100; ; tmp2 = z1 + z3 * -1.847759065; ; tmp3 = z1 + z2 * 0.765366865; ; ; (This implementation) ; tmp2 = z2 * 0.541196100 + z3 * (0.541196100 - 1.847759065); ; tmp3 = z2 * (0.541196100 + 0.765366865) + z3 * 0.541196100; movdqa xmm6, xmm1 ; xmm1=in2=z2 movdqa xmm5, xmm1 punpcklwd xmm6, xmm2 ; xmm2=in6=z3 punpckhwd xmm5, xmm2 movdqa xmm1, xmm6 movdqa xmm2, xmm5 pmaddwd xmm6, [rel PW_F130_F054] ; xmm6=tmp3L pmaddwd xmm5, [rel PW_F130_F054] ; xmm5=tmp3H pmaddwd xmm1, [rel PW_F054_MF130] ; xmm1=tmp2L pmaddwd xmm2, [rel PW_F054_MF130] ; xmm2=tmp2H movdqa xmm3, xmm7 paddw xmm7, xmm0 ; xmm7=in0+in4 psubw xmm3, xmm0 ; xmm3=in0-in4 pxor xmm4, xmm4 pxor xmm0, xmm0 punpcklwd xmm4, xmm7 ; xmm4=tmp0L punpckhwd xmm0, xmm7 ; xmm0=tmp0H psrad xmm4, (16-CONST_BITS) ; psrad xmm4,16 & pslld xmm4,CONST_BITS psrad xmm0, (16-CONST_BITS) ; psrad xmm0,16 & pslld xmm0,CONST_BITS movdqa xmm7, xmm4 paddd xmm4, xmm6 ; xmm4=tmp10L psubd xmm7, xmm6 ; xmm7=tmp13L movdqa xmm6, xmm0 paddd xmm0, xmm5 ; xmm0=tmp10H psubd xmm6, xmm5 ; xmm6=tmp13H movdqa XMMWORD [wk(0)], xmm4 ; wk(0)=tmp10L movdqa XMMWORD [wk(1)], xmm0 ; wk(1)=tmp10H movdqa XMMWORD [wk(2)], xmm7 ; wk(2)=tmp13L movdqa XMMWORD [wk(3)], xmm6 ; wk(3)=tmp13H pxor xmm5, xmm5 pxor xmm4, xmm4 punpcklwd xmm5, xmm3 ; xmm5=tmp1L punpckhwd xmm4, xmm3 ; xmm4=tmp1H psrad xmm5, (16-CONST_BITS) ; psrad xmm5,16 & pslld xmm5,CONST_BITS psrad xmm4, (16-CONST_BITS) ; psrad xmm4,16 & pslld xmm4,CONST_BITS movdqa xmm0, xmm5 paddd xmm5, xmm1 ; xmm5=tmp11L psubd xmm0, xmm1 ; xmm0=tmp12L movdqa xmm7, xmm4 paddd xmm4, xmm2 ; xmm4=tmp11H psubd xmm7, xmm2 ; xmm7=tmp12H movdqa XMMWORD [wk(4)], xmm5 ; wk(4)=tmp11L movdqa XMMWORD [wk(5)], xmm4 ; wk(5)=tmp11H movdqa XMMWORD [wk(6)], xmm0 ; wk(6)=tmp12L movdqa XMMWORD [wk(7)], xmm7 ; wk(7)=tmp12H ; -- Odd part movdqa xmm6, XMMWORD [wk(9)] ; xmm6=col3 movdqa xmm3, XMMWORD [wk(8)] ; xmm3=col1 movdqa xmm1, XMMWORD [wk(11)] ; xmm1=col7 movdqa xmm2, XMMWORD [wk(10)] ; xmm2=col5 movdqa xmm5, xmm6 movdqa xmm4, xmm3 paddw xmm5, xmm1 ; xmm5=z3 paddw xmm4, xmm2 ; xmm4=z4 ; (Original) ; z5 = (z3 + z4) * 1.175875602; ; z3 = z3 * -1.961570560; z4 = z4 * -0.390180644; ; z3 += z5; z4 += z5; ; ; (This implementation) ; z3 = z3 * (1.175875602 - 1.961570560) + z4 * 1.175875602; ; z4 = z3 * 1.175875602 + z4 * (1.175875602 - 0.390180644); movdqa xmm0, xmm5 movdqa xmm7, xmm5 punpcklwd xmm0, xmm4 punpckhwd xmm7, xmm4 movdqa xmm5, xmm0 movdqa xmm4, xmm7 pmaddwd xmm0, [rel PW_MF078_F117] ; xmm0=z3L pmaddwd xmm7, [rel PW_MF078_F117] ; xmm7=z3H pmaddwd xmm5, [rel PW_F117_F078] ; xmm5=z4L pmaddwd xmm4, [rel PW_F117_F078] ; xmm4=z4H movdqa XMMWORD [wk(10)], xmm0 ; wk(10)=z3L movdqa XMMWORD [wk(11)], xmm7 ; wk(11)=z3H ; (Original) ; z1 = tmp0 + tmp3; z2 = tmp1 + tmp2; ; tmp0 = tmp0 * 0.298631336; tmp1 = tmp1 * 2.053119869; ; tmp2 = tmp2 * 3.072711026; tmp3 = tmp3 * 1.501321110; ; z1 = z1 * -0.899976223; z2 = z2 * -2.562915447; ; tmp0 += z1 + z3; tmp1 += z2 + z4; ; tmp2 += z2 + z3; tmp3 += z1 + z4; ; ; (This implementation) ; tmp0 = tmp0 * (0.298631336 - 0.899976223) + tmp3 * -0.899976223; ; tmp1 = tmp1 * (2.053119869 - 2.562915447) + tmp2 * -2.562915447; ; tmp2 = tmp1 * -2.562915447 + tmp2 * (3.072711026 - 2.562915447); ; tmp3 = tmp0 * -0.899976223 + tmp3 * (1.501321110 - 0.899976223); ; tmp0 += z3; tmp1 += z4; ; tmp2 += z3; tmp3 += z4; movdqa xmm0, xmm1 movdqa xmm7, xmm1 punpcklwd xmm0, xmm3 punpckhwd xmm7, xmm3 movdqa xmm1, xmm0 movdqa xmm3, xmm7 pmaddwd xmm0, [rel PW_MF060_MF089] ; xmm0=tmp0L pmaddwd xmm7, [rel PW_MF060_MF089] ; xmm7=tmp0H pmaddwd xmm1, [rel PW_MF089_F060] ; xmm1=tmp3L pmaddwd xmm3, [rel PW_MF089_F060] ; xmm3=tmp3H paddd xmm0, XMMWORD [wk(10)] ; xmm0=tmp0L paddd xmm7, XMMWORD [wk(11)] ; xmm7=tmp0H paddd xmm1, xmm5 ; xmm1=tmp3L paddd xmm3, xmm4 ; xmm3=tmp3H movdqa XMMWORD [wk(8)], xmm0 ; wk(8)=tmp0L movdqa XMMWORD [wk(9)], xmm7 ; wk(9)=tmp0H movdqa xmm0, xmm2 movdqa xmm7, xmm2 punpcklwd xmm0, xmm6 punpckhwd xmm7, xmm6 movdqa xmm2, xmm0 movdqa xmm6, xmm7 pmaddwd xmm0, [rel PW_MF050_MF256] ; xmm0=tmp1L pmaddwd xmm7, [rel PW_MF050_MF256] ; xmm7=tmp1H pmaddwd xmm2, [rel PW_MF256_F050] ; xmm2=tmp2L pmaddwd xmm6, [rel PW_MF256_F050] ; xmm6=tmp2H paddd xmm0, xmm5 ; xmm0=tmp1L paddd xmm7, xmm4 ; xmm7=tmp1H paddd xmm2, XMMWORD [wk(10)] ; xmm2=tmp2L paddd xmm6, XMMWORD [wk(11)] ; xmm6=tmp2H movdqa XMMWORD [wk(10)], xmm0 ; wk(10)=tmp1L movdqa XMMWORD [wk(11)], xmm7 ; wk(11)=tmp1H ; -- Final output stage movdqa xmm5, XMMWORD [wk(0)] ; xmm5=tmp10L movdqa xmm4, XMMWORD [wk(1)] ; xmm4=tmp10H movdqa xmm0, xmm5 movdqa xmm7, xmm4 paddd xmm5, xmm1 ; xmm5=data0L paddd xmm4, xmm3 ; xmm4=data0H psubd xmm0, xmm1 ; xmm0=data7L psubd xmm7, xmm3 ; xmm7=data7H movdqa xmm1, [rel PD_DESCALE_P2] ; xmm1=[rel PD_DESCALE_P2] paddd xmm5, xmm1 paddd xmm4, xmm1 psrad xmm5, DESCALE_P2 psrad xmm4, DESCALE_P2 paddd xmm0, xmm1 paddd xmm7, xmm1 psrad xmm0, DESCALE_P2 psrad xmm7, DESCALE_P2 packssdw xmm5, xmm4 ; xmm5=data0=(00 10 20 30 40 50 60 70) packssdw xmm0, xmm7 ; xmm0=data7=(07 17 27 37 47 57 67 77) movdqa xmm3, XMMWORD [wk(4)] ; xmm3=tmp11L movdqa xmm1, XMMWORD [wk(5)] ; xmm1=tmp11H movdqa xmm4, xmm3 movdqa xmm7, xmm1 paddd xmm3, xmm2 ; xmm3=data1L paddd xmm1, xmm6 ; xmm1=data1H psubd xmm4, xmm2 ; xmm4=data6L psubd xmm7, xmm6 ; xmm7=data6H movdqa xmm2, [rel PD_DESCALE_P2] ; xmm2=[rel PD_DESCALE_P2] paddd xmm3, xmm2 paddd xmm1, xmm2 psrad xmm3, DESCALE_P2 psrad xmm1, DESCALE_P2 paddd xmm4, xmm2 paddd xmm7, xmm2 psrad xmm4, DESCALE_P2 psrad xmm7, DESCALE_P2 packssdw xmm3, xmm1 ; xmm3=data1=(01 11 21 31 41 51 61 71) packssdw xmm4, xmm7 ; xmm4=data6=(06 16 26 36 46 56 66 76) packsswb xmm5, xmm4 ; xmm5=(00 10 20 30 40 50 60 70 06 16 26 36 46 56 66 76) packsswb xmm3, xmm0 ; xmm3=(01 11 21 31 41 51 61 71 07 17 27 37 47 57 67 77) movdqa xmm6, XMMWORD [wk(6)] ; xmm6=tmp12L movdqa xmm2, XMMWORD [wk(7)] ; xmm2=tmp12H movdqa xmm1, XMMWORD [wk(10)] ; xmm1=tmp1L movdqa xmm7, XMMWORD [wk(11)] ; xmm7=tmp1H movdqa XMMWORD [wk(0)], xmm5 ; wk(0)=(00 10 20 30 40 50 60 70 06 16 26 36 46 56 66 76) movdqa XMMWORD [wk(1)], xmm3 ; wk(1)=(01 11 21 31 41 51 61 71 07 17 27 37 47 57 67 77) movdqa xmm4, xmm6 movdqa xmm0, xmm2 paddd xmm6, xmm1 ; xmm6=data2L paddd xmm2, xmm7 ; xmm2=data2H psubd xmm4, xmm1 ; xmm4=data5L psubd xmm0, xmm7 ; xmm0=data5H movdqa xmm5, [rel PD_DESCALE_P2] ; xmm5=[rel PD_DESCALE_P2] paddd xmm6, xmm5 paddd xmm2, xmm5 psrad xmm6, DESCALE_P2 psrad xmm2, DESCALE_P2 paddd xmm4, xmm5 paddd xmm0, xmm5 psrad xmm4, DESCALE_P2 psrad xmm0, DESCALE_P2 packssdw xmm6, xmm2 ; xmm6=data2=(02 12 22 32 42 52 62 72) packssdw xmm4, xmm0 ; xmm4=data5=(05 15 25 35 45 55 65 75) movdqa xmm3, XMMWORD [wk(2)] ; xmm3=tmp13L movdqa xmm1, XMMWORD [wk(3)] ; xmm1=tmp13H movdqa xmm7, XMMWORD [wk(8)] ; xmm7=tmp0L movdqa xmm5, XMMWORD [wk(9)] ; xmm5=tmp0H movdqa xmm2, xmm3 movdqa xmm0, xmm1 paddd xmm3, xmm7 ; xmm3=data3L paddd xmm1, xmm5 ; xmm1=data3H psubd xmm2, xmm7 ; xmm2=data4L psubd xmm0, xmm5 ; xmm0=data4H movdqa xmm7, [rel PD_DESCALE_P2] ; xmm7=[rel PD_DESCALE_P2] paddd xmm3, xmm7 paddd xmm1, xmm7 psrad xmm3, DESCALE_P2 psrad xmm1, DESCALE_P2 paddd xmm2, xmm7 paddd xmm0, xmm7 psrad xmm2, DESCALE_P2 psrad xmm0, DESCALE_P2 movdqa xmm5, [rel PB_CENTERJSAMP] ; xmm5=[rel PB_CENTERJSAMP] packssdw xmm3, xmm1 ; xmm3=data3=(03 13 23 33 43 53 63 73) packssdw xmm2, xmm0 ; xmm2=data4=(04 14 24 34 44 54 64 74) movdqa xmm7, XMMWORD [wk(0)] ; xmm7=(00 10 20 30 40 50 60 70 06 16 26 36 46 56 66 76) movdqa xmm1, XMMWORD [wk(1)] ; xmm1=(01 11 21 31 41 51 61 71 07 17 27 37 47 57 67 77) packsswb xmm6, xmm2 ; xmm6=(02 12 22 32 42 52 62 72 04 14 24 34 44 54 64 74) packsswb xmm3, xmm4 ; xmm3=(03 13 23 33 43 53 63 73 05 15 25 35 45 55 65 75) paddb xmm7, xmm5 paddb xmm1, xmm5 paddb xmm6, xmm5 paddb xmm3, xmm5 movdqa xmm0, xmm7 ; transpose coefficients(phase 1) punpcklbw xmm7, xmm1 ; xmm7=(00 01 10 11 20 21 30 31 40 41 50 51 60 61 70 71) punpckhbw xmm0, xmm1 ; xmm0=(06 07 16 17 26 27 36 37 46 47 56 57 66 67 76 77) movdqa xmm2, xmm6 ; transpose coefficients(phase 1) punpcklbw xmm6, xmm3 ; xmm6=(02 03 12 13 22 23 32 33 42 43 52 53 62 63 72 73) punpckhbw xmm2, xmm3 ; xmm2=(04 05 14 15 24 25 34 35 44 45 54 55 64 65 74 75) movdqa xmm4, xmm7 ; transpose coefficients(phase 2) punpcklwd xmm7, xmm6 ; xmm7=(00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33) punpckhwd xmm4, xmm6 ; xmm4=(40 41 42 43 50 51 52 53 60 61 62 63 70 71 72 73) movdqa xmm5, xmm2 ; transpose coefficients(phase 2) punpcklwd xmm2, xmm0 ; xmm2=(04 05 06 07 14 15 16 17 24 25 26 27 34 35 36 37) punpckhwd xmm5, xmm0 ; xmm5=(44 45 46 47 54 55 56 57 64 65 66 67 74 75 76 77) movdqa xmm1, xmm7 ; transpose coefficients(phase 3) punpckldq xmm7, xmm2 ; xmm7=(00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17) punpckhdq xmm1, xmm2 ; xmm1=(20 21 22 23 24 25 26 27 30 31 32 33 34 35 36 37) movdqa xmm3, xmm4 ; transpose coefficients(phase 3) punpckldq xmm4, xmm5 ; xmm4=(40 41 42 43 44 45 46 47 50 51 52 53 54 55 56 57) punpckhdq xmm3, xmm5 ; xmm3=(60 61 62 63 64 65 66 67 70 71 72 73 74 75 76 77) pshufd xmm6, xmm7, 0x4E ; xmm6=(10 11 12 13 14 15 16 17 00 01 02 03 04 05 06 07) pshufd xmm0, xmm1, 0x4E ; xmm0=(30 31 32 33 34 35 36 37 20 21 22 23 24 25 26 27) pshufd xmm2, xmm4, 0x4E ; xmm2=(50 51 52 53 54 55 56 57 40 41 42 43 44 45 46 47) pshufd xmm5, xmm3, 0x4E ; xmm5=(70 71 72 73 74 75 76 77 60 61 62 63 64 65 66 67) mov rdxp, JSAMPROW [rdi+0*SIZEOF_JSAMPROW] mov rsip, JSAMPROW [rdi+2*SIZEOF_JSAMPROW] movq XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE], xmm7 movq XMM_MMWORD [rsi+rax*SIZEOF_JSAMPLE], xmm1 mov rdxp, JSAMPROW [rdi+4*SIZEOF_JSAMPROW] mov rsip, JSAMPROW [rdi+6*SIZEOF_JSAMPROW] movq XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE], xmm4 movq XMM_MMWORD [rsi+rax*SIZEOF_JSAMPLE], xmm3 mov rdxp, JSAMPROW [rdi+1*SIZEOF_JSAMPROW] mov rsip, JSAMPROW [rdi+3*SIZEOF_JSAMPROW] movq XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE], xmm6 movq XMM_MMWORD [rsi+rax*SIZEOF_JSAMPLE], xmm0 mov rdxp, JSAMPROW [rdi+5*SIZEOF_JSAMPROW] mov rsip, JSAMPROW [rdi+7*SIZEOF_JSAMPROW] movq XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE], xmm2 movq XMM_MMWORD [rsi+rax*SIZEOF_JSAMPLE], xmm5 uncollect_args 4 mov rsp, rbp ; rsp <- aligned rbp pop rsp ; rsp <- original rbp pop rbp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/x86_64/jidctred-sse2.asm000066400000000000000000000532111436506551100213320ustar00rootroot00000000000000; ; jidctred.asm - reduced-size IDCT (64-bit SSE2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2009, 2016, D. R. Commander. ; Copyright (C) 2018, Matthias Räncker. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 ; ; This file contains inverse-DCT routines that produce reduced-size ; output: either 4x4 or 2x2 pixels from an 8x8 DCT block. ; The following code is based directly on the IJG's original jidctred.c; ; see the jidctred.c for more details. %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- %define CONST_BITS 13 %define PASS1_BITS 2 %define DESCALE_P1_4 (CONST_BITS - PASS1_BITS + 1) %define DESCALE_P2_4 (CONST_BITS + PASS1_BITS + 3 + 1) %define DESCALE_P1_2 (CONST_BITS - PASS1_BITS + 2) %define DESCALE_P2_2 (CONST_BITS + PASS1_BITS + 3 + 2) %if CONST_BITS == 13 F_0_211 equ 1730 ; FIX(0.211164243) F_0_509 equ 4176 ; FIX(0.509795579) F_0_601 equ 4926 ; FIX(0.601344887) F_0_720 equ 5906 ; FIX(0.720959822) F_0_765 equ 6270 ; FIX(0.765366865) F_0_850 equ 6967 ; FIX(0.850430095) F_0_899 equ 7373 ; FIX(0.899976223) F_1_061 equ 8697 ; FIX(1.061594337) F_1_272 equ 10426 ; FIX(1.272758580) F_1_451 equ 11893 ; FIX(1.451774981) F_1_847 equ 15137 ; FIX(1.847759065) F_2_172 equ 17799 ; FIX(2.172734803) F_2_562 equ 20995 ; FIX(2.562915447) F_3_624 equ 29692 ; FIX(3.624509785) %else ; NASM cannot do compile-time arithmetic on floating-point constants. %define DESCALE(x, n) (((x) + (1 << ((n) - 1))) >> (n)) F_0_211 equ DESCALE( 226735879, 30 - CONST_BITS) ; FIX(0.211164243) F_0_509 equ DESCALE( 547388834, 30 - CONST_BITS) ; FIX(0.509795579) F_0_601 equ DESCALE( 645689155, 30 - CONST_BITS) ; FIX(0.601344887) F_0_720 equ DESCALE( 774124714, 30 - CONST_BITS) ; FIX(0.720959822) F_0_765 equ DESCALE( 821806413, 30 - CONST_BITS) ; FIX(0.765366865) F_0_850 equ DESCALE( 913142361, 30 - CONST_BITS) ; FIX(0.850430095) F_0_899 equ DESCALE( 966342111, 30 - CONST_BITS) ; FIX(0.899976223) F_1_061 equ DESCALE(1139878239, 30 - CONST_BITS) ; FIX(1.061594337) F_1_272 equ DESCALE(1366614119, 30 - CONST_BITS) ; FIX(1.272758580) F_1_451 equ DESCALE(1558831516, 30 - CONST_BITS) ; FIX(1.451774981) F_1_847 equ DESCALE(1984016188, 30 - CONST_BITS) ; FIX(1.847759065) F_2_172 equ DESCALE(2332956230, 30 - CONST_BITS) ; FIX(2.172734803) F_2_562 equ DESCALE(2751909506, 30 - CONST_BITS) ; FIX(2.562915447) F_3_624 equ DESCALE(3891787747, 30 - CONST_BITS) ; FIX(3.624509785) %endif ; -------------------------------------------------------------------------- SECTION SEG_CONST alignz 32 GLOBAL_DATA(jconst_idct_red_sse2) EXTN(jconst_idct_red_sse2): PW_F184_MF076 times 4 dw F_1_847, -F_0_765 PW_F256_F089 times 4 dw F_2_562, F_0_899 PW_F106_MF217 times 4 dw F_1_061, -F_2_172 PW_MF060_MF050 times 4 dw -F_0_601, -F_0_509 PW_F145_MF021 times 4 dw F_1_451, -F_0_211 PW_F362_MF127 times 4 dw F_3_624, -F_1_272 PW_F085_MF072 times 4 dw F_0_850, -F_0_720 PD_DESCALE_P1_4 times 4 dd 1 << (DESCALE_P1_4 - 1) PD_DESCALE_P2_4 times 4 dd 1 << (DESCALE_P2_4 - 1) PD_DESCALE_P1_2 times 4 dd 1 << (DESCALE_P1_2 - 1) PD_DESCALE_P2_2 times 4 dd 1 << (DESCALE_P2_2 - 1) PB_CENTERJSAMP times 16 db CENTERJSAMPLE alignz 32 ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 64 ; ; Perform dequantization and inverse DCT on one block of coefficients, ; producing a reduced-size 4x4 output block. ; ; GLOBAL(void) ; jsimd_idct_4x4_sse2(void *dct_table, JCOEFPTR coef_block, ; JSAMPARRAY output_buf, JDIMENSION output_col) ; ; r10 = void *dct_table ; r11 = JCOEFPTR coef_block ; r12 = JSAMPARRAY output_buf ; r13d = JDIMENSION output_col %define original_rbp rbp + 0 %define wk(i) rbp - (WK_NUM - (i)) * SIZEOF_XMMWORD ; xmmword wk[WK_NUM] %define WK_NUM 2 align 32 GLOBAL_FUNCTION(jsimd_idct_4x4_sse2) EXTN(jsimd_idct_4x4_sse2): push rbp mov rax, rsp ; rax = original rbp sub rsp, byte 4 and rsp, byte (-SIZEOF_XMMWORD) ; align to 128 bits mov [rsp], rax mov rbp, rsp ; rbp = aligned rbp lea rsp, [wk(0)] collect_args 4 ; ---- Pass 1: process columns from input. mov rdx, r10 ; quantptr mov rsi, r11 ; inptr %ifndef NO_ZERO_COLUMN_TEST_4X4_SSE2 mov eax, dword [DWBLOCK(1,0,rsi,SIZEOF_JCOEF)] or eax, dword [DWBLOCK(2,0,rsi,SIZEOF_JCOEF)] jnz short .columnDCT movdqa xmm0, XMMWORD [XMMBLOCK(1,0,rsi,SIZEOF_JCOEF)] movdqa xmm1, XMMWORD [XMMBLOCK(2,0,rsi,SIZEOF_JCOEF)] por xmm0, XMMWORD [XMMBLOCK(3,0,rsi,SIZEOF_JCOEF)] por xmm1, XMMWORD [XMMBLOCK(5,0,rsi,SIZEOF_JCOEF)] por xmm0, XMMWORD [XMMBLOCK(6,0,rsi,SIZEOF_JCOEF)] por xmm1, XMMWORD [XMMBLOCK(7,0,rsi,SIZEOF_JCOEF)] por xmm0, xmm1 packsswb xmm0, xmm0 packsswb xmm0, xmm0 movd eax, xmm0 test rax, rax jnz short .columnDCT ; -- AC terms all zero movdqa xmm0, XMMWORD [XMMBLOCK(0,0,rsi,SIZEOF_JCOEF)] pmullw xmm0, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_ISLOW_MULT_TYPE)] psllw xmm0, PASS1_BITS movdqa xmm3, xmm0 ; xmm0=in0=(00 01 02 03 04 05 06 07) punpcklwd xmm0, xmm0 ; xmm0=(00 00 01 01 02 02 03 03) punpckhwd xmm3, xmm3 ; xmm3=(04 04 05 05 06 06 07 07) pshufd xmm1, xmm0, 0x50 ; xmm1=[col0 col1]=(00 00 00 00 01 01 01 01) pshufd xmm0, xmm0, 0xFA ; xmm0=[col2 col3]=(02 02 02 02 03 03 03 03) pshufd xmm6, xmm3, 0x50 ; xmm6=[col4 col5]=(04 04 04 04 05 05 05 05) pshufd xmm3, xmm3, 0xFA ; xmm3=[col6 col7]=(06 06 06 06 07 07 07 07) jmp near .column_end %endif .columnDCT: ; -- Odd part movdqa xmm0, XMMWORD [XMMBLOCK(1,0,rsi,SIZEOF_JCOEF)] movdqa xmm1, XMMWORD [XMMBLOCK(3,0,rsi,SIZEOF_JCOEF)] pmullw xmm0, XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_ISLOW_MULT_TYPE)] pmullw xmm1, XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_ISLOW_MULT_TYPE)] movdqa xmm2, XMMWORD [XMMBLOCK(5,0,rsi,SIZEOF_JCOEF)] movdqa xmm3, XMMWORD [XMMBLOCK(7,0,rsi,SIZEOF_JCOEF)] pmullw xmm2, XMMWORD [XMMBLOCK(5,0,rdx,SIZEOF_ISLOW_MULT_TYPE)] pmullw xmm3, XMMWORD [XMMBLOCK(7,0,rdx,SIZEOF_ISLOW_MULT_TYPE)] movdqa xmm4, xmm0 movdqa xmm5, xmm0 punpcklwd xmm4, xmm1 punpckhwd xmm5, xmm1 movdqa xmm0, xmm4 movdqa xmm1, xmm5 pmaddwd xmm4, [rel PW_F256_F089] ; xmm4=(tmp2L) pmaddwd xmm5, [rel PW_F256_F089] ; xmm5=(tmp2H) pmaddwd xmm0, [rel PW_F106_MF217] ; xmm0=(tmp0L) pmaddwd xmm1, [rel PW_F106_MF217] ; xmm1=(tmp0H) movdqa xmm6, xmm2 movdqa xmm7, xmm2 punpcklwd xmm6, xmm3 punpckhwd xmm7, xmm3 movdqa xmm2, xmm6 movdqa xmm3, xmm7 pmaddwd xmm6, [rel PW_MF060_MF050] ; xmm6=(tmp2L) pmaddwd xmm7, [rel PW_MF060_MF050] ; xmm7=(tmp2H) pmaddwd xmm2, [rel PW_F145_MF021] ; xmm2=(tmp0L) pmaddwd xmm3, [rel PW_F145_MF021] ; xmm3=(tmp0H) paddd xmm6, xmm4 ; xmm6=tmp2L paddd xmm7, xmm5 ; xmm7=tmp2H paddd xmm2, xmm0 ; xmm2=tmp0L paddd xmm3, xmm1 ; xmm3=tmp0H movdqa XMMWORD [wk(0)], xmm2 ; wk(0)=tmp0L movdqa XMMWORD [wk(1)], xmm3 ; wk(1)=tmp0H ; -- Even part movdqa xmm4, XMMWORD [XMMBLOCK(0,0,rsi,SIZEOF_JCOEF)] movdqa xmm5, XMMWORD [XMMBLOCK(2,0,rsi,SIZEOF_JCOEF)] movdqa xmm0, XMMWORD [XMMBLOCK(6,0,rsi,SIZEOF_JCOEF)] pmullw xmm4, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_ISLOW_MULT_TYPE)] pmullw xmm5, XMMWORD [XMMBLOCK(2,0,rdx,SIZEOF_ISLOW_MULT_TYPE)] pmullw xmm0, XMMWORD [XMMBLOCK(6,0,rdx,SIZEOF_ISLOW_MULT_TYPE)] pxor xmm1, xmm1 pxor xmm2, xmm2 punpcklwd xmm1, xmm4 ; xmm1=tmp0L punpckhwd xmm2, xmm4 ; xmm2=tmp0H psrad xmm1, (16-CONST_BITS-1) ; psrad xmm1,16 & pslld xmm1,CONST_BITS+1 psrad xmm2, (16-CONST_BITS-1) ; psrad xmm2,16 & pslld xmm2,CONST_BITS+1 movdqa xmm3, xmm5 ; xmm5=in2=z2 punpcklwd xmm5, xmm0 ; xmm0=in6=z3 punpckhwd xmm3, xmm0 pmaddwd xmm5, [rel PW_F184_MF076] ; xmm5=tmp2L pmaddwd xmm3, [rel PW_F184_MF076] ; xmm3=tmp2H movdqa xmm4, xmm1 movdqa xmm0, xmm2 paddd xmm1, xmm5 ; xmm1=tmp10L paddd xmm2, xmm3 ; xmm2=tmp10H psubd xmm4, xmm5 ; xmm4=tmp12L psubd xmm0, xmm3 ; xmm0=tmp12H ; -- Final output stage movdqa xmm5, xmm1 movdqa xmm3, xmm2 paddd xmm1, xmm6 ; xmm1=data0L paddd xmm2, xmm7 ; xmm2=data0H psubd xmm5, xmm6 ; xmm5=data3L psubd xmm3, xmm7 ; xmm3=data3H movdqa xmm6, [rel PD_DESCALE_P1_4] ; xmm6=[rel PD_DESCALE_P1_4] paddd xmm1, xmm6 paddd xmm2, xmm6 psrad xmm1, DESCALE_P1_4 psrad xmm2, DESCALE_P1_4 paddd xmm5, xmm6 paddd xmm3, xmm6 psrad xmm5, DESCALE_P1_4 psrad xmm3, DESCALE_P1_4 packssdw xmm1, xmm2 ; xmm1=data0=(00 01 02 03 04 05 06 07) packssdw xmm5, xmm3 ; xmm5=data3=(30 31 32 33 34 35 36 37) movdqa xmm7, XMMWORD [wk(0)] ; xmm7=tmp0L movdqa xmm6, XMMWORD [wk(1)] ; xmm6=tmp0H movdqa xmm2, xmm4 movdqa xmm3, xmm0 paddd xmm4, xmm7 ; xmm4=data1L paddd xmm0, xmm6 ; xmm0=data1H psubd xmm2, xmm7 ; xmm2=data2L psubd xmm3, xmm6 ; xmm3=data2H movdqa xmm7, [rel PD_DESCALE_P1_4] ; xmm7=[rel PD_DESCALE_P1_4] paddd xmm4, xmm7 paddd xmm0, xmm7 psrad xmm4, DESCALE_P1_4 psrad xmm0, DESCALE_P1_4 paddd xmm2, xmm7 paddd xmm3, xmm7 psrad xmm2, DESCALE_P1_4 psrad xmm3, DESCALE_P1_4 packssdw xmm4, xmm0 ; xmm4=data1=(10 11 12 13 14 15 16 17) packssdw xmm2, xmm3 ; xmm2=data2=(20 21 22 23 24 25 26 27) movdqa xmm6, xmm1 ; transpose coefficients(phase 1) punpcklwd xmm1, xmm4 ; xmm1=(00 10 01 11 02 12 03 13) punpckhwd xmm6, xmm4 ; xmm6=(04 14 05 15 06 16 07 17) movdqa xmm7, xmm2 ; transpose coefficients(phase 1) punpcklwd xmm2, xmm5 ; xmm2=(20 30 21 31 22 32 23 33) punpckhwd xmm7, xmm5 ; xmm7=(24 34 25 35 26 36 27 37) movdqa xmm0, xmm1 ; transpose coefficients(phase 2) punpckldq xmm1, xmm2 ; xmm1=[col0 col1]=(00 10 20 30 01 11 21 31) punpckhdq xmm0, xmm2 ; xmm0=[col2 col3]=(02 12 22 32 03 13 23 33) movdqa xmm3, xmm6 ; transpose coefficients(phase 2) punpckldq xmm6, xmm7 ; xmm6=[col4 col5]=(04 14 24 34 05 15 25 35) punpckhdq xmm3, xmm7 ; xmm3=[col6 col7]=(06 16 26 36 07 17 27 37) .column_end: ; -- Prefetch the next coefficient block prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 0*32] prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 1*32] prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 2*32] prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 3*32] ; ---- Pass 2: process rows, store into output array. mov rax, [original_rbp] mov rdi, r12 ; (JSAMPROW *) mov eax, r13d ; -- Even part pxor xmm4, xmm4 punpcklwd xmm4, xmm1 ; xmm4=tmp0 psrad xmm4, (16-CONST_BITS-1) ; psrad xmm4,16 & pslld xmm4,CONST_BITS+1 ; -- Odd part punpckhwd xmm1, xmm0 punpckhwd xmm6, xmm3 movdqa xmm5, xmm1 movdqa xmm2, xmm6 pmaddwd xmm1, [rel PW_F256_F089] ; xmm1=(tmp2) pmaddwd xmm6, [rel PW_MF060_MF050] ; xmm6=(tmp2) pmaddwd xmm5, [rel PW_F106_MF217] ; xmm5=(tmp0) pmaddwd xmm2, [rel PW_F145_MF021] ; xmm2=(tmp0) paddd xmm6, xmm1 ; xmm6=tmp2 paddd xmm2, xmm5 ; xmm2=tmp0 ; -- Even part punpcklwd xmm0, xmm3 pmaddwd xmm0, [rel PW_F184_MF076] ; xmm0=tmp2 movdqa xmm7, xmm4 paddd xmm4, xmm0 ; xmm4=tmp10 psubd xmm7, xmm0 ; xmm7=tmp12 ; -- Final output stage movdqa xmm1, [rel PD_DESCALE_P2_4] ; xmm1=[rel PD_DESCALE_P2_4] movdqa xmm5, xmm4 movdqa xmm3, xmm7 paddd xmm4, xmm6 ; xmm4=data0=(00 10 20 30) paddd xmm7, xmm2 ; xmm7=data1=(01 11 21 31) psubd xmm5, xmm6 ; xmm5=data3=(03 13 23 33) psubd xmm3, xmm2 ; xmm3=data2=(02 12 22 32) paddd xmm4, xmm1 paddd xmm7, xmm1 psrad xmm4, DESCALE_P2_4 psrad xmm7, DESCALE_P2_4 paddd xmm5, xmm1 paddd xmm3, xmm1 psrad xmm5, DESCALE_P2_4 psrad xmm3, DESCALE_P2_4 packssdw xmm4, xmm3 ; xmm4=(00 10 20 30 02 12 22 32) packssdw xmm7, xmm5 ; xmm7=(01 11 21 31 03 13 23 33) movdqa xmm0, xmm4 ; transpose coefficients(phase 1) punpcklwd xmm4, xmm7 ; xmm4=(00 01 10 11 20 21 30 31) punpckhwd xmm0, xmm7 ; xmm0=(02 03 12 13 22 23 32 33) movdqa xmm6, xmm4 ; transpose coefficients(phase 2) punpckldq xmm4, xmm0 ; xmm4=(00 01 02 03 10 11 12 13) punpckhdq xmm6, xmm0 ; xmm6=(20 21 22 23 30 31 32 33) packsswb xmm4, xmm6 ; xmm4=(00 01 02 03 10 11 12 13 20 ..) paddb xmm4, [rel PB_CENTERJSAMP] pshufd xmm2, xmm4, 0x39 ; xmm2=(10 11 12 13 20 21 22 23 30 ..) pshufd xmm1, xmm4, 0x4E ; xmm1=(20 21 22 23 30 31 32 33 00 ..) pshufd xmm3, xmm4, 0x93 ; xmm3=(30 31 32 33 00 01 02 03 10 ..) mov rdxp, JSAMPROW [rdi+0*SIZEOF_JSAMPROW] mov rsip, JSAMPROW [rdi+1*SIZEOF_JSAMPROW] movd XMM_DWORD [rdx+rax*SIZEOF_JSAMPLE], xmm4 movd XMM_DWORD [rsi+rax*SIZEOF_JSAMPLE], xmm2 mov rdxp, JSAMPROW [rdi+2*SIZEOF_JSAMPROW] mov rsip, JSAMPROW [rdi+3*SIZEOF_JSAMPROW] movd XMM_DWORD [rdx+rax*SIZEOF_JSAMPLE], xmm1 movd XMM_DWORD [rsi+rax*SIZEOF_JSAMPLE], xmm3 uncollect_args 4 mov rsp, rbp ; rsp <- aligned rbp pop rsp ; rsp <- original rbp pop rbp ret ; -------------------------------------------------------------------------- ; ; Perform dequantization and inverse DCT on one block of coefficients, ; producing a reduced-size 2x2 output block. ; ; GLOBAL(void) ; jsimd_idct_2x2_sse2(void *dct_table, JCOEFPTR coef_block, ; JSAMPARRAY output_buf, JDIMENSION output_col) ; ; r10 = void *dct_table ; r11 = JCOEFPTR coef_block ; r12 = JSAMPARRAY output_buf ; r13d = JDIMENSION output_col align 32 GLOBAL_FUNCTION(jsimd_idct_2x2_sse2) EXTN(jsimd_idct_2x2_sse2): push rbp mov rax, rsp mov rbp, rsp collect_args 4 push rbx ; ---- Pass 1: process columns from input. mov rdx, r10 ; quantptr mov rsi, r11 ; inptr ; | input: | result: | ; | 00 01 ** 03 ** 05 ** 07 | | ; | 10 11 ** 13 ** 15 ** 17 | | ; | ** ** ** ** ** ** ** ** | | ; | 30 31 ** 33 ** 35 ** 37 | A0 A1 A3 A5 A7 | ; | ** ** ** ** ** ** ** ** | B0 B1 B3 B5 B7 | ; | 50 51 ** 53 ** 55 ** 57 | | ; | ** ** ** ** ** ** ** ** | | ; | 70 71 ** 73 ** 75 ** 77 | | ; -- Odd part movdqa xmm0, XMMWORD [XMMBLOCK(1,0,rsi,SIZEOF_JCOEF)] movdqa xmm1, XMMWORD [XMMBLOCK(3,0,rsi,SIZEOF_JCOEF)] pmullw xmm0, XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_ISLOW_MULT_TYPE)] pmullw xmm1, XMMWORD [XMMBLOCK(3,0,rdx,SIZEOF_ISLOW_MULT_TYPE)] movdqa xmm2, XMMWORD [XMMBLOCK(5,0,rsi,SIZEOF_JCOEF)] movdqa xmm3, XMMWORD [XMMBLOCK(7,0,rsi,SIZEOF_JCOEF)] pmullw xmm2, XMMWORD [XMMBLOCK(5,0,rdx,SIZEOF_ISLOW_MULT_TYPE)] pmullw xmm3, XMMWORD [XMMBLOCK(7,0,rdx,SIZEOF_ISLOW_MULT_TYPE)] ; xmm0=(10 11 ** 13 ** 15 ** 17), xmm1=(30 31 ** 33 ** 35 ** 37) ; xmm2=(50 51 ** 53 ** 55 ** 57), xmm3=(70 71 ** 73 ** 75 ** 77) pcmpeqd xmm7, xmm7 pslld xmm7, WORD_BIT ; xmm7={0x0000 0xFFFF 0x0000 0xFFFF ..} movdqa xmm4, xmm0 ; xmm4=(10 11 ** 13 ** 15 ** 17) movdqa xmm5, xmm2 ; xmm5=(50 51 ** 53 ** 55 ** 57) punpcklwd xmm4, xmm1 ; xmm4=(10 30 11 31 ** ** 13 33) punpcklwd xmm5, xmm3 ; xmm5=(50 70 51 71 ** ** 53 73) pmaddwd xmm4, [rel PW_F362_MF127] pmaddwd xmm5, [rel PW_F085_MF072] psrld xmm0, WORD_BIT ; xmm0=(11 -- 13 -- 15 -- 17 --) pand xmm1, xmm7 ; xmm1=(-- 31 -- 33 -- 35 -- 37) psrld xmm2, WORD_BIT ; xmm2=(51 -- 53 -- 55 -- 57 --) pand xmm3, xmm7 ; xmm3=(-- 71 -- 73 -- 75 -- 77) por xmm0, xmm1 ; xmm0=(11 31 13 33 15 35 17 37) por xmm2, xmm3 ; xmm2=(51 71 53 73 55 75 57 77) pmaddwd xmm0, [rel PW_F362_MF127] pmaddwd xmm2, [rel PW_F085_MF072] paddd xmm4, xmm5 ; xmm4=tmp0[col0 col1 **** col3] paddd xmm0, xmm2 ; xmm0=tmp0[col1 col3 col5 col7] ; -- Even part movdqa xmm6, XMMWORD [XMMBLOCK(0,0,rsi,SIZEOF_JCOEF)] pmullw xmm6, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_ISLOW_MULT_TYPE)] ; xmm6=(00 01 ** 03 ** 05 ** 07) movdqa xmm1, xmm6 ; xmm1=(00 01 ** 03 ** 05 ** 07) pslld xmm6, WORD_BIT ; xmm6=(-- 00 -- ** -- ** -- **) pand xmm1, xmm7 ; xmm1=(-- 01 -- 03 -- 05 -- 07) psrad xmm6, (WORD_BIT-CONST_BITS-2) ; xmm6=tmp10[col0 **** **** ****] psrad xmm1, (WORD_BIT-CONST_BITS-2) ; xmm1=tmp10[col1 col3 col5 col7] ; -- Final output stage movdqa xmm3, xmm6 movdqa xmm5, xmm1 paddd xmm6, xmm4 ; xmm6=data0[col0 **** **** ****]=(A0 ** ** **) paddd xmm1, xmm0 ; xmm1=data0[col1 col3 col5 col7]=(A1 A3 A5 A7) psubd xmm3, xmm4 ; xmm3=data1[col0 **** **** ****]=(B0 ** ** **) psubd xmm5, xmm0 ; xmm5=data1[col1 col3 col5 col7]=(B1 B3 B5 B7) movdqa xmm2, [rel PD_DESCALE_P1_2] ; xmm2=[rel PD_DESCALE_P1_2] punpckldq xmm6, xmm3 ; xmm6=(A0 B0 ** **) movdqa xmm7, xmm1 punpcklqdq xmm1, xmm5 ; xmm1=(A1 A3 B1 B3) punpckhqdq xmm7, xmm5 ; xmm7=(A5 A7 B5 B7) paddd xmm6, xmm2 psrad xmm6, DESCALE_P1_2 paddd xmm1, xmm2 paddd xmm7, xmm2 psrad xmm1, DESCALE_P1_2 psrad xmm7, DESCALE_P1_2 ; -- Prefetch the next coefficient block prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 0*32] prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 1*32] prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 2*32] prefetchnta [rsi + DCTSIZE2*SIZEOF_JCOEF + 3*32] ; ---- Pass 2: process rows, store into output array. mov rdi, r12 ; (JSAMPROW *) mov eax, r13d ; | input:| result:| ; | A0 B0 | | ; | A1 B1 | C0 C1 | ; | A3 B3 | D0 D1 | ; | A5 B5 | | ; | A7 B7 | | ; -- Odd part packssdw xmm1, xmm1 ; xmm1=(A1 A3 B1 B3 A1 A3 B1 B3) packssdw xmm7, xmm7 ; xmm7=(A5 A7 B5 B7 A5 A7 B5 B7) pmaddwd xmm1, [rel PW_F362_MF127] pmaddwd xmm7, [rel PW_F085_MF072] paddd xmm1, xmm7 ; xmm1=tmp0[row0 row1 row0 row1] ; -- Even part pslld xmm6, (CONST_BITS+2) ; xmm6=tmp10[row0 row1 **** ****] ; -- Final output stage movdqa xmm4, xmm6 paddd xmm6, xmm1 ; xmm6=data0[row0 row1 **** ****]=(C0 C1 ** **) psubd xmm4, xmm1 ; xmm4=data1[row0 row1 **** ****]=(D0 D1 ** **) punpckldq xmm6, xmm4 ; xmm6=(C0 D0 C1 D1) paddd xmm6, [rel PD_DESCALE_P2_2] psrad xmm6, DESCALE_P2_2 packssdw xmm6, xmm6 ; xmm6=(C0 D0 C1 D1 C0 D0 C1 D1) packsswb xmm6, xmm6 ; xmm6=(C0 D0 C1 D1 C0 D0 C1 D1 ..) paddb xmm6, [rel PB_CENTERJSAMP] pextrw ebx, xmm6, 0x00 ; ebx=(C0 D0 -- --) pextrw ecx, xmm6, 0x01 ; ecx=(C1 D1 -- --) mov rdxp, JSAMPROW [rdi+0*SIZEOF_JSAMPROW] mov rsip, JSAMPROW [rdi+1*SIZEOF_JSAMPROW] mov word [rdx+rax*SIZEOF_JSAMPLE], bx mov word [rsi+rax*SIZEOF_JSAMPLE], cx pop rbx uncollect_args 4 pop rbp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/x86_64/jquantf-sse2.asm000066400000000000000000000122061436506551100212110ustar00rootroot00000000000000; ; jquantf.asm - sample data conversion and quantization (64-bit SSE & SSE2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2009, 2016, D. R. Commander. ; Copyright (C) 2018, Matthias Räncker. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 64 ; ; Load data into workspace, applying unsigned->signed conversion ; ; GLOBAL(void) ; jsimd_convsamp_float_sse2(JSAMPARRAY sample_data, JDIMENSION start_col, ; FAST_FLOAT *workspace); ; ; r10 = JSAMPARRAY sample_data ; r11d = JDIMENSION start_col ; r12 = FAST_FLOAT *workspace align 32 GLOBAL_FUNCTION(jsimd_convsamp_float_sse2) EXTN(jsimd_convsamp_float_sse2): push rbp mov rax, rsp mov rbp, rsp collect_args 3 push rbx pcmpeqw xmm7, xmm7 psllw xmm7, 7 packsswb xmm7, xmm7 ; xmm7 = PB_CENTERJSAMPLE (0x808080..) mov rsi, r10 mov eax, r11d mov rdi, r12 mov rcx, DCTSIZE/2 .convloop: mov rbxp, JSAMPROW [rsi+0*SIZEOF_JSAMPROW] ; (JSAMPLE *) mov rdxp, JSAMPROW [rsi+1*SIZEOF_JSAMPROW] ; (JSAMPLE *) movq xmm0, XMM_MMWORD [rbx+rax*SIZEOF_JSAMPLE] movq xmm1, XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE] psubb xmm0, xmm7 ; xmm0=(01234567) psubb xmm1, xmm7 ; xmm1=(89ABCDEF) punpcklbw xmm0, xmm0 ; xmm0=(*0*1*2*3*4*5*6*7) punpcklbw xmm1, xmm1 ; xmm1=(*8*9*A*B*C*D*E*F) punpcklwd xmm2, xmm0 ; xmm2=(***0***1***2***3) punpckhwd xmm0, xmm0 ; xmm0=(***4***5***6***7) punpcklwd xmm3, xmm1 ; xmm3=(***8***9***A***B) punpckhwd xmm1, xmm1 ; xmm1=(***C***D***E***F) psrad xmm2, (DWORD_BIT-BYTE_BIT) ; xmm2=(0123) psrad xmm0, (DWORD_BIT-BYTE_BIT) ; xmm0=(4567) cvtdq2ps xmm2, xmm2 ; xmm2=(0123) cvtdq2ps xmm0, xmm0 ; xmm0=(4567) psrad xmm3, (DWORD_BIT-BYTE_BIT) ; xmm3=(89AB) psrad xmm1, (DWORD_BIT-BYTE_BIT) ; xmm1=(CDEF) cvtdq2ps xmm3, xmm3 ; xmm3=(89AB) cvtdq2ps xmm1, xmm1 ; xmm1=(CDEF) movaps XMMWORD [XMMBLOCK(0,0,rdi,SIZEOF_FAST_FLOAT)], xmm2 movaps XMMWORD [XMMBLOCK(0,1,rdi,SIZEOF_FAST_FLOAT)], xmm0 movaps XMMWORD [XMMBLOCK(1,0,rdi,SIZEOF_FAST_FLOAT)], xmm3 movaps XMMWORD [XMMBLOCK(1,1,rdi,SIZEOF_FAST_FLOAT)], xmm1 add rsi, byte 2*SIZEOF_JSAMPROW add rdi, byte 2*DCTSIZE*SIZEOF_FAST_FLOAT dec rcx jnz short .convloop pop rbx uncollect_args 3 pop rbp ret ; -------------------------------------------------------------------------- ; ; Quantize/descale the coefficients, and store into coef_block ; ; GLOBAL(void) ; jsimd_quantize_float_sse2(JCOEFPTR coef_block, FAST_FLOAT *divisors, ; FAST_FLOAT *workspace); ; ; r10 = JCOEFPTR coef_block ; r11 = FAST_FLOAT *divisors ; r12 = FAST_FLOAT *workspace align 32 GLOBAL_FUNCTION(jsimd_quantize_float_sse2) EXTN(jsimd_quantize_float_sse2): push rbp mov rax, rsp mov rbp, rsp collect_args 3 mov rsi, r12 mov rdx, r11 mov rdi, r10 mov rax, DCTSIZE2/16 .quantloop: movaps xmm0, XMMWORD [XMMBLOCK(0,0,rsi,SIZEOF_FAST_FLOAT)] movaps xmm1, XMMWORD [XMMBLOCK(0,1,rsi,SIZEOF_FAST_FLOAT)] mulps xmm0, XMMWORD [XMMBLOCK(0,0,rdx,SIZEOF_FAST_FLOAT)] mulps xmm1, XMMWORD [XMMBLOCK(0,1,rdx,SIZEOF_FAST_FLOAT)] movaps xmm2, XMMWORD [XMMBLOCK(1,0,rsi,SIZEOF_FAST_FLOAT)] movaps xmm3, XMMWORD [XMMBLOCK(1,1,rsi,SIZEOF_FAST_FLOAT)] mulps xmm2, XMMWORD [XMMBLOCK(1,0,rdx,SIZEOF_FAST_FLOAT)] mulps xmm3, XMMWORD [XMMBLOCK(1,1,rdx,SIZEOF_FAST_FLOAT)] cvtps2dq xmm0, xmm0 cvtps2dq xmm1, xmm1 cvtps2dq xmm2, xmm2 cvtps2dq xmm3, xmm3 packssdw xmm0, xmm1 packssdw xmm2, xmm3 movdqa XMMWORD [XMMBLOCK(0,0,rdi,SIZEOF_JCOEF)], xmm0 movdqa XMMWORD [XMMBLOCK(1,0,rdi,SIZEOF_JCOEF)], xmm2 add rsi, byte 16*SIZEOF_FAST_FLOAT add rdx, byte 16*SIZEOF_FAST_FLOAT add rdi, byte 16*SIZEOF_JCOEF dec rax jnz short .quantloop uncollect_args 3 pop rbp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/x86_64/jquanti-avx2.asm000066400000000000000000000134141436506551100212220ustar00rootroot00000000000000; ; jquanti.asm - sample data conversion and quantization (64-bit AVX2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2009, 2016, 2018, D. R. Commander. ; Copyright (C) 2016, Matthieu Darbois. ; Copyright (C) 2018, Matthias Räncker. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 64 ; ; Load data into workspace, applying unsigned->signed conversion ; ; GLOBAL(void) ; jsimd_convsamp_avx2(JSAMPARRAY sample_data, JDIMENSION start_col, ; DCTELEM *workspace); ; ; r10 = JSAMPARRAY sample_data ; r11d = JDIMENSION start_col ; r12 = DCTELEM *workspace align 32 GLOBAL_FUNCTION(jsimd_convsamp_avx2) EXTN(jsimd_convsamp_avx2): push rbp mov rax, rsp mov rbp, rsp collect_args 3 mov eax, r11d mov rsip, JSAMPROW [r10+0*SIZEOF_JSAMPROW] ; (JSAMPLE *) mov rdip, JSAMPROW [r10+1*SIZEOF_JSAMPROW] ; (JSAMPLE *) movq xmm0, XMM_MMWORD [rsi+rax*SIZEOF_JSAMPLE] pinsrq xmm0, XMM_MMWORD [rdi+rax*SIZEOF_JSAMPLE], 1 mov rsip, JSAMPROW [r10+2*SIZEOF_JSAMPROW] ; (JSAMPLE *) mov rdip, JSAMPROW [r10+3*SIZEOF_JSAMPROW] ; (JSAMPLE *) movq xmm1, XMM_MMWORD [rsi+rax*SIZEOF_JSAMPLE] pinsrq xmm1, XMM_MMWORD [rdi+rax*SIZEOF_JSAMPLE], 1 mov rsip, JSAMPROW [r10+4*SIZEOF_JSAMPROW] ; (JSAMPLE *) mov rdip, JSAMPROW [r10+5*SIZEOF_JSAMPROW] ; (JSAMPLE *) movq xmm2, XMM_MMWORD [rsi+rax*SIZEOF_JSAMPLE] pinsrq xmm2, XMM_MMWORD [rdi+rax*SIZEOF_JSAMPLE], 1 mov rsip, JSAMPROW [r10+6*SIZEOF_JSAMPROW] ; (JSAMPLE *) mov rdip, JSAMPROW [r10+7*SIZEOF_JSAMPROW] ; (JSAMPLE *) movq xmm3, XMM_MMWORD [rsi+rax*SIZEOF_JSAMPLE] pinsrq xmm3, XMM_MMWORD [rdi+rax*SIZEOF_JSAMPLE], 1 vpmovzxbw ymm0, xmm0 ; ymm0=(00 01 02 03 04 05 06 07 10 11 12 13 14 15 16 17) vpmovzxbw ymm1, xmm1 ; ymm1=(20 21 22 23 24 25 26 27 30 31 32 33 34 35 36 37) vpmovzxbw ymm2, xmm2 ; ymm2=(40 41 42 43 44 45 46 47 50 51 52 53 54 55 56 57) vpmovzxbw ymm3, xmm3 ; ymm3=(60 61 62 63 64 65 66 67 70 71 72 73 74 75 76 77) vpcmpeqw ymm7, ymm7, ymm7 vpsllw ymm7, ymm7, 7 ; ymm7={0xFF80 0xFF80 0xFF80 0xFF80 ..} vpaddw ymm0, ymm0, ymm7 vpaddw ymm1, ymm1, ymm7 vpaddw ymm2, ymm2, ymm7 vpaddw ymm3, ymm3, ymm7 vmovdqu YMMWORD [YMMBLOCK(0,0,r12,SIZEOF_DCTELEM)], ymm0 vmovdqu YMMWORD [YMMBLOCK(2,0,r12,SIZEOF_DCTELEM)], ymm1 vmovdqu YMMWORD [YMMBLOCK(4,0,r12,SIZEOF_DCTELEM)], ymm2 vmovdqu YMMWORD [YMMBLOCK(6,0,r12,SIZEOF_DCTELEM)], ymm3 vzeroupper uncollect_args 3 pop rbp ret ; -------------------------------------------------------------------------- ; ; Quantize/descale the coefficients, and store into coef_block ; ; This implementation is based on an algorithm described in ; "How to optimize for the Pentium family of microprocessors" ; (http://www.agner.org/assem/). ; ; GLOBAL(void) ; jsimd_quantize_avx2(JCOEFPTR coef_block, DCTELEM *divisors, ; DCTELEM *workspace); ; %define RECIPROCAL(m, n, b) \ YMMBLOCK(DCTSIZE * 0 + (m), (n), (b), SIZEOF_DCTELEM) %define CORRECTION(m, n, b) \ YMMBLOCK(DCTSIZE * 1 + (m), (n), (b), SIZEOF_DCTELEM) %define SCALE(m, n, b) \ YMMBLOCK(DCTSIZE * 2 + (m), (n), (b), SIZEOF_DCTELEM) ; r10 = JCOEFPTR coef_block ; r11 = DCTELEM *divisors ; r12 = DCTELEM *workspace align 32 GLOBAL_FUNCTION(jsimd_quantize_avx2) EXTN(jsimd_quantize_avx2): push rbp mov rax, rsp mov rbp, rsp collect_args 3 vmovdqu ymm4, [YMMBLOCK(0,0,r12,SIZEOF_DCTELEM)] vmovdqu ymm5, [YMMBLOCK(2,0,r12,SIZEOF_DCTELEM)] vmovdqu ymm6, [YMMBLOCK(4,0,r12,SIZEOF_DCTELEM)] vmovdqu ymm7, [YMMBLOCK(6,0,r12,SIZEOF_DCTELEM)] vpabsw ymm0, ymm4 vpabsw ymm1, ymm5 vpabsw ymm2, ymm6 vpabsw ymm3, ymm7 vpaddw ymm0, YMMWORD [CORRECTION(0,0,r11)] ; correction + roundfactor vpaddw ymm1, YMMWORD [CORRECTION(2,0,r11)] vpaddw ymm2, YMMWORD [CORRECTION(4,0,r11)] vpaddw ymm3, YMMWORD [CORRECTION(6,0,r11)] vpmulhuw ymm0, YMMWORD [RECIPROCAL(0,0,r11)] ; reciprocal vpmulhuw ymm1, YMMWORD [RECIPROCAL(2,0,r11)] vpmulhuw ymm2, YMMWORD [RECIPROCAL(4,0,r11)] vpmulhuw ymm3, YMMWORD [RECIPROCAL(6,0,r11)] vpmulhuw ymm0, YMMWORD [SCALE(0,0,r11)] ; scale vpmulhuw ymm1, YMMWORD [SCALE(2,0,r11)] vpmulhuw ymm2, YMMWORD [SCALE(4,0,r11)] vpmulhuw ymm3, YMMWORD [SCALE(6,0,r11)] vpsignw ymm0, ymm0, ymm4 vpsignw ymm1, ymm1, ymm5 vpsignw ymm2, ymm2, ymm6 vpsignw ymm3, ymm3, ymm7 vmovdqu [YMMBLOCK(0,0,r10,SIZEOF_DCTELEM)], ymm0 vmovdqu [YMMBLOCK(2,0,r10,SIZEOF_DCTELEM)], ymm1 vmovdqu [YMMBLOCK(4,0,r10,SIZEOF_DCTELEM)], ymm2 vmovdqu [YMMBLOCK(6,0,r10,SIZEOF_DCTELEM)], ymm3 vzeroupper uncollect_args 3 pop rbp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/x86_64/jquanti-sse2.asm000066400000000000000000000145471436506551100212260ustar00rootroot00000000000000; ; jquanti.asm - sample data conversion and quantization (64-bit SSE2) ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2009, 2016, D. R. Commander. ; Copyright (C) 2018, Matthias Räncker. ; ; Based on the x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jsimdext.inc" %include "jdct.inc" ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 64 ; ; Load data into workspace, applying unsigned->signed conversion ; ; GLOBAL(void) ; jsimd_convsamp_sse2(JSAMPARRAY sample_data, JDIMENSION start_col, ; DCTELEM *workspace); ; ; r10 = JSAMPARRAY sample_data ; r11d = JDIMENSION start_col ; r12 = DCTELEM *workspace align 32 GLOBAL_FUNCTION(jsimd_convsamp_sse2) EXTN(jsimd_convsamp_sse2): push rbp mov rax, rsp mov rbp, rsp collect_args 3 push rbx pxor xmm6, xmm6 ; xmm6=(all 0's) pcmpeqw xmm7, xmm7 psllw xmm7, 7 ; xmm7={0xFF80 0xFF80 0xFF80 0xFF80 ..} mov rsi, r10 mov eax, r11d mov rdi, r12 mov rcx, DCTSIZE/4 .convloop: mov rbxp, JSAMPROW [rsi+0*SIZEOF_JSAMPROW] ; (JSAMPLE *) mov rdxp, JSAMPROW [rsi+1*SIZEOF_JSAMPROW] ; (JSAMPLE *) movq xmm0, XMM_MMWORD [rbx+rax*SIZEOF_JSAMPLE] ; xmm0=(01234567) movq xmm1, XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE] ; xmm1=(89ABCDEF) mov rbxp, JSAMPROW [rsi+2*SIZEOF_JSAMPROW] ; (JSAMPLE *) mov rdxp, JSAMPROW [rsi+3*SIZEOF_JSAMPROW] ; (JSAMPLE *) movq xmm2, XMM_MMWORD [rbx+rax*SIZEOF_JSAMPLE] ; xmm2=(GHIJKLMN) movq xmm3, XMM_MMWORD [rdx+rax*SIZEOF_JSAMPLE] ; xmm3=(OPQRSTUV) punpcklbw xmm0, xmm6 ; xmm0=(01234567) punpcklbw xmm1, xmm6 ; xmm1=(89ABCDEF) paddw xmm0, xmm7 paddw xmm1, xmm7 punpcklbw xmm2, xmm6 ; xmm2=(GHIJKLMN) punpcklbw xmm3, xmm6 ; xmm3=(OPQRSTUV) paddw xmm2, xmm7 paddw xmm3, xmm7 movdqa XMMWORD [XMMBLOCK(0,0,rdi,SIZEOF_DCTELEM)], xmm0 movdqa XMMWORD [XMMBLOCK(1,0,rdi,SIZEOF_DCTELEM)], xmm1 movdqa XMMWORD [XMMBLOCK(2,0,rdi,SIZEOF_DCTELEM)], xmm2 movdqa XMMWORD [XMMBLOCK(3,0,rdi,SIZEOF_DCTELEM)], xmm3 add rsi, byte 4*SIZEOF_JSAMPROW add rdi, byte 4*DCTSIZE*SIZEOF_DCTELEM dec rcx jnz short .convloop pop rbx uncollect_args 3 pop rbp ret ; -------------------------------------------------------------------------- ; ; Quantize/descale the coefficients, and store into coef_block ; ; This implementation is based on an algorithm described in ; "How to optimize for the Pentium family of microprocessors" ; (http://www.agner.org/assem/). ; ; GLOBAL(void) ; jsimd_quantize_sse2(JCOEFPTR coef_block, DCTELEM *divisors, ; DCTELEM *workspace); ; %define RECIPROCAL(m, n, b) \ XMMBLOCK(DCTSIZE * 0 + (m), (n), (b), SIZEOF_DCTELEM) %define CORRECTION(m, n, b) \ XMMBLOCK(DCTSIZE * 1 + (m), (n), (b), SIZEOF_DCTELEM) %define SCALE(m, n, b) \ XMMBLOCK(DCTSIZE * 2 + (m), (n), (b), SIZEOF_DCTELEM) ; r10 = JCOEFPTR coef_block ; r11 = DCTELEM *divisors ; r12 = DCTELEM *workspace align 32 GLOBAL_FUNCTION(jsimd_quantize_sse2) EXTN(jsimd_quantize_sse2): push rbp mov rax, rsp mov rbp, rsp collect_args 3 mov rsi, r12 mov rdx, r11 mov rdi, r10 mov rax, DCTSIZE2/32 .quantloop: movdqa xmm4, XMMWORD [XMMBLOCK(0,0,rsi,SIZEOF_DCTELEM)] movdqa xmm5, XMMWORD [XMMBLOCK(1,0,rsi,SIZEOF_DCTELEM)] movdqa xmm6, XMMWORD [XMMBLOCK(2,0,rsi,SIZEOF_DCTELEM)] movdqa xmm7, XMMWORD [XMMBLOCK(3,0,rsi,SIZEOF_DCTELEM)] movdqa xmm0, xmm4 movdqa xmm1, xmm5 movdqa xmm2, xmm6 movdqa xmm3, xmm7 psraw xmm4, (WORD_BIT-1) psraw xmm5, (WORD_BIT-1) psraw xmm6, (WORD_BIT-1) psraw xmm7, (WORD_BIT-1) pxor xmm0, xmm4 pxor xmm1, xmm5 pxor xmm2, xmm6 pxor xmm3, xmm7 psubw xmm0, xmm4 ; if (xmm0 < 0) xmm0 = -xmm0; psubw xmm1, xmm5 ; if (xmm1 < 0) xmm1 = -xmm1; psubw xmm2, xmm6 ; if (xmm2 < 0) xmm2 = -xmm2; psubw xmm3, xmm7 ; if (xmm3 < 0) xmm3 = -xmm3; paddw xmm0, XMMWORD [CORRECTION(0,0,rdx)] ; correction + roundfactor paddw xmm1, XMMWORD [CORRECTION(1,0,rdx)] paddw xmm2, XMMWORD [CORRECTION(2,0,rdx)] paddw xmm3, XMMWORD [CORRECTION(3,0,rdx)] pmulhuw xmm0, XMMWORD [RECIPROCAL(0,0,rdx)] ; reciprocal pmulhuw xmm1, XMMWORD [RECIPROCAL(1,0,rdx)] pmulhuw xmm2, XMMWORD [RECIPROCAL(2,0,rdx)] pmulhuw xmm3, XMMWORD [RECIPROCAL(3,0,rdx)] pmulhuw xmm0, XMMWORD [SCALE(0,0,rdx)] ; scale pmulhuw xmm1, XMMWORD [SCALE(1,0,rdx)] pmulhuw xmm2, XMMWORD [SCALE(2,0,rdx)] pmulhuw xmm3, XMMWORD [SCALE(3,0,rdx)] pxor xmm0, xmm4 pxor xmm1, xmm5 pxor xmm2, xmm6 pxor xmm3, xmm7 psubw xmm0, xmm4 psubw xmm1, xmm5 psubw xmm2, xmm6 psubw xmm3, xmm7 movdqa XMMWORD [XMMBLOCK(0,0,rdi,SIZEOF_DCTELEM)], xmm0 movdqa XMMWORD [XMMBLOCK(1,0,rdi,SIZEOF_DCTELEM)], xmm1 movdqa XMMWORD [XMMBLOCK(2,0,rdi,SIZEOF_DCTELEM)], xmm2 movdqa XMMWORD [XMMBLOCK(3,0,rdi,SIZEOF_DCTELEM)], xmm3 add rsi, byte 32*SIZEOF_DCTELEM add rdx, byte 32*SIZEOF_DCTELEM add rdi, byte 32*SIZEOF_JCOEF dec rax jnz near .quantloop uncollect_args 3 pop rbp ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/simd/x86_64/jsimd.c000066400000000000000000000645401436506551100174470ustar00rootroot00000000000000/* * jsimd_x86_64.c * * Copyright 2009 Pierre Ossman for Cendio AB * Copyright (C) 2009-2011, 2014, 2016, 2018, 2022, D. R. Commander. * Copyright (C) 2015-2016, 2018, 2022, Matthieu Darbois. * * Based on the x86 SIMD extension for IJG JPEG library, * Copyright (C) 1999-2006, MIYASAKA Masaru. * For conditions of distribution and use, see copyright notice in jsimdext.inc * * This file contains the interface between the "normal" portions * of the library and the SIMD implementations when running on a * 64-bit x86 architecture. */ #define JPEG_INTERNALS #include "../../jinclude.h" #include "../../jpeglib.h" #include "../../jsimd.h" #include "../../jdct.h" #include "../../jsimddct.h" #include "../jsimd.h" /* * In the PIC cases, we have no guarantee that constants will keep * their alignment. This macro allows us to verify it at runtime. */ #define IS_ALIGNED(ptr, order) (((size_t)ptr & ((1 << order) - 1)) == 0) #define IS_ALIGNED_SSE(ptr) (IS_ALIGNED(ptr, 4)) /* 16 byte alignment */ #define IS_ALIGNED_AVX(ptr) (IS_ALIGNED(ptr, 5)) /* 32 byte alignment */ static THREAD_LOCAL unsigned int simd_support = (unsigned int)(~0); static THREAD_LOCAL unsigned int simd_huffman = 1; /* * Check what SIMD accelerations are supported. */ LOCAL(void) init_simd(void) { #ifndef NO_GETENV char env[2] = { 0 }; #endif if (simd_support != ~0U) return; simd_support = jpeg_simd_cpu_support(); #ifndef NO_GETENV /* Force different settings through environment variables */ if (!GETENV_S(env, 2, "JSIMD_FORCESSE2") && !strcmp(env, "1")) simd_support &= JSIMD_SSE2; if (!GETENV_S(env, 2, "JSIMD_FORCEAVX2") && !strcmp(env, "1")) simd_support &= JSIMD_AVX2; if (!GETENV_S(env, 2, "JSIMD_FORCENONE") && !strcmp(env, "1")) simd_support = 0; if (!GETENV_S(env, 2, "JSIMD_NOHUFFENC") && !strcmp(env, "1")) simd_huffman = 0; #endif } GLOBAL(int) jsimd_can_rgb_ycc(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if ((RGB_PIXELSIZE != 3) && (RGB_PIXELSIZE != 4)) return 0; if ((simd_support & JSIMD_AVX2) && IS_ALIGNED_AVX(jconst_rgb_ycc_convert_avx2)) return 1; if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_rgb_ycc_convert_sse2)) return 1; return 0; } GLOBAL(int) jsimd_can_rgb_gray(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if ((RGB_PIXELSIZE != 3) && (RGB_PIXELSIZE != 4)) return 0; if ((simd_support & JSIMD_AVX2) && IS_ALIGNED_AVX(jconst_rgb_gray_convert_avx2)) return 1; if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_rgb_gray_convert_sse2)) return 1; return 0; } GLOBAL(int) jsimd_can_ycc_rgb(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if ((RGB_PIXELSIZE != 3) && (RGB_PIXELSIZE != 4)) return 0; if ((simd_support & JSIMD_AVX2) && IS_ALIGNED_AVX(jconst_ycc_rgb_convert_avx2)) return 1; if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_ycc_rgb_convert_sse2)) return 1; return 0; } GLOBAL(int) jsimd_can_ycc_rgb565(void) { return 0; } GLOBAL(void) jsimd_rgb_ycc_convert(j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { void (*avx2fct) (JDIMENSION, JSAMPARRAY, JSAMPIMAGE, JDIMENSION, int); void (*sse2fct) (JDIMENSION, JSAMPARRAY, JSAMPIMAGE, JDIMENSION, int); switch (cinfo->in_color_space) { case JCS_EXT_RGB: avx2fct = jsimd_extrgb_ycc_convert_avx2; sse2fct = jsimd_extrgb_ycc_convert_sse2; break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: avx2fct = jsimd_extrgbx_ycc_convert_avx2; sse2fct = jsimd_extrgbx_ycc_convert_sse2; break; case JCS_EXT_BGR: avx2fct = jsimd_extbgr_ycc_convert_avx2; sse2fct = jsimd_extbgr_ycc_convert_sse2; break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: avx2fct = jsimd_extbgrx_ycc_convert_avx2; sse2fct = jsimd_extbgrx_ycc_convert_sse2; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: avx2fct = jsimd_extxbgr_ycc_convert_avx2; sse2fct = jsimd_extxbgr_ycc_convert_sse2; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: avx2fct = jsimd_extxrgb_ycc_convert_avx2; sse2fct = jsimd_extxrgb_ycc_convert_sse2; break; default: avx2fct = jsimd_rgb_ycc_convert_avx2; sse2fct = jsimd_rgb_ycc_convert_sse2; break; } if (simd_support & JSIMD_AVX2) avx2fct(cinfo->image_width, input_buf, output_buf, output_row, num_rows); else sse2fct(cinfo->image_width, input_buf, output_buf, output_row, num_rows); } GLOBAL(void) jsimd_rgb_gray_convert(j_compress_ptr cinfo, JSAMPARRAY input_buf, JSAMPIMAGE output_buf, JDIMENSION output_row, int num_rows) { void (*avx2fct) (JDIMENSION, JSAMPARRAY, JSAMPIMAGE, JDIMENSION, int); void (*sse2fct) (JDIMENSION, JSAMPARRAY, JSAMPIMAGE, JDIMENSION, int); switch (cinfo->in_color_space) { case JCS_EXT_RGB: avx2fct = jsimd_extrgb_gray_convert_avx2; sse2fct = jsimd_extrgb_gray_convert_sse2; break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: avx2fct = jsimd_extrgbx_gray_convert_avx2; sse2fct = jsimd_extrgbx_gray_convert_sse2; break; case JCS_EXT_BGR: avx2fct = jsimd_extbgr_gray_convert_avx2; sse2fct = jsimd_extbgr_gray_convert_sse2; break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: avx2fct = jsimd_extbgrx_gray_convert_avx2; sse2fct = jsimd_extbgrx_gray_convert_sse2; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: avx2fct = jsimd_extxbgr_gray_convert_avx2; sse2fct = jsimd_extxbgr_gray_convert_sse2; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: avx2fct = jsimd_extxrgb_gray_convert_avx2; sse2fct = jsimd_extxrgb_gray_convert_sse2; break; default: avx2fct = jsimd_rgb_gray_convert_avx2; sse2fct = jsimd_rgb_gray_convert_sse2; break; } if (simd_support & JSIMD_AVX2) avx2fct(cinfo->image_width, input_buf, output_buf, output_row, num_rows); else sse2fct(cinfo->image_width, input_buf, output_buf, output_row, num_rows); } GLOBAL(void) jsimd_ycc_rgb_convert(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { void (*avx2fct) (JDIMENSION, JSAMPIMAGE, JDIMENSION, JSAMPARRAY, int); void (*sse2fct) (JDIMENSION, JSAMPIMAGE, JDIMENSION, JSAMPARRAY, int); switch (cinfo->out_color_space) { case JCS_EXT_RGB: avx2fct = jsimd_ycc_extrgb_convert_avx2; sse2fct = jsimd_ycc_extrgb_convert_sse2; break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: avx2fct = jsimd_ycc_extrgbx_convert_avx2; sse2fct = jsimd_ycc_extrgbx_convert_sse2; break; case JCS_EXT_BGR: avx2fct = jsimd_ycc_extbgr_convert_avx2; sse2fct = jsimd_ycc_extbgr_convert_sse2; break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: avx2fct = jsimd_ycc_extbgrx_convert_avx2; sse2fct = jsimd_ycc_extbgrx_convert_sse2; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: avx2fct = jsimd_ycc_extxbgr_convert_avx2; sse2fct = jsimd_ycc_extxbgr_convert_sse2; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: avx2fct = jsimd_ycc_extxrgb_convert_avx2; sse2fct = jsimd_ycc_extxrgb_convert_sse2; break; default: avx2fct = jsimd_ycc_rgb_convert_avx2; sse2fct = jsimd_ycc_rgb_convert_sse2; break; } if (simd_support & JSIMD_AVX2) avx2fct(cinfo->output_width, input_buf, input_row, output_buf, num_rows); else sse2fct(cinfo->output_width, input_buf, input_row, output_buf, num_rows); } GLOBAL(void) jsimd_ycc_rgb565_convert(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION input_row, JSAMPARRAY output_buf, int num_rows) { } GLOBAL(int) jsimd_can_h2v2_downsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_AVX2) return 1; if (simd_support & JSIMD_SSE2) return 1; return 0; } GLOBAL(int) jsimd_can_h2v1_downsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_AVX2) return 1; if (simd_support & JSIMD_SSE2) return 1; return 0; } GLOBAL(void) jsimd_h2v2_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY output_data) { if (simd_support & JSIMD_AVX2) jsimd_h2v2_downsample_avx2(cinfo->image_width, cinfo->max_v_samp_factor, compptr->v_samp_factor, compptr->width_in_blocks, input_data, output_data); else jsimd_h2v2_downsample_sse2(cinfo->image_width, cinfo->max_v_samp_factor, compptr->v_samp_factor, compptr->width_in_blocks, input_data, output_data); } GLOBAL(void) jsimd_h2v1_downsample(j_compress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY output_data) { if (simd_support & JSIMD_AVX2) jsimd_h2v1_downsample_avx2(cinfo->image_width, cinfo->max_v_samp_factor, compptr->v_samp_factor, compptr->width_in_blocks, input_data, output_data); else jsimd_h2v1_downsample_sse2(cinfo->image_width, cinfo->max_v_samp_factor, compptr->v_samp_factor, compptr->width_in_blocks, input_data, output_data); } GLOBAL(int) jsimd_can_h2v2_upsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_AVX2) return 1; if (simd_support & JSIMD_SSE2) return 1; return 0; } GLOBAL(int) jsimd_can_h2v1_upsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (simd_support & JSIMD_AVX2) return 1; if (simd_support & JSIMD_SSE2) return 1; return 0; } GLOBAL(void) jsimd_h2v2_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { if (simd_support & JSIMD_AVX2) jsimd_h2v2_upsample_avx2(cinfo->max_v_samp_factor, cinfo->output_width, input_data, output_data_ptr); else jsimd_h2v2_upsample_sse2(cinfo->max_v_samp_factor, cinfo->output_width, input_data, output_data_ptr); } GLOBAL(void) jsimd_h2v1_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { if (simd_support & JSIMD_AVX2) jsimd_h2v1_upsample_avx2(cinfo->max_v_samp_factor, cinfo->output_width, input_data, output_data_ptr); else jsimd_h2v1_upsample_sse2(cinfo->max_v_samp_factor, cinfo->output_width, input_data, output_data_ptr); } GLOBAL(int) jsimd_can_h2v2_fancy_upsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if ((simd_support & JSIMD_AVX2) && IS_ALIGNED_AVX(jconst_fancy_upsample_avx2)) return 1; if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_fancy_upsample_sse2)) return 1; return 0; } GLOBAL(int) jsimd_can_h2v1_fancy_upsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if ((simd_support & JSIMD_AVX2) && IS_ALIGNED_AVX(jconst_fancy_upsample_avx2)) return 1; if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_fancy_upsample_sse2)) return 1; return 0; } GLOBAL(void) jsimd_h2v2_fancy_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { if (simd_support & JSIMD_AVX2) jsimd_h2v2_fancy_upsample_avx2(cinfo->max_v_samp_factor, compptr->downsampled_width, input_data, output_data_ptr); else jsimd_h2v2_fancy_upsample_sse2(cinfo->max_v_samp_factor, compptr->downsampled_width, input_data, output_data_ptr); } GLOBAL(void) jsimd_h2v1_fancy_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr, JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr) { if (simd_support & JSIMD_AVX2) jsimd_h2v1_fancy_upsample_avx2(cinfo->max_v_samp_factor, compptr->downsampled_width, input_data, output_data_ptr); else jsimd_h2v1_fancy_upsample_sse2(cinfo->max_v_samp_factor, compptr->downsampled_width, input_data, output_data_ptr); } GLOBAL(int) jsimd_can_h2v2_merged_upsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if ((simd_support & JSIMD_AVX2) && IS_ALIGNED_AVX(jconst_merged_upsample_avx2)) return 1; if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_merged_upsample_sse2)) return 1; return 0; } GLOBAL(int) jsimd_can_h2v1_merged_upsample(void) { init_simd(); /* The code is optimised for these values only */ if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if ((simd_support & JSIMD_AVX2) && IS_ALIGNED_AVX(jconst_merged_upsample_avx2)) return 1; if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_merged_upsample_sse2)) return 1; return 0; } GLOBAL(void) jsimd_h2v2_merged_upsample(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { void (*avx2fct) (JDIMENSION, JSAMPIMAGE, JDIMENSION, JSAMPARRAY); void (*sse2fct) (JDIMENSION, JSAMPIMAGE, JDIMENSION, JSAMPARRAY); switch (cinfo->out_color_space) { case JCS_EXT_RGB: avx2fct = jsimd_h2v2_extrgb_merged_upsample_avx2; sse2fct = jsimd_h2v2_extrgb_merged_upsample_sse2; break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: avx2fct = jsimd_h2v2_extrgbx_merged_upsample_avx2; sse2fct = jsimd_h2v2_extrgbx_merged_upsample_sse2; break; case JCS_EXT_BGR: avx2fct = jsimd_h2v2_extbgr_merged_upsample_avx2; sse2fct = jsimd_h2v2_extbgr_merged_upsample_sse2; break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: avx2fct = jsimd_h2v2_extbgrx_merged_upsample_avx2; sse2fct = jsimd_h2v2_extbgrx_merged_upsample_sse2; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: avx2fct = jsimd_h2v2_extxbgr_merged_upsample_avx2; sse2fct = jsimd_h2v2_extxbgr_merged_upsample_sse2; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: avx2fct = jsimd_h2v2_extxrgb_merged_upsample_avx2; sse2fct = jsimd_h2v2_extxrgb_merged_upsample_sse2; break; default: avx2fct = jsimd_h2v2_merged_upsample_avx2; sse2fct = jsimd_h2v2_merged_upsample_sse2; break; } if (simd_support & JSIMD_AVX2) avx2fct(cinfo->output_width, input_buf, in_row_group_ctr, output_buf); else sse2fct(cinfo->output_width, input_buf, in_row_group_ctr, output_buf); } GLOBAL(void) jsimd_h2v1_merged_upsample(j_decompress_ptr cinfo, JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf) { void (*avx2fct) (JDIMENSION, JSAMPIMAGE, JDIMENSION, JSAMPARRAY); void (*sse2fct) (JDIMENSION, JSAMPIMAGE, JDIMENSION, JSAMPARRAY); switch (cinfo->out_color_space) { case JCS_EXT_RGB: avx2fct = jsimd_h2v1_extrgb_merged_upsample_avx2; sse2fct = jsimd_h2v1_extrgb_merged_upsample_sse2; break; case JCS_EXT_RGBX: case JCS_EXT_RGBA: avx2fct = jsimd_h2v1_extrgbx_merged_upsample_avx2; sse2fct = jsimd_h2v1_extrgbx_merged_upsample_sse2; break; case JCS_EXT_BGR: avx2fct = jsimd_h2v1_extbgr_merged_upsample_avx2; sse2fct = jsimd_h2v1_extbgr_merged_upsample_sse2; break; case JCS_EXT_BGRX: case JCS_EXT_BGRA: avx2fct = jsimd_h2v1_extbgrx_merged_upsample_avx2; sse2fct = jsimd_h2v1_extbgrx_merged_upsample_sse2; break; case JCS_EXT_XBGR: case JCS_EXT_ABGR: avx2fct = jsimd_h2v1_extxbgr_merged_upsample_avx2; sse2fct = jsimd_h2v1_extxbgr_merged_upsample_sse2; break; case JCS_EXT_XRGB: case JCS_EXT_ARGB: avx2fct = jsimd_h2v1_extxrgb_merged_upsample_avx2; sse2fct = jsimd_h2v1_extxrgb_merged_upsample_sse2; break; default: avx2fct = jsimd_h2v1_merged_upsample_avx2; sse2fct = jsimd_h2v1_merged_upsample_sse2; break; } if (simd_support & JSIMD_AVX2) avx2fct(cinfo->output_width, input_buf, in_row_group_ctr, output_buf); else sse2fct(cinfo->output_width, input_buf, in_row_group_ctr, output_buf); } GLOBAL(int) jsimd_can_convsamp(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(DCTELEM) != 2) return 0; if (simd_support & JSIMD_AVX2) return 1; if (simd_support & JSIMD_SSE2) return 1; return 0; } GLOBAL(int) jsimd_can_convsamp_float(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(FAST_FLOAT) != 4) return 0; if (simd_support & JSIMD_SSE2) return 1; return 0; } GLOBAL(void) jsimd_convsamp(JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM *workspace) { if (simd_support & JSIMD_AVX2) jsimd_convsamp_avx2(sample_data, start_col, workspace); else jsimd_convsamp_sse2(sample_data, start_col, workspace); } GLOBAL(void) jsimd_convsamp_float(JSAMPARRAY sample_data, JDIMENSION start_col, FAST_FLOAT *workspace) { jsimd_convsamp_float_sse2(sample_data, start_col, workspace); } GLOBAL(int) jsimd_can_fdct_islow(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(DCTELEM) != 2) return 0; if ((simd_support & JSIMD_AVX2) && IS_ALIGNED_AVX(jconst_fdct_islow_avx2)) return 1; if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_fdct_islow_sse2)) return 1; return 0; } GLOBAL(int) jsimd_can_fdct_ifast(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(DCTELEM) != 2) return 0; if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_fdct_ifast_sse2)) return 1; return 0; } GLOBAL(int) jsimd_can_fdct_float(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(FAST_FLOAT) != 4) return 0; if ((simd_support & JSIMD_SSE) && IS_ALIGNED_SSE(jconst_fdct_float_sse)) return 1; return 0; } GLOBAL(void) jsimd_fdct_islow(DCTELEM *data) { if (simd_support & JSIMD_AVX2) jsimd_fdct_islow_avx2(data); else jsimd_fdct_islow_sse2(data); } GLOBAL(void) jsimd_fdct_ifast(DCTELEM *data) { jsimd_fdct_ifast_sse2(data); } GLOBAL(void) jsimd_fdct_float(FAST_FLOAT *data) { jsimd_fdct_float_sse(data); } GLOBAL(int) jsimd_can_quantize(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (sizeof(DCTELEM) != 2) return 0; if (simd_support & JSIMD_AVX2) return 1; if (simd_support & JSIMD_SSE2) return 1; return 0; } GLOBAL(int) jsimd_can_quantize_float(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (sizeof(FAST_FLOAT) != 4) return 0; if (simd_support & JSIMD_SSE2) return 1; return 0; } GLOBAL(void) jsimd_quantize(JCOEFPTR coef_block, DCTELEM *divisors, DCTELEM *workspace) { if (simd_support & JSIMD_AVX2) jsimd_quantize_avx2(coef_block, divisors, workspace); else jsimd_quantize_sse2(coef_block, divisors, workspace); } GLOBAL(void) jsimd_quantize_float(JCOEFPTR coef_block, FAST_FLOAT *divisors, FAST_FLOAT *workspace) { jsimd_quantize_float_sse2(coef_block, divisors, workspace); } GLOBAL(int) jsimd_can_idct_2x2(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(ISLOW_MULT_TYPE) != 2) return 0; if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_idct_red_sse2)) return 1; return 0; } GLOBAL(int) jsimd_can_idct_4x4(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(ISLOW_MULT_TYPE) != 2) return 0; if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_idct_red_sse2)) return 1; return 0; } GLOBAL(void) jsimd_idct_2x2(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { jsimd_idct_2x2_sse2(compptr->dct_table, coef_block, output_buf, output_col); } GLOBAL(void) jsimd_idct_4x4(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { jsimd_idct_4x4_sse2(compptr->dct_table, coef_block, output_buf, output_col); } GLOBAL(int) jsimd_can_idct_islow(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(ISLOW_MULT_TYPE) != 2) return 0; if ((simd_support & JSIMD_AVX2) && IS_ALIGNED_AVX(jconst_idct_islow_avx2)) return 1; if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_idct_islow_sse2)) return 1; return 0; } GLOBAL(int) jsimd_can_idct_ifast(void) { init_simd(); /* The code is optimised for these values only */ if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(IFAST_MULT_TYPE) != 2) return 0; if (IFAST_SCALE_BITS != 2) return 0; if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_idct_ifast_sse2)) return 1; return 0; } GLOBAL(int) jsimd_can_idct_float(void) { init_simd(); if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (BITS_IN_JSAMPLE != 8) return 0; if (sizeof(JDIMENSION) != 4) return 0; if (sizeof(FAST_FLOAT) != 4) return 0; if (sizeof(FLOAT_MULT_TYPE) != 4) return 0; if ((simd_support & JSIMD_SSE2) && IS_ALIGNED_SSE(jconst_idct_float_sse2)) return 1; return 0; } GLOBAL(void) jsimd_idct_islow(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { if (simd_support & JSIMD_AVX2) jsimd_idct_islow_avx2(compptr->dct_table, coef_block, output_buf, output_col); else jsimd_idct_islow_sse2(compptr->dct_table, coef_block, output_buf, output_col); } GLOBAL(void) jsimd_idct_ifast(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { jsimd_idct_ifast_sse2(compptr->dct_table, coef_block, output_buf, output_col); } GLOBAL(void) jsimd_idct_float(j_decompress_ptr cinfo, jpeg_component_info *compptr, JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) { jsimd_idct_float_sse2(compptr->dct_table, coef_block, output_buf, output_col); } GLOBAL(int) jsimd_can_huff_encode_one_block(void) { init_simd(); if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if ((simd_support & JSIMD_SSE2) && simd_huffman && IS_ALIGNED_SSE(jconst_huff_encode_one_block)) return 1; return 0; } GLOBAL(JOCTET *) jsimd_huff_encode_one_block(void *state, JOCTET *buffer, JCOEFPTR block, int last_dc_val, c_derived_tbl *dctbl, c_derived_tbl *actbl) { return jsimd_huff_encode_one_block_sse2(state, buffer, block, last_dc_val, dctbl, actbl); } GLOBAL(int) jsimd_can_encode_mcu_AC_first_prepare(void) { init_simd(); if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (simd_support & JSIMD_SSE2) return 1; return 0; } GLOBAL(void) jsimd_encode_mcu_AC_first_prepare(const JCOEF *block, const int *jpeg_natural_order_start, int Sl, int Al, UJCOEF *values, size_t *zerobits) { jsimd_encode_mcu_AC_first_prepare_sse2(block, jpeg_natural_order_start, Sl, Al, values, zerobits); } GLOBAL(int) jsimd_can_encode_mcu_AC_refine_prepare(void) { init_simd(); if (DCTSIZE != 8) return 0; if (sizeof(JCOEF) != 2) return 0; if (simd_support & JSIMD_SSE2) return 1; return 0; } GLOBAL(int) jsimd_encode_mcu_AC_refine_prepare(const JCOEF *block, const int *jpeg_natural_order_start, int Sl, int Al, UJCOEF *absvalues, size_t *bits) { return jsimd_encode_mcu_AC_refine_prepare_sse2(block, jpeg_natural_order_start, Sl, Al, absvalues, bits); } libjpeg-turbo-2.1.5/simd/x86_64/jsimdcpu.asm000066400000000000000000000046111436506551100205060ustar00rootroot00000000000000; ; jsimdcpu.asm - SIMD instruction support check ; ; Copyright 2009 Pierre Ossman for Cendio AB ; Copyright (C) 2016, D. R. Commander. ; ; Based on ; x86 SIMD extension for IJG JPEG library ; Copyright (C) 1999-2006, MIYASAKA Masaru. ; For conditions of distribution and use, see copyright notice in jsimdext.inc ; ; This file should be assembled with NASM (Netwide Assembler), ; can *not* be assembled with Microsoft's MASM or any compatible ; assembler (including Borland's Turbo Assembler). ; NASM is available from http://nasm.sourceforge.net/ or ; http://sourceforge.net/project/showfiles.php?group_id=6208 %include "jsimdext.inc" ; -------------------------------------------------------------------------- SECTION SEG_TEXT BITS 64 ; ; Check if the CPU supports SIMD instructions ; ; GLOBAL(unsigned int) ; jpeg_simd_cpu_support(void) ; align 32 GLOBAL_FUNCTION(jpeg_simd_cpu_support) EXTN(jpeg_simd_cpu_support): push rbx push rdi xor rdi, rdi ; simd support flag ; Assume that all x86-64 processors support SSE & SSE2 instructions or rdi, JSIMD_SSE2 or rdi, JSIMD_SSE ; Check whether CPUID leaf 07H is supported ; (leaf 07H is used to check for AVX2 instruction support) mov rax, 0 cpuid cmp rax, 7 jl short .return ; Maximum leaf < 07H ; Check for AVX2 instruction support mov rax, 7 xor rcx, rcx cpuid mov rax, rbx ; rax = Extended feature flags test rax, 1<<5 ; bit5:AVX2 jz short .return ; Check for AVX2 O/S support mov rax, 1 xor rcx, rcx cpuid test rcx, 1<<27 jz short .return ; O/S does not support XSAVE test rcx, 1<<28 jz short .return ; CPU does not support AVX2 xor rcx, rcx xgetbv and rax, 6 cmp rax, 6 ; O/S does not manage XMM/YMM state ; using XSAVE jnz short .return or rdi, JSIMD_AVX2 .return: mov rax, rdi pop rdi pop rbx ret ; For some reason, the OS X linker does not honor the request to align the ; segment unless we do this. align 32 libjpeg-turbo-2.1.5/strtest.c000066400000000000000000000106621436506551100161530ustar00rootroot00000000000000/* * Copyright (C)2022 D. R. Commander. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include "jinclude.h" #include #define CHECK_VALUE(actual, expected, desc) \ if (actual != expected) { \ printf("ERROR in line %d: " desc " is %d, should be %d\n", \ __LINE__, actual, expected); \ return -1; \ } #define CHECK_ERRNO(errno_return, expected_errno) \ CHECK_VALUE(errno_return, expected_errno, "Return value") \ CHECK_VALUE(errno, expected_errno, "errno") \ #ifdef _MSC_VER void invalid_parameter_handler(const wchar_t *expression, const wchar_t *function, const wchar_t *file, unsigned int line, uintptr_t pReserved) { } #endif int main(int argc, char **argv) { int err; char env[3]; #ifdef _MSC_VER _set_invalid_parameter_handler(invalid_parameter_handler); #endif /***************************************************************************/ #ifndef NO_PUTENV printf("PUTENV_S():\n"); errno = 0; err = PUTENV_S(NULL, "12"); CHECK_ERRNO(err, EINVAL); errno = 0; err = PUTENV_S("TESTENV", NULL); CHECK_ERRNO(err, EINVAL); errno = 0; err = PUTENV_S("TESTENV", "12"); CHECK_ERRNO(err, 0); printf("SUCCESS!\n\n"); #endif /***************************************************************************/ #ifndef NO_GETENV printf("GETENV_S():\n"); errno = 0; env[0] = 1; env[1] = 2; env[2] = 3; err = GETENV_S(env, 3, NULL); CHECK_ERRNO(err, 0); CHECK_VALUE(env[0], 0, "env[0]"); CHECK_VALUE(env[1], 2, "env[1]"); CHECK_VALUE(env[2], 3, "env[2]"); errno = 0; env[0] = 1; env[1] = 2; env[2] = 3; err = GETENV_S(env, 3, "TESTENV2"); CHECK_ERRNO(err, 0); CHECK_VALUE(env[0], 0, "env[0]"); CHECK_VALUE(env[1], 2, "env[1]"); CHECK_VALUE(env[2], 3, "env[2]"); errno = 0; err = GETENV_S(NULL, 3, "TESTENV"); CHECK_ERRNO(err, EINVAL); errno = 0; err = GETENV_S(NULL, 0, "TESTENV"); CHECK_ERRNO(err, 0); errno = 0; env[0] = 1; err = GETENV_S(env, 0, "TESTENV"); CHECK_ERRNO(err, EINVAL); CHECK_VALUE(env[0], 1, "env[0]"); errno = 0; env[0] = 1; env[1] = 2; env[2] = 3; err = GETENV_S(env, 1, "TESTENV"); CHECK_VALUE(err, ERANGE, "Return value"); CHECK_VALUE(errno, 0, "errno"); CHECK_VALUE(env[0], 0, "env[0]"); CHECK_VALUE(env[1], 2, "env[1]"); CHECK_VALUE(env[2], 3, "env[2]"); errno = 0; env[0] = 1; env[1] = 2; env[2] = 3; err = GETENV_S(env, 2, "TESTENV"); CHECK_VALUE(err, ERANGE, "Return value"); CHECK_VALUE(errno, 0, "errno"); CHECK_VALUE(env[0], 0, "env[0]"); CHECK_VALUE(env[1], 2, "env[1]"); CHECK_VALUE(env[2], 3, "env[2]"); errno = 0; env[0] = 1; env[1] = 2; env[2] = 3; err = GETENV_S(env, 3, "TESTENV"); CHECK_ERRNO(err, 0); CHECK_VALUE(env[0], '1', "env[0]"); CHECK_VALUE(env[1], '2', "env[1]"); CHECK_VALUE(env[2], 0, "env[2]"); printf("SUCCESS!\n\n"); #endif /***************************************************************************/ return 0; } libjpeg-turbo-2.1.5/structure.txt000066400000000000000000001404171436506551100171020ustar00rootroot00000000000000IJG JPEG LIBRARY: SYSTEM ARCHITECTURE This file was part of the Independent JPEG Group's software: Copyright (C) 1991-2012, Thomas G. Lane, Guido Vollbeding. It was modified by The libjpeg-turbo Project to include only information relevant to libjpeg-turbo. For conditions of distribution and use, see the accompanying README.ijg file. This file provides an overview of the architecture of the IJG JPEG software; that is, the functions of the various modules in the system and the interfaces between modules. For more precise details about any data structure or calling convention, see the include files and comments in the source code. We assume that the reader is already somewhat familiar with the JPEG standard. The README.ijg file includes references for learning about JPEG. The file libjpeg.txt describes the library from the viewpoint of an application programmer using the library; it's best to read that file before this one. Also, the file coderules.txt describes the coding style conventions we use. In this document, JPEG-specific terminology follows the JPEG standard: A "component" means a color channel, e.g., Red or Luminance. A "sample" is a single component value (i.e., one number in the image data). A "coefficient" is a frequency coefficient (a DCT transform output number). A "block" is an 8x8 group of samples or coefficients. An "MCU" (minimum coded unit) is an interleaved set of blocks of size determined by the sampling factors, or a single block in a noninterleaved scan. We do not use the terms "pixel" and "sample" interchangeably. When we say pixel, we mean an element of the full-size image, while a sample is an element of the downsampled image. Thus the number of samples may vary across components while the number of pixels does not. (This terminology is not used rigorously throughout the code, but it is used in places where confusion would otherwise result.) *** System features *** The IJG distribution contains two parts: * A subroutine library for JPEG compression and decompression. * cjpeg/djpeg, two sample applications that use the library to transform JFIF JPEG files to and from several other image formats. cjpeg/djpeg are of no great intellectual complexity: they merely add a simple command-line user interface and I/O routines for several uncompressed image formats. This document concentrates on the library itself. We desire the library to be capable of supporting all JPEG baseline, extended sequential, and progressive DCT processes. Hierarchical processes are not supported. The library does not support the lossless (spatial) JPEG process. Lossless JPEG shares little or no code with lossy JPEG, and would normally be used without the extensive pre- and post-processing provided by this library. We feel that lossless JPEG is better handled by a separate library. Within these limits, any set of compression parameters allowed by the JPEG spec should be readable for decompression. (We can be more restrictive about what formats we can generate.) Although the system design allows for all parameter values, some uncommon settings are not yet implemented and may never be; nonintegral sampling ratios are the prime example. Furthermore, we treat 8-bit vs. 12-bit data precision as a compile-time switch, not a run-time option, because most machines can store 8-bit pixels much more compactly than 12-bit. By itself, the library handles only interchange JPEG datastreams --- in particular the widely used JFIF file format. The library can be used by surrounding code to process interchange or abbreviated JPEG datastreams that are embedded in more complex file formats. (For example, libtiff uses this library to implement JPEG compression within the TIFF file format.) The library includes a substantial amount of code that is not covered by the JPEG standard but is necessary for typical applications of JPEG. These functions preprocess the image before JPEG compression or postprocess it after decompression. They include colorspace conversion, downsampling/upsampling, and color quantization. This code can be omitted if not needed. A wide range of quality vs. speed tradeoffs are possible in JPEG processing, and even more so in decompression postprocessing. The decompression library provides multiple implementations that cover most of the useful tradeoffs, ranging from very-high-quality down to fast-preview operation. On the compression side we have generally not provided low-quality choices, since compression is normally less time-critical. It should be understood that the low-quality modes may not meet the JPEG standard's accuracy requirements; nonetheless, they are useful for viewers. *** System overview *** The compressor and decompressor are each divided into two main sections: the JPEG compressor or decompressor proper, and the preprocessing or postprocessing functions. The interface between these two sections is the image data that Rec. ITU-T T.81 | ISO/IEC 10918-1 regards as its input or output: this data is in the colorspace to be used for compression, and it is downsampled to the sampling factors to be used. The preprocessing and postprocessing steps are responsible for converting a normal image representation to or from this form. (Those few applications that want to deal with YCbCr downsampled data can skip the preprocessing or postprocessing step.) Looking more closely, the compressor library contains the following main elements: Preprocessing: * Color space conversion (e.g., RGB to YCbCr). * Edge expansion and downsampling. Optionally, this step can do simple smoothing --- this is often helpful for low-quality source data. JPEG proper: * MCU assembly, DCT, quantization. * Entropy coding (sequential or progressive, Huffman or arithmetic). In addition to these modules we need overall control, marker generation, and support code (memory management & error handling). There is also a module responsible for physically writing the output data --- typically this is just an interface to fwrite(), but some applications may need to do something else with the data. The decompressor library contains the following main elements: JPEG proper: * Entropy decoding (sequential or progressive, Huffman or arithmetic). * Dequantization, inverse DCT, MCU disassembly. Postprocessing: * Upsampling. Optionally, this step may be able to do more general rescaling of the image. * Color space conversion (e.g., YCbCr to RGB). This step may also provide gamma adjustment [ currently it does not ]. * Optional color quantization (e.g., reduction to 256 colors). * Optional color precision reduction (e.g., 24-bit to 15-bit color). [This feature is not currently implemented.] We also need overall control, marker parsing, and a data source module. The support code (memory management & error handling) can be shared with the compression half of the library. There may be several implementations of each of these elements, particularly in the decompressor, where a wide range of speed/quality tradeoffs is very useful. It must be understood that some of the best speedups involve merging adjacent steps in the pipeline. For example, upsampling, color space conversion, and color quantization might all be done at once when using a low-quality ordered-dither technique. The system architecture is designed to allow such merging where appropriate. Note: it is convenient to regard edge expansion (padding to block boundaries) as a preprocessing/postprocessing function, even though Rec. ITU-T T.81 | ISO/IEC 10918-1 includes it in compression/decompression. We do this because downsampling/upsampling can be simplified a little if they work on padded data: it's not necessary to have special cases at the right and bottom edges. Therefore the interface buffer is always an integral number of blocks wide and high, and we expect compression preprocessing to pad the source data properly. Padding will occur only to the next block (8-sample) boundary. In an interleaved-scan situation, additional dummy blocks may be used to fill out MCUs, but the MCU assembly and disassembly logic will create or discard these blocks internally. (This is advantageous for speed reasons, since we avoid DCTing the dummy blocks. It also permits a small reduction in file size, because the compressor can choose dummy block contents so as to minimize their size in compressed form. Finally, it makes the interface buffer specification independent of whether the file is actually interleaved or not.) Applications that wish to deal directly with the downsampled data must provide similar buffering and padding for odd-sized images. *** Poor man's object-oriented programming *** It should be clear by now that we have a lot of quasi-independent processing steps, many of which have several possible behaviors. To avoid cluttering the code with lots of switch statements, we use a simple form of object-style programming to separate out the different possibilities. For example, two different color quantization algorithms could be implemented as two separate modules that present the same external interface; at runtime, the calling code will access the proper module indirectly through an "object". We can get the limited features we need while staying within portable C. The basic tool is a function pointer. An "object" is just a struct containing one or more function pointer fields, each of which corresponds to a method name in real object-oriented languages. During initialization we fill in the function pointers with references to whichever module we have determined we need to use in this run. Then invocation of the module is done by indirecting through a function pointer; on most machines this is no more expensive than a switch statement, which would be the only other way of making the required run-time choice. The really significant benefit, of course, is keeping the source code clean and well structured. We can also arrange to have private storage that varies between different implementations of the same kind of object. We do this by making all the module-specific object structs be separately allocated entities, which will be accessed via pointers in the master compression or decompression struct. The "public" fields or methods for a given kind of object are specified by a commonly known struct. But a module's initialization code can allocate a larger struct that contains the common struct as its first member, plus additional private fields. With appropriate pointer casting, the module's internal functions can access these private fields. (For a simple example, see jdatadst.c, which implements the external interface specified by struct jpeg_destination_mgr, but adds extra fields.) (Of course this would all be a lot easier if we were using C++, but we are not yet prepared to assume that everyone has a C++ compiler.) An important benefit of this scheme is that it is easy to provide multiple versions of any method, each tuned to a particular case. While a lot of precalculation might be done to select an optimal implementation of a method, the cost per invocation is constant. For example, the upsampling step might have a "generic" method, plus one or more "hardwired" methods for the most popular sampling factors; the hardwired methods would be faster because they'd use straight-line code instead of for-loops. The cost to determine which method to use is paid only once, at startup, and the selection criteria are hidden from the callers of the method. This plan differs a little bit from usual object-oriented structures, in that only one instance of each object class will exist during execution. The reason for having the class structure is that on different runs we may create different instances (choose to execute different modules). You can think of the term "method" as denoting the common interface presented by a particular set of interchangeable functions, and "object" as denoting a group of related methods, or the total shared interface behavior of a group of modules. *** Overall control structure *** We previously mentioned the need for overall control logic in the compression and decompression libraries. In IJG implementations prior to v5, overall control was mostly provided by "pipeline control" modules, which proved to be large, unwieldy, and hard to understand. To improve the situation, the control logic has been subdivided into multiple modules. The control modules consist of: 1. Master control for module selection and initialization. This has two responsibilities: 1A. Startup initialization at the beginning of image processing. The individual processing modules to be used in this run are selected and given initialization calls. 1B. Per-pass control. This determines how many passes will be performed and calls each active processing module to configure itself appropriately at the beginning of each pass. End-of-pass processing, where necessary, is also invoked from the master control module. Method selection is partially distributed, in that a particular processing module may contain several possible implementations of a particular method, which it will select among when given its initialization call. The master control code need only be concerned with decisions that affect more than one module. 2. Data buffering control. A separate control module exists for each inter-processing-step data buffer. This module is responsible for invoking the processing steps that write or read that data buffer. Each buffer controller sees the world as follows: input data => processing step A => buffer => processing step B => output data | | | ------------------ controller ------------------ The controller knows the dataflow requirements of steps A and B: how much data they want to accept in one chunk and how much they output in one chunk. Its function is to manage its buffer and call A and B at the proper times. A data buffer control module may itself be viewed as a processing step by a higher-level control module; thus the control modules form a binary tree with elementary processing steps at the leaves of the tree. The control modules are objects. A considerable amount of flexibility can be had by replacing implementations of a control module. For example: * Merging of adjacent steps in the pipeline is done by replacing a control module and its pair of processing-step modules with a single processing- step module. (Hence the possible merges are determined by the tree of control modules.) * In some processing modes, a given interstep buffer need only be a "strip" buffer large enough to accommodate the desired data chunk sizes. In other modes, a full-image buffer is needed and several passes are required. The control module determines which kind of buffer is used and manipulates virtual array buffers as needed. One or both processing steps may be unaware of the multi-pass behavior. In theory, we might be able to make all of the data buffer controllers interchangeable and provide just one set of implementations for all. In practice, each one contains considerable special-case processing for its particular job. The buffer controller concept should be regarded as an overall system structuring principle, not as a complete description of the task performed by any one controller. *** Compression object structure *** Here is a sketch of the logical structure of the JPEG compression library: |-- Colorspace conversion |-- Preprocessing controller --| | |-- Downsampling Main controller --| | |-- Forward DCT, quantize |-- Coefficient controller --| |-- Entropy encoding This sketch also describes the flow of control (subroutine calls) during typical image data processing. Each of the components shown in the diagram is an "object" which may have several different implementations available. One or more source code files contain the actual implementation(s) of each object. The objects shown above are: * Main controller: buffer controller for the subsampled-data buffer, which holds the preprocessed input data. This controller invokes preprocessing to fill the subsampled-data buffer, and JPEG compression to empty it. There is usually no need for a full-image buffer here; a strip buffer is adequate. * Preprocessing controller: buffer controller for the downsampling input data buffer, which lies between colorspace conversion and downsampling. Note that a unified conversion/downsampling module would probably replace this controller entirely. * Colorspace conversion: converts application image data into the desired JPEG color space; also changes the data from pixel-interleaved layout to separate component planes. Processes one pixel row at a time. * Downsampling: performs reduction of chroma components as required. Optionally may perform pixel-level smoothing as well. Processes a "row group" at a time, where a row group is defined as Vmax pixel rows of each component before downsampling, and Vk sample rows afterwards (remember Vk differs across components). Some downsampling or smoothing algorithms may require context rows above and below the current row group; the preprocessing controller is responsible for supplying these rows via proper buffering. The downsampler is responsible for edge expansion at the right edge (i.e., extending each sample row to a multiple of 8 samples); but the preprocessing controller is responsible for vertical edge expansion (i.e., duplicating the bottom sample row as needed to make a multiple of 8 rows). * Coefficient controller: buffer controller for the DCT-coefficient data. This controller handles MCU assembly, including insertion of dummy DCT blocks when needed at the right or bottom edge. When performing Huffman-code optimization or emitting a multiscan JPEG file, this controller is responsible for buffering the full image. The equivalent of one fully interleaved MCU row of subsampled data is processed per call, even when the JPEG file is noninterleaved. * Forward DCT and quantization: Perform DCT, quantize, and emit coefficients. Works on one or more DCT blocks at a time. (Note: the coefficients are now emitted in normal array order, which the entropy encoder is expected to convert to zigzag order as necessary. Prior versions of the IJG code did the conversion to zigzag order within the quantization step.) * Entropy encoding: Perform Huffman or arithmetic entropy coding and emit the coded data to the data destination module. Works on one MCU per call. For progressive JPEG, the same DCT blocks are fed to the entropy coder during each pass, and the coder must emit the appropriate subset of coefficients. In addition to the above objects, the compression library includes these objects: * Master control: determines the number of passes required, controls overall and per-pass initialization of the other modules. * Marker writing: generates JPEG markers (except for RSTn, which is emitted by the entropy encoder when needed). * Data destination manager: writes the output JPEG datastream to its final destination (e.g., a file). The destination manager supplied with the library knows how to write to a stdio stream or to a memory buffer; for other behaviors, the surrounding application may provide its own destination manager. * Memory manager: allocates and releases memory, controls virtual arrays (with backing store management, where required). * Error handler: performs formatting and output of error and trace messages; determines handling of nonfatal errors. The surrounding application may override some or all of this object's methods to change error handling. * Progress monitor: supports output of "percent-done" progress reports. This object represents an optional callback to the surrounding application: if wanted, it must be supplied by the application. The error handler, destination manager, and progress monitor objects are defined as separate objects in order to simplify application-specific customization of the JPEG library. A surrounding application may override individual methods or supply its own all-new implementation of one of these objects. The object interfaces for these objects are therefore treated as part of the application interface of the library, whereas the other objects are internal to the library. The error handler and memory manager are shared by JPEG compression and decompression; the progress monitor, if used, may be shared as well. *** Decompression object structure *** Here is a sketch of the logical structure of the JPEG decompression library: |-- Entropy decoding |-- Coefficient controller --| | |-- Dequantize, Inverse DCT Main controller --| | |-- Upsampling |-- Postprocessing controller --| |-- Colorspace conversion |-- Color quantization |-- Color precision reduction As before, this diagram also represents typical control flow. The objects shown are: * Main controller: buffer controller for the subsampled-data buffer, which holds the output of JPEG decompression proper. This controller's primary task is to feed the postprocessing procedure. Some upsampling algorithms may require context rows above and below the current row group; when this is true, the main controller is responsible for managing its buffer so as to make context rows available. In the current design, the main buffer is always a strip buffer; a full-image buffer is never required. * Coefficient controller: buffer controller for the DCT-coefficient data. This controller handles MCU disassembly, including deletion of any dummy DCT blocks at the right or bottom edge. When reading a multiscan JPEG file, this controller is responsible for buffering the full image. (Buffering DCT coefficients, rather than samples, is necessary to support progressive JPEG.) The equivalent of one fully interleaved MCU row of subsampled data is processed per call, even when the source JPEG file is noninterleaved. * Entropy decoding: Read coded data from the data source module and perform Huffman or arithmetic entropy decoding. Works on one MCU per call. For progressive JPEG decoding, the coefficient controller supplies the prior coefficients of each MCU (initially all zeroes), which the entropy decoder modifies in each scan. * Dequantization and inverse DCT: like it says. Note that the coefficients buffered by the coefficient controller have NOT been dequantized; we merge dequantization and inverse DCT into a single step for speed reasons. When scaled-down output is asked for, simplified DCT algorithms may be used that emit fewer samples per DCT block, not the full 8x8. Works on one DCT block at a time. * Postprocessing controller: buffer controller for the color quantization input buffer, when quantization is in use. (Without quantization, this controller just calls the upsampler.) For two-pass quantization, this controller is responsible for buffering the full-image data. * Upsampling: restores chroma components to full size. (May support more general output rescaling, too. Note that if undersized DCT outputs have been emitted by the DCT module, this module must adjust so that properly sized outputs are created.) Works on one row group at a time. This module also calls the color conversion module, so its top level is effectively a buffer controller for the upsampling->color conversion buffer. However, in all but the highest-quality operating modes, upsampling and color conversion are likely to be merged into a single step. * Colorspace conversion: convert from JPEG color space to output color space, and change data layout from separate component planes to pixel-interleaved. Works on one pixel row at a time. * Color quantization: reduce the data to colormapped form, using either an externally specified colormap or an internally generated one. This module is not used for full-color output. Works on one pixel row at a time; may require two passes to generate a color map. Note that the output will always be a single component representing colormap indexes. In the current design, the output values are JSAMPLEs, so an 8-bit compilation cannot quantize to more than 256 colors. This is unlikely to be a problem in practice. * Color reduction: this module handles color precision reduction, e.g., generating 15-bit color (5 bits/primary) from JPEG's 24-bit output. Not quite clear yet how this should be handled... should we merge it with colorspace conversion??? Note that some high-speed operating modes might condense the entire postprocessing sequence to a single module (upsample, color convert, and quantize in one step). In addition to the above objects, the decompression library includes these objects: * Master control: determines the number of passes required, controls overall and per-pass initialization of the other modules. This is subdivided into input and output control: jdinput.c controls only input-side processing, while jdmaster.c handles overall initialization and output-side control. * Marker reading: decodes JPEG markers (except for RSTn). * Data source manager: supplies the input JPEG datastream. The source manager supplied with the library knows how to read from a stdio stream or from a memory buffer; for other behaviors, the surrounding application may provide its own source manager. * Memory manager: same as for compression library. * Error handler: same as for compression library. * Progress monitor: same as for compression library. As with compression, the data source manager, error handler, and progress monitor are candidates for replacement by a surrounding application. *** Decompression input and output separation *** To support efficient incremental display of progressive JPEG files, the decompressor is divided into two sections that can run independently: 1. Data input includes marker parsing, entropy decoding, and input into the coefficient controller's DCT coefficient buffer. Note that this processing is relatively cheap and fast. 2. Data output reads from the DCT coefficient buffer and performs the IDCT and all postprocessing steps. For a progressive JPEG file, the data input processing is allowed to get arbitrarily far ahead of the data output processing. (This occurs only if the application calls jpeg_consume_input(); otherwise input and output run in lockstep, since the input section is called only when the output section needs more data.) In this way the application can avoid making extra display passes when data is arriving faster than the display pass can run. Furthermore, it is possible to abort an output pass without losing anything, since the coefficient buffer is read-only as far as the output section is concerned. See libjpeg.txt for more detail. A full-image coefficient array is only created if the JPEG file has multiple scans (or if the application specifies buffered-image mode anyway). When reading a single-scan file, the coefficient controller normally creates only a one-MCU buffer, so input and output processing must run in lockstep in this case. jpeg_consume_input() is effectively a no-op in this situation. The main impact of dividing the decompressor in this fashion is that we must be very careful with shared variables in the cinfo data structure. Each variable that can change during the course of decompression must be classified as belonging to data input or data output, and each section must look only at its own variables. For example, the data output section may not depend on any of the variables that describe the current scan in the JPEG file, because these may change as the data input section advances into a new scan. The progress monitor is (somewhat arbitrarily) defined to treat input of the file as one pass when buffered-image mode is not used, and to ignore data input work completely when buffered-image mode is used. Note that the library has no reliable way to predict the number of passes when dealing with a progressive JPEG file, nor can it predict the number of output passes in buffered-image mode. So the work estimate is inherently bogus anyway. No comparable division is currently made in the compression library, because there isn't any real need for it. *** Data formats *** Arrays of pixel sample values use the following data structure: typedef something JSAMPLE; a pixel component value, 0..MAXJSAMPLE typedef JSAMPLE *JSAMPROW; ptr to a row of samples typedef JSAMPROW *JSAMPARRAY; ptr to a list of rows typedef JSAMPARRAY *JSAMPIMAGE; ptr to a list of color-component arrays The basic element type JSAMPLE will be one of unsigned char or short. Short will be used if samples wider than 8 bits are to be supported (this is a compile-time option). Otherwise, unsigned char is used. With these conventions, JSAMPLE values can be assumed to be >= 0. This helps simplify correct rounding during downsampling, etc. The JPEG standard's specification that sample values run from -128..127 is accommodated by subtracting 128 from the sample value in the DCT step. Similarly, during decompression the output of the IDCT step will be immediately shifted back to 0..255. (NB: different values are required when 12-bit samples are in use. The code is written in terms of MAXJSAMPLE and CENTERJSAMPLE, which will be defined as 255 and 128 respectively in an 8-bit implementation, and as 4095 and 2048 in a 12-bit implementation.) We use a pointer per row, rather than a two-dimensional JSAMPLE array. This choice costs only a small amount of memory and has several benefits: * Code using the data structure doesn't need to know the allocated width of the rows. This simplifies edge expansion/compression, since we can work in an array that's wider than the logical picture width. * Indexing doesn't require multiplication; this is a performance win on many machines. * Arrays with more than 64K total elements can be supported even on machines where malloc() cannot allocate chunks larger than 64K. * The rows forming a component array may be allocated at different times without extra copying. This trick allows some speedups in smoothing steps that need access to the previous and next rows. Note that each color component is stored in a separate array; we don't use the traditional layout in which the components of a pixel are stored together. This simplifies coding of modules that work on each component independently, because they don't need to know how many components there are. Furthermore, we can read or write each component to a temporary file independently, which is helpful when dealing with noninterleaved JPEG files. In general, a specific sample value is accessed by code such as image[colorcomponent][row][col] where col is measured from the image left edge, but row is measured from the first sample row currently in memory. Either of the first two indexings can be precomputed by copying the relevant pointer. Since most image-processing applications prefer to work on images in which the components of a pixel are stored together, the data passed to or from the surrounding application uses the traditional convention: a single pixel is represented by N consecutive JSAMPLE values, and an image row is an array of (# of color components)*(image width) JSAMPLEs. One or more rows of data can be represented by a pointer of type JSAMPARRAY in this scheme. This scheme is converted to component-wise storage inside the JPEG library. (Applications that want to skip JPEG preprocessing or postprocessing will have to contend with component-wise storage.) Arrays of DCT-coefficient values use the following data structure: typedef short JCOEF; a 16-bit signed integer typedef JCOEF JBLOCK[DCTSIZE2]; an 8x8 block of coefficients typedef JBLOCK *JBLOCKROW; ptr to one horizontal row of 8x8 blocks typedef JBLOCKROW *JBLOCKARRAY; ptr to a list of such rows typedef JBLOCKARRAY *JBLOCKIMAGE; ptr to a list of color component arrays The underlying type is at least a 16-bit signed integer; while "short" is big enough on all machines of interest, on some machines it is preferable to use "int" for speed reasons, despite the storage cost. Coefficients are grouped into 8x8 blocks (but we always use #defines DCTSIZE and DCTSIZE2 rather than "8" and "64"). The contents of a coefficient block may be in either "natural" or zigzagged order, and may be true values or divided by the quantization coefficients, depending on where the block is in the processing pipeline. In the current library, coefficient blocks are kept in natural order everywhere; the entropy codecs zigzag or dezigzag the data as it is written or read. The blocks contain quantized coefficients everywhere outside the DCT/IDCT subsystems. (This latter decision may need to be revisited to support variable quantization a la JPEG Part 3.) Notice that the allocation unit is now a row of 8x8 blocks, corresponding to eight rows of samples. Otherwise the structure is much the same as for samples, and for the same reasons. *** Suspendable processing *** In some applications it is desirable to use the JPEG library as an incremental, memory-to-memory filter. In this situation the data source or destination may be a limited-size buffer, and we can't rely on being able to empty or refill the buffer at arbitrary times. Instead the application would like to have control return from the library at buffer overflow/underrun, and then resume compression or decompression at a later time. This scenario is supported for simple cases. (For anything more complex, we recommend that the application "bite the bullet" and develop real multitasking capability.) The libjpeg.txt file goes into more detail about the usage and limitations of this capability; here we address the implications for library structure. The essence of the problem is that the entropy codec (coder or decoder) must be prepared to stop at arbitrary times. In turn, the controllers that call the entropy codec must be able to stop before having produced or consumed all the data that they normally would handle in one call. That part is reasonably straightforward: we make the controller call interfaces include "progress counters" which indicate the number of data chunks successfully processed, and we require callers to test the counter rather than just assume all of the data was processed. Rather than trying to restart at an arbitrary point, the current Huffman codecs are designed to restart at the beginning of the current MCU after a suspension due to buffer overflow/underrun. At the start of each call, the codec's internal state is loaded from permanent storage (in the JPEG object structures) into local variables. On successful completion of the MCU, the permanent state is updated. (This copying is not very expensive, and may even lead to *improved* performance if the local variables can be registerized.) If a suspension occurs, the codec simply returns without updating the state, thus effectively reverting to the start of the MCU. Note that this implies leaving some data unprocessed in the source/destination buffer (ie, the compressed partial MCU). The data source/destination module interfaces are specified so as to make this possible. This also implies that the data buffer must be large enough to hold a worst-case compressed MCU; a couple thousand bytes should be enough. In a successive-approximation AC refinement scan, the progressive Huffman decoder has to be able to undo assignments of newly nonzero coefficients if it suspends before the MCU is complete, since decoding requires distinguishing previously-zero and previously-nonzero coefficients. This is a bit tedious but probably won't have much effect on performance. Other variants of Huffman decoding need not worry about this, since they will just store the same values again if forced to repeat the MCU. This approach would probably not work for an arithmetic codec, since its modifiable state is quite large and couldn't be copied cheaply. Instead it would have to suspend and resume exactly at the point of the buffer end. The JPEG marker reader is designed to cope with suspension at an arbitrary point. It does so by backing up to the start of the marker parameter segment, so the data buffer must be big enough to hold the largest marker of interest. Again, a couple KB should be adequate. (A special "skip" convention is used to bypass COM and APPn markers, so these can be larger than the buffer size without causing problems; otherwise a 64K buffer would be needed in the worst case.) The JPEG marker writer currently does *not* cope with suspension. We feel that this is not necessary; it is much easier simply to require the application to ensure there is enough buffer space before starting. (An empty 2K buffer is more than sufficient for the header markers; and ensuring there are a dozen or two bytes available before calling jpeg_finish_compress() will suffice for the trailer.) This would not work for writing multi-scan JPEG files, but we simply do not intend to support that capability with suspension. *** Memory manager services *** The JPEG library's memory manager controls allocation and deallocation of memory, and it manages large "virtual" data arrays on machines where the operating system does not provide virtual memory. Note that the same memory manager serves both compression and decompression operations. In all cases, allocated objects are tied to a particular compression or decompression master record, and they will be released when that master record is destroyed. The memory manager does not provide explicit deallocation of objects. Instead, objects are created in "pools" of free storage, and a whole pool can be freed at once. This approach helps prevent storage-leak bugs, and it speeds up operations whenever malloc/free are slow (as they often are). The pools can be regarded as lifetime identifiers for objects. Two pools/lifetimes are defined: * JPOOL_PERMANENT lasts until master record is destroyed * JPOOL_IMAGE lasts until done with image (JPEG datastream) Permanent lifetime is used for parameters and tables that should be carried across from one datastream to another; this includes all application-visible parameters. Image lifetime is used for everything else. (A third lifetime, JPOOL_PASS = one processing pass, was originally planned. However it was dropped as not being worthwhile. The actual usage patterns are such that the peak memory usage would be about the same anyway; and having per-pass storage substantially complicates the virtual memory allocation rules --- see below.) The memory manager deals with three kinds of object: 1. "Small" objects. Typically these require no more than 10K-20K total. 2. "Large" objects. These may require tens to hundreds of K depending on image size. Semantically they behave the same as small objects, but we distinguish them because pool allocation heuristics may differ for large and small objects (historically, large objects were also referenced by far pointers on MS-DOS machines.) Note that individual "large" objects cannot exceed the size allowed by type size_t, which may be 64K or less on some machines. 3. "Virtual" objects. These are large 2-D arrays of JSAMPLEs or JBLOCKs (typically large enough for the entire image being processed). The memory manager provides stripwise access to these arrays. On machines without virtual memory, the rest of the array may be swapped out to a temporary file. (Note: JSAMPARRAY and JBLOCKARRAY data structures are a combination of large objects for the data proper and small objects for the row pointers. For convenience and speed, the memory manager provides single routines to create these structures. Similarly, virtual arrays include a small control block and a JSAMPARRAY or JBLOCKARRAY working buffer, all created with one call.) In the present implementation, virtual arrays are only permitted to have image lifespan. (Permanent lifespan would not be reasonable, and pass lifespan is not very useful since a virtual array's raison d'etre is to store data for multiple passes through the image.) We also expect that only "small" objects will be given permanent lifespan, though this restriction is not required by the memory manager. In a non-virtual-memory machine, some performance benefit can be gained by making the in-memory buffers for virtual arrays be as large as possible. (For small images, the buffers might fit entirely in memory, so blind swapping would be very wasteful.) The memory manager will adjust the height of the buffers to fit within a prespecified maximum memory usage. In order to do this in a reasonably optimal fashion, the manager needs to allocate all of the virtual arrays at once. Therefore, there isn't a one-step allocation routine for virtual arrays; instead, there is a "request" routine that simply allocates the control block, and a "realize" routine (called just once) that determines space allocation and creates all of the actual buffers. The realize routine must allow for space occupied by non-virtual large objects. (We don't bother to factor in the space needed for small objects, on the grounds that it isn't worth the trouble.) To support all this, we establish the following protocol for doing business with the memory manager: 1. Modules must request virtual arrays (which may have only image lifespan) during the initial setup phase, i.e., in their jinit_xxx routines. 2. All "large" objects (including JSAMPARRAYs and JBLOCKARRAYs) must also be allocated during initial setup. 3. realize_virt_arrays will be called at the completion of initial setup. The above conventions ensure that sufficient information is available for it to choose a good size for virtual array buffers. Small objects of any lifespan may be allocated at any time. We expect that the total space used for small objects will be small enough to be negligible in the realize_virt_arrays computation. In a virtual-memory machine, we simply pretend that the available space is infinite, thus causing realize_virt_arrays to decide that it can allocate all the virtual arrays as full-size in-memory buffers. The overhead of the virtual-array access protocol is very small when no swapping occurs. A virtual array can be specified to be "pre-zeroed"; when this flag is set, never-yet-written sections of the array are set to zero before being made available to the caller. If this flag is not set, never-written sections of the array contain garbage. (This feature exists primarily because the equivalent logic would otherwise be needed in jdcoefct.c for progressive JPEG mode; we may as well make it available for possible other uses.) The first write pass on a virtual array is required to occur in top-to-bottom order; read passes, as well as any write passes after the first one, may access the array in any order. This restriction exists partly to simplify the virtual array control logic, and partly because some file systems may not support seeking beyond the current end-of-file in a temporary file. The main implication of this restriction is that rearrangement of rows (such as converting top-to-bottom data order to bottom-to-top) must be handled while reading data out of the virtual array, not while putting it in. *** Memory manager internal structure *** To isolate system dependencies as much as possible, we have broken the memory manager into two parts. There is a reasonably system-independent "front end" (jmemmgr.c) and a "back end" that contains only the code likely to change across systems. All of the memory management methods outlined above are implemented by the front end. The back end provides the following routines for use by the front end (none of these routines are known to the rest of the JPEG code): jpeg_mem_init, jpeg_mem_term system-dependent initialization/shutdown jpeg_get_small, jpeg_free_small interface to malloc and free library routines (or their equivalents) jpeg_get_large, jpeg_free_large historically was used to interface with FAR malloc/free on MS-DOS machines; now the same as jpeg_get_small/jpeg_free_small jpeg_mem_available estimate available memory jpeg_open_backing_store create a backing-store object read_backing_store, manipulate a backing-store object write_backing_store, close_backing_store On some systems there will be more than one type of backing-store object. jpeg_open_backing_store is responsible for choosing how to implement a given object. The read/write/close routines are method pointers in the structure that describes a given object; this lets them be different for different object types. It may be necessary to ensure that backing store objects are explicitly released upon abnormal program termination. To support this, we will expect the main program or surrounding application to arrange to call self_destruct (typically via jpeg_destroy) upon abnormal termination. This may require a SIGINT signal handler or equivalent. We don't want to have the back end module install its own signal handler, because that would pre-empt the surrounding application's ability to control signal handling. The IJG distribution includes several memory manager back end implementations. Usually the same back end should be suitable for all applications on a given system, but it is possible for an application to supply its own back end at need. *** Implications of DNL marker *** Some JPEG files may use a DNL marker to postpone definition of the image height (this would be useful for a fax-like scanner's output, for instance). In these files the SOF marker claims the image height is 0, and you only find out the true image height at the end of the first scan. We could read these files as follows: 1. Upon seeing zero image height, replace it by 65535 (the maximum allowed). 2. When the DNL is found, update the image height in the global image descriptor. This implies that control modules must avoid making copies of the image height, and must re-test for termination after each MCU row. This would be easy enough to do. In cases where image-size data structures are allocated, this approach will result in very inefficient use of virtual memory or much-larger-than-necessary temporary files. This seems acceptable for something that probably won't be a mainstream usage. People might have to forgo use of memory-hogging options (such as two-pass color quantization or noninterleaved JPEG files) if they want efficient conversion of such files. (One could improve efficiency by demanding a user-supplied upper bound for the height, less than 65536; in most cases it could be much less.) The standard also permits the SOF marker to overestimate the image height, with a DNL to give the true, smaller height at the end of the first scan. This would solve the space problems if the overestimate wasn't too great. However, it implies that you don't even know whether DNL will be used. This leads to a couple of very serious objections: 1. Testing for a DNL marker must occur in the inner loop of the decompressor's Huffman decoder; this implies a speed penalty whether the feature is used or not. 2. There is no way to hide the last-minute change in image height from an application using the decoder. Thus *every* application using the IJG library would suffer a complexity penalty whether it cared about DNL or not. We currently do not support DNL because of these problems. A different approach is to insist that DNL-using files be preprocessed by a separate program that reads ahead to the DNL, then goes back and fixes the SOF marker. This is a much simpler solution and is probably far more efficient. Even if one wants piped input, buffering the first scan of the JPEG file needs a lot smaller temp file than is implied by the maximum-height method. For this approach we'd simply treat DNL as a no-op in the decompressor (at most, check that it matches the SOF image height). We will not worry about making the compressor capable of outputting DNL. Something similar to the first scheme above could be applied if anyone ever wants to make that work. libjpeg-turbo-2.1.5/testimages/000077500000000000000000000000001436506551100164375ustar00rootroot00000000000000libjpeg-turbo-2.1.5/testimages/nightshot_iso_100.bmp000066400000000000000000002420661436506551100224120ustar00rootroot00000000000000BM6D6(ÀD!!!!!!" # "!"#% )!,"+%.+4!28%6;$8>#:? :@5=2<6G7M 8H ,:'3 "+)' & &#"## #!!!!%' )* ( ) ", #. #. + + ) )"*"* ' % & $ " ! ! " % & '% $ $ $$ $ & '!*(4,9/?1A2B 2C1C -:-;.>0B0A/A.@,=+=+=,<-= .= .> /?2C5I6J5H4G4I6L:T>Z=ZZ ;P 2A'2$-!+) ( ( $"$#"##" "&!,#0"/"/ #/$0%0 %1"/ #1 "."+!) !( ' %% %"""!"##### $ &$ $ % %"+&0*7 -;.< /< /= .= -< .> -= -< -<.>0A/@-?-?-> -> .> /? 0@1B 2B3D5E 4E 4F5I 6K 7M 8P:T8P7L0;-0&&&%"!$%&&$%"$ "!""#!!!"! %%!,+ ,+)'#"   !    "#"#!# "$####$# $ % %% %) , !, "+$. %-%. %- %- %/'4,:8LFdBY9I)5&0"+!,)( &$#%& $ $ # $& *#/$0$/ #. $.$/&2 &2#/",", ( ' ( ''&&&&'%$ %%$% ' % $ & & &", %0*7 ,; -< /> /> />/? /A/? /@0A0B/B0C0D0D0D 1B 1B 2E2E3E4G5H4H6I6J6L 8P :S ;U;W9R8P9E'=?$32)("!#$$&#$!#"!!"#!  !!" "!!"*)*850>:"/,&% ! !    !! ('.,"      # $$""#$$ $ # % % $ & )!)!)"* "+"+ *( *",)49LHeH`;K -9&1$. *)*(%& (&$ $ $$ % ( !,!*!*!*"+#,$-%.#,!*!)!* "*!) ) ((&&''% & ( (' ( ( % % ' ( ( ", '2 *8.= 0@0@ 0@0@0A1C3E 3E2E3G3G2F1G3J4G3E 6I5J 3G4H6J6L 7N 6N 5N 7Q9T;V;W(=<)(#"%%&'&'$'"& #!! " !  !!!!" "##)'0>:,92$0,$!"!!!     !  !!! %#*61'60(&!"!!  " " " " " #$#" " ## "%!)#* %. %- $- "*(#-$0'1)3:OIfH_;K ,9(2'3 %2 %3%1#1 !, )(&$$ $$$ ( )!*$-%. &.'/'.'. )4&, #)#,#,"*!+( ' & & && ' ) ) ' ' ( ' && ( ) "* ",(4 +8/?0@ 1A 0@1A1C1C2D4G5I 5J 4H 3G3H4H5J 6H 6J 6J7K6K6K7L6N6M6M7M8O;V;WPOg$^{^xZqTkG]*5#+ (&%#"""( .8/>+8*6-;1A3G4J0D/A/A.@/@/@/?/>0@3C5G5I 5G2C/>0>4F7O9Q:R9R8Q1?(.%)(.)+#"       "! "# #" ! !"!!""!!!  ! !!    " #$" !-4&ER7Wj,J\9H*3'.3=!6B6D .9;NKgH_ ;K6D APPe#\r#d€/m‹.d$Pi1> #* '% # " !%(!?G-PY3]h6r}Q­_§¸c¥»_¢µi®Á;y„"HO+1'/#- )%     !& ' && $ % $ $#% ' #-(4+:.? .> /? />/@+8)5+9/?2D2G.> *8)8)7*7+9+8*8,;1A4G5J 4G1C-=0=4F6M8O9P9Q8Q0=)-08 ;D6;..   !  !"!#"#    !%+'.!# !       !#$#" "    !%+7B&@P:I0<*3$+$*%,'.(18KHfH_ 7F /9 4>=IBML^'^{0aJb/; #) & $ #! "$,/!8< @D!KN3_eEsz@u~?t;m|%QX9<+0$,#, * %"! !  # &'( %$ % % %%' ' $-'4*;-?.>.> /?/@,9)5*8.>2C1D +: (3 (3 '3 '2 '2*6 )5)5/>3F5J 4G0C,</=3E7M8N8O8N7M/;),/5%=H%=H04 $ ! ! !"%&%(!# *. /6'-! #    " # #! ! ! ! " $ "(*4-9,6(2&.#+#+$+%-&04BAX?Q 2> -7-6,5.6:I!H^FX;K)/"(## "! "%!'&++/16 9@&>D'@F%@J!-=->->+9)6,<.?1C1C ,9 (5*6+8 (6 '4+9+9*7 .>1D3I2G0C+</>3E6L 7L7L6J4J-9),),+1*1&)  ! !!%%%( " &* /6(.! %$&34,:;%$    !#"!  !" " %' "+$-$. %.$. #-#-#+#,'1)3 1>0B2G1F/B,= .> 1C 3G3G3G2F0E+6%'!# " # ! ! #$"#!! !   !!  &'.:=.:=*-!  " # "##""#$# $ "& )$/ $/ $. $- $. #-#-#-$-(3 -9 7IAX 0C/B/@/B/B .? /@0B/C.B.C-A)3#%!#"     !  ""#$##"!   !     #$*34!-.''!#!!   !" !! % $ $$###$$$ % #% (". ". "-"-"- "-#.$. %/ (3.<>TIgE] 2B )4#,"* ' '!( '$$#$$##&!+#/%0 &3 (7 )7 )6 *7 *7 *7 )6(5 &5#. !+ !)%" # ! !"### $ % $##$##$& )%/ )4 *6*6*6+8*8 )7 *9 )7*8 ,; +:*:+=,= -=->.>.?.? .>/?0A/@ 0@ 0B /A1C 1D0B0C/D-A,@'1$'$'$) #   ! #!##$))0/55530-(%$# ! "!!!!   !! !! "###!# ""#!        !!""!"$ $ $####" # # $% %' * * *!,!+"+#, %. &.'/,7@VLkF] 3D )5%- #* ") !( &% & &%#$##% ) * #- $/ $0 $1$0$/%0&0 &0$/ "- ", ", !+'$%$$$% % %(( ' &&' & & &' "+'2*7,:-;-<-=-<,;-< -= -< -=->-?-?/B1C 1B 3F 3F 3F 2C 2D2D2C 3D 5H 2E 2E3F2E2G1G0C-@(3%)(++,%'   ""$$%"%#(%/)E=0gc?Š…H”Ž"bV :2.-')"" !# "  !          !! #   !"! # # # #""" # ! !! "$' ) )!+$,(/+3,3*1*0,31: ATNkD[ 4E (2&-&. %,$*#*#*"( & &% $ %$"%& ) !* )!* ",!+ ) (!) "* !* "+ #- ",!*%''$ $& & &))' & ( (( ( ) * ",(3 +9.=/>/?.>.>.= .= />0@0B/B.@0B1C1C1C 2F 4G 4G 4G 4H3F4E5H 5H 2E2D3G4G4H4I3G1B*4%(*,+,))%$"# #!!&&,,/,,&2+A5H{lŒÈ½²òæ¯ïâvî(jZF>;=,/'(%&##"" "!!       ! " ! !""## "  !!"%")$*18?IR]&_e"bg^eX`JN-2!&& % %#$"# %&&&'% %$# & ( ( !* #- #- !* % %& $ % $ & & ' ) ( &((' ( ( !) #+)4 ,:.>/?/? .? .> .> -< .> 0@ 0A 0A 0B 0B0B0A1C 3F2F3F 3G 4H6J6J 4G 2E 1B 0A2E4G4H5I4F4E-5%())-*0,0-((#%" " !!#!"$$**/-/-0-82-OA`œ†²ëÞÊÿôÊÿô¡ãÓX©•0j^/b`JI:70.)'%%#$!# "!#"!     $#''!   ! ! !!# % $ !    !$#))06<#LR;pyF‰…F‰…A‡ˆGŒB}€OUHX!QoE\ 3B)3,45>7>;C%EN%EN/7 #*& # #"""" $ $ # # "   !" % ' )", #- !* '%#$ "  " % ()( '''' ' ' ' #,)5 -;/@0@/@.?->,< *9+9/? 0@ /A/A.A -? .?0B0C1D 2E 2E 3F 5I5I 2D 0A .? .>1C4G4F4F4D4D1:0/"72(@7.F>$75--$&"$ #"!#!"$%****(&1.;24TC`˜}˜×ǺúëÉÿó³ðÝo½©M~Ewp5^W)KD"=7.+('%%#$ " " "!     #"#&"+66579.87"     !!"$% $ "  !$ #*+059!LOB|~B}G5=+1"('$" ! "$ $##!"   ! # & )!+ #, !) &$"" !  "%!) ) ) '' ' ' ' ' '#. )6 -;/A0A0@/?+:*8 )6+60? 0@.@.?.@.?-=,<.>.?.?0B2D 3D 3E 1C .?,=,<1C3F4G5G5F3C1821)C=.FB.FB&74++&'"$ " " " ! !"#%%&%/,90+O?Oƒj€Ç¯šåÎªìØ’Õ¼bªB~jArd8^V5SJ&=9/.('&'#% # # #! !!!!"!" !    !!,()% -)078553279&#   !  %$  !" " # $ $! $#(*./1B>6d\.^U0\O/A0A0?/>+8 (3 *4 ,80?0A.@+;*6*8*9*7*7*7 *7,:/> 3D3F 1C ->,;-=1B5G4F5G5G2B06-+21#65$54 -+&&$&"$ " !!"##*)5.$A28]HQ~daœi¦`—{Fv[0^H,P>+H;%>5!3.+*&&$&"%!# #!   "!"!#!#!""""$ "! ""!)%,(*&-4.371.41&#     !!!!!!#!   !'&   !" " #" "    $#)(,+.880UQ$LG C>)EB)EG"=?69CSLjAV .=&0&.%-$*"(!'!'% %%# !! !!!### #%%#"! "% )$. ", )& $ # ! "   % (!* !* !*( ' & ' ( ") #.'6,<.@/@0?/>,;'3,8.;0@0A.@,;'4'4'5'5'3 '4 (5 *8.>2B3F 0A,=+;.=1A5G3D3G4F2C-4))''&&&&%&#%!$ #"!"""!! !%$+'3)%@33OA>[H?]L5TA+H7"=/ 6* 0)+'('%&"$ ! ""! " # #!#!#"#"$"$ $" #"#%%%$%"($)&'%$# !"!!! "!"# # # " " # # # ""#%&  !" ! " ## " !   "##)&+ ',.0:<<>6614/3-2 -2 =MDa>U,: "+ "*"* ") !( & % # $$ ! ! !# $!!!#% % $!!&& !*$. "+ (% #  ! ! !% ' (!) ( ' && ( ' )#.'6*:.>/>/? /=,:(4,8/=0@/@.?+:(4'4'6 '4 '3 (5 )6 )7.?1B1C/@->,;.=1A2C1C2G2E1C*3#&!# !""!  !""""! !# (#-'3,7.8+7,4)/'("$ " !!!"!  "#""" #!#!# ##"" ""     ! !!" ! "   !"! !! " " "!$ ! !"$" " $# # " !  & !)$-&-&,*2.7.4,1*2*2*2 ,6=R =W ;O*5"+!' '&%$ # "$# ! """$& ' ) ( ' )!, !,!, + '' "* !* !+ )&# " ! " ! !" $ % & '''&'(& '"-&5)9.>/>/? -: +7*7,9.<.>.>,= *9+:+:+;+;+: *8 *8 *8-=.>/=/?.?/>0@/@.?/A1D0A.>&.#!     ! ! %"*&0+3/4-.('"#   !!" #" !!  !"" " $$"#$% $ $ # !&"+%0&/ &/ (3(5'2'2)6*7+8 2B >TB^8J*3#* % %%$$ $ # """!!$( ". %2 $2"/ #/$1&4 &4%2 $1$1 %1 $/ ", )' % "$ " "## $ %% % %%%&&' !*%2(4*6*7 ,; +8 *6 *6 *6*7 +8 +: *:*:*: *: *9*9*8 *7)7*7+9,9,9.=-?.= -< -< -= -= .? .=+9$-$      "!*(30:7<:73)%%##" !    !" "!"! & % %$$"$# # # "# & ",$. %. &/$,%.&0&/(1*4*6 3A AWJh;L -8#,"(!( ( ( & % % $##$$ % % ",%/ %2$/#- #. (6)6(5'3 '3'3&1 "+ * ((%# "" # $ $& %%% &%%&&& !*$0(6*7 +8+9+8+8+9 *8*8 +:,:+; +; +; +:+:,;+: (6 (6(8*:,:-;-=-=/?0@ /? /A0C/B .?,<$-#    #"0. <:)CC"B?&=:*(&%$$!"   '(&&**('"" && & &&#" # "## #)"+$- %. %.$, $, %+%+'. (0+3 3>EYNk @S/;$. #*#, ", * ' ' '%%&$%%%'"* "*!( ( !+ #/ #/ #/ "- #-$.", !*",#, ) % $&&&& % ' '( ' ( ( '( )( '!* &1+7,9 ,:,;,;,<,<,<,<->.>.= -< -< -< -< -;,<-=,>,=-?/A/A/@/A0B0B 1D2F1F2F0C-?%/#   $#/.'?>)CC%@@"88**&%&'#'    "#&''(,,,,$& ### # #" # " "" " "'"*&+).,0/223211//0/11358GROkAT0<$.#+"+ * (('&%&%%$%%&( ( ( & ) *))!+!* ) *!+"-"-!) ' (( ((( ' ( * +) ' ' ( ( ( ) (!* (3,90> /=/?.>-=-=-=.?.?/@0@ .> .?.=.= .> .>.? /A /@ /@ 0A1B0B0A0B 0A 0B2E3H4H1E,>%/#  ! "")(/0 4221--%$##"# "  ""$%'(*%& "      ! "    ##&00)GG1[Z9id@tiGse5bQ+YN8^X8^XMIKV!Pk AS0;#-"+ !* (' '%#%&$#""#$ %('&&' &%%&!* **!,#, ( ''' ( '%% ' (!+ ' ' '((( ) !) ",(4-:0?/?/@ /@ .?-=,<->/@0@ /> .>.? .? .? /@ /@.@.A/@/@0A0B0A/@/? /@ 1B2E3G4G1C-?%/"   !""#!%##"     !   " #"   %''>>Gibjš‘^«Ÿqº¨r³›e§‹l«–„º¬mŸ‘>oj"Q[!Rk@P/:$.!* ( ' %# $#$% $! !   !' ( ('%&&$$"'()!+ !* (%$$&%#$ ' (!+ ' &&&% $ )!)"+(5 ,:/?/@ /@ /@ .>+;+9-</? /@ /@ .> .> /? /? /? .@ ->-?.?/?1A1B/? -< -< .= 0A2D3E3F2D.@&0# !!      $$  &',CA\vz¦‘x°›‘ɲœÈ²™É¬¢Ì³­Ð¼œÆ¶Q‚{)U_#Qi @O-8#-)'% #!! # % $ #  $( !) (&% %$"#%()", !* (%"#$!!# ' !( '& $ $ $ # #' ( !+(6-<.?/?/@ /?/> )6 )7 *7 .; />/@ +: +9,: ,: ,< ,= +<+<,;-<1@1@.=+:*8 +8/>3E3E3F3E/@'2$ ! !      " $#" %&'?>Nofm‘€vžˆ•À¨œÈ°šÃ¨£È²­Ð¼Š³¤O{u,U^%Qi >L,5 #, ''$ "!! " % %$ ! ) !) )'(& & &$%( )",!* ( % " " " " " $ ' '&$#"$ " $ & '!*'3->.?/@/@ />/>)6 )5 *61>/>.@*9)6 )6 *7)8 )7 )7 *8*9,; 0?1@ .=+:)8+9/@3E2D3E2C/@&1 #!     ! !   ! !     " $# " !   $%106PJE`UNm]h‰r† ƒ€ž|{˜|r“|ar8ZU(OX(Mf.@)8 '3 &3%2%2 &3 (4 '3 '3+: .=0@.=+: )8*:.=2C1A2C1A.>&0 %#     !!!!    !!  !  !!  !"""!! !!  "      !   ! " " " !  !#'')"32+;94E@BPFJUKLVHNWMGRL:JG#@> ER#G]8F*2")(%$"  "% '"    &(( ) ) ) * ) ('&& ("+"+ (#!  ! " &%' ( $""$## % '"**5,:.?/@0@ .>-=*9*8+9/= />-?)8 '5&4 $2 %2&4(6(6(6+: .>.>-=+:)9 *:/?2B1A2B1A.?&0!&"!     !!!!!   !!             !" ""!""! "#"!!!!  """!"""!" %%##"!"!!   ! " # "!" % "(%+'+*,.. 31(85(84&65"453457 (. !) )' % #  #% '#  " !)#.",#,$.#,",!,!+ +* !+ "+ !)"+ ' $"# $! $ &% ' '& % % $$# % ' #,)5+:->-=-<-=,=+:+9,:-<.>-=*:(8'7'6(6(5(6)8)8*; .>-<,;*: *9+;/@1A0A1A0A,=&0#        !!    !  !! ! # %$#""" !!!!!!""""!"$%$#"#! " " ! ! " # $ ##%' "+&/&-',),+/-0.1/3/4074<>KAW 3@'."* )(& $"! # %%"!! $ %. +7 0?0@0?0@2B1B0A-=*: )8(7%3 !*!) &$ # $ #!" $ $$ $ $ $ $"!# # % )&1)6*9,<+;*9*:*9*9+9+:+;+<*:)8(7)9)8)6 )7)8*: *9 +:,;,;+: *9 +;-<.>/>.>,;)7$-"   !! !"&&,./2&'    !!     !!" ## ### # %% % ' ) ",%/%/$+$-&/&/&.(1)3,75DAVFa 6F(/ "* !* ' '&%## $$$#"") '4-=0B1D2F3I5M5M3I/E/D.D,@'5"+ (% # #   ""$#!!""!!" " # %$/(4)7)8*:)9)8)8*8+9*9*9+<*: )9)9 )9 (5 (5*8 *8*9 +< +; +; +;*:*9 ,; -< ,: ,:,:+7'4$- $ "     ! !!!#  $"31&GF+HH96(%  !"#$%##% & ' !' % %")%/ #-!)"+"+") !("*&0'23@AUGc 6F(0!*!+!) )&&% & % $ %&%%% * $/ '4(5 (6 )8 +; +: +9)7 )7(6 '4#, #, !* '$ #"% %$$$$%###&% %$% (%1)6)8*9+;*:)8)8*9,:-<-<,=+;+:+;+;,<-<-=+; ,<.?/? .? .? /? .> -< />0@0?.=,:(7$,"&&'('   !! !!#$$$!  ! "!)'"C@.d`H}z2VQ"63" "" $%$# $ $ "( %+).,0*/*0'/#* ('(' %'",#.1> BVGc7G'0 "+ ) (&&&&&&$%& $ $$ $ ' !* "+"+#,#-#,"+"+ #, "+ !) !*#, ", !* ' $ $ % %% %%' *(%((& '& (#,'3)7+9,<,<,<*:*9+:,;.<.=.?->->-=-= -<,<-=->-=.>/?/@/@/@ .> .> 0@1@ 0@/>.=+;$,!$('$##"  !$$$#  !"! !    .*.KFN{sN|zCd^$:7%$!!  "!" % %,0.?AG_\<^\G`\/BE.4")&%$ " #%&"+/>@VD_6E &.!+%#$$%%$$%#"#  #&' ( ('' + ", !+ ) ('!* !, "+ !* ' # $ $ % %%& (!*'% % ' '' & (#,'2(4,;-=->,>*9*8+9,;-<.=.?/?.> .> .> .>.=->-?.?/?/?0B/@-< ,: -=/? 0@ 0@ 0@.=-;%- "!"  #!  " "!!"""! ""  !"!*#0C:=YTEda.LI 40%" !  "!  ! """  "%"'$05KVY]ki\oi\oiGUV#04$ #    ! " ""+.>=RA[4C&. ) & !$##$ $ #!!  !" $ & &%$%(& %&& )", ",!*% "   ! #% ' (!)&$ # " " # & ' "*'1*6,<->.>-=*9)7)6*8,: .=.>/?.> ,<-=.>-<->-?-?.?/?0B.= +7 )7 -< />0A1B1C.=,8%,"   !  !!!""!!"!!""""! #)#.*.++(&##" "!""""!!   # $!!"    "%!$#./9A@HSMJ[VK\W6FE./ !  ! ! ! !!),:;O?W2@'.'$" !! " %%$   !"# # # $$"" #' !*"+"+ (#$&' !)#"!" !! $ & #*(3+8-;-=-> ->*:'4&1)5,:.= -< -< -< ,;+:,;+9 +8 +: ,;.?/?/@-;*7)5 ,: .>0A1B1C/?+8&,!    ! !! ! ""! !  #!#"###"     "##!!"!   !!%!% ""   !!%##$'& +' /, .+*)##    " "   ')69K>U0<%+%#  !%& "! ! ##  "'#+"+ "*& #  " &' ("!"!  # & $,'3*7,:-<.=.>*:&2%/(5-= -< -;+9 )7 '5(7)6 (3 (3 (4+:.?/@/?+:*7)5 *7-</?/?0A/=,8&-!     !! !         !"!       !!$#!$"###"$!# #"   ! ! #!%'16F,9*7(5*7.=/?/? 0@.=-: %,!  !  !" !#""#  ! " "  ! $ #"!"%- 3B7N-: !'#    "# $ !! !#$ $"!" %)!*"*!* ) $  !" $&& #!! !# $ ' #+'3+:-=-=,<*8)6'2 &/)5,<-=+:(4 &0 &0 &1 &2 &1 &1&2'4+;/>.=,:*7)6*8-=/?/? 0@0?-<&.! $"&$ !    !"" # #   !% ' ' ' ( '( & ' !( ")&02A2F+8%# "! "!# # ! "! & !* #-#,",", #-#-!+() * ,"+#,!*' # !!# $&&& " !"" # $% &"+'2*7,<,<,<+:*8 )6 (4 )6+;,=,<(6 '3'5(5(5(5(4(5)7+:-;.<,:*7*8+9,;-=.=.=,9+8&/!  $ ->6%73'' &'*+!  !! !#!!!!""! !" $"+",", !, !* ( ) "+ ", #, &0+73C2E )5 ' # $ #""!!!" !" ! "$ ++<3F4G 3F 4H6K7L5I2E0@ />/?-=&1"* ( &"!!"#$## % %"! " # $&& &!+%/)6*:*9*9*9*9)8)9 *:+;+<+<*:(8(7(6(6(6)7 )7*8*8 +8+8 ,9+8 *8*:*9+9,9,9 *6(3$,"  !  "'$+90->6'&""  "#",-",-%%   !     #!! "!!"""##"% * ", ", ", !+ )!*"+"+$- (3 -9 5F5I )4 ' % & %## $$#$ #""# % '0=5D=P=Q=Q?TAVAV?R'2 #- "+' $" #$#$ %$$ %% & % % $ $ % ' ) $/ (5)8*9*; )9 )7)8 +:,: ,9,:,;+:+; +:,:-; -:,; -;,;,; -< -=-=-= .= -;,<,=,<-<,;*:$-#  !"  "!$!$#""""!"  !!    !"" !!  ""# # ! # $###"!#"  !%% ###!"#$ '"-$0$0 #- ", ) (#+ &2)2.7 5D4G*4#) ' ' ' &$%& & & ' '&%$$' !*%/%.%0&1 '3 &2&2&1%1%2 %0$- #."+ !)& # $%& '''(&& ' ' %&& % ( ) $/ (6*:+;+< +:+9,: ,:,9 -:-<.= -< ,< .< 0> 0> 0>0>0?/?/>.= ->.> -= -< -< .<.>.>.<-<*9#,"    !         ""!!"!##"""!!     # $ $# !$" $)31?6H2@ )2#*)/9D CY>L7@ 5B3D)4"( (% """# $ % % ( (&&$"% ( !(!(!(") ") !)!)!* !*!)!*", #/ "- ) & # $ % $ % '()) ( ( '%% & % & "*'3)8,=,=,< ,:+9,9,9 -9,9-<-=-=-= .= .< .< .< /= /= .< /= />.?-= -< ,;,;-=.>/>.=-:(5"*!  !  "    !" %% "  %0= EX/Vo M`;K1= 9F3Uf=de+ZUBO 6A3B(1"(("! ! ""#%$(!+$1 !,#"#& ' ' ' ' & ' ("*"* ) ( "-#/#. )$" # " "#%'( )'%&%# % $ % "+*7*9,<,<,< ,9+9*7 )4+:-<-;,=,=,=-<.<.<.<.=.< .</>.?-=,;+9*8+:->.?/?0?-<)8",!       "$% % # &1?'L`/Vo)QkAW2@">P=d`5aH6`ZAQ7E1?(2 "* (#   ##("-*9 $. " !" # % & & % %% ' ' ( ( ' ", #/"-!)#!    !"% ( ) $" "" # ##,)5+9,;,:,:,;)8 $/ $-)6->->,=+; +; +: +8+9 +9+9 +9 ,;.=.>-<+9(4(5*9->/@/?0?-=*:",   !  "#% "  ! #% $! #,55?;H@RAU4A8E&EA,JE A<6?2>/='1"*'#! "$(%00> (1 $" " # $ # " $ $% & $ %' (!* #. #."*#!  !  ! ' ()$  ! !%&#,'5,9-<,;-;,;&4#/$-(4,=-=+; )6 )5(4 (3(4(4)4)5+7,:.=.=+8(4'4(6,=/@.=/>.=)8!*     !"#% "  ! #$ #   #$+)0,22<4B/:2=5@09+3*2-8.;%/"* %#!   "$ ''12@+5 %" # $ # " $$ $ & %## % ' "*$- $-"*%  " "%'( #     !& ("-(6,:-<,;-; +8(5#-$.'4+;,<+;)5 &/ %/ %/ %/ &/(2(2)4+7-;-<+9(5&4)8,<.?.=.<.<(7"+"     "!%#      ! #$ # "  " #!("("''.+6*4+4*2'/%,$+ )2+6#-!( $ #!    "$ '%.2@ )3 !(&' &&'()!) * ('$& '"*$,#+ !) $ ! "  #%(( #     %'"-(6+9.<-<-< +8*6%0%/'4+:-<+8)5&0&0&1&0&0'2(3)5+9-=,=+:(6'4+:-<.>.=.=-;)8#-$! !       "   ! """ " ! $#% !' & &#+$, $*#)%% "* '0(2"*% $ $ "!   " $% !) $- #+' ' "*#,"+#,$.%0&1%0$.#+#* %,$,$+#*$, )! ! #!#&(( $   !$'",(6+:,;-;-<,9*5)4'1(5*:,; *6 (3 '2'2'2'2(3)5)6)6+9,=,=*:*7)7+8-<-=-=,>,<*:#.%""!       !   !  "## " " ""!! " ! ! $# (' ' ( ( ( ' ' !( ( #, &/&0#, % % $ "! ! ! " $ $ &'%$ %/3D8I ;M R:N7G 4D3D1C+6#*"* ("  ### # &(& &"  "#&!+'4)6)7 *7+:+8*7)6)6*9*8,:*6 (4 )5*6)5(4(4 )5*7+8+9*8+9*8+8 )7 *8+:,;,;+: )6(5"+##!!       !   !!! "## # $ # ##" " " " # ( )) ) ) ( ( ) !)!)!(#, %/&0 #+& % $ #""! " # # ""###(59QDaEbEbJfPqTwSwKlCbA`A`?]2D&, ( ( $!! " $ % % ' & %$#### # "$!*&3'4(4 )6*8)7)7)8*9)8 *8 *8+8 *8 *8 *7 *7 *7 *8 *8+8,9+:*7*7*7*7 )7 )8 )8 *8+:+9 (4'1#+$!!!"! !! # !"#### $$$# $ " " $ %()) ( ((& ' !( !)!* ",$.&1"* !( % $ % & & %$ $ $#$ # $$$-3D6J 7I :M@T LgTt Po F` ?R;N 4@.6)0&.#+!(%'( ('& ' () '&& % % & & &!*&2*7-<.=.?->,;+<-? /?.> />.=.= .< .= .> -<-<-=-=-=-;-<-<-<,<->->->.?.?-=,9)5%,!$!"%$1./>83A:&$    " !! ,')9-6E9.9.("! " " ! ! "! ! ! " ## !#&' "!"# ##!$' !+#-#.#.!*' $ "!" " $ $ % %$#$$ %'/-72;7A=EISScR`JRAE9?5715-6)0'/#+ ( ' ( '% &' '( ) ($%& % % & '#,(3+8.=.= /? .>-<,< .=-;/>/? /> /> /= 0= 0> /=.=-<,<.=.<-<-<-<,;-=->.>.>.=-<,8*5&,$("#%% 1-3A<1>='' !"!"#""""! %&(2.3A4:J::J:*# "!!    $!$!#! "    ! $ $"  "$    "% *",#, "+ *& !   ! $$%"  "&,5;+NV9ci9il7quB‰L‹ŒMˆVŽŽP„9_`:8-0+3'.$+%'%$ #" % '((%"# $ $ %& !( $-(4,:.< .; -;-;,;+9 +8-; />/>/? /=.;.; .; .;-<,;,=-=/> .=.=+9(5(6+:-<.=.<,:+7*5'/%*"%##&'+-+-%&!" ## $ #!! " $ ##"!"# #!$&$/*)7)3>0%4&(#!$!$ # #" !"""!!!" $!$!$ #!!"! !!"!    " $ #  "% "     "&)",#-!) (&!  ! $# % $   &)$@CW~j›œz­ª{¶µšÐÔŸÓÒŸÔÌ¡ÔÑ¡ÍÏ_Œ†,JD34,2(/$+ $#" # # "% ((($" "" # %&!)$-(4,:,; -;-<,;)7'2 &/ *7/?/?/> /=.;,9,9-:,;,; +9-</>/>/>*8%0%1)7-<-=.=-;,9+7&.#)"$"%$($'"%"$!# #"#!%!% " " # $"#!!" #  !$$'""($% "" # " # " #"!!  ""!"""""## # $ $#"$$""" $ $!!!! !" # "! #& " ! " %)",#-!* ' % " "$ &%  ((3NKp••ż§ÏÆ·Ý×ÏòñÖùòÎôæÊðçÁæÜ¬ 8XN 86.2).$+ & "" # " !$( ))$ ! ""! $ ' "* %/(3+8,<,;-<,9'4","+ (3 .= /> 0?0?3B-:+7 +8 *7 (5 )6+8,: .=-<(4#-#-(5,:-=.>->,:+7%/ & $ $ % $"!! !#"" !!"   ! "! ""          ""!!!"#"#$#$$#"!"#    !!    !!! # !   # # !   # '"*#- "+ ' $! $&# ,,>VTƒª ¨Ó˹ßÓÐðèäÿøèþøÜúì×ùîÉì⌶¨AbV!:714)/$+ ' "  ! !!%()) # ! !"! $ ' !*%/'3+9,;-<-<+9'4!,"+(4-= />1?4E7H .; *6 (4 '3'4(4)6 )7 .=,;(4$-#-(5,:.=.=-<,9*7$/"!""    !      !   !"" # " ! # "     "% ) !+!* &! $ &$   **;VSw¡˜¸ÒÉÈâÓÔîåæúùéüöäúíÝõìÉæÞ‘²£E_S!;701*.$+ ' " !" %()) $ ! """ # ' !) $.(4+8+9,;,<+:(6 "-"- (5-=0?1?7H6H/< )4 '3 &2 &1 '1 )5,: .= -<(5%/$/(4-;.=-<,;+9(6"+" !! !!!! !!##" " ! !# "!" " ! !" # $ $& ( '%    ! !! &# !" #%-25ROpІ®§®Á´Ä×ÒØçâÙåÜÐÞÏËÜÒ½ÐÉ}—?XO :8/1'-#+%$" !! # $&(' #"##$ $ ( !) $-(3)6+9,;,<+;)8 %1 $0)8,</=0?2C1B-; )6)6 (6 )5 *6 +8 ,9 -:-< )5 (3 )6 +9,<.=-<,;)7'5"+#  " !$$%%%% !! ! !!###""   #"##$$ #% #"#$ ' ( % $"!! ! !!""!" !!""'-:D+LOCcaWvqj‡|w—‹ˆ¤•¦”†£~l…Hmg-QK 88,0%*!(%&#" $ $ $%'& $$$%%& & !) $-&0(4*8+:,;+:)8(6 )7 +9,;-;-=.>-=,;*:)8)8 *8 *8 *6 *6 ,9,;*9 )7*8 +; +:+:+:*9)7'5"*"! "   "$#%%#$ !# ! !" ##$## "!"""%&&%% &&'%#&)'& % # " # #" ! " $ " "" ! "$ '.#AN#GV/V`8_gDhoPqxWw}[z~VwxQs{@ip,[e,OX7@*0%,('% &'& %% % % % %$$%%%% ' ")%.(4)6 *7 *8 )7 )7)9 +:+: ,;-;-;,;+:+;+:*9 )8 *9+9,;,: +8+:+:*8)7*9)8)8)8)7*9&2")"! "!$!# " " !!"!! !!#!"" !$"!## $ % % % $ """# & &''' & &'''))((& % $ $$## $ # "$# "# % &-8EAP&G[$I\.Qe3\q9dz9cw:^p3Xj0Rb$Ma DZ2>*1$, *(&'&## $% && &'&%##$ $ '&0(3)6 *7 *7*8 *9*9 ,;-; -<-; ,9+:+:+:+:,:-;-<,<+; -=-=-=,<+;+:+:+;+;+:+:,:&2"*#!!! $!%!$#%%%'&*(+**(&#$"#!!!      """! "!!"" $ % % $# #" $%% &''&& & &'(*)(& % $ $$$# #" $%% $% ( $-.=4C7F9FAML[#XlRc!M[AK.?/?/?0@0@/@ -> -=.>.>-=,;-<.=-<,;,=-<,:(5#+$""   !    !$!$#%%&)).-81$A:%DF?68//*($'$&($%#$!" !!  "$$$!!" !    ! #% $ $ #"  $ $ $ $#$&% $ $ %&( *'$ # # # # "## # # $ $%' ) !,)7.< /; /8:DHW"SgL\FQ3:293;0;+4'.#,",) )'%'( ( ( & ( ( & & % % ) ( !(#,(4 +8 ,:-;-<,;+;+:-= />/>/>.< -<.?.?/@/@/@/? .> -=.>.>.= .= -< +9,9.=.=-<-=,:)6$- %"!  !!!"!  !!$%)&(&&(&3.@4?fSrœ—ˆ³¿]š*`KA56/4135//,*)($% !  ! !!        !! !  ""!    !# $ " "   # %## ###" ""% & '!,)%#"!!"" !" $& #" # ( %/ *3 -83==B%OY0[c*X^'NQ'GL=@49-4 )/&-$,!) (& % $% % % ' & ' % %$ $ $ % &!(#- (3 +7.<-;.<,; *7+8,: -<.=/>.= -<.>.=-=-=-= .=/?/> .=/>/>-9+7*5 ,7-;.<.=.=,:)7$-!%!  !!!  !!#*-$5801+*2.*F=5XG•·£ÏèäÜÿÿ­æçmº£1z`%aQ6vn@”!b]D>3/)(%$!"  !!       ! # #"  % # """ "!!$% % )!,)% ##!!   ! #& !!!( )1/:[U]vvœ…rš†fu^tKjf)CE.2).&-#*!'#    "$ %$!!!  " #!($-(4 +8/> -;/= ,9*6'4 %1*:,; -=-;-;,7+6*7*5)5)6 *5 +7-< .< .<,8 *3)3)5,8-;-<-;,;)6%."% $"  "!! ! !!"&')(*).*3/&?74RECj[w«šÆóéÐÿÿÊÿÿ¿üì…е]«s¼¦w½¹dž–@ic ?:0-.+.,))))()((&&$$"#""! !!"##$$$$$%%!"    "$ % %""% # ##$ #"#" $ ())( %$$!!  " #$$ #!% %+-3+DBD_Ra‚pvš„zœ…r“vbƒoKf[+B?,/(,%+#*!'"   !#%%   !   #!(#-'4 +8.=/>.=,9 *6'4 %1)8,=.=-:-8+4*4)5)3(3)5(2'4+;-<-< +7 )3 )2*5,8-;-;-;,9*8&.#&!$ "!$ ###"! ""##$%&&%'%*&0+"91*F98ZJY‡r¡ÑÀ²âÕµíܤáÑv¼ Y—vg jŸ›T{5XQ ;7-+.,*)'''(%'$&#%"$!"     !##(& *)('&&$&!" ""##""#$#! %# "#$ ##"# # &'( & $#$!!!""$&%""!""# %+-3+A@F]Rbo{š…z˜lŠr]yjNd\,?@*.',%,$,!(# !!  "#$& '"     "&#-&2*7,;-<-<,9*6 (5 '3*8,=-<-:-:-7*4*5)5(4(4'3)7*9-<,<+7 )3 )4 +6 ,8-;-;-;+7*7'/$'"&!$!$!$!$!$ $ #!##$#$$%$%&%(%,(1,91&E5=bM_Œsq§‰r®h§ŽI„m?kPCgS@`W4OG&=71,(%&&$%#%"% # $!# !!   !"#"*) ))%%##"$!"!!   !!!""""" ! !%# "# $$ %% $ # $%$$#!!!!"$$%&& $ $ ###$ $**1"895JBRdW_raduaZkXPcZ6LI$78(,&-%-#, (&&"  ## %& ' $     !%#-&2)7+;,;,;+9 *6 )4 (3*8-=-;-: -9,7*4*6*6)5(4(4)7,:,;-<+8 *5*6+7 ,9-;-:-:+7)5&.#'!& %$ $!$ $ #!$!$!$ #"$#%$%$$'$+'/*5*%A.5R;;[@7^D/W?#L8$C0#<. 7.1),&'## !  "!!!"   !!!" ! " "!#%"  ""## # "#" " " !!!#" #%#$# # # # $%&%# " ! !! "$ % &$ %&$% $% '"(&--1%525@=?GCBHA29.4+/)*''$#!!      !  !""#%"""  !!  !" ! "!$ $ $&% $ # ! " ""$ $#"# % $" "## # # %''$# ! ! " #$%%&$ %&%%' ' ' ") %+'*(*+--/.1-0+0).%*#) #)")!(&""## " ###"#$$ ## " #$ # ($-'2(5(4 (4 )5 )6 )6*6 )5*6*7 +7 +7+7+7*7)7*8*7*6 +7+7 ,9,9+7*6 )5+8 *6 *6 +6*7(3'/$+!%"#"!!! ! ! !!#$&&(&(%'"#$$'%0+5.2*/)-)+'*&)&%#"" " !#!   ! !!""   !"$ $ $ && % $ "!# "$% # $##$$##& %$ # % &'$#" " $ % %''&%' ' & & ' ' )#+%, &.(- (,(-)/)/(0(/&- $, ") "*!)%$$%$ $ $ %%$%%&& % # % % &!)$. '3(5)6(5 (5)6*8*7)5*6*8+:+8+8,;,;+9+9+8+9,:-;.;-;,: +9 *8,;,<,;+9+9*5(1$+ %"#!!""" ""$$%+,13*+%&!"$%*( <6"C=!B:@:<830,(&$!   !"$!-+" # % $ $ # " #" #%# # $# % %$ $%$$ $&'&%# " " $ % &' ' % %( ( ' ' ( !* #- $-&/ '1(1 (0 (0 (0 (1 (1 '0 %/ %/$-#+!*&&''%& & & '&& ' ( & % $&(!+#-&1)4*7*8*7)7*8*8)6*7+9,;-=,;-:.=.>.=-<-=.=.<.</>.=-<-<+:+:+<-=,<-<,9(2#+ &"####"" ##&(,$58$58,-$% !%&-*"?82UM7^V6]V)LH961,(&!!!  !"'%%0+1C;!"$''## #! ! " $ % % #"# #" # #&'& $ # " " ##$ %'%& ( ) ( ( !* "+ %. '1 (2 (2 (2 (2 (3(3)2'0 '0 '1&1%0$.!+!) ('' ''' & )!) ( ( ( & % % ' )"+$/'3)6,:,:,:*8)7)7*8+:-<-=-<.=0@ 0@0@/?/@0@0@0@0?0@/?.=.=+:+:,<,<-=-<+8(3#*%"!"##"" #!$),!03#35)*## %%,-">:-QK7^V0XQ)LI!86"61'% !!#"")'5=7BLE  #'' # # "  "$  "  " " $&% $ # " " """ # $ $& ( ) ) ) )"+ %. (2*5*5*4)4)5)4 )4 *4 (0 '1'3&2$0!+!) '' ' &'' '( * * ( ('%& '!)"+%/'3*6,:,:,:+:*8)7*8+:-=.=.</?1C 1B0A/?1A0A1B1C1B/@0@.=,:*8+:,<,<,<-;*8(5#+$!!"!!""" "#%'*')$$ "!)(31*@;0GA1HC#<81.+)$#  &#(2-7D; !# %%$ # !  !$     ! " "&% #  !     !" $' )(('(#, '0 (3*5,9 .9.9/< /< /< ,7 )3(3(5(5%0#,!)' & % $ %$&' ))%%%$%$ &"+ $-'3*7,9,9-:,8)6(5)6+8-=.>0?0A1B 2C2C 1B1C1B0B1B1C1A1@-;*7*8*8,:,;-<,;+9'4#, &#!#!!"!!"!"!  """%%(' ))'&%%"" !# $($ #"" #" # # ! !#!  # #   ! " %& & "     " % (* )'("+%. *4 .:1?4@6A8E7E5C3A1= /;.:,9*6'2$- ") &$ "#!! $'(* %" " !! $"* $-(3+7+9,9-9 ,8)5'2(4+9->/?0@0@ 1@1A 2B2B2C 2C1B1B2E2D0@-;+7*7+7.<.=.=-;,:(5$.!'%###!!!!!! !!    #!$ #!! !     !  ( $ ## ## #!  !#"! # $ # "  "& % $    !   #%& )!+!*#,%0(3 1?8H =LAP HYK^L^HX BR =L 8F4B 1> -8 )4 %/ #+ '#" "! ## ( '( $!!! !#"+$.)5*6,9-:.: ,8+7'2(3+8.>1B1C 0A2B4G5G 5G 6F 5E 4E5H5I4G2B0@.=,9-8.;/=.=-<+9(5$- %%$!#!! !!!     ! !      !!  !!  !! ! ") %& $ $$ $   ! # "!" $ $# !% $# !  !#$& )!( "*$,'1(4,98IGYSf)^u1h‚9l‡3m†0g~]pQbEU 0@.;.<*7'3$- &#! " *:$2!. -)&$#!!   !!!" !" "   ! !   !$""%'!)$-(2 +8/< 7IF[ [v5§Œ°ÞºÞÿØõÿùûÿýûÿÿûÿýûÿøúÿáúÿÍíÿ¤Áñ9‰µ!bƒ CW;H -7+6 #-"+'$ %&% & '% " " #$  !' +%0'3*8+<,<-=-<.</=3A9ID_Tw'k@„ÃW›äˆ¯ø”»ÿ¬Áÿ–»ÿˆ­ø[ä@‡Æ+p¥Y€Ie @W:N5F2A0?1@.=-;+8(4$-!'$!""   *8%2!. ,(&&$#""! ! " " "!"!! !"  ! " # ""#% $& ' !( %. &/ )4-97F=NNe!_{=‡­S¦Ñ¶âÿäüÿÿüÿÿüÿÿüÿÿüÿÿûÿÿýÿÿýÿùþÿÙþÿm½âK—À%a|"Nc9G5C*6'2!+ )( ( ) ( % $ " "$% %$%!)$-'1 )4+9,;-<.<1B6GBWPj&s5™Ég¿û‹Þÿ½ÿÿÚÿÿëÿÿûûÿìýÿàÿÿÊÿÿ‡Óÿ^¶ï5’¾!o–UrH`@T:L5E1A.<,9*7(5%.")#   !    ! *6&2!.!-)('#####"" ! ! """"!  " "$$%%$ $ & !) "*&0(4,81@;LDY$Up1nH“»k¹å¾ìÿâÿÿÿüÿÿüÿÿüÿÿûÿÿûÿÿûÿÿüÿìüÿÍöÿ€Î÷N›Ç1r“ RlBV8H/=*7#.#- ( ( ) & $ # ##$% %&& '"*%.'1(4(5+9.>3E:QHd&\6~°X¦ÜÒÿ«õÿÆþÿÛþÿ÷þÿÿúÿûüÿôûÿÝÿÿ¶üÿˆÔÿP¥Ö1‚¯#f‰TpIb?S8J3D.=-:+7)6'1#+# "    !""  ,9(5#0".*(($#$$$ # # # # $# "## ! " ## $#$#%$ % !($,&.)2+6/:8E@QPg*g„>ˆ¬]­Ø±ÛÿçÿÿÿûÿÿüÿÿüÿÿüÿÿýÿÿûÿÿúÿÜóÿ¦Ý÷VºÝ6‡¨%fK`?P7F0<*5%/%/$-"* "(!( (&%$%&& ' (!(#+%. %.'1)5*7,:1@9KC[Ro.jE‰ºi«ßÍþÃîÿßõÿùüÿÿüÿÿûÿÿýÿäÿÿ­îÿŠÆöS¢Õ:‡³+r—&c‹QmDY;L6F/=-9+7)5'1$, &"!"" !!         !   "#$##" #!$!#!# !.; *7&3".( &&&# # #$ $$%$ $$"""" " " # #!!# $ % &")&,(/*2+3-54=9FJ\!Yp4rK“·€ÂëÍñÿôüÿÿûÿÿüÿÿûÿÿýÿÿúÿÿûÿÇîÿ¤ÝñE«Å,„_sK] ?N8F1;+4&/&.$+ "' !'!( '"(!& $ $ !'#)#)#)#)$, &0 '/ (0)4+6,81=8G@SKb[y#s˜E’Áe±â©ßþÍêÿôýÿöûÿöûÿòüÿÙðÿ“ÜûƒËúr¹ìd¬Þ_×EÃ(e}#WoEX:I1=-7,6*5'1$,!) &%###""!    !!! !!!""!"       !! !"# $ $ $## # # # "  "!"     2@,; )7$0 ())'$# #$$$$ % $$"##" ! ! " #"!"#!&#)%*)/-4-5-6-4068AGZQc%[o8u‘`¡Ä–Òééýÿÿùÿÿüÿÿûÿÿýÿÿúÿùüÿ½óÿ¨ìÿfÆê?œÁ!rŽXoNdH^:H/:,7,8)2'.'/'.+2/?+4'.*3.=,6*3*2*3,8.>.:,7.<0A4F;OG`Vw k’-²4ÃO£Ùo»î®ÝÿËïÿÝÿÿÝÿÿàþÿÙöÿ±Þÿ—ÞýËÿÿÆÿÿÇÿÿÔÿÿÉöÿ\¡¿=z&\sH[8D/9+5*4'/") & %%##"      ""!"! !! ! !"!"## $##""! ! #!##  !!!!! 4E0@,;'6$1#/"/ + % $$$&&&(%%&&& $ # # # ##" !"&&+&,)-,1/41708-3 /29BI\"PaQ\%[lHˆ t´Ñ×òÿûûÿÿûÿÿûÿÿüÿÿúÿõýÿÃÿÿ±üÿ“äÿ_»è1б"j‰XuOlBV5A1?5F4B-6)0-4#;N*A^6J-81C)@\)@\#9H0</:6G(=V%$8E*?V*?U!9I4C;OBWVvfŽ-~³9“ÍP§çX°íjº÷‚Éÿ¼êÿãÿÿôýÿÿüÿøýÿê÷ÿÍèÿ»çÿÜÿÿéÿÿëýÿëþÿÓÿÿ„×ú^±á=“»0}¤$cƒNe7C-8&,"&""##"!!    4F.>+:)7'5%3$1", ' & %' ( * , * + !+ * * + + + *!+ !*")$)&**-.121A='MJIEDE GL"IJ&RP+df<{ƒ=ƒˆ1tt1nsE‡”`¥¼·Öòøûÿÿüÿÿüÿÿüÿÿûÿòÿÿºúÿ±üÿ¤úÿ‰×ÿQ¬Ú;‡®-iŠ"UqAQ:D;C AI>C5:.3.42=2E,7(/)3/<1<.6,3,1/7$6E'8H!5D2A6E?TNk*_…5s¢A…¼S–Ô`¥ám±ëÈÿÃèÿéýÿûýÿÿûÿÿûÿÿúÿîòÿ¨ÚÿÌíÿßþÿØüÿÚûÿÎïÿˆÌûh³èL–È>©:i*Sp =P/:&-"%!%#"##! !  !!## !    " /?+9)7'5&3$0 !+ +'' ) ) ) !+".". "-!, ", ", "- "-"-!, !, "+&-,2162636 >>?kjO‚Iz7hg=ksC8;78(?C1KP'BE"8923/2-0+/)-)- +0+0+/+-+.+.,/-0-2+0(-$+$,$/'3+70<6B$?K,KY>bqu”¢¾ÐÚÿûÿÿÿÿÿüÿÿüÿååòu¯½R‹—M}‡It‡Do€Ak{>gu.`j"YZ PP#RR&UT#PLKEMFNLIFEBA<?9A;C>D?EBEBD@>99698:9;:=:=;>:!?; ?<<9955/1,3.50627361422-/*.(.*0-30403/1-/+-,-,,++*-+/*.*.+..-.-..-/-/,/.-,+)+)-*.+,)+(*))))&)&)')')&)(*(,*+)*)*)# "  " ! !! #( * !, #.$/ %0 $.$. #/ #/ $0 #. #. $/ $/ #-%,(.+--/24%:45PDOd\Hb]7VR2NK+IE3SLCidX~\Œ‡K€yFtsFw{Kz~M~‚Z‰“i—§m™¦_—ŸZ’O„‘@p}1Ye"HQ CL#BJ#>E7<35233356 6744200002/1/204$37%48#46 4533"34#46#46"46"48 27,1%+$,$-'1(4.93=!;E&CM3S]Pp|š§ÓÌÚúòÿþ÷ÿéàó»¿Çl¢`’X…‡O|yG|yRІW”ŽLŽ…Dˆ~JŽ„Q™ŽU”V™ŠJ‹vHˆ|J‡EŒ„A„|@{qA|lI‚tH„wH†|K‰‚I‡H„}D|s?rf=nf;kg3hb;ogF{qK‚wM„xKƒvF~sAqh5dY7cU>j[>o_@seCtgCtjFqk@f\3WK-RH0WO5`W8g];j`=i^;f\6_V2ZT*TR'PM)QO(RM.TL/XQ*VQ,SP.WW1ZW6_X:cY;dX9c[0[V&OJ%LF(NH,UN2[T5YR2VQ1TR-NH*I@(IB%F@#EA&LJ(QO*QN)PL+OK,NK" !  %( &%%(*!,#. #/$/$0 &1&1%0%1 %1 $/$/$. %0 $/$-$)%'),0244(;53@=0?>+>>'=<%?;*EB1NL9VV:WU8TQ7SQ1PS1RW4V[9]d>co?ep=dk9`i4Yd,P\%GQ>G:B":B"8?25-/-.00!23"44 32!21"200123#78&;=)>>,@?)@?$><(><->;+=;,?<.@?.@A);@15',%,&/&0(3,71:7>"=F(EO8T^Ro€w˜¯“­Ê•³Æ‡©´uœ¢m›ŸliŒZ‡Z›‘l²§xÁ·ʽÌ¿€ÏÁ‡ÖÈ’ÙÎË»j¸¡m·§vĺtÇ¿vǽq¿°n¼©m¼©l½¬m¿²mÀ·i½´g¸­_°¤^ª›d«¡[© O¤™T§›_¯¢g·§iº©i»©i»¯g¸®XªœV©•Yª–X¬™U«›Z­ž_°¥a­¢T˜‰E…tI‰zR˜‹X£–[ªžY¬Ÿ\­\©™Y¤•Y “Rž•J—N šM“Oš‹P•‰H…G‘ŠM˜“P–U¡•Z¥–X¦—U¥˜O¡™D˜E”ŠL™Sž“UŸ”Sž’Sž–Sœ—I„A€rB€sD†zI‡L˜‘Jš’L›“MšM—K“Š$! # &+ -+*!,"-$/%0$0 %1&1'3'3 '1 &2&1 %1 &2 %1 %0%0$/!'"%&(/11121"34!67 77";:!AA&GH#MN(PS&NO!GEB@"ABAE"DJ$GN'JS&IQ#GM$GO$FP BL5:26-0-.0/32 77#99!87 5321 74'B@*KH-OJ+PK(PK'OJ'PK,PJ+PI*SL-VP2VT(KK78),%+%-%.(2,4/53:6> ;C'EN5Q_HhNo€Pq{UsyUyy\a„€c†{g“‡q¨˜‹Ã±¢ÛÌ©äשçÙ¯ëݸñäÁöé´ìیѼ̹—ÖÆ”ÙÏŸáØ¡áÒ™ÛÈ˜ÙÆ’ÕÄŒÒÄŒÑÆ…˽‚È·ŵ~Ƶ‚Ķo»®_³¥k¸ªxÀ°ƳƒÊ¶ŽÑ½™ÚÉŸßБÒÀ†Ê¶†É¶ŵy³zÀ´s½°n·ªj®›fª’p²Ÿy»­{´x÷tÀ³}²ƒÅ´€Ä²€Â²{³wĸ|Ǿ|ƹ{Á¯y»ªj°¡`«žg²¨qº®x¿±Â´Á²{À´u¾´o½²q¿´y¶~ķĶ}Á³v¾³o·¯d­Ÿdª—n°žs¸§x¾¯v¿³r¾²s½±t½¯v¾®{À²"-%" % (!, "/ #1#0$0%2$0&2 &2 &2 '2 &3&2'2&2 &2&2&3 %1 %0$.#,!'!$%'-///01112343>=3^\G‚€D‘‘K”?ys0]X@:===?BG"FL#GL!CI@E!BH!CI?E:?3:4<4:38"49"47!35 2366'CC,HF*EC :842%=90TN0`Y2h_/i`0ja1kc0ld.lb+lb,rh;~tAB >B7:163:3938$69$69!47"36#793LL9RM9RM$>;"75(A<5_T9si:zl7yl7zl8zn7zn5zn6{o8‚uJ’…I’†?sk$MK/0',$+%,'0+0.10427498>!?E"AI"@H$>E&!>B ;?59052838"48#48 3613 24!43/GF9NK2JF&=9":6&A=7cY1rh7~p6~p5}p7r6€u6€u5€t7†zF’†F‰}=tk LI12&*$+%,(1,2141525387<9?49 27)8;/B?=SNRod`ˆxª“ Ä±¨Ñ½«ÛDzâѱâÏ·à̰ØÃœÊ´¡Ñ¾ªÙÇ¢ÝʨÞΦÛǧ×À©ÔÀϼ—п—ÒÄ̺ɲ•͵šÒ»œÕÄÓÅŠÇ´’Ϻ’ɵŽÅ­”ȱ˜Í¸¢ÕħÛÌŸÖÅ Ô¾£ÒºšÐ¸šÔÁšÔÁ’Ó”оůƬ£Õ¿¡ÙÇ–ÚÈ–ÚȖѾ™Ï¹ŸÏ¹›Ï¹šÒ¾›ÕÆš×É›×É›ÖÚӽ™Ï»‘Ë·”МÓÜÓÕ̵–Ê´‘ɴ͹•ÒÄ–ÔÈŸ×Çž×ÄŸÕ¿ ÖÃØÆ›ÛÊ›ÛÊ–×›ջ¨ÚÃ¢ÚÆ˜×Æ—ÕÇ‘ÐÁ̽’̼”ηšÒ½$/ #/ $2 #0 ". $1 '6 (6 (6 (7)9(7 '5&3'4'4'5(5'4'4 '5 '4'4'4&2%0%."'"$%'*--0-1-..-1-'<68PKIc`Fg` 89358:"?A#@A"<=8956686:27-205 16!2603-0+-.0 00&:82A?*=9#62"83(@9/WO7i_:na8oc8nb8mc:ne9ne7oe8qg@tk?qh5bY!FC/0%)#*%-(1/4030413265: 6;5:2716/4,0+-#33.C@=UOJf\bƒo§°—ޱ𒶢‘¹£“¹¢–·±Ž´›‰´Ÿ„µ¡ˆ¸¦‹¸¢“º ½¦Žµ }¬™x«šsª•|®•‰µœ½¢—À¬´£i¥“r©•®˜†±—µœŒµ‡´Ÿˆ¸¦‰º§’¿ª›Â«–é–Ä®‘Á¯†»ª‚·§€±›¹›§È±žÈµÄ³Âµ‹¾¬•Áª¢Æ°šÄ¬”¯´õ’Ÿ’Ʋ—Ç­ŸÉ±‘À©‰¾¬Äº‘ı”À¦™À¨‘¾¥Ž¾«ŠÀ²‹Ã·–ÊÀͼ›Íµ¤Î¹œÍ¹•Ê»ŽÈ½ˆÃ±žÍ´¨ÚƪÖ™̽ŒÈ¾†Ã¶Åµ•Ȳ•Ȭ Ë¶$1 %3 $3 $1%3&6 '7 (8 *9 *;*:): (7(6(7(6(6 (6 (5 (4 '5 '5'4'4&3&1%."&"#%'*.-0-2 -//.10#52+=91B@1C>*@;$<;#::"7847354657685747 46 4625/4-2.3 04 13.0*,()-/#03'34)44&41$42$72&:5+HC1RK4YP/WO/UM2WP5YS6YQ5XP6ZS7[T6YV0PM>=./%)#*&.'--1031312 14!15!15 0504/3+0',%)()!22+>=1G@@SGS_OYgU_p_`wc]yc`zd]sYUkSVnUXt`Xxe\}k\|ga{edxaXq]Rq`RtcNs_Tub[xd_{eb{dUudIp_Or`Tr]Ws^\u^Ywa[}g_„q_ˆsf‹ujŠqe†le‡me‰saˆq^„oW|g^|`q‰poxj“}m•„i‘zmŽvtwnum“yo™ƒmœ‡pž‰m›p—{qudŠpg’qŒl™†n”xs‘vmŽtp”yp›‡q¤{«™x¨Žz£ˆ¢Šz¡Šy§”{«šq¦|¦‹¬”ˆ¬“‚­–y¬šm©”tª•v¥x¡‡„¤&3 &5 &5&5 &7 '8 (9 ): ); ): *:*;)9)8)9 *9 *9 *8 )7 (6 (5(5(5(5(4'1%."'!#%)*0-2-2!-0 ./ 0021!43"54"655434251403/20213132526141414/3-1-2.1/1-.))()-0"14"47"34"32"32"63#51';9*B?(D@'E@'E@*FA,GC-GA,HA,IC-GB+DB'?@67+-$)%,(.,1.1/1111124140303/3-1(,$)"%#&'),-0-%5./:02>14B36D44F56E4/D3-B3.B2/C3-E6/E7/E64F67E50C3,B2,A2+B4-B50B52E75F7.E5*C4*C3.D40E63E54E43H76J:6L;4M<8M;8N:7N:4M94K73J62J55L6>P:?R=;SA;SB6Q@9R@?S@AT?>U@BWBAYC?XB>WACVAEU@?R=9Q>=SA>UABT>AT@BUAAWCDZEC_JGbNIcMMcLOdMLcMGbNB_M?\HFaKUhORhOMgQFfRBcPEaNHbNKdPQfR '6 '6'6&6'7(8 (: ): ); *; *; +; +;*9 +: +: *9 *8*8)8(6(6 )6 )6 )6'2&/"'"#%)*0,1 -1",.++,+-../00/000/1.1,/,0-0-1-1023647"58 37/4+0+/,//3 03.0,,,, /0$23%7:6642"52#51$42+;91@>.B>+C?/FA2GB3GB6IC5JC1IB2GA2B?)<=35+-'+'*-/4598!;:!:88585!8: 5612/2,/(+#&!$!$"%#$%%(% *&!,%!-&".&$0' 0)/(0(0)/(0(1)0)"1)%1("/( .' .& .&!.'#/&".&"/' /&/' 1' 0' 0&!0%#0'$1'%1(&2*#2)!2)!2)1(!1'#2'"2(!2'#3'%2'%4)%6-"6,#6,#6($5'&5'(6(+6))6((6(,7+-5*(2'&3()5+,6-*6+(6*(6+(7+*9-*9.,:/.;1/<00<2.<2-<3.<4.<20=14>21>1/>3->2*<0,;./?!:: 53"63"41#42):9+>'<>35+/*+./65B>2NJ'QM#KE%H?'JG3U\'EE%9600-/(*"% # # #!#!"##$"%!&#%#%$'''&&#%#&%%#%"%#&#&$'&'$'$'$'$&"&"'#&#$!%!'"% $ &#'$&"'#'$'$(%(%(#($(%'$($($'#'"&"'"(#(!(* *"*!) )")$(#(#)$)$($(%($(#(#)#*$*$)$)$(%(&(%(&(%)$*%*$*$*$*#+"",#!,#!,# $0 %1 %2 %2 %3 &6 '7 (8 ); *; +;*8 )7 )6 )6 )5)6(5'3'2'4'3'2'1'2%0%."'!$%',0,/+.()&%$$$$&')++,+-+-,/+-*-'+&)'*2467"=B<>46')'*)+,..1 04!24!2421!32"33*>?:975 42 41"54'<:)?=/GE2MH7XO9c]@qjAwpDvo'<<34,1-/;6&VLYƒŠ­¶|®¶>…p4k\P‡†r«ÂJv}0IH#53./()"$!"# # "!"""#"$"#######"#"$$$$###"$#$"$"#"$#$##"""#"#!#!$!$"#!" !!! #!%#&#&$$#$"$"$!#!$"$"#"#"$"" " #$ $$% %!%!% %"%#%#%#%!$ $!$!#!#!$!$!$!%"%"$!$!$"$"$"$"$!%#&#%"%"$ #$##!*!*!* ",",#.#0#0#1$2%4&3&3 '3'1'1 &1 &1&1&0 %/ %. $- $-#-#+"+"'!%$'*-,0,0)*''''%%%&)++-,/,/+.*-*,),)+*.1469"=BaU/GA&=;!46.3/.C:l‘ØÜíþûÿñùÿ²ÔÑg—}…°ª­¿u›£BUU&8800))"#!"!!"!#"####$#$#$####%%'(&'#$$%&%%$%$$#$#$$$%#%""##$##!#!#"""""""####$#%$%$%$%$$##!"!"""#"$"#"##"" " " #"$####""!"!#"$%#$##"!" $!$!$"#!"!""#"###"#!#!" " " "!"!"!"""""#""#"#"#!" ",#-#-#. #-#. $0%3&3'4'4 (4*5+7+5 *3 *3*4 )2&/%. %. %. %.$.#-","("%%(+..2-1+-*+*,)+(**,+.,0,0+/+.+.*-+--0/237 6:4813+-),(*+-/2/2./+*+) //#10!332121 21 21#65'<:*@>/HE6RKHhYq¤š»ëôÚþÿÎúþ|­¦Ik[0KD*?=$57.01-2G:•¡ŸÿüüÿüÿÿûÿÊÕÎ{”uy˜‘®·`€†=SO%84 10))&'$'$'#%""%$'''&'&)(**+*++*(*(+)+++*,+,**&(%)&)())(('('&'%'%&$&$&%&&&%&&'&(&(&'&(&(&(&(&'%'&'%%#%$&%&%'$'%'$'$'$'$&%&%&$&$&$%%%#$"$ %"&#&#%#%#%#$"#"#"$"%#$"# $!%"$#$#$"%$$#$$%$%#$"%$$#$0%0%0%0%/ %0(4)4)4)6*7+7/: 2< 3:4; 08 ,4 )1(0 '1'0'1'1&1%0&0$+#'&*+..2.1-0-/-0-1,0+.+.+.,0,0+/,.,/-/-0-1.1/304/3,/*/),+,/1/0--(&''.0 001221 32"32#42%65'97+>;.D@7PFRfU“¯¨Ðéÿæýÿèøÿ½®To[9OF-@>&54003-2F8w„kÒÆ³ÿëäêâᚯ¡YuRG^JBXU4LI-@:#50!0.)*,. /0#2232 4296=;@=A=B?EBFD EDA>?9@<A?B?B?A=A;A<>:<9<;=<==;8736252535554667473736242423141525140303/0+.*/+1-1.1.2/3/1.0-/-.,.,/,0-/,.*/+/-/,/-0-.+-*,)+)*()'+(,',%.(,')'))('(%(&)(('(&)(****)2'/%, $* $+'0*3*2*2+2-43:?C!QS(_`Z\PRCC66.2).(0(1(2(2(0'/&*&**.-0-1-0-0,.-0-1,0+.*-*.*.*/+/,..00202/203 03 03.1,/)-(,+/.102,,(&'&-/#35%8:"88"53%41%52&73*990?=2C?9ODO`NŠš˜ÏÙÙåéçÈÓÏ…ŸUkU)45!22/,0B7O[Ky}i ‘‰„ˆxWpTDYC6H@-?;*95%52!20 /,"0/(621>95HB0LH1WR5e^>tmA|t>€v<…}C†H“‹J’‹Aƒz9vi?zq@‚{?‡@‰‚;ƒy;~r?}q<|r=w;|8€|:z9zr6ti6pf0le,kf,lg,nh3sl9wn5ul.pg/me1ld1le1kc2lc4md5nf4le4ib.^W'VK*XN)\U)aZ,f_,ga-h`+e[,bY-^W+[T,[T+[V)[T*ZS*YR&WN#UN&VQ)VR)XQ._W/bZ)]U&VP%RL%PK'PJ%OH%PH$QF#QJ&QL#KBD>!C<"D=$E?#FA#F@#GB$IC#JF"JG-2).$)#($))/.5184;4926">?9gcc¨Ÿgº¯`»°X¤By%RL;:*-(,&,'-(1)0+1-1.2/3.2-1,1+.*+*+*+)+(+'+',(,)-*-+-01344534244513-.*,(*&*,1.2/2--(&''.2'8:0GG&A?$84%40%50$75+>@/CB5JF6OD@VDOgPm}`„ŽopƒgVlTFXC6F=-<=&22!..,* 3-/=3AM?QUD@P<5J:.C8'<4$72"3/ 1.0- /,#2,-91=I?>RFB]SIqhO†{ažn°Ÿk²Ÿg´¤p»¯vÀ´y¿²q¶£fª’h©–j°£l¶ªlº¯kºªo¹¦uº¨o·¥i´¥d³§c±¤e±¤g¯žg®™i¬›X¡”L—‹U “`¬i²¡l´£i² c¯ c«ž_¨š`ªše­›f­šh­œe©›^£–\œ‘T’‚O‹vTWšY¢–[¦›Y¦˜[¦–]¦”\¥_£‘Y XŽYŸ’X ‘Y ZœŒKDŒ€M•ŒWž‘Y¢a¤’^¤’\ P—ˆM‚Q“‡W–ˆU–…U•„Q“‚Q“†Q†G€tDyiI{kI€pM…vNˆzN‰}M‰~Mˆ|L‰}K‹~%39+0$($(#(*/ 376:!7;!78"99,FDW‘‰Ð¨ïßïàåÛbª 9jc"DB./)-(-(.)0*0/358#::!35.2-2*.),()()'*'($'#'"&$(&)()*+./454545444500+,&&&(&)*0.2/2-.(&'&.0&780GG"@>#:6%50$72%:8-GG5RP=ZX;XR:VIB[NQbSYaQKXI@QE9J>/?<)88$10,.)+**#10.:51=4+;0$91"836331100-0- 1."2..<6=I@AUHFdXUt_šŠvµ£„°…dz‡Ì»ŒÑÄŒÑĎϾ‚®tµšz¸£À°‡Ë½ÔÇŽÖÇ“×Ä—ÖÄŽÑ¿…ͽƒÊ½€Èº‚Ç·ƒÆ´„Ű†Å´}Á³sÀ²{Ä·…˼ŒÐ½ÒÀÓÀÓÄŽÓÆˆÎÀ†Ì¹ƒÊµƒÈ³†Èµ„Ç·óz½®n²žj¬”x·£ó}ȹ˼|ʹ}ɶ}dz}ưȴÉ·̼€ÎÀ|Ì»|ȵv¿¬j¶¤jÀ°~ÐÅ€ÑÂͻɶ}î|Á®uÀ®pÀ¯u³wòw¯tÀ¬q¼©o¹¬j´ª_©™\¢f©–j²Ÿl¸¦n»¬k»­l»¬mºªi¸¨h¸§(5:.1')%(&)*-!22 2245!31$845IBd–гÝϵðß¶ðß¡àÓt²£ja=e^@_Z@VP8LE-D?+B>$:9 67 15-1(*)--0 35!33"0,0-1/2256644141#2/$2.,838B:VF[{ki“‚³œ•ȲžÒ¼¢ÙÈ¢ÙÈ›ÙȘӾ˳„¤˳šÔÛ×Ç£Þͦàͪá̬ßÍ£ÚÇœÖÅ™ÔÒл“л—Ò»šÓ¼ ×ÛÖÃÕÅ¢ßÑ­àЪÝÄ«ÝĨÝÉ«ãÒ«ãÔ§àÍŸÚœս™Ò¹›Ò¿™ÒÁ”ÑÁ”Ͽ̴ŒË° ×¾¦ÜÊ¡ÜÊŸÚÊ™ÖÁ—Ó½šÔ½›Õ½¡ÙĤÝͤàϨàϤàÌ ÛÅ›×ÁÑ»•ÖÀ«éÒ«éÒªäРØÃ”͵—ι–Ͼ’Ѿ•ÒÀ”ѽ“к–оνˆÊ»ƒÇº{íĩʲ‘θ•Ó¿–ÔÇŒÎÀŒÊ·‘ɵɴ•Ì»2;=&46-/+--1!03#02#/2".2"-/#0.*8/?SE]rba}jXweEcT2OE'=8 20$/0"-/%/3'05'/3#.1.0+,)))),--/,-*,*,+.+/*-*-),)+)+*,*-+.+-+--/-0-0.1/2-0+.*-)-+..1.2,-&'$&,/!021201 21"30&:46LFOureš•y®¦®§u®¨cœ—Y…Ilh8TQ0GD0FD3LLAWXBTR66*,+.$8;+?B+?B%56"/.,>1A=0A>.?>,:8 21+***12"34"34"23!1.*;27F:SjW‘­¢ŸRle,@5#2'$6*8I;CZM?]L:^J9bO@o]N}eQ†mRuW’{U”}W”{SŽpTŒmXŒlY’xW–~X˜X˜Y˜`˜~W”zU’{R‘|R‘{V”{\˜{a›zh}[–{S”|T”|\›€ež€hŸ‚e€]›‚\š‚Z›_›€b€e€gž‚dƒ[œ„\›„Z˜yeu|«‰u«h¥Œd¡Œ\œ†ež„p¢…v£ƒx§Švªpª‘r«“o«Ž{¯‡³“wªŠf¤‰k¨‘e«‘jªgªŒg©Œfªe§_¦iª•n«u®€²“z¯‘lª‘f£\ž†m¨‹Š¶›‰¸ƒ¶Ÿz²Ÿo­™s®šu°—{´–ˆº¡1:=(45//+,,/-1 ,1 +.)+&)%)'*')&(&'(((('*() )+$,0(/2+02,13(15!/3,1&)!#$')-+/*-()'''(')'+%)%(%)%(%)%)$((+,-343232"775511)*'*(),."04"04+-$%#%+-/1!00!//"0/$10&40+837C;AJDEMGGNJCMH=JF9GC4B?3@<4@=4@<5?>0<;(52.,+*()**+, 0000 1-&80+=57J;P]OBUO3OC%<3#2)0@3KYF^xcNueCp]H{hTzZšƒ[ ˆZ£Œ]§’b­—f®™\¤ˆUšz] „aª”_­˜c®›c¬•`¨_§^¦Ž^¨’^ª•]«—b¬–a¦Ž] „` †X‡P›†VŸŒ^¥c©d©‘`¥\¡‰YžˆXž†[Ÿˆ] ˆ`¢‡d¤Œc¦Žd¨“f¦’W’xZ‹p[‹pZ’|[™…^‹\œ‹_š†\w]‡n]‡n\‰tZx\’~^™€fž…jšYxYxU—ƒY¦Ždµžh½¤nÀ¦i¸ž^«”U ‰Xš†Zš…_›€cš€_—]•[’ƒT‹uT‹scŠqcŽtd“}c–ƒ^—ƒ^—„^—‚c˜h™2:=&23..*,+/*/*/),%'!$ #"!!! "!$"$$$')$+0).2+02-13)24 /3+1&) #$(*/+/*.&'%%$$%'%(%)"&"&#'#'#'%)'),, 56 5533"77"770/()')(*,/".2!03,.%'$&+-/0!0/!0/!0/"1/$20$30+521860:81:8/;90<:/;9+:8.<9.?:0A<1C@.@?&65,+))()+,/00/103-#92$C<1KC=NE4I>%B8#:2"3)2B4RaK^x\RwbTƒp[”€nª•{º¤z½§w¾ª{ñÈ·‚ɹ}Á«v¹›~½§ƒÅµ‚Ê»‡Ì¾„ʸȲ‚ư}Ä®|®y¯y°z±|¿¬}¿©½ªn³¢_­žm¶©|À±‚ij„ƳƒÆ±Ä°~®}®€Å²…ȳŠÊ´Í¹Í¹†É·~¿¯k­–bž€j£Šq­›rµ£r¸¨q¶¦n±¢k¨“g ‡i ‰ežŠbŸŒh¨—o²Ÿx¶£|³žg¥]Ÿ‹c®›sı„ÕÄÞÍ•áÐ’ÝÊ}лm¬j½¥p½¥w¾¦{¾§r·¡k®d¥˜Z™‡]˜€i¡‡l¨o®–p¯šj¯šl¯œk¯™o®—s®—29<&24..*,,/.1.2-/+,()&(%(#&#&#%#&$'$&%'),$+1(-1+/2-13)35/1*/%' #%*+/+/*-((%%%%%'&)'+'*&*&*&*'+(+)+--43 5623 34 34//*,(*(*+.".0!13+-&'$%+-/1!11$33#32!1/ 0."00'0/,21)11(21)32)32&32(76(;8*?:1GA2IE3HF(:9--))++89">@6543&;5*M?;iW]ˆ‚a…wEi]-J?$:1#3,1@5KZITmVSuc]Œwh£»¥ŒÇ²ŒÌ¶ŠÏº‹Ò¾‹ÔÂÔ‡ʲ€Ã¦Í¶™ÖĘÛÌ›ÞΖÚǑտҼŒÏ»ŠÍº‡Ë¹…Ë·‰Í¹‹Î¸Î¶Ë¶‚ƲzƵ†Ì¼Ï»ÐºŽÑ¼“Õ¾™ÙÅžÝÉ àÌ¡á΢âЫçÓ¶îݵîߢâÓ“ÓÀ|À¨qµ–}½¤…È´…˸†Ìº…ʸ„ǵ~Á¯{»¤zº¥w»§x¾«{¯dzŒË¶„Á«p³›pµž|ű}оŠÝÈ‘ãÍ”ãДãЉÞÉ}ØÂ}Ö¿€Õ¾ƒÔ»Ï¸|ɲxðs½®kµ¡k³™v½£~ǭ̴̹|É·zDz{Ư€Ç¯ˆÊ´29:'34..-./0#13$46%56$34"13 /2"-1"-1,0*.),),), *,",0$,1%+1+/3-14*35 /2+.$)!%%)*/,0+.*-*,),)+*-+.*.*-*-*.+.,/-/./01 0302 0101/0,/*-),+. -0!13*,&&$%+,/0!35#55!43!10 /.!0//0././!00"11"22!44#76'<:*A=2KF5OK7NL*>=00**33.KM2MR)@A&971E>Wv`Æ×Îñýÿîüú˜®¥B]T+A7"3*-91BL@G\KKjW\…njŸ†…»£—ζ—Ó¼Ò½ŽÓ¿ŒÓ¿’ӿϵͰŸØ¾¨àÌ›ÝÌÞΠÜÊœØÂ™Ô¿’ѾŽÎ¼‰Ëº…Ë·ŒÎ·–Òº˜Ôº›Õ½’Ñ»~˶ŒÏ¼–Ô»˜Ôº™Õ¼ÙÁ¥ßÉ©äЬæÓ±çÔ´ê×ÅõäÓúîÎûîµëÚ¡ÝÇͳ…ƦŒÊ°ŽÏ¹ŒÑ¼Ð½‹ÍºÌ¸ŽË¶‰É³‰Ç³„Ų‚ű‡È´‹Ì·•Һ̳À¦x¼£ƒÈ±|ɳƒÍ³†Ð·‡Ð·‡Ðº…Ò¾Ò½…Ó¾ˆÓ¼ˆÒ¹ŠÏ·†Ê²{ït¼¬k¸¢wÁ§Î¶‘ÒºÓ¾Ó‡λ†Ëµ…ɲз›Ö¿499&22 ./ .0#02'46)68*89,99+8:)69*8;'7;25 .2"-0!,/!,/",/!,0#,2%,1*/3-03)14!/1 +/%)!$%)*.-0,/*-+/.0.0,0-0-0-0-0-/-/.00101/1.1!/2/1/203-0+.*-,. .1!02**%&$& +- /1 33 55 43!10!1//.01//12"57"898999!;;&A@)DC2MJ0LK7OL'<<11,*"85+GG2MR.BA*=:7KBvuâåéùüÿùüÿÁÑÌTla3G<"3,#1*2;17I?-BC.FG0II2HH3GF(:9!00,)!0,':9)?A';9(<76J>dy_ÃÏÌèêòáä埲«Pj_-C62)+% +#'5)1H;D`PQwflšƒ‘¸ Ž¾¥Ã®Æ¸‹Æ¶•ȶ™Ç¯›È©´Ùů×ɜп˜ÎÀšÌ¹žÌ³¡Ì´•Æ­ŠÁ¬…¿¯¾¨‹Â©šË°£Ó·§Ù›ѽ…ǵ‘;›ÐºšÍ¯ Î²žÎ³ŸÑ»¡ÕÄ Ö¨ÙòÝĵܺÝǯÛÉžÔÚÐÀ‘ʲͰ§Ö§Ö”ͼʾŠÇµ”Ì´•θ–Ͱ–ʳɷˆÆ´ŒÉ·ŽË³–̰Ͳ’ȪŒÈ²‘Бк̯’Ë®“ɬ–Ì´“мѽ–Ó¿šÓ»œÐµœÑ¹“κ‹Ê·ƒÈ¸ɲ•Õ¹®âÊ®âʨÞÌ¡ÛΖÔ–к˜Ï¶œÑµ¢×Á688+12$.0 --$01(35-59-79-68+7:,8:+69+57*36(04&-2$,0#,/#,1#-1$-2%.1)/2-03'/2!.1),#'!"%(*,+/+/,0,0,1-1/3.3././.1/1/0/0//// /1 00 /2!/2!/2.3-2*/)-*-,0+-('$#$%*,-. 31!43"42"20"1/$1/(32-57/792:;2;<2<;2==3??2AA0AA2BB3BB.>>'76 0.+)+("/-"11"30&93/B7HYD{†•™’‹‘ˆ]pd9RD%;1-&&!%)!)>64O@@bOSr_i…mjŽul™…s£Žo£Œu¡‹s™zu•p‹¤†Š¬•€¯˜ƒ²œ{¬z¥Š|¢†sŸ‚p †o¢j¢Žq¤{©†®±”€­•v°›ƒ¸¥³ž}­‚­€¯’†¶ŸŒ¾©Š¿¦¿¥“½ ’º›–º›Œ¹ …¼¦†½©x´–‚²Œ–º›‘¼¢‡»¢‚º¥|¹¢ƒºž‡¹ƒ¶–ƒ´™´žz¹¢€¾¨y¸†´˜ˆ­‘{¦‰†¹¢•ʺ…­‚¶š°’~¯ˆ¸ŸŠÁ­†Ä°ŽÇ²Ãª½¡’½£Š¼¤…®‰Ê·É±’ͱ£ÐµžÏ´œÎ¹–̺ɶ‘ǰÀ¦½ œÃ«366)/0",-+,"//)36*49*47*59,7:,79+69+47*26(/3#,0#,/"-1$.4$-4%-3%.2(03,03&/3 -0*."$!"%'*,+/+0+0,0-2-2+0,0-1-0-0.1./..!//!///./.00!02!.2.3.3+1(,*.,0,0(*$#$%*+-- 31#65!42 1/ 1/#43*88-;:.=<0?=0@=0B@0CB0CB0A@-@?-@>,?=,;9%32 .,*(+)+).-40!81#;0/C2@O>HUEESC4I;)>32+)###)&$:26P@8ZGAiWJp]Ip[?mX?jU+;9'31!.-+*,+/.97*B<-GJ$A9#<0)=3+>6*<5&93!40.+'%#!$"+))@7?\LBkZKpJ‚oD{g0P>3QB7UF<[L=\O7VF7R@@ZFAaLHr^R…vQŒxW‘y^˜€\š‚Vš„Yœ‡\Ÿˆ_¡Ša¢Ša£ˆc¦‹m¯¤ŽËµp¯S…fFlS<^L>ZJ_LDcQA_J:WB7RB7PB8PB8OD7OB8O@8M?5K<7N>;REZHGbRGj[Dn\OvbZjX„lVŒvY’~U‘~T|VŒxVŒw[Žv*13&.0-/+-+."+-#,-%,.$,-#+,!+,"+,%-.'01+79+=@*9=!24 ,.)+ *,'.0-46/58&14 ,/(*%&""%&)**+(*()&(%(&)&)&)%'&''((*)*()()())++-+-+-*-(+')&)(+*--/02!66%9853/- 21+@>(B@#99 72#;3.KF9WT8UR4TP2TN9^VEmcJsiGtjDme@b[3PM,DB(<:$31"/.,+"0/':9Mhi–²¼Œ¦¾Fin&D;'<5(=:#:9!5601--&&##$# /-1G@FeXLyjVŽ}\•ƒO‡t@tdbPS€o`•Š`šŠež‹k¥’oª—n¯œm± p³¢u¶¦v·¥rµ¡x¸ ŠÅ®¥ÜɨÝÌȲZ”{@iY9_R9_R7[O7[O=bV=bS4UD+I='C:'C:(C='G?+I?-JA'D=#=4&@5*B7,F9/K?1MD.H=)D7(C7'B9&B9+F;.K=0OA9[M=dX@l^Qna“hžˆh¥‘f§–d¥”d¢’c¡f¤‘o©–*01)14 .1*-*-&%$#"$ "!#"$$%&$#-,-CG2RZ:T](>?*+%&'''./079-58'14!-0(+%&""%&*,)+)+%'"%"$!#!# " ! !!#!#"#"#"###%%&''()*&'#&#&#'(+,.!/2"48)@A.DF973220+B@&?=!:972"@:4ZVCgg:^[:c\>lbI€oV’Zš“P”M‡tBn_3VQ(DA&<9"21!//+*#422GFq”’«ÇÜ«ÇÜ^z€4JC,@;-EA#>>8965-,%%""#!!/+0F=JgWQ|j\•ƒY‘N„qDwg;o`9m`@m`4`S+MB2RG2YT.[W2_W4\T/XN,XM2]S5]T5]S1XO.RI,NC.OC4SF?eSZŒvsª—o©•l§‘n©”r®šz¶¥~½­Á±Â±}¿«{½§À¨Ë´£ÚǨÝ̎ȳ`™Cl[@i]9dZ7e[:i`-KD)F>$C9"B:#C=%F>)IA,J?.NB0TD,DB/JHe];c\7`Z8`Y9^U8ZP6VO2QM0NJ-OK.TR7]]7]],JP77!94%=6'@:%B<&C>&B<#@:"@<#B?#C>&GA+KC+LC.PB:_KP{dj¦}¹¤zº¡v¸¤u·¨q³ s´|·Ÿ¼¤‡Â­156,57".1,.+.)+(+%($($(#&$$&# -(2CBNbgWp|5HN$22('**&113;<29:+56"/2*-%&##'(+.+-,.'*$&%($& #$$%%&$%$&%(&)&'&'&''('(((()()(+'*&))*../1 34#64!421/0/10220/0.!3/(?95PL7VS8XREdXnxØåÝÿþÿúûÿÓæä|¨‹Lra[NAeWDo`KxfJxgAqb:m_>g\3TH*F9/H=2OI2SN1UQ-TP-SN-RL.RJ/RJ/QI,NG(JC&IA+KB2PBEgTrŸŒŽÀ¨‹½©z²œ{±š|µŸ‚º§€À¯€À¯‡Á®ˆ¿ªƒº¢†½¦„Á­…ı‘ǵ{´ŸRn>bV;]S8ZS5XS4XR4XR1TN0OH/KD*GB*HD*KH*OM2RP/JI#>?8665 :7#?:#?;$?:&?<$?;$@<$B?$D@&F?'G@)IA-LB;]LV~j¸¤ŒÄ³…Á§ƒÀªƒ¿«y¹¦|¹¢ƒ¼¡‡À¥‘ɳ157+46#/0,.,/,0,0*/*0!). *.!*++*/,':54HH/HM&<=%54"..&/0-664;:4;<,67"13,.%%##''+-,.,.*,*,+.),(*(*(*(*(+(+(+(+)+),*,*,*,+.,/+.*,),*+.-/001-,*&+)-,.- ...-.-!0-$70+@:-FA1NE;A]]Ha_5JH#2/&"!!*$ 4-&C9&I=-OA/WH2[K3\M-ZL*UI,PE&J>#C7 B8 B< C=!D? D?E@E>B;A:A9@9B;C;!C:'I9;aJd˜„¸¨{µ¢}°“~°•|®•{¯{²¥w± }²žƒ´}¯•¬•x­˜q®œz° jŸDk]4SI-KC.HB,FB)C>(A;&>9'<7&;6#94"73!6462 83$851/+)-+20 51 61 50"62!6364!97"<7$=6'A9(B<-G?:RFVudƒ²£’ų‘Æ©Š¼¨‚¹¬s³¢{µ …¹ŸŒ½ŸšÉ°066,56$01+.-0 .2 .3.2!.3$05%15'13#21%74*>6+A;/AA+<;'63(43+433985<<6=>,8:!13-/$%$"'' ,.-.-.-0.0,.+-+-+-+-*,*,(,)+)-+.,.-.,.,.-/-/-/+.*-+-///0.0)(%#('+,!,/!,. ,-!-,#0,$40&:7)?;5OF=XK[xd——ŽÕ¼¶Á¾·‡«¤V{dA]O5KC4E?-;9%2/-,*()',)"/-$1. 0,1,3-!2-#4,*>8)><%960.(%)$ /)%80&?7$E<#M@,TG0YH2ZJ1ZK2ZM3[N3YN.SG'N?(PC*TL*VO.XP.UK)QF'OC'OD(OD+QF.RH*PG&MB(M@.PE6[HM|db–„_”|_Œqcˆn_‰newf–ƒb–€f–dwb‰ogŠs_‹u[}c’€P{g6XG,G:"=4$:5"63!42!30 0-.*.,-,,+++-,.,*)&$'&)(**+*+,,,,,,+-,/.0.2.3/"51&:20D8KcSy¢’€®—{©z¦Žp¥–j¦•qª”q¦Š}¥†Š¬“166.67$//+-+/-2.3-1!.1%25%68(78)=;)F?9`TM{p@mf-PG*?7'72*640886=>6=?,8;13,/$%$#'( -0-/.0.0-/+,+,+-+,)+***,),),*.,..0/0/0,-+++,***+*-*,--./,.''%#''+/ +/*-)*** .-"42#;8+FB7WODg[HjYUrWz`a|^OpX?aN4WJ9UO1LK-@A!43/.-,..103243201-40837152"420.-, +'#/*/:21D:4OE8[Q:i]FzlO†tJ†pK‡sK‰yMŠ{M‰{JƒqIhM†uQ„Q“†S”…T’€QŒwOŠuO‰uO‹xMŒ{Q}PŒ}I†tI‚mLoF}mC|kM…tRz\”z^•{ZvT‹tN‡rN‡rOˆtPŠsSŠqWŠpT‡oI‚nJ{j@iS4U@$A3!=49352/...-++(('&'&&&''('''&%$$$&''(%'$'%($%$$%%''''('*(,+.)$4+-C8DXLSjZUlXPkYIhZEeUJfUNjTToUav\166.46$/1+-*.+0,/,-..$21'88';8-FA7XLf¡Š„Ê»‰Ë¾Ft`,J<$82&52,755>?6=@*8:02+-&&&&), -0-//1/1./-.,-*()'(&'(())*))*+*+....-/*,)*)*()&(&**,,-.0,.'(%$&(+.),&)%&((-,52(D@5WSBneQyJwmGo^Ml\JhYFeY;bUAmgIvp4:M?>\MNvfRŠxd£Žj¬•i­•d°˜g·£iº§i¸¦]ª”W¡…d¬•n¸¨q¿±u²rÀ«p¼£o¸ k¶žm¸¢m¼¨l½©l½«iº¥j¶žh¯š]¨•W§”a¯œj¶ŸpºŸq¹žn·œm¶j¶žg¶Ÿg¶ c²˜c®”f­“cª’a¨”b ŽN~h:^I*I;(H?%C>">; ;8741..*+((''&&%)&!**((%$$$$%$%#$$$"$!"!!""#$$$$#$"$#'%*&!/)+6/4<33>21>51?50>41?/3@/7B.JjZ—ŬÎþëÉóäw¢Š4VA#:/$3/-656>?6=?-8; 14+-'*&(+-.0-//2/1/1.0//+)('('()(((*))*)+**)))')')')')%'%'(,+..//0,/&($$')+.(*&(%&((.,"854QMKtmV‹ƒ[•V‰X‰‚U…€Sƒ~Q„€TŠZ›”f¨Ÿk¦£Pxz4ML%83"75,MO;ghFtuGuy5\b&FG+XXKyyS‡…L~=]b,=?$..")&+2-3<29K;GbQYje—~x²—…Á¦‚À¤|¿¥}ï{Ʋ|űs»¡j²’rµ›y¾¨~݆˼‡Í¹‡Ë³‰Ê²‡È°„DzǴ~Ʋ€Èµ†ËµŽÎ·ŽÍ·¾«b² p¹©¬‚Å«‡Æ­‹É°Í¶‘ѻҽ‹Î¹‚DZ€Âª€¿©}»¦x¶¢u®œ`”}BjS4WH2SK/OI*HC#A;!<5824.0,,)*&0*&>;.HH*DE00$$%$%$%%$$""!!!!      "!#!%!&!)"+$(!&$0!1;*+4"",134/25%.2+.*/*-*+*+**.-$32)82/D:IeVžÇ®×ýðÙùñ‡ª’A]G$=1$30-646=>6=>-89#25,.&($&*,/1/1/202132312/-.*.,.././..--*-+-+../../-/-.-.,,+.,./0.0+.'($$'(+.)+)+()**/-%<9<\Y]‹†_›•a¥ž_¥ž\¡—Yž”Y¢™jµ³|ÄÃxÅ¿€Ãµz¶­e”“:VS(<6+95=WWAooK}K}Djm5KL:d`O€}S‡†M…†Fhl-?@$/.#(%'.(.5.6E:E^MZ}hh–{}³—‹Â©Æ¬Ì²Ï¸‰Ð¸ŠÌµ|Á£n³‘{¼¢‚ů‰Ë·Ñ»‘ѻϵ‘ε͵“ι“μͻŽÍ´“Ó»šÙÀžÛŎ̹{È·…˹ŠÌ±ŒÊ­’ʯ–Ì´¡ÕÀ¤ÝȤÝÈžÙđиˆÇ­‰Å®‡Ã­‚¾¦¹ f „Fs\9\L6ZL1TM,LF&D?$@:#<7!835/2.0,$;6.KHB^`0TU'<>$#%%%$%%%%#$"!!! ! !!"#""$%&!135-25%.2*.+0!,0 ,/-.,- .."0/%1/,<2@VGp—}ÆãרËÈo9R=(?5%43-555;<6<=,67 12+.$&%'*,/11313132333434230538675747485:6;7;8:7988867563400-.././+-'(%%'(*-+.+-*,,,0.*;8E^[Z~|d’gš’d™^•Š^–Šh£—z¶°Âþ³² x§œXƒ;VP(;4*723MKCdcMpnNpq9Z\,GE1UPJmiQztNts9YZ*<<"-,%" & %+%+81%%%#$#$%#$#%"#!     ! " $"#"!!libjpeg-turbo-2.1.5/testimages/nightshot_iso_100.txt000066400000000000000000000041531436506551100224440ustar00rootroot00000000000000libjpeg-turbo note: This image was extracted from the 8-bit nightshot_iso_100 image. The original can be downloaded at the link below. The New Image Compression Test Set - Jan 2008 http://www.imagecompression.info/test_images The images historically used for compression research (lena, barbra, pepper etc...) have outlived their useful life and its about time they become a part of history only. They are too small, come from data sources too old and are available in only 8-bit precision. These images have been carefully selected to aid in image compression algorithm research and evaluation. These are photographic images chosen to come from a wide variety of sources and each one picked to stress different aspects of algorithms. Images are available in 8-bit, 16-bit and 16-bit linear variations, RGB and gray. Images are available without any prohibitive copyright restrictions. These images are (c) there respective owners. You are granted full redistribution and publication rights on these images provided: 1. The origin of the pictures must not be misrepresented; you must not claim that you took the original pictures. If you use, publish or redistribute them, an acknowledgment would be appreciated but is not required. 2. Altered versions must be plainly marked as such, and must not be misinterpreted as being the originals. 3. No payment is required for distribution this material, it must be available freely under the conditions stated here. That is, it is prohibited to sell the material. 4. This notice may not be removed or altered from any distribution. Acknowledgments: A lot of people contributed a lot of time and effort in making this test set possible. Thanks to everyone who voiced their opinion in any of the discussions online. Thanks to Axel Becker, Thomas Richter and Niels Fröhling for their extensive help in picking images, running all the various tests etc... Thanks to Pete Fraser, Tony Story, Wayne J. Cosshall, David Coffin, Bruce Lindbloom and raw.fotosite.pl for the images which make up this set. Sachin Garg [India] sachingarg@c10n.info www.sachingarg.com | www.c10n.info | www.imagecompression.info libjpeg-turbo-2.1.5/testimages/test.scan000066400000000000000000000001561436506551100202660ustar00rootroot000000000000000 1 2: 0 0 0 0; 0: 1 9 0 0; 0: 10 41 0 2; 0: 10 41 2 1; 0: 10 41 1 0; 0: 42 63 0 0; 1: 1 63 0 0; 2: 1 63 0 0; libjpeg-turbo-2.1.5/testimages/test1.icc000066400000000000000000021007401436506551100201630ustar00rootroot00000000000000àlcmsprtrCMYKLab Ð)5acspMSFTöÖÓ-lcms descàcprtô#wtptA2B0,¢A2B2,¢A2B1¤4¢B2A0F<8´B2A1~ð8´B2A2·¤8´gamtðX‘dmnd€ì€dmddltdesc,Test profile, not suitable for real use-Test profile, not suitable for real usetextNot suitable for real useXYZ µZ¼g’0mft2 $ÚiÙ 6 … Ç ÿ1^‹·â 2Wy˜µÒï%Y ‡!²"Ú#ÿ%#&D'f(†)§*Ç+è-.(/H0i1‰2¦3Â4Þ5û7859Q:m;‰<¥=Â>Þ?øAB)CBD\EuFG©HÃIÝJ÷LM,NCOYPoQ†RœS²TÉUßVöX Y#Z:[Q\f]x^Š_›`­a¾bÏcàdñfgh#i3jBkRl^mgnqozpƒqŒr”sœt£uªv±w·x½yÃzÈ{Í|Î}Í~ÌË€Éǂф¿…»†·‡³ˆ®‰©Š¤‹žŒ˜‘ކ{p‘d’X“L”@•3–&—˜ ˜ÿ™òšä›ÖœÈ»ž­ŸŸ Ž¡|¢j£W¤E¥3¦ §§ü¨ê©×ªÅ«³¬¡­®}¯k°Y±G²6³$´µµí¶Ú·È¸µ¹£º»~¼k½Y¾G¿5À"ÁÁþÂìÃÚÄÇŵƣǑÈ~ÉlÊYËDÌ.ÍÎÎëÏÕоѧÒÓyÔaÕIÖ1×ØØæÙÍÚ²Û˜Ü}ÝbÞGß,ààôáØâ»ãžä{åWæ3ççèèÁéšêqëHììðíÃî–ïvðUñ3òòêóÃôœõsöI÷÷óøÆù•úaû)ûëü§ý\þ þ´ÿZÿÿè§,„¿ç     üóæØÌÖÞááßÛÖ Ñ!Ë"Ä#¾$¸%³&®'ª(¦)¢* +ž,-š.•/‘01‰2†3ƒ45678€9‚:;~<|=|>|?}@A‚B…C‰DE’F˜GšH›IJŸK£L¦MªN¯O´PºQÀRÇSÎTÕU×VÙWÛXÞYàZã[ç\ê]í^ñ_õ`øaücdeeÿfügúhøiõjókðlîmënèoåpáqÞrÚsÖtÍuÃv¹w¯x¥y›z{…|z}o~dX€MA‚5ƒ)„……þ†í‡ÛˆÊ‰¸Š¦‹•ŒƒqŽ`N=‘,’“ “ú”é•Ù–É—º˜§™“š€›mœZHž6Ÿ% ¡¡õ¢æ£Ø¤Ê¥½¦±§¦¨›©‘ª‡«¬w­o®g¯`°Z±T²O³L´IµF¶E·D¸E¹FºH»J¼N½R¾W¿]ÀcÁjÂrÃ{ĄŊÆÇ–Èɥʭ˶̿ÍÈÎÒÏÜÐæÑñÒûÔÕÖ×*Ø7ÙDÚQÛ^ÜkÝyކߔàœá¢â¨ã­ä²å¶æºç½èÀéÃêÔëåìõîïð ñ,ò8óCôNõYöc÷jønùoúlûdüVýDþ/ÿÿÿØhÆ 2 R e r xzzzyuph^RE7)4=@?:4 ,!#"#$$ù%î&ã'Ø(Ì)Á*¶+«,Ÿ-“.‡/|0p1d2Y3M4A566+7!89 ::ö;í<ã=Û>Ó?Ë@ÄA½B·C²D¬E¦F¡GœH—I”JKŽL‹MŠN‰OˆPˆQ‰RˆSˆTˆUˆV‰WŠX‹YZ[‘\“]–^˜_›`aŸb c¡d£e¤f¦g§h¨i©jªkªl«m«n«o«p©q¨r¥s£t uv™w•x‘yŒz‡{‚||}v~oi€aZ‚QƒH„>…5†+‡!ˆ‰ ŠŠ÷‹íŒâØŽÍù‘¯’¥“œ”’•‰–€—x˜p™jšc›^œYUžRŸP O¡O¢P£R¤U¥Y¦_§f¨n©xª‚«Ž¬œ­«®»¯Ì°ß±ó³ ´ µ8¶Q·l¸‡¹¤ºÂ»á½¾!¿CÀeÁ‡ÂªÃÎÄñÆÇ9È^ɂʦËÊÌíÎÏ2ÐTÑtÒ”Ó²ÔÏÕëרÙ6ÚLÛaÜt݇ޘߧà³á¾âÇãÍäÑåÒæÐçÌèÄéºê¬ë›ì‡íoîXï\ð[ñVòLó=ô*õõööÖ÷³øùbú/úôû±üfýý³þMþáÿqÿÿÙ T– ¡ ¤ Ÿ “ ‚p_L7! ðÖ»Ÿƒ}tfUA, ê!Ó"½#¦$%z&d'N(9)%**ý+ê,×-Ä.±/ž0Œ1y2g3U4D526"788ñ9â:Ó;Ä<µ=¦>˜?Š@}AoBbCUDIE~% ô€Û‚¨ƒ„r…W†;‡ ˆˆê‰Ïг‹˜Œ}bŽG-ø‘Þ’Ä“ª”‘•x–`—G˜/™ššê›Ôœ¿ªž–Ÿƒ q¡_¢O£?¤0¥"¦§§ý¨ó©êªâ«Û¬Õ­Ð®Ë¯Ç°Ä±Â²Á³Á´ÂµÅ¶È·Í¸Ó¹Ûºã»í¼ø¾¿À Á0Â@ÃRÄfÅzÆÇ¦È¾ÉÖÊñÌ Í*ÎGÏcЀџҿÓàÕÖ'×LØsÙ›ÚÄÛïÝÞFßsà¡áÏãäM噿çè6é†êØì+í€î×ð1ñòïôMõª÷øZù«úöü:ý{þ»ÿÿÿ€€å´ÍTÌ?¥~òŒ”~i˜ž~L}ãÁ~cbAþ~’Da€dþ€ü¸~t‹yä~W‰²ÊÛ~Oˆ±>~\†´—/~‚…›|“~¾„º`éƒôC–ƒx¢€äƒßú£}%—âH}”1ÉX}%‘z¯Î}K•Ö}† {N}׋<_´~7‰‰AË~Àˆ-ψø¿|¢°à‚|žÉDz|+›®E|[—£”s|«”¦z} ‘æ^•}wO@¶}ÿ-Œ~Ä‹É÷ {G®uÞÚ{D©zÆ{]¤Ä¬Ò{– f“{êœZxÚ|[˜»]ˆ|Ï•M?¹}R’‹<}ÆŽðõ…zªº]ÝYzŸ´Hħz³®‹«|zð©=‘â{L¤Nw²{ÀŸº\‹|=›>Ó|¼˜v|ÛIô8z/ÆrÜ z¿;Ãbz'¸sªMzd²6ßzɬqvÒ{D§[®{À¢0> |;Ÿ| óyÑÒÈÚñy´ÊaÂIy¸Â©?yð»açzY´ÎvzÝ®Æ[{^©‡=c{ФÓI{Rò*yŒß„ÙýyfÕÓÁUy`Ìî¨Vy”Äâyþ½’uKz†·Zi{ ±Ü<Ú{z©%žzÈŽíí‰~+Ö~ˆ}±¾Í‡}W¦µ†0}3Ž…„}HtЄü}ŒZk„›}è=Ž„Ÿ~‹‹†z€ëɇ®‰Õ†£‡}½…¹†!¥~„ø…ŒÐ„d„*s}ƒôƒˆYƒ¨ƒ<9ƒ¸‚àù…w„éû†p“øÓS…w‘u¼„œ¤ƒõ‹‰ƒu‹VrUƒ‰ÕWÿ‚؈|;,‚뇔ˆ„{‡¨èR…sžøÑ²„ƒ›ºƒ²˜;¢¡ƒ•:Š8‚ ’¡q)‚PCV÷‚Ž:4‚.Œ–8ƒ‰ŠÉæÈ„ªªÐ2ƒ»¥­¹‚ñ¡‚¡?‚U¤ˆîãšp £–çVu“ÿ9S†’ ‚šŒçåc„ µbÎÖƒ°·µ‚Rªê ¹¦.‡ÕN¡Æný ¼U€ãš38‰€ó˜8¼ŒAä/ƒ‹ÀÚͬ‚œº‚¶’δzžô6®ß†è€Ó©°n1€“¤íT\€e Ø7Ý€tžXT‹·ã)ƒ$̯̕‚6Å;µ˜e¾Cž€Ê·Ë† €i±Ýmw€3¬SÆ€¨V7M€ £\®€l‹GâN‚ÐØ»ËÚæÐN´ÄÈa5€tÁ…N€ºzlÕß´ÍS<º°H6Ѽ¥*ôŠîÝ<’a|˜Çkz|C±V޲|šÇ|ƒ—‹·|IkžŠ‚|±Ru‰ˆ}26މ'~2‹ÖÞÛF‘-†ËÆB…„°*ƒ„o™²‹üƒ‚ƒŠ­‚òjŒ‰‚ˆQ^ˆ£‚@5zˆI‚`Š˜ƒ†Ù³‘$ÄŽ"Ží®ýŒcŒß˜€Šñ‹&U‰³‰²ijˆ¦ˆ|PJ‡Ë‡v4v‡y‡ú‰V†»ØG›’Ã.2˜{­‹†•——Š’ý€ˆè¾hS‡æŽ¼O[‡Œÿ3†ÂŒˆ(‰„ÖéŽJ¦ÁÑŒx¢&¬$ŠÔžs•Ò‰h› ~æˆ2—êgK‡>•-N}†o’Ì2Ù†‘Á N‡%ˆÿÕ§±°ÇÀ›‹â¬ªöŠ>§w”´ˆÖ£A}⇤Ÿ\fX†§›ÚMµ…ݘù2,…Š—ò ¨†KˆÔ3»¥¿’‹g¶©ò‰Â°¦“¾ˆ[«¤} ‡0§ež†6¢çM …_Ÿ¯1… ? …—ˆ1Ó£ŒËÆÇ¾³‹ÀI©‰^º’ç‡ô´I|B†Ì¯dö…ܪwL‡…§e1$„¢¡: ®…‡æÒàŒrÒW½ûаÊñ¨]‰ Ãá’1‡£½S{†z·|di…‹²ÇL „½®g0·„\ ð U„އ©Ìû›ò{[¸“™G{!£ö–¸{ ŽÞ”`{&y’E{xbie{ùJrŽÚ|“/cŽ5}~ ~ÀË:šâ„ý·f˜#ƒç£•™‚üú“M‚Kx+‘CØa|ušI~÷.yWã ÏŽ›ƒÉәߎ­¶—%ŒÂ¡å”˜ŠøŒá’[‰‰w!^ˆT`ƒŽž‡^H˜*† -§ŒŒ† 5G…èȨ˜ç˜Ž´ã–=•Π§“½“4‹»‘rív†Žÿ_ÒRG±Œf‹û,ދ̋ͯŒ…ßÇ|˜,¢†³Æ•„žúŸ{“ ›¬Š„Ò˜ªtìŽÙ•ô^1“ Fî‹Å‘Ä,;‹'‘¾<‹!…‘Æ_—›¬¥²²”õ¨Yžl’~¤J‰„J tŽS#]¸Œš'FA‹4—÷+®Š”—;ÛŠL…PÅf—&¶ì±É”€±Þ‰’­ˆªÕ¨šs@å¤]Œ0¡E±Š´žÓ+:Š›È‹‰›…Ä’–ÃÁx±”»¥œÉ‘§¶‡îr°îr…¬U\}‹Ú¨™E>Š\¦A*Ù‰¨œùJ‰ „îÃâ–nÌy°g“ÊÅØœ(‘V¿…‡N#¹³qþ6´ª\‹±DÕŠ¬B*|‰iœºˆ™„˽?¥Ðzzª¢hzM–ÑŸzEƒœzrn™8zÔY,–²{dBS”¢| 'ó“ó|ýª“¦»³¤âƒ”©*¡Z‚œ–ž Ђ`šý>mÛ˜:€ëXc•€ÎA‚“¼€Û'4“ uh’‚šºˆ£ëŒÂ¨ h‹•$‰nkšˆ)lñ—]‡'WŠ”ï†f@¼’î…è&Ž’8†[/´‚Ô¹|£•õ¦ýŸ£“z“ÿœY‘9€_™N3kõ–‘V­”4Œ1@’4‹9%ù‘w‹Ùý’‚²¸–¢UŸh¦ žéœ3’þ›ª™?V˜¦–‹k•Ø”.UÙ“|’??R‘~ì%n¿‘VÓŽ™‚–·£¡È©¥5žU¥’.›¡k~‚˜žj9•V›"U"’똬>Ãì—?%'– ¯È‚}¶Ë¡W²½¤mᮑlš©Æ}Ê— ¥Ñi–”ë¢RT–’€Ÿƒ>OlžT$¬ ˜Ì‘‚i¶ þ¼¶£Æ‚·aÊš=²\},—?­Ìi”Ž©àT’-§ =ï¤Ã$e0˜›yŒ‚Yµq ¯Ç,£<-ÁA™ê»_|¥–ð¶?hˆ”@²S³‘à¯G=›Ò©¨$Žô˜leŒ‚L®¯þyäœ)«Þy¶Š§Þy²wФyædG ˜zPOùszæ:šö{ )š˜|q•Óʬί(‚ƒ›hªä™‰~¦Ú€àvû£€cc¨Ÿ›€&OSœ€#9tš€L¡™–”Ž€«ß®=‹.šŠ©þ‰ˆ½¥íˆv1¢0†ûbäž¼† NŸ›¦…Ž8Õ™,…K.˜«†F“p€«­j“癪©7‘š‡Ì¥0„uP¡h½büŒQMèšè‹88A˜jŠ¢ʗ׋³’x€ªA¬Êœ´˜Ú¨˜™Â†ó¤”—tu Ï”ÀaMK’°MBš=‘(7¿—¸ku—a ‘’€©¬,¥Ì˜/§ü¢1†H£ùžâsÊ 5›ï`ªœ²™\L¯™—k7M— –å(–_”XÄ€¨â«¹¯—¢§}ª¸…£r¦Ãs@Ÿ¬£C`)œ6 OLA™ž;6ö–€}ó•È”@(€¨B«a¸t—§³{…C£ ®çrÈŸHªä_»›Ö§©Ká˜Å¥ã6°–#¢ëÌ•O”&3€"§¹«Â^–¦¦Ä¼«„Ö¢¶·qrbžö²ú_c›†¯ºKœ˜u­6{•ݤÖ§• ” < €(Ÿ°º„ytŽÕµ«y:}Ѱüy2ld¬‹ygZ8¨dyÔF冷zj1ë¡æ{ð¢r{¾‘(€ž¦¹¶¤ŽB´Â€½}b°€ k󫌞Y¸§drFl£®ƒ1l ÞÁ°¡;€ºn€÷¸Ë‰Õš³ÞˆI|ϯ†îkUª£…íY¦z…4Eá¢Æ„Ì0úŸì„Ä †Ë€h·ó’Œø³ç|®Rûjª©ÎŒcX}¥«‹-EY¡öŠW0•ŸŠ,\Ÿа>€œÕ·FšiŒb²a—¦{{­¦•4j©$“Wí¤ð‘]Dá¡?50>žR*>ž6ޏŽÄ€œ;¶¿¢î‹Ù±ÑŸ’zú­œi‹¨™øWy¤Z—ÖD} ’–p/øž–¤'g¨Ž^€›È¶6« ‹p±D§¥z˜¬‚¤i/¨¡W%£Ôž—D9 I/Äœðœ'œ¨›Ž €›Jµ×´Œ‹"°Ô¯ÛzW¬««hé§y¨1VߣK¥°CüŸ•¤ž/œœ† 1œ›Å€šÙµ†½ëŠË°t¸ƒz«¡³¶h¬§¯ãV²¢ï­ Cߟ8ª§/‘œ/ )›¶¢Ž€‘óÅcy‚¿ÒxËrº|x¹a£µixêPq°§yS> ¬syä)¦©–zjf«Y{ C€‘7Ä‹€æ¶¾óøq¹JaJ´m~âP ¯ž~Ä=­«_~å)]¨f2…©Ã€DŒþ€ÍÃ’ˆ¨G¾‡'q^¸ž…Ü`Û³u„óO¡®Ÿ„Y=RªZ„)#§J„N¯¨O„îŒÁ€Â©k€è½#Ž_pé·¼Œ•`k²†‹&O:­²Š%=©j‰“(ö¦H‰ãÚ§‰ŒŒ€,Áè˜O€”¼[•µp’¶ð“t` ±»‘•Nè¬Ö&<è’i(×¥c¥áŠÔŒ^€ÇÁP b€B»µ7pM¶@šs_ϱ ˜,N®¬&–q<•§Ð•²(¤–•¼+¤ãŠîŒ8€fÀÕ¨”ü»*¤Ðpµª¡‡_¢°ožßN‰«“<}§:œ¬(¸£àšnN¤‹Œ€&ÀQ°õ̺¡¬“oöµ¨Ë_¯ã¥ØNw« ¤—}g€Ôu~_€Ûîjx&t×hx¬ŽQ¿×y7ŒQ§’yÌŠŸŽ¼zi‰%u7{‡ÕZ‘{º†•=v|k…‰ö|ï…ì˜vøœÕŸw…˜Ó¾ x•Ѧx¼“ Ryo¦sõz'ŽkYuzÛŒM¯1—<}ª €#}¥oha}?¡'O|}gŒ3¸}™›f Ø}É\Ø}…ÅYÂë}¿¬ò|ȸזP|™²ãD| ­mg|˨•NÚ|÷¤Ù3,} X S}(‰×d}5ÑÂ<|ÐÉç¬0|nÂÆ•‚|4»÷~„|8µÍf÷|e°—NT|—¬–2º|·¢L è|­ˆºÑÁQv’½µ‹ëw©Š©w~“~‰Žx }1ˆ—x²f‡ÅyzMž‡(zI28‡%{1 Ö‰$|yÐ<‹ñ€Ç¼|Š™€>§Ú‰cÎ’hˆU~|‡nWdû†®QL”†\15†˜ 쇋€ZÎ⊩‹»!‰_‰œ¦¬ˆ+ˆ7‘/‡0‡ zò†X†câ…©…FK…&„–0D…!„D †$ƒÂÍ~‰•u¹±ˆI“¥&‡%Ú͆.ŽÏy±…l bDŽ̋vJœ„QŠ/n„F‰Y k„솷Ì&ˆ°ŸÚ¸W‡lœ«£Î†N™žŽ…]–Âx„„˜”a„‘ÑIÀƒ“Ð.¯ƒ~Žñ ҃ᆤÊöˆªh·/†½¦j¢ª…ž¢ˆh„°žÚw‚ƒï›o`ÓƒX˜^Hû‚ê•ã.‚Е Qƒ†LÉù‡rµ¶7†1°N¡±…«—Œu„ §v§ƒf¢÷`‚ÒŸGHU‚Xœu-{‚8šIæ‚F†É,‡¿ÿµm…źg ß„Ÿ´Þ‹¡ƒ©¯’uÞ‚ïªÂ_g‚f¦¤GÇí£ù-ºžp®…ÉÈ‘†®Ë=´Í…tÄØ /„I¾zŠêƒK¸hu5‚޳^Õ‚®µGJ“ªÖ,—^ž&J5…›Â–½u„¯Y”Šv œ ’ƒv—‡ð®w6røwó]”xËE¹Œry¦+ŒNzŒ©Œÿ|œÀ¼•},®S“P~Ë›‘S~~‡ˆ~Sr í~O\Œˆ~mD΋o~™*'‹C~ú,‹l€¿Ž”WˆØ­’4‡™û6†u…äŽx…‰pÿŒê„Æ[(‹’„/CñŠƒº)cŠMƒ¹¾Š ƒ&¾o“A’§«ä‘(™˜¹7Ž¡„ÈpŒãoë‹ô‹fZ0ЍŠC‰ž‰(ª‰eˆç_ˆ×ƒ¡½G’gœ…ªÏN™²—™Ža—ƒ•Œª”…nÙ‹(’AY@‰ëRBSˆäŽÇ(ˆ ŽÊ ‡Ðƒj¼<‘¿¦†©Å©¢ø–¼Ÿ‡‚—ŒœJmðŠ‡™QXm‰@–»A§ˆ<”ß'|‡ð”;Ȇóƒ<»[‘9°§¨é%¬_•´5¨,À‹~¤4m,Š ˜Wƈ½ƒA‡©›•' ‡U˜¾†<ƒº¤Ï»¨6޽¶”ùŒÊ±‹¬^ly‰”¨0W(ˆW¤×@‡@¢Ü&ª†Öš$`…¦‚öº|ź§§ŽmÀ”[ŒxºR€`ж´òkâ‰7°NV§‡û­@-†ì¨Ä&H†™â;…/‚ݲàztáHˆuN<šÇuâ|h˜=vŒh±•éwSSè“Úx2=¡’Ey #g’IyÔJY|º±°Ÿ`}æ }œk}˜Ž|™¬}c{ª—$}Qgì”Ø}fS$’Ò}<Û‘@}á"¹‘3~T,ŽÌݰ»žF‡Ÿy›\…ô˜›„ùz¶– „3g“݃œRP‘áƒ1<S‚î"5ƒ;o€¹¯¼S1žhšmŽ`Œn—´Œ¶y·•0‹3f’ú‰úQ~‘ˆó;nxˆ9!•Jˆ³úŒ@€©®Õœp™Šv™“—‹r–â”§x³”e’se1’‚P¶3Žî:ÊŽ§Ü!ŽmŽ/æ‹=€œ­ó›Ì£œ¬˜îŸÑŠ©–8œ¾wà“¼™ådc‘}—WOÿŠ•=:8þ” ©·’àÖŠc€‘­2›M¬ ›ì˜o¨Á‰è•·¤þw%“:¡~cºÿžfOn ›ñ9Âj› U•Üȉ®€‡¬šë¶j›P˜ ±ã‰H•Q­uv…’ΩVc “¥ËN控£J9Y¡[ Œ•«½‰€€¬šœÀšÓ—¾»oˆ¾•¶Vu÷’x±¢bŸ9­ÍNzŽL«]8üŒ®¦e¾Œ>•v´ˆ¥€z¤ ª‘t9“Ÿ¦ìt¼‚±£|uOq Euü^sJvÅJ¼š¨w¢5W˜¾xk@™kx잣0©–|ã“ ¥ç|›‚$¢p|spvŸ4|p]Úœ9|—J"™›|Þ4¿—­}-И5}˜Œl€¢s¨Š…ˆ’?¤ä„…l¡fƒ¤o²ž1‚þ]›<‚ˆIy˜£‚D4,–²‚+m—‚Æ‹`€¡°§•Ž/‘c£öŒƒ€} €ŠþnÛD‰²\UšYˆ«H˗Ňá3¡•чx–ˆ8Šw€ ã¦Ô–æ—£5”š©ŸÂ’nœˆŸ[œ™‰ŽöH,–ý¿3&•/È•-Œí‰¯€ :¦"ŸÞí¢‰œó~üŸš5mV›Ú—¶Zø˜Ú•†G –9“å2»”;“‰„”VꉀŸ¥¡¨òg¢¥g~wžŠ¢lÈ›FžóZn˜Nœ[G*•²š“2b“šP“¢‘ˆ|€Ÿ¥C²4Žæ¡¤®}ôž#ªlHšÚ¦zYõ—ࣔF¾•L¢2“.Ÿt&“‘ˆ €žª¤ù»ÞŽ}¡T·!}„в‹kךƒ®zY—†«ƒFl”ï©B1Î’Ø¡¬÷’µá‡°€•ñµsĆ}°¸t7v¬¢tÂeï¨ÅulTg¥+v1A¢¢w,ðŸøw¬n¢w¬‰~€•U´"|†¯Å{´v4«ž{eާ²{–Sû¤{ÈA8 é|,žÉ|iT |¯ˆÄ€”Õ³„,…Œ®Ãƒ4u°ª“‚edü¦©ØSo£@½Ÿà[,/´g?Ÿ?‚ ˆ!€”N²ŒS„ì­ÏŠÂtû©¤‰`dY¥±ˆ?RÖ¢‡h@=žò†Ø+Òœº†Á+ž†Ê‡“€“»±S”’„T­’ptY¨Üˆc²¤éŽßRJ¡@„?ÈžŒ¡+›ÛŒ¨œîŠâ‡€“*°·œùƒË¬fšKsÔ¨8—Õc/¤A•­QΠ”“å?fY’Ã+@› “›òŒ6†³€’¾°%¥…ƒ`«Õ¢Ksh§¥ŸJbÆ£­œ§Qn šŽ?œ¿™z+šF˜” › Œ2†^€’S¯Å®Eƒ«lªxs&§,¦ãbx££ÉQŸm¡>Μ= º*ڙʜùš]Œ1†€‘û¯z·l‚Ê«³rզЮñb*¢¿«|PÜŸ ©s>ž›Ô¦Í*¼™dœå™æŒ0… v¿åsQyáºõs­jÙ¶Ct+['±ÊtÌJŠ­žu‡8“ªvF$R¨+v· Xªw† €ˆ¿{.y¹ºzÔj®µ¼ ’`x¥·bi„²AަYÀ­ž3I?©NŒ7¥¬‹–#×£VŒ> J£¹‡¢„ñ€†ß»bšSxP¶g—Öi5±ˆ•œYu¬ß“½Hù¨Œ’U7]¤Ó‘Æ#âk‘è t¢”‡¿„€†‡ºÞ¢_x µÚŸdhõ°ïœ®Y9¬>škH§ì˜Û79¤,˜ª#º¡˜–£ œ¡”‡Ù„š€†Mºbª•wÕµZ§hưk£öY«³¡eHš§^Ÿå7£¦Ÿ #ª ü˜ À ´‡ò„{€† º³>wÀ´ø¯9h·¯ó«ƒXõ«#¨¨Hˆ¦½§97¢ý¤# `˜- ñ ˆ„a€{nË1rým™Å¶s7_XÀsšPs»‚t'@ž¶ßtË/E³!ud±øuko°Mw‰ƒ$€{hÊ@zˆm«ÄÂz_^¿kyÙPpºIyÚ@™µ‡z /R±¨zVG°1z_ ®/|Fƒ"€{rÉÙm—Þ€Ø_G¾=€PN¹  @}´:m/P°Gw}®’«—¬I€uƒ!€{pÇè‰m}Âs‡ž_½†gP%·Ô……@^³…/J¯„ß­­…„ª›ƒnƒ€{[ÆìemeÁpŽ€^þ¼ŒèP¶Â‹¥@O±ßŠÏ/P­ÜЬ߫Ћ0©$ƒ¹ƒ€{9Æ%—ämTÀš•^÷»“ŽPµÕ‘ö@O°îì/a¬Ò‘ª¦ ä§áƒûƒ€{Å„ŸumG¿êœ³^÷º`šGP µ ˜f@[°%—]/y¬—yK©£“!;¦Î„7ƒ€zöŧ0m?¿[£ý^ü¹Á¡,P´aŸ@g¯užY/«VœÓx¨à“@‡¥ë„jƒ€zÜį>m>¾á«“_ ¹8¨[P*³Ì¦3@…®×¤Î/¹ª° E³¨1“gÈ¥F„–ƒ€ævpsÐwKsñ¹€xtÌ¢*xêu¯Š$y²v¡qczw£W†{OxŸ;/|1y–}!yèät‡~hÎku‰~·úv|}å Ëwe}ʈÝxK}Íp.y3}äV[z}ù:zï~ {T}Áâ1rð‰ÒÌštˆd¶_u ‡ŸFv …ý‡~w…nóx„BU>xöƒy8ùyÄ‚ÄÄyÕ‚ àiq“•8ÊÍr®’¿´œsÀl±tÑŽL†uæŒvm²vöŠÂT*wò‰!7þx²‡·”x‹…ìÞÉpu É2q’/³r«™çœ+sÅ–Õ„®t哸l|v‘iS#w Žú7w»Œþwq‰?Ýlo˜¬ ÇÙp´§º±ªqË£šÛrèŸzƒwt›´kXu5˜3R.vA•6Bvá’Å´v„‹KÜNnë·ŒÆÁp²[°‹q­1™¾r0¨<‚rs]£šjrtŠŸLQZu”›u5v%™%þu¿ŠÐÛonmÃÅåo½¯£pˆ·˜Ëq›±#…rÉ«¬i¤sý¦¶P¯u ¢{4ôu…žµjuŠlÚËnÎÆÅDo)Çä®ëp!Àó—ÿq'º6€»rO³ühësƒ®}P tŽªI4ctý£(ôtŸŠÖq¶ÁårʬôsÏ—5tÑ€uVuÝhîˆvöP1Ïx4š€YyXòy<ÔŒ}Q|À²}s|z«Î}—||•þ}À|S}ó|¹gÓ~7|÷O~}43}rA€H}ƒÓ{Ò‡P¿|†BªA|3…D”|q„o}þ|»ƒ½f¢}ƒ&N }v‚˜2“}í‚% L~ÒƒÑnz†’½ez¼¨¡z÷Ž0“ {@Œi|ª{¡ŠÝex| ‰rM |vˆ!1­|Þ‡ x}„üÏóyrœé»ïyªš §-yí—A‘¤z?”˜{fz¥’d[{"çL{“á0Ü{êŒ Â|w‡óγx›§Òº³xÔ¤¥òy qryjœæzJyÖ™‘cVzS–„K>zÌ“æ0!{’‚ ){‡‹Í®wñ²Ó¹°x*®N¤êxe©¿lx¹¥TyZy,¡4b…y®qJ„z!šK/ƒz\˜r ªzˇ6Ìäws½ñ¸ãwª¸ ¤wܳ5Ž‹x'­ëxx›© aÄy'¤·Iåyœ¡k.üyÁN Bz-†ðÌUwÉ>¸JwQÃ#£_ww¼àËwµ¶ÂwÈx$±/a x°¬{ITy'¨ò.}yAŸo ðy¯†¸Æ~ˆpгü‡3q¾ ’†rrÚŒ…Ñsîv·…Gu `\„Üv5H´„žwU-Å„ôxR܆Oy`ÅF†€z¸²ê…»zêŸs… {‹„u{Wuªƒù{§_[ƒœ| Gºƒh|i,؃²|À/„ª}uÄ…„ù±¨„\„1ž_ƒ³ƒr‰Ùƒ,‚Òt‡‚º‚T^Q‚kóFÇ‚DŸ+û‚…n˜ƒ9 ­ƒÇ*°1ƒœÉ‚|‹÷ˆq‚Š|sB¨‰6]5kˆEÕJ‡+,x†~ø„(ÁT‚½™a®Ø‚ –ý›uz”‡)’Qr€°-\5€„ŽTE€hŒ¼*x€„Œ £€æ„}À0í£¾­¸@ –šW€«d†€8šEqç—Z[Q¶”ÂDD¡’´)×°’Dþ„=¿DI®7¬Ë€ŸªN™d€¦K… Ž¢[p=Dž¸Z’›‚C¦~ö™")Q~ø—Bö?„¾€Î¸Ú¬€&´2˜™„¯`„NªŸos~·¦NYØ~•¢©C ~w p(ß~^›‚¶~£ƒÜ¾€xÃÁ«‚Ó¾c—ì$¸Áƒ“~“³5nÆ~@®IYE~ ªsB“~§0(y}æ›^ƒ~&ƒº·\‘Wo±¦5žpí”!Žr€ôŒÉs.lË‹˜tTW“Š•u†@ï‰àv¤&Š;w*Š$y½¶XáyS¥CŽGyž“ŒÔyéù‹‡z?kÖŠ_z©Vª‰f{$@ ˆµ{˜%²ˆú{ôÛˆ„}iµIŽ‹‚ê¤ ‚]’‹’Ó~׊Sij̉7U»ˆJ€ã?6‡ž€º$ú‡Î€¸•‡€¢´,MŒ•¢Ô‹Ë‹>¶Šj‰è}¹‰*ˆ´i½ˆ‡¬T·>†Ç>k†˜† $P†¶…æY…Ù–³ŒK–I¡ÂŠË”8œ‰o’-|‹ˆ:7h°‡1ŽkS߆aŒå=¥…½‹¯#³…Ä‹¹%„Ês²‹…  ¾Š YŽ˜ˆ¬š{’‡y—Úgʆq•[S…˜“1<þ„÷‘®#,„ì‘!ùƒåV±5ŠéªŸë‰q¦–Àˆ£ z¼†ÙŸg…Õœ{Rj„ý™Ô"À„0•Õƒ'=°’Šr´'Ÿ@ˆþ° ‡–«¾z†V§—fQ…P£áQÆ„ƒ ô;ðƒÎŸ_"aƒ”—?¸‚)° о‹ž¼ˆª¹ÂŒn‡;´Æy]…ï¯îe¹„â«ÀQD„¨æ;ƒd¥1!ÿƒ"–ü ‚¨›šéo˜Ž˜spA‡¥–„€ƒ(€—~ |݈C|BxGš¡½gt—÷ŒXUÑ•‹Bü“{Š5.l’ ‰ÑÊ“‰@‚l€–ן°™«‡—œ¹—zw—™ß•WfÉ—/“SU/”·‘B{’›@. ‘'’’F΀–FŸ¢‡œ(ŸÏw™D f9–ŠštT”˜AAÿ‘ü–É-´m–…a‘8ÈK€•Ξ±«—†›½¨Nv’˜Ò¤ùe¶–¡×T“•ŸQA‡‘‚ž-Xé›à9„¬€à€•užb´ð†;›k±)v"˜x­FeA•ª©®S´“*§A/‘¥:-}žv ‡€‹€Œœ¯4n~W«{oo]¨p/_y¤ÀqKNŒ¡»rh‰°SU©7ˆ­Ct¥†‡ð21¢“‡ž¡4ˆ+ñŸú„±€€}ð´þ”pO°­’@b¬q—S¨b&C%¤ªŽ1þ¡µ #à!ž£„Ò€€}Ÿ´i›æp °™¶aƫɗ™R¾§¯•ÄBâ£ö”‚1Ò Þ”z~Ÿ.’§Nx„ñ€€}j³é£åoØ¯Ž¡Pa«=žÍR†§œ©B¬£\›p1œ Jšâfž|”yœv…€€}6³›¬GoЯ+©Va„ªÁ¦]Rd¦‚£ëB¢­¢Ã1”ŸŸóvÉ”™ ›Å…(€€r¯ÅHlÞe¥À¬m´X¼9nŸIÓ·ìo•:u´p)S±4q-–±ép¸«)t{€€r¢Äwtpeÿ±t‹X:»tÕIñ¶†u@:–²vu¿)¯v!¯Äu»©éx瀀r£Ã:{¸eª¾r{EX&¹µzýIÖµ$z÷:ˆ±{)ž­ò{8n­Þ{£§Ó}.€€r•Áí‚Úe€½&øWç¸jBI¨³Ò€Ì:f¯­€–)œ¬Š€¯¬0€Ì!¥ø€Ä€€rvÀÒŠ e_¼ˆÈWÀ·E‡¶Iu²¨†Ú:Q®s†Q)ž«G†Iíª¯†‘¤U€€rQ¿ù‘heJ»ËW²¶NŽTIg±¨":A­lŒ^)¨ª!Œ…'©X‹ƒñ¢êP€€r0¿P˜Óe?ºb–àW®µ• Ic°Ï“:?¬’Â)¶©8“`¨-!G¡´Š€€r¾Ó `e=¹ÌžW±´Õ›îId°š:::«Ò™¶)·¨}˜y…§M: ³º€€qþ¾v¨6eC¹P¥¢W»´C£(Ik¯w¡k:E«) Q)ЧʜE¨¦RºŸóØ€€ÙµqlªÅr×n7¯¿to·™›uIq-‚¬vkr£jëwŠtRx u‚6zy vÀzyv­×·oWwÞÃppÜxG®IrAx·˜Ksy4ttÒy¾iÇvzQPëw4zÖ5hx!{>ÎxÂz­Õâm„ƒÁ¤o‚g¬µp™Â–ÌrI€s^€êh“t²€œOÙuå€J4lv¼ïÀwA"ÔkêŽJ¿ÕmŽŒªîoŠð•:p—‰u~°rˆ1gWsv‡NÌt´…â3€ur„ÛÖuóƒ0Òzj”™o¾;l@–Ì©TmÖ”?“®o^‘Õ}Rpâ”f%r^‘MÎs¤‹¨2¥tGŠtÔ†¨Ñ&iФ¼ëk8¡#¨lϪ’an\šQ|oè—*e qh”?Lãr¶‘¦1às?Î esã‰Ðh¹¯Ô»Ýjg«Š¦ëkù§+‘Im…¢ç{ožæd&pŸ›3Lqè—ï1:rZ– Ùsˆ°ÏGh»»i˶¦ kS°Ã^lÖ«˜z/nj¦ÆcWoø¢mKpqCžÈ0ªq—› gryˆbιg¼Æ`º€iaÀ}¥ajÚºcœlM´`ymmÚ®Ïb§oh©ïJÎp®¦P0pëŸî q÷ˆ%ÊZyäk‹·}zdmK£Ázænë{hptyU{îqúbµ||sJÒ}tî/á}Ðv 9dv7Èéwèv<¶Wx‘v䢤y-wƒìyÄx"xBz]xÊa¯zÿyzIÙ{¢z.õ|Iz k}±z¨Çev*€ä´®v怇¡w•€,ŒsxCèvòxõ¹`…y­˜HÏzZs.zå@ ¶|3~ÖÅÓt¥‹z³ ukŠ3Ÿxv'ˆò‹vä‡Äu¢w®†¿__xx…ÐGÕy-„ï-0yœ„4 zè‚wÄ[s]–±—t*“öžtð‘Ù‰—u·Ítev‰á^HwfŒ-Fíx Š,lxr‰Š“yÌ…“Ã$r[ Â°bs,לÎsòšÞˆht¾—ôsJu—•3]Kvt’®Fw4‹+½wkz"xÝ…€Â+q«~¯fra§Ì›Ís#£ù‡hsî 3r]tÏœ¬\}u±™vEjvi–Ñ+,v‡•WÄx…@Ánpø¶M®¤qDZٚúr­1†ŽsD¨“q‡t&¤M[½u ŒDÎuÉÀ*®uÇš#xwv… Àðp”Á6®q^¼šRr ¶‰…Ör¾±pÕs™¬+[t„¨D;u;¥**u#œ‚;vö„ä»n‚”jœª1‚8lx—ëùn*„yÑo¿oü¹qMZp¸rÙC€ÝtG)‚uS<ƒ»vºL€½t³©€u–³€evVƒO€Kwnå€BwÝYp€Px¦B“€xyZ(.€üyÈÈ‚ zÒ¹~ͧÂ~ù~·•˜~ß~œ‚$~Ø~†mÏ~Ü~ƒXy~ø~Aº'~’'nŽ~|b€‘~’·¼}”ˆÕ¦\}†‡î”}|†þ€É}†l}Ÿ…LWa}Ì„˜@Ì}ÿƒö&¨~Dƒ„ HÔ¶m|Y’ᥠ|P‘8’¿|P„|]Èkw|€Œ-Vh|¾ŠÇ?þ|ô‰%ÿ}‰¾~/‚ˆµU{b £ó{^𣑍{^˜~u{n•›jy{•“¬{>•Æ$ì{*” I|}‚9³Ìz ± ¢Xz ­Æøyÿ©¯|Âz¥™hÜz1¡ÝTzyžº>z£œä$zj˜R{Ý‚³\y§¼ ¡Òy§·˜Vy²¾|yƒ­éh9y¨©—SŒyî¦A=—z£|$ y͘_ü{^‚¬Ø‹½iÚœùŠ€k»‹ý‰~mpyÀˆ©ofi‡ñp˜Qì‡br$;è‡ s…!±‡õtN‡w$«óŠseœˆøtUŠîˆ u2x¹‡?veq†vâQ†w¼;…Àxx ö†jxÇ…•{ªðˆj|ÛšÕ‡{|ù‰Ù†˜} w…Ú}!dq…4}FP)„¸}u:Q„r}™ U„ô}ƒæ~Š©Ñ†ö†Z™¤†…·ˆ…>…v‹„†„ScyƒíƒÃO\ƒyƒI9¦ƒ8‚ãƃ˜‚¸‚o€¨¥…ÃÛ˜˜„àŽŠ‡ƒ„"ubƒg‹¶bo‚ÖŠdNk‚u‰J8á‚2ˆn2‚fˆ{.€§«„×™~—–ƒú—~†ƒ0•\to‚€“3aŒñ‘0Mª†x8EEŽRµXÝ€ €¦â„£2–ȃE ˆ…­‚v¬s™ÂšÊ`Ä7˜&M€Í•ò7Ç€v”ºQ€l’W€€¦Jƒ­–#‚¾©º„øç¦&rá&¢Œ`€—ŸVLS€9œÙ77ß›µø§”D€€¥ãƒ-·•¤‚`³3„^|®ër<€©ª _|€¦ïKׯ¤z6ÍX¡yž ”€€ž¦•iNÔ“&k#î‘ylÔnÌnj\ްoöIqt3Ör²‡Ž¢röƒz¼ì“”rZ‘ÈsM't3múެu[ÄXuùHUŒEvÙ3(‹­wŠýwƒ¡~’{NŽb{}~!ŽÆ{§mX{ØZàŒ |GŽ‹|_2~Šc|‘~‹||l€Z€œ·„+Œý ƒ³|ö~ƒ5l Œ‚¸YúŠÖ‚XFΉӂ 1å‰0ÍŠÙ€€›&„,ŒâŒ{øŒ^ŠékŠö‰¿Y-‰µˆ²Fˆ¾‡Ü1Yˆ‡P°ˆÆ‡X€€šRŽ –Q‹?”˜{7‹~’Äj5ŠðX^ˆÕFEm‡Ôñ0ˇ)MI‡¬Œ€€™¤ïŸ‚ЇŒZ0zyŠÍšµiz‰^˜=W­ˆ!– DÕ‡”[0^†W“ôÿ†²€€™h¨Ì‰õ‹Ø¥éyÜŠD¢Íh܈ɟ·W‡ˆD@†‹›I/æ…½š)¾…áa€€˜½²V‰„‹{®ñyV‰Ü«9hNˆR§V‘‡¤”CÕ†¢ö/†…8Ÿk…H(€€ØžáĥלLjsßšl4cÄ—ïmÅR‡– oI?씆p±+J“èq³l–Þq/€}Ð@qc‚H›rQs<˜Ãs:c&–£t"Qð”¶u ?e“*ué*Ó’uvz8”õuò€€˜œ!yÙu™ºzr}—mzMb`•Sz•Q=“jzé>Ë‘á{@*Y‘{q“/{%€€ŽÏšÌ‚=€’˜nÛq„–-ya”&P{’7€ê>*³€Â)Þ
Ò‘’€ª€€Ž™´Š¨Æ—Y‰¹p´•ˆÇ`´“‡ÞOÖ‘‡ =› †z)wŽÁ†>­…{€€U˜Æ“G–x‘Ëp”<@` ’ŽºO33`=%ŽŸŒj)"¶Œ]‹ŽÀ‰‘€€ŒÆ˜›÷~š•Ï™øo‚“‰—Ô_z‘`•¹Nžu“ñ<¥â’Í(όؒÅiŠk€€ŒU—™¤¿~"•R¢Co“Ÿ“^öÍœñNŽÜšÔ<&O™Ü(kŒ8˜KŒ¬ŠW€€Œ—=­Ä}ÔôªÜn‘’š§¨^‚V¤‘M´Ž[¢Q;όƠõ(‹¯›!‹ùŠ7€€ƒ‰©h7v<¥öiàh£kxXâ xlþH‹žnr6²œ5o·"^›ãpZX¯p €€ƒ§òpguÞ¤ÖqGg­¡çr,XŸ'sH0œ«sþ6gšÃtË"+šGu€›tu1€€‚–¦–xhu?£ˆx¢g" “xåWïÒy=G°›Ty 6™gyþ!ë˜Ìz™gz§€€‚¥B€Pt¢:€f_ŸN¶WNœŒ‚Gši5‹˜)_!¡—uX®—‹“€€d¤%ˆGsð¡$‡xeµž<†­VŸ›y…ñF–˜ú…\5—…!Z–B…¼•߃р€€Ø£K_sh Ne.aËVš˜ŒF˜‹ˆ4È–Šñ!+•$‹bÌ”`…ó€€€m¢˜‡r÷Ÿ™–Îd¸œ¨•U™Ú“ME¦—Q‘ò4w•<‘[!”èⓆ€€€¢ Órßž¹d~œœmUQ™,š8EP–•˜¦4”Ž˜a Æ“o•è’†€€Ñ¡¼©\r}ž·¦ìd.›¦¤2Tú˜­¡¥E–  -3Ù“üž| ™’Ø– ã‘;†€€v´³Ágiõ°8i\€¬åjŒN©¼l>‡¦âm\-=¤ënk¹¥—nl‰¢ªp€€vZ²ÐoRiʯ(p\W«¦pùMù¨TqÝ>p¥^r¼-:£Isj㣧sFþ 7ua€€v ±|vèi`­Øw\ªGw`M ¦ëwÃ>(£ìx--¡Çx„î¡éxT^ùzX€€u¬°~]hé¬}~[w¨ó}ÝM4¥”}Ã=Ç¢™}Æ,Рj}Ñç Z}¼¬›ú~¯€€uD®ô…áh«X….[§Ï„‡L·¤mƒó=r¡dƒ,Ÿ2ƒkÙž÷ƒ¿íš;û€€t䮊h(ªuŒrZ¯¦ã‹XL_£yŠX= h‰š,_ž‰hÒ¶‰ƒ#˜¶‚€€t”­e•=gæ©Á“ÊZn¦#’CL¢­Þ<ÔŸšî,0;Úœ•ŽYV—j‚B€€t]¬×g±©-›;Z2¥†™VKØ¢—£<”žì–µ+뜓–v»›Æ¹‰–S‚d€€t.¬~¥g´¨¾£Z.¤ü ÐK¸¡]žÉ<{ž)ó+뛾›“ÑšòȬ•Œ‚|€€j2¿f´]λ@hPã·–ipC#´jÆ4*°èkô#¯>l¢!±HkãŸs°€€ií¾=n2]Ϻ9nØPõ¶BoœCE²wpn4[¯.q1#s­Jqœµ®èpæÀx)€€iͼçud]¸Úu€PÕ´Ïu¸C&°ív4Q­v|#‘«ˆv®¬Èv&œ‰|"€€i¨»r|k]a·f|P‡³]{éBò¯w{Þ4-¬{ð#“©ò{øgªâ{Ø›h¡€€izº1ƒ]5¶#‚ÚPV²‚KB´®+×4ª·š#”¨…ž©©0®šl€€€iN¹<Š»]µ‰ÉPD±ˆÜBž­ ˆ3ü©‘‡’#§:‡Àæ§«†¸™€€€i)¸‘þ]´GÈP?°‚B”¬Žl3ñ¨›á#§¦2ŽE"¦YŠé˜ß€€€i ·ó™Y]³ž—æPD¯Y–UB’«M•3ä§Ç”¶#œ¥^“Ì?¥YŠü˜H€€€hú· ë]#³ŸIPQ®µ|B–ª›œ%3é§ ›n#±¤”˜"V¤ƒ‹ —²€€€ÍPlmfD¹çn0hu¥ÓoØjàqcl”{rßndUtOp}Llu¤rP1­v©sÖ Çx1s¶Ë\iîqT¸Xkçrg¤mm¶swŸogt†yãqu—c>r–v¥Kasúw›0±tÜxU ævtwåɈgÉ|`¶‘iÜ|\¢ákË|_Ž&m™|}x‘oV|ªbpÿ|ÞJYro}/Æs+} !tî|ƒÇ»eâ‡P´Âh †P¡j …`Œškò„‡w*m̓Ó`ÛoŒƒ/ITq‚.éq™ë vs›€¸ÆdF’4³)f|TŸƒhŽ~‹jƒŒ»u×ln‹_²nC‰¢H`oˆA.p+‡ ärx„RÄÅc!±Ýe?špž8gU—µ‰ÊiS• t¦kG’…^¥m!3G‚n¦Ž)-inæŒÅ hq„‡ öaý¨°Ôd@¤—*fU úˆ»hTks©jRš]Èl3–ÿFÇm±”T,ÒmË’ó p¹†ÄÂía<³ ° c®ÄœSeªL‡Ûg…¥ÛrÊi„¡¸\ÿkmžF$lêšý,OlÙ˜\ ¯p†ŒÂj`»½þ¯…bú¸ç›²dø³“‡%fâ®NrhÚ©s\]jÂ¥>E‹l7¢>+Ælœ¨ mp†_¾¯tŽe`­u‚g¾šlvqiwZkýrxBmû\Zy,oîESzq»+zßs€}s}½Fr=oð«ésfq;™Zturp…¶uvs˜qvst½[jwqußDvx]vä*8ywõ{[x»Àp.zkª>qrz¶—Óršzù„?s¶{BoÁtÏ{•ZDuä{ìCsvÖ|2)XwN|?zyÖ|lº)n]„ʨšo²„3–1p샖‚×r‚þnxsO‚€Y'tx‚B…unŸ(‘u·.x…€1¸®lÑ)§'n2Ô¿o|ŒPlp¸ŠßmFq÷‰„Xs4ˆRA¨t-‡;'ÞtD†y´wdƒl·xk–™š¥ôlÿ—m“nM•#€Co‘’Úl0pÙ¯W)rŽ·@âs'>rûŒVgvÞƒ§¶‚j›¤¤ül¡$’’mTžInššækGoë—ùV`q.•V@>r“8&¼qÞ’#'wJƒ|µËiß®—¤>kLªç‘Ål‘¦ø~vmÏ£jwo"ŸaU£pnœ7?¦q]™ó&Ipê–âôw¡ƒYµVib¹$£¸jÉ´·‘#kþ¯ø}Æm/«>iÏnz¦òUoÅ£g?p®¡ %Çp™‹Êwçƒ=°p|ÿd¬ M}g}TiW|–}œkghþ}ñmeTD~VoS>~Õq$«r&÷gt¯SzÑn Ÿ3{'pß{zqh{u{Õr©gó|:sãSS|¯u=8},v#C}ÉvŸ¶®xq®xÕx‘àyMyŒ¾y¶y‘zKz&zfäzœzvRf{zí¹²–ô*ð:–F²‹÷€€Ž¾…Eª÷€—„e¨Wqcƒb¥Ea?‚b¢!PX—Ÿ˜>V že*›€Ž›5q€E‹Ë€€‡|˜czi–˜eYlD”ãgx\á“dirLI’kM:6‘ lõ%Ù‘8n <“•mt€}F†Õ–ýkŠyÏ•mk™“ing\E‘Ûo¿K¼{q9¾r'%xvrÈ .‘rE€€† •HsÛxt¥jÒ‘Ùud[{QvK ŽõvÔ9.úwt%Ôw» ŽÈw}€€…H“°|wþ‘ü|LiÌ]|sZ¦ŽÚ|—JKŒ|À8‘Œ”|å$œŒX|æ Œ¼} €€„o’]„Yw*±„høƒ¡YÆšƒ1I¨ŒA‚É8‹Q‚‡$8Šþ‚g íŠñƒº‘GŒÈvr¨‹ïh?ŽŠôYŒ‰‰ëI‹.ˆý7œŠ%ˆ[#ë‰Àˆk Ù‰g†€€ƒ&t•DuñŽÝ“ðg¼;’bX†‹¨ÅHkŠMh7‰BŽ˜#žˆ²ŽÆ ƈ‡I€€‚±ÖÎuvŽBœg:Œ—™ïXŠö—ÌGꉓ–6ˆŒ•k#4‡é” ¶‡‡>€€‚Zd¦„uΤ[fËŒ¡ÇW‘ŠgŸ/G„ˆ÷R6<‡åœp"î‡9—ž •†F‡(€€z¢¥bpn &d•`«îf R ›çhŠBXšjN0â˜þkÙÁl?ߘ¡l¾€Ðyü¡Aj{m žÌkâ`4œmAQ¹š]n•B˜€oÒ0£—JpÔf—Ïq –qÒ€€ykŸ¢rXlîBs!_šôsæQ!˜Ñt¬A‚–òuh0D•±uþ6–uûR“ÅwM€€xÄžzl2›»za^Í™xzœP|—XzÜ@ì•{/Ó”<{O÷”g{1t‘À|L€€xœ¿ïkˆšr¹^˜5vOÈ–-@h”4€ø/d’ï€Üµ’õ€ØŽý€€€w†›º‰ßjú™s‰8]“—0ˆuO:• ‡­?â“"‡/‘¹†±‘‡¨Žvƒ&€€wšÝ‘×j€˜žÄ]–X†Nº”+ŽH?m’@N.ÄÊŒô†eŒ¤Ç)ƒ;€€v³šE™ëjK˜˜ƒ\Ý•®–ËNs“a• ?‘e“Ö.cû“Ò0Œ‘=ÕŒƒE€€vk™Ö¢+j— {\‹•'ž\N’ÌœD>ÒÄ›.'K™ðŽÍ’FØ‹RƒF€€n­9a“bª]c’U:§·eƒGi¥;gW8M£h÷'6¢j*¤i§˜Ónb€€mƒ¬i?aº©jTý¦FkáG@£ m*87¡`nS'? 1oq¢-nŠ—-si€€mªp³a9§“qsT˜¤´r7FÞ¢s7ퟹsº'žrt.’ s˜• x0€€l¡¨êx`¯¦xSSý£,xœFj zxï7‰ž3yA&ÝœÜyl—ž2xõ”0|c€€l(§l`8¤¯PS¡Ù+EãŸ&71œÐ~ô&›p~ò’œ†~ã’耀€k½¦‡†ò_Ù£¥†wS% Ç…äE…ž …P6Ø›«„å&oš(„Õ’›„¸‘Æ€€€kd¥·Ž}_‘¢Ò¯Rߟ猲E:‹»6†š¼‹&;™%‹J¥™¨‰¡Û€€€k$¥–_T¢&”õRœŸ3“ŸDóœ_’Y6@™ô‘³%é˜a‘¼‚˜­Œƒ'€€€jð¤¡ã_V¡¤œ¨R™ž˜š÷DØ›¢™V63™˜Ï%ü—j–窗©Œž Š€€€a³¸|`‰Uôµ|bRI¡²de`ˆ"m$gîsinøji]·p¹lÑFÇrEo,Ïs&pÝ v*q¿ d%jÑ­KfŠl…šŽh¿n,†èjÒoËrFlÏq`\¨n±rëEÉpItS+èpñu] mthuk½Ia•u§«†d vN™f}vó…sh³w¥pøjÒx\[lÐyDÊnpy¯+nÙz érÜz-»w_K€]©¸aõ€—CdlȃîfÁo—iiZRkMCÏl¾)*Blä~ívq³~†¹Ì]U‹¨ `‰Ü•²b¦ˆµ‚ie ‡—nRgb†ŽY5i…§Bçk9„Í)‰k„rY‚?¸q[À•³¦Ô^’“»”pa-‘µ1c¢¶m-fÔX·\Zy c¥Ì]Vž“j_õšº€1bp—Þl=dÞ•1Wjg’ÀAqh»¯(`hÊ|sY…¶ŽY«¥\b§|’œ^þ£¾_av knc眙V­f,™@ÖgÉ—''ìfâ•"Ds¸„ê¶ XÔµ¬¤~[µ±?’^D¬¥~º`±¨!jÏc¤Ve` ~@Mfðž'neÈ™_t„̳7nì_G¢™pOb1‘q§dé~hrögwj´t?iíUéulM?¼v¤nw&wZoü2{ q±Âl,i«¡{mÏkŒoPmP}kp½nÿiÃr pŸUsxr2>øt sš%Wutxáyruɰ1iµsôŸÍk~tߎ{m u¸{ön­vŒhzp0w`Síq¡x.=þrÉxÜ$‡ræy&™yëzF®’g‚~ž&if~-ŒÚk!~.z•lÇ~)g8ni~0RÙoî~;=q~<#Òpá~[zS~+­eŸˆGœ³g˜‡‹‹lii†ºy.k …áflÑ…Q×nl„gøoŒ÷nÍp,‹\½qEŠUIrL‰64ÛròˆcïqˈK€€žmk€™UÜH‚ûH;ŽÊ‚¡9„†‚V)0Œ¾‚7vd‚hà‰'€—€€m¬’O‹'aõÕŠ¡UTE‰äG³¿‰9Œvˆv(Ï‹ˆQu‹ãˆ‡ß€¯€€mB‘‹“ a±’5UŽy‘GiŒÓ±8¼‹tŽÓ(pŠžŠÇŒ †Ñ€¾€€lïø›a_}™øT¹Ô˜_GŒ –±8rб•Ñ(9‰Å•'ü‰ÉŽ0'†€È€€eb¦W[°Z¤^Mð¢#`e@« [b1òŸdh çŸeŠ û¡»e”mÒ€€d³¤Ìc'Y¦¢ŽdñM“ mf°@lž{hV1Òœÿi¿ óœÕjŠ Ožúiý‹ûrÌ€€d+¢èjuY  ¸k¸Mž”lñ?øœšn1›o КÁo• }œloŠ{w¢€€c¡q«XkžârzLhœÉsã™?yì0´—©z' M—-z1 Ž˜z*‡Ñœ€€bž,€VWqœ€aKu™ø€H>|—ó€0U–Nú %•¢ø •–€†´€€€b&-‡¿W›‡yK$˜ð†ø>(–܆f/ú•2†æ”m†D ¬”t… …΀€€aÕœ^+VÌšJŽ›JÓ˜¾=Ø•ýŒÛ/®”DŒv‹“~Œ¯ ‰“%ˆz…!€€€a•›Ë–ÍV¿™®–$JÅ—l”ï=½•(“¬/«“J“g±’[‘ï ¿‘숟„œ€€€Y#±­ZdN¯R\Bd­^ª5œ«`ž',©ãb#“«abhE©¶cZˆçqý€€Xp°ga}Mº­âcB#«jd¹5©.f:':§½g`ê¨ÏgpÒ¦¿hQ‡ v²€€X®’hhMJ¬ iAЩ‰j´58§8kÎ'¥¬lš ¦sl|9£ómx†gzÝ€€W®¬§o:Lߪ&oýAW§¨p¹4ç¥Uqm&ߣ¼qì ¤Nq«„¡\rü…A~Š€€WRªývLЍ‚vŠA¥ÿvê4Š£¦w3&º¡õwm ¢]w)Ÿxá„>€€€Vÿ©­}#LP§*}J@Õ¤}N4^¢7}?&’ t}3 —}ÿœï~ƒ^€€€Vº¨ „-L)¦„@¹£uƒÇ4A¡ƒl&tŸ4ƒGŸ-ƒ‡>›!‚z‚­€€€V…§Ò‹CL¥2Šý@ª¢ƒŠg42Ÿþ‰Ï&]ž!‰Êÿž‰6M™«ƒ–‚€€€Vb§4’~L ¤z’"@§¡º‘U4.Ÿ#¤&g/™&œöäj˜pƒ©€€€€µ&aSY²£þcÑ]’6f/`7†hqcLkÞjŸfFW(l®i%A*nbkÏ'ënÚmݹt£nų*]Îda¢q`šf¬Ôc6hæ~Ke®kjºh m(Vj@o.@5küq'lr^cu5sA±NZ±o ª]³pJM`ƒqŒ|Öc&rÎine¬t TûgþuC?>i»vV&Qiew uµx"¯tWåyžÝ[yÜŒ^ z9{Y`Òz—hc{SÔeê{k>Ng¨{Ä%—fÝ{ëÕv$|š­¾UxƒòFX΃uŒ[ã‚öyÞ^Å‚yfâaŒ‚RÈd¯=veÊX$òd„vƒ€m¬RSvŽf›÷VéŠÌZ‹Àx¸] ŠjeÎ_ä‰(Qçbpˆ <¾d%‡$bbu†nvÓƒ¦«-QϘ՚êUX–¶‰ÐX‘”ƒwÊ[˜’Ydï^€TQ$aŽ…<)b¸ #ð`ÈŒ¢Fwƒ‘ªPP„£6šT C‰ WZ7w Zdš;d7]T—€Px_ñ•;œaŠ“V#Ž_l‘ì&wLƒ{©ÁO˜­u™’S4© ˆxVl¥¹vyYp¡øc°\^ž™P^ú›Å;(`š#"^E– wwƒj¨hÛYI˜cj©\¯‡Ïlk_æv%nbðceoÊeÜOq_h§:"r¯k* èrñlÌL}Ïnó¦eˆcw—4g¥e䆽išh1u-kvjcb€mBl}N³nñn9tp>pE [pqL.~sǤÞbˆmŽ•dÙo…7fûpxs¸hÿqÔa8jïs&M–l¸ti8mýu|m.uù~-xe£4_×wˆ“ÕbPx0ƒ–d”xÇr_f¸yQ_þhÍyÜLŒjªzc7«kæzÏújzáý~T|f¡¨]}’``]‚-b|&pþd¸€â^èfဤK—hÔ€w6èj€Kkht€ê~uÔ c[‹{‘+^BŠ– `¸‰’oéc ˆƒ]æe@‡‚JÉg5†£6ChX…øîf«…ÚÙ~‘€“Ÿ_Yù•t2\¼“Ì€_>‘ûoa›$]câŽoJeÜŒó5¿få‹áe3‹ŒÌ~¨€ŠžX»Ÿas[ˆœ÷Y^ š[nJ`l—¿\Zb¸•aIhd¹“i57e²’7:d6Á~º€‚žWØ©6ŽêZ¥¦ ~Ã]#¢§m²_{ŸN[ÐaÄœXHõcš4Ãd¢˜åËc “x¸~É€|›6p²X÷ŒÕqÌ\`}grñ_l¼tbŒZáuDedGÁvgh2òwhj`^wÍkZ€r™ám‡b‹£nîe|1pAgik£qŒi¡YårÑk¾Fætmº28tõo`ÒtÉoÜ€vȘ…j¡l Š?l@mÇ{m½oUj…o&pÆXîpƒr(FqÉst1™r¥t|cr&t“€zâ—hu™ˆÁiËv~yƒkgwFi:lìwùW¾nlx£EoÂyA0Çp‰y·ÊoìyŒ€~q• eƇgg¦Ýy•lÓ*ŸzGn@ˆ{…mö€zŒsjµ~½t lyp{tãn`åu»o¢P2vq>w]r]* wísE=yrË€}µŠÕp“s²}kq¨tÀo)r¡u­_èsv‡OOtzwK=guOwû)Žu½xivìwð€€‰“nk|®|Po™}n p©}W^¸q¥}zN]rž}š<Šs}}º(ÝsÆ}áu%}ž€€ˆ‰l¤…¶{Gmã…zmnÿ… ]Çp „‚Mqƒÿ;ãqÛƒ™([qÿƒeZs¡‚ú€€‡²k,ŽºzulyÞlAmœŒÃ]n«‹‘LÆo°Š{;Hp~‰¦'úpp‰i.rY‡p€€‡ j—¹yÍkX–Dk•l|”\]m‰’©L#nŽ‘:ªo[ö'€o'ìqPŠ%€€†—i$ ³yOjž´k kžœQ[Ðl¡™ÞK§m—Ò:En_–®'n •e§p‘‰è€€×‹X]uXX[—gÆZ^¡Xì}awHÁ¸d7‚'fq"уgø焤g߀ys€Ë~¶`âth~Êc_fÔ~íeµXgçH `iò6pÊk¹"g€„lÉßélš€}º| i]s9|Vk)eÍ|—lØW|ÜnfG2}-oØ5¾}–q!æ~q¶Å†q›€€~˜y¦qÊrz r÷d–zhtV.z»t÷F[{ uÓ5{‡vˆ!t{Ôvв}pw €€}€w‰zKpùx zÜcŒxy{IU,xÚ{™E´y?{á4‹y©|!yÀ| ª{¡|–€€|uׂÞp,vk‚ßbÍvá‚­T_wF‚\Dåw¬‚3òxß ŸwãÕƒz\€€{Ëtq‹jofuŠÞb u‰ŠS¥uñ‰(D4vXˆ]3\v ‡Ù Jv;ˆrxØ…U€€{1sR“ðnÎsû’àasts‘StÕC£u9ŽÌ2ËuzŽ+ÜtàŽ cwÎ…«€€z¾rxœ|nWs'šý`ós›™R“sò—C5tI•2ttz•s¶’Ö,w …†€€uNŠ·WÚi€‰ûZð\²‰|]ÞN¤‰'`›?4ˆþc-ó‰Je)ŠùeóõŠg€|_tXˆ_çh³‡™bS[è‡.džMø†ÙfÅ>©†«h¹-ކâjKOˆ0j»,‡lkú€ƒsj…‘gçg¬…>i³[ „ékfM#„¡lù=ø„xnd-„¡o}…™o N…q6€€rpƒ?oßf¡ƒqYö‚Çr8LJ‚Œs>=4‚pt#,m‚ŽtÊœƒ6t²]ƒ vÍ€€q}Bwàe¹x‘Y€êy"K]€·y˜<™€“yü+耩zBH€ÿznD{À€€p¦òdï€#XRU€'Jµ!€ <~øð+³~éå3~óè½ø€€oö~9ˆ da~:‡ÆWÏ~ ‡=J+}ʆ”;r}›† +)}}…Ô÷}*†–~vÀ€€oi}&$c×}/rWE}ŽgIª|µ<:õ||Œ`*¤|QŒ<{´‹[Ÿ}jÆ€€ný|S˜Kcj|`—BVÓ|,•¿I;{Ö”":—{“*[{I’ÿQzu| ¼€€i”W ]ГHY÷Q®’U\ÅDQ‘•_b5y‘%a°$r‘¢cUO”Œc'ˆ iš€~Ôh’#^¨]‘`ýQ !c8CÌQeN5ŽÌg$>h[i‘mgú†"nd€€gQ¶f7\@ŽÌgýPPçi­Ck=4Œ‘l•#âŒÂmn^Ž‚lé„^s§€€f~qm¼[^ŒžnÿOb‹Ép*Be‹q<3슀r #oŠ˜r7‹Ïr‚¼xš€€e¯‹}uLZ–мvN›‰ñvÂAž‰.wP3fˆŸwÈ#ˆ¢wý ‰Sw”N|倀d÷‰â|ðYî‰0}KNˆg}{A ‡Ÿ}2Þ‡}™"Ù†Ì}£ ‡}µ€€€€dZˆˆ„‹YR‡æ„wMh‡ „/@v†TƒÐ2Z…°ƒŠ"€…Xƒ‰3…!ƒG€€€€cÞ‡€ŒEY †ï‹åM/†‹$@?…,Š;2/„g‰°"6„Š僠‡ò€€€€c|†±”X­†!“|LË…M’S?á„O‘1ãƒsn"‚í*Û‚]Š €€€€\àžñUßRBYXŸFÀœ[E9ùšû]¸+‰š}_¾I›Í`¸„œJaƒ£mI€€\œÝ]Q¬›Y_UF7™ôay9•˜Àcr+Q˜e P™e´ߘÝeã‚r1€€[_š…dCPõ™eüEŸ—½g¢9–„i&*ê•ÅjV&–‡jµ•œj䀗w€€Z¶˜@kZP8–çlžDÑ•—mÎ8j”anã*j“Ÿo±Ý”3oÎ.’±p#€{e€€Z –LrO’•s[D0“·t7Æ’|t·*‘«u-”’u!1*uÞ€.€€Ys”·yÈO“}zCC±’.z•7QézÃ)˜zßq-zÌ;ø{Ñ€€€€Xð“kN–’>;CLê#6í—€ì).Ž¥€Î Ž©€ëPŒ€à€€€€Xˆ’\ˆ`N/‘:ˆ;Bçæ‡Ä6ކ‡6(Ü~‡·s‡G+Š£„Ù€€€€X7‘ŽåN r£BÃŽÎ6oÛ(âŒWÂùŒŒ¡r‰T… €€€€P¦ªaTMFb¨˜VÒ;M§ Y=.ì¥ä[i †¥Ù\÷—¨£] `|€q.€€Oƨ”[*EĦÌ]7:¿¥_2.…£Á`÷ [£mb+Ç¥²ble€uø€€O=¦SaïE-¤–cŽ:A¢ëe.¡~fy ¡gVÑ¢ág šÞiî€z<€€NǤ h§D£¢YiÞ9¤ ¶k-¡ŸIlÀž¿l‘Æ ?l(˜wo+€}ÿ€€NK¢ oqD+ kpN93žÅq-+Lq¤Œœ¥qöÀÙqŽ5–u €€€€M× jv`CÊžÓvð8ä(wU,뛞w‘Xš×wœØ›©w^q“ÚzT€€€€MsŸ}UCƒ}¢8«›Ï}°,·š7}ž&™]}ŒÑ™å}µ°’ ~΀€€€M$ž„YCJœs„q8š¶„2,™™ƒß ˜ƒäª˜wƒ{µ™€{€€€€Lñ)‹C(›”‹†8d™Ð‹,†˜ŠŽ–óНÙ—ˆDÝg€–€€€€©ÎZêS©™­]ÇW|ˆó`†[5wPc,^Ìd¨eºbCPáhe•;ÂiÝh£#%ipjéçygl˧ÂV£^ ˜Yà`þ‡‡\îcÆv _Øfxc€bŸiOÖe"k:ÓfçmÐ"eeØolÈyœqg¥ÜRÌh–GVUjs…ûY§lLt•\Ænb2_»oßN¶b^q9åds!±b±t­yÊvb£ùOSrÝ”zS sÚ„| X_ê|VEŽb(|¤1­c|å°cD|dQ‚„µ‡Gg{Q*Ðgh{4jz{o€€ŠY ‚|Ò\j‚n¢^òß_eaF O'cgd=e ;*Me$,æh÷;€€‰W™‹O{çZ}ŠžmÅ]‰¼^–_ˆÈNda®‡í<úcK‡B)éc'†ÿ³g°†C€€ˆ\Uö”‚{1Xí“'m[•‘Ž]ì^êM¿`6Ž{<[aÎq)oanI‚fªŠb€€‡ÙTº™zªW½›Ÿl‚Zg™V]^\Ò—ME_•;ú`“Ó) _ï“h$eï‹—€€…0q’S@xjr–Vój¥s³Zx[¥tØ]ÉK^u÷`ç9—wc»%™wùe× ºzÄf€uƒÇmÒ\w7o0_ip„aÎZ¥qÍdsJ‚sfí8át"i$% tÈj¶ w÷jª€yá‚pj]dÝuÒlghXmƒi2Ynîk)I˜p@lÿ8#q^nž$‚q¼o² eu‚oŠ€}€g3m°tpi o7gj¶p¡X•l@qòH½m®s"7}nÌt+$nátË Ns^t³€€ºdrv€sHfswceÜh>x"W`iÝxÁGÏkZyT6¤lxyÓ#ml9z q›ze€€~ bYr7d9šdÜf­VpgУFôiT˜6j_˜"÷iÊ£ ßpÇ€€}¼`(ˆ&q^bZ‡ÊddL‡4U®f ††F=g˜…ë5ph“…‚"¤g¤…Š ËnÏ„C€€} ^‘åp³`ÔöcdbÐŽ»U d”kEŸfŒP4Ôg ‹¥".eØ‹é ³mê‡<€€|‹]W™’p2_¨˜ bÛa¥–JT„cd”aE)då’Ö4xe¾’!Édb‘Q knd‡ €€xýyîRþmzbV` {YöQ×{°])BG|h`0ÿ}Ab®â~ld#„€édí€y w³v`[Hkõw(^/_wò`ïPÿx¸c…A”y}eæ0tzGgêˆ{hñ›~)i²€|Àv}s c—j°teÔ]üu góOüuêië@¹v¿k¸/Åw}m5wËmÖœ{Ån¹€ïuDpkßisq:m}\ºrOnþOsEp`?ât.qš/!tßr–¦tºrâŸy±t(€€tmWt7hKn°u:[¢oÞvNpçvÞ?joÎ}œ.pR}½áoˆ}˜x<~‚€€r:i3„ùf¡j¾„äZl „‘Lxm%„"=ºnƒÄ-nnuƒ—˜mˆƒÞšx8‚ƒ€€q’g§FfiCŒ±Yxj–‹ÍKäk°ŠÎ=(l“Š,Ül߉º+kö‰Ì™x:ƒ€€qfq•e„h”ŽX÷ip“"Kejƒ‘ž<½kX€,Šk…_Ðj´Žˆlx‡‚ý€€lÅ‚ÙR{a‚‚ÍUçUH‚ôY,G˃9\=8Öƒ¡_'Ù„xa,ô†»a•ƒ:e®€|k–„ZN`Á]!Tf€_ÐG€UbS8C€¹d'tkfDׂûf_ jb€6j„|Sb#_o|Ëd^Sv}2f|F.}hn7‹}øj'&ê~Škg”‰k?€oz€€imyfiø^Nzk¡RQz…m-EKz÷n˜6¿{hoÎ&L{Ûp¡9|pH€tþ€€hcvÕqÓ]TwrõQ]x%sõDQx¢tÑ6#y u%Èy`võyøuž€y gst yÅ\puxzbPˆvzÕCšv{%5vÿ{d%}w{’×w¹{`€~ €€f®rȳ[Ës½ÛOötkÅC tãŒ4éu9c$÷u/d©uÚ‰€€€€fqI‰š[4rM‰UObsˆ½B‚stˆ4gs»‡‹$rs‰‡›Ktj†Á€€€€e˜p‘†Z¾q(êNëqàÛBrK޳4 r~Ž$/r!Ž6s?Šð€€€€`¦ŒoQ˜V‹íTÜJw‹©Wý=œ‹•Zä/‹×]e)^ú €Žj_)€ii€~p_‰RXþU+‰[»IªˆÞ^U<õˆÄ`¼.¡ˆîbÆɉùcø ¤Š¨cý€n)€€^Ÿ†A`cT-†1b˜H׆d¯Å’§\]2ˆ’D^›$g’ˆ`OØ”ç`™Ô‘ bi€qø€€RË‘ ^?HÜy`g> ìbm1؇d9#ä¯e‡›‘¤eŽËgg€v䀀RŽBe@HÈfñ=(Kh1/Œéiá#TjÐJŽ“jŠðl¤€{<€€Q9‹ÈlUGD‹im–ß¡Œ;MÀd¹|ïQœg"lŠUAi{[ X¨k¾H[Šmè4š\óoÚ]Jq$š}Ktâ˜èEE÷RÞ€C2‘S €X«W)€¨º}€å” :–Šq†J@‰ˆw±Eˆ§hI‰‡ÔW;M“‡E\P­†{2.Q5†!gUʆ’Â}0’õ8”?…e=À’vvùBíÄgnG˜5V¹K»ÖDÜNÔŒ¶1ÃOŒ1T¯‹ËÈ|ý4’36´„¾;ò›vqAB˜†gF –KVlJ?”cD¥MY’ã1‰M^’P÷SÏðÍ|õ8“ƒZ¾Mî…C]aR v[_ýV9f}bŠZ/Udù]ûC=ga/Oh@d±ªiufT€mÒ‘yU™W™ƒÕX»Zþu-[¶^Je^avT£a1dxB€cjgJ.¹d]i·Nf`jÚ€r°šPäaI‚Tmc×s™W¹fPdZÏh¯SV]¥jòAc_ñm-Ñ`nÚ±càoŠ€wbÊL“jë€GPsl§qõTnVb´WRoòR)ZYqx@j\¯rç-] t8a¸ts€{vŒH®t†~ÅLÛu{p’P­vca`T,wôW~Ô+õVÀ ‡^dX€€‰ˆB[‡ž|~G‡ n—KD†m_žO…ÍO”R~…C>XTÔ„ß+›TL„ÄU]¢„ú€€ˆ¡?ðÿ{²DÊ­mâI0ŽJ_M&ŒóOP•‹Ð=ËRÜŠù+-RGŠÆ*]뉛€€‡ÿ>š{C ˜mVGŠ•õ^†K’“òN O ’E=‚QE‘*áP­‘ß^i@€€ˆaìN zÃdRl±f&V]›h9YìMVj.]‘;¤kÚ`ï'òl˜c©“pëdh€q´†'\ùWyH_‹Zwkcaþ]¶\{dQ`ÓLYfrcÃ:Ìh)fu'Bh‡h”Cnhÿ€vh„nXb`Fw´[[bßj-^ec[\`£gÅKibèj: d¡l &¹d’m™k‡mÅ€z‹‚»T0iivWykBh•Ztm Z]0nºJ?_ pJ9aUq´%ù`Èr½ ¸ixrÏ€~#2PkrˆtªSôsªgAW)t¹XÔZu²I\\Ÿv8L^Kwq%g]ƒx ~i1x:€€ëM!{§s€Pá|f6TG|oWßWV|µH{Yö|ù7²[}C$öZÌ}‰ Ri|~ €€~áJM„´rŽN<„xe[QÊ„WTøƒ°GÀW¥ƒY7Y&ƒ)$¦X‘ƒD ˜YaÒ.ŠY”y@[žtÓ„y€€pÑqsMâer“Q¤XxsÍUUJÑuXÞ;Ív-\ *çwC^Ùx0`§~æbZ€xÚolëUÜc»njYW_oÜ\.Iéq6_!; rjaÐ*RsZdCt d×Î~¤g!€|„m–h§]÷bRjx`‘V6l#cHØmei:&nÝgˆ)šoŸi7Çp}i­à~†l*€¼l5d´f`øfÄhTâhœi÷GÞj6k½9Fk„mM(ðln‚]mnn©ó~eq–€€jãa#nF_¸cfo¤S»edpíFÊgr8£hns"(mhÃsçjÉsÚ~.w€€iÅ^v€^È`vwPRçb–wÿEôd\x7Íe£y'Ùeªyx®hšyg~0{ô€€hÜ[K~«]í]ã~ôR` E6aò 7c+'GbÞ/qf»f$~ú€€h%Y†À]D[»†Qy^ †D _ã…‰6‰a…)&´`a…&eT…D0}þ€Î€€gžW-ŽÆ\ÅZŽ3P÷\^6D"^2Œ"6 _?‹j&g^a‹‰°d8‰ó~5€¸€€dãz MZYÜz¸PøN{ˆT‚A|dWÝ2t}LZÛ!”~€] Ì€ ]x€e€{´cEuÂTßX¨vÁXLýwº[@*x¤]Ø1Èy‚`S!zgb ´|¬b=€jH€~ôañq§\ƒW]rî_Kîta?/uc×0úuæeÐ vxg |yAg€oV€€`°mÕd2VoQf4J°p—h>7q¬iß0r~kYÕr³l? 0vXl €tÑ€€_„j\kèUlm_I¤min¼=,n‹oó/xoOpùKoqˆ þsÐqn€y²€€^vgFs²Tit¤H¾jœut†ª€€€€Xóƒ\L`N«ƒ–OÝC„„S>7 „šVa(¼…€YV‡‰Z\q‡Õ[¢€i5€~WxNS|M„ÕVŠBy€`Yq6,€ñ\(±^Iñƒ3_C„`n€mñ€€VH{ZZ³LT|]@A{|É_ª5>}_a×'S~c‘k~ûd/Š€¶eV€s$€€U+w¢aõK1x’cý@VyUeä4Xy÷gš&ˆzhæÓzøi/s}Üjo€x €€Tt9iGJ)uRjÎ?Uv/l63bvÐml%âw7nXGw„n^Z{ioã€|r€€S&q,p«ICroq»>„sdr¦2¡tsg%7t=sët‡sÓbyCu߀€€€RQnwx Hsoçx©=Äpöy1õq–yk$¡q›yŸ¢r&y€xJ{s€€€€Q¦l'tGïm̸=Xn÷±1¨o‰$eoR‰Bp:°\x¢€'€€€€Q%j?†òGol†é<ÜmA†x19mÎ…ó$md…Ûn¤…¸Qxµ‚뀀€€Lï J×C`jN68ÕƒQi,½ÿTDU_VW €‘ÝVö‰Š\4€l­€€K“‰ËQ”B8‰æT‹7µŠWP+ÅŠY¾™‹˜[l 9[Ö†N`߀qŽ€€J……úXgA†KZé6¼†”]<*׆ó_;܇Ô`„ 䈞`¿ƒTeº€vˆ€€I‚T_G@‚ÈaO5«ƒ#c+*ƒd¿ „1e« ˆ„·e€ªjÞ€z뀀H›~ñfM|°np3þ}6oh(q}}p"û}¦pl ~†p‡€vU€€€€Føy1t]=•z-u3\zËu§'æ{vrzçv Ô|6vl€{G€€€€FOvÐ{l<ëx{Ð2½x¼{ø']xí|úx„{û mzo|­€x€€€€EÓtÛ‚¼<‡vD‚à2ow ‚Ÿ':w9‚K$vr‚[ Îxµ‚€€€€€€@™™EH«7²˜­Kå-£˜”NÔ!ª™QQ;yœ2RSR™¾T`„²_Š€p €€?7•¼O6T•ŽQÙ,,•™Tb K–@Vfn˜¡W/ •Y?®d@€u€€>A’Ux5:’Wá+’>Z:’×[  ”Ã\ÒÏ^.€i#€yt€€=oŽ}[ý4PŽŸ]ö*ŽÕ_©gd`èÿ×a*ªc:€nV€}X€€<š‹bš3t‹id&)D‹­et™Œ"fK§fg™‰Åh‡€t€€€€;ˇòi]2¦ˆ‡j(ˆåkk‰Bkñ?‰¤kÖ¦‡n0€y;€€€€;…)p)1ô…þpï'ø†wqy†¿q´熮q†–„ÅtS€}˜€€€€:|‚»w 1]ƒÏw|'v„ew®.„—w¨£„Iw’nƒz+€€€€€€: €ª~'0çö~O' ‚¬~1ã‚Ì~‘‚\~.‰ˆ~ÿ€€€€€€ÿÿÿÿÿÿmft2 $ÚiÙ 6 … Ç ÿ1^‹·â 2Wy˜µÒï%Y ‡!²"Ú#ÿ%#&D'f(†)§*Ç+è-.(/H0i1‰2¦3Â4Þ5û7859Q:m;‰<¥=Â>Þ?øAB)CBD\EuFG©HÃIÝJ÷LM,NCOYPoQ†RœS²TÉUßVöX Y#Z:[Q\f]x^Š_›`­a¾bÏcàdñfgh#i3jBkRl^mgnqozpƒqŒr”sœt£uªv±w·x½yÃzÈ{Í|Î}Í~ÌË€Éǂф¿…»†·‡³ˆ®‰©Š¤‹žŒ˜‘ކ{p‘d’X“L”@•3–&—˜ ˜ÿ™òšä›ÖœÈ»ž­ŸŸ Ž¡|¢j£W¤E¥3¦ §§ü¨ê©×ªÅ«³¬¡­®}¯k°Y±G²6³$´µµí¶Ú·È¸µ¹£º»~¼k½Y¾G¿5À"ÁÁþÂìÃÚÄÇŵƣǑÈ~ÉlÊYËDÌ.ÍÎÎëÏÕоѧÒÓyÔaÕIÖ1×ØØæÙÍÚ²Û˜Ü}ÝbÞGß,ààôáØâ»ãžä{åWæ3ççèèÁéšêqëHììðíÃî–ïvðUñ3òòêóÃôœõsöI÷÷óøÆù•úaû)ûëü§ý\þ þ´ÿZÿÿè§,„¿ç     üóæØÌÖÞááßÛÖ Ñ!Ë"Ä#¾$¸%³&®'ª(¦)¢* +ž,-š.•/‘01‰2†3ƒ45678€9‚:;~<|=|>|?}@A‚B…C‰DE’F˜GšH›IJŸK£L¦MªN¯O´PºQÀRÇSÎTÕU×VÙWÛXÞYàZã[ç\ê]í^ñ_õ`øaücdeeÿfügúhøiõjókðlîmënèoåpáqÞrÚsÖtÍuÃv¹w¯x¥y›z{…|z}o~dX€MA‚5ƒ)„……þ†í‡ÛˆÊ‰¸Š¦‹•ŒƒqŽ`N=‘,’“ “ú”é•Ù–É—º˜§™“š€›mœZHž6Ÿ% ¡¡õ¢æ£Ø¤Ê¥½¦±§¦¨›©‘ª‡«¬w­o®g¯`°Z±T²O³L´IµF¶E·D¸E¹FºH»J¼N½R¾W¿]ÀcÁjÂrÃ{ĄŊÆÇ–Èɥʭ˶̿ÍÈÎÒÏÜÐæÑñÒûÔÕÖ×*Ø7ÙDÚQÛ^ÜkÝyކߔàœá¢â¨ã­ä²å¶æºç½èÀéÃêÔëåìõîïð ñ,ò8óCôNõYöc÷jønùoúlûdüVýDþ/ÿÿÿØhÆ 2 R e r xzzzyuph^RE7)4=@?:4 ,!#"#$$ù%î&ã'Ø(Ì)Á*¶+«,Ÿ-“.‡/|0p1d2Y3M4A566+7!89 ::ö;í<ã=Û>Ó?Ë@ÄA½B·C²D¬E¦F¡GœH—I”JKŽL‹MŠN‰OˆPˆQ‰RˆSˆTˆUˆV‰WŠX‹YZ[‘\“]–^˜_›`aŸb c¡d£e¤f¦g§h¨i©jªkªl«m«n«o«p©q¨r¥s£t uv™w•x‘yŒz‡{‚||}v~oi€aZ‚QƒH„>…5†+‡!ˆ‰ ŠŠ÷‹íŒâØŽÍù‘¯’¥“œ”’•‰–€—x˜p™jšc›^œYUžRŸP O¡O¢P£R¤U¥Y¦_§f¨n©xª‚«Ž¬œ­«®»¯Ì°ß±ó³ ´ µ8¶Q·l¸‡¹¤ºÂ»á½¾!¿CÀeÁ‡ÂªÃÎÄñÆÇ9È^ɂʦËÊÌíÎÏ2ÐTÑtÒ”Ó²ÔÏÕëרÙ6ÚLÛaÜt݇ޘߧà³á¾âÇãÍäÑåÒæÐçÌèÄéºê¬ë›ì‡íoîXï\ð[ñVòLó=ô*õõööÖ÷³øùbú/úôû±üfýý³þMþáÿqÿÿÙ T– ¡ ¤ Ÿ “ ‚p_L7! ðÖ»Ÿƒ}tfUA, ê!Ó"½#¦$%z&d'N(9)%**ý+ê,×-Ä.±/ž0Œ1y2g3U4D526"788ñ9â:Ó;Ä<µ=¦>˜?Š@}AoBbCUDIE~% ô€Û‚¨ƒ„r…W†;‡ ˆˆê‰Ïг‹˜Œ}bŽG-ø‘Þ’Ä“ª”‘•x–`—G˜/™ššê›Ôœ¿ªž–Ÿƒ q¡_¢O£?¤0¥"¦§§ý¨ó©êªâ«Û¬Õ­Ð®Ë¯Ç°Ä±Â²Á³Á´ÂµÅ¶È·Í¸Ó¹Ûºã»í¼ø¾¿À Á0Â@ÃRÄfÅzÆÇ¦È¾ÉÖÊñÌ Í*ÎGÏcЀџҿÓàÕÖ'×LØsÙ›ÚÄÛïÝÞFßsà¡áÏãäM噿çè6é†êØì+í€î×ð1ñòïôMõª÷øZù«úöü:ý{þ»ÿÿÿ€€æOÎXÍ™¨~Í´Ú™~yœ£~eƒLÆ~…j…þ~ÀQ¿€c=9€üÅ~|‹4äµ~c‰lÌ@~]‡Ì³š~n†fšØ~˜…C‚~Ù„OiZ/ƒgP®¯‚¡8€væú¼}6–qâû}0“’ÊË}>ϲ:}iŽ^™“}¬Œ,€ï~Š"hN~uˆOÁ †7A胬øã|.¡·áA|3¿É3|M™ð°Â|…–W˜E|ß“Ë}OógV}ÑŒµNï~|‰M6‡g…\÷7{c­ߥ{f§ëǪ{‡£ ¯`{Éži–ø|+™ø~²|¯•·fn}C‘AN.}ýŒ{5å~ô†ïõ¼zʸUÞ/zDzÆCz䬮{,¦a•Ü{™ Ú}¤|$›Ye•|È•¨M‚}‘5[~‘ˆ_ôwzRêÜìzF¼2Å z]µ ¬ùz§®;”é{§›|Ù{¶ èdØ|`™ÝLí}5’P4è~=‰§ócy÷ÏÛØyãÆ@Ãúyò½ä«÷z:µì”z¸®$| {[¦@dH|åLo|ê”ã4‰}÷ŠÅòuy´ÚZÚëy—Ð2ÃyŸÆ”«yã½j“;zd´j{w{ «@cÂ{Ì¡–L |¯—34=}¾‹¶îSˆÛ~6׆‡Ä}ÂÀŸ†Ã}p©Œ…æ}U’R…*}u{„†}Æcăñ~5Lƒx~é5’ƒ(€ì=‡}ˆËÖ†p‡@¿k…ƒ…ã¨c„»„Á‘„ƒßyÔƒ”ƒ-bœƒ‚K’‚Â4Ø‚Áêz†G“eÔt…MÚ½ü„oŽs§ ƒÄŒXíƒ9Šwxʂʈ½a¶‚i‡JÍ‚&…L43‚ƒoèÛ…OþÒà„_št¼zƒŽ—¥«‚ç“莴‚r‘ w»‚ŽA`ÖÇ‹dJ—ˆh3¢‹…ç\„‹¨ Ñlƒ¤»‚ÔŸº¤[‚7›”€Â—•vºx“»`9²Iu‹e3$†{æƒñ³KЃ­º¹Í‚:¨X£2££-Œ{6ž uÈ€î™_J€¾“ÛH䀯Ž:2¹€Á‡ÏäÕƒs½øÎú‚‡·V¸µ¼°â¢/&ª¨‹Ÿ€Ä¤Šu€ƒžU^§€T—ÑHi€SÙ2`€rˆûãփȥ΂$Àâ·ÆW¹S¡J€¿±úŠÐ€aª»tk€.£\^)€›•H€“;2€0‰þソÓTÍ7ÖÊY¶úÁš ˆ€n¹Š#€°¢sÚâ¨]·ÆžýG«ЕV1ÜûŠ×Þ‘â|°Èîñ|c³±Ž|:ž;Œh|GˆŠÞ|rʼni} ]‡ü}¨G{†™~“2Q…9ñÜ*´†—Ç”ŽÁ…R²’Œô„<6‹Wƒ[‡Ž‰ä‚¶qÒˆˆ‚=\+‡3ØF¹…é¢1Ë„¢Ú£Ž•Æ9¨ŽW±r‹ÝŒ>œŠWŠp†xˆøˆÙpЇµ‡h[H†w…üF…F„Ÿ1T„ƒ4ÙBŽ›š—ÄØŒ¿—l°‹”kšÈ‰‚‘¤…Rˆ9oÙ‡Œ¨Zƒ…ØŠ&Eo„º‡0샠„¯×îᤔÇŒ  ®ºŠ[œ›™ˆÞ˜ä„:‡•Onð†k‘ÕYÎ…JŽ4Dè„=Š[0‘ƒ5† ÖµK®œÂ\‹w©­™‰Ê¤Ä˜‚ˆR ƒL‡›~n…á–âY+„Î’DsƒÐŒÿ0E‚Ú‡DÕ§ŒÐ¸£Á\Šÿ²°¬¡‰Q¬Ú—›‡Ý§*‚††›¡Šmw…z›ÐX¡„b•ÐDƒsl0‚ˆVÔÂŒj¦À†Š»²«Ïˆñ´Ô–ч{®Ά=§[lã…) ‚X6„™NCÁƒ'‘œ/Ñ‚N‰AԌ̩¿ÕŠMÄ «ˆ£¼¥–'‡-´¾7…ñ¬Þlg„à¤ÕWÔƒÙœmCx‚ô“…/§‚ŠÎO›{€º¢˜Y{Q¦ï•¬{F“ “'{s~èÆ{Új¨Žu|wVˆŒ"}9B–‰Â~P/B‡BâÌš„Ò¹—<ƒ¾¦”—‚Õ’4’ ‚$~Ó­iÚ˜cUÆ‹Y1Aü‰7.zËB™Ž!¸D–EŒ.¤ù“ŠZ‘.‘7ˆÕ} Žú‡}iŒÑ†JUŠ¥…Atˆp„ .¥†‚úÊ!˜—Ž·•c”¹£Ë’É’WŒ|Ž-Qh Œ‹)TX‰ùˆù@ò‡Û†Á.e…Ÿ„^Èÿ—f ö¶”­D¢¯’™¿Žú½–i{ ‰“3gQ‹S¾‰mŒÍ@Ї]‰a..…4…¡Çì–Øª`´þ”"¥×¡®‘’¡pŽ 91zL ™f—Šø”ÎS6ˆðt@0†ï‹Ó-ÿ„؆ÁÆû–d³¿´ “®®V ×‘©AŽÈ£ÑyžŒ¡ž§f Š“™cRƈ‚“â?熎 -Ø„Œ‡»Æ.–½³e“N¶Ä !À°|Œ’ŽiªDxþŒF¤e‰ŠDºRkˆ6—?ª†A -¸„LˆÅ…•¯Æq²Í’ü¿Ÿ‰r·Æ‹þްwx{‹û©(e ‰þ¡²R‡ý™ì?p†‘Â-Ÿ„‰@¿ ¤‡z­¬É úzš|z–ˆšzØur–Þ{Vb´“¥| P*[|é=áŒî~ ,j‰;Ó½¢£œƒp«âŸò‚|™Îœsµ‡n™%tÅ•ï€Òb ’Ç€®O‰€¦=nŒ5€Ü,Iˆ—Y¼ƒ¢©Œ6ªÜŸŠn˜ì›…ˆÏ†Œ˜A‡usó•†PaR’…PNóŽÙ„[= ‹ƒ…,,ˆ‚Ä»‚¡Ý”ì©ÐžD’[—ÙšÌù…•—~Âs”d‹Í`˜‘T‰æNfŽ4‡ú<²Šû†,‡„„º¥¡è鎚e–çš!—4„¡–Ú”&r<“©‘?_橎kMᔋ}›Ù¹Þ”V˜j³‚)•0¬Jp’ ¥‰^*ž¤L™Œ —;Ÿ‰+Å…ôˆ‰°®(z&ŸŠ©Íz ŽŽ¥~z}€¡HzjlJ!zø[˜ð{ÀJ ” |±9j}ÿ)Ћį\­R‚fžÔ¨Ù‚ޤ„€Ð|þ P€Zk¿œ2€"Z}˜€I“Ê€69!K€“)àŠk9®w¬kŠŸž§÷ˆ÷R£‡{|GŸs†Gk›]…HYé—E„sI“ ƒ®8䎛ƒ)î‰Ï‚‘­´«›’Ï.§4jŒs¢ãŽ2{{ž±Œ5j\š£ŠpYT–’ˆÁH°’`‡8¯þ…n)ú‰GƒÉ¬íªýšõœj¦–—Ô‹ª¢I”çz´ž’,i°™ùƒXÍ•òŒøHT‘ÅŠV8‚q‡¥*ˆÑ„à¬Dªb£7›É¥ýŸR‹ ¡°›™z„˜i#™f”…XV•Q‘H‘0k8ZŒð‰¯* ˆn…Ô«ž©ï«^›D¥€¦¨ŠŽ¡-¢y¯h³˜ï™TWý”æ”åGÅ»M8>Œˆ‹‡*ˆ†¥«©—³hšÃ¥­ÚŠ Ê¨ly1œž£hT˜“ÛW°”•˜|G“j’ì8*Œ5%*‡Ø‡Tªƒ©L»dšW¤É´è‰´ u®…xÕœM¨Ah˜F¢ Wx”K›µGn/•38ŒŽ‚*‡£‡ã¢á·üyÇ“²Ìy£ƒ<­ªy¸su¨–zc™£}z¬S¿žH{ƒDF˜ß|†5J“}ç'ŒÙ¶¡ä·-’w±è€°‚Ö¬¼€ s§£¨c+¢Œ‡SX]žCñ—úÖ5,’D€U'¼Œ¡?¶F‰B‘Û± ‡°‚O«Ø†Mr„¦Â…9b¨¡®„\R뜆ƒ®C¥—*ƒ5‘ƒ‚¨'ò‹p‚b ·µræ‘D°>Ž¥©«Œ•qì¥òŠÄb  ç‰-R›Æ‡±C`–q†:5Ù„Ú(!ŠÞƒˆ ,´Ç˜‡·¯’•”ªi’Ùq[¥LOa¦ 3éR#›‹›C'•Ή@4øC†ä(HŠa„Ÿ›´B %7¯œy€£©Ö™p•¼aDŸ¤’‰QÕš~UBù•8Œ4í¿ˆÁ(i‰÷…nŸ.³º§°Ö®z£@€I©LŸpœ¤5šò`ýŸ%–îQ¡š’ÛBÖ”«Žª4åFŠf(…‰ †/ž·³\¯® ©Í€¨Ò¤´p^£±ŸÍ`ž¥šúQq™š–B¼”T‘4åŽî‹Ú(›‰Y†ÏžM³ ¶g<­®°4˨sª0p(£W¤d`œžPž´Q[™H˜ïB´”“ 4ꎶ(­‰ ‡Q•ìÁýy‡2»òyPx‘µøybiü¯ÿyÂ[g©ëzhL죡{O>ë|b1…–}Ó%tŽo©•<Á&€Ø†Ñ»ùxEµ\i®¯[¨ó~üL¦¢§,>½œ€1“•€%Ü”ÙÀ2ˆ†kº3†‹wë´+…;iM®"„AZ¼¨ƒ„Lb¡¼‚ú>š›-‚‰1¥”@‚K&6Œæ‚8”‘¿P.†¹Tw‚³O‹hí­<‰mZh§%ˆL% å†µ>~š_…t1¸“„„S&„ŒHƒN”B¾“–H…Ƹ’“yw3²Šêh™¬zŽ“Z%¦XŒeKø 'ŠT>k™¬ˆ<1Ë’â†3&Nj„B“ä½ý]…{·ð™Üvõ±á–›hf«Ò“’Yö¥µ¥KÖŸ}Á>_™ ŠÓ1Ý’U‡æ&þ‹R…“‰½ƒ¤N…:·h vıQœh?«A˜KYØ¥/”¢KÄžüñ>X˜ƒ-1ì‘܉e',Šõ…Æ“M½«…¶å¦ v§°Í¡Fh,ª¿œ¿Yɤ³˜RKºž‘“Õ>U˜D1ú‘qН'QŠ©†Z“¼¢±µ„ò¶t«¿vŸ°Q¦h'ª9 ¹Y̤,›ŽKÇž–W>n—º‘2‘0‹Æ'oŠn†Ñ‰•Ì$yp{õÅ6y(nf¾hy/`ì·ŽyS°xzND~Ù}46Ëé~}ð²y¹„ÏÚ-z4ƒÊÃ*z³‚è«Ï{;‚2”4{Ъ|ˆ|vBdá}.€ãMU~€Ÿ6:€hîÌxYØjxåÚÁŸyx‹Òª^zŠ’êzɈ}{d{‹‡cä|_…†L}}[ƒþ5L~›‚?íw3›1Ö®wÈ—ï¿øxh”بày‘ò‘˜yáTzAz»ŒÃbò{§ŠK¸|¹‡G4­~ ƒýëivG¦UÕvÞ¢¾rw…Þ§wxA™ìMy–y(z’rb {Ž–K|,Šo4$}…êu“±oÓ¿v'¬½vͦצ7w¡Ï/xnœæxyi—ýa9z|’ëJ_{²m3¯}‡èÚu¼{Òu•¶»ÿv7¯º¥$vû©”Ž=wä£wQxês`z— IÔ{K33M|ˆhççtœÇqѰu'¿î»u¸{¤7v‚±+`wq©øv›xƒ¢®_òyªšüI^zö’»2ü|t‰Œç'tUÒAÐötÙÉ›ºLujÀÿ£nv$¸€Œ¢w°uôx+§ˆ_jy[žŽHùz±”ú2¼|6Šâ™„x̓…xx¸ƒxá¢8‚«ydŒ ‚\z u¼‚zÙ_€ð{ÃIUâ|ì3|‚~uàႎ‚©Ì\‚æ·³?¡(e€ÁŠé+€kt  €9^s€þ€Hu€2àZ€IßQAAÊÁ€Ù‹nµ–€‚‰¸ŸÅ€Mˆ>‰²€.†ðs”€)…¾]€5„ŠGº€dƒX2V€¿‚Ý¿€(—ÅÉ%Ç”ô´|’Bž\P¹ˆtKnr‡\‹1\·ˆãGņt1Ý€4ƒ¬ÜDB¢Adz~âž{²š~ šÒ~€—J‡A~‚“Ýq‰~ª“[ï~à F{9‰m1tº…0Úú~¬¾Æt~1¨±c}î£X›ã}Ӟņ=}ßšHpž~ •Ð[9~V‘6Eô~ÂŒ;1Q†ŽÙè~·2Ål}¤±~°\}^«Çšä}C¦!…^}Z ‘oæ}’šòZž}á•E~\ŽÑ0Ð~ù‡ÃÙ }—Á˜Ä–}:ºâ¯|í´š|Í­M„‘|禛o9}-Ÿ×Z}‡˜ÃE!~‘+0“~¯ˆÎØf}JËîÃî|îÄ'®Å|˜¼5™D|o´;ƒà|ˆ¬Xn¦|Õ¤`Y¬};œDÓ}È“=0c~t‰­ÒïŒëvÙ¿’‹|wW«½Š-wÝ—_ˆþx|‚©‡æyCmцÞz4Y…Þ{FD{„ñ|¡0Z„~kÑu‹”€Á¾dŠ5€<ª£ˆôÑ–Z‡Õ†¯†Òelè…ãgX@„ý{CÌ„,º/îƒn€*Ð&ŠTй½‰‰5©ƒ‡É‡Ê•4†¿†“€›…Ð…ƒkñ„ù„‘Wm„,ƒ¢C+ƒw‚¿/‚ÔÒÎΉB”¥»´‡ø’7¨†Îâ“é…˳v„õ‹´jú„3‰ÂVªƒ|‡ÃB‚Û…¯/9‚Kƒ]͈iž„ºh‡"›4¦É†—ú’²…”Ù~d„1‘Îjƒ…ŽÚUú‚Þ‹ÄB‚Pˆy.ñÓ„ÆÌ[‡¾¨i¹L†z¤6¥´…W  ‘¬„b›í}yƒ•—ßiG‚é“ÎU]‚TœA²Ø‹.³l† Ëf‡3²D¸^…ò­'¤Ç„ΧÿɃڢß|²ƒÊh¤‚s˜ TÙÝ“=AWr~.€‡'Ê †Ç¼·œ…椄c¯Õƒj©¡{ü‚ª£wh ‚2Ti‡–¥A §.V€ÎˆÊ †uÅÍ·…<¾À£Y„·}Yƒ°%{b‚Q¨ÔgÀ¡hT?™°@ŀᑈ.4€•ˆäû•øuޱʓ²vrŸo‘wŒ”‘wÉy\©xªeþ‹Ëy¸Rˉëzê?Ĉ |k-i†$~`Â|”Á4°Ð’ƒ~Øž„m~“‹¶Žz~rx…Œ¢~ye5ŠÙ~¥R‰~ç?;‡G[-+…t€ ÁY“¢ˆ¯¢‘o‡@{Z†Нw…w–‹°„Dde‰üƒŠQhˆF‚×>Á†”‚6,ô„×ÀE’“‘Ø®|lºœKŽeª‰§Œ}‹ÇvžŠÌŠ c‘‰)ˆbP‡‡†¯>P…ï„ò,Å„Kƒ¿'‘¾›&­t˜˜1›<—•Qˆ‹‹À’‰u¨Š×bň€5P)†íŠv=í…d‡,œƒÒ„b¾'‘¤s¬vŽø «šBŒøœè‡¡‹%™5t׉x•‹b‡ç‘ÜO¦†bŽ=™„ë‰þ,yƒk…޽N˜­®«¥Žx© ™sŒv¤`†ÚФŸ¶t(ˆþ›a…‡s–XO9…é‘l=U„‚Œ5,\ƒ†’¼Ÿ1¶ÙªúޱW˜ÃŒ«µ†-Š9¦sˆˆ– Z`ÿ‡š”NÛ…””Ž=„,Ž.,E‚·p¼ß¿÷ªrƹ†˜.‹À²Û…–‰å¬sˆA¥S`“†ÆžtN†…O—U<áƒóß,2‚•ˆ'µŸ=u2¤cœ(uΓb™7vzñ–ewEp,“£x:^Fáy^LŽz¨;6‹,|D*­ˆ~T´ž)}ü££›}·’®˜'}ŽD•[}Šo~’¤}²]£ò~L 2~j:ÔŠ` *‡e¼¢­š … ‘Ñ— „ €d”bƒÑn²‘¹ƒ)\ó‚ŸK~Œi‚:}‰©»*†Ák²)œ)b¡ª™%–A‹¼{“~ŠmÝ䈜\EŽQ‡-Jý‹±…¼:1‰„J*ƒ†1‚ȱL›K˜ Å˜Q•tוv’â~’»bmû[ ”‹¥J…‹‰89ìˆl†²*y…´„°tš« Ú —°e”Ò™ú}Î’–¡lb€“R[ ŒüÿJŠwŒ‘9°‡ïˆò*p…J…¯»š.©yŸQ—5¥:Ži”U ó}%‘œ²kÎ ˜uZ“Œ‰”&Iʼný¬9‚‡„Šù*i„ò†¯!™Î±þž½–Ô¬ëÔ“ò§¾|“‘6¢ˆkHޤTZ#Œ.˜Iz‰¥’‡9[‡+ŒÄ*c„ª†Ò®ª™ºvžF–ˆ´T“£®Y|ã¨j׎P¡áYˋݛŽI6‰a• 90†òŽI*^„p‡x§¨ºtÁ—~¤Üu[‡¸¡v w›uvâg9™ÎwæVÄ–yF¡’Ezx6àŽD|*(/‰þ~H¦2§Ä} –ó£à|χ6 |·wœs|Éfµ˜Ñ} VI•'}xF7‘^~6¨m~È(K‰8Ñ¥¦¿…=–3¢ä„:†ŸƒXvj›|‚¬f—ã‚*UÁ”GÊEÑŒz6xŒ«L(dˆŠ;¤Æ¥Ï[•f¡ü‹ž…±ž>Šuªš™ˆŽeg—‡FU7“}†EqЄÛ6L‹ÿƒ¯(z‡ò‚…¤¥•j”¦¡?’ø„î…¥tç™ãŽqdÈ–JŒJT¹’ÈŠ;E%ˆ6(‹d…ê(‡pƒ«£c¤c” ˜š`„OœÞ—CtN™<”9d<•¦‘7TJ’Ž8DÔŽƒ‹'6ŠÙ‡õ(œ‡„¬¢Ï£å¥–“Š ¡¤ƒÔœV´sϘ¯™ÎcÆ•"•òS푟’ D—ŽŽ5ïŠg‰Ï(©†¦…‰¢N£ˆ­z“Ÿ·¨Àƒ]›ò£õs]˜FŸ+c_”ºšgS˜‘A•D`§–5ÛŠ ‹n(´†[†B¡è£?µH’®Ÿj¯¸‚ö›¡©ÿrø—ò¤>c ”ež‡SWD3_’×5ĉόÊ(¼††Ù™¬²lti‹<­Çtú|©:u­m¾¤³vŒ^° wO¢›`xâ@þ–vzO2Ü‘D|%ö‹·~<™±‹|<Šå¬Ü||J¨B{ômi£±|^VŸ|rOQšc|û@¿•€}£2Ñ[~Œ&<Šã¶˜¡°‰ƒêŠ]«â‚ö{Ò§B‚*l袴]áž >Nó™w@‚”Ÿ€â2ÇŠ€ç&zŠ)˜"¯–‹{‰Éªô‰Û{.¦ZˆblY¡Ç‡]b?†N’˜¡…@G“Ô„2¿ŽÒƒ&¯‰ˆ‚G—˜®Î“‰<ª/ºzœ¥—Ž—kÇ¡Œ–\íœuбN:—äˆá@“!‡2¸Ž.…/&܈þƒ[—®5š†ˆ¾©“—z#¤÷”´kU e‘ô\‡›ÔBMð—5Œ‘?ê’}‰Ø2³ž‡'ˆŠ„K–«­¥¡ðˆZ©žEy¤jš¨jùŸØ—\8›J“™M¸–® ?Í‘æŒj2°ˆº'!ˆ*…–G­F©7ˆ¨ ¤Ìy†£õ YjµŸQ›ñ[õšÂ—™M~–:“8?«‘ƒŽÁ2¯Œ»Š2';‡Ü…•ô¬ü°a‡Ð¨M«)y=£œ¥Ôjqžõ †[¿še›QMZ•Þ–?˜‘4Ç2¯Œy‹l'O‡†L¼Rt¢¶ãt r±„uQdd¬v7Vœ¦wTHë ®x«;¼š˜z*/0”#|$I~0Œ¿»x{‚}¶{Bqð°{;d9« {oVm¥l{ßHÆŸ|…;«™‹}L/R“#~W$nŒdžŒ„ºn‚².´ÿÇq©¯„ c骀šV&¤c€]H”žœ€M;˜˜•€T/p’?€Œ$Í‹€éŒA¹l‰¾~Õ´ˆ5q?®Š†ÚcŽ©…ºU×£n„ÐH_²„;…—·ƒ?/Š‘u‚œ%Šñ‚‹ï¸•¾~‚³*Ž˜pç­²Œ c2¨+ŠÒU”¢‰(H1œã‡˜;v–ô†/¢Æ„ƒ%dŠ_ƒ‹—·ñ—¸~4²”ðp¡­’Kbó§xÉU[¡Þ^Hœ)Šÿ;j–Gˆœ/¶-†<%Ÿ‰äƒö‹E·pžŒ}ó±÷›pi¬o—¾b¿¦à”U0¡L‘VGô›œŽ+;e•¯Š÷/Ȩ‡Ã%Ή„´‹¶ö¥2}ű|¡p?«ñœöb›¦_˜óU Í•GÚ›)‘ ;\•</Ù5‰%õ‰-…RŠÔ¶¦«½}±±¦Óp1«¡Úb…¥ÛœúU ?˜CGÙš¡“;j”ÓŽÞ/ðŽëŠ/&ˆë…Ñ ÆdsötŠÀ4tdgþºu [i³¬uóNÜ­wB‚¦ x6Þ´z+Ê–å{õ"E޶~%Åzùt™¿Oz§h¹zž[g²‘zÛNØ«Ü{^B‹¤Ü|6ã‡},•É~*"×À‡Ä`°t‡¾;€Ágð·ì€ [J±m±Nê¶B‰£¾¥6þœtÖ,`”Í€;#UŒê€ÅÃDˆ7tp½ †ºgƶ҅t[)°P„tN¬©¢ƒ´B…¢·ƒ7›}‚Š,ž“ð‚%#ÀŒ3߀ûÂSޝt[¼*Œ£g°µ×ŠÏ[ ¯V‰-N ¨¦‡¹B‰¡Í†e7/š¤…,Ö“0ƒæ$‹˜‚Ö€ÜÁ”•tK»`’~gªµ [ ®ÂN §Ö‹˜B” ü‰ƒ7J™æ‡u-’Œ…{$h‹ƒª€½Àù›bt@ºº˜#gª´S•[­Î’N©§+5B¤ ZŒd7e™C‰—-3’†Ý$§Š¬„\€ŸÀ~¡rt9º3Œg¯³Â™»[­5–N³¦—’B²Ÿ×Žú7|˜Ê‹y-X‘ˆ$ÚŠU„À§Pt8¹À¢³gº³Dž[-¬²™´Nɦ•rBÏŸ]‘=7š˜c-x‘=‰%Š…eæ·v±shÑUw“tK»†xpu4¥:yHv*Ž¡z$w9wï{xeaO|yªJÏ}={(4¯~»|ÿäµt×~sϳuá~+ºvà}ú£íwÛ}çpxÛ}ôvÚyê~`S{~JI÷|_~–4}û~üâåsM‰ŠÍñtiˆ¸…u†Ä¢}v•…¨Œ+w³„¯u¿xâƒË_dz&‚âI4{•õ3p}L€äá(qü”Ì3s#’¶ÔtF¥ ýuqkŠØv¬‹jt w÷‰s^}yW‡iH€zá…<2ì|¯‚²ß”pèŸzʦr›óµKsA˜ˆŸŒtx•B‰uÄ’s‹w* ]¢x¢‹ÕGÛzCˆ_2z|$„^ÞApªUÉYq?¥×´rn¡ažNs¬ˆpu˜Àr‡vw”|\×xGFy¼‹V2{­…ãÝ+omµÈJp˜¯¥²ïqª As¤©‡teŸGq»uæ™Õ\'w”%FÈyJŽ1É{G‡;ÜRnó¿ºÇvp¹M²q>²¶œ\ry¬†¤s᥎qupžò[šw˜F\xë”1†zóˆfÛ³n¥Ê#ÆÚoÆÂ²±apÝ»›œr³;…êsu«~p`u £§[v½›wE÷xœ’Æ1Qz¯‰a× rÚs9¯€(tNšÉ@uh…ªdv—pb–wå[3ØyNF€>zõ1~€Þ|ýÕ£}f|™Âr}‹|š®h}³|£™¸}â|Á„ž~|ûoi~m}OZQ~Ñ}²Ef]~71€!~äÔ#{ó‡À×|(†¬í|`…˜R|©„(ƒe}ƒkn\}p‚ÂYq}ñ‚D¸~˜p0‘u€´Òžz²‘t¿Dzïi«`{5n–õ{Œ‹Œ‚.|‰ÔmU|‰ˆ%XŸ}%†fD}ç„‹0/~Ü‚gÑ.y¨›Æ½Ýyê˜Í©þz9•Ý•¢z’ü{-l[{ÀtWÝ|sŠ—C}L‡/Ú~Uƒ÷ÏùxÙ¦¼¬y¢0¨ÒymžB”ƒyØšZ€zd–}kw{’œW-{ÙŽžC|ÈŠI/’}â…aÎýx5°L»³xz«}§×xǦŒ“Žy4¡”'yËœ¦jÁz„—¥V˜{V’mB«|WŒÙ/W}†ŸÎ9w¼ºhºïx´ª§xG®®’¼x¯¨›~ayK¢ŽjzœmVzñ–BR{ú)/&}0‡±Í¯wjÄ^º\w¬½¦¦_wè¶”’xE¯Z}¹xà¨$i‰y¯ ÖU¤zš™·^‹- † Àd€Æµ*®¦€%° œ-‹ª¡‰6¥ v2~ÙŸxcG~Ì™×P¸~Ò”>pÂ,ðQ‡¿í€t¾¡®Õ¸˜›Š1²ˆ‰~¯«_u–~o¤¯bÊ~iòP[~}–ü>2~»,ׇչw®pF©Žæq’—øLrІ‹ÔtsÑŠiunaZ‰vòO‡¥x›=†Pz+¦…|ó¸~Dy•¨,œyê—ŒzC…7Чz®r÷‰J{6`•‡ü{ÝNl†°|š<‰…u}ˆ+~„C~²·zù‚˧Œc‚?•ûŠá¶„,‰…Kr ˆ;€ù_͇€¾M̅ЀŒ<„®€j+Zƒ“€T¶hŒÅŒ¥Û‹9Š”Ã‰È‰6ƒ&ˆp‡éq‡=†¶_†…M4„ÿ„b;»ƒùƒ,+:‚ù×µN‹Ì•&¤×ŠC’ö“»ˆÙÁ‚‡Žp,†dŒh^>…[ŠOL „Rˆ;aƒ^…È+ ‚sƒ6´Z‹ žI£à‰‰›M’Ȉ ˜9-†Û•o`…¶’]”„­ŽáL$ƒ·‹©;‚Ùˆ4+ ‚„m³’Šv§U£ˆ÷£‡‘ÿ‡ŒŸŒ€j†F›|n²…)—j] „)“FK¿ƒ2Žú:Ø‚fŠh*ö¡…|²öаH¢wˆˆ«¤‘T‡¦¹À…Ì¡¦n„±œ‘\€ƒÀ—gK]‚Ò’ :¢‚Œ^*çR†b²ˆ‰®¹!¡úˆ8³ŸÂ†Â­³)…l§mŽ„N¡j\ƒa›0K ‚”Ä:kÄŽ *Ú‡«Z™Ào»œ#—+q ŒN”ÇrQ{Ò’s¢jëCuYߎv©I‹¶xf8š‰dzs)‡|쪓˜x›q–xç‹“§yX{‘eyÞj:/z„YAŒþ{KH”ŠÂ|,8Hˆ„}B)†5~™©Ã—C,𔨀¾Š²’‚€^z:O€irŽ)óX™Œ åH‰ãâ7þ‡ºù)…€'¨Õ–+‰´™€“ň‡‰¥‘z‡ey[H†Oh§6…YW÷‹*„kGž‰ƒ}7¿‡‚Ž) „ß“§ö•+’K˜›’Ð]ˆ½ŽqxtŽfŒ„gïŒOЦW`ŠYˆÕG5ˆX†ò7ˆ†]„ù) „U‚ܧ*”ršß—å’˜1ˆ וpw·°’©g<‹£äVЉ­Fχ¼ŠA7Q…Ô‡8) ƒàƒþ¦“á£S—6‘Ÿã‡ZIœIw ˜f§‹”îVX‰)‘1F~‡5R7(…^‰>) ƒ„÷¥÷“t«¥–ª‘%§l†ÇŽÛ¢òv}Œ«žTf Ц™²UåˆÁ”üF/†Ò 7„ý‹) ƒ/…Ê¥•“#³Þ–<×®Ö†Iއ©juüŒN£Êe¯ŠDž'Uˆb˜sE높™6Û„¹Œ‹) ‚ï†wÍ£ o[¥Ÿµp£€ùœ‹qîq™ssJb4–StÇR‘“#vpCJØx>4hŒqz_&¢ˆá|ä6¡ôw£'žªx€p›}xq<˜`y'a³•ByæR’zËBïŽÝ{Ì4A‹†}&ˈ~€œ™ ÉÄŽjŽiÇš`"pŽ—La”:~ÿQ¢‘$B•öF4в’&ð‡Hû›âŸ²‡Æœ~†·~ê™[…¸oÕ–I„Ô`s“H„Q CƒXB>&‚¤3û‰õû'†¡T›"žÏ´Œá›žù~,˜€ŒHo•sŠ£_ß’k‰P«x‡xAôŒi…Þ3à‰L„9'*†‚‰š…ž—±ŒBšâ•D}—Æ’În~”·T_W‘²ÝPHޏ‹hAµ‹ºˆç3Ɉµ†H'@…˜ƒ—™üyŸ‹ÌšVœn}—2™)mÿ”•Ô^Ý‘’ƒOéŽ.)A|‹,‹¸3´ˆ9ˆ#'S…3„~™Œ§D‹Z™ï£i|Ÿ–ÅŸPm‹“¦›^s¨–äOŽÂ’¢AAŠÅŽG3¢‡Ô‰Ä'b„á…@™8œÄ®ÚŠÿ™Ÿª<|9–n¥@m$“H ^FšõOJa•ÆAŠq‚3‹‡Ž‹!'n„ …ßoƒ·¨~pBv¤qŽh šrôYÚœŠtK˜˜Wv9=Ê“ùx0ƒezN$Š™|Û…«›vÚƒl§‰wCuÊ£‡wËgÉŸ…xxYŠ›qyPKW—DzR=’ï{r0ˆŽj|Ð$Љ±~hªy~y‚æ¦r~)uU¢k}ögMžl}óYš`~K–A~Z=m‘ú~²0‹ˆ3%ˆæÓš©`…ð‚P¥^„ût¯¡_„fÄaƒdX¦™e‚ÏJ¬•T‚M=;‘Õ0ŠŒ¿q%Qˆ6¨vX¤y‹Ãt Š?f1œƒˆÍX7˜ƒ‡qJY”ƒ†%=Y„Ô0ŠŒƒ†%„‡Ÿ‚=ŽŽ§Ã”¹G£É’ƒs¤ŸËKe½›ÍŽWЗ͋òJ“‰Ì<즇£0Œ‹r…l%®‡!ƒ:Ž-§$›û€â£0™s>Ÿ1–+e[›2“2W|—5:IÝ“-<<׊30Šç‡%Ò†¸„צ½£€­¢ÇŸ‘sž¸›Òeš¢—ûW7– ”.I’¬_<¯Ž•Œ†0Š|ˆ˜%î†c„Å“¦rª€j¢r¥Õr¾žY¡?dΚ=œ‡Vú–7—ßIq’D“7<–Ž:ŽŠ0ŒŠ1‰Ô&†…W„»¶Fnªxa±ƒoÚkƬÈq&^é§ïr–Që¢ßt1E“uÿ8§˜ wõ,ô’8z="¢Œ'|Ò„µnvxJ°™vxk««¾w^ͦÍwÇQС³x¸DõœkyÙ8¬–ë{-%‘'|#‹0~S„L´M};wú¯}|ñkhªš|Î^…¥¥|èQ” }/DЛU}ž8¦•â~&-N3~Û#xŠX¯„³(„.w›®\ƒMjù©~‚^-¤‹üQJŸƒ˜D¢šVM8›”ô-o[€ò#͉ž€çƒ­²0‹wC­h‰žjœ¨ˆF]Ì£š‡Qž…çDv™t„Þ8” ƒØ-ŒŽž‚à$ˆÿûƒY±u‘ìv÷¬«æjS§Êå]†¢Ô‹óPËËŠDS˜©ˆ@8ˆ“d†o-¤ø„¡$Rˆz‚胰嘞vº¬–j§+“P]N¢/¢P—*ŽD6˜ ‹h8‡’¿ˆÌ-ºi†/$„ˆ ƒ²‚Þ°iŸvŒ«˜›ái릧˜|] ¡¦• Pnœ ‘ªD—ŽF8z’BŠæ-ό$­‡´„Y‚®°¥‚v…«;¡ ià¦5i]¡™PXœ ”ëD –ýÊ8ƒ‘ÏŒµ-⌛ˆ¦$͇m„áyÀ0nem}ºËo€aεJpÇV ¯€r=JG©\sæ>¸¢áuÉ3ÊœwÔ)¨”íz1 ú‘|Éy¿iuom—¹äuÁaç´3vQV"®GwJ_¨x'>Û¡›yg4šØzË*“Â|q!Œˆ~>y¾>|m¸¹{ÏaÖ²ÿ{µV ­ {éJU¦Ø|R>æ j|ì4(™µ}£*U’¹~‹" ‹£Žy½‚m\·¹a¡±ÉUç«×€¢J<¥±€m>åŸR€X4E˜°€Y*˜‘Ï€~"yŠß€¹xç»õˆím?¶s‡•a€°º†aU¿ªÉ…QJ-¤¥„k>æžYƒ¦4`—É‚ê*Ò‘‚H"ÖŠ8¿xÆ»&Dm-µ™gat¯Ø‹™U´©å‰ãJ"£ÅˆG>ìy†Ã4z–ý…K+Rƒå##‰¬‚ x¨º…•lm$´é“ap¯–U°©%Ž2J £ ‹å>ôœÊ‰¦4“–N‡q+2½…Q#b‰:ƒ]xŽº ›am"´]˜jas®•PU±¨ƒ’6J¢n4>õœ;Œ?4¤•ɉY+VB†‰#•ˆÝƒúx{¹´¡&m'³ê‘a|­þ™ÀU¶§ø•èJ$¡ã’/?›¸Ž‰4´•YŠ÷+mŽè‡‰#¾ˆ“„yÚ¥qðm*ƦsQnIJ+t¤pW uêq釴w0s‰r&x…uB\µyówGm{”y#2­}Š{“ضoÛxÅqkx‰°Ærãy›ätOy’†”u¾z4q"w=zë[ÌxÔ{¯F­zž|”2%|¹}¤ÖïnƒÃ[o¿‚Q¯DqT®š{rÞ5…Wto€×pv€ŠZêwÑ€=Eýy¿ô1­{ûÕ4lÏÁnEŒ ­’oìŠc™q‘ˆÖ„ sC‡unûu †Zvé„¶EZxøƒ81D{QzÓ¢kG˜}Àm•Ŭ n½“—Œpr…‚Èr;Žmít!‹œY?v‰DÅxJ†X0éz¼ƒ2ÒXjI£¾ÏlŸvªÈmɛȖToˆ˜#«q_”ŒlôsVöX€uoGD?wµ‰J0œz;„ÁÑPi­—½ËkI© ©¿m¤X•MnÅŸ€¾pªšîl-r²–2WÝtÚ‘CCÏw6Œ0[yφ"Јhï·ì½j¶²w¨ëlh¬¹”qn'¦Þép¡ kxr+›-WUtd•CovÎŽ{0'yu‡SÏþh¼|jS»”¨Hk÷´Ä“»m­­Ç8o˜¦ÍjÞq¸Ÿ¿VÒsý˜gCvv¢/ýy,ˆSËÄzl$¹—zžmò¦½{(o¨“,{¶qT"|Ls jê|ñtßVÖ}«vÐBé~y/š·{˜Ê`x/v‹¸}xàw<¥­yˆwé’'z0x~(zâydj{©zBV|‰{2BN}—|I/9~ç}“Èèv‚€Ý¶åwI€¤9x€*ÇxÌê|öyŸ¿iz‹¦U:{A²|¼ƒ.ã~+sÇdu ‹ µSuቼ¢«v°ˆppw‰‡0{Åx}†hy‡„öTtz©ƒÓA&{ù‚.˜}„5ÅùsÓ•'³ðt°’ò¡Ku޶ŽvwŽ}z¦w{ŒOgx¤Š1S½yá‡÷@©{M….X|ò‚ÒÄÎrÜŸ9²Çs¿œ$ &t¡˜ñu”•¶y§v§’~f:wÝCSy5‹ð@:zºˆU.!|u„FÃÝr©2±×s¥:Ÿ3sá¡ ŒtØœÇxÑuø˜„e‰w>”0RŽx¢®?Þz>Šà-ô| …Ã'q‰³±ro®(žksK¨ø‹Lt?£ŸxufžFdåv½˜ÚRx1“1?yØ*-Î{´†¦Â®q*¼¥°–r ¶ÙÍrܰœŠ¡sƪ'wotí£®d]vL!Q¢wΖS?=y…$-±{n‡½`‚{kR¬Ý‚m?›‰Üo ‰^®pÈv­Œr”cÈxtQrv‹>‡xÝ,³Ø{›¼I€¶u«É€‡všc€_vÚˆK€Fw¶u²€;x¢bî€Dy§P[€]zÁ>€š|,y}€»&~ÙªŒ~Æ™X~ñ~°‡6~ï~£t¹~û~«b ~ÅO´Z~æ=¼,F€II¹Ó}­ˆt©6}¥‡…—æ}¤†Š…÷}´…‘s}ᄯa0~%ƒÔNÿ~{‚ô=~ú‚,¢€ò¸’|‘ü§ö|9–«|‹Ž`„Ì|ªŒ{r¢|䊜`^}EˆÈNb}µ†Þ<¶~O„Ì+ò‚v·†{“›¦ì{š˜ê•¦{©–'ƒÒ{ГOqÁ|s_£|€’MØ} Š›<]}¼‡c+Ò~•ƒÐ¶¯zؤî¦zä¡”ÉzòÍ‚û{™÷q{n–_{æ’1Me|xŽ<}@‰Â+·~-„þ¶ zK®8¥fzZ©í”zd¥D‚Czˆ fpSzᛂ^p{k–ŠLö| ‘`;Ö|Û‹à+ }׆µ¡yì·W¤æyü²*“zyú¬}¤z¦ŒoÂzk ”]ùzûšˆL–{ª”F;“|‹±+}“†×¯f‹;j² N‰ôl¨Yˆàn~ƒ‡îpGn)‡r#\ †)t#KW…QvI:@„x»)ûƒì{œ®Š‰’sêŸjˆté]‡„uÜ~”†ŸvÔmO…Èwá[ã…y J¹„AzJ9Ùƒ{»)çƒ}m­“ˆ |ÿžH‡}#Ž[†%}>}‘…V}blo„”}™[,ƒæ}åJ-ƒD~;9‚‚¿~¤)Ö‚R ¬‚†¥† (…º…`)„á„¡|˜„ƒçk–ƒqƒDZ„‚Û‚©I±‚X‚ 95öi)ƨ€±«c…Žþœ,„š”Œ/ƒÍŒ {ŒƒŠqj­‚zˆÜY¿‚‡UI#–…¼8æJ„)¹‚ªv„—ñ›9ƒÀ•À‹?‚õ“^z¯‚CÝi豎XY">‹ÓH³€é‰=8¤€¶†o)®€˜ƒ_©¶ƒê ÇšvƒÍŠ{‚HšŠyî——i9“£X˜€§"HY€TŒƒ8o€8ˆ¢)¥€0„w©%ƒd©€™Û‚•¥¸‰ÔáŠyH hŸ€ƒ˜ªX €.”(Góé†8AÒŠ—)žÛ…e¨Äƒ²™d‚<­}‰E`¨Ux³€˜¢Üh€bW¨¾—ÝG¨‰’48ƒŒC)˜–†)¡å”jN“ï’l?…--nuœŽvoìe—ŒÁqÕUm‹ sæE–‰Lv6 ‡—x¦'v…é{›¡5’šs“>µt„eŽîu tà:vdê‹w?TÚ‰æx…Eˆ=yæ5džŸ{~'ˆ…}Y l‘){’I`{ц£{þt‹ÿ|Ed(Šd|£T<ˆÕ}Dª‡D}œ5Œ…À~<'—„@~÷ŸzÛƒï‘HŽƒr‚tŒn‚îs$ŠÒ‚jcd‰PûS¥‡Ø–DC†_45Y„÷€Õ'¤ƒ‘€rž•Ž´ŒX\Œÿ‹#‹‹_‰Ûr@‰Ïˆ…bµˆP‡6S†ñ…óCä…‘„¤5,„CƒC'°‚úÈÍÚ”¿¨Œ.’Ó€ÚŠŽ½q…‰ŽŽb‡‹Œ\R†0Š*C…„ä‡ê4ýƒ¬…‚'º‚z‚õ)/Žü‹Šš[€-‰è—rpÞˆY”bap†ì‘LR…™Ž+C<„MŠò4Ûƒ+‡‰'‚ƒøœ©Œ¯¥Žu‹¡¶‰hôpR‡Ñ™ù`í†f•õQ¦…"‘âBìƒß¶4¾‚Á‰S'ȹ„ÓœOŒS­Ž Š·¨ì#‰¤AoÕ‡eŸL`…ôšQQS„´•IB­ƒ€&4˜‚sŠÖ'Ís…‡”ã$iý‡Ûš]käz-—Èm¿kוCož] ’²q–NUs¸?ñ[v1ùŠ™x›%+‡É{—”U›Ýr3‡X™0s=y™–œtNkM”up\¤‘ƒv¯MïŽíx?¦ŒFy’1≗{L%a†Û}E“·šz8†•—ëz‚xî•[zÓj ’Ü{;\[{¾M|Ù|\?Z‹G} 1̈¯}ß%† ~Ð’û™:‚…Ä–®µx ”-Si둵€ÿ[pJ€ÀMŒÝ€‘? Ša€h1µ‡à€L%¹…T€8’:˜,‰à… •¦ˆÚwR“-‡Êi,½†¶ZèŽP…¦L˜‹ù„¦>͉‘ƒž1¤‡(‚%Û„·y‘š—H‘³„g”Ðv±’YŽ4h˜éŒPZcŠkLA‹'ˆŠ>™ˆÔ†¢1•††„¢%ù„3‚“‘–¡™cƒõ”0— v?‘²”th:‘¹YéŒÙŽýK⊋Œ=>gˆ8‰o1†…þ†€&ƒÆƒ„«–' æƒ†“¸ßuÊ‘4š|gªŽ²–äY€ŒR“JK„Ч>)‡Ä‹ö1y…ˆ"&$ƒl„O]•Ψ?ƒ/“^¤†ugÑ KgFŽE›ËY*‹à—IKD‰¡’Á=û‡cŽ-1c…@‰€&4ƒ%„ôˆ€¦li§|Q¢øko£Ÿ¥m]bvœIoGU˜ÊqPG••)s…:¡‘fuâ.;x#!‰€{“ˆ¥Wql{ü¡èrsoGž‚sb#›tÃT¼—”vG_“ûw:„Cy>.OŒo{#yˆ„}1‡ ¤ xò{k ªyEnÌDy«a¨™Ýz2TW–fzÙG’Þ{¢:`8|€.\‹z}‡#Ƈ¨~¬‡¢Ä€JzÍŸl€n œ¿a ˜²–Sâ•MˆFÆ‘Ø:7ŽG£.eŠ Ë$†é€†…¡³‡‘z<žc†¯m‹›…Ë`Œ—³„ëSy”Q„Fwðƒ^:q‚ .l‰àæ$@†F2† áŽÎy—TmšA‹Ã`–äŠ(S“ƒˆF=†þ9÷Œ¯…m.s‰8ƒÒ$o…¼‚;…¢ -•æy\œë“Ïl¬™”‘‰_³–6*R¼’ÙŒÉFxŠe9ꌇý.~ˆ¥…ˆ$–…Kƒ…PŸ¶œ×y,œtš)lz™— _t•˜“åRz’6°EÃŽé9¿‹…ŠM.ˆ0‡$µ„ïƒÙ…Ÿa£œxKl4˜£œw_+•$˜bR=‘¾”WE˜ŽsR9§‹ŒO.~‡ÛˆF$΄¥„r|¾¯ëi?qK«×k e‹§ÂlèY|£‚nßMHŸpüA/šLsI5§•cu¿*ÎDx„!W‹ {|m¯pq%ªØqeh¦rÁYb¢Bt M7»uA-™ w%5»”,xë+ zî!Ί}|%­¿w¬pÈ©™xe¥Xx|Y üy$Mœ}yòA—Üzè5À“{ù+=Ž}5"6‰~‹{άq~„p^¨Q~Md¨¤~*XŸÄ~,L¹›U~S@é–Æ~“5½’ ~å+f2T"ˆPÒ{p«U…Ip§<„ŠdG£ƒÓX]ž¶ƒ'LzšJ‚˜@À•Ï‚5·‘)¬+‡ŒgI"Û‡¥€ó{ª~Œo³¦eоcþ¢,‰dX؈ L;™o†»@¡”ò…}5³^„E+£‹¶ƒ#‡ízЩג–oy¥»ÃcÆ¡zŽÁWÜŒ­L˜»Š£@ƒ”Eˆ¢5·¬†¥+½‹„¦#N†¡‚ÁzŸ©O˜ïoK¥/–Šc“ è“ÝW©œˆ‘ KÕ˜$ŽB@W“¼‹|5¨%ˆÀ+׊œ†#x†Aƒqzt¨ùŸ&oM¤Éœ9c l˜ÇWŽ›ò•Kׂ‘‚@V“Ž5³Ž¨Š‘+éŠ@‡)#š…õ„q¹£hÜf«µj’[Ű1lmPʪÿnpEÐ¥ip¢; Ÿs 0ò™Xuœ'£’éxzÂŒr{‡qD¸äo×f«´pÈ[Ô¯qñP䩪sNEñ¤tã;=ž%v¬15˜x™( ‘®zÄ W‹W} q(·¢vsf€²ÊvÉ[º­°wLP̨OxE뢳y ;NœÞz11c–Ò{v(_•|è ׊b~mq¶C|ÏfL±o|¢[y¬[|™P£§|ÃEÒ¡t};O›²}›1…•¼~/(¦~ä!E‰§pÞµƒf&°B‚p[Q«/àPt¥ÛgEÁ S;Pš¦€è1£”Æ€Ã(ãŽÄ€·!£ˆÞ€ºp¸´,‰Rf¯Oˆ6[Bª5‡Pc¤á…õE°Ÿ`„ð;U™·„1¾“ëƒ*)Ž‚^!ðˆH§p—³y`f ®‹È[>©fŒ P[¤ŠAE©ž—ˆŒ;Z˜ø†é1Ù“0…U)FjƒÒ"0‡Î‚op~²õ•7f ­ð“![B¨¼ÀPY£_ŽEEŸé‹Ü;T˜\‰…1æ’ ‡C)kŒç…"d‡jƒpm²–šÙf­r˜=[M¨,•1P\¢Ç‘üE£SŽÜ;`—ЋÔ1ð’'ˆå)}Œ„†"‡ƒ›Î¡mfú»ènìi=¨µp­kq”êr^mœ€µtoÎlVuÚrX w¿tDyßw'0É|Yz>̾j´qźjlÁrä§`n­t“¾p‹u0¤rnvgkbtgw³WIv~yCtxÏz›0b{x|bÊùh§|~¸´jÒ|¥èlä|’^næ|¶~ppò|ój\s}AVtu[}–B×wÚ}û0z¬~lÉ;fׇ ¶øi† ¤9kD…ëmh„5})oœƒviNqê‚¿U¥tX‚BEvÿ=/·y÷€VǧeP‘{µqg¦‹¢¶iåž|l‹»{õno‰èhLpãˆ(Tâsu†SAÁv@„Z/ryX‚Æ_d›Ö´2f}™¡}hÆ–ŽMk“/zámtLgdoþjT3r²ŠxAKuœ‡I/8xσ´Å[c&¦³5e¢[ }gÜžrQj.šxyýl¥–†f¥oD’ˆSŸr Žd@êu‰þ/x\…Ä™bp° ²vdÜ«Ÿ²g%¦”Œ€iw¡„y3køœyeøn¬—bSq‰’@—t Œo.àwý†UÄa÷¹ë±ôd`´RŸfŸ®W‹Øhè¨-x‘kk¢emn)›ÐR§q•\@?t@ŽŒ.Àw°‡ZÀ‚tÿf4¯uþh¦åvÿjõ‹xxm0xŠyosekz.qÐR|{itP?Ä|Öw-Ó~zK¿'rÈp{®sÿqÔœãu#sŠ„vFtgw£wtu½dx¾w*QÏz%x®?E{Äzb-Ž}¯|X½¯pÑzŸ¬êr'zò›ssj{@‰(t¯{™vxv|c£wy|Qy }>ºzÓ}œ-R|ä~H¼(o„™«Yp‚ƒþ™éq݃^‡Ûs=‚ÁuPtº‚;b°vS¼PPx <>Ayû€¶-|0€º»mŸŽ{©øo˜p‹‹z†r‰èt?s“ˆ^aÌuQ†âO¦w+…T=Ôy>ƒ¨,ï{“¹’lu˜S¨Ômü–—oou“†…{púùsGr Žlatq‹ÝOvk‰?=tx†j,É{ ƒ@¸¦kˆ¢ §èmžÜ–‚n’›l„–p—ÝrxqØ”M`Ws¼¯N“uÈŒï=&xˆñ,©z„·÷j׫˜§4lg§ˆ•ÁmᣃÔomž‚q¿q0™å_¹s*•9N uI_<âw¥‹6,z@…¯·†ja´è¦³kí¯í•)m\ª|ƒ2nà¤Ïq)p¥Ÿ _|2s§o„|­u]Ê}@v¬LO}êxT;"~Âz-*æÕ|L°œy(xá¡*y«yr‘ z$yù€z«z~n•{D{]{ú{¼Kº|Ë|r:Ã}Í}?*È ~%¯Fwz‚KŸÐx‚¡x¥®~ÏyDQm…z\'zÝ€¼K{Ò€w:^|ø€0*®~TÛ®v‹¡žvºŠŽŽfw`‰\}¤xˆl•xä†Õ[^yá…œJƒzõ„V:|<‚ö*—}·k¬útø”ðˆu¨“fvVø|°wŽÆk¸wøŒŽZ°yŠRJz7ˆ9¼{›…Œ*„}1‚Ь&tžœ±tÌ›kŒu}˜l{ávD•Ejþw7’ZxUŽØIy”‹|9€{‡ç*u|Á„«‡sh§$œ t$£™‹ÝtÓŸ«{2u™›…jYv–—VY‹wÉ“I7yŽ®9Kz¤Š*h|e…«rò¯ñ›Žs®«‰‹MtT¦¢zœu¡uiÒvœ>YwK–öHÛx­‘‚9 zL‹Ì*^|…쥋…|e;—„ÈgȈ„Dj,x¶ƒÞl{hQƒƒnØW½ƒ3qWGr‚ðsþ7r‚Ìvô(j‚Ôz\¤¯ƒˆnS–•ƒo‚¯qtwÆ‚\rög~‚tˆW åv4FêÁwü7#Àyù(kè|>£°ÀwE•hpx †#x»vÀ€éyofŸ€¿z/VZ€­{Fh€ª{æ6Û€Í|ä(k~¢›€€#”H߀ …S®€u܇âeÚzËUdž¾F¦µ6¦ñ¬(k€^ ¡~ˆï“K~–ˆ/„Y~s‡ItÌ~]†Jdú~d…MU ~’„XE}~σY6_5‚G(k¿ –}²‘³’\}‘1ƒq}uŽvsô}jŒ—d9}~бTv}·ˆÇE~†Ñ6(~“„±(k8‚eŸÙ|ÙšR‘ž|˜ ‚µ|§•vs>| ’±c•|ÂàSõ} DÅ}kŠ 5þ~ †â(k~ǃ†ŸJ|4¢È‘|$Ÿ»‚|œCr¢{ü˜Œc|$”ÈSs|€òDj|ñ5Ø}˜ˆÔ(k~k„{žè{À« ‘{³§4Ž{¢Ñr{yžb{¡™_S|”ŽD|‡ž5§}BŠy(k~!…E˜Ž1dé‹©Œ®gl}Ý‹hiÐo:ŠAl(`‰n‘PÞ‡ùq Aú†×sÙ3r…Évæ%ÿ„Õza—èŒjmyŠð‹!o}‰òp®nˆÓrE_z‡¼sïPY†¯u¹A˜…¨w¡3F„¸yÅ&!ƒà|0—Š´u߉õ‰’v¹|1ˆtwŠm¦‡kx_^ÆkyFOË…zzDA6„‘{U3ƒÁ|‡&>ƒ}Ý–"‰#~ˆùˆ~G{&‡ ~_lÙ†~q^….~OJ„[~¸@惑~ê2ý‚ã%&X‚If•5‡Ë†Wˆ†È…ÒzG…Ò…+l„å„n]|„ ƒ±NÛƒVƒ@ž‚«‚P2à‚“&n¦€È”k†Éއc…ÑZy „Þ‹ìkIƒöŠV\σ)ˆ¼NZ‚|‡)@Gê…Ž2¹yƒÔ&€‚“Ç…û–Ÿ†·… ”¶xõ„’zj¦ƒ3 \7‚q“MãЋ@Cˆ2 €ì…Ý&€©ƒ “G…_ž†2„y›âxhƒ˜Ój‚“•~[¹Ô’!MnF޼?¸€Æ‹J2Š€x‡©&œ€Kƒï’ì„ï¦:…É„¢åwïƒ ž÷i¥‚š¯[SO–dM#€Ç’?ƒ€Yµ2m€‰-&¦€„©Œ(—d­€”Ðg sY’ÔiƒeßèkãXŽënWJŒápö< ŠÍsÀ/œˆ¼vß#̆·zc‹Ž•xl‘“nn`rÁ‘woýeY‡q¦W’sgI‹—uL‰c{å"Œ†r}œ~ž›µz›sI™zóg‡–h{L[p“°{µOò|4BàŽ+|É7;‹S}o,Oˆx~0"Õ…¤~ÿ~švÁr±—àˆfï•=BZÜ’€öN³Ù€»B–*€7Ši€j,\‡©€P#„õ€;}}™~ˆÝr4–ñˆfx”O‡"Zh‘ †NMŽð…BeŒ@„(7‰—ƒ8,i†õ‚A#F„aN}˜®ÎqÇ–*Žlf “‰ŒÍZÛ‹ MõŽ2‰HB-‹Œ‡†7ˆß…Ç,y†Yƒý#pƒç‚9|½˜–•q—•ž”¨eÛ’ï’NYÆ*µMº}"AîŠíŠ˜6؈Uˆ,€…Û…#’ƒ„‚ý||—´(qW•,š¦e•’s—ŒY¦”!MŒö¾AÇŠje6ÇâŠ,…}†Ã#®ƒ5ƒtë©PcèjO¥ãf=_`¢rh¡TžÐkH¹šîm¾=o–Ùp2¾’ŸsŒ(ÀŽHvÙ "‰øzbtu¨5k#j¤¸lº_-¡$nnSÿjpDH©™ƒrB=t•ytn2Ý‘Ov½)yL žˆÛ|t¦¼riŸ£Is ^ÙŸµtS±›ýuSHt˜#v­=_”.x02ëyÎ)B‹ö{›! ‡â}~s¬¥Ùt(‚o.wþº]^”«©©`c’—˜CcHl†Vf+Ž;t)i0Œaèld‰çOþȯµ>tsw…[-òwn‚¿¹w\-ž¦¨®_A›®—Mb0˜‰…ke#•SsShA’!a7k‘ŽçO|o‹’>#rሠ-Ðvö„0¸±[D¨n§ð^a¤Œ–‹aS h„ªdLœ%r›g{—ç`˜j哟On‚-=ÜrfŠv-µv’…m¸3Z¤±ê§p]­ •û`®§Ü„c¤¢r fØC` jR—ëNŸn’b=‘qþŒŽ-ŸvB†wµ~o®`^¥£q&cc•rfBƒÇti qõu£kÚ_ôwInÅN1yqØ<¸{u8,-}py´mjy¤”nÎlp”ptnR‚Þrp/qsÏr_;u¨tMžw§v2uŠŽË6£x‰ü)Gz³…›è_ÑŽÃzb〾ƒeÌqÚ©hŸbmÞk~RÖ€$nC—€q±4¹u7&øÄy7šú}Gh¿Ó}kjé¿}Ÿlúpó}âoa¦~8qR7~¥sTC#*u«4€ÞxA' €Æ{*™ð{&q‡Œ¤{{rà~¼{Ît&oú|2ug`Ù|«v´Q˜}AxB¸}ñy4N~Ò{.'å|û˜Ïy6z?‹wy­zÓ}Œz!{LozŸ{Á`{?|9Q{ü|ÀBZ|Õ}R4%}ã}õ',~¦—¯w˜‚ÝŠ|x%‚º|’x±‚nnyH‚ _Jz¦P]zæLAæ{å€ñ3î}€’'9~u€)–¿vN‹o‰‹vêŠ{ªwƒ‰qm9x+ˆ2^Šxø†ìOÒyñ…§Aˆ{„^3Á|f‚ü'C}䀕ÿuA“؈Ìuê’5zñvŠElŠw>Ž&]íx‹ýOXy,‰ÌABz\‡3£{Ð…+'L}l‚©•ltqœˆ5u#™©zUuÅ–Þköv{“×]cwhÅNÞx¦@ðyÒŠv3…{U‡'S} ƒ¥•sÚ¤‡Át’ ÞyÔu01kvuâ™:\övÒ•8N‹x‘*@©y\3Wz÷ˆ½'Y|º„u—‡ï_©ƒw‡b¯vˆ†ie–hÍ…ÛhoZ˜…RkXLE„Ïni>[„Wq¦0åƒýu<$¥ƒËyBŽË…Éh‚²….j@u¸„¦l^h„,n{YÿƒºpªKуXrú>ƒul0ЂÑx $Ö‚Ã{!éƒÀpQ¬ƒVqÀtÕ‚ës!g<‚tYM‚;uñKKýwy=ºÏy0¶Äzå%Ú|ÜŒíïxp€¢žy.sÁPyØfjzyX˜€Ú{%JÆ€Á{Þ=i€¸|¦0œ€Ô}ƒ%'~r‹ú€P€»€€”rå e•³€^X”€;Jm €!=9¼€ 0“ÿõ%F€_ß‹(ˆ~ò‡õr:~Ç#dé~›†+Wl~‘….Ið~®„8<æ~èƒ@0sL‚6%aË Š~n~Z}ÿ%q”}Ô‹dN}µ‹ÁVÝ}»‰îIƒ}éˆ<°~1†90c~²„?%wP‚5‰ú}T˜}Õ}B–q}“¸cÐ|ø‘Vh}ŽbI}L‹ª"‰…¯yK‚펭gXw¼Oi„kÇŒk­_EЏmßRe‰kp'Eˆ$r”9†ßu&-J…°wý"Ö„›{‚1Œ¾ovå‹‹pkŠTr ^›‰!s‰Qà‡ïuE"†ÈvÏ8è…¦x-P„›zš#ƒ¨|¿`Šöv®v‰Ûwˆj/ˆ¾xV]ô‡ y'QT†zDÄ…Šzñ8¹„Œ{ò-Sƒ¦}#U‚Õ~A€“‰q~0uQˆh~riƒ‡\~™]B†R~®Pí…M~ÇDz„k~ò8—ƒŽ"-Z‚Ì\#‡‚ ™Þˆ9…­t¦‡C…Lhá†?„½\º…8„ Py„BƒXDKƒh‚µ8‚¬‚-]‚r#°ˆ€ÇL‡Ft5†^Œ hw…ZŠ¿\?„O‰@Oýƒg‡ÁCé‚¡†N8Zï„ß-ZqƒW#Ó Ê~؆Œ”'sÁ…«’h„¥…[Ôƒ—Ž4Oœ‚³‹æC‹‚‰ž8 ^‡^-Y€î…#‚£~†›se…"˜ägŸ„–[uƒ’æOO‚ÁCWqŒ¥8€à‰-S€ˆ†f$€QƒUx3™f_)m¿—2bbÁ•!déW:“gÖKoÄjÞ?¯Žln4}Œq})鉪u= ª‡hyPwŽ—¸fŸmF•¥hÅbN“j÷Vâ‘mm͉/}Ä4<‡F~=*f…n~È!þƒ±Zu‘~‚üj¹¾‚Ï_éã‚{TÅ‹ö‚I™Šª>¢ˆ/U4+†d *u„®€À"5ƒ€wt›†‰ÊjCŽÔ‰ _wŒýˆ TY‹†çI=‰6…Ã>g‡g„ª4+…Ÿƒ›*ˆ„ ‚"c‚’jt<ÑljŽ)(_?ŒJtTŠO‹}I ˆo‰’>-†·‡¶4……é*”ƒ„ "ˆ‚(‚5sòI–ÖiÁž•^õ‹¹’šSÙ‰¹×HÓ‡Ø"> †%Š3ö„†‡ì*›ƒ…R"¦Ó‚ÛmB¢o^°cxŸ¤a€YZœÖdcNæ™ÚgbDL–¢j‡9Ñ“Amâ/õÉqi&ÏŒKuBˆòyTl© üe½cž4gâY›Pj#N¶˜DlƒD6• o 9Ø‘¼qÁ0Ž[tž'Šûw¾ˆ‡Â{l1Ÿ:lb™œ…nX¬™¬oÂN^–©q‰Cþ“…sp9ÅOu01 w±'a‰Ïz÷†¹|Škµ|s0bšØt9X˜uLMü•"vwC´’w¾9¢y#09‹Þz '•ˆÅ|A W…Õ}êk8œyÃaœ™lzJW­–¯zÌM“Ë{PCvÓ{î9~Ú|¥09ŠÕ}j'½‡Þ~E ©…"jÊšÖ€Ka=˜L€RWX•’€:M@’²€C6Äü9hŒÓü0<‰ë€'Þ‡€ í„p€0jm™é†¤`ó—f†,W”ª…tM‘É„žBùŽåƒÓ9FŒƒ0G‰!‚n'þ†k¿!%ƒéj'™*Œ¿`²–¬‹ÃVÖ“ðŠiLÆ‘ ˆßBÇŽ-‡^9‹]…ë07ˆ„„Ž(…݃+!Rƒ|Ôi’²`§–"‘IVË“Y;L²`ŒÜBÅuŠ™9*Š­ˆs0P‡ô†g(6…o„Z!vƒ%‚pb¬«Ê^Y}¨s`×P7¤ãc½FÑ ñfÐ=iœ¥j48˜m+µ“wqM#úŽÇuE•ŠTyUbªdÁY/§"fáP£gi0F½Ÿ\k¯=q› nb4_–ŽqK+ü‘ûtZ$hhw£-‰zøa½¨Þk$XÔ¥tl¼OÅ¡ÀnxF‹¸pj=]™wr‡4m•tÕ,1œw@$ÅŒ,yÙ°ˆ|sap§qVX}£¼rsOi s©FSœ#u =;—úv’4m“µx=,W_z%‹{æ ‡}Åa#¥’wxX8¢Ax!O)ž¢xÓFš¹y”=%–¥z~4l’}{†,vŽG|%QŠ#}ʆK~ï`ݤ]}’X ¡}ÊOq}íEô™~= •„~J4u‘i~¤,•Q%ˆ‰R‚Ï…£ð`££fƒzWê ƒANðœu‚ÑEà˜”‚O<û”–á4u‹‰,´Œ~E%¹ˆ¢ …€Ê`v¢¨‰*WØŸOˆ€N囨‡xE֗ĆJ<î“Ì…/4hׄ*,¼‹Ûƒ>%àˆ‚W D„¨`Y¢ޤWÓž¯‡Nâšÿ‹áEÓ—Š<ó“!ˆ44y7†ƒ,Ê‹P„í%õ‡Ÿƒi n„N‚·Yb·Zé¦÷e^^X–+göa¹„Îje rþm:hgap kÛOFs oy=Üv[sh-qz wãµr_jeT¥~bdg¹”àeCjƒ¬hluqûknÛ`n-q[NŒqxsû=]uvà-Fyz,³©\o¤£Î_¹q“qbÕr\‚VeësÅpÓiu<_+lzvÈMÒp xl<çsíz@-!x+|U±äYéyÆ¢]Vz+‘Í`¡z•€ùcë{o¢gZ{^6jö|#MnÆ|Åp?†|sk2}üvŸ%ϳz0xtkã„umÇwvo›iVw(qh[3xVsCL÷y«u7?){#wI1å|Ùy%ð~Ã|Eq´tr‚Þríu•uïtv¡h{uUw¨Zyvµx³LrxÜyé{1Ë{Ö|U& }ñ}ÆŽo½|çÛq}Stðrh}gtsÄ}ÐY³uH~KÎw~M>oxà~š1Ÿzù~ó&%}=T"n!…H€éo“„út pü„yf¤ruƒØXÿtƒ4KSu> wõÿ1z:^&9|£€³ŒZlÎ|€)nTŒrsVoÍ‹!eûqZ‰§Xisˆ(Jáu†§=åw-…$1ky—ƒ&J|$ä‹Ák•vmW“¯r½nÚ‘Šempr/WårFŒÏJntYŠl=›v’ˆ1Wy…{&X{¼‚æ‹Tjú&l™š¦rAn—¨dôo»”gWq—‘"J$s¼Ú=[vІ1/x¬‡&c{iƒ»†ðmZ„{‚8]üo\2a\b~DdµU/^h GΈk¶:áÇo~.€‚2s¦#l‚ÏxA…ù~Ðb¸z©~èein‡h aÉAj®TŸ‚mcGfÚp=:¦€Js@.|€êvŽ#¬µz.„þ|`jÒy—|³lÈm }n´`ó}\pSó}Èr™Fé~Qt±:^~ôvè.pÅyU#〽{öƒóz.rËx‰z¨tl{uM`.{˜v~SK|4wºFt|ìy :}¿zn.g~Á{õ$ä}—‚òxDz½wxà{Yk¦yu{Ø_Uz|ERÈzÇ|ºF{®};9í|­}È.c}Ý~f$<*‚v¼‚žvØwq‚‘kx‚S^©xÉõR&yœ˜E©zF9ª{Àù.P}€ª$_~€XauzŠNv&vA‰•jWvöˆ”^w¸‡jQœx£†ô@3Pï5i„õ+UÝü"µ€M€v§~h‡"la~s†´a~[†VP~<…"K~A„G?Ü~oƒy5L~µ‚³+Z3á"ÜÇ v)}rŽkè}‹a}z‹¢Ué}b‰úJ¥}tˆW?‰}º†½5~…,+_~§ƒ‹"üZìuÈ|¶”Ëkˆ|ד/`¸|Ê‘U|´ŽJ`|ËŒ?[}‰´5}އU+W~;„î#‚£pu’^Zf¬Ú]p\ms`ÊQ³Žd6F¹ŒzgÄ;ÏŠãk†1z‰Mox'Ù‡ËsÅ™†qxZo©4a`fŽàd [ä‰fÆQLŒ$i’FtŠ®l};±‰9o—1†‡ÈrÙ(†pve …>z#nöþh€eUŒ×j’[L‹œl¬PÄŠQnØFˆýq;|‡¯sŒ1†gv(B…;xâ j„1{Æn;‹ðo‚d“ŠæqZ‰‰ÉrP7ˆt E¥‡ou©;:†Jwd1o…-y9(b„+{5 ¾ƒH}@m…Š,vpcè‰=w^Yæˆ6xAOŸ‡y EI† z:ý…{1\„|0(}ƒ=}_!‚~‘l䈺}McY‡â}¯Yh†é}ïO-…á~Dì„á~U:æƒñ~¢1\ƒ~ü(—‚nZ!@Ú¶lZ‡…ƒòbԆƒÀXì…׃YN½„Ú‚ÖD’ƒì‚X:³ƒæ1n‚Fƒ(²½!qQ€°kŠubš…ì‰ÄX¾…ˆªN”ƒô‡UDuƒ†:Š‚I„ç1KžƒÒ(Ã*‚«!™€à‚k˜…á¿bI…9ŠXm„SºNMƒH‹œDA‚[‰˜:m¦‡­1F…×(Ñ€¸ƒö!¸€‡‚-eÞ›1Y¡\ç™\åS™–ç`AI픟c¿@’"gh6f‰kL-WŒço_%ŠWsLJüxbe"™G`}\k—?c)S.•eñI¥’ÌhÚ?õXké6jÙo+-„‹Wr—%[ˆîvJŒ†»zd”—'g,[Ô•?iLR·“3k€I=ùmÖ?´Ž¡pJ6VŒDrê-Ÿ‰éu¬%¤‡¬x¦…£{°d•m·[8“KoPR‘Yp÷HÍ=rµ?d tŽ62ŠÕv‡-ªˆ¤xš%܆‘zØc„²}cs“Wt3Z°‘¢uIQšÀv`HX¶wz?$‹ x°6‰‘z-¬‡‡{d&…œ|â·ƒä~[bð‘êz¥Z=K{:Q7Žu{¸HŒw|+>âŠp|°5ÿˆr}T-°†‹~&(„È~¿ýƒ8rb‚Á€éYâ5Pég€ßG¾‹m€¦>¡‰v€~5؇€n-»…³€n&H„€i 7‚©€_b*φðYŽŽS†„P›ŒŽ…ÁG}Š˜„×>nˆ¨„5¦†Õƒ=-©… ‚’&hƒ}Ý f‚6$aåŒÓYo§‹øP‹ãŠ„Gf‰ÝˆË>r‡ä‡85Ɔ…Ç-Ì„l„q&…ƒƒ ‹ÚÅ[“¤\XùSP¡”\1J垦_‘BH›ic&9œ—àfø1'”,k )_koL"^Œ½sÓ¥‰^xhZÚ¢¬_pRÔŸôbJ}œödúB™«h9…– kG1=’|nÀ)¤ŽÓr`"Ï‹Gv:>ˆzZk ¢eµR^ýgæJ!›j8A¸—Öl¾9^”dom1AàrM)×ZuK#-‰øxw†ì{œZ ž–kÕQóœm‹I¯™1o[Ap–qR91’Âsq1Â&ƒÙ€Xµ™/ƒzPç–çƒ[HÞ”8‚î@Å‘=‚e8ÐŽ1õ10‹8ž*_ˆK_$J…¥[ƒc€ÑX‹˜oˆõPÍ–)ˆaHÉ“~‡S@¹…†8Öz„ü1EŠƒý*t‡¶ƒ$c…,‚4…ƒi¬\ãU+2_ýY&…c]}Lf0`ûlŸitdç[ÄlêhïK;p•m(;t™q»,xúv媋Xí_a›°\ob`Œ3_ßeW|'cWhLkœfôkIZèjÆnaJŒnÐq¢:¥s4u4+÷wòy>¨½Ugi€™ýY>k€ŠÄ\ÿm~zÑ`Ãoƒjxd¯q–YühÕsÁIÞm7v :@qõx–+êw{v¦òR=ss˜KVct‚‰&Zdu”y€^lv«iSb¦wÒYgy I:kÎz]9åpÞ{Ù+Þv7}ˆ¥BOw}B–ËSà}n‡ÅX"}™x4\d}Äh[`Ü}øXIe›~>H«j–~Ž9–oì~ô+Óuƒn£ÔM †ñ•‹Q†=†¯V8…w=Z±„»g}_]ƒûW¨dQƒEH8i‚’9To Ý+Êté"¢©K)s”‰OûŽ×…ÏT›*vzY@‹ufÍ^‰ÄWcCˆGÞh­†V9"nt„‡+Ãti‚¡¡ÄI—™°“ÂNŽ—$…!SM”‚uâX‘ÚfD]7VŸbeŒG„gû‰Ï8ùmæ†ë+½tƒé¡+Hp¢“7M{ž÷„ RK›\upW!—Åeç\;”8VXaªGDgbŒä8Êmrˆú+¹s«„û ÕcóU5’ÔfiY:„Ihç]'ukxaeqn,dîU¢qhùF/t(m77+w•qÖ)[{Xw Ÿ+`0^å‘£caûƒEeàetc0ˆQ•g®†Cnll…05Çq€ƒ³)|v·‚#—bQ…–1ŠMU°”"|•Y·‘ÞnM]Ѓ_³b,,QfÖŠÓCk½ˆp5§pó…î)vMƒU–ÝPjž‰ÊT§›£|X½˜smÓ\ç•*_OaZ‘êPÐf!ަBÙk)‹O5zpƒ‡Ô)uù„R•[k5UVˆ”mYV{'nê]=mpça^gsdûO©uLiASwÄmI3vzqñ&Ù}¢w+“æg£^j‡bi×azl d£lnLg°]™p±jÉOsIn@ãvqk3Fy/u'&ø|yQ’dagx† fêiÆxþialkkänB\ÓnpŠNuqprî@ˆtˆut3#wòx<'{˜{S‘atpa„Ÿd@qãw”fôsWiùi´tÂ[Ül¨v5M·oÓw¿@ s4yb2ëvã{1'*zÁ}.­^éy.ƒ[aêyëvfdÕzhãgÌ{%[j÷{ÀMng|l?¤r }&2Ãuõ}ø'>z~ÞŽ\Æä‚R_òÛuwc ¬h f1gZYiŒ"L™m+€é?Rq€¹2 u)€‹'Oyk€]©ZþŠi{^M‰˜t±a†ˆ‘gWdÔ‡mYºh]†IL!l(…)?p*„ 2Št}‚â']x諌ùY’¬€Ô\ú‘t`L/fÄcµ'Y3g`‹!K«kU‰>Éo}‡2tsï„õ'ix}‚ÆŒX|š•€Y[ù˜7s_Y•vfJbÒ’†XÐf’›Kdj¢Œ²>Šnì‰À2Ks‚†¶'rx'ƒ±Šr¶U€~LsÞYqqçu)]OdÐvŽa#WFx eI¦y¬i‚Or£7²‚)tð.Ì‚wY&§‚yìß‚=|ˆeÇ€Çq,\ñ€ãr S€àt JW€Êuz@߀¾w7s€Ëxž.»€æzN&Å | *l}áe~õwò\M5xÖS3Oy£IÙXzf@{j{77R”|.·Ü}&á€E~ i€¼ dv}d~}[»}Ë~ÒR²~~ûIm~!@$~P07(~˜_.Ð~ôŸ'‰Ü €+€cû|(„ß[j|´„¯Rq|û„*I>}ƒ{@}U‚á7}¿‚[.´~=ê'~ïk ǵ€åcš{*‹[{ÊŠOR|#‰Hù|Q‡¬?Û|•†U6ð}….±}¦ƒê'$~x‚· èW”^㓈TÙVž’X“N ª\fE%`a<~dŽ3‹Èhú*ËŠm˜#Mˆr…&‡w^û[ƒU÷Æ^·MwŽvbD±ep;È‹yi 3 ‰êlØ*öˆdpÒ#ª†þu ¯…ËyU]XŽgbUEddÃLëŒ=gƒD:Šïjb;}‰md2ðˆ.p•+†Ùsç#õ…§wl&„¥zò\±‹ûh’T›‹ j¸LCŠlëCȈûo6;+‡Èq¡2̆›t.+…zvÖ$0„{y£ƒ¨|e\ ‰ÚoT‰&p¢K·ˆErECK‡Asñ:ë†5u¾2«…8w§+$„Fy $aƒw{°ã‚Ð}®[uˆ uaS{‡~v|KG†ºwˆBï…Ðx•:¦„ày¶2Ÿƒÿzö+1ƒ7|@$‰‚—}+‚~ÌZò†‡{S †|'Jí…s|˜B©„›|þ:nƒÃ}w2…‚þ~+G‚M~§$°Ø<g…¿Z‡…FpR¥„ýJ„hTB\ƒ¢:4‚Ý€å2P‚7€Ê+?“€Ä$Û2€°— €ŠZ3„H‡HR„'†ëJyƒ¦† B_‚Ï„ô:bû„2 ZƒM+|€ß‚¥$ý€²ê½€¬/TÜœ†T#M‹šZW×Eû˜ [¯>•®_À6&’þd.`5h±'Emm| ïŠÌrŠÒˆ~wšTš‡Éo‘R†ÑaX1…ÜRƒ^•„êDteAƒ÷6ólC‚ü*ìsJþ–ß>’³Š9DzÆ|ýJ–ŽàoP«`¢Vú‹+R]™‰LD,d}‡b6Øk­…^*ïrÞƒK–(f—9k'„y7oÔƒ-}t²‚ $ºys­yT´JnÖXíŽýcþ]EX¾a@‹`MUe«‰‰Bj]‡Á7`o7†-ct@„>$Îy‚ŠwlsQlñtWU+buÌYdVÕwU]±KBxðb?²z±f½4¯|˜k˜*W~Äpà!dv™uØoX½kÏpÕ\La.rž_âVtsc…J¶vbgC?Vx~k04†zÁoO*l}DsË!½Úxt‡kq`‚j”m’cj`4o­fVUAqÑiKJtlX>ãv†oŒ4Oy!rì*u{òv–" ~Èz{sLhh9igj’ju_lùlµT|odnûIlqüqS>{tÂsË4!w®ve*zÉy8"M}Ù|/re)oãhRgåqs^ jsS¢mBt‹Höpv)>*s2wá4vfy°*yÄ{©"…} }·q!bœwvg‚e—xa]phy7RúkpzH^n‰zÞ=ÑqØ{Ò3ÕuK|Ø*xæ}ò"µ|`pS`k~ÒfÅcœ\Çf¹5Reià@Gßm1W=ypµ‚3ºtW½*™x(ý"Ü{Ñ€8o°^™…åf4a÷…\AeA„ïQðh“„3Gxlƒ„=!oÉ‚ç3s•‚Y* wŠÇ"ü{]2o9]$ŒªeÇ`ª‹¿[ÖdŠeQŽgˆˆÛG.k%‡`<óo…ù3grø„Ÿ*ŽwƒF#{ÿlÒzÍQcJ{‡U.Ym|bY`O)}E]¯D¤~-b%:0-fÕ0U€Jk¾'8šq€ƒv²khwXUbDx<[åX•y^_ƒN„z‚c5D/{³g 9î}k0J~roG'h€sÖì¿x¢j@s§_ a-ub—W»v‹e˜MÆwôh¨C¥ypkÖ9š{o/00|Ðr²'Š~¹v{ I€¡zki(pzfß`r=i8V»sík—M užnCwhp‰9=yWs10 {auú'¡}xø ™ª| h$m¤n _3o©oÆUäq™q‚LFsŒsCB¤u•u8ówÎw/özy'º|†{H Þ~×}|g;k*u&^_mmvDU-o™wTK·qÄxaB5ty}8Ívrz¹/òxú|'Ô{ }f!~%~Áf|i|]Ãk‡|˜T«mç|øKFpA}KAÎrµ}°8„uT~./äx~¾'çzÞO!F}’×eäg=‚¹]9iT/l|‚\JÞnþòAvqœœ8:tj\/ÀwB.'õz?€û!l}€Áereˉ\Ðh¤ˆƒSËkX‡€J‡mû†SA8p·…;8s¥„;/©v¥ƒL'ñyÈ‚_!‹|º€b„‚ÜPáYô‚ñT÷Qƒ Y*GÓƒK]ƒ>[ƒnb 5ƒ›fÖ,MƒÛkØ$b„Cq5Õ„ÄvÇaCjW·YÝ[OPG€J^ûG6€ªbÄ=ôf¶4Õ{jß,[‚o8$ª‚±sÞRƒqx¥`C|^X |áažO„}d¹F~.gì=€~ÐkC4˜ŒnÉ,Z€\rv$âOva¾‚Iz[_Tye^W"zgÙN¥{j_Eð{älú=|Îo²4T}Òr‘,N~éu% €x»I{ç^pvOlVNw˜nMãxÁoóEFyÜqê<¥{t4|Nv6,B}£x%0zêk€n}G]¥särËU—ult!MGvÎunDÂx!vÁ†âb.8†XfH0…×jž(¿…fo "5…sâí„ñx§V˜„Õ]IO;„Ø`uGœ„¸c³?¨„vg7¯„(jœ/êƒènX(Õƒ¹r6"ƒ¯vFgƒ¾zLUÒÝc¯Nv‚fSFÜ‚7i?#‚4kØ7P‚(nÏ/¿‚,qì(à‚?u%"¾‚rxЂ¶{ÇU)j MÁ«l&F9þnL>—€1p‚7 €ará/›€¤u_(è€ôwî"ñ`z‘)Ô}T_|Äp[M}ŠqêE±~sz>-~|u6¾~ÜvÍ/ˆMx§(óÒz‹#€t|ts~;SÅz³vyL”{¸w€EB|{xt=Ù} yn6{}—zƒ/k~2{²)~Ö|î#Dª~!°€{3SAxç|YLz/|ÖDÕ{&}-=†{à}‚6@|Œ}ò/:}R~x)~#o~ÿ–áý€Ràwq‚KÌxö‚D z¿=qzíX6U{£/h||€ø)'}c€è#Š~~€Î˜€¬NØ“ýO£HJ’„SÒAq‘X:=…\¤2áÙav+»Œ#f“%AŠzk䔈öqo‡´vçMÌúU¹GRíY}@€Ž¯]_9}?aq2l‹­eÁ+–ŠjO%lˆŸo ‡Rs嵆Gx§Mø[ËFŒ,_?ÕŒ)b„8êŠèf2‰‰iã+yˆ1mà%†íq÷ […Ýv/;… z>Lx‹aÐEêŠ|d¤?1‰¯g8{ˆ¬jŸ1ɇ‰mà+e†oqF%¯…jtÀ ¨„—xM¯ƒø{ªKÚˆ^gÎESˆj!>®‡{lˆ8†¨o1¢…¿q¹+\„âtŠ%Ï„wb ìƒ}zAƒ|ìKA…ïmÇDÆ…ño•>@…™qn7Ä„ös^1s„9up+cƒ‰w¤%ð‚ñyÚ!&‚Œ| a‚N~J¼ƒÐs“DL„ tÜ=ä„v"7†ƒ‹w{1L‚õxò+Z‚mz‚&÷|![À}œ¤®~ïJL‚y/Cç‚—yò=•‚¯zŸ7V‚^{X1-ê|2+E‹} &2~!„~ùÚ,´Iû€|~¥C—R~Û=U~æ71l~ù1$0+T€Ê|&(€–Ñ!š€ž€€Ä€Tÿÿÿÿÿÿmft1!  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ ¡¢£¤¥¦§¨©ª«¬­®¯°±²³´µ¶·¸¹º»¼½¾¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖרÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿ  !""#$$%&&'())*+,--./01223456789:;<=>?@BCDEFHIJLMOPRSUWXZ\^`bdfhjmoqtvy|~ƒ†‰‹Ž’•—™›Ÿ¡£¥§¨ª¬­¯°²³µ¶·¹º»¼½¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÍÎÏÐÑÒÒÓÔÕÖÖרÙÙÚÛÛÜÝÝÞßßàááâããäååææçèèééêëëììíîîïïððñòòóóôôõöö÷÷øøùùúûûüüýýþþÿ  !""#$$%&&'())*+,--./01223456789:;<=>?@BCDEFHIJLMOPRSUWXZ\^`bdfhjmoqtvy|~ƒ†‰‹Ž’•—™›Ÿ¡£¥§¨ª¬­¯°²³µ¶·¹º»¼½¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÍÎÏÐÑÒÒÓÔÕÖÖרÙÙÚÛÛÜÝÝÞßßàááâããäååææçèèééêëëììíîîïïððñòòóóôôõöö÷÷øøùùúûûüüýýþþÿÿ¦92ÿ¢FJý M`ñ¤Lræ§L„Ú¨P–ϦY¦Ç¥d±Ä§o¶Á§x»½§Àº¥‡Æ¶£‡Ë³ ‡Ð¯ˆÖ«š‹Ý¥—•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•æÿ¦92ÿ¢FJý M`ñ¤Lræ§L„Ú¨P–ϦY¦Ç¥d±Ä§o¶Á§x»½§Àº¥‡Æ¶£‡Ë³ ‡Ð¯ˆÖ«š‹Ý¥—•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•æÿ¦92ÿ¢FJý M`ñ¤Lræ§L„Ú¨P–ϦY¦Ç¥d±Ä§o¶Á§x»½§Àº¥‡Æ¶£‡Ë³ ‡Ð¯ˆÖ«š‹Ý¥—•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•æÿ¦92ÿ¢FJý M`ñ¤Lræ§L„Ú¨P–ϦY¦Ç¥d±Ä§o¶Á§x»½§Àº¥‡Æ¶£‡Ë³ ‡Ð¯ˆÖ«š‹Ý¥—•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•æÿ¦92ÿ¢FJý M`ñ¤Lræ§L„Ú¨P–ϦY¦Ç¥d±Ä§o¶Á§x»½§Àº¥‡Æ¶£‡Ë³ ‡Ð¯ˆÖ«š‹Ý¥—•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•æÿ¦92ÿ¢FJý M`ñ¤Lræ§L„Ú¨P–ϦY¦Ç¥d±Ä§o¶Á§x»½§Àº¥‡Æ¶£‡Ë³ ‡Ð¯ˆÖ«š‹Ý¥—•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•æÿ¦92ÿ¢FJý M`ñ¤Lræ§L„Ú¨P–ϦY¦Ç¥d±Ä§o¶Á§x»½§Àº¥‡Æ¶£‡Ë³ ‡Ð¯ˆÖ«š‹Ý¥—•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•æÿ¦92ÿ¢FJý M`ñ¤Lræ§L„Ú¨P–ϦY¦Ç¥d±Ä§o¶Á§x»½§Àº¥‡Æ¶£‡Ë³ ‡Ð¯ˆÖ«š‹Ý¥—•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•æÿ¦92ÿ¢FJý M`ñ¤Lræ§L„Ú¨P–ϦY¦Ç¥d±Ä§o¶Á§x»½§Àº¥‡Æ¶£‡Ë³ ‡Ð¯ˆÖ«š‹Ý¥—•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•æÿ¦92ÿ¢FJý M`ñ¤Lræ§L„Ú¨P–ϦY¦Ç¥d±Ä§o¶Á§x»½§Àº¥‡Æ¶£‡Ë³ ‡Ð¯ˆÖ«š‹Ý¥—•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•æÿ¦92ÿ¢FJý M`ñ¤Lræ§L„Ú¨P–ϦY¦Ç¥d±Ä§o¶Á§x»½§Àº¥‡Æ¶£‡Ë³ ‡Ð¯ˆÖ«š‹Ý¥—•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•æÿ¦92ÿ¢FJý M`ñ¤Lræ§L„Ú¨P–ϦY¦Ç¥d±Ä§o¶Á§x»½§Àº¥‡Æ¶£‡Ë³ ‡Ð¯ˆÖ«š‹Ý¥—•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•æÿ¦92ÿ¢FJý M`ñ¤Lræ§L„Ú¨P–ϦY¦Ç¥d±Ä§o¶Á§x»½§Àº¥‡Æ¶£‡Ë³ ‡Ð¯ˆÖ«š‹Ý¥—•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•æÿ¦92ÿ¢FJý M`ñ¤Lræ§L„Ú¨P–ϦY¦Ç¥d±Ä§o¶Á§x»½§Àº¥‡Æ¶£‡Ë³ ‡Ð¯ˆÖ«š‹Ý¥—•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•æÿ¦92ÿ¢FJý M`ñ¤Lræ§L„Ú¨P–ϦY¦Ç¥d±Ä§o¶Á§x»½§Àº¥‡Æ¶£‡Ë³ ‡Ð¯ˆÖ«š‹Ý¥—•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•æÿ¦92ÿ¢FJý M`ñ¤Lræ§L„Ú¨P–ϦY¦Ç¥d±Ä§o¶Á§x»½§Àº¥‡Æ¶£‡Ë³ ‡Ð¯ˆÖ«š‹Ý¥—•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•æÿ¦92ÿ¢FJý M`ñ¤Lræ§L„Ú¨P–ϦY¦Ç¥d±Ä§o¶Á§x»½§Àº¥‡Æ¶£‡Ë³ ‡Ð¯ˆÖ«š‹Ý¥—•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•æÿ¦92ÿ¢EJý¡L`ò¥Kqæ©JƒÚªM•Ï©V¥È¨a°ÅªkµÂ¬uº¾«}¿ºªƒÅ¶¨‡Ê²¦‡Ð«¢‡Ö¤ž‰Üššáššáššáššáššáššáššáššáššáššáššáššáššáššáššáššáššáÿ¦82ÿ£EJý¢K`ò¦IqæªH‚Û­J“ЬR£É¬]¯Æ¯g³Ã±q¸¿³y½¸¯Ä²ª‡Ë¬¦†Ð¥£†ÕŸ†Ú“‹Þ“‹Þ“‹Þ“‹Þ“‹Þ“‹Þ“‹Þ“‹Þ“‹Þ“‹Þ“‹Þ“‹Þ“‹Þ“‹Þ“‹Þ“‹Þ“‹Þÿ§82ÿ£EJý¢J_ò§Hpç¬FܯG’Ò°N¡Ê±W­È¶b°Åºlµº³x¾²®Å­ª‡Ë§§…Ï ¤„Ó˜¡…ןˆÚŸˆÚŸˆÚŸˆÚŸˆÚŸˆÚŸˆÚŸˆÚŸˆÚŸˆÚŸˆÚŸˆÚŸˆÚŸˆÚŸˆÚŸˆÚŸˆÚÿ§82ÿ£DKþ£I_ó©Foè®D€Ý³CÓ¶HŸÌ·QªÊÀ\¬½¸l·³²xÀ­®Æ©ª†Ê¢¨„Λ¥„Ñ”£„ÔŒ¡‡×Œ¡‡×Œ¡‡×Œ¡‡×Œ¡‡×Œ¡‡×Œ¡‡×Œ¡‡×Œ¡‡×Œ¡‡×Œ¡‡×Œ¡‡×Œ¡‡×Œ¡‡×Œ¡‡×Œ¡‡×Œ¡‡×ÿ§72ÿ£DKþ¥G^óªDné±A߸>ŽÖ½B›ÏÃJ¤Â¾\¯¶·l¹®±xÁ©®Æ¥«…Éž©„̘§ƒÏ‘¥„ÒŠ£†ÔŠ£†ÔŠ£†ÔŠ£†ÔŠ£†ÔŠ£†ÔŠ£†ÔŠ£†ÔŠ£†ÔŠ£†ÔŠ£†ÔŠ£†ÔŠ£†ÔŠ£†ÔŠ£†ÔŠ£†ÔŠ£†Ôÿ¨72ÿ¤DKþ¦F^ô­Bmê´>}á½;‹ÚÆ<–ÊÆH¤¹¼\²¯¶m»©±yÁ¥®‚Å¡¬„È›ªƒË•©ƒÍ§„ω¦†Ñ‰¦†Ñ‰¦†Ñ‰¦†Ñ‰¦†Ñ‰¦†Ñ‰¦†Ñ‰¦†Ñ‰¦†Ñ‰¦†Ñ‰¦†Ñ‰¦†Ñ‰¦†Ñ‰¦†Ñ‰¦†Ñ‰¦†Ñ‰¦†Ñÿ¨72ÿ¤CKÿ¨C]õ¯?lì¸:zäÃ7‡ÝÓ5ÁÄI§±º^µ©µn¼¤±zÀ¢¯‚Ä­„ǘ¬„É’ª„Ë©…͈¨†Îˆ¨†Îˆ¨†Îˆ¨†Îˆ¨†Îˆ¨†Îˆ¨†Îˆ¨†Îˆ¨†Îˆ¨†Îˆ¨†Îˆ¨†Îˆ¨†Îˆ¨†Îˆ¨†Îˆ¨†Îˆ¨†Îÿ©62ÿ¥BKÿªA\ö²;jî½6wèË3€ÐÒ3“¸ÃK¨ª¹`¶¤µp¼¡²{Àž°ƒÃš®„Å•­„Ǭ„É‹«…ʇª†Ì‡ª†Ì‡ª†Ì‡ª†Ì‡ª†Ì‡ª†Ì‡ª†Ì‡ª†Ì‡ª†Ì‡ª†Ì‡ª†Ì‡ª†Ì‡ª†Ì‡ª†Ì‡ª†Ì‡ª†Ì‡ª†Ìÿ©52ÿ¥BKÿ¬=Zø·7gñÄ1qß×,{ÅÐ5•°ÂN©¤¸c·Ÿµr¼³|¿›±ƒÁ—¯„Ã’®„ÅŽ­…ÆŠ¬†È‡¬‡É‡¬‡É‡¬‡É‡¬‡É‡¬‡É‡¬‡É‡¬‡É‡¬‡É‡¬‡É‡¬‡É‡¬‡É‡¬‡É‡¬‡É‡¬‡É‡¬‡É‡¬‡É‡¬‡Éÿª42ÿ¦@Kÿ°9Xù½1bçÎ-iÐà$¹Ï7—§ÂR©žºfµšµs»˜³}¾—²ƒÀ”±…Á°…ï…ĉ®†Å†®‡Æ†®‡Æ†®‡Æ†®‡Æ†®‡Æ†®‡Æ†®‡Æ†®‡Æ†®‡Æ†®‡Æ†®‡Æ†®‡Æ†®‡Æ†®‡Æ†®‡Æ†®‡Æ†®‡Æÿ«32ÿª;Iÿ¶2SðÇ*ZØÞ!fÂß$‚­Î<˜ŸÃV§™¼h²–·u¸”´}½“³ƒ¾‘²…¿Ž²†À‹±†Áˆ°‡Â†°ˆÃ†°ˆÃ†°ˆÃ†°ˆÃ†°ˆÃ†°ˆÃ†°ˆÃ†°ˆÃ†°ˆÃ†°ˆÃ†°ˆÃ†°ˆÃ†°ˆÃ†°ˆÃ†°ˆÃ†°ˆÃ†°ˆÃÿ­12ÿ°3EøÀ)LßÖ#MÇè j³Þ&„¡ÏA–—ÆY¤“Àj¬¼u²¹}¶·ƒ¸Œ¶„ºŠµ…¼ˆ´†½†³‡¾„³ˆ¿„³ˆ¿„³ˆ¿„³ˆ¿„³ˆ¿„³ˆ¿„³ˆ¿„³ˆ¿„³ˆ¿„³ˆ¿„³ˆ¿„³ˆ¿„³ˆ¿„³ˆ¿„³ˆ¿„³ˆ¿„³ˆ¿ÿ¯/2ÿ¹)?èÎ?ÌæR·î!m¥Þ,ƒ—ÒE’Ë[ŒÅk¥‹ÂuªŠ¿|­‡¾°„¼€±ƒ¼‚²»ƒ³º„´~º†µ~º†µ~º†µ~º†µ~º†µ~º†µ~º†µ~º†µ~º†µ~º†µ~º†µ~º†µ~º†µ~º†µ~º†µ~º†µ~º†µÿ²*2ñÆ3Ñâ:¼óV¨î&m˜á5ŽØJŒˆÐ]•†Ìk›„Ét Çx£~Å{¥|Ä}¦{Ä~§yÀ¨x‚©wƒªwƒªwƒªwƒªwƒªwƒªwƒªwƒªwƒªwƒªwƒªwƒªwƒªwƒªwƒªwƒªwƒªú¾(ÖÝ#Àð?¬ýWœð-jå>y†ÞNƒØ_‹ÔkzÑp”wÏt—uÎw˜sÍyšrÍ{›qÌ}›pËœoË€oË€oË€oË€oË€oË€oË€oË€oË€oË€oË€oË€oË€oË€oË€oË€oË€ÙÒ Äí)°ýAŸÿ$U‘ô5e‡ëFpåTy{áavÝh„rÛn‡oÙq‰mØt‹kØwŒjÖyiÖzŽhÕ|ŽgÕ~gÕ~gÕ~gÕ~gÕ~gÕ~gÕ~gÕ~gÕ~gÕ~gÕ~gÕ~gÕ~gÕ~gÕ~gÕ~gÕ~ÿ£9*ÿŸF@ÿPUú Peï£Quä¤S†Ú¢[–Рe¤Èp°Åœ{µÂœƒ¹¿š‰¾¼•‹ÂºŒÅ¸ŒÉ¶ˆ’̳„—ϲŸÒ­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Óÿ£9*ÿŸF@ÿPUú Peï£Quä¤S†Ú¢[–Рe¤Èp°Åœ{µÂœƒ¹¿š‰¾¼•‹ÂºŒÅ¸ŒÉ¶ˆ’̳„—ϲŸÒ­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Óÿ£9*ÿŸF@ÿPUú Peï£Quä¤S†Ú¢[–Рe¤Èp°Åœ{µÂœƒ¹¿š‰¾¼•‹ÂºŒÅ¸ŒÉ¶ˆ’̳„—ϲŸÒ­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Óÿ£9*ÿŸF@ÿPUú Peï£Quä¤S†Ú¢[–Рe¤Èp°Åœ{µÂœƒ¹¿š‰¾¼•‹ÂºŒÅ¸ŒÉ¶ˆ’̳„—ϲŸÒ­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Óÿ£9*ÿŸF@ÿPUú Peï£Quä¤S†Ú¢[–Рe¤Èp°Åœ{µÂœƒ¹¿š‰¾¼•‹ÂºŒÅ¸ŒÉ¶ˆ’̳„—ϲŸÒ­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Óÿ£9*ÿŸF@ÿPUú Peï£Quä¤S†Ú¢[–Рe¤Èp°Åœ{µÂœƒ¹¿š‰¾¼•‹ÂºŒÅ¸ŒÉ¶ˆ’̳„—ϲŸÒ­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Óÿ£9*ÿŸF@ÿPUú Peï£Quä¤S†Ú¢[–Рe¤Èp°Åœ{µÂœƒ¹¿š‰¾¼•‹ÂºŒÅ¸ŒÉ¶ˆ’̳„—ϲŸÒ­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Óÿ£9*ÿŸF@ÿPUú Peï£Quä¤S†Ú¢[–Рe¤Èp°Åœ{µÂœƒ¹¿š‰¾¼•‹ÂºŒÅ¸ŒÉ¶ˆ’̳„—ϲŸÒ­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Óÿ£9*ÿŸF@ÿPUú Peï£Quä¤S†Ú¢[–Рe¤Èp°Åœ{µÂœƒ¹¿š‰¾¼•‹ÂºŒÅ¸ŒÉ¶ˆ’̳„—ϲŸÒ­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Óÿ£9*ÿŸF@ÿPUú Peï£Quä¤S†Ú¢[–Рe¤Èp°Åœ{µÂœƒ¹¿š‰¾¼•‹ÂºŒÅ¸ŒÉ¶ˆ’̳„—ϲŸÒ­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Óÿ£9*ÿŸF@ÿPUú Peï£Quä¤S†Ú¢[–Рe¤Èp°Åœ{µÂœƒ¹¿š‰¾¼•‹ÂºŒÅ¸ŒÉ¶ˆ’̳„—ϲŸÒ­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Óÿ£9*ÿŸF@ÿPUú Peï£Quä¤S†Ú¢[–Рe¤Èp°Åœ{µÂœƒ¹¿š‰¾¼•‹ÂºŒÅ¸ŒÉ¶ˆ’̳„—ϲŸÒ­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Óÿ£9*ÿŸF@ÿPUú Peï£Quä¤S†Ú¢[–Рe¤Èp°Åœ{µÂœƒ¹¿š‰¾¼•‹ÂºŒÅ¸ŒÉ¶ˆ’̳„—ϲŸÒ­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Ó­¢Óÿ£9*ÿŸF@ÿžOTú¡Ndï¤Ouå¦Q…Ú¥X•Ñ¢b£ÉŸm¯ÅŸwµÂž€¹¿ˆ¾¼™‰Ã¹”‹Ç¶Ë³ŠÏ±†–Ô®ƒ ×§¡Õ§¡Õ§¡Õ§¡Õ§¡Õ§¡Õ§¡Õ§¡Õ§¡Õ§¡Õ§¡Õ§¡Õ§¡Õ§¡Õ§¡Õÿ£9*ÿ F@ÿžNTú¢Mdð¥Ntå¨O„Û§U”Ò¥_¡Ê£i­Å¢t´Â¡}¹¿ …¾»ˆÃ¸˜‰Èµ“‹Í±ŽŽÓ®‰–ا…Ú¡… Ö¡… Ö¡… Ö¡… Ö¡… Ö¡… Ö¡… Ö¡… Ö¡… Ö¡… Ö¡… Ö¡… Ö¡… Ö¡… Ö¡… Öÿ£9*ÿ F@ÿŸMTû£Ldð§Ltæ©NƒÜªS’Ò©[ Ë¦f«Æ¥p³Ã¥z¸¿¤‚½»¢‡Ã¸‡É³˜‰Ï°”ŽÕ«’—Ú ŠœÜ›‰ŸØ›‰ŸØ›‰ŸØ›‰ŸØ›‰ŸØ›‰ŸØ›‰ŸØ›‰ŸØ›‰ŸØ›‰ŸØ›‰ŸØ›‰ŸØ›‰ŸØ›‰ŸØ›‰ŸØÿ£8*ÿ E@ÿ LTû¤Kcñ¨Ksæ«LƒÝ­P‘Ô¬XžÌªb©Çªl±Äªv¶Àª~¼¼¨„¸¤†É³¡ˆÏ¬œÕ£–”Úš‘œÜ–ŽžØ–ŽžØ–ŽžØ–ŽžØ–ŽžØ–ŽžØ–ŽžØ–ŽžØ–ŽžØ–ŽžØ–ŽžØ–ŽžØ–ŽžØ–ŽžØ–ŽžØÿ¤8*ÿ E@ÿ KSû¥Jcñ©Irç­JÞ°MÕ°UœÎ°^§É°h¯Æ²s³Ã²|¸½°€Á¶¬‚É®§…Ï¥¡ŠÕœœ‘Ú•™œÜ‘”žÙ‘”žÙ‘”žÙ‘”žÙ‘”žÙ‘”žÙ‘”žÙ‘”žÙ‘”žÙ‘”žÙ‘”žÙ‘”žÙ‘”žÙ‘”žÙ‘”žÙÿ¤8*ÿ E@ÿ¡JSû¦Hbò«Hqè¯H€ß³JŽÖµQšÐ¶Z¤Ì¸e«Ê½q®Á¹{¶·²€À®¬„Ȧ¨…Τ‡Ô” ŽØŽŸ™ÛŒ›žÙŒ›žÙŒ›žÙŒ›žÙŒ›žÙŒ›žÙŒ›žÙŒ›žÙŒ›žÙŒ›žÙŒ›žÙŒ›žÙŒ›žÙŒ›žÙŒ›žÙÿ¤8*ÿ¡E@ÿ¢ISü§Gaò­Fpé²Fà·GŒÙ»N—Ó¿WŸÐÅc¤ÅÀp­º¸y·°²€À©­…Ç ¨„Í—¥…ÒŽ¡‰×‡ ’Ù‡¡œØ‡¡œØ‡¡œØ‡¡œØ‡¡œØ‡¡œØ‡¡œØ‡¡œØ‡¡œØ‡¡œØ‡¡œØ‡¡œØ‡¡œØ‡¡œØ‡¡œØÿ¤7*ÿ¡D@ÿ£HRü©Eaó®DoêµC}â¼D‰ÜÂJ“ØÊT™ÊÆb¤¼½n°²¶x¹ª±€Á¤­…Ç›©„Ì“¦„Њ£‡Ôƒ¢ŽÖ‚¢–Ö‚¢–Ö‚¢–Ö‚¢–Ö‚¢–Ö‚¢–Ö‚¢–Ö‚¢–Ö‚¢–Ö‚¢–Ö‚¢–Ö‚¢–Ö‚¢–Ö‚¢–Ö‚¢–Öÿ¥7*ÿ¡DAÿ¤FRýªD`ô±Bnë¸A{äÁB†ßÌFÓÏR—ÁÄa§³»m³«µx»¥±€ÁŸ®„Ƙ«„ʨ„Έ¦†Ñ‚¤ŒÓ€¤’Ó€¤’Ó€¤’Ó€¤’Ó€¤’Ó€¤’Ó€¤’Ó€¤’Ó€¤’Ó€¤’Ó€¤’Ó€¤’Ó€¤’Ó€¤’Ó€¤’Óÿ¥7*ÿ¡DAÿ¥EQþ¬B_õ´?lí¼>xçÇ@àÖF‡ÉÍQš¸Â`ª¬ºmµ¥µx¼ ±€Á›®„Å•¬„ÈŽª„ˇ¨†Î‚§‹Ï¦Ð¦Ð¦Ð¦Ð¦Ð¦Ð¦Ð¦Ð¦Ð¦Ð¦Ð¦Ð¦Ð¦Ð¦Ðÿ¥6*ÿ¢CAÿ§CPÿ®?]÷·Ž³ÉR §Àc­Ÿ¹p¶šµz¼˜²¿”±…¯…Ä‹®†Å†­‡Ç‚¬ŠÈ«É«É«É«É«É«É«É«É«É«É«É«É«É«É«Éÿ§5*ÿ£BAÿ¬?ÿ±7Jù¾0RçÏ/UÑâ,hÀá0­ÒB“ ÈW¡˜Ág«”¼s²’¸|·¶‚ºŽ´…¼‹³†¾ˆ²‡À…±‰Áƒ±ŠÁ°ŒÂ°ŒÂ°ŒÂ°ŒÂ°ŒÂ°ŒÂ°ŒÂ°ŒÂ°ŒÂ°ŒÂ°ŒÂ°ŒÂ°ŒÂ°ŒÂ°ŒÂÿ©2*ÿ«8=ÿ¸/EîÈ)HÖß%RÃì)l±ß1‚¡ÒE’—ÊZŸ‘Ãi§Ž¿t­¼|±‹º´ˆ¹ƒ¶…¸„¸ƒ·†¹¶‡ºµ‰»~µ‹¼~µ‹¼~µ‹¼~µ‹¼~µ‹¼~µ‹¼~µ‹¼~µ‹¼~µ‹¼~µ‹¼~µ‹¼~µ‹¼~µ‹¼~µ‹¼~µ‹¼ÿ«0*ÿ±/8öÂ&<ÜÚ;Æë#W³ì*o£ß5‚–ÔJÍ]š‹Èk¡‰Äu¦†Â{ªƒÀ~¬¿€®¾‚°}½ƒ±{¼…²z»‡³y»ˆ³y»ˆ³y»ˆ³y»ˆ³y»ˆ³y»ˆ³y»ˆ³y»ˆ³y»ˆ³y»ˆ³y»ˆ³y»ˆ³y»ˆ³y»ˆ³y»ˆ³ÿ­.*þ»%0ãÒ-ÉèA¶÷#Z¥ì.o–á<ŒØO‹‡Ò_“„Íl™Êtž~Èx¡{Ç{£yÆ}¤xÅ¥vĦuçtĨs†©s†©s†©s†©s†©s†©s†©s†©s†©s†©s†©s†©s†©s†©s†©ÿ´$%ìÊ#Íå,¹öF§ú&[˜î5lŒåDz„ÞSƒ€ÙbŠ|ÕlxÒq“uÐu•sÏx—qÎz˜pÍ|™oÍ~šnÌ€›mÌ‚œlË„œlË„œlË„œlË„œlË„œlË„œlË„œlË„œlË„œlË„œlË„œlË„œlË„œlË„œlË„œõÁÑß ¼ó1ªÿGšü,YŽò]ù½?fîÈCmãÖMoÕÝNÄÓY‘µÉfŸ©Áq« »y³™¶€º”²…ÀŒ¯†Ä†­ˆÇ€«ŒÉ|ª’Êz«œÊy«ŸÊy«ŸÊy«ŸÊy«ŸÊy«ŸÊy«ŸÊy«ŸÊy«ŸÊy«ŸÊy«ŸÊy«ŸÊy«ŸÊy«ŸÊÿ£5"ÿ B7ÿ¦AEÿ¯=Pþ¸;YóÄ6ÿ­9Aÿ¸4HðÆ3MßÙ6PÍå6g¾ä;{­×HŒ ÍX™—Æg¤’Ár«Ž½{°Œº´ˆ¸ƒ·„·…¹‚µˆ»´Š½|³¾z³‘¿z³“¿z³“¿z³“¿z³“¿z³“¿z³“¿z³“¿z³“¿z³“¿z³“¿z³“¿z³“¿z³“¿ÿ¦2"ÿ¦:4ÿ²3=÷À.BäÒ/AÏä.U¿ï3k¯á;~ ÖJ–Î[™Èi¡ŒÃs¨‰À{¬†¾¯‚¼²€»„³}º†µ{¹ˆ¶y¸‹·w·¸w·¹w·¹w·¹w·¹w·¹w·¹w·¹w·¹w·¹w·¹w·¹w·¹w·¹ÿ§1"ÿ¬31ÿ¹+6êÌ&6Òá&AÁï,Z°í3n¡á=•×MŒÐ^–‰Ëk†Çt¢ƒÄz¦Ã}©|Á€«zÀ‚¬y¿„­w¾†¯u¾‰°s½Œ±s½±s½±s½±s½±s½±s½±s½±s½±s½±s½±s½±s½±s½±ÿ©.!ÿ³*+òÅ",ÖÞ-Ãí#G²ù+]¢ì6o•âB}‹ÚRˆ…Ô`‚Ðl–~Ìs›{ÊwžxÉ{ vÈ~¢tÇ€£sÆ‚¤qÅ„¥pć¦nÄŠ§n˧n˧n˧n˧n˧n˧n˧n˧n˧n˧n˧n˧n˧ÿ¬* ú½"ÜÙÅë3´ú#J£ù.^•îÿ¤FJÿªFVü®Hbô³Kmî¸Owè½UáÁ^†ÖÀlŽÈ·q½®wª²§}´©¡‚»¡œˆÁš˜Æ”––É”ŸËŒ’¨ÌŠªÉŠŽ¬ÆŠŽ¬ÆŠŽ¬ÆŠŽ¬ÆŠŽ¬ÆŠŽ¬ÆŠŽ¬ÆŠŽ¬ÆŠŽ¬ÆŠŽ¬ÆŠŽ¬ÆŠŽ¬ÆÿŸ6ÿœC.ÿŸF>ÿ¥EJÿ«EUü°Faö¶Ikð¼NtçÂU{ßÈa€ÑÃjĺp¸²u©­«{³£¥€»›¡†Á”ÅŽ›”ÈŠ™Ê†™¨Ë†”ªÉ†’«Æ†’«Æ†’«Æ†’«Æ†’«Æ†’«Æ†’«Æ†’«Æ†’«Æ†’«Æ†’«Æ†’«ÆÿŸ5ÿB.ÿ E=ÿ§DIÿ­CTþ³D_÷ºGhïÁMpåÉVuÜÎdzÌÆi¾¾nœ²¶t¨§°y²ž«~º•¦„ÀŽ£‹Äˆ¡’Ç„ŸšÉ€Ÿ§ÊšªÈ‚˜«Æ‚˜«Æ‚˜«Æ‚˜«Æ‚˜«Æ‚˜«Æ‚˜«Æ‚˜«Æ‚˜«Æ‚˜«Æ‚˜«Æ‚˜«Æÿ 5ÿB.ÿ¡D=ÿ¨BHÿ¯ASÿ¶B]÷¾FeìÇMkãÒXmÖÓazÇÊgŒ¹Âm›¬¼r§¡¶w±˜±}¹­‚¾ˆª‰Ã‚¨Æ}§™Èz§¥É{¢«È}ž¬Æ}ž¬Æ}ž¬Æ}ž¬Æ}ž¬Æ}ž¬Æ}ž¬Æ}ž¬Æ}ž¬Æ}ž¬Æ}ž¬Æ}ž¬Æÿ 5ÿB.ÿ¢B<ÿª@Gÿ²>Qýº@YóÃD`èÏNcßÜYgÏØ`yÀÏfвÈkš¦Âp¦›¼v¯‘¸{·‰µ¼‚²‡À}°ŽÃx®–Åv­¡Æu¬¬Æw¦­Åw¦­Åw¦­Åw¦­Åw¦­Åw¦­Åw¦­Åw¦­Åw¦­Åw¦­Åw¦­Åw¦­Åÿ 4ÿžA.ÿ¤@;ÿ¬=Eÿµ;N÷¿>UìËDYáÚOZÔßQlÆÚZ}¸Ób‹«Îi˜ŸÆq¤•Àw­Ž»~´‡·ƒ¹´‡½|²Œ¿y±“Áv°›Ât°¦Âr°­Âr°­Âr°­Âr°­Âr°­Âr°­Âr°­Âr°­Âr°­Âr°­Âr°­Âr°­Âÿ¡3ÿžA/ÿ§=:ÿ°:Cýº8JðÆ;OãÕENÕáF_ÈâKqºÝR¬Õ[ŸÌf›–Æp¤Àx«Š¼±„¹ƒµ€·‡¸|¶‹»y´¼w´—½v´¡½t³¥¾t³¥¾t³¥¾t³¥¾t³¥¾t³¥¾t³¥¾t³¥¾t³¥¾t³¥¾t³¥¾t³¥¾ÿ¢3ÿ >.ÿª97ÿ´5?öÀ5DçÏ9E×ßÿ«BHÿ±DRú·HZð½NaæÄVgÞÉbmÎÁgÁ¹m޶±r›«ªx¦¢¥~®™ „µ’‹ºŒš“¾‡˜›À„—¤Â‚–¯Âƒ“°À„‘²¾„‘²¾„‘²¾„‘²¾„‘²¾„‘²¾„‘²¾„‘²¾„‘²¾„‘²¾„‘²¾ÿ›3ÿšA&ÿŸB3ÿ¦@=ÿ­@Gÿ´BO÷»GWíÃM]äÌX`ÙÍ`lÉÅf~¼½k°µqš¥¯v¥œª|­“¦‚´Œ¢‰¹† ½ž™¿}ž¢Á{ž¯Á}™°À–²¾–²¾–²¾–²¾–²¾–²¾–²¾–²¾–²¾–²¾–²¾ÿœ3ÿšA&ÿ A2ÿ¨?<ÿ°>Eÿ·AMôÀESêÉNVâÕZWÒÑ^kÄÉd}¶ÁjŒª»o™Ÿµt¤–°z¬¬€²†©‡·§Ž»z¦–¾w¥ ¿t¦­¿w¡±¿z²¾z²¾z²¾z²¾z²¾z²¾z²¾z²¾z²¾z²¾z²¾ÿ3ÿ›A&ÿ¢?1ÿª<:ÿ³IðÆDMæÒOMÜÜWVÌÕ]j¾Íc{°Çh‹¤Ám—™¼s¢¸xª†´~°²…µy°Œ¸t¯•»q®Ÿ¼n¯«½qª³¼t¥³¼t¥³¼t¥³¼t¥³¼t¥³¼t¥³¼t¥³¼t¥³¼t¥³¼t¥³¼t¥³¼ÿ3ÿ›@&ÿ¤<0ÿ­98ÿ¶9?õÁ%ÿ§9.ÿ±65û¼6:íÉ:<àÚD:ÒâGLÇâM^¹ÞTn¬Ù[|ŸÔbˆ”Ðh“ŠÌo›‚Çw¢|Ã~¨vÀ„¬r¾Š¯o¼‘±m¼˜²k»¡³j»­²gº¶´gº¶´gº¶´gº¶´gº¶´gº¶´gº¶´gº¶´gº¶´gº¶´gº¶´ÿŸ2ÿ :$ÿª4,ÿµ21óÃ23ãÔ80ÓáW¬éEgžçKu’àS€‰Ù^‰‚Ôh‘|Ðq–xÌw›tÊ}žpÈ‚¡nLJ£kÅ‹¥iĦhÄ–§fÞ¨eÃ¥¨eÃ¥¨eÃ¥¨eÃ¥¨eÃ¥¨eÃ¥¨eÃ¥¨eÃ¥¨eÃ¥¨eÃ¥¨eÃ¥¨ÿ¡/ÿ¨/ÿµ*"ðÆ$!ØÝ# Èé-5ºò5I¬ñžÿ4N’ú?\ˆòJfìUoyè^uräd{nák~jßphÞu„eÜy…cÛ}‡bÚˆ`Ú„‰_Ù‡Š]Ø‹‹\׌[Ö”[Ö”[Ö”[Ö”[Ö”[Ö”[Ö”[Ö”[Ö”[Ö”[Ö”ÿ° íÆÍÛ »ó¬ÿ!.žÿ,?’ÿ7M‡ýDXöOaxñYhqí_mjëdqgèjtdçowbåty`äxz_ã{{]ã~|\â}[á„~ZáˆYàŒ€XàXàXàXàXàXàXàXàXàXàXàó½ ÌÏ ½å ¬ÿžÿ$/’ÿ/=‡ÿ=IÿIRxüTZpøZ_iô_ddòegaðji^ïnk\îrm[ívnZìyoXì|pWë~pVëqUê„rTêˆsSé‹tSé‹tSé‹tSé‹tSé‹tSé‹tSé‹tSé‹tSé‹tSé‹tSé‹tÌÆ½Ô­õŸÿ“ÿ'-ˆÿ49~ÿBCwÿMJnÿSPgÿYUbü^X^ûd[[ùh]Yøl^W÷p`V÷saUövbTõxbSõ{cRô}dQô€dPóƒeOó†fOó†fOó†fOó†fOó†fOó†fOó†fOó†fOó†fOó†fOó†f½Ë®ÛŸÿ“ÿˆÿ*(~ÿ82vÿD:mÿKAeÿQF_ÿWI[ÿ]LXÿbNUÿfPSÿjQRÿmRPÿpSOÿrTNÿuTMÿwUMÿyULþ{VKþ~WJýWJýWJýWJýWJýWJýWJýWJýWJýWJýWJýWÿ-ÿŒ>ÿŠL.ÿ’S;ÿ”WHÿ•\Tý“b`õ‘jkïrvé‰|ä…„†à€‹Ü|‘’Úy—–Øvœ™Õs ›Ôq¥Óo©ŸÒn® Òm³¡Ñl¹¢ÑkÀ£ÍlÅ£ÈnÆ¢ÈnÆ¢ÈnÆ¢ÈnÆ¢ÈnÆ¢ÈnÆ¢ÈnÆ¢ÈnÆ¢ÈnÆ¢ÈnÆ¢ÿ-ÿŒ>ÿŠL.ÿ’S;ÿ”WHÿ•\Tý“b`õ‘jkïrvé‰|ä…„†à€‹Ü|‘’Úy—–Øvœ™Õs ›Ôq¥Óo©ŸÒn® Òm³¡Ñl¹¢ÑkÀ£ÍlÅ£ÈnÆ¢ÈnÆ¢ÈnÆ¢ÈnÆ¢ÈnÆ¢ÈnÆ¢ÈnÆ¢ÈnÆ¢ÈnÆ¢ÈnÆ¢ÿ-ÿŒ>ÿŠL.ÿ’S;ÿ”WHÿ•\Tý“b`õ‘jkïrvé‰|ä…„†à€‹Ü|‘’Úy—–Øvœ™Õs ›Ôq¥Óo©ŸÒn® Òm³¡Ñl¹¢ÑkÀ£ÍlÅ£ÈnÆ¢ÈnÆ¢ÈnÆ¢ÈnÆ¢ÈnÆ¢ÈnÆ¢ÈnÆ¢ÈnÆ¢ÈnÆ¢ÈnÆ¢ÿ-ÿŒ>ÿŠL.ÿ’S;ÿ”WHÿ•\Tý“b`õ‘jkïrvé‰|ä…„†à€‹Ü|‘’Úy—–Øvœ™Õs ›Ôq¥Óo©ŸÒn® Òm³¡Ñl¹¢ÑkÀ£ÍlÅ£ÈnÆ¢ÈnÆ¢ÈnÆ¢ÈnÆ¢ÈnÆ¢ÈnÆ¢ÈnÆ¢ÈnÆ¢ÈnÆ¢ÈnÆ¢ÿ-ÿŒ>ÿŠL.ÿ’S;ÿ”WHÿ•\Tý“b`õ‘jkïrvé‰|ä…„†à€‹Ü|‘’Úy—–Øvœ™Õs ›Ôq¥Óo©ŸÒn® Òm³¡Ñl¹¢ÑkÀ£ÍlÅ£ÈnÆ¢ÈnÆ¢ÈnÆ¢ÈnÆ¢ÈnÆ¢ÈnÆ¢ÈnÆ¢ÈnÆ¢ÈnÆ¢ÈnÆ¢ÿ-ÿ>ÿŒL.ÿ”S;ÿ•VGÿ–[Tý•a`ö’hkïpué‹z䇃‡ß‚ŠÜ~’Ùz–—Öw›šÕt Ór¥ŸÒp©¡Ñn®¢Ðm´£Ðlº¤Ðl¤ÊnĤÄoĤÄoĤÄoĤÄoĤÄoĤÄoĤÄoĤÄoĤÄoĤÄoĤÿŽ-ÿŽ>ÿŽK.ÿ•Q:ÿ˜TGÿ˜XSþ˜^_ö•djï’luéŽv~䊀‡ß…‡ŽÛ€Ž”Ø|”˜ÕyšœÓvŸŸÑs¤¢Ðqª¤Ïo¯¥În¶¦Îm½§Ên§Ãp§½q§½q§½q§½q§½q§½q§½q§½q§½q§½q§ÿ-ÿŽ>ÿJ-ÿ—O:ÿ™QFÿ›VRþš[^÷˜aið•htê‘q~äŽ|†ß‰„ŽÛƒ‹”×’šÔ{˜žÒwž¡Ðt¤¤Îrª¦Íp±¨Ío¹©ËoÁ©ÃqÁ©¼rÀª·sÀª·sÀª·sÀª·sÀª·sÀª·sÀª·sÀª·sÀª·sÀª·sÀªÿ-ÿ>ÿ’J-ÿ˜M9ÿ›OEÿSQÿX\ø›^hñ™erê•m|ä‘w†ßŒŽÛ‡‰•ÖšÓ}–ŸÐy£Îu£¦Ír«©Ìp³ªËo½«År¿«½s¿¬¶t¾¬±u¾­±u¾­±u¾­±u¾­±u¾­±u¾­±u¾­±u¾­±u¾­±u¾­ÿ-ÿ>ÿ“I-ÿ™L9ÿNDÿŸQPÿŸV[ùž\fòœbqë˜i{å”s„à}ÛŠ†”Ö„›Ò• Ïzœ¥Ív£¨Ës««Êqµ­Æq¾­¾t½®¶u½®°v½®¬w½®¬w½®¬w½®¬w½®¬w½®¬w½®¬w½®¬w½®¬w½®¬w½®ÿ-ÿ>ÿ•I,ÿ›J8ÿžLCÿ¡OOÿ¢TZú¡Yeó _oìfyæ˜oƒà“yŒÛŽ‚“Ö‡Š›Ò’¡Ï|š¦Êx¢ªÇu«­Ãs´¯¿s¼°·u¼°°w»°ªx»°§y¼°§y¼°§y¼°§y¼°§y¼°§y¼°§y¼°§y¼°§y¼°§y¼°ÿ‘-ÿ‘>ÿ–H,ÿœH7ÿ JBÿ£MMÿ¤RXû¥Wcô¤]mî¡cwèžk€â˜u‰Ü’~’ÓŒ‡šÌ†¡Æ€—§Á|ž¬½y¦¯¹v¯±·vº²¯wº²ªyº²¥zº²¢{»±¢{»±¢{»±¢{»±¢{»±¢{»±¢{»±¢{»±¢{»±¢{»±ÿ‘-ÿ‘>ÿ˜G,ÿG7ÿ¡HAÿ¥KLÿ§PVü¨Uaõ¨[kí§atå¤i~ÞŸs‡Ô˜}Ë‘„šÄŠŒ¢¾„“¨¸€š­´|¢°°z«³­yµ´¨z¹´¤{¹´ }¹³}º³}º³}º³}º³}º³}º³}º³}º³}º³}º³ÿ’-ÿ’>ÿ˜F+ÿžF6ÿ£GAÿ§IKÿªNUú«S^ò¬Yhé¬`qâ©hzÙ¥sƒÍœzÅ•š½Žˆ¢·ˆ©±„—®¬€Ÿ±¨~§´¥}±µ¡}¸¶~¸µš¹´™€º³™€º³™€º³™€º³™€º³™€º³™€º³™€º³™€º³™€º³ÿ’-ÿ’>ÿ™E+ÿŸD5ÿ¤E@ÿ©HIÿ¬LSø®R\ï°Xeæ±_mÞ°ivÒ©q‚È x¿˜~š·’…¢°ŒŒ©ªˆ”®¤…œ² ‚¤µ®¶š€··—·¶•‚¹´”‚¹³”‚¹³”‚¹³”‚¹³”‚¹³”‚¹³”‚¹³”‚¹³”‚¹³”‚¹³ÿ“-ÿ’=ÿšD*ÿ C5ÿ¦D>ÿ«FHÿ®KQõ²PYìµWaä·^iÚ´isͬo‚¤v¹œ|™±–ƒ¢ª‘Š©£Œ‘®ž‰™²™‡¡µ–…«·“…¶·‘„··…¸µ…¹´…¹´…¹´…¹´…¹´…¹´…¹´…¹´…¹´…¹´ÿ“-ÿ“=ÿ›C*ÿ¢B4ÿ¨B=ÿ­EFü±JOòµOVéºV]á½`dÔ¸grȯm½§tŽ´ z™«š€¢¤•‡©‘Ž®—Ž–²’‹ŸµŠ¨·ŒŠ³¸‹‰··‹ˆ¸µ‹ˆ¹´‹ˆ¹´‹ˆ¹´‹ˆ¹´‹ˆ¹´‹ˆ¹´‹ˆ¹´‹ˆ¹´‹ˆ¹´‹ˆ¹´ÿ“-ÿ“=ÿœA*ÿ£@3ÿ©A<ÿ¯DEú´HLðºNSç¿VYÞÂ``Ï»fqól¸«rŽ®¤x˜¥ž~¡žš„¨—–Œ®‘“”²Œ‘œµˆ¦·…±¸…޶·†¸¶‡Œ¸µ‡Œ¸µ‡Œ¸µ‡Œ¸µ‡Œ¸µ‡Œ¸µ‡Œ¸µ‡Œ¸µ‡Œ¸µ‡Œ¸µÿ”,ÿ”=ÿ@)ÿ¤>2ÿ«?;ÿ±BBø¸GIí¾NOåÆWSÚÆ^_˾dq¾¶j€³¯p©©v˜ £|¡˜Ÿ‚¨‘›‰­Š™’²…–𵕤·•®·~”··‘·¶‚¸µ‚¸µ‚¸µ‚¸µ‚¸µ‚¸µ‚¸µ‚¸µ‚¸µ‚¸µÿ”,ÿ”=ÿž?(ÿ¦=1ÿ­>9ÿ´A@ô¼FEëÄMIâÎXKÓÊ\^ÆÂcp¹ºh®´nŒ£®t—š©zŸ’¥€§Š¡‡¬„Ÿ±—´{œ¡¶x›¬·w›·¶z—¸µ|•¹´|•¹´|•¹´|•¹´|•¹´|•¹´|•¹´|•¹´|•¹´|•¹´ÿ•,ÿ•=ÿ ='ÿ¨;0ÿ°<7ý¸?<ñÁD@èËNBÞÓUJÎÍ[]ÀÆan´¿g~¨¹mŠ´r•”¯xž‹«~¥„¨…ª}¦Œ¯x¤•²t£Ÿ´q£ªµp£¸µsž¹´v›¹³v›¹³v›¹³v›¹³v›¹³v›¹³v›¹³v›¹³v›¹³v›¹³ÿ–,ÿ—<ÿ¢:&ÿª9.ÿ³:4ù½<8îÈC9ãÕP7×ÚRHÈÒY\ºË_m­Åe|¡Àk‰—ºp“¶vœ„³|¢}°ƒ¨w®Š¬r­“¯n¬±k¬¨²i­¶²l¨»±o£»±o£»±o£»±o£»±o£»±o£»±o£»±o£»±o£»±o£»±ÿ—,ÿš;ÿ¤7%ÿ­6+ÿ·70óÃ:1æÐC0ÜßJ5ÏßRGÁØXZ³Ñ^k¦ËczšÇi†Ân†¿t˜}¼zŸvº¤p¸‰¨k·’«h·œ­e·§®d·´®e³½®h­½®h­½®h­½®h­½®h­½®h­½®h­½®h­½®h­½®h­½®ÿ˜,ÿ9ÿ§4#ÿ±3(ù½2*êË7)ÜÝ>)ÐãF:ÅâMK¸ÞUZ¬Ù\hžÓbw’Ïg‚ˆËmŒ~És”vÇyšpÅŸjĉ¢fÃ’¥bܧ`æ¨_ô¨_Á¨aºÁ©aºÁ©aºÁ©aºÁ©aºÁ©aºÁ©aºÁ©aºÁ©aºÁ©aºÁ©ÿ™,ÿ 5ÿª1 ÿ¶.#ðÅ-"ߨ3Ðã:.ÄèB@¸åIP«áN_žÞUl’Û\w‡Øc~Õj‰vÔqoÑy”k΀˜g̈›dÊbɘŸ`É¡ _É« _ɹŸ\Èâ\Èâ\Èâ\Èâ\Èâ\Èâ\Èâ\Èâ\Èâ\Èâÿ›,ÿ¤0ÿ¯,ø¾'äÑ&Ñâ- Äë73·ë>EªéETžçLb’åRn†ãXx}à`vÜi†pØq‹kÕxhÓ’eц”bÏ–`Δ˜^Λ™]Í£š\Í­š[Í·š[Í·š[Í·š[Í·š[Í·š[Í·š[Í·š[Í·š[Í·š[Í·šÿ,ÿ¨+ÿ·$ëÊÓàÄë+&·ñ48ªðÿ>K†þGV}øQ^vóYenð_jhíendêkraéqt_çvv]æ{x[åyYä„zXãˆ|WãŒ}Vâ‘~Tá—SáœSáœSáœSáœSáœSáœSáœSáœSáœSáœÿ±ÔÇ ÆÖ ¶÷¨ÿ ›ÿ+0ÿ6=…ÿ@H}ÿKQuýTXmùZ]gö`bcófe_òkg\ðpiZïtkXîxlWí|nUì€oTì„pSëˆqRëŒqQê‘rPé•sPé•sPé•sPé•sPé•sPé•sPé•sPé•sPé•sPé•sÖ¾ÅË·Û ¨ÿ›ÿ"!ÿ..…ÿ9:|ÿDCtÿNJlÿTPeÿZT`ý_X]ûeZZúj\Wùn^Uør_T÷v`RöyaQö}bPõ€cOô„dNô‡dMóŒeLófLófLófLófLófLófLófLófLófLófÄÂ¶Ñ¨í ›ÿÿ%…ÿ1*|ÿ<4sÿF;jÿLAcÿSF^ÿYIZÿ^LVÿcNTÿhPRÿlQPÿoROÿrSNÿvTLÿyUKÿ|UJþVIþ‚WHý†XGýŠXGýŠXGýŠXGýŠXGýŠXGýŠXGýŠXGýŠXGýŠXGýŠX¶É¨Ù›ÿÿ…ÿ'{ÿ3$qÿ<,hÿC2aÿJ7[ÿP;VÿV=Sÿ\@Pÿ`ANÿdCLÿhDJÿkEIÿnFHÿqFGÿtGFÿvHEÿyHDÿ|ICÿ€IBÿƒJBÿƒJBÿƒJBÿƒJBÿƒJBÿƒJBÿƒJBÿƒJBÿƒJBÿƒJÿ‚( ÿ‚9ÿH%ÿŠO1ÿŽV=ÿ\IÿŽcTþŠj^ø…qhò€zpî|ƒwêx‹}çt’‚äq˜…âoˆám¢‹àk§ßi¬ŽÞh±Ýg·‘Ýf½‘ÜeÅ’ÜeÍ’ÔfÑ’ÏhÒ’ÏhÒ’ÏhÒ’ÏhÒ’ÏhÒ’ÏhÒ’ÏhÒ’ÏhÒ’ÏhÒ’ÿ‚( ÿ‚9ÿH%ÿŠO1ÿŽV=ÿ\IÿŽcTþŠj^ø…qhò€zpî|ƒwêx‹}çt’‚äq˜…âoˆám¢‹àk§ßi¬ŽÞh±Ýg·‘Ýf½‘ÜeÅ’ÜeÍ’ÔfÑ’ÏhÒ’ÏhÒ’ÏhÒ’ÏhÒ’ÏhÒ’ÏhÒ’ÏhÒ’ÏhÒ’ÏhÒ’ÿ‚( ÿ‚9ÿH%ÿŠO1ÿŽV=ÿ\IÿŽcTþŠj^ø…qhò€zpî|ƒwêx‹}çt’‚äq˜…âoˆám¢‹àk§ßi¬ŽÞh±Ýg·‘Ýf½‘ÜeÅ’ÜeÍ’ÔfÑ’ÏhÒ’ÏhÒ’ÏhÒ’ÏhÒ’ÏhÒ’ÏhÒ’ÏhÒ’ÏhÒ’ÏhÒ’ÿ‚( ÿ‚9ÿH%ÿŠO1ÿŽV=ÿ\IÿŽcTþŠj^ø…qhò€zpî|ƒwêx‹}çt’‚äq˜…âoˆám¢‹àk§ßi¬ŽÞh±Ýg·‘Ýf½‘ÜeÅ’ÜeÍ’ÔfÑ’ÏhÒ’ÏhÒ’ÏhÒ’ÏhÒ’ÏhÒ’ÏhÒ’ÏhÒ’ÏhÒ’ÏhÒ’ÿ‚( ÿƒ9ÿƒG%ÿŒN1ÿU=ÿ‘[HÿaSþh^øˆohòƒxpí~‚xézŠ~æv‘ƒäs—‡âpŠàn¢Œßk§ŽÝj¬Ýh²‘Üg¸“Ûf¿“ÛfÇ”ÙfДÏhГËiДËiДËiДËiДËiДËiДËiДËiДËiДÿƒ( ÿƒ9ÿ†F$ÿŽM0ÿ“T<ÿ”XGÿ’^Sÿe]øŒmgò†upíxé}‡~åy„âu•ˆàr›ŒÞo¡Ýl§‘Ük¬“Ûi³”Úhº–ÙgÖÙfÍ—ÐiΖÈjΗÄkÍ—ÄkÍ—ÄkÍ—ÄkÍ—ÄkÍ—ÄkÍ—ÄkÍ—ÄkÍ—ÄkÍ—ÿ„( ÿ„9ÿˆE$ÿ‘L0ÿ•Q;ÿ–VGÿ•\Rÿ“b\ùjfóŠrpí…{x逄å{Œ…âw“ŠßsšŽÝp ‘Ûm¦”Úk­–Ùi´—Øh½˜ØgÈ™ÑiÌ™ÉkÌ™ÂlÌš½mËš½mËš½mËš½mËš½mËš½mËš½mËš½mËš½mËšÿ…( ÿ…9ÿŠD$ÿ“K/ÿ—O:ÿ˜TFÿ—YPÿ–`[ù’geóŽooî‰xwéƒä~Š…áy‘‹Þu˜ÜqŸ“Ún¦–Øl®˜×j¶šÖhÁ›ÓiË›ÊkË›ÂmÊœ»nʸoʸoʸoʸoʸoʸoʸoʸoʸoÊÿ…( ÿ†9ÿŒD#ÿ•J/ÿ™M:ÿšQDÿšVOÿ™]Zú–ddô’knîtvé‡~~䇅à|‹Ýw—Ûsž•Øo¦˜Öl¯šÕj¹œÔiÆËlÉÃmÉž¼oÈŸµpÈŸ²qÈŸ²qÈŸ²qÈŸ²qÈŸ²qÈŸ²qÈŸ²qÈŸ²qÈŸ²qÈŸÿ†' ÿ†9ÿŽC#ÿ—I.ÿšK9ÿœOCÿTNÿœZXûš`bõ–hlï‘ouê‹y~å…ƒ…àŒŒÝy•‘Ùt–Ôp¥šÐn®Íl·ŸËkàÃnÇ »oÇ¡µqÆ¡¯rÆ¡¬sÆ¡¬sÆ¡¬sÆ¡¬sÆ¡¬sÆ¡¬sÆ¡¬sÆ¡¬sÆ¡¬sÆ¡ÿ‡' ÿ‡9ÿB#ÿ˜G-ÿœI8ÿŸLBÿ QLÿ WVûž^`ô›ejí–lsçv|ኀ„Û„‰‹Ó~‘’Îx™˜Ét¡œÆq©ŸÂp²¢Ào½£ºpÅ£³rŤ®sŤ©tÅ£¦uÅ£¦uÅ£¦uÅ£¦uÅ£¦uÅ£¦uÅ£¦uÅ£¦uÅ£¦uÅ£ÿ‡' ÿˆ8ÿ‘A"ÿšE,ÿžG6ÿ¡J@ÿ£PJþ£UTö¢\]ï bgèœipá–tyÚ}‚щ†‹Ê‚“Å}•™Àyž¼v¥¡¸s­¤µr¸¥²ræ¬tæ§væ£wÄ¥¡xÄ¥¡xÄ¥¡xÄ¥¡xÄ¥¡xÄ¥¡xÄ¥¡xÄ¥¡xÄ¥¡xÄ¥ÿˆ' ÿˆ8ÿ“A"ÿ›D,ÿ E5ÿ£I?ÿ¥NHû§TQó¦Z[ë¥`dã¢hmÜsvÑ•z‚É‚‹Â‡Š“¼‚‘š·}™Ÿ²z¡£¯w©¦«v³§©vÀ¨¤w¨¡y§zç›zæ›zæ›zæ›zæ›zæ›zæ›zæ›zæ›zæÿˆ' ÿ‰8ÿ•@!ÿB+ÿ¢D4ÿ¥H=ÿ¨LFøªROï«XWç«_`à¨iiÔ¡puË™xÂ’‹»‹†”µ†Žš¯‚• ª~¤¦{¦§£z°© y¼ªzÁ©š|Á©˜}¨–}§–}§–}§–}§–}§–}§–}§–}§–}§ÿ‰' ÿ‰8ÿ–?!ÿžA*ÿ£B3ÿ§F;þ«KDõ®QLì°WTä±^\Û­hfÏ¥nuÅu¼–|‹µƒ”®Š‹›¨†’ £‚š¥ž€¢¨›~¬ª˜~¸«–~À«”Àª“€Á¨’€Â¨’€Â¨’€Â¨’€Â¨’€Â¨’€Â¨’€Â¨’€Â¨’€Â¨ÿ‰' ÿŠ8ÿ˜? ÿŸ?)ÿ¥A2ÿªE:ü®IAò±OIéµVPá·_WÕ±eeʨltÀ¡s€·šz‹¯””¨ˆ›¢Š œ‡—¥—„ ¨”‚©ª‘‚µ«‚¿«ŽƒÀªƒÁ©ƒÁ¨ƒÁ¨ƒÁ¨ƒÁ¨ƒÁ¨ƒÁ¨ƒÁ¨ƒÁ¨ƒÁ¨ÿŠ' ÿ‹8ÿ™> ÿ¡>(ÿ¦@0ÿ¬C8ù±H?ðµNEçºUKÞ»^TдdeŬks»¤q€±žxŠ©˜~“¢“…š› –Œ•¥‘‰¨‡§«Š‡²¬ˆ‡¿¬ˆ‡À«ˆ†À©ˆ†Á¨ˆ†Á¨ˆ†Á¨ˆ†Á¨ˆ†Á¨ˆ†Á¨ˆ†Á¨ˆ†Á¨ˆ†Á¨ÿŠ' ÿŒ7ÿ›=ÿ¢='ÿ¨?/ÿ®B6÷´G<íºMAäÀVFÙ¿\SË·cdÀ¯is¶¨o¬¢uФœ|“œ˜ƒš•”Š ‘’¥ŠŽ›¨†¤«ƒŒ¯¬½¬‚Œ¿«ƒŠÀ©ƒŠÁ©ƒŠÁ©ƒŠÁ©ƒŠÁ©ƒŠÁ©ƒŠÁ©ƒŠÁ©ƒŠÁ©ƒŠÁ©ÿ‹' ÿŽ7ÿœ<ÿ£;&ÿª=-ÿ±@3ô¸E8ê¿L<âÇU@ÓÂZRǺac»³gr°­m~§§s‰ž¡z’–€™šˆŸ‰—¤„”˜¨“¢ª|’­«z’º¬{‘À«}Á©~ŽÁ¨~ŽÁ¨~ŽÁ¨~ŽÁ¨~ŽÁ¨~ŽÁ¨~ŽÁ¨~ŽÁ¨~ŽÁ¨ÿŒ' ÿ6ÿ:ÿ¥:%ÿ­;+ü´>0ñ¼C4çÅL6ÞËR?ÎÆYQ¾`b¶¸fp«±l}¡¬rˆ˜§x‘£~˜‰ …ž‚£}›–§x™Ÿ©u˜ªªs™·«t˜Àªw”Á©x“¨x“¨x“¨x“¨x“¨x“¨x“¨x“¨x“¨ÿŒ' ÿ‘5ÿŸ8ÿ§8#ÿ¯9(ù¸<,îÂB.åÍL-ØÐO=ÉÉWP¼Ã^`°¼do¥·j|›²p†’­vŠ©|–‚¦ƒœ|¤‹¡v¢“¥r¡§o ¨©m µ©m Á¨p›Â§r™Â§r™Â§r™Â§r™Â§r™Â§r™Â§r™Â§r™Â§r™Â§ÿ& ÿ”4ÿ¡6ÿª6!ÿ³6%õ¾9'êÉ@&àÖI(ÑÕN<ÃÎVN¶È\_ªÂcmŸ½hz”¸n„‹´tƒ±z”|®šu¬ˆžp«‘¢k©›¤h©¦¦f©³¦fªÃ¥i¤Ä¥k¡Ä¥k¡Ä¥k¡Ä¥k¡Ä¥k¡Ä¥k¡Ä¥k¡Ä¥k¡Ä¥k¡Ä¥ÿŽ& ÿ—3ÿ£4ÿ­3þ¸2 ðÅ5 ãÓ?ØÞE&ÊÛM:½ÓTL°Î[]£Éak˜ÄgwÀl„½r‰|ºxu¸–o¶‡šjµe´š b³¥¡a´±¢`µÂ¡b¯Æ¢d«Æ¢d«Æ¢d«Æ¢d«Æ¢d«Æ¢d«Æ¢d«Æ¢d«Æ¢d«Æ¢ÿ& ÿ›1ÿ¦1ÿ±.÷¾-çÎ1ÙÞ9ÍãD(ÂàM8µÛSJ¨ÕYZœÐ_hÌes†Ék}}Æq…uÄw‹nÃ~iÁ†”dÀ—`Àšš]À¥›[À±›ZÁÁ›[¼Êœ]·Ê]·Ê]·Ê]·Ê]·Ê]·Ê]·Ê]·Ê]·Êÿ‘& ÿŸ/ÿª-ÿ·(íÈ&ÚÜ)Ìä6Áæ@.¶ãH>ªàNLžÝVY’Ú]eˆÖco~ÔjxvÒpnÐw…hωc·_Î[Íš’YÍ¥“Wβ“VÏ“VËДWÅÏ•WÅÏ•WÅÏ•WÅÏ•WÅÏ•WÅÏ•WÅÏ•WÅÏ•WÅÏ•ÿ“& ÿ£,ÿ°&õÀ ßÕÍä'Áë4#µê=3©çEBåKP‘ãR\†âXf|à_ntßfulÞmzfÞuaÝ}‚]܆…ZÛˆXÙ˜ŠVØ¡‹Tج‹TØ·ŒSØÉ‹SÖÖ‹SÖÖ‹SÖÖ‹SÖÖ‹SÖÖ‹SÖÖ‹SÖÖ‹SÖÖ‹SÖÖ‹ÿ—$ ÿ©& þ¸ æÎÎãÀî&´ð2(¨î;8œíCF‘ìKR†ìR\|ëYdsë^kjêdpeèluaætx^ä|{[âƒ}Yà‹Vß’UÞšƒSÞ¢ƒRݪ„Qݶ„QÝ¿„QÝ¿„QÝ¿„QÝ¿„QÝ¿„QÝ¿„QÝ¿„QÝ¿„QÝ¿„ÿŸ!ÿ°éÅ ÐÙ Àî ³ö&§õ1,›õ;:õDG…õLQ|õSZsõY`kó_feðfjaímm]ëtpZêzsXètVç‡vTæxSå”yQä›zPä¡{Oãª|Nã°|Nã°|Nã°|Nã°|Nã°|Nã°|Nã°|Nã°|Nã°|ÿ¨ë¼ ÍÌ Áà ²ú¥ü' šý2.ý=;…þEE{ÿMNrÿTUkûZZdø`_`ögb\ômeYòrgWñxiUð~jSïƒlQî‰mPínNì”oMëšpLë¡qKê¦rKê¦rKê¦rKê¦rKê¦rKê¦rKê¦rKê¦rKê¦r÷³ Ìÿѱï¤ÿ™ÿ)!Žÿ4.„ÿ?9{ÿGAqÿNHjÿTNcÿZR^þ`VZüfXWûlZUúq\Sùv^Qøz_O÷`Nö„aLõ‰bKõŽcJô”dIóšeHóžfHóžfHóžfHóžfHóžfHóžfHóžfHóžfHóžfÍ»½Ç±Ø£ÿ˜ÿÿ, ƒÿ7+zÿA4pÿG;hÿMAaÿTE\ÿZIXÿ_KUÿeMRÿjOPÿnQNÿrRLÿwSKÿ{TIÿUHþ„VGþˆWFýWDý“XDü–YDü–YDü–YDü–YDü–YDü–YDü–YDü–YDü–Y½¿°Î¢à—ÿŒÿ"ƒÿ.yÿ8%nÿ>-fÿE2_ÿL7YÿR;UÿX>Qÿ]@OÿbBLÿfCJÿjDIÿnEGÿrFFÿvGEÿzHCÿ~HBÿ‚IAÿ†J@ÿ‹K?ÿK?ÿK?ÿK?ÿK?ÿK?ÿK?ÿK?ÿK?ÿK¯Æ¢Ö–÷ ‹ÿ‚ÿ$wÿ-lÿ3cÿ:$\ÿB(VÿI,QÿO/NÿU1KÿZ3Hÿ^5Fÿb6Dÿf7Cÿi8Aÿl8@ÿp9?ÿs:>ÿw:=ÿ{;<ÿ~<:ÿƒ<:ÿ†=:ÿ†=:ÿ†=:ÿ†=:ÿ†=:ÿ†=:ÿ†=:ÿ†=:ÿ†=ÿu$ÿv5ÿwCÿ€J'ÿ…R3ÿ†Y>ÿ…`HÿhRÿ|oZüwyb÷sƒhôoŒnñl“rïjšuíg xìe¥zëdª|êb¯}éaµ~è`»è_Àç_Ëæ^Õà`Û×bÞÔcßÔcßÔcßÔcßÔcßÔcßÔcßÔcßÿu$ÿv5ÿwCÿ€J'ÿ…R3ÿ†Y>ÿ…`HÿhRÿ|oZüwyb÷sƒhôoŒnñl“rïjšuíg xìe¥zëdª|êb¯}éaµ~è`»è_Àç_Ëæ^Õà`Û×bÞÔcßÔcßÔcßÔcßÔcßÔcßÔcßÔcßÿu$ÿv5ÿwCÿ€J'ÿ…R3ÿ†Y>ÿ…`HÿhRÿ|oZüwyb÷sƒhôoŒnñl“rïjšuíg xìe¥zëdª|êb¯}éaµ~è`»è_Àç_Ëæ^Õà`Û×bÞÔcßÔcßÔcßÔcßÔcßÔcßÔcßÔcßÿv$ÿw5ÿyBÿ‚I'ÿ‡Q2ÿˆX=ÿ‡_HÿƒfQÿ~nZûywb÷u‚iôqŠnñm’sîk™vìhŸyëf¤{êdª}éc¯èbµ€ça¼ç`Ä‚æ_΂ã_׃ÜaÛƒÒc݃Ïd݃Ïd݃Ïd݃Ïd݃Ïd݃Ïd݃Ïd݃Ïd݃ÿw$ÿx5ÿ|Aÿ…H'ÿŠO2ÿŒV=ÿ‹]Gÿ‡dQÿ‚lZû|tb÷xiótˆoðptíl—xëjž{ég¤~èfª€çd°‚æb¶ƒåa¾„å`Ç…å`Ó…ÝbÙ…ÓdÜ…ÌeÛ†ÉeÛ†ÉeÛ†ÉeÛ†ÉeÛ†ÉeÛ†ÉeÛ†ÉeÛ†ÉeÛ†ÿx$ÿx5ÿ~@ÿˆG&ÿN1ÿU<ÿŽ[Fÿ‹bPÿ†iYü€qb÷{{ióv…pïrŽuìn•yêkœ}èi£€çf©‚åe°„äc·…äbÀ‡ãaˇßbÕ‡ÕdÚ‡ÍeÙˆÆgÙ‰Äg؉Äg؉Äg؉Äg؉Äg؉Äg؉Äg؉Äg؉ÿy#ÿy4ÿ€?ÿŠF&ÿM0ÿ’S;ÿ‘ZEÿ`OÿŠgYü„na÷~xiòy‚pït‹vëp“{ém›çj¢‚åg©„äe°†ãd¹ˆâbÉâbЊØdØŠÎfØŠÇg׋ÀhÖŒ¾iÖŒ¾iÖŒ¾iÖŒ¾iÖŒ¾iÖŒ¾iÖŒ¾iÖŒ¾iÖŒÿy#ÿz4ÿƒ>ÿE%ÿ“L/ÿ•Q:ÿ”WDÿ’]NÿŽeXüˆka÷‚tiò|pîwˆvës‘|èo™€æk¡„äh©‡âf±‰ád»‹àcÇŒÜcÔŒÏfÖŒÇhÕÀiÔŽºjÔŽ¸kÔŽ¸kÔŽ¸kÔŽ¸kÔŽ¸kÔŽ¸kÔŽ¸kÔŽ¸kÔŽÿz#ÿ{4ÿ…=ÿD$ÿ–J.ÿ—N8ÿ—TBÿ•ZLÿ’aVüŽi_ö‡phòzpí{…wêvŽ|æq—ãmŸ†àj¨‰Ýg°ŒÚf»ÖeÇŽÑfÔÇhÓ¿jÓ¹kÒ‘³lÒ‘²mÒ‘²mÒ‘²mÒ‘²mÒ‘²mÒ‘²mÒ‘²mÒ‘²mÒ‘ÿ{#ÿ|4ÿˆ<ÿ’C$ÿ˜H-ÿšL7ÿšRAÿ™XJü—_Tö“f]ðnfë‡woæ€vá{‹}Üu“ƒ×qœ‡Òn¤‹Ïk¬ŽÌiµ‘ÉhÀ’ÇhÏ“¿kÑ“¸lГ²mД­oГ«oÑ“«oÑ“«oÑ“«oÑ“«oÑ“«oÑ“«oÑ“«oÑ“ÿ|#ÿ}4ÿŠ;ÿ”A#ÿšF,ÿœK5ÿP?ÿVHø›]Qñ˜c[ë“kdäumÞ†~uØ€‡|ÑzƒÌv—‰ÇrŸÄo§‘Àm°“¾l»•»kÈ–¶mÏ–°oΖ«pÏ–¦qÏ•¥rÏ•¥rÏ•¥rÏ•¥rÏ•¥rÏ•¥rÏ•¥rÏ•¥rÏ•ÿ|#ÿ}4ÿŒ:ÿ—@"ÿœE+ÿŸI4ÿ N<û¡TEô ZNìaXå™iaÞ“sjÕŒ{tÎ…ƒ}È‹„Âz“оv›ºs£“¶q«–³o¶˜±o˜­p͘¨r͘¤s͘ tΗŸtΗŸtΗŸtΗŸtΗŸtΗŸtΗŸtΗŸtΗÿ}#ÿ3ÿŽ9ÿ™?!ÿžC)ÿ¡G2ÿ£L:ø¥RCð¤XKè£_TáŸh]טphΑxtÆŠ€}À„ˆ…º‹µ{—±wŸ”­u§—ªs±™§s½›¥sË› uËšvÌššwÍ™™w͘™w͘™w͘™w͘™w͘™w͘™w͘™w͘ÿ~"ÿ€2ÿ8ÿ›? ÿ B(ÿ¤F0þ¦K8ô¨P@ì©WGä©]PÜ¥fZÐnhÇ•us¿Ž}}¹‰„…³ƒŒŒ­“‘©|›•¤y¤™¡w­›žw¹œœwÈœ™xÊœ—yË›•zÌš”zÌ™”zÌ™”zÌ™”zÌ™”zÌ™”zÌ™”zÌ™”zÌ™ÿ~"ÿ‚2ÿ’7ÿœ=ÿ¡@'ÿ¦D.û©I5ñ¬O<é®UCá¯]KÕ¨dYË¡kg™ss¹“z}²…¬ˆ‰Œ¦„‘¡€˜–} š™|ªœ–{¶”{Äž’|Ê‘}Êœ}Ë›}Ìš}Ìš}Ìš}Ìš}Ìš}Ìš}Ìš}Ìšÿ"ÿ„1ÿ“6ÿž<ÿ£?%ÿ¨B,ø­G2ï°M9æ´T?ݳ[IЬbYƤjf¼qr´—w|¬‘~…¦Œ†Œ ˆ‘š…•––‚žš’€§²ž€ÁžŒ€Éž‹€ÊŠ€Ë›Š€Ë›Š€Ë›Š€Ë›Š€Ë›Š€Ë›Š€Ë›Š€Ë›Š€Ë›ÿ"ÿ…0ÿ•6ÿŸ;ÿ¥=$ÿ«A*õ°E/ìµL4ãºT9Ø·YH˯aXÁ¨hf·¡or¯›u|§•|„ ‘ƒ‹š‹‘”Š“–‡›š‹…¥ˆ„°Ÿ†„¾Ÿ……Éž…„É…„Êœ…„Ë›…„Ë›…„Ë›…„Ë›…„Ë›…„Ë›…„Ë›…„Ë›ÿ€"ÿ‡/ÿ—5ÿ :ÿ§<"þ­?'ó³D,éºK0á¿R5ÓºXGdz_W¼¬fe²¥mq©Ÿs{¡šz„š–‹”’ˆ‘Ž–‰Œ™š„ТЭŸŠ»Ÿ~ŠÈž‰É€ˆÊœ€ˆË›€ˆË›€ˆË›€ˆË›€ˆË›€ˆË›€ˆË›€ˆË›ÿ"ÿ‰.ÿ™5ÿ¢8ÿ©: û°=$ð¸B(æ¿J*ÝÃO4νVF¶^V·°ed­©kp¤¤qzœŸxƒ”›~ŠŽ—†ˆ•Ž•‚’–™~ œz«žx¸ŸwÉžyŽÊzŒË›{ŒË›{ŒË›{ŒË›{ŒË›{ŒË›{ŒË›{ŒË›{ŒË›ÿ"ÿ‹-ÿ›4ÿ¤7ÿ¬8ø´:!í½@#äÆI#×ÇL3ÉÁUE½º\U²´cc¨®ioŸ©oy–¥v‚Ž¡|‰‡ƒ›‹”|˜”˜w—›s–¨q–µžp–Ær”Êœt’Ë›u‘Ëšu‘Ëšu‘Ëšu‘Ëšu‘Ëšu‘Ëšu‘Ëšu‘Ëšÿ‚"ÿ, ÿ4ÿ¦4ÿ¯5ô¸7éÃ>àÍEÑËK2ÄÅTC¸¿[S­¹aa¢´hm™¯nw«t€ˆ§z‡¤{¢‰’u ‘–pž›™m¦›j³œižÃœkœË›n˜Ìšo—Ì™o—Ì™o—Ì™o—Ì™o—Ì™o—Ì™o—Ì™o—Ì™ÿƒ!ÿ+ ÿ 3ÿ©2ý³1ð¾4åË;ÚÔ?ËÏI0¾ÉRB²ÄYQ§¿`_œºfk’¶lu‰²r~¯x…z¬‹tª‡o¨“j§™–g¦¤˜d¦±™c§Á™d¥Í˜g Í˜hŸÍ—hŸÍ—hŸÍ—hŸÍ—hŸÍ—hŸÍ—hŸÍ—hŸÍ—ÿ„!ÿ“) ÿ¢0ÿ­.ø¸,ëÆ/àÕ8 ÒÚ=ÅÔH.¸ÏP@¬ÊXO Å^]•Ádh‹½jrƒºpz{·vtµ}‡n³…‹h²Žd±˜’a°£”^°°•]±¿•]±Ð”`ªÐ”a¨Ð”a¨Ð”a¨Ð”a¨Ð”a¨Ð”a¨Ð”a¨Ð”a¨Ð”ÿ†!ÿ—( ÿ¦, ÿ±(òÀ& ãÐ(Ôß2 Éß>½ÛG,±ÖO=¤ÑVL™Í\YŽÉbe„Æhn{ÄovtÁu|mÀ|‚h¾„†c½‰_¼—Œ[¼¢ŽY¼¯X½¾ŽW¾ÔŽY¶ÓZ´ÓZ´ÓZ´ÓZ´ÓZ´ÓZ´ÓZ´ÓZ´Óÿˆ!ÿœ'ÿª' ü¸! éÊÕÞ Éå0¾ã=´áF,¨ÞN:œÚUH‘Ö[U†Óa`|ÐgitÎnpmÍuvgË|{bË„~^Ê‚ZÊ—„WÊ£†Uʯ†T˾†SÌÕ†TÄÙˆUÁÙ‰UÁÙ‰UÁÙ‰UÁÙ‰UÁÙ‰UÁÙ‰UÁÙ‰UÁÙ‰ÿÿ¢%ÿ°òÂÙÛÉæ ½è/²ç:"§åC1›ãJ>áPJ†ßWT|Þ^]tÝedlÛljfÛtoaÚ|s\Ù„vYÙŽyUÙ˜{SÚ£|QÚ°}PÛ¾}PÜÓ|PÔà~QÐàQÐàQÐàQÐàQÐàQÐàQÐàQÐàÿ•ÿ©ûºÔÍ Éæ¼í °í.¥ì9'šëB5êIA…éPK{èWSrè]Zjçc`dçje_çri[çzlWç‚nSç‹qPç•rNèŸtLèªuKèµvJçÃvJèÝvKäàuKäàuKäàuKäàuKäàuKäàuKäàuKäàuÿÿ±Óà ÇÑ »ò¯ó!£ó.™ó9*ŽóB6„óJA{óRIróWPió\VcócZ]ói^YópaUówcRófOò‡gMðiKï˜kJï lIî©mHî³mGíÀnFíÇnFíÇnFíÇnFíÇnFíÇnFíÇnFíÇnFíÇnÿ§ÓºÅÇºÖ ­ú¢ú"—ú/û:+ƒüC5zýL>qýQEhýVKaþ[O\þbSWþhVTýoXQûuZNú|\Lùƒ]JøŠ_H÷‘`Gö™aFö bEõ§cDô±dCôµdCôµdCôµdCôµdCôµdCôµdCôµdCôµdÖ²ľ·Ì¬Ü  ÿ•ÿ%‹ÿ2‚ÿ<)yÿE2oÿJ9gÿO?_ÿUCZÿ[GUÿaJRÿgLOÿlNMÿrOKÿxQIÿ~RGÿ„SEÿ‹TCÿ‘UBþ˜VAýžW@ý¦X@ü©X@ü©X@ü©X@ü©X@ü©X@ü©X@ü©X@ü©XƸ¶ÄªÓžò ”ÿ Šÿ(ÿ4wÿ<%mÿB,eÿG2]ÿM6WÿS:SÿY=Oÿ_?LÿdAJÿiCHÿnDFÿsEDÿyFBÿ~GAÿ„H?ÿŠI>ÿJ=ÿ•K<ÿœL<ÿŸL<ÿŸL<ÿŸL<ÿŸL<ÿŸL<ÿŸL<ÿŸL<ÿŸL·¼©ËœÛ’ÿ‰ÿ€ÿ*uÿ1kÿ8bÿ>$[ÿD)TÿJ,PÿQ/LÿW2Iÿ\3Fÿ`5Dÿe6Bÿi7Aÿn8?ÿs9=ÿw:<ÿ|;;ÿ‚<9ÿ‡=8ÿŒ=7ÿ“>6ÿ•>6ÿ•>6ÿ•>6ÿ•>6ÿ•>6ÿ•>6ÿ•>6ÿ•>ªÄœÒç†ÿ|ÿqÿ$ hÿ+_ÿ2Wÿ9Qÿ?LÿF!HÿM#EÿR%BÿW'@ÿ[(>ÿ_)<ÿc*:ÿg+9ÿk,7ÿo,6ÿt-5ÿx.4ÿ}.2ÿ‚/1ÿˆ01ÿŠ01ÿŠ01ÿŠ01ÿŠ01ÿŠ01ÿŠ01ÿŠ01ÿŠ0ÿj$ÿi2 ÿl>ÿvFÿ{M)ÿ|U3ÿz]=ÿvfFÿqnMÿmyTÿj„Zþf_ûc•bùaœeø_¢h÷^¨jö\­kõ[³lôZ¹nóYÁnóXÉoòXÔpïXàpéYäpãZæpÜ]èpÜ]èpÜ]èpÜ]èpÜ]èpÜ]èpÜ]èpÜ]èpÿj$ÿi2 ÿl>ÿvFÿ{M)ÿ|U3ÿz]=ÿvfFÿqnMÿmyTÿj„Zþf_ûc•bùaœeø_¢h÷^¨jö\­kõ[³lôZ¹nóYÁnóXÉoòXÔpïXàpéYäpãZæpÜ]èpÜ]èpÜ]èpÜ]èpÜ]èpÜ]èpÜ]èpÜ]èpÿj#ÿi1 ÿn>ÿwEÿ|M(ÿ~T3ÿ|\<ÿydEÿsmNÿoxUÿk‚Zýh‹_ûe”cùb›f÷`¡iö^§kõ]­lô\³nóZºoòYÁpòYÊqñXØqìYáqæZäqà\çqØ]èqØ^èqØ^èqØ^èqØ^èqØ^èqØ^èqØ^èqÿk#ÿj1 ÿq<ÿzCÿ€K(ÿS2ÿ€Z<ÿ|bEÿwjNÿqtUÿn[ýj‰`úf’død™höa kõ_§mó^­oò\³pò[ºqñZÃrðYÍsîYÝsèZâtá\åsÙ^æsÐ_çtÐ_çtÐ_çtÐ_çtÐ_çtÐ_çtÐ_çtÐ_çtÿl#ÿk1 ÿs;ÿ}Bÿ‚J'ÿ„Q2ÿƒY;ÿ€`Eÿ{hMÿtqUÿp|[ül‡aùhf÷e˜iõcŸlóa¦oò_¬qñ]³rð\»tï[ÅuïZÐuêZßvâ\âvÛ_åuÑ`ævÊaåwÊaåwÊaåwÊaåwÊaåwÊaåwÊaåwÊaåwÿm"ÿl1 ÿv:ÿ€Aÿ…H'ÿˆO1ÿ‡W;ÿ„^DÿfMÿxnUÿsy\ün„bùjgög–kôdžnòb¥qñ`¬sï^´uî]¼vî[Çwí[Öxå\àxÜ_ãxÒ`äxËaäyÄcãzÄcãzÄcãzÄcãzÄcãzÄcãzÄcãzÄcãzÿn"ÿm1 ÿx8ÿƒ?ÿ‰G&ÿ‹N0ÿ‹U9ÿˆ\CÿƒcLÿ}kTÿvu\ür€bømŠgõi”lófœpñc¤sïa¬uî_´wí]¾yì\Ëzè\ÜzÞ_ázÒaã{Êbâ|Äcâ}¾eá}½eá}½eá}½eá}½eá}½eá}½eá}½eá}ÿn"ÿn0 ÿ{7ÿ†>ÿŒE%ÿL.ÿS8ÿZAÿˆaKÿƒiSú|q[÷v|bóq‡hðmmíi™qêf¡uèc©xæa²zä`»{â_Ç|à_Ú}Ôbá}Êcà~Ãdà½f߀·g߀·g߀·g߀·g߀·g߀·g߀·g߀·g߀ÿo!ÿo0 ÿ~6ÿ‰<ÿD$ÿ“L-ÿ“R6ÿ’Y@ÿŽ`IùˆfRô‚nZï|yaëwƒhçrŒnäm•sàjwÝg¦zÚe®|Öc¸~ÓbÀÑbÓÊdßÁeÞ‚»gÝ‚µh݃°i݃°i݃°i݃°i݃°i݃°i݃°i݃°i݃ÿp!ÿr/ ÿ4ÿŒ;ÿ“C"ÿ—K+ÿ—Q4ÿ–W=ú“]FóŽdOîˆkXè‚u`ã|hÞw‰nÙr‘tÓn™yÐk¡}Ìh©€Éf²‚Çe½ƒÅeË„ÁfÜ„¹hÛ…³iÛ…®kÛ…©lÛ…©lÛ…©lÛ…©lÛ…©lÛ…©lÛ…©lÛ…©lÛ…ÿq!ÿt. ÿ„3ÿ:ÿ–C!ÿšI)ÿšN2üšT;õ˜[Dî”bMçiUá‰s^Û‚|fÓ|…oÍwuÉr•zÅoÁl¥‚¾j­…»i¸‡¹iĈ·i؈°kÙˆ«lÙˆ§mÙˆ£oÚ‡£oÚ‡£oÚ‡£oÚ‡£oÚ‡£oÚ‡£oÚ‡£oÚ‡ÿq ÿv, ÿ†2ÿ’:ÿ™B ÿœG'ÿžL/øžR8ðX@éš_Iâ•gRÚp\чxfÊoÅ|‰vÀw|»t˜€·q „´o©‡±m³‰®l¿Š¬lÏ‹¨n׋¤oØŠ pØŠqÙ‰qÙ‰qÙ‰qÙ‰qÙ‰qÙ‰qÙ‰qÙ‰ÿr ÿx+ ÿˆ0ÿ”9ÿ›AÿŸE%ý¡J-ô¢P4ì¢V<ä \EÜ›eOÒ“m\ÊŒufÆ}o½…v·|}³x”®uœ†«s¥‰§q®‹¥pº£pÉ qÕœsÖŒštÖ‹—tØŠ—tØŠ—tØŠ—tØŠ—tØŠ—tØŠ—tØŠ—tØŠÿs ÿz* ÿ‹/ÿ–9ÿ?ÿ¡C#ú¤H*ñ¦N1è§T8á§\@ÕŸbN˘k[Ñrf¼‹zo¶…‚w°‰}«}‘‚¦y™†¢w¡ŠŸu«œt¶ŽštŘuÔŽ•vÕ“wÕ’wÖ‹’wÖ‹’wÖ‹’wÖ‹’wÖ‹’wÖ‹’wÖ‹’wÖ‹ÿs ÿ|) ÿ/ÿ˜8ÿŸ=ÿ¤A!÷¨F'í«L-å­R3ܪY?УaMÆœiZ¾•pe¶wo¯Šv©…†}¤Ž‚Ÿ~–‡›{ž‹—y¨Ž”x³’xÁyÓzÔŽzÕŒ{ÖŒŒ{ÖŒŒ{ÖŒŒ{ÖŒŒ{ÖŒŒ{ÖŒŒ{ÖŒŒ{ÖŒÿtÿ~( ÿŽ.ÿ›8ÿ¡<ÿ§?ô«D$ê¯J)â³Q.Ö®W>˧_MÁ gZ¹™ne±“unªŽ|v£Šƒ}ž†‹‚™ƒ“‡”€›‹~¥Ž}°Š}½‘‰~Бˆ~Óˆ~ÔŽ‡~Õ‡~Õ‡~Õ‡~Õ‡~Õ‡~Õ‡~Õ‡~Õÿtÿ€'ÿ.ÿ7ÿ£:ü©=ñ¯B ç´H$ß·N,ѱU=Ǫ^L½£eY´ld«—sn¤“zvžŽ|˜‹ˆ‚’‡‡Ž…™‹‰ƒ¢Ž†‚­ƒ‚»‘‚‚Ì‘‚‚Ó‚‚Ô‚Õ‚Õ‚Õ‚Õ‚Õ‚Õ‚Õ‚Õÿuÿ‚&ÿ’- ÿŸ6ÿ¥8ù¬;î³?å¹FÚ»K+Í´T<®\K¸§cX¯¡jc¦œqmŸ—wu˜“~|’†‚ŒŽ‡‡Š–‹ƒˆ Ž‡«}‡¸‘{‡É‘|‡Ó|†Ô}…Õ}…Õ}…Õ}…Õ}…Õ}…Õ}…Õ}…Õÿuÿ„%ÿ”- ÿ 5ÿ¨6ö¯8ë·=â¿EÕ¾I*ȸS;½±[J³«bWª¦hb¡¡ol™œut’˜|{Œ•ƒ†’‹†”‹|ŽžŽy¨vŒµ‘tÆ‘uÓv‹Ôx‰Õx‰Õx‰Õx‰Õx‰Õx‰Õx‰Õx‰Õÿvÿ†$ÿ—, ÿ¢2ÿ«3ò³5è¼:ÞÅ?ÐÁH)Ä»Q9¹µYH®°`U¥ªgaœ¦mk”¢tsžzz†›€€˜‰…{–’‰v”›r“¦o“³n“Ãn“Óp‘ÔŽrŽÕrŽÕrŽÕrŽÕrŽÕrŽÕrŽÕrŽÕÿwÿ‰"ÿ™, ÿ¥0 ü®/ï¸1äÃ7 ÙÊ;ËÅF'¿¿P8³ºXG©µ_TŸ°e_–¬kiލrq†¥xx€¢~zŸ‡ƒtˆo›™‹lš¤iš°Žg›ÀŽg›ÕŽi˜Õl”ÖŒl”ÖŒl”ÖŒl”ÖŒl”ÖŒl”ÖŒl”ÖŒl”ÖŒÿxÿŒ!ÿ+ÿ¨, ø³* ê¿+ àÌ2ÑÎ9ÅÉE%¹ÄN6®¿VE£»]R™¶c]²ig‡¯po€¬vvy©}|s§„n¥…i¤—ˆe£¢Šc£®Œa£¾Œ`¤Ò‹c ×‹eœØŠeœØŠeœØŠeœØŠeœØŠeœØŠeœØŠeœØŠÿzÿ ÿ )ÿ¬'ò¸$åÇ$ÙÕ'ËÓ7¿ÎC#³ÊL4§ÅTBœÁ[O’½bZ‰ºhd·nly´trs²{xm°ƒ}h¯‹c®•„_­ †]­­‡[­¼‡Z®Ð‡\ªÚ‡_¥Ú‡_¥Ú‡_¥Ú‡_¥Ú‡_¥Ú‡_¥Ú‡_¥Ú‡_¥Ú‡ÿ~ÿ”ÿ¥&ý± ìÁßÓÐÜ%ÄÙ5¸ÕA!¬ÐK1 ÌR?•ÉYL‹Å`W‚Ãf`zÀlgs¾sml¼zsg»‚wbºŠ{^¹”~Z¸Ÿ€X¸¬V¹»UºÏV¶Þ‚X°Ý‚X¯Ý‚X¯Ý‚X¯Ý‚X¯Ý‚X¯Ý‚X¯Ý‚X¯Ý‚ÿ„ÿ™ÿªõ¹ÞÍ ÐßÅà&»ß6°Ý@¤ÙI-˜ÕQ;ÑXHƒÏ^R{ÌeZsËkalÉrgfÈylaÇp]ÆŠtYÆ”vVÅŸxSƬyRÆ»zQÇÏyQÄãzS¼â|S¼â|S¼â|S¼â|S¼â|S¼â|S¼â|S¼â|ÿŠÿŸÿ°ØÃ ÎÑ Äå¹ä&®ä4¤â? ™àG-ÞO9…ÜVD{Ú]LsÙdTl×kZfÖr_aÕyd\Ô‚gXÔ‹jUÔ•mRÔ nPÔ­oNÕ¼pMÖÐoMÕèpNÌérNÌérNÌérNÌérNÌérNÌérNÌérNÌérÿ’ÿ§ع ËÆÂÕ ·ê¬ê' ¢é4˜è>$çG0ƒæN:zåTCqäZJiäaPdãhU_ãpYZãx\Vã€_Sã‰bPã“dMäeKä©gJå¶gIåÆgHæßgJàìgJßìgJßìgJßìgJßìgJßìgJßìgJßìgÿœ Û±ʽ¿ÊµÚ ªï ð(–ð5Œð?&‚ðG1yðN9pïT@hïZFaï`K]ïgOXïnRTïuUQð}WNð…YKð[Hñ™\Fñ£^Dò¯_Cò»_BóÌ`Aóç`Aóè`Aóè`Aóè`Aóè`Aóè`Aóè`Aóè`Þ§˶½Á²Ï§ê ÷”ø+Šø6ù@&xúH/oúM6gúS<`úX@[û_DVûeGRûlIOürKKüyMHüOEýŠQCý“RAþœS?þ¦T=ÿ±U=þ¼V<þÍV<þÎV<þÎV<þÎV<þÎV<þÎV<þÎV<þÎVΰ½º±Ç¥Ö›ý‘ÿ ˆÿ-€ÿ9vÿ?#mÿE*eÿK0^ÿQ5XÿW8Sÿ];Oÿc>Lÿh@IÿnAFÿuCCÿ|D@ÿ„F=ÿŒG<ÿ”H;ÿI:ÿ¥J9ÿ­K8ÿ¹K8ÿ¹K8ÿ¹K8ÿ¹K8ÿ¹K8ÿ¹K8ÿ¹K8ÿ¹K¾µ°À¤Î—Þÿ†ÿ#}ÿ.sÿ5jÿ<bÿB$[ÿH(UÿN,PÿT/LÿZ1Hÿ_3Eÿd5Bÿj6?ÿp7=ÿv9;ÿ|:9ÿƒ;8ÿ‹<6ÿ“=5ÿš>4ÿ¡>3ÿª?3ÿª?3ÿª?3ÿª?3ÿª?3ÿª?3ÿª?3ÿª?±º£È–Ö‹ô ƒÿyÿ oÿ( gÿ0_ÿ7Xÿ>RÿDLÿJ"HÿP$DÿU&AÿZ'>ÿ_);ÿd*:ÿi+8ÿn,6ÿt-4ÿz.3ÿ/1ÿˆ00ÿ0.ÿ–1-ÿž2-ÿž2-ÿž2-ÿž2-ÿž2-ÿž2-ÿž2-ÿž2¤Â–ψ߀ÿ uÿjÿbÿ!Zÿ) Sÿ1Mÿ8Hÿ>CÿD?ÿJ<ÿO9ÿS7ÿX5ÿ\3ÿa1ÿe0ÿj .ÿp -ÿv!+ÿ|"*ÿ‚#(ÿˆ#'ÿ$'ÿ$'ÿ$'ÿ$'ÿ$'ÿ$'ÿ$'ÿ$ÿ`%ÿ[0ÿa: ÿjAÿoJÿqR)ÿo[2ÿkd:ÿgnAÿdzGÿ`„Lÿ]ŽPÿZ–SÿXžVÿW¥XÿU«ZÿT±[ÿS·\ÿR¾]þQÇ^üQÑ_ûPà_øPé_óQí_îSð_èTñ_äVò_äVò_äVò_äVò_äVò_äVò_äVò_ÿ`%ÿ[0ÿb9 ÿl@ÿqIÿrQ)ÿqZ2ÿmc:ÿhmAÿexGÿaƒMÿ^Qÿ[–TÿYWÿW¤YÿVª[ÿU±\ÿT·]þS¿^ýRÇ_üQÓ`úPâ`öQé`ñRî`ëTï`åVñ`áWò`áWò`áWò`áWò`áWò`áWò`áWò`ÿa%ÿ\0ÿe8 ÿn?ÿtGÿuP(ÿtX1ÿpa:ÿkjAÿgvHÿcMÿ`‹Rÿ]”UÿZœXÿX£ZÿWª\þV°^ýT·_ýS¿`üSÉaúRÖbøQäbóRêbíTîbæVïbàXðbÛXñcÛXñcÛXñcÛXñcÛXñcÛXñcÛXñcÿb%ÿ]/ÿg6 ÿq>ÿwFÿxN(ÿwV1ÿt_:ÿnhAÿjsHÿf~Nÿb‰Sÿ_’Vÿ\›ZÿZ¢\þX©^ýW°`üU·aûTÀbûSÊcùSÚdõRædïTëdèVîdáXïdÙYðeÓZðfÓZðfÓZðfÓZðfÓZðfÓZðfÓZðfÿb$ÿ^/ÿj5 ÿt<ÿzDÿ|L'ÿ{T0ÿw\9ÿreAÿloHÿh{Nÿd†Sÿ`Xÿ]™[þ[¡^ýY¨`üX°bûV¸cúUÁdùTÍe÷SÞfòTçfêVëfâYîfÚZîgÑ[ïhÌ\ðhÌ\ðhÌ\ðhÌ\ðhÌ\ðhÌ\ðhÌ\ðhÿc$ÿ_.ÿm3 ÿw:ÿ}Bÿ€J&ÿR0ÿ|[8ÿwcAÿplHÿlwOÿg‚TÿcYý`–\ü]Ÿ_ú[§bøY®d÷X¶fõWÀgôVËhñUÝhíVéiãYìhÚ[íiÐ\îjÉ]îkÅ^îkÅ^îkÅ^îkÅ^îkÅ^îkÅ^îkÅ^îkÿd#ÿa-ÿp2 ÿ{8ÿ@ÿ„I%ÿ„Q.ÿY7ÿ|a@ÿviHÿpsOûlUøh‰Zöd’^óa›añ_£dð]«fî[³hìZ¼jêYÇkèYØkäYèkÚ[ëlÏ]ímÈ^ìnÂ_ìn¾`ìo¾`ìo¾`ìo¾`ìo¾`ìo¾`ìo¾`ìoÿe#ÿd+ÿs0 ÿ~6ÿ…?ÿ‰H$ÿ‰O-ÿ†W6ÿ‚^>ü|fFøvpNôq{Uðm…ZíiŽ_êe—cèbŸfæ`§iã^¯ká]¹là\ÄmÞ\ÓnÙ]ænÎ^ëoÆ_êq¿aêqºbér¶cér¶cér¶cér¶cér¶cér¶cér¶cérÿf#ÿg)ÿw. ÿ‚5ÿ‰>ÿG"ÿN+ÿŒU3üˆ\<öƒdEñ|lMìwwTèrZänŠ`áj“dÝf›hÚd£kÖb¬nÓ`µpÐ_¿qÎ_ÍrË_âsÄaès½bèt·dçt²eçt¯fçt¯fçt¯fçt¯fçt¯fçt¯fçt¯fçtÿg"ÿj'ÿz, ÿ†4ÿ=ÿ‘E ÿ’M(ý‘S1öŽZ:ð‰aBêƒiKå~tSàx}ZÚs†`ÔnfÐk—jÌhŸnÉf§qÇd¯sÄc¹uÂbÆvÀbÚwºdæw³eåw®fåwªhåw¨hæw¨hæw¨hæw¨hæw¨hæw¨hæw¨hæwÿg"ÿm&ÿ}* ÿ‰4ÿ‘<ÿ•Dÿ—K&ø–R.ñ”X6ê^?äŠgHÝ„qPÕ}yZÏx‚aÊsŠgÆo’lÂlšp¿j¢s¼hªv¹g´x¶fÀy´fÐz±gãz«hãz§jãz£käy¡käy¡käy¡käy¡käy¡käy¡käy¡käyÿh!ÿo$ÿ€) ÿŒ3ÿ”;ÿ™Cý›I#ô›O*ì™U3å–\;Þ‘eEÔ‰mP̃vZÇ}~aÁx†h½tŽm¸q–rµnu±l¦x®k¯{¬j»|ªiÊ}¨já}£lâ|Ÿmâ|œnâ{šnã{šnã{šnã{šnã{šnã{šnã{šnã{ÿi!ÿq#ÿ‚( ÿ2ÿ—;ÿœBùžF ðŸL'èŸR.àZ6Ö•aDÍŽjOƈrY¿‚zb¹}‚h´yŠn°v’s¬sšw¨p¢z¥o«}¢n¶~ mÅžnÛ›oà~˜pá~–qá}”qâ|”qâ|”qâ|”qâ|”qâ|”qâ|”qâ|ÿi!ÿt"ÿ…(ÿ‘1 ÿš:ÿŸ?õ¢Dì¤J#ä¤P)Û¡W5Ïš_CÇ“hO¿ŒpY¸‡wa²‚h­~†n©zŽs¤w–x už{s¨~šr³€—qÀ–rÓ“s߀‘tàtà~tá}tá}tá}tá}tá}tá}tá}ÿj!ÿv ÿ‡'ÿ”0 ÿ9ý¢=ò¥Aé¨GàªM%Ô¤T4Ê]BÁ—eNº‘mX²‹ua¬†|h§‚ƒn¢‹t|“x™y›|•w¥’v¯v½‚Žv΂wÞ‹w߀ŠxàŠxà~Šxà~Šxà~Šxà~Šxà~Šxà~Šxà~ÿj ÿxÿ‰&ÿ–0 ÿŸ7ú¤:ï©?æ­EÜ®J$ϨS3Æ¡\A½›dM´•kX­r`§‹yh¡‡n›ƒˆt—€x’~™|Ž|¢‹z­‚ˆzºƒ‡z˃†{Þ‚…{Þ…{߀…{à…{à…{à…{à…{à…{à…{àÿk ÿzÿ‹&ÿ˜/ ÿ¡5 ÷§8ì­<ã²B×±G#Ë«R2Á¥Z@¸ŸbL°™iW¨”p`¡wg›‹~n–ˆ†s‘…ŽxŒ‚–|ˆ€Ÿ€„ª‚·ƒ€È„€ÝƒÞ߀€~à€~à€~à€~à€~à€~à€~àÿl ÿ|ÿ%ÿš. ÿ£3 ôª4 é±9ß·?Ò´F"Ç®P1½¨Y?³¢`K«gV£˜n_œ”ug–|mƒs‹Š‹x†ˆ”|†€~„¨‚{„µƒy„Å„x…݃y„Þzƒß€z‚àz‚àz‚àz‚àz‚àz‚àz‚àÿmÿ~ÿ$ÿ,þ¦0 ð®1 å¶5 Û¼9ηE òO0¸¬W>¯§_J¦¡eUžl^—™sf•zlŠ’r…‰w€‘|{‹›wŠ¥‚t‰²ƒr‰ÂƒrŠÚƒs‰Þt‡ß€u†àu†àu†àu†àu†àu†àu†àÿoÿ€ÿ’#ÿ +ú©,í²,â¼1ÕÀ6É»C¾¶M.´°V<ª«]I¡¦dT™¢j]‘žqeŠ›xk„˜q–†vy“zu‘˜~q£n¯‚l¿ƒk‘Õ‚mÞo߀p‹àp‹àp‹àp‹àp‹àp‹àp‹àÿqÿƒÿ•!ÿ£)ö­'è·&ÞÃ*ÐÃ5Ä¿A¹ºL-®µT;¥°[G›¬bR“¨i[‹¥oc…¢vj~Ÿ|oxœ„tsšŒyo™–|k—¡h—­€f—¼e˜Ñ€f–ßh“à~j‘á~j‘á~j‘á~j‘á~j‘á~j‘á~j‘á~ÿuÿ‡ÿ˜ ÿ¦%ò² ä¾×É"ÊÇ3 ¾Ã@³¿J+©ºS9Ÿ¶ZE–²aP¯gY…¬m`~©tgx¦zmr¤‚rm¢Švh¡”yd Ÿ|aŸ«~_ º~_ Î~_Ÿá}b›á}c˜â|c˜â|c˜â|c˜â|c˜â|c˜â|c˜â|ÿxÿ‹ÿý«ì¸ÞÈÏÍÄÌ0 ¸È>­ÅH(£ÁQ6˜½XB¹_M†¶eV³k]x±rdr¯yil­€ng¬‰rbª’u_©x\©ªzZ©¹zYªÌzX©äz[¤äz]¡äy]¡äy]¡äy]¡äy]¡äy]¡äy]¡äyÿ}ÿÿ¡ö±ÙÁ ÒÏ ÈÒ¼Ñ. ±Î;¦ËF%œÈO3‘ÄV?ˆÁ]I€¿cRx¼jYqºp_k¹wdf·ia¶‡m]µ‘pYµœrV´©tT´¸tSµËtSµätT°çuV¬çuV¬çuV¬çuV¬çuV¬çuV¬çuV¬çuÿƒÿ–ÿ¨Ù¸ ÎÄ ÇÒ ¿Ù´Ø+©Ö9ŸÓD"”ÐM/ŠÍT;Ê[DxÈbMqÇiSkÅoYeÄv^`Ã~b\‡fXÁ‘hUÁœkRÁ¨lPÁ·mOÂÊmOÂälO½ìnP¹ìoP¹ìoP¹ìoP¹ìoP¹ìoP¹ìoP¹ìoÿ‰ÿگͻÄÇ¼Ö ³ßªß+ Þ9–ÝCŒÚK*‚ØS5yÕZ?qÓaFjÒhLeÑoR`ÐvV[Ð~ZWχ]SÏ‘_PÏœaNÏ©cLϸcKÐËcLÐåbJÎòeKÈòfKÈòfKÈòfKÈòfKÈòfKÈòfKÈòfÿ’ Þ¦δ¿¹Ì°Ý §åžå- ”å9ŠäB ãJ*wâP3oáX;ià_AcàfF^ßnJZßuNVß}QR߆SOßVMß›WKà§XIàµYHáÆYHáßYGßðYFÜõ[FÜõ[FÜõ[FÜõ[FÜõ[FÜõ[FÜõ[íœÑ­¸·Ã­Ñ¤í›í ’í.‰ì:€ìC!vìJ*nìP1fëV7`ë\<[ëd@WëkCSërFPëzIMìƒKJìŒMHì–NEí¡PCí®QBî¼QAïÌRAïåR@íñQ@íñQ@íñQ@íñQ@íñQ@íñQ@íñQԥIJ¶¼«É Ø—ôõ$‡õ1~ö;töB löH'eöO-^÷U1Y÷[5U÷b8Q÷h;Møo=Jøv?Gø~ADù‡CBù‘E@ú›F>ú¦G<û±H;û¾I:üÏI9üãI9üãI9üãI9üãI9üãI9üãI9üãIÇ­··ªÃžÐ“ã Œý„þ'{ÿ1rÿ8iÿ@bÿF"\ÿM&VÿS*RÿY-Nÿ_0Jÿe2Gÿk4Dÿq5Aÿy7?ÿ8<ÿŠ::ÿ“;8ÿ<6ÿ§=5ÿ±>4ÿ¾>3ÿÊ?3ÿÊ?3ÿÊ?3ÿÊ?3ÿÊ?3ÿÊ?3ÿÊ?¸²ª½Ê‘؈û ÿvÿ$nÿ- fÿ5_ÿ<XÿCSÿINÿO!JÿU$Fÿ[&Cÿ`'@ÿf)>ÿk*;ÿr+9ÿy-6ÿ.4ÿŠ/1ÿ”00ÿœ1.ÿ¥2-ÿ¯3,ÿ·3,ÿ·3,ÿ·3,ÿ·3,ÿ·3,ÿ·3,ÿ·3«¸žÅÒƒà}ÿrÿhÿaÿ'Zÿ/ Tÿ7Nÿ>IÿDEÿJAÿO>ÿU;ÿY9ÿ_6ÿd4ÿi2ÿp /ÿw!-ÿ"+ÿ‡#(ÿ$'ÿ™%&ÿ¡&%ÿ§&%ÿ§&%ÿ§&%ÿ§&%ÿ§&%ÿ§&%ÿ§&ŸÀ‘̓Ûxöoÿ dÿ\ÿTÿ Nÿ'Hÿ/Cÿ6 ?ÿ< <ÿB8ÿG5ÿL3ÿQ0ÿV.ÿZ,ÿ_*ÿe(ÿk&ÿq#ÿy"ÿ ÿ‰ÿ‘ÿ—ÿ—ÿ—ÿ—ÿ—ÿ—ÿ—ÿV'ÿQ2ÿV5ÿ_=ÿdEÿfNÿdX'ÿab/ÿ^n5ÿZy;ÿW„?ÿTCÿQ˜FÿO HÿN§JÿM®KÿLµLÿK¼MÿJÄNÿIÎOÿIÞOÿHéPÿHòPüIöP÷KùPñLúOëNûPêOûPêOûPêOûPêOûPêOûPêOûPÿV'ÿQ2ÿX4ÿb;ÿgDÿiMÿgV'ÿc`/ÿ`k5ÿ\w;ÿX‚@ÿUDÿS–GÿPŸIÿO¦KÿN­MÿM´NÿL¼OÿKÅPÿJÏQÿIàQÿIëQþIòRùK÷RóMùQíOúQæPúRåPúRåPúRåPúRåPúRåPúRåPúRÿW'ÿR1ÿZ2ÿd:ÿjBÿlKÿjT'ÿg^/ÿbh6ÿ^t<ÿZ€AÿW‹EÿT•HÿRJÿP¥LÿO­NÿN´OÿM¼QÿLÅQÿKÑRÿJâSÿIíSûKóSõL÷SîOøSèPùSáRúTàRúUàRúUàRúUàRúUàRúUàRúUÿX&ÿT0ÿ]1ÿg8ÿm@ÿoIÿnR'ÿj\/ÿef6ÿaq<ÿ]}AÿYˆFÿV’IÿTœLÿR¤NÿP«PÿO³QÿN»RÿMÄSÿMÏTþLàUûLëUøLôUðO÷UéQøUâRøVÛTùWÙTùWÙTùWÙTùWÙTùWÙTùWÙTùWÿY&ÿW.ÿ`/ÿj6 ÿq>ÿsHÿrQ&ÿoZ.ÿjc6ÿen<ÿazBÿ]…GÿZJÿW˜MÿU PÿT¨RþR¯SýQ·UüPÀVúOËVøOÜWõOéWòOóWêRöWáS÷XÚUøYÑVøZÏVøZÏVøZÏVøZÏVøZÏVøZÏVøZÿY&ÿZ,ÿd-ÿn3 ÿu=ÿxFÿwO%ÿtX-ÿp`5ÿjj<ÿfvBÿbGþ^‹Kû[”OùYRøW¤TöV¬VõT´WóS¼XòSÇYðRÕZìRæZéSòYáTõ[×Vö\ÏW÷]ÈYø]ÇYø]ÇYø]ÇYø]ÇYø]ÇYø]ÇYø]ÿZ%ÿ]*ÿg*ÿr2 ÿy;ÿ|Eÿ|M$ÿzU,ÿu^4ÿog<üjrBùf}Höc‡Ló_Pñ]™Sï[¡VíY¨XëX°ZêW¹[èVÃ\æVÑ\ãVä\ßVð]ÕWõ_ÌYö`ÆZö`À[öa¾\öa¾\öa¾\öa¾\öa¾\öa¾\öaÿ[%ÿ`(ÿk(ÿw0 ÿ~:ÿCÿ‚K"ÿS*ÿ{[3ùvd:õpnAñlyHíhƒMêdŒQça•Uå_Xã]¥Zá[­\ÞZ¶^ÜYÀ_ÚYÎ`ÕYâ`ÑYïaÊZôbÂ\ôc¼]ôd·^ód¶_ód¶_ód¶_ód¶_ód¶_ód¶_ódÿ\$ÿc&ÿo&ÿ{/ ÿ‚9ÿ†Aÿ‡I ÿ…Q(ø‚Y0ò}`8íwj@èruGänMáiˆRÝf‘WÙc™ZÕ`¡]Ò_¨`Ï]±bÍ\»cË\ÇdÉ\ÛeÅ]ëe¿]òf¸_ñg³`ñg¯añg®bñg®bñg®bñg®bñg®bñg®bñgÿ]$ÿf$ÿr$ÿ~. ÿ‡7ÿ‹?ÿŒGù‹O%òˆV-ìƒ]6æ~g>àxqFÛs{MÕnƒSÐjŒXÌg”]Éeœ`Æc£cÃa¬eÁ`µg¿_Áh½_Ðiº`æiµaïj¯bïj«cïj§dïi¦eði¦eði¦eði¦eði¦eði¦eðiÿ^#ÿi"ÿv#ÿ‚, ÿ‹6ÿ>ý‘Eô‘L"íŽS*æŠZ2ß…e;×~mEÐxvMËtTÆp‡ZÂl^¿i—b»gŸe¸e§h¶d°j³c»k±cÊl¯cál«dím¦fíl£gíl hîkŸhîkŸhîkŸhîkŸhîkŸhîkŸhîkÿ_#ÿk ÿy"ÿ…+ÿŽ4 ÿ“<ø–Cï–Jç•P&à‘X.׊a:΄jEÈ~sMÂy{U¾uƒ[¹q‹`µn’d²lšg¯j£j¬h¬l©g¶n§gÄo¥gÚo¢hëožiìo›jìn™kím˜kím˜kím˜kím˜kím˜kím˜kímÿ_#ÿnÿ{!ÿˆ*ÿ‘2 ÿ—:ôšAë›Gã›M!Ú–U-Ï^9ȉgDÁƒoM»~wU¶y[±v‡`­se©p–h¦nŸl£l¨n k²pkÀqœkÒršléq—mêp”mëp’nìo’nìn’nìn’nìn’nìn’nìn’nìnÿa!ÿpÿ~ ÿ‹)ÿ•1 û›8 ðž>ç Dß JÓšR+Ê“\8ÂdC»‡mM´‚tT¯~|[ªz„a¦w‹e¢t“ižr›mšp¤p—o¯r•o¼s“oÍs’pæspérŽqêqqëpŒqëpŒqëpŒqëpŒqëpŒqëpŒqëpÿc ÿrÿ€ÿŽ'ÿ—/øž6 í¢;ä¥@Ú¤FΞQ*Å—Z7½‘bBµŒjL¯‡rT©‚y[¤€`Ÿ|ˆe›yj—w˜m“u¡ps¬ss¸t‹sÉuŠtât‰tèsˆuér‡uêq‡uêp‡uêp‡uêp‡uêp‡uêp‡uêpÿeÿtÿƒÿ&ÿš-ô¡4 é¦7 àª=Ô§DÉ¡O)À›X6¸•`B°hK©‹oS£‡vZžƒ~`™€…e”}j{–nŒyŸq‰x©s†wµu„wÅvƒxßuƒxèt‚xés‚xêq‚xêq‚xêq‚xêq‚xêq‚xêq‚xêqÿgÿwÿ…ÿ“$ÿ+ñ¤0æª3Ü®7 ϪCÅ¥N(¼ŸW5³™_A«”fJ¤mSž‹tZ˜ˆ{`“…ƒeŽ‚‹jŠ€“n†~œq‚}§t|³u}|Ãv|}Ûv|}èt}|ès}|ér}|êq}|êq}|êq}|êq}|êq}|êqÿiÿyÿ‡ÿ•#û )î¨,ã¯/ײ4 Ë­AÁ¨L'·£U4¯]@§™dIŸ”kR™rY“y_ŽŠ€d‰‡ˆi„…‘m€ƒšq|‚¤ty±vwÀvvÖvvçtwèsx€érxêqxêqxêqxêqxêqxêqÿkÿ{ÿŠÿ˜!ø£&ê¬'ß´)Òµ2 ǰ@¼¬K&³§S3ª¢[>¢cHš™iQ”•pXŽ’w^ˆ~dƒ†i~ŠŽmz‰˜qv‡¢ss†®uq†½vo‡Òvp‡ètq…èsr„érs„êqs„êqs„êqs„êqs„êqs„êqÿmÿ~ÿÿ›ô§"æ° Úº!͸1 ´>¸°I$®«R1¥¦Z=¢aG•žhOŽ›nWˆ˜u]‚•|c}“„hxŒlt•pp rmŒ¬tjŒ»uiÎuiètk‹ésm‰êqmˆêqmˆêqmˆêqmˆêqmˆêqmˆêqÿpÿÿÿžð«â¶Ó½È»/½¸<³´G#©°P0 «X;˜¨_E¤fN‰¡lU‚žs[}œzaw™fr—Šjn–“nj”žqf”ªsd“¸sc”Ësc”ære’êqgêpgŽêpgŽêpgŽêpgŽêpgŽêpgŽêpÿsÿ…ÿ”ü£ê°Ù¾ ÍÁÂÀ-¸½:®¹F!¤µO-š±V9’®^CŠ«dLƒ¨jS|¥qYv£x_q¡clŸ‡hhž‘kdœn`œ¨p^œ¶q]œÉq]œäp^šëp`–ëoa•ìoa•ìoa•ìoa•ìoa•ìoa•ìoÿwÿ‰ÿ™ó¨×µ ÏÁ ÆÅ¼Ä*²Â8§¿Dž»M+”¸U6‹µ\@„²bI|¯iPv­oVp«v[kª}`f¨†db§g^¦šj[¥¦lX¥µmW¦ÇmW¦âlW¤ílZŸílZžílZžílZžílZžílZžílZžílÿ|ÿŽöž Ø­ ͸ ÇľʵÊ'«È6¡ÅA—ÂK(¿S3…½Z<}ºaEv¸gKp·mQjµtVe´|[`²„_\±ŽbX±™eU°¥fS°³gR±ÆgR±ágQ¯ñhSªðhT©ðhT©ðhT©ðhT©ðhT©ðhT©ðhÿ‚ÿ” Û¥αÅ»½ÇµÐ¬Ð#£Ï3 ™Í?ÊH$†ÈQ.}ÆX8vÄ_?oÂfFiÁlKdÀsP_¿{T[¾„XW½[T½˜]Q¼¤_O¼³`M½Å`M½à_L¼ðaM·õbM¶õbM¶õbM¶õbM¶õbM¶õbM¶õbÿ‰ áœЪŵ»¿²Ë«Ø £Ù šØ/ Ö<‡ÔF~ÒO)vÐV2oÏ^9hÍd?cÌkD^ÌsIZËzLVʃORÊROʘTMÊ¥VKʳWJËÅWIËàVIÉðXGÇúYHÅûZHÅûZHÅûZHÅûZHÅûZHÅûZ÷‘Ô¢ǯº¹°Ä§Ð Ÿá˜á!à0 †à;}ßDuÞM$nÝU+gÜ\2bÛd7]Ûk;YÚr?UÚzCRÚƒENÚHLÚ˜JIÚ¥KHÛ³LGÜÄLFÜÞLFÚíLDØùOCØûOCØûOCØûOCØûOCØûOCØûOۚʩ»³°½¥É›Ö ”èŒé%„è3 {è<sèDkèK"dçR(^çY-Yç`2Uçh5Rço8Oçw;Lç€=Iç‰?Gè”ADèŸBBé¬CAéºD@êÍD@êäD@èõD@çøC@çøC@çøC@çøC@çøC@çøCÍ£½®°¸¤Ä™Ðá ‰ññ(xò2 pò;iòCbòJ\óP#VóW'Ró^+Oóe-Lôl0Iôs2Fô{4Cô„6AõŽ7>õ™9=ö¤:;ö°;:÷¿<9øÏ<8÷è<8÷ì<8÷ì<8÷ì<8÷ì<8÷ì<8÷ì<¿ª±³¤¿˜ÊŒØ„ú|ûtû&lü0 eü8^ý@XþGSþMOÿT KÿZ"Hÿa%Eÿg&Bÿm(@ÿu*=ÿ}+:ÿ†-8ÿ‘.6ÿ›/4ÿ¦03ÿ²12ÿ¾21ÿÐ21ÿÖ21ÿÖ21ÿÖ21ÿÖ21ÿÖ21ÿÖ2²¯¥º˜Æ‹Òßyÿoÿgÿ"`ÿ,Zÿ4 Tÿ<OÿCJÿIGÿOCÿU@ÿ[>ÿa;ÿf9ÿm6ÿt 4ÿ}!1ÿ†#/ÿ‘$-ÿ›%,ÿ¥&+ÿ¯&*ÿ»')ÿ¾')ÿ¾')ÿ¾')ÿ¾')ÿ¾')ÿ¾'¦¶˜Â‹Î~Ûuùkÿbÿ[ÿTÿ&Nÿ.Iÿ5Eÿ< AÿC >ÿH;ÿN8ÿS5ÿX3ÿ^1ÿd.ÿj,ÿr*ÿz'ÿƒ%ÿŽ$ÿ˜#ÿ "ÿª!ÿ­!ÿ­!ÿ­!ÿ­!ÿ­!ÿ­š¾‹Ê~×pãgÿ^ÿ VÿOÿIÿ Cÿ'?ÿ.:ÿ47ÿ:3ÿ?0ÿD.ÿI ,ÿN )ÿS 'ÿX %ÿ^ #ÿd !ÿl ÿt ÿ}ÿ‡ÿÿ™ÿ›ÿ›ÿ›ÿ›ÿ›ÿ›ÿL*ÿH3ÿO4ÿT7ÿZAÿ\JÿZTÿW`$ÿTk*ÿPx/ÿM„3ÿJ6ÿG™9ÿF¡;ÿE©<ÿD°>ÿC·?ÿBÀ?ÿBÉ@ÿAÕAÿAäAÿAîBÿAöBÿAýBÿBÿAùDÿAôFÿBïGÿBïGÿBïGÿBïGÿBïGÿBïGÿBÿM)ÿJ2ÿQ2ÿW6ÿ\?ÿ^Iÿ]SÿZ^$ÿWi*ÿSu/ÿP4ÿM7ÿJ—:ÿHŸ<ÿG§=ÿF®?ÿEµ@ÿD½AÿDÆBÿCÑBÿCâCÿCìCÿCõCÿCüCüDÿCõGÿCïHÿDëIÿDëIÿDëIÿDëIÿDëIÿDëIÿDÿM)ÿL0ÿT1ÿY4ÿ_=ÿaGÿ`Rÿ]\$ÿZg+ÿVs0ÿS4ÿOŠ8ÿM”;ÿK=ÿJ¤?ÿH¬@ÿH³AÿG»BÿFÃCÿFÎDÿEßDÿEêEýEóEûEûE÷FÿDðIÿEêJÿFåKÿGåKÿGåKÿGåKÿGåKÿGåKÿGÿN)ÿO.ÿW.ÿ]2ÿc;ÿeFÿePÿaY$ÿ]d+ÿZp0ÿV|5ÿS‡9ÿP‘<ÿNš?ÿM¢@ÿK©BÿJ°CÿJ·DÿIÀEÿHÊFýHÛFúHçGøHòGõHúFñIÿGêKÿHãLÿIÞMÿJÞMÿJÞMÿJÞMÿJÞMÿJÞMÿJÿO(ÿR,ÿZ,ÿa/ÿg:ÿjDÿjNÿgW$ÿba+ÿ^m1ÿ[x6ÿWƒ:ÿT=ÿR–@ÿPžBþO¥DüN­EûM´GúL¼HùLÇHöKÔIóKåIðKðIíLùHéLÿJáNÿKÚOÿLÓPÿMÓPÿMÓPÿMÓPÿMÓPÿMÓPÿMÿP(ÿU*ÿ])ÿe-ÿl8 ÿoBÿoKÿlU#ÿh^*ÿci1ÿ_t6ý\;ûY‰?ùV’B÷TšDõS¢FôR©HòQ±IñP¹JïOÃKîOÏKëOâKçOîKäOøMßOþNÕQÿOÎRÿPÉSÿPÉSÿPÉSÿPÉSÿPÉSÿPÉSÿPÿQ'ÿX'ÿa'ÿj,ÿq6 ÿt@ÿtIÿrR"ÿn[)ýhd0ùep6öa{;ó^…@ð[ŽCîY–FìWžHêU¦JèT­LçSµMåS¿NãSÌNáSßNÝSíOØR÷QÑSýRÊTþSÄVÿS¿WÿS¿WÿS¿WÿS¿WÿS¿WÿS¿WÿSÿR'ÿ[%ÿe$ÿn*ÿv4 ÿz=ÿzFÿxO ûtX(öoa/ñkl6ígv<éc€@æ`ŠEä]’Há[šJßY¢MÝXªOÚW²PØV¼QÕUÈRÒUÛSÎVëSËVöUÆVýV¿XýVºYýW¶ZýW¶ZýW¶ZýW¶ZýW¶ZýW¶ZýWÿS&ÿ_"ÿi!ÿs(ÿ{2 ÿ;ÿ€Dû~Lô{T%îv]-éqh4ämr;ài|AÜe…FØbŽJÔ_–MÑ]PÎ\¥RÌZ­TÉY¶VÇYÂWÆYÐWÂYæX¿YóY»ZûYµ[ûZ°]ûZ­]ûY­]ûY­]ûY­]ûY­]ûY­]ûYÿV$ÿb ÿm ÿw&ÿ0ÿ„9 ý†Aõ…Iî‚Q"ç}Z*áxd2Üsn:ÔnwAÐj€GÌf‰LÈd‘PÅb˜SÃ` UÀ^¨X¾]±Y»]¼[¹\É\·\à\´]ï\°^ù]«_ù]¨`ù\¥aù\¥aù\¥aù\¥aù\¥aù\¥aù\ÿX"ÿeÿqÿ{$ÿ„.ÿ‰6 ø‹>ï‹FèˆNá„W&Ù~a1Ñxj:ËssBÆo|HÂl„M¾iŒQ»f“U¸d›Xµc£Z³a¬\°`·^®`Ä_¬`Ø_©aë_§a÷_¢c÷_Ÿd÷_dø^dø^dø^dø^dø^dø^ÿ[ ÿhÿtÿ~#ÿˆ+ý4 ó;êCâJÚŠT%Ѓ]0É~g:ÃxoB¾txH¹q€NµnˆR²kV¯i—Z¬gŸ\©e¨_¦d²a¤d¿b¢dÐb dçbžeõbšfõa˜gö`–hö`–hö`–hö`–hö`–hö`–hö`ÿ]ÿjÿwÿ‚!ÿ‹)ù‘1ï•8 æ–?Ý”GÒŽQ$ʈ[/ƒd9¼~lA·ytH²u|N®r„Sªo‹W¦m“[£k›^ j¤`h®c›hºd™hËe—hãd•iód“jôc‘kõbkõakõakõakõakõakõaÿ_ÿmÿzÿ…ÿŽ'õ•.ë™5áœ; Ö˜CÌ“O"ÄX.½‡a8¶‚iA°~qH«zyN§w€S£tˆXŸq[›o˜_˜n¡b•m«d’l·flÆflßfŽmñeŒnód‹nôcŠnôbŠnôbŠnôbŠnôbŠnôbŠnôbÿaÿoÿ|ÿˆÿ‘$ò™+çž1Ý 6 ÑœAÇ—M!¿‘V-·Œ_7±‡g@«‚nH¥~vN {}Sœx…X˜v\”t•_‘ržbŽq¨e‹p´g‰pÃh‡pÛg†qîf†ròe…ród„rôc„rôc„rôc„rôc„rôc„rôcÿcÿqÿÿŠü”!îœ'ã¢,ؤ2ÌŸ@ÚK º•U,³]7¬‹e?¥‡lG ƒsM›€{S–}‚W’zŠ\Žx’`Šv›c‡u¥f„t±g‚tÀh€tÕh€uìgvòfuóeuóduóduóduóduóduódÿeÿtÿÿù—ë #ߦ&Ò§0È£>¿žI¶™S+®”[6§c? ‹jF›‡qM•„xRWŒ‡\ˆ}`„{™c€z£f~y¯h{y½izyÑiyzêhzzòfzyòezyódzyódzyódzyódzyódzyódÿgÿvÿ„ÿõ›ç¤Û«Ϊ/Ħ=º¡H²Q*ª˜Y4¢”a>œhE–ŒoL‰vR‹†}W†„…[‚‚_~€—cz¡fw~¬hu}»is~Îis~èht~ñft}òeu|ódu|ódu|ódu|ódu|ódu|ódÿiÿxÿ‡ÿ“ñžã¨Õ®Ê­-À©;¶¥F­¡P)¥œX3ž˜_<—”fD‘mK‹ŽtQ†Œ{V‰ƒ[|‡‹_x†”bt„Ÿeqƒªgoƒ¸imƒËimƒæhnƒòfo‚òepódpódpódpódpódpódÿkÿ{ÿŠÿ–í¢Þ­бŰ+»­9²©D©¥N' ¡V2™^;’šdC‹—kJ†”rP€’yU{€Zw‰^rŒ’anŠœdk‰¨gi‰¶hg‰Èhg‰ãgh‰òfi‡óej†ódj†ódj†ódj†ódj†ódj†ódÿnÿ~ÿ÷šÛ§ Ó° Ê´À´)¶±7­®C¤ªL%›¦U0“£\9Œ cA†iH€špN{˜wSv–~Xq”†\l’`h‘šce¦ec´faÆfaáfaòecŽóddŒôcdŒôcdŒôcdŒôcdŒôcdŒôcÿqÿ‚ÿ‘ ÞŸ Óª ̳ ĸº¸&±¶5 §³Až¯J#–¬S.Ž©Z7‡¦a?€¤gFz¡nLuŸuQp|Ukœ„ZfšŽ]c™˜`_˜¤b]˜²d[˜Ãd[˜Þc[˜ðc\•õb^“õb^“õb^“õb^“õb^“õb^“õbÿuÿ† ë–գ̭Ŷ½¼´½#«»2 ¡¹?˜¶H ³Q+ˆ°X4€®_b»pC^ºwGZ¹€KV¹‰NS¸”PP¸ RM¸®TL¸¿TK¹ØTK·íTJ¶ùUJ³þVJ³þVJ³þVJ³þVJ³þVJ³þVú‡֘ɥ½¯³¸©Â¡ÍšÐ’Ð(ŠÏ6 ÎAyÌJrËR&lÊZ-fÉa2aÈh7\ÇoqØHj×PdÖX%_Õ_*[Ôg/WÔn3SÓv6PÓ9LÓˆ;JÓ”>GÓ ?EÔ®@DÔ¿ACÕØ@DÓì@BÒöBAÑþDAÑþDAÑþDAÑþDAÑþDAÑþDјåµ®©¸žÃ”ÍŠÙ „ã}ä&uä2nã<gãEaãM\ãU Wã]$Tãd'Pâk*Mâs-Jã|0Hã†2Eã4Cãœ5Aä©6@ä¸7?åË7?åä7?ãó6=âû8=âû8=âû8=âû8=âû8=âû8Æ¡·«ª´ž¾“ɈÔîyíqí'jî2dî; ^îCXîKSîRPïYLï` Iïg#Gïo%Dðw'Að€)?ðŠ*=ñ•,;ñ¡-9ò®.8ò¾/7óÐ/7óç/6ñó/6ñó/6ñó/6ñó/6ñó/6ñó/¹§«°Ÿ»’ƆÐ{Ýt÷m÷fø&_ø/Zù8 Tù@PúGLúNHûUEû[Bûb@üh=üp:ýx8ý‚ 6ý"4þ˜#2þ¤$1ÿ±%0ÿ¿&/ÿÏ&.ÿã&.ÿã&.ÿã&.ÿã&.ÿã&.ÿã&­­Ÿ·’†ÍyÚpòhÿaÿZÿ#Tÿ+Oÿ3Jÿ;FÿB CÿI @ÿO=ÿU:ÿ[8ÿa5ÿh3ÿo0ÿx.ÿ‚,ÿ*ÿ™)ÿ¤(ÿ¯'ÿº&ÿÇ&ÿÇ&ÿÇ&ÿÇ&ÿÇ&ÿÇ¡´“¿†ÊxÖlâcü\ÿUÿOÿIÿ&Dÿ.@ÿ4<ÿ;9ÿA6ÿF3ÿL1ÿQ .ÿW ,ÿ] *ÿd (ÿl %ÿu #ÿ!ÿŠ ÿ•ÿ ÿ¨ÿ±ÿ±ÿ±ÿ±ÿ±ÿ±•¼†ÇyÓkà^íVÿOÿ IÿCÿ>ÿ 9ÿ'5ÿ-2ÿ3.ÿ8+ÿ=(ÿB&ÿG$ÿL"ÿQ ÿWÿ^ÿeÿnÿxÿƒÿ ÿ– ÿž ÿž ÿž ÿž ÿž ÿž ÿB-ÿB2ÿH2ÿL6ÿN<ÿPGÿPRÿN_ÿKkÿHw$ÿEƒ'ÿBŽ*ÿA—,ÿ? .ÿ?§/ÿ>®0ÿ=µ1ÿ=¼2ÿ<Å2ÿ<Î3ÿ;ß3ÿ;ê4ÿ;ó4ÿ;û4ÿ<ÿ3þ<ÿ3ü=ÿ4ö?ÿ5õ?ÿ5õ?ÿ5õ?ÿ5õ?ÿ5õ?ÿ5ÿC,ÿD0ÿJ0ÿN4ÿQ:ÿSFÿRQÿQ]ÿNi ÿKt$ÿH€(ÿE‹+ÿC•-ÿB/ÿA¥0ÿ@¬1ÿ?³2ÿ?º3ÿ>Â4ÿ>Ì4ÿ>Ü5ÿ=è5ÿ=ñ5ÿ>ú5ý>ÿ5û?ÿ4ø?ÿ6òAÿ7ðAÿ7ðAÿ7ðAÿ7ðAÿ7ðAÿ7ÿD,ÿG.ÿM.ÿQ2ÿT9ÿWDÿVOÿTZÿQf ÿNr%ÿK})ÿHˆ,ÿF’.ÿE›0ÿD¢2ÿC©3ÿB°4ÿB·5ÿA¿6ÿAÉ6ÿ@×7ÿ@å7ý@ð7ú@ø7÷Aÿ6öAÿ7òAÿ8ìCÿ9êDÿ9êDÿ9êDÿ9êDÿ9êDÿ9ÿE+ÿI,ÿP,ÿU/ÿY7ÿ\Bÿ[MÿXWÿVc ÿRo%ÿOz*ÿL…-ÿJ0ÿH˜2ÿGŸ4ÿF¦5ÿE­6ÿE´7ÿD¼8þDÆ8üDÒ9ùCâ9öDî9óD÷9ñDÿ9ïDÿ:ëEÿ;äFÿ<ãFÿ<ãFÿ<ãFÿ<ãFÿ<ãFÿ<ÿF+ÿM)ÿT)ÿY,ÿ^5ÿa@ ÿaJÿ^TÿZ_ ÿWk&ÿTv*ÿQ.ÿN‹1þL”4üKœ5ûJ£7úIª8øH±9÷H¹:öGÂ;õGÍ;òGß;îGì;ëHö;éGÿ=çGÿ>áHÿ?ÚJÿ@ØJÿ@ØJÿ@ØJÿ@ØJÿ@ØJÿ@ÿG*ÿP'ÿX&ÿ^*ÿc3ÿf= ÿfGÿdQÿ`[ ÿ\g&ýYr+úV}/øS‡3öQ5ôP˜7òNŸ9ñM¦;ïL­<îLµ=ìK¾=ëKÊ>éKÜ>åLê=âKõ?ßKþAÜJÿBÔLÿCÍMÿCËNÿCËNÿCËNÿCËNÿCËNÿCÿJ(ÿT$ÿ\#ÿc(ÿh0ÿl; ÿlDÿjNþfXùab%õ^m+ò[x0ïX‚4ìV‹7êT”9èS›;æQ£=åQª>ãP²?áO»@àOÇ@ÞOØAÙOèAÔOôCÐNþEÎNÿFÈPÿFÂQÿGÀQÿGÀQÿGÀQÿGÀQÿGÀQÿGÿM%ÿW!ÿ` ÿh&ÿn.ÿr8 ÿrAýpK÷mTòh^$ídi*éat0å^~4â[‡8àY;ÝW—>ÛUŸ@ØT¦BÕS®CÒR·DÐRÂEÎRÐFËRåFÈRòHÅRýIÂRÿJ¼TÿJ·UÿJ¶UÿJ¶UÿJ¶UÿJ¶UÿJ¶UÿJÿP#ÿ[ÿdÿm$ÿs+ÿw5þx>öwGðtPêoZ"äke)àgo/Ûcy5Ö`‚:Ò]Š>Ï[’AÌYšCÊX¡EÈW©GÆV²IÄV¼JÂUÉK¿UßK¼VîL¹VúM·VÿM²XÿM®YÿM¬YÿM¬YÿM¬YÿM¬YÿM¬YÿMÿS ÿ^ÿhÿq"ÿx(ÿ|1ø~: ð}CézLâvWÜra(Ômk/Ïit6Ëe};Çb…@Ä`CÁ^•F¿]œH¼[¤KºZ­L¸Y·N¶YÃO´YÕO±ZêP®Z÷P¬ZÿP¨[ÿP¤\ÿP¤]ÿO¤]ÿO¤]ÿO¤]ÿO¤]ÿOÿVÿaÿlÿu ÿ|%ý.ó„7 ê„?âHÛ}SÑw]'Ërg0Ænp7Âjx<¾g€AºeˆE·cH´a˜K²_ŸM¯^¨O­]²Q«]¾R©]ÎS¦]åS¤^ôS¢^ÿSŸ_ÿRœ`ÿR›`ÿR›`ÿR›`ÿR›`ÿR›`ÿRÿXÿdÿpÿyÿ€#ø†*í‰2äŠ; ܈EÑ‚PÊ}Z&Äxc/¾sl7¹ot=µl|B²j„F®gŒJ«e“M¨d›O¥b¤R£a®T¡a¹UŸaÈVaáV›bñU™býU—cÿT•dÿT”dÿS”dÿS”dÿS”dÿS”dÿSÿZÿgÿsÿ}ÿ„ óŠ&èŽ.ß6ÔŒAˇMÄ‚W&½}`/·xi6²tq=®qxBªn€G¦lˆJ£jN h˜Qg SšfªU˜eµW•eÄX”eÛX’fïW‘füWgþVŽgþUhþUhþUhþUhþUhþUÿ\ÿiÿvÿ€ýˆïŽ"ä“)Ú”1Î?Æ‹K¾†U%·^.±}f6¬yn<§vuB£s}GŸp„KœnŒN˜l”R•kT’j§Wi²YiÀZŒiÕZŠjìYŠjúX‰kýW‡kýV‡kþV‡kþV‡kþV‡kþV‡kþVÿ^ÿlÿxÿƒù‹ë’à˜#Ó˜/Ê”=ÁI¹ŠS$²†[-¬d5¦~k<¡zrBwzG™uK•s‰O‘q‘RŽošU‹n¤Xˆm¯Z†m½[„mÐ[ƒnéZƒnøY‚oüX‚oýW‚oýW‚oýW‚oýW‚oýW‚oýWÿ`ÿnÿ{ÿ†öç–ۜϛ-Å—; ¼“G´ŽQ#­ŠY,§†a4¡‚i;œpA—|wF“y~Kw†O‹uŽRˆs—U„r¡X‚q¬Zqº\~qÌ\}rç[}röZ|rüY|rüW|rýW|rýW|rýW|rýW|rýWÿbÿqÿ}ÿˆò’ãšÕŸÊž+Á›9 ¸—E°’O"©ŽX+¢Š_3œ†g:—ƒn@’€uE~|J‰|„N…zŒR‚x•V~wŸX{vª[yu¸\wuÊ\wvå\wwõZwvûYwvüXwvüWwvüWwvüWwvüWwvüWÿdÿsÿ€ÿ‹ï•ßž ТÆ¡)½ž7 ´šC¬–M ¤’V*Ž^2—‹e9’ˆl@…sEˆƒzJ„€N€ŠR|}“Ux|Xu{¨[sz¶\qzÇ\qzâ\q{óZq{ûYrzüXrzüXrzüXrzüXrzüXrzüXÿgÿuÿƒôŽ Û™ Ô¡ ̤¤'¸¢6 °žB§šL —T)™“\1“c8j?ˆŠqDƒˆxI~†Mz„ˆQv‚‘Us›Xo€¦Zm´\kÅ\k€ß\k€òZk€ûYl~üXm~üXm~üXm~üXm~üXm~üXÿiÿxÿ… â’Õ› Σ Ǩ½¨%´¦4 «¢@£ŸJ››R'”˜Z0Ž•a7ˆ’h=‚oC~ŽvHyŒ}LuŠ…PqˆŽTm‡™Wj†¤Yg…±[e…Â[e…Ü[e…ðZf…ûYgƒüXgƒüWgƒüWgƒüWgƒüWgƒüWÿlÿ{ ò‰ Ù•ÏžɦÁ«¸«"¯ª2¦§>ž¤H–¡Q%žX.ˆ›_5‚™f<}–mAx”tFs’{KoƒOkŒRgŽ–Ud¢XaŒ¯Y_ŒÀZ_ŒÙY_ŒîY_ŒûXaŠýWa‰ýWa‰ýWa‰ýWa‰ýWa‰ýWÿo ÿ ßҘʢ©º¯²° ©®/¡¬<˜©F‘§O#‰¤V,ƒ¢]3}Ÿd9wk?r›qDnšyHi˜Le—ŠPa•”S^• U[”­WZ”½XY”ÔWY”ìWY“ùV[‘þU[þU[þU[þU[þU[þUÿs õ„̜ؑå»­³³ «µ£´,›²9’°DŠ­M ƒ«T)}©\0w§b6q¥i|½Hu¼P!oºX'j¹_-e¸e2`·l6\¶t:Xµ|>U´…AQ´DN³œFL³©HJ³¹HI´ÎHI³éHH±öIH°ÿJH°ÿJH°ÿJH°ÿJH°ÿJH°ÿJâ†Î”¡¶©«±¡º˜ÃÉŠÉ ƒÉ/{È; tÇEnÆNhÅV!cÄ]'^Ãd+ZÂk/VÁr3SÁ{6OÀ„9LÀGÀ¨?FÀ¸@EÀÍ@EÀè?D¾öAC½ÿBC¼ÿCC¼ÿCC¼ÿCC¼ÿCC¼ÿCÖÆ›¸¥­®¢¶˜¿ÈƒÑ ÒyÒ*rÒ7lÑBfÑKaÐS\Ï[XÏb#TÎi'QÎq*MÎz-J΃0HÎŽ2EΚ4CΨ5Bθ6AÏÍ5AÎè5@Íõ7?Ëþ9>Ëÿ9>Ëÿ9>Ëÿ9>Ëÿ9>Ëÿ9Ê–¼¢¯ª£³˜¼Æ‚ÏxÙ sÞnÞ&hÞ3bÞ> ]ÞHYÞPUÞXQÞ`NÞgKÝo HÞx#FÞ%CÞŒ'AÞ˜)?Þ¦*>ßµ*=àÈ*=ßã*<Ýñ+;Üû-:Üý.:Üý.:Üý.:Üý.:Üý.ÀŸ±§¤°˜ºÃÍv×nèiècè'^é2Xé;TéD OêLLêSIê[FêbDëjAër?ë{<ë†:ì‘ 8ìž!7í¬"6í»#5îÏ#4îæ#4ëõ#4ëø#4ëø#4ëø#4ëø#4ëø#³¥¦­™·Á€ËuÕiádó^óYô&Tô0Oõ8Kõ@GöG DöN A÷U?÷\<÷c:øj7øs5ø}3ùˆ1ù”/ú¡.ú¯-û¾,ûÏ+ûç+ûë+ûë+ûë+ûë+ûë¨ªš´¿€ÉtÓgÞ^òYþSÿNÿ#Iÿ+Eÿ3Aÿ:>ÿA;ÿG8ÿN5ÿT 3ÿZ 1ÿa /ÿi ,ÿr *ÿ} (ÿˆ&ÿ•%ÿ¡$ÿ®#ÿº"ÿÊ"ÿÐ"ÿÐ"ÿÐ"ÿÐ"ÿМ²Ž¼ÇsÑgÝYãSýMÿHÿCÿ?ÿ&:ÿ-7ÿ33ÿ90ÿ?.ÿD+ÿJ)ÿP'ÿV$ÿ]"ÿe ÿnÿyÿ…ÿ’ ÿž ÿ¨ ÿ³ ÿ· ÿ· ÿ· ÿ· ÿ· º‚ÅtÐgÜXãMðGÿBÿ <ÿ8ÿ4ÿ0ÿ%,ÿ+)ÿ0%ÿ5#ÿ: ÿ?ÿDÿIÿOÿVÿ^ÿhÿrÿ~ÿŠÿ” ÿž ÿ¢ ÿ¢ ÿ¢ ÿ¢ ÿ¢ÿ9/ÿ<0ÿA1ÿD4ÿD:ÿDEÿEQ ÿC]ÿAiÿ>vÿ<ÿ:Œÿ9– ÿ8ž!ÿ7¥#ÿ7«#ÿ6²$ÿ6¹%ÿ6À%ÿ5Ê&ÿ5×&ÿ5å&ÿ5ï&ÿ5ø&ÿ6ÿ&þ6ÿ&ü6ÿ&ü6ÿ'ú6ÿ(ú6ÿ(ú6ÿ(ú6ÿ(ú6ÿ(ÿ9/ÿ>/ÿD/ÿF2ÿH8ÿHCÿHO ÿG[ÿDgÿBsÿ?ÿ=Šÿ<“!ÿ;›#ÿ:¢$ÿ9©%ÿ9°&ÿ8¶&ÿ8¾'ÿ8Ç'ÿ8Ó(ÿ8ã(ÿ8í(þ8÷(û8þ'ù9ÿ'ø8ÿ)ø8ÿ*ö8ÿ*ö8ÿ*ö8ÿ*ö8ÿ*ö8ÿ*ÿ:/ÿA,ÿF,ÿJ/ÿL7ÿMAÿLL ÿKXÿHdÿFpÿC|ÿA‡ ÿ?#ÿ>˜$ÿ= %ÿ=¦&ÿ<­'ÿ<´(ÿ;»)ÿ;Ä)ÿ;Ï)þ;à*û;ë*ø;õ)ö<þ)ô<ÿ*ó;ÿ+ò;ÿ,ï;ÿ-ï;ÿ-ï;ÿ-ï;ÿ-ï;ÿ-ÿ<-ÿD)ÿJ)ÿN,ÿQ4ÿR>ÿRJ ÿPUÿMaÿJmÿHxÿEƒ"ÿC$ÿB•&ÿA'ÿ@£(ÿ@ª)þ?±*ý?¸+ü?Á+ú?Ë+÷?Ü,õ?é,ñ?ô+ï?ý,í?ÿ-ì>ÿ/ë>ÿ0ç?ÿ0ç?ÿ0ç?ÿ0ç?ÿ0ç?ÿ0ÿ@*ÿH&ÿN&ÿR)ÿV2ÿW<ÿWG ÿUQÿR]ÿPiÿMt ÿJ#ýH‰&ûG‘(úF™)øE *÷D§+õD­,ôCµ-óC½-òCÈ.ðC×.ìCç.éDó-æCü0äBÿ1ãBÿ2áBÿ3ÜCÿ4ÜCÿ4ÜCÿ4ÜCÿ4ÜCÿ4ÿC'ÿK#ÿR"ÿX'ÿ\/ÿ]9ÿ^C ÿ[NÿXXþUdúRo ÷Pz$ôM„'òL)ðJ•+ïIœ-íI£.ìHª/êG±/éGº0çGÅ0æGÒ0âHå0ßGò2ÛGû4ØFÿ5ÕFÿ6ÒFÿ7ÍHÿ7ÍHÿ7ÍHÿ7ÍHÿ7ÍHÿ7ÿF$ÿO ÿVÿ]$ÿa,ÿc5ÿd@ ÿbJú^Tõ[_ñXk îUu%ëS(èQˆ+æO‘-äN˜/âM 0áL§1ßL®2ÝK·3ÛKÂ4ÙJÏ5ÕKä5ÐKð6ÍJû8ÊJÿ:ÈJÿ:ÆKÿ;ÁLÿ;ÁLÿ;ÁLÿ;ÁLÿ;ÁLÿ;ÿJ!ÿSÿ[ÿb"ÿg)ÿi2ÿj< ùhFòePía[è^f ä[q%áX{)ÞV„,ÛTŒ/ØR”2ÔQ›4ÒP£5ÐOª7ÎN²8ÌN¼9ÊNÉ:ÈNÝ:ÄOí;ÁNù=¾Nÿ=¼Nÿ>ºOÿ>¶Pÿ>¶Pÿ>¶Pÿ>¶Pÿ>¶Pÿ>ÿMÿVÿ_ÿg ÿl&ÿo.ùp8òoB ëlKåiWßebÚal%Ô]v*Ð[~/ÍY‡2ÊW5ÈV–7ÆT9ÄS¥;ÁS­<¿R·>½RÃ?¼RÓ?¹Rè?µRöA³RÿA±SÿA¯SÿA¬TÿA¬TÿA¬TÿA¬TÿA¬TÿAÿPÿZÿdÿlÿq#ýu*óv3ëv= ãsGÜoSÔk^Îfg&Êcq+Æ`y0Â^4¿\‰7½Z‘:ºY˜<¸X >¶W¨@´V²B²V½C°UÌC­VãD«VóD¨WþD§WÿD¥XÿD¢XÿD¢XÿD¢XÿD¢XÿD¢XÿDÿSÿ]ÿhÿpÿv ÷z&í|.ä|8ÜzD ÒuOËpZÆlc&Áhl,½fu1¹c}5¶a„9³_Œ<°]”?®\›A«[¤C©Z­E§Z¸F¥YÇG£ZÞG¡ZïGŸ[üG[ÿG›\ÿFš\ÿFš\ÿFš\ÿFš\ÿFš\ÿFÿUÿ`ÿkÿtÿzò"ç)Þ‚3Ó@ ËzLÄvV¾q`%¹nh,´kq2±hy6­f€:ªdˆ=§b@¥`—C¢_ EŸ^©G^´I›]ÂJ™]ÖJ—^ìJ–_úI•_ÿI“`ÿH’`ÿG’`ÿG’`ÿG’`ÿG’`ÿGÿXÿcÿnÿwû~íƒâ‡#Ö‡.̃= ÅI½{S·v]%²se,­om2©mu7¦j|;¢h„>ŸfŒAœe”D™cœG—b¦I”b°K’a¾LaÐLbèLŽcøKcÿJŒdÿI‹dÿI‹dÿI‹dÿI‹dÿI‹dÿIÿZÿfÿqÿz÷‚è‡Ý‹Ћ,Lj; ¿„G¸Q±{Z$¬wb+§tj1£qr6Ÿoy;›m€?˜kˆB•iE’h™Hf¢JŒf­LŠeºMˆeÌN‡fæN†göL†gÿK…hÿK„hÿJ„hÿJ„hÿJ„hÿJ„hÿJÿ\ÿhÿtÿ}ó…ä‹ÖËŽ*ÂŒ8 ºˆD³„O¬X#§|`+¡xh1uo6™sv;•q}?’o…BŽmE‹l–Hˆk K…jªMƒi·NiÈO€jãO€kôNkÿLkÿKkÿKkÿKkÿKkÿKkÿKÿ^ÿkÿvû€ êˆ Û Ð’Ç’'¾6¶ŒB®ˆM¨„V"¢€^*œ}e0—zl5“ws:u{>Œs‚Bˆr‹F…p“I‚oLn¨N}nµO{mÆPznàPyoòNyoþMyoÿLyoÿKyoÿKyoÿKyoÿKyoÿKÿ`ÿm ÿy îƒ Û‹ Ô‘ Ì••%¹“4±AªŒK£ˆT!„\)—c/’~j5Ž|q9Šzx=†x€BƒvˆEu‘I|s›Lyr¦Nvr³PurÃPsrÝPtsðOtsýMtsÿLtsÿLtsÿLtsÿLtsÿLtsÿLÿbÿo ü{ Þ†ÕŽÏ” ǘ¾˜#µ–2­“?¦IŸŒR ˜‰Z(“†a.Žƒh4‰o9…v=}~A}{†EzyIvx™Lsw¤Nqw±PovÁPnwÙPnwïOnwüNnwÿMowÿLowÿLowÿLowÿLowÿLÿd ÿr ð~ÚˆÐÊ—›¹›!±š0©—=¡”Gš‘P”X'Ž‹_-‰ˆf3„†m8€„t={‚{Ax€„EtHq}—Km|¢Nk|¯Oi{¾Ph|ÕPh|íOi|ûNi|ÿMj{ÿLj{ÿLj{ÿLj{ÿLj{ÿLÿf ÿuáԋ˓Ě½žµŸ¬ž.¤›; ˜E–•N“V%‰],„Žd2‹k7zŠrmBi‹ˆFeŠ’Ib‰žK_ˆªM^ˆºN\ˆÎN]ˆéM]‡øL]‡ÿK^†ÿK^†ÿK^†ÿK^†ÿK^†ÿKÿmê|ՈʒÁš¹ ±¦ ©§¢§)š¥6 ’£A‹¡J„ŸR!~Z(y›`.t™g3o—n8k–uQ£˜@O£¥BM£´CL£ÈCL£äCK¡ôCK ÿDK ÿDK ÿDK ÿDK ÿDK ÿDã}ϋ–·Ÿ­¦£­™µ¹‹º„º-}¹9 w¸Cq¶LkµSf´Z"b³a&^²h+Z±o.V°w2S°5O¯‹8L¯—:J®¤E«ÿ?E«ÿ?E«ÿ?E«ÿ?E«ÿ?ڃǑ»œ¯¤¥«š²º†Á Â{Â(uÂ5oÁ@ iÀId¿Q_¾X[¾_ W½f$T¼n'Q¼v*M»-J»Š0H»–2E»£4C»²4B»Å5C»â4B¹ó5A¸ý7@·ÿ7@·ÿ7@·ÿ7@·ÿ7@·ÿ7΋¿˜²¡§©œ°‘¸†À{ÈtËpÌ"kË0fË<aËE \ÊNXÊVTÊ]QÉdNÉlKÉt"HÈ~$EȈ'CÈ•(AÈ¢*?ȱ+>ÉÄ+>Éá*>Çò+=Æü-<Åÿ.<Åÿ.<Åÿ.<Åÿ.<Åÿ.Ä“¶Ÿ©¦®’·†¿{ÇpÏgÖ d×`Ø*\Ø6XØATØJ PØR MØZJ×bG×iE×rB×|@؇=Ø“<Ø¡:Ù° 9Ùà 9Ùß 9×ï 8Õù"7Ôÿ#7Ôÿ#7Ôÿ#7Ôÿ#7Ôÿ#¹œ«¤Ÿ¬“µ‡¾{ÆpÎeÖ]ãZãVã'Rä2Nä<JäDGåMEåU Bå\ @åd>æl;æv9æ€7çŒ5ç™4ç¨2è¸2èÌ1èå1æô1åü1åü1åü1åü1åü®¢¡ª”³ˆ½{ÆoÎcÖXÞTîQïMï&Ið/Eð8Añ?>ñG<òN:òU7ò\5ód 3óm 1ôw /ô‚ -ô+õ*ö«)ö¼(öÎ'÷æ'õñ'õñ'õñ'õñ'õñ£¨–²ˆ»{ÅoÎb×VÞNðJúFûBû"?ü*;ý28ý95þ?2þF0ÿL.ÿS+ÿZ)ÿb'ÿk$ÿv#ÿ‚!ÿ ÿ ÿ« ÿº ÿÉ ÿÝ ÿÝ ÿÝ ÿÝ ÿÝ ˜°Šº|ÄoÍbØUÞIäDû?ÿ;ÿ8ÿ4ÿ$1ÿ+-ÿ1*ÿ6'ÿ<%ÿB#ÿH ÿNÿUÿ]ÿgÿrÿÿŒÿšÿ¦ÿ²ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼Œ¸}ÂoÌbØTßGå>ñ9ÿ4ÿ 0ÿ,ÿ)ÿ&ÿ""ÿ'ÿ,ÿ1ÿ6ÿ<ÿAÿHÿOÿW ÿa ÿl ÿy ÿ†ÿ’ÿÿ¥ÿ¥ÿ¥ÿ¥ÿ¥ÿ11ÿ6.ÿ:/ÿ;2ÿ;9ÿ;Cÿ9Oÿ8\ ÿ6h ÿ4tÿ2€ÿ1‹ÿ0”ÿ0›ÿ/¢ÿ/¨ÿ.¯ÿ.µÿ.¼ÿ.Åÿ.Ïÿ.àÿ.ëÿ.ôÿ.üü/ÿû/ÿú.ÿú.ÿú.ÿú.ÿú.ÿú.ÿÿ3/ÿ9,ÿ=-ÿ>0ÿ?6ÿ?Aÿ=Mÿ€ÿ<Šÿ<’ÿ;šý: ü:§û9­ú9´ù9¼ø9Æö9Óò9äï9ðì:úê9ÿ!é9ÿ#è9ÿ$ç9ÿ$ç9ÿ%ç9ÿ%ç9ÿ%ç9ÿ%ÿ<'ÿC#ÿH"ÿL&ÿO/ÿP9ÿNCÿLO ÿJ[ÿHfÿEqüC|úB†øAŽö@–õ?ó?£ ò>ª ñ>±!ð>¹!î>Ã!í>Ï!ê>â!æ?ï!ã>ù#á=ÿ%ß=ÿ'Þ=ÿ(Ü=ÿ(Ü=ÿ(Ü=ÿ(Ü=ÿ(Ü=ÿ(ÿ?#ÿG ÿLÿQ$ÿU,ÿV5ÿU?ÿSJ þPVúNböKmóIwðGîFŠìE’ ëD™!éC "èC§#æC®#åB¶$äBÀ$âCÌ$ßCà$ÛCí%ÖBø(ÓBÿ*ÑBÿ+ÏAÿ+ÎAÿ,ÎAÿ,ÎAÿ,ÎAÿ,ÎAÿ,ÿC ÿJÿPÿW!ÿ[(ÿ\2ÿ[;üYF öVQñT]íQhéOræM|äK… âJŽ!àI•#ÞHœ$ÜG£&ÚG«'ØF³(ÕF¼(ÓFÈ)ÑFÜ*ÍGì*ÉF÷,ÇFÿ.ÄFÿ/ÃFÿ/ÂFÿ/ÁFÿ/ÁFÿ/ÁFÿ/ÁFÿ/ÿFÿNÿVÿ\ÿ`%ÿb-üb7ô`Aî]L èZXãXcßUnÛRwØP€"ÔO‰$ÑM'ÏL—(ÍLž*ËK¦+ÉJ­,ÇJ·-ÆJÂ.ÄJÑ/ÁKç/½Jô1»Jÿ2¸Jÿ2·Kÿ3¶Kÿ3¶Kÿ3¶Kÿ3¶Kÿ3¶Kÿ3ÿJÿRÿZÿaÿf!þh)ôh2ìg<ådH ßaTÙ^^Ò[iÎXr ËV{$ÈTƒ'ÅR‹*ÃQ’,ÁP™.¿O¡/½O¨1»N±2¹N¼3·NÊ4µNá4²Nñ5¯Oý6­Oÿ6¬Oÿ6«Oÿ6«Oÿ6«Oÿ6«Oÿ6«Oÿ6ÿMÿUÿ_ÿfÿkøm$ín,åm6ÝkCÔgOÍdZÈ`dÄ]m"Á[v&½Y~)»W…,¸V/¶U”1´Tœ3²S¤4°R­6­R·7¬RÅ8ªRÚ8§Rí9¥Sú9£Sÿ9¢Sÿ9¡Tÿ8¡Tÿ8¡Tÿ8¡Tÿ8¡Tÿ8ÿOÿYÿcÿjÿoòræt&Ýt1Óq?ËmKÅiVÀf`»ci"·`q'´^y+±\€.®[ˆ1¬Y3ªX—5§WŸ7¥W¨9£V³:¡VÀ;ŸVÒ–ZÌ?”Zå?’[õ>‘[ÿ>\ÿ=\ÿ<\ÿ<\ÿ<\ÿ<\ÿ<ÿUÿ_ ÿiÿqõwæ{Ù}Î}*Å{9¾wE·tP±pY­mb"¨ji'¥hq,¡fx/žd€3›b‡6˜a8–`˜;“_¡=‘^«?^¸@^ÈA‹^áAŠ_ó@‰_ÿ?‰`ÿ>ˆ`ÿ>ˆ`ÿ=ˆ`ÿ=ˆ`ÿ=ˆ`ÿ=ÿWÿb ÿl øt éz Þ~ ÒÈ'À6¸|B ²xM¬uV§r_"¢of'žln,›ju0—h|3”g„6‘eŒ9Žd•<Œcž>‰b¨@‡bµB…bÅB„bÞCƒcñB‚cýA‚dÿ@‚dÿ?‚dÿ?‚dÿ?‚dÿ?‚dÿ?ÿYÿd ÿn êwÛ}Ô‚ ̄Å$»ƒ4³€@ ­|K¦yT¡v\!œsd&˜qk+”or/‘my3Žk6‹j‰9ˆh’<…g›?‚f¦A€f²C~fÁD}fÙD|gïC|güA|hÿ@|hÿ@|hÿ?|hÿ?|hÿ?|hÿ?ÿ[ ÿg ÷qÞzԀ΅ LJ¾ˆ"¶‡1¯„> ¨I¢}RœzZ —wa&“uh+so/‹qw3ˆo~6…n†:‚m=k™?|k£Byj°Cxj¿DvjÔEvkíCvkûBvkÿAvlÿ@vlÿ@vlÿ@vlÿ@vlÿ@ÿ] ÿiìtÚ|ЃɈʺ‹ ²Š/«ˆ< ¤…GP˜~X“|_%Žyf*Šwm.†ut2‚t|6r„9|q=yp–@vo¡Btn®Drn½EpnÑEpoëDpoúCqoÿAqoÿ@qpÿ@qpÿ@qpÿ@qpÿ@ÿ_ÿkávԈŋ¾ µ®Ž-¦Œ: Ÿ‰E™†N“ƒVŽ€]$‰~d)…|k-zr2}xy5zw‚9wv‹f~›Ac~¨Ca}¶D`}ÉD_}åC`}öB`}ÿAa}ÿ@a}ÿ@a}ÿ@a}ÿ@a}ÿ@ÿgãtÒLj¾¶•®˜¦šŸš&˜™3‘—? ‹•H…“P‘X z_%ve*r‹l.nŠs2jˆ{6f‡„9c†Ž<`…™?]„¦A[„´BZ„ÇCZ„ãBZƒôA[ƒÿ@[ƒÿ@[ƒÿ?[ƒÿ?[ƒÿ?[ƒÿ?ÿjÞx̓Œ¹“°˜§ Ÿ™Ÿ#“ž1Œ< …›F™Nz—Vu–]#p”c(l’j,h‘q0ey4aŽ‚7^Œ:ZŒ—=XŒ¤?V‹²@T‹Å@T‹á@TŠó?UŠþ?U‰ÿ>U‰ÿ>U‰ÿ>U‰ÿ>U‰ÿ>ïoÖ|ȇ½‘´˜ªœ ¢™¤“¥ Œ¤.…£9 ¢Cy LtŸSoZ jœa%fšh)c™o-_˜w0[—€4X–Š7U••9R•¢;P”°=O”Ã=O”ß³ú,=²ÿ-=±ÿ-=±ÿ-=±ÿ-=±ÿ-lj¹•¬¡¤–«Š²¸s¿jÄ gÅcÅ(_Å5[Å?WÅH TÄP PÄXMÄ_JÃfHÃnEÃxBÂ@ÃŽ>Ü<ë ;ü!:ÃÕ!;Âî!9Àù"8¿ÿ$8¿ÿ$8¿ÿ$8¿ÿ$8¿ÿ$½‘°›¤¢˜ªŒ±€¹u¿jÆ^ÌYÏWÐ!UÐ.QÐ9NÐCKÐLIÐSFÐ[ CÐc AÐk>Ðu<Ñ€:ÑŒ8Ñš6Ñ©5Ñ»4ÒÒ5Ðì4Ï÷3Îÿ3Îÿ3Îÿ3Îÿ3Îÿ³™¦¡š©Ž±¹uÀjÇ^ÍTÔLÝ JÝHÞ&FÞ2Dß<BßE?ßM=àU;à]9àf7ào 5áz 3ᆠ1á” 0â£.â³.ãÇ-ãã-àò,ßû,ßý,ßý,ßý,ßý¨ œ§°ƒ¸vÁjÉ^ÏSÕIÜEéBé@ê$=ê.:ë68ì>6ìF3íM1íU/î]-îe+îp)ï{(ï‰&ð—%ð§$ñ¸#ñÌ"òå"ðó"ïõ"ïõ"ïõ"ïõž¦‘¯„¸wÁjÉ]ÐQ×FÝ?ê<ö9ö6÷ 3÷(1ø0.ù6+ù=)úD'úJ%ûR#ûZ ücüný{þ‰þ˜ÿ¨ÿ·ÿÈÿàÿäÿäÿäÿä“®…·xÀjÉ]ÒPÙDß:ä5÷2ÿ .ÿ+ÿ(ÿ!&ÿ'#ÿ- ÿ3ÿ9ÿ?ÿEÿMÿUÿ_ÿjÿxÿ‡ÿ– ÿ¤ ÿ° ÿ¾ ÿ ÿ ÿ ÿ‡¶y¿kÉ^ÓPÛCà8å/ð+ÿ'ÿ$ÿ!ÿÿÿÿ#ÿ(ÿ-ÿ2ÿ8ÿ? ÿF ÿOÿYÿeÿrÿÿÿ›ÿ§ÿ©ÿ©ÿ©ÿ©ÿ,/ÿ0,ÿ2,ÿ30ÿ16ÿ0Aÿ/Mÿ-Zÿ+fÿ)sÿ(~ ÿ'ˆ ÿ'‘ ÿ'™ ÿ&Ÿ ÿ&¥ÿ&«ÿ&±ÿ&¸ÿ&Àÿ&Éÿ&×ÿ&æÿ&ðþ&ùû'ÿù'ÿù&ÿø&ÿø&ÿø&ÿø&ÿø&ÿÿ.,ÿ3)ÿ5*ÿ6-ÿ64ÿ5?ÿ3Kÿ2Wÿ0dÿ.p ÿ,{ ÿ,… ÿ+Ž ÿ+–ÿ*ÿ*£ÿ*©ÿ*¯ÿ)¶ÿ)½ÿ)Çÿ)Óþ)ãû*ïø*øö+ÿô*ÿô*ÿó*ÿó)ÿó)ÿó)ÿó)ÿÿ1)ÿ6&ÿ9&ÿ:)ÿ;2ÿ;=ÿ9Hÿ7Tÿ5`ÿ3l ÿ2w ÿ0‚ ÿ0‹ÿ/“ÿ/šÿ. ÿ.¦ÿ.¬ÿ.³þ.ºý.Äû.Ïø.áõ.íñ/÷ï/ÿî.ÿí.ÿì.ÿì.ÿì.ÿì.ÿì.ÿÿ4&ÿ9#ÿ=#ÿ>&ÿA/ÿA9ÿ?Eÿ=Pÿ;\ÿ9h ÿ7s ÿ6~ÿ5‡ý4ü4–ú3ù3£ø3©÷3°ö3·ô3Àó3Ìð3Þí3ëé4öç3ÿæ3ÿä2ÿä3ÿã2ÿã2ÿã2ÿã2ÿÿ8#ÿ= ÿAÿE#ÿG,ÿG6ÿF@ÿDLÿAXÿ?d û>où–å>œã=£â=ªà=²ß=»Ý=ÆÛ=ØÖ=éÒ=õÎ=þÌ<ÿ Ë<ÿ!É<ÿ!É<ÿ!É<ÿ!É<ÿ!É<ÿ!ÿ?ÿEÿKÿPÿS$ÿT-ÿS7÷QBñNMìLZ èJeåHoâGyßE‚ÝDŠÚC‘ØB™ÕBŸÓA¦ÑA®ÏA·ÎAÁÌAÐÉBåÅBó!ÂAþ#ÀAÿ$¾Aÿ$½Aÿ%½Aÿ%½Aÿ%½Aÿ%½Aÿ%ÿBÿIÿPÿVÿY ÿZ(÷Z2ïX=èUIãSU ÞQ`ÙNjÔLtÐK|ÎI„ÌHŒÊG“ÈGšÆF¡!ÄF©"ÂE±#ÁE¼#¿EÉ$½Fß%¹Fï&¶Fû'´Fÿ(³Fÿ(²Fÿ(±Fÿ(±Fÿ(±Fÿ(±Fÿ(ÿFÿMÿUÿ[ÿ^ù`#ï`,æ^6ß\DØYP ÑW[ÌTeÈRnÅPwÃOÀN†¾MŽ!¼L•#ºKœ$¸J¤&¶J¬'´J¶(³IÃ)±IÖ)®Jê*«Jø+©Jÿ+¨Kÿ+§Kÿ+§Kÿ+§Kÿ+§Kÿ+§Kÿ+ÿIÿPÿYÿ_ÿcòeçe%Þd1Ôb?Í`K Ç]VÂZ`¾Xi»Vq¸Ty¶S"³Rˆ$±P&¯P—(­OŸ)«N¨+©N²,§N¾-¦NÎ.£Næ.¡Oõ.ŸOÿ.žOÿ.Oÿ.Pÿ.Pÿ.Pÿ.Pÿ.ÿLÿT ÿ]ÿcùgëißjÓj,Ëh;ÅeG ¿bRº`\¶]e²[m¯Yu!¬X|#ªVƒ&§U‹(¥T“*£S›,¡S£.ŸR­/R¹0›RÉ1™Râ1—Sò1–Sÿ1•Tÿ1”Tÿ0”Tÿ0”Tÿ0”Tÿ0”Tÿ0ÿOÿX ÿ` ûf ðk ämÖnÌo(Äm7½kD ·hO²eX®baª`i§^p!¤]x%¡['ŸZ‡*œYŽ,šX—.˜W 0•Vª2“Vµ3‘VÅ4VÝ4ŽWð4Wý3ŒXÿ3ŒXÿ2ŒXÿ1ŒXÿ1ŒXÿ1ŒXÿ1ÿQ ÿ[ ÿcëjÝnØq ÏrÆs%¾r4·pA±mL¬jU§g^£ee cm"œat%š`{(—^ƒ+”]‹-’\“0[œ2Z¦4‹Z²5‰ZÁ6‡ZÖ6†[í6…[û5…\ÿ4„\ÿ3„\ÿ3„\ÿ3„\ÿ3„\ÿ3ÿS ÿ]õfßmÕrÐu ÉvÀw"¸v1±t>«qI¦nR¡l[ib™gj"–fq%“dx(c+a‡.Š`0ˆ_™3…_£5ƒ^¯6^¾8€^Ñ8_ê7~_ú6~`ÿ5~`ÿ4~`ÿ4~`ÿ4~`ÿ4~`ÿ4ÿUÿ`èiÚpÐuÊxÃz»{³z/¬x<¦uF ¡sPœpX—n`“kg!jn%hu(Šg|+‡f„.„d1c–4c¡6|b­7zb»9ybÎ9xcè8xcø7xdÿ6xdÿ5xdÿ5xdÿ5xdÿ5xdÿ5ÿWÿbálÔsËxÅ{¾} ¶~¯~,¨|9¡yD œwN—tV’r]Žpd Šnk$‡lr(„kz+j‚.~iŠ1{h”4xgŸ6vfª8tf¹9sfË:rfæ9rg÷8rgÿ7rhÿ6rhÿ5rhÿ5rhÿ5rhÿ5ÿYöeÝnÏvÇ{À¹€ ±‚ª‚*£€7}B —{K’xTv[‰tb …ri$qp'~ow+{n.xmˆ1vl’4skœ6pj¨8nj·:mjÉ:ljä:mkõ8mkÿ7mkÿ6mkÿ6mkÿ6mkÿ6mkÿ6ÿ[ëgÙqÌyÃ~»‚´„ ­…¦…(Ÿ„5™‚@ “I}R‰{Y„y`€wg#|un'ytu*vs}.sr†1pq4mp›6ko§8ioµ:hoÇ:goâ:goô8hoÿ7hoÿ6hoÿ6hoÿ6hoÿ6hoÿ6ÿ^äjÓtÈ|¿·…¯‡¨‰¡‰%›ˆ3”†> Ž„G‰P„W~^{|e"xzl&tys*qx{-nw„0kvŽ3hu™6ft¥8ds³9bsÄ:bsà:bsó8csÿ7csÿ6csÿ6csÿ6csÿ6csÿ6ÿaàmÏwÄ»…³‰ª‹£Œœ#–Œ0‹<ЉE„‡N…U{ƒ\w‚c!s€j%oq)l}y,i|‚/f{‹2cz—5`y£7^y±8]yÂ9\yÝ9]yñ8]xþ7^xÿ6^xÿ5^xÿ5^xÿ5^xÿ5õdÜpÊzÀƒ¶‰®¤‘—’ ‘‘.Š9„ŽC Lz‹Su‰Zqˆa n†h#j…o'g„w+cƒ.`‚‰1]”3[€¡6Y¯7WÀ8WÚ7Wð7X~ý6X~ÿ5X~ÿ5X~ÿ5X~ÿ5X~ÿ5éhÔtÆ~»‡²¨‘ž”––‘—‹—+…–7”A y“It’QpXl_hŽf!eŒm%a‹t(^Š},[‰‡/Xˆ’1U‡Ÿ3S‡­5R‡¾5Q‡Ö5Q†î5R…û4R…ÿ4R…ÿ3R…ÿ3R…ÿ3R…ÿ3ãlÎyÁƒ¶‹¬‘¢•—™› Š„'~œ4y›>sšG o™Oj˜Vf—]c•c_”j"\“r%Y’{(U‘…+R‘.P0N«1L¼2LÓ2Lí2LŽú2Lÿ1LŒÿ1LŒÿ1LŒÿ1LŒÿ1ÜqÈ~»ˆ±‘¦–œšŸ‡¢£|¤#w¤0r£;m¢D h¡Ld T`ŸZ]žaYhVp!Sœy$P›ƒ'MšŽ)Jš›,Hš©-G™º-FšÐ-F˜ë-F—ù.F–ÿ.F–ÿ.F–ÿ.F–ÿ.F–ÿ.ÑwÁ„¶Žª• ›•ŸŠ¤}©w«s«o¬,j«7e«AaªI ]©QZ©XW¨_S§fP§nM¦vJ¥!H¥Œ$E¥™&C¤¨'B¤¸(A¤Î'A£ê'@¢ø(@¡ÿ)@ ÿ)@ ÿ)@ ÿ)@ ÿ)É~º‹¯”£š˜ ¥‚ªu°l³ i´e´'a´3^´=Z´FV³N S³U P³\M²cJ²kG±tE±~B°Š@°—>°¦ <°· <°Ì <¯è ;®÷!:­ÿ":¬ÿ#:¬ÿ#:¬ÿ#:¬ÿ#À†³’§™œŸ¦„¬y±m·a¼]½Z¾ X¾-T¾8Q¾BN¾JL¾RI¾Y F¾` D¾hA½q?½|<½ˆ:½•8½¤7½µ6½Ê7¼ç5»ö5ºÿ4¹ÿ4¹ÿ4¹ÿ4¹ÿ¸ª˜ŸŸ“¦‡¬{³o¹c¾XÄPÈ MÈLÉ%JÊ1GÊ;EÊDCÊLAÊT>Ê\<Êd:Ën 8Ëx 6Ë… 4Ë’ 2Ë¢1˲0ÌÇ0Ëå/Éõ.Èý.Çÿ.Çÿ.Çÿ.Çÿ®—¡ž•¥‰­|´p»dÁYÆNËEÐ>Õ=Õ<Ö&;×19Ø;8ÙE6ÙM5ÙV3Ú^1Úh0Ûs.Û,Û*Ü)Ü­(ÝÁ(ÝÞ'Ûï&Ùù&Øþ &Øþ &Øþ &Øþ ¤˜¥‹­~´q¼eÃYÉMÍCÓ:Ù5ä 3ä1ä 0å*.æ3-æ<+çD*çL(èT'è]%ég#és"ê ê‘ë¡ë²ìÇìáêñéùéùéùéù𤬵r½eÅYËLÐAÕ8Ü/á-ñ +ñ(ò&ò$$ó+"ô2!ô9õAõIöQ÷Z÷eørùù’ú¢ú³ûÆûÝûéûéûéûé«´s½fÆYÍKÓ@Ù5Þ,ã&ñ$þ !ÿÿÿÿ"ÿ(ÿ.ÿ5ÿ<ÿCÿL ÿV ÿb ÿoÿÿÿ ÿ®ÿ¼ÿÇÿÇÿÇÿǃ´u½gÆZÏKÕ?Ü3á)å!ìýÿÿ ÿÿÿÿ ÿ# ÿ(ÿ.ÿ5ÿ=ÿFÿQÿ]ÿkÿ{ÿ‹ÿ™ÿ¥ÿ¬ÿ¬ÿ¬ÿ¬ÿ',ÿ**ÿ+*ÿ*.ÿ&4ÿ%?ÿ#Kÿ!Xÿ dÿpÿ{ÿ…ÿŽÿ–ÿœÿ¢ÿ¨ÿ®ÿ´ÿ»ÿÃÿÎÿßÿëüõùþ÷ÿ÷ÿöÿ öÿ öÿ öÿ öÿ ÿ)*ÿ,'ÿ.'ÿ-*ÿ,2ÿ+=ÿ)Iÿ'Uÿ%aÿ#mÿ"xÿ"‚ÿ!‹ÿ!“ÿ!šÿ! ÿ!¥ÿ!«ÿ!±ÿ!¸ÿ!Áÿ!Ëü!Üù!éö!ôó"ýò"ÿ ñ"ÿ ñ!ÿ ð!ÿ ð!ÿ ð!ÿ ð!ÿ ÿ,&ÿ0$ÿ1#ÿ1&ÿ2/ÿ1:ÿ/Fÿ-Rÿ+^ÿ)iÿ(uÿ'ÿ'ˆÿ&ÿ&–ÿ&þ&£ ý&© ü&¯ û&¶ ú&¾ ø&È ö&Ù ò&è ï'ó í'ý ë&ÿ ê&ÿ é&ÿ è&ÿè&ÿè&ÿè&ÿÿ/#ÿ3 ÿ5ÿ7#ÿ8,ÿ87ÿ6Bÿ4Nÿ2Zÿ0eÿ.pþ-{ü-„ú,Œ ø,“ ÷,™ ö+  ô+¦ ó+¬ ò+³ ñ+» ï+Æ î,Ô ê,æ æ,ò ä,ü â,ÿá,ÿà,ÿß,ÿß,ÿß,ÿß,ÿÿ3ÿ7ÿ:ÿ= ÿ?(ÿ?2ÿ=>ÿ;Iÿ9Uû7a÷5lõ4vò3 ð2‡ ï2 í2– ì1œ ê1¢ é1© è1° æ1¹ å1à ã2Ñ ß2å Ü2ñØ1üÕ1ÿÒ1ÿÑ1ÿÐ1ÿÐ1ÿÐ1ÿÐ1ÿÿ7ÿ;ÿ?ÿCÿF$ÿF.ÿD9üBDö?Pñ=\íìFJçDVãCbßAl Ü@u Ù?~ Õ>†Ó=Ñ=”Ï<›Í<¢Ì<©Ê;±È;»Ç;ÈÅ<ÜÁ<í¾<ù»<ÿº<ÿ¹<ÿ¸<ÿ¸<ÿ¸<ÿ¸<ÿÿ>ÿDÿJÿOÿQûR#ñQ-éO8âMEÜKQÖI\ÑGf ÎFpËExÈD€ÆC‡ÄBŽÃB•ÁAœ¿A¤½@¬¼@¶º@¸@ÒµAè²Aö°Aÿ®Aÿ­Aÿ¬Aÿ¬Aÿ¬Aÿ¬AÿÿBÿG ÿOÿSÿVóWèV%àU1×S?ÏRLÊPW ÆNa ÃLjÀJr½Iz»H‚¹G‰·GµF—³FŸ±E§°E±®E¼¬E̪Eã §Fó!¥Fÿ!£Fÿ"¢Fÿ!¢Fÿ!¢Fÿ!¢Fÿ!¢Fÿ!ÿEÿK ÿS ÿW ùZë[ßZÔZ+ÌZ;ÆXHÁVS ¼T\ ¹ReµPm³Ou°N|®M„¬L‹ªK’¨Jš¦J£!¤I¬"£I¸#¡IÆ$ŸJÞ$Jð$›Jý%™Kÿ$™Kÿ$˜Kÿ$˜Kÿ$˜Kÿ$˜Kÿ$ÿH ÿOÿVõ[ é^ ä^ Õ_Ë`'Ä_6¾^C¸[N ´YX°Wa¬UiªTp§Sx¥R¢Q† PŽ žO–"œNŸ#šN¨%˜N³&—NÂ'•NÖ'“Nì'‘Oû'Oÿ'Pÿ&Pÿ&Pÿ&Pÿ&Pÿ&ÿJ ÿSøZâ_ÚbÔc ÍcÄe#¼e2¶c@±aK ¬^T¨\]¥[e¡YlŸXsœVzšU‚ ˜TŠ"•T’$“S›&‘R¥'R°)R¾*ŒRÐ*ŠSé*‰Sù)ˆTÿ)‡Tÿ(‡Tÿ(‡Tÿ(‡Tÿ(‡Tÿ(ÿLÿVé]ÜcÑgÌhÆh½j ¶i/°h<ªeG ¥cQ ¡aZ_aš^i—\p•[w’Z~!Y†#XŽ%‹W—'‰W¡)†V­+…Vº,ƒVÌ,‚Wæ,W÷+€Xÿ*€Xÿ*€Xÿ)€Xÿ)€Xÿ)€Xÿ)ÿOýYâ`ÕgÌjÆlÀl·m°n,ªl9¥jD hN ›fW—d^”be‘`lŽ_s‹^{!‰]‚$†\‹&„[”([ž*Zª,}Z·-|ZÉ.zZã.z[õ-z\ÿ,y\ÿ+z\ÿ*z\ÿ*z\ÿ*z\ÿ*ÿQò[ÞdÏjÇnÀpºp ²q«q)¥p7ŸnBšlK –jT’h\Žfc‹eiˆcp…bx!‚a$€`ˆ&}_‘){_œ+x^§-v^µ.u^Æ/t^á/t_ó.t_ÿ,t`ÿ+t`ÿ+t`ÿ+t`ÿ+t`ÿ+ÿSè^ÙgËmÃq»sµs ­u§u'¡t4›r?•pI ‘nRŒlY‰j`…ig‚hnfu!}e}$zd…&wd)ucš+rb¥-pb³/obÄ/nbÞ/ncò.ncþ-ncÿ,ncÿ+ncÿ+ncÿ+ncÿ+ÿUå`ÓiÈp¿t·w°w¨x¢y$œx2–v=‘tG ŒrOˆpW„o^€md}lkzks wjz#tiƒ&rh)og—,mg£.kf±/ifÁ0ifÛ0igð/igý-igÿ,jgÿ+jgÿ+jgÿ+jgÿ+þXácÏlÄs»x³z«z¤{ž|"˜|/’z;ŒxE ‡wMƒuUs\{rbxpiuop rnx#om&ml‹)jl–+hk¡.fk¯/dj¿0ckØ0ckï/dkü-dkÿ-ekÿ,ekÿ,ekÿ,ekÿ,ô[ÝfËoÀv·{¯~¦~Ÿ™€“€-9ˆ}C ƒ{K ~zSzxZvwasugptnmsv"jr&hq‰(ep”+bp -`o­/_o½/^oÔ/^oí/_oû-_oÿ,`oÿ,`oÿ,`oÿ,`oÿ,ë^ØiÇr¼y³«‚¡‚™ƒ”„Ž„+ˆƒ6ƒ‚@~€I yQu}Xr|_n{ekzlhyt"ex}%bw‡'`v’*]už,[u«.Zt»/YuÑ/Ytì.Ytú-Ztÿ,Ztÿ+Ztÿ+Ztÿ+Ztÿ+æaÑmÃv¹}¯ƒ¦†œ†”ˆ މ‰‰(ƒ‰4~‡>y†G t…Op„Vm‚]icf€jcr `~z#]}„&Z|)X{œ+V{©,T{¹-S{Î-Tzê-Tzù,Tyÿ+Uyÿ*Uyÿ*Uyÿ*Uyÿ*áeÌq¿z´‚«‡¡Š•‹ ‡Ž‚$}1xŽ;sD oŒL kŠTg‰Zdˆaa‡h^†p[…x!X„‚$U„&Rƒš)P‚§*O‚·+N‚Ì+N‚è+Nø*O€ÿ*O€ÿ)O€ÿ)O€ÿ)O€ÿ)ÛjÇuº°‡¦Œœ‘†“€”{•!w•-r•8m”Bi“J e’Qb‘X^_[fXŽmUŽvR€!OŒ‹#M‹˜%K‹¥'I‹µ(H‹Ê(HŠç'I‰÷(Iˆÿ'I‡ÿ'I‡ÿ'I‡ÿ'I‡ÿ'ÑoÁ{µ„«Œ •”‰—~šw›sœo)kœ5fœ?b›G_šO \šVX™\U˜cS˜kP—sM–}J•‰G••!E•¤#D”³#C”È#C”å#C’õ$C‘ÿ$Cÿ$Cÿ$Cÿ$Cÿ$Êu»°‹¤‘š•™ƒt¢n£ j¤f¥%c¥1_¤;[¤DX¤KU£S R£Z O¢aM¢hJ¡qG {D †BŸ“@Ÿ¢>Ÿ²=ŸÆ=Ÿã=ô=œÿ<›ÿ<›ÿ <›ÿ <›ÿ Â|µˆ©ž–“›‡Ÿ{¤o¨c¬_­\­Z®+W®6T®@Q­HN­OK­W I­^ F¬f D¬nA¬x?«„<«‘:« 9«°8«Ã8ªá7©ó7§þ6¦ÿ6¦ÿ6¦ÿ6¦ÿº„®¢–—›‹¡¦s«g¯Z´S¶ Q·O·$M¸0J¸:H¸CF¸KD¸RA¸Z?¸b=¸k :¸u 8· 6·Ž4·3·­2·Á1·Þ1¶ò0´ü0³ÿ0³ÿ0³ÿ0³ÿ²Ž¥•š›Ž¢‚¨u­i³^·S»GÀCÂBÂ@Ã'?Ã2>Ä<<ÄD:ÄM8ÄU6Ä]5Äf3Åp1Å|/ÅŠ-Åš+Ū*ž*ÅÚ*Äð)Âû (Áÿ (Áÿ (Áÿ (Áÿ ¨•›‘¢„©x¯kµ_»T¿IÃ?È6Í 3Î2Ï1Ï'0Ð1/Ð:.ÑC-ÑL+ÒU*Ò_(Ói'Óv%Ó„$Ô”"Ô¦!Õ¹!ÕÒ Óë ÒöÑÿÑÿÑÿÑÿŸ›”¢‡©y±m¸`¾TÃIÇ>Ë5Ð-Õ%Û $Þ#Þ"ß%!à. à7á@áJâSã^ãjäxäˆå𿬿ÀçÝåïãúãúãúãú–¢‰©{±n¹aÀTÆHÊ=Ï3Ó*Ù"Þë ìííî&î-ï5ð=ðFñPò[òi óx ôŠ õœ õ® ö öÙõíõíõíõí‹©}²oºbÂUÉGÎ;Ò1Ø'Ýáèøú ûüü ý# ý) þ0ÿ8ÿAÿLÿXÿfÿwÿ‰ÿ›ÿ«ÿ»ÿÎÿÏÿÏÿϲqºcÃVËHÑ:Ö/Ý%áåé÷ÿ ÿ ÿ ÿÿÿÿÿ#ÿ*ÿ2ÿ<ÿGÿTÿcÿsÿ…ÿ—ÿ¤ÿ²ÿ²ÿ²ÿ²ÿ")ÿ#'ÿ#(ÿ +ÿ1ÿ=ÿIÿVÿbÿnÿxÿ‚ÿ‹ÿ’ÿ™ÿžÿ¤ÿ©ÿ¯ÿ¶ÿ½ÿÇÿÔýåúñ÷úõÿôÿôÿôÿôÿôÿôÿÿ$'ÿ&$ÿ&$ÿ$'ÿ"/ÿ :ÿFÿSÿ_ÿjÿuÿÿˆÿÿ–ÿœÿ¡ÿ§ÿ­ÿ³þ»ýÅúÑ÷äôïñúïÿîÿîÿíÿíÿíÿíÿÿ'#ÿ) ÿ) ÿ(#ÿ)-ÿ'7ÿ%Cÿ#Oÿ![ÿfÿqÿ{ÿ„ÿŒþ“ü™ûŸú¤ùª÷±ö¹õÂóÎðáìîéùèÿæÿåÿåÿåÿåÿåÿÿ+ÿ-ÿ-ÿ. ÿ/)ÿ/4ÿ,?ÿ*Kÿ(Wÿ&bý%mú$wø#€ö#ˆõ#ó#•ò#›ñ#¡ï#¨î#®í#¶ë#¿ê#Ìç#àã$íà$ùÞ$ÿÜ$ÿÛ$ÿ Ú$ÿ Ú$ÿ Ú$ÿ Ú$ÿ ÿ.ÿ1ÿ2ÿ5ÿ6%ÿ6/ÿ4:ÿ1Fû/R÷-]ó,hð+rî*{ì*„ê*‹è*’ç)˜æ)žä)¥ã)¬á)´à*½Þ*ÊÛ*ÞÖ*íÒ*ø Ï+ÿ Í*ÿ Ì*ÿ Ë*ÿ Ë*ÿ Ë*ÿ Ë*ÿ ÿ2ÿ5ÿ8ÿ;ÿ= ÿ<*þ;5÷9Añ6Mì4Xè3cå2mã2và1Þ1‡Ü0ŽÚ0•Ø0›Ö/¢Ô/©Ò/±Ð/º Ï0Æ Í0Ø É1ê Æ1÷ Ã1ÿÁ1ÿÀ1ÿ¿1ÿ¿1ÿ¿1ÿ¿1ÿÿ6ÿ9ÿ>ÿAÿCÿB#õA.í>:ç=Fát Ã={ Á=ƒ ¿<Š ½<»<—º;Ÿ¸;§¶;°µ;»³;ɱ;à®<ñ«<ý©<ÿ¨<ÿ¨<ÿ§<ÿ§<ÿ§<ÿÿ= ÿBÿH ÿK úLìLáJÖJ,ÎK;ÉJHÄHSÀG]¼Ff ºDn ·Cv µC}³B„±A‹°A’®@š¬@¢ª@«©@¶§@Ħ@Ù£Aí AûŸAÿžAÿAÿBÿBÿBÿÿ@ ÿFÿLñOæP ãO ÕOÌQ'ÅQ6¿PCºON¶MX³La °Ji ­Ip«Hx©G§G†¥F£F•¡EžŸE§žE²œE¿šEјEé–Fø•Fÿ”Fÿ“Fÿ“Gÿ“Gÿ“GÿÿBÿJòPáTÙVÓU ÌUÃV"¼W2·V?²TJ­STªQ] §Pd¤Nl¢MsŸLzL›K‰™J‘—J™•I£“I®’I»IÌŽJåJö‹Kÿ‹KÿŠKÿŠKÿŠKÿŠKÿÿEÿMåTÙYÏ[Ê[ÄZ»[µ\.¯[;ªZF¦XP¢VY ŸU`œSh™Ro—Qv•P}“P„OŽN–ŒNŸŠNªˆN· ‡NÈ!…Nâ!„Oó ƒOÿ ƒOÿ‚Pÿ‚Pÿ‚Pÿ‚PÿÿGóQßXÑ]É`Ã`½^ µ`®a*©`7¤^CŸ]M›[U ˜Y]•Xd’WkVrUy‹TˆS‰†S’„Rœ‚R§!€R´"RÄ#}RÞ#|Sñ"|Sþ!{Tÿ!{Tÿ {Tÿ {Tÿ {Tÿ ÿJéTÚ\ÌaÃd¼d¶c ¯d©e'£d4žc@™aJ•_R ‘^ZŽ]a‹[h‰Zo†Yv„X}X†W}V™ {V¤"yV±#wVÁ$vVÚ$uWï$uWý#uXÿ"uXÿ!uXÿ!uXÿ!uXÿ!ÿMåWÓ_Èd¿g·h±g©h£i$žh2™g=”eGdO ŒbW ˆa^…_eƒ^l€]s}]z{\ƒy[Œv[—!tZ¢#rZ¯$qZ¿%pZÕ%o[í%o[ü#o[ÿ"o[ÿ"o[ÿ!o[ÿ!o[ÿ!úOáZÏbÄg»k³l¬j¤kžl!™l/”k:iDŠhM †fU ƒe\€db}bizbpxaxu`€s_Šp_”!n^ #l^­%k^¼&j^Ñ&i^ì%j_û$j_ÿ#j_ÿ"j_ÿ"j_ÿ"j_ÿ"ðRÝ]ËeÀk·n¯o§n ošp”p,o8ŠmB†lK ‚jR ~iY{h`wffufnreupd~mcˆkc’"ibž$gb«%ebº&dbÏ&dbê&ebú$ecÿ#ecÿ"ecÿ"ecÿ"ecÿ"ëUØ`Èh¼n³q«s¢q›r•st*Šs6…r@pH}oP ymWvl^skdpjlmiski|hh†fg!dgœ#bf©%`f¹&_fÍ&_fè&`fù$`fÿ#`fÿ#afÿ"afÿ"afÿ"èXÓcÄk¹q°u§wžu–v w‹x'†w3v=|uFxsN urUqq\npckojinqfnzcmƒalŽ!_kš#]k§%[k·&ZkÊ&Zkç%[k÷$[jÿ#\jÿ"\jÿ"\jÿ"\jÿ"ã[ÎfÀn¶t¬y£{˜yz Š{…|$|1|{;wzDsyL pxS lwZivaguhdtoasx^r\qŒ Zq˜"Xp¦$Vpµ%UpÈ%Upå%Upö$Voÿ#Voÿ"Woÿ"Woÿ"Woÿ"ß_Êi¼r²x©}Ÿ’~Š„€€!{.w€9r€BnJk~Q h}Xd|_b{f_zm\yuYxWxŠTw–!Rv¤"Qv³#PvÆ$Pvã#Puõ#Quÿ"Qtÿ!Qtÿ!Qtÿ!Qtÿ!ØcÅm¸v®}¥‚šƒƒ„„}…y†u‡+q‡6m†?i…Ge„O bƒV _ƒ\\‚cZkW€sT}QˆO~”M~¢ K}±!J}Ä"J}á!K|ô!K{ÿ K{ÿ K{ÿ K{ÿ K{ÿ ÐgÀr´{ª‚ †•ˆ‡ˆ|ŠvŒrnŽ'jŽ2f<cD`ŒL\‹S Z‹Z WŠaT‰hQˆqOˆzL‡…J†’H† F†¯E…ÂE…ßE„òEƒþE‚ÿE‚ÿE‚ÿE‚ÿÊmºx¯¥‡š‹Žt‘n“ i”f•"c•.`•8\•AY”IV”PT“W Q“^ N’fL’nI‘xFƒDBž@­?À?Ü?ñ?Œý?‹ÿ?‹ÿ?‹ÿ?‹ÿÂsµ~ª‡ŸŒ”ˆ“{•l™e›`œ][ž)Xž4Už=REPMMTKœ[ Hœc Fœk C›uA›€>š<š›:š«9š½9šÙ9˜ï9—ü8–ÿ8•ÿ8•ÿ8•ÿ»z¯…¤Œ˜‘•šuh [¤V¥ S¦Q§#O§/L§8J§AH§IF§PC§XA§_?¦h=¦r :¦} 8¦Š 6¥™4¥©3¥»3¥Ô3¤î2¢û2¡ÿ2¡ÿ2¡ÿ2¡ÿ´‚¨Œ’’—†œy¡m¥a©U¬K¯G°E°D±'B±2A²;?²C=²K;²S9²[7²d5²n3²y1²‡/±–.²¦-²¸ ,²Ð,°ì +¯ù +®ÿ *­ÿ *­ÿ *­ÿ ­‹ ’•˜‰}£q¨d­Y±M´B¸;º 8»7¼5¼)4½23½;2½D1¾L/¾U.¾^,¾h*¾t)¾‚'¿‘&¿¢$¿´#¿Ë#¾è#¼÷"»ÿ"»ÿ"»ÿ"»ÿ¤’˜˜Œž€¥s«g°[µO¹D¼:À0Ä*Ç (È'É&É'%É0$Ê9#ÊB"ËK!ËU Ì_ÌlÍzÍŠÍœήÎÅÍäÌôÊüÊÿÊÿÊÿ›™Ÿ‚¦u­h³\¹P½DÁ9Ä0È(Ì ÐÕ ×ØÙ"Ù+Ú4Ú=ÛHÜSÝ_ÝmÞ~ß‘ठภàÒ ßí Þ÷ Ýû Ýû Ýû’Ÿ…§w®jµ]¼PÁDÅ8É.Í%ÑÕÚÞç ç è è! é) ê1 ê;ëEëQë^ënë€ê”ê§ë¼ëÒëéìïìïìy¯k·^¾QÅCÉ7Í-Ñ#ÖÛßã î ö öööõõ%õ.õ7öBöNö]önöö•÷§÷·øÇøÐøÐøÐ{¯m¸`ÀRÈDÍ7Ñ+×!Üàä çïúÿÿÿ þþÿÿ!ÿ)ÿ3ÿ>ÿKÿ[ÿlÿ€ÿ’ÿ¡ÿ­ÿ³ÿ³ÿ³ÿ&ÿ$ÿ%ÿ'ÿ.ÿ:ÿGÿ Sÿ _ÿ kÿ uÿ ÿ ‡ÿ Žÿ •ÿ ›ÿ  ÿ ¥ÿ «ÿ ±ÿ ¸ÿ Áþ Ìü Þù ëõ öó ÿò ÿñ ÿñ ÿñ ÿñ ÿñ ÿÿ#ÿ!ÿ!ÿ$ÿ,ÿ7ÿDÿPÿ\ÿgÿrÿ{ÿ„ÿ‹ÿ’ÿ˜ÿÿ£þ¨ü®ûµú¾øÉõÛòêîõìÿëÿêÿêÿéÿéÿéÿÿ"ÿ"ÿ!ÿ ÿ)ÿ4ÿ@ÿLÿXÿcÿnÿwþ€üˆúŽù•øšö õ¦ô¬ó³ñ¼ðÇíØéèæõäÿâÿáÿáÿàÿàÿàÿÿ%ÿ&ÿ$ÿ%ÿ&%ÿ$0ÿ!;ÿHÿTý_ùi÷sô|ò„ñ‹ï‘î—ìë£éªè±çºåÅãÕßèÜõØÿÕÿÔÿÓÿÒÿÒÿÒÿÿ)ÿ*ÿ)ÿ,ÿ,!ÿ,+ÿ)7ý'C÷%Oó#Zï"dì!né!wç!å!†ä!â ”á šß  Þ §Ü!¯Ú!¸Ø!ÃÕ!ÓÑ"çÍ"ôÊ#ÿÈ#ÿÇ#ÿÆ#ÿÆ#ÿÆ#ÿÆ#ÿÿ,ÿ.ÿ0ÿ3ÿ3ÿ2%ú00ò.<ì,Iç*Uã*_à)iÝ)rÚ(z×(‚Õ(‰Ó(Ñ(–Ï(œÎ(£Ì(«Ê(³É(¾Ç(ÌÅ)âÁ*ñ¾*þ¼*ÿº*ÿº*ÿ¹*ÿ ¹*ÿ ¹*ÿ ÿ0ÿ2 ÿ6 ÿ8ÿ9ù7ï5(ç35à2BÛ2OÕ1ZÐ1dÍ0mË0uÉ0|Ç/ƒÅ/ŠÄ/‘Â/—Á/ž¿/¦½/¯¼/¹º/Ǹ0ݵ0î ²0û °0ÿ ®0ÿ ®0ÿ ­0ÿ ­0ÿ ­0ÿ ÿ3 ÿ6ÿ< ÿ> ý=ï<ä9Û9-Ò:<Í:IÈ9TÄ9^Á8g¿7o½7v»6}¹6„·6‹¶5’´5š ³5¡ ±5ª ¯5´ ®5Á ¬5Ô ©6ê ¦6ø ¥6ÿ£7ÿ¢7ÿ¢7ÿ¢7ÿ¢7ÿÿ7ÿ;ÿ@òBéB å?Ø>Î@'ÇA6ÂAD½AO¹@Y¶?a´>i±=q¯=x®< ¬<† ª; ©;• §; ¥;¦ £:°¢;¼ ;Íž;æ›<õš<ÿ™<ÿ˜<ÿ˜<ÿ˜<ÿ˜<ÿÿ:ÿ@ïEáHÙHÓF ÌEÄG"½H1¸H?³GJ°FT¬E]ªDd§Cl¥Bs £Bz ¡A  Aˆ ž@œ@˜š@¡˜@¬—@¸•@È“@á‘AóAÿAÿŽBÿŽBÿŽBÿŽBÿÿ<ùDäJØNÎOÉMÃK»MµN-¯N:«MF§LO¤KX¡J`žIg œHn šGu ˜F|–Fƒ”E‹’E”EŽE¨ŒE´‹EÄŠE܈Fð†Fý†Fÿ…Gÿ…Gÿ…Gÿ…Gÿÿ?ìHÝOÏSÆUÀS»Q ³R­S)¨S6£RBŸQKœPT™O\–Nc ”Mj ‘LqKxK‹J‡‰J‡Iš…I¥ƒI±‚IÀJÖJí~Kü~Kÿ}Kÿ}Kÿ}Kÿ}KÿÿCæLÖSÉXÀYºX´V ¬W¦X%¡X2W>˜VH•UQ’TXR_ ŒRf ŠQmˆPt…O{ƒO„NN—}N¡{M®zN½xNÑwNëwOúvOÿvOÿvOÿvOÿvOÿøFâPÐWÄ\»^´]®Z¦[ \"›\/—[;’ZEYM‹XUˆW\ †Vc ƒUjTq~Tx|S€zR‰xR”vRŸtR«rRºqRÍpRèpSùpSÿpSÿpSÿpSÿpSÿïIÝSËZÀ_·b¯a¨^¡_›`–`,‘`8^B‰]K…\R‚[Y €Z` }Yg{XnxXuvW}tW‡rV‘oVœnV©lV¸kVËjVæjW÷jWÿjWÿkWÿkWÿkWÿëLØVÈ^¼b³e«e£bœb–c‘d)Œc5ˆb?„aH€`P}_W z^] w]d u\ks\rp[{n[„lZjZšhZ§fZ¶eZÈeZäeZöeZÿeZÿeZÿeZÿeZÿèOÓYÄa¹f°h§iže—f ‘gŒh'‡g2ƒf=eF{dMxcT ub[ raa paim`pk_yi_‚g^e^˜c^¥a^´`^Ç`^ã`^õ`^ÿ`^ÿa^ÿa^ÿa^ÿäRÏ\Àd¶i¬l£l™i’j Œj‡k$‚k0~j:ziCvhKsgRpgY mf` kefhdnfdvdc€bc‹`b—^b¤\b²[bÅ[bá[bô[bÿ\bÿ\bÿ\bÿ\bÿàUË_½g²l©pŸo”lŒm†n‚o!}o-yo8unArmInlPkkW ik^ fjedilait_h~]g‰[g•Yf¢Wf°VfÃVfßVfóWfÿWfÿWfÿWfÿWfÿÛYÇbºj¯p¦sšsp‡qr|sxs*ts5ps?mrGjqNgqU dp\ boc_oj]nrZm|Xm†Vl“Tl Rk¯QkÁQkÜQkñRkþRjÿRjÿRjÿRjÿÔ\Ãf¶n¬t¢w–v‰uvzwvxry'oy2kx<hxDewLbwS_vZ ]ua ZuhXtpUsySs„QrOržMq­Lq¿KqÙLqðLpýMpÿMoÿMoÿMoÿÎ`¾j²r¨x{z„zz{t| o~l~$i/f9bB_~I]}PZ}W W|^ U|e R{nPzwNz‚KyŽIyœHx«Fx½FxÕFwïGvüGvÿGuÿGuÿGuÿÉeºo®w¤}˜‹~slƒ h„e… b†,_†6\†?Y…FW…NT…UR„\ Oƒc Mƒk K‚tH‚FŒDšB€©A€º@€ÒAíA~ûA}ÿA}ÿA}ÿA}ÿÂjµuª}Ÿ‚’ƒ…„y…j‰dŠ`Œ][Ž'XŽ2UŽ;SŽCPŽJNRLYIŒ`GŒh E‹r B‹}@Љ>Š˜<Ч;Џ:ŠÏ;ˆë;‡ú;†ÿ;†ÿ;†ÿ;†ÿ¼q¯{¥ƒ™‡Œˆ‰sŒe\“W• T–R–"P—-M—6K—?I—GG—NE–UC–]A–e>•o<•z :•‡ 8•• 6”¥ 5”¶4”Ì 4“é 4’ø4ÿ4ÿ4ÿ4ÿµxª‚žˆ“†Žym“a—U›MžIŸGŸF &D 0C¡:A¡B?¡I=¡Q;¡Y9¡a7 k5 v3 ƒ1 ’0 ¢. ³. É.Ÿç-÷ -œÿ -›ÿ -›ÿ -›ÿ ¯€£‰—Ž“•r˜fœ[ O¤E§>© <ª:ª9ª)8«27«;5«C4¬K2¬S1¬\/¬f-¬q+¬*¬Ž(¬ž'¬°&¬Å&«ä%©õ%¨ÿ%§ÿ%§ÿ%§ÿ§‰›‘”„™xžk¢_¦SªH­=°4³/µ-µ,µ +¶)*¶2)·:(·C'·L&¸U$¸_#¸k"¸x ¸ˆ¸™¹«¹À¸ß¶òµü´ÿ´ÿ´ÿŸ”•ˆ›{¡n¦b«V°J³?¶5¹,¼$¿ ÂÂÃ&Ã/Ä8ÄAÄJÅUÅaÆoÆÆ‘ǤǹÇÔÆîÄúÃÿÃÿÃÿ—–‹œ~¢q©d¯X´K¸@»5¾+Á#ÅÉÌÐ Ñ Ñ Ñ! Ñ* Ñ4 Ò> ÒI ÓU ÓbÓrÔ„Ô˜Ô«ÕÀÕÜÕíÕöÕöÕöŽ€¤s«f±Y¸L½?À4Ã*Ç!ÊÎÒ Ö ÛÜ ÜÝÞ Þ(ß1à<áGâTãcãtäˆä›å®åÁåÕæçæçæçƒ¤u¬h³Z»MÁ@Ä3È(ÌÐÔÙ Ýáäåæ çèéê%ë.í9ïEðSñdñvòŠóœó­ô»ôÈôÈôÈw­jµ\½OÄ@É3Í'ÑÖÜàãæêîîïð ñóôö ø*ú5ýCþRÿcÿvÿ‰ÿšÿ¦ÿ°ÿ°ÿ°ÿ#ÿ!ÿ!ÿ $ÿ +ÿ7ÿDÿQÿ]ÿhÿrÿ{ÿƒÿŠÿ‘ÿ–ÿœÿ¡ý¦û¬ù³÷»õÅóÑòäññïúîÿîÿíÿíÿíÿíÿÿ ÿÿÿÿ)ÿ 4ÿ AÿMÿYÿdÿnÿwÿ€ÿ‡ÿý“û™ùž÷¤õªó°ñ¸ïÂíÏëãêïèûçÿæÿæÿæÿæÿæÿÿÿÿÿÿ%ÿ0ÿ=ÿIÿ Uÿ `ÿ jý sû |ù ƒ÷ Šõ ô –ó ›ñ ¡ï §í ®ë ¶è Àæ Íä ââ ðß ûÞ ÿÜ ÿÜ ÿÛ ÿÛ ÿÛ ÿÿÿÿÿÿ"ÿ,ÿ8ÿDþPù[õfóoðwîì†êŒé’è˜æžå¥ã¬á´à¾ÞÌÚáÕðÒûÏÿÎÿÍÿÍÿÌÿÌÿÿ"ÿ"ÿ!ÿ"ÿ"ÿ 'ÿ2ø>òKîVê`çjärâzà‚ÞˆÜە֢ٛԩұлÎÉÌÞÈîÅûÃÿÁÿÀÿÀÿÀÿÀÿÿ&ÿ% ÿ( ÿ)ÿ(þ& ô$+ì!8æ DáPÝ[ÙeÕmÒuÐ}΃̊ËɗȞƥŠ­à ·Á ÄÀ!Ö¼"ê¹"ø¶"ÿµ#ÿ´#ÿ³#ÿ³#ÿ³#ÿÿ) ÿ*ÿ.ÿ/ ÿ-ó+è("à&/Ù&=Ò'JÍ'UÊ(_Ç(hÅ(oÃ'wÁ'~¿'„¾'‹¼'’»'™¹' ·'©¶(³´(¿³(ϰ)æ­)ö«*ÿ©*ÿ¨*ÿ¨*ÿ¨*ÿ¨*ÿÿ-ÿ0ÿ3ö4ï2 è.Ü,Ñ.(Ë/7Æ0DÁ0O¾0Y»0b¸0j¶/qµ/x³/±/†°/®.”­.œ«.¤©/®¨/º¦/ʤ0â¡0óŸ0ÿž1ÿ1ÿœ1ÿœ1ÿœ1ÿÿ0ÿ5ï8â:Û9Ö5 Î4Æ6"¿81º8?¶8J³8T°7]­7d«6l©6s¨6y¦5€¤5‡£5¡5—Ÿ5 ž5ªœ5¶›5Å ™5Ý –6ï ”6ý “7ÿ ’7ÿ ’7ÿ ’7ÿ ’7ÿ ÿ3ö:ä?ØBÎBÉ>Ä;»>µ?,±?:­?E©?O¦>X£=_¡=gŸ^qF\pMYpTWp[UobSoj Pns Nn~LmŠJm˜Il§Hl¸GlÍGlêHkúHkÿHjÿHjÿHjÿÇ^¸g¬n¡r“r‡qzqqrktfucv`w(^w3[x<YwCVwKTwRRvYPv`NuhKuq It| GtˆEs–Cs¥Bs¶AsËBrèBrøBqÿCpÿCpÿCpÿÁc³l¨s›vŽuvuvixcz^|\}Y~$W/U8S@PHN~OL~VJ~]H}eF}nC|y A|† ?{” >{£<{³<{È…v;…ƒ9…‘ 8„  6„± 6„Æ 6ƒä 6‚ö 6ÿ 6€ÿ 6€ÿ 6€ÿ ¶oªxŸ~ƒw€k‚^‡UŠNŒJŽHG%E/D8B@@G?O=V;_9h7s5€3Ž1ž0ޝ/ŽÃ/Žá/Œô/‹ÿ/Šÿ/Šÿ /Šÿ °v¥˜„Š„}…p‡eŠZŽO’F•A˜ >˜=™;™(:š19š:7šB6šJ5šR3šZ1šd/šo-š{,šŠ*šš)š¬(šÀ'™Þ'—ò'–ý'•ÿ'•ÿ'•ÿ©~ž…’‰„ŠvŒj^“T—I›@Ÿ7¢2£1£0¤!.¤*-¤2,¥:+¥C*¥K)¥T(¥^&¥i%¥v#¥…"¥– ¦¨¥»¥×¤ï¢û¡ÿ¡ÿ¡ÿ¢†—Œ‹}‘o”c˜WM¡C¥8¨0«(®$¯#¯!¯! °)°1°:±B±L±V±a²o²~²²¢²¶²Î±ë¯ù®ÿ®ÿ®ÿš’„—ušhŸ[£P¨E¬;°1²'µ ¸º¼¼¼½&½.½7¾A¾L¾W ¾e ¿t ¿† ¾™¾¬¾Â¾ß¾ð½ú½ü½ü“”‡™zŸl¥`ªS¯G³<¶1¸'»¾ÁÄ ÈÉÉÉÉ$Ê,Ê6Ê@ËLËYËhËy̌˟˳ËÈÌâÌïÌñÌñŠš|¡o§b­U³H¸;»0¾&ÁÄÈË ÎÒÓ ÓÔÕÖ"×*Ù4Ú?ÜKÜZÝjÝ}ݑݤ޶ÞÈÞÞÞâÞâ¢q©d°V·I¼<À/Ä$ÇËÏ ÒÖÛÞßà áâãåæ'è1ê=ìKìZílî€î”î¥î´îÂîÆîÆtªf²X¹KÀ=Å/É$ÍÑÖ ÛÞáåèéêëí ïðòô#÷.ù;ûJü[ýmý€þ“þ¢þ­þ¯þ¯ÿÿÿ ÿ ÿ(ÿ5ÿAÿNÿZÿeÿnÿwÿþ†üŒû’ù—øœ÷¢ö§õ­óµò½ñÉïÜîëí÷ìÿëÿêÿêÿêÿêÿÿÿÿ ÿÿ%ÿ1ÿ>ÿJÿVÿaÿkýsú{÷ƒõ‰ôò”ñ™ðŸî¤í«ì²êºèÆçÖåèäõãþâÿáÿáÿáÿáÿÿÿÿÿ ÿ "ÿ-ÿ9ÿFÿQþ\úföoòwï~í…ë‹ê‘è–çœæ¡ä¨ã¯á¸ßÃÝÑÛæÙó×ýÕÿÔÿÔÿÔÿÔÿÿÿÿÿÿÿ(ÿ 4ÿ AùLõWñaíjéræzäâ‡àߒݘ۞٥׭ԵÒÀÐÏÎåÌ ôÊ ÿÈ ÿÇ ÿÇ ÿÆ ÿÆ ÿÿÿ ÿ ÿÿÿ"û.ó:íFè Rå \á eÞ mÛ uØ |Õ ‚Ó ‰Ñ Ð •Î œÍ£Ë«É´ÈÀÆÏÃæÀõ½ÿ¼ÿ»ÿºÿºÿºÿÿ ÿÿÿ ÿøî&æ3à?ÚKÔVÐ_ÎhËoÉwÇ}ƄĊÑÁ˜ÀŸ¾§¼°»¼¹Ë·â³ò±ÿ¯ÿ®ÿ®ÿ­ÿ­ÿÿ"ÿ"ÿ%ü$÷! ìáØ*Ð8ËEÇPÃZÀb¾j¼qºx¹~·…¶Œ´“³š± £° ¬® ·¬!Æ«!ݧ"ï¥"ý£#ÿ¢#ÿ¢#ÿ¡#ÿ¡#ÿÿ%ÿ(ò*å+ß(Ü! Ò!É$$Ã%2¾&?º'J·'T´']²'d°'l®'r­'y«'ª'†¨'ާ'–¥'ž£(¨¢(³ (ÁŸ(Õœ)ìš*ú˜*ÿ—*ÿ—*ÿ–*ÿ–*ÿÿ(õ.å3Ú5Ð3Ì-Æ*¾-¸.,³/:¯/E¬0O©/X§/_¥/f£/m¡/s .zž..‰›.‘™.š˜.¤–/¯•/½“/Ï‘0è0ø1ÿ1ÿŒ1ÿŒ1ÿŒ1ÿÿ-ê5Ü:Î=Æ<À7»3 ³4®6'©74¥7@¢7JŸ7S6Z›6a™6h—5o•5u”5|’5„55–5 ‹5«Š5¹ˆ5ʇ6å…6ö„7ÿƒ7ÿƒ7ÿ‚7ÿ‚7ÿô2ã;ÒAÆD½C·?±; ª;¥<" =0=;™=E–=N”kÿ >kÿ º`­i n‘m„mxmlnap[rVt RuPvNw'Lw1Kx9IxAHxIFxPDwWBw_@wh>ws³<¬8§3¢24™5*•55’5@5I5P‹5W‰5^‡5d…4k„4r‚4y€4‚~4‹}4–{5¡y5®x5¾w6Ôv6ít7üt7ÿt7ÿt7ÿt7ÿç5Ò=ÃB¸D¬B¤>Ÿ9š8”::&;1Š;;‡;D„;L‚;S€:Z~:`}:g{:ny:uw:~v:ˆt:“r:žq:«o;»n;Ïm;êm<úl<ÿl<ÿl<ÿl<ÿâ9ÌB¾G±H¥FC—?’> ?‰?!…@-‚@7@@}@H{@Oy@Vw?]u?cs?jq?rp?zn?„l?k?œi?©h?¸g@Ìf@èf@ùe@ÿe@ÿe@ÿe@ÿÜ>ÇF¹K¬L J—G‘C‹C†C‚D~D){E4yE=vEEtDLrDSpDYnD`lCgkCoiCwgCfCdC™bC§aD¶`DÊ`Dæ_Eø_Eÿ`Eÿ`Dÿ`DÿÖAÃI¶N§O›M’KŒG…G€G|HxH&uI0sI:pIBnIIlHPjHVhH]fHdeHlcHuaG`GŠ^H—]H¥[H´[HÇ ZHäZIöZIÿZHÿZHÿZHÿÑE¿L²R£Q—PN†J€JzKvLrL#oL-mM6jL?hLFfLMdLSbLZaLa_Li^Lr\L|ZLˆYL•WL£VL²ULÆ ULâ ULõULÿULÿVLÿVLÿÌH¼P¯U T“S‰QMzNuO pOmP jP*gP3eP<cPCaPJ_PQ]PX\P_ZPgYPpWPzUP†TP“RP¡QP± PPÄ PPá PPôQPÿQOÿQOÿQOÿÉK¹S«WœVU…T|PuQpR kShTeT'bT1`T9^TA\THZTOYTVWT]VTeTTnRTxQT„OT‘NT LT¯LT KTß LTóLSÿLSÿMSÿMSÿÅN¶V§Z˜Y‹XWwTpUjVfWbW`X$]X.[Y7YY?WYFVYMTYTSY[QYcOXlNXvLX‚JXIXžHX®GXÀGXÝGXòGWÿHWÿHWÿHWÿÁQ²Y£\”[‡[}ZrXkYeZ`[]\Z\!X]+V]4T^<S^DQ^KP^RN^YL^aK]jI]tG]€E]D]œC]¬B]¾B]ÚB\ñB\þC[ÿC[ÿC[ÿ½U¯]Ÿ_^ƒ^x]m\e]__Z` WaUbRb(Qc1Oc9NcALcHKcOIcVGc^EcgDcqBc}@b‹?bš>bª=b¼`ÿ>`ÿ>`ÿ¹Y«aša‹aataia_bYdTf QgNgLh$Ki-Ii6Hi>FjEEjLCjTBj\@ie>io¬=¡:š7•31 Œ1‡2 „3+353>}3F{3My3Tw3Zv3at3gr4oq4wo4n4Œl4˜j5¥i5³h5Æg6âf6õf6ÿf6ÿf6ÿf6ÿØ7Ä>µB¦A›?“<8ˆ6„7€7|8'z81w9:u9Bs9Iq9Pp9Wn9]l9dk9ki9th9~f9‰d9•c:¢b:±a:Ã`;à_;ó_;ÿ_;ÿ_;ÿ_;ÿÑ;ÀB°E¡D•C@‡=‚;};y<u=#s=-p=6n=?l=Fk=Mi=Sg=Zf=ad=hc=qa>{_>†^>“\> [?¯Z?ÁZ?ÝY?òY?ÿY?ÿY?ÿY?ÿÌ?¼F«HœG‘FˆD‚@|?w@ s@oA lA*jA3hA;fBCdBJcAPaAW`B^^Be]Bn[BxZB„XBWBžVC­UC¿TCÚTCñTCþTCÿTCÿTCÿÈB¸I§K˜JIƒG}CvCqD mDjEgE'dE0bE8`E?_EG]EM[ETZF[YFcWFlVFvTFSFŽRGœPG«PG½OGÖOGïOGýOGÿOGÿPGÿÄEµM£M•L‰KJxFqGlGhHdHaI$_I-]I5[I=YIDWIJVIQUJYTJaRJiQJtOJNJŒMJ›LKªKK¼JKÓJKîKKýKJÿKJÿKJÿÁH²P O‘O…N{MsIlJgKbL_L\M!ZM*XM2VM:TMASNHRNOPNWON_NNgLNrKN}IN‹HN™GO¨FOºFOÑFOíFNüFNÿGNÿGNÿ½L®RœQQQwPnLgNbO]P ZPWQUQ'SQ0QR8PR?NRFMRMLSUJS]ISeHSoFS{ES‰CS—BS§AS¸ASÏASìARûBRÿBRÿBQÿºOªT˜T‰T}SsSiQbR\SXT TURUOV$NV-LW5KW<JWDHWKGXRFXZDXcCXmAXy@X†>X•=X¥c>=cEg”4™*ž!¢¦© ¬¯²³³ ³´´µ"¶+·5·@¸N¸]¸n¸‚¸—¸ª·¾·Ò·æ·êvˆg‹ZN–Bœ7¢,§"«¯³ ¶¹¼¾¾¿À ÁÂÃÄ Å)Ç4ÈBÉQÉbÉuɊɟʱÊÁÉÑÉÙn“`˜SžF¤:«/°$µ¸¼ ¿ÁÄÈÊÊÌÍÎÐ ÑÓÖÚ(Ý4ÞCßTßgà|à‘à¤à²à¾àÃfŸY¦L­?´2¸$¼¿ÃÇÊÍÑÕØÙÛÝßáã åçêí'ð5ñFòXókó€ô”ô£ô®ô²ÿÿÿÿÿÿ,ÿ9ÿEÿPÿZþcûkùr÷xõ~ô„ò‰ñŽð“î™íŸì¦ê®è¸æÅåÛãíâûâÿáÿáÿáÿáÿÿÿÿ ÿÿÿ(ÿ4þAûL÷Vô_ñfïmìtêzéç…æŠåã•á›à¢ÞªÛ´ÙÀÖÐÓèÒ÷ÑÿÑÿÐÿÐÿÐÿÿ ÿ ÿ ÿÿû"÷/ô;ðGíQéZåbâiàoÞuÜzڀ؅ՋӑїϞͦ˯ɺÇÉÅâÄòÃþÂÿÁÿÂÿÂÿÿÿÿÿ ùñë)ç6ãAßKÛTÕ\ÒcÏjÍpËuÉ{ȀƆŌÓÁš¿¢½«»¶¹Ä·Ú¶í´ú´ÿ´ÿ´ÿ´ÿÿÿÿÿì åÞ"×/Ñ;ÍEÊNÆWÄ^Ád¿j½p¼uº{¹·‡µŽ³•²ž°§®²¬¿ªÑ¨è¨÷§ÿ§ÿ¦ÿ¦ÿÿÿñèáÕÍÇ'Ã3¿>¼H¹Q¶X´_²e°j¯p­v¬|ª‚©‰§‘¥š£¤¡® »žÍæœô›ÿšÿšÿ™ÿÿ ñäÙÎ È Â¼·,³7°B­JªR¨Y¦_¥e£k¢q wŸ~…› Žš —˜ ¡– ¬• º“ Ì’ å öÿŽÿŽÿÿöæÖǾ¹· ± ¬ $¨0¥;¢DŸLS›Zš`˜f—l•r“y’Š”Ÿ‹ªŠ¸ˆˆæ…÷ƒÿƒÿ‚ÿ‚ÿíÜ!Ê%»"±«©¥ œ*™5–>”G’NUŽ[Œa‹g‰mˆt†|…†ƒ›€§~µ}Ç|âzõyÿxÿxÿxÿå"Ð)¿,°*§' #š•‘$Ž/Œ9‰A‡I…PƒV‚\€bi} p| xz y!Œw!—u"¤t"²s#Ãr#ßp$óo$ÿo$ÿn$ÿn$ÿÝ)È0·2¨0ž.—*“'# Œ#ˆ$„%*‚%4€&=}&D|&Kz&Rx&Xw&^u&et'lr'tq'}o(ˆn(”l(¡k)¯j)Ài*Ûg*ñg+ÿf+ÿf*ÿf*ÿÔ/Â6¯6¡5–40Š-‡*ƒ)*|+%y+/w,8u,@s,Gq,Mp,Tn,Zm,ak-hj-ph-zg.…e.‘d.žb/¬a/½a0Õ`0ï_0ý_0ÿ_0ÿ_0ÿÍ4¼;©:›:8‰5ƒ20{/w0t0!q1+o14m1<k1Cj1Jh2Pg2We2]d2eb2ma3w_3‚^3Ž]4œ[4ªZ5»Z5ÒY5íY5üX5ÿX5ÿY5ÿÈ8·>¤>–=‹<ƒ:}7x4t4 p5m5j5'h60f68d6?c6Fa6M`6S^7Z]7b\7jZ8tY8W8ŒV9™U9¨T9¹S:ÏS:ëS:ûS:ÿS9ÿS9ÿÄ<²A @’@†?~=x:s8n9j9g9d:$b:,`:4^:<];C[;JZ;PX;WW;_V·N>ÍN>éM>úN>ÿN=ÿN=ÿÀ?®CœCŽC‚Bz@s=m<h=d=a>^>!\>)Z>1X>9W>@U?FT?MS?UR@\P@eO@oNAzMA‡KA–JA¥IBµIBËIBèIBùIAÿIAÿIAÿ½CªE˜EŠEEvCo@h@cA_A \AYBWB&UB.SB6QB=OBCOCKNCRMDZLDcJDmIExHE…GE”EE£EF´DFÉDFçDEøDEÿEEÿEEÿºF¦H”H†H{GrFjBcC^DZE VETFQF#OF+NF3LG:KGAJGIIHPHHXGHaFIkDIvCIƒBI’AI¢@I³?JÇ?Jå?I÷@Iÿ@Hÿ@Hÿ¶I¢J‘JƒJwJnIeE^GYHUIQJOJLJ!JK)IK1GK8FL?ELFDLNCMVBM_AMh@Mt>M=MQS=R\U+=V24\F3]N1]W0]a/]l.]z,]‰+]š*]«*]¿)]Þ*\ò*[þ+[ÿ+Zÿ£UUUrUgV^VTWLYE[?]:_6` 4a2b1b#0b+/c2.c:-cB,cJ*dS)d](di'dv&d†%d—$d©#d½"dÚ#cñ#bý$aÿ$aÿœX‰XzYnYcYZZP\H^A`:c4f/h ,i*i)j(j&'j.&k5%k=$kF#kO"lY lelrl‚l”l¦kºkÔjîiühÿhÿ•\ƒ\u\i]_]V^LaCdk7n0q)u"x{}}}~"~*~1~:~DNZh x Š ~ ~° }Æ }ä |ô {ý zÿ†ewejeafVhLkBo9s1w*z#~„‡ ‰ ‰ ‰ ‰# ‰+ ‰3‰=‰H‰T‰a‰q‰ƒ‰–ˆ©‡¾‡Ú†ì†õ†ú~jqjgk[lPpFtíQîeïzïðŸð«ð³ÿÿÿÿÿÿ)ÿ5ÿAÿMþVû_øfömôtòyñð„î‰íë•ê›è¢æªå³ãÀáÒàêßùÝÿÝÿÝÿÞÿÞÿÿ ÿ ÿ ÿÿÿ$þ1û=øHôRðZíbëiéoçuåzãâ…àŠÞÜ–ÚØ¥Õ¯ÒºÐÊÎãÍôËÿËÿËÿËÿËÿÿÿÿÿ ü÷ò+ï7ëBçLäUà]ÝdÚjØpÕuÒzЀυ͋˒əǡŪõÁÿھî½ü¼ÿ¼ÿ¼ÿ¼ÿÿÿÿùñêä%ß1Û<×GÒPÎWË^ÉeÆjÅpÃuÁzÀ€¾†¼º”¹œ·¥µ°³½±Ï¯è®ø®ÿ­ÿ­ÿ­ÿÿÿýîã ÚÑÌ+È6Å@ÂJ¿R¼Yº_¸e¶j´o³u±z°®ˆ­«˜©¡§«¥¸£È¢â¡ó þ ÿ ÿ ÿÿöêàÓɽ$¹/¶:´C±L®S¬Yª_©d§j¦o¤u£{¡‚ Šž“œš§˜´–Õܔï“û“ÿ“ÿ’ÿùê Ü Ë Â¼ ¶±®(ª3§=¤E¢M SžYœ_›dšj˜p—v•~“†’™Ž¤Œ±‹À‰Öˆíˆú‡ÿ†ÿ†ÿïÞʼ³® « §¢ Ÿ,œ6™?— G• N“ T‘ Z _Ž e k‹ rŠ yˆ ‚‡ Œ… —ƒ ¢ °€ À Ø}ï|ý{ÿ{ÿ{ÿæÑ½¯¦¡ž ˜”%‘/9ŒAŠHˆO‡U…[„a‚g€nu}~|ˆz”x w®u¾tÕsîqýqÿqÿpÿÜÆ%³%¥#œ!–’‘ ‰†)ƒ3<€C~J|PzVy\wbvitqszq„onl«k»jÐiìhûhÿgÿgÿÑ&½*«**“(%ˆ"†ƒ|$z.w6v>tErKqQoXn^lek mi vh!f!e"šc"¨b#¸a#Í`$é`$ú_$ÿ_$ÿ_$ÿÊ,¶/¤/–/Œ-…*€(}$z" v#s# q$)o$2m$:k%Aj%Gh%Mf%Te%Zd&ab&ia&r_'}^'Š](—[)¥Z)µZ*ÊY*çX*øX*ÿX*ÿX*ÿÅ1¯3ž33†2/y-u*r( o(k)i)%g*-e*5c*=b*C`*J_+P^+W\+^[,fY,oX-zW-‡V.•T.£S/³S/ÇR/åR/÷R/ÿR/ÿR/ÿÁ6ª6™6‹65y3s1o/k.h-d.b.!`/*^/1\/9[/@Y/FX/MW0SV0[T1cS1lR2wQ2„O3’N3¡M3±M4ÅL4ãL4öL4ÿL4ÿL3ÿ»9¦9•9‡9|9t7n4i3e2a2 ^2\3Z3&X3.V35U4<S4CR4JQ4PP5XN5`M6jL6uK7‚J7I8ŸH8°G8ÃG8áG8õG8ÿG8ÿG8ÿ·;¢<‘<ƒ<x<p:j7d6`6\6 Y7V7T7#R7+P72O89M8@L8GK8NJ9UI9^H:hG:sF;€E;ŽD<žC<®B<ÂB=ßB<óB<ÿB<ÿB;ÿ³=ž>>>u>l=f:`9[:W:S;Q;N; L;(K;/I<6G<=G\C>fB?qA?~@??@œ>@­=@À=@Ý=@ò=@ÿ>?ÿ>?ÿ®@š@‰A|AqAh@a<[=V>R>N?L?I?G@%F@,D@3C@:BABAAI@AQ?BZ>Bc=CoE8=E?*VF)VO(WY'Wd&Wr%W$W’#W¤"W·"WÏ"Wì#Vú#Uÿ$Uÿ–M„NuNiN_OVOMPER?S9V3X/Z+[*[(\'\$&\+%\3$]:#]C"]L!]V ^a^n^~^^¡^´]Ì]é\ù[ÿ[ÿQ~QpQdR[RRSJTAW;Y5[.^(`$b "c!cd d'd.d6e>eGeQe]ejeze‹eže±eÈdçc÷bÿbÿ‰TxUkU`VWVOWFY=\6_0b)d#gjllmm!m)m0m9nBnLnXnenu n‡ nš m­ m là kó ký jÿ‚YrYfY\ZTZJ\A_9c1f*i$loru www w# w* w3 w< wGwRw_wow€w”v§v»uÕtëtötü{]m]b^Y^N`Ec¬M¬]¬p¬…¬›«¯«Ã«ÙªèduWyK~?„4Š)–›Ÿ £§ª®°°±²´µ ¶·¹»&¼3½A½R½d¾y¾½¤½·½Æ½×\P…D‹8’,™!Ÿ¤© ®²¶¹½¿¿ÀÁÃÄÆ ÇÉËÎ&Ð5ÑEÒWÒkÓ‚Ó—Ó©Ò¸ÒÄUŒI“=š0¢%¨®´ ¹½ÁÄÈËÍÍÏÐÒÔØÚÝ àãæ'ç8èJé]êrëˆë›ì¨ì²ÿ ÿ ÿ ÿÿÿ&ÿ2ÿ=ÿHûRøZöbóiñoðuîzìë„éŠèæ–äâ¥á¯ß»ÝËÛæÙ÷ØÿØÿ×ÿ×ÿÔÿÿÿÿÿ ÿþ!ú,÷8ôCðMíUê]çdäjâpàuÞzÝۅًՑәѠϪ͵ËÄÉÝÈñÇÿÆÿÆÿÆÿÇÿÿÿÿÿ øñì'é2æ=âGÝPÙXÕ_ÒeÐjÎpÌuÊzÉDžŌÔÁœ¿¥½°»½ºÐ¸ë·û¶ÿ¶ÿ¶ÿ¶ÿÿÿýóéáÛ!Õ-Ñ7ÎAÊJÇRÄYÂ_Àe¾j¼o»t¹z·€¶‡´Ž²—° ®ª­·«È©ã¨õ§ÿ§ÿ§ÿ¦ÿÿþñå× ÍÇÂ&¿1¼;ºD·L´S²Y±_¯d­i¬oªt©z§¦‰¤‘¢› ¥ž²Á›Úšï™ý˜ÿ˜ÿ˜ÿýðáÑÆ½ ·³ °+­5«>¨F¦M¤T£Y¡_ džin›uš{˜ƒ–Œ•–“¡‘­»ÏŒé‹øŒÿŒÿŒÿóâÌ¿·±«§¤$ .ž7œ@šG˜N–T•Y“^’diov‹~Šˆˆ’†…©ƒ¸Ê€å€õÿÿÿè о±¨ £  œ˜•'’19ŽAŒHŠN‰T‡Y†_„dƒkr€z~„}Ž{šy§xµvÈuãu ôt ÿs ÿs ÿÝı¥œ–” “ Ž‹ ˆ *… 3ƒ ; B€ I~ O} T{ Zz `x gw nu vt €r Œp ™o¦mµlÉkæj÷iÿiÿiÿй¨›’‹ˆ‡…~${-y6w=vDtJsPqVp\nbmjksi}h‰f–e£c³bÆbãaö`ÿ`ÿ`ÿÇ"°#Ÿ$’#‰"‚ ~|z wtq(o0n8l?kEiKhQfXe^cfbo`y_…]’\¡[°ZÃYàXôXÿXÿXÿ¿'©(™(‹(‚'{%v#s q nki#g,e3c:bA`G_M^T\[[bY kX vV!‚U!T"žS"®R#ÀQ#ÝQ$òQ$ÿQ$ÿQ#ÿ¹+£,“,†-|,t*o(k%i"f!c"a"_#']#/\#6Z#=Y$CW$JV$PU$WS%_R%hQ&sO&N'M(œL(¬K)¾K)ÚJ)ñJ)ÿK)ÿK)ÿ³.ž/Ž00w/o.j+e*c'_' \'Z'X($V(+U(2S(9R)@P)FO)MN)TM*\L*eJ+pI+|H,‹G-šF-ªE.¼E.ÖE.ïE.þE.ÿE-ÿ®1š2‰3|3r3k1e/`-],Y, V,T,R, P,(N-/M-6L-<J-CI-JH.QG.YF/cE0mC0zB1‰A1˜A2¨@2»?2Ó?2î@2ý@2ÿ@2ÿª3–5†5y6n5f5a2\0W0T0Q0N0L1J1%H1,G12F19D1@C2GB2OA3W@3`?4k>5x=5‡<6–;6§;6¹:6Ñ:6í;6ü;6ÿ;6ÿ¦6’7‚8u8k8c7]6W3S4O4K4 I4F5E5"C5)A5/@56?6=>6D=7L<7U;8^:8i99v89…7:•7:¥6:¸5:Ï6:ì6:û69ÿ79ÿ¢8Ž9~:r;h;_:Y9S6N7J8F8 D9A9?9>9&<9-;:4::;9;B8;J7;S6<\5“2>¤1>¶1>Í1>ê1>ú2=ÿ2=ÿž;‹<{<n=d=\=U<N:I;E<A=>=<=:>9>#7>*6?15?84?@3@H2@P1@Z0Ae/Ar.B-B‘-B¢,Bµ+BË,Bé,Bù-Aÿ-Aÿ™=‡>w?k?a@Y?R?I>D?@@K9L3N.P(S$T "U UVV$V,V3W;WDWNWYXfXuX‡XšW¬WÂWáVôUÿUÿ„ItJfK\KSKKLDM[6_.b&fjmps vx xyyyz&z/z9zDzPz_zpzƒz˜z¬yÂxßxïw÷j[_[V[L\B`9c0h(l ptw{ ~‚ƒ ƒ„…† †(‡1‡<‡I‡W‡h‡{‡†¥…º…Ó„ê„ôe`\`QaFdÌPÌdÍz͑ͤʹÍÀMƒAŠ5‘)™ ¦ ¬±¶º¾ÂÆÈÈÊËÍÎÐÒÕÙÝá!â1äCåVækæ‚ç–ç¥æ°ÿ ÿÿÿÿÿ!ÿ-ÿ8ýCùMõUò]ðcîiìoêtézçæ…ä‹ã‘á™ß¡ÜªÚ¶×ÆÕáÓôÒÿÑÿÑÿÏÿÊÿÿÿÿÿ ÿúö(ó3ð>ìHèPåXâ^ßdÝjÛoÙtÖzÔ҅ЌΓ̜ɥǰƾÄÔÂîÁþÀÿÀÿ¿ÿ¾ÿÿÿÿúñëæ#â.à8ÛBÕKÑRÎYË_ÉeÇjÆoÄtÂzÁ€¿†½Ž»–¹ ·ª¶·´Ê²æ±ø°ÿ¯ÿ¯ÿ°ÿÿÿ÷êá ×ÐÌ(É2Æ<ÂE¿M¼SºY¸_·dµi´n²t±z¯€­ˆ¬‘ªš¨¥¦±¤Á£Ü¡ò¡ÿ ÿ ÿ¡ÿÿ÷èÙËý¹"¶,´6²?¯G¬M«T©Y§^¦c¥h£n¢t zž‚œ‹›•™Ÿ˜¬–º”Ï“ë’û’ÿ’ÿ‘ÿ÷çÓÆ»³ ­ª§&¤0£8 @žGœNšS™X—]–c•h“n’t|…‹šŠ§ˆµ†Ç…ä„õ„ÿƒÿƒÿìÓÁ´¬¦ š —)•2“:‘AHMŒS‹X‰]ˆc‡i…oƒw‚€€Š~–}£{°zÂyÝxñwýxÿxÿÞ Ä ² ¦ ™• ‘Ž‹#‰,‡4…;ƒB‚H€NS}X|^{dyjxrv{t†s’qŸp­n¾mÖmílúlÿlÿη¦š‘‹‰ ‡ „~%|.z6x<wCuHtNsTqYp_nfmnkxjƒhg e ¬d ¼c Ôc ìb úb ÿb ÿí‡}|| x u r (p 0o 7m >l Dk Ji Oh Ug \e cckbu`_Ž]œ\«[½ZÖYðYýYÿYÿ¹¥”ˆ~xtqq oli"g*f2d9c?bE`K_Q]X\_ZhYrW}V‹T™S©RºQÒQíQýQÿQÿ² ž"Ž"#w"p!ligfca_&]-\4Z;YAXGVMUTS\RdQnOzNˆM—K¦J¸JÏIëIûIÿJÿ¬$˜%ˆ&{'q&j%f#b!`^ [YW"U)T0S7Q=PCOJMQLXKaIkH wG …F!”D"¤D"¶C"ÌC#éC#úC#ÿC"ÿ¦'“)ƒ*v*m*e)`'\%Y#W!U!R!P!N!%M",L"3J"9I"@H"FG#ME#UD$^C$iB%u@&ƒ?&’>'£>'´='Ê=(è=(ù='ÿ>'ÿ¢*Ž+-r-h-a,\+X(T&Q&N% L%J&H&"G&)E&/D&6C'<A'C@'K?(S>)\=)f<*r;*:+9+¡8,²7,È7,æ8,ø8,ÿ8,ÿ,Š.{/o0e0]/X.S+P*L*I* F*D*B*A*%?*,>+3=+9<+@;,H:,P9-Y8.d7.p6/5/40Ÿ30±20Ç20å30÷30ÿ4/ÿ™/‡1w2k2b2Z2T1O/K-G.D.A.?.=.;."9/)8//7/660>50F51N41W32b22n13}03/4ž.4°-4Å-4ã.4ö/3ÿ/3ÿ•1ƒ3t4h5^5W4Q4K2F1B2?2<2 938363 43&33-24414;05C05L/6U.6`-7l,7{+7‹*8œ)8®(8Ã(8â)8õ*7ÿ*7ÿ’45q6e7[7T7M6G6B5=6:677 472718/8$.8+-92,99+9A*:I*:S);^(;j';y&<‰%<›$<­#<Â#<à$<ô%;ÿ%;ÿ6|8m9b9X:Q9J9D9=99:5;2;/<-=,=*=!)=((>/'>6&>>%?G$?P#@["@h!@v @‡A™A«AÀAÞ@ó@þ ?ÿ‰9x:i;^<U<M<G<@<8=4>0@-A*B 'B&C$C#C%"C,!D3 D;DDENEYEeEtE…F—F©F¾EÜEñDýDÿ„<s=f>[?R?J?D?=@6A1C,D'F$G !H III"I)J0J8JAJKKUKbKqK‚K”K§K¼KÙJðJüIÿ?o@aAWBNBGBAB:C2E-G(I#KMO PPPP%P,Q4Q=QGQRQ_RmR~ Q‘ Q¤ Q¸ QÑ Pì PúOÿyCjD]DSEKEDE>F6H/J)L$OQSV WXXX X( X0 X9 XC XN XZXhXyXŒXŸX³WÊWæWóVüsFdGYHPHHHAI:J2M+P%R UXZ] ` ` ```#`+`4`=`I`U`c`s`†_š_®_Ä^â^ð^ølJ_KUKLLEL=N5P.S'V Y\_b eg ghhhi&i.i8iCiOi]imi€i”h©h¿gÜfîf÷fOZOQOJOAQ8T0W([!^beh knp p qqrs!s(s1s<tHsVsfsysŽs£r¹qÒqëpôaSVSOSEU;X2\*`"dhlo rvyzz {|}~"€*€5€A€O€_€q€†€²~Ê~å}ñ\XTXIZ?]5a,e#josw {‚„††ˆ ‰ Š‹ŒŽ",8FVh~•Ž«ÁÜŒëY]N_Cb8f.l$qw|…‰’“”–—˜ š›Ÿ# . < L ^ tŸŒŸ¢Ÿ·žËžàSdGh÷HóPðWí^ëdèiçoåtãyâà…ތܓٜ֦ӱÑÀÏÚÎñÌÿËÿËÿÆÿÁÿÿÿÿÿûöò$ï.í9èBãKàRÝYÙ_ÖdÓiÑnÏtÎyÌʆȎƖĠ«À¹¾Í¼ê»üºÿºÿºÿ¶ÿÿÿþôë äßÛ)Ø3Ó=ÎEÊMÇSÅYÃ_Ád¿i½n»sºy¸€¶ˆ´²š±¥¯²­Ä¬á«öªÿªÿªÿªÿÿýîâÕ ÍÇÄ#Á-¿7»?·GµN²S°Y¯^­c¬h«m©s¨z¦¤Š£”¡ŸŸ¬ž»œÒ›îšÿšÿ™ÿ™ÿþîÞËÁ¹ ´±®'«0ª9§A¤H¢M¡SŸXž]b›gšm˜s—{•„”Ž’™¦Ž´ÈŒæ‹ùŠÿŠÿ‹ÿðÛǺ°¨ ¤ !›*š3˜;–A”H’M‘RWŽ\Œa‹gŠnˆu‡~…ˆƒ”‚ €¯À~Ý}ò}ÿ}ÿ}ÿàÆµª¢›• ’$‹-Š4ˆ;†B…GƒM‚RW\~b}h{pzyxƒvuœtªrºqÑpìpûpÿpÿÍ·§›“ŽŠ†„'}.|6z<yBwGvLuRsWr]qcokntl~kŠi˜h¦g¶fËeçe÷eÿeÿÀ « ›† ~| ywu!s)q0o6n<lBkGjMiRhXf_egcpbz`‡_•^£\³\Ç[ä[ô[þ[ÿµ¡‘…|vsr q nli#g*f1d7c=bCaI_N^U]\[ cZ mX xW …V “T ¢S ³R ÇR äQ õQ ÿQ ÿ­™‰}tmjggf c a _ %] ,\ 3[ 9Z ?X EW KVQUYSaRkPvNƒM’L¢K²JÈIåI÷IÿIÿ¥’ƒvmfb_^^ [YW U'T.S4Q;PAOGNNLUK^IgHsF€EDŸC°BÅBãBöBÿBÿŸŒ }!q"h"a!\YWUTQON#L*K0J7I=GCFJERCZBdAp?}>=<®;Ã;á;õ;ÿ<ÿš!‡#x$l%c%\$W#S QOM KHG E&D-C3B9@@?G>O=X<b:m9{8 ‹7!›6!­5!Á5!ß5!ó6!ÿ6!ÿ–#ƒ&t'h(_(X'S&O$L"I G DB@ ? #> )< /;!6:!=9!D8"L7"U6#_4#k3$y2%‰1%š0%«0&¿/&Ü0&ò0&ÿ1%ÿ‘&(q*e*\*U*O)K(H%D$A$?$ =$;$9$7$&6$,5%34%:3&A2&J1'S0']/(i.)w-)‡,)˜+*ª**½**Ú+*ñ+*þ,)ÿ(|*m,b-Y-Q-L,G+C(?(<(9( 7(5(3(2(#0()/)0/*7.*?-+G,+Q+,[*,g)-u(-…'-—&.¨%.¼%.Ø&.ð&.ý'-ÿŠ+x-j._/V/N/H.C-?,;,7,4, 2,0-.--- +-'*.-*.5)/=(/E'0N&0Y%1e$1s#1ƒ"2•!2§!2» 2Ô!2ï"1ü"1ÿ†-u/g0\1S1K1E1@0;0603001-1 +1)2(2'2$%3+%32$3:#4C"4L!5W 5c5q66“6¥6¹6Ò6í6û5ÿ‚0q2c3Y4P4I4B3=37314.5+5(6 %7$7"7!8" 8(80879@9I:T:`:n:;‘;¤;·;Ð:ì:ú9ÿ}2m4`5U6M6F6@6:646.8*9&:#; <===>%>->4>=?G?Q?^?l@|@@¢@¶@Î?ë?ù>ÿy5i7\8R9J9C9=9791:+<'="?AB CCDD"D)D1D:ECENE[EiEy EŒ EŸ E² EÉ Eå Dö Dÿt9e:X;O;G<@<:<4<.>(@#BDFHJ JJKK% K- K6 K@ KJ KV KdKtK‡KšK®JÄJàJðIún<`=T>K>D>=>7?1@*B$EGILNQ Q Q QQ"Q)Q2R;RFRRR_RoRQ–Q©Q¿PÜPîP÷h@[APAHAAA;B4C-E&H KMPSU X XXYYY%Y-Y6YAYMZZZiY|YY¥XºXÕWìWöcDVEMEEE?E7G/I(L"ORUX Z ]_ ` `aab b'b1b;bGbUcdbvb‹b a¶aÏ`ê`õ]HRIJHCH:J2M*P#SWZ] `cfgh ijklm"m*m4m@mNm]mom„lšl°kÈkæjóXMNMHL>N5Q,T$X\`d gknprrs uvwxy#z-z9zGzVyhz|y”xªxÁwßwïTQLQBR8U/Y&^bgk oswz|~€ ƒ „†ˆ‰%Š0Š>‰M‰_‰sˆ‹ˆ¢‡¹‡Ñ†èRVGWr2x'€ˆ —£¨­²¶¹»¼¾ÀÂÄÆÈËÎÑ Ö×#Ø5ÙIÚ^Ûuیܟܫÿÿÿÿ ÿÿþ$ü/ù9ôCðKíRêYç_ädâiànÞsÜyÚ׆Ԏіϡ̬ʻÈÒÆîÆÿÅÿÅÿ¿ÿºÿÿÿÿþ÷òîë*é4ã=ÞEÙMÔSÑYÎ^ÌcÊhÉmÇsÅyÀÁˆ¿½›»¦¹´·È¶æµû´ÿ´ÿ³ÿ®ÿÿÿøíå Ý×Ò$Ï.Ë7Ç@ÃGÀN¾S¼Yº^¸c¶hµm³s±y¯­Š«”© ¨­¦¾¥Û¤ô¤ÿ£ÿ£ÿ¢ÿÿöæ×Ëľ»¹(·1´:°A­H«N©S§X¦\¤a£g¡l sžzƒ›Ž™™—¦–¶•Ì”ë“ý“ÿ“ÿ“ÿ÷äÐÁ·¯ «§¥"£+¢3Ÿ;œB›H™M—R–W•[“a’fmt}Œ‡Š“ˆ ‡¯…Â…â„÷„ÿ„ÿ„ÿåͼ¯¦žš–”’%‘-5<ŒBŠGˆL‡Q†V„[ƒ`g€n~w}{zšx©wºvÓvïvþuÿuÿл«Ÿ—‹ ˆ†„ ‚'/5}<|A{FyKxPwUv[tasiqqp{n‡m•k£j´jÉièiùiÿiÿÀ¬œˆƒ{ ywv"t)s0q6p<oAmFlKkPjVh\gdeldvc‚a`Ÿ_¯^Ã^á^ô]ÿ]ÿ´  „ | wtq omki#h*g1e6d<cAbF`L_R^X]_[hZrX~WŒV›U«T¾TÚSïTûTÿ© –‡zrli g f db`^%]+\1Z7Y<XBWGVNUTS\ReQoO{NŠM™L©K¼JÔJíJùJÿ¡Ž~sjd`^] ] ZXV U'S-R3Q8P>O DN JL QK YJ bH mG zF ˆD ˜C ©B ¼B ÕB îB ûB ÿš‡xlc]YVTTS Q O M "L (K .J 4I :GAFGEODWBaAl?y>ˆ=˜;©;¼:Ö:ð:ý;ÿ“sg^XSPNLL JHFE$D*B0A7@=?D=L<T;^9i8v7…6–4§4º3Ó3î4ü4ÿŽ|nc Z S NJHFECA?> =';-:39:8A7I5Q4[3f2s0ƒ/”.¥-¸-Ð-ì.û.ÿŠx j"_#V#O"J!F CA?= ;976#5)40361>0F/O.Y-d,q+*’)¤( ·' Î' ë( ú)ÿ† t#g$\%S%L%G$B#?!=:7 5310 /&.--3, ;+ C*!L)!V("b&"o%#$###¢"$µ"$Ì"$é#$ù$#ÿ‚#q%c&Y'P(I'C'?&;$8"5"2"0" .","*")"#(#*'#1&$8%%A$%J#&T"&`!'m '}'(¡(´(Ê(è(ø'ÿ~%n'`)V)M*F*A)<(7'4&0&-&+' ('''%'$'!#('"(.!)6 )>*H*R+^+k+{,,Ÿ,²,É,ç+÷+ÿz'j*]+S,J,C,>+9+4*0*+*)+&+#,", ,,-%-,-3.<.E/P/\/i0y0‹0ž0±0Ç0å0ö/ÿv*g,Z-P.H.A.;.6-1-,-'/$/!01 1222"2)31393C4M4Y4g5w5‰5œ5°5Æ4ä4õ4ÿr,c.W0M0E0>08030/0)1$2!356 77888&8.969@9K9W:d :t :† :™ 9¬ 9Á 9Þ 9ñ 8ün/_1S2J3B3;36312,3'4!689;= >>>># >* >3 >< ?G ?R?`?o??”?¨>¼>×>ì>÷i3[4P5G5?59545.5)7#8;<?AC D D DD D'D/D8EBENE[EjE|ED¤D¹DÑDêCõd6W7L8C8<87818+9%; =@BDG I J KKKK#K+K4K>LILWLfLwKŒK¡KµJÎJéJõ_:R;H;@;:;4;.<'>"ACFIK NPQ QRSSS&S/S9SESRSaSrS‡RœR±QÊQçQôY>N>E>>>8>0@)B#DGJMP SUWX YZZ[\!\*\4\?\M\[\l\[—[­ZÅZäYóTBJBBB^2c'jpx …‹‘–›Ÿ¢¤¥§©«­°²µ· »¾¾&¾8¾K½a¼z»”º©º¹7j+p x€ ˆ–œ¢§¬°³¶·¹»½¿ÂÅÈÊÎÒÕÕ,Ô@ÔWÓnÔ†Ô›Ó«ÿÿÿÿÿÿü ù*ö4ñ=íFéMæSäYá^ÞcÜhÙnÕsÓyЀΈˑɜƧķÂÌÀì¿ÿ¾ÿ½ÿ·ÿ²ÿÿÿÿúó íèå%ä.ß8Ø@ÒGÎNËTÈYÆ^ÄcÂgÀm¿s½z»¹‹¶•´¡²¯°Â®ã®ú¬ÿ­ÿ©ÿ¦ÿÿÿòæÝÒÍÊ È)Å2À:¼B¹H·NµS³X±]°b®g¬lªs©{§„¥Ž£š¡¨Ÿ¹žÒòœÿÿœÿ™ÿüîÝÌÁº ¶²°#¯,­4©<¦B¤H¢M RžW[œ`šf™l—t•}“‡‘“¡Ž±ÆŒè‹ýŒÿŒÿŒÿíØÅ·¬¦¡Ÿ›&š.—5•<“B‘GLŽQU‹ZŠ`‰f‡m…v„€‚Œ€š©}¼|Ü|õ|ÿ|ÿ|ÿÙÁ±¤œ” ‹‰ ‰(‡/…6ƒ<‚A€FK}O|T{Zy`xgvpuzs†q“p¢o´nÌnínþnÿnÿį ”Œ†~|{y"x)w0u6t;r@qEpJoOmTl[kbijhtf€eŽcb­aÂaäaøaÿaÿ´ ‘†~yuq omlk$k*i0h6f;e@dEcJaO`V_]]e\oZzYˆX˜W¨V»VØVñVÿVÿ¨”…zrligd ca`_%^+]0[6Z;Y@XEWKVQUXSaRjPvO„N“M¤L¶LÍLëLúLÿ ‹ | p h b _ ]\ ZXWV U&S+R1Q6P;OANGMMKUJ]IgGsF€ED¡C²CÈCæCõCÿ• ƒti`ZVT S S QONL!K'J,I2H7G=ECDJCQBZ@d?p>~=Ž<Ÿ;±:Æ:ã:ó:üŽ|nbZTPMKK J IGED#B(A .@ 3? 9> @= G< O: X9 c8 o6 ~5 Ž4 Ÿ3 ±2 Ç2 ã2 ô2 þˆwi^UOJGECCB @ ? = < $; *9 0877=6E5M3W2b1n/}.Ž- ,²+È+æ+ö,ÿƒrdYQKFB?><; :875!4'3-230:/B.K-T+_*l){(Œ'ž&°%Æ%ä%ö&ÿ~n`VMGB>:8754 20/-#,*+0*7)?(H'R&]$j#y"Š!œ ¯Äâ ô ÿzj]S J D >:7420. ,*)' &&%-$5#="F!P [hwˆ›­Ãàóÿwg Z!P"H"A";"7!3 0-+(&%#!!$ *2:C M!Y!f!u"‡"™"¬"Á"ß!ò!þs d"W#M$E%>$9$4#0",")!&!$!"! !!""!"(#/#8$A$K%W%d&s&…&˜&«&À&Ý%ñ%ýp"a$T&J&B'<&6&1%-%)$&$"%%& &''''%(-(5)>)I)U*b*q*ƒ*–*© *½ *× *î)ûl$]&Q(H(@)9(4(/(+'''"()*++ ,,,-#-*-2.<.F .R ._ /n / /’ /¥ .¹.Ð .é .÷h'Z)N*E+=+7+1*-*)*$* +-./1 222 2 2' 2/ 38 3B 3N3[4j4{3Ž3¢3¶3Í3ç2ód*V,K-B-:-4-/,+,&,"-/1246 8 8 888$8,848>9J9W9e9w9‹8Ÿ8³8Ê8æ7ò_-R.H/?08/2/-/)/$013579 ;= >>>>!>(>1?;?F?S?a?s?‡>œ>°=Ç=ä=òZ0N2D2<25201+1&2 468;= ?AC CDEEE$E-F6FBFNF]FnE‚E˜D­DÄCãCòU4J5A59534.4(5"7:<?A DFHI J KLMN N(N2M=NJNXMiM}L”LªKÁKáJòP8F8=87817*9$;=@CF IKNPQR STUVW#W,W8WDWRVcVwVŽU¥T½SÝSðK<B<;;5;-<&?BEHK OQTWXZ[\ ]_`bb&b1b>aLa]ap`ˆ` _·^Ô]îG@??:?1@)C!FJNQ UX[^acdegh jlno o*o6nEnUnhmm˜l°kÊjèDD>C5D+G#KOTX\`dgkmoprtuw y|~".=~M}a}w|{¨zÀyßCG9I/L%PU[`ejnrvy|~ƒ…‡ŠŒ ’’%’3’D‘Wm†ŽŸµŒÍ=N2Q(V\bhnty~‚†‰ŒŽ’”–˜›ž¡ ¤¦¦)¦:¥M¥b¤{£”¡«¡¿6W,\!bipw~„Š”˜›žŸ¢¤¦¨«­°³· »»»0»CºX¹p·‹·¡·³0b%ipx €ˆ–›¡¦ª®°±´¶¸»½ÀÃÇËÏ ÓÒ%Ò8ÑNÐeÏ~Í–Ì©ÿÿÿÿÿ üù÷%ó/î8é@æHâNßTÜYÙ^ÕcÓhÐmÎsËzȂƌ×À£¾²¼Èºê¹ÿ¸ÿ±ÿªÿ§ÿÿÿûöíçâß Þ)Ù3Ñ;ÌBÈHÅNÂSÀX¾]¼bºg¹m·tµ{²…°®œ¬ª©½§Þ¦ù¥ÿ£ÿÿ›ÿýöëßÑÊ ÅÃÀ$¾,¹5¶<³C°H®N¬R«W©\§a¦g¤m¢t }žˆœ•š£˜´–Í•ñ”ÿ•ÿÿŽÿóæÑ¸±­ª¨¨'¦/¢6Ÿ<B›G™L—Q–U”Z“`‘fnŽvŒŠˆ›†¬…Á„æƒý„ÿƒÿÿä˺¬¢œ˜ –”“!’(06‹<‰AˆF†K…O„T‚Z`g~o|zz†x”w¤u·tÔsôtÿtÿtÿ˶¦š’Іƒ€#*}0{6z;x@wEuItNsTqZpanimskihg®fÇeêfÿfÿgÿ¸¤•Š|vt rqpp$n*m0k5j:i?hDgIeNdTc[ac`m^y]‡[–Z¨Y½YßYøZÿZÿ¨•‡{snjgedccb%a*_0^5]:\>[DYIXOWVV^ThSsQP‘O¢NµNÐNðNÿOÿœ‰{phb_][ YXWW V%U*S0R4Q9P?ODNKMRKZJcIoG|FŒEE°DÇDèDúEÿ’€q f ^ Y UTRP ONML K&J+I0H5G:F@EFCNBVA_@k>x=ˆ<™<«<Á;à;ô;ÿ‰ x j_WQM K JI H FEDC!B&A+?1>6=<<C;J:R9\8h6u5…4–4¨3¼3Ø3ï3û‚ qdYQKGDB A A ?><;:"9(8-72695?4G3P1Z0f/s.ƒ-•,§+º+Ò+ë+÷}l_TLFB><:: : 8 654 2 $1 )0 // 6. =- E, N+ Y) e( s' ƒ& •% §$ »# Ò# ë# ÷xh[QHB=975332 0 / - , !+ '* -)4(;'D%N$Y#e!s „–©½ØîùsdWME?:520.-, +)(&%$$*#1"9!B KVcq‚•§»Ôîúp`TJB<62/,*(&% #" !'.6?ITap“¦ºÒìúl]QG?94/+(&$"  $,4=GR_n’¥¹ÐêøiZNE= 61-)%#  ")1:EP ] l | ¢ µ Ê å ôeWL!B!:!4!/!* &#    !!"""&#/#7 #A $M $Y $g $x$‹$ž$±$Ç#ã#ñbT!I#@#8#2#,#("$!!!!!#$%& ' ' ' '# '+ (4(>(I(U)d)t)‡)›(¯(Å(á'ð^"Q$F%=%5%/%*$&$"##$%&() , ,,,,!,(-0-:-E-R.`.q-„-™-­,Â,à,ðZ$M&C':'3'-'(&$&!&&')+, . 0 11222%2-263B3N3]3m32–2«1Á1ß1ðV'J)?*7*0*+)'(#()*,.0 1 45 67888"8*939>9J9Y9i9}8“8¨7¿7Þ6ðQ+F,<,4,.,*+%+ ,-/13 5 7:; < =>?@@%@/@:@F@T@e?x?>¦>½=Ü=ðM.B/9/2/-.(."/0257 : <>ABC D FGHH!H*H5HAHOH`GsGŠF¢E¹EÙDðH2>26201+1%2469< ?BDFHJKL NOQRR%R0R<QJQZQmP„ONµMÒMîC6;645/4'5!8;>A DGJMOQSTUW Y[]]]*]6\D\T[g[~Z—Y¯XËWê?98938+9#<?CG JNQTWZ\]_`bd fhkk#j.j<jMi_hugf¨eÂdã==7<.=%@DIM QUZ]`cfhjkmoqt vy{{'z5yExYxmw†vŸu·tÒ_C^H]N[UZ]XgWrUT‘S£R¸QÜQùRÿRÿ‹|qid`^\ [[ZZY%W*V/U4T8S=RCPIOPNXMbKmJzI‹HG±GÌFðGÿGÿ~pf^YVSRP OONN M%L*J.I3H8G>FDEKDSC]Ah@u?…>—=«=Ã=æ=û>ÿ‡uh]UPLJIG FEEDC B%A*@/?4>:=@;G:O9Y8d7q65“4¦4»4Ý4õ5ÿ~m ` V N H D B@?> =<;;:!9%7*60554<3C2L1U0`/m.}-,¢,¶,Ð,î,üw g ZPIC> ; 9 8 76 54321"0'/,.2-8,@+I*R)](k'z&Œ%Ÿ%²%Ê%è%÷r bVLD>9631 0 0 / .,+*)#()'/&5%=$F#P"\!i y‹°Æãóm^RH@:51.,** ) ( ' %$# " &! , 3 ; D O [ i y ‹ ž ° Å á ðiZNE=71-*(&$## "     # * 2:DP\j{ ³ÉäòeWKB:4/*'$"   !(09CNZiyŒž ± Å á ñbTI?71,($! &-6ALW e u ‡ š ­ÁÝ î_QF=5/*%"  # * 3 < G S aqƒ—ª¿Úì\NC:3,'#      '/9CP^n€•©½ØìXKA80*%!   !!!$","5"@#M#Z#k#~#“"§"¼!×!íUH> 5 . ( #   " $ % %&&&!')'2'='I(W(g'{''¥&»&Ö%íQ E!;"2","&!"!   "# % &( ) +,,,,&-/-9-F-T-d-w,,¤+º+Ö*îM"A$8$0$)$$#!"""#$& ( *,. / 02333"3+363B3P3`3s2Š2¡1¸0Ö0ïI%>&4'-'(&#%$%&(* , .0245 7 8::::':2:>:L:\:o9†8ž8¶7Ô6ïD):)1)+)&("'()+. 0 2579;<> ? ACCC#C.C9CGBWBjA@š?²>Ï>ï?,6,/,*+%*+-/2 58:<?ACEFH JLMMM(M4LBLQKdK{J”I­HÊGì;03/-/(-"/147 :=@CFHJLNOQS UXYX"X.W<WKV^VsUT§RÂRæ8312,1%258< @DGJMPSUWYZ\^a dfgf'f4eDdWdkb…aŸ`¹^Ü5705(7 :=B FJOSVY\_adegilnq tww v-v=uOtcs{r•p¯oÉ5:+;"?CH MRW\`dhknqsuwz|‚† ŠŒ‹$Š3‰E‡[†r…‹ƒ¥‚¼/@%DIN TZafkoty}€ƒ…‡ŠŒ’–™ž ¢¢¡) ;ŸPgšš™™¯)INT[bipw}‚†‹“•—𠣦ª®²· »º¹0·Eµ\´t±Ž¯¤"T[bjs{‚‰•šŸ£¦¨«®°³¶º½ÂÇÌÓ ÔÓ&Ñ:ÐQÍhËÊ–üöòñóô òðí%è.â6Þ>ÙDÔJÑOÎTËYÉ^ÆcÄiÁp¾x¼¹¶š³«±À¯æ®ÿ¥ÿšÿ”ÿÿôìèçßÙ ÒÏÏ Ì(Æ0À7¼>¹D·IµN³S±W¯]­b«i©q§z¥…¢“ ¢¶›Ô™ù–ÿÿˆÿ„ÿèßÙÉ¿¸µ ³±°"­*©1¦8¤=¢C HžLœQ›V™\—b•i“r‘}‹š‹¬‰Åˆî†ÿÿzÿxÿÙÍ»®¥Ÿœ ™™™˜$”+‘1Ž7Œ<‹A‰FˆK†P…Uƒ[‚b€k~u|‚z’x£w¹vàuÿrÿnÿlÿǵ¥™‰…„ ‚‚‚€%~+|1z6y;w@vDuIsOrUp\odmnlzjŠh›g¯fÌeõdÿaÿ`ÿ´ …}wspoooom%k*i0h4g9f>eCcHbNaU_^^g\s[‚Y“X¦W¿WêWÿVÿTÿ¡Žulhda` ____]%\*[/Y3X8W=VCUISPRXQaPmN{MŒLŸKµJÜJúJÿJÿ’€rg_ZWUSR RRRQO$N)M.L3K8J=ICHJFRE\DgCuB†A˜@®@Ë?ò@ÿ@ÿ…tg]UOLJHG G FFFED$C)B-A3?8>>=E<N;W:b9o8€7“6§6À6è6þ6ÿ|k^TMGCA?>= =<<<:9$8)7.635:4A3I2S1^0k/{.Ž-¢-¸-Ý-ø.ÿsdWMF@;87654 44321 0$/)./-6,=+E*O)Z(g'w&‰&%³%Ï%ð&ÿm^ R H @ : 6 2 0..- , ,+*)( '%&+%2$9#B"K"W!d s…™®Çéúh Y M C<61 - * ( ' && %$$"!!" (.6?ITap‚–ªÁáôc UI@82-)&# "    %+3<FR_n€”§¼Ùï_QF<5/*&"          " ) 1 : E Q _ n € ” § º Ò ê\NC:2,'#        ( 0; F Q ^ m  “ ¦¹ÐèXK@70)%!      % - 6 A MZj|¤¸ÏèUI>5-'"       "*3>JXgzŽ£·ÏéRF;2+%!   '0;GUdwŒ¢·ÏêOC90)#    $-8DRbuŠ ¶ÐëL@6-&!      !!"!*!5"A"O"_"r!ˆ!Ÿ ¶ÑíH=3+$   !" $ &&&''''2'>'K'\'n&…&%´$Ñ#îD90(#  !"$&(* + ----$...:.H-X-j-,š+²*Ð)ï@ 6!-!&!! ! " $&(+-/0 2 4555 5*565C5S4f4|3–2¯1Í0ï<#2$*$$# "!!#% ' )+.02468: < >>>>&>1>?=N=a@BD F IIH!H,G:GIF[EqD‹C¥BÃAè4*,*'("'(*- 0 369<>ACFHJLNP STTS'S4SCRUQjPƒOžM¹Là0-+,&+,.2 59=@CFILNQSUWY\_ bccb,a<`N_b^{\–[°YÏ/0*/"037;?DHLORUX[]`bdfimp tts%r4rEpYoqm‹k¦jÀ.3%58<AGLQUY]aehkmortwz~‚† Љˆ+†=„Rƒg›~²): =BHNTZ`dinrvz}€‚…ˆ‹Ž’–›  ¢ !Ÿ3Gš^˜w—•§#CHN U\cjqv{€†ŠŽ‘“–™œ £§«°¶¼ º¹(·<´R²j¯…­œNT \dlt|ƒ‰”šŸ¢¤§ª®±´¸¼ÁÇÍÔØÕÓ1ÐHÍ_ËvÈŽ  !"$%&()*+-./02346789;<=>@ABDEFGIJKMNOPRSTUWXY[\]^`abcefgijklnopqstuwxyz|}~€‚ƒ…†‡ˆŠ‹ŒŽ‘“”•–˜™šœžŸ¡¢£¤¦§¨ª«¬­¯°±³´µ¶¸¹º»½¾¿ÁÂÃÄÆÇÈÉËÌÍÏÐÑÒÔÕÖ×ÙÚÛÝÞßàâãäæçèéëìíîðñòôõö÷ùúûüþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ  !"$%&()*+-./02346789;<=>@ABDEFGIJKMNOPRSTUWXY[\]^`abcefgijklnopqstuwxyz|}~€‚ƒ…†‡ˆŠ‹ŒŽ‘“”•–˜™šœžŸ¡¢£¤¦§¨ª«¬­¯°±³´µ¶¸¹º»½¾¿ÁÂÃÄÆÇÈÉËÌÍÏÐÑÒÔÕÖ×ÙÚÛÝÞßàâãäæçèéëìíîðñòôõö÷ùúûüþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ  !"$%&()*+-./02346789;<=>@ABDEFGIJKMNOPRSTUWXY[\]^`abcefgijklnopqstuwxyz|}~€‚ƒ…†‡ˆŠ‹ŒŽ‘“”•–˜™šœžŸ¡¢£¤¦§¨ª«¬­¯°±³´µ¶¸¹º»½¾¿ÁÂÃÄÆÇÈÉËÌÍÏÐÑÒÔÕÖ×ÙÚÛÝÞßàâãäæçèéëìíîðñòôõö÷ùúûüþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ ¡¢£¤¥¦§¨©ª«¬­®¯°±²³´µ¶·¸¹º»¼½¾¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖרÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿmft1!  !"#$%&'()*+,-./01123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ ¡¢£¤¥¦§¨©ª«¬­®°±²³´µ¶·¸¹º»¼½¾¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÓÔÕÖרÙÚÛÜÝÞßàáâãäåæçèéêëìíîïñòóôõö÷øùúûüýþÿ  !""#$$%&&'())*+,--./01223456789:;<=>?@BCDEFHIJLMOPRSUWXZ\^`bdfhjmoqtvy|~ƒ†‰‹Ž’•—™›Ÿ¡£¥§¨ª¬­¯°²³µ¶·¹º»¼½¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÍÎÏÐÑÒÒÓÔÕÖÖרÙÙÚÛÛÜÝÝÞßßàááâããäååææçèèééêëëììíîîïïððñòòóóôôõöö÷÷øøùùúûûüüýýþþÿ  !""#$$%&&'())*+,--./01223456789:;<=>?@BCDEFHIJLMOPRSUWXZ\^`bdfhjmoqtvy|~ƒ†‰‹Ž’•—™›Ÿ¡£¥§¨ª¬­¯°²³µ¶·¹º»¼½¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÍÎÏÐÑÒÒÓÔÕÖÖרÙÙÚÛÛÜÝÝÞßßàááâããäååææçèèééêëëììíîîïïððñòòóóôôõöö÷÷øøùùúûûüüýýþþÿÚË èÍ:éÌ`ÜÈ’˺2¬Æ·P´À³h¼»®{ĵ¨ˆË³¥‡Ñ°¢‡Õ­ŸˆÙ«‰Üªœ‹Þ¨šá§™ã¥—’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’æÚË èÍ:éÌ`ÜÈ’˺2¬Æ·P´À³h¼»®{ĵ¨ˆË³¥‡Ñ°¢‡Õ­ŸˆÙ«‰Üªœ‹Þ¨šá§™ã¥—’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’æÚË èÍ:éÌ`ÜÈ’˺2¬Æ·P´À³h¼»®{ĵ¨ˆË³¥‡Ñ°¢‡Õ­ŸˆÙ«‰Üªœ‹Þ¨šá§™ã¥—’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’æÚË èÍ:éÌ`ÜÈ’˺2¬Æ·P´À³h¼»®{ĵ¨ˆË³¥‡Ñ°¢‡Õ­ŸˆÙ«‰Üªœ‹Þ¨šá§™ã¥—’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’æÚË èÍ:éÌ`ÜÈ’˺2¬Æ·P´À³h¼»®{ĵ¨ˆË³¥‡Ñ°¢‡Õ­ŸˆÙ«‰Üªœ‹Þ¨šá§™ã¥—’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’æÚË èÍ:éÌ`ÜÈ’˺2¬Æ·P´À³h¼»®{ĵ¨ˆË³¥‡Ñ°¢‡Õ­ŸˆÙ«‰Üªœ‹Þ¨šá§™ã¥—’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’æÚË èÍ:éÌ`ÜÈ’˺2¬Æ·P´À³h¼»®{ĵ¨ˆË³¥‡Ñ°¢‡Õ­ŸˆÙ«‰Üªœ‹Þ¨šá§™ã¥—’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’æÚË èÍ:éÌ`ÜÈ’˺2¬Æ·P´À³h¼»®{ĵ¨ˆË³¥‡Ñ°¢‡Õ­ŸˆÙ«‰Üªœ‹Þ¨šá§™ã¥—’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’æÚË èÍ:éÌ`ÜÈ’˺2¬Æ·P´À³h¼»®{ĵ¨ˆË³¥‡Ñ°¢‡Õ­ŸˆÙ«‰Üªœ‹Þ¨šá§™ã¥—’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’æÚË èÍ:éÌ`ÜÈ’˺2¬Æ·P´À³h¼»®{ĵ¨ˆË³¥‡Ñ°¢‡Õ­ŸˆÙ«‰Üªœ‹Þ¨šá§™ã¥—’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’æÚË èÍ:éÌ`ÜÈ’˺2¬Æ·P´À³h¼»®{ĵ¨ˆË³¥‡Ñ°¢‡Õ­ŸˆÙ«‰Üªœ‹Þ¨šá§™ã¥—’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’æÚË èÍ:éÌ`ÜÈ’˺2¬Æ·P´À³h¼»®{ĵ¨ˆË³¥‡Ñ°¢‡Õ­ŸˆÙ«‰Üªœ‹Þ¨šá§™ã¥—’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’æÚË èÍ:éÌ`ÜÈ’˺2¬Æ·P´À³h¼»®{ĵ¨ˆË³¥‡Ñ°¢‡Õ­ŸˆÙ«‰Üªœ‹Þ¨šá§™ã¥—’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’æÚË èÍ:éÌ`ÜÈ’˺2¬Æ·P´À³h¼»®{ĵ¨ˆË³¥‡Ñ°¢‡Õ­ŸˆÙ«‰Üªœ‹Þ¨šá§™ã¥—’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’æÚË èÍ:éÌ`ÜÈ’˺2¬Æ·P´À³h¼»®{ĵ¨ˆË³¥‡Ñ°¢‡Õ­ŸˆÙ«‰Üªœ‹Þ¨šá§™ã¥—’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’æÚË èÍ:éÌ`ÜÈ’˺2¬Æ·P´À³h¼»®{ĵ¨ˆË³¥‡Ñ°¢‡Õ­ŸˆÙ«‰Üªœ‹Þ¨šá§™ã¥—’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’æÚË èÍ:éÌ`ÜÈ’˺2¬Æ·P´À³h¼»®{ĵ¨ˆË³¥‡Ñ°¢‡Õ­ŸˆÙ«‰Üªœ‹Þ¨šá§™ã¥—’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’楗’æÙË çÎ 9èÍ`ÜÉ ’Ë»0«Æ¸O´À³g½»®{ĵ©ˆË²¦‡Ñ¯£‡Õ­ ˆÙ«ž‰Ü©œŠÞ§›Œà¥™ã¡˜ä¡˜ä¡˜ä¡˜ä¡˜ä¡˜ä¡˜ä¡˜ä¡˜ä¡˜ä¡˜ä¡˜ä¡˜ä¡˜ä¡˜ä¡˜ä¡˜äÙË äÎ 9çÎ`ÚÊ ’˼.«Å¹M´À´f½º®zŵ©‡Ë±¦‡Ñ®£‡Õ¬ ˆÙªž‰Ü§œŠÞ¥›‹à¢šâž™ãž™ãž™ãž™ãž™ãž™ãž™ãž™ãž™ãž™ãž™ãž™ãž™ãž™ãž™ãž™ãž™ãØË áÏ 9åÏ`ÙÊ ‘˾,«Å¹Lµ¾´g½¹®{Å´ª‡Ì°¦‡Ñ­£‡Õ« ˆÙ¨žˆÛ¥‰Ý£œŠßŸš‹á›™Žâ›™Žâ›™Žâ›™Žâ›™Žâ›™Žâ›™Žâ›™Žâ›™Žâ›™Žâ›™Žâ›™Žâ›™Žâ›™Žâ›™Žâ›™Žâ›™ŽâØË ÜÐ 9ãÐ `ØË ‘Ë¿+«ÄºLµ½³g¾¸®{Å´©‡Ì°¦‡Ñ¬£‡Õ© ‡Ø¦ŸˆÛ£ˆÝ œ‰Þ›Šà˜šá˜šá˜šá˜šá˜šá˜šá˜šá˜šá˜šá˜šá˜šá˜šá˜šá˜šá˜šá˜šá˜šá×Ì ÚÑ 8ÞÑ _ÖË ‘ËÀ)¬Â¹M¶¼³h¾·®{Ƴ©‡Ì¯¦‡Ñª£†Õ§¡‡Ø¤Ÿ‡Ú¡ž‡ÜžˆÝšœ‰Þ•›Œà•›Œà•›Œà•›Œà•›Œà•›Œà•›Œà•›Œà•›Œà•›Œà•›Œà•›Œà•›Œà•›Œà•›Œà•›Œà•›ŒàÖÌ ÙÑ 8ÚÓ _ÔÌ ‘ÉÀ)­À¹N¶º³i¿µ®|Ʋ©‡Ì­¦†Ñ©£†Ô¥¡†×¢ †ÙŸŸ†Ú›ž‡Ü—ˆÝ“œ‹Þ“œ‹Þ“œ‹Þ“œ‹Þ“œ‹Þ“œ‹Þ“œ‹Þ“œ‹Þ“œ‹Þ“œ‹Þ“œ‹Þ“œ‹Þ“œ‹Þ“œ‹Þ“œ‹Þ“œ‹Þ“œ‹ÞÕÌ ØÒ 7ØÓ ^ÒÌ “Ç¿+­¾¸P·¹²j¿´­|ư©‡Ì«¦†Ð§¤…Ô£¢…ÖŸ¡…Øœ …Ù˜Ÿ†Ú”ž‡ÜŠÝŠÝŠÝŠÝŠÝŠÝŠÝŠÝŠÝŠÝŠÝŠÝŠÝŠÝŠÝŠÝŠÝÔÍ ÖÒ 7ÖÔ ^ÐË •ľ-®¼¸Q¸·²jÀ³­|Æ®©‡Ì©¦†Ð¥¤…Ó £„Õ¢„Ö™¡…Ø• …Ù‘Ÿ‡ÚŽž‰ÛŽž‰ÛŽž‰ÛŽž‰ÛŽž‰ÛŽž‰ÛŽž‰ÛŽž‰ÛŽž‰ÛŽž‰ÛŽž‰ÛŽž‰ÛŽž‰ÛŽž‰ÛŽž‰ÛŽž‰ÛŽž‰ÛÓÍ ÕÓ 6ÔÔ _ÎË —Á¾0¯º·S¸µ²lÀ°­}Ǭª†Ë§§…Ï¢¥„Ñž¤„Óš£„Õ–¢„Ö“¡…× †Ø‹ ‰Ù‹ ‰Ù‹ ‰Ù‹ ‰Ù‹ ‰Ù‹ ‰Ù‹ ‰Ù‹ ‰Ù‹ ‰Ù‹ ‰Ù‹ ‰Ù‹ ‰Ù‹ ‰Ù‹ ‰Ù‹ ‰Ù‹ ‰Ù‹ ‰ÙÒÎ ÓÔ 5ÑÓ bËÌ ™¾½3±··U¹²±mÁ­­}ƪª†Ë¤¨„Ο§„Л¥ƒÒ—¤ƒÓ“£„Ô£…ÕŒ¢†Ö‰¡ˆ×‰¡ˆ×‰¡ˆ×‰¡ˆ×‰¡ˆ×‰¡ˆ×‰¡ˆ×‰¡ˆ×‰¡ˆ×‰¡ˆ×‰¡ˆ×‰¡ˆ×‰¡ˆ×‰¡ˆ×‰¡ˆ×‰¡ˆ×‰¡ˆ×ÐÏ ÑÔ 7ÎÓ eÆÊ ¹¼8²´¶Xº­±nÁª®}Ƨ«…É¡©„Ìœ¨ƒÎ—§ƒÏ“¦ƒÑ¥„Ò¥…ÓŠ¤†Ó‡£ˆÔ‡£ˆÔ‡£ˆÔ‡£ˆÔ‡£ˆÔ‡£ˆÔ‡£ˆÔ‡£ˆÔ‡£ˆÔ‡£ˆÔ‡£ˆÔ‡£ˆÔ‡£ˆÔ‡£ˆÔ‡£ˆÔ‡£ˆÔ‡£ˆÔÎÐ ÎÔ :ÊÓ hÀÈ¡µ»>´­µ[»©±oÁ¦¯}Ä£­„Ç«ƒÊ˜ªƒË“©ƒÍ¨„Χ„ÏŠ§…χ¦‡Ð…¦ˆÑ…¦ˆÑ…¦ˆÑ…¦ˆÑ…¦ˆÑ…¦ˆÑ…¦ˆÑ…¦ˆÑ…¦ˆÑ…¦ˆÑ…¦ˆÑ…¦ˆÑ…¦ˆÑ…¦ˆÑ…¦ˆÑ…¦ˆÑ…¦ˆÑÌÐ ÊÔ >ÅÓ m¸Å¥®¹Dµ§µ^»£²pÀ¡°}ß®„Å™­ƒÇ”¬„É«„ʪ…ËŠª…ˈ©†Ì…©‡Íƒ¨‰Íƒ¨‰Íƒ¨‰Íƒ¨‰Íƒ¨‰Íƒ¨‰Íƒ¨‰Íƒ¨‰Íƒ¨‰Íƒ¨‰Íƒ¨‰Íƒ¨‰Íƒ¨‰Íƒ¨‰Íƒ¨‰Íƒ¨‰Íƒ¨‰ÍÈÑ ÅÕ B¿Ó r±Ä§¥¹I¶¡¶`»ž³p¾±}Á›°„Õ¯„Ä‘®„Æ­…ÇŠ­†Çˆ¬†È†¬‡È„«‰É‚«ŠÉ‚«ŠÉ‚«ŠÉ‚«ŠÉ‚«ŠÉ‚«ŠÉ‚«ŠÉ‚«ŠÉ‚«ŠÉ‚«ŠÉ‚«ŠÉ‚«ŠÉ‚«ŠÉ‚«ŠÉ‚«ŠÉ‚«ŠÉ‚«ŠÉÄÒ ÀÖ H¸Ô x©Ï˜ž¾G®š¶bº˜µq¼—³|¾—²„À’±…°…ʯ†Äˆ¯‡Ä†¯ˆÅ„®‰Åƒ®ŠÅ®‹Å®‹Å®‹Å®‹Å®‹Å®‹Å®‹Å®‹Å®‹Å®‹Å®‹Å®‹Å®‹Å®‹Å®‹Å®‹Å®‹Å¿Ô%º× N®Ú p Û‡—Í9š’ÃX¨‘¼l²‘·z¹’´ƒ½Ž³†¿‹²‡Àˆ±‡À†±ˆÁ„±‰Áƒ±ŠÁ‚±‹Â€°ŒÂ€°ŒÂ€°ŒÂ€°ŒÂ€°ŒÂ€°ŒÂ€°ŒÂ€°ŒÂ€°ŒÂ€°ŒÂ€°ŒÂ€°ŒÂ€°ŒÂ€°ŒÂ€°ŒÂ€°ŒÂ€°ŒÂ÷ÀøÀ1ù½ Sê·(|̨DªÆ¥]´Â£pº¾¢¿¼ ˆÃ¹›ˆÆ·˜ˆÊµ•‰Í³’ŠÐ±‹Ò°ŒÔ¯ŠÖ®ˆ“Ø­†˜Ù¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú÷ÀøÀ1ù½ Sê·(|̨DªÆ¥]´Â£pº¾¢¿¼ ˆÃ¹›ˆÆ·˜ˆÊµ•‰Í³’ŠÐ±‹Ò°ŒÔ¯ŠÖ®ˆ“Ø­†˜Ù¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú÷ÀøÀ1ù½ Sê·(|̨DªÆ¥]´Â£pº¾¢¿¼ ˆÃ¹›ˆÆ·˜ˆÊµ•‰Í³’ŠÐ±‹Ò°ŒÔ¯ŠÖ®ˆ“Ø­†˜Ù¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú÷ÀøÀ1ù½ Sê·(|̨DªÆ¥]´Â£pº¾¢¿¼ ˆÃ¹›ˆÆ·˜ˆÊµ•‰Í³’ŠÐ±‹Ò°ŒÔ¯ŠÖ®ˆ“Ø­†˜Ù¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú÷ÀøÀ1ù½ Sê·(|̨DªÆ¥]´Â£pº¾¢¿¼ ˆÃ¹›ˆÆ·˜ˆÊµ•‰Í³’ŠÐ±‹Ò°ŒÔ¯ŠÖ®ˆ“Ø­†˜Ù¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú÷ÀøÀ1ù½ Sê·(|̨DªÆ¥]´Â£pº¾¢¿¼ ˆÃ¹›ˆÆ·˜ˆÊµ•‰Í³’ŠÐ±‹Ò°ŒÔ¯ŠÖ®ˆ“Ø­†˜Ù¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú÷ÀøÀ1ù½ Sê·(|̨DªÆ¥]´Â£pº¾¢¿¼ ˆÃ¹›ˆÆ·˜ˆÊµ•‰Í³’ŠÐ±‹Ò°ŒÔ¯ŠÖ®ˆ“Ø­†˜Ù¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú÷ÀøÀ1ù½ Sê·(|̨DªÆ¥]´Â£pº¾¢¿¼ ˆÃ¹›ˆÆ·˜ˆÊµ•‰Í³’ŠÐ±‹Ò°ŒÔ¯ŠÖ®ˆ“Ø­†˜Ù¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú÷ÀøÀ1ù½ Sê·(|̨DªÆ¥]´Â£pº¾¢¿¼ ˆÃ¹›ˆÆ·˜ˆÊµ•‰Í³’ŠÐ±‹Ò°ŒÔ¯ŠÖ®ˆ“Ø­†˜Ù¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú÷ÀøÀ1ù½ Sê·(|̨DªÆ¥]´Â£pº¾¢¿¼ ˆÃ¹›ˆÆ·˜ˆÊµ•‰Í³’ŠÐ±‹Ò°ŒÔ¯ŠÖ®ˆ“Ø­†˜Ù¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú÷ÀøÀ1ù½ Sê·(|̨DªÆ¥]´Â£pº¾¢¿¼ ˆÃ¹›ˆÆ·˜ˆÊµ•‰Í³’ŠÐ±‹Ò°ŒÔ¯ŠÖ®ˆ“Ø­†˜Ù¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú÷ÀøÀ1ù½ Sê·(|̨DªÆ¥]´Â£pº¾¢¿¼ ˆÃ¹›ˆÆ·˜ˆÊµ•‰Í³’ŠÐ±‹Ò°ŒÔ¯ŠÖ®ˆ“Ø­†˜Ù¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú¬…Ú÷ÀøÀ0ù½ Sê¸'|̨D«Æ¥]´Â¤pº¾¢¿¼ ˆÃ¹›ˆÇ·˜ˆÊµ•‰Î³’ŠÐ±‹Ó°Õ¯Š×­ˆ“Ù­†˜Ú«†Ú«†Ú«†Ú«†Ú«†Ú«†Ú«†Ú«†Ú«†Ú«†Ú«†Ú«†Ú«†Ú«†Ú«†Ú÷Á÷Á0ø¾Sê¸&|Ë©C«Æ¦\´Â¤oº¾¢~¿» ˆÃ¹‡È¶š‡Ì³—ˆÏ±”‰Ò°’ŠÕ®Œ×­ŽÙ¬Š’Ü«‰™Ý§ˆœÛ§ˆœÛ§ˆœÛ§ˆœÛ§ˆœÛ§ˆœÛ§ˆœÛ§ˆœÛ§ˆœÛ§ˆœÛ§ˆœÛ§ˆœÛ§ˆœÛ§ˆœÛ§ˆœÛöÁ÷Á0ø¿Sê¹%|Ë©B«Æ§[³Â¥nº¾£~¿»¡ˆÄ¸ž‡Éµœ‡Í²™‡Ñ°–ˆÔ®”‰×­’‹Ú«Ü©’ߨšß£‹œÜ£‹œÜ£‹œÜ£‹œÜ£‹œÜ£‹œÜ£‹œÜ£‹œÜ£‹œÜ£‹œÜ£‹œÜ£‹œÜ£‹œÜ£‹œÜ£‹œÜöÁöÂ0÷¿Sêº$|Ë©A¬Æ§Z³Â¥mº¾£}¿»£ˆÄ· ‡É´‡Î±›‡Ó¯™ˆÖ­—‰Ú«•ŠÜ©“ß§’‘⤑™à ŽœÜ ŽœÜ ŽœÜ ŽœÜ ŽœÜ ŽœÜ ŽœÜ ŽœÜ ŽœÜ ŽœÜ ŽœÜ ŽœÜ ŽœÜ ŽœÜ ŽœÜõÂõÂ0öÀSêº#|˪A¬Æ¨Y³Â¦mº¾¤}¿º¤‡Å·¡‡Ê³Ÿ‡Ï°‡Ô®›ˆØ«™‰Ü©˜‹ß§˜Žâ¥—’æ –™àœ“›Ýœ“›Ýœ“›Ýœ“›Ýœ“›Ýœ“›Ýœ“›Ýœ“›Ýœ“›Ýœ“›Ýœ“›Ýœ“›Ýœ“›Ýœ“›Ýœ“›Ýô õÃ0öÀSê»"|ʪ@¬Æ¨X³Â¦lº¾¤|¿º¥…Ŷ£‡Ë³¡‡Ð°Ÿ‡Õ­ˆÚªŠÝ§›Œà¤šŽâŸ˜ãš˜á™—›Ý™—›Ý™—›Ý™—›Ý™—›Ý™—›Ý™—›Ý™—›Ý™—›Ý™—›Ý™—›Ý™—›Ý™—›Ý™—›Ý™—›Ýòà ôÃ0õÁSê¼!|Ê«?­Æ©W³Â§kº¾¥{¿º¦„Ŷ¥‡Ë²£‡Ñ¯¡‡Ö«ŸˆÚ§‰Ý¤œŠß ›‹à›šâ—š“á—œ›Þ—œ›Þ—œ›Þ—œ›Þ—œ›Þ—œ›Þ—œ›Þ—œ›Þ—œ›Þ—œ›Þ—œ›Þ—œ›Þ—œ›Þ—œ›Þ—œ›Þðà ôÄ/õÂRê½ |Ê«>¬ÆªV³Â¨kº¾§y¿º¨ƒÅ¶§‡Ì²¥‡Ñ¬¢‡Ö¨ ‡Ù¤žˆÜ¡ˆÝœœ‰Þ—›‹à“›à’—Þ’—Þ’—Þ’—Þ’—Þ’—Þ’—Þ’—Þ’—Þ’—Þ’—Þ’—Þ’—Þ’—Þ’—ÞíÄ óÅ/ôÂRê½|ʬ<¬Æ«U³Â¨j¹¾©w¿ºª€Åµ©‡Ì¯¥‡Òª¢‡Ö¥ †Ø¡Ÿ†Úž‡Û™‡Ý”‰ÞœÞŽ“ÝŽ“ÝŽ“ÝŽ“ÝŽ“ÝŽ“ÝŽ“ÝŽ“ÝŽ“ÝŽ“ÝŽ“ÝŽ“ÝŽ“ÝŽ“ÝŽ“ÝêÅ òÅ/óÃRê¾|Ë­:¬Æ¬T³Â©i¹¾¬s¿º­~Ų©‡Ì¬¥†Ñ§£†Õ¢¡…מ …Øš …Ú–Ÿ†Û‘žˆÜž‹Ü‹žÜ‹žÜ‹žÜ‹žÜ‹žÜ‹žÜ‹žÜ‹žÜ‹žÜ‹žÜ‹žÜ‹žÜ‹žÜ‹žÜ‹žÜæÅ ñÆ/òÄRêÀ|˯8¬Æ­R²Â«f¹¿°o¾·­~ư©‡Íª¦†Ñ¤¤…ÓŸ£„Õ›¢„Ö—¡…Ø“ …Ù ‡Ù‹ŸŠÚˆŸÚˆŸÚˆŸÚˆŸÚˆŸÚˆŸÚˆŸÚˆŸÚˆŸÚˆŸÚˆŸÚˆŸÚˆŸÚˆŸÚˆŸÚáÆ ðÇ.ðÆQêÁ|˰5«Ç¯O²Ã°`¸¼²l¿²­~Ç­©†Ì§§…Ï¡¥„Òœ¤„Ó˜£„Ô”£„Õ¢…Ö¡†×‰¡ˆØ‡¡‹Ø‡¡‹Ø‡¡‹Ø‡¡‹Ø‡¡‹Ø‡¡‹Ø‡¡‹Ø‡¡‹Ø‡¡‹Ø‡¡‹Ø‡¡‹Ø‡¡‹Ø‡¡‹Ø‡¡‹Ø‡¡‹ØÛÇ îÉ.îÈQëÄ|̳0«Ç±L±Ä¸V·¶±nÁ®­Ç©ª†Ë£¨„Ξ§ƒÏ™¦ƒÑ•¥ƒÒ‘¤„ÓŽ¤…Ô‹£†Ôˆ£ˆÕ…£ŠÕ…£ŠÕ…£ŠÕ…£ŠÕ…£ŠÕ…£ŠÕ…£ŠÕ…£ŠÕ…£ŠÕ…£ŠÕ…£ŠÕ…£ŠÕ…£ŠÕ…£ŠÕ…£ŠÕÚÈ ëË -ëÊPëÇ|̶*ªÈ·D°º¶Yº¯±pª­Ǧ«…Ê ª„Ìš¨ƒÍ–¨ƒÎ’§ƒÏ¦„ÐŒ¦…щ¥†Ñ‡¥‡Ò…¥‰Ò…¥‰Ò…¥‰Ò…¥‰Ò…¥‰Ò…¥‰Ò…¥‰Ò…¥‰Ò…¥‰Ò…¥‰Ò…¥‰Ò…¥‰Ò…¥‰Ò…¥‰Ò…¥‰ÒØÉ ßÍ ,çÍOèË{ͼ"¨Â¼<±±µ^¼©±r¦®Å¢­„Çœ«ƒÉ—ªƒÊ“ª„Ë©„Ì©„Í‹¨…͈¨†Î†§‡Î„§‰Ï„§‰Ï„§‰Ï„§‰Ï„§‰Ï„§‰Ï„§‰Ï„§‰Ï„§‰Ï„§‰Ï„§‰Ï„§‰Ï„§‰Ï„§‰Ï„§‰ÏÕÉ ØÏ +ÚÓ NØÐ zÍ賺Fµ©´b½¤±tÁ¡°Þ®„Å™­„Ç”¬„È«„ÉŽ«„Ê‹ª…ˉª†Ë‡©‡Ì…©ˆÌƒ©‰Ìƒ©‰Ìƒ©‰Ìƒ©‰Ìƒ©‰Ìƒ©‰Ìƒ©‰Ìƒ©‰Ìƒ©‰Ìƒ©‰Ìƒ©‰Ìƒ©‰Ìƒ©‰Ìƒ©‰Ìƒ©‰ÌÒË ÔÑ )ÕÕ LÐÐ ~¸¿%®¨¸O¸¡´f¼ž²u¿±Á›°„Ö®„Å‘®„ÆŽ­…Ç‹¬…lj¬†È‡¬‡É†«‡É„«‰É‚«ŠÊ‚«ŠÊ‚«ŠÊ‚«ŠÊ‚«ŠÊ‚«ŠÊ‚«ŠÊ‚«ŠÊ‚«ŠÊ‚«ŠÊ‚«ŠÊ‚«ŠÊ‚«ŠÊ‚«ŠÊ‚«ŠÊÏÌ ÐÒ (ÎÔ RÅÑ ƒªÃ-¨ž·W¸›µh»š´u¾™²¿—±„Á“°…¯…ÃŒ¯…ÄŠ®†Åˆ®‡Å†®ˆÆ„­ˆÆƒ­ŠÆ­‹Ç­‹Ç­‹Ç­‹Ç­‹Ç­‹Ç­‹Ç­‹Ç­‹Ç­‹Ç­‹Ç­‹Ç­‹Ç­‹Ç­‹ÇÌÍ ËÓ -ÇÔ Y²Ø €žÍ+š˜ÁP«–¸g·•µu¼”´~¾”³…¿²…ÀŒ±†Áб‡Âˆ°‡Â†°ˆÂ…°‰Ãƒ°ŠÃ‚¯‹Ã¯ŒÃ¯ŒÃ¯ŒÃ¯ŒÃ¯ŒÃ¯ŒÃ¯ŒÃ¯ŒÃ¯ŒÃ¯ŒÃ¯ŒÃ¯ŒÃ¯ŒÃ¯ŒÃ¯ŒÃÇÏÅÔ 4¸Ù [¢çv—Ú%‰ÏE˜ŽÇ]£Án«½y±Œº´‰¸ƒ·†·…¹„¶†ºƒµ‡»‚µˆ¼´‰½€´Š½´‹¾~³Œ¾~³Œ¾~³Œ¾~³Œ¾~³Œ¾~³Œ¾~³Œ¾~³Œ¾~³Œ¾~³Œ¾~³Œ¾~³Œ¾~³Œ¾~³Œ¾~³Œ¾ÂѽÖ:§ñU›ñh‘æ-x‰Ý@……ÕVƒÏg—‚Ës~Èx¡{Æ|¤yĦw¨u„©tÂ…ªsÁ‡«rÁˆ«rÀЬqÀ‹¬qÀ‹¬qÀ‹¬qÀ‹¬qÀ‹¬qÀ‹¬qÀ‹¬qÀ‹¬qÀ‹¬qÀ‹¬qÀ‹¬qÀ‹¬qÀ‹¬qÀ‹¬qÀ‹¬ÿ¸ÿ¸'ÿ´*F÷¯6iÞ§BÇ›b±Ä›r¶Â›¹À›ˆ½¾™‰À¼•ŠÃº‘‹Æ¸È·ŠÊ¶ˆ‘̵…“Í´ƒ–ϳ™Ð³€Ñ²£Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñÿ¸ÿ¸'ÿ´*F÷¯6iÞ§BÇ›b±Ä›r¶Â›¹À›ˆ½¾™‰À¼•ŠÃº‘‹Æ¸È·ŠÊ¶ˆ‘̵…“Í´ƒ–ϳ™Ð³€Ñ²£Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñÿ¸ÿ¸'ÿ´*F÷¯6iÞ§BÇ›b±Ä›r¶Â›¹À›ˆ½¾™‰À¼•ŠÃº‘‹Æ¸È·ŠÊ¶ˆ‘̵…“Í´ƒ–ϳ™Ð³€Ñ²£Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñÿ¸ÿ¸'ÿ´*F÷¯6iÞ§BÇ›b±Ä›r¶Â›¹À›ˆ½¾™‰À¼•ŠÃº‘‹Æ¸È·ŠÊ¶ˆ‘̵…“Í´ƒ–ϳ™Ð³€Ñ²£Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñÿ¸ÿ¸'ÿ´*F÷¯6iÞ§BÇ›b±Ä›r¶Â›¹À›ˆ½¾™‰À¼•ŠÃº‘‹Æ¸È·ŠÊ¶ˆ‘̵…“Í´ƒ–ϳ™Ð³€Ñ²£Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñÿ¸ÿ¸'ÿ´*F÷¯6iÞ§BÇ›b±Ä›r¶Â›¹À›ˆ½¾™‰À¼•ŠÃº‘‹Æ¸È·ŠÊ¶ˆ‘̵…“Í´ƒ–ϳ™Ð³€Ñ²£Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñÿ¸ÿ¸'ÿ´*F÷¯6iÞ§BÇ›b±Ä›r¶Â›¹À›ˆ½¾™‰À¼•ŠÃº‘‹Æ¸È·ŠÊ¶ˆ‘̵…“Í´ƒ–ϳ™Ð³€Ñ²£Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñÿ¸ÿ¸'ÿ´*F÷¯6iÞ§BÇ›b±Ä›r¶Â›¹À›ˆ½¾™‰À¼•ŠÃº‘‹Æ¸È·ŠÊ¶ˆ‘̵…“Í´ƒ–ϳ™Ð³€Ñ²£Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñÿ¸ÿ¸'ÿ´*F÷¯6iÞ§BÇ›b±Ä›r¶Â›¹À›ˆ½¾™‰À¼•ŠÃº‘‹Æ¸È·ŠÊ¶ˆ‘̵…“Í´ƒ–ϳ™Ð³€Ñ²£Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñÿ¸ÿ¸'ÿ´*F÷¯6iÞ§BÇ›b±Ä›r¶Â›¹À›ˆ½¾™‰À¼•ŠÃº‘‹Æ¸È·ŠÊ¶ˆ‘̵…“Í´ƒ–ϳ™Ð³€Ñ²£Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñ°~¤Ñÿ¸ÿ¸'ÿµ)F÷°5iÞ¨AÇœa±Äœq¶Â›~¹¿†½½š‰Á»—‰Ä¹“ŠÇ·ŒÊµŒŽÌ´‰Î³‡’в„•Ò±‚™Ó±žÔ®€¢Ô¬€£Ò¬€£Ò¬€£Ò¬€£Ò¬€£Ò¬€£Ò¬€£Ò¬€£Ò¬€£Ò¬€£Ò¬€£Ò¬€£Ò¬€£Òÿ¹ÿ¹'ÿ¶(F÷°4jݨ@Ç`±Äœq¶Âœ|º¿ž…¾¼œˆÂº™ˆÅ¸•‰É¶‘ŠÌ´ŽŒÏ²‹ŽÑ±ˆ‘Ó°†”Õ¯„™Ö¯ƒŸ×ª‚¡Õ§‚¢Ó§‚¢Ó§‚¢Ó§‚¢Ó§‚¢Ó§‚¢Ó§‚¢Ó§‚¢Ó§‚¢Ó§‚¢Ó§‚¢Ó§‚¢Ó§‚¢Óÿ¹ÿ¹'ÿ¶(F÷±3jÝ©?‘Ç`±Äp¶Âž{º¿Ÿƒ¾¼žˆÂ¹›ˆÇ·—ˆÊµ”‰Î³‹Ñ±Ó¯ŠÖ®ˆ“Ø­†™Ùª…žÙ¥„¡Õ¤„¢Ô¤„¢Ô¤„¢Ô¤„¢Ô¤„¢Ô¤„¢Ô¤„¢Ô¤„¢Ô¤„¢Ô¤„¢Ô¤„¢Ô¤„¢Ô¤„¢Ôÿºÿº'ÿ·'F÷±2jÝ©>‘Çž_±Äo¶ÁŸyº¾ ‚¿» ˆÃ¸œ‡È¶™ˆÌ³–ˆÐ±’ŠÓ¯ŒÖ®ŒŽØ¬Š“Û«‰™Ü¦‡Ú¢† Ö †¢Ô †¢Ô †¢Ô †¢Ô †¢Ô †¢Ô †¢Ô †¢Ô †¢Ô †¢Ô †¢Ô †¢Ô †¢Ôÿºÿº&ÿ·&Fö²1jݪ=‘Çž^±Äo¶Á xº¾¡¿»¡ˆÄ¸ž‡Éµ›‡Í²˜ˆÑ°•‰Õ®’‹Ø¬Ûª’Þ¨Œšß¢ŠÚž‰ Öœ‰¡Ôœ‰¡Ôœ‰¡Ôœ‰¡Ôœ‰¡Ôœ‰¡Ôœ‰¡Ôœ‰¡Ôœ‰¡Ôœ‰¡Ôœ‰¡Ôœ‰¡Ôœ‰¡Ôþºÿ»&ÿ¸&Fö²0jݪ<‘Çž]±Äžn¶Á¡vº¾¢¿»£ˆÄ· ‡Ê´‡Ï±š‡Ó®˜ˆ×¬•ŠÛª“Þ¨‘’⤙àžÛšŒ ×™‹¡Õ™‹¡Õ™‹¡Õ™‹¡Õ™‹¡Õ™‹¡Õ™‹¡Õ™‹¡Õ™‹¡Õ™‹¡Õ™‹¡Õ™‹¡Õ™‹¡Õþ»þ»&ÿ¸%Fö³0jÜ«;’ÇŸ]±ÄŸl¶Á¢tº¾¤~¿º¤‡Å·¢‡Ê³Ÿ‡Ð°œ‡Õ­šˆÙª™ŠÞ¨˜Žâ¥—“柕™àš‘œÛ—Ÿ×–ޡՖޡՖޡՖޡՖޡՖޡՖޡՖޡՖޡՖޡՖޡՖޡՖޡÕý»þ»&ÿ¹%Fö³/jÜ«:’ÇŸ\±Ä j¶Á£sº¾¥|Àº¥…Ŷ£‡Ë³¡‡Ñ¯Ÿ‡Ö¬ž‰Û¨œ‹ß¤šáŸ™ãœš˜á—–œÜ”“ŸØ“’ Ö“’ Ö“’ Ö“’ Ö“’ Ö“’ Ö“’ Ö“’ Ö“’ Ö“’ Ö“’ Ö“’ Ö“’ Öý» ý¼&þ¹$Fö´.jÜ«:’Ç \±Ä¡h¶Á¥qº¾§zÀº§„Ŷ¦‡Ì²¤‡Ñ®¢‡×©ŸˆÛ¤‰Þ ›ŠàššŒá–›“á•››Ý’—žØ‘• ×‘• ×‘• ×‘• ×‘• ×‘• ×‘• ×‘• ×‘• ×‘• ×‘• ×‘• ×‘• ×ü¼ ý¼&þº#Fö´-jܬ9’Ç [±Ä£fµÁ¦nº¾©xÀº©‚Ŷ¨ˆÌ°¥‡Òª¢‡×¦Ÿ‡Ú¡ž‡Ü›ˆÞ–œŠß‘›ß‘™Ý›žÙ™Ÿ×™Ÿ×™Ÿ×™Ÿ×™Ÿ×™Ÿ×™Ÿ×™Ÿ×™Ÿ×™Ÿ×™Ÿ×™Ÿ×™Ÿ×ü¼ ü¼&ýº"Eöµ,jÜ­7“Ç¡Z±Å¥cµÂ©kº¾¬u¿º­ų©‡Ì­¥†Ò§¢†Ö¢¡†ØŸ†Ú˜ž‡Û’‰ÝŽÝŒž”Ü žÙŒžŸ×ŒžŸ×ŒžŸ×ŒžŸ×ŒžŸ×ŒžŸ×ŒžŸ×ŒžŸ×ŒžŸ×ŒžŸ×ŒžŸ×ŒžŸ×ŒžŸ×û½ û½%ý»"Eö¶+jÛ­6“Ç¢Y±Å§_µÂ­f¹¿±p¾·­~ư©‡Íª¦†Ñ¤¤…Ôž¢…Ö™¡…Ø” †ÙŸ‡Ú‹Ÿ‹ÛˆŸÛˆ ˜Øˆ¡×ˆ¡×ˆ¡×ˆ¡×ˆ¡×ˆ¡×ˆ¡×ˆ¡×ˆ¡×ˆ¡×ˆ¡×ˆ¡×ˆ¡×ú½ ú¾%ü¼ Eö·*jÛ¯4”ȤU±Æ«X´Ã³_·»²n¿²­~Ǭ©†Ì¦§…Р¥„Ò›¤„Ô–£„Õ‘¢…Ö¡†×‰¡‰Ø†¡Ø„¡“ׄ¢—Ö„¢—Ö„¢—Ö„¢—Ö„¢—Ö„¢—Ö„¢—Ö„¢—Ö„¢—Ö„¢—Ö„¢—Ö„¢—Ö„¢—Öù¾ ù¿%ú½Eö¸'jÛ°1”ȨM¯Ç²N²Á¸X¸´±pÁ­­Ç©ª…Ë¢¨„ΧƒÐ—¦ƒÑ’¥„ÒŽ¤…Ó‹£†Ôˆ£ˆÕ„£‹Õ‚£Õ£“Õ£“Õ£“Õ£“Õ£“Õ£“Õ£“Õ£“Õ£“Õ£“Õ£“Õ£“Õ£“ÕôÀ ÷À$ù¿Döº%jÚ².•ʯ@­È½=¯·¶]º®±r©­Æ¥«…ÉŸªƒË™©ƒÍ”¨ƒÎ§„ÏŒ¦…Љ¦†Ñ†¥‡Ò„¥ŠÒ¥Ò€¥Ò€¥Ò€¥Ò€¥Ò€¥Ò€¥Ò€¥Ò€¥Ò€¥Ò€¥Ò€¥Ò€¥Ò€¥ÒìÁ õÂ$öÁD÷½!jÚ´)–ͼ(©»»C³®µa¼¨±sÁ¥®Å¡­„Ç›¬ƒÉ–«ƒÊ‘ª„ËŽ©„Ì‹©…͈¨†Î†¨‡Îƒ¨‰Î§ŒÏ€§Ï€§Ï€§Ï€§Ï€§Ï€§Ï€§Ï€§Ï€§Ï€§Ï€§Ï€§Ï€§ÏßÄ òÅ#óÄCôÁiÞÂÁÀ#¬¯¹L¶¦´e½¢²uÀ °€Ã®„Å—­„Æ“­„Ǭ„ÈŒ«…ɉ«†Ê‡«†Ê…ªˆÊƒª‰Ëª‹Ë€ªŒË€ªŒË€ªŒË€ªŒË€ªŒË€ªŒË€ªŒË€ªŒË€ªŒË€ªŒË€ªŒË€ªŒË€ªŒËÚÅ ëÉ "îÈBïÆhÐÒ ‡±¾/®¥¸T¸Ÿµh¼³v¿›±Á™°„”¯„ï…Ä®…ÅŠ®†Æˆ­†Æ‡­‡Æ…­ˆÇƒ­‰Ç­‹Ç€¬‹Ç€¬‹Ç€¬‹Ç€¬‹Ç€¬‹Ç€¬‹Ç€¬‹Ç€¬‹Ç€¬‹Ç€¬‹Ç€¬‹Ç€¬‹Ç€¬‹ÇÕÆ ÙÌ åÏ @ØÕ _½Ö ˆ¥Ä4¦œ·Z¸™µk»—´w½–³¾•²…À‘±…Áޱ…Á‹°†Â‰°‡Âˆ°‡Ã†°ˆÃ…¯‰Ãƒ¯ŠÄ‚¯‹Ä¯‹Ä¯‹Ä¯‹Ä¯‹Ä¯‹Ä¯‹Ä¯‹Ä¯‹Ä¯‹Ä¯‹Ä¯‹Ä¯‹Ä¯‹ÄÒÈÓÏ ÕÔ =ÂÙ c«Þƒ›Î3™”ÄS¦‘¾g¯ºt´·}¹‘µ„¼Ž³†¾Œ²†¿Š²‡Àˆ²ˆÀ†±ˆÁ…±‰Á„±ŠÁ‚±‹Á±ŒÂ€±ŒÂ€±ŒÂ€±ŒÂ€±ŒÂ€±ŒÂ€±ŒÂ€±ŒÂ€±ŒÂ€±ŒÂ€±ŒÂ€±ŒÂ€±ŒÂ€±ŒÂÎÊÎÑ Æ× A¯êaæxÚ2ˆ‹ÒL”‰Ë_œˆÆn£ˆÃx¨…À|«ƒ¿®€½°¼ƒ±}¼„²|»†³{»‡´zºˆ´yº‰µx¹‹µx¹Œ¶x¹Œ¶x¹Œ¶x¹Œ¶x¹Œ¶x¹Œ¶x¹Œ¶x¹Œ¶x¹Œ¶x¹Œ¶x¹Œ¶x¹Œ¶x¹Œ¶ÉËÈÒ "³ß B üZ“ð(j‹æ9w„ßI‚Ø[‹€Ói‘|Ðq–yÍvšvËztÊ}žrÉ qÈ¡pǃ¢oÇ…£nƆ£mƈ¤lÅŠ¥lÅ‹¥lÅ‹¥lÅ‹¥lÅ‹¥lÅ‹¥lÅ‹¥lÅ‹¥lÅ‹¥lÅ‹¥lÅ‹¥lÅ‹¥lÅ‹¥lÅ‹¥ÄÎ ·Ù&£û=–ÿNú/[†ò?g€ëNq{å[yvàe€qÝl„nÚrˆkÙw‹i×zgÖ~ŽfÕ€eÔ‚dÔ„‘cÓ†‘bÓ‰’aÒ‹“aÒŒ“aÒŒ“aÒŒ“aÒŒ“aÒŒ“aÒŒ“aÒŒ“aÒŒ“aÒŒ“aÒŒ“aÒŒ“aÒŒ“aÒŒ“ÿ± ÿ±#ÿ®1:ÿ©>Yí¢KyÙš\—È•r°Å•}µÃ—…¸Á—‹»¿“Œ½¾ŽÀ¼ŒÂ»‰’ĺ†”Źƒ–ƹ™Ç¸€›È¸~žÉ·}¢Ê·|§Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Êÿ± ÿ±#ÿ®1:ÿ©>Yí¢KyÙš\—È•r°Å•}µÃ—…¸Á—‹»¿“Œ½¾ŽÀ¼ŒÂ»‰’ĺ†”Źƒ–ƹ™Ç¸€›È¸~žÉ·}¢Ê·|§Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Êÿ± ÿ±#ÿ®1:ÿ©>Yí¢KyÙš\—È•r°Å•}µÃ—…¸Á—‹»¿“Œ½¾ŽÀ¼ŒÂ»‰’ĺ†”Źƒ–ƹ™Ç¸€›È¸~žÉ·}¢Ê·|§Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Êÿ± ÿ±#ÿ®1:ÿ©>Yí¢KyÙš\—È•r°Å•}µÃ—…¸Á—‹»¿“Œ½¾ŽÀ¼ŒÂ»‰’ĺ†”Źƒ–ƹ™Ç¸€›È¸~žÉ·}¢Ê·|§Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Êÿ± ÿ±#ÿ®1:ÿ©>Yí¢KyÙš\—È•r°Å•}µÃ—…¸Á—‹»¿“Œ½¾ŽÀ¼ŒÂ»‰’ĺ†”Źƒ–ƹ™Ç¸€›È¸~žÉ·}¢Ê·|§Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Êÿ± ÿ±#ÿ®1:ÿ©>Yí¢KyÙš\—È•r°Å•}µÃ—…¸Á—‹»¿“Œ½¾ŽÀ¼ŒÂ»‰’ĺ†”Źƒ–ƹ™Ç¸€›È¸~žÉ·}¢Ê·|§Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Êÿ± ÿ±#ÿ®1:ÿ©>Yí¢KyÙš\—È•r°Å•}µÃ—…¸Á—‹»¿“Œ½¾ŽÀ¼ŒÂ»‰’ĺ†”Źƒ–ƹ™Ç¸€›È¸~žÉ·}¢Ê·|§Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Êÿ± ÿ±#ÿ®1:ÿ©>Yí¢KyÙš\—È•r°Å•}µÃ—…¸Á—‹»¿“Œ½¾ŽÀ¼ŒÂ»‰’ĺ†”Źƒ–ƹ™Ç¸€›È¸~žÉ·}¢Ê·|§Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Ê´{©Êÿ± ÿ²"ÿ®0:ÿ©=Yì£JyØ›[˜Ç•r±Å—{µÃ˜ƒ¸Á™Š»¿•‹¾½‘ŒÁ»ŽŽÃºŠÅ¹‡’Ǹ„•É·‚˜Ê¶€›Ë¶~žÌµ}£Ì³|§Í¯|¨Ë¯|¨Ë¯|¨Ë¯|¨Ë¯|¨Ë¯|¨Ë¯|¨Ë¯|¨Ë¯|¨Ë¯|¨Ë¯|¨Ë¯|¨Ëÿ² ÿ²!ÿ¯/:ÿª}Ö¨D›É¨O¯Ç°S²Å¸Yµ¹³m¿±­}Ƭª†Ë¥§…ÏŸ¦„ј¤„Ó’£„ÕŒ¢†×ˆ¡Š×…¡Ž×ƒ¢–Ö„¤ŸÔ„¢£Ñ„¢£Ñ„¢£Ñ„¢£Ñ„¢£Ñ„¢£Ñ„¢£Ñ„¢£Ñ„¢£Ñ„¢£Ñ„¢£Ñ„¢£Ñÿ·ÿ¸ÿ¶%9ÿ±1Zê«<~׬;™Ê­D­É¹E®½¸Y¸²²oÀ¬®~ƨ«…Ê¡©„Í›§ƒÏ•¦ƒÐ¥„ÒŠ¤†Ó†£ˆÔƒ£ŒÔ£‘Ô€¤™Ó€¦¡Ñ€¦¡Ñ€¦¡Ñ€¦¡Ñ€¦¡Ñ€¦¡Ñ€¦¡Ñ€¦¡Ñ€¦¡Ñ€¦¡Ñ€¦¡Ñ€¦¡Ñÿ¸ÿ¹ÿ·$9ÿ³/Zé­9~Ù´/–̸2©Â½@°³¶]º¬±qÁ§®~Ť¬…È«ƒÊ—©ƒÌ’¨„Χ„ω§†Ð…¦ˆÐ‚¦‹Ñ€¦ŽÑ~¦”Ð}§šÏ}§šÏ}§šÏ}§šÏ}§šÏ}§šÏ}§šÏ}§šÏ}§šÏ}§šÏ}§šÏ}§šÏÿ¹ÿºÿ¹"9ÿµ-Zì³0zÝÀÉÃ!¨µºH´«µb¼¦²sÀ£¯~஄ƙ¬ƒÈ”«„ɪ„Ê‹ª…ˈ©†Ì…©ˆÍ‚¨ŠÍ€¨Î~¨‘Í|©–Í|©–Í|©–Í|©–Í|©–Í|©–Í|©–Í|©–Í|©–Í|©–Í|©–Í|©–Íü»ü¼þ»8ÿ·)Zð½$tßÓ†¹Á*ªª¹O¶¤µe¼ ²t¿ž±›¯„Ö®„Å‘­„Æ­…ÇŠ¬†È‡¬‡É…«ˆÉ‚«ŠÊ€«ŒÊ~«Ê|«’Ê|«’Ê|«’Ê|«’Ê|«’Ê|«’Ê|«’Ê|«’Ê|«’Ê|«’Ê|«’Ê|«’Êñ½ ù¾ú¾7üº%ZçÎhÈÙ ‰­Ã2§¡¸V¸µh»›³u¾™²À˜±„Á“°…¯…ÃŒ¯†Ä‰®†Å†®‡Å„®ˆÆƒ­ŠÆ­‹Æ­ŽÇ}­Ç}­Ç}­Ç}­Ç}­Ç}­Ç}­Ç}­Ç}­Ç}­Ç}­Ç}­ÇßÀõÂöÂ6îÈPÍÜ fµÚˆ¢É6 š¾V°—·j¹•µv¼”´~¾”³„¿²…À±†Áб†Áˆ±‡Â†°ˆÂ„°‰Âƒ°ŠÃ°‹Ã€¯Ã~¯Ã~¯Ã~¯Ã~¯Ã~¯Ã~¯Ã~¯Ã~¯Ã~¯Ã~¯Ã~¯Ã~¯ÃÙÂäÇ ïÈ4ÑÚ Eºéh¦Þ‚˜Ñ7•‘ÈS¡Âe©Ž¾r®¼{²Œºµ‰¸‚·‡¸„¸…·…¹ƒ¶†º‚¶‡ºµˆ»€µ‰»~µŠ¼}´Œ¼|´½|´½|´½|´½|´½|´½|´½|´½|´½|´½|´½|´½ÔÄÖË ÓÔ '½â I©ôe™æ%xŽÜ9†ˆÔO†Ï`—„ÌmœƒÉu Çx¢}Æ{¤zÅ}¦yÄ€§wèvƒ©u„ªtÁ†«sÁ‡«rÀ‰¬q¿‹­q¿‹­q¿‹­q¿‹­q¿‹­q¿‹­q¿‹­q¿‹­q¿‹­q¿‹­q¿‹­q¿‹­ÏÆÐÍ ÀÙ ,¬÷H›ú\ï1k†çBv€âP~~Ý_…{ÙiŠwÕntÓs’qÑw”pÐz–nÏ}—mΙlÍ™k̓šjÌ…›i̇œhˉgÊŒgÊŒgÊŒgÊŒgÊŒgÊŒgÊŒgÊŒgÊŒgÊŒgÊŒgÊŒÊÈÂÒ®æ -ÿA‘ÿ(P‡ú9\óHf|íTnwè^uqäezmák~jßphÞu„fÜx…eÛ{‡cÚ~ˆbÚ‰aÙƒŠ`Ù…Š`؇‹^ØŠŒ^Ö^Ö^Ö^Ö^Ö^Ö^Ö^Ö^Ö^Ö^Ö^ÖÄʱڟÿ (’ÿ7‰ÿ.C‚ÿ=N|ýKWwøV_oó]ehðbjdíinaëoq_éss]èwu\ç{v[æ~wZæ€xYåƒyXå…zXäˆzWä‹{VãŽ|VãŽ|VãŽ|VãŽ|VãŽ|VãŽ|VãŽ|VãŽ|VãŽ|VãŽ|VãŽ|VãŽ|ÿªÿª'ÿ§6/ÿ¢DJúReê—_~Ü“n“Ï’x¥Æ’‚´Ä’‰¶Ã‘ޏÁŽºÀŠ’¼¿‡”½¾„–¿¾‚™À½€›Á½~žÁ¼}¡Â¼{¤Â¼z¨Ã¼y­Ã¸y¯Â¸y¯Â¸y¯Â¸y¯Â¸y¯Â¸y¯Â¸y¯Â¸y¯Â¸y¯Â¸y¯Â¸y¯Âÿªÿª'ÿ§6/ÿ¢DJúReê—_~Ü“n“Ï’x¥Æ’‚´Ä’‰¶Ã‘ޏÁŽºÀŠ’¼¿‡”½¾„–¿¾‚™À½€›Á½~žÁ¼}¡Â¼{¤Â¼z¨Ã¼y­Ã¸y¯Â¸y¯Â¸y¯Â¸y¯Â¸y¯Â¸y¯Â¸y¯Â¸y¯Â¸y¯Â¸y¯Â¸y¯Âÿªÿª'ÿ§6/ÿ¢DJúReê—_~Ü“n“Ï’x¥Æ’‚´Ä’‰¶Ã‘ޏÁŽºÀŠ’¼¿‡”½¾„–¿¾‚™À½€›Á½~žÁ¼}¡Â¼{¤Â¼z¨Ã¼y­Ã¸y¯Â¸y¯Â¸y¯Â¸y¯Â¸y¯Â¸y¯Â¸y¯Â¸y¯Â¸y¯Â¸y¯Â¸y¯Âÿªÿª'ÿ§6/ÿ¢DJúReê—_~Ü“n“Ï’x¥Æ’‚´Ä’‰¶Ã‘ޏÁŽºÀŠ’¼¿‡”½¾„–¿¾‚™À½€›Á½~žÁ¼}¡Â¼{¤Â¼z¨Ã¼y­Ã¸y¯Â¸y¯Â¸y¯Â¸y¯Â¸y¯Â¸y¯Â¸y¯Â¸y¯Â¸y¯Â¸y¯Â¸y¯Âÿªÿª'ÿ§6/ÿ¢DJúReê—_~Ü“n“Ï’x¥Æ’‚´Ä’‰¶Ã‘ޏÁŽºÀŠ’¼¿‡”½¾„–¿¾‚™À½€›Á½~žÁ¼}¡Â¼{¤Â¼z¨Ã¼y­Ã¸y¯Â¸y¯Â¸y¯Â¸y¯Â¸y¯Â¸y¯Â¸y¯Â¸y¯Â¸y¯Â¸y¯Â¸y¯Âÿªÿª'ÿ§6/ÿ¢DJúReê—_~Ü“n“Ï’x¥Æ’‚´Ä’‰¶Ã‘ޏÁŽºÀŠ’¼¿‡”½¾„–¿¾‚™À½€›Á½~žÁ¼}¡Â¼{¤Â¼z¨Ã¼y­Ã¸y¯Â¸y¯Â¸y¯Â¸y¯Â¸y¯Â¸y¯Â¸y¯Â¸y¯Â¸y¯Â¸y¯Â¸y¯Âÿªÿª'ÿ§5/ÿ£DJúQeé—^~Û”m”Ï’w¦Å’´Ä“ˆ¶Ã’¸ÁºÀ‹‘¼¿ˆ“¾¾…–¿½‚˜Á¼€›Â¼~žÂ¼}¡Ã»{¤Ä»z©Äºy­Äµy®Ãµy®Ãµy®Ãµy®Ãµy®Ãµy®Ãµy®Ãµy®Ãµy®Ãµy®Ãµy®Ãÿ«ÿ«&ÿ¨4/ÿ¤CJùžPeé˜]Ú•i•Í”t¨Å”~´Ä•†¶Â•Œ¹Á‘Ž»¿½¾‰’¿½†”Á¼ƒ—ûšÄº~ź}¡Æº{¥Æ¹zªÆµz¬Æ±z­Ä±z­Ä±z­Ä±z­Ä±z­Ä±z­Ä±z­Ä±z­Ä±z­Ä±z­Ä±z­Äÿ«ÿ«%ÿ©4/ÿ¤BJùŸOfè™\€Ú–f–Ì•q©Å•|´Ä–ƒ·Â—‹ºÀ“Œ¼¾Ž¿½‹Á¼‡“ú„–Ź™Æ¹Ǹ}¡È¸|¦ÉµzªÉ°{«Ç¬{­Å¬{­Å¬{­Å¬{­Å¬{­Å¬{­Å¬{­Å¬{­Å¬{­Å¬{­Å¬{­Åÿ¬ÿ¬$ÿ©3/ÿ¥AJùŸOfè™[Ù˜c–Ì–oªÅ–y´Ã—·Á˜‰º¿•‹½¾‘À¼Âºˆ’Ź…•Ǹ‚˜É·ʶ}¢Ë¶|¨Ë°{©Ê¬|ªÈ¨}¬Å¨}¬Å¨}¬Å¨}¬Å¨}¬Å¨}¬Å¨}¬Å¨}¬Å¨}¬Å¨}¬Å¨}¬Åÿ¬ÿ¬$ÿª2/ÿ¥AKù NgçšYÙ™a—Ë—m«Å—w´Ã™·Áš‡»¿—о½“ŒÁ»ŽŽÄ¹ŠÇ¸†“ɶ‚˜ËµÍ´~£Î±|¦Î¬}¨Ë¨}ªÉ¥~¬Æ¥~¬Æ¥~¬Æ¥~¬Æ¥~¬Æ¥~¬Æ¥~¬Æ¥~¬Æ¥~¬Æ¥~¬Æ¥~¬Æÿ¬ÿ­#ÿª2/ÿ¦@Kø MgçœWÙš^—˘j¬Å™t´Ãš}·Á›…»¾™‰¿¼•ŠÂºŒÅ¸ŒÈ¶‡’Ë´ƒ—γ€Ð²¤Ñ¬~¥Ï¨~§Ì¤©É¡€¬Æ¡€¬Æ¡€¬Æ¡€¬Æ¡€¬Æ¡€¬Æ¡€¬Æ¡€¬Æ¡€¬Æ¡€¬Æ¡€¬Æÿ­ÿ­#ÿ«1/ÿ¦?Kø MgçUÙœ\—Ê™h¬Åšr´Ãœz¸Àœƒ»¾œ‰¿»—‰Ã¹“‹Ç·ŽË´‰Î²„–ѱӬ€¢Ó§€¥Ð¤€§Í ©Êž«Æž«Æž«Æž«Æž«Æž«Æž«Æž«Æž«Æž«Æž«Æÿ­ÿ­"ÿ«1/ÿ§?Kø¡LgçžSÙY—Ê›e¬Åœo´Ãx¸Àž¼½žˆÀ»šˆÄ¸•‰Éµ‹Í²‹Ñ°†•Õ®„ž×§‚¡Ô£‚¤ÑŸ‚§Íœƒ©Êšƒ«Çšƒ«Çšƒ«Çšƒ«Çšƒ«Çšƒ«Çšƒ«Çšƒ«Çšƒ«Çšƒ«Çšƒ«Çÿ­ÿ®"ÿ«0/ÿ§>Kø¡KhçŸQÙŸV—Êœb¬Ål´ÃŸu¸À ~¼½ ‡ÁºˆÆ·˜ˆË³“‰Ï°ŽÔ­‰”Ù¨†Ú¢…¡Õž…¤Ñ›…¦Î™…©Ê—…«Ç—…«Ç—…«Ç—…«Ç—…«Ç—…«Ç—…«Ç—…«Ç—…«Ç—…«Ç—…«Çÿ®ÿ®"ÿ¬0/ÿ§>Kø¢Khè¡OÙ S—Êž_¬ÆŸi´Ã¡r¸À¢|¼½¢„Á¹ ‡Çµœ‡Í²—ˆÒ®“‹ØªŽ“ߢ‹œÜœ‰ Ö™ˆ£Ò—ˆ¦Î•ˆ©Ê”ˆ«Ç”ˆ«Ç”ˆ«Ç”ˆ«Ç”ˆ«Ç”ˆ«Ç”ˆ«Ç”ˆ«Ç”ˆ«Ç”ˆ«Ç”ˆ«Çÿ®ÿ®!ÿ¬//ÿ¨=Kø¢Jhè¢M€Ù¢P—Ë \¬Æ¡e³Ã¤n·À¥x¼¼¥‚¸¤‡È´ ‡Î°ˆÕ«™ŠÝ¥—“曑›Ý– ×”£Ó’Œ¦Ï‘‹¨ËŠ«ÈŠ«ÈŠ«ÈŠ«ÈŠ«ÈŠ«ÈŠ«ÈŠ«ÈŠ«ÈŠ«ÈŠ«Èÿ®ÿ¯!ÿ­//ÿ¨ÿPU÷ŸQhë S{à WÔž_žÊ›k¬Å›u´Ã›~¸À›‡¼½—ŠÀº‘ŒÅ·ŠÊ´„—ϲ€£Ò¨¥Ï£€¨Ë €«Ç­Å›¯Â™‚±¿™‚±¿™‚±¿™‚±¿™‚±¿™‚±¿™‚±¿™‚±¿™‚±¿™‚±¿ÿ¦ÿ§%ÿ¥4%ÿ¡C>ÿžNUø¡Nhì¢Pzà£RŒÕ¡[Ëžf¬Æq´Ãžz¸Àž„¼¼›ˆÂ¹•ŠÇµÎ°†–Ô©‚ Ö¡‚¤Ð‚¨ËšƒªÈ™ƒ­Å—„¯Â–„°À–„°À–„°À–„°À–„°À–„°À–„°À–„°À–„°À–„°Àÿ¦ÿ§%ÿ¥4%ÿ¡B>ÿŸLUø¢Lgì¥Myá¦N‹Õ¤VœÌ¡aªÆ¡l³Ã¢v·À¢€½¼ ‡Ã·šˆÊ²“ŠÒ¬‹”Û ‡ŸØš†¤Ñ—†§Ì•†ªÈ”‡¬Å“‡®Ã’‡°À’‡°À’‡°À’‡°À’‡°À’‡°À’‡°À’‡°À’‡°À’‡°Àÿ§ÿ¨$ÿ¦3%ÿ¢B>ÿ JTù¤Jfí§Jxâ©KŠÖ¨QšÍ¦[©Ç¥e²Ä§p¶À§z¼¼¦ƒÃ¶¢‡Ë¯ˆÖ¥—•æ—žÚ“£Ò‘‹§Í‹ªÉŠ¬ÆŠ®Ã‰°Á‰°Á‰°Á‰°Á‰°Á‰°Á‰°Á‰°Á‰°Á‰°Áÿ§ÿ¨$ÿ¦3%ÿ¢A>ÿ¢HTù¦GfîªGwã­GˆÙ­K˜Ï¬T¦È¬^¯Æ¯h³Â±s¹¾²}À²ª‡Ë¥¢†Õ”œ‹ÞšÚ•¢ÓŒ’¦Î‹©Ê‹Ž«Ç‹­ÄŒŒ¯ÁŒŒ¯ÁŒŒ¯ÁŒŒ¯ÁŒŒ¯ÁŒŒ¯ÁŒŒ¯ÁŒŒ¯ÁŒŒ¯ÁŒŒ¯Áÿ¨ÿ©$ÿ§2%ÿ£A>ÿ¤FSú©Ddï­Cuä±B…Û´D”ÒµJ¡Ë·S«Ê¾_­½·n¸²°|©ª†Ëœ¥„Ò ‡Ø† —Ù‡ž¢Ó‡˜¥Ï‡•¨Ë‡“ªÈˆ‘­Åˆ¯Âˆ¯Âˆ¯Âˆ¯Âˆ¯Âˆ¯Âˆ¯Âˆ¯Âˆ¯Âˆ¯Âÿ¨ÿ©#ÿ§2%ÿ£@>ÿ¦CRû«Acð±?sç·=‚Þ¾;ÖÄ?šÌÅJ¦¼¼]²±µo»ª°}ã«„É–§ƒÎФ†Ó£Õ¥ŸÒ‚¡¥Ï‚œ¨Ìƒ™ªÉ„–¬Æ…”®Ã…”®Ã…”®Ã…”®Ã…”®Ã…”®Ã…”®Ã…”®Ã…”®Ã…”®Ãÿ©ÿª#ÿ¨1%ÿ¤?>ÿ¨@Qü¯>ÿ«;Oÿ´7]ö½3jëÊ1uÜÚ)‚ÄÎ8™²ÁO«§¸c·¡´s¼ž±Á˜¯„Ĭ„ȇª‡Ê€©ŒÌ|©“ÌzªœËy«¦Êz§ªÈ|¢«Ç}ž­Ä}ž­Ä}ž­Ä}ž­Ä}ž­Ä}ž­Ä}ž­Ä}ž­Ä}ž­Ä}ž­Äÿªÿ«!ÿ©.%ÿ§<>ÿ°6Lüº0YïÈ,bÞÙ'mËÜ&†¶Ì<›¨ÁT«Ÿ¹f¶›µt¼™²¿•°„¯…Ć­‡Æ¬‹È}¬È{¬˜Èy­ŸÇw­§Çwª¬Æy¥­Äy¥­Äy¥­Äy¥­Äy¥­Äy¥­Äy¥­Äy¥­Äy¥­Äy¥­Äÿ«ÿ¬ ÿ«-$ÿ«6;ÿ¶/HóÄ(QàÖ&VÌä"q»Ú(ˆªÌA›ŸÃW©™¼i²–·v¹”´€½‘²…À‹±†Á†°ˆÃ¯‹Ä~®Å{®”Åz¯šÄx¯ Äu¯§Ät­®Ãt­®Ãt­®Ãt­®Ãt­®Ãt­®Ãt­®Ãt­®Ãt­®Ãt­®Ãÿ¬ÿ­ÿ¬+$ÿ°/7ú¿%AäÑ EÎä[½é"t­Ú,‰ŸÎE™—ÆZ¤“Àj­‘»v³¸·¶„»‰´†½…²ˆ¿‚±‹Á±ŽÁ|±’Âz±–Áy±›Áx²¡Àt±§Át±§Át±§Át±§Át±§Át±§Át±§Át±§Át±§Át±§Áÿ®ÿ¯ ÿ®($ÿ¸$1êË5ÐâC¿ð^¯è%u Û1‡–ÑH”Ê\žÅj¥‹Ávª‰¾}¯…¼€²‚ºƒ´~¹†¶|¸‰·y·Œ¸w·¹v¶“ºu¶—ºt¶ºs·¤¹s·¤¹s·¤¹s·¤¹s·¤¹s·¤¹s·¤¹s·¤¹s·¤¹s·¤¹ÿ°ÿ± ÿ±%#óÄ'Ôß+ÁïH°÷ `¡ê+s•ß9‚×LˆÑ]•†Ìj›„Ét €Æy¤}Ä}¦z€©wÁƒªuÀ†¬s¿Š­q¿®o¾¯n¾”¯l¾™¯k¾ ¯k¾ ¯k¾ ¯k¾ ¯k¾ ¯k¾ ¯k¾ ¯k¾ ¯k¾ ¯k¾ ¯ÿ³ÿ´ ü¼ÖÖ Ãí0²üJ¢ù%^–í3nŒåAz…ÞOƒÙ^ŠÕjzÒp“vÏu—sÎy™qÌ}›oË€mÊ„žkɇŸiÉŠ hÈŽ¡gÇ’¢eÇ–¢dÇœ£dÇœ£dÇœ£dÇœ£dÇœ£dÇœ£dÇœ£dÇœ£dÇœ£dÇœ£ô¶ ÿ¸ ÕÌ ÄÛ ²ü3£ÿH–ü,XŒó;e„ìIo~çUvzã`|ußgqÝm„mÛr‡jÙv‰hØz‹f×}dÖŽcÕ„aÔˆ`Ó‹‘_Ó’^Ò”’\Ò™“\Ò™“\Ò™“\Ò™“\Ò™“\Ò™“\Ò™“\Ò™“\Ò™“\Ò™“Ü»ØÃÄÑ³è £ÿ1–ÿ$CŒÿ4P„ûBZ}öObxñZhqî_mkëdqgéitdçnvbæsx`åwy_äz{]ã~|\â}[â…~ZáˆYà‹€Wà€Vß•Vß•Vß•Vß•Vß•Vß•Vß•Vß•Vß•VߕԽÄÈ´Ù £þ –ÿ,‹ÿ+:ƒÿ:D|ÿHMuÿRSnýWXgú]\c÷b_`ögb]ôkd[óoeYòsgWñwhVñziUð}jTï€kSï„kRî‡lPî‹mOínOínOínOínOínOínOínOínOínOínÆÀ´Ð£ã –ÿ‹ÿ $‚ÿ0/zÿ?7rÿH>jÿNCdÿTH^ÿYL[ÿ_OXÿdRUÿiTSÿmURþqWPýtXOüxYNû{ZMû[Lúƒ\Kù†]Iù‹^Hø_Hø_Hø_Hø_Hø_Hø_Hø_Hø_Hø_Hø_µÇ¤Ú–ÿŠÿÿ$yÿ3"pÿ;*hÿB1aÿJ6\ÿQ;WÿW?Sÿ]BPÿbDNÿgFLÿlHJÿpIIÿtJHÿwKFÿ{LEÿMDÿƒNCÿ‡NBÿ‹OAÿ‘PAÿ‘PAÿ‘PAÿ‘PAÿ‘PAÿ‘PAÿ‘PAÿ‘PAÿ‘PAÿ‘Pÿ‘ÿ•' ÿ•;ÿ“K/ÿYCÿŒdTûŒkcòŠrqêˆ|}ㆄ‡Þ‚ŠÚ–Ö}”›Óz˜ŸÑxœ¢ÐwŸ¤Îu¢¦Ít¦¨Ír©©Ìq­ªÌp²«Ëp¶«Ëo¼«ÈpÀ«ÄqÀªÄqÀªÄqÀªÄqÀªÄqÀªÄqÀªÄqÀªÄqÀªÄqÀªÿ‘ÿ•' ÿ•;ÿ“K/ÿYCÿŒdTûŒkcòŠrqêˆ|}ㆄ‡Þ‚ŠÚ–Ö}”›Óz˜ŸÑxœ¢ÐwŸ¤Îu¢¦Ít¦¨Ír©©Ìq­ªÌp²«Ëp¶«Ëo¼«ÈpÀ«ÄqÀªÄqÀªÄqÀªÄqÀªÄqÀªÄqÀªÄqÀªÄqÀªÄqÀªÿ‘ÿ•' ÿ•;ÿ“K/ÿYCÿŒdTûŒkcòŠrqêˆ|}ㆄ‡Þ‚ŠÚ–Ö}”›Óz˜ŸÑxœ¢ÐwŸ¤Îu¢¦Ít¦¨Ír©©Ìq­ªÌp²«Ëp¶«Ëo¼«ÈpÀ«ÄqÀªÄqÀªÄqÀªÄqÀªÄqÀªÄqÀªÄqÀªÄqÀªÄqÀªÿ‘ÿ•' ÿ•;ÿ“K/ÿYCÿŒdTûŒkcòŠrqêˆ|}ㆄ‡Þ‚ŠÚ–Ö}”›Óz˜ŸÑxœ¢ÐwŸ¤Îu¢¦Ít¦¨Ír©©Ìq­ªÌp²«Ëp¶«Ëo¼«ÈpÀ«ÄqÀªÄqÀªÄqÀªÄqÀªÄqÀªÄqÀªÄqÀªÄqÀªÄqÀªÿ’ÿ–' ÿ–;ÿ”K0ÿYCÿcTúŽidñpré‹z~≂‰Ü…‰’Ø‚Ž™Ô“žÑ}—¢Ï{›¦Íyž¨Ìw¢ªËv¥¬Êt©­És­®Ér²¯Éq·¯Èq¼¯Âs½®¾t½¯¾t½¯¾t½¯¾t½¯¾t½¯¾t½¯¾t½¯¾t½¯¾t½¯ÿ“ÿ—' ÿ˜;ÿ•K0ÿ‘YDÿ‘`Uúfdðmsèw€áŒ€‹Ûˆ‡”Õ…œÒ‚‘¡Ï–¦Ì}™©Ë{¬Éy¡®Èw¥°Çv©±Æu­²Æt²³Æs¹³Âuº³¼uº³¸vº³¸vº³¸vº³¸vº³¸vº³¸vº³¸vº³¸vº³¸vº³ÿ”ÿ˜' ÿ™;ÿ–K0ÿ’YDÿ’^Uú’deð‘jtçsàŽ}ŒÙ‹…–Ôˆ‹žÐ…¤Í‚”©Ê˜­È}œ°Ç{ ²Æy¤´Åx¨µÄv®¶Äu´¶Áv·¶¼w·¶·w·¶³x·¶³x·¶³x·¶³x·¶³x·¶³x·¶³x·¶³x·¶³x·¶ÿ•ÿ™' ÿ™;ÿ—J0ÿ“XDÿ”\Uú”aeð“gtç‘p‚ßzŽØƒ˜Ò‹Š Î‡§Ë„“¬È—°Æ›³Ä}ŸµÃ{¤·Ây©¹Âw¯¹Âvµ¹¼x¶¸¸x¶¸³x¶·°y··°y··°y··°y··°y··°y··°y··°y··°y··ÿ–ÿš' ÿš;ÿ—J1ÿ”UDÿ–YUú–^eð•dtç“l‚Þ‘vŽØ™Ñˆ¢ÍŠŽ©É‡’®Æ„–³Äš¶Â~Ÿ¹Â{¤ºÁyªºÁw±º½xµº·xµ¹³yµ¹¯y¶¸¬z¶·¬z¶·¬z¶·¬z¶·¬z¶·¬z¶·¬z¶·¬z¶·¬z¶·ÿ—ÿ›& ÿ›;ÿ˜I1ÿ–SDÿ˜WUú˜[eð—atç–h‚Þ“rÖ‘{šÐ„£ËŒ«ÇŠ‘±Ä†•¶Ãƒ™¸ÁžºÁ{¤»Ày«¼¿w³¼¸x³»²y´»®yµº«zµ¹¨{¶¸¨{¶¸¨{¶¸¨{¶¸¨{¶¸¨{¶¸¨{¶¸¨{¶¸¨{¶¸ÿ—ÿ›& ÿœ:ÿ˜I1ÿ˜QDÿšTTú›Xdðš]tç˜c‚Þ–mÖ“wšÐ‘€¤Ê‰¬Æ³Ã‰”·Â„˜ºÀž¼¿{¥¾¿y®¾¹x²¾²y²½­z³¼©{´º¦{µ¹¤|¶¸¤|¶¸¤|¶¸¤|¶¸¤|¶¸¤|¶¸¤|¶¸¤|¶¸¤|¶¸ÿ˜ÿœ& ÿœ9ÿ™H1ÿ™ODÿœRTûUcñZsç›_Þ™iÖ–ršÏ“|¥Ê‘…­Å´Ã‹’¸Á…–»¿€¾½{¥Á»y¯Á²z°À¬{±¾¨{³½¥|´»¢}µ¹ }¶¸ }¶¸ }¶¸ }¶¸ }¶¸ }¶¸ }¶¸ }¶¸ }¶¸ÿ™ÿ& ÿ9ÿ™G1ÿ›MCÿžOSûŸRcñ VrèŸ[€ßdŽ×šmšÐ—w¤Ê”­Å’ŠµÂŽ¹¿‡•½½€œÁ»{§Ä³z­Ä«{¯Â¦|±¿£}²½ ~´»žµ¹œ¶¸œ¶¸œ¶¸œ¶¸œ¶¸œ¶¸œ¶¸œ¶¸œ¶¸ÿ™ÿž& ÿ8ÿšG1ÿœKBÿ MRü¢Pbò£Sqé£Wà¡^ŒØžg˜Ð›q£Ê˜{­Å•…´Â’º¾Š’¿º›Å·|©É«|«Ç¤}®Ã ~°À²½›€³»™µº˜¶¸˜¶¸˜¶¸˜¶¸˜¶¸˜¶¸˜¶¸˜¶¸˜¶¸ÿšÿž& ÿž8ÿšF2ÿžIBÿ¢JQý¤M`ó¦Poê§T}á¦XŠÚ¤b–Ò¡k¡Ëu«Æš€³Â˜Šº¼ŽÂ¶ƒ™Ë¬}¦Î¢ªÉ€­Äš°À˜‚²¾—ƒ³¼•ƒµº”ƒ¶¸”ƒ¶¸”ƒ¶¸”ƒ¶¸”ƒ¶¸”ƒ¶¸”ƒ¶¸”ƒ¶¸”ƒ¶¸ÿšÿŸ& ÿž7ÿ›F2ÿŸGAÿ¤HPþ§J_ô©Lmë«P{ã¬T‡Ü«\“Ô©eΦo§È£z°ÃŸ„¸»–‹Ä°Œ™Î ƒ¤Ñ™„©Ê–…­Å”…¯Á“…±¾’…³¼‘…´º‘…µ¹‘…µ¹‘…µ¹‘…µ¹‘…µ¹‘…µ¹‘…µ¹‘…µ¹‘…µ¹ÿ›ÿŸ& ÿŸ7ÿ›E2ÿ¡E@ÿ¦FOÿªG]ö­Ikí°Lxæ³Oƒß´UŽÙµ_—Óµi Îµv§Á«|¶°Ÿ…Ä¡•’Î”Ž£Ò‹¨ËŠ¬ÆŽŠ¯ÂŽ‰±¿Ž‰²½Žˆ´»Žˆµ¹Žˆµ¹Žˆµ¹Žˆµ¹Žˆµ¹Žˆµ¹Žˆµ¹Žˆµ¹Žˆµ¹ÿ›ÿ & ÿŸ6ÿœD1ÿ£C?ÿ¨CNÿ­D[ø±Ehð¶Hté»L~ãÀQ‡ßÆ[ŽÖÈk”ƽq¦µ³xµ¥¨Ã”ŸÍ‰œ¢Ò‡”§Ìˆ‘«Ç‰®Ã‰Ž°À‰²¾ŠŒ³¼Š‹´ºŠ‹´ºŠ‹´ºŠ‹´ºŠ‹´ºŠ‹´ºŠ‹´ºŠ‹´ºŠ‹´ºÿœÿ¡& ÿ 6ÿžB1ÿ¥@>ÿ«@Lÿ±@Yú·Adó½DoîÅIwåÎR|ÝÖbÌÎh’¼Ån¤«»v´š±ÁŠªŠË§Ï€Ÿ¨Ì‚™«Çƒ•­Ä„“¯Á…‘±¿†³½‡Ž´»‡Ž´»‡Ž´»‡Ž´»‡Ž´»‡Ž´»‡Ž´»‡Ž´»‡Ž´»ÿÿ¢& ÿ 5ÿ ?0ÿ§==ÿ®hÿOCbÿUG]ÿZKYÿ`MVÿePSÿjQQÿnSOÿrTNÿvULþ{VKýWIý„XHüˆYGûZFû“[Eú˜\Eú˜\Eú˜\Eú˜\Eú˜\Eú˜\Eú˜\Eú˜\Eú˜\½½­Ížß’ÿ ‡ÿ~ÿ)uÿ5#lÿ<*dÿC/^ÿJ4XÿP7TÿV:Qÿ[Kÿd@JÿhAHÿlBFÿpCEÿtDDÿxEBÿ}FAÿG@ÿ†H?ÿŒI=ÿ‘J=ÿ‘J=ÿ‘J=ÿ‘J=ÿ‘J=ÿ‘J=ÿ‘J=ÿ‘J=ÿ‘J®Åž×õ†ÿ|ÿ qÿ$gÿ,_ÿ5Yÿ=!TÿE&OÿK)LÿR,HÿW/Fÿ]0Dÿa2Bÿf3@ÿj5?ÿn6=ÿs7<ÿw8;ÿ|9:ÿ:8ÿ†:7ÿŒ;6ÿ’<6ÿ’<6ÿ’<6ÿ’<6ÿ’<6ÿ’<6ÿ’<6ÿ’<6ÿ’<ÿƒÿ„"ÿ…5ÿƒF$ÿU4ÿ^BÿfPÿn\ù|wfóz€oîwˆwêu}çr•‚äpš…ãnžˆál¢‹àk§ßi«ŽÞh¯Ýg´‘Ýfº‘ÜeÁ’ÜeÉ’ÛeÐ’ÒgÒ‘ÎhÒ‘ÎhÒ‘ÎhÒ‘ÎhÒ‘ÎhÒ‘ÎhÒ‘ÎhÒ‘ÎhÒ‘ÿƒÿ„"ÿ…5ÿƒF$ÿU4ÿ^BÿfPÿn\ù|wfóz€oîwˆwêu}çr•‚äpš…ãnžˆál¢‹àk§ßi«ŽÞh¯Ýg´‘Ýfº‘ÜeÁ’ÜeÉ’ÛeÐ’ÒgÒ‘ÎhÒ‘ÎhÒ‘ÎhÒ‘ÎhÒ‘ÎhÒ‘ÎhÒ‘ÎhÒ‘ÎhÒ‘ÿƒÿ„"ÿ…5ÿƒF$ÿU4ÿ^BÿfPÿn\ù|wfóz€oîwˆwêu}çr•‚äpš…ãnžˆál¢‹àk§ßi«ŽÞh¯Ýg´‘Ýfº‘ÜeÁ’ÜeÉ’ÛeÐ’ÒgÒ‘ÎhÒ‘ÎhÒ‘ÎhÒ‘ÎhÒ‘ÎhÒ‘ÎhÒ‘ÎhÒ‘ÎhÒ‘ÿ„ÿ…"ÿ†5ÿ„F$ÿ€U4ÿ„]Cÿ…ePÿƒm]ø€uhò}~qìz†yèwåu“…âr˜‰àpŒßn¢ŽÝl¦Ük«’Ûi¯”Úhµ•Úg»•ÚfÖÚfÌ–ÓhÏ–ÌiÏ•ÈjÏ–ÈjÏ–ÈjÏ–ÈjÏ–ÈjÏ–ÈjÏ–ÈjÏ–ÈjÏ–ÿ…ÿ‡"ÿ‡5ÿ…F$ÿ„T5ÿˆ\CÿˆdQþ‡k^÷ƒriñ€|së}…{çzŒ‚ãw’‡àt—ŒÞrœÜp¡’Ûn¦”Ùlª–Ùj°˜Øi¶™×h½™×hÆšÓhÌšÌjÌ™ÆkÌšÂlÌšÂlÌšÂlÌšÂlÌšÂlÌšÂlÌšÂlÌšÂlÌšÿ†ÿˆ!ÿˆ5ÿ†F%ÿ‡S5ÿ‹[CÿŒbQþŠj^ö‡qjð„ztꀃ}å}Š„âzŠÞv–Üt›’Úq •Øo¥˜Öm«šÕk°›Õj·œÔi¿ÔiÉÌkÊÆlÉÀmɽnɽnɽnɽnɽnɽnɽnɽnÉÿ‡ÿ‰!ÿŠ5ÿˆF%ÿŠR5ÿŽZCÿaQþŽh^ö‹ojï‡xué„~䀈†à|ŒÝy”‘Úvš•ØsŸ™Õp¥›ÔnªžÓm±ŸÒk¸ Òk¡ÍlÇ¡ÆnÇ¡ÀnÇ¡»oÇ¡¸pÇ¡¸pÇ¡¸pÇ¡¸pÇ¡¸pÇ¡¸pÇ¡¸pÇ¡¸pÇ¡ÿˆÿŠ!ÿ‹5ÿ‰F%ÿQ5ÿ’XCÿ’^Qþe^öŽlkï‹uvè‡~€ã„†ˆÞÛ{“”Øx™™ÕužœÓr¤ŸÑpª¢Ðn²£Ðmº¤ÎlÄ¥ÆoĤ¿pÄ¥ºqÄ¥µqÄ¥²rĤ²rĤ²rĤ²rĤ²rĤ²rĤ²rĤ²rĤÿ‰ÿ‹!ÿŒ4ÿŠF%ÿO4ÿ”VCÿ”[Qþ“a^ö‘hkîŽpvè‹{€â‡ƒ‰ÝƒŠ‘Ù~‘—Õz—œÓw Ðt¤£Ïqª¦Îo³§Ín½¨Çp¨¾qÁ©¸rÁ©´sÁ©¯t¨­t§­t§­t§­t§­t§­t§­t§­t§ÿŠÿŒ!ÿ4ÿ‹F&ÿ“N4ÿ–SBÿ—XPþ–^^ö”djî’lvçvጀŠÜ‡ˆ’Ø‚™Ó}•ŸÐyœ£Îu£§Ìr«ªËp´«Èp¿¬¿s¾¬·t¾­²u¾¬®v¿¬ªv¿«¨wÀª¨wÀª¨wÀª¨wÀª¨wÀª¨wÀª¨wÀª¨wÀªÿ‹ÿ ÿŽ4ÿE&ÿ–M3ÿ™PAÿšUOÿšZ]÷˜`iï•huè’p€á{ŠÜ‹„“Ö†ŒšÒ€“¡Î{š¦Ìw¢ªÊt«®Èr¸¯Àt¼¯·u¼°°v¼°«w¼¯¨x½¯¥y¾­£y¾­£y¾­£y¾­£y¾­£y¾­£y¾­£y¾­£y¾­ÿ‹ÿŽ ÿ4ÿD%ÿ˜J3ÿ›M@ÿQNÿW[øœ\hðšctè—jâ“uŠÜ€“ÖŠ‰›Ñ„£Í~˜©Éy¢®Çu­±Ätº³·v¹³¯x¹³ªyº³¦zº²£{»± {¼°Ÿ|½®Ÿ|½®Ÿ|½®Ÿ|½®Ÿ|½®Ÿ|½®Ÿ|½®Ÿ|½®ÿŒÿ ÿ4ÿ’C%ÿšH2ÿJ?ÿŸNMÿ SZù XfñŸ_rêœe}ã˜oˆÜ“z’Ö„›Ðˆ£Ë–«Ç{¡±Åv°µºw·¶¯y·¶¨z¸¶£|¸´ |¹³ž}º²œ~»±›~¼°›~¼°›~¼°›~¼°›~¼°›~¼°›~¼°›~¼°ÿÿ ÿ‘4ÿ”C$ÿ›F1ÿ H>ÿ¢KKÿ¤PXú¤Udó¤Zpë¢a{äŸi…Þšsו~™ÐŽˆ£Ê…“¬Ä} ´½x°¹¯yµ¹¦{¶¸¡}·¶~¸µ›¹´™º³˜€º²—€»±—€»±—€»±—€»±—€»±—€»±—€»±—€»±ÿÿ ÿ‘4ÿ—B$ÿC0ÿ¢E=ÿ¥HIÿ¨LUü©QaõªWlî©]wç¨cá¤m‹Öžy–Ë•ƒ¢À‹Ž­¶ƒš¶®~ª»¤|³¼ž~µºš€··˜¸µ–¹´•‚º³”‚º²“‚»±“‚»±“‚»±“‚»±“‚»±“‚»±“‚»±“‚»±ÿŽÿ‘ ÿ’4ÿ™A#ÿŸA/ÿ¤B;ÿ¨EGÿ¬ISþ®N^õ°Shì²Zrä³a{Û¯n„̦v”Àœ~¢´’ˆ®©Š”· …¤½™‚±¾•ƒ´»“„¶¸’„¸¶‘„¹´„¹³„º²„º²„º²„º²„º²„º²„º²„º²„º²ÿÿ’ ÿ“4ÿš?"ÿ¡?.ÿ§@:ÿ¬BEÿ°FPù³KZð·Rcè»Ykß½drѶl‚Ĭs“¶£z¡ª™ƒ®ž’·”Ÿ¾Ž‹±¿Œ‰³¼Œ‰µ¹Œˆ·¶Œˆ¸µŒ‡¹´Œ‡º³Œ‡º²Œ‡º²Œ‡º²Œ‡º²Œ‡º²Œ‡º²Œ‡º²Œ‡º²ÿÿ’ÿ”4ÿœ=!ÿ£<-ÿª=8ÿ¯@Bÿ´DLõºIUì¿Q\äÆZaØÅboɼi»²p’­ªw  ¡€­“›‹·‰–›½ƒ•¯¿„‘³¼†Žµ¹‡¶·‡Œ·¶ˆ‹¸µ‰Š¹´‰Šº²‰Šº²‰Šº²‰Šº²‰Šº²‰Šº²‰Šº²‰Šº²ÿÿ“ÿ•4ÿž; ÿ¥9+ÿ¬:5ÿ³=?ûºBGñÁHNèÉQRßÑ[YÏÊ`mÁÂg€²¹m¤±tŸ—ª}«Š¤ˆµ —»xŸ¬¾|𳼕´º’¶¸ƒ··„¸µ„¹³…º²…º²…º²…º²…º²…º²…º²…º²ÿ‘ÿ”ÿ–3ÿ 8ÿ¨6)ÿ°82ÿ¸:;öÀ?AìÊGEãÖTEÖÙWXÇÐ^k¸Èd~ªÁkŽœºrœŽ´z¨€®…²v«”¸o«©ºr¥µºwµ¹z™¶·}–·¶~“¹´‘º²€»±€»±€»±€»±€»±€»±€»±€»±ÿ’ÿ•ÿ—3ÿ¢5ÿ«3'ÿ´4/ù¾65íÉ=8âÖH8ÙàMEÍßVV¿Ø\i°Ðb{¡Éh‹“Ão™…¾w¤xºƒ­n¸“³h¸¨¶i²¸¶o§·¶s¡¸µvœ¹´x™º³z–»±{•¼°{•¼°{•¼°{•¼°{•¼°{•¼°{•¼°{•¼°ÿ“ÿ–ÿ™3ÿ¥0ÿ¯0#ýº/)ðÆ2-ãÔ;,Öà@:ËåHLÀáN\³ÝVl¥Ø]z˜ÒeˆŠÎm”}ÉvŸsă§lÀ‘¬g¾¡¯e¾¶¯f´»±k«»±n¥»±q ¼°s½¯tš½®tš½®tš½®tš½®tš½®tš½®tš½®tš½®ÿ”ÿ˜ÿ1ÿ©-ÿ´*õÂ)"äÑ-!Õà3,ÉèX—ñFe‹ëOpåXzzßd‚sÚmˆmÖvhÓ’dЈ•`Ï’˜^Ι\Í©š[ι™YÍÈšZÅÊœ\½É^¸Éž^¸Éž^¸Éž^¸Éž^¸Éž^¸Éž^¸Éž^¸Éžÿš ÿŸÿ¬ø¾ØÖ Èèºô"'®ú-9¢ú6J–ú?X‹õHc‚îRmzè\uräd{màm€hÝu…dÚ~ˆ`؆‹]ÖZÕ˜XÔ¢WÔ®‘VÔ¼VÔÍVÍÑ’WÈÑ“WÈÑ“WÈÑ“WÈÑ“WÈÑ“WÈÑ“WÈÑ“WÈÑ“ÿœ ÿ£ÿµÔÉ ÈÚ ¹ô¬ÿ#*¡ÿ.;•ÿ8I‹ÿBU‚øL_zòVgsî^mkêdrfçlwbätz_â|}\áƒZß‹‚WÞ“ƒUÝœ…TÜ¥†Rܯ†RÜ»†QÜÌ…RÚÚ…RÚÚ…RÚÚ…RÚÚ…RÚÚ…RÚÚ…RÚÚ…RÚÚ…ÿ  ÿ­ÔÀÆÎ¹ã «ÿŸÿ$*”ÿ09Šÿ:EÿFOzýQXrøX^kõ^ceòeh`ïlk]írnZëypWê€rUé‡tSçvQæ–wPæžxNå§yMå¯zMä»zLäÅzLäÅzLäÅzLäÅzLäÅzLäÅzLäÅzLäÅzÿ¤ظÄÄ·Óªó žÿ“ÿ'(‰ÿ35€ÿ??yÿJGpÿQNiÿWSbý]W^ûd[Zùj^W÷p`TövbRô|dPóƒeNòŠgLñ‘hKð˜iJðŸjIï§kHï°lGî·lGî·lGî·lGî·lGî·lGî·lGî·lGî·lݯżµÊ¨Ûœÿ ‘ÿ‡ÿ*#~ÿ6-vÿA6mÿHÿk2<ÿp3:ÿu49ÿz57ÿ€66ÿ†75ÿŒ83ÿ”83ÿ˜93ÿ˜93ÿ˜93ÿ˜93ÿ˜93ÿ˜93ÿ˜93ÿ˜9§Ã—Ôˆä€ÿ rÿgÿ_ÿ Wÿ& Qÿ/Lÿ7Gÿ>CÿE@ÿK=ÿP;ÿU9ÿY7ÿ^!5ÿb"4ÿg#2ÿl$1ÿr%/ÿw&.ÿ}'-ÿ„(+ÿ‹)+ÿ‘)+ÿ‘)+ÿ‘)+ÿ‘)+ÿ‘)+ÿ‘)+ÿ‘)+ÿ‘)ÿvÿs ÿr1 ÿqCÿqP&ÿuY3ÿub?ÿsjIÿptSÿn~[ük‡aùigög–kôeœnòc¡qñb¦sïa«uî`°vî^µwí^»xì]Ãyì\Ëzë[Øzæ]Þzß^áyØ`ãyÕ`ãyÕ`ãyÕ`ãyÕ`ãyÕ`ãyÕ`ãyÕ`ãyÿvÿs ÿr1 ÿqCÿqP&ÿuY3ÿub?ÿsjIÿptSÿn~[ük‡aùigög–kôeœnòc¡qñb¦sïa«uî`°vî^µwí^»xì]Ãyì\Ëzë[Øzæ]Þzß^áyØ`ãyÕ`ãyÕ`ãyÕ`ãyÕ`ãyÕ`ãyÕ`ãyÕ`ãyÿvÿsÿt1 ÿrBÿtO'ÿxX3ÿy`?ÿwiJÿsqTÿq|\ûn†c÷kŽiôi”mòg›qðe tïd¥víbªxìa°yë`µ{ë_¼|ê^Ä}ê]Í}ç]Ù}á_Þ}Ú`à|Ñbá}Ïbá}Ïbá}Ïbá}Ïbá}Ïbá}Ïbá}Ïbá}ÿwÿtÿu1 ÿsBÿwM'ÿ{V4ÿ|_@ÿzgKÿwoUþsz^úqƒeönŒkók“pði™sîgŸwìe¥yëdª{êb¯}éaµ~è`½è_Å€è^Ðâ_Ú€ÛaÞ€Òb߀ËcßÊdßÊdßÊdßÊdßÊdßÊdßÊdßÿxÿuÿv1 ÿtBÿzL'ÿU4ÿ€]@ÿ~eLÿznVþvw_ùtfõpŠmñm‘rîk˜vìižyëg¤|ée©~èc¯€çb¶‚æa½ƒæ`Ç„å_Ó„ÝaÚ„Óc݃ÌdÜ„ÆeÜ„ÅeÜ„ÅeÜ„ÅeÜ„ÅeÜ„ÅeÜ„ÅeÜ„ÅeÜ„ÿyÿvÿw0 ÿvBÿ~K'ÿ‚S4ÿƒ\@ÿ‚dLÿlVýzt`øwhósˆoðptím–yêk|èh£çf©‚åe¯„äc¶…äb¿‡ãaɇàaÕ‡ÕdÚ‡ÍeÚˆÇfÙˆÁgÙˆ¿gÙˆ¿gÙˆ¿gÙˆ¿gÙˆ¿gÙˆ¿gÙˆ¿gÙˆÿzÿxÿy0 ÿxAÿI'ÿ†R3ÿˆZ@ÿ‡bLÿƒiWü~qa÷{{iòw…qîswëp”|èm›€æj¢ƒäh¨†ãf¯ˆâd·ŠácÁ‹áb΋ØdÖ‹ÍfÖ‹ÆgÖŒÀhÖŒ»iÖŒºiÖŒºiÖŒºiÖŒºiÖŒºiÖŒºiÖŒºiÖŒÿ{ÿyÿz0 ÿ|?ÿ…H&ÿŠP3ÿŒX@ÿ‹_LÿˆgWü„naöxjñ{‚ríwŠyés’~æo™ƒäl¡‡âj¨Šàg¯Œße¸ŽÞdÄÛdÒÎgÓÆhÓ¿jÓºkÓµlÓ´lÓ´lÓ´lÓ´lÓ´lÓ´lÓ´lÓÿ|ÿzÿ{0 ÿ>ÿ‰F&ÿN2ÿ‘V?ÿ]KÿŽdVü‰kaö„skð~sì{‡zèvär—†ánŸŠßk§ŽÝh°Üf»’ÛeÊ“ÐhÑ“ÆjД¾kД¸lД³mД¯nÑ“®nÑ“®nÑ“®nÑ“®nÑ“®nÑ“®nÑ“®nÑ“ÿ}ÿ{ÿ|/ ÿƒ<ÿE%ÿ“M1ÿ•S>ÿ”YJÿ’`Uýh`öŠpjð„ytëƒ|æzŒƒâu•ˆßqžÝm§‘Ûi±”Ùg¿–ÔgΗÇk͘½l͘¶n͘°o͘¬pΗ©qΖ¨qÏ–¨qÏ–¨qÏ–¨qÏ–¨qÏ–¨qÏ–¨qÏ–ÿ~ÿ|ÿ~/ ÿ†;ÿ‘C$ÿ–K0ÿ˜P<ÿ˜UHÿ–\Tý“c_÷kiðŠtsë„|æ~‰„áx’‹ÝsœÚn¦•Øj³™ÖhÅ›ÉkË›½nÊœ´oÊœ®qÊœªrË›¦sËš£sÌ™¢t͘¢t͘¢t͘¢t͘¢t͘¢t͘¢t͘ÿÿ}ÿ/ ÿ‰:ÿ”B#ÿ™G/ÿ›L;ÿœRFÿ›XRÿ™_]ø•fhñnrëŠy{僄„à|ŒÜvš“Øo¦™ÒkµÎjÈŸ¾nÈŸ³qÇ ¬rÇ §tÈŸ£uÉž vÊžvË›vËšvËšvËšvËšvËšvËšvËšÿ€ÿ~ÿ€/ ÿŒ8ÿ—@"ÿœD-ÿŸI9ÿ NDÿ UOüž[Zõœbeî—joè‘tyáŠƒÙƒŠŒÏ{••Èu œÃp®¡¾o¿£³rÅ£ªtÅ£¤vÅ£ wÆ¡xÇ ›xÈž™yʘyÊœ˜yÊœ˜yÊœ˜yÊœ˜yÊœ˜yÊœ˜yÊœÿ€ÿÿ/ ÿ7ÿš?!ÿŸB,ÿ¢F7ÿ¤LBÿ¤RL÷¤XWï£_aç fkàšquÕ“|ËŠ…–»{šžµv§¤°t¸§¨v§¡xæyÄ¥šzÅ£˜{Æ¢–{Ç ”{Éž”|É”|É”|É”|É”|É”|É”|Éÿÿ€ÿ‚.ÿ‘6ÿœ< ÿ¡@*ÿ¥D4ÿ¨J?ú©PIòªVRêª]\â©ff×¢orË™xÁ¸ˆŠ—¯• ¨|¢¦£z²©žzÁ©™|Á¨–}æ”~Ĥ’~Å£‘~Ç¡~ÈŸ~Éž~Éž~Éž~Éž~Éž~Éž~Éžÿ‚ÿÿ„. ÿ”5ÿž:ÿ¤>(ÿ¨B2ÿ¬G;ö¯MDí±TMå³[UܰeaΨlqßt€¸–|®†˜¥ˆ‘¡ƒ§—€­«“€¿«‘Á©Â§ŽÃ¥Å£Æ¢ŒÈŸŒÈŸŒÈŸŒÈŸŒÈŸŒÈŸŒÈŸŒÈŸÿ‚ÿÿ†- ÿ–4ÿ 9ÿ¦<&ÿ«@/û°E8ò´K?é¹SFá½\MÓ¶b`Æ­ip»¥q°yŒ¥•‚—›¡“Š™§Œ‡©«ˆ‡¿¬ˆ‡Àªˆ†Â¨ˆ…戅Ťˆ„Æ¢ˆ„È ˆ„ÈŸˆ„ÈŸˆ„ÈŸˆ„ÈŸˆ„ÈŸˆ„ÈŸˆ„ÈŸÿƒÿ‚ÿˆ+ ÿ™2ÿ¢7ÿ©9$ÿ¯=,÷µB3í»I9åÂR>ÚÂXL̺`_¿²go³«n~¨£v‹œ~—’—‰ ‰’–§‚¥«~º¬€Àª‹Â¨‚ŠÃ¦ƒ‰Å¤ƒˆÆ¢„‡È „‡ÈŸ„‡ÈŸ„‡ÈŸ„‡ÈŸ„‡ÈŸ„‡ÈŸ„‡ÈŸÿ„ÿƒÿ‹* ÿœ1ÿ¥4ÿ¬6!þ³:(ó»@-éÃH1áËQ7ÒÇVKÅÀ^]¸¸en¬±l} ªsŠ”¤{•ŠŸ†ž€›’¥y˜¢ªt˜·«w•Á©z‘§|Ã¥}Å£~ŒÆ¡ŠÈŸŠÈŸŠÈŸŠÈŸŠÈŸŠÈŸŠÈŸŠÈŸÿ…ÿ„ÿŽ( ÿŸ1ÿ§2ÿ°3ù¹6"îÂ=&æÍG&ÛÓL5ËÌTI¾Å\[±¾cl¤¸jz˜²q‡Œ¬y“¨‚œw¤£p¢Ÿ§l¢´¨nŸÂ§r™Ã¦u•Ĥw’Æ¢xÇ¡zŽÈŸzŽÉžzŽÉžzŽÉžzŽÉžzŽÉžzŽÉžzŽÉžÿ†ÿ…ÿ‘& ÿ¡/ÿ«.ÿµ/ô¿2éË:ßÙDÑÚJ3ÄÒRG·ËZY©ÆaiœÀgxºn„„¶vy²€˜o¯Ÿh­£d­²¤eªÅ¤j¢Å£mÆ¢p™Ç¡r–ÈŸt“Éu“Êu“Êu“Êu“Êu“Êu“Êu“Êÿ‡ÿ‡ÿ•$ ÿ¤+ ÿ¯)ú»)ìÈ,ÞØ7ÓáAÉßI0¼ÚQD¯ÓXV¡Í_f”ÈetˆÄl€|ÀtŠq½“i»Œ™b¹œ^º±ž]¸Éžb®ÈŸf¦ÈŸi¡ÉžkÊnšË›n™Ë›n™Ë›n™Ë›n™Ë›n™Ë›n™Ë›n™Ë›ÿˆÿ‰ÿš#ÿ¨' ÿµ" ñÄ àÕ$ Ñá0Çæ=$½ãF4²àND¦ÜVR™×]aŒÒco€ÏkztÌs„kÊ~‹bÈŒ‘\Èœ•Yȱ–WÈΖ[»Í˜^²Ì™a«Ì™d¦Í™g¢Í˜g Í—g Í—g Í—g Í—g Í—g Í—g Í—ÿŠÿ‹ÿŸ!ÿ® ø½ãÑÐá Åê.ºé:)°çC9¤äJH˜âPVŒàWb€Ý_lvÛhulÚr}cØ~ƒ\ØŒˆWØ‹T×°TØÍŒUËÓWÀÒ‘Z¸Ñ“\²Ñ“_¬Ñ“`ªÑ“`ªÑ“`ªÑ“`ªÑ“`ªÑ“`ªÑ“`ªÑ“ÿŒÿÿ¥ÿµÚÊ ÐáÄë ¸ï,­î7.¢ì@=—ëHJŒéOVèV`vç^ilçepdæpw^ã||Yà‰€VÞ—ƒSݦ„Qܸ…QÝÔ„SÐÚ‡TÆØ‰V¿×ŠX¸Ö‹Y¶Ö‹Y¶Ö‹Y¶Ö‹Y¶Ö‹Y¶Ö‹Y¶Ö‹Y¶Ö‹ÿŽ ÿ—ÿ­Ù¿ ÌÎ Ãë¶õ«õ,!¡ô70–ó@>‹óHJóPTwóW]mó]deðfj_ípnZêzrVç…vSå‘yQäž{Oã¬|Mã½|MãÙ|PØà|QÎàRÆÞSÄÞSÄÞSÄÞSÄÞSÄÞSÄÞSÄÞÿ’ ÿ  Û·ÊÃÀÒ µô©ûŸü,#”ü71ŠüA=ýIGxýQPnýWWeú^\`öfa[ôoeVñxhSï‚kPîŒmNì—oLë£qJê°rIêÁrHêØrKãärNØæsNÕçtNÕçtNÕçtNÕçtNÕçtNÕçtNÕçtÿ– Þ¬˺½Ç²Ø§ÿœÿ!’ÿ.#‰ÿ9/€ÿB9wÿJBmÿPIeÿVN_ÿ^SZþeVUümZRúu\Oø~_L÷‡aJõ‘bHôœdFó¦eEò³fDòÁgCòÔgEîçgFëègFëègFëègFëègFëègFëègFëègî¢Í´¼¾¯Í¤Þšÿ ÿ$‡ÿ0 ~ÿ;*tÿB2kÿH9cÿN?]ÿUCXÿ]GSÿdJPÿkMMÿrOJÿyQGÿ‚SEÿ‹TCþ”VAýžW@ý¨X?ü³Y>ü¿Z>ûÑZ=ûÛZ=ûÛZ=ûÛZ=ûÛZ=ûÛZ=ûÛZ=ûÛZÒ­½¸®Å¡Õ–÷ ÿ„ÿ&|ÿ1qÿ8"hÿ>)`ÿE/ZÿL3TÿS7PÿZ:Lÿ`Fÿm@DÿtBAÿ{C?ÿƒE=ÿŒF;ÿ•G:ÿžI9ÿ§J8ÿ±J7ÿ¾K7ÿÂK7ÿÂK7ÿÂK7ÿÂK7ÿÂK7ÿÂK7ÿÂK¿³®¾ Í’Þ‰ÿ ÿwÿ# mÿ*dÿ1\ÿ8Uÿ@"PÿH&LÿO)HÿU+Dÿ[-Bÿa/?ÿg1=ÿm2;ÿs39ÿz57ÿ‚65ÿ‹73ÿ”82ÿœ91ÿ¤:0ÿ¯;0ÿ²;0ÿ²;0ÿ²;0ÿ²;0ÿ²;0ÿ²;0ÿ²;°¸ Ç‘Ø„ï|ÿ oÿfÿ^ÿ! Vÿ)Pÿ2Kÿ:FÿABÿH?ÿN<ÿS9ÿY 7ÿ^!5ÿd"3ÿi#1ÿp$/ÿw%-ÿ~&,ÿ‡'*ÿ()ÿ—)(ÿ *(ÿ£*(ÿ£*(ÿ£*(ÿ£*(ÿ£*(ÿ£*(ÿ£*¡Â‘Ñ‚áxÿlÿ`ÿ WÿOÿHÿ Cÿ)?ÿ1 ;ÿ8 8ÿ>5ÿD2ÿI0ÿN.ÿS,ÿX*ÿ])ÿc'ÿi%ÿo$ÿw"ÿ~!ÿ…ÿÿ‘ÿ‘ÿ‘ÿ‘ÿ‘ÿ‘ÿ‘ÿhÿd#ÿ_/ÿ^@ÿcKÿgT%ÿh]/ÿfg9ÿdrAÿb}Hÿ`‡Nÿ]Rÿ[˜VÿZžYÿX¤[ÿWª]þV°_ýUµ`üT¼aüTÄbûSÍcùRÜcöRæcñSêcìTícæVïbàWðcàWðcàWðcàWðcàWðcàWðcàWðcÿiÿe#ÿ`.ÿ_@ÿfIÿjS%ÿk\0ÿie:ÿgpBÿd{Iÿb…Oÿ_ŽTÿ]–Xÿ[[ÿZ£]ýX©_üW¯aûVµbúU¼dúUÄeùTÎe÷SÝfóSæfîUêfçVíeáXîeÛYïfÛYïfÛYïfÛYïfÛYïfÛYïfÛYïfÿjÿf"ÿa.ÿ`?ÿiHÿmQ&ÿn[0ÿld:ÿinCÿgyKÿdƒQÿaŒVÿ_•Zÿ]œ]ý[¢`ûZ©búY¯dùXµeùW¼gøVÅh÷UÏhõTàiðUæiéWêhâYìhÛZíiÓ[îiÓ[îiÓ[îiÓ[îiÓ[îiÓ[îiÓ[îiÿjÿg"ÿb.ÿc>ÿlFÿqP&ÿrY1ÿpb;ÿlkDÿivLÿgRÿd‹Xÿa“\ý_›`û]¡bú[¨eùZ®gøYµh÷X¼iöWÆjõVÑkòUálìWçläYékÜ[ëkÔ\ìlÍ]ílÍ]ílÍ]ílÍ]ílÍ]ílÍ]ílÍ]ílÿkÿh!ÿc-ÿg<ÿpEÿtN&ÿvW1ÿt`;ÿpiEÿmsMÿj~TÿfˆZþc‘^ûa™bù_ eø]§hö\­jõZ´lôY½môXÇnòWÔoîWâoæYæoÝ\énÓ]êoÍ^ëpÇ_ëpÇ_ëpÇ_ëpÇ_ëpÇ_ëpÇ_ëpÇ_ëpÿlÿi!ÿe-ÿk:ÿtCÿyL&ÿzU1ÿy]<ÿufEÿppNÿm{Vÿj…\üfaúd—e÷aŸhö_¦kô]­mó\´oòZ½qñYÉrïXÚsèZãsÞ]ærÓ^èsË_ètÆ`ètÁaètÁaètÁaètÁaètÁaètÁaètÁaètÿmÿj ÿf-ÿo8ÿxAÿ}J%ÿR1ÿ~[<ÿ{cFÿvlOÿqwWþm‚^ûjŒcøf•hõdlóa¤oò_¬qð]´sï\¿uî[Ëvê[Ýwà]ãvÓ`åwÊaåxÄbåx¾cåxºdåxºdåxºdåxºdåxºdåxºdåxºdåxÿnÿk ÿh,ÿs6ÿ}?ÿ‚G%ÿ„P0ÿ„X;ÿ`Eÿ|iOÿvrWþq}_ùmˆeöj’jóf›oñc£rïa«uí_µxì]Áyì\Ðzã]ß{Ôaâ{Êbâ|Âdá}¼eá}·fâ|³gâ|³gâ|³gâ|³gâ|³gâ|³gâ|³gâ|ÿpÿlÿi,ÿw4ÿ<ÿ‡E$ÿŠM/ÿ‰U:ÿ‡]Eÿ‚eOÿ|nXývx`ør„gõmŽmñi˜rïf¡vìc«yë`¶|é^Ä~ç^ØØaß~Êc߀ÁeÞ¹gÞ´hÞ°i߀¬i߬i߬i߬i߬i߬i߬ißÿqÿmÿk+ÿ{2ÿ†:ÿŒC"ÿK-ÿS8ÿZCÿ‰bMÿƒiWý|r`øvgôqŠnðl•tíhŸyêdª}èa·€æ_È‚ÝaÛƒÌdÜ„ÀfÜ…¸hÛ…±jÛ…­kÜ„©l݃¦lÝ‚¦lÝ‚¦lÝ‚¦lÝ‚¦lÝ‚¦lÝ‚¦lÝ‚ÿrÿoÿo)ÿ0ÿŠ8ÿ‘A!ÿ”J,ÿ•Q6ÿ“XAÿ`Kû‹gUõ„o_ð}zgëw…oçrvãm›|Þh¦Úe³„ÕcĆÏdÚ‡ÁgÙˆ·i؉¯k؉ªmÙˆ¦nÚ‡£nÚ† oÛ… oÛ… oÛ… oÛ… oÛ… oÛ… oÛ…ÿrÿpÿr(ÿ‚. ÿŽ6ÿ•@ÿ™H)ÿ™O4ÿ˜U>ú–\Iô’dSíŒk]ç…vfáoÛxŒwÓr–~Ím¡„Éj­‰Åh»‹ÁhÐŒ¶kÕ®mÕ§oÖŒ£pÖ‹ŸqØŠqÙ‰›rÚ‡›rÚ‡›rÚ‡›rÚ‡›rÚ‡›rÚ‡›rÚ‡ÿsÿpÿu&ÿ†, ÿ‘6ÿ™@ÿœF'ÿL1üR;ôœYEí™`Oæ”hYߎscÕ†}n͇xÆx‘€Às›‡»o§Œ¶m´³lÈ‘¬nÒ‘¥pÓ rÔœsÕ™tÖŒ—tØŠ–uÙ‰–uÙ‰–uÙ‰–uÙ‰–uÙ‰–uÙ‰–uÙ‰ÿtÿqÿx$ÿ‰+ ÿ•5ÿœ>ÿ C$ÿ¢I.÷£P7ï¢VAç¡]JßgTÔ•obËxnÃ…‚y»Œ‚µy–‰¯u¡Žªr¯’¦qÁ”¡sДœtÑ’˜vÒ‘–wÓ”wÕ’wÖŒ‘xØŠ‘xØŠ‘xØŠ‘xØŠ‘xØŠ‘xØŠ‘xØŠÿuÿrÿ{#ÿŒ) ÿ˜4ÿŸ<ÿ£A"û¦F*ò¨M3ê©T<â©[D×£cSÌšlb“unº‹~y²…‡ƒª‘Ф{œžxª”šv»–—wÏ–”yД‘zÑ’zÓŽzÔzÕŒz׋Œz׋Œz׋Œz׋Œz׋Œz׋Œz׋ÿuÿsÿ}!ÿŽ) ÿ›4ÿ¢9ÿ¦>÷ªD&î®J.å±R5ܯYAϨaRÅ ia»˜rn±‘zy©‹ƒƒ¡…‹š˜‘”~¥–|¶˜}Í—Œ~Ï•Š~ГŠ~Ò‘‰~Ó‰}Õˆ}Ö‹ˆ}Ö‹ˆ}Ö‹ˆ}Ö‹ˆ}Ö‹ˆ}Ö‹ˆ}Ö‹ÿvÿtÿ€ ÿ‘( ÿž3ÿ¤7þª;ó¯A"ê´H(â¹P.Ô´V@É­_Q¾¥g`´žomª—wx¡‘€‚™ŒŠ‹‘‡•‘‹„¢–†ƒ²™ƒ„˘„ƒÎ–„ƒÐ”„‚Ò’„Ó„ÔŽ„€ÖŒ„€ÖŒ„€ÖŒ„€ÖŒ„€ÖŒ„€ÖŒ„€ÖŒÿwÿtÿ‚ÿ”'ÿ 2 ÿ§4ú®8ïµ=æ¼F!Ü¿L,ιT?ñ]P·ªe_­¤ll£tw™˜|‘“†Š‰’‘‚ŒŸ–}Н˜z‹Ç˜|‰Î–}ˆÐ”~†Ò’…Ó„ÔŽ€ƒÖŒ€ƒÖŒ€ƒÖŒ€ƒÖŒ€ƒÖŒ€ƒÖŒ€ƒÖŒÿxÿuÿ…ÿ—&ÿ£/ ÿ«0õ³4ë»:âÄDÕÄH+ȽS=¼¶[N±°c]¦ªjjœ¤qv’Ÿz€‰šƒ‰–Žy“œ•t’¬—q’Øs‘Ï–vŽÐ”x‹Ò‘yŠÓzˆÕŽ{‡ÖŒ{‡ÖŒ{‡ÖŒ{‡ÖŒ{‡ÖŒ{‡ÖŒ{‡ÖŒÿxÿvÿˆÿš%ÿ¦+ þ¯, ñ¹/æÃ6ÝÍ<ÎÈG)ÂÂQ;¶¼YLª¶a[Ÿ°hh•«ot‹¦w~¢€†yŸ‹qœ™’l›©•i›¿–k™Ð”n”Ñ’q‘Ò‘sÔuÕv‹Ö‹v‹Ö‹v‹Ö‹v‹Ö‹v‹Ö‹v‹Ö‹v‹Ö‹ÿyÿxÿŒÿž#ÿª&ø´%ëÀ(áÍ0ÔÒ7ÈÍE'»ÈO9¯ÂWJ£½_X˜¸fe³mqƒ¯u{z«~ƒq¨‰Šj¦–e¥§’b¦½’c£Ò‘gÓj˜Ôm•Õn’ÖŒpØŠpØŠpØŠpØŠpØŠpØŠpØŠÿ{ÿ|ÿÿ¢!ÿ® ò»åÊÚÛ$ÌÙ5ÀÓC$´ÎM6¨ÉUGœÄ]U‘Àdb†¼km{¸svrµ|~j³‡…c±•Š^°¥Œ[±¼[¯Õ_§Õc¡ÖŒfœ×‹h™ØŠj–Ùˆj–Ùˆj–Ùˆj–Ùˆj–Ùˆj–Ùˆj–Ùˆÿ|ÿÿ•ÿ§üµëÆÚÛÍà%Ãß6¸ÛA!¬ÕK3 ÑSC”ÍZQ‰Éb]~ÆigtÃqpkÁ{xd¿†~]¾”‚X½¥…V¾»†U½Û†X³Ú‡\«Ú‡_¦Ú‡a¡Û†cÛ…cÛ…cÛ…cÛ…cÛ…cÛ…cÛ…ÿ~ÿ‡ÿšÿ­Ú¾ ÑÍ ËäÁä%·ã5­á@!£ÞI/—ÛR>‹×YK€Ô`WvÑhamÏpieÍzp^̆uXÌ•yȚ{Qͼ|PÌâ|SÁàU·ß€X±ÞZ«Þ\¦ß\¦ß\¦ß\¦ß\¦ß\¦ß\¦ßÿ€ÿŽÿ¢ ÛµÎÁÆÐ ¾é´é% ªè3 æ>%–åG2‹ãN?€áUIvà]SmÞf[eÝoa^ÝzgX܆kSÜ•oPݦqMÞ»rMßáqNÑçtPÆæwR¾äxS¸äyU²ãzU²ãzU²ãzU²ãzU²ãzU²ãzU²ãzÿƒÿ– Ý«͸ÂÄºÔ ±ï§î% žî3”í='ŠìF3€ëN>vëUGlê[NdêcU]êmZXêw^SêƒbNê‘eJë¡gGì³iFíÐiHæèiKÙëjLÏìmNÇëoOÀêpOÀêpOÀêpOÀêpOÀêpOÀêpOÀêpÿ‰ é бÁ¼·É®Ú ¤õ›õ'’õ4ˆö>'öG2vöN;löTBdöZH]öbMWökQRöuUM÷€XHøZEø›\Bø«^A÷¾_@÷ß`Cîì`Gãñ_HÛñaIÒòcIÒòcIÒòcIÒòcIÒòcIÒòcIÒòcþ•ԩµµÁªÏ ç ˜ýþ)†ÿ5~ÿ@%tÿF-kÿL5cÿR:\ÿY?Vÿ`CPÿhGLÿqJGÿ{LCÿ‡N@ÿ”P>ÿ¡R=ÿ°T;ÿÃU;þáU<ùðU@ðôUCç÷TCç÷TCç÷TCç÷TCç÷TCç÷TCç÷Tۡ۵º¨ÇÖ“ü‹ÿƒÿ+zÿ5qÿ<hÿB&`ÿI,YÿO1SÿV5Nÿ]8Iÿe;Eÿm=Aÿv?>ÿ€A;ÿ‹C9ÿ˜E8ÿ¤F6ÿ²G5ÿÄH5ÿÝI4ÿðI7þøI7þøI7þøI7þøI7þøI7þøI7þøIÉ«¶´¨Á›ÏŽß‡ÿ~ÿuÿ' lÿ/dÿ7\ÿ>VÿE"PÿK%KÿR(FÿX+Aÿ_->ÿg/;ÿo18ÿx36ÿ‚43ÿ61ÿ™70ÿ¥8/ÿ²:.ÿÀ;.ÿÓ;-ÿë<-ÿë<-ÿë<-ÿë<-ÿë<-ÿë<-ÿë<¸°¨¼šÉŒÙõyÿnÿeÿ^ÿ' Wÿ0Qÿ7Kÿ>FÿEAÿL=ÿR9ÿX6ÿ_!4ÿf"1ÿn$/ÿw%-ÿ€&+ÿŒ()ÿ—)(ÿ¢*'ÿ­+&ÿ¹,&ÿÉ-&ÿÉ-&ÿÉ-&ÿÉ-&ÿÉ-&ÿÉ-&ÿÉ-ª·šÅ‹Ó}âuÿiÿ _ÿWÿPÿIÿ&Dÿ. ?ÿ6 ;ÿ= 7ÿC3ÿI0ÿO.ÿU,ÿ[*ÿb'ÿi%ÿr#ÿ{!ÿ†ÿ‘ÿœÿ¥ÿ°ÿ°ÿ°ÿ°ÿ°ÿ°ÿ°œÀŒÎ|ÞpõeÿZÿQÿ IÿCÿ=ÿ8ÿ&4ÿ-0ÿ3-ÿ9*ÿ>'ÿC%ÿI #ÿN !ÿT ÿZ ÿa ÿi ÿr ÿ| ÿ† ÿÿšÿšÿšÿšÿšÿšÿšÿ\ÿW&ÿQ2ÿN<ÿWEÿ[Nÿ\X"ÿ[c+ÿYo2ÿWz8ÿT…=ÿRAÿP™EÿO GÿN§IÿM®KÿL´LÿK»MÿJÃNÿIÍOÿIÝPÿHéPÿHòPûIöPöKùPðMûOêOûPçOüPçOüPçOüPçOüPçOüPçOüPÿ\ÿX&ÿR2ÿQ:ÿZCÿ_Mÿ_W#ÿ^a+ÿ\m3ÿYy:ÿW„?ÿTŽCÿR—GÿPŸIÿO¦KÿN­MÿM´OÿL»PÿKÃQÿKÎRÿJßRÿIêSýJòSøKöSñMøRëOúRåPúSâQúSâQúSâQúSâQúSâQúSâQúSÿ]ÿY&ÿS1ÿT9ÿ]BÿbKÿbU#ÿ`_,ÿ_k4ÿ\w;ÿY‚@ÿVŒEÿT•HÿRžKÿQ¥NÿP¬OÿO³QÿN»RÿMÄSÿLÏTÿKàUÿKëUúLòUôMöUìPøTæQøUßRùVÜSùVÜSùVÜSùVÜSùVÜSùVÜSùVÿ^ÿZ%ÿT1ÿX7ÿa@ÿeIÿfS#ÿd]-ÿbh5ÿ_t<ÿ\BÿYŠGÿV“KÿTœNÿS¤PÿQ«RÿP³TÿOºUÿNÄVÿMÐWÿMâXüLíXöNòXîPõXæSöXßT÷Y×UøYÓUøYÓUøYÓUøYÓUøYÓUøYÓUøYÿ_ÿ[%ÿU0ÿ\4ÿe=ÿjGÿkQ$ÿiZ-ÿfd6ÿcp=ÿ_|Cÿ\‡IÿY‘MÿWšPÿU¢SÿSªUÿR²WÿQºYÿPÅZÿOÒ[üNä[øOí\ðQò[çTô[ÞUõ\ÕVö]ÎX÷]ËX÷]ËX÷]ËX÷]ËX÷]ËX÷]ËX÷]ÿ`ÿ\$ÿV/ÿ`2ÿj;ÿoDÿpN#ÿoW-ÿka6ÿgl>ÿcxEÿ`ƒKÿ\ŽOÿZ˜SÿW VÿV©YÿT±[ÿSº\þQÆ^üPÖ_ùPç_òRî_çUñ_ÝWò`ÒXóaËYõbÅ[õbÃ[õbÃ[õbÃ[õbÃ[õbÃ[õbÃ[õbÿaÿ]#ÿZ-ÿe/ÿo8ÿtAÿvK#ÿuT-ÿq]6ÿlg?ÿhsFÿdLÿ`ŠRÿ]•VÿZžYÿX§\þV°_ýTº`üSÇbùRÜcóSècéUîcÞXðdÐZñeÈ\òfÂ]òf½^òf»^òf»^òf»^òf»^òf»^òf»^òfÿbÿ^#ÿ^*ÿi-ÿt5ÿz>ÿ|H"ÿ{Q,ÿxZ6ÿsc?ÿmmGÿizNÿd†Tÿ`‘Xÿ]œ\ýZ¥`ûX°búV»eøUÊfõTàgìVêgßZígÐ\ïiÆ]ïj¿_ïj¹`ïjµaïj³aïj³aïj³aïj³aïj³aïj³aïjÿcÿ`"ÿb'ÿn*ÿy2ÿ<ÿ‚F!ÿ‚O+ÿX5ÿ{`>ÿuiGÿotNûjUøfŒ[õb—_ó_¡cð\«fîZ¶iìYÄjéXÚkáZêkÐ]ìmÅ_ìn¼aëo¶bìo±cìn­dìn«dím«dím«dím«dím«dím«dímÿdÿa"ÿf%ÿr'ÿ~0 ÿ…;ÿˆEÿˆM)ÿ†U3ÿ‚^=û}fFövpNòr|Uîm‡\êh’bædœfãa¦jà_²mÝ]¿oÚ]ÓpÒ^êpÄ`érºbès³dès­eés©fér¦gêq¤gêp¤gêp¤gêp¤gêp¤gêp¤gêpÿeÿb!ÿi#ÿw%ÿ‚/ ÿŠ9ÿŽCÿL&ÿS0ùŠ[:ó…cDílMèywUãt‚]ÞncÙi—iÓf¡nÏc¬qËa¹tÈaÊuÅaåv¹dæw°fåwªhæw¥iæv¢jçuŸjèsžkésžkésžkésžkésžkésžkésÿfÿc!ÿm ÿ{#ÿ‡. ÿ8ÿ“Aÿ•J#ú”Q-ó‘Y7ì`Aå‡iJßtSÖz~]ÏtˆeÊo‘lÅk›qÁh¦u½f²xºeÂz·eÝ{®hã{§jã{¢käzžlåx›måw™mçv˜nçu˜nçu˜nçu˜nçu˜nçu˜nçuÿgÿd ÿpÿ~"ÿ‹, ÿ“7ÿ˜@ýšH ôšN)ì˜U3å•]<ÝfGÓˆoSËy^Å{ƒf¿uŒn¹q–tµn¡x°k¬|­j»~ªjÒ¤là~žmá}šoâ|—pãz•päy“påw“qæw“qæw“qæw“qæw“qæw“qæwÿhÿd ÿsÿ ÿŽ+ÿ—5ÿ>øŸDï K%çŸR-ßZ7Ó•cFÊŽlSÇu^»~gµ{ˆo¯w‘uªsœz¥p¨~¡o¶žoÊ‚›pÞ–q߀“rá~‘sâ|sãzŽsäyŽsåxŽsåxŽsåxŽsåxŽsåxŽsåxÿiÿfÿvÿ„ÿ’*ÿ›4 þ ;ó£Aê¦H â§O'Ø¢V6Ìš`EÓiR»r^³†zg¬„o¦}v y˜|›v£€—t±ƒ”tÅ„‘u݃vÞvà‹wá}Šwâ{‰väz‰väy‰väy‰väy‰väy‰väy‰väyÿiÿiÿxÿ‡ÿ•(ÿž2 ú¤7ï¨=æ¬DÝ­K$ЦT5ÆŸ^D¼™fR´’o]¬Œwg¤‡€ož‚Šw˜~”}’{ z­„ŠyÀ…ˆzÜ„‡zÝ‚†z߀†zà~…zâ|…yãz…yäy…yäy…yäy…yäy…yäy…yäyÿjÿkÿ{ÿŠÿ˜&ÿ¢0õ¨3 ë®9â³AÖ±G#Ê«R4À¤\C¶ždQ­˜l\¥’tf}o–ˆ†v…‘}Š‚œ‚…€ª…¼†€€Û…€€Ýƒ€Þ€~à€}á}€}ã{€|äz€|äz€|äz€|äz€|äz€|äzÿkÿmÿ~ÿÿ›$þ¥,ñ¬/ç³4 ݺ:еF!ůQ2º©ZB°£bO§j[ž˜re–“znƒvˆ‹Ž|‚ˆ™|†§…y†¹†w‡×…x…݃zƒÞz‚à{á}|€ã{|ãz|ãz|ãz|ãz|ãz|ãzÿkÿpÿÿÿŸ"ú©&í±)âº/Ö¿6ʺD ¿´O1´®X@ª¨`N¡£gZ˜žodšwmˆ–€u€’‹{z–€tޤ„q¶…oŽÑ…q‹Ýƒs‰ßu‡à~v…á}w„ã{wƒäzwƒäzwƒäzwƒäzwƒäzwƒäzÿlÿsÿ…ÿ”ÿ¢õ­ ç¸!ÝÃ&ÐÃ4 ľB¹¹M/®³V>¤®^Lš©eW‘¥mb‰¡uk€~ryšˆyr—”~m–¢‚i•³„g–̓i“Þ‚l߀oŒá~pŠâ|rˆãzr‡äyr‡äyr‡äyr‡äyr‡äyr‡äyÿmÿvÿˆÿ˜ÿ§ï³âÀÕÊÉÇ2 ¾Ã@³¾K,¨ºT<žµ\I”°cUЬk_©rhy¥{or£…vk ‘{fŸŸbŸ±`ŸÊ€bœàe—á~h“â|jã{läymŒåxmŒåxmŒåxmŒåxmŒåxmŒåxÿnÿ{ÿÿú¬Ú» ÕÉ ÍÎÂÌ/ ·É=¬ÅI)¡ÀR8—¼ZF¸aQƒµh[z²pdr¯ykk¬ƒqd«v_©žz[©¯|YªÉ|Z§â{^ ã{a›ãzc—äyf”åwf’æwf’æwf’æwf’æwf’æwf’æwÿpÿ€ÿ’ò£ Ù³ Ͼ ËÌ ÄÓºÒ,°Ï;¥ÌF&šÈP5ÄXA…Á_M|¾gVs¼o^k¹wed¸‚k^¶ŽpYµsUµ®uT¶ÈuS³çvW«ævZ¤æv\ çu_œçt`šèt`šèt`šèt`šèt`šèt`šètÿrÿ† û˜ Ù©εÆÁÀÏ ºÛ±Ú)§Ø7œÔD!’ÑM0‡ÎU<}Ë]GtÉePlÇmWeÅv^^ÄcYÃŽhTÃkQîlOÄÈmNÂímP¸ëoS°ëpU«êpX¦ëpY£ëpY£ëpY£ëpY£ëpY£ëpY£ëpÿwÿÞ Ï®Ĺ»ÅµÓ ®á¦á)à7“ÞB‰ÜL)ÚT5u×\?mÕdHeÓlO_ÒvTYÒYTÑŽ]PÑ`MÒ°bKÓÉbJÒíbKÈòfM¿ñhO¸ðiQ²ðiR¯ïiR¯ïiR¯ïiR¯ïiR¯ïiR¯ïiÿ í–Ò¦IJ¹¼°É©Ø ¡ç™ç* ç7‡æB}åJ)täQ3kãY:dâaA^âkGXâuKSá€OOâSKâ›UIã¬WGäÄWFãéWFÝöYGÐ÷\IÈ÷^JÁö`K½ö`K½ö`K½ö`K½ö`K½ö`K½ö`ÿ‰ÙžÇ¬¹¶®Á¥Îœä •ïï, …ï9|ïAsïI'jîP/bîW5\î_:Vîh?RîqBMï|FIï‰IFð–KCð¦M@ñ¹N?òÛO>ð÷NBæûOCÝûQDÔüSEÏüTEÏüTEÏüTEÏüTEÏüTEÏüTá•˦»°®»¢È˜Õø‰ø ‚ø. yù7pù?hùF"`úM(ZúT-Tú\1Oûe5Kûm8Güw;Cüƒ=?ý?<ýŸA:þ¯C8ÿÆD7ÿêE6üýE;òÿD>êÿD>æÿF>æÿF>æÿF>æÿF>æÿF>æÿFП½¬®µ¢Â•ÏŠÝ„ÿ{ÿtÿ* lÿ3dÿ;]ÿCWÿJ QÿQ$LÿX'Hÿ`*Dÿh,@ÿq.<ÿ{19ÿˆ25ÿ–43ÿ¤61ÿ¶7/ÿÐ8.ÿï9-ÿÿ91ÿÿ93üÿ93üÿ93üÿ93üÿ93üÿ93üÿ9Á¨¯±¢½”ʇØ}óvÿmÿeÿ$^ÿ- Xÿ6Rÿ=LÿEHÿLCÿS?ÿZ<ÿa 8ÿi!5ÿr#1ÿ}%.ÿŠ&+ÿ™()ÿ§)'ÿ¹+&ÿÒ,%ÿï,$ÿÿ-$ÿÿ-$ÿÿ-$ÿÿ-$ÿÿ-$ÿÿ-$ÿÿ-±®£¹”ƆÓyáqÿgÿ_ÿWÿQÿ&Kÿ.Fÿ6 Aÿ= =ÿD9ÿK6ÿQ2ÿX/ÿ_,ÿg)ÿq&ÿ|#ÿ‰ ÿ˜ÿ¦ÿ·ÿÊÿæÿðÿðÿðÿðÿðÿ𤵕†ÏwÞkôbÿYÿ QÿJÿDÿ?ÿ&:ÿ-6ÿ42ÿ:.ÿ@+ÿF(ÿL %ÿR "ÿY ÿb ÿk ÿv ÿ„ÿ’ÿ ÿ­ÿºÿÃÿÃÿÃÿÃÿÃÿ×¾†ÌwÛiç\ýTÿKÿCÿ =ÿ7ÿ2ÿ.ÿ$*ÿ*%ÿ/"ÿ5ÿ:ÿ?ÿEÿKÿRÿZÿbÿlÿw ÿ„ ÿ ÿœ ÿ¢ ÿ¢ ÿ¢ ÿ¢ ÿ¢ ÿ¢ÿP ÿK*ÿD6ÿG:ÿJ?ÿNIÿOTÿO`ÿMl$ÿJy*ÿH….ÿF2ÿDš4ÿC¢7ÿBª8ÿA±:ÿ@¹;ÿ@Á<ÿ?Ë=ÿ>Ü>ÿ>è>ÿ=ó>ÿ=û?ÿ>ÿ>ÿ@ÿ>úCÿ=ôDÿ>îFÿ?îFÿ?îFÿ?îFÿ?îFÿ?îFÿ?ÿP ÿK*ÿE5ÿJ8ÿM=ÿQHÿRRÿQ^ÿOj%ÿMw+ÿJƒ/ÿHŽ3ÿF˜6ÿD¡8ÿC©:ÿB°<ÿB¸=ÿAÁ>ÿ@Ë?ÿ@Ü@ÿ?é@ÿ?ô@ÿ>ýAÿ@ÿ@ýBÿ@öEÿ@ðFÿAéHÿAéHÿAéHÿAéHÿAéHÿAéHÿAÿQÿL)ÿG4ÿM6ÿQ;ÿUFÿVPÿU\ÿRh&ÿPt,ÿM€1ÿJŒ5ÿH—8ÿF ;ÿE¨<ÿD°>ÿC¸?ÿCÁAÿBÌAÿAÞBÿAëCÿ@õCÿ@ýCÿCÿCøFÿBðHÿCêIÿDãJÿEãJÿEãJÿEãJÿEãJÿEãJÿEÿRÿM)ÿJ2ÿP3ÿU9ÿYCÿZMÿYX ÿVd'ÿSq-ÿP}3ÿM‰7ÿK”:ÿIž=ÿG¦?ÿF®AÿE·BÿDÁDÿDÌEÿCßEÿBíFÿB÷FÿCýFùFÿFðIÿFéKÿGâLÿHÛMÿHÛMÿHÛMÿHÛMÿHÛMÿHÛMÿHÿSÿN(ÿN/ÿT0ÿZ6ÿ^@ÿ`Jÿ^U ÿ[`(ÿXm/ÿTy4ÿQ…9ÿN‘=ÿL›@ÿJ¤BÿI­DÿH¶FÿGÁGÿFÍHÿEáIÿDïJÿEøJûGýJñJÿIèMÿKßNÿL×OÿLÏQÿLÏQÿLÏQÿLÏQÿLÏQÿLÏQÿLÿTÿP'ÿR,ÿY-ÿ_2ÿd<ÿfGÿdR ÿa\(ÿ]h0ÿZu6ÿV;ÿR?ÿO˜CÿM¢EÿL«HÿJµIÿI¿KÿHÌLÿHáMÿHîMüHùNòKüMçNýOÝPýPÒRþPÌSÿQÆTÿQÆTÿQÆTÿQÆTÿQÆTÿQÆTÿQÿUÿQ'ÿV)ÿ^*ÿd/ÿj:ÿlEÿlO ÿhY(ÿdc0ÿ`p7ÿ\|=ÿXˆBÿU“FÿSIÿQ¦KÿO°MÿNºOýMÆPúMÙQöLêQòM÷QçPúRÛRûTÎTüUÇVýUÁWþU¼XþU¼XþU¼XþU¼XþU¼XþU¼XþUÿWÿR&ÿZ&ÿb&ÿj,ÿq7ÿsBÿsLÿpV(ÿk`0ÿfk8ÿcw>þ_ƒDû[ŽHùX˜L÷V¡OõU«QóSµSñRÁTïQÐUëQçUæRöVÚTùXÌVúYÃXûZ¼ZûZ·[ûY³\ûY³\ûY³\ûY³\ûY³\ûY³\ûYÿXÿS%ÿ^#ÿg#ÿp*ÿw5 ÿz@ÿzJÿxS&ÿs\/ünf7øir?ôe~Eña‰Jî^“Në\RèY¦UæX°WäW¼XâVÌYÞVäYØVô[ÊX÷]ÀZø^¸\ø^³]ø^®^ø]«_ù\«_ù\«_ù\«_ù\«_ù\«_ù\ÿYÿV#ÿb ÿl ÿu(ÿ}3 ÿ€=ÿGÿP$ù{Y-ôvb6îqm>êlyEæh„KâdŽQÞa˜UÛ^¢YÖ\¬[Ó[¸^ÐZÆ_ÍZß`ÈZòa¾\õbµ^ôb®`õbªaõa¦böa£c÷_£c÷_£c÷_£c÷_£c÷_£c÷_ÿZÿY!ÿfÿpÿz&ÿ‚1 ÿ†;ÿˆDù†M!òƒV+ë~^4åyi=àttEÚoLÓj‰SÏf’XËcœ]Ça¦`Ä_±cÁ^¿d¾^Òeº_ìf²`òf«bòf¥dòe¡eódŸeôcœfõbœfõbœfõbœfõbœfõbœfõbÿ[ÿ\ÿiÿuÿ~$ÿ‡.ÿŒ8ûŽBòŽJë‹R'ä‡[0Ýf:ÓzpEÍuzNÈpƒUÃl[¾i–`ºf d·d«g´c¸i±bÊj®cæj¨dïj¢fïigðhšhñg˜iòf–iód–iód–iód–iód–iód–iódÿ[ÿ_ÿlÿyÿƒ!ÿŒ,ÿ‘6 õ”?ì•Gä“O"ÜŽX-Ò‡b:ÊlEÃ{uN¾vV¸rˆ]´n‘b¯k›f«i¦j¨g³l¥gÃn¢gànžiím™jîl–kïj“lði’lñglòflòflòflòflòflòfÿ\ÿbÿpÿ|ÿ†ÿ)ú–3 ðš<ç›DßšKÓ”U,Ê_9‡iE»qOµ|{W¯x„^ªtc¥q—h¡n¢ll®ošl¾p˜lÙq•mëo‘nìnoíloïjŒoði‹oñg‹oñg‹oñg‹oñg‹oñg‹oñgÿ]ÿdÿrÿÿŠÿ”&ö›0ëŸ8 â¢?ØŸGÍ™R+Ä’]9»ŒfD´‡nN­‚wW§}€^¢y‰dv“i˜sžm”qªqqºrŽqÑsŒrêqŠsëoˆsím‡sîk‡sïj†rðh†rðh†rðh†rðh†rðh†rðhÿ^ÿgÿuÿƒÿŽþ˜#ñŸ,ç¥3ݨ9 Ñ£EÇP*¾—Z8µ’cD­ŒlN¦‡tW ƒ|^š†d•|jyšn‹w¦rˆv¶t…vÌt„wérƒwêp‚wìn‚víl‚vïjvðivðivðivðivðivðiÿ^ÿiÿxÿ†ÿ‘úœí¤'âª,Ö¬4 ˧CÁ¢N)¸œX6¯—aC§‘iM qV™ˆy^“…‚dŒjˆ—oƒ}¤r|³t}|Èu|}ès||êq|{ìo}zím}yîk}yði}yði}yði}yði}yði}yðiÿ_ÿkÿ{ÿ‰ÿ•õ è© ݰ$а2 ƬA¼¦L'³¡V5ªœ_A¢—gLš’oU“Žw]Œ‹€d†ˆŠi…•n|ƒ¡rw‚°tu‚Åutƒçsuêqvëow~ímx}îkx|ðix|ðix|ðix|ðix|ðix|ðiÿ`ÿnÿ~ÿŒÿ™ñ¤ã®Ö¶Ë´0Á°?·«K%­¦T3¤¡]@œeJ”˜lSŒ•t[†‘}bއhyŒ’mtŠžqpˆ­tmˆÁtm‰äso‡êqp„ìorƒímsîkt€ðit€ðit€ðit€ðit€ðit€ðiÿaÿqÿ‚ÿõ ã© Ùµ ϹŸ.»´=±°I#§«R1ž§[>–£cHŽŸjQ†›rY˜z`x•„fr“lm‘œoiªrf¾se‘árhŽëpjŠìnlˆílm†ïkn„ðin„ðin„ðin„ðin„ðin„ðiÿcÿuÿ† ø” Ü¢Ô­ ϸ ɽ¿¼+µ¹;«¶G!¡±P/˜­Y;ªaF‡¦hO£pWx x^rždk›Œifš™mb™¨o_™¼p^™ßo`–ìnc‘ímfŽîkg‹ïji‰ðhi‰ðhi‰ðhi‰ðhi‰ðhi‰ðhÿgÿy ÿŠ ßšÓ¦̱Ç»Á¸Â(®¿8¥¼D›¸N,‘µW8ˆ±^B€®fKx«mSq©vZk§`e¥Šd`£—h[£¦kY£ºlX£ÜkY îk\šïj_–ðia’ñhcñfcñfcñfcñfcñfcñfÿkÿ~ ñÖž̪Ä´¾¾¸È°È$§Æ5 ÃB“ÀL(нT3º\>y·dFqµkNk³tTd±~Z_°‰_Z¯–bV®¥eS®¹fR¯ÛeR«òfU¤òfXŸòfZ›óe\—ód\—ód\—ód\—ód\—ód\—ódÿp ÿ„ݖΣÄ®»·´Â®Í §Î žÍ1 •Ë>‹ÈI#‚ÆR.zÃZ8rÁb@kÀjGd¾sM^½|SY¼ˆWT»•[P»¥]N»¹^M¼Û]K¹÷_N±ö`Qªö`S¥ö`U¡ö`U¡ö`U¡ö`U¡ö`U¡ö`U¡ö`ÿwëŒÓ›Æ¨»±²»ªÇ¢Ó Ö•Ö,ŒÔ:ƒÒFzÐO'rÎX1jÍ`8dËh?^ÊrEXÊ|ITɈMOÉ•QLÉ¥SJɹTIÊÜSGÈ÷UHÀüXJ¸ûYL²ûZN­úZN­úZN­úZN­úZN­úZN­úZÿܓʢ¼¬±µ¨ÀŸË–Ù ‘àŠß,‚ß9yÞCqÝM jÜV(cÛ_/]Úg5XÙq:SÙ{>OÙˆBKÙ–EHÙ¦GFÚºHEÛÛGDØôIBÓÿMDÉÿOEÂÿPG»ÿRG»ÿRG»ÿRG»ÿRG»ÿRG»ÿRæŠÏ›¿§²°§»œÆ“Ñ‹ê…è~è-vè8nèAfçJ_çR#Yç[)Uçd-Pçm1Lçx5Iç„8Fè‘:Cè <@é²>?êË>>èï>=æÿ?=àÿB?×ÿD@ÎÿF@ÎÿF@ÎÿF@ÎÿF@ÎÿF@ÎÿFÖ“Ä£´¬§¶›Á̆ـòyòqò+jò6 có?]óGWóORóW!Mô`$Iôi(Fôs*Bõ~-?õ‹/<ö™1:ö©38÷¾46øá56õù55óÿ47ìÿ69åÿ89åÿ89åÿ89åÿ89åÿ89åÿ8Èž¶©¨²›½ÈƒÔyèsükýdý'^þ1Xþ; SÿCMÿKIÿSEÿZAÿc>ÿl;ÿv!7ÿ‚#4ÿ%2ÿŸ'0ÿ°(.ÿÈ)-ÿê*,ÿÿ*,ÿÿ*/ùÿ*/ùÿ*/ùÿ*/ùÿ*/ùÿ*/ùÿ*¹¦ª®œ¹ŽÅÑuÞmú eÿ^ÿWÿ#Rÿ,Lÿ4Hÿ< CÿD ?ÿL<ÿS8ÿ[5ÿc2ÿl/ÿw,ÿ„)ÿ“'ÿ¢%ÿ´$ÿÌ#ÿí"ÿý"ÿÿ"ÿÿ"ÿÿ"ÿÿ"ÿÿ"ÿÿ¬«¶Â€ÎsÜgé_ÿXÿQÿKÿFÿ&Aÿ-<ÿ58ÿ<4ÿB1ÿI.ÿP +ÿW (ÿ_ %ÿi #ÿt ÿ‚ÿ’ÿ¢ÿ²ÿÈÿåÿúÿúÿúÿúÿúÿúŸ³¿€ÌrÚdäXõQÿJÿ Dÿ>ÿ9ÿ4ÿ%0ÿ,,ÿ2(ÿ8%ÿ>"ÿDÿJÿQÿYÿcÿnÿ|ÿŒÿœÿ¬ ÿ» ÿÓ ÿÓ ÿÓ ÿÓ ÿÓ ÿÓ ‘¼Ér×däTëKÿDÿ=ÿ7ÿ 1ÿ,ÿ(ÿ$ÿ" ÿ'ÿ,ÿ1ÿ6ÿ<ÿBÿI ÿQ ÿZ ÿfÿsÿÿÿœÿ«ÿ«ÿ«ÿ«ÿ«ÿ«ÿD$ÿ?.ÿ<6ÿ@8ÿA=ÿAEÿAQ ÿ@]ÿ?jÿ4ÿB6ÿD;ÿDCÿEO ÿD[ÿAhÿ?uÿ<‚!ÿ:$ÿ8š'ÿ7£)ÿ6¬*ÿ6´,ÿ5½-ÿ4È.ÿ4Ö.ÿ3æ/ÿ3ò/ÿ2ü0ÿ2ÿ0ÿ3ÿ/ÿ6ÿ/ÿ9ÿ/ù;ÿ0ô=ÿ1ñ=ÿ1ñ=ÿ1ñ=ÿ1ñ=ÿ1ñ=ÿ1ÿF#ÿ@-ÿA2ÿF3ÿH8ÿH@ÿILÿHXÿEeÿBrÿ@#ÿ=Œ&ÿ;˜)ÿ:¡+ÿ9ª-ÿ8³.ÿ7½/ÿ6Ç0ÿ6Õ1ÿ6æ2ÿ5ñ2ÿ5û2ÿ5ÿ2ÿ6ÿ2ÿ:ÿ1ú=ÿ3ó>ÿ4í@ÿ4êAÿ4êAÿ4êAÿ4êAÿ4êAÿ4ÿG"ÿA,ÿE/ÿI0ÿL5ÿM=ÿNHÿMTÿKaÿHn ÿE{%ÿBˆ(ÿ?”+ÿ>ž.ÿ=§/ÿ<¯1ÿ<¸2ÿ;Ã3ÿ:Ï4ÿ:á5ÿ:î5ÿ:ø5ÿ:ÿ5ÿ:ÿ5û>ÿ5òAÿ7ëBÿ8åDÿ8áEÿ8áEÿ8áEÿ8áEÿ8áEÿ8ÿH"ÿC,ÿH,ÿN-ÿQ1ÿS9ÿUEÿSQÿQ]ÿNj!ÿKw&ÿHƒ+ÿE.ÿD™0ÿB¢3ÿA«4ÿA´6ÿ@½7ÿ?É8ÿ?Û8ÿ?ê9ÿ?õ9ÿ?ÿ9û@ÿ8ñCÿ:èEÿ<áGÿ<ÚHÿ=ÕIÿ=ÕIÿ=ÕIÿ=ÕIÿ=ÕIÿ=ÿI!ÿD*ÿM(ÿS)ÿW-ÿY6ÿ\Bÿ[NÿXYÿUe"ÿRr(ÿO~-ÿLŠ0ÿJ”3ÿHž6ÿG¦8ÿF¯9ÿE¸;ÿEÄ<ÿDÒ<üDå=øDò=õEþ<ñEÿ>æHÿ@ÜJÿAÒKÿAÌMÿAÉMÿAÉMÿAÉMÿAÉMÿAÉMÿAÿJ ÿH'ÿQ%ÿX%ÿ]*ÿ`3ÿc?ÿbJÿ`Uÿ\a#ÿYm)ÿUy.ÿR„3ÿP6ýN™9ûL¢;úKª=øJ´?÷J¾@õIÌ@ñIáAíJðAêJüBäJÿDØLÿEÌOÿFÆPÿFÀQÿF¾QÿF¾QÿF¾QÿF¾QÿF¾QÿFÿL ÿL$ÿU!ÿ]!ÿc'ÿg1ÿj< ÿjGÿgRÿc\#ÿ_h*û\t0÷Y5õVŠ9òT”<ðR?îQ¦AìP¯CêOºDèNÇDæOÝEáOîEÝNûHÔOÿIÈQÿJÀSÿJºTÿJ¶UÿJ´VÿJ´VÿJ´VÿJ´VÿJ´VÿJÿMÿP!ÿZÿbÿi%ÿm-ÿq9 ÿqDÿoNûkX"õfc)ñco0í`z6é\…;æZ?äX˜BáV¢DßU«FÜS¶HÚRÃJÖRØJÑSìKÌSúMÅTÿN¼VÿOµWÿO°XÿN¬YÿMªZÿMªZÿMªZÿMªZÿMªZÿMÿNÿSÿ^ÿgÿn"ÿs*ÿw5 ÿx@ùwJòsT ìo^(çkj0âgu6Þc€<Ù_ŠAÔ]“FÑ[IÎY¦LËX°NÈW¼PÆVÍQÃWæQ¾W÷R¸XÿS°ZÿS«\ÿR§]ÿR£]ÿQ¢]ÿP¢]ÿP¢]ÿP¢]ÿP¢]ÿPÿOÿWÿbÿlÿt ÿy'ÿ~2ù€< ñFê{Päw[&Ýsf.Õmp7Ðiz>Ëe„DÇbŽIÄ`—MÀ^ P½]ªS»[¶U¸[ÅVµ[ßV²\óW¬]ýW¦^ýV¡`þUž`ÿTœaÿSšaÿSšaÿSšaÿSšaÿSšaÿSÿPÿZÿeÿpÿxÿ$ý„.ó†8 ê†Bã„KÛW#Ñyb/Ëtl8Åov@ÀlF¼hˆK¸f‘Pµc›S±a¥V®`°Y«_¿Z©_Ô[¦`ï[¢aúZcûY™düX–dýW•eþU”eþU”eþU”eþU”eþU”eþUÿPÿ]ÿiÿtÿ}ÿ„!÷‰*í4ä= Ü‹HÑ…T#É^.Âzh8¼uq@·qzG²n„M®kRªh–V§f Y£e«\ d¹^ždÍ^›dê^˜fø]”gù\’hûZhüYŽhýWŽhýVŽhýVŽhýVŽhýVŽhýVÿRÿ_ÿlÿxÿÿˆò%ç“/Þ•8 ÓEÊ‹Q"Â…[.»€e8´{nA¯wwHªtN¥pˆS¡n’Wkœ[™j§^–iµ`”hÈa’iæ`j÷_kø]‹kù\‰lûZˆlüXˆküXˆküXˆküXˆküXˆküXÿTÿbÿoÿ{ÿ…úí“â™(Ø™3Ì•BÄN!¼‹Y-´…b7®k@¨|sH¢y|Nv…T™sŽX•q˜\‘o¤`n±b‹mÃc‰nâb‡oöa†o÷_…où]„oú[ƒoûYƒoüXƒoüXƒoüXƒoüXƒoüXÿVÿdÿrÿ~ÿˆõ‘è˜Ýž Ñž1Çš@¾•L ¶V,®‹`7§†h@¡‚pHœ~yN–{‚T’x‹Yv•]‰t a…s®c‚r¿d€sÞd€tõbtö`sø^~sù\~rúZ~rûY~rûY~rûY~rûY~rûYÿXÿgÿuÿÿŒñ•ã֣ˡ/ž>¹™J°”T+©]6¢‹f?›‡nG•„vN€T‹~ˆY†{’]yža}x«dzx¼eyxÙexyôbyxö`ywø^yvù\yuúZyuûZyuûZyuûZyuûZyuûZÿZÿiÿx ÿ„ ï Ýš Ù¢ ЦÆ¥,½¢<´žH«™R)£•[4œ‘c>•kF‰sM‰†|S„„…X]z›av~¨ds}¹eq~Óeq~òcr}ö`s{÷^tzù\tyú[uyûZuyûZuyûZuyûZuyûZÿ]ÿl ÿ{ öˆ Ü“Õ Ñ¥ ʪÁ©*·¦:®¢F¦žP(žšY3––a<“iD‰qLƒyR}ŠƒWxˆ\s†™`o„¦cl„·dj„Ïdj„ðbl‚ö`m€÷^où\o}ú[p|ûZp|ûZp|ûZp|ûZp|ûZÿ_ÿo ÿ~ãŒÖ—Ï ʨÄ®»­'²«7 ©§D ¤N&˜ W1‘œ_:Š™gCƒ–oJ}“wPw‘€VrŠZm–^h‹£ae‹´cc‹Ìcc‹îae‰÷_g†ø^i„ù\j‚úZkûZkûZkûZkûZkûZÿbÿrø‚ÛϚɣ콲µ²$¬°5 £­B›ªL#’¦U.Š£]8ƒ e@}lGv›tMp™}Sk–ˆXf•”\b”¡__“²`]“É`]“í_^ø^aŒù\cŠú[d‡ûZe†ûYe†ûYe†ûYe†ûYe†ûYÿf ÿwã‡Ó“Êž§»¯µ¶ ®·!¥¶2 ³?”°J Œ­S+„ª[4}¨c]¶xCXµ‚GT´KP´NM³®PK´ÅPK³êPJ±ÿQL«ÿRN¥ÿRP¡ÿRQžÿQQžÿQQžÿQQžÿQQžÿQÿv݉ʗ¾¢³ª©³ ¼˜Æ‘Ì‹Ì%„Ë4 |É@uÈJmÇS#gÅ\*aÄd0\Ãm6WÂv:SÂ?OÁŽBKÁEHÁ®FGÁÅFGÁêFD¾ÿIE¹ÿJG³ÿKI­ÿLJ«ÿLJ«ÿLJ«ÿLJ«ÿLJ«ÿLéÑžµ§ª¯ ¸–ÁŒË„Õ €ÕyÕ.rÔ< lÓGeÒP_ÑY!ZÑb'UÐk,QÐu0MÏ4IÏŽ7FÏ9DЮ;BÐÆ;CÐê:@Íý>>Ëÿ@@ÃÿBA½ÿCB¹ÿDB¹ÿDB¹ÿDB¹ÿDB¹ÿD݈ǘ¸£«« ´•¾‹È€Ñxá táná+hà7aàB\àMWàVSà_Oài"Kàs%Gà~(Dà‹+Bàš-?á«/>âÁ/>âå/<ßú19Þÿ49Ùÿ6:Ðÿ8;Ìÿ9;Ìÿ9;Ìÿ9;Ìÿ9;Ìÿ9Í’¼ ­¨¡±•»‰Å~ÏtÚnëhëbë*]ì5Wì? RìHMìQJíZFícCím@íx=î…!:î“#8ï£$6ð¶&5ñÒ&4ïó&4ìÿ&2ëÿ(2çÿ+3äÿ,3äÿ,3äÿ,3äÿ,3äÿ,Áœ°¦£®–¸‰Ã}ÍqØgæbö\÷W÷'R÷1Mø:HùB DùK AúT>ú\;ûe8ûo5û{2ü‰0ý˜.ýª,þ¿+ÿã*üú*úÿ*÷ÿ*÷ÿ*÷ÿ*÷ÿ*÷ÿ*÷ÿ³£¤«—¶‰Á{ËoÖcß[õUÿPÿKÿ#Fÿ,Bÿ4>ÿ<:ÿC7ÿK4ÿS1ÿ[ .ÿd +ÿo (ÿ| &ÿ‹$ÿœ"ÿ®!ÿÅ ÿéÿüÿÿÿÿÿÿÿÿÿÿÿÿ¦©˜³Š¿{ÊnÕ`ßTçNÿIÿCÿ?ÿ:ÿ%6ÿ,2ÿ3/ÿ:+ÿA(ÿH%ÿO"ÿW ÿ`ÿlÿyÿŠÿ›ÿ­ ÿà ÿã ÿø ÿÿ ÿÿ ÿÿ ÿÿ ÿÿ 𱋽|ÈmÔ_àQæGõAÿ<ÿ 7ÿ2ÿ.ÿ*ÿ#&ÿ)"ÿ/ÿ5ÿ;ÿBÿIÿQÿZÿf ÿt ÿ… ÿ– ÿ¨ÿ¹ÿÐÿãÿãÿãÿãÿãº}ÇmÓ_àPçBí:ÿ5ÿ/ÿ*ÿ &ÿ"ÿÿÿÿ#ÿ(ÿ-ÿ3 ÿ9 ÿAÿIÿSÿ^ÿlÿ|ÿÿÿ¬ÿµÿµÿµÿµÿµÿ9'ÿ32ÿ54ÿ86ÿ8;ÿ6Cÿ3Nÿ1[ ÿ/h ÿ-vÿ+„ÿ)‘ÿ)›ÿ(¤ÿ(­ÿ(µÿ'¾ÿ'Èÿ'Ôÿ'äÿ'ïÿ'ùÿ'ÿÿ'ÿÿ'ÿÿ(ÿÿ+ÿÿ-ÿü/ÿü/ÿü/ÿü/ÿü/ÿÿ:'ÿ41ÿ81ÿ;4ÿ;9ÿ:Aÿ7Kÿ5X ÿ3eÿ1sÿ/ÿ-Žÿ-˜ÿ,¡ÿ,ªÿ+²ÿ+»ÿ+Äÿ+Ðÿ*á ÿ*í ÿ*÷ ÿ*ÿ ÿ+ÿ ÿ+ÿÿ,ÿÿ/ÿ!ü1ÿ"÷3ÿ"÷3ÿ"÷3ÿ"÷3ÿ"÷3ÿ"ÿ;&ÿ50ÿ;/ÿ>1ÿ?6ÿ>=ÿkÿ;xÿ9…ÿ7ÿ7š ÿ6£!ÿ5«"ÿ5³#ÿ4¼$ÿ4Æ%ÿ4Ô%ÿ4æ&ÿ4ñ&ÿ4û&ÿ5ÿ%þ5ÿ&ú6ÿ(ó8ÿ)ì:ÿ)æ<ÿ*æ<ÿ*æ<ÿ*æ<ÿ*æ<ÿ*ÿ=%ÿ=*ÿC(ÿG)ÿI-ÿJ6ÿJAÿIM ÿGZÿEgÿBtÿ@€ÿ>Œ ÿ=•"ÿ<ž$ÿ;¦&ÿ;®'ÿ:·(ÿ:Á(ÿ:Í)ÿ:á)þ:î)û:ù)÷;ÿ)ö:ÿ+ð;ÿ-è=ÿ.á?ÿ.ÛAÿ.ÛAÿ.ÛAÿ.ÛAÿ.ÛAÿ.ÿ>%ÿA&ÿH$ÿL%ÿO)ÿR3ÿQ>ÿQI ÿOVÿLbÿJoÿG{ ÿE†#ÿC‘%ÿBš'ÿA¢)ÿAª*ý@²+ü@¼,û?È-ø?Û-ô@ë-ð@÷-í@ÿ/ë?ÿ1äAÿ2ÛCÿ3ÑDÿ3ËFÿ3ËFÿ3ËFÿ3ËFÿ3ËFÿ3ÿ@$ÿE#ÿL ÿR!ÿV&ÿY/ÿY:ÿYF ÿVQÿT]ÿQjþNu!üL%ùJ‹(÷I•+õG,óG¦.òF®/ðE¸0ïEÄ1íEÓ1èFè1åFö2âEÿ5ßDÿ6ÓGÿ7ÊHÿ8ÄJÿ8¿Kÿ7¿Kÿ7¿Kÿ7¿Kÿ7¿Kÿ7ÿA#ÿIÿQÿWÿ\#ÿ`,ÿ`6ÿ`A ÿ^Mý[XøXdôUp#ñS|'îP†+ëO.éM™0çL¡2åLª3ãK´4âKÀ5àKÏ5ÛKæ6ÕJô8ÑJÿ:ÎJÿ<ÄLÿ<½Mÿ<¸Oÿ<´Oÿ;´Oÿ;´Oÿ;´Oÿ;´Oÿ;ÿB"ÿLÿUÿ\ÿc ÿf(ÿh2ÿh= úfHôcSî`_ê]k#æZv(âW-ßU‹0ÜS”3ÙQ6ÕP¦8ÓO¯:ÐO»;ÎNÉ<ËOá=ÇOò>ÃOÿ@ÀOÿA·QÿA±Rÿ@­Sÿ@ªTÿ?ªTÿ?ªTÿ?ªTÿ?ªTÿ?ÿFÿPÿYÿbÿhÿl$ÿo.ùo8ñnDëkNåh[ßdg#Ú`q*Ô]{/Ð[…4ÌXŽ8ÉW—;ÇU =ÄT©?ÂS´A¿SÂB½SÖC¹SíD¶SýE³TÿE¬VÿD§WÿD¤XÿC¡XÿB¡XÿB¡XÿB¡XÿB¡XÿBÿHÿSÿ]ÿfÿmÿr!ûu)òv3év> âsJÛoWÒkb#Ígl+Èdv1Äa7À^‰;½\’>º[šA·Y¤DµX®F²W»G°WÍH­XèHªXúI§YÿH¡ZÿH[ÿG›\ÿF™\ÿE™\ÿE™\ÿE™\ÿE™\ÿEÿKÿWÿaÿkÿrÿxõ{$ë}-â~9Ù{FÐvSÉq^$Ãmh,¾jq3ºg{8¶dƒ=²bŒA¯`•E¬^ŸG©]©J¦\¶K¤\ÇL¢\âMŸ]÷Lœ^ÿL˜_ÿJ•`ÿI“`ÿH‘`ÿG‘`ÿG‘`ÿG‘`ÿG‘`ÿGÿNÿZÿdÿoÿvü}ïä„'Û„4ÐCÈ|OÁxZ#»sd,µpm3±lv:­j?©gˆC¥e‘G¢c›JŸb¥Mœa±O™`ÁP—`ÜP•aóO“bÿNcÿLŽdÿKŒdÿJ‹dÿH‹dÿH‹dÿH‹dÿH‹dÿHÿPÿ\ÿh ÿrÿzöé†ÞŠ ÒŠ0Ɇ@Á‚Mº}W#´ya,®uj4©rr:¤o{@ l„DjH™h—L•g¡O’f­Qe½RŽeÔSŒfðQ‹gÿPˆgÿN‡hÿL†hÿK…gÿI…gÿI…gÿI…gÿI…gÿIÿRÿ_ÿk ÿu ù~ ð…ã‹ÖÌŽ.Ë= »‡J´ƒU"­~^+§{g3¢wo:tx@™r€E•o‰I‘m“MlžPŠjªS‡j¹T…jÏT„kîSƒlÿQ‚lÿOkÿM€kÿL€kÿJ€kÿJ€kÿJ€kÿJ€kÿJÿTÿa ÿn ýx è‚܉ Ø Ð“Æ“+¾; ¶ŒH®ˆR!§„\+¡€d3œ|m:—yu@’w}EŽu†JŠrN†q›Q‚o§To¶U}oËV|oëT|pÿR{pÿP{oÿN{oÿM{nÿK{nÿK{nÿK{nÿK{nÿKÿWÿc ÿpð|Ü…ÔŒГ Ê–Á—)¹”9 ±F©P ¢‰Z*œ…b2–‚j9‘r?Œ|zE‡zƒJƒxNv˜Q{u¤Txt³VvtÈVutèUuuýSutÿQusÿOvrÿMvqÿLvqÿLvqÿLvqÿLvqÿLÿYÿfÿsáÖˆÏÊ–Äš¼›&´˜7 ¬•D¤‘NŽW(–Š`1‡h8‹„p?†‚xDI}}‹Mx{–Qtz¢Tqy±VoyÅVnzæUnzüSoyÿQpwÿOqvÿMquÿLquÿLquÿLquÿLquÿLÿ[ÿiöw݂ЋÉ“Ä™¾ž¶Ÿ$®4¦šAŸ–L˜“U'‘^/‹e7…Šm=€ˆuC{…~HvƒˆLr‚“Pn€ Sk®UhÂVgãUh€úSi~ÿQj|ÿOk{ÿMlyÿLlyÿLlyÿLlyÿLlyÿLÿ^ ÿlæzÖ†ËÄ—¾¸¢±£!©¢2¡Ÿ?™œJ’™S%‹–\-…“c5‘k;zŽsAuŒ|FpŠ…Kkˆ‘Og‡Rd†¬Tb†¿Ua†áTa†ùRc„ÿPeÿOfÿMg~ÿLg~ÿLg~ÿLg~ÿLg~ÿLÿa ÿoà~ЉƓ¿›¸¡±¦ ª¨£§/›¥=”¢HŒŸQ"…œY+ša2y˜i9t•q?o“yDj’ƒHeŽLa›O^ŽªR[޽RZŽÞR[øP\‹ÿO^ˆÿN`…ÿLaƒÿKaƒÿKaƒÿKaƒÿKaƒÿKÿdõtÚ‚ËŽÁ—¸ž±¥©«£­œ¬,•«: ¨E†¦O¤W(y¢_/s f5mžn;hœw@cšE_™ŒI[˜™LW—¨NU—»OT—ÜNT–öNU”ÿMXÿLYÿK[ŠÿJ[ŠÿJ[ŠÿJ[ŠÿJ[ŠÿJÿhåyчŒ»œ±¢©©¡±›³•³(޲6 †°B®Lx¬T#rª\*l¨d1g§l6b¥u;]¤@Y£ŠCU¢—GQ¡§IO¡ºJN¢ÙIN õINŸÿIP™ÿIR–ÿHT’ÿGT’ÿGT’ÿGT’ÿGT’ÿGÿnÞʾ˜³ ª§¡®—¶‘ºŒº#…¹2~¸>w¶IqµRk³Z%e²b+`±j0[°s5W¯}9S®‰=O­–@L­¥BJ­¹CI®ØBH«õCGªÿDI¥ÿDK ÿDMœÿDMœÿDMœÿDMœÿDMœÿDêu҆Ó·¬¤¢«˜³Ž»…Á Â{Â-uÁ: oÀEi¿Oc¾W^½_#Y¼h(U»q-Q»{0Mº‡4Jº•7Gº¥9Eº¸:Dº×9C¸õ;B¶ÿ=B³ÿ>D®ÿ>E©ÿ>E©ÿ>E©ÿ>E©ÿ>E©ÿ>à}ɻ𮢣©˜±Ž¹„ÁyÉtËpÌ&kË5eË@ `ÊK[ÊTWÉ]RÉeNÈo#KÈz&GȆ)DÈ”,BȤ.@ȸ/?É×/?Çõ0=Äÿ3;Ãÿ5<¾ÿ6=¸ÿ7=¸ÿ7=¸ÿ7=¸ÿ7=¸ÿ7цÀ•²Ÿ¥§š¯Ž·ƒ¿xÇnÏe× cØ`Ø-[Ø:WØF SØP OØYK×bG×lD×wAׄ>Ø“ <Ø£!;Ù·":ÚÕ":Öò#7Ôÿ'6Òÿ)4Ñÿ+6Êÿ-6Êÿ-6Êÿ-6Êÿ-6Êÿ-Ŷ¨¥œ­¶ƒ¾wÇlÏbÖZäXäTä)Pä5Lå?HåIEåS Bæ\ ?æf<æq:ç~7çŒ5çœ3è®2éÆ2èê1åþ/äÿ.äÿ-âÿ -âÿ -âÿ -âÿ -âÿ ºšª£«´ƒ½wÆkÏ_ÖTÞQðMðJð&Fñ0Bò:>òC;óK8óT6ô]3ôh 0õt .õ ,ö‘*ö¢(÷·'øÖ'öô&óÿ&ñÿ%ñÿ%ñÿ%ñÿ%ñÿ%ñÿ­¡ ©’³„¼vÆiÏ]ØQßIîFüBý>þ!;þ*7ÿ34ÿ:0ÿB-ÿJ+ÿS(ÿ\%ÿf"ÿs ÿƒÿ”ÿ¦ÿ¼ÿâ ÿù ÿÿ ÿÿ ÿÿ ÿÿ ÿÿ ÿÿ ¢§“±…»vÆiÐ[ÚNàCå>û:ÿ 6ÿ2ÿ/ÿ#+ÿ*(ÿ1$ÿ7!ÿ?ÿFÿNÿXÿcÿpÿÿ“ÿ§ÿ½ÿàÿöÿÿÿÿÿÿÿÿÿÿ•¯†ºwÅhÐZÛLá@ç7ó2ÿ.ÿ*ÿ&ÿ#ÿÿ ÿ&ÿ+ÿ2ÿ8ÿ@ÿH ÿR ÿ]ÿkÿ}ÿÿ£ÿ¶ÿÍÿìÿìÿìÿìÿ숹xÄiÐ[ÝKã>é2î+ÿ&ÿ!ÿÿÿ ÿÿÿÿ ÿ$ ÿ*ÿ0ÿ7ÿ@ÿJÿVÿdÿuÿˆÿšÿªÿ»ÿ»ÿ»ÿ»ÿ»ÿ/+ÿ+2ÿ/1ÿ04ÿ/9ÿ+Aÿ'Lÿ#Xÿ!fÿ tÿ‚ ÿŽ ÿ˜ ÿ¡ ÿ©ÿ°ÿ¸ÿÁÿËÿÛÿèÿòÿüÿÿÿÿÿÿÿÿÿÿÿ!ÿÿ"ÿÿ"ÿÿ"ÿÿ"ÿÿ/+ÿ.0ÿ2/ÿ31ÿ26ÿ/>ÿ+Iÿ)Vÿ'cÿ%qÿ$~ ÿ#Š ÿ#•ÿ"žÿ"¦ÿ"­ÿ"µÿ"½ÿ"Çÿ"Ôÿ"åÿ"ðÿ"úÿ"ÿÿ#ÿÿ#ÿÿ#ÿÿ$ÿþ&ÿü'ÿü'ÿü'ÿü'ÿÿ0*ÿ1-ÿ5+ÿ7-ÿ62ÿ4:ÿ2Eÿ/Rÿ-`ÿ,m ÿ*z ÿ)†ÿ(‘ÿ(šÿ(¢ÿ'ªÿ'±ÿ'¹ÿ'Ãÿ'Ïÿ'áÿ'íÿ'øÿ(ÿÿ(ÿÿ(ÿÿ'ÿü)ÿö+ÿô,ÿô,ÿô,ÿô,ÿÿ1)ÿ4)ÿ9(ÿ;*ÿ<.ÿ:6ÿ9Bÿ7Oÿ5\ÿ3i ÿ1vÿ0‚ÿ/ÿ.–ÿ.žÿ-¦ÿ-­ÿ-µÿ-¾ÿ-Êÿ-Üÿ-êÿ-õý.ÿú.ÿù-ÿù-ÿó/ÿí1ÿê2ÿê2ÿê2ÿê2ÿÿ3)ÿ8&ÿ=$ÿ@%ÿA)ÿB3ÿA>ÿ?Jÿ=W ÿ;d ÿ9pÿ7}ÿ6ˆÿ5‘ÿ5šÿ4¢ÿ4©ÿ3±ÿ3ºÿ3Åý3Óú3æ÷4óó5þñ4ÿð3ÿî3ÿ ç6ÿ!á7ÿ!Þ8ÿ!Þ8ÿ!Þ8ÿ!Þ8ÿ!ÿ5'ÿ="ÿB ÿF ÿH%ÿJ/ÿI:ÿGFÿER ÿC_ ÿAkÿ?wÿ=‚þ<Œü<•û;ù;¥ø:­ö:¶õ:Àó:Îð:ãë;ñè:ý!æ:ÿ#ä:ÿ%á:ÿ%Ø<ÿ&Ð=ÿ&Í>ÿ&Í>ÿ&Í>ÿ&Í>ÿ&ÿ9$ÿAÿGÿKÿO"ÿQ+ÿQ6ÿOAÿLM ÿKZüIføGrõE}óC‡ñB‘ïB™íA¡ ìA©!ê@²"è@¼"ç@Ê#äAß#àAï$Ü@ü'Ø@ÿ)Ô?ÿ*Ï@ÿ*ÇBÿ*ÂCÿ*ÀCÿ*ÀCÿ*ÀCÿ*ÀCÿ*ÿ< ÿEÿKÿQÿVÿX'ÿX1ÿW<üUH öRTòPaîNmêLxçJ‚åIŒ âH•"àG$ÞG¥%ÜF®&ÚE¹'ØEÆ(ÔEÜ)ÏFî*ËEû-ÈEÿ.ÅEÿ/ÀFÿ/ºHÿ/µIÿ.´Iÿ.´Iÿ.´Iÿ.´Iÿ.ÿ@ÿIÿPÿVÿ\ÿ_#ÿ`,ú_7ó]BíZO çX\âVhÞSrÚQ} ÖO†$ÒN'ÐM˜)ÍL +ËK©-ÉJ³.ÇJ¿/ÅJÐ0ÂKè0½Kø2ºJÿ3¸Kÿ3³Lÿ3®Mÿ3ªNÿ2©Nÿ2©Nÿ2©Nÿ2©Nÿ2ÿCÿLÿTÿ\ÿaÿeûf'òf1êe=ãcJ Ü`WÕ]bÐZmÌWw#ÈU€'ÅT‰+ÂR’.ÀQš0¾P£2»O­4¹O¹5·OÈ6´Oâ6±Oô7®Pÿ8¬Pÿ8§Qÿ7£Rÿ6 Sÿ5ŸSÿ5ŸSÿ5ŸSÿ5ŸSÿ5ÿFÿPÿX ÿ`ÿfÿjôl!êm+ál7ÙjE ÐgRÊc^Å`h Á^r&½\{*ºZ„.·XŒ1´W•4±Už6¯T¨8­T³:ªSÂ;¨SÚ;¥Tð<¢Uÿ<¡Uÿ;Vÿ:šWÿ9—Wÿ8—Wÿ7—Wÿ7—Wÿ7—Wÿ7ÿIÿSÿ\ ÿe ÿkúoìrât#Øs2ÎqB ÇmOÁjZ»gd!·dm'³bv,¯_0¬^‡4©\7§[™:¤Y£<¡Y®>ŸX½?XÑ@šYì?˜Yþ?—Zÿ>”[ÿ<‘[ÿ;[ÿ:[ÿ:[ÿ:[ÿ:[ÿ:ÿLÿV ÿ` ÿh úo ósåwÚyÏy.Çw> ¿tK¹pV³m`!¯ji(ªgr-§ez2£cƒ6 aŒ9`•<š^Ÿ?—]ªA•]¸B“]ËC]èC^üAŽ_ÿ@‹_ÿ>Š_ÿ=ˆ_ÿ<ˆ_ÿ;ˆ_ÿ;ˆ_ÿ;ˆ_ÿ;ÿNÿX ÿcúlçsÝxÚ{ Ñ~È~+À|;¹yH²vS¬r]!§of(£mn.Ÿjw3›h7˜fˆ;•e‘>‘c›AŽb§CŒa´E‰aÇEˆbåE†búC†cÿB„cÿ@ƒcÿ>‚cÿ=‚cÿ<‚cÿ<‚cÿ<‚cÿ<ÿPÿ[ÿfìoÜvÔ|Ñ€ Ê‚ƒ(º9³~F¬{Q¦wZ!¡tc(œrk.˜os3”m|7‘k„;jŽ?Šh˜B†g£D„f±FfÃGfáGgøE~hÿC~hÿA}gÿ?|gÿ>|gÿ=|gÿ=|gÿ=|gÿ=ÿRÿ]ýiárÖzÎʃņ¼‡&µ†6®ƒC§€N¡|X ›y`'–wi-’tp3Žry7Šp<†n‹?ƒm•Cl¡E|k®Gzk¿HxkÝHxlöFxlÿDwlÿBwkÿ@wjÿ?wjÿ>wjÿ>wjÿ>wjÿ>ÿT ÿ_òlÝvÐ}Ƀć¿Š·Œ#°Š4©ˆA¢…LœU–^&‘|f-Œyn2ˆwv7„u;€tˆ?|r’CxqžFup¬Hso½IqpÙIqpôGqqÿDrpÿBroÿArnÿ?rnÿ>rnÿ>rnÿ>rnÿ>ÿV ÿbæo×yÌŇ¿‹¹Ž² «1¤Œ? ŠJ–‡S‘„\%‹d,†k1‚}s6~{|;zy†?vwBrvœEou©HluºIkuÔIkuòGkuÿEluÿCmsÿAmrÿ?mrÿ?mrÿ?mrÿ?mrÿ?ÿYÿeârÑ|Ç„Àй³’ ¬”¦“/ž‘< ˜H‘ŒQ‹‰Z$†‡b*…i0|‚q5xz:tƒ>p}ŽBl|šEi{§Gfz¸Hd{ÐHd{ðGe{ÿDfzÿCgxÿAhvÿ?hvÿ?hvÿ?hvÿ?hvÿ?ÿ[÷iÝv̀È»Ž´“­— §˜ ˜,™–: ’”EŒ’O†W"€_({‹g.v‰o3r‡w8m…_Š•A\‰£DZ‰´EX‰ËEXˆíDXˆÿCY†ÿA[ƒÿ@]ÿ>]€ÿ>]€ÿ>]€ÿ>]€ÿ>ÿbäqÏ~ȹ‘°—§›ž¡˜£“£%¢4†¡@ €ŸJySt›Z#o™b(j˜j.f–r2a•|7]”†:Y’“>V’¡@S‘²AR’ÉBR‘ëARÿ@Rÿ?U‹ÿ>Vˆÿ=W‡ÿ=W‡ÿ=W‡ÿ=W‡ÿ=ùgÝvɃ½³•©›  –§©‹ª!…©0¨< x§Gs¥Pm£Xh¢`$d¡g)_ p.[žy2W„6Sœ‘9PœŸ;N›°=LœÇ=L›ê­ÿ2@¨ÿ2A¦ÿ2A¦ÿ2A¦ÿ2A¦ÿ2Õ|е–¨£’ª‡±|·p¾hÂfÃcÃ-^Ã9ZÃDVÂN RÂWOÁ_KÁiHÁsEÀ~BÀŒ ?À›"=À­#<ÁÄ#<Àé#:¾þ&8¼ÿ(7»ÿ)8¸ÿ*8¶ÿ+8¶ÿ+8¶ÿ+8¶ÿ+É…¹“¬œ ¢”ªˆ±|¸q¾fÅ[ËWÍVÎ#SÎ2PÎ>MÏHIÏRFÏ[ CÏe@Ïo>Ï{;ω9Ï™7Ï«6ÐÃ6Ïè4Íû2Ëÿ1Êÿ0Éÿ!/Èÿ!/Èÿ!/Èÿ!/Èÿ!¾¯š¢¡–©Š°}¸q¿fÆ[ÌPÒGÚ FÜEÜ'DÝ5AÝ@?ÞK=ÞU:ß_8ßi5ßv 3à„ 1à” /ᦠ.á¼-âà-Þø+Ýÿ*Üÿ)Úÿ(Úÿ(Úÿ(Úÿ(Úÿ³˜¥ ™§‹°~¸qÀeÈYÎNÓDÛ?é =é;ê#9ê.6ë84ëB1ìK/íU-í_*îk(îx&ïˆ%ïš#ð®"ñÈ"ðí!ìÿ!ëÿ ëÿ êÿ êÿ êÿ êÿ ¨Ÿ›¦¯¸qÁdÊXÐLÖAÝ8ä5ö 3÷0÷.ø'+ù0(ù8&ú@#ûI!ûRü]ýiýyþ‹ÿžÿ³ÿÓþôüÿúÿùÿùÿùÿùÿ¥®€¸rÂdËVÓIÚ>ß4ä.ô+ÿ (ÿ%ÿ"ÿÿ&ÿ-ÿ4ÿ<ÿDÿNÿYÿg ÿw ÿŠ ÿŸ ÿµÿÕÿôÿÿÿÿÿÿÿÿÿÿ‘­‚¸sÂdÌVÕHÝ;â0ç'î#ÿ ÿÿ ÿÿÿÿ!ÿ' ÿ. ÿ6ÿ>ÿHÿTÿbÿsÿ‡ÿÿ²ÿÊÿêÿóÿóÿóÿó„·tÁeÌVØGß9å-ê#îýÿÿÿÿ ÿ ÿÿÿÿ ÿ&ÿ.ÿ7ÿAÿMÿ\ÿmÿ‚ÿ–ÿ¨ÿºÿÃÿÃÿÃÿÃÿ$/ÿ%/ÿ(/ÿ'1ÿ$6ÿ >ÿIÿVÿdÿrÿÿŠÿ”ÿÿ¤ÿ¬ÿ³ÿºÿÃÿÎÿßÿëÿöÿÿÿÿÿÿÿÿÿÿÿÿÿÿ ÿÿ ÿÿ ÿÿ ÿ%.ÿ)-ÿ+,ÿ+.ÿ)3ÿ$;ÿFÿSÿaÿnÿ{ÿ‡ÿ‘ÿšÿ¡ÿ©ÿ°ÿ·ÿÀÿÊÿÛÿèÿôÿýÿÿÿÿÿÿ ÿÿ ÿÿ ÿÿ ÿÿ ÿÿ ÿÿ ÿ&-ÿ,)ÿ.(ÿ/*ÿ-/ÿ)7ÿ'Cÿ$Pÿ"]ÿ jÿwÿƒÿÿ–ÿžÿ¥ ÿ¬ ÿ³ ÿ¼ ÿÆ ÿÓ ÿå ÿñ ÿü þÿ ýÿ üÿ üÿ üÿ÷!ÿ÷!ÿ÷!ÿ÷!ÿÿ**ÿ/&ÿ2$ÿ3%ÿ2*ÿ14ÿ/?ÿ-Lÿ*Yÿ(fÿ&rÿ%~ÿ%‰ÿ%’ ÿ%š ÿ%¡ ÿ%¨ ÿ$° ÿ$¸ ÿ%Á ÿ%Î ÿ%á ü%ï ù&ú ö&ÿ õ&ÿô%ÿô%ÿò&ÿí'ÿí'ÿí'ÿí'ÿÿ.&ÿ4"ÿ7 ÿ9!ÿ8%ÿ9/ÿ8;ÿ5Gÿ3Tÿ1aÿ/mÿ.y ÿ-„ ÿ- ÿ,– ÿ, ÿ,¥ý,¬ü,´û,½ù,Éö,Ýó-ìï-øí-ÿë,ÿê,ÿé,ÿå-ÿà.ÿà.ÿà.ÿà.ÿÿ2#ÿ8ÿ<ÿ>ÿ@"ÿA+ÿ@6ÿ>Bÿ ŸxJšuS•s\‘qd"ol'‰mt+…l|/‚j…2i5|h›8yg§:vf¶;tfÌ­¹#=­Ø"=«õ#<©ÿ%;§ÿ&;¦ÿ&;¤ÿ&;¤ÿ&;¤ÿ&;¤ÿ&Ìz»ˆ®’¢™—žŒ¤€ªu¯i´^¹[ºY»$V»1S»=P»GM»PJºY Gºb DºlAºw>¹„<¹“9¹£8¹·7ºÖ7¸ô5¶ÿ4´ÿ3³ÿ3²ÿ 3²ÿ 3²ÿ 3²ÿ Áƒ´‘¦˜›ž¥‚«v±k¶_¼TÁLÅ KÅIÆ(HÆ5EÇ@CÇJ@ÇS>Ç];Çg9Çs 7Ç€ 4Ç 2Ç¡1ȵ0ÈÓ0Æô.Äÿ-Âÿ,Áÿ+Àÿ+Àÿ+Àÿ+Àÿ¸ª—žž‘¥„¬x²k¹`¿TÃJÈ@Í:Ò9Ò8Ó(7Ó56Ô@4ÕK3ÕU1Ö`/Öl-×z+Ø‹*Ø(Ù±'ÚÍ'×ï&Ôÿ %Òÿ $Ñÿ #Ðÿ #Ðÿ #Ðÿ #Ðÿ ®– ”¤†¬y´l»`ÂTÆHË>Ð5Õ-Ý ,á+â)ã*(ä5'ä?&åJ$æU#æa!çn ç~èé¤é¼êâæüåÿäÿãÿãÿãÿãÿ£–¤ˆ¬zµl½_ÄSÊGÎ<Ó2Ú*ß%î #ð!ññ"ò+ó4ô>ôHõRö_ön÷€ø”ùªùÆùí öÿ ôÿ óÿ óÿ óÿ óÿ™£‹¬|µm¾_ÆRÍEÒ9Ø/Þ&âêûÿÿÿÿ!ÿ(ÿ0 ÿ9 ÿC ÿNÿ\ÿlÿ€ÿ–ÿ­ÿÊÿðÿÿÿÿÿÿÿÿÿÿ«}µn¿`ÈRÐC×7Ý+â"æêùÿÿÿ ÿ ÿÿÿ"ÿ*ÿ3ÿ=ÿIÿWÿiÿ~ÿ•ÿ¬ÿÇÿèÿúÿúÿúÿú€µp¿aÉRÓCÛ5á)æêîøÿ ÿÿÿÿ ÿÿÿÿÿ#ÿ+ÿ6ÿCÿSÿeÿzÿ‘ÿ¦ÿ¸ÿÏÿÏÿÏÿÏÿ/ÿ ,ÿ!,ÿ.ÿ3ÿ<ÿFÿ Tÿ aÿ oÿ {ÿ †ÿ ÿ ™ÿ  ÿ §ÿ ­ÿ ´ÿ ¼ÿ Åÿ Ñÿ ãÿ ïÿ ùÿ ÿÿ ÿÿ ÿÿ ÿÿ ÿÿ ÿÿ ÿÿ ÿÿ ÿÿ-ÿ#)ÿ$)ÿ"+ÿ0ÿ8ÿCÿPÿ^ÿkÿwÿƒÿÿ•ÿÿ¤ÿªÿ±ÿ¹ÿÁÿÍÿßÿìÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ#*ÿ&&ÿ(%ÿ''ÿ#+ÿ3ÿ@ÿMÿZÿgÿsÿ~ÿ‰ÿ‘ÿ™ÿ ÿ§ÿ®ÿµÿ¾ÿÉÿÚÿéþöûÿùÿùÿøÿøÿøÿøÿøÿøÿÿ&&ÿ*"ÿ, ÿ+"ÿ(&ÿ'0ÿ$<ÿ"IÿUÿbÿnÿzÿ„ÿÿ•ÿœÿ£ÿªÿ²ÿºÿÅüÓùçõôòÿñÿðÿïÿïÿ ïÿ îÿ îÿ îÿ ÿ*"ÿ.ÿ0ÿ0ÿ0"ÿ0,ÿ.7ÿ+Dÿ(Qÿ&]ÿ$iÿ#uÿ#þ#ˆý#‘û#˜ú# ø#§÷#®õ#·ô#Áò$Ïî$äê%òè%þæ$ÿ ä%ÿ ã%ÿ ã$ÿ â$ÿ á$ÿ á$ÿ á$ÿ ÿ.ÿ3ÿ5ÿ5ÿ8ÿ8'ÿ73ÿ4?ÿ2Kÿ/Xû.dø-oõ,zó,ƒñ,Œï,”í,œì,£ê,«é,³ç,¾ æ,Ì â-âÞ-ñ Û,þ Ö-ÿÔ,ÿÒ,ÿÑ,ÿÏ,ÿÎ-ÿÎ-ÿÎ-ÿÿ2ÿ7ÿ:ÿ<ÿ?ÿ@"ÿ>-ÿ<9ú:Eô8Rð7^ì6jé5tæ5~ä4‡â4 à4˜ Þ4Ÿ Ü3§ Ú3° Ø3» Õ3É Ò4ß Î4ðÊ4ýÇ4ÿÅ4ÿÃ4ÿÃ3ÿÀ4ÿ¿4ÿ¿4ÿ¿4ÿÿ6ÿ;ÿ> ÿCÿFÿFÿF&öD2ïB?é@Lä?Yß>dÛ=oØ„}H |Q{zYwy`swhovp!lux%it‚(fsŽ+crš.`q¨/^qº0]qÔ0]qò.^qÿ,^pÿ+_pÿ)`oÿ(`nÿ(`nÿ(`nÿ(ñUÞbÊm½u³{«€¢‚˜‘ƒ…ˆ….ƒ„;~ƒE zNu€Vq^n}fj|m g{v#cz€'`y‹*]x˜,Zw¦.Xw¸/WwÑ/Wwñ.Xvÿ,Xvÿ*Yuÿ)Ztÿ(Ztÿ'Ztÿ'Ztÿ'íY×fÅq¹z¯€¦„†‘‡Š‰ †Š‚‹+}Š8x‰BtˆL o‡Tl…[h„cdƒka‚t!]}$Z€‰(W–*U~¤,R~¶-Q~Î-Q}ï,R}ÿ+R|ÿ)S{ÿ(Tzÿ'Tzÿ'Tzÿ'Tzÿ'è^ÐkÀv´~«…¡‰—‹‰ƒ~{‘'v‘4r?mI iŽQeYbŒ`^‹h[ŠqW‰{!Tˆ†$Q‡”'O†¢)M†´*K†Ì*K…î)L„ÿ)Lƒÿ(Lƒÿ'Mÿ&Nÿ&Nÿ&Nÿ&ácÉp»{°„¦Š›Ž‘‘„“z•u—r˜"o˜0j—;f—Eb–N _•V[”]X“eU“nQ’xN‘„ K‘#I¡$G²&EÊ&Eí%Eÿ%EŒÿ%F‹ÿ$FŠÿ$FŠÿ$FŠÿ$FŠÿ$ØiÃvµ«ŠŸ•“Š–~špkŸhŸf *b 7_ŸA[ŸJXžR TžZQbNœkKœuH›E›BšŸ@š° ?šÈ ?™ë?˜ÿ >–ÿ!>•ÿ!?”ÿ!?”ÿ!?”ÿ!?”ÿ!Íp¼}°ˆ¤™”Ž˜ƒw i¤`§]¨[©$Y©1V©<S©EP¨NM¨W J¨_ G§hD§sA¦>¦<¦:¦¯9¦Ç9¥ê8£ÿ7¡ÿ7 ÿ7Ÿÿ7Ÿÿ7Ÿÿ7ŸÿÄxµ…©•’š†Ÿz£n¨b¬U°P²N²M³(K³5I³?F³ID³RA³[?³d<³o :³{ 7³Š5²š3³­2³Å2²é1°þ0®ÿ/­ÿ/¬ÿ/¬ÿ/¬ÿ/¬ÿ»®Ž¡•–š‰ }¦q«e¯Y´N·C¼@½?½>¾+<¾6;¿A9¿K7¿T5À_3Àj1Àw/À†-À—+Àª*ÁÂ*Àç)½ý (¼ÿ 'ºÿ '¹ÿ'¹ÿ'¹ÿ'¹ÿ²Œ¥”™š¡§r­f³Z¸O»D¿:Ä0É.Ê-Ê,Ë)+Ë5+Ì@*ÍJ(ÍV'Îa&Îo$Î#Ï‘!Ï¥ н ÏäÍúËÿÊÿÉÿÉÿÉÿÉÿ¨”œš¡‚¨t¯g¶[¼NÀCÃ9Ç/Ì'ÐÖ ÚÛÛ&Ü1Ý<ÝHÞUßbàrà…ášâ±ãÏàôÞÿÝÿÛÿÛÿÛÿÛÿžš’¡„©v±h¸[¿NÄBÈ7Ì-Ð$ÕÛßéêëë&ì0í: îF îS ïb ðtñ‰ò òºñäñýïÿíÿíÿíÿíÿ•¡†©x²iº[ÂMÈ@Ì4Ñ*Ö!Ûàäð ù ú ûûü$ü,ü7üBüPüaýuüŒü¤üÁüëüÿýÿýÿýÿýÿ‰©y²j»\ÄNÌ?Ñ2×'Ýáåè ñýÿÿ ÿÿÿÿÿ'ÿ1ÿ>ÿMÿ_ÿuÿÿ¦ÿÂÿçÿüÿÿÿÿÿÿ|³l¼]ÆNÏ?Ö1Ý%âæê îòÿÿÿÿÿÿ ÿÿÿÿ!ÿ+ÿ9ÿJÿ]ÿsÿŒÿ¤ÿ¹ÿÔÿÞÿÞÿÞÿ,ÿ)ÿ(ÿ+ÿ0ÿ 8ÿDÿQÿ^ÿlÿxÿ‚ÿŒÿ”ÿœÿ¢ÿ¨ÿ¯ÿ¶ÿ¾ÿÈÿ×ÿçÿóÿýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ)ÿ&ÿ%ÿ'ÿ,ÿ4ÿ @ÿNÿ[ÿhÿtÿÿˆÿ‘ÿ˜ÿŸÿ¥ÿ¬ÿ²ÿºÿÄÿÑÿäÿñÿüüÿüÿüÿüÿüÿüÿüÿüÿÿ&ÿ!"ÿ !ÿ#ÿ'ÿ0ÿ<ÿJÿ Wÿ cÿ oÿ zÿ „ÿ ÿ ”ÿ ›ÿ ¢ÿ ¨ÿ ¯ÿ ·ÿ Àÿ Ìÿ àû ï÷ úõ ÿõ ÿô ÿô ÿô ÿô ÿô ÿô ÿÿ""ÿ$ÿ$ÿ"ÿ"ÿ,ÿ8ÿEÿRÿ^ÿjÿuÿÿˆÿÿ—ÿžÿ¥ý¬ü³ú½ùÉõÝñíîùìÿëÿêÿéÿéÿéÿéÿéÿÿ&ÿ(ÿ(ÿ&ÿ&ÿ&(ÿ#4ÿ @ÿMÿYÿeþpüzùƒ÷Œö“ôšó¡ñ¨ð°îºíÆêÙæëâùàÿÞÿÝÿÜÿÜÿÛÿÛÿÛÿÿ*ÿ-ÿ-ÿ-ÿ.ÿ-"ÿ,.ÿ):ÿ&Gú$Tö#`ò"kï"uí"~ë"‡é"ç"–å"žä"¥â"­á#·ß#ÃÝ#ÖØ$êÒ$ùÏ%ÿÍ%ÿË%ÿÊ%ÿÊ$ÿÊ$ÿÊ$ÿÊ$ÿÿ.ÿ1ÿ2 ÿ4ÿ5ÿ5ÿ3'ú14ó/Aî-Né,Zå,eâ,pß+yÝ+‚Ú+‹Ø+’Õ+šÓ+¢Ñ+ªÏ+³Í+¿Ì,ÏÈ-çÄ-÷ Á-ÿ ¿-ÿ ½-ÿ ¼-ÿ ¼,ÿ »,ÿ »,ÿ »,ÿ ÿ1ÿ5 ÿ6ÿ: ÿ<ÿ;ø9ï7+ç69á5GÜ5TÕ5`Ñ5jÎ4sÌ4|Ê4…È4Æ3”Ä3œ Â3¥ Á3® ¿3¹ ½3È »4á ·4ó ´4ÿ±4ÿ°4ÿ¯4ÿ®4ÿ®4ÿ®4ÿ®4ÿÿ5ÿ8ÿ<ÿ@ÿA úAí?ã<"Ú=1Ò>AÌ>OÈ>ZÄ=dÁ=n¿ÿCëKÝQÑTÊTÆRÁQ¹S"³U3®TAªTL¦SV¢Q_ ŸPgOošNw˜N–Mˆ“L‘‘L›K¦K³‹KʼnKâ‡L÷†Lÿ…Lÿ…Mÿ…Lÿ…Lÿ…Lÿ…Lÿÿ@üGåPÕVÊYÂZ½X¸W±Y¬Z/§Z=¢YIžXS ›W[ —Vd•Uk’TsS{R„‹QˆQ—†P£„P° ‚PÁ!€PÝ!~Qô }Qÿ}Qÿ}Qÿ}Qÿ}Qÿ}Qÿ}QÿÿBðJßTÎZÄ^¼_¶^±\ «^¥`+ `:œ_E—^P ”\X [`Zh‹YpˆXw…W€ƒV‰€V”~UŸ!{U­"yT½#xU×#wUò"vVÿ vVÿvVÿvVÿvVÿvVÿvVÿÿEìNÚXÉ^¿b·d±c«a¤cŸd(še7–dC‘cMŽaU Š`]‡_e„^l]t~\}|[†yZ‘ wZ"tYª$rYº%qYÒ%pZð#oZÿ"oZÿ pZÿpZÿpZÿpZÿpZÿÿHçRÓ[Åb»f³h¬h¥fŸgši%•i4h@ŒgJˆfS „e[db~cj{brxazv`„s_Ž!p^š#n^¨%l]¸%j^Î&i^î$i^ÿ"j^ÿ j^ÿj^ÿj^ÿj^ÿj^ÿùJãUÏ_Áe·j¯l§lŸj™k”m"n1‹m=‡lGƒkP jX|h`xggvgosfxpemdŒ!jc˜#hb¦%fb¶&dbÌ&dbì%dbÿ#dbÿ!ebÿebÿebÿebÿebÿòLßXÊb½i³n«p¢p™n“prŠr.†r;‚qE}pN znVvm^slepkmmjujigiŠ!eh–#bg¤%`g´&_gÉ&^gê%^gþ#_gÿ!_fÿ`fÿ`fÿ`fÿ`fÿïOÚ\Æeºm°r§ut”st ‰v…w+w8|vCxuL ttT qs[nrckqkhpseo|bn‡ _m”"]l¢$Zl²%YlÇ%Xlè%Ylý#Ykÿ!Zkÿ[kÿ[jÿ[jÿ[jÿëSÓ`Âi¶q¬v£y™yw‡y ƒ{|({|5w{@szIoyQ lxYhwaevhbup_tz\t…Zs‘!Wr #Ur°$SrÅ$Srç$Sqü"Tqÿ TpÿUpÿUoÿUoÿUoÿåWÍd¾m²u¨{Ÿ~“}‡}€|€x$u‚2q=m€Fi€O fV c~^`}f]|nZ{wWz‚TzQy!Oy®"NyÃ"Mxå"Mwû!NwÿNvÿOuÿOuÿOuÿOuÿß\Èh¹r®z¥€š‚Ž‚€ƒy…t†qˆ nˆ.jˆ9g‡Cc‡L`†S ]…[Z„cW„kTƒuQ‚€NK›I¬H€Á G€ãGúH~ÿH}ÿI|ÿI|ÿI|ÿI|ÿÖaÂn´xª€Ÿ…”‡ˆ‡{‰pŒkŽ hf)b5_?\HYŽPVŽX S`PŒhMŒrJ‹}HŠŠEŠ™CŠªBŠ¿AŠáAˆùA†ÿA…ÿB…ÿB„ÿB„ÿB„ÿÍg¼t¯~¥†šŠŽŒ‚ug”a•^—\—#Z˜/W˜:T˜DR—LO—TL—\ I–e G–oD•zA•ˆ?”—=”¨;”½;”ß:’ø:ÿ:ÿ:Žÿ:Žÿ:Žÿ:ŽÿÅn¶{ª…ž‹”ˆ’{”n—b›WžR Q O¡(M¡4K¡>I¡GG¡PD¡XB¡a? k = w : … 8 ”6 ¦5 »4 Ý4÷3œÿ3šÿ3™ÿ3™ÿ3™ÿ3™ÿ½w¯ƒ£‹˜‘•™sœgŸ[¢O¦G©DªCªA«+@«7?¬A=¬J;¬S9¬\7¬g5¬s2¬0¬‘.¬£-¬¸ ,¬Ù,ªõ +¨ÿ *¦ÿ *¥ÿ *¥ÿ *¥ÿ *¥ÿ µ€¨‹œ‘‘–…œx k¥_¨S¬H¯=²6µ 4µ3¶!2¶,1·70·A/¸K.¸U,¸`*¸m)¹{'¹%¹Ÿ$¹´#¹Ò#·ô"µÿ!´ÿ!³ÿ!²ÿ!²ÿ!²ÿ­Š ‘•—ˆ{£n¨a­U±J´?·4»+¾$ "Â"Ã!Ã* Ä4Ä?ÅJÆVÆcÇsDžǙȮÈËÆñÄÿÃÿÁÿÁÿÁÿÁÿ£‘˜˜‹ž}¥p«b±V¶J¹>½4À*Ä"ÈÌÐ ÒÒÓ%Ó0Ô<ÔH ÕV Õe Öx Ö Ø¤ ؾ Ùæ Öþ Ôÿ Òÿ Òÿ Òÿ Òÿš˜ŽŸ€¦r­d´WºI¿=Â2Æ(ÉÍÑÖ ÛÞ ßßà$á.â:ãGäVägå{æ’æªçÈçðèÿèÿèÿèÿèÿ‘Ÿ‚§t¯e·W¾IÃ<Ç0Ë%ÏÔÙÝ áåéé éêë!í+ï7ñEòVóhó~ô—õ°öÐ÷ó÷ÿ÷ÿ÷ÿ÷ÿ…§v°f¸XÁJÈ;Ì.Ñ#ÖÜà ãçêõôõõ ööøú'ü4ÿCÿUÿiÿÿšÿ²ÿÏÿíÿùÿùÿùx°hºYÃKË;Ñ-Ø!Ýâæêíðøÿÿÿÿÿÿ ÿÿÿ"ÿ0ÿ@ÿSÿiÿÿ™ÿ¯ÿÃÿÕÿÕÿÕÿ(ÿ%ÿ%ÿ 'ÿ-ÿ5ÿAÿOÿ\ÿiÿtÿ~ÿˆÿÿ—ÿÿ¤ÿªÿ°ÿ·ÿÀÿÌÿßÿìÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ%ÿ"ÿ!ÿ#ÿ (ÿ0ÿ=ÿKÿXÿdÿpÿzÿ„ÿŒÿ“ÿšÿ ÿ¦ÿ­ÿ´ÿ¼þÈýÙûéúöùÿøÿøÿøÿøÿùÿùÿùÿÿ"ÿÿÿÿ"ÿ ,ÿ9ÿFÿSÿ`ÿkÿvÿÿˆÿÿ–ÿÿ£þ©ü°ú¹÷ÄõÒóæòôñÿðÿïÿïÿïÿðÿðÿðÿÿÿÿÿÿÿ(ÿ4ÿ Aÿ Nÿ[ÿfÿqÿzÿƒþ‹ü’ú™øŸö¦ô­òµðÀíÎëäéóæÿå ÿä ÿä ÿä ÿä ÿä ÿä ÿÿ!ÿ!ÿ ÿÿÿ$ÿ/ÿ<ÿIÿUüaùköuô~ò†ðŽî•í›ë¢êªè³æ½åÌáãÝóÙÿÖÿÔÿÓÿÒÿÒÿÒÿÒÿÿ%ÿ%ÿ$ ÿ#ÿ#ÿ"ÿ)ÿ5ùCôOï[ìfépæyäâ‰à‘ߘݟۧٱֻÔÊÐáÌóÉÿÆÿÄÿÃÿÃÿÃÿÃÿÃÿÿ(ÿ) ÿ(ÿ+ ÿ+ÿ)ý&"ô#.ì!;æ Iâ UÞ `Ú!jÖ!tÓ!|Ð!„Ï"ŒÍ"“Ë"›É"£È#¬Æ#¶Ä#ÄÂ$Û¾%î»%þ¸%ÿ¶%ÿµ%ÿµ%ÿµ%ÿµ%ÿµ%ÿÿ, ÿ-ÿ.ÿ1ÿ1 ý/ñ+ç)%ß(3Ø(BÑ*OÍ+ZÉ+eÇ+nÄ,vÂ,~À,†¾,޽,–»,ž¹,§¸,±¶,¿µ-ѱ-ê®.û«.ÿ©.ÿ¨.ÿ¨-ÿ¨-ÿ¨-ÿ¨-ÿÿ/ÿ1ÿ5ö7ê6ç3ä/Ù.Ï1,É3<Ä4IÀ5U¼5_º5h·5pµ4x³4€±4ˆ°4®4™¬4¢«4¬ ©4¹ §4Ê ¥5å ¡5ø Ÿ5ÿ 5ÿ 5ÿ œ5ÿ œ5ÿ œ5ÿ œ5ÿ ÿ3ÿ5ö:å>Ü@Ô=Ò7 Ë8Ã:&½=6¸>D´>P±=Z®=c¬=k©èGÕPÆV¼X´Y­V§S¡TœV%˜W4”W@WJVSŠU[ ‡Tc „Tj‚Sr€Rz}Rƒ{QŽxP™vP¦tPµsPÉqPèpQüpQÿpQÿpQÿqPÿqPÿqPÿõ@äKÏTÁZ·]¯^§[¡X›Y–["’\1Ž\=Š\G‡[PƒZX Y` ~Yg{XoyWwvV€tV‹rU–oU£mT²lTÆjUæjUûjUÿjUÿjUÿkUÿkUÿkUÿòCßOËX½]³a«b¢`›\•^`Œa.ˆa:„`E`N~_V {^] x]ev\ls\tp[}nZˆkZ”iY¡gY°eYÃdYãdYúdYÿdYÿeYÿeYÿeYÿeYÿïFÚRÆ[ºa°e¦fc•ab‹d‡e+ƒe7eB|dKxcSuc[ sbbpajm`rk`{h_†f^‘c^Ÿa]®`]Á_]á_]ø_]ÿ_]ÿ`]ÿ`]ÿ`]ÿ`]ÿëJÔVÃ^¶e¬i¢i˜ge‰f …hi(~j5zi?viIshQpgY mg` kfghepedycdƒ`c^b\b¬Zb¿YbßYb÷ZbÿZaÿ[aÿ[aÿ[aÿ[aÿçMÏY¿b³h©mžm“k‰iƒk m|n%xn2un=qnFnmOklV hl^ ekecjm`iv]i[hXg›VgªUg½TgÜTgöTfÿUfÿUeÿVeÿVeÿVeÿâQÊ]»f¯l¦q™pŽoƒn}pxrus!rs/os:lsDirLfrTcq[ `pc ]pk[otXnUn‹Sm™Qm¨Om»NmÙNlôOkÿOkÿPjÿPjÿPjÿPjÿÝUÅa·j¬q¢u”t‰t|svuqwoxly+iy7fy@cyI`xQ]wX [w` XvhUuqRu|PtˆMt—Ks¦Is¹HsÕIróIqÿJqÿJpÿKpÿKpÿKpÿÔZÀf³o¨vyx„xwyo|j} g~d&b€2_€=\€FZNWUT~] R}e O}oL|yJ|†G{”E{¤D{·C{ÒCzòCyÿCxÿDwÿDvÿDvÿDvÿÍ_»k®t¤|—~Š}~rfƒa„^†\‡!Z‡.X‡8U‡BS‡JP‡RN†ZK†b I…l F…w C„ƒA„’?„¢=„µ<„Ï<‚ð<ÿ=€ÿ=ÿ=~ÿ=~ÿ=~ÿÅfµqª{Ÿ‚’‚…‚yƒm†_ŠXTŽRP'O3M=KEINFVD_Bh?s =Ž€ :Ž 8Ž  7޳6ŽÌ6ï5‹ÿ5‰ÿ5ˆÿ6‡ÿ6‡ÿ6‡ÿ¾m°y¥‚™‡ŒˆˆrŠfZ‘P•I— G˜E˜ D™+C™6Aš@@šH>šQ<šZ:šd7šo5™}3™Œ1™/™°.™Ê.˜í.–ÿ -”ÿ -“ÿ -’ÿ -’ÿ -’ÿ ¶uªžˆ“†Žxk’_•T™I@ :¢ 8£7£"6¤-5¤74¤A3¥K1¥T0¥^.¥j,¥x*¥ˆ(¥š'¥­&¥Æ&¤ë%¢ÿ% ÿ$Ÿÿ$žÿ$žÿ$žÿ¯~£ˆ—Ž“~•p˜c›WŸL¢B¦8©/¬*®)®(¯#'¯-&°7%°A$°K#±V"±c!±q±‚²”²©²Á±ç¯þ­ÿ¬ÿ«ÿ«ÿ«ÿ¨ˆ›‘”„švŸh¢[¥O©D­9°/³&¶¹»»¼ ¼*½5½@¾K¾X¾g¿x¿ŒÀ¢ÀºÀá½û¼ÿºÿºÿºÿºÿŸ”•‡›y¡k§^¬R±E´:¶/¹%¼¿ÃÆ Ê ÊÊÊ'Ê2Ë>ËKÌZÌjÌ~̫̔ÍÈÌíÌÿËÿÊÿÊÿÊÿ—–Šœ|£nª`°R¶E¹9¼.¿#ÃÆÊ ÍÑÔ ÔÕÖØ'Ù1Û>ÜKÝ[ÞnބߛߴÞÙß÷ßÿßÿßÿßÿ¥p¬a³SºE¿8Â,Æ!ÉÍÑ ÕÚÞàá âäåç$é/ë<íKî]îqï‰ð¢ð¼ðãïùðÿðÿðÿ¥r­cµT½FÄ7È*ÌÐÕÚÞâæéêìîï ñóõ ø+û9ýJþ^ÿtÿÿ¦ÿÀÿáÿõÿõÿõt®e·VÀGÈ8Í*ÒØÝ âæéìðóôöøúýÿ ÿÿÿ(ÿ7ÿJÿ^ÿvÿÿ¦ÿºÿÑÿÑÿÑÿ$ÿ"ÿ !ÿ$ÿ)ÿ2ÿ>ÿLÿYÿeÿpÿzÿ„ÿŒÿ’ÿ™ÿŸÿ¥ÿ«ÿ²ÿºÿÅÿÓÿçÿôÿÿþÿÿÿþÿþÿþÿþÿþÿÿ!ÿÿ ÿÿ#ÿ-ÿ:ÿHÿUÿaÿlÿvÿÿ‡ÿŽÿ•ÿ›ÿ¡ÿ§þ®ý¶üÀûÍùâøð÷üöÿõÿõÿõÿõÿõÿõÿÿÿÿÿ ÿÿ)ÿ6ÿCÿPÿ\ÿgÿqÿzþƒüŠú‘ù—ø÷£õªô²ò»ñÈïÜîìíúëÿêÿêÿêÿêÿêÿêÿÿÿÿÿÿ ÿ$ÿ0ÿ>ÿKÿWÿbüløuõ~ò…ñŒï“î™ì ë¦é®ç·æÃäÔâéá÷ßÿÝÿÝÿÝÿÝÿÝÿÝÿÿÿÿÿÿÿÿ +ÿ 8ÿEûQ÷\òfîpêxç€æ‡äŽâ•áœß£Ý«Û´ØÀÖÐÓçÐøÎ ÿÌ ÿË ÿË ÿË ÿË ÿË ÿÿÿ ÿÿ ÿÿÿ$ú0ó>î Jé Vå aâ jÞ sÛ {Ù ƒÖ ŠÔ ‘Ò ™Ð Ï©Í³Ë¿ÊÐÆéÂù¿ÿ½ÿ¼ÿ¼ÿ¼ÿ»ÿ»ÿÿ" ÿ!ÿ ÿ!ÿ ÿöì(å6ßCÙOÓZÐdÍmËuÉ}DžŌĔœÀ¥¾¯½»»˸å´ö²ÿ°ÿ¯ÿ®ÿ®ÿ®ÿ®ÿÿ&ÿ%ÿ&û'ñ%ð! èÞÔ-Í<ÈIÅ UÁ!_¿"h¼"pº#x¹#·#‡µ#´$—²$ ±$ª¯$¶­%Æ«%ߨ&ó¥&ÿ£&ÿ¢&ÿ¡&ÿ¡&ÿ¡&ÿ¡&ÿÿ)ÿ(ö-ç0ß/Ù+Ö" Î#Æ&'À(6»*D¸+Oµ,Y²,b°,j®-r¬-zª-©-Ч-’¥-›¤-¥¢-± -ÀŸ-Øœ.ï™.ÿ—/ÿ–/ÿ•.ÿ•.ÿ•.ÿ•.ÿÿ,ÿ.ê5Ý9Ñ9Ê6Ç/Á-º0!´21°4>¬5J©5T§5]¤5e¢5m 5tŸ5|5„›5š4—˜4¡–4­”5»“5Ð5ìŽ6þŒ6ÿ‹6ÿ‹6ÿŠ5ÿŠ5ÿŠ5ÿÿ/ò4â<ÒAÇBÀ@»:¶6°9ª;,¦<:£=FŸ=P=Yš=a˜=h– ¦@¢B'žC5šDB—DL”DU‘C]CdCk‹Bs‰B{‡B„ …AŽ ƒA™ A¥ A³~AÆ|AäzBù yBÿ xBÿ xBÿ xBÿ xAÿ xAÿ ö6æ@ÑHÃM¹N±M©I¤EŸFšH#–I2’J>JHŒJQŠIY‡I`…IhƒHoHw G€ }GŠ zG•xF¢vF°uFÂsFàrG÷qGÿqGÿ qGÿ qGÿ qFÿ qFÿ ó9àDÌL¾Q´SªR¢NJ—K“M O.ŒO:ˆOE…ONƒOV€N]~Nd|Ml yMt wL} uL‡sL’qKŸoK­mK¿lKÜkLõjLÿjLÿjKÿ jKÿ jKÿ jKÿ ð=ÛHÇPºU°X¥VœS—O‘PŒR‰T+…T7‚TBTK|TSzSZxSbuRi sRq qQz nQ„lPjPœhP«fP¼ePØdPódPÿdPÿdPÿeOÿ eOÿ eOÿ ìAÔLÃT¶Y¬\ Z—W‘T‹U †WƒX'€Y4}Y?zYHwXPtXXrW_oWf mVn kVw hUfUdTšbT©`Tº_TÓ^Tò^Tÿ_Tÿ_Tÿ_Sÿ _Sÿ _Sÿ çDÏP¿X³]¨_œ]’[‹X…Z [}\$z]1w]<t]Fq]No\Ul\]j\d h[l eZu cZaY‹^Y˜\X§[X¸YYÐYXðYXÿZXÿZXÿZWÿ ZWÿ ZWÿ ãHËS»[°a¤b—aŽ_…\^{_xa!ub.rb9obClaKjaSgaZe`b c`j `_s ^^}[^‰Y]–W]¥U]¶T]ÎT]îT]ÿU\ÿU\ÿU[ÿV[ÿ V[ÿ ÞLÇV¸_­d e“d‰caybudreof+lg7jg@gfIefQbeX`e`]dg [dp Yc{Vc†Tb”Rb£Pb´ObÌObíOaÿOaÿP`ÿP`ÿP`ÿ P`ÿ ÙOÃZ´c©i›hg„gyesgoiljik(gl4dl=blF_kN]kVZj]Xje Vin Six Qh„Nh’Lg¡Kg²IgÉIgëIfÿJfÿJeÿKeÿ Kdÿ Kdÿ ÑT¾^±g¦m—lŠkkskmmhn epbq$`q0^q:\qCYqKWqSUpZRpbPpk Nou Ko‚ InGnŸEn°DnÇCmêDlÿDkÿEkÿ Ejÿ Ejÿ Ejÿ ËXºc­l¡q’p…ozonpes`u]v[wYx+Wx6Ux?SxHQxOOwWLw_JwhHvs Ev Cu Au?u®>uÅ=uè>sý >rÿ >qÿ ?qÿ ?pÿ ?pÿ Å^µi©qœut€tutiv^yX|T}R~Q&O1M€;L€CJ€KHTF\CeAp?~|<~Š :~š 9~¬ 7~à 7}æ 7{ü 7zÿ 7yÿ 8xÿ 8xÿ 8xÿ ¾d°o¥x–y‡y{ypzd|X€PƒK… H†G‡ Eˆ+Dˆ5Cˆ>A‰G@‰O>ˆX<ˆa:ˆl7ˆx5ˆ‡3ˆ˜2‡ª0ˆÀ0‡ä0…û0ƒÿ0‚ÿ0ÿ0ÿ0ÿ·kªv ~‚~vj€^ƒS‡J‹AŽ=;:‘#9‘-8’77’@6’I4“R3“\1“g/“t-’ƒ+’”*’§(’½(’á'ú'Žÿ'ÿ'Œÿ'Œÿ'Œÿ±t¥~™…Š„}„o…cˆX‹MC“:—2š.›-›,œ$+œ.*8)A(K'žU&ža%žn#ž~"ž ž£ž¹žÝœøšÿ™ÿ—ÿ—ÿ—ÿª}ž…“‹…Šu‹hŽ[‘P•F™;2 *£"¦ §§¨$¨-¨7©A©L©Xªfªvª‰ªž«´«Ó¨õ§ÿ¥ÿ¥ÿ¤ÿ¤ÿ£†—Œ‘}’m•`˜TœH >¤4§*«!®±³µµµ! µ+ µ6 ¶A ¶N ¶\ ¶l¶¶”¶ª¶Å¶êµÿ´ÿ³ÿ ²ÿ ²ÿš“„˜tœe W¤K¨@¬5°*³!µ¸» ¾À ÀÁÁ"Â+Â6ÃBÃPÄ_ÄqćÄĵÄÚÄöÃÿÃÿÃÿÃÿ“”‡šx j¦\¬O±Aµ5·)º½Àà ÆÊÌÌ ÍÎÎ!Ð*Ñ5ÓCÔRÔcÕxÕÕ§ÖÂÖéÖýÖÿÖÿÖÿŠ›{¢l©^°P¶Bº4½(ÁÄÇ ËÎÒ×ÙÚÜ Ýßáã'å3çBèTègé~é—ê¯êÎëïëþëÿëÿ}£n«_²QºBÀ4Ã'ÇËÏ ÓØÝáäåçéëí ïñô$÷1ùAúUújû„ûü¶üÒýíýôýôq¬aµR½DÄ4É&ÍÒØÝáåèìïñóõ÷ùûþÿÿ!ÿ/ÿAÿVÿmÿ‡ÿ ÿ¶ÿÊÿÔÿÔÿ ÿÿÿ ÿ%ÿ.ÿ;ÿIÿVÿbÿmÿvÿÿ‡ÿŽÿ”ÿšÿ ÿ¦ÿ­ÿµÿ¾ÿËÿáÿðþýýÿýÿýÿýÿüÿùÿùÿÿ ÿ ÿÿÿÿ*ÿ7ÿEÿQÿ^ÿhÿrÿzÿ‚ÿ‰ÿÿ–ÿœþ¢ü©û°ù¹øÆöÙõëôùóÿòÿóÿóÿóÿóÿóÿÿÿÿÿÿÿ%ÿ2ÿ@ÿLÿYÿcþmüuú}ù„÷‹ö‘ô—óžò¤ð¬î´íÀëÏéæèõæÿçÿæÿåÿåÿåÿåÿÿÿÿ ÿÿÿ ÿ,ÿ:ÿGúS÷^ôgñpïxíë†êŒè“ç™å ã§á°ßºÝÉÛàØð×þÕÿÔÿÓÿÓÿÓÿÓÿÿÿ ÿ ÿ ÿ ÿÿ&ý3ô@ïMëXèaåjâràzހ܇ڎؕԜңЬζÌÄÊÙÈíÇûÅÿÄÿÃÿÄÿÄÿÄÿÿ ÿÿÿÿ ÿ üñ+ç9âFÞQÚ[ÕdÒlÏtÍ{Ë‚Ê‰ÈÆ˜Ä Â©Á´¿Á½Õ» ì¸ ý¶ ÿµ ÿ´ ÿ´ ÿ´ ÿ´ ÿÿÿÿÿûúî ã "Ú 0Ó >Î JÊ UÇ ^Å gÂoÁv¿~½…¼º•¸·§µ²³À²Õ®î«þ©ÿ§ÿ§ÿ¦ÿ¦ÿ¦ÿÿÿúëãßÞ ÓË(Å7ÀD¼O¹Y·a´i³q±x¯€®ˆ¬«™©£§®¦¼¤Ï¡êžüœÿ›ÿšÿšÿ™ÿ™ÿÿ"ÿ!ì'à*Ô)Í$ÊĽ"·1³ >¯!I­"Sª#\¨$d¦$l¤$s£$z¡%‚ %‹ž%”%ž›&ª™&·˜&É•'æ’'ù(ÿ(ÿŽ'ÿŽ'ÿŽ'ÿŽ'ÿÿ&ò)ã1Ò4È4À0»)¸#±&¬(+¨*8¤+D¡,NŸ-W-_›-g™-n˜.u–.}”.†“.‘.š.¦.³Œ.ÅŠ/á‡/ö…/ÿ„/ÿ„/ÿƒ/ÿƒ/ÿƒ/ÿû)ë1Ù8É<¿<¶9°2¬- §/¢1&ž34š4@˜5J•5S“5[‘5b5i5qŒ5yŠ5‚ˆ5‹†5–„5¢‚5¯5À6Ü}6ô{6ÿ{6ÿz6ÿz6ÿz5ÿz5ÿõ-ä7Ð?ÂC·D­@§:£67™9"•:/’<;hÞ >g÷ >fÿ?eÿ?eÿ?dÿ?dÿÃW³a§i–h‡g{gqgeh\jXlTnRoPo$Np.Mp8KqAJqIHqQFqYDpbBpl@px>p†¶0¹$¼¿ ÅÉÌÐÑÒÓÕ ×ÚÜ!ß,á:âJã]ärä‹å¥åÀåæåøåÿåÿz¡k©\¯M¶?¼0¿#ÃÇÊÎÑÖÜßàâäæè éìîñ+ô:õMöa÷yø“ø­ùÆùäùóùómª^²Oº@Á1Å"ÉÎ ÒØÝáäèëíïñóöøú ýÿÿ)ÿ;ÿOÿfÿÿ™ÿ¯ÿÃÿÖÿÖÿÿÿÿÿ"ÿ+ÿ8ÿFÿSÿ^ÿiÿrÿzÿ‚ÿ‰ÿÿ•ÿ›ÿ¡ÿ¨ÿ¯ÿ¹ÿÅÿÙþìýûûÿûÿûÿúÿôÿðÿðÿÿÿÿÿÿÿ&ÿ4ÿBÿNÿZÿdÿmÿuÿ}ÿ„ÿŠýü–úù£ø«÷´õ¿ôÎóæñöðÿïÿïÿîÿîÿêÿêÿÿ ÿÿÿÿÿ"ÿ.ÿ<ÿIÿTþ_ûhùp÷xõó…ò‹ð’ï˜íŸì¦ê®è¹çÇåÞãðâþàÿàÿáÿáÿáÿáÿÿ ÿ ÿ ÿ ÿÿÿ(ü6ùCöNòYïbìkêrèyæ€ä†âŒá“ߚݡ۪شÕÀÒÓÐêÎúÍÿÍÿÍÿÌÿÌÿÌÿÿ ÿ ÿÿÿÿö"ð/ì<éHåSá\ÞeÛl×sÔzҀЇΎ̕ÊȥƯĻÂËÀå¾õ½ÿ¼ÿ¼ÿ¼ÿ¼ÿ¼ÿÿÿÿ ÿÿ øéã(Þ5ÙAÓLÏVË_ÉfÆnÄtÂ{Á‚¿‰½¼˜º¡¸«¶·´Ç²à±ò¯ÿ®ÿ­ÿ­ÿ­ÿ­ÿÿÿÿò ê é ÝÔÍ-È:ÄEÀP½Y»a¹h·oµv´}²„±Œ¯•­ ž« ¨ª µ¨ Ŧ ߤ ô¢ÿ ÿŸÿŸÿŸÿŸÿÿÿïäÛÒÏ ÈÁ $¼ 2· >´I±S¯[­c«j©q¨x¦€¥ˆ£‘¡› ¦ž³œÛÞ—ô•ÿ”ÿ“ÿ’ÿ’ÿ’ÿÿôå#Õ%Ê$¾»´¯+«8§C¥M¢V ]žel›sš{˜ƒ—•—“¢’¯¿ØŒ ñ‰ ÿˆ ÿ‡ ÿ‡ ÿ† ÿ† ÿúë&Ú-Ê0¾.µ(°"® ¨£&Ÿ!3œ">™#H—$Q•$Y“%`’%g&nŽ&v&‹&ˆŠ'“ˆ'ž†'«„'»ƒ(Ñ€(î~)ÿ})ÿ|(ÿ|(ÿ|(ÿ|(ÿõ$ã.Ï5Á8´6«1¥,¢&ž&™(!•*.’+9,D-L‹-T‰.\‡.c†.j„.r‚.z/„/}/š{/§z/·x/Ìv0êu0þs0ÿs0ÿs/ÿs/ÿs/ÿð*Ü5Ç;º?¬<¢8œ3˜/•.0Œ2)‰35†4?„5I‚5Q€5X~5_}5f{6ny5vx5€v5‹t5—r6¤p6´o6Èm6çl6ük6ÿk6ÿj6ÿj5ÿj5ÿê0Ó:ÂA³C¥A›>•:6Œ5 ˆ7„8%:1;<|;Ez"z?.x@8uABsAJrAQpAYnA`lAgjAphAygA„eA‘cAŸaA®`AÂ^Aâ^Aù]Aÿ]@ÿ]@ÿ]@ÿ]@ÿß9ÈC¹J©K›IGˆDƒA~AzBvCtE*qE5oF?mFGkFOjFVhF]fFedFmbFv`F‚^FŽ\Eœ[E¬YF¿XFßXF÷WEÿWEÿWDÿXDÿXDÿÚ=ÄGµN¤N–L‹KƒI}ExFtGpHnI'kJ2jK<hKDfKLdKSbKZ`Kb_Kj]Kt[JYJŒWJšUJªTJ½SJÜRJöRJÿRIÿRIÿRHÿSHÿÔAÀK²Q P’O‡N~LxHrJnK kMhN$fN/dO9bOBaPI_PQ]PX[O`YOhWOrUO}SOŠRN˜PN¨NN»MNÙMNõMNÿMMÿMMÿNLÿNLÿÎD¼N®TœSŽRƒQzPrMlOhP eQcR!aS,_S6]T?[TGZTNXTVVT]TTfRSoPS{NSˆLS—KS§ISºHSÕHRóHRÿHQÿIQÿIPÿIPÿÊH¹RªW˜VŠUTvSlQgSbT_V]W[W)YX3XX<VYDUYLSYSQY[OXdMXmKXxIX†GW•EW¥DW¸CXÒCWòCVÿCUÿDUÿDTÿDTÿÆLµV¥Z”Y†X{XqWfVaX]YYZW[U\&S]0R]9Q^AO^IM^QL^XJ^aH]kF]vD]ƒB]’@]£?]¶>]Ð=\ñ>[ÿ>Zÿ>Zÿ>Yÿ?YÿÁP±Z¡]\‚[v[m[a[[]V^R` PaNb"Mb,Lc5Jc>IcFGcNFcVDc^Bch@cs>co=o"ÿJÿVÿ`ÿhÿpÿxý~ü…ú‹ù‘ø˜÷žõ¦ô®ò¹ñÇïàîòìÿìÿìÿëÿåÿàÿÞÿÿÿÿ ÿ ÿÿÿ+ÿ8ÿEþPûZøcõkórñyïî†ìŒê’é™ç æ©ä³áÀàÓÞëÜûÛÿÚÿÚÿÙÿÔÿÒÿÿ ÿ ÿÿ ÿÿû%ø2õ?òJíTê]çeälâsàzހ܆ÚהԛҤϭ͹ËÉÉäÈöÆÿÅÿÆÿÇÿÇÿÇÿÿ ÿÿÿÿ ôïê,å8âCÝNÙWÔ_ÑgÎmÌtÊzȀƇŎÖÁž¿¨½³ºÂ¹Û·ðµÿ¶ÿµÿµÿµÿµÿÿ ÿÿþöè àÙ$Ñ1Í<ÊGÆQÃYÀ`¾g¼nºt¹{·‚µ‰³‘²š°¤®¯¬½ªÐ¨ë§û¦ÿ¦ÿ¥ÿ¥ÿ¥ÿÿ ÿô ê âÚÏÈÂ)¾5»@·J´S²[°b®h¬o«u©}¨„¦¤–£ ¡«Ÿ¹Ìœèšù™ÿ˜ÿ—ÿ—ÿ—ÿÿ÷èÜÎÆ  ¼·!².®:«D¨M¦U¤ \¢ c  jŸ q xœ €š ‰™ “— ž• ª” ¸’ ÌêŽüŒÿ‹ÿ‹ÿ‹ÿŠÿûíÝ Ì!¿·³² « §&£3Ÿ>GšP˜W–^•e“l’s|…‹šŠ§ˆµ†É„ç‚û€ÿÿÿÿÿõä#Ï)À*³&ª"¥¤ ›!—-”8‘BKR‹Y‰`ˆg†o…wƒ€‚‹€—~ £} ²{ Åy!äw"ùv"ÿu"ÿt!ÿt!ÿt!ÿï!Û+Ç1¶1©. *›&˜!• !(‰#3‡$=…$Fƒ%N&U&\~&c|'k{'sy'|x(‡v(“t( r(¯q)Áo)àm)÷l)ÿk)ÿk)ÿk(ÿk(ÿè(Ð2À8®7¡5˜2’-Ž)‹' ‡(ƒ*#€+/~,9|,Bz-Jx.Qw.Xu.`s/gr/op/yo/ƒm/k/i/¬h0¾g0Ûe0õd0ÿc0ÿc/ÿc/ÿc/ÿâ.Ê8º=¨<š:‘7Š3†0ƒ. /{0x2+v35t3>r4Fp4No5Um5\l5dj5lh5ug5€e5Œc5ša6©`6»_6Ö]6ó]6ÿ\6ÿ\5ÿ\5ÿ\4ÿÜ3Å<´A¢@•>‹<„96{4w5t7q8'o92m9;k:Cj:Kh;Rg;Ye;ac;ib;r`;}^;Š\;—[;§Y;¸X;ÒW;ñV;ÿV;ÿV:ÿV:ÿV9ÿÔ7ÀA¯DCB…@~>y;t:q:m<k=$i>/g?8e?@d@Hb@Oa@W_@^]@f\@oZ@zX@‡V@•T@¤S@¶R@ÏQ@ïP@ÿP?ÿP?ÿQ>ÿQ>ÿÏ;½EªG™F‹EDyBt>o?k@ gAeB!cC+aC5_D>^DE]EM[ETYE\XEdVEmTExRE…QD“OD£ME´LEÌKEíKDÿKDÿKCÿLBÿLBÿÊ?¹H¦J•I‡H}GuEnBiCeD bE_F]G(\H2ZH;YICWIJVIRTIYSIaQIkOIvMI‚KI‘JI¡HI³GIÊFIìFHÿFHÿGGÿGFÿGFÿÆC¶L¢L‘L„KyJpIiFdG_I\JZKXL%VL/UM8SM@RMHQNOONWNN_LNiJNsHM€FMEMŸCM±BMÈAMêALÿALÿBKÿBJÿBJÿÂG³OžON€NuMlLcJ^LZMVNTORP"QQ,OQ5NR=MRELRMJRTIR]GRfERqCR~AR?R>R¯=RÆW{?\F>]O=]W;]a:]l8]y6]ˆ4]™3]«1]Â1\å1[ü1Zÿ1Yÿ2Yÿ2Xÿ¶T¤YX€XsWiW`XTYN[H]C_@`>a=a ;b):b29b:8cB7cK6cT4c]3ch1cv/c….c–,c©+c¿*cã*bû*`ÿ+_ÿ+_ÿ+^ÿ±Yž\‹\{[o[e[\\Q^I`Cb“K“Y“i“{’’¦‘¿‘åúÿÿÿw}uptbuUxI|?€4„+‰"‘”— ›žž"Ÿ+Ÿ5 B P _ q ‡ŸŸµžÚöÿœÿœÿ†}x|i|[NƒAˆ6Œ,‘#–šž ¡¤§©© ª«¬­"®+¯7¯E¯T¯f¯{®”®«®É®ï­ÿ­ÿ­ÿ„q„a‡S‹F9–.›# ¤¨ ¬¯²¶··¸¹ º»½!¾+À8ÀHÀZÁnÁ†Á ÁºÁãÀùÀÿÀÿyhY”Kš= 1¥%«¯³ ¸»¾ÁÄÅÆÇÈÊ ÌÎÐÓ+Õ:ÕLÖ`ØwؒجÙÉÙìÙûØÿp™`žQ¤Cª5°(¶º¾ ÁÅÈËÏÒÓÖØÛÝßâ åèì*í<íQîgïïœð·ðÓðìðôg¦X­I´:º*¾ÂÆÊÎÒÖÜàãäæèëíïòõ øüÿ,ÿ?ÿUÿnÿŠÿ¤ÿºÿÑÿáÿÿÿÿÿÿ%ÿ2ÿ?ÿKÿVÿ`ÿhÿpÿxÿÿ…ÿ‹ÿ‘ÿ˜ÿžþ¦ý®ü¹úÈùâøô÷ÿöÿöÿïÿçÿâÿÞÿÿÿÿÿÿÿ ÿ-ÿ:ÿFÿQÿ[ÿcþküsúyù€÷†öŒõ’ó™ò ð©î³íÁëÖêîéþçÿçÿåÿÝÿÕÿÑÿÿ ÿ ÿÿ ÿÿÿ(ÿ5ÿ@úKöUó^ñfîmìtëzé€ç†æä“â›à£Þ­Ü¹ÚÊ×æÔøÒÿÒÿÒÿÎÿÉÿÆÿÿÿÿÿÿ ü÷"ó.ï:ìEèOäXá`ÞgÛmÙtÕzӀчώ͕˞ɧdzÅÂÃÜÁñ¿ÿ¿ÿ¾ÿ¾ÿ½ÿ»ÿÿÿÿÿöîçá'Ý3Ù>ÓIÏRËYÈaÆgÄmÂsÀz¿€½ˆ»¹˜¸¢µ­³»±Î°ê¯ü­ÿ­ÿ®ÿ®ÿ®ÿÿÿýòèÞ ÓÌ!È,Ä8ÁB½KºS¸Z¶a´g²m°t¯z­‚¬Šª“¨¦¨¤µ¢Æ¡ãŸöžÿžÿžÿžÿžÿÿûîâÕËý¸%´1±;®E¬M©U§[¥b¤h¢n¡uŸ|ž…œŽš˜˜¤–°•Á“Ü’ò‘ÿÿÿÿÿý ðáΠ»· ±¬¨)¥4¢>ŸGO›V™\—c–i”p“x‘€ŠŽ•Œ¡Š®‰¾‡؆ ð„ ÿƒ ÿƒ ÿƒ ÿƒ ÿöæÒÀ³¬¨ ¦ ¢"™ .– 8” A’ J QŽ XŒ ^‹ e‰ lˆt†}…‡ƒ“Ÿ€­~¾}ÛzôxÿwÿwÿwÿwÿïÛ!Æ$´#¨  ›™˜“'Œ2‰<‡D…LƒSZ€`~h}o{xyƒxvœtªs»rÔoñnÿmÿmÿmÿmÿç Ð)¼+«*ž(–$ Œ ˆ„"-~7|@zHyOwUv\tcskq tp n!‹l!˜k!§i"¸h"Ïf"îe#ÿd#ÿd"ÿd"ÿd!ÿà&È/´1£0–.+‡(„$‚ ~ {"x#)u$3s%<q%Cp&Kn&Rm'Yk'`j'hi(qg({e(ˆd)•b)¤`)µ_)Ë^*ì\*ÿ\)ÿ\)ÿ\)ÿ\(ÿØ,Ã5­543†1€-|+y(v'r)p*%m+/k,8j,@h-Gg-Ne.Ud.]c.ea/n_/x^/„\/’Z/¡Y/²X0ÈV0éU0þU/ÿU/ÿU.ÿU.ÿÐ1½:¨9—8Š7€6z2u0r.n. k/i0!f1+d24c2=a3D`3K_4R]4Z\4bZ4kY5uW5‚U5T5ŸR5°Q5ÆP5çO5ýO5ÿO4ÿO4ÿO3ÿË6¸=£<’<…;{:t7o5l3h4 e5b6`7(^71]8:[8AZ9HY9PW9WV:_T:hS:sQ:O:N:L:®K:ÃJ:åI:üI9ÿI9ÿI8ÿJ8ÿÇ:³@ž?Ž?>w=p;j8f8b9_:\;Z;%Y<.W=7V=>T>FS>MR>UQ>]O?fM?pL?}J?‹H?›G?¬E?ÁD?ãD>ûD>ÿD=ÿD=ÿE<ÿÃ>¯CšBŠB}As@k?e<`<\>Y>W?U@"SA+RA4PB<OBCNBKMCRKCZJCdHCnGC{EC‰CC™BC«@CÀ?Cá?Cù?Bÿ?Aÿ@Aÿ@@ÿ¿AªE–E†EyDoDgB`?[AWBTC QDOENE(LF1KF9JGAIGHHGPFGXEGaCHlBHx@H‡>H—CKFBLMALV@L_>LjPC%cG#cQ"d\!didydŠdžd³dÎcñaÿ`ÿ`ÿ_ÿ¡YŒX{XmXbXYXPYG[>^7`1c*f$i !j jj k(k0k9kBlLlXleltl†lšl¯lÊkïiÿhÿhÿgÿ™]…]u\h\^\U\K^Ba9d2g+j$mps ttt!u)u2u;uFuRu_ un u u• uªtà tç sý qÿ qÿ pÿ‘bapadaZaObEe‡2'’—œ ¤¨«®¯°±³ ´µ¶¸$º1º@ºR»e»}º—º±ºÒºó¹ÿ¹ÿoƒ_†Q‹C6—*¢§ ¬°´·»¾¿ÀÁÃÄÅ ÇÊÍ$Î3ÏDÐXÐnшФÐÁÑæÑøÑÿgW”Iš;¡.§!­³¸¼ÀÃÆËÍÎÐÑÔÖÚÜ ßãæ$ç6èIé_êxë”ë¯ëÌìèìö_žP¤B«4²&¹¾ÂÅÊÍÑØÛßàâäæéëîñõ ùü%ý9þOÿgÿ‚ÿÿµÿËÿäÿÿÿÿÿÿ"ÿ/ÿ;ÿGÿRÿ[ÿdÿlÿsÿzÿ€ÿ†ÿŒþ“ý™û¡ú©ø´÷ÂöÚõñôÿóÿóÿéÿàÿØÿÓÿÿÿ ÿ ÿ ÿÿÿ*ÿ6ÿAÿLÿVþ_ûfùm÷tõzô€ò†ðï”í›ì¤ê®éºçÍåéäûãÿâÿÞÿÑÿÌÿÈÿÿ ÿÿÿÿÿÿ$ý0û;÷FóPïYì`êgçnætäzâ€à‡ÞŽÜ•ÚžÖ¨Ô³ÑÃÏßÎôÌÿËÿËÿÅÿ¿ÿ¼ÿÿÿÿÿý ÷ñí*ê5ç@âJÝRÙZÕaÒgÐmÎsÌzʀȇÆÄ˜Â¡À­¾»¼Ðºí¹þ¸ÿ¸ÿ·ÿ³ÿ°ÿÿÿÿùîåÞØ#Ò.Ï9ËCÇLÄTÁ[¿a¼g»m¹s·zµ´‰²’°›¯§¬´«Æ©ä§ø¦ÿ¦ÿ¥ÿ¥ÿ¤ÿÿÿõêÞРȾ(»3¹=µF²M°U­[¬aªg¨m§s¥z¤‚¢Œ –Ÿ¡®›¾™Ø—ñ–ÿ–ÿ—ÿ—ÿ—ÿÿõçÔÉÀ¸³¯!«,¨6¦?£G¡OŸU[›ašg˜n—u•}”†’‘œŽ©Œ¸‹Í‰ëˆýˆÿˆÿˆÿˆÿùé Ôà · °« ¦¢ž%›0˜9–A”I’PVŽ\b‹iŠpˆx‡…Œ„˜‚¥€´~È}ç|ù{ÿ{ÿ{ÿ{ÿñÞÅ´©¡ž › —“)3Š<ˆC†K…QƒW‚^€dl}t|~z ‰x –w £u ³s Çr æp ûp ÿo ÿo ÿo ÿèй©•Ž ‰ † #ƒ -€ 6~>|F{MySxZvauhsqq{p‡n”l¢k²iÇhçfýeÿeÿeÿeÿ߯$°$ #”!‹†ƒ‚|y(v1t:rAqHoOnVl]kdimhwfƒdcŸa¯`Ä^ä]û\ÿ\ÿ\ÿ\ÿÕ%½*¨)˜)Œ(ƒ%}"yxvro#m-k5i=hDfKeRc Yb aa i_!s]!\!Z"œY"¬W"ÀV#áU#ùT#ÿT"ÿT"ÿT"ÿÍ+¶.¢.’.…-|+v(r&o#m! j"g#e$)c$1b%9`&A_&H]&O\'V[']Y'fX(pV(|T(ŠS)™Q)ªP)¾O)ÞN)÷M)ÿM)ÿM(ÿN(ÿÈ0°2œ2Œ2€1v0p-k+h)f( c(`)^*%\+.[+6Y,=X,DW-LU-ST-[S-cQ.nP.zN.ˆL/—K/¨I/»H/ÛH/öG/ÿG.ÿG-ÿH-ÿÄ4«5—5‡5{5r4k2f/b._-\.Z/X0"V0+U13S1:R2BQ2IP2PN3XM3aK3kJ3wH4…G4•E4¦C4¹B4ÖB4ôB4ÿB3ÿB2ÿB2ÿÀ8§8“8ƒ8w8m7f6a3]2Y2W3 T4R5Q5(O60N68L7?K7FJ7NI8VG8_F8iD8uC8ƒA9“@9¤>9¸=9Ó<9ó<8ÿ=7ÿ=7ÿ=6ÿ»;¢;;;s;j:b9]7X6T7Q8 O9M9K:%J:-H;5G;<F=<=‘:=£9=¶8=Ñ7=ò7<ÿ8;ÿ8;ÿ8:ÿ¶=ž>‹>|>o>f=^=X;S:O;L<I=G>F?"D?*C?2B@:A@A@@I>AQ=AZÿ±@š@‡@xAlAb@[@T?N?J@FADBBC@C?D'>D/:EF9EN8FX6Fb5Fn3F|1F0FŸ.F³-FÌ-Fï-Eÿ.Dÿ.Cÿ.Cÿ¬C–CƒCtChC_CWCPCHCDEAF>G nJnWnenvnŠmŸm¶lÖlókÿjÿjÿ…ZtZfZ\YSYHZ?]6`.c&gjmqt w wwww$x-x7xCxPx^xox„x™w°vÍuðuÿtÿtÿ~_n_b^Y^M_Bb9e0h'lptw {~€ ‚ƒƒ&„0„;„H„W„h„|„“ƒª‚Åëþ€ÿ€ÿweid_cRdGgÀG¼NºU·[µa³g²m°s®z¬‚ª‹¨•§ ¥­£¾¡Û ôŸÿžÿŸÿÿ›ÿÿüîàО¹µ#³.°7­@ªH¨O¥U£[¢` fŸls›{š„˜Ž–š•§“·‘ÌìÿŽÿŽÿŽÿÿüïÛɽµ® ©¥¢' 1:šB˜I–O”U“[‘`gŽmu‹~‰‰ˆ•†¢…±ƒÄä€ùÿ€ÿ€ÿ€ÿôà Ç·¬¦ ›˜•!’*3<‹C‰I‡P†U„[ƒah€p~y|„{yx¬v¾uÝsôsÿsÿsÿsÿé Ϲ©ž— “ Œ‰†$ƒ.6>}D|KzQyWw]vdtlsuq€onšlªk»iÖhñhÿgÿgÿgÿßîž“‹†„ ƒ €|y(w0u8s @r Fp Lo Sm Yl aj ii rg ~f ‹d ™b ©a »` Ø^ó]ÿ]ÿ]ÿ]ÿÔ¹¤•‰{xxw sp"n+l3j;iBgIfOdVc]af`o^{\ˆ[—Y§WºVÕUóTÿTÿTÿTÿÊ"°"##"y!sonm jge'c/a7`>^E]K\RZZYbWlVwT…R”Q¤O·NÐMñLÿLÿMÿMÿÃ&ª'–'‡({'r&l$h!fdb_]#[+Z3X:WAV HT OS WQ!_P!iN!tM!‚K"‘I"¢H"´G"ÍF#ïE#ÿE"ÿF"ÿF!ÿ¼*¤+‘+‚,v+m*f)b&_$]"[!X"V#T$(S$0R%7P%>O&EN&LL&TK'\I'fH'qF'E(C( A(²@(Ë?(í?(ÿ?(ÿ@'ÿ@'ÿ·-Ÿ.Œ/}/q/h.a-]+Z(W'T' R(P)N)%M*,K*4J+;I+BH,IF,QE,ZD,dB-o@-}?-=-ž<-°:-È:-ë:-ÿ:-ÿ:,ÿ:,ÿ²0›1ˆ2y2m2d2]1X/U,Q,O- L-J.I/"G/*F01E08C0?B1GA1O@1W>1a=2m;2{92‹82œ62¯52Ç42é42ÿ51ÿ51ÿ50ÿ­3–4„5u5i5`5Y4T3P0L1I1G2E3C3B4'@4.?56>5==5D<6L:6U96_76k66x47‰27š17­/7Å/7è/6þ05ÿ05ÿ04ÿ©6’6€7r8f8]7V7P6K4G5D6A7 ?8>8<9$;9,:939::8:B6:J5:S4;]2;h0;v/;‡-;™,;¬*;Ã);æ*:ý*:ÿ+9ÿ,8ÿ¤8Ž9|:n:c:Z:S:M:F8B:?;<< :<8=7=!6>)4>03>72??1?G0?P.?Z-@f+@t)@„(@—&@ª%@Á$@å$?ü%>ÿ&=ÿ&=ÿŸ;Š<x=j=_=V=O=I=B=<>9?6A4A2B1B/C%.C--C4,D<+DD*DM(DX'Ec%Eq#E‚"E• E¨E¿DãDûCÿ Bÿ!Aÿš>…?t@g@\@S@L@F@>A8C4E0F-G +H*H)H"(I)'I1%I9$IA#JJ"JU JaJoJJ’J¦J½JàIúHÿGÿGÿ•B€BpCcCXCPCICBD;E5G0I+K&M $N"N!O O%O,O5O=PGPQP]PkP|PP¤PºPÞOøNÿMÿMÿE{FkF_GUGMGFG?G7J1L+N&P SU VVV V'V0V9WBWMWYWhWyWŒ W  W¶ VÔ Vô Uÿ TÿSÿˆIvJgJ[JQJJJCJ;L3N,Q&T!VY\^ ^^^"^* ^3 ^= ^H ^T^b^s^†^›^±]Ì]î\ÿ[ÿ[ÿNpNbNWNNNGN>O6Q.T'W!Z]`c f gggg$g-g7gBgNg\gmg€f•f¬eÇeëdüdÿcÿzRjS]RTRKRBS9U0X([!_beh kn ooopp'q0q;qHqVqfqyqp§oÁoçnümÿmÿsXeWZWQVFWÿHÿRÿZÿbÿiÿoÿuþ{üûˆù÷—õ óªò·ïÉíæìûëÿëÿÝÿÎÿÆÿÂÿÿÿÿÿÿ ÿÿ!ÿ,ÿ8ÿCýLùT÷\ôcòiðoîuì{ê‚è‰ç‘äšâ¤à°ÝÀÚÜØôÕÿÓÿËÿÁÿ»ÿ·ÿÿÿÿÿÿ ýùö'ô2ð<ìFèNäVá\ÞcÜhÙnÕtÒ{Ð‚ÍŠË“ÈÆ¨Ä·ÁÌÀë¾ÿ½ÿ½ÿ´ÿ®ÿ«ÿÿÿÿúòêåà!Ý+Û6Ó?ÎHÊOÇVÄ\ÂaÀg¾m¼sºz¸‚¶‹´–²¡°¯®Á­à«÷ªÿ©ÿ¦ÿ¡ÿŸÿÿÿ÷èÜÐ ÊÅÂ%¿/¼8¸AµH²O°U®[¬aªf¨l§s¥{£„¡ŽŸš§›¸šÐ™ï˜ÿ—ÿ–ÿ”ÿ’ÿÿöäÒÅ»µ°¬ª)¨2¥:¢B IžOœUšZ˜`–f•l“t’}‡Ž“Œ¡‹°ŠÅˆæ‡û†ÿ‡ÿ‡ÿ†ÿøåͽ³ª£ Ÿ›™#—,•4’<CŽIŒOŠT‰Z‡`†f„nƒw~›|ª{¼zÛxõxÿxÿxÿxÿíÑ»¬¢›–‘ ‹ˆ&†.„6‚=€C~I}O|Uz[yawiuqt|rˆq–o¥n¶mÎlîkÿkÿkÿkÿß Â ® ž “ Œˆ… | z(x0v8t>sDqJpPnVm]ldjmhwg„e’d¡c²aÉ`é`ü`ÿ`ÿ`ÿж¢“ˆ€| y x usp#n+l3j9i@gFfLeRcYba`j_t]\ZŸY°WÆV çV ûU ÿU ÿV ÿÆ­™Švqnm m j g e &c .b 5` <_ B^ H\ O[ VY ^XhVsU€SQŸP±NÈMêMýMÿMÿMÿ¼¥’ƒwoifddb_]![)Z1X8W>VETLSSQ[PeNpL}KŒIœG®FÅEèEþEÿEÿEÿµž!‹"|"q"h!b_\[Z WUT%R-Q4O;NBMHKPJXHbGmEzC‰Bš@¬?Â>å=ü>ÿ>ÿ>ÿ¯#˜$†%w&l&c%]$Y"VTS QNM"K)J1I7G>F EE MC UB _@!j?!w=!‡;!˜9!ª8"À7"ã7"û7"ÿ8!ÿ8!ÿª&”')s)g)_)X(T&Q#O"L"J"H"G#E$&D$.B$4A%;@%C?%J=&S<&\:&g9&u7'„5'–4'¨2'¾1'á1'ù2&ÿ2&ÿ3%ÿ¥)*},o,d-[,U+P*L(J&G'D' B(A(?)#>)+=)2<*9;*@9*H8+P6+Z5+e3+r1+‚0,”.,§,,¼+,Þ,,ø,+ÿ-*ÿ-*ÿ¡,‹-y.k/`/X/Q.L.H,E+A+?, =,;-:.!9.(7./6/65/>4/E3/N10X00c.0p,0€*0’)0¥'0º&0Ü&0÷'/ÿ(/ÿ(.ÿœ.‡0v1h2]2U2N1H1D0@/<0:1 71625233%23,13304;/4C-4L,4V*5a)5n'5~%5#5£"5¹!5Ù!4ö"4ÿ#3ÿ#2ÿ˜1ƒ3r4e4Z5Q5K4E4@4:374452607/7.7"-8)+81*88)9@(9I&9S%9_#9l!:| :Ž:¢:·9Õ9õ8ÿ8ÿ7ÿ“46n7a7W7N7H7B7<75829/:,; *<)<(=&=&%=.$=5#>=">F >P>\?i?y?Œ? ?µ>Ò>ó=ÿ<ÿ<ÿŽ7z8j9^:S:K:E:?:9:2<.>)@&A$B"B!B C#C*C2C:DCDMDYDgDwDŠDžD³DÐCòBÿBÿAÿ‰;v<f=Z=P=H=B=<=6>/@*B%D!FH IIII&I.J6J@JJJVJdJtJ‡ J› J° JÊ Iì Hÿ Gÿ Gÿƒ>q?b@V@M@E@?@9A2B+E&G!IKNPPPP!P)P1 P; QF QQ Q_ QoPP–P«PÅOèOûNÿMÿ}BkC]DRDJDCCüGøOôWñ]îcìiêoèuæ|äƒâ‹ß•ÜŸÙ«Õ»ÒÔÏòÍÿÌÿÅÿºÿ´ÿ°ÿÿÿÿÿÿùõó"ñ-í7ç@âIßPÛW×]ÔcÑhÏnÌuÊ|ȄŘÀ¤½²»Æ¹è¸ý·ÿ¶ÿ­ÿ§ÿ£ÿÿÿÿõëä ÞÙÓ&Ñ0Ì:ÈBÄJÀP½V»\¹a·gµm³t±|¯…­ªœ¨ª¦»¥Ú£õ£ÿ¢ÿžÿšÿ—ÿÿþïßÐÇÁ¼¹ ·*µ3°;­C«I¨O¦U¤Z£`¡fŸmtœ}šˆ˜”–¢”²’É‘ë‘ÿÿÿŒÿŠÿüìÙǺ±« §¤¡$ ,ž5›<˜C–I”O’TZ_f‹m‰vˆ€†Œ„š‚ª¾€à€ùÿÿÿ~ÿñØÂ³¨ ™•’Ž&.Š6‡=…C„I‚NTY~`|gzoyzw†u”t£rµrÏqñpÿpÿpÿqÿáİ¢—‘‹† ƒ!})|0y7x=vCtIsNrTpZobmjktj€hŽge¯eÆdèdýcÿcÿdÿ϶£”‰‚~{wurq#o+m2l8j>iDgIfOeVc]be`o_{]‰\™[ªY¿YáXøXÿXÿYÿ ª —‰}v q om kige&c-a3`9_?]E\K[RZYXbWlUxS†R–Q§P»OÛNôNÿNÿNÿ¸¡Žtlgec c a^\![(Y/X5V;UBTHSOQVP _N iM vK „I ”H ¦G ºF ØE óE ÿE ÿE ÿ°™‡xme_\ZZZ W U S $R +P 1O8N>MEKMJUH^GhEuC„A•@¦>»=Ü=ö=ÿ=ÿ>ÿ©’rg_YUSRR PNL J'I.H4G;EBDICRA[?e>r<:’8¤7¹5Ø5õ6ÿ6ÿ7ÿ£{ m!b!Z!TPMLKIGED$B*A1@8??=F<O:X9c7o5~32¢0·/Ó/ó/ÿ0ÿ0ÿˆ"w#i$^$V$P#K"H FEC A?>!<';.:59<7D6L4 V3 `1 m/ |-!Ž,! *!µ)!Ð)!ò)!ÿ* ÿ+ ÿ™"„%s&e'['S'L&G%D$B!?!=! ;!9"8"6#%5#+4$23$92$A0$J/%S-%^+%k*%z(%Œ&%Ÿ$%³#%Î#%ð$%ÿ%$ÿ%$ÿ”%€'o)b*W*O*I)D(@'=&:%7&5&4'2'1("0()/(0-)7,)?+)G))Q(*\&*i$*x#*Š!**²*Ì*ï)ÿ )ÿ!(ÿ(|*l+_,T,L,F,A+<+8*5*2+0+ .,-,,,*-&)--(-4'.<&.E$.O#.Z!/g/v/ˆ/›/°/Ê.í.ÿ-ÿ-ÿŒ+x-h.[/Q/I/C/>.9.4.0.-/+0 )1'1&1%2#$2*#21!39 3B3L3W3d4t4†4š3®3È3ì3ÿ2ÿ1ÿ‡.t/e1X1N2F2@1;16111+3(4%5#6 !6 77 7'8.868?8I9U9b9q9„9˜9­8Ç8ë8ÿ7ÿ6ÿƒ1p2a4U4K4D4=48434-5(7$9 :; <===#=+>3><>F>R>_>o> >• >© >Á =ä =û <ÿ ;ÿ}4k6]7Q7H7A7;75707*9%; =?AC CCCD'D/D9 DC DN D[ DjD|DC¥C½CàCöBÿAÿx8g9Y:N:E:>:8:3:-;'=!@BDFI J J J J#J+J4J>JIJVJeJwJ‹J¡I¹IÝIõHÿHÿr<b=U>J>B=<=6=/>)@#BEGJL O P QQQQ&Q/Q9QDRQR`QrQ‡QQµPØPõOÿOÿl@]AQAGA@@9@2A*C$FHKNQ SVW XXYZ!Z)Z3Z?ZLZZZlZY™Y±XÑXôWÿWÿeEXEMEED>D5E-G%JMPSV Y\^_ ` abcd#d-d8dEdTdfd{c“c­bÌaòaÿ`ÿ_JSJJICH9I/L'ORUY ]`cfhij k mnpq&q1p>pNp_psoo§nÆmïlÿlÿZOPNHM=N3Q)T X\` dhkortuwx z |}€(€5€EVk„~ }¾|é{ÿzÿVTNSBT7V,Z"_ch mrvz}€ƒ„†‡‰‹ ’’,’;’M‘b‘z—´ŽáŒûŒÿUYHZ;]/a$flr w}‚†‹Ž‘“•—™›Ÿ ¢¤¦!¦1¦C¥W¤p£Ž£«¡Ð õŸÿNa@d3i'nu| ƒ‰Ž“˜¡¤¥§©«­°²µ¸¼¼%¼7»Lºd¹·¢·À·ê·üFk9p+w† Ž•›¡¦«°³··º¼¿ÁÄÇÊÍÑÔÔ+Ô@ÓXÓtÓ’Ò°ÒÓÒò>y1€#ˆ‘ ™ §®³¸½ÂÆÊÊÍÏÒÕÙÝßãçëìí3îKïdï‚ðŸñ¹ñØÿÿÿÿ ÿÿÿÿ)ÿ4ÿ?ÿHÿPÿXÿ^ÿeýkûqùwø~ö…óñ—î¢ë¯èÀæàãøâÿÛÿËÿÁÿ¹ÿ´ÿÿÿÿÿÿ ÿÿÿ#ÿ.ý9ùBõJòRîXë^édæjäpâvß}݆Ù՚ѧζËÎÉðÇÿÅÿ»ÿ´ÿ­ÿ©ÿÿÿÿÿûö ñíì(é2ã;ÝDØKÓQÐXÍ]ËcÉhÆoÄvÂ~¿‡¼’ºŸ·­µÁ²ä±ý¯ÿ¬ÿ¥ÿ ÿœÿÿÿûîäÜÓÏË"É+Æ4Á=½DºK·QµV²\°a®g¬nªv¨¦Š£–¡¥Ÿ¶Ñœó›ÿœÿ–ÿ“ÿÿÿöçÓÆ½¸ ³±¯%®.©6¦=£D¡JŸOU›Zš`˜f–n”w’ŽŽœŒ­ŠÃ‰èˆÿ‰ÿ‡ÿ…ÿ‚ÿóã̼°§¡ž›™˜'–/“7‘=ŽCŒI‹N‰T‡Y…`„g‚o€z~†|”z¤y¸xØw÷xÿxÿwÿuÿæË·¨ž–‹ ˆ‡…!„)‚07}=|CzHyMwSvYtariqsomlj¯iÈhíiÿiÿiÿiÿÒ¸¥—†|ywvt#s+q1o7n=lCkHjNhTg[eccmbx`‡_–]¨]¾\ä\û\ÿ\ÿ\ÿª˜‰xtpm kihf%e,c2b8`=_C^I\O[VZ^XhWsUT‘R£Q·QÖQõQÿQÿRÿ¶Ÿ ~ s l heca _]\!['Y-X3V9U?TESKQRPZOdMoL}JIŸH²GÌGïFÿGÿGÿ¬ •ƒukc^[ Z Y WUSR#Q)O/N5M;LAJHIOHWFaEmCzB‹@œ?¯>È=ê=ü=ÿ>ÿ¤Ž|nd\VSQP P OMKI%H +G 1F 8D >C EB M@ U? _= k< y: Š8 œ7 ¯5 Ç5 é5 ý5 ÿ6 ÿ‡vi^VPMJIIH F D C!B(@.?5><=C;K:T8^6k4y2Š1œ/°-É-ì-ÿ.ÿ/ÿ—‚qdYQLGDCBA @><;%:+82796@4H3Q1\0h.w,ˆ*š(®'Ç&ê'ÿ(ÿ)ÿ‘}m`VNHC@>=;9865"3(2/160=.F-O+Y*f(t&†$™"­!Å è!þ"ÿ#ÿyi!\"R"J"D!?!< 9854 20/.%-,+3*;)C'M&W$d"r „—«Ãçýÿÿ‰ u"e#Y$O%G%A$<#8#5"3 0 .! ,!+!*"("#'")�%#8##A"$J!$U$a$p$‚$•$ª$Á$å$ü#ÿ#ÿ…"q$b&V'L'D'>'9&5&1%.$+%)%'&%&$'#' "''!(. (6(>(H)S)_)n)€)”)¨)À(ä(û(ÿ'ÿ€%n'_(S)I*B);)6)2(.(*(&)$*"+ +,,,$-+-3-<-E.P.].l.~.’.§ -½ -ß -ù,ÿ,ÿ|(j*[+P,F,?,9,4+/+++&,"./0 1112!2(20293C3N3[3i 3z 3Ž 3¢2¹2Ù2ô 1ÿ 1ÿw+f-X.M/C/<.6.1.-.).#02356 7778$8,85 8? 8J 8W 8e8v8Š8Ÿ7µ7Ó7ñ6ÿ6ÿs.b0T1I1A19141/0+0%2 368:< = = = =! =)=1>;>F>R>a>r>†=œ=²=Ð<ð<ÿ<ÿm2]3P4F4>47423-3'4"68:=? A C DDDD$D-D6DADND\DmDD˜C¯CÍBðBÿBÿh6X7L8C8;75606)7#9;=@B EGI IJKK K(K2K=LILWKhK}K”J¬JÊIïIÿIÿb:T;I;@;9:39,:%<?ADG ILOP P QRTT#T,T7TDTRTcTwTS¨RÆRíQÿQÿ\?O?E?>>7=/>'@ CFIL ORTWXY Z[]^_&_1^=^L^]^q]‰]£\Á[ëZÿZÿVDKCCBÑFÍLÊRÈXÅ]ÃcÀi¾p¼x¹·´š±©®¼¬áªü¨ÿ ÿ™ÿ–ÿ”ÿÿùòçÛÑÊ ÇÄÂ&¿/»7·?´E±K®Q¬Vª\¨a¦h£p¡yŸ„‘š ˜±–Ì•ñ”ÿ‘ÿ‹ÿˆÿ†ÿ÷ìÞɼ´¯ «©¨ §(¢0Ÿ8œ>šD˜J–O”U“Z‘ahq‹{‰ˆ‡—…¨ƒ¾ä€ÿ€ÿ|ÿ{ÿyÿé×Á±¦—” ’"Ž*‹1‰8‡>…CƒHNT~Z|azixsvuŽsŸq³pÐoöoÿoÿmÿlÿÚ¿¬ž“Œ…‚ ~}|$z+w1u7t=rBqHoMnSlZkbilgxf†d—bªaÂ`ëaÿaÿaÿ`ÿÅ­›ƒ|wrp nllk%i,g1f7d=cBbH`N_U]]\fZrY€WV£U¹TÞTûTÿUÿUÿ¶Ÿunifc a`_^ ]&[,Z2X7W=VCUISPRXQaOlNzLŠKœJ±IÎIóIÿIÿJÿª”‚tjc^[YW VTSR"Q(P-N3M8L>KEJLHTG]FhDuC…A˜@«@Å?ê?ÿ@ÿ@ÿ Š y l a Z U R PON LKJI#G)F/E4D:BAAH@P>Z=d<r:‚9”8§7¾6ã6ù6ÿ7ÿ˜ ƒre[SNJH G G EDBA @%>+=1<7;>:E9N7W6b4p2€1’0¥/».Ý.õ-ÿ.ÿ‘}l_UNHDA@@ @ > < ; 9 "8 (7 .6 55 ;3 C2 L0 V/ a- o+ * ’( ¥' »% Ý% õ& ÿ' ÿ‹wg[QIC?<:998 7542%1,02/:-B,K*U(a&o$€#“!§½à÷ÿ ÿ†scWME@;85432 1/-,"+)*0(7'?&H$S"_ m~‘¥»Þøÿÿ‚o_SJB<741/.,+)(' %&$-#4"= FQ]k|£ºÛöÿÿ}k\P G ? 941-+)'% $"! #*2:DN[iz¢¸ØõÿÿzgY!M"D"<"6"2!.!* ' $"  !!!"!"'"/"8#A#L#X#g#x#‹ #Ÿ #´ #Ð "ð "ÿ !ÿvd"V#K$A$:$4$/#+#(#$# #$%& &&''%','5(?(J(V (d (t (‡ (›'±'Ì'ì&þ&ÿq"`$S&H'?'7&1&-&)%%%"%'(*+ ,,,,",)-2 -; -F -R-`-p-ƒ-˜,®,É,ë+ü+ÿm%]'O(E)<)5)/(+(''#'(*,.01 1 1 1 1&2.272B2N2\2l22•1¬1Ç0ê0ü0ÿh)X*L+A,9,2+-+)*%* +,.024 7 7777"7*838>8J8X8h8|7’7©6Å6ê6ý5ÿc,T.H/>/6.0.+-'-"-/1357 :; <=>>>&>/>:>F>T>d>w>=§=Ã<é<ý;ÿ^0P1D2;241.0)/$02469 ; =@A B CDEF"F+F5FAFOF_FsEŠE¤DÀCèCþBÿX4K5A59524-3&4 58:= @ BEGHJ KLNOO%O/O<OJOZNmN…M L¼KçKþJÿS9G9>97817)7!9<?B EHJMOQRT UWYZY)Y6YDYTXgXWšV·UãTýTÿN=C=<<5;,<$>ADH KNQTWY[]^` bdgg"f.f<fMe`ewd“c±aÝ`ü_ÿIBAA:?0@&CFJN RVZ]`cegikmo ruwv&v5uFtYtos‹r©pÍo÷nÿFF@E5F*H LQV Z_chkoruwy{}€ƒ† ‰ŠŠ+‰<ˆO†f…„ ‚ÂðÿFK:L.O#SX^ diotx|„‡ˆ‹Ž“–™ ¡ ! 1žD[œv™–™µ–å•þ?R2U&Z`g mt{†‹”—™œŸ¡¤§ª­±µ ¸·&¶9µP´j²‰°ª®Ï­õ7\+ahp x€‡Ž•šŸ¤¨¬­°³µ¸»¿ÃÇËÑÑÐ.ÏEÍ_Ë~ɞȾÅé/i#py ‹“›¢¨®´¸½ÀÂÅÈËÎÑÖÛßäèëê#ê:éTçrå“ã³ãÔÿÿÿÿÿ ÿÿÿ!ÿ+ÿ5ÿ>ÿGÿNÿUü[úaøfömôsò{ï„íŽê™æ§ã¹ßÕÛ÷ÖÿÀÿ²ÿªÿ¥ÿ¢ÿÿÿþüüþ ÿÿý$ù.ô8ð@ìHéNæTâZß_ÜeØkÔrÐ{ͅʑǞîÀŽë»ÿ°ÿ¤ÿœÿ˜ÿ•ÿÿúôñòêçâáá(Ø1Ð9Ë@ÈGÅMÂS¿X½^»d¹k¶s´|±ˆ®•«¤¨¸¦Ü£ûŸÿ•ÿÿ‹ÿ‰ÿùïçßÏÈÁ ¿¼»!¹*´2±:®@«F¨L¦Q£V¡\Ÿcj›s™~–Œ”›’­ÇŽðÿ†ÿ€ÿ}ÿ|ÿíàÑ¿³ª¦¢ ¡ Ÿ#›+˜2•9“?‘DJŽOŒUŠ[ˆc†k„v‚‚€’~£|ºzáyÿwÿrÿpÿoÿÝ˶§”Ž‹ ‰ˆ‡‡%„,‚28}={CyHxNvTu[scqnozm‰lšj®iÌhögÿeÿdÿcÿÊ´¡“‰‚{xv utsr%p,n2l7j<iBhHfNeUc]bf`r^€]’[¥Z¾YéYÿYÿXÿXÿ¹¢ƒyqmif edcc a&`,^1\7[<ZBXHWOVWT`SlQyPŠOžN´MÚMûMÿMÿMÿª”‚ukd`]ZX WVVU!S'R,Q1O7N=MCLJJRI[HfFsE„D—C¬BÉBñBÿCÿCÿž‰xjaZURPN M LKJI"H'G-E2D8C>BEAM?V>a=n;~:‘9¦8¿8è8ÿ9ÿ9ÿ•€o b X Q LIGFD CBAA?#>)=.;4::9A8I7R6]4j3z2Œ1¡0¸/Þ/ù/ÿ0ÿŒ x h \RKE A ? >=< ;:98 6%5+40372>1F/P.Z-g+w*‰)(³'Ñ'ò'ÿ'ÿ† rcVME@<97 6 6 54210"/(..-4+<*D)N'Y&e$u#‡"› ° Ëíþÿ€m^RHA;74200 0 / - , * ) %( +' 2& :$ C# M! X e u ˆ œ ± Ê ë ü ÿ{iZNE=830-+**) (&%$##)!1 9BLXfv‰ž³ÎîþÿweWKB:40,)'&%# "!  '.6@JVdt‡œ± Ê ëþÿsaSH?72-)&$"  $+4=HTbr „ ˜ ­ Æ ç ú ÿo^PE<5/*&#! ")1;E Q ^ m €”ªÂæøÿk[MB:2-($! !!!!"& ". "7 "A "M"Z"i"|"‘"¨!À!å ø ÿgWJ!@!7"0!*!& "  !#$& & & & &"&*'3'='I'V'f'y'&¦&¿%ä%ù$ÿc T"G#=$4$.#(#$"!"!"#$&( * ++++,',0,:,E,S,c,v,Œ+¤+¾*ä*ú)ÿ_#P%D&:&2&+&&%#$$$%')+ -/ 00111#2,262B2O2_2r1‰1¢0¼0ä/û/ÿZ'L(@)7)/))(%'!&'(*,. 024 5 6788 8(829=9K9[8n8…7Ÿ7º6ä5ü5ÿU*H,=,4,-+(*$)*+-/ 1 468:; = >@@@$@.@9@G@V@i@€?›>·=ã<ü<ÿP/C/9/2/,-', -/13 6 8;=@ACE FHJJJ(J4IBIQIdH{H—G´FàEüDÿJ3?36301*0#1358 ;>ACFHJLNO QTUU"T.T<TKS^StRQ®P×OûNÿE7<756/4&57:= ADHJMPSUWX[] _bbb'b4aE`W`m_‰]§\ÌZøYÿA<:;49*:!<@C GKOSVY\_acegjm psr r-q=pOoen€mŸkÁiñhÿ?@9>.?$BFJ OTX]aehknqsux{~ …‡†$…4„F‚]v–~¶|çzÿ?D3E(HLR W]chmqvz~ƒ†‰‹Ž’•™ žž)œ<šR˜l–‹”ª’Ôú8K,N SY `gntz€„ŠŽ’•—š £§«¯´ ¸·µ0³F±`¯~¬ «Á©î1U$[aiqyˆ”šŸ¤¨©¬¯³µ¹½ÁÆËÑ ÓÑ%Ð;ÍTÊqȒųÃÞ)biq{„•£©¯´¹¼¾ÂÅÈÌÐÔÚßäêî íì/êIèeæ†ä¥âÆÿÿÿüüþÿÿÿ&ÿ0ÿ:ÿBÿIþPûVù\öbôhòoðvíê‰ç•ä£àµÛÐÕöÊÿ¶ÿ¨ÿŸÿšÿ–ÿÿûöóóö úýû ÷*ò3í;éCæIâOÞUÛ[Ö`ÒgÏnÌvɀƌš¿ª»Á¸é¶ÿ§ÿšÿ’ÿÿŠÿúñêççäà ÛÚÛ#Ñ,Ê4Æ;ÂB¿H¼NºS¸Y¶_³f±n®w¬ƒ©‘¦¡£µ Øžû•ÿ‹ÿ…ÿ€ÿ~ÿïãÚÓÆ¿¹·´´³%®-«4§;¤A¡FŸLQ›W™^—e•n“y‡Ž—Œ©‰Äˆï…ÿ|ÿvÿsÿrÿàÐÆ¶©¡™ ˜˜—”&‘-4Œ:Š?ˆE‡J…PƒV^€f~q|}yw u¶sßrÿnÿiÿgÿeÿ̾«“Š…‚€ € }&z-w3u8t>rCpIoOmVl^jhhug„e–d«bÉaö`ÿ\ÿ[ÿZÿ½©—‰~xsom lkkj h&f,e2c7b<`B_H]O\WZaYmW{VŽU¢S»RéRÿPÿOÿOÿ­˜†xngc`]\ [[[Z!X&V,T1S6R<QBOINQM[KfJtI…H™G±FØFüEÿEÿEÿŸ‰xlb[VSQOO NNML!J&I,H1G7E=DDCLBU@`?n>~=’<©;Ç;ó;ÿ;ÿ<ÿ“~naXQLIGED CCCB@"?'>,=2;8:?9G8P7[5h4x3Œ2¢1¼1ç1ÿ2ÿ3ÿ‰vfYPIC@><;: :9976#5(4.342;0C/L.W-d,s+‡*œ)µ)Ü)û)ÿ*ÿn_ S J B = 9 6543 2110/.$,*+0*7)?(I'T&`$o#‚"—!®!Ì!ó!ÿ"ÿ{ h Z NE=8 3 0 . - -, +*)('!&'%-$4#="F!Q]l”ªÅëÿÿu dUJ@93/,)' ' ' & %$"! $+2:DO\k}‘§¿äúÿq_QF=60+(%#"! !     " ) 1 9 C O \ k ~ ’ § ¾ à õ ÿm\NC:2-(%"  !(09DP] k |  ¥¼ßôÿiXK@70*&" %.7 @ K X gx£»ÝôÿeUH=4-(#   " ) 2 <GTcu‹¡¹ÝõÿaRE;2+%!   &/8DQ`rˆ ¹Þöÿ^OB8/)#     !#!+!5!@!N!]!o!† ž ¸ÞøÿZK?5-'" ! " # $%%& &(&2&=&J&Z&l&ƒ%œ%·$ß#ù#ÿUG ;N;`:w9’8°7Û6ü5ÿG);*2*+)%'!&'(*, /1468;=?A CEEE!E,D9DHD[CqBA«@Ò?ú>ÿB-8./-)+$**,. 1 47:<?ADFHJL NPPP'O4OCOUNjM†L¤JÊIøHÿ>251./). .137 :=@DGILOQSUXZ ]_^ ^,]<\N[cZ~XWÀUòTÿ:634-2$369=AEILPSVY[]`behk oon%m4mFk[juh”f¶débÿ8927(9;?DIMRVZ^behkmpsvy} …„‚,€>~T~k{ŠzªwÖuý8=,>"AFKQW\bfkotx{~€ƒ†Š‘–› ›!š3—I”b“ ŽÅŒó1D%HMSZahnty„‰‘“–™ ¤¨¬²· ·µ(²>°V¬sª”©´¥å*OT[ bjs{‚‰Ž”šŸ¤¦©­°³·»ÀÅËÑÕÓÐ2ÍKÊfƇ©ÁË"[b kt}‡—ž¤«±¶º¼ÀÄÈËÏÔÚàæëñðî'ì?ê[çzä›à»ÿûöóôö úÿÿ"ÿ,ÿ5ÿ=ÿEüLúR÷Xõ^ódñjîrìzé…å‘á Ý²ØÎÒöÁÿ­ÿžÿ–ÿÿŒÿúòìééìò ø÷õ%ð.ë7æ>âEÝKØPÓVÐ\ÍbÊjÈrÅ|ˆ¾–º¨·¿´è®ÿÿÿˆÿƒÿ€ÿðåÞÚÛÜØÑÑÒË'Å/À7½=ºD·IµO²U°[®a¬i©s§¤¡žž²›Õ™üŒÿ‚ÿ{ÿvÿtÿâÓÊǼ¶°¯ ¬­­ ¨(¤/ 6<›B™G—M•S“Y‘ajŒuŠƒˆ”†§ƒÂ‚ð|ÿsÿmÿjÿhÿÏÁ¹­ ˜”‘ Ž!‹(ˆ/†5„:‚@€E~K|RzYxbvltyr‰qo´mßlÿeÿ`ÿ^ÿ\ÿ¾± ’‰‚|zx wxwt!r'p-n3l8k>iDhJfQdZcdap_^“]©\È[÷WÿTÿRÿQÿ°Ÿtnjfec ccca!_'],\2Z7Y=WCVKUSS\RhPwO‰NŸMºLéKÿIÿGÿGÿ¢|ne^YWUTS STRQ!O&N+L1K7J=IDGLFVDaCpBA—@¯?×?ÿ>ÿ=ÿ>ÿ”ocYQMJHGG FFGED!B&A+@1>7=><G:P9[8i7z65§5Æ4õ4ÿ4ÿ5ÿˆteXOHC?=<<; ;;:97!6&5,42391A0K/V.c-s,ˆ, +»+ê+ÿ+ÿ,ÿl]QH@;74322 2 110/-",(+.*5)=(F'Q&^%n$‚#™#³"Þ"ÿ#ÿ$ÿweVKB:50-,+*) ))('&%$$*#1"9!C NZi|“¬Íöÿÿp_Q F = 5 0 + ( %$## " "!  &.6?JWfx¦Ãîÿÿk[ M B 9 1 , ' # !     #+3<GTcuŠ¢¼åþÿg W I>5.($           ! ( 0 : E R a s ˆ Ÿ · Û ö ÿc SF;2+%!        ' / 9 E Q ` q †  ´ Ò ñ ÿ_PC8/(#      $ , 6AN]o„œ´Ôóÿ\M@6-&!      !)3>KZl‚›´×õÿXI=3+$     '0;HXj€™´Ù÷ÿUF:0("     $-8FUg}—³ÛùÿQC7.&         !!*!5!B!R d z•±ÛúÿM?4+$  !# %&&&'''2'?&N&`&w%’$¯#Ú"û!ÿH<1("  !#%') , ....#...;.J-\-r,Ž+¬*Ô)û(ÿD 8!.!&!  !#%'),.03 5 6666)666E5W5m4‰2¨1Ï0ú/ÿ?$4$+$$#!  !# %(*-/2479;> @AA@%@1@@?R>g=‚<¢:Ç9ø8ÿ:(0()'#%#$%( *-0368;>@BEGJ MMLL+K:JLIaH|G›E¿CóBÿ6,-+')#'(*- 037:=@CFHKMPSVY [[Z%Y4XFWZUtT“RµPêOÿ30,.',-/2 6:?BFILORUXZ]`cgk lkk,i=gRfjd‰a«_Ü]ÿ13,1"259 =BGLPTX[_behknquy}‚ ‚€$~5|I{axvŸsÆp÷16&8;@ EKQV[`einrvy|~‚…‰Ž“˜œ›˜+–@’Y‘s•‹µˆè+> AG MT[ahnsy~ƒˆŒ’•™¡¥ª°·¸µ!²5¯Mªi¨ˆ¦¨¢Ñ#HNT\dmu|ƒ‰•› £¦©­±µ¹¾ÄÊÒÚ ÖÒ)ÎAÊ\Å|ÂÁ½U\enwˆ˜Ÿ¥­³¸º¾ÂÆÊÎÓÚàçíóôòï6ìQènäß±  !"$%&()*+-./02346789;<=>@ABDEFGIJKMNOPRSTUWXY[\]^`abcefgijklnopqstuwxyz|}~€‚ƒ…†‡ˆŠ‹ŒŽ‘“”•–˜™šœžŸ¡¢£¤¦§¨ª«¬­¯°±³´µ¶¸¹º»½¾¿ÁÂÃÄÆÇÈÉËÌÍÏÐÑÒÔÕÖ×ÙÚÛÝÞßàâãäæçèéëìíîðñòôõö÷ùúûüþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ  !"$%&()*+-./02346789;<=>@ABDEFGIJKMNOPRSTUWXY[\]^`abcefgijklnopqstuwxyz|}~€‚ƒ…†‡ˆŠ‹ŒŽ‘“”•–˜™šœžŸ¡¢£¤¦§¨ª«¬­¯°±³´µ¶¸¹º»½¾¿ÁÂÃÄÆÇÈÉËÌÍÏÐÑÒÔÕÖ×ÙÚÛÝÞßàâãäæçèéëìíîðñòôõö÷ùúûüþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ  !"$%&()*+-./02346789;<=>@ABDEFGIJKMNOPRSTUWXY[\]^`abcefgijklnopqstuwxyz|}~€‚ƒ…†‡ˆŠ‹ŒŽ‘“”•–˜™šœžŸ¡¢£¤¦§¨ª«¬­¯°±³´µ¶¸¹º»½¾¿ÁÂÃÄÆÇÈÉËÌÍÏÐÑÒÔÕÖ×ÙÚÛÝÞßàâãäæçèéëìíîðñòôõö÷ùúûüþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ ¡¢£¤¥¦§¨©ª«¬­®¯°±²³´µ¶·¸¹º»¼½¾¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖרÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿmft1!  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ ¡¢£¤¥¦§¨©ª«¬­®¯°±²³´µ¶·¸¹º»¼½¾¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖרÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿ  !""#$$%&&'())*+,--./01223456789:;<=>?@BCDEFHIJLMOPRSUWXZ\^`bdfhjmoqtvy|~ƒ†‰‹Ž’•—™›Ÿ¡£¥§¨ª¬­¯°²³µ¶·¹º»¼½¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÍÎÏÐÑÒÒÓÔÕÖÖרÙÙÚÛÛÜÝÝÞßßàááâããäååææçèèééêëëììíîîïïððñòòóóôôõöö÷÷øøùùúûûüüýýþþÿ  !""#$$%&&'())*+,--./01223456789:;<=>?@BCDEFHIJLMOPRSUWXZ\^`bdfhjmoqtvy|~ƒ†‰‹Ž’•—™›Ÿ¡£¥§¨ª¬­¯°²³µ¶·¹º»¼½¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÍÎÏÐÑÒÒÓÔÕÖÖרÙÙÚÛÛÜÝÝÞßßàááâããäååææçèèééêëëììíîîïïððñòòóóôôõöö÷÷øøùùúûûüüýýþþÿÿ¥%ÿ¤0ÿ¦:ÿ±C#ÿ»K2ÿÁUEþÃ^ZòÄepäÂl†×ºp™Ì²tªÃ«v·½¦y·¡}˱‚Ó«š‰Ü¥—•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•æÿ¥%ÿ¤0ÿ¦:ÿ±C#ÿ»K2ÿÁUEþÃ^ZòÄepäÂl†×ºp™Ì²tªÃ«v·½¦y·¡}˱‚Ó«š‰Ü¥—•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•æÿ¥%ÿ¤0ÿ¦:ÿ±C#ÿ»K2ÿÁUEþÃ^ZòÄepäÂl†×ºp™Ì²tªÃ«v·½¦y·¡}˱‚Ó«š‰Ü¥—•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•æÿ¥%ÿ¤0ÿ¦:ÿ±C#ÿ»K2ÿÁUEþÃ^ZòÄepäÂl†×ºp™Ì²tªÃ«v·½¦y·¡}˱‚Ó«š‰Ü¥—•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•æÿ¥%ÿ¤0ÿ¦:ÿ±C#ÿ»K2ÿÁUEþÃ^ZòÄepäÂl†×ºp™Ì²tªÃ«v·½¦y·¡}˱‚Ó«š‰Ü¥—•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•æÿ¥%ÿ¤0ÿ¦:ÿ±C#ÿ»K2ÿÁUEþÃ^ZòÄepäÂl†×ºp™Ì²tªÃ«v·½¦y·¡}˱‚Ó«š‰Ü¥—•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•æÿ¥%ÿ¤0ÿ¦:ÿ±C#ÿ»K2ÿÁUEþÃ^ZòÄepäÂl†×ºp™Ì²tªÃ«v·½¦y·¡}˱‚Ó«š‰Ü¥—•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•æÿ¥%ÿ¤0ÿ¦:ÿ±C#ÿ»K2ÿÁUEþÃ^ZòÄepäÂl†×ºp™Ì²tªÃ«v·½¦y·¡}˱‚Ó«š‰Ü¥—•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•æÿ¥%ÿ¤0ÿ¦:ÿ±C#ÿ»K2ÿÁUEþÃ^ZòÄepäÂl†×ºp™Ì²tªÃ«v·½¦y·¡}˱‚Ó«š‰Ü¥—•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•æÿ¥%ÿ¤0ÿ¦:ÿ±C#ÿ»K2ÿÁUEþÃ^ZòÄepäÂl†×ºp™Ì²tªÃ«v·½¦y·¡}˱‚Ó«š‰Ü¥—•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•æÿ¥%ÿ¤0ÿ¦:ÿ±C#ÿ»K2ÿÁUEþÃ^ZòÄepäÂl†×ºp™Ì²tªÃ«v·½¦y·¡}˱‚Ó«š‰Ü¥—•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•æÿ¥%ÿ¤0ÿ¦:ÿ±C#ÿ»K2ÿÁUEþÃ^ZòÄepäÂl†×ºp™Ì²tªÃ«v·½¦y·¡}˱‚Ó«š‰Ü¥—•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•æÿ¥%ÿ¤0ÿ¦:ÿ±C#ÿ»K2ÿÁUEþÃ^ZòÄepäÂl†×ºp™Ì²tªÃ«v·½¦y·¡}˱‚Ó«š‰Ü¥—•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•æÿ¥%ÿ¤0ÿ¦:ÿ±C#ÿ»K2ÿÁUEþÃ^ZòÄepäÂl†×ºp™Ì²tªÃ«v·½¦y·¡}˱‚Ó«š‰Ü¥—•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•æÿ¥%ÿ¤0ÿ¦:ÿ±C#ÿ»K2ÿÁUEþÃ^ZòÄepäÂl†×ºp™Ì²tªÃ«v·½¦y·¡}˱‚Ó«š‰Ü¥—•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•æÿ¥%ÿ¤0ÿ¦:ÿ±C#ÿ»K2ÿÁUEþÃ^ZòÄepäÂl†×ºp™Ì²tªÃ«v·½¦y·¡}˱‚Ó«š‰Ü¥—•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•æÿ¥%ÿ¤0ÿ¦:ÿ±C#ÿ»K2ÿÁUEþÃ^ZòÄepäÂl†×ºp™Ì²tªÃ«v·½¦y·¡}˱‚Ó«š‰Ü¥—•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•楗•æÿ¦%ÿ¤0ÿ§:ÿ²C"ÿ¼K2ÿÃTEüÆ]ZñÈdqãÆj‡ÖÀo›Ë¸r¬Â±tº»­wÄ´©{Í«£Ô¢ž…Û™šŽá™šŽá™šŽá™šŽá™šŽá™šŽá™šŽá™šŽá™šŽá™šŽá™šŽá™šŽá™šŽá™šŽá™šŽá™šŽá™šŽáÿ¦%ÿ¥0ÿ¨:ÿ³C"ÿ¾K1ÿÅTEùÉ\[ïÍcqãÌiˆÕÆmœÉ¿p®½¶rº´°uëªxÊ¢¥|Ñ™¡Ø‰Ý‰Ý‰Ý‰Ý‰Ý‰Ý‰Ý‰Ý‰Ý‰Ý‰Ý‰Ý‰Ý‰Ý‰Ý‰Ý‰Ýÿ¦%ÿ¥0ÿª:ÿµC"ÿÀK1ýÈSEöÍ[[íÑaráÐg‰ÑËkÂÀn­¶·q¸¬±sÁ£¬vÈš¨yÎ’¤~Ô‰ …؉ …؉ …؉ …؉ …؉ …؉ …؉ …؉ …؉ …؉ …؉ …؉ …؉ …؉ …؉ …؉ …Øÿ§%ÿ¥0ÿ«:ÿ¶C!ÿÁK1úËRDóÑZZêÙ`rÞÖe‰ËÌjœ»Ám«¯¹p¶¥´r¾œ¯tÄ”«wÊ‹§{Ï„¤Ô„¤Ô„¤Ô„¤Ô„¤Ô„¤Ô„¤Ô„¤Ô„¤Ô„¤Ô„¤Ô„¤Ô„¤Ô„¤Ô„¤Ô„¤Ô„¤Ôÿ§%ÿ¦0ÿ­:ÿ¸B!þÄJ0÷ÎRDðÖXZçà^rÖÚdˆÄÍiš´Ãl¨¨»o²ž¶pº–²rÀŽ®vƆªzʧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧΧÎÿ¨%ÿ§0ÿ®9ÿºB ûÆJ/ôÓQCëÝWZãæ\qÎÛd‡½Ïi˜®Åk¥¢¾n¯˜¹o¶µq¼ˆ±tÁ®xÅ{¬}É{¬}É{¬}É{¬}É{¬}É{¬}É{¬}É{¬}É{¬}É{¬}É{¬}É{¬}É{¬}É{¬}É{¬}É{¬}É{¬}Éÿ¨$ÿ§0 ÿ°9ÿ½B÷ÉJ/ïØPBæãUYÜè[pÆÝc…¶Ñh•§Èk¡œÁmª“¼o±Š¹q¶„µt»}²w¿w°|Âw°|Âw°|Âw°|Âw°|Âw°|Âw°|Âw°|Âw°|Âw°|Âw°|Âw°|Âw°|Âw°|Âw°|Âw°|Âw°|Âÿ©$ÿ¨0 ÿ³9þÀBóÍJ-éÝO@áéSYÓê[o¿ßc‚¯Óg‘¡Ëj–Åm¥Ào«†½q°ºsµz·w¸tµ{»tµ{»tµ{»tµ{»tµ{»tµ{»tµ{»tµ{»tµ{»tµ{»tµ{»tµ{»tµ{»tµ{»tµ{»tµ{»tµ{»ÿª$ÿ©/ ÿ¶8ùÄAíÒI+âãM@ÛïRXÊíZm·áb¨Ög›Ïj—‘ÉmŸˆÅo¥‚Âq©{¿t­v½w°q»{³q»{³q»{³q»{³q»{³q»{³q»{³q»{³q»{³q»{³q»{³q»{³q»{³q»{³q»{³q»{³q»{³ÿ«$ÿ«/ ÿº8óÉAäÚI(ØèL@ÎóQWÀïYk®äaz Üg†”Ôk‹Ïn—„Ìpœ}És xÆu£sÄx¦nÂ|©nÂ|©nÂ|©nÂ|©nÂ|©nÂ|©nÂ|©nÂ|©nÂ|©nÂ|©nÂ|©nÂ|©nÂ|©nÂ|©nÂ|©nÂ|©nÂ|©ÿ­$ÿ°/ ûÀ8êÐAÚâF(ÌîLAÃùPUµóXf¥éat—ág~Ûk†…×oŒÔr‘zÑu”uÏx—qÍ{šlÌ~œlÌ~œlÌ~œlÌ~œlÌ~œlÌ~œlÌ~œlÌ~œlÌ~œlÌ~œlÌ~œlÌ~œlÌ~œlÌ~œlÌ~œlÌ~œlÌ~œÿ¯#ÿ¶- ñÈ6 ÝÜ=ÍêF*ÁöK@¶ÿOQª÷X`›ïakèht…äm{àq€yÞtƒuÜx†rÚ{‰nØ~‹kÖ‚kÖ‚kÖ‚kÖ‚kÖ‚kÖ‚kÖ‚kÖ‚kÖ‚kÖ‚kÖ‚kÖ‚kÖ‚kÖ‚kÖ‚kÖ‚kÖ‚ÿ±#ú¿,ãÔ/Îæ;ÁóE+´ÿI=¨ÿNLžýWX‘öaa†ñiiíonyêtruèwuqçzwnå}ykä€{iã„|iã„|iã„|iã„|iã„|iã„|iã„|iã„|iã„|iã„|iã„|iã„|iã„|iã„|iã„|iã„|iã„|ÿµ"ëË"Ðã'Âñ:´þB*¦ÿF9›ÿME’ÿVO†þbV~új\w÷p`sõucoóxemò|gjñhhð‚jfï…kfï…kfï…kfï…kfï…kfï…kfï…kfï…kfï…kfï…kfï…kfï…kfï…kfï…kfï…kfï…kfï…köÂÔßÂï& µü:§ÿ>'™ÿD3ÿK=…ÿUE|ÿaKuÿjOpÿpRlÿuTjþyVhý|WfüXdü‚Zcû†[cû†[cû†[cû†[cû†[cû†[cû†[cû†[cû†[cû†[cû†[cû†[cû†[cû†[cû†[cû†[cû†[ÔÏ Äíµû& ¨ÿ6™ÿ;#ŒÿA,€ÿJ4xÿS:qÿ_?lÿiChÿoEeÿtGcÿwHbÿ{Iaÿ~J_ÿJ^ÿ„K^ÿ„K^ÿ„K^ÿ„K^ÿ„K^ÿ„K^ÿ„K^ÿ„K^ÿ„K^ÿ„K^ÿ„K^ÿ„K^ÿ„K^ÿ„K^ÿ„K^ÿ„K^ÿ„KÿŸ"ÿ- ÿž8ÿ¨Aÿ±I+ÿ¶S<ÿ¸]Oû¶fcî´owâ¬u‰Ø¤{™Î›¦È“„±Âˆ¹¾ˆŒ¿ºƒ‘Å·—Ë´} Ï®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤ÑÿŸ"ÿ- ÿž8ÿ¨Aÿ±I+ÿ¶S<ÿ¸]Oû¶fcî´owâ¬u‰Ø¤{™Î›¦È“„±Âˆ¹¾ˆŒ¿ºƒ‘Å·—Ë´} Ï®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤ÑÿŸ"ÿ- ÿž8ÿ¨Aÿ±I+ÿ¶S<ÿ¸]Oû¶fcî´owâ¬u‰Ø¤{™Î›¦È“„±Âˆ¹¾ˆŒ¿ºƒ‘Å·—Ë´} Ï®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤ÑÿŸ"ÿ- ÿž8ÿ¨Aÿ±I+ÿ¶S<ÿ¸]Oû¶fcî´owâ¬u‰Ø¤{™Î›¦È“„±Âˆ¹¾ˆŒ¿ºƒ‘Å·—Ë´} Ï®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤ÑÿŸ"ÿ- ÿž8ÿ¨Aÿ±I+ÿ¶S<ÿ¸]Oû¶fcî´owâ¬u‰Ø¤{™Î›¦È“„±Âˆ¹¾ˆŒ¿ºƒ‘Å·—Ë´} Ï®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤ÑÿŸ"ÿ- ÿž8ÿ¨Aÿ±I+ÿ¶S<ÿ¸]Oû¶fcî´owâ¬u‰Ø¤{™Î›¦È“„±Âˆ¹¾ˆŒ¿ºƒ‘Å·—Ë´} Ï®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤ÑÿŸ"ÿ- ÿž8ÿ¨Aÿ±I+ÿ¶S<ÿ¸]Oû¶fcî´owâ¬u‰Ø¤{™Î›¦È“„±Âˆ¹¾ˆŒ¿ºƒ‘Å·—Ë´} Ï®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤ÑÿŸ"ÿ- ÿž8ÿ¨Aÿ±I+ÿ¶S<ÿ¸]Oû¶fcî´owâ¬u‰Ø¤{™Î›¦È“„±Âˆ¹¾ˆŒ¿ºƒ‘Å·—Ë´} Ï®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤ÑÿŸ"ÿ- ÿž8ÿ¨Aÿ±I+ÿ¶S<ÿ¸]Oû¶fcî´owâ¬u‰Ø¤{™Î›¦È“„±Âˆ¹¾ˆŒ¿ºƒ‘Å·—Ë´} Ï®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤ÑÿŸ"ÿ- ÿž8ÿ¨Aÿ±I+ÿ¶S<ÿ¸]Oû¶fcî´owâ¬u‰Ø¤{™Î›¦È“„±Âˆ¹¾ˆŒ¿ºƒ‘Å·—Ë´} Ï®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤ÑÿŸ"ÿ- ÿž8ÿ¨Aÿ±I+ÿ¶S<ÿ¸]Oû¶fcî´owâ¬u‰Ø¤{™Î›¦È“„±Âˆ¹¾ˆŒ¿ºƒ‘Å·—Ë´} Ï®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤ÑÿŸ"ÿ- ÿž8ÿ¨Aÿ±I+ÿ¶S<ÿ¸]Oû¶fcî´owâ¬u‰Ø¤{™Î›¦È“„±Âˆ¹¾ˆŒ¿ºƒ‘Å·—Ë´} Ï®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤ÑÿŸ"ÿ- ÿž8ÿ¨Aÿ±I+ÿ¶S<ÿ¸]Oû¶fcî´owâ¬u‰Ø¤{™Î›¦È“„±Âˆ¹¾ˆŒ¿ºƒ‘Å·—Ë´} Ï®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤Ñ®y¤ÑÿŸ"ÿ- ÿŸ8ÿª@ÿ³I+ÿ¹R<ÿ»\Oúºedí¸mxá°s‹Õ¨yœÌŸ}ªÅ—µ¿‘…¾ºŒ‰Å¶‡Ì²ƒ–Ò¯ Ö§~¢Ó§~¢Ó§~¢Ó§~¢Ó§~¢Ó§~¢Ó§~¢Ó§~¢Ó§~¢Ó§~¢Ó§~¢Ó§~¢Ó§~¢Ó§~¢Ó§~¢ÓÿŸ"ÿž- ÿ 7ÿ«@ÿ´I+ÿ»R<ÿ½[Pú¾ddì¼lyàµrÓ­wžÊ¤z­Âœ~¹¼–‚÷‡Ê²‹ŒÒ®‡•ئƒÚ¡‚¡Õ¡‚¡Õ¡‚¡Õ¡‚¡Õ¡‚¡Õ¡‚¡Õ¡‚¡Õ¡‚¡Õ¡‚¡Õ¡‚¡Õ¡‚¡Õ¡‚¡Õ¡‚¡Õ¡‚¡Õ¡‚¡Õÿ "ÿž- ÿ¡7ÿ¬@ÿ¶H+ÿ½Q<ÿÀZPúÁceìÁjzÞ¹pÒ±u¡È¨x°À¡{¼¹›Ç´–„ϰ”Õ«‘—Ú ‰œÜšˆ ×šˆ ×šˆ ×šˆ ×šˆ ×šˆ ×šˆ ×šˆ ×šˆ ×šˆ ×šˆ ×šˆ ×šˆ ×šˆ ×šˆ ×ÿ "ÿž- ÿ¢7ÿ­@ÿ·H*ÿ¿Q<ÿÂZPùÄbeëÅi{Þ¾nѶs£Æ®v³¾§yÀ¸£É´¡†Ï¬œÕ£–”Úš‘œÜ•ŽŸØ•ŽŸØ•ŽŸØ•ŽŸØ•ŽŸØ•ŽŸØ•ŽŸØ•ŽŸØ•ŽŸØ•ŽŸØ•ŽŸØ•ŽŸØ•ŽŸØ•ŽŸØ•ŽŸØÿ "ÿŸ- ÿ£7ÿ®@ÿ¸H*ÿÁP<þÅYP÷È`fëÊg|ÝÃm‘ϼq¥Å´tµ½°yÀ¶¬È®§…Ï¥¡ŠÕœœ‘Ú•™œÜ”ŸØ”ŸØ”ŸØ”ŸØ”ŸØ”ŸØ”ŸØ”ŸØ”ŸØ”ŸØ”ŸØ”ŸØ”ŸØ”ŸØ”ŸØÿ¡"ÿŸ- ÿ¤7ÿ°?ÿºH*ÿÃP;ûÈXPõË_féÏf|ÜÉk’ÎÃo¦Áºrµ¶²vÀ¬¬{Ȥ¨Μ¤…Ô” ØŸ™ÛŠœŸØŠœŸØŠœŸØŠœŸØŠœŸØŠœŸØŠœŸØŠœŸØŠœŸØŠœŸØŠœŸØŠœŸØŠœŸØŠœŸØŠœŸØÿ¡"ÿ - ÿ¦6ÿ±?ÿ»H)þÆO;øËWPòÐ^fçÔd}ÚÏi“ÈÅm¦º»p´­³s¿£­vÇš¨zÍ’¥ÒŠ¢†×„ ‘Ù„¢œ×„¢œ×„¢œ×„¢œ×„¢œ×„¢œ×„¢œ×„¢œ×„¢œ×„¢œ×„¢œ×„¢œ×„¢œ×„¢œ×„¢œ×ÿ¡"ÿ - ÿ§6ÿ³?ÿ½G)üÈN;õÎVOîÕ]fäÚb}ÓÒh’ÁÆl¤³¼o±¦µr¼œ¯tÄ“«wÊ‹§{σ¤Ô}¢‹Ö{£•Õ{£•Õ{£•Õ{£•Õ{£•Õ{£•Õ{£•Õ{£•Õ{£•Õ{£•Õ{£•Õ{£•Õ{£•Õ{£•Õ{£•Õÿ¢!ÿ - ÿ¨6ÿ´?ÿ¿G(ùËN:òÓUOêÜ[fààa}ÌÓg‘»Èk¢¬¾n¯ ·p¸•²sÀ®vÅ…ªzÊ~¨Îx¦‡Ñu¥Òu¥Òu¥Òu¥Òu¥Òu¥Òu¥Òu¥Òu¥Òu¥Òu¥Òu¥Òu¥Òu¥Òu¥Òÿ¢!ÿ¡, ÿª6ÿ¶>ýÂG(õÍN9îÙTNæãYeØâ`{ÅÕf´ÊjŸ¥Ám«™ºo´µr»ˆ±uÀ®xÅz¬}Étª„Ëq©‹Ìq©‹Ìq©‹Ìq©‹Ìq©‹Ìq©‹Ìq©‹Ìq©‹Ìq©‹Ìq©‹Ìq©‹Ìq©‹Ìq©‹Ìq©‹Ìq©‹Ìÿ£!ÿ¢, ÿ¬5ÿ¹>ùÅG'ðÑM8éàRLâéWdÎä_z½×fŒ­Ìj›ŸÄl§“¾o¯Š¹qµƒ¶tº|³w¾v±|Âq¯‚Än®‡Æn®‡Æn®‡Æn®‡Æn®‡Æn®‡Æn®‡Æn®‡Æn®‡Æn®‡Æn®‡Æn®‡Æn®‡Æn®‡Æn®‡Æÿ¤!ÿ£, ÿ¯5ÿ¼>ôÉF%êØM6âçOLÜïUcÆæ_x´Úe‰¥Ði–˜Èl¡Ão¨…¿q®~»t²x¹w¶s·{¹nµ€¼k´…¾k´…¾k´…¾k´…¾k´…¾k´…¾k´…¾k´…¾k´…¾k´…¾k´…¾k´…¾k´…¾k´…¾k´…¾ÿ¥!ÿ¤, ÿ³5ûÁ>íÏF"áßK4ØëOLÏóTb¼è^t«Þd„Ôi‘Îm™‡Éo €År¥zÂt©tÀx¬p¾{¯k¼€²h»„³h»„³h»„³h»„³h»„³h»„³h»„³h»„³h»„³h»„³h»„³h»„³h»„³h»„³h»„³ÿ¦!ÿ¨+ ÿ¸4 óÇ=äØEÖæI5ËñNLÄ÷S_±ì]p¡âd}•Ûi‡ŠÕn‚Ðq•{ÍtšvËwqÉy mÇ}¢iÅ¥fÄ…¦fÄ…¦fÄ…¦fÄ…¦fÄ…¦fÄ…¦fÄ…¦fÄ…¦fÄ…¦fÄ…¦fÄ…¦fÄ…¦fÄ…¦fÄ…¦fÄ…¦ÿ¨ ÿ®*ü¿3 éÏ<×áBÊíI5¿øMJ·ûR[¦ñ]i˜éetŒâj}ƒÝo„|Ús‰w×wŒsÕzoÓ}‘lÑ€”hЄ–eχ—eχ—eχ—eχ—eχ—eχ—eχ—eχ—eχ—eχ—eχ—eχ—eχ—eχ—eχ—ÿª ÿµ)ðÈ1ÚÝ3 ËêB!¾öH5²ÿLF©ÿQU›÷]`Žðej…ëlq}çqvwävzsây}oá|l߀iÞƒƒg݇…e܉†e܉†e܉†e܉†e܉†e܉†e܉†e܉†e܉†e܉†e܉†e܉†e܉†e܉†e܉†ÿ­ù¿%ßÖ"Ëè2¾ôA"°ÿE3¤ÿJAœÿQMþ]V…ùf^}ôndvòshrïxknî|mlíojì‚pgê…reê‰scéŒtcéŒtcéŒtcéŒtcéŒtcéŒtcéŒtcéŒtcéŒtcéŒtcéŒtcéŒtcéŒtcéŒtcéŒtÿ¶èÍÌæ¾ó1±ÿ>"£ÿB/–ÿH:ÿPD„ÿ\K{ÿgQtþnVoüsYlûx[iù|]gø^føƒ_d÷†`bö‰aaöŒbaöŒbaöŒbaöŒbaöŒbaöŒbaöŒbaöŒbaöŒbaöŒbaöŒbaöŒbaöŒbaöŒbaöŒbóÄÎÚ ½ó±ÿ2£ÿ:•ÿ?*‰ÿF3€ÿO:xÿ[@qÿfElÿmHhÿsJfÿwLdÿ{MbÿNaÿ‚O`ÿ…P^ÿ‰Q^ÿ‹Q^ÿ‹Q^ÿ‹Q^ÿ‹Q^ÿ‹Q^ÿ‹Q^ÿ‹Q^ÿ‹Q^ÿ‹Q^ÿ‹Q^ÿ‹Q^ÿ‹Q^ÿ‹Q^ÿ‹Q^ÿ‹QÌË ¾æ ¯ÿ ¤ÿ0•ÿ5‡ÿ<$|ÿD+sÿM1lÿX5gÿc9cÿk;aÿq=_ÿu>]ÿy?\ÿ|@[ÿAZÿ‚AYÿ†BXÿˆBXÿˆBXÿˆBXÿˆBXÿˆBXÿˆBXÿˆBXÿˆBXÿˆBXÿˆBXÿˆBXÿˆBXÿˆBXÿˆBXÿˆBÿ™ÿ–+ ÿ•6ÿ >ÿ¨G&ÿ®Q4ÿ¯[Eÿ­eWø©ohí£xy㛇ے…”Ô‹ŒžÏ…‘¦Ë€•¬Ç|™±ÅyžµÂv£¹Àtª¼½q²¾¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿ÿ™ÿ–+ ÿ•6ÿ >ÿ¨G&ÿ®Q4ÿ¯[Eÿ­eWø©ohí£xy㛇ے…”Ô‹ŒžÏ…‘¦Ë€•¬Ç|™±ÅyžµÂv£¹Àtª¼½q²¾¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿ÿ™ÿ–+ ÿ•6ÿ >ÿ¨G&ÿ®Q4ÿ¯[Eÿ­eWø©ohí£xy㛇ے…”Ô‹ŒžÏ…‘¦Ë€•¬Ç|™±ÅyžµÂv£¹Àtª¼½q²¾¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿ÿ™ÿ–+ ÿ•6ÿ >ÿ¨G&ÿ®Q4ÿ¯[Eÿ­eWø©ohí£xy㛇ے…”Ô‹ŒžÏ…‘¦Ë€•¬Ç|™±ÅyžµÂv£¹Àtª¼½q²¾¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿ÿ™ÿ–+ ÿ•6ÿ >ÿ¨G&ÿ®Q4ÿ¯[Eÿ­eWø©ohí£xy㛇ے…”Ô‹ŒžÏ…‘¦Ë€•¬Ç|™±ÅyžµÂv£¹Àtª¼½q²¾¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿ÿ™ÿ–+ ÿ•6ÿ >ÿ¨G&ÿ®Q4ÿ¯[Eÿ­eWø©ohí£xy㛇ے…”Ô‹ŒžÏ…‘¦Ë€•¬Ç|™±ÅyžµÂv£¹Àtª¼½q²¾¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿ÿ™ÿ–+ ÿ•6ÿ >ÿ¨G&ÿ®Q4ÿ¯[Eÿ­eWø©ohí£xy㛇ے…”Ô‹ŒžÏ…‘¦Ë€•¬Ç|™±ÅyžµÂv£¹Àtª¼½q²¾¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿ÿ™ÿ–+ ÿ•6ÿ >ÿ¨G&ÿ®Q4ÿ¯[Eÿ­eWø©ohí£xy㛇ے…”Ô‹ŒžÏ…‘¦Ë€•¬Ç|™±ÅyžµÂv£¹Àtª¼½q²¾¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿ÿ™ÿ–+ ÿ•6ÿ >ÿ¨G&ÿ®Q4ÿ¯[Eÿ­eWø©ohí£xy㛇ے…”Ô‹ŒžÏ…‘¦Ë€•¬Ç|™±ÅyžµÂv£¹Àtª¼½q²¾¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿ÿ™ÿ–+ ÿ•6ÿ >ÿ¨G&ÿ®Q4ÿ¯[Eÿ­eWø©ohí£xy㛇ے…”Ô‹ŒžÏ…‘¦Ë€•¬Ç|™±ÅyžµÂv£¹Àtª¼½q²¾¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿¹o±¿ÿ™ÿ—+ ÿ—6ÿ¡>ÿªF%ÿ°P4ÿ±ZEÿ°dW÷¬miì§w{áž}ŠÙ–ƒ—ÑŽ‰¢ËˆŽ«Ç‚“±Ä~—·Ázœ»¾w¢¿¼uªÂµq®Ã³r¯Á³r¯Á³r¯Á³r¯Á³r¯Á³r¯Á³r¯Á³r¯Á³r¯Á³r¯Á³r¯Á³r¯Á³r¯Áÿ™ÿ—* ÿ˜5ÿ£=ÿ¬F%ÿ³O4ÿ´YFÿ´cXö±lkê­u}ߣ{Õ›œÍ’†¨Ç‹Š±Â…¹¿€”¾»|šÃ¹y¡Çµv©Ê­u¬Æ«v­Ä«v­Ä«v­Ä«v­Ä«v­Ä«v­Ä«v­Ä«v­Ä«v­Ä«v­Ä«v­Ä«v­Ä«v­Äÿšÿ˜* ÿš4ÿ¥=ÿ®F%ÿµN4ÿ·XFÿ·aYõµjlé²sݨxÓŸ~ Ê–‚¬Äއ·¾ˆŒ¿ºƒ‘Å·˜Ë´|¡Ï«x¥Ï¥yªÈ¤y¬Æ¤y¬Æ¤y¬Æ¤y¬Æ¤y¬Æ¤y¬Æ¤y¬Æ¤y¬Æ¤y¬Æ¤y¬Æ¤y¬Æ¤y¬Æ¤y¬Æÿšÿ˜* ÿ›4ÿ¦=ÿ¯E%ÿ·N4ÿºWFÿ»`Yô¹imç¶qܬv“Ф{£Èš±À“„¼»Œ‰Å·ˆË´†™Î²†¤Ñ¤|¤ÑŸ}©Êž}ªÈž}ªÈž}ªÈž}ªÈž}ªÈž}ªÈž}ªÈž}ªÈž}ªÈž}ªÈž}ªÈž}ªÈž}ªÈÿ›ÿ™* ÿœ4ÿ§<ÿ±E$ÿ¹M4ÿ¼WFþ¾_Yô½gnçºo‚Ú±t•Ϩy¦ÅŸ}´¾—À¹”ŠÆµ‘’˯˜ÏªŠ¡Òž‚£Ó™¨Ì˜‚©Ê˜‚©Ê˜‚©Ê˜‚©Ê˜‚©Ê˜‚©Ê˜‚©Ê˜‚©Ê˜‚©Ê˜‚©Ê˜‚©Ê˜‚©Ê˜‚©Êÿ›ÿ™* ÿ4ÿ©<ÿ²E$ÿ»M3ÿ¿VFýÁ^ZóÁfoæ¿mƒÙ¶s—Í­w¨Ä¥{·¾¡ƒÀ¶›‰Æ®•̨‘•Ï¢ŽžÒ™‡¢Ó”†§Í“†¨Ë“†¨Ë“†¨Ë“†¨Ë“†¨Ë“†¨Ë“†¨Ë“†¨Ë“†¨Ë“†¨Ë“†¨Ë“†¨Ë“†¨Ëÿ›ÿ™* ÿž3ÿª<ÿ³E$ÿ¼L3ÿÁUFûÄ]ZóÅeoåÃl„Ø»q˜Ì²u«Ã­|¶¹¥¿°ž†Æ¨™ŒË¡•’Л’›Ó”Ž¢ÔŠ¦ÎŠ¨ËŠ¨ËŠ¨ËŠ¨ËŠ¨ËŠ¨ËŠ¨ËŠ¨ËŠ¨ËŠ¨ËŠ¨ËŠ¨ËЍËÿ›ÿš* ÿŸ3ÿ«<ÿµD#ÿ¾L3þÃUEùÇ\ZñÉdoåÈj…ÖÁošÊ¹tª¾°z¶³©¿ª¢„Æ¢ŠË›šÏ•—™Ò”¢ÔŠ¦ÎŠ¨ÌŠ¨ÌŠ¨ÌŠ¨ÌŠ¨ÌŠ¨ÌŠ¨ÌŠ¨ÌŠ¨ÌŠ¨ÌŠ¨ÌŠ¨ÌŠ¨Ìÿœÿš* ÿ 3ÿ¬<ÿ¶D#ÿ¿L2üÆTEöÊ\ZïÍbpäÍh†ÓÅmšÅ¼sª¹´xµ®­}¾¥§‚Å¢ˆË•ŸŽÏœ–Ò‹œ¢Ó†•¦Î†”§Ì†”§Ì†”§Ì†”§Ì†”§Ì†”§Ì†”§Ì†”§Ì†”§Ì†”§Ì†”§Ì†”§Ì†”§Ìÿœÿš) ÿ¢3ÿ­;ÿ·D#ÿÁL2ùÉSEóÍZZìÒ`pàÐf†ÎÈlšÀ¿q©´¸wµ©±|¾Ÿ¬Å—¨†Ê¤ŒÎŠ¢•Ñ…¢¡Òœ¦Îš§Ìš§Ìš§Ìš§Ìš§Ìš§Ìš§Ìš§Ìš§Ìš§Ìš§Ìš§Ìš§Ìÿœÿ›) ÿ£3ÿ¯;ÿ¹D"ýÃK1öÌRDðÒYYèÚ_pÛÕd†ÉÌj™ºÃo¨­»t´¢´y½˜¯}ìƒÈ‰©‰Ìƒ§‘Ï~¦œÐ}¤¦Í|¢¨Ë|¢¨Ë|¢¨Ë|¢¨Ë|¢¨Ë|¢¨Ë|¢¨Ë|¢¨Ë|¢¨Ë|¢¨Ë|¢¨Ë|¢¨Ë|¢¨Ëÿÿ›) ÿ¥2ÿ±;ÿ¼D!úÆK1óÑQCëÚWYãß]oÓÛc…ÂÏi—±Äm§¤¼p²˜µt»Ž±x†­}Æ€«‚Êz©ŠÍv¨”Îv©£Ìw«¨Êw«¨Êw«¨Êw«¨Êw«¨Êw«¨Êw«¨Êw«¨Êw«¨Êw«¨Êw«¨Êw«¨Êw«¨Êÿÿœ) ÿ§2ÿ³;ÿ¾C õÊK/îÖPBæáVWÜä[nËÞcƒºÑh”©Çl£›¾n®¸q·†´t½~°xÂw®|Ær¬ƒÉm«ŒÊm«™Én¬ŸÇn¬ŸÇn¬ŸÇn¬ŸÇn¬ŸÇn¬ŸÇn¬ŸÇn¬ŸÇn¬ŸÇn¬ŸÇn¬ŸÇn¬ŸÇn¬ŸÇÿžÿ) ÿ©2ÿ¶:úÂCðÎJ.çÝO@âéRWÒèZmÁàb€±Ôg‘¡Êkž”Ãn¨‰½q°€¹t¶y¶wºt´{½n²Àj°ˆÂg°’Ãf°–Ãf°–Ãf°–Ãf°–Ãf°–Ãf°–Ãf°–Ãf°–Ãf°–Ãf°–Ãf°–Ãf°–Ãf°–ÃÿŸÿž) ÿ­1 ÿº:ôÇBèÕJ+ßäL?×ìQVÉîYk·ãa|¨Øg‹šÏk—Én ƒÄq§{Àt¬u½x°p»{³l¹€¶h¸†¸d·¹c¶‘ºc¶‘ºc¶‘ºc¶‘ºc¶‘ºc¶‘ºc¶‘ºc¶‘ºc¶‘ºc¶‘ºc¶‘ºc¶‘ºc¶‘ºÿ ÿ¡(ÿ±0 ûÀ9ìÎBßßG(ÓéL@ÊñQU¾òXh­æawžÝg„’Õl‡Ïo–~ËsœxÈv¡rÆy¤nÄ|§i©fÀ†¬b¿­a¿®a¿®a¿®a¿®a¿®a¿®a¿®a¿®a¿®a¿®a¿®a¿®a¿®ÿ¢ÿ¦'ÿ·/ òÇ8 áØAÒæF*ÇðL@¾øPS²õWc¢ëap•ãg{ŠÝm„Øq‹zÔutÒy“pÐ|–lΙh̃›dˈaÊŸ`ÉŸ`ÉŸ`ÉŸ`ÉŸ`ÉŸ`ÉŸ`ÉŸ`ÉŸ`ÉŸ`ÉŸ`ÉŸ`ÉŸ`ÉŸÿ¤ÿ­&û¾-æÐ4Óâ<ÇîF+»ùJ>°þOO¦úW\˜ñahŒëhqƒænx{âs}ußxqÝ{„mÛ‡jÚƒ‰gÙ†Šd׋ŒaÖŽ`Õ‘Ž`Õ‘Ž`Õ‘Ž`Õ‘Ž`Õ‘Ž`Õ‘Ž`Õ‘Ž`Õ‘Ž`Õ‘Ž`Õ‘Ž`Õ‘Ž`Õ‘Ž`Õ‘Žÿ§ÿµ#îÉ&Õß)Çì<ºøD+­ÿH;£ÿMIšÿWTùa]„ôje|ðpjvívnqëzqmé~tkè‚vhæ…wfåˆycäŒzaã‘|`ã’|`ã’|`ã’|`ã’|`ã’|`ã’|`ã’|`ã’|`ã’|`ã’|`ã’|`ã’|`ã’|ÿ«÷ÀÙÜÇë( º÷;¬ÿA) ÿF6•ÿLAÿVKƒÿaR{ýkWtúq\oøv_lö{aiõcgôƒdeó†fcòŠgañŽh_ð’i_ð“j_ð“j_ð“j_ð“j_ð“j_ð“j_ð“j_ð“j_ð“j_ð“j_ð“j_ð“j_ð“jÿ·ÖÏ Çê¹÷) ¬ÿ9žÿ>&’ÿD0‡ÿK9€ÿT@xÿaFrÿjJlÿpMiÿvPfÿ{QdÿScÿƒTaÿ†U`þ‰V^þW]ý’X\ý“X\ý“X\ý“X\ý“X\ý“X\ý“X\ý“X\ý“X\ý“X\ý“X\ý“X\ý“X\ý“XÖÄÆÔ ¸÷«ÿ)žÿ4ÿ:!„ÿA)zÿI0rÿR6lÿ^:hÿh=dÿo@aÿtA_ÿyC^ÿ}D]ÿ€E\ÿ„E[ÿ‡FZÿŠGXÿGXÿHXÿHXÿHXÿHXÿHXÿHXÿHXÿHXÿHXÿHXÿHXÿHXÿHÄÇ·Û©ÿŸÿ* ÿ0ƒÿ6wÿ>"nÿG(fÿP,aÿZ/]ÿd1[ÿl3Yÿq5Xÿu6Vÿy6Vÿ|7Uÿ7Tÿ‚8Sÿ…9Rÿ‰9RÿŠ9RÿŠ9RÿŠ9RÿŠ9RÿŠ9RÿŠ9RÿŠ9RÿŠ9RÿŠ9RÿŠ9RÿŠ9RÿŠ9RÿŠ9ÿ’ÿ) ÿ5ÿ˜;ÿ D!ÿ¦N-ÿ§Y<ÿ¥dLÿ¡n[÷›xjî•w玉‚ᆋ܀•“Ø|›™Ôx žÑu¤¢Ïs©¥Íq®¨ÌoµªÊm¾­Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®ÿ’ÿ) ÿ5ÿ˜;ÿ D!ÿ¦N-ÿ§Y<ÿ¥dLÿ¡n[÷›xjî•w玉‚ᆋ܀•“Ø|›™Ôx žÑu¤¢Ïs©¥Íq®¨ÌoµªÊm¾­Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®ÿ’ÿ) ÿ5ÿ˜;ÿ D!ÿ¦N-ÿ§Y<ÿ¥dLÿ¡n[÷›xjî•w玉‚ᆋ܀•“Ø|›™Ôx žÑu¤¢Ïs©¥Íq®¨ÌoµªÊm¾­Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®ÿ’ÿ) ÿ5ÿ˜;ÿ D!ÿ¦N-ÿ§Y<ÿ¥dLÿ¡n[÷›xjî•w玉‚ᆋ܀•“Ø|›™Ôx žÑu¤¢Ïs©¥Íq®¨ÌoµªÊm¾­Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®ÿ’ÿ) ÿ5ÿ˜;ÿ D!ÿ¦N-ÿ§Y<ÿ¥dLÿ¡n[÷›xjî•w玉‚ᆋ܀•“Ø|›™Ôx žÑu¤¢Ïs©¥Íq®¨ÌoµªÊm¾­Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®ÿ’ÿ) ÿ5ÿ˜;ÿ D!ÿ¦N-ÿ§Y<ÿ¥dLÿ¡n[÷›xjî•w玉‚ᆋ܀•“Ø|›™Ôx žÑu¤¢Ïs©¥Íq®¨ÌoµªÊm¾­Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®ÿ’ÿ) ÿ5ÿ˜;ÿ D!ÿ¦N-ÿ§Y<ÿ¥dLÿ¡n[÷›xjî•w玉‚ᆋ܀•“Ø|›™Ôx žÑu¤¢Ïs©¥Íq®¨ÌoµªÊm¾­Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®ÿ’ÿ) ÿ5ÿ˜;ÿ D!ÿ¦N-ÿ§Y<ÿ¥dLÿ¡n[÷›xjî•w玉‚ᆋ܀•“Ø|›™Ôx žÑu¤¢Ïs©¥Íq®¨ÌoµªÊm¾­Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®Ãi½®ÿ“ÿ) ÿ4ÿš;ÿ¢D ÿ©M-ÿªX<ÿ¨bLÿ¤l\õŸvlì™z䑇†Þ‰Øƒ“˜Ó~™ŸÐz¤Ív¢©Ët§¬Éq­¯Ço´²Ál¹´¼l»±¼l»±¼l»±¼l»±¼l»±¼l»±¼l»±¼l»±¼l»±¼l»±¼l»±¼l»±ÿ”ÿ‘( ÿ‘3ÿœ:ÿ¤C ÿ¬L-ÿ­V=ÿ­`Mþ©j^ô¥tnêŸ}}á–ƒ‹ÙŽŠ–Ó‡ Î•§Ê|š­ÇxŸ²Äu¥¶Âr«¹Àp´»·nµ¹³o¸µ³o¸µ³o¸µ³o¸µ³o¸µ³o¸µ³o¸µ³o¸µ³o¸µ³o¸µ³o¸µ³o¸µÿ”ÿ’( ÿ“2ÿž:ÿ§C ÿ®K-ÿ±U=ÿ°_Ný®h_òªrpç¤zÞš€Õ’‡œÎ‹Œ¦É„‘¯Ä~—µÁyœ»¾v£¿¼t«Â´o®Ã®r³¼«s¶¸«s¶¸«s¶¸«s¶¸«s¶¸«s¶¸«s¶¸«s¶¸«s¶¸«s¶¸«s¶¸«s¶¸ÿ•ÿ’( ÿ•2ÿ :ÿ©Bÿ°J-ÿ´T=ÿ´^Ný³g`ñ¯præ©xƒÛŸ~“Ò—ƒ¡Ëމ¬Ä†ŽµÀ€”½¼{šÃºz£Å·y«Ç¬s¬Æ§u±¿¥wµº¥wµº¥wµº¥wµº¥wµº¥wµº¥wµº¥wµº¥wµº¥wµº¥wµº¥wµºÿ•ÿ“( ÿ–1ÿ¡9ÿªBÿ²J,ÿ¶S<ÿ·]Nû¶eað´ntä­u†Ù¤{–Ï›€¥Ç’…±ÁŠ‹»½‡”À»…Ķ‚¤Ç°~ªÈ¥wªÈ¡y°ÁŸz³¼Ÿz³¼Ÿz³¼Ÿz³¼Ÿz³¼Ÿz³¼Ÿz³¼Ÿz³¼Ÿz³¼Ÿz³¼Ÿz³¼Ÿz³¼ÿ•ÿ“( ÿ—1ÿ£9ÿ¬Bÿ´J,ÿ¹S<ÿº\Nøºdbï¸luã²sˆØ©y™ÍŸ~©Å˜„´¿“Œ¼¸“Á³‰™Å®†¡Èª„©ÉŸ|©Ê›}®Â™~²½™~²½™~²½™~²½™~²½™~²½™~²½™~²½™~²½™~²½™~²½™~²½ÿ–ÿ“( ÿ˜0ÿ¤9ÿ­AÿµI,ÿ»R<ý½[Nö½cbî½kvâ¶q‰Õ®w›Ë¥|ªÂƒ´¹–‰¼²‘Á¬Œ–Ƨ‰È£‡¦Ê™€¨Ë–®Ä•±¾•±¾•±¾•±¾•±¾•±¾•±¾•±¾•±¾•±¾•±¾•±¾ÿ–ÿ”' ÿ™0ÿ¥9ÿ®Aÿ·I+ÿ½Q<ü¿ZNôÁbbìÁiwá»p‹Ò±tǨ{ª¼ ´´š‡¼¬”¦”Æ ›Éœ‹¤Ë•†¨Ë‘…­Å…±¿…±¿…±¿…±¿…±¿…±¿…±¿…±¿…±¿…±¿…±¿…±¿ÿ–ÿ”'ÿš0ÿ¦8ÿ°Aÿ¸I+ÿ¿Q<úÂYNòÄacéÅhwݾmŒÍ´s«yª·¤~´®„¼¦˜ŠÁ ”‘Æš‘˜É–¡Ë‹¨ÌŒ‰¬ÅŒ‰°ÀŒ‰°ÀŒ‰°ÀŒ‰°ÀŒ‰°ÀŒ‰°ÀŒ‰°ÀŒ‰°ÀŒ‰°ÀŒ‰°ÀŒ‰°ÀŒ‰°Àÿ—ÿ•'ÿ›0ÿ§8ÿ±AÿºI+ÿÂP;øÆXNðÈ_cæÈfxØÁkÉ·q½¯w©²§|³©¡‚»¡œˆÁš˜Æ”––É”ŸË‹‘¨Ì‡Ž¬Æ‡°Á‡°Á‡°Á‡°Á‡°Á‡°Á‡°Á‡°Á‡°Á‡°Á‡°Á‡°Áÿ—ÿ•'ÿ/ ÿ©8ÿ³@ÿ¼H*üÅO;öÉWNíÍ^câËdxÒÄjŒÄ»oœ¸²u©­«{³£¦€»›¡†Á”ÅŽ›”ÈŠ™Ê†™¨Ë‚“¬Æ‚’¯Á‚’¯Á‚’¯Á‚’¯Á‚’¯Á‚’¯Á‚’¯Á‚’¯Á‚’¯Á‚’¯Á‚’¯Á‚’¯Áÿ—ÿ•'ÿž/ ÿª8ÿµ@ÿ¾H)ùÈN:óÍVMêÓ\bÞÏbxÍÇh‹¿¾n›²·s¨§°y²ž«~º•§„ÀŽ£‹Äˆ¡’ǃŸšÉ€ §Ê}š¬Æ}˜¯Á}˜¯Á}˜¯Á}˜¯Á}˜¯Á}˜¯Á}˜¯Á}˜¯Á}˜¯Á}˜¯Á}˜¯Á}˜¯Áÿ˜ÿ–'ÿ / ÿ¬7ÿ·@ýÁH(öËN9ïÓTLæÙZbØÔawÇËgйÃlš­¼r§¡¶w±˜±}¸­‚¾ˆª‰Ã‚¨Æ}§™Èz§¥Éw¢¬ÅxŸ°ÁxŸ°ÁxŸ°ÁxŸ°ÁxŸ°ÁxŸ°ÁxŸ°ÁxŸ°ÁxŸ°ÁxŸ°ÁxŸ°ÁxŸ°Áÿ˜ÿ—&ÿ¢/ ÿ®7ÿ¹?ùÄG'ñÎM8êÛSKàßY`ÐÚ_vÁÐe‰³Ék™¦Âp¥›½u¯‘¸{¶ˆµ€¼²†À{°Ãv®–Ås®¡Ær­­Är©°Àr©°Àr©°Àr©°Àr©°Àr©°Àr©°Àr©°Àr©°Àr©°Àr©°Àr©°Àÿ™ÿ˜&ÿ¤. ÿ±6þ½?ôÈG%ëÔM6åãPIÙãW_Éß^tº×d†¬Ïi–Çm£‘Àq¬†»u³~·z¹w´½r²…¿m±Áj°—Âi±¥Ál´²½l´²½l´²½l´²½l´²½l´²½l´²½l´²½l´²½l´²½l´²½l´²½ÿšÿ™&ÿ§- ÿµ6ùÁ?îÎF#äÜL2ÝçOIÏèV^Àä]r²Þd‚£Ôi‘•Ëmœ‰Åp¥Às¬w¼w±p¹|µk·¸g¶‡ºcµ»aµ›¼c·¦¹c·¦¹c·¦¹c·¦¹c·¦¹c·¦¹c·¦¹c·¦¹c·¦¹c·¦¹c·¦¹c·¦¹ÿ›ÿ›%ÿ«- ÿ¹5 òÇ>åÕFÚãI3ÏëNIÆíT]·ê\n¨âc}šÙiŠŽÒm”„Ìq›{Èu¡sÄx¦nÂ|©iÀ¬e¾‡®b½Ž°_½—±^¼ž±^¼ž±^¼ž±^¼ž±^¼ž±^¼ž±^¼ž±^¼ž±^¼ž±^¼ž±^¼ž±^¼ž±ÿœÿ $ÿ°,ùÀ4 éÏ=ÚßBÎéI3ÄñNH»òRZ­ð[ižçcv’ài‡Úo‰~ÔswÑw•qÎ{™lÌœhʃždɈ aÇŽ¢^Æ•¤\Æ›¤\Æ›¤\Æ›¤\Æ›¤\Æ›¤\Æ›¤\Æ›¤\Æ›¤\Æ›¤\Æ›¤\Æ›¤\Æ›¤ÿžÿ¥#ÿ·*ðÈ2ÜÛ5 ÎçBÂñH4¸ùLF¯÷QU¢õ[b•ídmŠçkv€âp}yÞu‚sÛz‡nÙ~ŠkׂŒgÕ†ŽdÔ‹aÓ’^Ñ–”\Ñ›•\Ñ›•\Ñ›•\Ñ›•\Ñ›•\Ñ›•\Ñ›•\Ñ›•\Ñ›•\Ñ›•\Ñ›•\Ñ›•ÿ¡ÿ­!ø¿&âÔ%Îå3ÂðB!¶úG3«þKB¢þPO—û[Z‹õec‚ðljzìrptéxtoç|wlåzhã„|fâˆ}cáŒ`à‘^ß–‚\Þšƒ\Þšƒ\Þšƒ\Þšƒ\Þšƒ\Þšƒ\Þšƒ\Þšƒ\Þšƒ\Þšƒ\Þšƒ\Þšƒÿ£ÿ¶éÌÏãÂð3µú@"©ÿD0ÿI=•ÿPH‹ÿ[P‚ýeWzùm]tösaoôydkò~ghñ‚ifð†jdïŠlbîŽm`í’n]ì—p\ë›q\ë›q\ë›q\ë›q\ë›q\ë›q\ë›q\ë›q\ë›q\ë›q\ë›q\ë›qÿ¬óÃÑÚ Áï´û3¨ÿ< ›ÿB,ÿH6‡ÿO?ÿZFxÿeKqÿmOlÿsRiÿyUfþ~Wdý‚Xbü†YaûŠZ_úŽ[^ú’\\ù—][ø›^[ø›^[ø›^[ø›^[ø›^[ø›^[ø›^[ø›^[ø›^[ø›^[ø›^[ø›^ú¹ÍË Àæ ²ü §ÿ3šÿ9ÿ?&‚ÿF.zÿN5sÿX:mÿc?iÿlBeÿrDbÿwF`ÿ|G_ÿH]ÿ…I\ÿˆJ[ÿŒKZÿLXÿ•MWÿ™MWÿ™MWÿ™MWÿ™MWÿ™MWÿ™MWÿ™MWÿ™MWÿ™MWÿ™MWÿ™MWÿ™MÍÁ¾Ð±ö¥ÿ! ™ÿ.Œÿ4€ÿ; vÿC'mÿL,fÿT0bÿ`3^ÿi5\ÿo7Zÿt8Yÿy9Xÿ}:Wÿ€;Vÿ„;Uÿ‡Rÿ“>Rÿ“>Rÿ“>Rÿ“>Rÿ“>Rÿ“>Rÿ“>Rÿ“>Rÿ“>Rÿ“>Rÿ“>½Å°×£ÿ™ÿ" ‹ÿ)~ÿ0sÿ8iÿ@bÿI#[ÿQ&WÿZ(Uÿb*Rÿi+Qÿo,Pÿs-Oÿw.Nÿz.Nÿ}/Mÿ€/Lÿ„0Kÿˆ0Kÿ‹0Kÿ‹0Kÿ‹0Kÿ‹0Kÿ‹0Kÿ‹0Kÿ‹0Kÿ‹0Kÿ‹0Kÿ‹0Kÿ‹0Kÿ‹0ÿ‹ÿˆ(ÿ„4ÿ:ÿ—BÿžK'ÿžW4ÿbBÿ™mOÿ“x\ø‚gòˆ‹qì‚“yè|™€äxž†át£Šßq¨ŽÝo®‘Ûm³”Úl¹–Øk˜ÕiÌšÌeË›ÌeË›ÌeË›ÌeË›ÌeË›ÌeË›ÌeË›ÌeË›ÌeË›ÌeË›ÌeË›ÿ‹ÿˆ(ÿ„4ÿ:ÿ—BÿžK'ÿžW4ÿbBÿ™mOÿ“x\ø‚gòˆ‹qì‚“yè|™€äxž†át£Šßq¨ŽÝo®‘Ûm³”Úl¹–Øk˜ÕiÌšÌeË›ÌeË›ÌeË›ÌeË›ÌeË›ÌeË›ÌeË›ÌeË›ÌeË›ÌeË›ÌeË›ÿ‹ÿˆ(ÿ„4ÿ:ÿ—BÿžK'ÿžW4ÿbBÿ™mOÿ“x\ø‚gòˆ‹qì‚“yè|™€äxž†át£Šßq¨ŽÝo®‘Ûm³”Úl¹–Øk˜ÕiÌšÌeË›ÌeË›ÌeË›ÌeË›ÌeË›ÌeË›ÌeË›ÌeË›ÌeË›ÌeË›ÌeË›ÿ‹ÿˆ(ÿ„4ÿ:ÿ—BÿžK'ÿžW4ÿbBÿ™mOÿ“x\ø‚gòˆ‹qì‚“yè|™€äxž†át£Šßq¨ŽÝo®‘Ûm³”Úl¹–Øk˜ÕiÌšÌeË›ÌeË›ÌeË›ÌeË›ÌeË›ÌeË›ÌeË›ÌeË›ÌeË›ÌeË›ÌeË›ÿ‹ÿˆ(ÿ„4ÿ:ÿ—BÿžK'ÿžW4ÿbBÿ™mOÿ“x\ø‚gòˆ‹qì‚“yè|™€äxž†át£Šßq¨ŽÝo®‘Ûm³”Úl¹–Øk˜ÕiÌšÌeË›ÌeË›ÌeË›ÌeË›ÌeË›ÌeË›ÌeË›ÌeË›ÌeË›ÌeË›ÌeË›ÿ‹ÿˆ(ÿ„4ÿ:ÿ—BÿžK'ÿžW4ÿbBÿ™mOÿ“x\ø‚gòˆ‹qì‚“yè|™€äxž†át£Šßq¨ŽÝo®‘Ûm³”Úl¹–Øk˜ÕiÌšÌeË›ÌeË›ÌeË›ÌeË›ÌeË›ÌeË›ÌeË›ÌeË›ÌeË›ÌeË›ÌeË›ÿ‹ÿ‰(ÿ…3ÿ9ÿ˜BÿžK'ÿŸV4ÿžaBÿšmPÿ•w]÷hñ‰‹r냒{ç}˜‚ãxˆàt£ŒÝr¨Ûo­“Ún³–Ølº˜Ök›ÑiÊœÊfÊœÊfÊœÊfÊœÊfÊœÊfÊœÊfÊœÊfÊœÊfÊœÊfÊœÊfÊœÊfÊœÿŒÿ‰'ÿˆ2ÿ“8ÿ›Aÿ¢J'ÿ¤T4ÿ¢_CÿŸjQýšt_õ”~l펈xç‡â€•ŠÝ{šÚw –Öt¦šÔq¬žÒo²¡Ðm¹£ÏlæÅgæÀiÇ¡ÀiÇ¡ÀiÇ¡ÀiÇ¡ÀiÇ¡ÀiÇ¡ÀiÇ¡ÀiÇ¡ÀiÇ¡ÀiÇ¡ÀiÇ¡ÿÿŠ'ÿŠ1 ÿ–7ÿž@ÿ¥I'ÿ§S4ÿ§]Cÿ¤hSü rbòš|pê”…}ã‹‹ˆÝ„’‘Ø~˜˜ÓzžŸÐu¤¤Írª¨Ëo°«Ém¸®Âi¼°¼kÀª·mÄ¥·mÄ¥·mÄ¥·mÄ¥·mÄ¥·mÄ¥·mÄ¥·mÄ¥·mÄ¥·mÄ¥·mÄ¥ÿÿ‹'ÿŒ0 ÿ˜7ÿ @ÿ§H&ÿ«R4ÿ«\Dÿ©fTú¥pdðŸys瘂߈و—Ò• Î{›§Êv¡­Çs¨±Åp¯µÁm··¹k¸µ³n½®°pÁ¨°pÁ¨°pÁ¨°pÁ¨°pÁ¨°pÁ¨°pÁ¨°pÁ¨°pÁ¨°pÁ¨°pÁ¨ÿŽÿ‹&ÿŽ0 ÿš6ÿ¢?ÿ©H&ÿ®Q4ÿ®[Dÿ¬dUùªneï¥wvå…Ü”…’ÔŒŒÎ„’§É}˜¯ÄxžµÂu§¹Át±»¸p³»±o¶¸¬q»±©s¿«©s¿«©s¿«©s¿«©s¿«©s¿«©s¿«©s¿«©s¿«©s¿«©s¿«ÿŽÿŒ&ÿ/ ÿ›6ÿ¤?ÿ«G&ÿ±P4ÿ±YDü°cUö®lgíªuxã¡|ˆÙ˜ƒ–щ£Ê‡­Å‚—´Â ¸¾|¨»»z°½±t²½©r´»¦t¹³£v¾­£v¾­£v¾­£v¾­£v¾­£v¾­£v¾­£v¾­£v¾­£v¾­£v¾­ÿÿŒ&ÿ‘. ÿ6ÿ¦>ÿ­G%ÿ³O4ÿ´XDú´aVó²jhì¯szá¦z‹Ö€šÍ”†§Æ¯¿‡”µº‚œ¹µ¤¼²}¬¾«y±¿£v²½ x¸µžy½¯žy½¯žy½¯žy½¯žy½¯žy½¯žy½¯žy½¯žy½¯žy½¯žy½¯ÿÿ&ÿ“. ÿž5ÿ¨>ÿ¯F%ÿ¶N3þ·WD÷·`Vð¶hiè³p{ÞªwП|Ç—ƒ§¿Š¯¸‹‘¶²†˜º­ƒ ½©©¿¥~°Àœy±¿š{··˜}»°˜}»°˜}»°˜}»°˜}»°˜}»°˜}»°˜}»°˜}»°˜}»°˜}»°ÿÿ&ÿ”- ÿ 5ÿ©>ÿ±F$ÿ¸M3ü»VDõ»_Ví»giãµn}Ö¬sÊ£zÁ›€§¸”‡°±Ž¶«Š•»¦‡¾¢…¥ÀŸ„¯Á–~°Á”¶¸“€»²“€»²“€»²“€»²“€»²“€»²“€»²“€»²“€»²“€»²“€»²ÿÿŽ&ÿ•- ÿ¡5ÿ«=ÿ³F$ÿºM3ú¾UDó¿]Vê¿ej߸k~ЯqŦxœ»Ÿ~§²˜…¯«“‹¶¥Ž“»Ÿ‹š¾›‰¢Á˜ˆ¬Â‚¯Âƒµ¹„º³„º³„º³„º³„º³„º³„º³„º³„º³„º³„º³ÿÿŽ%ÿ–, ÿ¢5ÿ¬=ÿµE#ÿ¼L2øÁTCðÃ\VçÃcjÚ»i~̲pÀªvœ¶¢|§­œ‚¯¥—‰¶ž“»™˜¾” Á‘Œ©Â‹ˆ®ÂŠˆ´ºŠˆ¹´Šˆ¹´Šˆ¹´Šˆ¹´Šˆ¹´Šˆ¹´Šˆ¹´Šˆ¹´Šˆ¹´Šˆ¹´Šˆ¹´ÿ‘ÿ%ÿ˜, ÿ¤4ÿ®=ÿ·E#ÿ¿L2öÅSCîÈ[VãÆajÔ¿h~ǶnŽ»­tœ±¦z¦§ €¯Ÿ›†µ˜—Ž»“••¾Ž’ÁŠ’§Â†Ž®Â„´»…Œ¹´…Œ¹´…Œ¹´…Œ¹´…Œ¹´…Œ¹´…Œ¹´…Œ¹´…Œ¹´…Œ¹´…Œ¹´ÿ‘ÿ%ÿ™, ÿ¦4ÿ°<ÿ¹D"üÁK1ôÉRBëÍYUßÉ`jÏÂf}¹l¶±r›««x¦¢¥~®™ „µ’‹ºŒš“¾‡˜›À„—¥Â€–¯Â’³¼€‘¸µ€‘¸µ€‘¸µ€‘¸µ€‘¸µ€‘¸µ€‘¸µ€‘¸µ€‘¸µ€‘¸µ€‘¸µÿ’ÿ%ÿ›, ÿ§4ÿ²<ÿ»D!ùÅK0ñÎQAçÒXTÚÎ^iÊÆe|½½kŒ°¶pš¥°v¥œª|­“¦‚´Œ£‰¹† ½ž™¿}ž¢Á{ž¯Áy™³¼z—¸µz—¸µz—¸µz—¸µz—¸µz—¸µz—¸µz—¸µz—¸µz—¸µz—¸µÿ’ÿ%ÿ+ ÿª3ÿµ<ü¿D ôÈJ.íÓP?ãØVSÓÒ]hÅÊc{·Âi‹ª»o˜Ÿ¶t£•±z¬­€²…ª‡·§Ž»z¦—¾w¦ ¿t¦­¿s¡´»tž¸µtž¸µtž¸µtž¸µtž¸µtž¸µtž¸µtž¸µtž¸µtž¸µtž¸µÿ“ÿ‘$ÿŸ+ ÿ¬3 ÿ¸;øÃCïÍJ,çÚO=ÝÞUQÍØ[g¾Ïbz°Èg‰¤Âm—™¼r¡¸x©†µ~°²…µy°Œ¸t¯•»p¯Ÿ¼n¯¬¼m«µ¹n§¹´n§¹´n§¹´n§¹´n§¹´n§¹´n§¹´n§¹´n§¹´n§¹´n§¹´ÿ”ÿ’$ÿ¢*ÿ°2 þ¼:òÇBèÓI)ááL;ÔãSQÆÝZe·Õ`x©Ïf‡Ék”‘Åpž‡Áv¦¾|¬x¼„±rº‹´m¹“¶j¸œ¸g·§¸g··¶h²»±h²»±h²»±h²»±h²»±h²»±h²»±h²»±h²»±h²»±h²»±ÿ•ÿ•#ÿ¥)ÿ´1 øÁ:ëÎBàÝG%ÕåK;ËçQP½ãYc¯Þ_t¢Øeƒ–ÓjŠÎo™Ès¡uÄx§nÁ}«i¾„®e½‹±a¼“²_¼²_¼¬±b¿¾­b¿¾­b¿¾­b¿¾­b¿¾­b¿¾­b¿¾­b¿¾­b¿¾­b¿¾­b¿¾­ÿ–ÿ™!ÿª(ÿ¹0ðÈ8 áØ@ÔãE&ÊëK;ÁìOO³èW`¦å_ošâf|ŽÜl†„ÕqzÐu•sÍz›lÊŸgÇ„¢cÆŠ¤_Ä‘¦\Ä™§Zä§ZݧZݧZݧZݧZݧZݧZݧZݧZݧZݧZݧÿ˜ÿž ÿ¯&øÀ.æÐ3Õá<ÉêE(¿òJ;µñNL©ïV[í_h’êgs‡ãm|~Þr‚vÚxˆp×}ŒkÔ‚fÒ‡’cÑŒ•_Ï’–\Ι˜Y΢™XÍ«šXÍ«šXÍ«šXÍ«šXÍ«šXÍ«šXÍ«šXÍ«šXÍ«šXÍ«šXÍ«šÿšÿ¥ÿ·#íÉ&ÖÞ)Éé;¾óD)³øI:¨÷MHŸöUU”õ_`‰ñhh€ìopxèuuråzymâ}ià„€e߉‚bÝŽ„_Ü“†]Û™‡ZÚ¡‰XÙ¨‰XÙ¨‰XÙ¨‰XÙ¨‰XÙ¨‰XÙ¨‰XÙ¨‰XÙ¨‰XÙ¨‰XÙ¨‰XÙ¨‰ÿœÿ­öÁÛÚÉè) ½ó;²ýC(¦þG6œýLC“ýUMŠý_Vùi]yõpbsòvgnð|jjîmgì†odë‹qaêr_é”t]è™uZç wXæ¦xXæ¦xXæ¦xXæ¦xXæ¦xXæ¦xXæ¦xXæ¦xXæ¦xXæ¦xXæ¦xÿ¢ÿ·ØÏ Êç¼ó) ±ý;¤ÿ@&™ÿE2ÿK<‡ÿTDÿ_KxÿiPqÿpTlývXiû|Zfú\cø†^a÷‹__öa^ö•b\õšcZô dXó¥eXó¥eXó¥eXó¥eXó¥eXó¥eXó¥eXó¥eXó¥eXó¥eXó¥eÿ­ÖÃÈÓ »ô¯ÿ* £ÿ7—ÿ="‹ÿC,ÿJ4zÿR:sÿ^?nÿhCiÿoGfÿuIcÿ{KaÿL_ÿ…N]ÿŠO\ÿPZÿ“QYÿ˜RWÿžSVÿ£TVÿ£TVÿ£TVÿ£TVÿ£TVÿ£TVÿ£TVÿ£TVÿ£TVÿ£TVÿ£TÙºÅǹ٬ÿ¢ÿ+ •ÿ3‰ÿ9~ÿ@%uÿH+mÿP0gÿZ4cÿe7`ÿm9^ÿs;\ÿx=Zÿ}>Xÿ‚?Wÿ†@Vÿ‹@UÿATÿ”BSÿšCQÿŸCQÿŸCQÿŸCQÿŸCQÿŸCQÿŸCQÿŸCQÿŸCQÿŸCQÿŸCQÿŸCƾ·ÍªäŸÿ”ÿ( ‡ÿ.{ÿ5qÿ=iÿE#bÿM&[ÿV)Xÿ_,Vÿh-Tÿn/Sÿs0Rÿx1Qÿ|1Pÿ€2Oÿ„3Nÿˆ3MÿŒ4Lÿ’4Kÿ–5Kÿ–5Kÿ–5Kÿ–5Kÿ–5Kÿ–5Kÿ–5Kÿ–5Kÿ–5Kÿ–5Kÿ–5·Ä©Ôœù “ÿ…ÿ# yÿ)nÿ1eÿ9]ÿAWÿJSÿR PÿY"Mÿ`#Kÿf$Jÿk%Iÿo%Hÿs&Gÿw&Fÿ{'Eÿ~'Eÿ‚(Dÿ‡(Cÿ‹)Cÿ‹)Cÿ‹)Cÿ‹)Cÿ‹)Cÿ‹)Cÿ‹)Cÿ‹)Cÿ‹)Cÿ‹)Cÿ‹)ÿƒÿ€'ÿ{3 ÿ†8ÿŽ@ÿ“I"ÿ•U-ÿ“a9ÿmEÿ‹xOÿ†„Yü‚Ža÷}–hôxnñt£sîq©wìn®zêl³}éj¹çhÀægǃãeÏ…Ýc؆Ó`Ú‡Ó`Ú‡Ó`Ú‡Ó`Ú‡Ó`Ú‡Ó`Ú‡Ó`Ú‡Ó`Ú‡Ó`Ú‡Ó`Ú‡ÿƒÿ€'ÿ{3 ÿ†8ÿŽ@ÿ“I"ÿ•U-ÿ“a9ÿmEÿ‹xOÿ†„Yü‚Ža÷}–hôxnñt£sîq©wìn®zêl³}éj¹çhÀægǃãeÏ…Ýc؆Ó`Ú‡Ó`Ú‡Ó`Ú‡Ó`Ú‡Ó`Ú‡Ó`Ú‡Ó`Ú‡Ó`Ú‡Ó`Ú‡Ó`Ú‡ÿƒÿ€'ÿ{3 ÿ†8ÿŽ@ÿ“I"ÿ•U-ÿ“a9ÿmEÿ‹xOÿ†„Yü‚Ža÷}–hôxnñt£sîq©wìn®zêl³}éj¹çhÀægǃãeÏ…Ýc؆Ó`Ú‡Ó`Ú‡Ó`Ú‡Ó`Ú‡Ó`Ú‡Ó`Ú‡Ó`Ú‡Ó`Ú‡Ó`Ú‡Ó`Ú‡ÿƒÿ€'ÿ{3 ÿ†8ÿŽ@ÿ“I"ÿ•U-ÿ“a9ÿmEÿ‹xOÿ†„Yü‚Ža÷}–hôxnñt£sîq©wìn®zêl³}éj¹çhÀægǃãeÏ…Ýc؆Ó`Ú‡Ó`Ú‡Ó`Ú‡Ó`Ú‡Ó`Ú‡Ó`Ú‡Ó`Ú‡Ó`Ú‡Ó`Ú‡Ó`Ú‡ÿƒÿ€'ÿ{3 ÿ†8ÿŽ@ÿ“I"ÿ•U-ÿ“a9ÿmEÿ‹xOÿ†„Yü‚Ža÷}–hôxnñt£sîq©wìn®zêl³}éj¹çhÀægǃãeÏ…Ýc؆Ó`Ú‡Ó`Ú‡Ó`Ú‡Ó`Ú‡Ó`Ú‡Ó`Ú‡Ó`Ú‡Ó`Ú‡Ó`Ú‡Ó`Ú‡ÿƒÿ€'ÿ}2 ÿˆ7ÿ?ÿ•I"ÿ—T-ÿ–_9ÿ“kEÿŽwQÿˆ‚[ú„Œdõ”kñz›rîv¢wër§{éo­çl²‚åj¸„äi¿‡âhljàfÏŠÖcÖŒÏbØŠÏbØŠÏbØŠÏbØŠÏbØŠÏbØŠÏbØŠÏbØŠÏbØŠÏbØŠÿ„ÿ'ÿ€1 ÿ‹6ÿ“>ÿ™G"ÿœR-ÿš]:ÿ˜iGÿ“tSþŽ~_÷ˆ‰iñ‚‘rí}˜yéxŸåt¤„ãpªˆàm°ŒÞk·Ýj¿‘ÛiÈ“ÕfÏ•ËdÑ“ÆeÔŽÆeÔŽÆeÔŽÆeÔŽÆeÔŽÆeÔŽÆeÔŽÆeÔŽÆeÔŽÆeÔŽÿ…ÿ‚&ÿ‚0 ÿŽ5ÿ–=ÿœF!ÿ P-ÿŸ[;ÿœfHÿ˜qVû“|bô†mw耕€äzœ‡àu¢ŒÝr¨‘Úo¯•Øm·™ÕkÀœÒiÉžÉeÉžÂg͘¾iÑ“¾iÑ“¾iÑ“¾iÑ“¾iÑ“¾iÑ“¾iÑ“¾iÑ“¾iÑ“¾iÑ“ÿ†ÿƒ&ÿ…/ ÿ4ÿ™=ÿŸF!ÿ£O-ÿ£Z;ÿ dIÿoXú˜yeñ’ƒqꋌ|䃒†ß}™ŽÚx •Öt§šÓp®ŸÑm¶£ÏkÀ¥Çf§ÀhÆ¢»jË›·lΖ·lΖ·lΖ·lΖ·lΖ·lΖ·lΖ·lΖ·lΖ·lΖÿ†ÿƒ&ÿ‡. ÿ“4ÿ›<ÿ¡E ÿ§M-ÿ¦X;ÿ¤bJü¡lY÷œvhï–€uç‰à‡ŒÚ€–•ÕzžÑu¥£Íp¬¨Ëmµ¬Çk¾­½h¿¬¸kæ³mÈŸ°oÌ™°oÌ™°oÌ™°oÌ™°oÌ™°oÌ™°oÌ™°oÌ™°oÌ™°oÌ™ÿ‡ÿ„%ÿ‰- ÿ•3ÿ<ÿ¤D ÿªL-ÿªW;þ¨`Kø¥jZó¡tjíœ~y䓆†Ü‹’Õƒ”œÏ|›¥Ëw£ªÇt«­Äsµ¯¿p¼°µk¼°°nÁ©¬pÆ¢©rÊœ©rÊœ©rÊœ©rÊœ©rÊœ©rÊœ©rÊœ©rÊœ©rÊœ©rÊœÿ‡ÿ„%ÿ‹, ÿ—3ÿŸ;ÿ¦Dÿ¬K,ÿ®U;û¬_Kõªh\î¦qlç z|ß—‚ŠÕŽˆ˜Í…¡Ç€—§Â{ž¬½x§¯ºv°±·uº²­pº²©q¿¬¥tĤ£uÉž£uÉž£uÉž£uÉž£uÉž£uÉž£uÉž£uÉž£uÉž£uÉžÿˆÿ…%ÿŒ+ ÿ˜2ÿ¡;ÿ©Cÿ¯K,ÿ±T;ø±]Kñ¯f\ê«oná£vÕ™}Ì‘„™ÅŠŒ¢¾„“¨¹š­´|£°°z«³­y¶´¦t¹´¢u½¯ŸwæyÇ yÇ yÇ yÇ yÇ yÇ yÇ yÇ yÇ yÇ ÿˆÿ…%ÿŽ* ÿš2ÿ£:ÿ«Bÿ±J+ýµS;öµ\Kî³d]å®loÛ¥sÎzÅ•™¾Žˆ¢·ˆ©±„—®¬€Ÿ±¨~¨´¥}²µŸz¸¶›y»±™{Á¨˜|Æ¢˜|Æ¢˜|Æ¢˜|Æ¢˜|Æ¢˜|Æ¢˜|Æ¢˜|Æ¢˜|Æ¢˜|Æ¢ÿ‰ÿ†%ÿ* ÿœ1 ÿ¥:ÿ­Bÿ´J+û¸R:ó¹ZKê¸b^á±jpÓ©pÈ w¿™~™·’…¢°ŒŒ©ªˆ”®¥„œ² ‚¤µ®¶™··”}º³“Àª’Å£’Å£’Å£’Å£’Å£’Å£’Å£’Å£’Å£’Å£ÿ‰ÿ†$ÿ‘) ÿ1 ÿ§9ÿ¯Bÿ¶I*ø¼P:ð½YKç¼a^ܵgqάoäu޹œ|™±–‚¢ª‘Š©£Œ‘®ž‰™²™†¡µ–…«·“…¶·Ž¹´Žƒ¿«ƒÄ¥ƒÄ¥ƒÄ¥ƒÄ¥ƒÄ¥ƒÄ¥ƒÄ¥ƒÄ¥ƒÄ¥ƒÄ¥ÿ‰ÿ‡$ÿ“) ÿŸ1 ÿ©9ÿ±Aÿ¹I)öÀO9íÂWJä¿_]Ö¹fpɰm€¾¨sŽ´ z™«š€¢¤•‡©‘Ž®—Ž–²’‹ŸµŠ©·ŒŠ´¸ˆ†¸µˆ‡¾¬ˆ‡Ã¦ˆ‡Ã¦ˆ‡Ã¦ˆ‡Ã¦ˆ‡Ã¦ˆ‡Ã¦ˆ‡Ã¦ˆ‡Ã¦ˆ‡Ã¦ˆ‡Ã¦ÿŠÿ‡$ÿ”) ÿ¡0 ÿ«9ÿ´Aü»H(ôÃN8ëÇVJàÃ^]Ѽeoijk€¹«q¯¤w˜¦ž~¡žš„¨—–Œ®‘“”²Œ‘œµˆ¦·…±¸‚Œ·¶‚Œ¾­ƒŒÃ¦ƒŒÃ¦ƒŒÃ¦ƒŒÃ¦ƒŒÃ¦ƒŒÃ¦ƒŒÃ¦ƒŒÃ¦ƒŒÃ¦ƒŒÃ¦ÿŠÿˆ$ÿ–(ÿ£0 ÿ­8ÿ¶@ú¾H'ñÇN7çÌUHÜÇ\\Ì¿co¿·i´°pŒ©©u— £{ ˜Ÿ‚¨‘›‰­Š™’²…–𵕤·~•¯·{’·¶}‘½®}§}§}§}§}§}§}§}§}§}§ÿ‹ÿ‰$ÿ˜(ÿ¥/ ÿ°8ÿ¹@øÂG&îËM5äÐTFÕË[[ÇÃbnº»h~®´n‹£®s–š©zŸ’¥€¦Š¡‡¬„Ÿ±~˜´zœ¡¶x›¬¶uš·¶w˜½®x–§x–§x–§x–§x–§x–§x–§x–§x–§x–§ÿŒÿŠ#ÿš'ÿ§/ ÿ³7ü½?óÆF#êÐL2àÕREÏÏYZÁÈ`l´Àf|¨ºlŠ´r•”°xž‹¬~¥ƒ¨…ª}¦Œ¯x¤•²t£Ÿ´q£ªµo¤¹´p ¾­r§r§r§r§r§r§r§r§r§r§ÿŒÿŒ"ÿ'ÿª. ÿ¶6÷Á>íÌF äØK.ÙÜPDÉÔXX»Í^k®Æez¢Àjˆ—»p’·u›„³|¢}±ƒ¨v¯Š¬q­“¯m­±j­©²i­·±j©¿¬k¦Ã¦k¦Ã¦k¦Ã¦k¦Ã¦k¦Ã¦k¦Ã¦k¦Ã¦k¦Ã¦k¦Ã¦k¦Ã¦ÿÿ ÿ &ÿ®-ý»5 ñÇ=åÓDÝàH-ÐáOBÂÛVV´Ó]h§ÍcxšÈh…Ãn…Àt˜}½zžvº¤p¹‰¨k¸’ªg·œ¬e¸¨­c¸¶­dµÁ©e°Å¤e°Å¤e°Å¤e°Å¤e°Å¤e°Å¤e°Å¤e°Å¤e°Å¤e°Å¤ÿŽÿ“ÿ¤%ÿ³,÷Á3 èÎ<ÜÞ@ÐåH.ÇåMB¹àUT¬Û[eŸÕat’Ðf‡Íl‹~Êr“vÈy™oÆžjʼn¢eÅ’¤bĦ_ħ§]Ä´§^ÃĤ_½È _½È _½È _½È _½È _½È _½È _½È _½È _½È ÿÿ˜ÿ©#ÿ¹)îÈ1ÝÚ4 ÐäAÆëG.¼êLA°æSR£ãZa—àanŒÝhy‚Ûn‚zÙu‰rÕ|kÒ‚“eψ—`Íš\Ì—œZË XË«W˺YÌÌ™YÌÌ™YÌÌ™YÌÌ™YÌÌ™YÌÌ™YÌÌ™YÌÌ™YÌÌ™YÌÌ™ÿ’ÿÿ¯ öÀ%âÓ$Ðã2 Åì@ºñG/°ïK?¥íQNšëZZêbe…èjn}çruuãx{oà~€iÝ„„dÛŠ‡`Ù‘‰]ؘ‹ZÖ XÖ¨ŽVÕ´ŽTÕÁŽTÕÁŽTÕÁŽTÕÁŽTÕÁŽTÕÁŽTÕÁŽTÕÁŽTÕÁŽTÕÁŽÿ”ÿ¤ÿ·éËÑáÅì1ºõ@®÷E.£õJ<šôPHóZS†óc[~òlbwñshqîzmlë€pgé†scçŒv`æ’x]ä˜zZãž{Xã¥}Vâ¯~Tá¸~Tá¸~Tá¸~Tá¸~Tá¸~Tá¸~Tá¸~Tá¸~Tá¸~Tá¸~ÿ˜ÿ­óÃÒØ Äì¸ö1­ý>¢ýC+—üH7ŽüOA…üYI}ücPwümVpûtZkùz^h÷adõ‡caóe_ò“g]ñ™hZðžiXï¥kVï­lTî´mTî´mTî´mTî´mTî´mTî´mTî´mTî´mTî´mTî´mÿ£ñ¹ ÎÉ Äß ¶÷¬ÿ2 ÿ;”ÿA'ŠÿG1ÿN9zÿX?sÿbEnÿlIiÿsLfÿzOcÿ€Q`ÿ†S^ÿŒT\ÿ’UZþ˜WYýXWü¤YUû«ZTû±[Tû±[Tû±[Tû±[Tû±[Tû±[Tû±[Tû±[Tû±[Tû±[ð¯Í¿ÀÍ´î©ÿ!Ÿÿ1’ÿ7‡ÿ>"}ÿE)uÿM0nÿU5iÿ`9eÿj_ÿw@\ÿ~BZÿ„CYÿ‰DWÿEVÿ”FUÿšGSÿ HRÿ§IQÿ­JQÿ­JQÿ­JQÿ­JQÿ­JQÿ­JQÿ­JQÿ­JQÿ­JQÿ­Jϸ¾Ã²Ô¦þœÿ#ÿ-„ÿ3yÿ;pÿC"iÿJ'bÿR*]ÿ\-Zÿe0Xÿm1Vÿs3Tÿy4Sÿ~5Rÿ„6Pÿ‰7OÿŽ8Nÿ“8Mÿ™9Lÿ :Kÿ¦:Kÿ¦:Kÿ¦:Kÿ¦:Kÿ¦:Kÿ¦:Kÿ¦:Kÿ¦:Kÿ¦:Kÿ¦:¿¼°Ê£Ü™ÿÿ"‚ÿ( vÿ/mÿ7eÿ?^ÿGXÿN!TÿW#Qÿ_%Nÿe&Mÿl'Kÿq(Jÿv)Iÿ{*Hÿ€*Gÿ…+Fÿ‰+EÿŽ,Dÿ”,Cÿš-Cÿš-Cÿš-Cÿš-Cÿš-Cÿš-Cÿš-Cÿš-Cÿš-Cÿš-±Â£Ò•ëŒÿ€ÿtÿ# iÿ*`ÿ2Yÿ:SÿBNÿIKÿQHÿXFÿ]DÿcCÿgAÿl@ÿp?ÿt >ÿx =ÿ| <ÿ!;ÿ‡!;ÿŒ";ÿŒ";ÿŒ";ÿŒ";ÿŒ";ÿŒ";ÿŒ";ÿŒ";ÿŒ";ÿŒ"ÿzÿv(ÿr3 ÿ|7ÿ„?ÿˆHÿ‹S'ÿ‰`1ÿ†m;ÿ‚yDÿ~†Lÿ{‘SÿwšXÿt¢]üq¨aún®døk´g÷iºiõhÁkófÈmïcÍoìaÓpç_Ýqâ]åsÝ[æsÝ[æsÝ[æsÝ[æsÝ[æsÝ[æsÝ[æsÝ[æsÝ[æsÿzÿv(ÿr3 ÿ|7ÿ„?ÿˆHÿ‹S'ÿ‰`1ÿ†m;ÿ‚yDÿ~†Lÿ{‘SÿwšXÿt¢]üq¨aún®døk´g÷iºiõhÁkófÈmïcÍoìaÓpç_Ýqâ]åsÝ[æsÝ[æsÝ[æsÝ[æsÝ[æsÝ[æsÝ[æsÝ[æsÝ[æsÿzÿv(ÿr3 ÿ|7ÿ„?ÿˆHÿ‹S'ÿ‰`1ÿ†m;ÿ‚yDÿ~†Lÿ{‘SÿwšXÿt¢]üq¨aún®døk´g÷iºiõhÁkófÈmïcÍoìaÓpç_Ýqâ]åsÝ[æsÝ[æsÝ[æsÝ[æsÝ[æsÝ[æsÝ[æsÝ[æsÝ[æsÿzÿv(ÿr3 ÿ|7ÿ„?ÿˆHÿ‹S'ÿ‰`1ÿ†m;ÿ‚yDÿ~†Lÿ{‘SÿwšXÿt¢]üq¨aún®døk´g÷iºiõhÁkófÈmïcÍoìaÓpç_Ýqâ]åsÝ[æsÝ[æsÝ[æsÝ[æsÝ[æsÝ[æsÝ[æsÝ[æsÝ[æsÿzÿw'ÿt2 ÿ6ÿ†=ÿ‹GÿŽQ'ÿŒ^1ÿ‰k<ÿ…wFÿƒNÿ}Vÿy˜\üu aùr¦e÷o­iõl³lój¹oòhÀqðfÈsìdÍuèaÔvã_ÞwÛ]ãyÕ]åvÕ]åvÕ]åvÕ]åvÕ]åvÕ]åvÕ]åvÕ]åvÕ]åvÿ{ÿw'ÿw0 ÿ‚5ÿŠ<ÿFÿ’O'ÿ‘\2ÿŽh=ÿŠtHÿ†€Rÿ‹Zü}•aøxgõt¤mòqªqðn°tîk¶wìi¾zêgÇ}çeÎâbÖ€Ù_ÝÐ_à~Ì`ã{Ì`ã{Ì`ã{Ì`ã{Ì`ã{Ì`ã{Ì`ã{Ì`ã{Ì`ã{ÿ|ÿx&ÿz/ ÿ…3ÿ;ÿ’Dÿ–N'ÿ•Z2ÿ’e>ÿŽqJÿŠ}Uþ…ˆ^ù€’gô{šnðv¡sír§xêo®}èl´€æi¼ƒägƆáeψÙb׊ÏaÙˆÈbÝ‚ÄcàÄcàÄcàÄcàÄcàÄcàÄcàÄcàÄcàÿ}ÿy&ÿ|. ÿˆ2ÿ:ÿ•CÿšL'ÿ™X3ÿ–c?ÿ’nLÿŽzWü‰…bõ„kð~—sìyžzèt¥€åp«…âl³‰àj»ŒÞhÆÚfÑ’ÎbÑ’ÇdÕŒÁeÛ†½fÝ‚½fÝ‚½fÝ‚½fÝ‚½fÝ‚½fÝ‚½fÝ‚½fÝ‚½fÝ‚ÿ}ÿz&ÿ, ÿ‹1 ÿ“:ÿ˜BÿK&ÿV3ÿ›a@ÿ—lMû’vZ÷fòˆŒpì‚”yç{›ãu¢ˆßq©ŽÜm±’Ùk»–×iÈ™ÌdË›ÅeΗÀgÒ‘ºhØŠ¶iÛ†¶iÛ†¶iÛ†¶iÛ†¶iÛ†¶iÛ†¶iÛ†¶iÛ†¶iÛ†ÿ~ÿ{&ÿ+ ÿ1 ÿ•9ÿ›Bÿ J&ÿ¡T3ÿŸ_AûœiOö—s]ñ’~j쌈uç…‘€â~˜‰Ýx ‘Ør§—Òm¯Ïl¹ŸÌkÅ ÃgÇ ¼hË›·jД²lÕ¯lÙ‰¯lÙ‰¯lÙ‰¯lÙ‰¯lÙ‰¯lÙ‰¯lÙ‰¯lÙ‰¯lÙ‰ÿ~ÿ{%ÿƒ* ÿ0 ÿ˜8ÿžAÿ£I&ÿ¦R3ý¤]A÷¡gPñœq_ë—{måƒzÞ‡‹†Õ~’‘Ïx™—Êt¡œÇqªŸÃo³¡Án¿£ºkÅ£³kÈŸ¯m͘«oÒ‘©pÖŒ©pÖŒ©pÖŒ©pÖŒ©pÖŒ©pÖŒ©pÖŒ©pÖŒ©pÖŒÿÿ|%ÿ†)ÿ’/ ÿ›8ÿ¡@ÿ§H%ÿªQ2ù©[Aó¦dQì¢naåšvpÜ‘~Ò‰†‹Ë‚“Å}•™Àxž¼u¥¡¹s®¤¶r¹¥²pæ«oÆ¢¨qË›¤sГ¢tÔŽ¢tÔŽ¢tÔŽ¢tÔŽ¢tÔŽ¢tÔŽ¢tÔŽ¢tÔŽ¢tÔŽÿ€ÿ|%ÿˆ(ÿ”/ ÿ7ÿ¤?ÿªG$ý®O2ö­YAï«bRç¦kbÞžrsÒ•zÊ‚‹Ã‡Š“½‘š·}™Ÿ³y¡£¯wª¦¬v´§ªvÁ¨£sÃ¥ uÉžžwÏ–œwÒ‘œwÒ‘œwÒ‘œwÒ‘œwÒ‘œwÒ‘œwÒ‘œwÒ‘œwÒ‘ÿ€ÿ}%ÿŠ'ÿ–. ÿŸ6ÿ§?ÿ­G#û²N1ó²WAë±`RâªhdÖ¢ptÌ™wÃ’‹¼‹†”µ†Žš¯• ª~¤¦{¦§£z°©¡y¼©›wÁ¨™yÇ ˜z͘—{Ñ“—{Ñ“—{Ñ“—{Ñ“—{Ñ“—{Ñ“—{Ñ“—{Ñ“—{Ñ“ÿÿ~$ÿŒ&ÿ˜. ÿ¢6ÿ©>ÿ¯F#øµM0ð·V@çµ^RÝ®fdÐ¥nsÆu€½–|‹µƒ”®Š‹›¨†’ £‚š¥Ÿ£¨›~­ª˜}¹«”{Àª“}Æ¢’~Ì™‘Д‘Д‘Д‘Д‘Д‘Д‘Д‘Д‘Дÿÿ~$ÿ&ÿš- ÿ¤5ÿ¬=þ²E"ö¸L0í¼T@ä¸]QײdcË©lsÀ¡s€·šz‹¯”€“¨ˆ›¢Š œ‡—¥—„ ¨”‚©ª‘‚µ«¿«Å¤Œ‚Ë›Œ‚Ï•Œ‚Ï•Œ‚Ï•Œ‚Ï•Œ‚Ï•Œ‚Ï•Œ‚Ï•Œ‚Ï•Œ‚Ï•ÿ‚ÿ$ÿ%ÿœ- ÿ¦5ÿ®=üµE!ó¼K.êÁR?à¼[QѵccÆ­jr»¥q²žwŠ©˜~“¢“…š› –Œ•¥‘‰¨‡§«Š‡²¬‡‡¿¬††Ä¥‡†Êœ‡†Î—‡†Î—‡†Î—‡†Î—‡†Î—‡†Î—‡†Î—‡†Î—‡†Î—ÿ‚ÿ€#ÿ‘%ÿž, ÿ¨4 ÿ±<ú¸Dð¿K-çÅQ=ÜÀZP͸abÁ°hq¶©o~¬¢u‰¤|’œ˜‚š•”Š ‘’¥ŠŽ›¨†¥«ƒŒ°¬¾¬€‹Ã¦‹É‹Í˜‹Í˜‹Í˜‹Í˜‹Í˜‹Í˜‹Í˜‹Í˜‹Í˜ÿƒÿ‚"ÿ“$ÿ ,ÿ«3 ÿ´<÷¼CîÄJ+äÉQ;ÕÄXOȼ`a¼´gp±­m}§§s‰ž¢y’–€™šˆŸ‰—¤ƒ”˜¨“¢ª|’­«z’»¬z‘æ{Éž|͘|͘|͘|͘|͘|͘|͘|͘|͘ÿƒÿ„!ÿ•$ÿ¢+ÿ­3 þ·;ôÀBêÉI(àÍO9ÐÇWNÃÀ^`·¸eo«²k|¡¬q‡˜§x£~˜‰ …ž‚£}›–§x™ ©u™«ªs™¸«s˜Ã¦u–Éžv•Í™v•Í™v•Í™v•Í™v•Í™v•Í™v•Í™v•Í™v•Í™ÿ„ÿ‡ ÿ—#ÿ¥*ÿ±2 û»:ñÅAçÏH%ÛÒM8ËËUL½Ä]^±¾cn¥¸j{›²o†’®v‰ª|–‚§ƒœ{¤‹¡v¢”¥q¡§n ©©l¡¶©m¡Ã¦oÉžpœÍ˜pœÍ˜pœÍ˜pœÍ˜pœÍ˜pœÍ˜pœÍ˜pœÍ˜pœÍ˜ÿ…ÿŠÿš"ÿ¨)ÿµ0öÀ8ëË@áØF ÓØK6ÅÐTK·É[\«ÃblŸ¾hx”¹nƒ‹µsŒƒ²z“{¯™u­‰žo«’¢kªœ¤hª§¥fª´¦f«Å¤h¦Êœi¤Í—i¤Í—i¤Í—i¤Í—i¤Í—i¤Í—i¤Í—i¤Í—i¤Í—ÿ†ÿÿž!ÿ¬'ýº/ïÇ6 ãÔ>ØßCËÞJ4¾ÖRH°ÐZZ¤Ê`i˜ÆfvÁl€„¾r‰{»xt¹•n·‡ši¶eµ› b´¦¡`µ³¡_¶Å a±Ìšb®Ï•b®Ï•b®Ï•b®Ï•b®Ï•b®Ï•b®Ï•b®Ï•b®Ï•ÿ‡ÿ‘ÿ¢ ÿ²%õÀ+æÏ1ØÞ8ÌåC ÃâI3¶ÞQF©ØXWœÒ^eÎdr†Ëj||Èp„tÆwŠnÄ~hÇ”c—_Á›™\Á¦š[³›ZÃÅš[¾Ï•\ºÒ‘\ºÒ‘\ºÒ‘\ºÒ‘\ºÒ‘\ºÒ‘\ºÒ‘\ºÒ‘\ºÒ‘ÿ‰ÿ–ÿ¨þ¸!ìÉ"ÙÝ%Ìå7ÂêC"·çH3¬äOD àVS”Ý]`ˆÚck~ÖjuuÔp}nÒwƒgшbЇ‹^БŽZМXЧ‘Vе’UÒÇ‘VÍÔŽVÈÖ‹VÈÖ‹VÈÖ‹VÈÖ‹VÈÖ‹VÈÖ‹VÈÖ‹VÈÖ‹VÈÖ‹ÿ‹ÿÿ¯ôÁÝØÌå&Áî7¶ïB#«íG2¡ëL@–éUM‹ç]X‚æeayälirätolã|tgâ„xbâ{^â•~[àž€Xß§‚UÞ±ƒSÞ¾ƒRÞÒƒQÙÜ‚QÙÜ‚QÙÜ‚QÙÜ‚QÙÜ‚QÙÜ‚QÙÜ‚QÙÜ‚QÙÜ‚ÿÿ¤þ¸ÖÌ ÌäÀï&µõ8ªô@"ŸóF0•òK<ŒñTF‚ð]OzðfVtðn\nïvaiï~deï†haïŽj^î–m[ížoXë¥pVë®qTê¸rRêÇsQéÕsQéÕsQéÕsQéÕsQéÕsQéÕsQéÕsQéÕsQéÕsÿ˜ÿ®ÔÁ ÉÏ ¾ð³ù' ©û8žû>!“ûD,‰úJ5úS>yú]ErúfJmúoNhúvRdú~Uaú†W_ûŽZ\ú–[Zù]Wø¥^U÷¬`S÷µaRöÁaPöÊbPöÊbPöÊbPöÊbPöÊbPöÊbPöÊbPöÊbPöÊbÿ£ Ö¸ÆÄ»Ô °ü¦ÿ) œÿ5ÿ;†ÿB&}ÿI.uÿQ4oÿ[:iÿe>eÿnAbÿuD_ÿ|F\ÿƒHZÿ‹IXÿ“KVÿ›LUÿ¢MSÿ©NQÿ±OPÿ»POÿÃQOÿÃQOÿÃQOÿÃQOÿÃQOÿÃQOÿÃQOÿÃQOÿÃQÚ¯Ƽ¹É­Û£ÿšÿ+ Žÿ1ƒÿ8yÿ@ pÿG&iÿO+cÿX/_ÿb2\ÿk4Zÿr6Xÿx8Vÿ9Tÿ†;RÿNÿ£>Mÿª?Kÿ³@Jÿ¹AJÿ¹AJÿ¹AJÿ¹AJÿ¹AJÿ¹AJÿ¹AJÿ¹AJÿ¹Aȵ¸Á«ÐŸë –ÿ‹ÿ& ÿ-uÿ5lÿ=eÿD^ÿL"XÿT%Uÿ]'Rÿe)Pÿl*Nÿs+Mÿy,Lÿ-Jÿ….IÿŒ/Hÿ’0Gÿ™0Eÿ 1Dÿ©2Cÿ®2Cÿ®2Cÿ®2Cÿ®2Cÿ®2Cÿ®2Cÿ®2Cÿ®2Cÿ®2¸ºªÈÙ’ÿ ‰ÿ}ÿ!rÿ( hÿ0`ÿ8Zÿ@TÿHOÿOLÿWIÿ]Gÿc Eÿi Dÿo!Bÿt"Aÿz"@ÿ€#?ÿ†$>ÿŒ$=ÿ’%<ÿ™%;ÿž&;ÿž&;ÿž&;ÿž&;ÿž&;ÿž&;ÿž&;ÿž&;ÿž&«ÁÐá†ÿzÿnÿdÿ# \ÿ+ Uÿ3Oÿ;IÿBFÿIBÿO@ÿU>ÿZ<ÿ_;ÿd9ÿh8ÿm7ÿr6ÿw5ÿ|4ÿ3ÿˆ2ÿ2ÿ2ÿ2ÿ2ÿ2ÿ2ÿ2ÿ2ÿÿpÿl)ÿi3 ÿr7 ÿy>ÿ}Gÿ€Q!ÿ~_)ÿ|m2ÿy{9ÿvˆ@ÿs“EÿpJÿn¦Nÿk­Qÿi´Sÿh»UÿfÃWÿcÇYûaÌ[÷_Ó\ó^Ý]ð\ã^ë[é_çYï`åYñ_åYñ_åYñ_åYñ_åYñ_åYñ_åYñ_åYñ_ÿpÿl)ÿi3 ÿr7 ÿy>ÿ}Gÿ€Q!ÿ~_)ÿ|m2ÿy{9ÿvˆ@ÿs“EÿpJÿn¦Nÿk­Qÿi´Sÿh»UÿfÃWÿcÇYûaÌ[÷_Ó\ó^Ý]ð\ã^ë[é_çYï`åYñ_åYñ_åYñ_åYñ_åYñ_åYñ_åYñ_åYñ_ÿpÿl)ÿi3 ÿr7 ÿy>ÿ}Gÿ€Q!ÿ~_)ÿ|m2ÿy{9ÿvˆ@ÿs“EÿpJÿn¦Nÿk­Qÿi´Sÿh»UÿfÃWÿcÇYûaÌ[÷_Ó\ó^Ý]ð\ã^ë[é_çYï`åYñ_åYñ_åYñ_åYñ_åYñ_åYñ_åYñ_åYñ_ÿpÿl(ÿk1 ÿu6 ÿ{<ÿFÿƒP!ÿ^*ÿ~k3ÿ{x;ÿx†Bÿu’Hÿr›Mÿp¤Qÿm¬Tÿk²Wÿi¹ZÿgÁ\üeÇ^øbÌ_õ`Óað^Ýbì\äcè[édâZïdàZðbàZðbàZðbàZðbàZðbàZðbàZðbàZðbÿqÿm(ÿn0 ÿx4 ÿ;ÿƒDÿ‡N!ÿ†[+ÿƒh4ÿu=ÿ|‚EÿyŽLÿv™Rÿr¡Vÿo©Zþm°^üj·aûh¾cùfÆeôcÌgðaÓië_Þkæ]ålà[émÙ\îhÖ\ïgÖ\ïgÖ\ïgÖ\ïgÖ\ïgÖ\ïgÖ\ïgÖ\ïgÿrÿn(ÿq. ÿ{2 ÿƒ:ÿ‡CÿŠL!ÿŠY+ÿ‡e5ÿƒr?ÿ~Hÿ|‹Pÿy–VÿuŸ\ýr¦`ún­døl´höi¼kôgÅmðdÌpëaÓrå_ßsÞ\åtÖ\èqÏ^ílÍ^îkÍ^îkÍ^îkÍ^îkÍ^îkÍ^îkÍ^îkÍ^îkÿsÿo'ÿt-ÿ~1 ÿ†9ÿ‹BÿŽK!ÿŽV+ÿ‹c6ÿ‡oAÿƒ{Kÿ‡Sþ|’[üxœaùt¤göp«kóm²oñjºsïhÃvëeÌxæbÕzÞ_ß|Ó]ã{Í_ævÇ`êpÆ`ìnÆ`ìnÆ`ìnÆ`ìnÆ`ìnÆ`ìnÆ`ìnÆ`ìnÿtÿp'ÿv+ÿ/ ÿ‰8ÿŽ@ÿ’I!ÿ“T,ÿ`7ÿŒlCÿ‡wMûƒƒWøŽ`öz—góv nðr¨sín¯xëk¸|èhÂæfÍ‚ßbØ„Ñ_Ü…Ê`àÅaãz¿cèt¾cér¾cér¾cér¾cér¾cér¾cér¾cér¾cérÿtÿp&ÿy*ÿ…. ÿ7ÿ’?ÿ–H ÿ—R,ÿ•^8þ‘iDúŒtPõ‡[ò‚‰eî}“nêw›uçr£|än«áj³†Þg½ŠÚeÊÒbÔŽÈbØŠÂcÜ„¼eà~·fåx¶fæv¶fæv¶fæv¶fæv¶fæv¶fæv¶fæv¶fævÿuÿq&ÿ|(ÿˆ- ÿ6ÿ–>ÿšG ÿœP+ÿš[8ù—fEô’pRïŒ{_ê……jå~tàx•}Ûr…Ôm¤‹Ðj­ŽÍh·ËhÑÈgÑ’¿eÔ¹gÙ‰´hÝ‚°iâ|®jäy®jäy®jäy®jäy®jäy®jäy®jäy®jäyÿvÿr&ÿ'ÿŠ, ÿ“5ÿ™=ÿžFÿ¡N+û Y8õœcFï˜mTèwbâˆoÚ€‡{ÒzƒÍu—‰ÉqŸÅn¨‘Âl±“¿k¼•½kË•¶iД±kÕ¬lÛ†¨mà§mâ|§mâ|§mâ|§mâ|§mâ|§mâ|§mâ|§mâ|ÿvÿs%ÿ&ÿ, ÿ–4ÿ<ÿ¡Dþ¥L*÷¥W8ð¢aGéœjVá”reØŒ{sÏ…ƒ|É‹„Ãz“Š¿v›ºs£“·p¬–´o·—±oʬm͘©oÓ¥p؉¡qÞ‚ qà qà qà qà qà qà qà qàÿwÿt%ÿƒ%ÿ+ ÿ™3 ÿ ;ÿ¥Cû©K)óªT8ì¨^Gã¡gWÚ™ogÏ‘xsÇŠ€}Á„ˆ…»‹µz—±wŸ”­t¨—ªs²™§r¿š¤rËš¡sГžtÖŒ›uÜ„šuÞšuÞšuÞšuÞšuÞšuÞšuÞšuÞÿxÿv$ÿ†#ÿ’*ÿ›2 ÿ£:ÿ¨Bø­J(ð¯R7ç¬\GÞ¥dXÑmfÈ•usÀŽ|}¹‰„…³ƒŒŒ­“‘©{›•¥y¤™¡w®›žvºœwÊœ™wÏ–—xÔŽ•xÛ†”x݃”x݃”x݃”x݃”x݃”x݃”x݃”x݃ÿxÿx#ÿˆ#ÿ”*ÿž1 ÿ¦:þ«Bõ°I'ìµP6ã°ZFØ©cWÌ¡kfšrrº“z|³…¬ˆ‰Œ¦„‘¡€˜–}¡š™{ªœ–{¶”{Æž’{͘‘|Ó|Ùˆ|Ü…|Ü…|Ü…|Ü…|Ü…|Ü…|Ü…|Ü…ÿyÿz"ÿŠ"ÿ–)ÿ 1 ÿ¨9û¯Aò´H&é¹O4ß´YEÒ­aVÇ¥ie½žpr´—w|­‘~…¦Œ†Œ ˆ‘š…•––‚žš’€§³ž€Âž‹€Ìš‹Ò’Š€Ø‰‰€Û†‰€Û†‰€Û†‰€Û†‰€Û†‰€Û†‰€Û†‰€Û†ÿyÿ{!ÿ‹"ÿ˜(ÿ£0 ÿ«8ù²@ï¸G$æ½N3Û¸WDͰ`V©gd¸¢nq¯›u{§–|„ ‘ƒ‹š‹‘”Š“–‡›š‹…¥ˆ„°Ÿ…„¿Ÿ……Ë›……Ñ“……ØŠ„„Ú‡„„Ú‡„„Ú‡„„Ú‡„„Ú‡„„Ú‡„„Ú‡„„Ú‡ÿzÿ} ÿ!ÿ›(ÿ¥/ ÿ®7ö¶?ì¼F"ãÁN0Õ¼VCÈ´^U½¬fc³¦lpªŸs{¡šz„š–‹”’ˆ‘Ž–‰Œ™š„УЮŸ~мŸ~ŠÊœŠÐ”‰Ö‹ˆÙˆˆÙˆˆÙˆˆÙˆˆÙˆˆÙˆˆÙˆˆÙˆÿzÿÿ!ÿ'ÿ¨.þ²6 óº>éÁEßÅL/пTBÄ·]S¸°db®ªjo¤¤qzœŸwƒ”›~ŠŽ˜†‡•Ž•‚’—™} œz«žx¹Ÿw‘ÊyÏ•yŽÖŒy؉y؉y؉y؉y؉y؉y؉y؉ÿ{ÿÿ’ ÿ &ÿ«-ûµ5 ð¾=æÇDÚÉI.ËÃSA¾¼[R³µba¨¯inŸªox–¥uŽ¡|‰‡žƒ›‹”{™”˜w—ž›s–©q–¶žp—Èr–Ï•s”ÕŒt“؉t“؉t“؉t“؉t“؉t“؉t“؉t“؉ÿ|ÿ„ÿ•ÿ£%ÿ¯,÷º3 ìÄ;âÎBÓÎH,ÆÇR@¹ÀZQ­ºa_£´gl™°mw«t€ˆ¨z‡¥z¢‰’u ’–pž›™lž§›jž´œiŸÅ›lžÐ”mšÖŒm™Ø‰m™Ø‰m™Ø‰m™Ø‰m™Ø‰m™Ø‰m™Ø‰m™Ø‰ÿ}ÿ‡ÿ˜ÿ¦#ÿ³)óÀ1çË8 ÝØ:ÍÒF*ÀÌP>³ÆXO§À_]œ»ej’·kt‰³q}¯x„z­Štª‡n©“i§š–f§¥˜c§²™b¨Ã˜e§Ñ“f£Ö‹g¡Ù‰g¡Ù‰g¡Ù‰g¡Ù‰g¡Ù‰g¡Ù‰g¡Ù‰g¡Ù‰ÿ~ÿ‹ÿœÿ«!û¹&íÇ,ßÕ1ÓÞ9ÆØD(¹ÑN;¬ÌVL Ç]Z•Âcg‹¿iq‚»oyz¸v€s¶}†m´…‹h³Žc²˜’`±¤“^²±”\²Â”^²Ó_¬Ù‰`ªÚ†`ªÚ†`ªÚ†`ªÚ†`ªÚ†`ªÚ†`ªÚ†`ªÚ†ÿÿÿ¡ÿ±ôÀ ãÑ Óß,Éâ;¾ßD%²ÙL8¥ÓTI™Ï[WŽËac„Èhl{ÅnusÃu{lÁ|gÀ„…b¿Ž‰^¾˜‹Z¾¤X¾±ŽW¿ÂX¿×‹Y¸Ü…Y¶ÝƒY¶ÝƒY¶ÝƒY¶ÝƒY¶ÝƒY¶ÝƒY¶ÝƒY¶Ýƒÿÿ•ÿ§ý¸éËÓßÈç,¾æ;³äD%¨áK5œÝRD‘ÙYR†Õ`]|ÓfftÑmnlÏttfÎ|yaÍ…}\ÌŽ€YÌ™ƒVÌ¥„T̳…SÍÄ…SÍ݃SÆà~TÃá}TÃá}TÃá}TÃá}TÃá}TÃá}TÃá}TÃá}ÿ‡ÿœÿ®Ú ÐÒ Çè¼ì, ²ë<¨êC%èH3’æP@ˆäYK~â`Tváh\oàobhßwhcÞl^ÞˆpZÞ‘sWÞ›uTÞ§wRß´xPßÄxOàÞxOÖåuOÓçtOÓçtOÓçtOÓçtOÓçtOÓçtOÓçtOÓçtÿÿ¤Û¸ÍÅ ÅÕ ºñ°ò- ¦ñ;›ðA$‘ïG/‡îN:~îXCwíaJpíiPjìqUeìyYaì\]ìŠ_Zì“aWícUí§eRí³fQîÀgOïÔhNëæhMèèhMèèhMèèhMèèhMèèhMèèhMèèhMèèhÿ™ Ý®̼ÁÉ¸Û ­ø¤ø/ ™ø9ø?!…øF*|øM2u÷W9n÷`?i÷iCdøqGaøyJ]øLZø‰OXø’QVù›RSù¥TQú¯UPú»VNúÊWMûãWLûéWLûéWLûéWLûéWLûéWLûéWLûéWLûéWå¥Î´¿¿´Îªë  ÿ—ÿ/ Œÿ6‚ÿ=xÿD$pÿL*jÿT/eÿ^3aÿg7]ÿo9ZÿvVÿ†?SÿŽAQÿ—BPÿ CNÿ©EMÿ³EKÿ¾FJÿÐGIÿÜGIÿÜGIÿÜGIÿÜGIÿÜGIÿÜGIÿÜGIÿÜGÑ®¿¹²Å§Õœý”ÿ"‰ÿ+ ~ÿ2uÿ:lÿBeÿI"_ÿQ%ZÿZ(Wÿc+Tÿk-Rÿr/Pÿy0Oÿ€1Mÿˆ2Kÿ4Jÿ˜5Hÿ¡5Gÿª6Fÿ³7Dÿ¿8DÿÅ8DÿÅ8DÿÅ8DÿÅ8DÿÅ8DÿÅ8DÿÅ8DÿÅ8Á³²¾¥Ì™Ýÿ†ÿ{ÿ' qÿ.hÿ6aÿ>ZÿFUÿMQÿUNÿ] Kÿd"Iÿk#Gÿq$Fÿx%Dÿ&Cÿ†'AÿŽ(@ÿ–(?ÿž)=ÿ§)<ÿ°*<ÿ´*<ÿ´*<ÿ´*<ÿ´*<ÿ´*<ÿ´*<ÿ´*<ÿ´*³¸¥Æ—Õ‹ï„ÿwÿmÿ"dÿ* \ÿ2Uÿ9PÿAKÿHHÿOEÿVBÿ\@ÿa>ÿg<ÿm;ÿs9ÿy8ÿ€6ÿˆ5ÿ4ÿ—2ÿ 2ÿ¤2ÿ¤2ÿ¤2ÿ¤2ÿ¤2ÿ¤2ÿ¤2ÿ¤¦À—ΉÞÿtÿiÿ_ÿWÿ$Pÿ, Jÿ3 Eÿ;AÿA=ÿG:ÿM8ÿR6ÿW4ÿ\2ÿa1ÿf/ÿk.ÿq-ÿw,ÿ}*ÿƒ)ÿ‹)ÿŽ)ÿŽ)ÿŽ)ÿŽ)ÿŽ)ÿŽ)ÿŽ)ÿŽÿf ÿa*ÿa3ÿi6 ÿn=ÿqFÿsQÿs^#ÿpm)ÿn|0ÿk‰5ÿi–9ÿg¡=ÿfª@ÿd²Bÿc¹DÿaÂFÿ`ÈGÿ^ÍHÿ\ÔJÿ[ÞKûYäL÷XêLôWïMðVóMìUøMìUøMìUøMìUøMìUøMìUøMìUøMìUøMÿf ÿa*ÿa3ÿi6 ÿn=ÿqFÿsQÿs^#ÿpm)ÿn|0ÿk‰5ÿi–9ÿg¡=ÿfª@ÿd²Bÿc¹DÿaÂFÿ`ÈGÿ^ÍHÿ\ÔJÿ[ÞKûYäL÷XêLôWïMðVóMìUøMìUøMìUøMìUøMìUøMìUøMìUøMìUøMÿf ÿb*ÿc1ÿk5 ÿp<ÿsEÿuOÿv]#ÿsl*ÿpz1ÿm‡6ÿk”;ÿiŸ?ÿh¨Bÿf°Eÿd¸GÿcÀIÿaÇJÿ_ÌLÿ]ÓMü\ÞNùZäOõYêPñXïQíWôQéWùPéWùPéWùPéWùPéWùPéWùPéWùPéWùPÿgÿc*ÿe0ÿn3 ÿt:ÿwCÿyNÿzZ$ÿwh+ÿtv3ÿq„9ÿn?ÿl›Cÿj¥Gÿh­Jÿg¶Lÿe¾NÿcÅPÿaËRý_ÒTù]ÝUô[äVðZêWëXðXçXõWãYúTãYúTãYúTãYúTãYúTãYúTãYúTãYúTÿhÿc)ÿh.ÿq2 ÿw8ÿ{Bÿ}Lÿ~X$ÿ{f-ÿws5ÿt€<ÿqŒBÿo—Gÿl¡KÿjªOÿh²Rÿg»TÿeÄVþbÊXù`ÑZõ^Ü\ð\ä]êZë^æYñ_âZõ[Ü[ùWÜ[ùWÜ[ùWÜ[ùWÜ[ùWÜ[ùWÜ[ùWÜ[ùWÿiÿd)ÿk-ÿt0 ÿ{7ÿAÿJÿ‚U%ÿc.ÿ{p6ÿx|>ÿu‰Eÿq”KÿožPÿl¦Tÿj®Xýh·[üfÀ]údÉ`õaÐbð^Ücê\åeå[ìfÞZðcØ[ô`Ñ]ø[Ñ]ø[Ñ]ø[Ñ]ø[Ñ]ø[Ñ]ø[Ñ]ø[Ñ]ø[ÿiÿe(ÿn+ÿx. ÿ6ÿƒ?ÿ…Hÿ‡S%ÿ„`/ÿ€l8ÿ|yAÿx…IþtPûq™Vùn¢Zøkª_öh²bôf»eódÅhðbÐkê_Ýmã]çnÛ[êmÓ\ïhÍ^ódÈ_÷_È_÷_È_÷_È_÷_È_÷_È_÷_È_÷_È_÷_ÿjÿf(ÿq)ÿ{, ÿƒ5 ÿ‡>ÿŠGÿŒP%ÿ‰]/ÿ…i:ýuDú|€M÷x‹Uôs•\ñobïl¥gíi­këf¶oècÀræaÌuã`ßwÖ\äxÎ^érÉ_ímÄ`ðh¿bôc¿bôc¿bôc¿bôc¿bôc¿bôc¿bôc¿bôcÿkÿg'ÿt'ÿ+ÿ‡3 ÿŒ<ÿEÿ‘N%ÿZ0ü‹f;ø†qFó|Qï|‡Zìvbèq˜iål páh¨uÞd°zÛbº~ØaÇÔaÚË_á~Äaåw¿bér»cím¶dñg¶dñg¶dñg¶dñg¶dñg¶dñg¶dñg¶dñgÿlÿj&ÿw&ÿ‚*ÿŠ2 ÿ;ÿ“Cÿ–L$ý•W0÷‘b<òŒmIì†xTç_âxŠiÜr’rÖmšxÒj¢|Îg«Ëf´Ée¿ƒÇd΄Ác݃ºdâ|¶fæv²gêq®hïj®hïj®hïj®hïj®hïj®hïj®hïj®hïjÿmÿl$ÿz$ÿ…)ÿŽ1 ÿ”9ÿ˜Bÿ›J$ø›T0ò—_=ë’jKåŠsXÞ‚|dÕ|…nÏvuÊr•zÆn~Ãl¥‚¿j¯„½i¹†ºhLJ·hÚ‡±hÞ­iãz©kèt¦kìm¦lím¦lím¦lím¦lím¦lím¦lím¦límÿmÿn#ÿ}"ÿˆ(ÿ‘0 ÿ˜8ÿœ@ûŸI#ô¡R/í\=å–fLÝŽoZÓ‡xeÌnÆ{‰vÁw‘{¼s™€¸p¡„µnª‡²m´‰¯lÁŠ­lÒŠ¨lÜ…¥má~¢nåwŸoëpŸoëpŸoëpŸoëpŸoëpŸoëpŸoëpŸoëpÿnÿq"ÿ!ÿ‹'ÿ”/ ÿ›7ÿ ?ø¤G!ð§O.è¢Z=ß›cMÔ”lZËŒueĆ}o¾€…v¸||³x•¯u…«r¥‰¨q¯‹¥p»Œ£pË qÙˆqß›räz™sér™sér™sér™sér™sér™sér™sér™sérÿoÿs ÿ‚ ÿŽ&ÿ—.ÿŸ6ý¤>ô¨F ì¬M-ã§X<Ù aL͘jYÅ‘re½‹zn¶…‚v°€‰}«}‘‚§y™†£w¢ŠŸu«œt·ŽštƘuÖ‹–v݃”vâ|“vçt’vèt’vèt’vèt’vèt’vèt’vèt’vètÿoÿuÿ„ÿ%ÿš-ÿ¢5 ú¨=ñ¬Eè°L+ß«W;Ò¤_KÈœhY¿•od·wn°Švª…†}¤Ž‚Ÿ~–‡›{ž‹—y¨Ž”x³’x‘zÕzÛ…Žzá~zævzævzævzævzævzævzævzævÿpÿvÿ†ÿ“%ÿ,ÿ¥4 ÷«<î±Cå´K)Ú¯U:ͨ^J fX¹šmd±“unªŽ|v£Šƒ}ž†‹‚™‚“‡”€›‹~¥Ž}°Š}¾‘ŠÓ‰~Ú‡ˆ~߇~åw‡~åw‡~åw‡~åw‡~åw‡~åw‡~åw‡~åwÿpÿxÿˆÿ•$ÿ +ÿ¨2 ô¯:ëµBá¸J'Ô³S9È«\I¾¤dW´žkc¬˜rm¤“yužŽ|˜‹ˆ‚’‡‡…™‹‰ƒ¢Ž†‚®‘ƒ‚¼‘‚ƒÎ‘ƒƒÙˆ‚‚ß‚‚äy‚‚äx‚‚äx‚‚äx‚‚äx‚‚äx‚‚äx‚‚äxÿqÿzÿŠÿ—#ÿ¢)ü¬1 ñ³9èº@ݼH%϶R8ï[H¹¨bV¯¢jb§œplŸ—wu˜“~|’†‚ŒŽ‡‡Š—‹ƒˆ Ž‡«‘|‡¹‘{‡Ë‘|ˆØ‰}‡Þ‚}†äz}†äy}†äy}†äy}†äy}†äy}†äy}†äyÿqÿ|ÿÿš"ÿ¥(ù¯/î¸7 ä¿?ØÀF$ʺP7¿³YG´¬aUª¦ha¡¡nk™œut’˜|{Œ•ƒ†’‹†”‹|ŽžŽx©vŒ¶‘tÈ‘vŽØŠwŒÝ‚wŠãzwŠãzwŠãzwŠãzwŠãzwŠãzwŠãzwŠãzÿrÿÿÿ ÿ©&ö³-ê½5 àÆ<ÒÄD#ŽO5º·XF¯±_T¥«f`œ¦mj”¢ssŒžzz†›€€˜‰…z–’‰u”›r“¦o“´m”Åp•ØŠp’݃qã{qã{qã{qã{qã{qã{qã{qã{ÿsÿ‚ÿ’ÿ ÿ­$ò¸*æÃ1ÛÌ5ÌÈB!ÀÂM4´¼VD©¶^RŸ±d^–¬khŽ©qq†¥xx¢~y ‡ƒtˆoœ™‹k›¤h›²Žg›ÂŽiØŠj™Ý‚k–ã{k–ã{k–ã{k–ã{k–ã{k–ã{k–ã{k–ã{ÿtÿ…ÿ–ÿ¤û² í¿%áÌ*ÔÑ2 ÇÌAºÇL1®ÁTB£¼\P™·b\³if‡°on€­vuyª}{s¨„€m¦…h¥—ˆe¤£Šb¤°‹`¤Á‹b¦Ùˆc¢Þežãzežãzežãzežãzežãzežãzežãzežãzÿvÿ‰ÿšÿ©ö¸çÇÛÙÍÖ0 ÀÒ?´ÍJ/¨ÈR?ÃZM’¿aX‰»gb€¸mky¶tqr³{wl±ƒ|g°Œ€b¯–ƒ^®¡†\®¯‡Z¯¿‡[°Ú„]¬à^§åx^§åx^§åx^§åx^§åx^§åx^§åx^§åxÿzÿŽÿŸÿ°ïÀÙÔ ÎßÄÝ/ ¹Ù=­ÓH,¡ÏP;•ËXI‹Ç_T‚Äe^yÂlfrÀrlk¾zrf½‚va»‹z\»•}Yº¡Wº¯€U»¿€U¼ÙV¸ãzX²çuX²çtX²çtX²çtX²çtX²çtX²çtX²çtÿ€ÿ”ÿ¦ã¸ ÒÆ Ì× Ãã¹â1 ¯à=¤ÝF'™ÙN7ÔVDƒÑ]OzÏdXrÍj_kËreeÊyj`É‚o[É‹rWÈ–uTÈ¢wRȯxQÉÀxPÊÛwQÆèsRÀëoR¿ìoR¿ìoR¿ìoR¿ìoR¿ìoR¿ìoR¿ìoÿ‡ÿ› ß®мÇÉÁÛ ·è ­ç1 ¤æ=™äD&ŽâL3„àT>{Þ\GsÝcOkÜjVeÚr\`Úz`[ÙƒdWÙŒgSÙ—jPÙ£lNÙ±mMÚÂmLÛÜlMØìjNÏðgNÏðgNÏðgNÏðgNÏðgNÏðgNÏðgNÏðgÿ é¤Ñ´Å¿¼Í´éªî"¢î3—í;ìB$ƒëI.{êS6sé\>lédDgélIbètM^è|QZè…TVèŽVSé˜YQé£ZNé°\Mê¾\LëÒ]Kêé]Jãó\Jãó\Jãó\Jãó\Jãó\Jãó\Jãó\Jãó\ù™Ô¬Å·¹Ã°Ò§öžõ$•õ2Šõ:õA xõH'põP.jôZ4eôc8`ôk<]õt?Yõ|BWõ„DTõFQö—HOö¡JMö¬KK÷¹LJ÷ÈMIøàMH÷óMH÷ôMH÷ôMH÷ôMH÷ôMH÷ôMH÷ôMH÷ôMڣDZ¸»­É£Ùšý’ý'‡þ/ }þ7tÿ?lÿG fÿN%`ÿW)\ÿ`-Yÿi0Vÿq2Sÿx4Qÿ€6Oÿ‰7Mÿ’9Kÿœ:Iÿ¦;Hÿ±Dÿç>Dÿç>Dÿç>Dÿç>Dÿç>Dÿç>Dÿç>ˬ¹¶¬Â Ð•åŽÿ„ÿ$zÿ, pÿ4hÿ<aÿD[ÿKVÿS Sÿ["Pÿc$Mÿk&Kÿs'Iÿz)Hÿ‚*FÿŠ+Dÿ”,Bÿž-Aÿ§.@ÿ±.?ÿ¼/>ÿÍ0>ÿÍ0>ÿÍ0>ÿÍ0>ÿÍ0>ÿÍ0>ÿÍ0>ÿÍ0»±¬¼ŸÉ“Ù‰ü €ÿvÿ lÿ( dÿ0 ]ÿ8Wÿ@QÿGMÿNJÿVGÿ\DÿcBÿi@ÿp?ÿx=ÿ€;ÿˆ :ÿ‘!8ÿ›"7ÿ¤"6ÿ­#5ÿ¸#5ÿ¹#5ÿ¹#5ÿ¹#5ÿ¹#5ÿ¹#5ÿ¹#5ÿ¹#­¶ŸÄ’Ò„á}ÿ rÿhÿ_ÿ#Xÿ+ Qÿ3 Lÿ: GÿACÿH@ÿN=ÿT;ÿZ9ÿ_7ÿe5ÿk3ÿr1ÿz/ÿ‚.ÿ‹,ÿ“+ÿœ*ÿ§*ÿ§*ÿ§*ÿ§*ÿ§*ÿ§*ÿ§*ÿ§¡¿’Ì„Üx÷nÿ cÿZÿRÿKÿ$Fÿ,Aÿ3 <ÿ: 9ÿ@ 5ÿE 2ÿJ 0ÿP .ÿT,ÿY*ÿ^(ÿd&ÿj%ÿq#ÿx"ÿ€ ÿˆÿ‘ÿ‘ÿ‘ÿ‘ÿ‘ÿ‘ÿ‘ÿ‘ÿ\"ÿW-ÿX3ÿ_6 ÿc= ÿeFÿfPÿe^ÿdn"ÿa|'ÿ_Š+ÿ^–.ÿ\¡1ÿ[ª3ÿZ²5ÿYº6ÿXÃ7ÿXÍ9ÿWØ9ÿVà:ÿUæ;ÿTì<ÿSñ<üRõ=øRù=õQý=óQÿ=óQÿ=óQÿ=óQÿ=óQÿ=óQÿ=óQÿ=ÿ\"ÿW,ÿZ2ÿa5 ÿe< ÿgEÿhOÿh\ÿfm"ÿc{(ÿaˆ,ÿ_”/ÿ^Ÿ2ÿ]©5ÿ[±7ÿZ¹8ÿZÁ:ÿYË;ÿXÕ<ÿWß=ÿVæ>ÿUë>ýTð?ùSõ?öRù@óRý@ðRÿ>ðRÿ>ðRÿ>ðRÿ>ðRÿ>ðRÿ>ðRÿ>ÿ]!ÿX,ÿ\0ÿd3 ÿh: ÿkCÿlNÿlZÿjj$ÿgx)ÿd….ÿb‘2ÿaœ6ÿ_¦8ÿ^®:ÿ]¶<ÿ\¾>ÿ[È?ÿZÒAÿYÝBÿWåCýVêDùUðDõTõEñTúEîTþDìTÿBìTÿBìTÿBìTÿBìTÿBìTÿBìTÿBÿ^!ÿY,ÿ_.ÿf2 ÿl8 ÿoAÿoLÿqWÿng%ÿku+ÿh‚0ÿeŽ5ÿd™9ÿb£<ÿ`«>ÿ_³Aÿ^»Bÿ]ÄDÿ\ÎFÿZÜGþYäHúWêIõVðJðUöJíUúJéVþGçVÿEçVÿEçVÿEçVÿEçVÿEçVÿEçVÿEÿ^!ÿY+ÿb-ÿj0ÿo6 ÿr@ÿtJÿuUÿrd&ÿor-ÿl3ÿi‹8ÿf–<ÿe @ÿc¨Cÿa°Fÿ`¸Hÿ^ÁJÿ]ËKÿ\ÚMúZãNõYêOðWñPëVöQçWûNäXÿKáYÿIáYÿIáYÿIáYÿIáYÿIáYÿIáYÿIÿ_ ÿZ+ÿe+ÿm.ÿs5 ÿw>ÿxHÿyRÿw`'ÿtn.ÿp{5ÿm‡;ÿj’Aÿg›Eÿe¤Iþc¬Lýa´Nû`¼Qú^ÆSù]ÔUõ[ãVïZêXéXòYåY÷VàZûSÛ[ÿO×[ÿM×[ÿM×[ÿM×[ÿM×[ÿM×[ÿM×[ÿMÿ` ÿ])ÿh)ÿq+ÿx3 ÿ|<ÿ}Fÿ~Pÿ}](ÿyj0ÿuv8ÿq‚?ümEúj—KøgŸOöe§Sôb¯Vó`¸Yñ_Á\ð]Í^í\à`èZìaáZò`Ú[ö[Ó\úWÏ]ýSÌ^ÿQÌ^ÿQÌ^ÿQÌ^ÿQÌ^ÿQÌ^ÿQÌ^ÿQÿaÿ`'ÿk&ÿu)ÿ|1 ÿ:ÿƒDÿ„MÿƒY(ÿf2üzr;øu~CõqˆKòm’QïišVíf¢[êcª_è`²cæ^¼fä\Èiá[ÚkÝZêkÓ\ðfÍ^õaÈ_ù\Ä`üXÁaþUÁaþUÁaþUÁaþUÁaþUÁaþUÁaþUÿbÿc%ÿo$ÿy(ÿ0 ÿ…9ÿˆBÿ‰Kÿ‰V(ú…b3õ€n=ðzyGìuƒPépŒXåk•^áfdÞc¤iÛ`­m×_·oÔ^ÃpÑ^ÒqÍ]çqÇ_îkÂaòf¾böaºcù\·cüX·cüX·cüX·cüX·cüX·cüX·cüXÿcÿf#ÿr"ÿ}'ÿ…. ÿŠ7ÿ@ÿIúS(ôŒ_4î†j?étKãx~UÞr†^ØmeÓj˜jÏg mÌe¨pÉc±sÆb¼tÄaÉuÁaàv¼cêq·dïj´eóe°fö`®gù\®gù\®gù\®gù\®gù\®gù\®gù\ÿcÿh!ÿu ÿ%ÿ‰-ÿ5 ÿ’>ü”Gõ–O(î‘[4ç‹fAà„oNÙ}yXÑw‚`ÌsŠgÇo“lÄl›pÀi£s½g¬vºf¶x¸eÂy¶eÕy²fæv®hìoªiði¨iôc¦j÷_¦j÷_¦j÷_¦j÷_¦j÷_¦j÷_¦j÷_ÿdÿk ÿxÿ„$ÿ,ÿ“4 ÿ—<ø™Eð›M'è—Y4ábB׉lN΃uXÈ}~aÃx†h¾tŽm¹p–r¶nžu²l§x¯j±{­i½|ªiÍ}¨jãz¥lér¢líl mòfžnõbžnõbžnõbžnõbžnõbžnõbžnõbÿeÿmÿ{ÿ‡#ÿ*ÿ—2 ýœ;ôŸCì¡K%ãœV3Ú–`AÏŽiNLjrXÀ‚zaº}‚hµyŠn±u’s¬ršw©p£z¦n¬}£m¸~¡mÇŸnà~œpçušpëo™qðh—qód—qód—qód—qód—qód—qód—qódÿeÿoÿ~ÿŠ"ÿ“)ÿ›1 ù 9ð£Aç¦I#Þ¡T1Òš^@È“gMÀŒoX¹‡wa³‚h®}‡n©zŽs¤w–x tŸ{s¨~šq´€˜q–rØ•tåx“têq’uïk‘uòf‘uòf‘uòf‘uòf‘uòf‘uòf‘uòfÿfÿqÿ€ÿŒ!ÿ–(ÿž/ö¤7 ì¨?ã«H ئR0Ìž\@×eM»‘mW³‹ta­†|h§‚ƒn¢~‹t{“x™yœ|•w¥’v°u¾‚ŽvÑ‚ŽxãzxèsŒxíl‹xñh‹xñh‹xñh‹xñh‹xñh‹xñh‹xñhÿgÿsÿ‚ÿ ÿ™&þ¢.ó¨5 é­=߯FÒ©Q/Ç¢Z?¾›cLµ•jW®r`§‹yh¡‡nœƒˆt—€x’}™|Ž|¢€‹z­‚ˆz»ƒ‡z̓‡|â|‡|çu†|ìn†|ði†|ði†|ði†|ði†|ði†|ði†|ðiÿgÿuÿ…ÿ’ÿœ%û¥,ð¬4 æ²;Û³DÍ­O.æY>¹ŸaK°™hV¨”p_¡wg›‹~n–ˆ†s…ŽxŒ‚–|ˆ€ €„«‚¸ƒÊ„á}æv€ëo€€ïj€€ïj€€ïj€€ïj€€ïj€€ïj€€ïjÿhÿxÿ‡ÿ”ÿŸ#ø©*ì±1â·9 Õ·BɰN-¾ªW=´£_J«žgU£˜n_œ”uf–|mƒs‹Š‹x†ˆ”|†ž€}„¨‚{„µ„y„Ç„z†à{…æw{…ëp{„îk{„îk{„îk{„îk{„îk{„îk{„îkÿiÿzÿŠÿ—ÿ£!ô­'èµ.Þ½5 к@Ä´L,º®V;¯¨^I¦¢eTžl]—™sf•ylŠ’r…‰w’|{‹›wЦ‚t‰³ƒrŠÄƒtŒàt‹åxu‰êqvˆílvˆílvˆílvˆílvˆílvˆílvˆílÿkÿ}ÿÿšÿ¦ð±#ä»)ÙÂ0 ˽?À¸J*µ²T:ª¬\G¡§cR™£j\‘ŸqdŠ›wk„˜q~–†vy“{t’™~p¤m±‚kÁ‚m’Ýn‘åxoêqpŽílpŽílpŽílpŽílpŽílpŽílpŽílÿnÿ€ÿÿžû«ì·àÃ!ÒÆ-ÆÁ=º¼I(¯·R8¥²ZEœ­aQ“©hZ‹¥ob„¢ui~Ÿ|ox„ts›yn™–|j˜¢g—®€e˜¿e™Øh˜åxi–êqj”ílj”ílj”ílj”ílj”ílj”ílj”ílÿqÿƒÿ”ÿ¢õ°æ¾ÙÌÌÊ+ÀÆ;µÁG&ª¼Q6Ÿ¸XC–³`N°fX…¬m`~ªsgw§zlr¥‚rl£‹vh¢”yd¡ |` ­}_¡½~^¢Ô}a¡ævbëpc›îlc›îlc›îlc›îlc›îlc›îlc›îlÿtÿ‡ÿ˜þ§ç· ÖÅ ÐÐÅÏ(¹Ë9®ÇE#£ÃO3™¿W@»^K†¸dT~µk\w²qcq°xik®€mf­‰ra«“u]«žx[ª¬yY«¼yX¬ÒyZ«ès\§ìn]¤ïj]¤ïj]¤ïj]¤ïj]¤ïj]¤ïj]¤ïjÿyÿŒÿž ܮһ ÌÈ ÇÖ½Õ%²Ò6§ÎB œÊL/’ÇT<ˆÃ\GÁbPw¾iWp¼p^j»wce¹h`¸ˆl\·’oX¶žqU¶«sS·»sR·ÒsT·ëoV²ïjW¯ñgW¯ñgW¯ñgW¯ñgW¯ñgW¯ñgW¯ñgÿÿ“ á¥Ò³ɾÂ˼ݴÝ#ªÚ3 ŸÖ@”ÓJ*ŠÐR7€ÍZAxËaJpÉhQjÈoWdÆv\_Å`ZňdVÄ’gSÄžiPĬjOļkNÅÓjOÅíhPÀódQ½õaQ½õaQ½õaQ½õaQ½õaQ½õaQ½õaÿ† ðšÔªȶ¾Á·Ï °ã¨ã%Ÿâ5 •à>‹ÞH%ÜP0xÚX:pØ_BiÖgIcÕnO^ÔvSYÓWUÓ‰ZRÓ“]OÓ _MÓ­`KÔ¾`JÕØ`KÔí^LÑ÷\LÌùZLÌùZLÌùZLÌùZLÌùZLÌùZLÌùZÿڢʯ½¹´Æ«Ô ¤êœé(“é4‰è=çD"wæN*oæW2iå_8cåg=_äoBZäwEVä€ISäŠKPä”NMäŸPKå¬QIå»RHæÏRHæèRHäøQHáüOHáüOHáüOHáüOHáüOHáüOHáüOá™Í©¾³³¾¨ËŸÚ ˜òò*†ò3|ñ;tñClñK#fñT)añ]-]ñf1Yñn5Vñv7Sñ:PòˆKò@Ió©AGó¶BFôÇCEôßCDôðCDòúBDòúBDòúBDòúBDòúBDòúBDòúBÑ¢À®²¸§ÄœÒ’í Œû‚û(yû1 pü9iüAbüI\üP WüY#Týb&Qýj(Oýs*Lþ{,Jþƒ.Hþ/Fÿ˜1Dÿ¢2Cÿ®3Aÿ»4@ÿË4?ÿã4?ÿï5?ÿï5?ÿï5?ÿï5?ÿï5?ÿï5?ÿï5γ³§¿šËÚ†ÿ~ÿuÿ%lÿ- dÿ6]ÿ>XÿERÿMOÿULÿ\IÿdGÿkDÿs Bÿ|"Aÿ…#?ÿ$=ÿš%;ÿ¤&:ÿ¯&9ÿº'8ÿÊ'8ÿÜ(8ÿÜ(8ÿÜ(8ÿÜ(8ÿÜ(8ÿÜ(8ÿÜ(µ¯§ºšÆÔæzÿpÿgÿ!_ÿ)Xÿ1 Rÿ9 MÿAIÿHEÿOBÿU@ÿ\=ÿb;ÿi9ÿp7ÿy5ÿ‚3ÿŒ2ÿ—0ÿ¡/ÿª/ÿµ.ÿ¿.ÿ¿.ÿ¿.ÿ¿.ÿ¿.ÿ¿.ÿ¿©µšÂŒÏÞvÿlÿbÿZÿSÿ$Mÿ+Gÿ3 Cÿ: ?ÿA ;ÿG 8ÿM 5ÿS3ÿX1ÿ^/ÿd-ÿk+ÿs)ÿ|'ÿ†%ÿ$ÿ™#ÿ£"ÿ«"ÿ«"ÿ«"ÿ«"ÿ«"ÿ«"ÿ«œ¾Ë~Úpægÿ]ÿ TÿMÿGÿAÿ$<ÿ+7ÿ24ÿ80ÿ=-ÿC*ÿH (ÿM &ÿR $ÿW "ÿ] ÿc ÿk ÿs ÿ| ÿ„ ÿŽ ÿ• ÿ• ÿ• ÿ• ÿ• ÿ• ÿ• ÿR%ÿM/ÿQ2ÿW5ÿZ< ÿ[EÿZOÿY]ÿXmÿV{ÿU‰"ÿS•%ÿR 'ÿQ¨)ÿP±*ÿP¸+ÿOÁ,ÿOÊ-ÿNÖ.ÿNä.ÿNí/ÿNó/ÿMø0ÿMü0ÿLÿ0üLÿ0ùLÿ/øLÿ/øLÿ/øLÿ/øLÿ/øLÿ/øLÿ/ÿS$ÿM/ÿT0ÿY4ÿ]: ÿ_Cÿ^Nÿ]Zÿ[jÿZy!ÿX†$ÿV’'ÿU)ÿT¦+ÿS®-ÿR¶.ÿR¾/ÿQÇ0ÿQÒ1ÿPá2ÿPë2ÿOò3ÿO÷3ÿNü4ûNÿ4øMÿ4õNÿ2ôNÿ2ôNÿ2ôNÿ2ôNÿ2ôNÿ2ôNÿ2ÿS$ÿN.ÿV/ÿ\2ÿ`8 ÿbAÿbLÿ`Xÿ_hÿ]v"ÿ[ƒ&ÿY)ÿXš,ÿV£.ÿU¬0ÿU³1ÿT»3ÿSÄ4ÿSÎ5ÿRÞ6ÿRé7ÿQñ7ÿQö8ûPû8÷Oÿ8ôOÿ7ñPÿ5ðPÿ4ðPÿ4ðPÿ4ðPÿ4ðPÿ4ðPÿ4ÿT#ÿP-ÿY-ÿ_0ÿc6 ÿf@ÿfJÿeUÿceÿas#ÿ^€(ÿ\Œ,ÿ[—/ÿY¡1ÿX©4ÿW°5ÿV¸7ÿUÁ8ÿUË9ÿTÚ:ÿTç;ÿSð<ûRö=öQû=òQÿ=ïRÿ;ìRÿ8ëRÿ8ëRÿ8ëRÿ8ëRÿ8ëRÿ8ëRÿ8ÿU#ÿR+ÿ\+ÿc.ÿg4 ÿj>ÿkHÿjSÿhaÿfp%ÿc}*ÿ`ˆ/ÿ^“3ÿ\6ÿ[¥8ÿZ­:ÿXµ<ÿW½>ÿWÇ?ÿVÓAüUäBùUîCõTöDðSüDìTÿAéUÿ?æUÿ<åUÿ;åUÿ;åUÿ;åUÿ;åUÿ;åUÿ;ÿV"ÿU)ÿ_(ÿg+ÿl2 ÿo< ÿpFÿpPÿn] ÿkk'ÿhy-ÿe„2ÿb7ÿ`™;þ^¡>ý\©Aû[±CúY¹EùXÂG÷WÎHõVàJñVìKîUöLéVüJåWÿFâXÿCÞYÿ@ÝYÿ?ÝYÿ?ÝYÿ?ÝYÿ?ÝYÿ?ÝYÿ?ÿW"ÿY'ÿc&ÿk(ÿq0ÿt9 ÿuCÿuMÿuY!ÿqg)ÿmt0ýj€6úfŠ<øc”@öaœDô^¤Hò\¬Kñ[´MïY½PíXÉRëWÚSçVéUäWõTáYýOÛZÿKÕ[ÿHÐ\ÿDÏ\ÿDÏ\ÿDÏ\ÿDÏ\ÿDÏ\ÿDÏ\ÿDÿX"ÿ\$ÿf#ÿo&ÿv.ÿz7 ÿ{Aÿ{Kÿ{U!þwc*ùso2ön{:òj…AïfGìc—Lê`ŸPè]§Tå[¯WãY¸ZáWÃ]ßWÒ^ÚVæ^ÖYóZÒ\üUÍ^ÿPÉ^ÿLÅ_ÿIÄ_ÿHÄ_ÿHÄ_ÿHÄ_ÿHÄ_ÿHÄ_ÿHÿY!ÿ_"ÿj!ÿt$ÿ{,ÿ5 ÿ>ÿ‚Hý‚R!÷~_+òyk5ísu>én€Fåi‰Máe‘TÞa™YÚ_¢\Ö]ª_Ó\³aÐ[¾bÎ[ÌcËZâcÈ\ñ`Æ_úZÁ`þU½aÿQºbÿM¹bÿK¹bÿK¹bÿK¹bÿK¹bÿK¹bÿKÿY!ÿb ÿnÿx#ÿ+ÿ„3 ÿ‡<þˆE÷ˆN!ð„[+ê~f6äxpAßrzKÙmƒRÓiŒXÏf•\Ìd_Éb¥bÆ`®dÃ_¸fÁ^Äg¿^Øh¼_ëfºc÷_¶dûY³eþU°eÿP¯eÿO¯eÿO¯eÿO¯eÿO¯eÿO¯eÿOÿZ ÿeÿqÿ|"ÿ„)ÿ‰1 ÿŒ:ùŽCñŽL êŠX+ã„b7Û~lCÓxvLÍsSÈo‡YÄk^Ài˜b½f eºe¨h·c²jµb¾k³bÎl°båk¯fôd¬gø]©hüX§iÿS¦iÿR¦iÿR¦iÿR¦iÿR¦iÿR¦iÿRÿ[ ÿgÿtÿ ÿˆ'ÿŽ/ý’7 ô”@ì•IäU*ÛŠ_7Ñ„iCÊ}rLÄx{T¿tƒZºq‹_¶n“d³k›g¯i¤j­g­lªf¸n¨fÇo¥fßo¥jñh¢köa lù[žlýVžlþUžlþUžlþUžlþUžlþUžlþUÿ\ÿjÿwÿƒÿŒ%ÿ’-ù—5 ï™>ç›FÞ–R)Ò\7ʉfBÃoL¼~wT·y[²u‡`®reªp—h¦mŸl£l©n k´pžjÂqœj×qœnîkšoód™oø^—püX—pýW—pýW—pýW—pýW—pýW—pýWÿ^ÿlÿzÿ†ÿ#ÿ–+õ›3 ëŸ;â E×›P(Ì”Z6ÄcB¼ˆlLµ‚tT°~|[«z„`¦w‹e¢t“ižrœm›p¥p˜o°r•n½s“oÐs”rën“sòf’sö`súZsûYsûYsûYsûYsûYsûYÿ_ÿnÿ}ÿ‰ÿ’"ýš)ñ 0ç¤9 Þ¥CÑŸN'ǘX5¾’aA¶ŒiK¯‡qT©‚y[¤€`Ÿ|ˆe›yj—v™m“u¢qs¬ssºt‹sËuŒvçpŒwðh‹wõbŠwù\ŠwúZŠwúZŠwúZŠwúZŠwúZŠwúZÿaÿqÿÿ‹ÿ• ùž&í¤.ã©6 Ø©@Ì£L&œV4¹–_@±gJª‹oS¤‡vZžƒ~`™€…e”}j{–nŒyŸq‰xªt†w¶u„wÇv…zär†{ïj…{ôd…{ø]…{ù\…{ù\…{ù\…{ù\…{ù\…{ù\ÿcÿsÿÿŽÿ™ö¡#ê©*à¯2Ò¬>ǦK$½ U3´š^?¬•eJ¥mRžŒtY˜ˆ{`“…ƒeŽ‚‹jŠ€“n†~q‚}§t|´v}|Åv}~àsîkóe~÷^~ø]~ø]~ø]~ø]~ø]~ø]ÿeÿuÿ„ÿ‘ÿœò¥ æ®&Û´.ί=êI#¹¤S1¯ž\>§™dI ”kQ™rY“y_ŽŠ€d‰‡ˆi„…‘n€ƒšq|‚¥ty²vwÂvv‚Ýty„ílyƒòfz‚÷_z‚ø^z‚ø^z‚ø^z‚ø^z‚ø^z‚ø^ÿgÿwÿ‡ÿ”þŸîªâ³!Õ·*ɳ;¾®H"´¨R0«£Z=¢žbG›™iP”•pXŽ’w^ˆ~dƒ†i~‹my‰˜qv‡£sr†¯up†¿vo‡×us‰ímsˆòft‡ö`t‡÷_t‡÷_t‡÷_t‡÷_t‡÷_t‡÷_ÿiÿzÿŠÿ—ù£ê®ݹϺ(Ä·9¹²F ¯¬P/¦§X;£`F•ŸgOŽ›nVˆ˜u]‚•|c}“„hx‘Œls–poŽ rl­tj½uiÒulímmŽñgnŒö`nŒ÷_nŒ÷_nŒ÷_nŒ÷_nŒ÷_nŒ÷_ÿlÿ}ÿÿ›ô¨åµ Õ¿ʾ&¿»7´¶Dª±N-¡­W9˜©^D¥eM‰¢lU‚Ÿs[|œzawšfr˜Šjm–”ni•žqf”«sc”ºsb•Ïsf—ìlg•ñfh“ö`h’÷_h’÷_h’÷_h’÷_h’÷_h’÷_ÿoÿÿ‘ò  Ú­ Ó¸ ÎÃÄÂ#¹¿5¯»B¤·L*›³U7’¯\AЬcJƒ©jR|¦qYv¤x^p¢ck ˆggž‘kcn_©p]¹p\Íp_Ÿëkaòebšö`b™÷^b™÷^b™÷^b™÷^b™÷^b™÷^ÿsÿ… ú– Û¥ѱË»ÆÇ ½Ç ²Å2 ¨Á@ž¾J'”ºS4‹¶Z>ƒ´aG|±hOu¯oUo­vZj«}_e©†ca¨g]§›jY§¨kW§¸lV§ÌlX¨éhZ§ôc[£ø^\£ù]\£ù]\£ù]\£ù]\£ù]\£ù]ÿx ÿ‹ ߜҩɴ¾¼ÌµÍ«Ë/ ¡È=—ÅH#ÂQ/„¿X:|¼_CuºfJo¸mPi·tUdµ|Z_´…^[³aW³šdT²§eR²·fQ³ÌfR³écT²÷_U®ú[V­ûZV­ûZV­ûZV­ûZV­ûZV­ûZÿ~ ò‘Ö¡Ê­À·¸Â²Ï «Ô£Ó+™Ð:ÎE…ËN*}ÉV4uÇ]=nÅeDhÄlIcÂsN^Á{SYÁ„VUÀYR¿›\O¿¨]M¿¸^LÀÍ^LÀê\N¿ùYO¼þUPºþUPºþUPºþUPºþUPºþUPºþUÿ…ݘͦÁ±·º®Æ§Ó  Ý™Ý(Û7†ÙB}ÖK$uÔT-mÒ\5gÑcü«*=ü¹+;ýË+;ýâ+:üô+:ü÷+:ü÷+:ü÷+:ü÷+:ü÷+:ü÷+½¨®°¡¼•ȉÔ~èwÿoÿgÿ&`ÿ/Yÿ7 Tÿ?OÿGKÿNGÿVDÿ]Bÿd@ÿl=ÿu;ÿ~9ÿ‰7ÿ”6ÿ 5ÿ¬3ÿ¹3ÿÈ2ÿâ 2ÿç 2ÿç 2ÿç 2ÿç 2ÿç 2ÿç °­¢·•ćÐ{Ýrý jÿaÿZÿ"Tÿ*Nÿ2Iÿ: EÿA AÿH >ÿN;ÿU8ÿ[6ÿb4ÿi2ÿr/ÿ{-ÿ†+ÿ’*ÿž)ÿ©(ÿ³'ÿÂ'ÿÇ'ÿÇ'ÿÇ'ÿÇ'ÿÇ'ÿǤ´–À‡ÌzÚmëdÿ\ÿTÿMÿHÿ$Bÿ,>ÿ3:ÿ96ÿ@3ÿE0ÿK .ÿQ +ÿW )ÿ] 'ÿd $ÿl "ÿv ÿ€ ÿŒÿ—ÿ¡ÿ¬ÿ®ÿ®ÿ®ÿ®ÿ®ÿ®—¼ˆÉyÖkã_öVÿNÿ GÿAÿ<ÿ7ÿ$2ÿ*/ÿ0+ÿ6'ÿ;%ÿ@"ÿE ÿJÿPÿVÿ\ÿdÿmÿwÿ ÿ‹ ÿ• ÿ˜ ÿ˜ ÿ˜ ÿ˜ ÿ˜ ÿ˜ ÿI'ÿD1ÿK1ÿP4ÿR:ÿRC ÿQNÿO\ÿMkÿLyÿK‡ÿI“ÿHÿH¦ ÿG®!ÿGµ"ÿF½#ÿFÆ#ÿFÐ$ÿFà$ÿFê%ÿFó%ÿFú%ÿFÿ%ÿFÿ%ÿFÿ%ÿFÿ$ýFÿ#ýFÿ#ýFÿ#ýFÿ#ýFÿ#ýFÿ#ÿI'ÿF/ÿM/ÿR2ÿU9ÿUB ÿTMÿRYÿPhÿOwÿN„ÿL‘ÿK›!ÿJ¤"ÿJ¬#ÿI³$ÿI»%ÿHÄ&ÿHÍ&ÿHÝ'ÿHè'ÿHñ(ÿHù(ÿHÿ(ÿHÿ(þHÿ(ûHÿ'ùHÿ&ùHÿ&ùHÿ&ùHÿ&ùHÿ&ùHÿ&ÿJ'ÿH-ÿP-ÿU0ÿX6ÿY@ ÿXKÿUVÿTfÿRtÿQÿOŽ!ÿN˜#ÿM¡%ÿM©&ÿL±'ÿK¸(ÿKÁ)ÿKÊ*ÿJÙ*ÿJæ+ÿJð+ÿJø,ÿJÿ,ýJÿ,úJÿ+÷Jÿ)õJÿ(õJÿ(õJÿ(õJÿ(õJÿ(õJÿ(ÿK&ÿK+ÿR+ÿX.ÿ[4ÿ]> ÿ]IÿZTÿYbÿWqÿU~ ÿSŠ#ÿR•&ÿQž(ÿP¦*ÿO®+ÿNµ,ÿN½-ÿMÇ.ÿMÓ/ÿLã0ÿLí0üLö1úLþ1÷Lÿ1õMÿ/òMÿ-ðMÿ+ðMÿ+ðMÿ+ðMÿ+ðMÿ+ðMÿ+ÿK&ÿN)ÿV)ÿ\+ÿ`1ÿb; ÿbFÿ`Qÿ^_ÿ\mÿZz#ÿX†&ÿV‘)ÿUš,ÿS¢.ÿRª0ÿQ±1ÿQ¹3ÿPÃ4þOÎ5ûOß6øNë7õNõ8òNý8ðOÿ5îPÿ3ëQÿ1éQÿ/éQÿ/éQÿ/éQÿ/éQÿ/éQÿ/ÿL%ÿQ'ÿZ&ÿ`(ÿe/ÿh9 ÿhCÿgNÿeZÿbh ÿ_v%ÿ]*ÿZŒ.þX–1üWž4ûU¦6ùT­8øSµ:÷R¾;õQÉ=óQÚ>ðPè?ìPó@éQý>èSÿ;æTÿ8ãUÿ5áUÿ3áUÿ3áUÿ3áUÿ3áUÿ3áUÿ3ÿM$ÿT$ÿ]#ÿe%ÿj-ÿm6 ÿn@ÿmKÿkVÿhd!þeq(ûb}-ø_‡2ö\‘6óZ™:òX¡=ðW©@îU±BìT¹DëSÄFéRÒHåQåIâRòHßTüDÝVÿ@ÛXÿ=ÖYÿ:ÒYÿ8ÒYÿ8ÒYÿ8ÒYÿ8ÒYÿ8ÒYÿ8ÿN$ÿX!ÿa ÿj#ÿp+ÿs4 ÿt>ÿtHÿrRûo_#ökl*ògw1ïc‚7ì`‹=é]”AæZœEäX¤IâV¬LàT´NÝT¿PÛTÍP×SâQÒTðNÐWûJÎZÿEÍ\ÿBÉ\ÿ>Å\ÿ<Å\ÿ<Å\ÿ<Å\ÿ<Å\ÿ<Å\ÿ<ÿO#ÿ[ÿeÿn!ÿu)ÿy1ÿz; ÿzDúyNôv[#îqg,élr5åh|<ác…CÝ`ŽHÙ]—LÕ\ŸOÒZ§QÏY°SÍXºTËXÆUÉWÚVÅWìUÃ[ùOÂ^ÿJÀ_ÿF½`ÿBº`ÿ@º`ÿ@º`ÿ@º`ÿ@º`ÿ@º`ÿ@ÿR!ÿ^ÿiÿsÿz&ÿ~/ÿ8 ûAó€Kì|W#æwc-àqm8Úmw@Ói€FÏe‰KËc‘OÈ`™RÅ_¡UÂ]ªWÀ\³Y¾\¿Z¼[Î[¸[å[·^õU·bÿOµcÿJ²dÿF°dÿC°dÿC°dÿC°dÿC°dÿC°dÿCÿUÿaÿmÿwÿ~$ÿ„,þ‡5 õˆ>í‡HåƒT"Þ~_.Ôxi8Îss@Én|GÄk„LÀhŒQ½e”TºcœW·b¥Z´`®\²`¹^°_Ç^­_ß_¬bñY¬eþSªgÿN¨gÿJ¦gÿF¦gÿF¦gÿF¦gÿF¦gÿF¦gÿFÿWÿdÿpÿ{ÿƒ"ÿ‰*ùŒ2ïŽ; çŽDÞŠQ!Ô„\-Ì~f8ÅxoAÀtwH»p€M·mˆR³jV°h˜Y¬f \ªe©_§d´`¥cÂa£cÕb¢eí]¢iûW¡jÿQŸkÿLžkÿIžkÿIžkÿIžkÿIžkÿIžkÿIÿYÿgÿsÿ~ÿ‡ ÿ'ô’/ê”8 á”BÖN ̉Y-Ńc7¾}k@¸ytH³u|N®r„SªoŒW§m”[£kœ^ i¥`žh°c›g½d™gÎd˜ièašmùZ™nÿT—nÿO–nÿK–nÿK–nÿK–nÿK–nÿK–nÿKÿ[ÿiÿvÿÿŠü‘$ð—,åš4Üš?Ï”LÆŽW,¾ˆ`7·‚i@±~qH¬zyN§w€S£tˆXŸq\›o˜_˜m¡b•l¬d“l¹f‘kÉfmäd‘qö\‘rþVrÿQrÿMrÿMrÿMrÿMrÿMrÿMÿ]ÿkÿyÿ„ÿŽø•!ë›(á 0Õž=ʘJÁ’T+¹Œ^6±‡f?«‚nG¦~vN¡{}Sœx…X˜v\”t•_‘ržcŽq©e‹pµg‰pÅgˆpàfŠtô^‹vüXŠvÿR‰vÿN‰vÿN‰vÿN‰vÿN‰vÿN‰vÿNÿ_ÿnÿ{ÿ‡ÿ‘ô™ç #Ý¥+Ï¡;ÅœH¼–S*´\5¬‹d?¦‡lG ƒsM›€zS–}‚W’zŠ\Žx’`Švœc‡u¦f„t²h‚tÂh€tÛhƒxò`„zûY„yÿT„yÿO„yÿO„yÿO„yÿO„yÿO„yÿOÿaÿpÿ~ÿŠÿ”ðã¥ר(Ë¥9ÁŸF·šQ)¯•Z4§b>¡‹jF›‡qL•„xRWŒ‡\ˆ}`„{™c€z£f}y°h{y¿izyÖi||ða~~úZ~}þU~}ÿQ~}ÿQ~}ÿQ~}ÿQ~}ÿQ~}ÿQÿcÿrÿÿü˜ì¡ߪѬ&Ǩ7 ¼£D³žO'ª™X3£”`=œhE–ŒoL‰vR‹†}W†„…[‚‚Ž_~€—cz¡fw~­hu~½is~Òivîbx‚ú[x‚þVyÿQyÿQyÿQyÿQyÿQyÿQÿeÿuÿƒÿõ›è¦Ù¯̯$«5 ¸§C®¢N&¦V1ž™^;—•fD‘mK‹ŽtQ†Œ{V‰ƒ[|‡‹_x†•bt„Ÿeqƒ«hnƒºimƒÎio†ëcr‡ù\s†ýVs…ÿRs…ÿRs…ÿRs…ÿRs…ÿRs…ÿRÿhÿx ÿ† ö“ Þ  Ö© Ò² Dz"½¯3 ³«Aª§L$¡¢U0™ž]:’šdB‹—kI…”rP€’yU{Zv‰^rŒ’bnŠek‰©gh‰¸hg‰Ëhi‹éclù\mŒýWmŠÿRmŠÿRmŠÿRmŠÿRmŠÿRmŠÿRÿkÿ{ ÿŠ â˜Ö£Ь ˵ Á¶¸´1 ®°?¤¬J"œ¨S.”¤[8Œ b@†žiH€›pNz™wSu–~Xp”‡\l“`h’›cd‘§eb¶f`‘Éfb’çbe”ø\g’ýWg‘ÿRg‘ÿRg‘ÿRg‘ÿRg‘ÿRg‘ÿRÿnÿ ñŽÙ›ϦɯĹ»º²¸/¨µ=Ÿ±H –®Q+ŽªY5†§`>€¥gEz¢nKt uQož|Ujœ…Yf›Ž]bš™`^™¦b\™´cZ™Çc[šå`_›÷[`šþVa˜ÿRa˜ÿRa˜ÿRa˜ÿRa˜ÿRa˜ÿRÿr ÿƒß“ÑŸɪÁ²»½´¿«¾,¢»:™¸EµO(‡²W2€¯^:y­eBs«lHn©sMi§zQd¦ƒV_¤Y\£˜\X£¤^V£³_U£Æ_U¤ä]X¤öXZ£ÿT[¡ÿP[¡ÿP[¡ÿP[¡ÿP[¡ÿP[¡ÿPÿwð‰Ö˜Ë¤Á­¹¶²À«Å£Å(›Â7‘ÀC‰½L$€ºU.y¸\6r¶c=m´jCg³qHb±yL^°PZ¯‹TV¯—VS®£XP®²YO®ÆYO®äXQ®öTS®ÿPT¬ÿMT¬ÿMT¬ÿMT¬ÿMT¬ÿMT¬ÿMÿ}ßÎè¹°°º¨Ä¡Ì›Ì#’Ê3 ‰È?ÆIyÄR(rÂZ0kÁa7f¿hëÀ.=ìÛ.=êï.=èü.=çÿ-=çÿ-=çÿ-=çÿ-=çÿ-=çÿ-ÅŸµ©¨±œ¼Ç„Òzßtômô fô*_ô4Zõ= TõEOõLLõUIö]FöeDönAöw?÷=÷;÷™ 9ø¦!8øµ"7ùÈ"6ùã"6øó"6÷ü"6÷ü"6÷ü"6÷ü"6÷ü"6÷ü"·¦©®œ¹ÄƒÏwÛoö gÿ`ÿZÿ'Tÿ0Oÿ8Jÿ@ FÿH CÿO@ÿV=ÿ^;ÿe8ÿn6ÿw4ÿ‚2ÿ0ÿ›/ÿ©.ÿ·-ÿÈ,ÿá,ÿï,ÿï,ÿï,ÿï,ÿï,ÿï««žµÁ‚ÌuÙiäaÿ [ÿTÿNÿ"Iÿ+Dÿ2@ÿ:<ÿA9ÿG6ÿN 3ÿT 1ÿ[ .ÿb ,ÿk )ÿu 'ÿ€%ÿ$ÿš#ÿ¦"ÿ³!ÿÁ!ÿÐ!ÿÐ!ÿÐ!ÿÐ!ÿÐ!ÿП²‘¾ƒÊuÖgâ[ñTÿNÿHÿBÿ=ÿ$9ÿ+5ÿ21ÿ8.ÿ>+ÿC(ÿI%ÿO#ÿV!ÿ]ÿeÿoÿz ÿ‡ ÿ” ÿŸ ÿª ÿ³ ÿ³ ÿ³ ÿ³ ÿ³ ÿ³ “»„ÇuÓgáXèNûHÿAÿ ;ÿ6ÿ1ÿ-ÿ")ÿ(%ÿ-"ÿ2ÿ8ÿ=ÿBÿHÿNÿUÿ]ÿg ÿr ÿ} ÿ‰ ÿ“ ÿœ ÿœ ÿœ ÿœ ÿœ ÿœÿ?*ÿ?0ÿD0ÿH3ÿI9ÿHBÿFM ÿE[ÿCiÿAwÿ@…ÿ?‘ÿ>›ÿ>¤ÿ=«ÿ=³ÿ=ºÿ=Ãÿ<Ìÿ<Ûÿ<çÿ<ðÿ<øÿ=ÿÿ=ÿÿ=ÿÿ=ÿÿ=ÿÿ=ÿÿ=ÿÿ=ÿÿ=ÿÿ=ÿÿ@*ÿA.ÿG.ÿJ1ÿL7ÿK@ÿJK ÿHYÿFgÿDuÿC‚ÿBÿA™ÿA¢ÿ@©ÿ@±ÿ?¸ÿ?Àÿ?Éÿ?Öÿ?åÿ?ïÿ?÷ÿ?þÿ?ÿÿ?ÿÿ@ÿþ@ÿþ@ÿþ@ÿþ@ÿþ@ÿþ@ÿÿ@*ÿC,ÿI,ÿM/ÿO5ÿP>ÿNI ÿLVÿJdÿHrÿGÿF‹ÿE–ÿDŸÿD§ÿC®ÿCµÿB½ÿBÆ ÿBÑ ÿBâ!ÿBí!ÿBõ!ÿBý!ýBÿ!ûCÿ úCÿùCÿùCÿùCÿùCÿùCÿùCÿÿA)ÿF*ÿL)ÿQ,ÿS2ÿT<ÿTG ÿQRÿO`ÿMoÿL|ÿJˆÿI’ÿH›ÿG£!ÿG«"ÿF²#ÿFº#ÿFÃ$ÿEÍ%ÿEÞ%ÿEê&üEô&ùEü&öEÿ&õFÿ$ôFÿ#óGÿ!óGÿ!óGÿ!óGÿ!óGÿ!óGÿ!ÿB(ÿI'ÿP&ÿU(ÿX/ÿZ9ÿZD ÿWOÿU\ÿSjÿQwÿOƒÿNŽ!ÿM—#ÿLŸ%ÿK§&ÿJ®'ÿJ¶)þI¾*ýIÉ*úHÙ+÷Hç,ôHò,ñHû,ïIÿ*íJÿ(ìJÿ'ëKÿ%ëLÿ%ëLÿ%ëLÿ%ëLÿ%ëLÿ%ÿC(ÿM$ÿT#ÿZ%ÿ^,ÿ`6ÿ`A ÿ^Lÿ[WÿYfÿWrÿU~"þS‰%üQ“(úP›*ùO£,÷Nª.öM²/ôLº0óLÄ2òKÑ3îKä4êJð4çKú3åMÿ0äNÿ-âOÿ+áPÿ)áPÿ)áPÿ)áPÿ)áPÿ)áPÿ)ÿF%ÿP!ÿX ÿ_!ÿd*ÿf3ÿf= ÿeHÿbSÿ`aü]m øZy%õX„)óV-ðT–0îRž3íQ¥5ëP­7éNµ9çN¿;æMÌ<ãLà=ßMî<ÜOù9ÙQÿ5ÖRÿ2ÔSÿ0ÓTÿ-ÓUÿ-ÓUÿ-ÓUÿ-ÓUÿ-ÓUÿ-ÿJ#ÿTÿ\ÿdÿi'ÿl0ÿm: ÿlDýjOøg\óch"ï`t(ë]~.èZˆ3åW‘7ãU™:àS >ÞR¨@ÜQ±AÙP»BÖPÈCÓPÜDÏPìCÌRø?ËUÿ;ÉWÿ7ÈXÿ4ÇYÿ2ÆYÿ1ÆYÿ1ÆYÿ1ÆYÿ1ÆYÿ1ÿM ÿWÿ`ÿiÿo%ÿr-ÿt7ýsAöqKðnXêjd$åen+àay3Ü^‚8Ø\‹<ÓZ”?ÐXœBÎW£DËU¬FÉUµGÇTÀIÅTÐIÂSæIÀVõE¾Yÿ@½[ÿ<¼\ÿ9»]ÿ5º]ÿ5º]ÿ5º]ÿ5º]ÿ5º]ÿ5ÿPÿ[ÿdÿmÿt"ÿx*ÿz3öz= ïxGçuTáp_%Úkj-Ógt4Îd}:Êa†?Ç_ŽBÄ]–EÁ[žH¿Z¦J¼Y¯LºXºM¸XÈN¶XßN´YðK³\ýE²_ÿ@²`ÿ<°aÿ9°aÿ8°aÿ8°aÿ8°aÿ8°aÿ8ÿRÿ^ÿhÿrÿyÿ~'ù€0ð9 ç€Cà|PÖw[$Ïrf.Émo5Äjx;Àg@¼d‰D¹b‘H¶`™J³_¡M±]ªO®\´Q¬\ÁRª\ÔR¨]ëP¨`úI¨cÿD¨dÿ@¦eÿ<¦eÿ;¦eÿ;¦eÿ;¦eÿ;¦eÿ;ÿUÿaÿlÿvÿ}ÿƒ#ô†,êˆ5á‡@Ö‚LÍ}X$Æwb-Àsk5»ot<·l|A³i„F¯gŒI¬e”L©cœO¦b¥Q¤a¯S¢`¼U `ÍUž`æTžd÷MŸgÿGŸiÿCžiÿ?iÿ=iÿ=iÿ=iÿ=iÿ=ÿWÿcÿoÿyÿû‡ ïŒ'äŽ0Ú= χJÇ‚U#¿}_-¹xh5³tp<¯qxB«n€F§lˆJ¤iN h˜Qf¡S›e«U˜d¸W–dÈX”dáX•hôP–kÿJ—lÿE–mÿA–mÿ@–mÿ@–mÿ@–mÿ@–mÿ@ÿYÿfÿrÿ}ÿ…öŒê‘"ß”+Ó‘: ÉŒGÀ‡S"¹‚\,²}e5­ym<¨uuB£s}G p„KœnŒN™l•R•kžT’i¨Wi´YŽhÃYŒhÜZlòSnÿLpÿGqÿCqÿAqÿAqÿAqÿAqÿAÿ[ÿhÿuÿ€ÿ‰òå–Ù™&Í•8 ÄE»‹Q!³†Z,­‚c4§~k;¡zrAwzF™uK•s‰O’q‘RŽo›U‹n¥Xˆm°Z†l¿[„mÕ[†oïUˆrýN‰tÿI‰tÿDˆtÿCˆtÿCˆtÿCˆtÿCˆtÿCÿ]ÿkÿxÿƒýŒí”àšÓœ$È™6 ¿”C¶O ®ŠX+§†a3¡‚h;œpA—|wF“y~Kw†O‹uRˆs˜V„r¢Xq®Zq¼\}qÐ\sìVvûOƒxÿJƒxÿE‚xÿD‚xÿD‚xÿD‚xÿD‚xÿDÿ_ÿm ÿz ÿ… ò ç˜ ÛŸΟ"Ä4º˜B²“MªV*£Š_2œ†f:—ƒm@’€uE~|J‰|„N…zŒR‚x•V~w Y{v«[yuº\wvÍ\xwêX{zúQ}|ÿK}|ÿF}|ÿE}|ÿE}|ÿE}|ÿE}|ÿEÿaÿo ÿ} õˆ ߓ؛ Ó¢ É£¿ 2¶œ@­—K¥“T(ž]1˜‹d9’ˆk?…rEˆƒzJ„€N€ŠR|}“Ux|Xu{©[rz¸\qzÊ\r|èXu~ùQw€ÿLw€ÿGw€ÿFw€ÿFw€ÿFw€ÿFw€ÿFÿdÿr ÿåŒØ–Ñž Î¥ Ħº¤/± >¨œI ˜S'™”[0“b8i>ˆŠpDƒˆxI~†Mz„ˆQv‚‘Ur›Xo€§Zlµ\k€È\kåYnƒ÷Rq„ÿMr„ÿHr„ÿGr„ÿGr„ÿGr„ÿGr„ÿGÿf ÿuöƒÜҘ̡Ȩ¿©µ¨-¬¤<¤ GœQ%”™Y/Ž–`6ˆ“g=‚nC}ŽvHyŒ}LtŠ…PpˆTl‡™Wi†¥Yf†³[e†Å[e†ãYhˆöRkŠÿMlŠÿHl‰ÿGl‰ÿGl‰ÿGl‰ÿGl‰ÿGÿi ÿxå‡Ö’ÍœƤÁ«¹­°¬+§©:Ÿ¦E–¢O#ŸW-ˆœ_5‚™f;}—lAx•sFs“{Kn‘ƒOjRfŽ—Uc£X`±Y_ÃZ^àXbõRdÿMfÿHfÿGfÿGfÿGfÿGfÿGÿlþ|ފЖÈŸÀ§¹®²²ª±(¡¯7 ™¬C‘¨M!‰¥U*‚£\2| c9wžj>rœqDmšyHh™Ld—‹P`–•S]–¢UZ•°WY•ÁWX•ÞV[–óP]—ÿL_—ÿG`–ÿF`–ÿF`–ÿF`–ÿF`–ÿFÿpëÖÊšÁ£¹ª±²ª·£·$›µ4 “²@НJƒ­S'|«Z.v¨a5p§h;k¥o@g£wDb¢H^¡‰LZ ”OWŸ QTŸ®SSŸÀSRŸÝRUŸóNW ÿJY ÿFYŸÿEYŸÿEYŸÿEYŸÿEYŸÿEÿuà†Ï“ÄŸº§±®©¶¡½ ›½ ”¼1‹º=ƒ·H|µP"u³X*o²_0j°f6e¯m;`­u?\¬~CX«‡GUª“JQªŸLOª®MMªÀMMªÜMNªòIPªþFR©ÿCR©ÿBR©ÿBR©ÿBR©ÿBR©ÿBò|׌ș½£²«©² »—Ä ’Å‹Ä,ƒÂ: {ÁDt¿Nn½V$h¼]*c»d0_ºl4Z¹t9V¸|K´ÿ=K´ÿ=K´ÿ=K´ÿ=K´ÿ=âƒÍ’ÁŸ´§ª¯ ¸–ÀŒÊ†ÍÍ&zÌ5sËAlÊJfÉSaÈ[#\Çb(XÆj,TÆr0PÅ|3Mņ6JÄ’9GÄŸ;EÄ®å›#<åª$;æ¼$:æÓ$9åî$9ãú#9âÿ$9âÿ$9âÿ$9âÿ$9âÿ$9âÿ$¿ž¯¦£®—¸ŠÂ~ÌsÖiå dï_ð Yð+Tð5Oð>KñF GñN DñWBñ_?òg=òp:ò{8ó‡6ó”5ô¢3ô±2õÅ1õâ1ôñ1ñþ1ñÿ1ñÿ1ñÿ1ñÿ1ñÿ²¤¥«˜¶‹À~ÊqÕeÞ^õ YüSüNü'Jý0Eý9Aý@>þH;þO 8ÿW 6ÿ^ 3ÿg 1ÿp .ÿ|,ÿ‰+ÿ–)ÿ¤(ÿ´'ÿÇ'ÿá&ÿò&ÿö&ÿö&ÿö&ÿö&ÿö§©™³‹¾~ÉpÓdÞXçRÿ MÿGÿCÿ">ÿ*:ÿ27ÿ93ÿ?0ÿF-ÿM+ÿT(ÿ[&ÿc#ÿm!ÿy ÿ‡ ÿ• ÿ£ ÿ± ÿÀ ÿÖ ÿß ÿß ÿß ÿß ÿß ›±¼~ÇpÒcÞUäKõFÿ@ÿ;ÿ7ÿ3ÿ#/ÿ)+ÿ0(ÿ5%ÿ;"ÿAÿGÿNÿUÿ^ÿhÿtÿ‚ÿÿÿ©ÿµÿºÿºÿºÿºÿºŽºÅpÑbÞTåFë?þ9ÿ4ÿ /ÿ+ÿ'ÿ#ÿ!ÿ%ÿ*ÿ/ÿ4ÿ:ÿ@ÿFÿN ÿV ÿ`ÿlÿxÿ†ÿ‘ÿÿ¡ÿ¡ÿ¡ÿ¡ÿ¡ÿ6-ÿ9.ÿ>.ÿ@2ÿ@8ÿ>Aÿÿ@Jÿ>W ÿ*ÿC*ÿF-ÿG2ÿF<ÿEHÿCU ÿAb ÿ?pÿ=}ÿ<‰ÿ;“ÿ;œÿ:¤ÿ:«ÿ:²ÿ:¹ÿ9Âÿ9Ìÿ9Ýÿ9éÿ9óÿ:ûü:ÿú:ÿù:ÿø:ÿø:ÿø:ÿø:ÿø:ÿø:ÿÿ9+ÿA'ÿF'ÿJ)ÿK/ÿL9ÿKEÿHQ ÿF^ÿDlÿByÿA…ÿ@ÿ@˜ÿ? ÿ?§ÿ>®ÿ>¶ÿ>¾ÿ>Èÿ=Öþ=æû>ñø>úõ>ÿó>ÿò?ÿñ?ÿñ?ÿñ?ÿñ?ÿñ?ÿñ?ÿÿ=(ÿE$ÿJ#ÿN%ÿQ,ÿR6ÿQAÿOM ÿLZÿJgÿHtÿG€ÿF‹ÿE”ÿDœÿC¤þC«ýB²üBº úBÄ ùBÐ!öAâ!òBî"ïBù"íBÿ ëCÿêCÿéDÿèDÿèDÿèDÿèDÿèDÿÿ@%ÿH!ÿO ÿS!ÿW)ÿY3ÿX>ÿVI ÿRUÿQcÿOoþM{ûK†ùJ÷I˜!öHŸ"ôG¦$óG®%ñF¶&ðF¿'ïEË(ìEÞ)èEì)åFø(âGÿ&áHÿ$ßIÿ"ÞIÿ ÝIÿÝIÿÝIÿÝIÿÝIÿÿC"ÿLÿSÿYÿ]&ÿ_0ÿ_:ÿ]E ÿZPýX^øUjõSvòQ€!ïOŠ$íM“&ëLš)éK¢+çJ©,åI±.äH»/âHÇ1àHÙ1ÜHê1ØIö.ÔKÿ+ÒLÿ)ÐMÿ&ÏNÿ%ÎNÿ#ÎNÿ#ÎNÿ#ÎNÿ#ÎNÿ#ÿGÿPÿWÿ^ÿc#ÿf,ÿf6ÿdA úbLô_Yï\eëYp çV{%äT„)áQ-ÞP•0ÜO2ÙN¥3ÖM­5ÓM·6ÑLÂ7ÏLÑ8ÌLæ8ÉMô5ÇOÿ1ÅQÿ.ÄRÿ+ÃSÿ)ÂSÿ'ÂSÿ'ÂSÿ'ÂSÿ'ÂSÿ'ÿJÿTÿ\ÿcÿi ÿl)ÿm2ùl= òiGëfTåc`à_k"Û\u(ÖY-ÒWˆ0ÏU3ÌT˜6ÊS 8ÇR§:ÅQ°;ÃP»<ÁPÉ=¿Pß=¼Qð;ºSü7¹Uÿ3¸Wÿ/·Xÿ-·Xÿ+·Xÿ+·Xÿ+·Xÿ+·Xÿ+ÿMÿWÿ`ÿhÿnÿr%ûs.òs8éqC ânPÛi\Óef$Îbp*É_z/Æ\‚3Ã[Š6ÀY’9½Xš;»V¢>¸U«?¶UµA´TÂB²TÔB°UêA®Wù<®Yÿ7­[ÿ3­\ÿ0­]ÿ.­]ÿ.­]ÿ.­]ÿ.­]ÿ.ÿPÿZÿdÿmÿsÿw!ôy)êz3âx? ÙtLÏpXÉkb$Ähl+¿eu0»b}5¸`…8µ^<²\•>¯[A­Z¦C«Y¯D©Y¼E§XÌF¤XåF¤[ö@£^ÿ;£_ÿ7£`ÿ3£aÿ1£aÿ1£aÿ1£aÿ1£aÿ1ÿSÿ]ÿhÿpÿwû|î$ä€-Ú;ÏzIÇuTÁq_$»mh+¶jp1²gy6¯e€:«cˆ=¨a@¦`˜C£^¡E ^«Gž]·Hœ]ÆIš\ßIš_òDšbÿ>šcÿ9›eÿ6›eÿ3›eÿ3›eÿ3›eÿ3›eÿ3ÿUÿ`ÿkÿtÿ{õè„Þ‡'Ñ„7ÈFÀ{Q¹v[#´re+¯om1ªlu6§j|:£h„> fŒAd”DšcG—b§I•a²K“aÁL‘aØL‘cïG’eýA’gÿ<“iÿ8“jÿ5“jÿ5“jÿ5“jÿ5“jÿ5ÿWÿc ÿn ÿwÿð…ã‰Ö‹#ˈ5„Cº€O³{Y#­wb*¨tj1£qq6Ÿny;œl?˜jˆB•i‘E’gšHf£Je¯LŠe½M‰eÑN‰gìJŠiûC‹kÿ>Œmÿ:Œnÿ7Œnÿ7Œnÿ7Œnÿ7Œnÿ7ÿYÿe ÿq ÿz ñ‚ è‰ ÝŽÏ Æ2½‰Aµ„M®€V"§|_*¢xg0uo6™sv:•q}?’o…BŽmŽF‹l–Iˆj K…j¬MƒiºOiÌOjèLƒmùE„oÿ?…pÿ;†qÿ8†qÿ8†qÿ8†qÿ8†qÿ8ÿ[ÿgÿsó}Þ†ÙŒ Õ‘ Ê’Á0¸?°ˆJ©„T!¢€])}e0˜zl5“ws:u{>Œs‚Bˆr‹F…p”I‚ožLn©N|m·O{mÉPznæM|qøF~sÿAtÿ=€uÿ:€uÿ:€uÿ:€uÿ:€uÿ:ÿ]ÿjÿvä€Ù‰ÒÏ” Å–¼”.³‘= «H¤ˆR ž…[(˜c/“~j5Ž|q9Šzx=†x€BƒvˆEu‘I|s›Lyr§NvrµPtrÆPtrãOvuöGxwÿBzxÿ>{yÿ:{yÿ:{yÿ:{yÿ:{yÿ:ÿ_ ÿlõyÞƒÓ‹Í’É—À™·˜,¯•; §‘GŸP™‰Y'“†a.Žƒh4‰o9…v=}~A}{†EyzIvx™Lsw¥Npw²PnwÄPmwàOpyõHr{ÿCt|ÿ>u}ÿ;u}ÿ;u}ÿ;u}ÿ;u}ÿ;ÿa ÿoè|نώȕڻœ³œ*ª™9 ¢•E›‘N”ŽW&Ž‹_-‰ˆf3„†m8€„t={‚{Aw€„EtHp}—Km|£Nj|°Oh|ÁPg|ÝPj~óIm€ÿCnÿ?oÿlBhŒ‰FeŠ“Ia‰ŸK^‰¬M]‰½N\‰ÖM^ŠðH`‹þCb‹ÿ?cŒÿ‹£H„ Q ~žY'xœ`-sšg2o˜n7j–u]“ÿ;]“ÿ;]“ÿ;]“ÿ;]“ÿ;ÿnà~΋ĕº±£©©¡® ›¯”®.Œ¬; …ªF~¨Nx¦V#r¤]*m¢d/i¡k4dŸs8`ž{<\…?YœBU›œES›ªGQ›ºGP›ÑGQ›îDS›ü@U›ÿΨ&<κ&<ÏÔ&<Íï%;Ìû%;Ëÿ%;Êÿ%;Êÿ%;Êÿ%;Êÿ%;Êÿ%Óµž¨¦®‘¶…¿yÇoÎdÖ ^Þ[Þ WÞ-Sß:PßDLßN IßW Fß_CßhAßq>ß|<߉:à–8à¥7à·6áÍ6ßì5Þù4Ýÿ4Üÿ4Üÿ4Üÿ4Üÿ4Üÿ¹œª¤ž«’µ…¾yÇmÏbÖXáUêQë Më+Ië5Eì>BìG?ìO=íX :í` 8íj 6ît 3î€2îŽ0ï.ï­-ðÀ-ðÞ,îñ,ìþ,ëÿ,ëÿ,ëÿ,ëÿ,ëÿ­¢ ©“³†½yÆlÏ`ØUÞNó J÷FøCø'?ø0;ù88ù@5úG3úO0ûW.û_+üi)üt'ü‚ %ý $ý  #þ° "þÄ !ÿà !ýò üü üü üü üü üü ¢§•±‡»yÆlÏ_ÙRßHèCÿ?ÿ;ÿ7ÿ!4ÿ)0ÿ0-ÿ7*ÿ>'ÿD%ÿK"ÿS ÿ\ÿfÿrÿ€ÿÿŸÿ¯ÿÀÿÖÿéÿéÿéÿéÿé—¯ˆºzÅlÏ^ÚPàDæ<õ7ÿ3ÿ /ÿ+ÿ(ÿ!%ÿ'!ÿ-ÿ2ÿ8ÿ?ÿFÿMÿVÿ`ÿl ÿ{ ÿ‹ ÿš ÿ¨ ÿµÿÂÿÂÿÂÿÂÿÂЏ{ÃlÎ^ÛOâBç6ì1ÿ,ÿ'ÿ#ÿ ÿÿÿÿ!ÿ&ÿ,ÿ1 ÿ7 ÿ>ÿFÿOÿYÿfÿtÿ‚ÿÿœÿ¦ÿ¦ÿ¦ÿ¦ÿ¦ÿ./ÿ3,ÿ7-ÿ80ÿ76ÿ4?ÿ1Kÿ/Xÿ,fÿ*t ÿ) ÿ( ÿ(— ÿ(Ÿ ÿ(¦ ÿ'­ ÿ'´ ÿ'» ÿ'Ä ÿ'Î ÿ(Þ ÿ(é ÿ(ó ÿ(û ÿ(ÿ ÿ)ÿ ÿ)ÿ ÿ)ÿ ÿ(ÿ ÿ(ÿ ÿ(ÿ ÿ(ÿ ÿ(ÿ ÿ0-ÿ6*ÿ9*ÿ;.ÿ:4ÿ8<ÿ6Iÿ3Vÿ1c ÿ/q ÿ-~ ÿ-Š ÿ,” ÿ,œ ÿ,¤ ÿ,« ÿ,± ÿ,¹ ÿ+Á ÿ,Ë ÿ,Ú ÿ,ç ÿ,ñ ÿ,ú ÿ,ÿ þ-ÿ ý-ÿ ý-ÿ ý,ÿ ý,ÿ ý,ÿ ý,ÿ ý,ÿ ÿ2+ÿ9(ÿ=(ÿ?*ÿ>0ÿ=:ÿ}ÿ=‡ÿ=‘þ<™ý< ü;§ú;®ù;¶ø;¿ö;Êô;Üð;êí;öê;ÿè<ÿç<ÿæ=ÿå=ÿå=ÿå=ÿå=ÿå=ÿÿ="ÿDÿIÿMÿP&ÿQ0ÿP;ÿNFÿKS ÿH`ÿFlûExøD‚öCŒôB”óAœñA£ï@ªî@²í?»ë?Æé?Õå?èâ@ôß@þÝAÿÛBÿÙBÿØBÿØBÿØBÿØBÿØBÿÿ@ÿHÿNÿRÿV#ÿX,ÿW7ÿUBÿRM ùPZõMgñLrîJ}ëH†éGçF—åEž ãD¦"áD®#àC·$ÞCÂ%ÜCÐ&×Cå&ÓDó$ÐEþ"ÍFÿ ÌGÿÊGÿÉHÿÉHÿÉHÿÉHÿÉHÿÿDÿLÿRÿXÿ]ÿ_(ÿ^2ý]=öZI ðWUêUbæRmâPwßNÜLŠ"ÙK’$ÕJš&ÓI¡(ÑI©)ÏH²*ÍH¼+ËHÉ,ÈHß,ÅHï+ÂJü(ÀKÿ%¿Lÿ"¾Mÿ ½Mÿ½Mÿ½Mÿ½Mÿ½MÿÿGÿOÿVÿ^ÿbÿe$þe-ôd8íaC æ_Qà\]ÚXhÔVrÐT{"ÌR„&ÊPŒ(ÇO”*ÅN›,ÃN£.ÁM¬/¿L¶0½LÂ1»LÓ2¸Lé1¶Nø-´Pÿ*³Qÿ'³Rÿ$²Rÿ"²Rÿ"²Rÿ"²Rÿ"²Rÿ"ÿJÿSÿ[ÿbÿhÿjök(ìk2äi>ÜfL ÓbXÍ_cÈ\m ÄZv$ÁX~(¾V†+»UŽ.¹S–0¶Rž2´R¦3²Q°5°Q¼6®PË7¬Pã7ªRô3©Tÿ.¨Vÿ+¨Wÿ(¨Wÿ%¨Wÿ%¨Wÿ%¨Wÿ%¨Wÿ%ÿMÿVÿ_ ÿgÿlûpïq"äq,Ûp:ÑlH ÉhTÃe_¾bh!º_q&¶]y*³[-°Z‰0®X‘3«W™5©V¡7§V«8¥U¶:£UÅ;¡UÝ;ŸVð7ŸXþ2ŸZÿ.ž[ÿ+ž\ÿ(ž\ÿ(ž\ÿ(ž\ÿ(ž\ÿ(ÿPÿY ÿc ÿk ÿpõtèvÝw%Ñv6ÈrD ÁnP»k[¶gd!±em'­bu+ª`|/§_„2¤]Œ4¢\”7Ÿ[9Z¦;šY±=˜Y¿>—YÓ>•Zì;•]û5–^ÿ1–_ÿ-–`ÿ*–`ÿ*–`ÿ*–`ÿ*–`ÿ*ÿRÿ\ ÿf ÿn öt ïxá{Ô| Ê{3ÁwA ºtM´pX®la!©ji'¦gq+¢ex/Ÿd€3œbˆ6™a8–_™;”^¢=‘^­?]»@]ÍAŒ^è?aù8bÿ3Ždÿ0Ždÿ,Žeÿ,Žeÿ,Žeÿ,Žeÿ,ÿUÿ_ÿiôrâxÛ| Ù ÍÄ0»|? ´xK­uU¨q^!£nf&Ÿln+›ju/˜h}3•g„6’eŒ9d•<ŒcŸ>‰bª@‡a·B…aÉB„bäA…d÷;†fÿ5‡gÿ1‡hÿ.‡iÿ-‡iÿ-‡iÿ-‡iÿ-ÿW ÿaþläuÛ{Ó€Ѓ Ç…¾„-¶< ¯}H¨yR¢v[ sc&™pk+•nr/‘my3Žk6‹i‰:ˆh’<…gœ?‚f§A€f´C~fÅD|fáC~hõ<jÿ7€kÿ3lÿ/lÿ/lÿ/lÿ/lÿ/ÿY ÿcôoßxÔ΃ʇˆ¹‡+±…:ªF£~PzY˜wa%“uh*so/‹qw3ˆo~6…n†:‚l=k™@|j¥Byj±DwjÂDvjÝDxló>ynÿ8zoÿ4{pÿ0|pÿ0|pÿ0|pÿ0|pÿ0ÿ[ÿfçrÚ{Ï‚ɇÄŠ¼Œ´‹(¬‰8¥…Dž‚N˜W“|_$Žyf*Šwm.†ut2‚t|6r„9|q=yp—@vo¢Bsn¯DqnÀEpnÙErpñ?srÿ9usÿ5vtÿ1vtÿ1vtÿ1vtÿ1vtÿ1ÿ]ÿiâtÔ}Ë…ÄŠ¿·°&¨5 ŠBš†L“ƒUŽ]$‰~d)…|k-zr2}xy5zw‚9vv‹ HŠŽQ„‹Y!‰`'{‡g+w…n0s„u4o‚}7k‡;h€‘>eœAb~©C`~¹D_~ÏD`ì@b€ü:d€ÿ6eÿ3fÿ2fÿ2fÿ2fÿ2ÿdårÓ~LJ¾¶•®™¦›  œ™›.’™; ‹–F…”O‘Wz^%uŽe*qŒl.mŠs2i‰{6fˆ„9b†=_…š?\…¨AZ…·BY…ÌBZ…ê?\†û:^†ÿ6_‡ÿ2_‡ÿ2_‡ÿ2_‡ÿ2_‡ÿ2ýhàv͂Œ¹“°™¨Ÿ  ™¡“ +ŒŸ8…CšLy˜Tt—\"p•c'k“j,g’q0d‘y3`‚7\Ž:Y™=W¦?T¶@SË@Té=Vú9Wÿ5YŽÿ2YŽÿ1YŽÿ1YŽÿ1YŽÿ1ímÙ{ȇ½´˜ª¡¡—¦‘§Œ§'…¦5¤@ y¢Js RnŸYi`$eœg(a›o,^šw0Z˜€3V—‹6S——9Q–¥;O–´º³&=ºÈ&=ºè&=¸ù%=·ÿ$=¶ÿ#=¶ÿ#=¶ÿ#=¶ÿ#=¶ÿ#Lj¹•¬¡¤–«Š²¹s¿hÆ`Ê^Ê[Ê,WÊ8TÊCPÊLMÉU JÉ]GÉfDÉoAÉy?È…<È“:È¢9ɳ8ÉÉ8Èè7Çù7Åÿ6Äÿ6Äÿ6Äÿ6Äÿ6Äÿ¾‘°›¤£˜ªŒ²€¹tÀhÇ]ÍSÓ O×MØ"KØ0IØ<FØFDÙOAÙX?Ùa<Ùk :Ùv 7Ù‚5Ú4Ú 2Ú±1ÛÇ1Úç0Øö0Öÿ/Ôÿ/Ôÿ/Ôÿ/Ôÿ/Ôÿ³š¦¡š©±€ºtÁhÉ\ÏRÕHÜEåCåAæ*>æ5;ç>9çG7çP4èY2èb0èm.éy,é‡+ê– )ê§ (êº 'ëÖ 'éð 'çý &æÿ &æÿ &æÿ &æÿ &æÿ ¨ œ§°‚¹tÂhÊ[ÑO×EÝ>î <ò9ó6ó%4ô.1ô7.õ?,õG)öO'öW%÷a#÷l!øzø‰ùšù«úÀúÞùò÷ýöÿöÿöÿöÿž¦‘¯ƒ¹uÂgËZÓMÚBß8å5û1ÿ.ÿ+ÿ)ÿ&%ÿ-#ÿ4 ÿ;ÿCÿKÿSÿ]ÿjÿxÿˆÿšÿ«ÿ¾ÿÕÿíÿðÿðÿðÿð“®„¸vÂgÌZÕLÜ?á5æ-ô*ÿ&ÿ #ÿ ÿÿÿ#ÿ)ÿ/ÿ5ÿ=ÿE ÿN ÿXÿeÿtÿ…ÿ–ÿ¦ÿµÿÆÿÊÿÊÿÊÿʆ·wÁhÌZ×KÞ>ä2é'í#ÿÿÿÿ ÿÿÿ ÿ ÿ"ÿ(ÿ.ÿ5ÿ=ÿGÿRÿ^ÿmÿ~ÿŽÿ›ÿ©ÿ«ÿ«ÿ«ÿ«ÿ*-ÿ.+ÿ0+ÿ0.ÿ.5ÿ)=ÿ%Iÿ#Wÿ!dÿrÿÿŠÿ”ÿœÿ£ÿªÿ±ÿ¸ÿ¿ÿÉÿÖÿåÿïÿùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ,+ÿ0(ÿ3(ÿ3+ÿ11ÿ-:ÿ+Gÿ(Tÿ&aÿ$oÿ"|ÿ"‡ÿ"‘ÿ!™ÿ!¡ÿ!§ÿ!®ÿ!µÿ!¼ÿ!Æÿ!Ñÿ!âÿ"íÿ"÷ÿ"ÿý"ÿü"ÿü"ÿü"ÿû"ÿû"ÿû"ÿû"ÿÿ.(ÿ3%ÿ6%ÿ7'ÿ5-ÿ48ÿ2Dÿ/Qÿ,^ÿ*kÿ)wÿ(ƒÿ'ÿ'– ÿ' ÿ'¤ ÿ'« ÿ'² ÿ'¹ ÿ' ÿ'Í ÿ'Þ ÿ'ë ü'öù(þ÷(ÿö(ÿõ(ÿõ(ÿõ(ÿõ(ÿõ(ÿõ(ÿÿ2%ÿ7"ÿ:!ÿ;#ÿ;)ÿ;4ÿ9@ÿ6Mÿ4Zÿ1fÿ0sÿ. ÿ.‰ ÿ.’ ÿ-™ ÿ-¡ ÿ-§ ÿ-® ÿ-µ ÿ-¾ þ-É û-Ù ø-è ô.ô ñ.þ ï.ÿ î.ÿ í.ÿ ì.ÿ ì.ÿ ì.ÿ ì.ÿ ì.ÿ ÿ5"ÿ;ÿ?ÿ@ÿB&ÿB1ÿ@<ÿ>Hÿ;Uÿ9bÿ7n ÿ6y ÿ5„ ý4 ü4• ú4œù3£÷3ªö3²õ3ºó3Åò3Òî3åê4òç4ýå4ÿä4ÿâ5ÿâ5ÿ á5ÿ á5ÿ á5ÿ á5ÿ ÿ9ÿ?ÿCÿFÿI#ÿI-ÿH8ÿEDÿCPÿ@] û>i ø=t õ<ó;ˆñ;ï:˜í:Ÿì9¦ê9®é9¶ç9Áæ9Îâ9ãÞ9ñÛ:üØ:ÿÕ;ÿÓ;ÿÒ;ÿÒ;ÿÒ;ÿÒ;ÿÒ;ÿÿ=ÿCÿHÿLÿOÿP(ÿO3ÿM?ûJJõGW ñFd íDoéCyçBƒäA‹â@“à?›ß?¢Ý>ªÛ>³Ø>½Ö>ÊÒ>ßÎ>ïË?ûÉ@ÿÇ@ÿÆAÿÅAÿÄAÿÄAÿÄAÿÄAÿÿAÿGÿLÿRÿVÿW$ÿV.øT9ñQEëOR æM^ áKiÝItÙH}ÕF†ÒEŽÐE–ÎDÌD¥ÊC­ÈC¶ ÆCÃ!ÅCÓ!ÁCé!¾D÷¼EÿºFÿ¹Gÿ¸Gÿ¸Gÿ¸Gÿ¸Gÿ¸GÿÿDÿKÿQÿWÿ[ÿ]ù](ï[3çY?àWMÚTY ÓRdÎPnÊNwÇL€ÅKˆÂJ ÀJ—!¾IŸ#¼H§$ºH°%¸H¼&·HË'´Gã'²Ió%°Jÿ"®Kÿ®Lÿ­Lÿ­Mÿ­Mÿ­Mÿ­MÿÿGÿO ÿV ÿ\ÿ`ýbðc!æb,Þ`:Ô^HÍ[T ÇX_ÃVi¿Tr¼Rz¹Q‚!¶PŠ#´O‘%²N™'°M¢(®M«*¬L¶+ªLÄ,¨LÛ,¦Mï*¤Oý&¤Pÿ#£Qÿ £Rÿ¢Rÿ¢Rÿ¢Rÿ¢RÿÿJÿR ÿZ ÿ` ÿeõgèhÝg$Òf5ÊdDÃaP ½^[¹\dµZm±Xu ®W}#¬U„%©TŒ(§S”*¥R,£R¦-¡Q±/ŸQ¾0QÑ0›Qê/šSú*šUÿ&™Vÿ#™Vÿ!™Wÿ™Wÿ™Wÿ™WÿÿM ÿUÿ]ûdïi ék álÓmÉl1Âj@»gL µdW°a`¬_i¨]q!¥\x$¢Z€' Y‡*X,›W˜.™V¢0–U¬2”U¹3“UÊ3‘Uå3‘W÷-‘Yÿ)‘Zÿ%‘[ÿ#‘[ÿ!‘[ÿ!‘[ÿ!‘[ÿ!ÿO ÿWÿaêhÞmØpÕp ËrÂq.ºo=´lI ®iT©g]¤de¡bm!at%š_|(˜^ƒ+•]‹-’[”0[ž2Z¨4‹Yµ5ŠYÆ6ˆYá6ˆ\ô0ˆ]ÿ+‰^ÿ(‰_ÿ%‰_ÿ#‰_ÿ#‰_ÿ#‰_ÿ#ÿQ ÿZõdàl×qÐtÍu Äv¼v*´t:®qF §nQ¢kZžibšgi!–eq%“dx(b€+aˆ.‹`‘1ˆ_š3†^¥5ƒ^²7‚^Â7€^Ü8€_ò3aÿ-‚bÿ)‚cÿ&‚dÿ%‚dÿ%‚dÿ%‚dÿ%ÿSÿ]çgÛoÐtÊxÆy¾z¶z(¯x7¨vD ¢sNœpW˜m_”kg!jn%hu(Šg}+‡e….„dŽ1c—4b¢6|b¯8zb¾9ybÕ9ycï4zeþ/{fÿ+|gÿ(|gÿ&|gÿ&|gÿ&|gÿ&ÿUÿ`ãjÕrÌxÅ{À}¹~±~%ª}5£zA wL—tU’r]Žpd Šnk$‡lr(„kz+j‚.~i‹1{g•4xg 6vf¬8tf¼9sfÑ:sgí6tiý0ujÿ,vkÿ)wkÿ'wkÿ'wkÿ'wkÿ'ÿWöcßmÑuÈ{Á»€´¬‚#¥2ž~? ˜{J’ySv[‰tb …ri$qp'~ow+{n.xmˆ1ul’4skž7pjª9nj¹:mjÎ:mkë7omü1pnÿ-qnÿ*qoÿ(qoÿ(qoÿ(qoÿ(ÿYëeÛpÍxÄ~¼‚¶„®…§†  …0š‚=“€HŽ}Q‰{Y„y`€wg#|un'ytu*vs}.sr†1pq4mpœ7jo¨9ho·:goË:gpé7iqú2krÿ-lsÿ*lsÿ(lsÿ(lsÿ(lsÿ(ÿ\çhÕsÉ{À‚¸†±ˆ©‰ ¢Šœ‰.•‡;…E‰‚O„€W~^{|e"x{l&tys*qx{-nw„0kvŽ3huš6et¦8ctµ9atÉ:atç8cvù2evÿ.fwÿ+gwÿ)gwÿ)gwÿ)gwÿ)ÿ_ãlÐvż…´Š¬Œ£Ž Ž—Ž+Œ8ŠŠC „‡L…Uz„\v‚c!s€j%oq)l~y,h}‚/e|Œ2b{˜5_z¤7]z³8\zÇ9\zå7^{ø2_{ÿ.`|ÿ+a|ÿ)a|ÿ)a|ÿ)a|ÿ)õbÞoÌzÀƒ·‰¯Ž¦‘’—“‘“(‹’6…A ŽJzŒRuŠZqˆam‡h#j†o'f„w+cƒ€.`‚Š1]–4Z£6X€²7V€Å7V€ã6X÷1Yÿ-[‚ÿ*[‚ÿ)[‚ÿ)[‚ÿ)[‚ÿ)ìfØsÇ~¼‡³Ž©’ •–˜™Š™$…˜2–> y”Ht“Po‘Wk^hŽe!dm%`Œu(]‹~+ZŠˆ.W‰”1T‰¡3Rˆ°4QˆÃ5Pˆâ4Rˆö0Sˆÿ,Tˆÿ)Uˆÿ(Uˆÿ(Uˆÿ(Uˆÿ(ækÐxƒ·Œ­’£–ššŽž‡ŸƒŸ ~Ÿ/x;sœE n›Mi™Ue˜\a—c^–j![•r%W”|(T“†+Q’’.N’ 0L’¯1K’Â1J‘à1L‘õ-M‘ÿ*Nÿ(Nÿ&Nÿ&Nÿ&Nÿ&ÞpÉ}¼‰²’§—›“Ÿ†¤~¦ z¦u¦*p¦7l¥A g£J c¢R_¡Y[¡aX hTŸp Qžz#N„&K‘)Hœž*Fœ®,EœÁ,Eœß+E›ô)Fšÿ'Gšÿ%Gšÿ$Gšÿ$Gšÿ$Gšÿ$Ôw„¶«–¡œ– ‹¥ªt®o¯l¯$h¯2d®=_­F [¬O X¬VT«^QªfNªnK©xH©ƒ E¨"C¨$A¨­%@¨À%?¨ß%?¦ô#@¥ÿ"@¥ÿ!@¤ÿ @¤ÿ @¤ÿ @¤ÿ Ê~»‹¯•¤›™¡Ž¦‚¬w±j¶c¸a¸^¸,Z¸8W¸BS¸KP·S M·[J¶cG¶kDµuBµ?µŽ=µœ;µ¬:µÀ9µß9³ô9²ÿ9±ÿ9°ÿ9°ÿ9°ÿ9°ÿÁ†´“§šœ ‘§…­y³m¸b½VÂSÃRÃ#PÄ0MÄ;JÄEGÄNEÄWBÃ_ @Ãh =Ãr ;Ã~8ÃŒ6Û5ë3ÃÀ3Ãà3Áõ2Àÿ2¿ÿ1¾ÿ1¾ÿ1¾ÿ1¾ÿ¸«™Ÿ “§‡®{´n»cÀXÅMÊDÏ CÐBÐ%@Ð2?Ñ==ÑG;ÑP9ÒY6Òc4Òn2Òz0Òˆ.Ò˜ -Ó© ,Ó¾ ,Óß +Ñó *Ïþ )Îÿ )Íÿ )Íÿ )Íÿ )Íÿ ®˜¢Ÿ–¦‰®|¶o½cÃWÈLÍBÒ9Ù 5ß4ß2à'1á20á=.âG-âP+âZ*ãe(ãq&ä%ä#å¡"å´!åÍ äì âûáÿàÿàÿàÿàÿ¤ž˜¥‹®}¶p¾cÆVËKÐ@Õ6Ü/å-í+î)î"'ï+%ï4#ð<!ðEñNòXòdóqóô’ô¥õºõÖôïòüðÿðÿðÿðÿ𤭶q¿cÇVÎIÓ=Ú3ß*ã&ô$û !üýý"þ)þ1ÿ9ÿAÿJÿUÿa ÿo ÿ€ ÿ“ ÿ¦ÿºÿÔÿëÿöÿöÿöÿö¬€¶r¿cÉVÑHØ;Ý0â&æðÿÿ ÿÿÿÿ ÿ$ ÿ+ ÿ2ÿ;ÿDÿOÿ\ÿkÿ}ÿÿ£ÿ´ÿÆÿÖÿÖÿÖÿÖ‚µs¿dÉVÓGÛ:à.å#éíýÿÿÿ ÿ ÿÿÿÿÿ$ÿ+ÿ3ÿ=ÿIÿVÿfÿxÿŠÿ›ÿ¨ÿ±ÿ±ÿ±ÿ±ÿ%+ÿ()ÿ))ÿ(,ÿ#2ÿ;ÿGÿUÿbÿpÿ|ÿ‡ÿ‘ÿ™ÿ ÿ§ÿ­ÿ´ÿ»ÿÄÿÎÿßÿëÿöÿþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ()ÿ+&ÿ,&ÿ+)ÿ(/ÿ"8ÿ DÿRÿ_ÿlÿyÿ„ÿŽÿ–ÿÿ¤ÿªÿ±ÿ¸ÿÀÿÊÿÛÿèÿôÿýüÿûÿûÿúÿúÿúÿúÿúÿÿ*&ÿ.#ÿ/"ÿ/%ÿ,+ÿ*5ÿ'Aÿ$Nÿ"[ÿ hÿtÿ€ÿŠÿ’ÿšÿ¡ÿ§ÿ­ÿ´ÿ½ÿÇÿÔþæûò÷ûõÿôÿóÿóÿòÿòÿòÿòÿÿ."ÿ2ÿ4ÿ3 ÿ2&ÿ22ÿ/>ÿ,Jÿ*Wÿ'dÿ&pÿ%{ÿ$…ÿ$Žÿ$–ÿ$ÿ$£ÿ$ªý$±ü$¹û$Ãù$Ïö$ãò$ðî%úí%ÿë%ÿê%ÿé%ÿé%ÿé%ÿé%ÿé%ÿÿ2ÿ6ÿ8ÿ8ÿ:#ÿ9-ÿ8:ÿ5Fÿ2Rÿ0_ÿ.kÿ-vý,€ú,‰ù+‘÷+™õ+Ÿô+¦ó+­ñ+µð+¿î+Ëë+ßç,îä,úâ,ÿ à,ÿ Þ,ÿÞ,ÿÝ,ÿÝ,ÿÝ,ÿÝ,ÿÿ5ÿ:ÿ=ÿ?ÿAÿA)ÿ@4ÿ=Aÿ:Mü8Zø6eô5qñ4{ï3„ í3 ë2” é2› è2¢ æ2ª ä2² ã2» á2È ß2Ü Ú2ì Õ3ø Ò3ÿ Ð3ÿ Î3ÿ Í4ÿ Ì4ÿ Ì4ÿ Ì4ÿ Ì4ÿ ÿ9ÿ>ÿAÿEÿHÿH$ÿG/þD;÷BGñ?Tì>`è Å>¨Ã>±Á>¼À>˽>âº>ò·?ÿµ@ÿ´@ÿ³Aÿ³Aÿ³Aÿ³Aÿ³Aÿÿ@ÿF ÿK ÿQ ÿSÿTóT"éR-áP;ÚOIÒMUÌK` ÈIjÅHsÂG{¿Fƒ½E‹»E“¹Dš·C¢µC«´C¶²CİCÙ­Cí«Eü©Eÿ¨Fÿ¨Fÿ§Gÿ§Gÿ§Gÿ§GÿÿDÿJÿPÿU ÿX ÷YêXßW$ÔW5ÌUDÆTPÁR[ ½Pe¹Nm¶Mv´L}±K…¯J­I•«I©H¦ §H°!¥H½"¤HÏ"¡Hè" IøŸKÿžKÿLÿLÿLÿLÿLÿÿG ÿMÿT÷Zë]ç] á\Ó]Ê]0Ã\?½ZL·XW ³V`¯Ti¬Sq©Qx§P€¤O‡¢O  N˜!žM¡#œM«$šM¸%™LÈ&–Lâ&•Nõ"”Oÿ”Pÿ”Qÿ”Qÿ”Qÿ”Qÿ”QÿÿIÿPûXå^ÝbÖcÔa ÊbÂc,»b;´`H¯]S ª[\¦Zd£Xl WtU{›Tƒ ™T‹"–S“$”R%’Q§'Q³(ŽQÃ)QÝ*ŒRò&‹Tÿ"‹Uÿ‹Vÿ‹Vÿ‹Vÿ‹Vÿ‹VÿÿLÿSì\ßbÔfÎhËgÂgºh(³g8­eE¨cP £aYŸ_a›]h˜\p•Zw“Y!X‡#ŽW%ŒW™'‰V£)‡V¯*…U¿+„VÕ,ƒWï)ƒXþ$ƒYÿ „Zÿ„Zÿ„Zÿ„Zÿ„ZÿÿNÿWå_ØfÎjÇlÃk¼l´m%­l5§jB¡gM œeV˜c^”be‘`lŽ_tŒ^{!‰]ƒ$†\Œ&„[•(Z *Z¬,}Z»-|ZÏ.{[ì+|\ü&|]ÿ"}^ÿ}^ÿ}^ÿ}^ÿ}^ÿÿPõYácÒjÉnÂp½p¶p®q"¨p2¡n?œlJ —jS’h[Žfb‹eiˆcp…bx!‚a€$€`‰&}_’){^+x^©-v^¸.u^Ì/t^é-u`ú'vaÿ#wbÿ wbÿwbÿwbÿwbÿÿRì\ÜfÎmÄr½t·t°t©u¢t/œr=—pG ‘nQlY‰j`…ig‚hnfu!}e}$zd†'wc)uc›,rb§.pb¶/obÉ/nbæ.odù(peÿ$qfÿ!qfÿqfÿqfÿqfÿÿTè_×iÊpÀu¹x²x«x ¤yžx-—w:’uE ŒrNˆpV„o^€md}lkzks wj{#tiƒ&rh)og™,lf¥.jf³/ifÆ0hfä/jh÷)kiÿ%liÿ"ljÿ ljÿ ljÿ ljÿ ÿWäbÒlÆs½xµ{­|¥| Ÿ}™|*“{8yC ˆwLƒuTs[{rbxpiuop rnx#om&ll‹)jl—,gk£.ek²/dkÄ0bká/dlö*fmÿ&fmÿ#gnÿ gnÿ gnÿ gnÿ öYàeÎoÂv¹|±©€ €™”(Ž€5ˆ~Aƒ|J ~zRzxYvw`svgptnmsv#jr&gq‰)dq•+bp¡-`p°/^pÂ/]pß/_qõ*`qÿ&arÿ#brÿ brÿ brÿ brÿ ï\ÜiÊr¾zµ€­„¤…š…”…ކ%‰„3ƒƒ>~H yPu~Wq}^n{ekzlhyt"ex}%bw‡(_v“*\vŸ,Zu®.YuÀ.XuÝ.Yvó*[vÿ&\wÿ#\wÿ \wÿ \wÿ \wÿ ê`ÕlÅvº~±„¨ˆŸ‰”ŠŠˆ‹!ƒŠ0~‰;y‡E t†Np„Ulƒ\i‚cfjb€r _{#\~…&Y}‘)W|ž+U|¬,S|¾-R|Ú-S|ò)U|ÿ%V|ÿ"W|ÿ W|ÿ W|ÿ W|ÿ ådÏpÁz¶ƒ­‰£Œ™Ž†‘},x8sŽBnK jŒSgŠZc‰a`ˆh]‡pZ†y!V…ƒ$T…&Q„œ(O„ª*M„¼*M„×*Mƒñ'Oƒÿ$Pƒÿ"PƒÿPƒÿPƒÿPƒÿÞiÉu¼€²ˆ¨‘““…–~— y—u—(q—5l–?h•H d”P a“W]’^Z‘fWnTwQŽ NŽ#Kš%I©&H»'GÔ'GŒð$HŒÿ"I‹ÿ J‹ÿJ‹ÿJ‹ÿJ‹ÿÕnÃ{·…¬¢’—–Œ™œužpŸmŸ#iŸ0ež;ažE]M ZœT W›\TšcQškN™tK˜H˜‹E—™ C—¨!B—º"A—Ó"A–ï B•þB•ÿC”ÿC”ÿC”ÿC”ÿÌu¼±Œ¦’›—‘›…Ÿy£j§e§c¨`¨+]¨6Y§@V§IS¦Q P¦Y M¥`J¥iG¤rD¤}B£‰?£—=£§<£¹;£Ò;¢ï; þ;Ÿÿ<Ÿÿ<Ÿÿ<Ÿÿ<ŸÿÄ|¶‰ª’Ÿ—•œ‰¡}¦qªd®Z±W±U²#S²0P²;M²DK±MH±UE±] C±e @°o >°z;°‡9¯–7¯¦6¯¸5°Ñ5®ï4­þ4¬ÿ4«ÿ4«ÿ4«ÿ4«ÿ»…¯£—˜Œ£€¨t­h²\¶PºI¼ H¼F½'E½3C½=A½G?½P=½X:½a8½k6½w4½„ 2½“ 0½¤ /½· .¾Ð .¼î -ºþ ,¹ÿ ,¸ÿ,¸ÿ,¸ÿ,¸ÿ³¦—›£ƒªv°jµ^ºR¾GÂ=Ç8É7É6Ê'5Ê34Ë=3ËG1ËQ0Ë[.Ìe,Ìq*Ì)Ì'Ì¡&Í´%ÍÎ%Ëî$Éü#Èÿ#Çÿ#Çÿ#Çÿ#Çÿ©–ž’£…«x²k¸_¾RÂGÆ=Ê4Ï+Ô &Ù%Ù%Ú%$Ú0#Û;#ÛE"ÜP!Ý[ ÝhÞvއߙ߬ßÄÞçÜøÛÿÚÿÚÿÚÿÚÿ œ”£‡«y³lº_ÁRÆFÊ;Î1Ó)Ù!Þèèéé'ê0ê9ëCìNìZígîwîŠïžð³ ðÍ ïì íü ëÿ ëÿ ëÿ ëÿ—£‰«{´m¼_ÄRÊEÎ9Ó/Ø%Ýáì÷ ÷øøù% ù- ú5 û?ûJüWýfþwý‹ýŸüµüÑüíüüüýüýüý‹«}´n½`ÆRÍDÒ7Ø,Ý"áåêúÿ ÿ ÿÿÿÿ ÿ'ÿ0ÿ:ÿEÿSÿbÿuÿŠÿŸÿ³ÿÇÿåÿåÿåÿå´p½aÇSÐCÖ6Ý*âæêí ú ÿÿÿÿ ÿ ÿÿÿÿ!ÿ)ÿ4ÿ@ÿNÿ^ÿrÿ‡ÿšÿªÿ¹ÿ¹ÿ¹ÿ¹ÿ )ÿ"'ÿ"'ÿ*ÿ0ÿ9ÿEÿ Sÿ `ÿ mÿ yÿ „ÿ Žÿ –ÿ ÿ £ÿ ©ÿ °ÿ·ÿ¾ÿÈÿÖÿæÿñÿûÿÿÿÿÿ ÿÿ ÿÿ ÿÿ ÿÿ ÿÿ ÿÿ#&ÿ%$ÿ%$ÿ#'ÿ,ÿ5ÿBÿPÿ]ÿjÿvÿ€ÿŠÿ’ÿšÿ ÿ¦ÿ ­ÿ ³ÿ »ÿ Åÿ Ñÿ ãÿ ïþ úú ÿùÿùÿùÿøÿøÿøÿøÿÿ&#ÿ( ÿ( ÿ&"ÿ"(ÿ 2ÿ?ÿLÿYÿeÿqÿ|ÿ†ÿŽÿ–ÿÿ£ÿ©ÿ°ÿ·ÿÁÿÌýßùíõøóÿòÿñÿðÿðÿðÿðÿðÿÿ*ÿ,ÿ,ÿ+ÿ)$ÿ(/ÿ%;ÿ"HÿTÿaÿmÿwÿÿŠÿ’ÿ™ýŸü¦û¬ù´ø½öÈóÛïêì÷éÿèÿçÿæÿåÿåÿåÿåÿÿ-ÿ0ÿ1ÿ0ÿ1 ÿ0*ÿ.6ÿ+Cÿ(Oÿ&\ÿ$gü#rù#|÷"…õ"ó"•ò"›ð"¢ï"©í"±ì"¹ê"Åè"Õä#éà#öÞ#ÿÛ$ÿÙ$ÿØ$ÿ×$ÿÖ$ÿÖ$ÿÖ$ÿÿ1ÿ4ÿ6ÿ7ÿ9ÿ8%ÿ61ÿ3=ý1Jø.Vô-bð,mí+wê+€è*ˆæ*å*—ã*žá*¥à*­Þ*¶Ü*ÂÚ*ÒÕ+çÐ+õÍ,ÿË,ÿÉ,ÿÈ,ÿÇ,ÿÇ,ÿÇ,ÿÇ,ÿÿ5ÿ9ÿ: ÿ>ÿ@ÿ? ÿ=*ù;7ò8Dì6Qç5\ã4gà3rÝ3{Ú2ƒÖ2‹Ô2“Ò1šÐ1¡Î1© Ì1² Ë1¼ É1Ê Æ2á Â2ñ ¿3þ ½3ÿ »3ÿ º3ÿ º3ÿ º3ÿ º3ÿ º3ÿ ÿ9ÿ= ÿ@ ÿD ÿFÿE÷D#îA/æ?<à>JÚ=WÓ•²>°>¦¯>°­>½«>Í©>æ¦?÷¤@ÿ£@ÿ¢@ÿ¢@ÿ¢Aÿ¢Aÿ¢Aÿÿ? ÿDÿJ÷NìPêO ãLÖLÍM0ÆM?ÀLL»KW·Ia ´Hi ±Gq®Fy¬F€ªEˆ¨D¦D˜¤C¡¢C« C·ŸCÇCà›Dó™Eÿ˜Fÿ˜Fÿ˜Fÿ—Fÿ—Fÿ—FÿÿBÿG÷OåSÝU×UÕR ËSÃT+¼T;¶RH±QR­P\ ©Nd ¦Ml¤Lt¡K{ŸJ‚JŠ›I“™Iœ—H¦•H²”HÁ’HØIïJþKÿŽKÿŽLÿŽLÿŽLÿŽLÿÿEÿKéSÞXÓ[Í[ÊXÂXºZ'³Z7®XD©WO¤UX ¡T` žSh›Qo˜Pv–P~”O†’NŽN˜M¢‹M®ŠM¼ ˆMÐ ‡Më†Oü†Pÿ†Pÿ†Pÿ†Qÿ†Qÿ†QÿÿGøOäWÕ]Ì`Å`Á^º]³_#¬_3¦^@¡\KZT ™Y\–Xd“VkUrŽTz‹T‚‰SЇR”…RžƒQª!Q¸"QË"~Rç!~Sù~Tÿ~Uÿ~Uÿ~Uÿ~Uÿ~UÿÿJîRÞ[ÏaÆd¿eºc³b¬c ¦c0 b=›aH–_Q ’^Y \aŒ[h‰Zo†Yv„X~‚W‡W}V›!{V§"yVµ#wVÇ$vVä$vW÷wXÿwYÿwYÿwYÿwYÿwYÿÿLéVÙ_ËeÁhºi´h­g ¦h h-šg:•eEcN ŒbW ‰a^†_eƒ^l€]s~\{{\ƒy[vZ˜!tZ¤#rZ²$qZÄ%oZá%p[ö q\ÿq]ÿq]ÿq]ÿq]ÿq]ÿýOåYÓbÇh½l¶m¯l§k  l›l*•k7iC‹hL ‡fT ƒe[€cb}bizapxaxu`s_‹p^–"n^¢$l^°%k^Á&i^Þ&j_ô!k`ÿkaÿlaÿlaÿlaÿlaÿõQâ\ÏeÃk¹o±qªq¢o›o–p'o5‹n@†lI‚jR ~iY{h`wffufnrevpd~mcˆkc“"ib $fb®%eb¿&dbÚ&dcò"edÿfdÿgdÿgeÿgeÿgeÿðSÝ_Ëh¿o¶s®u¦us–s‘t$‹s2†r>pG}oO ymWvl^skdpjlmjski|hh†fg‘"cgž$af¬%`f½&_gÖ&_gñ"`hÿahÿbhÿbhÿbhÿbhÿìWÙbÇk¼r³wªy¡y—wx‹x!†x/w;|uExtM trUqq\npckojhnqfnzcm„`l!^lœ#\kª%Zk»&YlÓ&Zlï#[lÿ\mÿ]mÿ]mÿ]mÿ]mÿèZÒfÃo¸v¯{¦~~‘|Š|…}}-||9wzCsyK pxS lwZivafuhctoasx^r‚[r Yqš"Wq¨$Uq¹%TqÐ%Tqî"VqþWqÿWqÿXqÿXqÿXqÿã^Íi¿s´z«¢‚˜ƒ‹„ ‚{‚)v6r@nIj~P g}Wd|^a{f^zm[zvYy€Vx‹Sx˜!Qw¦"Pw·#OwÎ#Owì!PwýQwÿRwÿRwÿRwÿRwÿÞbÈn»w°§„‡’‡„‡}‡ xˆtˆ&pˆ2l‡=h†Fe…N a…U ^„\[ƒcY‚kVtS€~P€‰N–L¥ J¶!IÌ!I~ëJ~üK~ÿK~ÿL~ÿL~ÿL~ÿÕgÃs¶|¬„¢‰˜‹|uŽom!i.e9bŽB^ŽK[R XŒY V‹aS‹hPŠqM‰{J‰‡Hˆ•Fˆ£Dˆ´CˆÊC‡êD†ûD†ÿE†ÿE…ÿE…ÿE…ÿÍm½x±‚§ŠœŽ’†“y•l—f—c˜a˜)^˜5Z—>W—GU–OR–V O•^ L”fJ”oG“yD“…B’“@’¢>’³=’É=‘é=ú>ÿ>ÿ>ÿ>ÿ>ÿÅs·¬‰¡–“‹–™sœdŸ\  Y W¡"U¡/R¡9P¡CM KJ SH ZEŸc CŸl @žv>žƒ;ž‘9 8²7žÈ7è6›ú6šÿ6™ÿ7™ÿ7™ÿ7™ÿ¾{±‡¥›”˜„œw k¤_§RªM«K«J«'H«3F«=D«FB«N@«V>«_;«h9ªs7ª€ 4ª 2ªŸ 1ª° 0ªÇ 0©ç /§ú /¦ÿ /¥ÿ /¥ÿ /¥ÿ /¥ÿ ¶„ªŽž””™‡ž{£o¨c¬W¯K²Aµ>¶=¶;¶):·49·>7·G6·P4·Z2·d0·o.·|,·‹*·œ)·®(¸Å(·æ'µù&³ÿ&²ÿ&²ÿ&²ÿ&²ÿ¯¢”—š‹ ~¦q«e°Y´M·B»8¾/ -Ã,Ã+Ã)*Ä3)Ä=(ÅG'ÅQ&Å\%Æh#Æv"Ɔ ƘÆ«ÇÁÆäÄøÂÿÁÿÁÿÁÿÁÿ¥”ššŽ¡§s®g´Z¹N½BÀ8Ã/Ç&ËÐ ÑÒÒ%Ó/Ó:ÔDÔPÕ]ÕkÖ|×ؤÙ»ÙÞÕóÓÿÒÿÑÿÑÿÑÿœš‘¡ƒ¨u°h·[½NÁBÅ7È-Ì$ÐÕÚâ ãää# å- å7 æB æO ç]çmæ€æ•æ«æÄææçùçÿæÿæÿæÿ“¡…©w±i¹[ÀNÆAÊ5Î*Ò!ÖÛß ã ñ óóòò"ò*ò4ò?òLò\òmò‚ò˜ó­óÆôåôöôûôûôû‡©y²jº\ÂNÉ@Î3Ó(ØÝáä èóýüû ûûüü&ü0ý<þIþZþmÿ‚ÿ˜ÿ¬ÿÀÿØÿäÿäÿä{²l»]ÄOÍ@Ò2Ù&Þâæ êíôÿÿÿÿÿ ÿÿÿÿ!ÿ+ÿ7ÿFÿXÿkÿ€ÿ•ÿ¦ÿ³ÿ»ÿ»ÿ»ÿ&ÿ$ÿ$ÿ'ÿ-ÿ 6ÿCÿPÿ^ÿkÿvÿÿŠÿ’ÿšÿ ÿ¦ÿ¬ÿ²ÿ¹ÿÂÿÍÿßÿìÿøÿÿýÿýÿýÿýÿýÿýÿýÿÿ#ÿ!ÿ!ÿ#ÿ)ÿ2ÿ @ÿ MÿZÿgÿsÿ}ÿ‡ÿÿ–ÿœÿ¢ÿ¨ÿ¯ÿ¶ÿ¾ÿÉÿÛÿêüöøÿ÷ÿ÷ÿöÿöÿöÿöÿöÿÿ"ÿ"ÿ!ÿÿ$ÿ/ÿ<ÿIÿVÿ bÿ nÿ yÿ ‚ÿ ‹ÿ ’ÿ ™ÿ Ÿÿ ¥ÿ «ÿ ²ÿ »ý Æû Ô÷ çó ôð ÿï ÿî ÿí ÿí ÿí ÿí ÿí ÿÿ%ÿ&ÿ%ÿ!ÿ !ÿ+ÿ7ÿEÿQÿ^ÿiÿtÿ}ÿ†ýŽü•ú›ù¡÷¨ö¯ô·óÂñÐíåèòæþäÿãÿâÿâÿáÿáÿáÿÿ)ÿ*ÿ)ÿ'ÿ(ÿ''ÿ#3ÿ ?ÿLÿXüdønöxóñ‰ïî—ìžê¤é¬ç´æ¿äÍàãÜñØþÔÿÒÿÑÿÐÿÐÿÐÿÐÿÿ-ÿ.ÿ. ÿ/ÿ/ÿ.!ÿ,-ÿ)9ù&Fô$Sï"^ë"iè!sæ!|ã!„á!Œà!“Þ!šÜ!¡Ú!©Ø!±Õ!¼Ó"ÉÐ"ßÌ#ðÈ#ýÆ$ÿÄ$ÿÃ$ÿÂ$ÿÁ$ÿÁ$ÿÁ$ÿÿ0ÿ2 ÿ3ÿ6 ÿ6ÿ5ý2%ô02í-?ç,Lâ+XÝ+cÙ*mÕ*vÒ*Ð*†Î*ŽÌ*•Ê*œÉ*£Ç*¬Å*¶Ã*ÃÂ*Õ¾+ëº+ù¸,ÿ¶,ÿµ,ÿ´,ÿ´,ÿ´,ÿ´,ÿÿ4 ÿ6ÿ9ÿ<ÿ< ý;ñ8è5)à47Ù3FÑ4RÍ3]É3gÆ3pÄ2xÁ2€¿2‡¾2¼2–º1ž¸1¦·1°µ2¼³2Ì ±2å ­3õ «3ÿ ª3ÿ¨3ÿ¨3ÿ§3ÿ§3ÿ§3ÿÿ7ÿ:ÿ>úAñAñ? æ<Û:Ð;1Ê<@Ä÷DæGßHÚFÙ@ ÍBÅD+¾D;¹DHµCS±B\®Be«Al©@t ¦@{ ¤?ƒ £?Š ¡>“Ÿ>œ>¥›>±š>¿˜>Ô–?í”?ü“@ÿ’@ÿ ’Aÿ ’Aÿ ’Aÿ ’Aÿ ÿ=ÿCéIÞNÓOÍNÊIÂI»J&µK6¯KC«JN§IW¤H`¡Gg žFo œFv šE}˜E…–DŽ”D—’C¡C¬CºCÍ‹DèŠEú‰Fÿ‰FÿˆFÿ ˆFÿ ˆFÿ ˆFÿ ÿ@òGãOÔSËUÄTÀP¹O²P"¬Q2§Q?¢PJžOS›N\˜Mc •Lj “Kq ‘JyŽJ€ŒI‰ŠI’ˆHœ†H¨…HµƒHÇHäJ÷€Jÿ€Kÿ€Kÿ€Kÿ€Kÿ€KÿÿCìKÝSÎXÄZ½Z¸W±TªV¥V.ŸV;›UF—TP“SXR_ Qf ‹PmˆOt†O|„N…‚NŽ€M™~M¤|M²zMÃyMßxNôxOÿxOÿxPÿxPÿxPÿxPÿýFçOÖWÈ\¿_·_±\ªY ¤Zž[*™[8”ZCYLŒXU‰W\ †Vc ƒUjTqSy}SzR‹xR•vQ¡tQ¯sQÀqQÛqRòqSÿqTÿrTÿrTÿrTÿrTÿóHãSÐ[Ä`ºc³c¬a¤^ _˜_'“_5Ž^@Š]J†\Rƒ[Y €Z` }Yg{XnxXuvW~tVˆrV“oVŸnU¬lU½kVÕkVðkWÿkXÿlXÿlXÿlXÿlXÿñKßVÌ^Àd·g®h§fŸb˜c’d$c2‰b=„aG`O}_V z^] w]d u\ks\sp[{n[…lZjZœhYªfZºeZÑeZîe[þf[ÿf\ÿg\ÿg\ÿg\ÿíNÚYÈa¼g³j«l¢j™g’gg!ˆg/„f;eD{dMxcT ub[ raa paim`pk_yi_ƒf^Žd^šb^¨a^¸_^Î_^ì`_ýa_ÿa_ÿb_ÿb_ÿb_ÿêQÔ\Äd¹j°n§pžn”kj‡kƒk,~k8zjBviJshRpgY mf` keghdnfdwdcacŒ_b˜]b¦[b¶ZbÌZbê[cü\cÿ\cÿ]cÿ]cÿ]cÿæUÏ_Áh¶n¬r¤tšsŽo‡o ‚o}p)yo5un?rmHnlPklW ik^ fjedilaiu_h\hŠZg–Xg¤Vg´UgÊUgèVgûWgÿWhÿXgÿXgÿXgÿáXËc½k²r©v x–wˆss |txt&tt2ps=msFjrNgqU dp\ apc_oj\nsZn|WmˆUl”Sl£Ql³PlÈOlçQlúQlÿRlÿRlÿRlÿRlÿÜ\Çg¹o¯v¥{œ|‘|‚xzyuyrz#nz/ky:hyCdxKawR_wY \v` YuhWtpTtzRs†Os“Mr¡Lr±JrÆJråKrùLrÿLrÿMrÿMrÿMrÿÔ`Âkµt«{¢—Œz~snk€h€,e€7b€@_H\~PY~WW}^ T|f Q|nO{xL{ƒJz‘HzŸFz¯EzÄDzäEyøFyÿFxÿGxÿGxÿGxÿÍe½p±y§€œ„’†††w†k†f‡ c‡`ˆ'^ˆ3[ˆ<X‡EV‡MS†TP†[N…c K„l I„vFƒDƒBƒ@‚®?ƒÂ>‚â?÷?ÿ@€ÿ@€ÿ@€ÿ@€ÿÆk·v¬¢…—‰Œ‹sŽe] ZX!V‘-S8QANILPJXG`EŽi BŽs @ ><œ:¬9Á8á8‹ö8Šÿ9‰ÿ9‰ÿ9‰ÿ9‰ÿ¿r²}§†œŠ‘ކ‘z“m•_—T™O™NšLš'Jš2Hš<FšDDšLBšT@™\>™f;™p9˜|7˜Š 5˜š 3˜« 2˜¿ 2˜ß 1–õ 1•ÿ 1”ÿ 1“ÿ 1“ÿ 1“ÿ ¸z¬…¡‹–‹”—r›fZ N¢E¤ B¤@¤?¤*>¥4<¥>;¥G9¥O7¥X5¥a3¥l1¥y/¤‡-¤—,¤©+¤½*¤Þ*¢õ)¡ÿ) ÿ)Ÿÿ)Ÿÿ)Ÿÿ±‚¥‹š‘–ƒšvŸj¢^¦R©F«<­5¯ 3°2°!1°+/°5.±>-±H,±Q+±[)±g'±t&±ƒ$±”#±¦"²»!²Û!¯ó ®ÿ ­ÿ¬ÿ¬ÿ¬ÿª‹‘“—‡œz¢m§`«U¯I±>´3·*º$¼ "½!½ !½* ½3¾=¾G¾R¿^¿l¿|¿ŽÀ¡À¶ÀÓ¾ñ¼ÿ»ÿºÿºÿºÿ¡’–˜Šž}¤oªb¯V´J·>º3½*À!ÄÇË ÌÌÌ%Í/Í:ÍF ÍR Î` Îp ΃ Η άÎÆÎèÍû Ëÿ Ëÿ Ëÿ Ëÿ˜˜ž¥q¬d³W¹J½>À2Ã(ÆÊÍÑ ÖÙ ÙÚÚ$Û.Û9ÜEÝRÞbÞsÞˆßß³ßÎàîßúßÿßÿßÿŸ¦s®eµX½JÂ=Å1É&ÌÐÔÙ Ýáãã äåæ"ç+é6ëCìRìbívîŒî¡ï·ïÑïëðöðöðö„§u¯g·Y¿KÆ<Ê/Î$ÒØÜ àãçëëíî ðñóô'÷3ù@úQûcüwýý£þ¶þÉÿßÿßÿßw°h¹ZÁLÊ<Ï.Ô"ÚÞâ æéìðöö÷øúû ýÿÿ#ÿ/ÿ>ÿOÿbÿwÿÿŸÿ®ÿºÿºÿºÿ#ÿ!ÿ!ÿ$ÿ*ÿ3ÿAÿNÿ\ÿhÿtÿ~ÿ‡ÿÿ–ÿœÿ¢ÿ¨ÿ®ÿµÿ½ÿÇÿÖÿçþóþþýÿüÿûÿûÿûÿûÿûÿÿ ÿÿÿ ÿ %ÿ0ÿ=ÿKÿXÿdÿpÿzÿƒÿ‹ÿ’ÿ˜ÿžÿ¤ÿªÿ±ý¹ûÃúÐøã÷ñöüôÿôÿóÿóÿóÿóÿóÿÿÿÿÿÿ!ÿ ,ÿ 9ÿFÿSÿ_ÿkÿuÿ~ÿ†ÿŽÿ”þ›ü¡ú§ø®õµó¿ñËðßîîìùëÿêÿêÿéÿéÿéÿéÿÿ ÿÿÿÿÿ(ÿ4ÿ Aÿ Nÿ Zÿfÿpþyüú‰øö–óñ£ïªí²ê»èÈæÜäìâúà ÿÞ ÿÝ ÿÝ ÿÜ ÿÜ ÿÜ ÿÿ#ÿ#ÿ!ÿÿÿ#ÿ/ÿ;ÿIüUø`ôjñtï|í„ë‹é’ç™æ ä§â¯à¸ÞÅÜÚÖìÒúÏÿÍÿÌÿËÿÊÿÊÿÊÿÿ'ÿ' ÿ% ÿ& ÿ%ÿ#ÿ (û5õBïOêZæeãnàwÞ܇َ֕ԜңЫεÌÁËÒÇèÃøÀÿ¾ÿ½ÿ¼ÿ¼ÿ¼ÿ¼ÿÿ+ ÿ+ÿ+ÿ- ÿ,ÿ)÷& î#-ç!:áHÛTÕ _Ñ hÎ qÌ!yÊ!È!ˆÆ!Ä!–Ã!žÁ"¦¿"¯½"»¼#ʹ#ãµ$ô³$ÿ±$ÿ¯$ÿ¯$ÿ®$ÿ®$ÿ®$ÿÿ/ÿ/ÿ2ÿ3ù2÷/ë+á'"Ø'2Ð)AË*NÆ*YÃ*bÀ*k½*s»*z¹*‚¸*‰¶*´*˜³*¡±*ª¯+µ®+Ĭ+Û¨,ï¦,þ¤,ÿ£-ÿ¢-ÿ¢,ÿ¢,ÿ¢,ÿÿ2ÿ3ù8é9â9Þ5Þ. Ñ/É1,Ã3;½3H¹4S¶3\³3e°3m®3t¬2{«2ƒ©2Ч2“¥2›¤2¥¢2° 2¾Ÿ2Ñœ3êš3û˜4ÿ—4ÿ–4ÿ–4ÿ–4ÿ–4ÿÿ5ÿ8ê>ßBÕBÏ?Í8Å8½:&·;6²ãEÔIËJÅGÁAº?³A!­B1¨C>¤CI BSA[›Ab˜@j–@q”?x’??ˆ >‘ >› ‹>¦ ‰>³ ˆ>Ć?à„?ô ƒ@ÿ ƒ@ÿ ‚@ÿ ‚Aÿ‚Aÿ‚Aÿÿ<ëCÜJÌOÃP¼N·I±FªH¤I, I:›IE˜HN”GW’G^FeFl‹Es ‰E{ ‡Dƒ …D ƒD—C¢C¯~CÀ|DÚ{DñzEÿ zFÿ zFÿ zFÿ zFÿ zFÿ õ>æHÓOÇT½U¶T°P©L ¢MN(˜N6”NAMKMSŠLZ‡Ka…KhƒJo €Jw ~I |I‰zH“xHŸwH¬uH¼tIÒsIîrJÿrJÿ rJÿ rJÿ rJÿ rJÿ òBàLÎSÁX¸Z°Y©V¢R›R–S$‘S2S>‰RG†QPƒQW€P^~Oe{Ol yNs wN{ uM…sMqMœoM©nM¹lMÎlMëlNýlOÿlOÿ lOÿ lOÿ lOÿ îEÜPÉW½\´^¬^¤[œV•VW!‹X/‡W;ƒVDVM|UTzT[wTbuSh sSp qRx oR‚mQkQ™iQ¦gQ¶fQËeRéeRûfSÿfSÿ fSÿ fSÿ fSÿ êIÕSÅZº_°b¨bŸ_–ZZŠ[…[,[8}[AzZJwYQtXXqX_oWf mWm kVv iVgUŠeU—cU¤aU´`UÈ_Uç`Vú`VÿaWÿaWÿ aWÿ aWÿ çLÑVÁ^¶c­f¤f›d^‰^„_€_)|_5x_?t^Gq]Oo\Vl\\j[c h[k fZs dZ}bZˆ_Y”^Y¢\Y²[YÆZYå[Zù[Zÿ\Zÿ\Zÿ \Zÿ \Zÿ ãOÍY¾a³f©i j—h‹bƒb ~czc&vc2sc<obElaLjaTg`Ze`ac_i a_q _^{]^†Z^“X] W]°V^ÄU^ãV^÷V^ÿW^ÿW^ÿ W^ÿ W^ÿ ÞSÈ]»d°j¦mn“m…g~g xgtg#qh/ng9kgBhfJefRceX`e_^dg \do ZcyXc„Ub‘SbŸRb®QbÂPbáQböQbÿRbÿRbÿ Rbÿ Rbÿ ÙVÄ`·h¬n£qšsqkxkrknlkl,hl7fl@ckH`kO^jV\j]Yie Wim Uiw Sh‚PhNgMg¬KhÀKhÞKgõLgÿLgÿMgÿ Mgÿ Mgÿ ÒZÀd³l©r v–wŠvyqqqkqhqfr(cr4`r=^rE[qMYqTWp[TpcRok Pot Mn€KnIn›Gm«Fn¾EnÜFmôFmÿGmÿGlÿ Glÿ Glÿ Ì_¼i°q¥wœ{‘|†{uxkwew ax_x$]y0Zy:XyBVxJSxQQwXOw`LvhJvr Hu} EuŠCu™Bu©@u¼@uÙ@tó@tÿAsÿ Asÿ Asÿ Asÿ Æd·n«v¢|—Œr€e]YW€ U€+S6Q€>O€FM€NKUI]FfD~pB~{ ?~ˆ =}— <}§ :}º:~Ö :|ñ :{ÿ :{ÿ :zÿ :zÿ :zÿ Ài²t§|’„‡†{‡n‡`‡U‡PˆNˆM‰&K‰0I‰:H‰BF‰JD‰RB‰Z@ˆc=ˆm;ˆx9‡†7‡• 5‡¦ 4‡¹ 3‡Ó 3†ð 3…ÿ 3„ÿ 3ƒÿ 3ƒÿ 3ƒÿ ¹p­z¢‚—‡ŠŒuŽhZO‘G’ D’C“A“*@“4?“==“E;“M:“V8“_6“i4“u2’ƒ0’“.’¤-’·,’Ñ,‘ï+ÿ+Žÿ+ÿ+ÿ+ÿ³x§‚œˆ‘Œ‡z“m•a—U™I›?œ976ž"4ž,3ž52ž>1žG0ŸP.ŸZ-Ÿd+Ÿq)ž'ž&ž¡$žµ#žÎ#î#›þ"šÿ"™ÿ"™ÿ"™ÿ¬ ˆ•Ž‹’–ršeY N£B¤7¦.¨)©(©'ª"&ª,%ª5$ª?#ªH"«S!«^ «j«y«‹««±«Êªì¨ý§ÿ¦ÿ¦ÿ¦ÿ¥‰™”ƒ™užh¢\¦P©D¬9®/°&³µ···!·*·4¸>¸I¸T¹b¹q¹ƒ¹—¹¬ ¹Ä ¸ç¶ûµÿ´ÿ´ÿ´ÿœ’•†›y k¦^«R¯F²:µ/·%º½ÀÃ Æ Å ÅÅ(Å2Æ=ÆIÆWÆfÆwƋƠŶÆÒÅïÅüÅÿÅÿÅÿ•–‰œ{£m©`¯S´F¸:».¾$ÁÄÇÊÎÐ ÐÐÑÒ'Ó1Ô<ÕIÖXÖiÖ|Ö’Ö§Ö¿ÖàÖóÖþÖÿÖÿŒ~¤o«a²T¹F½9Á-Ä"ÇËÎ ÒÕÛÜÝ Þßáâ$ä.æ:çIèYèkéé˜é­éÅéâéòéõéõ€¥q­cµU¼GÂ9Æ,Ê ÎÒÖÛßãåçèêë íïñ!ó+ö8÷HøZùmú„ú›ú¯úÂúÚúßúßt®e¶V¾HÆ9Ë+ÐÔÚ ßãæéíïñóõöø úýÿÿ(ÿ6ÿGÿZÿnÿ…ÿšÿ«ÿ¹ÿ¼ÿ¼ÿ ÿÿ ÿ!ÿ'ÿ0ÿ>ÿLÿYÿeÿpÿzÿƒÿ‹ÿ’ÿ˜ÿžÿ¤ÿªÿ°ÿ¸ÿÂÿÎÿâþðýûûÿûÿûÿúÿúÿúÿúÿÿÿÿÿÿ!ÿ-ÿ:ÿHÿUÿaÿlÿvÿÿ‡ÿŽÿ”ÿšþ ý¦ü¬û´ù½øÉ÷Üõìóøóÿòÿñÿðÿðÿðÿðÿÿÿÿÿ ÿÿ(ÿ6ÿCÿPÿ\ÿgÿqÿzü‚ú‰ø÷–õœô¢ó¨ñ°ð¸îÃìÓêçéõçÿæÿåÿåÿåÿåÿåÿÿÿÿÿÿ ÿ $ÿ0ÿ>ÿKÿWþbúlõuò}ð„î‹ì‘ë—éžç¤æ¬ä´â¿àÍÞãÜòÚýØÿÖÿÕÿÕÿÕÿÕÿÿÿ ÿ ÿÿÿÿ*ÿ 8ýEøQô\îfêoæwäâ†àŒÞ“ݚ۠بձһÐÉÎàÌñÉ ÿÇ ÿÆ ÿÅ ÿÅ ÿÅ ÿÅ ÿÿ! ÿ ÿÿ ÿÿÿ#ö0ï>êJå Vá `Ý iÙ qÕ yÓ Ñ ˆÏ Í–ËʥȮƹÄÈÂß¾ò»ÿ¹ÿ·ÿ¶ÿ¶ÿ¶ÿ¶ÿÿ%ÿ#ÿ#ÿ$ÿ! ýñè'á5ÚCÓOÎYËcÈkÅsÃ{Á‚À‰¾¼˜» ¹©·´µ´Ö°í­ü«ÿ©ÿ©ÿ¨ÿ¨ÿ¨ÿÿ(ÿ'þ*ï*ç'ç" äÙÏ-É<Ä I¿ S¼!]¹!e·"mµ"t³"|±"ƒ°"Š®"’¬#›«#¤©#¯§#¼¦$Σ$è %ùž%ÿ%ÿœ%ÿ›%ÿ›%ÿ›%ÿÿ,ÿ-í2â4Ú3Ó.Ò% É%Á''»)6¶*C²+N¯+W¬+`ª+g¨+o¦+v¤+}£+„¡+Ÿ+•ž+Ÿœ+ªš+¶™,Ç—,â”-õ’-ÿ‘-ÿ.ÿ-ÿ-ÿ-ÿÿ0ò3ä:Ö=Ì<Ç9Ã1½.µ0!°20«3=§3I¤3R¡3ZŸ3bœ3iš3p™3w—2•2‡“2’2š2¥Ž2±3‹3܉4ò‡4ÿ†4ÿ†4ÿ…4ÿ…4ÿ…4ÿü3ë:ÜAÍDÃD½A¸;²7«8¥9+¡:8;Dš;M—:V”:]’:d:kŽ9rŒ9zŠ9‚‰9‹‡9•…9 ƒ9­‚9¼9Ó:î}:þ|;ÿ|;ÿ|;ÿ|;ÿ|;ÿô7å@ÒGÅJ¼KµI¯C©> ¢?@&˜A4”A?‘AIŽAQ‹@Y‰@`‡@g…?mƒ?u?}>‡}>‘{>œ z>© x>¸ w?Í u?ê t@üt@ÿt@ÿs@ÿs@ÿs@ÿñ;ßEÌL¿O¶P®O§J DšE•F"F0ŒG<‰FE†FNƒFUE\~Ec|DjzDqyDywD‚uC sC™ qC¦ pCµ nDÉ mDç mEú lEÿlEÿlEÿlEÿlEÿì?ØIÇP»T±U©T¡P™J’IJ‰K,…L8‚KBKJ|JRyJXwJ_uIfsImqIvoHmHŠ lH– jH£ hH² gHÅ fIä fIø fIÿ fJÿfIÿfIÿfIÿèCÒMÂS·X­Y¤XœU“NŒN‡O‚O)P5{P?xOGvOOsNUqN\oMcmMjkMriM|gL‡ eL“ cL  bL¯aMÂ`Má`Mö `Nÿ `Nÿ `Nÿ`Nÿ`NÿãGÍP¾W³[ª]¡]˜ZS†R €S|S%yT1uT<sSDpSLmRSkRYiR`gQheQpcQyaQ„ `P‘ ^Pž \P­[QÀZQÞZQõ ZRÿ [Rÿ [Qÿ[Qÿ[QÿßJÉS»Z°_¦aa”^ˆW€V zWvW"sX.pW9mWAjWIhVPfVWdV^bUe`Um^Uw\U‚ ZUŽ YUœ WU«VU¾UUÛUUó UUÿ VUÿ VUÿ VUÿVUÿÛMÅW¸^­b£ešecƒ\{[u[q[n\+k\6h[?e[Gc[NaZU_Z\]Zc[ZkYYuWY€ UYŒ TYš RYªQY¼PYØPYò QYÿ QYÿ QYÿ QYÿQYÿÔQÂZ´aªf h—iŒg}`u_o_k_h`(f`3c`<a`D__L\_S[_ZY_aW^iU^sS^~ Q]Š O]™ M]¨ L^ºK^ÔK^ñ L^ÿ L]ÿ L]ÿ L]ÿL]ÿÏT¾^±e§jm”m‰lxeodidedbd%`e0^e:\eBZeJXdQVdXTd_RdgPcqNc{ Lcˆ Jc— Hc¦ Gc¸ FcÑ Fcï Fbÿ Gbÿ Gbÿ GbÿGbÿÊXºb®i£nšqr„qtkiici _i\j!Zj-Xk6Vk?UkGSjNQjUOj]MjeJinHiyFi† Di• Ch¥ Ai· @iÏ @hî Ahÿ Agÿ AgÿBgÿBgÿÅ]¶fªm s–v‹w€vpreq\pXpVpTq(Rq3Pq<OrDMqKKqSIqZGqbEplCpwAp„?p“=o£ ;pµ ;pÍ :oì ;nþ;nÿ;mÿ;mÿ;mÿ¿b±k¦sy’{‡|{|mz`xVwPwNxLx$Ky.Iy7Hy@FyHDyOByWAy`?xi‚C=‚K;‚S9‚\7‚f5‚q3‚1Ž0Ÿ.±-È-é-ü-~ÿ-}ÿ-}ÿ-}ÿ³n¨x’ƒˆ†}‡pˆc‰UŠKŠAŠ;‹9‹8Œ"7Œ,6Œ54Œ=3ŒF2O1X/b-Œn+Œ{*Œ‹(Œœ&Œ¯%ŒÆ%‹è%Šû%ˆÿ%ˆÿ%‡ÿ%‡ÿ­v£€—…‰‚ŒvŽi\’P“D”:•1–-—,—+—$*—-)—6(˜?'˜H&˜R%˜\#˜h"˜w ˜‡˜™˜¬˜Ã—å•ú”ÿ“ÿ“ÿ“ÿ§œ†‘‹‡z’m•a˜U›I=ž3Ÿ*¡!£ ££¤$¤-¤6¤?¤J¤U¥a¥p¥¥”¥¨¥¿¤â¢ø¡ÿ ÿ ÿ ÿ †•ŒŒ‘•qšdžX¡L¤@¦5§*©"¬®° ±±±"±+ ±5 ±@ ±K ±X ±g±x±‹± °µ°Ð°ï¯þ®ÿ®ÿ®ÿ˜Ž“‚˜ug¢Z§N«A­5¯+±!´¶¹ ¼¾ ½½¾"¾+¾6¾A¿N¿\¿m¿€¾•¾ª¾Â½ä½ö½ÿ½ÿ½ÿ’”…šx j¦\«O°B³5¶*¸ »¾Á ÄÇÉÉ ÉÊË"Ë+Í5ÎAÎPÏ`ÏrχÏϳÏÎÏëÎøÎþÎþˆ›z¢l¨^¯PµB¹5¼)¿ÂÆÉÌÐÓÕÖØ ÙÛÜÞ(à4âAâQãcãwäŽä¤äºåÔåêåóåó|£nª`²Q¹C¾5Â(ÆÉÍ ÑÕÚÞáâäåç éëíï$ò1ôAôSõfõ|ö“ö©÷¼÷Î÷ß÷ßp¬a´S»EÃ6Ç'ÌÐÕ Ûßâåéìíðñóõ÷ úüÿ!ÿ.ÿ@ÿSÿhÿ€ÿ–ÿ¨ÿ¶ÿ¿ÿ¿ÿ ÿ ÿÿÿ$ÿ.ÿ<ÿJÿVÿcÿmÿwÿÿ‡ÿŽÿ”ÿšÿ ÿ¦ÿ¬ÿ´ÿ½ÿÉþÝýíüúûÿúÿùÿúÿúÿúÿúÿÿÿ ÿÿÿÿ*ÿ7ÿEÿRÿ^ÿiÿrÿ{ÿ‚ÿ‰ÿþ–ýœü¡û¨ù¯ø¸öÃôÒóçòöðÿïÿðÿïÿïÿîÿîÿÿÿÿ ÿÿÿ%ÿ3ÿ@ÿMÿYÿdýmûvù}÷„õ‹ô‘ó—ñð£îªì³ê½èËçáåñãýãÿâÿáÿáÿàÿàÿÿÿÿ ÿÿÿ ÿ-ÿ:ÿGùSõ^òhðpíxëé…èŒæ’å˜ãŸá¦ß®Ü¸ÚÅÖÙÔìÒùÑÿÏÿÎÿÎÿÎÿÎÿÿ ÿÿÿ ÿ ÿÿ&ü4ôAíMéXæbãjàrÞyÛ€Ù†Öӓњϡͪ˳ɿÆÐÅèÃöÁÿÀÿ¿ÿ¿ÿ¿ÿ¿ÿÿÿÿÿÿ ÿù ð,æ9àFÜQÖ[ÒdÏlÌsÊzÈÆ‡ÅŽÃ–Á¿¦½°»¼¹͸ åµ ÷³ ÿ± ÿ° ÿ°ÿ¯ÿ¯ÿÿÿÿúõö ëâ "Ø 1Ð >Ë JÇ UÄ^Áf¿m½t»{¹‚·ж‘´š²£°­¯º­ʪå§÷¥ÿ£ÿ¢ÿ¢ÿ¢ÿ¢ÿÿ"ÿ ð#æ$à!ÜÛ ÐÈ)Â7½D¹NµW³`°g®n¬u«|©„¨Œ¦”¤ž£¨¡´ŸÅžßšó˜ÿ—ÿ–ÿ•ÿ•ÿ•ÿÿ&ô'æ-Ú/Ï-Ê'ÇÁº"´1¯ =«!H¨"R¦"Z£#b¡#i #ož#wœ#~›#†™$—$™–$£”$°’%¿‘%ÖŽ&ïŒ'ÿ‹'ÿŠ'ÿ‰'ÿ‰'ÿ‰'ÿú)ì0Ý6Í8Ä7¾2º+µ%®'¨)+¤*8 *C+Lš+U˜+\–+c”+j’+q,x,,Š‹,”Š,Ÿˆ,«†,º…-΃.ê.ü€.ÿ.ÿ.ÿ~.ÿ~.ÿô.ä7Ò=Å?»?´<¯5©/ £/ž1&™23–2>’3H3P3X‹3^‰3e‡3l†3s„3|‚3…€33š}3§|3µz3Éy4æw5ùv5ÿu5ÿu5ÿu5ÿu5ÿð3Ý=ÊC¾EµF­C¦= 6™6”8!9.Œ99‰9C‡9L„9S‚9Z€9a~9h|9oz9wy9€w9‹u9–t9£r9±q9Äo:ân:÷n;ÿm;ÿm;ÿm:ÿm:ÿê9ÕBÄH¹K¯K§IŸD˜>‘<Œ=ˆ>*„?5??~?H|?Oz?Vx?]v>dt>kr>sp>|o>‡m>“k> j>®i?Àg?Þg?õf@ÿf@ÿf@ÿf?ÿf?ÿå=ÏF¿L´OªP¢O™J‘DŠA „B€C&}D2zD<wDDuDLrDSpCYoC`mCgkCoiCyhCƒfCdCcC«aC½`DÙ`Dó`Dÿ_Dÿ_Dÿ`Dÿ`DÿàAÊJ»P°S§UžS•O‹IƒG }GyG"vH.sH8qHAnHIlHPjHVhH]fGdeGlcGvaG€`G^Gš\G©[H»ZHÔZHñZIÿZIÿZHÿZHÿZHÿÛDÆM¸S­W£YšX‘T†N}KwKsLpL+mL5kL>hLFfLMdLSbLZaLb_Lj^Ls\K~ZKŠXK˜WL§VL¹ ULÑ TLïTMÿULÿULÿULÿULÿÕHÂQµWª[ \—\YSwOqOnPjP(hP2eP;cPCaPJ_PQ]PX\P_ZPgXPqWP{UPˆSP–RP¥PP· PPÎ OPíPPÿPPÿPPÿPPÿPPÿÐK¿T²Z§^`”`‰]|WrTlShTeT$bT/`T8^T@\THZTOYTVWT]UTeTTnRTyPT†NT”MT¤KTµKTÌ JTëKTþKTÿKTÿKTÿKTÿÌN»W®^¤bšd‘d†bw[mXfX bX_X"]Y,[Y6YY>WYFVYMTYTRY[QYcOYlMYwKX„IX’HX¢GY³FYÊEYêFYýFXÿFXÿGXÿGXÿÇR¸[«a¡f˜hŽiƒgr`h^a] \]Z]W])V^3T^;R^CQ^JO^RN^YL^aJ^jH^uF^‚D]C^ A^±@^È@^è@]üA]ÿA]ÿA\ÿA\ÿÃV´_¨fžj•mŠmlogdd[bVbTbRc%Pc/Nd8Md@KdHJdOHdWFd_EdhCdsAc?cŽ=cžr@=rH;rP:rY8rc6rm4rz3r‰1rš/r¬.rÁ.rã.qø.pÿ.oÿ.oÿ.oÿ³f§ov“zˆ|~}r}d|W{LzBy)…G(†P'†Z&†f$†s#†ƒ!†• †§†¼†Þ„õ‚ÿ‚ÿÿÿ¨tž}“‚‰…~ˆqŠe‹XŒL@Ž6Ž,% #"!% ‘.‘6‘@‘I‘T‘`‘n‘~’’¤‘¹‘ØôŽÿÿŒÿŒÿ£}˜ƒŽˆ„Œwi‘]“P•E—9˜.™%š› $-ž7žAžLžXžg žw žŠ ž ² Ì œì ›þ šÿ ™ÿ ™ÿœ„‘ŠˆŽ{’m–`™TœHŸ< 0¡&£¥§© « ªªª$ª.ª8ªDªPª^ªnªª•©ª©Á¨ä¨ö§ÿ§ÿ§ÿ•‹Œ•qšcžV¢J¦=¨1ª&«­°² µ¶ ¶¶··%·/¸9¸F¸T¸d¸v¸‹· ·¶·Ó¶ï¶ü¶ÿ¶ÿ’‚—tf¢X§K¬>¯1±&³¶¸ »¾Á ÃÄÄÅ$Æ.È:ÉGÉWÉiÉ}ɔȪÈÃÈäÈôÈýÈý…™wŸh¦Z«M±?µ1¸%º½À ÃÇÊÍÎÏÐ ÑÓÕ×"Ú-Ý9ÞIÞZßn߅ߜ߲ÞËÞæßôßôy¡k¨\¯Nµ@»1¾$ÁÅÈ ÌÏÓÙÜÝßáâä æèê í+ð:ñKñ^òsó‹ó¢ó¶óÉóáóámª^±P¹A¿2Ä$ÈÌÐÕÚÞâæéêìîðòôö ùüÿ)ÿ:ÿMÿbÿxÿÿ£ÿ³ÿÁÿÁÿÿÿÿÿ!ÿ+ÿ9ÿGÿTÿ_ÿjÿsÿ{ÿƒÿŠÿÿ–ÿ›ÿ¡ÿ¨ÿ¯ÿ¸ÿÄþÕüêûøúÿùÿøÿøÿöÿóÿñÿÿ ÿÿÿÿÿ'ÿ4ÿBÿOÿ[ÿeÿnÿvÿ~ÿ…þ‹ý‘û—úø£÷«ö³ô¾óÌñãïóîÿíÿìÿëÿìÿìÿëÿÿ ÿ ÿÿÿÿ"ÿ/ÿ=ÿJÿUý`úiøqöyôó†ñŒï’î˜ìŸë¦é®ç¸åÅãÚáíßûÞÿÝÿÝÿÝÿÝÿÝÿÿ ÿ ÿ ÿ ÿÿÿ)û7øDõPòZîcìkésçzå€ã†áŒß“ݙۡ٩ղҾÐÎÎæÌöÊÿÊÿÉÿÈÿÈÿÈÿÿÿ ÿÿÿÿ÷"ï0ë=èIäTà]ÝeÙmÕsÒzЀ·ÌʔțƤĭ¸Àǽ߼ñ»þ¹ÿ¸ÿ¸ÿ¸ÿ¸ÿÿÿÿ ÿ ÿ øèã(Ý6ØBÒMÎWÊ_ÇfÅmÃtÁz¿½ˆ»¹—·Ÿµ¨³³±Â¯Ø®í¬û«ÿªÿ©ÿ©ÿ©ÿÿÿ÷ìæåÝÔ Í-È:ÃF¿P¼X¹`·gµn³u±{¯‚® Ь ’ª ›¨ ¥¦ °¥ ¿£ Ô¡ íŸþÿœÿ›ÿ›ÿ›ÿÿ÷êßÕÐÎ Ç À %º2¶?²I¯R¬Zªa¨h¦o¤v¢}¡…ŸŽ—œ¢š­˜¼—Дì’ýÿÿŽÿŽÿŽÿúî#ß(Ð*Ç'Á!½¹²­,¨8¤C¡LŸTœ\šb™i—p•w”’ˆ’©‹·Šʈç† ú„ ÿƒ ÿƒ ÿ‚ ÿ‚ ÿõ$å,Ó1Æ3¼1¶-°%¬ ¦¡ &œ!2™"=•"G“#O‘#V#]$d‹$k‰$rˆ$z†$ƒ„%ƒ%˜%¤€&²~&Å}'â{'÷y(ÿx(ÿx(ÿx(ÿx(ÿï+Ý3Ê9¾;´:­6¦/¡(›'–( ‘)-Ž*8‹+Bˆ+J†+R„+X‚,_€,f,m},u{,~z,ˆx,”v- u-®t-Àr.Ýq.ôp/ÿo/ÿo/ÿn/ÿn/ÿè1Ó:Ã?·A®A¦>ž8—1‘.Œ/ˆ0(„132=2F}2M{2Ty2[w2au2it2pr2yp3„o3m3l3«j4¼i4Õh5ñg5ÿg5ÿf5ÿf5ÿf4ÿâ6Ì?½D²G¨G D˜?9ˆ4 ƒ56$|7/y79w8Bt8Ir8Pq8Wo8^m8el8mj8uh8€g8Œe8™d9¨b9¹a:Ð`:î`:ÿ_:ÿ_:ÿ_:ÿ_:ÿÝ;ÇC¹I®K¤L›J’E‰?: {:w; t<+r<5o=>m=Fk=Mi=Sh=Zf=ad=ic=ra=}`=‰^=–]>¥[>¶Z>ÌZ?ìY?þY?ÿY?ÿY?ÿY>ÿÖ?ÃGµLªP P—OŽK„Ez@u?q@m@(kA2iA;gABeAIcAPaAW`A^^Af]Bo[BzZB†XB”WB£UC³TCÉTCéSCýSCÿTCÿTCÿTCÿÐB¿J²P§ST”SŠPJuEnCkDgE$eE.bE7aE?_EF]EM[ETZF[YFcWFlVFwTFƒSF‘QF¡PG±OGÇNGçNGûNGÿNGÿOGÿOGÿÌF»N¯T¤WšX‘W†T{NpJiH eHbI!_I+]I4[I<YICWIJVIRUJYTJaRJjQJuOJNJLKŸKK°JKÅIKæIKúIKÿJKÿJKÿJKÿÈI¸Q¬W¡[˜\Ž\ƒYvSkNdM _L\MZM(XM1VM:TMASNHRNOPNWON_MNhLNsJOIOGOFO®EOÃDPäDOùEOÿEOÿENÿENÿÄLµU©[Ÿ^•`‹`€^rWgS^QYQWQTQ%RR/QR7OR?NRFMSMLSUJS]ISfGSpES}DS‹BS›AT¬@TÁ?Tâ?Tø@Sÿ@Sÿ@Sÿ@RÿÀP²X¦^œb’eˆe}bn\cYYVTVQVOV"MW,LW4JW<IXDHXKGXSEX[DXdBXn@X{?X‰=X™^a<^l;^x9^‡7^—6^©5^½4_Ý4^õ5]ÿ5]ÿ5\ÿ5\ÿ¸Yªa g–lŒnnvlgi\fQdHb DbBbAc$?c->c5=d=s4r 1s0s/s#.s+-t4,t<+tD)tM(uW'uc%uo$u"u!u¢ u·uÒtñsÿrÿ qÿ qÿ©kžs”yŠ|€~tgZM~C~8}/}(} &}$}#~%"~-!~6!~?HR^kzŒŸ³Î~ï|ÿ{ÿ{ÿ{ÿ¤ršz…‚{„m†`‡T‡Hˆ<ˆ2ˆ(ˆ ˆ‰‰‰Š&Š.Š7ŠAŠL‹X‹e‹u‹‡Š› Н ŠÈ ‰ê ‡ü‡ÿ†ÿ†ÿŸ{”Š…€ˆs‹eYLA’4’*’!“”–— — — —& —/ —9 —D—P—^—n–€–”•¨•¾”à”ô“ÿ’ÿ’ÿ˜‚Žˆ…Œwj’]•P˜Dš8›,œ"ž  ¢£ ££££'£1¤<¤H¤V¤e£w£‹£ ¢¶¡Ò¡ð û ÿ ÿ‘ЉŽ{’m—`›SžF¡9£-¤#¦¨ª ¬®¯¯ ¯°° ±(±2²>²L²[²l²±—±¬°Æ°è¯÷¯ÿ¯ÿŒ•qšcŸU¤G¨:ª-¬"®°³ µ¸»»¼¼ ½¾¿À'Á2Â@ÃOÃ`ÃtËáøÂ×ÂïÂúÁþ—se£W¨I­;±-³!¶¹»¾ÁÅÇÈÉÊË ÍÎÐÓ&Ö2ØAØSÙfÙ|Ù”Ù«ÙÃÙáÙðÙôvŸg¦Y¬K²<·.º!½À ÄÇÊÎÒÕÖÙÛÝßá ãæé$ì2íCîVïkï„ïœï²ïÆïÝïäj¨[¯L¶>¼/À ÄÈ ÌÐÔÙÞâåæèéìîðò õøü#ÿ3ÿFÿZÿqÿ‰ÿŸÿ±ÿÀÿÆÿÿÿÿÿÿ(ÿ7ÿDÿQÿ\ÿfÿoÿwÿ~ÿ…ÿ‹ÿ‘ÿ—ÿÿ¤ÿ«ÿ´þ¿ýÎûæùöøÿ÷ÿ÷ÿ÷ÿðÿìÿéÿÿÿÿÿÿÿ$ÿ2ÿ?ÿLÿWÿaÿjÿrÿyý€ü†úŒù’ø˜öŸõ¦ô®ò¹ðÆîÞíðëþêÿéÿéÿçÿãÿàÿÿÿ ÿ ÿ ÿÿÿ,ÿ:ÿFþRû\øeõlótñzïî‡ìê“éšç¡æ©ã³á¿ßÐÝéÚùÙÿ×ÿÕÿÕÿÕÿÔÿÿ ÿÿÿ ÿÿû&÷4ô@òLîVê_çgänâtà{Þ܇Ú֔ԛѣϭ̸ÊÇÈàÆóÅÿÃÿÃÿÃÿÃÿÃÿÿ ÿÿÿÿ óîê-æ:âEÞOÙXÔ`ÑhÎnÌtÊ{ÈÆ‡ÄŽÂ–Àž¾§»²¹À·Ôµì³û³ÿ²ÿ²ÿ±ÿ±ÿÿ ÿÿ÷ôç àÚ%Ó2Î>ÊIÆRÃZÀa¾h¼nºt¸{¶´ˆ²°™®¢¬­ªº¨Ë¦æ¥÷¤ÿ£ÿ¢ÿ¢ÿ¢ÿÿû ïæ ß ÚÐÉÄ*¿7»B·K´T²[¯b­h«n©u¨{¦ƒ¤‹¢” žž¨œµ›Æ™â˜ô–ÿ• ÿ” ÿ” ÿ” ÿüñãÖÌÇÄ ½·!².®:ª D§ M¤ U¢ \  bž iœ o› v™ ~— †– ” š’ ¦‘ ³ Åâ‹ö‰ÿˆÿ‡ÿ‡ÿ‡ÿöç Ö$È%¿"¹´± ª¥'¡3>šG˜O•V“\‘ciŽpŒx‹‰‹‡–†¢„°ƒÁÝô}ÿ|ÿ|ÿ{ÿ{ÿï!Ý)Ê-¾/µ,®'¨ £ž™!”-‘8ŽA‹I‰P‡W…^„d‚k€s|}†|‘zžx«w¼v Ôt!ðr!ÿq"ÿq!ÿq!ÿq!ÿè(Ò0Â5·7­5¥1ž+˜#’ ‰!'†"2ƒ#<#D~#K|$R{$Yy$_w$fv%nt%ws%q&o&™n&§m'¸l'Îj(íi)ÿh)ÿh)ÿh(ÿh(ÿá.Ë6¼;±=§=Ÿ9—3-ˆ' ƒ'("|)-y*7w*?u*Gs+Nq+Tp+[n+bl+jk,ri,}h,‰f-–e-¤d.´c.Êa/é`/ý`/ÿ`/ÿ`/ÿ`.ÿÚ4Å<·A¬C¢C™@:ˆ4€.z-w.s/)q03o0;m0Ck1Ji1Qg1Wf1^d1fc2oa2y`2…_2’]3¡\3±[4ÆZ4æY5ûY5ÿY4ÿY4ÿY4ÿÒ8À@³E¨HžH•F‹@‚;y5s3o4l4%i5/g57e6?c6Fb6M`6T_6[]7c\7k[7vY7‚X8V8žU8¯T9ÃS9äS:ùS9ÿR9ÿS9ÿS9ÿÍ<¼D¯I¤LšL‘K‡F}@s;l8 h9e9"c:+`:4^:<]:C[:JZ;PX;XW;`V;hUÁM>áM>øM>ÿM>ÿM=ÿM=ÿÉ@¸H¬M¡P—QŽO„KyEn@f= b=_=\>(Z>1X>8W>@U?FT?MS?UR@]P@fO@pN@|LAŠKAšJA«IB¾HBÞHBöHBÿHBÿHAÿHAÿÅDµK©PžT•T‹S€PuJjFaB\AYBWB%UB.SB5QB=OBCOCKNCRMDZKDcJDnIEzGEˆFE˜EF©DF½CFÜCFõCFÿCFÿCEÿCEÿÁG²O¦TœW’XˆX~UqOfJ\FWFTFQF"OF+NF3LG:KGAJGIIHPHHXGHaEIlDIxBI†AI–@J§?J»>KØ>Jó>Jÿ>Iÿ?Iÿ?Iÿ½J¯R£X™[]†\{YmSbOWLQJ NJLKJK(IK0GK8FL?ELFDLNCMVBM_@Mj?Mv=N„RT2]F1^N0^W/^b-^n,_}*_Ž)_ (_³'_Ì'_í'^ÿ']ÿ(]ÿ(\ÿ­\¢d˜jŽnƒoyonn`kTiIg?e5c 2c0c/d!.d)-d1,d9+eB*eJ(eT'e_&fk$fz#f‹"f f±fÉfë eþ dÿ cÿ!cÿ©bžj•pŠs€uuuit\rOqDo:n0m)l 'l&l%m$$m,#m4"m=!nF nPn[ngnvn‡ošo®oÆnémülÿkÿkÿ¤išqv†y|{q{d{WzJy?x5x+w"vvwww&w.w7x@xJxVxcxrxƒx—x«xÃwævúuÿuÿtÿŸq•x‹|‚wj‚]‚P‚D‚8‚.‚$‚‚‚ ƒƒƒƒ'ƒ0 ƒ9 ƒD ƒP ƒ] ƒlƒ~ƒ‘‚¥‚»Ûò€ÿÿÿšy~†ƒ}…o‡b‰UŠI‹=Œ1Œ&ŒŽ  )2=IVevŠŽŸŽ´ÏŒîŒû‹ÿ‹ÿ”€‹…‚‰tŒfY‘L“@•4–(–—˜š ›œ œœœœ"+5@N\nœœ—œ¬›Æšè™ù™ÿ˜ÿŽˆ†Œxj”\—OšB6ž)Ÿ¡¢¤¦¨©© ©©ªª"«+¬6¬D¬S¬c¬w«Ž«¤«¼ªÞ©ô©ý©ÿ‰Ž{“m—_œQ D¤6¦*¨©« ®°²µµµ¶ ·¸¸º!»+¼8½G½X½k½½™½°½Ì¼ê¼÷»þ~•p›b S¥Fª8­*¯±´ ·¹¼¿ÂÂÃÄÆÇ ÈÊÌ Ï+Ð:ÑKÑ^ÒsÒ‹Ò¤Ó»ÓØÓíÓösd£V©G¯9³*¶¹¼ ¿ÃÆÉÍÏÐÒÔÖÙÛÞáäè*è<éOédê|ë•ë¬ëÂìÕìåf¦X¬I³;¹+¼ÀÄ ÈÌÏÓÙÝàáãåçêìîñ õøû+ý>þSþjÿƒÿ›ÿ®ÿ¾ÿÊÿÿÿÿÿÿ&ÿ4ÿAÿMÿXÿbÿkÿsÿzÿÿ‡ÿÿ“ÿ™ÿ ÿ§þ¯üºúÉùáøó÷ÿöÿõÿñÿéÿäÿáÿÿÿ ÿ ÿÿÿ!ÿ.ÿ<ÿHÿSÿ]ÿfþmüuû{ù‚øˆ÷Žö”ô›ó¢ñªï´íÁëÕêìèüçÿåÿæÿàÿÙÿÔÿÿ ÿÿÿ ÿÿÿ)ÿ6ÿBûN÷Wô`òhïoívì|ê‚èˆçŽå•ãœá¤ß®Ý¹ÚÊ×äÔöÑÿÐÿÐÿÏÿËÿÇÿÿÿÿÿÿ úö#ó0ð<íGéQåZâbßiÝoÚvØ|Ô‚ÒˆÐ͖˞ɨdzÅÁÂØÀï¿þ¾ÿ½ÿ¼ÿ¼ÿ¼ÿÿÿÿÿôíèã)ß5ÛAÖKÑTÍ\ÊcÈiÆoÃuÁ{¿‚¾ˆ¼º˜¸¢µ¬³¹±Ë¯ç®ø¬ÿ«ÿ¬ÿ¬ÿ«ÿÿÿöîçß ÖÏ"Ê.Ç:ÃDÀM¼U¹\·cµi³o±u¯{­‚«Š©’§œ¥¦£³¡ÃŸÞžòÿœÿœÿ›ÿ›ÿÿö é ß ÕÎÆÀ»'·2³=°F­OªV¨\¦c¤h¢o¡uŸ|„›™——¢•®“½‘ÓíüŽÿÿÿÿùêÜÍľ º ´®ª*¦5¢? HP›V™\—c•i“o‘vŽˆŒ’Šžˆª†º…Ï„ ë‚ ü ÿ€ ÿ€ ÿ€ ÿñàÍ Á!¸±¬¨ ¢ #™ .• 8“ A IŽ PŒ WŠ ]ˆ c‡ j…qƒz‚„€~›|¨{¸zÎxìvÿuÿtÿtÿtÿèÓ&Ã*¸*®(§# ›–Œ'‰2†;„C‚K€Q~W|^{eylwtv~tŠr–q¤o´nÉmèküjÿjÿjÿjÿà&Ê-¼1°3§1Ÿ,—&Š …"~,{6y>wEuLsSqYp`ngmpkzj…h’g e °d!Åc!äb"úa"ÿa"ÿa"ÿa"ÿ×,Ã4¶8ª9¡8˜5/ˆ(€!{ w!t"'q"1o#9m#Ak#Hi#Nh$Uf$[e$cc%kb%ua%_&Ž^&]'­[(Á[(àZ)÷Y)ÿY)ÿY)ÿY(ÿÏ2¾9±=¦?œ?“<Š60y*r&n'k(#i(,f)5e)<c)Ca*J`*Q^*W]*_\+hZ+rY,}X,‹V-šU-ªT.½S.ÜR/õR/ÿR.ÿR.ÿR.ÿÊ6º=­B¢D˜DA…<{7r1k, g-d-a.(_.1].9\/@Z/FX/MW/TV0\U0dS1nR1zQ1ˆP2—N2¨M3»M4ØL4óL4ÿL4ÿL3ÿL3ÿÆ:¶B©FžI•I‹GBw=m7d2 `2]2Z2%X3-V35U3<S4CR4JQ4QP4YO5aM5lL6wK6…J7•H7¦G8¸G8ÓF8ñF8ÿF8ÿF8ÿF7ÿÁ>²E¦JœM’MˆK~GsBi=_7Z6W7T7"R7*P72O89M8@L8GK8NJ9VI9_H:iG:uE;ƒD;“C<¤B<¶A=ÐA=ðA=ÿA<ÿA<ÿA<ÿ¾B¯I£N™PQ…P{LoFeBZ=T;Q;O;M;'K;/I<6G<=G\C>gB?s@???‘>@¢=@µCe=Cq;C:D9D 8E³7EË7Eì7Eÿ7Dÿ8Dÿ8Cÿ·I©PžU”X‹Y€XvVhP]LSHJE FDDDBD"AE)?E1>E8=E?I=I;J&:J.9J58K=7KD6KM4LV3L`2Ll1Mz0M‹.Mœ-N¯,NÇ,Né,Mý-Mÿ-Lÿ-Lÿ°P¤X™]a†b{ap_b[XXNUCQ;O 8O6O5O#4P+3P22P:1PB0QJ.QS-R],Ri+Rx)Rˆ(Sš'S­&SÅ&Sç&Sü'Rÿ'Qÿ'Qÿ¬U \–bfƒgxfme`aU^J[?X5V1U0V.V-V',V/+W6*W>)WG(WP&XZ%Xg$Xu#Y†!Y˜ Y«YÂYåXú Xÿ Wÿ!Wÿ¨Zb“gŠkluljk]hQeFc;`1^*] (]&]%^#$^*#^2"^:!^C _L_W_c`q`‚`•`©`À`â_ù^ÿ^ÿ]ÿ¤`™hn†p|rrrfqXnLlAk6i-g#fffff%f-g5g>gHgSh_hnhh’h¦h½hàg÷fÿeÿeÿŸg–oŒs‚vxxmx`wSvFt;s1r'qqp pppq'q/q8qBqN q[ qi qz qq¡q¶pÒpïoÿ nÿ nÿ›o‘u‡y~|t~f~Y~M~@}5}*|!||| | | ||!|)|2|=|H|U|c|t|‡{œ{±zËyëyúyÿxÿ–wŒ|ƒ€yƒl„^…Q†E‡9‡-‡#‡‡‡ ˆ‰ ‰‰ˆˆ#‰,‰6‰BˆNˆ]ˆmˆ‡•‡«†Ä…æ„ø„ÿ„ÿ~‡ƒ~‡q‰c‹VI<‘0‘$‘’“ ”•–– •–––$–.–9–F–U–e–x•Ž•¤”¼“ß“õ’ÿ’ÿ‹†ƒŠugY”L—?™2š&›œ Ÿ ¢£££ £¤¤¥%¦/¦<¦K¦[¦n¥„¥›¤³£Ð£ï¢ü¢ÿ†x‘j•\™NA 3¢&£¥§ ©«­¯°°°± ²³´µ$·0·?·P·b·x·¶©¶Â¶ä¶õµþ{“m˜_P¢B¦4©&«­¯ ²´·º¼½¾¾ÀÁ ÄÆÉ$Ê2ËCËUÌj̜̃˵ÌÎÌéÌöp›a¡R¦D«6°'²µ¸»¾ÁÄÈËËÍÎÐÒÕØ ÛÞâ$ã5äHå\æsææ¥æ¼æÓççc¤UªF°8µ(¹¼ÀÄÇËÏÔØÜÝßáãåèêíñõø%ù8ùMúcû|ü•üªü»ýËÿÿÿÿÿÿ#ÿ0ÿ=ÿIÿTÿ^ÿfÿnÿvÿ|ÿ‚ÿ‰ÿÿ•þ›ý£û«úµùÃ÷ÛöðôÿóÿòÿìÿâÿÜÿÖÿÿ ÿ ÿÿ ÿÿÿ+ÿ8ÿDÿOÿYþaüiúpøw÷}öƒô‰òñ–ïí¥ì¯ê¼èÍæèäúãÿâÿàÿÕÿÎÿËÿÿÿÿÿÿÿÿ%ý2û>÷IóSð\îcìjêqèwæ}äƒâ‰àÞ—ÜŸÙ©Ö´ÓÄÐÞÎóÌÿËÿÊÿÈÿÂÿ¾ÿÿÿÿÿû öñ í,ê8çCãMàVÜ]ÙdÕkÒqÐvÎ|̃ʉȑƙģÁ­¿»½Ï»ë¹ü·ÿ·ÿ¶ÿ´ÿ±ÿÿÿÿöîçáÛ%Õ1Ò<ÎFÊOÇWÄ^Ád¿j½p»v¹|¸ƒ¶Š³“±œ¯§­³«Å©á§õ¦ÿ¥ÿ¤ÿ¤ÿ¤ÿÿüñèàÔ ÌÇÂ*¿5¼?¸HµP³W°^®d¬i«o©u§|¥„£Œ¡–Ÿ¡­š¼˜Ò—î•þ”ÿ•ÿ•ÿ•ÿüðãÕÌž¸³#¯.«8©A¦J£Q¡WŸ]c›išo˜v–}”†’›Ž§Œ¶ŠÉˆç‡ù‡ÿ†ÿ†ÿ†ÿô äÑŽ¶±«¦¡&ž1š:˜C•J“Q‘W]ŽcŒiŠpˆw†€„‹‚–€£~±}Ä{ázõzÿyÿxÿxÿêÖÆº±ª¤ Ÿ ™•‘)3‹<ˆD†K„Q‚W]c}j{rz|x †v ’t  s ¯q Áp ßo önÿmÿmÿmÿáË#¼&±&¨$ ™“Ž ˆ „ " ,~ 5|=zExKwQuXs^qepnnwl‚kih­fÀeßdöcÿcÿbÿbÿÖ$Ã*µ.ª/ -˜("‰‚}yv's0q8o?mFlLjShYgaeidrb~a‹_™^©\¼\ØZóZÿYÿYÿYÿÍ*½1¯5¤6›4’1‰+%ysol"i+g3e;dAbH`N_U]\\d[nYyX‡V –U ¦T!¸S!ÒR"ñR#ÿR#ÿR"ÿR"ÿÈ/¸6«: <–;8ƒ2z-r&j f c!a!&_"/]"6["=Z#DX#JW#QU#XT$aS$jQ%vP%ƒO&“N'£L'µL(ÎK(îK)ÿK(ÿK(ÿK(ÿÃ4³;§?œA’@‰>9u3l-c'^&\&Y'"W'+U(2T(9R(@Q(FP)MN)UM)]L*gK*sI+€H+G,¡F-³E-ËE.ìD.ÿD.ÿE-ÿE-ÿ¾8°?¤C™EE…C{>q9g4^.X+U+R,P,'O,/M-6L-<J-CI-JH.RG.ZF/dE/pC0~B0A1ž@2±?2È?3ê?3þ?2ÿ?2ÿ?2ÿ»<­C¡G–IŒIƒHxDm>c9Z4R0 O0L0J0$I1+G12F19D1@C2GB2OA3X@3b?4m>4{=5‹<6œ;6¯:7Æ97è97ü:7ÿ:6ÿ:6ÿ·@ªFžK”MŠN€LuHjC`>V9M5 I4G5E5!C5(A5/@56?6=>6E=7M<7U;8`:8k99y89‰7:›5:­5;Ä4;æ4;û5;ÿ5:ÿ5:ÿ´C§JœN’QˆR~PsMgH\DR?H:D9A9?9>9&<9-;:4::;9;B8;J7‡1>™0?«/?Â/?ä/?ú0?ÿ0>ÿ0>ÿ±G¤M™RU†V|UqRdLYIOEE@?> <>:>9>#7>*6?15?84?@3@H2@Q1A[0Ag.Bu-B…,C—+Cª*CÀ)Dâ*Cù*Cÿ+Bÿ+Bÿ®J¡Q—VYƒZyZnWaRWNMKCG:C 6C4C3C 2D'1D/0D6/E=-EF,EO+FY*Fd)Gr(Gƒ&G•%H¨$H¾#Hà$H÷%Gÿ%Gÿ&GÿªOŸU”Z‹^_w^k\_XUUKQ@M5J0I.I-I,I$+J+*J3(J;'KC&KL%KV$Lb#Lp!L€ M“M¦M»NÝMöLÿLÿ Kÿ§SœZ’_ˆc~dtcia\^R[GXf3e)c a` ````&`.a7a@aKaX af bv b‰ a a²aËaë `ý _ÿ _ÿ›f’mˆq~suujt\sOrCp8o-n$lkkj j j j! j) j2j<kGkSkakqj„j˜j­iÆiçiøhÿhÿ—ms„w{zp{c{VzIz=y1x'wvvv v vvvv$u,u6uAuNu\ulu~t“t¨sÀsãr÷rÿqÿ’u‰z€~v€i[‚N‚A‚5ƒ)‚‚ ‚ƒ‚ ‚‚‚‚&‚/‚;‚G‚Uex€¢ºÝ~ô}ÿ}ÿ|„{„n†`ˆRŠE‹9Œ,Œ!ŒŒ Ž (2?M]p…ŽœŽ³ÐŒð‹þ‹ÿˆ„€ˆr‹dVH“;•.–"–—˜™› žžŸŸ) 5 C T fŸ{ž“ž«Æéœùœÿƒ‹uŽg’Y–K™=œ0ž#Ÿ ¢¤¦¨ªªª««¬ ­®¯±)±8±H±Z±o±ˆ± °º¯Ý¯ò¯ýx‘j–\šMŸ?£1¦#§©«®°²µ··¸¹º¼½ ¾ÀÃÅ+Å<ÆNÆbÆzƔƭÆÈÅåÅól™^žO¤A¨2¬$¯± ´·º½ÀÄÆÆÈÉËÌÎÐÓ ØÜÞ-ß@àTáká…áŸá·áÏáæ`¡R§C­4²%µ¹ ¼¿ÃÇÊÏÓÖ×ÚÜßáãæéì ðóô1öF÷\øtøù¦ù¸øÉÿ ÿ ÿ ÿÿÿÿ,ÿ9ÿEÿPÿYÿbÿjÿqÿwÿ~ÿ„þŠýü—úžù§÷±ö¾õÒóìñþðÿðÿæÿÜÿÒÿÍÿÿÿÿÿÿÿÿ'ÿ3ÿ?ÿJþTû]ùd÷kõróxò~ð„ïŠí‘ì™ê¡è«æ¶äÇâãà÷ÞÿÝÿÙÿÌÿÅÿÁÿÿÿÿÿÿ ÿü"ù.ö9óEïNìWé^æeälâràwß~݄ۋؒ՛Ҥϯ;ËÕÉïÇÿÅÿÄÿ¾ÿ¸ÿµÿÿÿÿþ÷ ñëç(ä3á>ÝHØQÓXÐ_ÎeÌkÊqÈwÆ}ĄŒÀ”¾ž»¨¹¶·Èµæ³ú±ÿ°ÿ°ÿ¬ÿ©ÿÿÿúñèà ØÑ"Í-Ê7ÆAÂJ¿R½Yº_¸e·jµp³v±}¯…­«—©¡§®¥¾¢Ø òŸÿžÿžÿžÿœÿÿ÷ëáÖË Å¿»&·1´:±C®K«R©X§^¦d¤i¢p vž~œ†š˜›–§”¶’ÊéüŽÿÿŒÿÿøéÛÌĽ¶ °« §*¤4¡<žDœKšR˜X–]•c“i‘pw€‹Š‰•‡¡…¯ƒÁà€õÿÿÿÿî Üʾµ ¯©£ž™#–,“5>ŽEŒKŠQˆW†]…cƒjqz}„{yœwªu»tÔrðrÿrÿqÿqÿãÍ¿³ª£ — ‘‰%…/ƒ7€>~E}K{QyWx]vdtkrtpn‹l˜k¦i·hÎgìfýf ÿe ÿe ÿÖÄ ¶#«#¡ ™’Œ† €|y(v0t8r ?p Eo Lm Rl Xj _h gg pe zc ‡b •` ¤_ ¶^ Î\í\ÿ[ÿ[ÿ[ÿÍ!¼(¯+¤+š)’$‰‚{u q n!k*i2g9e@dFcMaS_Z^b\k[vYƒX’V¢U´TËSìRÿRÿRÿRÿÆ(¶.©2Ÿ2•1Œ-ƒ'z!rk gda%_-]4\;[BYHXOVVU^SgRrPOŽNŸL°KÇKéJýJÿJÿJÿÁ-±4¥7š87‡4}/t)l#d^[Y!W)U0T7R=QDOKNRMZKcJnI|G‹F œE!®D!ÄC"æC"üC"ÿC"ÿC"ÿ¼2­8¡<—>=ƒ:y5o0f*^$W T Q O!%N!,L!3K":I"@H"GG"NF#WD#`C$kB$yA%ˆ?&™>&«='Á='ã=(ú=(ÿ='ÿ='ÿ¸6ª=ž@”BŠB€?v;l6b0Y*Q% M%K%I%!G&(E&/D&6C&=B'DA'K?(T>(]=)i<)v;*†9+—8+©7,¿7,à7,ø7,ÿ7,ÿ8,ÿµ:§@œD‘F‡F}Ds@h;_6U1L+G)E*C*A*%?*,>+3=+9<+A;,H:,Q9-[8.f6.s5/ƒ4/•30§20½11Þ11÷21ÿ20ÿ30ÿ±>¤D™HJ…J{IpEe@[;R6H1B. ?.=.;."9/)8//7/660>50F41O31Y22d12q03/4“.4¦,5»,5Û,5õ-5ÿ-4ÿ.4ÿ®A¢H—LNƒNyMnJbEX@N<E7=3 93736343&33-24414<05D/5L.6V-6b,7o+7*8‘(8¤'9¹&9Ø'9ô(9ÿ(8ÿ)8ÿ«EŸK”O‹RSwRlO_IVFLBB=88482818/8$.8+-92,99+:A*:J);T(;_'Ô!>ó"=ÿ#=ÿ#<ÿ¨IO’S‰VWuVjS]OSLJH@D6@/= -=+=*>!)>((>/'>7&??$?H#@R"@]!Aj AzAB BµBÑBñBÿAÿAÿ¥MšSX†[}\r[gX[TQRHN=J3G*C &C%C$C#D%"D,!D4 E<EEEOFZFhFxGŠGžG³HÎGïGÿFÿFÿ¢R—X]„`zap`e^YZOXDT9Q/N&K JJJJ!K(K0K8KBLLLWLeMuMˆMœM±NÌMîMÿLÿLÿžW”]‹bewfmfcdVaJ^?[5X+V"TR RRRR$R,R4R>SHSTSb Tr T„ T˜ T­TÅ Tç Sû Rÿ Rÿ›]‘dˆh~ktlkl_jRgEd:b0`&^][Z ZZ [ [' [0 [: [E[Q[^[m[€[”[¨[ÀZâZöZÿYÿ—dŽk„n{prrgqYpLn@l5k*i!gff e eedd#d,d5d@dLdZdid{dc¤c»bÝbôbÿaÿ“l‰q€uxwmx`wRvFu9t.t#rqq qqp ppoo&o0o;oGoTodounŠm m¶lÖkòkÿkÿŽs…x}{s}e~X~K~>~2~&}|| |}}| ||||!|)|4{@{N{^{oz„zšy±xÎwïvþvÿ‰zx‚kƒ]…O†B‡5ˆ)‡‡‡ ˆ‰ŠŠ‰‰ ‰‰‰Š"Š,Š8ŠF‰V‰h‰|ˆ”‡«†Æ…ê…û„ÿ…‚}†oˆa‹SE8‘+‘’’ “”–—˜——— ˜˜™™"š.š=™M™^™s˜‹˜£—¼–â–÷•ÿ€‰rŒdV“H–:™,š›œ žŸ¡£¥¥¥¥¦§§ ¨©«#«1«A¬S¬g«€ªšª³ªÐ©ï©ûug”Y˜Jœ<Ÿ-¢ £¥ §©«®±²²³´µ¶¸¹ »½¿$¿5ÀGÀ[ÀrÀÁ¦ÀÁ¿ã¾ój—[œM¡>¥/©!«­ °³µ¸¼¿ÁÁÃÄÆÇÉËÎÑÕØ'Ù9ÚMÛdÛ~ܙܰÜÉÜã]ŸO¥@ª2¯"²µ ¸»¿ÃÆËÎÑÑÔÖÙÛÞàäçëïð*ò?óUômôˆô¡ô¶ôÇÿ ÿÿÿ ÿÿÿ(ÿ4ÿAÿLÿUÿ]ÿeÿlÿrþxü~û„ú‹ù’÷™ö¢ô¬ó¹ñËðèîûíÿìÿáÿÒÿÉÿÄÿÿÿÿÿÿÿÿ#ÿ/ÿ;ýFúP÷Xô_òfðlïríxì~ê…éŒç“åœã¦á±ßÁÝÝÛôÙÿÖÿÏÿÄÿ½ÿ¹ÿÿÿÿÿÿ ü÷ô*ò5î@éJæRãYà`ÞfÜlÚr×xÔ~Ò…ÐΕ̟ɪǸÅÍÃëÀþ¿ÿ¾ÿ¶ÿ°ÿ­ÿÿÿÿùòëæá$Þ/Ú9ÓCÏLÌSÉZÇ`ÅfÃkÁq¿w½~»†¹Ž·˜µ£³°±Â®à¬÷«ÿªÿ¨ÿ£ÿ ÿÿÿõëáÖ ÏÊÆ)Â3¿=»E¸M¶T³Z±_°e®j¬p«w©§‡¥‘£œ ©ž¸œÎšî™ÿ—ÿ–ÿ–ÿ“ÿýñåÙÍĽ·³"°,­6©>§F¤M¢S YŸ^d›jšp˜w–€”Š‘•¢°‹Ã‰ãˆù†ÿ†ÿ†ÿ†ÿóãÑŽ¶® ¨¤ &œ/š7—?•F’L‘RX]‹cŠjˆq†y„ƒ‚›~©|»zÕxòxÿwÿwÿwÿçÑ Ã ¸ ®¨¢›–’Ž(‹1ˆ9†@„F‚L€RW}]{czkxsv}tˆq•p¤n´lÊkêjüjÿjÿjÿÚÆ¸­¤œ– Š…!~*{2y9w@uFsLrQpWn^mekniwgƒe‘cŸb¯`Ä_ä_ø^ÿ^ÿ^ÿν° ¥›“‹„ ~ yur#o+m3k:i@gFfLdRcYa`_i^s\ZYœW­VÁU áT öT ÿT ÿT ÿƶ%©(ž(”%‹!ƒ{tn if d %b -` 4^ :] @[ GZ MX TW \U dT oR {PŠOšN¬LÂLãKùKÿKÿKÿ¿&°+¤/™/-†)}$tle_\ZX'V.T5S;RBPHOPNWL`KkIxH‡F—E©D¾CßCøCÿCÿCÿº+«1 4•5‹41x+o&f ^W TQO#N*L1K7I>HDGLETD]CgAt@ƒ?”=¦<»;Û;ö<ÿ<ÿ<ÿµ0¨6œ9‘;‡:~7s2j-a'Y!Q LJHF&E-C3B:AA@H>P=Y<d;q9€8’7 ¤6 ¸5!Ö5!ô5"ÿ5!ÿ6!ÿ²4¤:™>?…?{<p8g2]-T(L"FCA?"> )= 0; 6:!=9!E8"M7"W6#b4#n3$~2$1%¢/%¶/&Ò/&ò/&ÿ0&ÿ0&ÿ¯8¢>–BŒC‚CxAn=c8Z3Q.H(@$ =#;$9$8$&6$,5%34%:3&B2&J1'T0'_/(l.({,)+* **´)*Ï)+ð*+ÿ**ÿ+*ÿ¬<ŸB”FŠG€GvElBa=W8N3D.<) 7(5(3(2(#0()/)0/*7.*?-+H,+R+,]*,j(-y'-‹&.ž%.³$/Í$/î%/ÿ%/ÿ&.ÿ©?E’IˆK~LtJjG^BT=K9A48/2- 0-.--- +-'*..).5)/=(/F'0O%0[$1h#1w"2‰!23±3Ë3í3ÿ 3ÿ!2ÿ¦CšIM†O|PsOhL\FRCI??;66.2 +2)2(2&2$%3+$32#4:"4C!5M 5X6e6u7‡7›7¯8È8ë8ÿ7ÿ7ÿ£G˜MŽQ„S{TqSfPZLPIGE=A3=*9 %7#7"8!8" 8(80989A:K:V;c;r;…<™<­=Æ=é<ý<ÿ;ÿ K•Q‹U‚XyYnXdVXQNOEK:G0C'@ > >>>>%>-?5?>?H@S@`ApA‚A—A¬BÄBçAüAÿ@ÿP“V‰Z€]v^l]b[VWLUAQ6N,K#HE DDEE"E)E1E;FEFPG^ Gm G G“ G§G¾Gà Gö Fÿ FÿšU[‡`}bscjb`aS^GZUJVWVeUwU‹U U¶TÔTñSýSÿ“bŠh€lwnoocnVlIj=h2f'ecba `` ____&_/_:_E_S_a^r^‡]œ]²\Ï\ï[ý[ÿj†o}rutju]tOsBr6p+o nml lkk jjjj!i*i4i@iNi\imh‚h˜g®fÊeíeüdÿ‹q‚vzyp{b{U{Hz;z/z#yxw wwwwv vvvv#v.u:uGuVuht|t’sªrÄqépûpÿ†y}vhZ‚L‚?ƒ2„%ƒƒƒ ƒƒ„…„ƒƒ ƒƒ„„&„2„?ƒOƒ`‚u‚Œ¤€½ã~ù~ÿ‚€z„l†^ˆPŠB‹5'Ž Ž‘’’’’’’ ’““”(”6”E“W“k“‚’œ‘¶Øóÿ~‡pŠaSE“7•)–—˜ ™›œž    ¡¡¢ £¤¥¦*¦:¦L¥`¥x¥’¤¬¤É£ë¢úsŽd‘V•G™9œ*ž ¡£¥§©¬®®®¯°±²³µ ·¹¹.º@ºT»jº…¹¡¹»ºÞ¹òg•X™Jž;¢,¦¨ª¬¯±´¸»¼¼¾¿ÀÂÄÆÈË ÏÑ Ñ2ÒFÓ]ÔvÔ’Õ«ÕÄÔâ[L¢=§/¬¯±µ¸»¾ÂÇÊÌÌÎÐÒÕØÛßâæ ëì$í8îNïgð‚ðœð²ñÅÿÿÿÿ ÿÿÿ$ÿ0ÿ<ÿGÿQÿYÿ`ýgümúsùyøö…õŒó”òð§î³ìÄëáêøéÿçÿÙÿËÿÂÿ½ÿÿÿÿÿÿ ÿÿ ÿ+þ7úBöKòSð[îaìgêmèsçyåã†áŽß–ݠ۬ػÔÑÓðÐÿÎÿÈÿ½ÿ¶ÿ²ÿÿÿÿÿý÷óï&í1è;ãEàMÜUÙ[ÖaÓgÑlÏrÍxËɇÇŚåÀ²¾Å¼åºû¸ÿ·ÿ°ÿ©ÿ¥ÿÿÿþõìå ßÚ Ô*Ð5Ë>ÈGÅNÂUÀ[¾a¼fºl¸r¶xµ€³ˆ±’®ž¬ª©»¨Õ¦ó¤ÿ£ÿ¡ÿ›ÿ˜ÿÿûðåØÎ Ǿ$».·8´@±H®N¬TªZ©_§e¥k¤q¢x ž‹œ–™£—²–Ç“è’þ‘ÿÿÿ‹ÿùëÝÏÆ¼µ °¬¨(¥1¢9ŸAH›N™S—Y–^”d’jqŽzŒƒŠˆœ†ª„¼‚Üö€ÿÿÿ~ÿìÚɾ¶®§ ¡œ˜"•*’2:A‹G‰M‡R†X„]‚dks}}{ˆx•v£u´sÌqípÿpÿpÿpÿßÊ ¼ ± ¨¡›” Ї$„,3:}A{GyLwRvWt]rdpmovl‚jig®eÃdäcúcÿbÿcÿп²§• ‰‚~zv%t-q4o:n@lFjLiRgXf_dgbq`|^‰\˜[©Y¼XÜXôXÿWÿWÿƶªŸ•…~ w rnjh'e.d4b;`@_F]L\SZZXbWlUwS…R”P¥O¸NÒMðMÿMÿMÿ¿°"£%™%"…}un g c_]![(Y/W5V;TASGQNPUN^MgKsI H ’G £E ¶D ÐD ïC ÿC ÿD ÿ¹$ª)ž,”,Š*€&w!nf_Y U S Q "O )M /L 6K <I BH IF QEZDdBp@?>¢<¶;Ñ;ñ;ÿ;ÿ<ÿ´)¦/š22†1|-r(i#aYQLJHF$E+C1B7A>@E>M=V<a:m9|76Ÿ5³4Í3î4ÿ4ÿ4ÿ¯.¢4—7Œ8‚6x4n.e*\$TLF B@? ='<-;49:8B7J6S5^3j2y0Š/.±-Ê-ì-ÿ.ÿ.ÿ¬2Ÿ8”;Š<€<v9k4b/Y*P%G@ <:86#5)40372>1G/P.[-g,v*ˆ)›(®' Ç& ê' þ( ÿ( ÿ©6<’?‡A}@t>i:_5V0M+D%; 6320 /&.--4, ;+ D*!N)!X'"e&"t%#…##™"$­!$Å!%è"%ý"$ÿ#$ÿ¦:š?C…E{DrCg?]:S6J1A,8&1# .","*")"#(#*'#1&$9%%A$%K#&V"&c!'r'ƒ(—(«)Ã)æ)û)ÿ(ÿ£>˜CGƒIzIpGfDZ?Q;G7>25-,( ('''%'$'!#('"(.!)6 )?*I*T+`+o,,•-©-Á-ä-ú-ÿ-ÿ¡A•G‹K‚MxMnLdIXDO@F==834*/$, !, ,--%-,.4.</F/Q0^0m11“1¨2¿2â2ù1ÿ1ÿžE“K‰O€QvRmPbNVIMFDC;?1:'62 2222"3)314:4D4O5\5k6}6‘6¦ 7¼ 7Ý 6ö6ÿ6ÿ›I‘O‡S~VuVjU`SUOLLBI8E.A$=:88899&9.97:A:L ;Y ;h ;z ; <¢<¸<Õ<ð ;ÿ ;ÿ˜NŽT…X|[r[hZ^XSUIR>N4K*G!DB@ ??? @# @+ @4 @> AJAVAeAvAŠAŸA´AÐAîAü@ÿ•TŒYƒ^y`p`f`]^Q[EW:T/Q%OLJH GGGG H(H1H;HGHSHbHsH†H›H±GÌGíGûGÿ’Z‰`€cwenfefYdL`@]5[*Y WUS RQ PPPP%P.P8PCPPP^PoPƒO˜O®NÉNëMûMÿa†f}itllmakSiFg:d/c$a_^ \\[ ZZZY!Y)Y3Y?YLYZYkX~X”W«WÅVéUûUÿŒh‚mzprrgrZqLp?n3m(kjh ggff e eddd$d.d:cGcUcfczba§`Á_æ_ú^ÿ‡otxwnx`xRwEw8v+v tssrrrqq qpppp'p3o@oPo`ntn‹m¢l¼kâjøiÿƒw|{s}e~WI</€"~~~~~~ ~ ~~~ ~+}9}H}Y|m|„{œz¶yÚxõwÿ€w‚iƒ[…M†?ˆ2‰$‰‰‰Š‹ŒŒŒŒŒ Ž"Ž/Ž?PdŒ{Œ•‹®ŠÍ‰ï‰ÿ{…mˆ^ŠPB4‘&’“”•–˜š›››››œ žŸ $ 4 F YŸpŸŠž¥žÂèœùpŒaS’D–6™'›œŸ¡£¥¨©©©ª«¬­®° ²³´'´9µM´d´~³š³´³Õ³ðd“U—G›8Ÿ)¢¤¦¨«­°´¶¸¸¹º¼½¿ÀÃÅÉÊË,Ì@ÍVÎǫ͋ÌÂÌâX›I :¥,©«®±´·º¾ÃÆÈÈÊËÍÏÒÕÙÝáæçè2éHê`ë{ë—ì®ìÂÿÿÿÿÿ ÿÿ!ÿ,ÿ8ÿCÿLþTû[úbøhönõtôzò€ñ‡ïí—ë¡é­ç½åØäóâÿàÿÐÿÄÿ¼ÿ¶ÿÿÿÿÿÿ ÿÿý'ù2õ=ñFíOëVè\æbähãnásßy݀ڈؑԛҦϴÌÉÉéÈÿÇÿÁÿ·ÿ¯ÿ«ÿÿÿÿÿøòîê"æ,á7Ý@ØIÓPÐVÎ\ÌbÊgÈmÆsÄyÂÀо”¼Ÿ¹¬¶¾´Ý³÷±ÿ°ÿ¨ÿ¢ÿžÿÿÿùïæß ÖÐÌ&È0Ä:ÀB½J»P¸V¶[µa³f±l°r®z¬‚©Œ§˜¥¥£´ ËŸîÿœÿ™ÿ”ÿ‘ÿÿöêÝÏÇÀ»· ³*°3­;ªC§I¥O£U¢Z _žek›r™{—…”’¬Ž¿Œâ‹ú‰ÿ‰ÿ†ÿƒÿôäÔÈ¿µ® ©¥¡#ž,›4˜<–C”I’NSŽY^‹d‰k‡s…}ƒˆ•¤}µ{ÏyñxÿwÿwÿuÿåÑø¯¨ š•‘Ž&‹-ˆ5†<„B‚G€MR}X{^yexmvvsqŽom®lÄjçiýhÿhÿiÿÕö«¢›” ˆƒ |'z.w5u;tArGpLoRmXk_ifgpe{cˆb—`§^»]Ü\ö\ÿ[ÿ[ÿÉ ¹¬¡— ˆ‚{ wso!l(j/h5g;eAcFbL`R_Y]a[jYuW‚U‘T¢SµQÏPïPÿPÿPÿ¿°¤™‡ wqkgda"^)]/[5Y;XAVFUMSTR\PeNpL}KIžH°GÇFéFûFÿEÿ¸ª ž"“"‰€woh a ]YVT#R*P0O5N;LAKHIOGWFaDlCyA‰@š>­=Ä<å<ø<ÿ<ÿ²"¥'™)Ž)„'{#qiaZ S OLJH$G*E0D6C=AC@K> S= ]; h: v8 ‡7 ™5 ¬4 Â3 ä3 ù3 ÿ4 ÿ­' ,•/‹/€.w*m%d \TLF C A ? > %< +; 2: 88 ?7G6P4Z3f1t0….˜-«,Ã+å,ú,ÿ-ÿª,1’4‡5}4t1j+`'X!OG@ ;976!4'3-241;0C.M-W,c*q)‚'•&©%À$ã%ú&ÿ&ÿ¦1š69…:{9q6g1]-T(L"C;5 21/.$,*+1*8)@(J'T&`$o#€!“ §¾àø ÿ ÿ£4˜:=ƒ>y=o;e7[2R-I(@#80 ,*)' &'%-$5#>"G!R ^l~‘¥¼Ýöÿÿ¡8•=‹ABwBm@c<Y7O3F.=)5$- ' %#!!$ +2;E O!\!j"{""£#º#Ú#õ#ÿ#ÿž<“A‰DFuFlDbAW<M8D4<03+*&#" !!""!"(#0#8$B%M%Y&h&y&'¢'¸'Ö(ô'ÿ'ÿœ@‘E‡H}JtJjI`FUAL>C::612(- ) ''''(%(-(6)@)K*W*f+w+‹ ,Ÿ ,µ ,Ï ,ï ,ÿ +ÿ™DI…L|NsOiN^KSGJDB@9=/8%40- ,---#-*.3.= /H /U 0c 0t 0ˆ1œ1±1Ë1ë0ü0ÿ—HMƒQzSqTgR]PRLIJ@F5B+>":74 33 3 3 4( 41 5;5F5R6`6q6„6™6¯6È6è6ù5ÿ”MŠRVxXoYeX[UQRGOýHúP÷Wõ]ôcòiðoïtí{ëé‰è’æœä¨â·ßÍÜîÙÿÙÿÊÿ¾ÿµÿ°ÿÿÿÿÿÿÿüø#ô.ð8ëBèJåQâXà]ÞcÜhÙnÖtÔ{тϋ͕ʡȯÅÁÂãÀûÀÿ»ÿ°ÿ¨ÿ¤ÿÿÿÿûóí èãà(Ú2Ó<ÏDÌKÉQÆWÄ]ÂbÁg¿m½t»{¹„·Ž´™²§¯·­Ð«òªÿ©ÿ¡ÿ›ÿ—ÿÿÿôéàÕÎÉÅ"Á+¼5¹=¶E³K±Q¯V®[¬aªf©m¦t¤|¢† ’žŸœ®™Ã—ç–ÿ•ÿ’ÿÿŠÿüðãÔÈ¿¹ ³¯¬%©.¥6£> DžJP›U™Z—_–f”l’u~ŽŠ‹—‰¦‡¸…Ö„ö‚ÿÿ~ÿ|ÿíÝÌÁ¸®§ ¢žš—'”/‘7=C‹I‰NˆS†Y„_‚e€m~w|‚zxžu¯sÇrìqÿpÿpÿnÿÝɼ±©¡™“ ŽŠ‡!„)07}={ByHxMvRtXr_qgopl{jˆh—f¨e¼cábúaÿaÿaÿͼ¯¥œ”†|xu#r)p0n6m<kAiGhLfRdYc`ai_t][Y¡W´VÐUòUÿTÿUÿÁ ²¦›’ ‰‚{u plhf#c*a0`6^;]A[FZLXSV[TdRnQ{OŠM›L®KÆJêIþIÿIÿ¹ªž”Šy qke a]ZX$V*T0S6Q;PANGMNKVI_GiFvD…C—A©@¿?â?ø>ÿ?ÿ²¤˜Ž„zrjb\WSPNL%J+H0G6F<DBCIAQ?Z>e<r:9“8¥6º6Û5ô5ÿ5ÿ¬ Ÿ$”&‰&$u ld\T N JGDB @%?+>1<7;>9E8M6V5a3n1~0/£-¸,Ô,ð,ÿ,ÿ¨%›*,†-{+r'h"_WOHA >;98!6&5,322 91 A/ I. S, ^+ l) |( & ¢% ·$ Ó# ð$ ÿ% ÿ¤*˜/2ƒ2y1o.e)\$SKC<5 3 1 / . "- (+ .* 5) ='F&P$\#j"{ Ž¢·Ôòÿÿ¡/•3Š6€7v6m3c/Y*P%H ?80,*('%$$*#2":!C NZhx‹ µÑñÿÿž3“7ˆ:~;t;k8a4W/N+E&=!4-& #" !'/7AKWev‰ž³Îïÿÿœ6‘;†>|?s?i=_9U5L0C,:'2"*" $,4>IUct‡œ± Ë ìÿÿ™:?„B{DqChB^>S:J6A29-1)(%  ")2<F S a !q !… "™ "® "Ç "ç "û !ÿ—>ŒCƒFyHpHgF\DR?I;@884/0','# !!"" "'#/ $9 $D %P %^ &o&‚&–&¬&Ä&å&÷&ÿ•BŠGJxLoLeK[HPDGA?>7;-6$1-*( ' ( ( (% )- )7*B*N+\+l++”+©+Á+ã+ö*ÿ’FˆKOvQmQcPZMOJGG>D3@)< 841 / ..//#/+050?0L1Y1i1|1‘1§0¿0á0õ/ÿK†P}TuVkVbUXSNPEM:I/E%B>;9 7 6666 6)627=7I7W7g7y76¥6½6à5õ5ÿP„V|Zr[i[`[WYLV@R5N*K HFC A@ ?>>>>&>/>:>F>T>d>v=Œ=£<»<Þ;õ;ÿŠW‚\y_paha_aT^G[:W/U%RPM KJI H GGFF"F,F7FCFQF`EsE‰D D¸CÜBõBÿˆ]bwenggh[fNcAa4^)\ZWVTSRQ QPOOO'O2O?OMN]NoN…MLµKØJõJÿ…e|itlmnbmTkGi:g-e"db` _^^]\[ ZZYY"Y-Y:YHXXXkWW™V²UÒTôSÿlypsshsZrLq?p2o%nlk jjiihgff feee'd4dCdSdec{b”a­`Í_ñ^ÿ}twwny_yQyCy6x)xwv uuuvuttsss rrr r,r;qLq_qtpŽo¨nÆlíkÿ{{r~d~UG€9+‚ ‚ƒƒƒ‚‚‚‚‚‚ ‚‚‚#‚2‚CVl€†¡~½}æ|üv‚hƒY…K‡<‰.Š ‹‹ ‹Œ‘’‘‘‘‘‘’’“ ”””'”8”L“b“|“˜’³‘Øöjˆ\ŠM?0’!”• –—™›Ÿ    ¡¢£¤¥¦¨¨¨-©@©V©o©‹¨¨§Ç¦ì_P’A–3™#œ Ÿ¡£¦¨¬®¯¯°°²³´¶·º½¿¿À3ÀIÀbÀ~À›À·¿ØS—D›5Ÿ&£¥ §ª­°³¶»½À¿ÁÂÄÆÈÊÌÏÓÚÛÝ%Þ;ßSànߌݩÝÂÿÿÿÿÿÿÿÿ$ÿ/ü:ùCõKóRñYï^ídëiéoçuæ|ä„âà—Ý¢Ú±ÕÅÒèÐÿÏÿÄÿ¸ÿ¯ÿ©ÿÿÿÿÿÿû ÷óï)ê4æ=âEÞLÛSØXÔ^ÒcÐiÎnÌuÊ}È…ÆÂ›À©¾º»Ù¹÷¸ÿ´ÿ©ÿ¢ÿÿÿÿÿöîç áÜ×#Ð.Ë7Ç?ÄFÁM¿R½X»]¹b¸h¶n´u±~¯ˆ­“ª¡¨±¦È¤í¢ÿ¢ÿ›ÿ•ÿ‘ÿÿüîãØÍÆÁ½¹'µ0²8¯@¬FªL¨Q§V¥[£a¡gŸnžv›€™Œ—™”¨’¼ßŽûŽÿ‹ÿ†ÿƒÿøéÜÌÁ¸² ¬¨¥!¢)ž2œ9™?—E•J”P’UZ`g‹o‰x†„„‘‚ €²}Ì|ñ{ÿzÿwÿuÿæÓÆ»±§¡› —“#Œ+Š2ˆ8†>„D‚INS}Y{`yhwqu|s‰p˜o©m¿kæjÿiÿiÿgÿÓõ«£›’Œ ‡ƒ}$z+x2v8t=rBqHoMmSlYjahjftda‘_¢^¶\Õ[÷[ÿZÿZÿŶ©Ÿ–އ€z uqnk%i+g1f7d<cAaG_M^S\[ZdXnV{TŠR›Q®PÈOîNÿNÿMÿ» ¬   • Œƒ|unieb_]%[+Y1X6V;UASGQNPUN^LhJuH„G•E¨D¿CäBüBÿBÿ²¥™Ž„{ sle_ [WTQO%N+L0K6I<HBFHEPCYAc?o>~<;£:¸9Ù8õ8ÿ8ÿ¬Ÿ“‰uld ]VQ MJGE D&B+A1?6>=<D;K9T7_6k4z2Œ1ž0³/Î/ï.ÿ.ÿ§š"$„$z!qg_WP IE A><:!9&7,62483?1G0P.[-g+v*ˆ(œ'°&É%ê%û%ÿ¢#–(‹**w(m%d [RKC = 96310"/'--,4*;)C(M&X%e#t"† š®Æçø ÿŸ(“-ˆ/~/t.j+a&X!OG?81 .+)('#%)$ 0# 7! @ J U b r … ™ ­ Æ æ ù ÿœ-1†4|4r3h1_,U'L#D<4-& $ " !   % , 4=GSaq„˜®Æèûÿ™1Ž5„8z9p8g6]2S-J(B$91*# !)1:EQ_o‚– «  ã ú ÿ—5Œ9‚<x=o=e:[7R2I.@*7%/!(  &.8BO \ l  “¨¿àõ ÿ•8Š=€@wAmAd?Z<P8G3>06+.''# # , 5 @ L Zi|‘¦¼Ýòÿ“<ˆADuElEcDYAO=F9>652..%*%!    "*3 > J!W!g!y!Ž!¤!º!Û!ò þ@†E}HtJkJbIXFNBE?=<59+4"/+( $ ###$ $(%1%<%H&U&e&w&Œ&¢&¹&Ù%ò%þŽE„I{MsOjO`NWKMHDEO2L(HEB@=<; :999 9)949@9N9]9o8…8œ7³7Ò6ò5ÿ‡UZv]m_e_]_R\DX8U-R"OLJ HFED C BAAA&A1A=AJAZAl@?™?±>Ð=ò<ÿ„\|`scledfYdKa>^2[&YVT RQONML KKJJ"J,J9JGJVIhI~H–G¯FÍEñDÿcygrjkl`kRiDf7d*b`^ ][ZYXWVV UTTT'T4TBSRSdRyR’Q«PÊOïNÿ~jwnpqfqXpJoK=S;]9i7x6‰4œ3±2Î2ñ1ÿ1ÿ¦šŽ„zph_ XQL HDA?=!<&:,91776>4F3O1Y/e.s,…+˜*­)Æ(ê(þ(ÿ¡• Š!!ulcZR KD@ <8643!1'0,.3-:+B*K(U&a%p$"•!© Á äùÿ"‘&†(|'r%i"_WNF? 84 1.,*)"'(&.$6#>"G R^m~’§½ßõÿš'Ž+„-y-p+f(]$TKC;4 - ) &$"! $*2:DO\j|¥»Ûò ÿ—+Œ/1w2n1d.[*Q%I @81)#    ' . 7 A M Z i { ¥ » Ù ñ ÿ•/Š36v6l5c3Y/P+G&>!6.'       # + 4? J X g y¢¸Ôïÿ’3ˆ7~:t;k:a8X5N0E,='5#-&    ( 2 <HUev‹ ¶Ñîû6†;|>s?j?`=W9M6D1<.4*,&%"   &/:FSbt‰ŸµÐíûŽ:„?{BrChC_BV?L;C7;430,,$)$   $-8DQ`r‡³ÎíüŒ>‚CyFpHhH^FUDK@C=;:37*2 -)% "   " +!6!A!O!^"p"…!›!²!Í íüŠC€HxKoLfM]KTIJFBC:@/;%73/ ,)' &%&&!&)&3'?'M'\'m'‚'™&°%Ì%î$ýˆHLvPnQeR\QSOJLAI5D+@!<96 20/ .----'-1-=-J-Y-k-€,—,¯+Ë*î*þ…M}RuUlWcW[VSUGQ;M0I%FC? =:87 6 5444$4.4:4G4W4h4}3•2­1Ê1î0ÿƒS{Xs[j]b][]OZBV6R*O LIGDBA?> ==<s0r#qo nmmmmlkjiiih hhg!g/g?fRffedšc·báaüwxmz_zPzBz3{%{zyyyyzzzxxwwwwwwww&v6vIu_uwt“s¯rÓq÷q~cT€E‚6ƒ(„„ƒ„„…†ˆ‰ˆ‡‡‡‡‡ˆˆˆ‰‰‰,ˆ?ˆUˆm‡‰†§…Ç„ïf„W†Hˆ9Š*ŒŽ‘“•—˜–———˜˜™š›!3Iœbœœœœ¹›âZ‹KŽ<‘-“•–˜šœž¡¤¦§¦§§¨©ª¬­¯±³ ³´'´=µUµp´Ž´¬´ÌM’?–/š Ÿ¡£¦©¬¯³µ·¶·¸º»½¿ÁÄÇËÍ ÎÏ/ÏHÐbЀÐи  !"$%&()*+-./02346789;<=>@ABDEFGIJKMNOPRSTUWXY[\]^`abcefgijklnopqstuwxyz|}~€‚ƒ…†‡ˆŠ‹ŒŽ‘“”•–˜™šœžŸ¡¢£¤¦§¨ª«¬­¯°±³´µ¶¸¹º»½¾¿ÁÂÃÄÆÇÈÉËÌÍÏÐÑÒÔÕÖ×ÙÚÛÝÞßàâãäæçèéëìíîðñòôõö÷ùúûüþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ  !"$%&()*+-./02346789;<=>@ABDEFGIJKMNOPRSTUWXY[\]^`abcefgijklnopqstuwxyz|}~€‚ƒ…†‡ˆŠ‹ŒŽ‘“”•–˜™šœžŸ¡¢£¤¦§¨ª«¬­¯°±³´µ¶¸¹º»½¾¿ÁÂÃÄÆÇÈÉËÌÍÏÐÑÒÔÕÖ×ÙÚÛÝÞßàâãäæçèéëìíîðñòôõö÷ùúûüþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ  !"$%&()*+-./02346789;<=>@ABDEFGIJKMNOPRSTUWXY[\]^`abcefgijklnopqstuwxyz|}~€‚ƒ…†‡ˆŠ‹ŒŽ‘“”•–˜™šœžŸ¡¢£¤¦§¨ª«¬­¯°±³´µ¶¸¹º»½¾¿ÁÂÃÄÆÇÈÉËÌÍÏÐÑÒÔÕÖ×ÙÚÛÝÞßàâãäæçèéëìíîðñòôõö÷ùúûüþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ ¡¢£¤¥¦§¨©ª«¬­®¯°±²³´µ¶·¸¹º»¼½¾¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖרÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿmft1!  !"#$%&'()*+,-./01123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ ¡¢£¤¥¦§¨©ª«¬­®°±²³´µ¶·¸¹º»¼½¾¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÓÔÕÖרÙÚÛÜÝÞßàáâãäåæçèéêëìíîïñòóôõö÷øùúûüýþÿ  !""#$$%&&'())*+,--./01223456789:;<=>?@BCDEFHIJLMOPRSUWXZ\^`bdfhjmoqtvy|~ƒ†‰‹Ž’•—™›Ÿ¡£¥§¨ª¬­¯°²³µ¶·¹º»¼½¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÍÎÏÐÑÒÒÓÔÕÖÖרÙÙÚÛÛÜÝÝÞßßàááâããäååææçèèééêëëììíîîïïððñòòóóôôõöö÷÷øøùùúûûüüýýþþÿ  !""#$$%&&'())*+,--./01223456789:;<=>?@BCDEFHIJLMOPRSUWXZ\^`bdfhjmoqtvy|~ƒ†‰‹Ž’•—™›Ÿ¡£¥§¨ª¬­¯°²³µ¶·¹º»¼½¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÍÎÏÐÑÒÒÓÔÕÖÖרÙÙÚÛÛÜÝÝÞßßàááâããäååææçèèééêëëììíîîïïððñòòóóôôõöö÷÷øøùùúûûüüýýþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿôÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿëÑÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ÷éþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿáÍ×ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿݯ–·ôÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÅŒh§çÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÌœ‰¤çÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿúλÆõÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÜŽõÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¿“z…ÅÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÛ[=e¨öÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþ¼u4T›ëÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÓ”~I,NšìÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿØÔʳ~em¥ùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿôÅ®¯ÉÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðÖÆìÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ滑tc«÷ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿöÄšsE&4}Ìÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿµ€U0 `²ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÏt5 R§ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ–4O§ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿöi  R±ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿË;5L[ML^Ãÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ©`6`†Ÿ¶¬©¸Ùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿà—¾åÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿíùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿëÙʼÇÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÏšmZFˆêÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÄ|>&T°ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿàƒ<.‡íÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¬SmÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿû€1 aÌÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÒZ]Ìÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¨5\Óÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ} TÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿî}EDÔÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüªd/"7IXÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿé¤kA(?c•§ºÚÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÕ²¬²Ìäúÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿå»—wbÈÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÛžg6 ŒÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÈ?^ÏÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÙ9<ªÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿžL#ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÜo}ùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¯Hoîÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ„dæÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿìQWÞÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¸HÖÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿt8Ïÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿù¢Z#Åÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿß›\, ºÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿï±}U9""²ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿß¿¥™˜š ¬½Úÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿã¾€|ûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿò·„W0¬ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÒŠLróÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖ6KÉÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿú‘>/«ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÀZ•ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ$„ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿç^wÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ´%jÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ}[ôÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿý+Lëÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¥<áÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ0 -Ùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ™Ša''×ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿí¾‰U'%ÜÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþÊv]J<2-,09GÞÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýæÝÖÒÐÓÙäÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿïÔ»Öÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿç¸jK/oÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿä¡g4<ÉÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖ‚;—ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿí…1oÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¦BPáÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿìi7Éÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ³/"¶ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿy§ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿò4™ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ©ŒÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿFÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿßtÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ—jÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÎcÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ)"aÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¹£€W7hÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿúÓ®”†|uqprw”ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÛº‚iiÓÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÈ“e=žÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÛŽLnÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÛ|,E×ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‹*"´ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÂD—ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ}ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿç6jÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿXÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿFGøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿé5éÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ–%Ûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¼ÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿëÂÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ ¹ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ' µÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿp ¹ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿàœŒpUB3& &¿ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿùäØÒÎÌËÌÏÖàüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿëÓ¼ãÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÒ©…eH,…ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿñ«q<OàÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÕ5²ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿãu‰ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ#gÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÕCHöÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿŠ.Ýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ8Èÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¾¶ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿœ¥ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿº“ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÜ‚ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿtÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿhÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿB`ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿz]ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÑaÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ$fÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿɬ™‰}vqligfgkpzŒÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿâŪ‘yawÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿݦwP, 1Äÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿà’NÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÒp`ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿîo7âÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ–Àÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ@£ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ®‰ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿžrÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¼_ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÚMÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿú;ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ*ùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ3éÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ^ÛÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÐÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÐÊÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ+Èÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ€Ëÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ÷ ËÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüëáØÏÌÍÏÐÒÔ×ÜâêÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿñÚÆÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿñÆ£„hM2«ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¹|Fqÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ×|/;ãÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿßd µÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿtÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÅjÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ™Kÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¶0ýÿÿÿÿÿÿÿÿÿÿÿÿÿÿ×çÿÿÿÿÿÿÿÿÿÿÿÿÿÿöÓÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÁÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ/¯ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿRžÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿyŽÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¥€ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿØtÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ6mÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|iÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ× hÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿpaÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿPlÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿiZÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ™IÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÒ9ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿX)ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¢ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿõVÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ»/øÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ«)ÏÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÉG .>Rh„íÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿôÕÉÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿúÒ°’w]B( JÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÅ}EØÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÄPŸÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¢ hÿÿÿÿÿÿÿÿÿÿÿÿÿÿ”6ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÚìÿÿÿÿÿÿÿÿÿÿÿÿÿÿÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿH¢ÿÿÿÿÿÿÿÿÿÿÿÿÿÿuƒÿÿÿÿÿÿÿÿÿÿÿÿÿÿiÿÿÿÿÿÿÿÿÿÿÿÿÿÿÃRÿÿÿÿÿÿÿÿÿÿÿÿÿÿç>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ3+ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿXÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¬ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÞ"òÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ\ßÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿŸÌÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿèJ·ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ œÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿzwÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿz Lÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¢Wht€œ«¼ÐçÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿíãÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÒ£zX:)#Ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¬RiÿÿÿÿÿÿÿÿÿÿÿÿÿÿäC4ÿÿÿÿÿÿÿÿÿÿÿÿÿÿyãÿÿÿÿÿÿÿÿÿÿÿÿÿͲÿÿÿÿÿÿÿÿÿÿÿÿÿÿ…ÿÿÿÿÿÿÿÿÿÿÿÿÿÿO]ÿÿÿÿÿÿÿÿÿÿÿÿÿÿƒ:ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ²ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÛÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ*ûÿÿÿÿÿÿÿÿÿÿÿÿÿÿOçÿÿÿÿÿÿÿÿÿÿÿÿÿÿtÔÿÿÿÿÿÿÿÿÿÿÿÿÿÿ›ÀÿÿÿÿÿÿÿÿÿÿÿÿÿÿÄ­ÿÿÿÿÿÿÿÿÿÿÿÿÿÿð3šÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿg†ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ£rÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿãD\ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‘Aÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿë_ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÊKÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿËW $1?N`t‹§Çÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ×çòÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿëÔÍǾº·³°­©¨¥ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÝ~S?0# Ûÿÿÿÿÿÿÿÿÿÿÿÿÿv§ÿÿÿÿÿÿÿÿÿÿÿÿÿºuÿÿÿÿÿÿÿÿÿÿÿÿÿÿFÿÿÿÿÿÿÿÿÿÿÿÿÿÿNÿÿÿÿÿÿÿÿÿÿÿÿÿÿŒýÿÿÿÿÿÿÿÿÿÿÿÿÿÁÛÿÿÿÿÿÿÿÿÿÿÿÿÿñ¾ÿÿÿÿÿÿÿÿÿÿÿÿÿÿD¤ÿÿÿÿÿÿÿÿÿÿÿÿÿÿkÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‘yÿÿÿÿÿÿÿÿÿÿÿÿÿÿ·fÿÿÿÿÿÿÿÿÿÿÿÿÿÿÞ!SÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿJ?ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿw+ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¬ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿçEÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿŠÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖMýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ§.Õÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ˜*-E`àÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¨ctœ«»ÍâúÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿçË·©•މ„€|xtplheÿÿÿÿÿÿÿÿÿÿÿÿÿ¼jH- 1ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿBÜÿÿÿÿÿÿÿÿÿÿÿÿÿ޲ÿÿÿÿÿÿÿÿÿÿÿÿÿÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿ)kÿÿÿÿÿÿÿÿÿÿÿÿÿÿZNÿÿÿÿÿÿÿÿÿÿÿÿÿÿ†4ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ®ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÔ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿú=ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿeÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿŽÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¼ïÿÿÿÿÿÿÿÿÿÿÿÿÿÿñNØÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‹¿ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÌC¡ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‘zÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿòt _ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿèt,8ESbr…›´Òõÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ×èôÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿû÷óñîìëëìñÿÿÿÿÿÿÿÿÿÿÿÿÿÿÙ²™‡ymd]VQKFA<82-(#ÄÿÿÿÿÿÿÿÿÿÿÿÿÿK% ’ÿÿÿÿÿÿÿÿÿÿÿÿÿˆfÿÿÿÿÿÿÿÿÿÿÿÿÿ×=ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ3ÿÿÿÿÿÿÿÿÿÿÿÿÿÿlÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÉ öÿÿÿÿÿÿÿÿÿÿÿÿÿñ5ßÿÿÿÿÿÿÿÿÿÿÿÿÿÿ[Ëÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‚·ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ©£ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÓ/ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ^wÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ“^ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÍC@ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‡ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿØ^ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¿N,>Rj†¥ÈÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÂ|Œš§¶ÅÖèýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿîá×ÏÉþº¶±­©§¦¦§®ÿÿÿÿÿÿÿÿÿÿÿÿÿ¾†m[L@7/(" ÿÿÿÿÿÿÿÿÿÿÿÿÿ×ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ4öÿÿÿÿÿÿÿÿÿÿÿÿÿvÒÿÿÿÿÿÿÿÿÿÿÿÿÿ°²ÿÿÿÿÿÿÿÿÿÿÿÿÿá$–ÿÿÿÿÿÿÿÿÿÿÿÿÿÿQ|ÿÿÿÿÿÿÿÿÿÿÿÿÿÿyfÿÿÿÿÿÿÿÿÿÿÿÿÿÿ QÿÿÿÿÿÿÿÿÿÿÿÿÿÿÇ#<ÿÿÿÿÿÿÿÿÿÿÿÿÿÿîK'ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿtÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ£ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿØLÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿˆÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿËSÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¥8 4NkŒÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ™9CQ_n}Ž µËåÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿëùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿë̹¬¡™‘‹†|xtpkhffhñÿÿÿÿÿÿÿÿÿÿÿÿÿaE2#žÿÿÿÿÿÿÿÿÿÿÿÿÿ~uÿÿÿÿÿÿÿÿÿÿÿÿÿÃRÿÿÿÿÿÿÿÿÿÿÿÿÿû72ÿÿÿÿÿÿÿÿÿÿÿÿÿÿjÿÿÿÿÿÿÿÿÿÿÿÿÿÿ–ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¿ÿÿÿÿÿÿÿÿÿÿÿÿÿÿæBÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿiÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¹,ôÿÿÿÿÿÿÿÿÿÿÿÿÿÿè\Ùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‘¼ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÊSÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ˜.)FfÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿî (7FWi~•¯Ìîÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿç ª¹ÈØéüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýõðëæâßÛØÔÒÑÐÒ×àÿÿÿÿÿÿÿÿÿÿÿÿÿΞŠ|qia[VQLHC>:62/.1ÿÿÿÿÿÿÿÿÿÿÿÿÿÒ%ÿÿÿÿÿÿÿÿÿÿÿÿÿÿBÿÿÿÿÿÿÿÿÿÿÿÿÿÿ}ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ° öÿÿÿÿÿÿÿÿÿÿÿÿÿÝ9ÜÿÿÿÿÿÿÿÿÿÿÿÿÿÿbÅÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‰¯ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¯"™ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖH‚ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿriÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¡(NÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÓ\3ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ–.2Rwÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿàr/BXp‹¨ÈìÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÊon~Žž°ÃØïÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿùàÒÈÀºµ°¬¨¥¢Ÿ››œ §ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‚dVKC<60+'" Ôÿÿÿÿÿÿÿÿÿÿÿÿÿ’­ÿÿÿÿÿÿÿÿÿÿÿÿÿÌ‹ÿÿÿÿÿÿÿÿÿÿÿÿÿûRmÿÿÿÿÿÿÿÿÿÿÿÿÿÿ€Qÿÿÿÿÿÿÿÿÿÿÿÿÿÿ©:ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÐB#ÿÿÿÿÿÿÿÿÿÿÿÿÿÿõh ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¸>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿåmÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿŸ7/PtÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÝr*AZu”¶Úÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¼XDTdu†š¯ÈãÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÒÍáñÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüûúûýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ–І‚{xvtrsuxÿÿÿÿÿÿÿÿÿÿÿÿÿëO:0(! #ÿÿÿÿÿÿÿÿÿÿÿÿÿÿiÿÿÿÿÿÿÿÿÿÿÿÿÿÿ› ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÈ9ÿÿÿÿÿÿÿÿÿÿÿÿÿÿðcÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿŠÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ°4ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÕ[ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ…ìÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ±I9]ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿå{ !8Ro³Ùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ»X)9IZl€—°Ííÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ³ž´Å×ëÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿúïçáÜÙÖÔÒÐÐÐÑÓÙàë÷ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¸Š~wqlhda^[YXWWY^eqÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¿1 ÿÿÿÿÿÿÿÿÿÿÿÿÿÿíVèÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‚Ìÿÿÿÿÿÿÿÿÿÿÿÿÿÿ«/³ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÒW›ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ÷|…ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¢7+”ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿËa ,PvžÑÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿõ0 #;Wv™¾åÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÃc*;L_t§Æçÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¨–¨»ÐçÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÝÎÅ¿¼¹¶´³±²²µ¹ÀÉÕãÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ—ld^YUQOLJHGFHKPYf¡ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ§&VÿÿÿÿÿÿÿÿÿÿÿÿÿÿÎP:ÿÿÿÿÿÿÿÿÿÿÿÿÿÿôy !ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿŸ2ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÄX1Z„ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿé'KqšÂéÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ§I/JhŠ®ÕüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÓu&8J^u«Ëïÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ®r…˜¬ÂÛöÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿßïÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¿²ª¦£¡ ŸŸ¡£¦¬´ÀÍÝìÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿŠZSOKHFDCBABCGNYi}ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿž.ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÃVAÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿç{ 4`‹´ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿŸ?%Jq™ÂëÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÆf*Dbƒ§ÍõÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿëŽ5+>Qh¼Þÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¾v”©ÁÜùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÒØóÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿöòðïïïñóøýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿø°Ÿš—–––˜›Ÿ¤¬¶ÂÑáîÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþŽPJGEDDDEFGKQZhƒ©ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¦A6cºáÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÆe 'LsœÄìÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿåˆ/*Db‚¦Ìôÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ«P6Ja{–´ÖúÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÒ‡|˜±ËéÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÔÎíÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿíåããäæèíñùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿý±”’’•™£©²¼ÐíÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿSGIMQV`sНÖüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ²V5Pm‹®Ò÷ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÍo>_{™·×ùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¦ÂáÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿãÎëÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿdesc Little CMS Little CMSdesc2.x 2.xlibjpeg-turbo-2.1.5/testimages/test1.icc.txt000066400000000000000000000020661436506551100210010ustar00rootroot00000000000000Little CMS Copyright (c) 1998-2011 Marti Maria Saguer Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. libjpeg-turbo-2.1.5/testimages/test2.icc000066400000000000000000023762401436506551100201760ustar00rootroot00000000000000 ü lcmsprtrCMYKLab Ö5acspMSFTöÖÓ-lcms descàcprtô#wtptA2B0,_fA2B2,_fA2B1a”_fB2A0Àü8´B2A1ù°8´B2A22d8´gamt k‘dmnd û¬€dmdd ü,tdesc,Test profile, not suitable for real use-Test profile, not suitable for real usetextNot suitable for real useXYZ ÝIä¢Ã‚mft2 -Ge†¬Ôý % M u œÅîEt¥ÙHƒ¿ïHt ¢!Ï"ý$,%Z&Š'º(ê*+E,s-¢.Ò0132e3˜4Ë5ÿ728]9ˆ:´;á=>;?i@—AÅBóD"EPFzG£HËIôKLCMjNO¶PÜRS&TKUjV…W X¼Y×Zó\]*^F_b`aœb¹cÖdòf g&hAi]jyk•l²mÐnîp q-rMsntu¤v·wËxàyõ{ |"}9~Ph€€™‚±ƒÊ„ã…û‡ˆ*‰AŠX‹oŒ…›Ž°ÄØ‘ë’ý”•–.—<˜=™<š:›8œ52ž/Ÿ+ '¡#¢£¤¥¦§ ¨©ªªõ«ê¬á­×®Ï¯Ç°¿±¸²±³«´¦µ ¶›·—¸“¹ºŒ»ˆ¼…½¾o¿]ÀKÁ9Â'ÃÄÄòÅàÆÎǼȪɗʄËpÌ\ÍHÎ3ÏÐÐïÑ×ÒµÓ’ÔnÕIÖ#Öü×ÔØªÙ€ÚTÛ'ÛøÜÉݘÞgß5ààÎášâeã0ãûäÅåæ[ç%çïè¯ékê&êáëœìVííÈî€ï7ïíð£ñYòòÄóyô.ôäõšöP÷÷¿øwù/ùæúœûPüü²ý^þþ°ÿXÿÿ"7Ni‡¨É ê * Jl´Û.[Šºí8^…­Ö!"+#V$‚%°&Ù())*S+~,©-Ö/011a2‘3¿4è67;8e9‘:¾;ì=>J?z@ªAÖBûD!EGFlG’H·IÜKL$MGNjOŒP©QÅRàSüUV5WRXoYZ«[É\é^ _%`>aXbrcŒd¨eÄfágþij;k[l|mžn½oÓpêrst5uPvkwˆx¥yÄzâ|}"~Ca€{–‚°ƒË„憇ˆ8‰RŠm‹‡Œ¡ºŽÓë‘’“”,•9–F—R˜]™hšr›{œ„Œž”Ÿ› ¢¡¨¢¯£³¤ª¥¡¦™§¨‰©‚ª|«w¬r­o®l¯j°i±i²j³k´mµo¶s·v¸s¹pºm»k¼i½h¾f¿eÀeÁeÂeÃeÄeÅeÆeÇfÈeÉeÊdËbÌ`Í]ÎOÏ?Ð.ÑÒÒóÓÜÔÄÕªÖ×rØSÙ3ÚÚíÛÇÜŸÝuÞJßßîà¾áâZã&ãòä¼å…æBæþç¸èré,éåêëTì ìÀítî(îÛïŒð=ðíñœòKòùó§ôTõõ¯ö\÷ ÷·øfùùÂúnûûÁüfýý¤þ>þÕÿjÿÿ#6Ld~šµ Ï è  5Rp±ÔøAa‚£Åè / S!x"ž#À$à&'#(E)g*Š+­,Ñ-ö/0>1`2ƒ3¦4Ê5î7889]:ƒ;©<Ì=ç?@A:BUCqDŒE¦FÁGÛHôJ K#L:MPNgO}P“QªRÀS×TîVWX3YDZU[f\x]‹^ž_²`ÇaÛbñdef5gKhcizj’k«lÅmÞnùpq0rLsit†u¤vÁwÝxùz{2|O}l~‰¦€Ãà‚ý„…6†R‡mˆˆ‰£Š¼‹ÖŒîŽ2‘G’\“o”‚••–§—¸˜É™Ùšä›çœéëžîŸð ò¡ô¢ö£ø¤ú¥ü¦ÿ¨©ª «¬­®¯$°'±+²/³3´8µ=¶B·G¸M¹SºZ»`¼g½n¾u¿|À„Á‹Â“ÚĢŪƬǧȢɜʖË̆Í}ÎsÏgÐZÑLÒ=Ó+ÔÕÕðÖÚ×ÂØ¨ÙÚqÛSÜ4ÝÝòÞÎß©àƒáSâ!âîã¹äƒåKææØçœè_é!éâê¡ë_ììØí“îMïï½ðtñ*ñàò•óJóþô²õfööÏ÷ƒø8øíù¢úTûû²ü[ýýŸþ:þÓÿiÿÿ&8Ng – ¬ À Õ éþ*@Vlƒ™°ÇÞõ $<T m!…"#¶$Î%æ&þ().*E+\,s-‰. /¶0Ì1á2÷4 5"687M8c9x:;¢<·=Ì>á?öA BC4DHE\FpGƒH—IªJ½KÐLãMöOPQ-R@SRTeUwV‰WœX®YÁZÓ[å\÷^ _`.a@bRcddue‡f™gªh»iÍjÞkïmno"p3qCrTsdttu„v”w£x³yÂzÒ{á|ð}ÿ€,‚:ƒI„W…f†t‡‚ˆ‰žŠ¬‹ºŒÈÖŽãðý’ “”$•0–<—H˜S™^ši›sœ}‡žŸ˜ ¡¡©¢°£·¤½¥Ã¦È§Ì¨Ð©Ôª×«Ù¬Û­Ü®Ý¯Þ°Þ±Ý²Ü³Û´Ùµ×¶Õ·Ò¸Ï¹ËºÈ»Ä¼¿½»¾¶¿²À¬Á§Â¡Ã›Ä•ÅÆˆÇ€ÈyÉqÊhË`ÌVÍMÎBÏ7Ð,ÑÒÓÓõÔåÕÔÖÃ×°ØÙ‰ÚtÛ^ÜGÝ/ÞÞüßâàÇá«âŽãpäRå3ææñçÏè¬é‡êaë:ììèí¼îïbð3ññÔò£órôAõõßö¯÷€øPùùëú²ûuü0üãýþ0þÍÿgÿÿÿ€€ìâû€'Ú—ô€TÈ€ €Œµ:€'€Ò¡ò€[+Ž€¤¢y€þ‚5bq‚ƒHb‚s„“$”…]Š•ýš~ÀˆÜëo~ÖˆÙ~î‡Xƈ†¶³­T† †—…®ŒÏé…ix€L…Zav€Õ…GÀ³†$ù„!‹Êûé}»‘Ñé·}å/×M~ŽuÄÜ~K²#~‹†Ÿ'~ÚŠX‹¤5‰JvûŸˆ’`ˆ€-ˆ6G&€úˆ•%V‚úŒìùê|æšãç¬}˜\Õ/}[•­ÂÖ}š“i°=}Þ‘p~.2Š&~eu»~ü‹ü_ŽŒŠçF–€IŠ %¬çø÷¿|K¤åˆ|‚ ¹Ó|º%ÀÍ|ùš®O}<–盯}”9ˆ}tu~b…^œ~õ¥F¢Œª%ú€ìŽîõž{ò­ƒãP|'©Aж|Z¤¿¾t|‘ Ø«õ|ɜۙm}™l†}m–r”}דI] ~[·D~ì$ÜZó²{º·&á3{ñ±ùÎZ|&¬}¼|Q§É©r|w¢ý–ô|µžÓ„}šÈpf}Y—L[,}”B¡~,’ Ó~ ‘Óñ–{ÚÁß{ñ»#Ì#|´Ï¹Á|¯G§|-©ž”¥|]¤¨Ü|™ŸÑnW|⛢Yb}0—Ä@¼}p•?—}C’÷ï“|'ËŠÜô|#Ä·Éè|½ƒ·v|·+¤»|°ª’C|+ªð~|Q¥Ul|‚ xW6|±›ù>ˆ|À™7†{Ì‘ïíƒ|ÄÖ©Ú½|¥ÎÿÇ}|uÆì´ô|Y¿Ô¢|1¸”˜|,².|Å|/«íiG|=¦„TN|A¡›;²|ž§™z3õë‹}…âæØ·}7ÚuÅ`|ÒÑ”²Æ|–ɲŸÔ|OÁ¤C|.ºŠza|³£fÓ{þ­ÉQ¸{רÒ9&{p£jâxèŽó$†N~â…°~ÔÐä…"¿d„‡­ž„ì›Vƒ»€fˆqƒŠ€þthƒ}»^¥ƒ ‚ÑE¢„2„›#¤†›‹TñC…G†òà.„À†cÎõ„0…Ͻƒ½…a«çƒI„ú™Ìƒ„À‡‚Ü„§s>‚Ó„Ê]Ÿ‚õ…LDôƒq†#ß…fŒ{ïs„]jÞYƒåŽ ÍƒdŒ”»Ç‚ü‹cªA‚’Š4˜Q‚V‰B…Ö‚3ˆmr!‚.‡ï\¥‚N‡ØDO‚¶ˆ$„Dí…ƒ˜Ü_ƒ/•ÏË ‚¸“{¹Í‚S‘‹¨_ê™–™²õ„T‘ŒmpÚ‹G[¥®Š~C´‚Š”$Hƒ4Žëƒ  ÆÚ\‚šÈÉ‚ šŸ·Ùº—ì¦~O•0”à’ׂ΀÷—o”€÷޾Z°1C$[Œš$u‚:{és‚·©³Ø6‚E¥æÆ¾Ç¡ãµXžo¤2€ßší’ª€ž—à€¸€v”ím¸€l’mY"€|8A«€¤ "ˆ(¿çˆ‚‡²ÑÖ‚®.Äjš©J³*¥¡¼€ Ö=€?~^€™vk‘ì–[WCä“’?¬ã‘ô5ê’åp‚¹¼SÓþ‚%¶íÂ;|±=°ñ€é¬FŸr€G§7ù碽|)Ÿž\iˆtššU{S—3=Ä'•?î~Š’ããtƒ Æ>Ñí‚XÀÀ й‘®²€à³Ù€$®‹£¯¨ÖyÔR£ÀgGŸ^SS~Ó›e;Ž~w™VÐ}Çárƒ™ÐÎÏÆ‚ÈÉུÙ˜¬@¼4š€7µ´‰¤¯èw%%ª¶‚n ö‚y‘Û‰_®©Ë3ˆIª†ºœ‡¦-ªU† ¢k™æ„꞉`„ ›Jx‡ƒC˜f©‚¨•bSP‚"“<²®‘ðš9’Ùƒ‰“·¶ÉˆX²Ü¸{†ÿ­Ä¨(…Ù©J—§„¢¤¾‡'ƒµ ½vZ‚ÚœÚd§‚.™ŒQ‰’–¤:Æ€ò•NGØ‘Ä׉æÁ$LjŒ»’¶W‡ µ»¥õ…ΰ•^„|«N„Úƒx¦¥t‚ˆ¢blÈž>OdšÖ8Ž€D™†~ZŸÕ’ŠtË3Ä÷ˆüÄõ´‡Y¾m£…ú¸¤’Ù„ƒ²Ã‚Gƒa­Œqh‚P¨~_³v¤2L‡€£ ’5¹œž7 |ÙŽÓŸ‹%ÖpÂý‰|Ï~±þ‡¢È?¡u†"ÁÒ§„Š»Q€ƒMµo‚° ]L+«„Iû€;§ã3-~û¢Y{­‹»Úæ“'|Ëç‘c|‘¼ä†}­sø}—ÔŒg~*—‹~Û|щàµj¸ˆé€ÆVðˆ(‚L@*‡Õ„²!ÚˆÿŒ«Ù’fƒŒÊ«ƒSºñŽØƒ«ŒR‚ð›ü‹Ê‚ˋ劂ß{S‰Lƒ ikˆPƒªUÕ‡„«?b‡†—!Á‡á³×5‘­‹È)úŠ*¹Ž,‰5©·Œ°ˆfš6‹1‡˜ŠF‰í‡y戻†¬h-‡¼†§Tdž߇>¤†[ˆˆ!©†ÐŽ©Õb‘’½ÆIc‘!·šs§ÎŒŽ˜\ŠŒ”ˆŽ‰Y‹sx[ˆ%ŠvfÛ‡$‰ÙS»†@‰¬=ñ…¨Š†!’…ÍÓŠ šŠÄmŽì˜Fµ8•ç¥÷‹˜“×–’Š‘Á†ãˆÉvÚ‡“Žme“†.R¾…¨ŒK=J„þŒ‰!}„ÛaÑŸb¢…ÂjާŸ”³ŒÌœ£Ì‹>™Í”b‰§—„ÈT”ºtÔ‡’‡c¿†·Q.…>;ÄGŽþlƒÊ‘YÏÍ=ª­Àmާ °âŒ¢£@¡ˆ‹Ÿè’ ‰Wœ…‚r‡õ™—r†£–Ía¥…‡”yOR„{’‡9ºƒ‰‘ø‚‹’0ÍÉn³=¾fŽŽ®õ®ÐŒ…ª{ŸlŠÒ¦{݉¢i€G‡žÚpn†;›p_ª…˜MŒƒí– 7ǂϕm¥+©Ëܼ.¼hŽÁ·?¬»Œ²GŠÄ­u¢ˆå¨¼~‡]¤”n+…å “]u„¦1KiƒpšU5Œ‚#™œg­ŽyÉâ‘SÅ˺N0À?ªuŒØºxšëŠêµD‹+ˆä¯ü{‡=«Sk…¥¦ÜZ„P£H‘ƒ )2·ÕX~3ŒgÇþ‘úÐ}¸aªÊR¨yÃê˜Þ‹ ¾%‰ˆä¸PyG‡!³1i@…m®\X_„ª‡F‚œ§=0(€â º|óŠ¢Î³™Ì{!À±—{¢²µ•|*¤E’þ|½•²à}_†x~'v½Qe²‹×€TSŠŠ‚ =„‰°„Á!Š?Ìô™‚#¾è–Ù‚°Û”tà¢r’dÓ“æL͎̄~‚uAŒÄ‚kdc‹Dƒ#Qò‰æ„_<®ˆò†ž ÉŽ7ËA˜y‰3½*–7ˆp¯“Õ‡¥ ­‘ˇ’,»†cƒ3ò†sÕŒ;…Úc!е† PÞ‰F†Ä;âˆ9ˆ‹ „ˆ ɉ—è`»`•«Žÿ­,“LžÑ‘CŒZ[/‹)€dŠErJ‹©‰‰aÍŠ‰,O͈§‰H;"‡‡Š† J‡öÇÇ—€—³¹—•<•¹«X’Õ“©Å‘äŽ—Ž«ٌڎ¯pÈ‹f`‰‹ŒrNɈ‹ß:o†ÞŒŠ †$»Åð—JŸ6·§”þœ ©F’‹™îšìo—”ŒvŽD•7}ÅŒg“:nÊŠš‘d^±‰èM8‡yŽÊ8߆*ð…‘Ä0—,¦äµ½”Ü£±§(’b Z˜º5jŠ3ôšu{…Œ—ìl“Š+•Œ\ ˆ…“˜K]†ç’ 6Ï…o’ }ƒÛ‘éÂ:—a®ÿ³Ä”ë«1¥(’F§;–°£±ˆ« yi‹¯j~‰ÃšZ¬ˆ—I—†]•¤4Õ„¸•¡‚}–ÀV—³·w±Ó•³£"’N®”›ñª`…ë}¦3w6‹m¢hE‰kŸX}‡¦œ1Gv…ã™â2•„™À€ÿZ¾e˜9À¯Ä•‚»­ ë’¶’M±íƒv­@t¸‹G©'e­‰&¥HU·M¢D …xŸÚ/½ƒqZÄr‹V¼˜ÓÊÏ­ä•ñÅPžû’É¿¡K+º‚epµ^r‰‹%°åceˆç¬ÃSn†ü©¨B…¦x-+‚ÙžŠ9~!‰žÂ ¨zvµuÌzü¨xšÏ{Ššý˜0|#g•ˆ|Ê!“3}¡pcó~«`RŽù€NÀ%è:*‹Ð„ôÈ‹¿Ž)Àí  ³Ð/€û¦¼š7€ë™A—œ€ò‹­”ö}‚’¥RnîgØ_Žf‚¹M¡Œ€„.9T‹†Ò}а ¿]Ÿi‡ž²1œ–†þ¥ ™†Y—’—…ØŠ”h…\{õ’…)mˆÞ…%]ÉÖ…‹L‹ß†ˆ8ˆŠWˆÀ6‰¬Ü½ÅžâŽQ°ƒœ$£?™‹ë•Ê–ƒŠèˆ@“߉êzL‘‰9lLˆµ\w?ˆ˜K€‹>‰7Ɖ£ŠÁ󈲟¼ž•(®Ó›©“s¡˜¨‘®”– )†‰“]ަx¬‘wj„޼Œt[.Œ«‹ÊJ~Š¥‹‘7ˆùŒÌµ‡Ç‘Qº`žOœ2¬ü›o™óŸ‰˜a—ž’•¶•“„’ù“‡v¬•‘Øh•Ž@UYhŒ$.HñŠŽv5‚ˆHX‰†¿‘ù¸·ž6£d«*›O ›…˜9·ø•~›$‚W’«˜t…8–_fsÕ”_Wf‹«’ÍG‰…‘¸3q‡“’† …ŽA¶Ôžl«©H›`§¸›Ÿ˜¤=Ž•L¡€T’dør€ã›Fdqp˜ÄU‹9–ÄE\‰•V1u†ã–6‰„<ⵞ»³§j›Ž¯2™¯˜$«'Œ •;§‚~@’9£Ôpc£ §bK°S^ŠÖ›QC?ˆŒ™ª/2†@™ºN‚—‹´³Ÿ4»Æ¥j›ë·f—˜_²â‰Ñ•W®É{ì’2ª«mú§_ƌ٣ÑP»Š¡K@mˆ(ŸÚ,U…ª}€ü‰Ì±NŸÅÅ£–œSÀœ•®˜—»–‡â•r·yä’-²kÝ`®¶]ŽŒž«MNeŠ5©=ç‡Ì¥Ï)½…œ8 žˆ-¶c§ÇzªJ¤Jz«žH ¥{L‘¯ƒ{á„üš[|~w•—‹}Wi½”Ï~hZ‹’\ÕIßå5÷ŽX…\ÐŽ06µ§#€4¨Ï£­€Bœ¬ €Sœì€dƒZ™Â€xv –ô€ØhU”8qYL‘À‚uHÎb„ 51’‡D¡ü³œ¦†O§W£…Ý›Ÿs…gŽ~œS„þÉ™-„–t–a„}fü“¦„˜X‘(….GÉŽº†q4tŒÑ‰@v‹ú¶²"¦ŒŒ¥Ç¢—‹œ™ržîŠ¥ŒÑ›Ë‰Æ€˜Ÿˆèr÷•ψ\e‚“ˆVÒŒˆ"FÅŽˆä3ÂŒ‹PMŠò‘c°š¥µ’ì¤5¢1‘ƒ—Ñž{‹/›P޼~y˜gqf•CŒjd’|‹žU‘ô‹>EÎw‹m3‹gp'‰ù‘¯¯¥ƒ™{¢‚¡ö—›•ýž3•¬‰Pšû“á|Ž—¶’oƒ”Ô b6’aSÝpŽ‘DNŒæŽQ1•й%ýˆù8­|¥f - Õ¡ÔØ”ž ›q‡ašÄ™/z—l–ãm”}•`4‘“RQôŽý’#B…Œa‘—/ˆŠ “›m‡àÏ«±¥–§sŸ¡á¤“’[졞…“š”žÜx®—+œk”-™»^Q‘?—›P$Ž’–@Ñ‹ä•F-‰g–ù†T‹ƒ©ñ¥ß¯ I¢ «©‹ò¨.ƒµš…¤ôv¼—¡´i¡“õžò\IóœpNŽ7šŸ>¼‹x™Ì+KˆÏš „t‰…¨¦T·F›_¢f³zŽ…ž-¯–š¤«öt‹—¨QgZ“Ú¥@Yæ¼¢†Kî ¾;ï(fˆE›Q ‚ЇǦW¦ÙÀ€™œ¢È¼?Œ¿žd·èʚ³ér¡—¯òe\“ĬµWËŒª IL­¨g9jŠÍ¥=%Ǚˆ Qk†LªZ¯7z!Ÿ«0z•“ÿ¦þ{ ˆJ£M{“|„Ÿ“|&pœ8}c˜î~TÈ•ö¥E“#â1Æ‘ …غî^©®—Àƪ•º’„¦f´†Ç¢²ÇzûžòãnŒ›–€Sa½˜MS••P‚-D’n„1;‡Î­µU§ã®…bœu©þ„ꑥƄn…U¢„y‚žTƒÂm$šúƒÆ`q—²„Ro”¯„ÍC ‘¿†_0dr‰Ü Ž‰L¦­‹)› ©ŠC¥>‰TƒÄ¡†ˆ“wëÀ‡×kœšb‡t_—‡KQ0”‡«B‘ˆÌ/ÁްŒ•lE¥5­/‘™ž©ÁŽ¤ÇŽf‚=¡=v\6Œj™Ò‹Q]•–€ŠÂO÷“sвA&q‹R/*ùŽBŠŒb=£Ã¬ó—(˜¨Ô•qŒ`¤z“­€ ¯’t“œÑ‹hS™c][Ö–ŽhNV’ñõ?±âŽ8-«N‘3_‹lÆ¢\¬ÏZ–†¨¬›DŠ©¤L™~¹ v—%r¹œŠ•*fu™“—Yô•¦’@L„’„‘}=õe‘Š+¢Œ­”슋q º¬õ¤0”稲¡˜‰ ¤*žï} Eœ‡pÿœJšdµ˜Ä˜'X0•M–pJË’•dÑ•ç„,,˜“Gˆ›ª’–ŒžœGµÏ„Ü‘¢±:„P‡¬rƒ¼|¨.ƒhq£ÙƒeŠŸóƒ7Y§œ ƒ‘Lv˜œ„Œ=ì•-†q,’rŠÇÀ‘MŒ®›'µWŠ0d°¹‰D…±«ãˆNz­§™‡žož£=†ùdŸT†¸XF›}†¶KE—ó‡W=”yˆÞ+v‘¤ÕŒ¼š´î¥&°GŽ\„V«e yD§‹ÿn'¢­‹b¦ž¾ŠgVçšáŠJ—RŠM<+“΋g*ôãèŽöŒÈ˜»´¦•Iůú“ª‚Ò«‘ÿw±¦µšl„¢D>ažLŽLUCšfœH–Έ:È“?ŽY)€:’`çÁ‹n—y´v›Œc¯È™IªÙ—"v¦v•ejØ¡ø“­_M÷’dS‡š‘cFÛ–d‘9’Ç‘È'{¤•6 Á‹ß‰L–´‡¡eŠï¯¿ŸÕª¯œšt˜¦?š~iH¡µ˜k]µª–ÏQæ™®•E=–”ü7‚’W•Å%ˆ—· 뉣‡b”–´°¨‰w¯Ó¥S~Nªª¢zs¦+ g¤¡‘œ\x›»P"™mš7Cb•¶™®5~‘þš“#;Žš—Òu‡²…¸“ ´ü¯Š‡Õ°¬n|ŽªØ©Dq6¦H¦e¡–£ÓZ k¡ËN ™K PA •‡ H2´‘Ÿ| 8Ž<•ÉP†„E‘{µU·Ý†J°V´`{«°×o£¦c­Õd¡ªüXSa© L3™/§ø>ó•`¦¤00‘ •rè“è}„ƒ ’€¿.{lˆÒº{†D´È{œu° {äjî«I|7`¦é|ùT²¢™~ Gæž°³9›š÷‚P'á—ý‡µ¿–‡‰ø‘²¾w€‡ã¹ZÓ~.´ só¯Oƒi¬ª…^æ(îS‚¡Ü€ªFÝî‚8Κ&„ƒ'j— ‰òù•Š Ø½é„ˆ츽„9}³[ƒŸrÍ®˜ƒ>hu©É‚å]‘¥mƒR]¡%ƒeEÞ3„Œ8 ™[†Î&ú–ŒU0“³ŠEø½^‰±…ç¸,ˆÏ{ç²À‡ãqˆ­ø‡2g©"†‰\:¤Â†VQ u†oDÅœ|‡K7D˜—‰F&•>ŽÀc’gŠg¼ðޏ„Ú·³‡zº²6ŒKpG­h‹OeÆ¨ŠŠZZæ¤#‰ÞOɟΉ®C°›ÍŠ:6‡—Ý‹Þ&.”jõ‘‘3Іø¼“öƒ¯·Z’|yl±Ô÷nç¬ý­dR¨ŽkYk£§¤NJŸJ.BF›Bz5@—GŽó$Í“¿“` ǧ‰QŒð¼X™Q‚…·——x±Ž•Ôm„¬°”?bݧ¼’®Wê£G‘¢L¼žãï@·šÓ‘3®–Í’¤"Ñ“3•» åS‡^‹Ÿ¼IŸ5=¶ôvÚ±Ušül9¬l™a§l—=V‚¢ð•ñKFž†• ?<šn• 2,–\–ã å’®–=M‹ …Š]¼Q¥sô¶ï£u…±? ŠjÚ¬Kž^`§>œBU¢ºšÅI°žG™È=…š(š09– › ”’H”­‰„‰ ¼|¬x~Š·©Ãsû±X§ iB¬X¤¢^k§<¢USE¢­ ËGÏž0 ;Qš  e-t•çž¼z’’”‡]‚㍼¶´a}+·>±Sr ±q®Dgà¬f«³\û§<©YQÀ¢¤¨F)ž§A9]™ô¥Å*ó•Í ˜‘å¡l…磆‚ÇÒ|Õ}{ÂU|“t“¼®|Fk'·o|Va¶²|vW‹­4}M¨Y~"@æ£÷Ü3;Ÿ×‚»"Pœc‰[ C˜¦‡†Æÿ€ù|ÔÁ|€ps¿»ËÛj4¶Ž§`¡±>ƒVp¬ZçK마€¡?ø£!‚-2”žì„ù"›N‹º —‡Ú…uÆT…8|ÀÆ„lrÞ»ƒ“i<µÂƒ_“°k‚¬U_«Š‚ÈJߦ¿ƒ;?¢S„—1öž ‡R!ÀšDó ñ•«ˆ„ÞÅÀ‰ž{YÀ(ˆ—qâºX‡ƒh%µ†Ç^`¯³†T'ªÏ…õI«¥ÿ†+>¡Š‡O1S/‰Þ!~™G ?”NˆH„*ÅBŽ3z…¿žŒìpé¹»‹–g´oŠž].¯‰³Rðª#‰UHx¥J‰U= ËŠ=0·œaŒ“!A˜Z‘ç ‡“ ˆxƒeÄÑ“ y¿*‘ˆoعAöeé³ïŽ¿[î®…–Q¤©–ŒÿG"¤¸ŒÍ;Ñ 3‹/›Àãô—¬“é ï‘/‡d‚­Äj—úx¼¾È–HnǸ㔋dó‹“Zµ®‘±P[©#çEƤD:jŸ¼‘G.›B“Þþ—,”HLޤ…œ Ä>yw³¾Œ›smÀ¸“™bc±³1—¯Y‘­±–O(¨¼•D£Û”µ9ŸP•,°šÏ—––¶’ýìŒW„€ŠÄ,£Pv›¾m þl£¸dž¡b‹²úœ¸X\­pšíMà¨x™âC£—™ˆ7ƒŸ š¿*Íš‡›º–m‘eÝŠX‚OÄ4©ñuV¾p§fkP¸_¤Öa0²ï¢ÅVö­] âLb¨dŸêAw£ƒŸô5wžý (š€›|–l4ˆ›f~Ä7±Wt#¾q®†j'¸\«¶`²ç©–UÀ­N§ÊK¨T§3@£u¦.3¦žõ¢ì%…š†™^t–|'Ї €]õº|¤{\ä||í|Ó};|¸Áe}¤}d¯b~~!œá~–~ډ©unµ€_F€}“E¿­ƒ;"–„è‰ óÇ{d„ â‹{˃çÑ+|7ƒ®¿Ž|µƒƒ­¬}Aƒ^›X}ɃXˆn~\ƒntC~ýƒ¦^>Æ„!E€ã…>"Úƒ¦ŠYñâz;Œòà¦zº‹ÚÏC{?Š´½Ã{ω¼¬|lˆÆ™Þ}ˆ‡'}¢‡Rs$~J†â]B†ÀDj€ ‡K#‚v‹•ïÚy6•ÛÞ—yÉ“ãÍ'zd‘Ï»½{ª{¨ŽO˜!|FŒÑ… |ì‹jqÚ}šŠN\@~h‰xCÍd‰`#RYŒºí²xdžãÜyxýœËy™&¹»zA–œ¨2zð”–`{”‘΄|=«p|òØ[H}ÄŒwÂÅHÓ²x.¿4ÁÑx˜¸Ð°]y ³(žªy­a yö¨8{ zj£%h>zÞžµSñ{Kš˜;¿{‡˜4øzk5ãx=ÏøÑlx”É ¿]xäÁò­Ùy=»—œy‘µŠgyè¯Ux^z9©¨e„zˆ¤µQzÅ ;8÷z¿ŽxáŽ3áxåÛÊÏTyÔ3½8y-ÌB«©ygÅ+™ÎyŸ½óˆyÚ·†vz ±Ccz9«íN–zF§w6yyý¢$MwÚŒ`ê‚Âz0ÙÍ‚~zêɃ‚5{³¸×‚ ||§ñë}X–kè~,„EûpÏ‚/€[„‚—YBûƒmƒH!v†;‰Ýè¡‚x×Ís‚dÇB‚R¶ñ,‚S¦+‚]”Ñ%‚€‚àC‚½o–|ƒ"ZtáƒØBA‚¢…C!’„þ‹æ"€ŠÒÕë€w‰ðÅ™€^‰µ €VˆF¤x€S‡Ž“H€h†ý‰€†‚nj€Î†IYp1†iA݇J!­ƒÒŒHä)£“GÓ뛑–Ã’г&”ŽY¢”—Œæ‘Œ²‹¨€ÞŠm€ ‰¢Xi€„‰@é ‰[!Å‚·_â~ç›ÝÑå~â™iÁŠ~Ù–Õ±4~ß”£ µ~æ’mÓ~x2Ž¥kÒxWoß‹Ð@O€n‹p!Û±Ž]à~n¤•Ï·~k¡[¿@~dö®ë~e› žm~d˜¡~}•||f~¢’ôiø~àÈUà9ŽÚ>Ó§ìဂŸÞ~­|Í‘~©s¼ç~¥6¬†~¡”›ü~é‹<~š¥z~*—sgÖ~V”±T~”’6<Ö~Óá‡ÎÛ×~,¶¼Ëc~±ûº²}æ¬þªK}ͨ ™µ}­¤1ˆþ}­ 7wä}·œOeÔ}Ó˜íR?}ö•Ü:ï~”?4}y‘ ÙÊ~aÀ^ÉF~(ºá¸~}àµ"¨ }²° —f}|ªã†¯}h¦;u˜}^¡¦cœ}c¬P }gš8À}=˜r{ºŽä×¶~×ÊœÇ~…Äk¶ ~ ½ñ¥š}Ö¸8”Ý}€²l„}N­2r÷}#¨`ì}£¤MP|áŸÇ5ø|upþz]ŒØÕ¯tÕñÅ ~öÏ ´ ~^ÇÜ£z}öÁ{’§}ƒ»Ú}7µ„W‚jÝ„‚—V£„ƒ?p„q…L Q†V‹ÏÚ„†öˆÈËK†Hˆ¼…‡^¬|…†ÐœË„w†HŒ„ …é{Õƒ­…¦i¡ƒu…©U—ƒg†>´ƒ¬‡M F…0ŒéØ”†!ÇÉS…W¹ÿ„ÓÖª‡„LŒžšêƒÅ‹kŠÕƒ\ŠmzIƒ‰‡hO‚ʈîT‹‚»ˆ°>‚î‰Z <„ðÖš…x˜ãÇ]„×–Á¸ „)”‡¨¡ƒ£’£™ƒ¿‰$‚´xÄ‚W”g‚$ŒUSŒ‚‹a=^‚;‹m 3ƒŽáÔŽ… ¡%Å>„jžOµÐƒ¹›V¦hƒ.˜Ç–Ü‚Ÿ–4†ý‚/“òvºÉ‘Æe/ðQýpŽb;Ûsí%åùÒ„Ä©šÃ'„#¦³‰ƒs¢G¤‚ÞŸ”z‚A›Ï„¥Å˜ïtrQ–%c“ÅP#€Ì‘·9Ø€Ÿî»€vïÐ|„ѲiÁ„®(±dƒ;©·¡è‚–¥Ï’Bê¡Û‚tbžSrM€àšáa€‚—îN_€/•Z7ìΔdT~ØÆÎv…»–¾ô„(¶©¯>ƒ3±…Ÿ·‚x¬óµ¨R€1¤*p €ƒ ^耜žLB¡™•5¹˜¯}*Ìg…wÅa¼È„‚¿Ò¬ëƒpºR‚–´à…®¯¨}ª€õªúmu€?¦o\@¯¢IwŸ`2ï~C4{Ê‹Êj† Ð;ºÈ„íÊ ªáƒªÃœ›<‚±½Ú‹[¨¸ {t€Ô²Þk/€­êYèU©âFú~Ÿ¦£0l}„ ½zž‰ÖÒ±DxÄräxþ¶7Œqyì§~‹GzјŠ!{ȉ‰'|Éxáˆ>}ígF‡Ž4S净ã=x‡ƒjJˆÑ‹UÐÛŽL|–Œü®´Q‹›æ¥¢Š€€–ˉi€`‡Wˆz€Æwc‡—Teö†ç‚RņdƒE<¥†L…W‡©ŒpÏp†äÀ¸Œ+†g²lŠÔ…æ£Í‰Ä…€• ˆ¸… …»‡Ñ„íuõ†õ„Ûdµ†D…Q²…·…»;Ü…ˆ‡S熌xÍ"Œ¯Žl¾Ð‹rB°uŠ#Œ ¡â‰‹ “0ˆ Š„‡(‰Iti†Lˆ c`…›ˆEP … ˆP;„ˉ^º…{ŽnË<Œ–¼ìŠ×”G®‰ƒ’h  ˆwÊ‘e‡k-‚V†…Ñrä…¦Œ‘b„÷‹šO„gŠö:n„‹q„{OÉ@‹´åºÞŠr›r¬h‰˜æàˆ–«:†ð”m€=†’|pã…§`B„`"N ƒÂï8äƒQömƒN@Ç\‹s¥â¸×Š/¢Åª4ˆÓŸ†›Ÿ‡¶œ¯Œì†’™Ó}ö…——On©„¡”è^1ƒ×’åL5ƒ‘>6Û‚}‘ñàÝÅJ‹®=¶ÆŠª¨!ˆ¦Ÿ™†‡o£'ŠÅ†<Ÿ¤{Ô…4œ†l’„/™…\=ƒU–üJr‚„”à4è­”žu€BŽ‚ÃO‹±¶õ´ÁŠ3²›¦ ˆ’®—e‡Oªˆ”†¥ây „é¢3j\ƒÐž£Z‚â› HX÷™$2¯€é˜Ç+~—ŒIÁGŒ ÀP²ŸŠˆ»e£ÆˆÇ¶M•‡d±°†)…õ­w'„¼¨ßgу„¤ãWt‚}¡‘EuŸ/á€(œØH}!ŠU¿QŒ©Ê¶°¨ŠéÅ6¡Éˆú¿ˆ“‡xºc„ …èµ5tý„”°£e”ƒ?¬WU"‚!©C€ü¦-Ymž© Ô{∬Æú•½wN¹¬“Ùx1¬k‘ày ž¦2zÄŽ‚{‚ |$r÷‹¡}`b[Šs~ÊP‰t€ª:ʈõƒ}EŠ ‹÷ÅF”Ó~:·î’ý~~ª ‘~ÈœÞrŽþÒs€xŒcøq{‹€©a ‰Ð˜NïˆÄ‚ÿ9éˆ.…dëˆñŒþÃ…” …-¶'’=„Ò¨ÍW„v›ŽÀ„5F*ƒý~á‹ÁƒõpŠc„_lj1„€M׈…h9‡l‡\–‡ßõÁ¿“[Œ>´S‘’‹H¦è°ŠI™:މ|‹uŒ†ˆ·}.‹ˆ(n‚‰¿‡¼^nˆŒ‡ŸLÀ‡o‡ò8I†°‰fE†×ŽÙ¿ñ’Í“q²„‘‘è¥Q—mŽö‰±‹éŸ{„Š€Œˆlü‰‹’]‡êŠâK·†ÌŠ7…þ‹{û…Þª¾ ’ršÏ°‹ ˜±¢ÿް–~•V””‡•‹p’ªyw‰þ‘ kˆ’Œ[Q‡UŽYJ%†(5ú…9Ž Á„µs¼;’3¢S®—`Ÿž ßŽnœÎ“)ŒÆšU…\‹—ÛwB‰“•µhÙˆ“°YI†Ë’ HN…‡Ì3è„g‘.2ƒK¯º6’CªB¬–Q¦÷žÞŽ:£‘"Œ€ ƒƒHмru2‰/šÀfχ¦˜/W^†I–FŒ„í”p1탙”ë ¬E¸G’s²ˆªŸe®­œÙŽ-ª°Œ]§(Š£zs ˆâ Cd¦‡C3U=…Õš«Dr„c˜À/­‚ؘ½ké‹¶K’Ú»q¨Š°·š¤ŽV²™ŒÍŒi®‡~ÍŠkªpp¢ˆ¯¦Ïb%†ò£cR£…n ¡A­ƒæžÝ,Ú‚œa ž~^‰5´`“WÅ_¦ ‘À~˜µŽ»{ŠÓŒt¶ò|¾ŠW²ln„ˆ‚®w_ñ†©ªØPV…¨=?2ƒq¥J*Khœ™ <}‡™»?œbvÀ®Ù™ùw¤¢‰—wx“•¬•Fy…ˆ¹“z‡zþ‘{§lÃ2|ô]Š~{KÐŒ €ˆ7p‹ƒ²ê‹ËŒÓ¹«›‹}<­9™+} Ú–°}ç“û”‹~H‡’d~³ybvPkOŽ“€[ÉŒç3J­‹Z‚Ñ6ŠR…š†Š°Â¸ šÑƒ¹«Ž˜vƒ}Ÿ•ÿƒ@’H“àƒ…]‘¿ƒw×Öƒ!ié÷ƒgZŠŒH„I–Š®…/5¸‰‡–'‰žŽ¡¶bš/ŠQ©Õ—Õ‰ŒQ•^ˆÁ~“@ˆ ƒš‘‡†v-5‡'hbT†ðY4‹£‡HЇ¯4íˆÓ‰¦Έ•p´¯™«‘¨—KÆ›‘”ÊŽtŽÃ’ªSã…Œ6tŒŽ™‹\fáŒ´Š¨W拊?Gz‰`ŠE40ˆ‹Æ|‡š-²å™S—ù¦@–î–+™—”f”PŒÄ’>’­Þ‘ r’޵d÷Œ*Ž…V$Šo¥E툿32š‡]Žj5†x^±/™Ÿ¤f–°œµ—’”&šOб‘ó˜,}¾³– pv±”7bá‹´’ŽT+‰é‘GDˆ#0††’‘½…ç¯=™%¦‹¢z–¡£®•ª“󠹈ѯž{Ã^›gn|P™`ê‹D–ðRM‰j•BB]‡Ž”,.‡…Ê•qƒM‹Š­_™R®c ––²«“º“ä§…†Ê‘‹¤^yº%¡6llžq^ÓŠä›ÜP8ˆú™×@H‡ ˜™,B…˜Ú {‰}«s™­¶Ûž”–ô³ ‘›”¯„š‘“«‹wu §ùjŒÒ¤Ü\dŠ–¡ÿM«ˆ˜Ÿà=„†’žØ)h„]›ÿ d䇳©•šÀKœ¹—A¼¾”(·£‚³‘š³«uzŽú¯¿h Œ§¬fZ@ŠP©{Kgˆ?§¥; †$¤ &Ѓ±š> #~‰†.¯š£Bvu¤ Ewa˜¥)xYŒŸšyyF€„—Èz>sž•Z{`f?’û|´Whá~PFÿŽð€ƒ3D©„âŽb·®'¢€|{¢’Ÿ…|å—œi}V‹™Â}À~è—~1r”²~ÛdÙ’VºV(8€ðEéŽ;‚Â2rŒÚ† ™3Ž‹¬¬¡Í‚‚¡ žÕ‚n•y›»‚\‰r™‚O}X–r‚Fpž”‚zc‘µ‚ÞTô”ƒ©Dߊ…1©ŒˆSŒ R«#¡4ˆ¦Ÿož:ˆ“É›‡Š‡Ã˜v‡ {«•φo“j†Sb‘†DSªŽë†CՌۇ‘0ë‹MŠ7Šó™©‘ ·ŽîÖ´í’&šˆŒç† —ß‹õz •3‹mw’ËŠY`“j‰ÚRgŽE‰¹BÙŒ3Š#0;Š”ŒoÖ‰èp§ç a•hœY“ñNš%’r„A—t‘ x"”¾¤k˜’Mމ^Àâ›P¶´AW‹”.¬‰ÖDŠˆÒã¦N %œš^šŽl™ä˜$‚Q—*–Jv%”f”mi›‘é’ä\År‘ŠNÒ5¥?‹e,›‰’Îü‡@‹|¤x 0£˜‘  ±Œ¤™°ž9€„–ç›çtJ”™’g¾‘—™Zè •ÓMŒ¾”˜=ÜŠs”'*ˆX– É…%‰R¢´ Uª„–ȧ¡ŠÒ™Ÿ¤®~¨–Ä¡ìr_“àŸ(eË‘HœËX뎱š©KŒV™1;͉ö˜Í(U‡©™ ƒM‡r Û ¥²Ž”ÝO¯IˆÏ™½«ö|•–̨Öp8“Ï¥¶c’‘£V˜Žm ÅH‹‹þŸe9 ‰‡žÞ%p‡™P—²…ÏŸ¡»…“–·Ö‡ ™Ü´zÇ–Õ°§nV“À­AaŸüª~TŽ1¨QFX‹¯§6”‰"¤"ˆe—†‡€S„j£ãª„v}™4§wGަ£[xƒ{ !xøxBœâyçl8™î{ _»—|kQ¿”n~ B5’€~/c„‹¶‘PT¢›©Ç| —Ú¦E|`5¢ |»‚Ÿj}(v¾œ/} jÄ™?~Z^c–[MPŠ“¿€§A+‘E‚µ.U‹†Œ7¡I©›–v¥›ƒ‹¼¡òk€‡ž¾muF›„yi^˜—È]•µ‚KOa“ƒH@-…-œŽºˆ¯eŽÂŸé¨ˆ‡L•¥†ÊŠ+¡Q†F~ôž…âs±šÝ…‡gÙ—î…r[«• …N"’g†'?/Û‡y,ìïŠî@Žž{¨ "“‰¤{Œ9ˆ¦ ½‹K}k‚Š‚r$š?‰Àf[—L‰IZC”b‰Lꑾ‰0>=.Š ,H/IŒkŒíœõ§·“*‘ۆñ W†{­Vp\™ÉŽ+d—–ÎPX‡“ÛŒªKJ‘/Œx<ÆŽ“Œû*ÀŒvZø‹‹y›~§y™RX£ß—¡…4 •éyáœÉ”Tn‚™r’Ábº–n‘†V¨“p‚Iz¶;Ž^(¯‹Á“” ·ˆû‰F™Ï§zŸÿޝ£ÆÙƒŸÜ›¨x5œ†™¨lÈ™#—­`ü––Tæ“ ”²GÃE“ô9^”@&°‹–o ɆՇK˜.§‘¦ü£É¤hÝŸÅ¡ÈvyœbŸfjü˜ñ _&•Ö›S’»™wEÔ嘚7T ™*$bŠq˜š?„ø…”–u§Î®œ‹:£ö«²öŸÞ¨Àtƒœi¦ hó˜ä£g] •´¡FPÌ’Ÿ‘Ck™Ÿ 4”Œ«ž !m‰ß–šƒW„”¶¨&·#‰†¤1³Ø~IŸ÷°ˆrΜq­g,˜Úª¸[1•˜¨—NÙ’O§=AHU¦*2ŒR¡à¶‰U”Ä&õ‚Θ3²&vÜŽN®wv„©ðxz1¦.xÝoÌ¢dyºd“žêzÜXë›||>K»˜g~<þ•€‘*Œ“‡…5À”Ц—±k{ï­b|&ƒB©4|]xÙ¥t|Ãne¡©}8c7ž2}ûW¥šÈ~ýJ–—¯€y<”¼‚Å)ß’£‡Tº’‘Š¢•ó°Æ ‹ä¬¸€ã𨂀¸w‚¤Á€Àm  ö€Õaè9VkšØI~–üƒ;“ý…)9‘ʼn–µ‘.ŠŸ”İ+†MŠš¬…É€†§Ý…Av¤„ïk I„«`zœÑ„¶U™f„üHN–G…Ò:.“A‡‡(ðŒ°ÛŠ›“‡¯ª‹³‰M«ŠÕ$§E‰ñt¥£|‰HjŸ¦ˆ«_œ*ˆaS·˜¹ˆSG$•—ˆÌ9M’Š( %ŽŠ«ŽžŠ˜’-¯P‘L‡Ü«.}™¦ÚŽÝs£ ÚhyŸ,Œâ]l›ªŒBR˜2‹àEš•Œ 7å‘ò&o‘` ¼Œé‰Iݯ—†oªé•}|¦“õql¢º’šfÈžÓ‘H[µ›JUPW—È¥C䔓—66‘kŸ$~ŽÉ”$ ÁЇ‡FZ®þD„ðªÄ›VzЦQ™`oç¢r—©e4žƒ•þZšó”»N´—h“ÃBD”'“4˜í”¾"Ž(–’ˆ[…u䯣Ճqª¹¡†xþ¦4Ÿ.nP¢K"cžQ›(Xf𶙣Lð—˜|@k“ϘP2—„™ƒ )›•¿¿†zƒãŒT¯)« ˪רtw<¦D¥Ùl¢O£‹aªžF¡VVoš›ŸµJܖ>“‘žù/Ö4žE(“°¸„Õ‚ƒŠ·¯l³&€7«°7u°¦W­Gjë¢UªÆ`ž>¨uT¶š…¦úI–ŦY< “\¥9-ZOŒ¿‘ÉýƒpXŒ˜º)w¡ƒcµ–xzQ°áx‹p¦¬§y1fô¨jyè\q¤}zöQ‚ ›|KDþ~!6æ™Ò€Ø%;—o†K /–/ˆ=‹¥¹t|8‚]´Û|]y6°|€oz«ß|Ðe´§Ÿ}.[5£´}éPUŸÖ~ëCôœR€‚6˜ûƒ$¯–uˆœ J”ŸˆOŠ·¸Ä€çY´%€ºx¯[€ŠnP«€ˆd~¦Ü€‘Z¢ò€øO4Ÿ¥Bô›‚ý5A˜+…b$+•ƒ‹ c“ ˆ`‰¾¸…·€B³|…@vÞ®¬„Äm ªk„uc)¦$„0Xµ¢8„LMðžY„®Aܚͅ¾4r—`‡ã#¯”™ z‘´ˆoˆÃ·ŒŠ±.²ä‰ìu«® ‰"kǩň‰aÙ¥w‡ûWi¡‡‡ÐL¯¢‡ì@Êšˆ°3¬–žŠˆ#;“½Ì `ˆ}‡¤·$ß}ô²wŽÓtS­“Ãj`©JŒÞ`b¤öŒUí¡‹ŽK0‹g?^™}‹ñ2_•þ®!Ë“’0 ÓŽZ‡Q†€¶Ø•#|·²'“Ýrö­=’”hó¨ï‘d^㤕;Td šƒIœœ¨ =Ê™Œ0Ç•x‘zÀ’o”z‹ë…x…,¶±šý{i±ð™Yq¬¬ò—±g ¨ž–3]~¤>”¿Rõ >“ÉH œE“7¢c~;0ž¶0¤›í‡Óð—ë† €Áè|ðwf¼ï|ÒnÜ·Ò|­eг|Ý\½®O}Rô©à}ÒHÌ¥~Ö=¡…€Ž/ÜǃsAšÓŠ? (–A†1lÁ*.v¥¼'€Ìmø¶ü€cdز?€L[±­v€EQæ© €²GŤ­p<4 ®‚û/1œß…Ôä™ÃŒ‚ ]”«†T~³À…†uÉ»t„ìlõ¶:„JcÀ±zƒôZ„¬­ƒ®P·¨?ƒÝF›£ß„_;7ŸÛ…¶.ƒ›ÿˆkŒ˜¾Žž “*†u}ì¿äŠtçºÏ‰4kôµ‰ˆSb«°Å‡ÁYZ«ó‡BOЧ‡9Er£‡†:=Ÿˆ¦-Ü›+‹/:—ÉŠ º‘Ć“}¿\ŽÙsðºGÄj×´ýŒ¨az°7‹ØX«a‹N:¦íŠØD¢„Šô8óžt‹ó,ªš‚Ž”Ù—’†,£…‡|F¾ë“¹rü¹Ù’wi¸´‘2`G¯Ê%Vͪñ(Lä¦{޲B²¢Ž©7ƒø«+,™ú’–Ζ’ ª0ƒÔ{(¾¯™.qå¹—™h¦´1•ÿ_)¯g”²UœªŒ“{K¤¦’ÜAa¡¤’Á6%ˆ“ô)º™~–BÏ–ÆgŠû‚Mz¾‹žêpǹ_g³ö›1]ø¯'™¯TYªF˜LJP¥Í—˜?ó¡[—‘4‹<™#'Ò™/™«^•Ìr‰€úxß¾¥Oo†¹S£Mf*³ç¡P\”¯Ÿ®Räª)ž:HÂ¥®¥>@¡=ž2y$žr%™$™•ËŒâ†ô€w¨¾w¬‰nU¹IªIdý³Ü¨[_¯¦mQ ª¥Gh¥•¤ù<á&¤S0¢ â"™%—\/•qŠñƒ€ëüybv¹Û¢yôwÚË6zŽyºg{5z,©Z{ì{X—±|§|p…h}u}žq´~R~»\ c€C€Ù× Œ„l‡wéîwòfÙ›xª­É3yký¸zz/€@§‡zÿ€‹–{΀èƒô|­apo}’âZõ~¡‚˜BQ€ƒà «ƒ ˆÝçàv¤ˆ×–ww‡ƒÇ3xV†í¶–y1†k¥Äz…ê”pzú…Œ‚{ê…Do7|×…"Yë}ä…‹e’«z*ŠU€ý{"‰Zmâ|ˆXß}*‡ù@ó~kˆ 䀽‹kãŽt‚™¬ÓQux—tÂôv{•!²‡wo“¡ìxn‘ ëybGoz`–l“{^ŒWà|xŠÅ@V}­Š6 üªŒ‹áTsÏ¢£Ñ tÑŸœÀ—ußœp°.vÖ™¨Ÿ˜wÓ–ÖŽ°xÅ”]}Vy¾‘ùj´z¶ØVP{ÃÝ>Þ|׌¼ ~[ôß@sL«ÊÎÑt[§ì¾.uw£Ü­»vj Ww^œÇŒAxG™žzüy6–Šhz“ÎTt{‘B<æ{ï²·|¹LÜüs5µ<Ìt'°£»éu"«Ò«sv§‹šÈvñ£/‰úwÑŸJxÈx´›xfŠyŒ˜R°zb”î;{ “ mzÛMÚÖsG¿Ê]t#¹±¹£u´©%uÙ¯˜ov°©ú‡¥w€¥bvyxN ÞdSyœßP–yÀ™(8áz+—'GyŽcØ¥s¡ÉXÈtkÃL·0u8¼ü¦¤uó·Q•Ýv¬±Œ… w^¬_sØx §Ma©x¥¢ÕMÓy žÍ6)yAœcRwÚŒcÖ†t,Ô¹ÅðtÌÍûµ ujÆõ¤vv Àœ“žv§º'‚Èw>´cqŠwÌ®Ì_PxBªK_x‰¦ 3¸x\ ÌÊvÖŠ­à¼LuÇÑ[YvõÁôgx9²"„yg¢§z¬‘bë{Ú€€L}m%€Ç~[XTyÕ@E‚™é6…ÕˆYÞ²}ú}öÏX~$~Z¿õ~P~Ȱ7~†2 K~§¶€&~‹‡€ÀkÚ€ jW8€¸‚W?}Ãë1„މ¯Ü²|†+Í^}…ǽý}M…b®X}–…ž‰}ä„ÎŽ~J„ž}"~È„ƒjžO„“V)û„í>¿€ò…ú-ƒVŠîÚ¤{³Ž|ËO| N»é|eŒ¬X|º‹œ¡}ŠŒ\}‰A{’~ˆ}iH~‘‡ìU@‡ž> €)ˆ(‚-ŒØŒzÑ–åÉA{/”ú¹â{’úªe{ì‘DšÂ|IŠ£|¼Ž z}AŒŸgù}Ö‹eT~Š_=fjŠ7$(Öez/ŸlÇ z”œÂ·—zü™û¨{X—’˜}{²•$ˆu|"’ýw÷|¡æf!}/R‰}Øn;ç~‘ŒÀÆŽeÔZy¶¨"Äßz$¤±µ>z–¡¥¹zïÿ–{@šá†{§˜u«|•[d|™’öP°}$Í9ë}¦Âµ~Ò yŸ± ©yñ­³zB¨·£zޤê“ÐzÖ¡ƒÝ{4–sƒ{š,b| —.Nî|w”w8|¿“2Q|6Ðy±ºyÀƒyìµ­°Ñz"°¬¡Cz]¬1‘†z“§¥–zࣆq@{6Ÿx_Ù{‹›éL×{Ö˜µ5Û{Ý—z¡ŒçÍÜzÄg¾Bz-¾ñ®mzL¹BžÒzm´-z„¯  zµª`n¬zê¥Ò]9{¡ÛJ{7žp3!zóœO5yWŠõËÁz…ÏV¼+z„É:¬TzuÂ䜲z{½2ŒÔzw·q|Õz²Dliz¤­EZèz¶©G©z¡¥Á0¬z O Âx?‰MÕ“…HtìÇ(„Îv"¸Â„Nwo©Ûƒñx§šÊƒ™yõŠ÷ƒg{7zƒM|”hŠƒ]}ôT•ƒ¨ =z„jýå‡>‰+ÓŸ„|£Å7ƒ­}¶ÑƒG}§§øƒ~)˜ö‚¾~·‰H‚›Vy‚Ž€g:‚¢€ëSt‚è‚<§ƒ”ƒø»…ÿŠkѧ‚ò„_ÃB‚¦„$´Ü‚Uƒê¦‚ƒÃ—1郤‡ªÔƒ¡w Òƒ·e÷ëƒüR`‚,„š;߂Æ“„Ë‹—ϨúŒ:Á@½‹F²Ò{ŠJ¤!L‰•Pˆº…íˆv‡“d -‡BQMq‡@;!ùˆnƒ¥Œ®Í¢*”/¿C€ð’°Ù€±ß¢:€‡n“{€^þ„:€PŒÂt‰€O‹›cQ€rŠªPI€½‰÷:q:Š=L‚‘­Ë‹€“œF½€_™÷®Ÿ€%—’ ú•{‘DÍ“b‚º‘Šrƒ²Èa~ÍŽEN¹€Œþ8ê€`ŒÌ+=޾ɀ¤ˆ»õ¡…¬WÅžb°•›¨Žê^˜ëÉC–{pC0”!_j9’LáUW6èsÞ­’šÇ_€­"¸ÖÈ©{ª1v¥¯›ˆ9¢LŒ¹~÷žá} ~Ò›Ðn&~µ˜Ô]t~¬–@K!~©”4ü~‰“o-}µ¤ÅJ€ ¶¶»±ƨ U­S™Y©PŠ~~²¥?{g~|¡–kð~Lž[N~-šïI ~ ˜G2Ì}§—¿ü|"‹|Ã,€m¿´†úº®¥´uµ¢–ø ±ˆ ~™¬vxí~G¨Pii}ø¤NX·}º ßFR}lž"0 |¿œ3z‰šÁ€åʲx€JÄš£¨–¾ó”å¹Ô…ë~‚´­vÂ~°g0}««·Vn}P¨1Cä|Ù¥O-’{ݞРÔy–‡ÿÊg‹bt!¼çŠ`uf¯v‰Rv¿¡qˆwÿ“H‡°yQ„Y‡ z¡t܆{|cÁ†}“PÉ…ñm:³†H‚œˆ¤‰éÈ‹Š={c» ‰Q{ý­–ˆY|¤Ÿš‡˜}<‘|†Ý}Ý‚­†F~—s]…Àvbo…b€tO£…1Ò9Ô…t„L‡o‹Ʀ‰6‚¬¹'ˆ[‚Ÿ«®‡u‚•ƆÁ‚‘½†‚“……‚¶qï… ‚ùa*„­ƒpNŠ„w„L9„¤††CŒ*ļˆRŠ·6‡‚‰_©²†¥ˆ¤›Ù…÷ˆ ã…L‡tZ„ćp_„J†¸_Ѓò†¡Msƒ½†å87ƒÛˆ&¹…"-Âʇ“‘™µI†ÂF§È…ãŽç™ý…9´Œ„‘Œ„}«„ ‹†n×ƒŽŠ£^ƒ;‰öLiƒ ‰“7|ƒŠJx„ŽÀ‡ ™@³4†;—N¥Ÿ…^•K—Õ„°“€‰ð„‘µ{—ƒu'lÛ‚òŽ´\±‚–~JÙ‚VŒ’5í‚AŒá=‚¿Žÿ¾Ò†£¡±&…Ûž{£j…›Ï•˜„O™n‡ªƒ•— yZ‚þ”ñj«‚o’ñZ§‚‘AI£ç3âT¤Ž¢¼±†Œ©;¯ …¬¦¡W„·¢È“‚ƒöŸÍ…Œƒ0œÊwB‚šhó—ˆX»t•YGD€÷““1î€j“Å7Œ=º¨†›±º­…¤­úŸ@„•ª‘fƒÂ¦ƒd‚è¢ôu‚6Ÿ»fuˆœ Vž€ó™ÿE1€X—æ/·ˆ—Ù}‹Š&¸‘†åºÑªÖ…×¶Šœü„­²#ƒÀ®‚Ç©þr±ú¦Vcý.¢ÚT€ŸôBzÀí,ñ~¤›Ã O|ˆR¶‹‡NÄç¨×†Àšÿ„Æ»!ƒ¾¶•~󂪲p•Å­ÿaрݪBQЀ§l@ 0¤½*n}Åœ° zنſ;‘sx²Ÿ!tº¦Ž—v˜øHwT‹»‹úx«}¯ŠÜz o‰Ñ{‘^òˆö}1MˆJ97üˆ,‚,`ŠŠ‘½xzH°Ù$zñ¤M¨{¤—1Œj|N‰ø‹.}| Š}Øm¡‰~×]Ÿˆ@þKÚ‡‘7‡[„êˆØ‹¥»¬Ÿ!¯ Ž@0¢wŒÑC•j‹_ˆDŠiƒzt‰`Îl4ˆf‚=\Y‡Ž‚æJ¼†Ôƒþ6/†Ž†z‡¶Œ¦¹×ŽÌˆ­,s‡ ‹Œ ‡“‰ŠÚ†”†q‰ª†/x¿ˆ¥…öj¤‡­…ÞZû†Ø†IŸ††5Z…Lj6†ž•·úŽ'«QŒ¾Žž®‹QŒñ‘·Š"‹ú„ªˆó‹ w‡ðŠKi†÷‰¬Y¥†&‰CH…m‰04“… Š]®…’Žo¶™–`©PŒ?”¹œ™ŠÐ“¡‰‘†‚”ˆfu ‡\ŽÅg&†\¡WÜ…‚ŒºFþ„¹Œ)2ú„/Y„F)´-8Á§V‹ã›ˆšyŠy™>y‰>—5€e‡ú•-rã†ä“ie…Ö‘ÃUÞ„ëmE)„}0çƒCD¥‚žH²$¥€¥N‹·¢½˜xŠ0Ÿä‹wˆçO~Z‡•š¶pÞ†s˜kc …X–?Sü„[”wCkƒ[“..é‚Y”.€œŠñ°0­“£Q‹­ªH–tŠ ¦æ‰mˆ±£Ì|F‡K ­nȆä`ñ„é›@QéƒÙ™AY‚¾—’,©z—Î .~Úˆé®s¶@¡7‹Ø²~”BŠ®¥‡1ˆ§«yû‡#§lq…פd^‡„‹¡nOeƒdŸ>¤‚,Í)Ù€›N }R‡#¬Ñ¿çŸEŒ»§’VŠ-·P…?ˆŸ³Xwú‡¯gjd…œ«ö\g„6¨ÝM+‚ø¦Æ<7¢¤'LÄš’T|…¢´˜s ¨@–tHœ˜”u–Q’9vÚƒômx0vÂŽ×y™iR{.YÈŒ|èHΊÝ4 ŠX‚aà‹ä‹\²Y—yi¦’•"zšã“!zÙŽ‘d{‚A¦|Ru(Ž}JŠ'‹Á+¦ˆÝŽTúˆV‹zŸš×—ʓؘW–Lˆ¤•µ”É}+“r“Vq¢‘'‘ãeœ´YA²K›‹H<‚‰€#)ˆ‘â £†‰91šÃž¾’˜+œÇ†Ù•mšÉ{]“˜ãoÊÆ–ýcÅŽ±•dWkŒ£“úI֊“:ψà’ú'ˆ‡,• ¢ƒþ‡0›dšÆ¥ý4˜£–…•F¡'y„’èž×m倜ˆaÛŽ]šUxŒ>˜ÒGÝŠK—µ8ƈO—Ä%;†_—ñ‚/…m™†ší­ÖŽF˜4«ƒ•M¨Nwu’Ü¥¨kÉ]£_¯Ž$ ÓS6‹ëžóEt‰âÿ6‡É·"T…——6Á€›ƒä—¦›.¶Œt˜[³t;•W°Iuª’Ò­Wið>ª}]Éò¨5Q:‹¢¦ˆCQ‰ƒ¥•3¦‡L¢´ª„Õ•iÒC‚•m¥ÄrÙ“H¢¼sû‰IŸœu(~ŸœÑvXsêšw˜hV—yy\M”ýz©N¤’Ë|?SÍ ,T³ƒ-±‘q‹Iœ¤ìxS‘á¡çy‡ÖžÉyÄ}&œz‚rh™@{Lfä–¼|NZö”F}ˆMl’>A E+ŽÒ…>l‹š¤¤-}Îm¡'~†Tž~e{©›F~½pò˜ƒe–·Y¬“”€ƒLA‘_µ=;Iƒ™*·ö‡o,ŽŠï™1£yƒoŽê rƒN„½Lƒ/zšŒƒ%o^—ȃ$cÿ•Iƒ\XB’ÖƒÆK¢„•<6Ž‹†)ù!‰ÅðAŠÇ—³¢ß‰.fŸÐˆ©ƒ0œ ˆ#xˆ™Ü‡·mÔ—‡Ub„”’‡.VÝ’‡8IÉ臡;>Óˆ°)GŒVŒ?¹‹öŠ¡–¢i‹ÀŸXŽ6uœ#LvÇ™ZŒ}l –Š‹¶`”‹0U#‘…ŠÜH+JŠì9Ä(‹®'³‹‹c ©Š‰<”˜¢ •/Šžý“鲛ɒ tø˜û‘oj2–"D^æ““aSG‘ ޳F\ŽÄŽ8ŒŠ"%™Š¿’‡ ™‡º‡*’ܡ웾ˆlžÉš~›}˜MsH˜¥–·hv••'](“,“èQ‡œ’åD¦ŽE’v6X‹ò“#‰÷•MÖ…¡…M‘0¡ä¢—†¼ž² z|O›RžXq‰˜oœef«•š|[V’ܘðO©>—¬B¼Ö—*4R‹j˜!9‰;–vrƒÐƒ¯m¢ª „èžÃ§Ÿzd›V¥3o“˜c¢÷d§•` ÍYB’ªŸM}õÐ@`wº1Šîi>ˆˆ”s\‚;‚F¨¢7²_ƒ.žä¯˜x³›]¬ÖmݘZª_bã•F¨Wo’¦gK’´¥>H"¤·/-Š|Ÿå~‡Û’—–€á‘ù­As*ˆž©´t!l¦ uu‹¢¾v:k¡Ÿjwh`Öœ_xÒU™™czyH´–»|q:)”L'Ê’äƒË “¯ˆÌͬnx2‡d¨âxÊ~¥;yet3¡ñzj=ž¢zã_|›{îTT˜¦}6G•û~â9)“€O' ‘÷…ú à’ˆ´«µ}9†¨%}t|äv}²rס.~hâá~{^/šà)S—í€Fr•@n83’¹ƒ &R‘ˆP ¿ŠˆžŽK«‚j„À§o‚J{Q£¼‚,qb r‚4gl"‚J\Æš‚£QÅ—)ƒ3EC”}„>7?‘ó†%¤1ŠØ   ˆŠŒüªc‡½ƒf¦Ë‡Ey飆ÍoøŸÀ†eýœj†C[c™c†JPs–h†‰D“½‡<6V‘5ˆ¾%\t „Ÿˆw‹“©êBé¦PŒvxU¢Ž‹©n[Ÿ<‹dW›ßŠrY¾˜ÓŠ&NÓ•ÒŠB‘“ Š~4é‹‹Î#uŽ–@ ¨‹‡5Š7©ˆ’ã€p¥ñ‘Ëv¹¢0²l±žÚ»b ›vŽÏX˜eŽ2M•^×@Ø’ŸŽ36ôf!XÛ’ï؉7…Mˆ§©Z™ ~楳—Žu4¡ß– k%ž‚”½a›“|Vc˜’“Kl”ó‘ô?5’&’1”d“©J%•(O‡ƒ—‡"©CŸ}[¥‘¤sŸ¡°›Çi‡žJš(_ZšÕ˜T­—¶—xI¨”œ–±=]‘Á–â/“Žè˜Y猓‹…J‚……©R¦Ž{«¥™¤rqÖ¡­¢Yg±ž< ]uš¹žÂR¶—Š‹G—”]œæ;‘p–,ÜŽ€œöÑ‹ó‘u2ƒ³€Ïƒç©{®uz¥°¬ pC¡¯©§fž2§¤[Íš¢¥ÙPþ—e¤ÖEÄ”&¤¥9‘*£º*hŽ$œ¬ò‹o„›€†„µ+sÌ}رt¦uU¬åuƒl ©"v~bã¥`w‰XÈ¡çxáN=ž}z}B›m|€4˜žQ"w–à„Ì ²•q†Ž……´_x\|ɰExæt2¬ysjð¨Lza¤¤‹zÌW¡{ÒM®}@÷š›~â3:—ÀŒ!Õ•Þ‡0 ­“´†‹„~³|ù{²¯~}4s«>}qiÀ§}}È`n£½~*Vb J~ßKöœåÕ?ö™Ð^2a–éƒå!:”ã‰Å ©’†ˆƒr²ã»z®Â¬qƪ|žhw¦¸¬_¢òÄUŸ}‚0Jºœ‚Þ>à™„"1‡–†o ¨“ðŒ? ¥n†…‚\²9†§yg®†KpŒ©É…ðg5¥ÿ…¶]Ô¢1…‰SÕž¸…¯I›N†=Ϙ8‡0¸•J‰ “ Žƒ ¡Žú†ƒ)±µ‹Æx­‘‹#o)©BŠeÆ¥u‰ý\X¡¡‰†RVž$‰fH𵉓˜|ú6†Ÿ€®{ß°Ü£er¢¬§¡°il¨= _Ö¤`ž‚V& uKðœáœbAW™Sœo5P– a'…’Ïš¸¼8Žƒ¾€zu°êªìq<¬©¨ïh¨1§^h¤M¥lT¦ Z¤J]œ¿£Á?§™(£´3[•Ú¢ % ’˜™ ÌÌŒ€€zƽ²tÑrÀ¹4u`já´žuìb_°^v¼Y׬w Pr¨"xåF¡¤;zw; ¹|‹-Έ•Ø›|†2­–É„„z¼Öxéqé¸Uy6iﳸy€a[¯xz XÁ«2z©O]§<{ªE–£V|ù:$ŸÑ~ß- œ“ÜYš]ˆ¨Ä”ö„“yI»÷}q·t}$hý²Ò}+`\®•}sW´ªQ}ËNS¦]~‰D”¢y”9?žðO,R›¥„Cà™FŠóÚ“A„¢x»1dp+¶ª8gò² _C­¿V©u0M-¥€±Ct¡œ‚‚8Dž„ +—š¾†äm˜9î‘©„°wœº†…Ýo7µ÷…tfë±A… ^/¬ø„ÛUk¨¤„¿L ¤­… BV È…¨7M=†þ*ä™â‰·—: 5„¼v«¹íŠœn+µa‰õe¿°­‰N\ó¬bˆãT¨ ˆŠJ¶¤ˆž@û (‰ 5ýœ–ŠH)§™/1‰–}û}Žƒ¶uȹdqm#´äŽšdŒ°:Ä[¬«òRŧšŒ‰IQ£žŒi?‡Ÿ°Œ²4‚œý(˜œ‘2c•òЋƂt™¹ ”Àkú´’“cg¯×’{Z}«‘—Q„§4ÍH£6„>*ŸCº3›ž’E& ˜”ÑF•rŽbô‰©€¥ss¸íšTjÏ´V˜ôb5¯Ž—™Y=«C–ƒP1¦è•Fž¢é•6<¯žó•†1w›J—q$²—½˜'•Œ¯†K€r@¸È •i‰´0Ÿ`دf§WÏ«œvN«¦½›vDÿ¢½›G:ížÈœ/]›&œ¹!ð—¬–ò¦””Š”ò€q¸©§°h\´¥ù_§¯D¤YVª÷£(MX¦˜¢VC”¢™¢£9až¥¢`-}› žÂk—§•> “£ˆÊ€€á÷v#rÒxws±Âòwëum³xÍvî¢áy¹xƒ’ z®yö€š{º{{m£|Û|áX³~:~p@^ø€o~ƒé…åßât‰z¦Ðqu’{lÀõv¨|D±w«|ô¡x¸}«WyÆ~fzè:lO|€W‘}j?’‚}w‚’‡^ÝÆs ƒ2Î`t9ƒ&¾ìuuƒ¯*v”ƒŸ9w½‚ÿŽ´xâƒ}£zƒk {KƒJV|| ƒ¬>Ï~6„˜qJˆÄÛ—q¾‹ÎÌ6sŠí¼Ät^Š­u‰7HvʈmŒëwý‡Å| y@‡/i¬z{†¸Ug{Ö†n>}^†Àk€ŠÙ_pš”|Êqò’Ôº«s\‘«t›“›auᎋ+wŒ®zwxh‹hhUy¯ŠDT`{‰A=m|’ˆïe~í‹A×o»;ÇÁq%šÎ¸Nr¡˜F¨Åsç–™u/“»ˆõvm‘¶xaw¶Ãfxx÷ŽRÏzNŒ\;ð{§‹}b}vŒ¦Ôóo ¦&Å~pˆ¢êµärŸˆ¦Usbœ‘–œt¦™’†ŽuÞ–ävw”HdZxQ‘ñPöyŠÁ9úz§Ž| {ŽëÒŸnɯPÃ3p/«e³Ÿq§§O¤r棟”Qt%ŸÝ„OuWœ{sãvŽ™)bZw°–3O5xÌ“p8y©‘â²y„Ž«Ðln·¸ËÀúp ´0±Zqo¯d¡Ær¡«‘þsѦ‡‚tô¢{qžvž€`.w!šõM$x—®5üx«–‹xŒ‰Î1nñÂÁ¾¨p7½}®èqЏŸKr¥³vs¸­ïvt¿©Xo uÁ¤Ú]•v¡ áJuwYU3Tw™›*Äv䊩ÌoYͰ¼p|ÇɬÃq¦Á«!r§¼ ?s¡¶T}y©ŠûÃøu¾5µ\uɹv¦—vu´—Ývþ°ˆôwz«–yÀx§{jx”£xYNyŸûFÌyi0AyF› Žx^‰*ÁËusÈÀ³:uþÃi¤}v‡½æ•Àvø¸ß†Ìw[³Íw”wͯ9gæx>ªÔW x—§-Dlx¹¤O-×x8žø EwE‡žÌ­ p·¿rY±`^t£3Iuª”ã9wS…ÃOxäv‚zd­Ü|1QW‚w~:»ƒŒ€b†ñ‡ªÊ°€5xR½ €4y=¯r€4z9¡T€:{“€C| „€l|ýt‹€®~ cV'P.§€9Û‚©‚ž…£ˆøÈ¬~ïﻀ)­|"€jŸu;€§‘OU€ì‚vŽ@sß«b€G‚9O€Üƒ9Ë„°΄_Š1Æž}͇§¹}ù‡.«o~&†³}~L†Pm~q…ô€·~²…±q„ …‚`¯x…}Mø€…Â8:€ò†ÕŠƒ&‹TÄŽ|Òx·}ŽW©t}<.›”}kŒ*˜}˜‹)}ÞŠMoö~7‰„_Y~®ˆäLëPˆ€7}€$‰LýŒ^Ân|—e´Ö|R•›§:|““Ù_|Ä’ ‹h|ð}|ç}5 mõ}ˆ¬]‰}øŒ~K[~‰‹Œ5ò4‹¡€}dÀh{yŸx²´{Ȥô|šs—|H˜3‰|n•óz£|¬“ïkÂ|ö‘þ[}SQI‡}ÄŽê3î~+ŽÅ{~‰Ù¾){?§×°„{x¤Æ¢Ï{¯¡›”ð{Öž»†ï{õ›Ôx…|+™6i²|k–«Y“|µ”xGÉ}’›2}$’s |¹‹†¼{,°…®a{R¬Ü ¨{s©’Ç{¥œ„¿{ž¢vX{Åžëg‰{ó›ÓWz|&™'E¾|N–ì/Õ| –¼{&‰¹Ø{T¹·¬#{iµ‚žS{w±.k{|­3‚X{t©0sí{‚¥e{‘¢ Tõ{¢ŸC{—œ×-{ší uyƇ¿·¯{£ÃÙª {—¿œG{º;Ž]{mµ½€@{M±:qÎ{D­1bë{8©cR¼{'¦c@¶zê£æ*¬zœÚ >x›†?‡zpµ>†ÜqŨ†9s‡›&…¶u­…8vÄ_„áxap…„£z_þ„‘{ÙM–„»}ê7ë…o€¶ÛˆyˆjÀ(†)wD³\…¦xE¦¢…yW™R„²zI‹ä„H{F}¶„|NoƒÒ}y^¨ƒÆ~¹Ljƒí€R6ÿ„‚²j‡5‰ ¾6„ú~q±p„Œ~Ϥ¹„6—ƒ½Š)ƒað|ƒ)€fm•ƒ€ø]`‚ÿ´KJƒ#‚Ï6ƒ°„Áÿ…÷ŠÁ¼>ƒî…º¯vƒŽ…t¢»ƒ)…0•’‚Ö„÷ˆO‚ƒ„Äzd‚Q„­l‚2„±\‚3„ãJ,‚[…m5H‚ن暄Ëͺ@ƒ­‚‚©Œ= Í‚H‹Z“´üŠŽ†‚®‰Åx³‰!judˆ•Z¨kˆ6Išˆ 4‚ ‰=ƒœŒÂ¸.‚Q”›«hÿ“$ž¥¦‘£‘‘ZE„c Žèv§€Ù¹h€€¶Œ¢X߀µ‹¿GŠ€Ó‹&2ì‹Áå‚—¶5ÅœA©V~š.œs1˜ Z€â–‚*€‰”/tx€Q’yf_€#ÛVဃE¸€ Ž‚0߀:€"ŒS´ ‰¤:§8/¡˜ša€ÌžäK€sœc€€™ÜrmЗ˜d`–•nTÿo“žCüK’9.é’àä~7бôs¬€¥%©S˜L€¦‹4€)£}ù¹ŸðpSh)bGšRñ~ߘFAò~––š,²~–Õ |ˆ¯Î—µQ¢ô±§– €­èˆì€ªf{¦ˆ¦Þmú£±_ã~· °Px~Zž=?L}䜾)ò|òš˜ z{†i­³Ú¿  é>ºä” €¶¨†îü²²yŸ]®¾kì~Þ«>]É~Z¨ NH}ॼ<î}<£\'s{暬UyÝ„õ·nvo «rŒgq?Ÿ’‹Prô“ Š[tІl‰fv3xñˆwÛjî‡éy¥[I‡b{€IÞ‡}¼5)‡Y€Ñ`‰ü‰µ—ŒEvU© ‹Hw]ÊCxt‘D‰`yt„¬ˆ~z€wM‡Ä{Ÿis‡|æYó†š~KH­†D€40†{‚ÈʈĊ-³¼‹.}§ÈŠA}…›ë‰L~~ˆu~w‚ú‡ž~ôuº†ïŒh†R€FX«…Ö1G‰…}‚‡3C…¡„Ö;‡‘‹6±ÛŠ1ƒê¥â‰PƒÊ™üˆeƒ­‡–ƒ›)†Äƒ“t†ƒªft…„ƒàWI… „JFf„·…2a„̆ü´†dŒ*¯ð‰YŠÛ£þˆxŠ0˜‡‰„‹Ê†Áˆïd…óˆ_rZ…O‡ôd愺‡¦Uï„J‡ˆEPƒù‡Â1„‰45…C­òˆ²‘ð¡÷‡×¼–†ð‚‰¹†#Žh}W…PQp]„§Œgbþ„ ‹˜T,ƒ”‹C¿ƒ2ŠÂ/ïƒ‹í¼ƒÇX¬ˆ,™+Ÿú‡\—k“ꆕ¢‡™…­”{4„Ð’jnD„‘`ðƒv¹R:‚뎷Aí‚jŽ-Ø‚Q$œŠê©ò‡ð ¿î‡ž|‘톜,…ž…@šy6„X—älMƒ›•ü_‚ç”2Pd‚I’Å@2©‘Þ+Ö€ø“0 瘈¹§í‡Ø¨ ›ì†å¥Ýê…ᣠƒ›„ö kw.ƒþÈjGƒ1›k\ú‚k™1N`·—j>)€ö–W)“õ–Æ }Ù†Ô¥Ö‡õ±™Ì†ñ­Þº…Ùª¡f„Ù§—tðƒÇ¤h‚ä¡ÛZ¨‚Ÿ[Kó3t;ƒ€Jœ¦&Æ~ìš"¦|S…,£Éˆ*ºc—Ї ¶À‹Ì…Ô³y„À¯¨rûƒ—¬Hf‚ž©VX¢¦ÁIÍ€¹¥.9$¨¢¯$8}æ˜}‘{ƒÃ¬«“«oO¡~’$på–q“rŠ·)t!~ê¾uÆr;Œƒwse ‹ZyJV:Šd{ ƒ7‰*ŸÚŽu”›‰i‹’™}ÚŠ5—Ðr4ˆÊ–f‡””vYq†g“ KŒ…W’<„D‘®(Zƒ8“’ |(‡èŽd¤ò’¯Œé¢•‡|‹V 0{ì‰ëòp@ˆo›¸d‡+™ÁW{…ì—õI“„È–¬:ƒ•–R&‚;–ÂÔ_…K›èŽw¬ý¤Œîª@…_‹J§~yʉˤænˆ7¢VaކܠU9…„žG1„Fœ×7n‚#2;—Ì‚}Ѓº™ëŽŸµéޏŒÿ²Æƒƒ‹B¯¢w¬·l4ˆ©ã_ò†—§S=…&¥˜EƒÏ¤¡5‚R¢ ”€<–‰|}‚d¡Úš)o&—n˜p½&•þre‚.”sïw'’?u‡k:–w4^ÐyPÂ¥{AŒ€}•-©Œ,_˜ŽÕŠa >™"tú•Ô—v‹•wF€—“5xSu‘cyhi·Åz¢]lŽ7| OŒÞ}°?ዳÛ,º‹Hƒgk‹Mž˜2zÖ”3–4{}‰è”$|.~þ’Y|ÊtŽ}khCŽø~4\r)NHŒ€h>ÊŠê‚9+ÕŠg…ŽŒ‹<œó—U€Î’‚•[ˆ-“N9}K‘…ir[ºŸf²Ž'þZŸŒ¤‚…Lú‹QƒY=´Š"„¾*û‰‹‡×-Š›Šð›E–”†åÕ”—†¨†~’„†o{¥»†4p½Žï…ýe'\…óY-‹Ø†K´Š‹†s<ª‰a‡_*0ˆ¹ŠAʼn?Šª™€•ú'”Œ|„Ÿ‘ï‹ÔyÆ"‹-nÞŽPЉcSŒ¸ŠWf‹.‰ÉJ ‰Ù‰Ì;$ˆ¡Ša(އÑY —‡:‰0—Ì•z“‰:“‰’t‚¸‘‘_wدNlëÔ?acŒ5ŽfU{Š¡·H1‰:k9]‡äÑ&m†ÙÛ u„ó‡•Ü•?šX‹\“=˜Ñ€ë‘ —Iv F•Êka”N_”‹¹“S®Š‘þFqˆ£‘j7ª‡.‘½$^…à“ö£‚æ…*”•¡p‰†“Ÿãt4Žý›ªi9 ™Ë]²‹U˜5Qlj§–×Dƒˆ–5¥†…–«" „ð–·1ƒƒ’•$©‡’“ ¦Ô}Ó¤“r(ŽÝ¢bg$ŒÖ <[’‹ žqO•‰DœÿB*‡žœ|2ÿ…âœvƒý• ‘‚0•@±£…¹“¯{FȬdp^ŽÁ©òeQŒ¨§›YµŠË¥ËM¦ˆì¤Ÿ@‡-¤0…J Þkƒ “7>~?€×–Ó¡ o34ž~p©ƒ¾›ár-y™€s©oV—u6d1”øvåX“’çxÈKL‘zà6¨‹¦ŠN$’ŠŽO „ˆÎ‡¦œ‹‘ƒÏš%z —yHoã•!Žve°’¼¬ZÚO¦ŽŠŒ¼C Œ³ŒÕ4æŠòÓ"k‰§‘]¡†ˆ…)‹ÜœJ—s‚™À–)xZ—”án/”¸“­có’L’„Y'‘œMèŽ ìAUŒ$Ó37ŠE‘ì TˆÀ”  „}ƒgŠ"œ#ž(€X™Žœ~v–ØšÕln”o™Kb(‘ø—ÎWMÇ–žLŸ•¶?p‹£••13‰¥–òñ‡ã”?É‚¸âˆUœ"¥r~|™…£€t­–Å¡”jv”OŸÉ`%‘ÇžU>„œÄIìC›ç=‹.œE.‰‰ œì‡’4Ò,€Ž†‰œ2­|¼™‡«Jrø–¶©h¾”4§^c‘œ¥HSoH¤H Œñ£¼;ŠÄ£","ˆz׆*O€€‹¬¨Yov‚Ò¥KpÅz#¢+rp·ŸKs†gAœfu\Û™Çv­Qÿ—˜'|üO•¦~(C3“k¿54‘c‚ #YV†û î_†·‡Ê¥Á~‡~Ñ¢¶~ÆuúŸ” lœ¿ec™äÏXÜ—R€qN=”ÏHB’˜‚Ž48’„¥"—j‰¡ ¸À†’†g¥ƒÅ}k¡úƒ®tŽžÑƒœk#›øƒ§a¯™ƒÁW–„Ló“û„™@á‘È…‹3GȇN!⎈ŒC †ŒE†p„î¤q‰4{â¡eˆÌrñž<ˆgi›`ˆ`˜z‡åUÜ•à‡æKT“Vˆ?U‘ˆÎ1ÔŠk C¯»Š;…:ƒ„£ðŽ¿z\ ìŽ qJË_gΚîŒÅ^H˜Œ8T•f‹ìI’Ö‹Þ=˜Œb0ŽcŽŒÜ‘œ‡÷ƒn棤”ÌxÅ –“¸o¹g’§f8š†‘¸\§—•ÚRv”ôFGå’_ù;òh.r¿’zóŒ ’æ®…îЀT£u›w/ ^™³n$˜Md’š<—Zõ—D•òP¼”š•(F‘ù”º:•N,q,—‹K‘=›„*€i~«£i¢uu M blK žÈb¶š —œN”\›>D‘§›7Ò(œ )ÁŒ§›ŠWŠ›€•€} £n©¸sÙ G§Ïj²œù¥øa™þ¤mW^–í£!M”&¢”B;‘_¢Ð5ÌŽÌ¢'RŒ.š–g‰ë€€€p°oùx>¬Œq-p7¨èrggs¥—s³^¥¢FuTêŸÕ™ªz¾1=—]}¸£–Rƒ?T”N„ôc¯9t|w&«£ueo§øvSfD¤­wK]j¡bxOS·ž]y›I™›k{)=ʘÍ}#0N–wøæ•H…³2’n„Ý~D®_yuþªÇy¨mÞ§zHe£Îzò\7 ‡{©R…|¦H‚š•}ä<Ê—ö¢/i•–‚V2”BˆW­„È}$­‹}¿tË©õ~l•¦C~icÅ¢ø~ÍZ럫A8 "}’6#‚)[š]‚ž¼˜Ñ‰Jw‘ÞƒrBµÙ}=j±Ø}zbà­¾}¸Z¯©õ~Rx¦&~’I~¢¦a@"Ÿ:€}5*œ.‚>(‘™n…F,—»‹op:ƒqHµ¦i|±¨aϬð¬Y˜© ÙQY¥G‚Hb¡Æ‚±? ž[ƒ›44›P…-'ј‹ˆ$¥–±dj޹‚üp<´n†PhY°m†`‘¬O…áXM¨…ÓP¤£…ØG¡ †;=©³†õ2Ûš¡ˆu&…—Ì‹² •íŽèðŒ¯ýo:³ß‹g6¯èŠ©_H«ÑŠEVò¨‰þN”¤+‰ÊE‹ §‰ü<"7Š“1OšŒ+$ë—,¯Ä•Y^«Šo€tn³zNf¯~™^«bŽëU¯§—ŽjM>£½ŽD* 8Ž:²œÄŽ–/Ö™˜}#_–—“B¡”‹ì†€lÖ³*•Êdɯ-”Ü\Í« “øT\§B“IK×£h’¿B±Ÿã’¾9#œl“f.#™<•©!g–5–…E“¾ŠSU€k›²ï›ëcx®õšä[aªÖ™òRÚ§ ™0J:£1˜¤@ùŸ¬˜Û7Gœ4š+÷™ šåŸ–”´ i’Šˆd€€jj²¿¢ÙbB®Ç¡¤Z#ª¨ ŽQŠ¦ßŸÚHУŸ?vŸ~ L5£œ Y*˜çœj–’û ú€€×¶rámnÉsýo~ºzu%q´«gvAsžœ,whuŒ,x˜wj{“yãyDij{KzùUR|ÿ|Ô=´ rƒ`„XÕ quÞÇrcw¸„s¿xv©€uy’šRvOz¹Šuw{Òzy}h zt~T&| i<×~Bû…ÞÓvon~FÄøpã~¹¶yrk9§“sÏ›˜†u=€ˆÏv§€ixŽx&€àf¿y¡bS{E‚<}'ƒ8€¢‡SÑ7mî†¼ÂÆo…†_´Pq/†¥†r«…±––t.…b‡uª…"vîw7„ïeXx¾„ÐQézi„Ü;>|?…iëVˆ­Îûl“@ÀžnCŽ%²:p£ˆq”‹ø”±s(Šî…Ct±ŠuUvI‰&cúw݈_PÙy“‡µ:…{a‡¢Å~‰ḛ̂kƒ—̾NmK•ó¯ào(” ¡6pÁ’O’hr\ƒséŽþsCuƒzbwŒOFx»ŠÓ9z_Š:°|r‹HÊ€j« {¼l‰Ü­xn€›"žÌp˜¹ûq¼–L€¶sH”pútÜ‘ô`v]MpwåŽ97yBAKzDŒyÈ#j=©a¹¸l ¦«5m좺œŒoˆŸ¡·q%œz~r®™›nÖt<–È^ u¬”@K±w‘ê50x%´ìx’ŒËÅèj²‘·{kÅ®¦¨ñm—ª™šGo)¦×‹npº£|=r7Ÿƒls´œ[ëu ˜üIªvE–+3w”ûôw0ŠÉÃ¥j¼.µ%kÒ·¨¦€m—²û—Ño®¨ˆïpŒªDy¿qì¦BjsG¢WYetqžÞGui›Õ0~uÙæ \uû‰Áfj_ƶ²ôkõÁ˜¤[mš¼S•«o·l†Áp`²uwq§­ögérã©¢W+sã¥ðD¾t—£.(t†ÿ 'tô‡ŠÍªxblð¿ãynú²(y±q'£êzRs•Œzøu"†V{Àvûv„|«xâe}·z¯Q¶ |¯:܀ͤ„û…FË“v­tß½Ýw{v+°0xSw¢yxÄ“¸yâz„£zÅ{8tü{Å|}c¸|Û}½Pˆ~-69÷Ù*Uƒ—†ºÉtu|Ò»Ïv}a®1w }þ !wî~…‘ñxÓƒyÍ¡s„zä€;bi|€èOg}QÓ9~êƒG ‚=ˆÇJs²„Ú¹¯t„ª¬uÞ„}ž vÔ„\ wÌ„E©|¬•F)¥|J•» ,{†3¦ë|!¯Èšò|'¬¶Žõ|'©™‚ |"¦£v'|£¬i"| û[§|žtLÃ|œv<{Ý›„&é{™ZÐz+„›¤Á|;¹0˜Þ|*µªŒø|²€§{ù®½t*{Ù«eg"{ŨkYŸ{§¥½J¦{}£ú9Ã{¡ë$myĘ¡Ïxðƒ@¯e‰Kk¹¤ˆœm³˜æ‡èoÈŒü‡Lq¯€ú†´sªt†Au˜f™…äw¦Wƒ…µy¿F¯…Ä|72U†{qFЇx­†‡êrS¢>‡Rs¹—†¶u2‹6†1vˆ=…®wêrl…LyTe„ÿzàV*„Ù|‡Ex„é~’1O…ŽoŠˆ¹ˆ—«Ÿ†¨xô _†#yÊ•;…›z®‰o…${{}Œ„¯|RpÚ„]}7c®„~;TÞ„jDM„0S„¤ƒ†؇o‰¢©·…°žt… ö“K„‘€E‡Ž„%€{¾ƒ¸€åo(ƒoKbƒ:ÍSyƒ&‚€C#ƒ:ƒœ/dƒ¿…¸2†!Šš§À„|†ƒœ‰„ †C‘hƒ˜†…¼ƒ2…Ñyû‚Ë…¤m~‚‰…‹`‚Z…‹R‚N…¼B‚k†J.…‚㈚„Ö‹}¥¶ƒ®vš|ƒGŒ±V‚ً탲‚v‹9wù‚ŠŠkʉ÷^¯–‰zP_ƒ‰5@uމQ,ÝÕŠÐ3‚ߊô£Çƒ”Š˜|‚¨“@?‚H‘óœäÂuåv–i…*ŽŒ\´€ë›N{€ÄŒð>§€­Œ¸*À€¤ŽU ×€¥ˆ¯¡¥‚š›ñ–o‚4š+‹Eǘaª\–¯sõ€ç•gž€““}ZØ€H’L²€ ‘<ïÒ„(¸p’- Ñ~¤†£Ÿ˜‚X£Ÿ”jè¡b‰EoŸ}®€úœøqù€zšÒe¨€˜àXå»—J¿h•¯:í•&r~@•¦2|ç„Þv‚M«Ò’BÓ©0‡N¦‰{}€Ê¤oÇ€5¡cu¿ŸAVªH6Hh~Ô›Â8W~<›k#¤}˜é{cƒR›Y‚]´Ú=бЅ$3®Åy“€ž«åmÜ÷©a‡n¦¤T´~Þ¤’FV~K£€6}~¡E!{Á–^özþ‚¥Hk†šŽŽ(ms%ox„û‹øqXy¿ŠðsKmŠu<`݉GwRRˆ®y€B“ˆR|.ñˆ·£rŒ/ˆ£RŽq±˜ÍŒõsŽl‹Ýt“ƒIŠæuîx‰ñwWkü‰"xÎ_kˆfzmQ<‡Õ|1A^‡x~k-è‡Ë¥·ŠÊ‰!¡„ŒÚwã—‹ØxÊŒ¦ŠÎy¾•‰äzvpˆú{‡jvˆ8|„^‡‰}¦O÷†ÿ~þ@6†¡€Ô,é†áƒÄ‰]ŠŸ·‹À~2•2ŠÌ~˜ŠË‰ÐLjíqt³ˆåhÓ‡M€o\†¥N™†$‚?…̃a+÷…û†d‡ë‹ÜŠÏ„š“_‰Ý„‡ˆþˆà„y~ˆ„os‡„og7†h„…Zü…Å„¹MC…L…(=ô„ý† +…ˆ_Ά€Š¯›êŠ ‹'‘j‰Їˆ(Š|‡H‰™q†c‰$eX…ªˆÊY.…ˆK’„‚ˆ‘’Ïr¡…’‘0t&{$Çu‚p¤ŽavéeB'xhYiŒzKî‹{ò<ÈŠV~W)ÓŠp‚ŒÝ‰{—`“Ivñ’‘Àwñƒè,xÿy‰ŽÍyìopzácÒŒA{òX‹%},J·Š9~©;©‰~€¹(݉€„9 x‹1‰•ª’D|Ó‹ÙÃ}a‚*7}úwØÜ~~mwŒ bF‹W³V£Š?€Ii‰[˜:Œˆ§ƒB'󈕆” ô‰™ˆÂ“ò‘\‚ÔŠ'Ý‚õ€{ŽPƒv5Œöƒ;kà‹šƒ_`ŠrƒŸU5‰]„H#ˆ€„¯9|‡Ö…é'‡²‰ {ˆ$ˆp’"ˆûˆP$ˆ²~šœˆptXŒBˆ%jŠã‡à^õ‰¹‡»Svˆž‡ºF}‡ºˆ 7ó†ÿˆô%i†®ŒP f† ‡cú?†~ŽŽŽ|±ærl‹¶6hŠQŒ‹]‰!ŒQ•‡þ‹¦D«‡‹«6+†(Œq#<…‘¹vƒâ… Žj’•æ„›Ž”Íz⌕“¸p¡‹4’ŸfM‰Ê‘Œ[Fˆ“¦OÒ‡fëBó†\±4w…Xs! „p’»ÑÞƒAŒˆLœÕ‚¿Î›Xy Œ=™ànÊŠÔ˜jds‰_–üYmˆ•ÅMö†à”ÆA…¾”l2w„’•€ÀƒR”Ê…€´Š–1¤Q€Ã­¢‡wŒ Æl¾ŠŸ bb‰]WV‡Â›üKÓ†lšõ>Æ…+šè/܃ϛ Ê‚'’Ê…€Zˆ .¬˜~㚪|u4‹ï¨njôŠm¦z`“ˆÙ¤§U‡q£MIò†¢¢<¿„¤¢X-„ƒžÆ €öð€€œ@k{‡š(mG~˜o#td–pëj¦”rÅ_ì’^t´T³ºvÔG×Zy#9SŽ@|&®ŽB€R X‡„Ž–›&pÑ…„™r4|–ós¥rë• ui*“'vg^‚‘wwòSdÚy®F Ž~{ª82c~@%¶I‚x ¨Ž|‡4 šv*ƒû˜w%{•÷x+ql”y$g¹’;z(]'”{OR#Žÿ|¥Ev§~L7Œ‰€$ÈŒS„È 9Œ¾†é‹z™!{ ‚d—|7ys• |ØoØ“-}tf1‘N~[³©~çPÅŽÝD9ŒÅ)6 ‹¯ƒ$#å‹b‡J Ñ‹†£‰å˜@6€Ò–=nwã”)­nQ’Kîdµh‚;ZGŽÃ‚ªOl/ƒBC‹ç„05ŠÛ…Í#ŠzŠ s‰£†cˆ7—…†ö•‰†Ñv“z†³lŒ‘›†˜bñ´†ˆXŒŽ †M¼Œu†ÜAh‹&‡|3Š ˆá!_‰ ‡ …†––èŒÒ}c”öŒUtJ’ñ‹àj´‘‹ka(‹V³|ŠÀKå‹ßŠ®?œŠ}‹1¹‰=Œv'ˆuÖ…iƒE„¿–“{›”‡’• S(Œƒ”7HVŠÑ“§< ‰D“é.‡¸•®Œ†_‘óG¯€0&– Îw÷”ŸRnÚ‘ìäe<úœˆ[†ø›FQŒ+š[F:Š_™æ9ˆ´š³+c†ùš¬x…JÞ€€M–¨±v.“ò¦ïm!‘Ã¥AcÈ£¾Yú¢mOO‹Ü¡®D^‰ø¡Ð7»ˆ0¡s)†D›»˜„0쀀…D£_k¸|ì Êm\tž(o kÉ›¸pÂbÆ™FrŒX—txNA”ÿvšB“7xú4D‘¿{ü" ‘—€Óó‘Ï…`ƒò¢Tpœ{šŸ¿qésosAjrš¸t–ai˜UuúWs–.wŒM ”yW@ó’W{o31Ü~:!4•ƒ›ë…$‚•¡QuŒz9žÃv}rœ&wwi™Éxv`—ly„V1•Kz¿KÞ“>|/?Û‘{}ÿ2*ý€• Q•…—HŽ&„ì. ^z™xÉÖ{5p‹›<{×gŸ˜ß|†^ª–}DTØ”_~.J—’RJ>±–€Í1$ƒ xŽ›ˆTúŒ€„¸½Ÿ…ÃwZœü€ oša€]f8˜€½]J•™-S†“xÇIU‘j‚“=޵ƒÅ0*ŽF…Ю©Šö³Šþ„ˆ~5žÍ…uÄœK…mv™´…d—S…([Ÿ”è…GQà’Å…’G¶´†<Ž÷‡.¯xˆøùŒ¹¦ùˆüƒ]|ºž1Š’t/›¹ŠCkÁ™-‰übЖ͉¾YØ”a‰ŽP’;‰Eì&‰Ë:=ŽXŠž,팵Œº´‹É'v†Êª{ ÇrŠ›IÕj#˜´1a/–RŽ¢X-“ãŽ%Nl‘ºâD= ã8’¿Žª+>‹ù‘1{Š×4„Ñ€#yoy–³péšö•¶h{˜Y”Â_€•ó“îVs““4L«‘O’ÀBs)’§6·4“¡);‹J•®î‰òŽÔ€"€w½Nvo&šÇœEf£˜$›%]•¸š%T“;™KJ¬û˜Ú@`Ž¿™4rŒ±šf&Š£š¹ˆÿŒ©€€v3¤õm𤣋e—ø¢9[÷•…¡%RÍ’ÿ VHë± =>ŠŽ` á2lŒ: ^$%Š˜pö‡˜ŠË€€zMªõl$r‘§åm«k¤Èo9b®¡êpÖZPŸ r…PòœutcG™öv};Œ—Óxé.Q–|À•ɤ“ ƒry+©øp•qo¦áqØiߣºs#aƒ ætlYžuÁOÆ›†wREÿ™ y!:…–è{R-U• ~Wæ”´„&Û‘5ƒIwö¨þup8¥êvh£¢Åw`MŸöxWê*yN¦šz[Dó˜${ß9ˆ–}Ö,d”4€º“£†Ñ¡jƒ"vÁ¨ yÁnö¤ýzpgQ¡Ý{&^ÿŸ {ÞV£œ=|¢Ml™°}¢CÇ—7~ß8v•€—+s“KƒPN’—‰Ol¾‚ýuw§9~€m­¤(~êf¡]]ºž.ÒUc›W€UL6˜ÉBŸ–Q‚ 7i”6ƒ†*’j†”‘–‹”:Œ6‚Üt¦‚ƒtlB£vƒœdŠ UƒÍ\6€ƒýSÙš¨„;J­˜„¶A•ž…r5î“{†Å) ‘‰iݲÒ¦Š6ËrÕ¥Ûˆ…jۢ߈qbþŸËˆjZœœúˆWR1š"ˆRI—’ˆ?c•‰4=’áŠf'jâ„…äŽSˆ €8qW¥jŽia¢i®a†ŸOPYœŒùP¥™¦ŒµGm—Œ½=È””!2¡’OŽ%Ä/‘«;ƒ€o䥓çg袓8`žó’—Wœ!’O™D‘•EÖ¯‘<”&‘è0БӓÕ#Á›•|¿Ž‹S€€nb¤ÕšGfR¡×™u^Už¼˜ºUÏ›æ˜M0™—‘CØ–b—œ:“̘€.‘o™í!-–V ÓŒ‰Y€€lö¤³¡ndá¡° h\ÛžŸ…TG›³žÝK”˜ÈžB(– Ÿ/8;“}ŸÇ,ˆ‘žŒŽË”§ WŠå‡«€€nÚ³Zl·gįÚn`Û¬PoRY3¨÷pÐQ„¥rdHÓ¢Œt6?¤Ÿ—vI4¹xÇ(› |)ý𻂻”S±n²=pÊf⮿qÛ_ï«5rïX9§èt%Pz¤›umGΡvþ>°žœxÖ3Ñœ{''-š~v8™…5[’b˜m±?tåeâ­Äu¹^åª:v’W1¦ïw‡Ot£¥xŒFÔ œyß=ƨ{{2ò›!}¡&U™€é{˜j‡„8‘€kú°XydɬÛy³]¿©MzZV ¦{NR¢±{ãE»Ÿ©|ý<¸œ·~b1úš0€[%z˜ƒ—Æ—I‰§Žßjjä¯y}gc°«ü}Ï\ ¨n~>Tî¥~ÅM4¡Ç^D¥žÀ€C;«›Ðu1™IƒD$©—$†}–3‹šúSViÀ®ºÿbw«D‚-[O§¹‚cS“¤k‚±KÍ¡ƒC:žƒÂ:<›„Æ/Ÿ˜†‰#L–XŠn•JŒv‰‹T€]h¨®†±a>ª®†¯Yï§(†¸R £à†ÎJH Ž†øA©‰‡y8ššˆ]-ý—üŠB!Ÿ•§Ž8”FŠ÷†l€g_­˜‹Ö_óª*‹ŒX¢¦¥‹NPÆ£`‹-HÛ ‹'@0‹…7šŒ],o—rŽ  •‘—0“‰˜1€f(­+‘>^®©Ã¼WJ¦AJO]¢þÿG[Ÿ¯Ü>œ¬35k™º‘5*¥— “Êø”’”C û‘ˆ€€dì¬Ý—G]R©}–®Uɦ–.MÁ¢À•ÚE Ÿm•Á<Åœh–_3m™t—ö(`–͘ö$”q’Z \œ†T€€c¦¬¢ž\©FQTv¥Ïœ´LY¢‹œ{DŸ4œ¼;&œ-æ1ª™9ž9&W–›™ì‰”`— é„Ò€€Í'o§hº¿bpûk4±§r[mÚ£ks­p&•u rˆ…ßvrt«vwøvÚd¶y¤xÜQf{©{:T~}^ÿ‚ó‚vË mŸq½Zo-r·¯´pÌt…¡ˆrKv“7sÖw—„'uay t‹wz’cTx½|P5z¸}˜9o|ÿvÀm„ÈÍkÃyJ»6m€z4­¦oO{1Ÿšpö{ÿ‘kr§|Ô‚tT}šs v~obwØDOyË€G8•{ûŸ„ð…•Æ‚j —¸þkò¹«mëã‘o¯‚€qz‚'€ºs<‚Kqlu‚z`—vႳMíxÛƒ7ÇzþƒÚM~†þÄDhw‰ò¶×j}‰\©olšˆÅ›™nuˆ4¡pU‡£~ür'‡"oÒt †­_5uê†BLÙwò…ò7z † } ˆGÁûg3’N´‹iW‘§k“«™Qm~Žo‹dok1|×qEŒmÊs,Šú]`u ‰úKHw‰5„xëˆÅò{7‰™¿Íf/šÄ²Hhm˜¸¤¼jÅ–š–ñlº”¸‰n­’Õz‰p‰‘k‘rmh[Ut;àIyvŒ|3’w©‹Ü~ygг½je–£h¯ùgÆ À¢j ž”»l›y†Ðmù˜åxboÕ–…i{qµ”/Yhss’GÁu%21¶vdfYwÕŠa»)e8¬N­¼g[©  Ai”¥¬’€kƒ¢ƒ„”mrŸKv/oDœSgSq™fWVr¶–ËEÅt9”w/£u“Æ  vxˆ‰¸àe*µ•«egD±¿Õis­ÍkOª‚#m&¦^sÃnÝ¢ídèpŒŸ’TårœžC=s8š%-sœ˜} ?uH†í¶˜e@¿¾©1gC»U›³iW¶Òõk²–€là®Qq£n}ªnbÇp ¦·R¾qT£š@ürB¡E*Çr#œj9tD…étæhn¶¯uÌjÞ©Év»muœQwoÁ޽x„r%€EyŒtOq6z¸v†`}| xœMØ}¶zá7wÏ}xü„´ƒ`ÁŽrúp?´©tqô§Õu5sÇšpv@u[ŒìwQvþ~”xxx„o­y¾z_{{©L¥|Ä}k6Š~Ç‹œƒ.„á¿hq4x²—rvy¥×sÅz ˜Žtó{ ‹)v%||õwh|æn4xÈ}Ù]Íz3~ÔK€{Õ€ 5§}ñA­†H½6o’ô°tpù€9£Áro€‡–‘s¶€Ï‰Ftÿ"{3vUnl–wÅÄ\cy=‚,J[zæ‚Ê4Ð|ăëì€6‡•»n‡á®Zo‡~¡¼q+‡”£r††Â‡nsâ†myyuG†jÿvÃ…Ø[xI…¥IDyý…ž4{І3~ΈƸÅlðجnˆŽÌŸwp0¼’jq˜ŒÃ…@rþ‹ÍwbtiŠéiuçŠ Y5wh‰NGµy ˆº2~zªˆâU}‰â¶¡kò—ñ©âm¥–3&oj”hpÛ’Ö‚õrD‘Gu(s®ÓfÜu'ŽgW7v—)EèxŒ!0ƒy_Œõ{#ŠÊ´Dkb 6§mæšön¹›‡ôp)™Z€Ñq•—*srü•dØtn“UVuÌ‘VD3w&Û.ŸxÈ ìyvˆ¼² jÿ¨Á¥il˜¥ß˜Än@¢ì‹Çoª +~¥qepñrkšÌb¿s͘=SOu–B9v8”/,‚v¸”& Jx†õ¯ÈjÞ±º£lq®R–dnªÖ‰iol§˜|Gp½¤Vn•r¡O`bsFž^Pèt\›Þ?²u;š)éu9˜oýv½…g­€j뻈 ìlf·›”Mm곜‡Xo3¯àz4ps¬&l„q¢¨¼^NrÈ¥NÉs²¢ù=rtG¡'s·š¿ uÍ„º.z1h,®z­j‘¡ì{.m•/{¬o_ˆV|/q¹z•|ÖsçlD}Ÿv(\9~•xTJBÝz¾4”¬}“ò†‰„,¸#x\oˆ¬yqAŸÿy·s“SzXt¯†ŒzþvYxë{¿wðjÀ|yŸZÜ}Ÿ{JI ~é}93€¥¡o……¶v³véªw€wúž xUy‘{yz„ÐyÔ{$wPz¬|$iJ{ }7YŒ|­~\Gæ}ùÌ2±¡Åóƒ…†Ö³ðu-~a§îv~Çœw 6‡wàž‚ôxµ€u“yž€‚g¯zŸX#{¹F¾} ‚~1Ð~£ƒÿ‚ˆ ±ÍsÓ…å¥ßtÐ…¯šu×…~ v¼…P"w¢…(sÞx˜… fy¤„øVÁzÊ…E¤|$…F0ÿ}®†L€˜‰!¯˜rµy£¬sÈŒ©—Ït勨‹vuÕ‹vÊ\qÕw½‰±d)xɉTüy舚D{0ˆ]/k|ƒ‰ Ð~Š!­~q•-¡‚r•t%’F‰:u÷|Ìv ­o®wŽ|bxZS yŒjBKz7‹Å-g{0ŒW |ɉ*«4q0ŸNrP›$“qsx™"‡%to—Bz»u`•am«vT“¥`"wN‘÷Q5xG@—yC†+wy×G {‡-© pË¥O+qà¢Ð‘Prý E… sïÝx¡tÚ›rkšuÙ5^v­— O8w‰•;>žxT“î)Oxx”Zyx…t¦Óp¥­óšìq±ªúrçõ‚½s¨¥vUt„¢CiPuXŸ£[Ëv&#LÛvØ›<w[š&§vô˜7Øx ƒô¤‘p©·k˜Æqœ³÷Œúr‘°y€¼sh­1tRt6©ðgNtö¦ýYÄu©¤GJÄv2¢c9×vk ³$?uk˜‚ôyQ‚¬°Ÿ—gé¥1¨jI™ãºlÊÛØo¹üqVtª€Cs†g€§uÏWÁ:xF™‚z›1°ƒ}¯ïˆa„Û®ª}Ün×£H~p˜˜~QrrŒ ~tø~ÑuÁs/wee‘¦y%Vg€EzíEc*}0®‚˜¹O†Ö†!¬©|NuÌ¡V|¤vó–|þx,Š>}Ty<~E}¬zUqt~{ld!~©|œUT}çD8€:Œ/·–Û¹…F‡Sª zá|ØŸT{P}c”"{Ã}úˆU|*~|s|’o¿} bŒ}ª€HS³~`CN‚2.Ì€˜„-ƒºˆo¨ŽyœƒóTzƒð’3z™ƒó†{{ƒïz¬{„ƒón|ƒÿ`û|±„RT}r„`Aó~h„ð-ð£†l­‚O‰s¦ix‹$›2yŠ”y¯Š„cz,‰}x z§ˆøl{6ˆ„_{Õˆ!P˜|‡ê@d}sˆ,Q~u‰<q€j‰Ä¤`w¬’t™xN‘Uæxõ4‚>yw'v€yóŽj z}/]{ŒRN³{¹‹¯>›|v‹m*@}Œ³ I~V‡¡¢#wš –÷w³˜k‹ÛxL–Ê€=xÍ•7t„yH“¤hyÍ’4[:zXÚLêzéÌ<ç{8(C{»®q|w…µ v³¡á”áwBŸÈ‰ÌwÒ©~5xM›šrx™Šfy<—¦YCy¶•ÝJùz,”v:ïz“º& zV”`úzØ„ Óvƒª1’­w §ª‡Žw”¥{úx¢«pExi :cæxÏžWy.›óH¨y|šn8hyœš #RxÏ—ÕÓyˆ‚–›¨vx³N›ví°X…”w^­bzwÀªnSx§Æaõxk¥NUx²£%FœxØ¡ô6&x± 3 ×wA–4ÿ| Y§… g¸œR„Ìj‘È„xls†v„5n¨{ ƒõpïn°ƒ×s!aɃÐuqS>ƒúwÅBõ„mzu.Ö…š}ËŠ …}¥!ƒƒn8š|ƒPo÷ûƒqÌ„µ‚õsqyV‚Ðu%m‚ÇvÖ`Q‚Ôx§Qçƒ zŒA»ƒ~|Ó-Ç„™ÒWˆu†«£3‚t¿˜šõuòŽ#Úw6‚òÅxWw¬²y‚kˆ¼z±^æÛ{þPœ‚}o@Ž‚‘J,ăšô©†Õ‡Æ¡G€·{a–¯€°|Œ5€«|¹€£}[u怜~ iÝ€²~½]Y€Ý‹O9(€„?b¦å+΂Ÿ„6…MˆÎŸK„‚”ˆ‚9ŠVŒ‚dJŽ‚‹t+‚ºh:°‚ó[ÐãƒBMÝ€:ƒ¾>D€Â„š*竆“sƒæ‰¿8~‰ˆæ’³~™ˆŠˆG~¨ˆ3}G~°‡ßr3~µ‡’fU~Õ‡UYþ‡-L*V‡8<´̇©):€|‰| ?óˆH›@}³Ô¯}ÓŽø†4}óŽ{9}þSp,~ŒŽd\~‹àX~A‹IJS~}Šô:ë~Ì‹'( 0Ɔ6™}!— Ž¡}9•¼„>}O”lyO}V“'nF}W‘åb‚}kÃVE}…»H•}« 97}ÓŽñ% }¸ân}Ñ„Y—|´žŠŒš|ǜȂA|Ö›wY|Ø™QlV|Ï— `™|Ø–Ta|â”°F°|í“·7>|å“—"Å|O”9 |‚¼”à||¦ƒŠq|Œ¤b€|˜¢Cu/| 5j/|sž1^v|hœbR:|YšÊDl|@™Í4¶{ø™ëõzÉ•›õ|±S’À|l¯Gˆk|j¬Ã~$|bªEsK|I§æhN| ¥\•|£¥PU{Ü¢Bk{ž¡ƒ2q{Ÿay8“Ý/±€ =Šßg¡“?Š$ià‰k‰gl8~ˈ½nbtˆpžhk‡”rÐ\7‡&u%Ne†íw‹>å†üzZ+h‡ç}ú]‹×†3›n‰dm·‘}ˆÀos‡´ˆqC}‡ˆrërr†ùt f݆Šv[Zʆ-x;M…þz;=­†|¬*V†æ€ §Š‡N™—ˆ sа‡yu…î†æv^{l†dwpÖ…ãxÆe^…„z Yj…8{qKÒ…}<ƒ…#)O…æ‚1 ýˆpˆV—ĆÂz܆DzÈ„…Â{”y¤…J|Qo"„Ò}cÄ|}îWê„:~àJx„ €;Y„9¬(U„é„‚ _†åˆ]•ä… €WŒ…)€¡‚K„¯€ówê„=@myƒÉ—b/ƒ{ûVnƒA‚yI%ƒ1ƒ/:=ƒU„['jƒõ†õ Í…|‡û“ꄱ†ÆŠ„D†€SƒÓ†zuüƒd†Xk”‚ñ†@`[‚¢†7T«‚e†IG{‚N†š8¯‚`‡j%µ‚ÈŠ µƒƒ†’ƒåPˆ!ƒ†Œ¶~Uƒ"Œ"t‚µ‹“i ‚?‹^s늟RÍ¢ŠME­wŠJ6çbŠã#ˆn¿ÏN„šöƒP”/†(‚ë“)|t‚’&r+‚‘)g͘4\©<]Q €éލC÷€¨ŽY54€kŽÔ!n€ ‘2R‚Öú‚à›Q„6‚x™ãz‰‚ ˜zpG“—eí•ÁZÏ€ª”’O6€F“ŽBë“39“³~§”î}™N‹æ‚¤¢ó‚‚:¡2xjÇŸzn-EÎcÖ€±œ1Xº€7šÌM»™¯?Þ>™R0®~•™Á+}&“ €€‰Ð‚‘«\€$‚©Ev‹§:lW€ÿ¥Lb€[£}VçТ KC<¡=ä~œ¡.e}´žÛ|{—‘;€€“Yæg•‰þ¹i΀̎‡lvØun=l׌fpjaÕ‹r˜VOгtîI(Š"wa:R‰àzK'BŠ©~C Ï™‡‘ ŠmHˆUŽlo 2IpàuFŒJr‡kH‹Pt9`\Š|uúTô‰»wæGæ‰2yý9$ˆð|–&7‰¡€_ <‹É†ëãŽDrö†¢5tH}‡Œ u«s­‹/våiÊBx)^ò‰{y~S§ˆÈzûF°ˆF|´8ˆ~ý%7ˆš‚¢ ²Š†ŽŽ$xÄ„äŒy§{Ê‹z–rŠ{kh(‰6|I]mˆv}9R:‡Ê~LEf‡R¢6⇌$B‡—… 1ˆ‚†7ŒcŒ~­ƒ.‹&zŠªpa‰€f˜ˆ1€“[ñ‡vPÓ†ÎÉD#†a‚¹5φ1„;#]†œ‡±¼‡…芉‹„¸RŠ%„Ëx;‰+„èn‡ˆF„ôdƇ^…Z,†¢…1O…÷…{B‚…‚†4E…@‡O!¥…vŠþÓ…„ˆ¿ŠOŠßz‰kŠvQˆŠHlž‡œ‰óbÞ†²‰¥XM…ñ‰rME…>‰c@¸„´‰¹2„JŠÛo„,ŽI&‚î‚ΆÉ¿‘c}”ˆÕ®t‡âjÕ†ýHa†Ž—VŒ…JŽ KЄޥ?ƒîÃ0̓ZŽôH‚Ù‘-½€û-„݉P˜+{¶ˆc—r¨‡j– i†€”ü_A…‹“õTº„»“I¸ƒï’{=+ƒ5’†.Ñ‚s”Ü’)€€‚䉟yy·ˆžpž‡ œÏfö†,›~]6…)š?R­„F™EG¢ƒa˜©:ï‚…™,A‰™€×€ €€€êˆê§ƒwÔ‡í¥Ünцà¤Ie.…á¢Ç[l„Ñ¡lPàƒÝ ƒEÌ‚à T8ôâ \)ñ€¨œ\~ˆŽ8€€‰ —_g®€‚•½iÇx”kónÓ’Žne‰‘p![8¶rNPdŽ}t¨CèŒw+5¾Œôz6# ¦~“.…‡–lö~ý”€n§v–’âphm\‘mr dús¼YÕŽµu‡O†wBµŒœy³4™Œ|z" Œ˜€ÇT„Ï…õ”ár9}i“Vs†u‘ÄtákÝZv%b¥ŽòwvX¹xàMàŒ“zvA‹¯|V3‹~Ü!‹‹ƒ)°‹˜„…„W“Áwž{Ë’@xŠsh¶yjLPzla$é{cWŒ´|rLˆ‹“}«@SŠ·42gŠ%j Š…ÆK‰û„A‚¸’¸} z4‘<}¯qÖ¶~IhÈŽQ~Û_®ŒçyU­‹´€/K5Š• ?‰Ã‚:1]‰=„?‰€ˆ›€ÿ‘Ö‚Èxud‚ýp Žèƒ=g„ƒv]팃»S÷Šå„IŠ‰Ã„¡=‡ˆé…ˆ/׈P‡<ˆd‹¢1†‚ÖS‘ˆ‹vµ±ˆkn6Ž@ˆVe)Œßˆ9\‹sˆ(R Š<ˆ5G¸‰ˆo;¿ˆ'‰$.‡eŠâ;‡/Žy¸„j*}tˆŽ¶tçŽ7ly¨ÂcnŒEMZSŠØŒæPf‰Œ¥FˆoŒ˜:‡k-,]†~5…ó裀{©•#s Ž«”Oj³/“†a§‹É’ÄXˆŠV’Nš‰‘˜D2‡Ö‘c83†¹’ *]…Ÿ”'|„³4€€yÎÒœq:Ž`› h½ŒÝš _­‹p™V‡‰ó˜=L“ˆž—´B‡H—¦5õ† ˜ß'Ĺ˜øSƒQ€€wð££ÍomŽ&¢{gŒ–¡B]ò‹! ,TʼnšŸLJˈ5žû@I†ÆŸ3÷…gŸt%hƒÝ™K“¶‹5€€~«žIgèvÆœ/iÙoš kÙf‚˜mÕ]é–oäTD”Ur J’±th>C‘bvû0·zz(h‘% œƒ }Hl¾uišþnZm¸˜âpe+–õq¡\• sNRú“VuHꑹw%=#nyr/Ÿ„|jl ZH޹‚å{Õ›ëq™sú™àrßlK—Ìt.cË•éuy[>”vÑQ½’\xNGÄÅyý< |.‘Ž‘~ËzŽ÷ƒî÷Œõ‚®zašÔv˜r˜Òw‰jÌ–Æx„bW”åy€YØ“zŒPi‘Y{¹FƒÅ}:䎅~Ò-…ž]’冼ª‹P‚zxå™Õ{±q —×|SiY•Î|þ`ð“ë}®X}’~mOZLEFŽÇ€Z9ÂË,…Œ³„¹ŒÛ‰Vd‰Ï‚KwP˜ú€öok—Kg¬•©_C“#‚ VÑ‘:‚}MxƒC¨ûƒÕ83Œ¼…+‹Ë‡Nó‹Ì‹ðχÝ9uɘ=†VmË–U†ceî”`†{]~’ƒ†’Uš†¸K¬Žð‡AÝW‡‹6pŒˆ¨)@Šë‹&—Š·ŽP„ó€t—¯Œ(l•Ä‹ÜdG“Ë‹œ[Ö‘î‹eSU‹CIýŽX‹O@,Œ»‹Ÿ4ËSŒ»'ŒŠ©D‰›´€€re—>’;jp•Q‘£b˜“T‘Z!‘t Q—ˆDH:Ô&>bŒ*c2芬‘Ã%‡‰@”¹ˆQ‹û€€pª–ò˜Ûh¦•˜`»’ÿ—_X:‘–ÂO£&–LF:c–:¯“­Ç3®’|&ßì„Jc‘‰©Šü€¿mr –EfžÅ^î›”€PW™D€ÓO/–òeFe”á‚'=#’èƒ)2.‘J„½%j ‡°”‹Ïˆy€lŸÑ„Dd©h„‰]Ušð„ÜUm˜¥…M}–V…oD­”F…ø;f’K†Ê0t›ˆa#ª4‹ÝBŽå‹«‚ЀjŽŸ>‰½c œÕ‰°[КZ‰±S☉²Kå•ĉÇC“´Š9Á‘·ŠÐ.ÎôŒ”!ùŽgì"hŠ;€€i žÉsa—œ`#ZA™åŽåRI—œŽ±J<•KŽœA\“7ŽÛ7þ‘2™,ö_‘éï·“Ÿ Þ‹™ˆ³€€gwžt•´_óœ•CX…™•”íP|—H”¤H[”?g’Ï”ô5íº–C*­ŽÜ—á0*“¼ ;‰²†ë€€fž/œ¦^x›Êœ W™P›™Né–þ›[F´”œ›|=­’sœ4Os( Žf›x«Œ¨’üˆ…f€€hÇ­éh˜b ªìj=[¥§ëkæT_¥m²M¢2o’D­Ÿœq£;Ä)sñ1›4vŸ$„™âz'åšß€š’X€gج±l±a/©·nZ³¦·o„Sc£éqL¡r›C¬ž’tm:Öœ!v0(š,y#•˜Ô|w™ƒ$€fÇ«Ÿp¿`¨©qíYŸ¥«s!RU¢àteK u¸BµwN9ð› y)/I™*{"¯—Ê~ðN˜9…jŽ€e¤ª–tà^ó§¥uÛXl¤ªvÞQ(¡àwìIÛŸy Aœœzi8äš"|.O˜,~;!ǖƦ—–߇”Œ*€dq©šy$]Ħ­yéW>£¶z·P ì{’H¸ž|~@ƒ›˜}©7×™--V—9$ è•Ì„™‰Šh€c8¨Á}¬\x¥Ü~8UÛ¢ë~ÏN• %qGD[€'? šØ6]˜o‚h+ã–r„iz”ðˆL\”!‰¶†?€b¨ ‚U[/¥-‚®Th¢DƒMŸ…ƒ€E¬œÁ„=išB„Í4¬—Ü…ù*0•ψ&¼”,Œ( R’qˆT€Ý€`®§k‡]Y̤’‡uS¡ª‡›K£žñ‡ÒD-œ2ˆ&;Þ™·ˆÒ3—R‰ö(•6Œ “s˜ su‡€€_e¦éŒ¬Xt¤ŒQ¡3Œ…J&ž|Œ–Bš›½ŒÐ:7™A{1S–ÜŽÓ&µ”º‘­ñ’ð‘ŠpŽw…µ€€^!¦‡’W £¿’gP æ’PHuž,’]@Ê›e’«8J˜æ“¨/?–}•š$]”d–¾ ’¼•Œ›„€€\À¦<™FU§£x˜ëN  £˜ºFúç˜ë?2›™¡6–˜–›/-e–*›Ë"@”—(Z’™Ã‹‚À€€ÂjlXcúµjm÷fרzo¥iä›q'l†vr®o< tEq°p uút/_bwàvyLÀz)xß5÷|Ù{UX‚§àÀ3jl³Tkón7¦„måpu™#orU‹¢qYt>}Wsvntïwã^vãyžKy${{5{¸}x4€Ú—½ðgótA±,j u›¤vl7w —7nx:‰Úp yo{´qízŽmsç{¼\®uè|àJkx"~.4?zœ®(ƒ1»¨eý|j®ùhF}¢Wj§}¥•7l°~)‡ùn»~´yöp¹5kkrÊÂ[HtÛ€NIJw€ÿ3sy…ùò}”„°¹kd6„›¬×f¥„€ Oi.„j“IkS„E†&mv„!xCoˆ„iÚqªƒïYís̓ÝH8vƒä2µxy„QÕ|"† ·%b»ŒÈª“eN‹ýž gý‹/‘j5Šfƒýlh‰›v2n…ˆãgäp®ˆ5X'rχ”F°u‡ 18w1‡ Æz|‡i´üax• ¨Yd.“†›¸g‘ùŽÄiJ¶k†'sþm¦ÛeÅoÍŒ™V1qß‹wDîsúŠz/LuºŠ8 §x͈±²“`­l¦ cY›V™‡f!™4Œ hk—+–j­•qîlÏ“2cÇnô‘STXpôªCCréŽ6-vt=ç ØwI‡U°J`¦£Ðb£_—Te §ŠugÆž}nj›ZoÒl˜âa·n1–wR[p”TAUqÖ’+gr®’Yiuù…°­÷_â®ù¡xb€«Ç”òe8¨ƒˆgj¥c{i¢9m~kŽŸQ_gm„œ€Po9š>Þp©˜1(Üpæ–ÔIu`„@«±_θ¾ŸJbV´þ’Ùd÷±.†g­‹yi%©ãktk ¦’]_lã£pMòni ì<¬o†Ÿ4&ošzxoƒ¹qZcê­6r’f³¡sÕi¦”CtòlA‡jvnñy©wNqekSx¯sè[DzDvAI@|9xÄ3~¯{oK„o€É·\o*k“«.pm©Ÿr oß’gsmqÇ… t½s½wþvu“iÏwŸw{YèyAyNH{2{Q2.}}Ž‚¦‚aµ.m%sA©nËt¦pƒv#ŒqúwgƒäspxµvetóyíhYv’{3X™xA|yFëz.}÷1N|nÁÉ€ùƒß²økE{¦÷m{³› o|qŽ—p—}‚ r*}Èt®sÃ~kfÅuuW7w3ÑEÈy(€»0z{U‚ k…C°Åiœ‚Ǥßk‚Ö™ m—‚팲oD‚ö€@píƒsr˜ƒe8tYƒ*UÝv'ƒLDµx)ƒ–/´zE„gY}þ†ˆ®„h8Š‘¢£jJ‰þ–Ñlp‰mЇn/ˆÞ~$oäˆRpüq˜‡ÐcNs]‡XTu(†ôC-w†¸..xö‡+T|H‡É¬`g’v ri6‘8”k€õˆHmJŽÓ{ío´nÖp»Œ©af‡™Šxihtxßk÷Hy¡nšt0z…qfˆ{‹s—W|ÈvE·~dx¤02€{ŠX†¨®€tQk£u_m—¢vyoN‹¡weq8‰xPs0ryTue zuw UÃ{¿x÷D…}[{#/=z}¤ø„[ƒ"¬ermrP¡s¥s¾•¸têuA‰Óuùv“}Øwwïpÿx&y=cžyazžTxz¹| C_|U}º.S~[Õž‚´„…ªDp¨y¦žðrzn“µsv{D‡ét¡|| uÆ|ÏoOvú}“bxE~gSy«LB;{O€s-u}?‚!J*…Ϩ%oœçpŒ:‘Árs† sX¢zDt’Øm§uÕ‚`†w-‚ZQÀx ‚³A&zPƒD,¦|-„‚ ý†ü¥îm»ˆqš·oSˆ•pú‡°ƒïrI‡Rx4s†úk®tÙ†­^¥v2†oPw¡†K?žy=†a+z؇W }ýˆ£Îl—ó˜nKŽø^pû¿qiv r´Œ3i—sþ‹f\¢uRŠ©N$v­Š=Ýx ‰Ï)yMŠÆ |†*¡„kΗ­–_m|–0‹Ho:”¯¶p•“>t qã‘Íg£s+zZ¿ty8L\uÀŽ6<3w˜'(w¸ŽÓƒze„gŸVk:Ÿ¤”=l⧉0n™›¥}§oð™²qÿq8—½e¤rw•ñXÈs·”:Jptá’Ú:Euð’ %v’ºAxì‚àjí¨‘þlŽ¥”†ìn=£{io† ÀoÅp»žecnqåœ=Vs š:H't˜³7ÎtƘ5"Zt3–cI|#ŒšÛjɱ-àlU®D„ímì«Yyso%¨“mÒpI¥×a~q_£eTrg¡9F#s8Ÿé5›s¥ž¡ðrC•˜œ~ø€i§{c·œ©|fc‘ã|i2†r|ëkµzî}VnJnz}âp½a{~ŒsIR¼muÃB€ªx‚-G‚¡{£ ƒ‡µ‚y¥‘y“j‡š¾z;lš zënÈ„¬{{p´y:| r¬lã|³t–`}uvœQi~cx¢@æ¡zó,F€}º …÷ƒØ£‰wÌqa˜Ìx˜rÞŽ-yltn‚êzuÍw“zÇw6k\{ˆx—^ |azP#}\{?¿~›}}+Q€`ë “„U… ¡~v"xP–Íwy5Œ9xz( xË{uÐyŒ{ãiµz^|Ä]{F}ºNÇ|N~Ê>™}•€**hD‚: '‚φRŸot¢J”Ôu¥¥ŠTv³€ >wŠ€_tx\€ºhy<[–z/ŽMr{E‚=|–‚ñ)Ž~0„¤ Äk‡jHs_†S’´ty†(ˆ8už†}1v…Örw\…®f-xA…“YÃy5…‹KÁzD…£;ù{† 'ñ|ׇ ј†£›7rFx›szŒÃ†tºŒ{u¦‹dpv„оd)wgŠ,WÐxS‰°IèyM‰d:8z`‰{%â{E‹/}œ„Á˜úq…”ÝŽ{r²“®„sé’ytÖ‘Unu¶*bEv•UüwxŽ)H*x]|8ŒyDQ#æy¥†{Óƒ–×p𜀌fršÛ‚sJ™6wt1—”lu •ñ`Uuá”wTvµ“FFw}’!6žx,‘ä!®wõ’£Y|–”¥p–¤•Š4q¼¢‡Ñré ztîsÄžxiît‹œ{^/uLš³Qëv™Dv¤˜4&w˜7óv ”ís=€N’~pe­hˆ(qzªï}ßr”¨zss`¦h t£Ñ\LtÄ¡ÒPue -B uØŸŽ1ðuçžst “<€€žy€Ûc©”?€öf>Š)hò_%kit„6móh³fpe\Z°rôNR‚/u€>~ƒx]*c„µ{¼ Љ-ƒ:œŽ~üj’fAlˆb‹n=}¨¾p)rÛñr"g%€:tZv*M%xH=IüzÀ)Vƒ—}Ð ;‡t„€š˜}Tp{„}¶qÿ†’~s–{ñ~iuq>~³vxe¦wíY‡yKÀ€{-<€÷}=(T‚y€ ¯…Ö…±˜¦{ÂwŽš|Awý„­|Æyz"}#y÷o‡}|zôd }ë{óX~n} Jh~E:÷òß'^^‚W -„U†Ì–¬zX}›Œ²zè~‚Ø{~~xa{êmÛ|O˜bw|Ê€!V•}Y€ÀI~ 9Ý~ô‚&w€J„Ì ¶‚õ†‘”˜y&„HŠ¥yÈ„I€Ïzr„Rvgzæ„Tkî{R„_`ž{Ï„vTÐ|]„£Go}„ú8S}Þ…³$Ì~î‡ÔË…E’›x‹ˆ¡xÓŠ–~Ày”Št^z‰®iîz{‰F^­zõˆðRî{wˆ³E | ˆ±6‘|º‰*"«}V‹›ƒslw^’ †x‘4|ÍxÈKryyBehy¯Ž„\Ûz#ÀQ*zšCë{ŒÂ4ã{š {¯/¯}%ÐŽVvÇ™m„Šwv˜zÔx+–ÀpŠx •nf'y”"Züyn’ýOQyÕ‘ýBz8‘l2òz‚‘ÌQyø’\•€eŒ4v_¡/‚gwŸzx¬wÈÍnix0œ(d x‚šXåxØ™*M7y&˜?Ûya—0wya˜ |x ’•€€Šv$©­€fvɧšvÅwr¥‘lŒwË£ b4x ¡ÉWxN CK^x…Ÿ.=æx—Ÿ.=xGrßv Ñ€€•.†cc¨‹š†f+‚.…×hÈx …Šk2m×…=m®b¨…pVó„ür®I•…!uG:x…›x@&ä‡ {ã QŠÁ„“Y„¡i®‰Ø„~k°€}„^mÈve„/o³l=„qªa'ƒês¥U’ƒéuÅHN„wú9D„“z˜%Ó…ÿ}ý¿‰…@‘zƒo¬ˆ ƒq7~¾ƒrÔt¾‚çtJj®‚ËuË_µ‚ÈwRT>‚ÙxúGƒzÊ8ƒŽ} $̄߀:7‡e…Žžœuʆ4¨vÛ|í¶wúsªyi™z^(£{0RËÁ|hE‚}Í6÷‚ˆ¦#уÀ‚¡¸…ã…8À€C|„d€]|Ÿ{+€{}GqR€y}âgl€p~‡\£€„6Q\€¬ÿDy€þ€ö5߉‚_"æ‚©…0D„€„ê‹Å‚U‚nH‚y7w‚¶oj|‚æe‘vƒZØŒƒfO£±ƒÈBÙû„`4V€t…v!0Oˆms‚œƒ¯‰Û~ ˆ½€}~]ˆ|w;~ŸˆCmt~¨ˆ c¢~£‡ÚXö~³‡¿MÎ~·ÂAˆ2“Qˆù»Œ 逃ø‡¿}dw~}ŽÍuZ}ØŽ)k }à…aÓ}ÚŒéW3}äŒkL}òŒ?c~Œ0å~3Œûà~8 ~ò€l…¾|É–n|Œ}•asr};”[iÀ}?“V_ù}1’]U`}0‘‹JF}-ê=Ž}/Î.ñ}‘ú|_‘ꀀƒ¯|\Ýzz|˜œ€qZ|Õ›/g®|Ì™ä]ê|«˜ªST|——ªH7||–ø;^|X—,p{ÿ—Њzrꀀ¡|¦x†|J¤Uo|{¢¶eÞ|d¡.\|1ŸÈQˆ| žÁFf{ÙžM9m{ž™*0z霆ÊxÔŽ€€‹»Œ.c²‚Ë|f*yóŠËh»ppŠkfâ‰pm€\SˆèoéQ>ˆyrxDyˆOu5x,"ŸŠ |Œo„ŠŠŽiQ‰ùkVx]‰empnäˆÐoXe^ˆ‡Fwº4Ç}z}!”ˆá~J’ŠªƒÄˆA‰nîhˆ’p†v·ˆr.mS‡’s­cä‡u5Y…†«vÊN©†\x…B†Azt3¤†u|ë ”‡¸€¡)‰ƒ}†v‡¶t¤}§‡FuÐtý†×w k­†_x(bR…äyMX …Šz€MF…E{Õ@Ë…4}e2†…l‚ž†ƒ,ȇvƒ;„³†nzx{ñ† {=sS…©|j…7|Ê`Ë„Á}ŽV˜„n~_Kç„0Q?„)€1u„i‚<¸…p…ïn† ‚ÿ‚Ô…R€iz…€Ìqt„­9h?„A“^ÿƒÌõTÚƒz‚iJ9ƒ:‚þ=öƒ+ƒÛ/ðƒV…\ý„‰=Ê„+â€ÿ„_†px7„†so‹ƒÚ†‚fYƒs†~]‚ÿ†S‚¨†Hi‚^†à<2‚9‡./‚:ˆö¿‚–Œat‚€N~ýƒ¤ŒÖvOƒ_Œvm½ƒŒ!d“‚±‹¼[X‚;‹`QEà‹%F´‹‹:†O‹,€!(Ž€þ€€}ƒ “{tn‚Ä’¿kç‚|’b‚‘UY‰”§Oz.'Dê€Éæ8³€rT*Š€’HWŽí€€{‚™ššrp‚U™ši႘ª`¾——´W… –ÓMu€’–8BÞ€–6›–ë(~ø—{ý}¦Œ×€€y#‚L¢lp’ÿ¡#h­Ÿñ^û*žÎUÁ€ŽÖK¯€TApœ4~Ñô%µ}å™~S|=‹ €€ù’ec×y¶‘Ff.qž%h˜hÅ jâ_ãóm*Š«wl0<ŠœzY;Œ~ «Œ*Î~Â{n?v˜Ž„oÐn—ŒqoeØŒ˜rö]‹¡tˆSNŠÒv/IŠx=‰§z/$‰‘|Ã?ŠÞ_Šyš}Ž-stóDtÃl÷ŒZvdI‹lw3[’Š{xoQ扳y¾G½‰{4;Ј—|ò. ˆ„ZN‰­ƒÜˆæk{mŒõxþsUŒyØkd‹7z¾bÇŠM{—Z ‰\|}P†ˆ™}vFn‡í~”: ‡‰ý-‡}‚lˆƒ†»ׇv?y¬‹æ~q’‹iœŠC¢a‰^€%Xcˆn€µNÕ‡«ZDɆü‚'9 †ƒN+€†m…G§‡7‰¤[…˜€>wøŠû„9oÏŠ:„jgƉv„¨_.ˆ•„×VŒ‡¦…M†á…jBý†*…ñ7K…¨†î)¾…Z‰T…ÊŒT€Œ€vŠ?ŠHmÿ‰~Šf ˆ¸‰þ]u‡Ù‰ØTÒ†é‰ÀKN†‰ÎAL…`Š5 „ÆŠþ(„Jw „I€€t@‰§”l4ˆädEˆ¨[²‡98S †EŽÛIˆ…rŽ´?„„£ŽÚ3˃ðâ&ƒC’Aނދ߀€r]‰9—djJˆt–®bQ‡¨– Y¼†»•kQ…¹”éG‰„Ö”»=xƒð•1”ƒ–°#x‚3–Ú¯€Ô‰î€€pˆˆÞžìh„ˆó`˜‡@X†JœXOU…<›ÕEÇ„H›å;©ƒJœä/›‚T!*–d >\ˆG€€w÷™ dpe—|f@hÿ•éh`Í”dj¶X’ßlÿOC‘Œo^EnUqí9цtª,ZAwô]‘|ª@\€+v‚—£h×ný–#j´g¤”¢lž_v“-nzW;‘¸pdMþsrnDAItª8³Ž}w"+AŽ0z<_× †€u–Tm¢mˆ”ào+f5“jpÀ^’rKUî™såLÆ`u›CŽ@w7Ÿwy¶*3!|¥iŽœÐ‹‹€s€•rŽl“«sÇd±’Au \¢ÞvJTˆxw™KsŽDyAÞ*z™6vŒf|ˆ)%ŒA~a„‰£€qò“éw–j’‹xƒc8‘(yz[7ÇzpS+Ž_{uJ%-|“@¡Œ}Þ5S‹X†(#‹‚  Œ.‡)‡ã€pR’ä|ÉhÚ‘“}kaˆ<~Y‰ŽÞ~ÂQ€w{H‚ŒF€Q?‹+X3ÇŠe‚Î&£‰ý…RΊò‰¥ƒÄ€nÄ‘ý‚g6¼‚q_Êu‚ÚWÅŽƒ;OµŒ·ƒªFº‹…„>=?Še… 2‰‰†n$àˆö‰E~‰n‹Ô€€m‘?‡Ìe‚‡Ó^#޼‡éVf‡þNŒˆ'E ŠÌˆ~;‘‰¦‰0]ˆ´ŠŠ#-‡óÅa‡ŒŠf€€kM¨ÀcÑi\rŽ#NTjŒË%LM‹aCNŠ%I9ˈóß.†‡é¡!'†ý‘÷ !…ªˆá€€i‡;”›•0q´3{”tx&e“·wãw–}.Œß€lSžõh¨egœ÷j^¦šõlbW ™n4Of—EpF¹•£r=‰” tX2s“vä%]’ z.”©åŠÑ€k«md›¼n§]^™Êp>UÑ—÷qÉN7–)s`Eœ”u<€“w1u’yl$^‘Œ|Ÿ²“D‚Œˆæ€i¦œ|qžb¼š–ré[û˜«t@Ty–ÜuŠLì•váD`“zx_;T’z0^õ|1#]yHç‘Ø…‡€h:›cv@aY™wKZŸ—šxcS(•ÌynK¥“þz‡C'’k{Ç:)ô}>/Kê&"hm‚'-k‡F…x€f¿šb{_Ô˜Ž{àY –³|¹Q•”ë}ƒJ“~[A•‘Œ^8š€ž-Ç‚l ìŽm…£“ŽÆ‰~”€eT™|€^P—º€“Wl•ñ6Oé”/ÁHY’e‚[?ÛÕƒ'6Ú\„=, Ž5†'x‰Ö ˆŒ¶ˆy€€c¹˜½…`\½—…¥Uá•=…úNY“†FF¾‘·†¦>;&‡E52Ž«ˆB*bpŠToŒ‰Ã ©Š¢‡5€€b-˜!Šý[-–i‹TK”©‹L»’ê‹4E‘‹l<…‰‹ù3nŽ (‡Œº¯\‹´‘OªˆÁ…Ü€€`’—­‘!Y€•ø‘Rˆ”9‘Jé’s‘ C0‘F:‘Žü’1^g“¹&<Œ •wŠû›V†ü„I€€_—D—èWñ•’—¦Pù“Õ—IQ’ —¤A‡*˜8׎|™‰/‰ŒÖš»$-‹m˜vøŠJŽÛZ…z‚ò€€bϨ:d˜\y¥ÐfVQ£ehoOV¡ jvHQž·l@-œ¢nÖ7zšµqV,Ò™bt% ˜ów¸ ²šÂ~7Š8€a¶¦åh™[h¤‚jIUE¢kþNIŸÕmÂG>Žo–?&›„qž6…™žsä+ã˜Kvˆ—Õz ÿ™€ÀˆK€`¥³lZF£XnT' üo’M3žµqF1œqr±>(šmt~5™˜vŠ*ü—:y$–º| X—Yƒ †}€_U¤Šp´Y ¢8qúRçŸâsIKûŸtœE›[uþ=™Yw–4ƒ—|yn)ø–*{Ä1•£P ¼•…V„Ï€^ £ntéWÆ¡#uýQªžÔwJÆœ”xpØšñhr¥Ž‹j»t7‚ lòuÕt´owUfÑq]xáW5s¨z[E£v5{÷/¶x÷}˜ ~m€¾°_a½w%¤‘d8x˜ØfÈy%Œ’iz€4kz{ rþmÄ{òe>p |âUÔr}ÈDƒu~Í.îw¾ò œ|à‚V®!_´&¢rb[v–ØeΊ¯g€~lj €iqVlo€µcµná T~qUWCrsú¸.2v‚\ ›{uƒË«Ü]÷‡" 4`džɔžc±†rˆ‡f@† |XhÑ…ÒoZkC…‰aÔm¾…KRÈp1…AôrÅ„ç,¹u…( ÒyÛ…P©¸\r1ž_kŽ&’[b€†Me!Œ+z)g¿‹Gm@j7Šs_Ïl´‰§Pèoˆï@?q€ˆZ*ÒsSˆr x<†§R[k—U›¿^\•À7ag”$„:d’¡x f¸‘kHi5µ]êk°ŽUO$n>¡p?Œ(ÿq†ŒIvÆ„p¥ Z§Ÿª™ˆ]‹Ž`’›b‚c8™PveÞ—:iEhT•I[ôjÓeM=lö‘¿<Ànùn&òo›´gx‚ú¢´Z:¨J—3]¥§‹¸`¢úÐb© qsÈe:æg g˜›YÀié™NJÿkê—h:Ym–#$gm[”ó„{¿´ kYò±›•\À®x‰§_¢«L}Íb%¨IqÌd¡¥IefꢒWÒi  Ijìž"85l0œþ"k—ê~u€ž®Ùm¼_L£Xob_—òpze›‹òqÔh†ßs7kŠrÜt·nPeGvZq%Uçx9sÆD„z…v‰.…}\y> Ń–~B¬²k?fÏ¡NlÞi4–nŠk¹Špmù~q»pJq7serucÆu-t³TwvÒCTydy-|{h ¥Ôõª€hïnYŸ:jÊp”l³qèˆEnxs‰|fpEu6o£rvÇbUtxgSAvyüB1xE{Ã,Àz×}© ‡€/¨HfËuôhÛw’jüx†Xlæy'z˜nÔz`ÊrÅ|KQätÕ}VAw"~+îy™€ l~¨ƒ¦dÙ}“›g~ i[~„{kc~ïxØmnilVoqÚ_Hq†€WP“s©€Ò@vo+*xe‚r R}A„c£Ôc1…/˜Ëe…Øgý„á‚]j„¿vÎl8„¥jcnG„Œ]opd„Nâr…„y>tÌ„—)§vÞ…M ’{š…Ë¡³aÀŒß–¡d@Œ‹¡fÖ‹E€/iŠ—tªk*‰ñhSm>‰U[so[ˆÄMqjˆL<Ës„ˆ 'µuˆ¶ìyâ„®ŸY`”´”hc:“d‰ˆeÅ’~&g÷Õr¬j&œfel=ŽvY—nY[KIpTŒq;,r?‹Ó%×s4ŒÅ‰xVƒ_úœ½’=bmšê‡ndò™|g"—Rp¦iL•’dlk\“ïWªmk’\IgoH‘9Kpõ9#¾q7àx{Ô«šÔ_}¥øaî¢Î…'dp }yÛfžOnoh£œ'b?jœš&Ul˜CG/n:–É6äoŠ–,!%nà”¸ª~á€s˜›_6®(Ûa’«dƒ&cü¨œwæf¦l€h£t`Viê¡$SškÀŸ E:m:³4Àn'œÇÈlp”Ѐ€¦vr‰_X›šsŽbWÞtše}…zu hXzv¯kKm›wÜn `¤y+páQ×z¹sA|¶vk+•_yT …7C¤bp%fw™ŸqkhÓŽûrºkMƒ¯sõm‰xOu6oÖlvŠr_0wútPP„y˜vƒ?×{’xí*£~{z Ń{€×¢Gmøm–— oooUpóq*êrXrÔv©sÄt‹j~u;v,]ÉvÌwáO?xyy•>³zp{ˆ)»|Ô}º ŒÜ‚Q $kñtÌ•‘m–uê‹oHw€ pÏx4tærZy^hÚsézz\Fu{§MçwK|Ú=’yK~H(Þ{’€ W€Yƒ²žj|“‹kÜ|–‰0m³}.~8oV}¿s.pû~Yg@r~ñZÊtO˜L™v€D<€x,!(zX‚ &~÷„ô›Òh|ƒG‘bjfƒH‡ l^ƒN|&nƒWq.oʃieWqvƒ€Xús.ƒ§JîtøƒÛ:ÿvñ„D&‚xÉ…{p}B…™·gŠAi%Š „àk=‰wzmˆýon¿ˆŒcQpoˆ(Wr&‡ÖIs܇¢9Hu¥‡¸$‚vñ‰æ{sƒP—jf’!h‘‚Ñj0xkúm m¿Ž aloq'U3q&ŒWG^rÇ‹½7¦t\‹‹"•u{•Ä•;eU™ÞŠôgS˜V€Âi^–Ívk$•Sk&lä“Ü_~n’†SOp8‘HEqº[5Ãs mróÚ¢~î€m“dÛ¡üˆ¼fÒ ~‡hÕžsÐjŠœ1hþl6š[]]m˘±Q/oY—1CNp«–*3[q£–DÂp„”€€Ðd†ªÌ†¨fk¨f|hY¦qæiþ£Ägk•¡•[mŸ«OPnˆž A]o©Q15p>œgQnI’x€€žwn_d“½xbQ‰›xÔea~Íyh-sïzMkh{*mÊ[¾|'pžM’}asV=rvI(Ÿ|yiZ†À€5›ÿu+f‘Òvhr‡Èwjç}wëm rGxÚohf‘yÚqžZSzósïLE|rp‘¾€€ˆþiê§edka¥^uÝlÝ£_kÀn¡~a‡oMŸ³Vtpkž3JÏqy=Rr?-‹rx›Ý²p¢€€•r|z_t‹É|ÙbI‚F}=e€'s9Þiv"%«ƒ®yzш,“‚zWeÉñzåh€…{zjyva| l®l,|§nóa}Qq-Ua~sˆGø~ÿuâ8¬€CxŠ$Ÿ‚i{›_†z‚q‘xflˆymâ~½yÖoÂtµz‰q{j{CsA_—|uT|ßvÝF¾}ÙxÉ7†{#œ"}Ýõ„僶˜v“r†,wksÉ|âxJuróyvbhõyâw³^ zºyRž{¤zgEp|­{ã6b}ø}·"¦Û€E‘ƒkƒÄŸtèxü„IuØyÉ{vÏz¢q>w¬{pgYx‹|L\‡ys}(Q3zl~D*{„#5K|Ù€}!¾~›‚Ó6‚ƒ†‹‹su‰‚?t}ÞyuŒ€=oKvw€™evwaZºxOpOzyI÷BŒzZ‚š3Æ{™ƒ› }…ü‘€D‚i‰r,†-€;sN† wtx…ìmGun…Ùc}v]…ÒXÐwI…ÚM¡x9…ü@Æy5†M2 zE‡ë{‰Å;~J€Õ‡bq9~-rUŒusx‹öketp‹ra¤udŠøWvLŠ–Kæw2ŠS?xŠZ0`xó‹ Öy 0€€…Qpo”/|+q‰“7sr¨’Di{s‘Z_Ãt‹zU/uj½Jv@)=Gw.vw¡à‚vÚ3€€ƒ2oÚ›¾z pöšlpþr™#gbrü—é]±sÕ–ÂS#t •ÌH u^•;uõ•,v7•ûžtÕK€€ot£ÿxpƒ¢Ooq” «erjŸ+[ás.ËQXs朻F }K‚/Ì~2ƒ]Rz†i€ôGwý„xƒx¬„oÝy`„2f¬yë„Q]pzp„}SLzø„¹H¥{†…†ébbrà†™e)iÔ†VgÃ`À†jnV¦…ýmL…ùoà? †Cr´1Z‡u枉cy´q‹U€ùý…fe;y…3g|qL…iÒhO„Þkü_E„Án4UC„ºprJ¾„ÊrØ>l…uT02…Úx=‘ˆ {ñ#‰š€Å€<ƒªjÄwàƒ“l›o«ƒnƒfŃspI]ÕƒmrSíƒ{sñI‚ƒŸuí=Dƒ÷x/„®z±ކ´~]Ú‡û€”~m‚pfv‚qÕmõ‚sRe%‚t¸\M‚v*R|‚6w£H(‚gy<<‚É{-÷ƒ€}Q–…Z—†x€f|¢€vte€Ÿw+lL€±xEc’€¿yMZ΀ÏzaQ€ö{|FÓ2|¶:О~",ç‚X€¬„ƒìX…€H |7“=ë|4“;1â|!”œ#{Ï•@4{`‰š€€q{6Di {cœLa{Ž›kXŠ{’š©Oá{„šFM{yš<#{^šÀ/ô{!›b!8zr–v Ûzˆ€€zz-_àr¢Œubpjõ‹¾ebˆ‹g™ZŠj1PŒŠlÐF~‰¢oš:‰¤rv,ËŠ‚̓O2§‚„“%-‚ï†ö ƒ·‰Þ€€niƒ‰…¿fÓƒG…à_^ƒ†WE‚²†8O‚Z†sF‚†ÓQ‹ntã3‹0wC%”‹…zN׎+VƒÖ€l`ŽönqeLŽoè^b(qjV¼ŒNrîO ‹wtƒFRŠÊv*=Š:wú1ÙŠz$ƒŠN|ôüŒ‚"‚)€jŘshc¿Œ½t–\â‹âuÎUL‹w M«Š;xXE‰”y·;Љ{?0³ˆÑ}#|‰É3Šñ„²€Ÿ€iŒbx…b‹•yl[.ŠÇz^Sœ‰ú{PKÿ‰+|TC_ˆ…}n:6‡ö~·/(‡µ€f!û‡äƒ#˜ˆì‡?€€g‹O}»`fŠ‘~^Ym‰ÑQ׉ ºJ6ˆ?€vA™‡˜R8q‡‚g-j†ª„ 6†¨‡2 •†½ˆ‚€€e´ŠaƒX^«‰¦ƒªWÃˆé„ P.ˆ&„mHˆ‡]„ä?톴…ˆ6Ɔ†v+Á…¤ˆ1…m‹Ÿ ¾„ŇC€€cù‰˜‰/\õˆÞ‰0…ÞŠG5…3‹4)넨Wu„=§ǃ…b-ˆ÷‡[ ˆtj,èËvä¤!z( €‘ì€/r€bí–'m}\`”ÌoUû“qp˜NØ’1r&G«øsÂ?oòu{6§wf+ËŽžy¬›Žì|Û Ô‚²€€au”ßrZñ“Œs]T“’7t±M}ývF[Çwb>.ŽÄxß5tâz*¯t|¥œ¾É 6Ž„ÿ€€_铳v×Y^’nwâR÷‘&xúKáóz D¿ŽÂ{-<–Â|p3ߌà}î)&ŒgƒY Ó‹ò†¤€€^l’§{«WÌ‘r|QL:}gJ.~;Câ :׌ä€02Œ‰'c‹sƒœG‹t‡ƒ ‰Ç…q€€\½‘»€ïV*Ž{O·]‚H–Ž6‚°Ab ƒ^91Œ„E0m‹)…Š%³Š„‡äƒŠT‹Lk‡Ó„W€€[ó†oTŒÊ†¿Nއ#Fðv‡‹?²ŒIˆ7x‹Fˆî.¥ŠVŠS#Ó‰=^‰HŽ­®†ƒ*€€YrSŒwRÐ+Œ¥LHþŒòEŒÎI=Ì‹•×5‚Š„Žê,”‰€‘!ƒˆµ’Õ{ˆC,¥„lÉ€€WÊË“Q0Ž “%J®o“WCwŒ8“¿<Šó”Ž3ƉҖX*½ˆº—Óm‡Ù•@ø†ð‹y郀ž€€\¤¢*`†V¦ Gb®PÓžgdÜJ'œŸgClšâis;‡™^kí3˜nœ(]—jqƒ6˜ uÁ™6{ò‚}€[l ¾drUvžáfcOªhZI›Lj^BN™œls:w˜%n±2 –Üq&'e–@sã2–Öw_,— ~‰€Ó€Z<Ÿ]hlTJŽj$N‚›ÃkäGåš m¯A8˜_oŠ9p–òq1•µsÈ&u•v_6•¤yä¡”Û€õ€€Xòž lzRÿœHnM3š†o‘Fž˜×q)?ú—-rÑ8?•Ät¡/ñ”Švª%c“ïy4”t|±’ƒ6€€W—œÇp©Q«› qýKå™Ts\EX—¬tÂ>»–v;7 ”¡wÜ.Ë“dy»$Q’Ë|:“Kʨׄ€€€V7›¤uP;™øv3Jb˜Mw]CЖ­x=-•yÓ5}“®{E-8’u}"Å‘Ô]©’?ƒ„xŽ´ƒ²€€TyžNЙ zŠHЗl{…B.•Õ|‚;}”=}–3Ã’ã~â+n‘²€‡ ö‘ƒ Á‘G‡茂¤€€ST™È~‚MB˜20GO–šî@¦•€¸9æ“u£2 ’!‚Õ)ºõ„€84‡£ù.ŠHyŠœ¬€€QÔ™ ƒ K½—x„E•䄱?”U…Z8=’Á†00f‘l‡l'ç=‰_BqŒƒëŽïŠÃðˆÖ€¢€€PR˜g‰AJ –܉±D•MŠC=?“¹Šï6Z’‹á.k½€%Å ÑŽ´‘C TF‰…°€€€N·—ÔˆHŽ–OáBz”Æk;©“.‘A4°‘Š’Ÿ,¨”Ô#ÜŽÑ•ø˜Ž¡ ‹p‡†©€€€«e‘ZR EgY]•i(a`‰-kd¦}?låhpbnåkbôqnBS¶soqBjvKt ,y¤v™K!z¶©^b›b"ž*d¹dÞ“fâg¿‡QijO{xk4lñn¼miogasoºqîR_r4tDABuv®+Kx5x×ka|¥§ _Ñiø›ýb7l‘d¬n$…ogpy½i†rm&kïsÝ`nmu¿Qpùw‡@&sÇyl*€vÇ{+‰}¾~u¤Æ]-qΙÒ_Ûs#Žøbœt‰ƒ€e5uÖwògÚw1k}jhxr^{my¼O¿o©zö?r€|J)¿u\}—¤|8€%¢ˆZÈy —¶]®zUŒþ`¨{¦cj{Æv7f7|iáhä}+\þk}àNsnV~†>q=>) sû€¾zÓ° AX¼k•}[Ñ€ŠÑ^ýšaÞµt7dÅ×gýg…õ[4jK‚LÑm‚><“oÕ‚u'˜r.‚ú5yEƒ[žVï‰J“RZ2ˆ²ˆ]ˆ}j`†‡£r$c|‡7eÿfE†ÐYMi†rK kµ† :ïnU…ð%´p†`Äwñƒ9›¾U¥‘-‘X䆈\:Žý{j_;÷p3b?Œód#eŒW…gÙ‹I_jlŠN9_lÖ‰¾#ãm»Šf“{§½™~T ™:ŽîWÚ—£„p[(– yc^*”{n;a/’íbi‹“ÜIhh’­€€”ïS}ªuŠ…V˜§ë€+YÄ¥_u>\¦¢ñj/_† Š^Jb"žbQÏdŸœpC–f›!3,gÑš…÷f=“•€€£ÏiýZ–™ kw]íŽhlöamƒnd w¾pgìklqÐjù^‡s®nOÌuÑp÷?xjsò)1{¥v¬ ‚Ë{硦g)aò—hód£Œ~jÆgtNl“jvnll¡iÕpVo]r^q¡N~t’t=Ûw$v‰(Rz0xä¡}´Ÿvd}i[”ôfkhŠhªm‚j²o€t_lÆq‚hNnÝsd[°quRM=sTw1<Àußy:'}xº{7¢scBbpÑ’ÙdPr7ˆŽf®s­}¡häu r k"v|f±mZwÒZ4o§y4Kírz;¨t“| &²wG}¥£}ò€õ› _¶xIÅb7y†œdÉyô{Ïg%zÂpïi‡{›ekÚ|gXÁn=}=J¨pª~ :ŸsM~÷%õuÜ€)¤|’‚d˜Ð]»¹Ž–`hõ„yc'€7yÂeŸ€znùh€ÆcCj|VþlêaI oU³9-qß‚)$wtƒ$z÷ƒz–³\‡6Œv^Õ†Ö‚Qa¿†xw¨dJ†5lífÒ…ýaLi=…ÈUk­…žGGn…‡7†pY…¤"†qÁ†©Ò{;è”cZ¾ŽÒŠI]ö€G`nu±cŒPke–‹_vhŠÖSZjwŠ+Ežl¸‰©5ônÒ‰y ¨o\ŠÎ»~À’/Y¹–œˆ*\„•E~<__“ìsµaò’¥idƒ‘c]–fî6Q‡iRCÓkrŽC4#m@ílÁ޶€€òYž±…ò[Íœè|^¦›qŒa'™pf÷c¡—Ì[„eô–IO|h8”èA·j“ð1Ïky“÷îjS’P€€ÆX†§\ƒã[<¥&z]þ¢òo¨`l ßebÏžÜY´e M±g0›‡?ÚhÜšÆ/ºi¶šF‡hŠ‘B€€›õn‡ZÇ‘Åo·^‡¶pëak|ør,dŠr'sxgÂf`tæjÆZ vymÜKÔxSpÅ;z¨sÔ&3}Èvº „_} ™ÛkÎaÁÊmHdf…ÚnËg({8pIi­pqÑlDdÙsln¼X¤u&qJJŽws½:fy^v\%G|Mxïî‚«~µ—ÇiHhÁÓjÿj΄lÁlñy~nsnènép/pïcaqõrÜWMsÔtÚIVuÎvÒ9Kxy$fzÑ{@Ô€E•¥fìoÖ‹ÊhÚqH‚jÓrÉw­l¯t9m9n“u¸aÑpuw$UÝrkx H twz83vÅ{Ç#yU}±»–º“ƒd¸ví‰ÉfÓwÕ€/hûxÉuêjûy²k“mz§`Inù{”Ttpÿ|FÎs}‡7)uz~ª"Çwà€>¥~;ƒ‘XbÑ~‡©e~d~gb~Ísèi{4i¦k–¦^um€R¸o«€™E5qÅ5µtØ!;uöƒH/|”‚'Ia(…0…”c‹…{úeÿ„ÕqÕh)„¾g¡jP„³\„l^„°PÜnn„¿Ctpr„å4 r{…U;s¢‡ù~[€¨_⌂ƒpbC‹Ýyød±‹:oæf䊥e¾iŠZ²k(‰›Om8‰3AËo$ˆý2vpí‰5Lq Šþ€€ŠÙ^Ü”Za9’ìwõc¢‘ÖmñeÒÌcÖhÉXÙj ŽáMNlŽ@mÚ–0¡oSÈn³Ž‡€€ˆ©^+›Ü-`š]uÈbâ˜âkÑe—{aÃg– VÏi ”ìKGjò“å=çl„“\.Im†”fl·€€†…]¡¤U}&_æ¢psÜb3 ‘iöd=žÐ_óf<#Uh›¶I~iåš›< k<šx,/kº™ÛåkYŽÎ€€” s&ZôŠ^t^€ÖtûaivžuödvlUvýg™ax%j’UHyqm¢G¥{p‘7ÿ}s°#(€ vÄŒ…Ü~’p’a‹ˆxq»d' rëfßtîti]j¾u]kë_›v®nbSðxpóFhy¹st6Ø{ºv,".~xõT„-¦n.h(†’oj9}Bpôl_sCrWnZi4sÃpb^1u9rYR¤vÇtfE6xrvs5¼zmxÃ!?} {G ‚šùkënÛ„m|p^{doqðq‚pžsog’r,tû\­s»v{Q?u^xCõwy§4£y{€ Z{‰}½ð"ü‹èi×u•‚­kv™y“mMw©oÏnóx¬eûpžy»[2rBzÄOàsô{áB¼uÀ}3˜wÌ~Z„z €VÃÊÞ‰Ìh|X€œiÜ|Ýw‹k¿}lmÚmz}÷do9~Yipç%N.ržÑA'td€ˆ2!vT„èxƒ~V~€ç‡Ìfeƒ.~”h]ƒ1uxjbƒ9kÒl-ƒObmöƒqWo©ƒLYq\ƒà?is „B0ttÀ…Ôu«‡Z€€…—e#Š4|g‰Ès‚i‰`iíjì‰`El¾ˆªU¸nsˆgJ¡p!ˆ?=ÄqµˆR.Ús)ˆöÐs/Šô€€ƒ}d‘mzvf•q‰h ÂhiÚŽ÷^fk©Ž5SåmU‘HØnö;ýpfŒî-qˆ²‰q!Ž€€Wc_™xSeM—ÑofgC–¢eëi•‚\Zj·”rQálN“FÔmÓ’å9âo ’Ô*¡oµ“ã°o ý€€?bÌ¡HvVdªŸ°m„fž!dh8œ³ZiØ›_PkXšUElÁ™³8m¿š-(€mà™B!n“ŒB€€Œwî[ ‚àx^/yäy4a\p2yédUfqzªgc[¶{‹jTPq|m_Cg}ÏpU4os… ‚jvÈ*‡<Šu|aVvUcåx-w4fŒn“xidçyk‡ZHzmÿO#{6p•B0|‚s$3F~/uô€ëxöÙ…’€†ˆ(s5g“;t@i¢vruRkÄlövdmÂcjwoÎXéx¥qÐMãyßsëA{7v2(|ßxg{J„ †3qmã}ZrGort¤s†qkDt·ra×uït8Wsw)uÌLˆxwww?ÊyÞy.1 {‹{2}ß}ÈG‚€Ý„8ot@{|pmu[räqÌvi swž`OtdxÈVu²yïK4w{+>–x†|s0z:~6|Z€q=€±‚)mUz­yynÊ{TpêpG|g¹q¤|²^{s}nTHtX~,IŒu·=w&ì.…x¾,…zYƒÀ€€€2kÀ0w|mT_nänñ•e¾p\Ø\ŒqÄ‚*Rjs‚…GÀto‚û;Luăœ,Òw"„¶Ywã‡o€€~jˆ‡êuwl‡°lûm¯‡}cäo ‡SZ¼p‡7Pªqã‡.Fs.‡F9ªtf‡¥+2uƒˆ»9u²Š«€€| iŽÚs~k Ž;kl¢¤bnXåozŒ›NÞpÄŒ=DKqþŒ 7äsŒH)QsÛ®Ót h€€yòhµ–2qhjA•>hökÓ”T_ôm0“}VÞnƒ’¼LÝo¸’,BKpÖ‘ä5Èq³’U&ér“r¼‹€€€wähž4otišœägk›¡^'lbš‡UmŸ™‘Kn¾˜î@‡oÀ˜Ñ3èpc™±$¾p%˜|œqŸ‰á€€ƒÈ|è[W{.}@^Mr¹}›a]i~dA`Y~~g:V#jKcÎm$>à€Æp0r‚6s]U…5vÈ ˆ¸€ ìzœa,yo{#c­q{°fDh|Jh±^Þ|ðk-TÂ}¦m¥J!~up==±wrÙ/J€âuÁCƒ¯xþ†Ÿ€€xtgw®y(iolyák4ftzŸm4]m{hoBSo|8qMHê}su<~*u¯..ŽxC;‚"{^„”€~7vll÷uàwEn’m¯x%p;dÑxýqÔ[èyÛs}RzÀu#Gš{¸vã;X|Ïx»-~4zï>€}󂬀|StŠrôtut&kþvzudc€§hoX¢€øjàO]mUDãÝoí8à‚£r’*̓ëu’ˆ‡yƒ€wä}òf}où~Ihh4~¤j±_¿ l³W@xnÁMÀöpÓC·€‹s7ÄVuT)¶‚xƒ…z{а€v|ln=|{m¹f†|öor^+}qqUÇ}òrÌL`~t‚Bn&vV6•ùxM( -z¸ˆƒÔ~N€€tHz=q¯l…zÉrüdæ{YtW\£{ãu£TV|svüK}xXA*}ÁyÑ5k~{p'–Ï}ˆž‚)M€€rdx¤wjj¨yEx\cyêyZZÙz‚zKRš{{IIZ{½|P?Ž|l}v3ã}<~Ð&~M€Á䀄i€€p“w1}?hÎwé}Óa)x¥~tXùyG PÀyç²GŒz…€i=Ì{(H2-{Ü‚u$c|¯„}Å~ ‡_€€n“uûƒcfév´ƒš_^wpƒÝW8x„Ox¼„hEÚyV„Ò<#yë…n0z€†„"¼{ ˆç Ô|-‰Y€€lªte u¨‰Ÿ]Œve‰Unw ‰}M>w©‰€Dx7‰¯:exºŠ$.Åy)‹R ËycÙ Äz’‡õ€€j´tŠctÎ)[u‰ÚStv•KGv¨nB$w"Œ8hw‰!,¡wÇ‘ïBw‹’‘ ay/†X€€hÂsm˜a9t—UYÊtÁ–¾Q¸uF–RIŽu»–@iv –b6¥vj—*·vp˜kóu¥’æYx„ø€€rª‡´[Ìk1‡g^Žcá‡ac[Ó†édS¸†ÀfêJ‹†¶i¸@̆Îl¬5#‡Vo§'Xˆ™rù˜Œ¥vž‚˜€q …¸`ái¨…cDbm…je·Zl…ShR]…DjzID…Rlí?Ÿ…o‡4†r8&<‡8uP ŠÜy€Ã€odƒÒeôhƒÅgü`惼jXþƒÀlQ ƒÍn'H ƒñpA>}„1r2ð„»tå%)…Õwɸˆü{Ü€€m²‚k(fj‚ lÔ_I‚nWw‚2p@O›‚NrF²‚sÊ=;‚Îu´1ƃ]wÍ$„kzs߇~䀀kø€LpldÅ€kqÇ]¸€s-Uû€¯tN4€ÖvE`w{;üjy0 ýzâ#ƒ}I…,»€€j,~ÅuÎbü~övÙ[ñ)wðT?VyL‚…z#C»Æ{P:c€|¢/€Ÿ~9!‘€€– ‘ƒ„š€€hs}f{Ha8}¨|Z}í|ÎRm~"}J±~V~bAó~•I8£~Ý€`-bFÞÕç„~ © ‡W€€fˆ|4_e|y„Xb|¿øP¸|ù‚iHý}1‚í@E}kƒ”6û}¦„x+À}ï…ø(~H‰ é/†´€€d°{'‡*]˜{o‡DVž{¶‡mNù{G?| ‡à>‰|OˆZ5=|x‰,)ô|Šî)|¤ƒ }’…p€€bÊzJ­[­zT¬zÔˆMzýEP{¸<–{6Ž63={EJ'Å{=‘ƒzב@Ý|)ƒ÷€€`êyš”ÚYáyÒ”|Ròz”9KUz ”(Cœz*”Z:Þz1•#1xz#–Ü%Ñyæ—jy›zö‚µ€€iÅ\bÈ^§\ŒsaXTŸ‹çcüM‹hf²De‹it;!ŠØl_/Ö‹/oY"=Œtr± Lvð€€h)‹ä`¹a`‹ZcZÀŠÔebSKŠ_g²KƉõjC,‰®l‚:‰Œo.Á‰âq×!&‹u ÆŽ(y»€€fžŠel_≨gjYO‰8irQðˆÙkwJ‚ˆ„mŒAÿˆRo®8èˆBqö-µˆ–tr ‰©w} ‹û|À€€e ˆjj@^SˆkïWŇ©m©Py‡XogI ‡q6@±†ès7­†âu,‡7wJˆ;z, X‰ð—€€cj†Èo(\ĆwpVE†'rO …ászGÄ…Ÿu?f…vš6s…xU+n…ØzR†Ð} ¶ˆ‚0€€a¶…Pt2[…uUT„ÏvƒM[„’w´F„Xxø=Ç„=zK4Ý„:{É)æ„‚}¢€…S€z ]†„Ò€€`„yPY_ƒÏz3R̃{#K–ƒh|DRƒ3} <ƒ~$3ƒ t()ƒ6J¹ƒÇ„¦©ƒô….€€^?‚Ö~ÔWŸ‚¨iQ ‚y€ Iì‚I€°B¥‚j:X÷‚N1páƒ}&ì…vþ‚3ˆî‚„ €€\zÍ„ŽU⢄àOhv…CH6C…®@ì †78€â†ÿ/®€»ˆ5$«€¤Š«瀟ŒÆk€z‚ý€€Z¥€ðŠÃT€ÂŠëM€€‘‹+FN€R‹|?€ ‹ú6ªÌŒß-¨‰Žˆ"lJà~í”q¦€€X×€;‘¡RG€‘•KÐѨD v‘õ=Q’–4ñ~É“÷+Ü~h•æ f}ø•è™}p‹æÂ~¸€ƒ€€`]”O\BZ“R^ÉSÓ’Ya[LÖ‘~cçEʱfƒ=”i24¿žl)¸Ùo‘TrTp“Ux#€€^÷’–`ŽXª‘«bÐR…ÅeK’üg`DBi²ý†`‰d8 …ÄŠ80…=‹'D„¾ï„q¿ ƒ¶‰€€'€€€Px‡hŽOJD†ÎŽšD&†0=R…¾6Z„áØ.E„E’ì%hƒ¦”“öƒ.‘ Ú‚ˆ€€€€Ve›«\nP°šV^ËK$™a,Dµ—Òcž>1–¬f!6t•ÀhÀ. •k#5•FnrO—Oq°Á•æy¯€€Uš`KOm˜ÆbsIæ—€d C‚–XfØ= •Ai 5\”ek„-“Ån"4“üpÒC•ót T“˜|S€€SÛ˜}d=N3—Cf.H³–h%BY”ðj&;ì“Ýl64M“n`,’p·!;’³sPC”Œvœí‘p~Ì€€RŠ–øhJLà•ÊjG[”¡kÌA “‹mš:¥’oy3‘¸qq*Ø‘,s™ ‘`vE“y~Žo€€Q$•€ltK”\mýF“;o?¹’.q-9]‘*rÞ1×ht©)§Üvªy W‘’|¸6™€€O­”'pÎIý“r#Dp’sƒ>#ÿtì7Ãvk0=Hx ( ŽÁyêjŽé|Uá÷€9‹•€Ô€€NH’óu‡ 0´ŒJˆ?(õ‹Š bŠÚŒÔн㋈…Ç€€€€G~UŠÔA½Žd‹j<rŒ05›ŒyI.ø‹{Žî'$ŠŸ‘]j‰Ù’Ÿˉ•Œµ›†X„x€€€€Ÿ²aÛU\•c½YŠ˜e¤\øngŒ`zt+i{dgök”ge[+mÔjÁLŽpcmØ;Õsipó%Òws„g€txmr^ˆ]“`È`ˆ®ccB}£eMfr|g‘hófjièk¨YÇl\nnKQnüq:Áqós¢%uSuÖ¥~»zv›4[Cd·ê]àg†½`‹iŒ{ÙckÀpÚe©mýdîh;pXpjãr?J m•tJ9¹p|vk$Xs–x?ß}|]˜õX lcŽÉ[n„¹^!oÕyù`ëqro cºscWfxt¥VüiCv:HÛl w½8²núyU#©qÚzÄ{ž~#–·U>t Œ¯X|u"‚Å[ÍvFx(^ÎwMmqaÐxYaÊd²yVUg›zZGŸj}{P7¸mz|V#p%}]Fz?”jRÊ{§ŠyVD|&€¤YÓ|¬v#\ø}$k‰`}¡_ÿc~Sâf ~–Fhé6YkȘ!™mÒ€Zùzú’9P¡ƒTˆPTUƒ.~€X!ƒ t[^‚÷i’^Ž‚î^"a‘‚çRdŽ‚éDpgX‚ô4Éióƒ ´jïƒáÖ~—€éO Š÷†&R½Š]||Vˆ‰Är*Yщ+g½]ˆ’\e`ˆPxc‡ˆBâeʇ%3Lh†üàhTˆ €€¸M´’½„ Qi‘¯zzU3¢p=XŠeä[¿ŽnZ¡^ÃlNÇa³Œ}A7d9‹À1’f"‹jÐfŒ€€‹}L¼šÁÝPo™@xTT6—Án*Wu–@cãZ¤”¿X±]‹“fLä`N’-?AbŠ‘M/[cÓ‘F;dUÒ€€‰QL£[ÕO«¡fvpSPŸslZV‡b"Y›¢Vÿ\h™ûK=^ÿ˜=‡`ì—Ø-aa}—¬Ücu€€˜tfUÄŽZg¤Y[„]iJ]y¯jî`†nêl—d c/nsgLVàpyj›H¹rÎm²8supÙ"Ïy8sŠç‚y½–HbÊ\ùŒPdË_ó‚xfÕc wìhÄeÙmHj¶hµa²lÈkhU‰nýn+G„qapÇ7`t!s{"wquÖ€^{¢”"_­dDŠNbfŸ€™ddiv2f›kIkµhÖmŒ`Cko¯T?m€qÞF[oôsú6Yr£v7!$~Ç}g‘ö\¸k—ˆ?_]mP~¥botcdpÅj fðr{^¼i^tRÚkáu¿E!nhw[5Rqy €sÙzÄ?}L ÄYýrè†2\àt|À_ÔuLr¡btvjhmew]?gŸx§Q{j9yÇCîlÖzÝ4Yo“|Òr}dX| €ŠWz-„ Z¶zÌz¯]à{spª`¢| fc\|¬[}eý}EOÖh¤}èBkk<~Š2ùmÖLYo¡€t~.€º‹rU‚}ùXÌ…x›\*n¦_ªdŸaÎÎY¤dyòNg!‚"@Åi ‚a1gkó‚ÕflÞ„(€€‰*SäˆàÙW/ˆsv£ZŒˆlÆ]q‡£bÏ`J‡DWêbü†ïLqe¤†§?7h††/èj†»„j‹ˆC€€‡R‹m}ÊUØŒt«Y6Ž­jà\Ò`û^óŒûV(aŒ8J¿d5‹Š=Šfk‹.)h‹D`h¬‹ð€€„ÚQ˜@{§TÜ–õr‹X;•®hÑ[”q^þ]Ë“®m­}ü/…p~øõq³€“€€„ŽZl¬{]PÝr©`F€i)bÄ€S_—e5€žUg‡€íIúi×M=lÄ-ðn‚…ðo?„u€€‚[X͆Ïy|[³†pº^¨†SgNa1†]Ëc®…èSYf…ÆHWhQ…¹;zjc…Ý,ml†xùm;ˆ9€€€BWtŽwxZ[lnÉ]OŒÃen_ÖŒ[úbN‹{Q˜džŠôF£fÚŠ‹9Éh½Šu*¨iý‹$¼k¹‹‡€€~Vv•ªuYYZ” l®\J“œcc^¼’žZa‘ªO©cJÞD¶eaC7Åfû3(_gˆ‘Sÿj°Œ+€€|U±Òs`XœijÒ[[›aš]¶™¶XE_õ˜uMöb —xCcý–Ó5ýeG—E&Re–תiÏŠ˜€€‰¿n—Vc€‘oÃYÃw‚pò]CmÉr`‚cþsJcÕY9t¬fýMäv9j5@¸xmN1tzmp‹„~ s{ƒ•|À‡¾k©\Ü~³m_¶uÈnœb«l-pe_b}qwh!WÙsjÌL§t·mŒ?”v›p90`xås•|2u¾Â~r…ÅhÜca|Øj–e³t l[hj“mÿjPao¨l‘V†qanÀKvs5q>{u#sA/VwYuµ°zMx$€ €ƒ½f'iôzíh$k¿r>j-mšhèloY_mÒq%U o¨râJ.q“t¯=SsŽv}.NuÃxÕx_z³€€­c©pye×qáphsAgKj t‹^luÞSÂmðw)Hîoêx„<3qõyÞ-Tt-{gvv}k€€–atw/wcÌx nŠf1xìekhEyÃ\›f°•ó1ñgŸ–é"fê–" QløˆT€€‚?sV«yˆtYîpñtö]Mg®uå`t^YvÛc®T xfÈI.yViø<Šzîm-à}pVG€¶sb‚Ñ~­€[pF\ÊwÃq{_oLr¶bnf$sâe\èugÌR¹vbjsGýwÔm3;mysoè,È{zrÐD~×u¡€Ø€~wm bñuûoe;m¡pg˜dšqìiÌ[ƒsOl QttÃnAFØvRpŒ:[wørÛ+¼yéufI|èx€€|„k i't#l¹j÷känrlÖbÿoønžZ q~prPs r>EŸt¬t9Ãw9€Ú€€v›d“|njf¸|•fVhë}]²j¸}¤Ulx~>KXn~ßAoÁš5qO€~&«r¼Û§uE„f€€t†c‚­lre'‚Âd{gX‚Ý[æi,ƒS@jóƒ2I§l—ƒu?}n*ƒØ3oo‘„‡%pš…ù¹s…‡˜€€rŠa¦‰mj…c̉"b›eúˆÞZg̈¤QuiŒˆxGçk#ˆk=ÅlˆŒ1µmЉ(#CnY‹ ©r‰=€€p`‘Œh|b²ñ`‘dÚ`Xf˜ŽÝOzh>ŽoEñi·Ž6;ÏkŽJ/¡kî2 Ük³˜ Cp㇀€nt_·˜Mfa—Y^ÃcÒ–sVNez•®M½g• D8h_”È:i…•-Èj–X¯i6”¿ 8pj†<€€zŽwÊVúrOxxZ j2y*]_ajyÜ`oXz•cN¸{~fœDO|•iÀ8}ól×)Ýßp1ƒás1€ù€x½u\¾pžv _rh¢wb;_ñwèd×W.x×gMryãj!C){lÞ7|to™(Æ~Lr"õuw€€vír—bƒnés½dÈgtìg^vviQUÖwkŽL9xHmÇByp5ûzôrw'º|³u"÷wð€€up&h`m&qj5e[râl\êtméTkuPoÆJìv‘qŸ@Þwçs4âyUu&°{ wÓ4~z¨€€s.mànCkdo^o¶c¼pæq6[jr7r¦S s…t#I¨tÖu?´v8w.3Ðw°xÊ%²yfz°Z|`}¨€€q;kÑt't‘zè2Xuù|9$Ew}}ìÅzm€€obiìzNgk¯zñ_öm}{žWÀnï|OO|pT}F>q¦}ÙH}ˆiØ>(~rl2W¦oK$>urFR…9u}€€oFwÀbg´x˜d\`Dyyf¯X+zBhàP{kFÖ{ðmV=|ïo¬1Q~!r#5ÒtÍ}ƒ-x5€€m„ung›fvqiz^§w}kgVªxcm?N¡yHo$Ez瀀j‘ãWšc_‚Z…\Q‚@]TŒ‚i`bL·‚™cSCÇ‚üf=:6ƒiE.¢„ lK £†œoƒ ©Šhs;€€hþŒ\¥aãå_4Zì€EaÑS6€–dTKm€ìfâB“giv9‚ l)-˜ƒn攄òqä îˆ0uô€€gX}Ma¬`R}ÌcáYo~Tf$QÔ~ÈhSJ(AjŽAjÔlÌ8€‡o(,—ŒqœŽƒCtg ?†xü€€e¥{"fÏ^°{Áh­Wß|gj—P^|òlxHÎ}€nf@(~"pW6ç~àrc+åtއ…w œ„-|€€cñyl]yÇm“V\z…o-Nó{"pÁG{{¾rc>ì|lt5¾}1uÉ*o~8w«‹Äz ‚g~û€€b%w/qP[Qwýr’TžxÐsßMAyzu%EÔzvz=SzÐwÖ42{‘yT(ô|{}Ï}^Ì€uð€€`du|v®Y‰v]w¥RÍwEx©Ksw÷y¢D x z©;yL{Â2vyÿ}'AzÅ~«\{«b=~ƒ„8€€^{sê|fW¹tÖ} QuÇ}»IÂv}~fBZw(!9çwÍý0Ñxl%£y‚ȯyp…õÏ|Ã@€€\¡r„‚SUësw‚¬OQtnƒHu ƒ}@ uÁƒý80vT„±/vÖ…¼#×w1‡Ä¦wrŠ'C{A‚4€€Z²qYˆ±SürHˆÔM_s9‰ Fs؉N>¶t^‰¶6BtÑŠr-u#‹Æ!§u)Ž:îuåŒÌl}˜€ö€€XÌpe¯R,qB‘K¦rDgr¨½=s04Žsc‘;+Ws~“)¯s“Í—t‹8€€€€b&‡ŽWå[ЇlZ­U‡R]€Mч3`IF|‡c!=û‡7t€€`°…^\Z%…a_SÀ…jaŠL‰…ldE<…uf‚<Ï…ªi3½†kº(o‡nsV‰qi­Šúw€€_'ƒEa8X«ƒfcbRTƒŽe–K5ƒ¬gÂDƒÒiü;­„l=2´„‹n›'r…sqR‡]sì%ˆãz)€€]†@eùWvgÚPÔ²iÅIÊâk­B®‚m¤:o‚mo 1Š‚çqº&\ƒËsøK…–v¦¦†ð}€€[êHjÕU“‘lqO_ßnHi€o»Aa€]qp95€¼s+0`~½+e|™€ _}‚2G}½…suŽ€ü€€TÜxèßNžyk€mH{yñ A–zCª:“z‡‚f2wz̃^)£{„„{6‡qP{õ‰8ä€ €€Ròw½…ïL²x;†TFŒxº†Ñ?ªxú‡[8©y%ˆ0…yH‰*'yP‹ ;y'` ÓzX‰Y€€€€Qv¸Œ¨Jíw*ŒØDÕw›'=ùwȰ6øwÙŽŒ.Íw×'%Ðw¥’0*w‘± ¶x÷‡ë€€€€Y’­X5SeGZÜM[Œë]ŒFŒŒ`9?¬Œ9bô7Œ e·.¾ŒIh™#zMkvö)naÇåu°€€X‹²\iR‹`^ÖL ‹aKEKŠÏc³>uŠ–f%6kŠ’h¤-¬ŠÊkC"u‹ÄmíîŽvpÁc¬x¬€€V©‰»`¹PŸ‰ƒbâJ¸‰ReD ‰ g==Fˆùip5O‰k¬,£‰Kn!wŠ:pôŒ¯sQ‹—{w€€U*‡ÓeO)‡«gIK‡ŠhÿB¬‡fjí;ù‡Jlæ4‡anè+w‡°q _ˆ—sTþŠËv'­‰§~€€S¤…øi›M³…ÝkMGä…ÈmAT…®n¼:¯…›p~2Ù…»rI*K†t7I†ðvZˆÖyE\‡á€r€€Qû„7nBL „2o·F<„1q7?±„$r¯9„t51?„û’‘_ó8“‘ùb’0Ü‘§e?([‘§h ’ãj¾[•Ým¹'xN€€NØ’À\.IY’^Cÿ‘v`Ô=¿àc.7c[e“/ºh'G1j”‘bm# Š“ÍpEŠ{*€€Myð`H Yb7BÂÌdZ—iñ4ö"kï-fŒþm÷% ,påŽHrm jv!ˆÓ€€€J½ahPEVŒáj@ŒgkÀ9î‹ðm€3®‹‚oQ,(‹fq.#Ö‹˜s0ÆŒ­ul I)y–†¾€€€I)‹Ál’C½‹Qn>qŠæo¦8OŠ{q52 ŠrÕ*ˆŠtˆ"1Š2vk‹2x´ ŠÛ}yƒ…€€€G›ŠEpÞB‰çr><¶‰s¬6Œ‰3u 0BˆÝv{(¶ˆÅx PˆîyÞ'‰Ì|l¥ˆ¨&€€€€EɈÐuœ@^ˆ‡v¿; ˆCwñ4â‡òy!.‡¦zj&ú‡‹{䃇¨}ÂAˆS€åP†©„y€€€€Cþ‡‡zŒ>š‡H{ƒ9N‡ |3 †¿}¢,Ćs~Ú%$†J€e”†I‚›8†ƒ…„„˃䀀€€B†nû<¤†'€é7L…ãù1…ƒ*¶…4„s#„è†qO„¬‰(ׄ>Š Ä‚ð‚‹€€€€@…`†/:Ä…‡5€„Έ/N„o‰L(à„‹"!ƒ–¦@ƒŽÓ Ñ‚Nˆ«]f€€€€“J]¼PI‰s_|T,¹a6X7uAc#[òj­e_Æ_ gOcURøi¬fëDöl^j:4Ãom×s8oò€w‘YóWЇl\[}Ý^7^lsŠ`…a~ibâdž]³e^g•Q´g÷j›C×j¹ml3Çmºp;,pürZ€xôŽñV*_L…lXµaè|[CdqÛ]îgg“`¨iž\ScjlP|f@nnBÃip¼2Ökðs‰n½tÜ€z¹Œ´RfƃQUhh¿z XYjÉp [Plµeé^Vn­ZÏaLpˆOdKriA“g3t41ãjv ïl¤w|€|^ŠiOnA2R8oªxUwqn>Xµr{dF[ÿsàYP_#u1M¿bCvˆ@geEwÍ0úh,y_j¾z3(½}úˆKòu²OuvˆvSwflKVnxûcN{‘/¯eþ|iöh„}H€€…õI=}.|åM }gsòPç}¢jSTo}ö`Wó~UUç[A~³J•^|=vaU~.2c–þf\€ï€€ƒªG8„¡zÅK„kqýNã„7h~R{„ ^äVƒäTKYhƒÆI\¨ƒ´<_Yƒµ,Éaƒë(d™…€€†E€Œ/x½IO‹‹pM(Šêf­PÅŠG]-T_‰¥R¬W°‰G‹ZÛˆ¡:]JˆS+$^WˆncOˆë€€dD.“æv«G÷’ÛnKÇ‘ÓdÁO[Ï[XRèÐPëVŽôEÛXþŽ<8¸ZþÙ) ZôŽgkbƒŒ`€€}IC(œ,tºFÔš³lIJ‚™=cN —ÖY½QŠ–zObT•YD`W:”y7&XÀ”S'(X”y1d¡Šó€€ŒœaµPÀƒ1c:T†yåd¸XooÖfh\e«h!_ÍZˆj"cHNËlQfÊA1nÖj1aqÎm]ªu–oÞ€ygŠc^WÕ#_õ[xaá^KncæaWd eódrY'h2gcM“j–j`@m&m30eoýp ðsHr@€{9ˆCZd^ú*\­av0^ùdqt¿€|í†%VÌf.})Yvh)tM\&j2jº^Íl&aa{n(Vdd)p Kfæqú=êi’s×.€l:uÄ•o w_€~ƒƒôSƒmZ{$VqnÎrtYhpNi \Kq»_‡_5s3Tüb t—IÓdäv<Ìg¤w_-™jKxË÷mSz€÷¼PžtuySÇucptVùvYg'ZwH]Ã]xASW`y.HMbìz$;fe {,Mh|~kR}J€€©Mù{™vÿQ]{õntTÍ|TeH>k•m²;Dmùp+øprÇsòt‘€’[Fe}w]¡g~n`iefb_k‰\&dÄm’Qãg,oƒGi¤q~:.lsl+n‰ur rw5€€}€XlSuZ¶m×lÑ]ZogcÎ_ðpèZ¶bŒrtP“esíEÕg§uo9j$væ*lxq\pdyþ€€{]UAs#sXt*jáZõu8aû]±vCXþ`pwWNøcxaDWe¦yv7½hzˆ(Òj2{»Ñn¡}I€€yTR«zqUµzhêXÈ{`[{˜W,^n|€€w6P“€éoSžgV°^PY“@Ux\smK£_¨A4a¦÷4Ãcµ‚r%âd¾ƒ`kd„u1N‡ùm"QЇ«e1Tá‡b\…WćS¿Zž†ãIü];†À?_­†½3,as‡ $-aň)j)ˆ?€€sML[kP[ްc)SlŽ ZV6tQÞXîŒìH'[eŒ‹=Ì]¢Œ]1@^ðŒÂ!ð^îŽ5 Æl‡ö€€qL—Ji*O –=a\R•9XÙTÁ”SP9WV“„FŒY§’ø<3[«’Ê/\o“Âì\³“h Òof†¤€€~õi©QšvNjÔU"mÄkýXÇd‹mJ\7[:nŸ_ºPïp?cF rfm9Jt:iª*Qvãl÷á{1o€€}·|ôfQWùtxgÌ[liF^!cjßa YÒl„dO©nWfÞDìpSiË8Br{l¡)Qtüo‹þy"qÕ€izýc^_r¤dÎ`æjjf™cazh{eðXsjghlNqlljÓCÙnŽmI7Ep¸o´([s r;(w6tT€€xþ_ÀdÔpÆaÙfÛh®cøhð_æfjðW h6lüM+j^nöB´l˜pý6SücévkJYfxfw|Ä2Jhi}´#¨iµ~ù_p6S€€pæUQiX La]ZÌŽX÷][ØPy_ã€-Fÿb5€‘<ídd0ÐfÇ"2fǃ °nœ„Ï€€nìS|…Þg*V7…¼_…Xõ…ŸW.[€…‰N¾^…|ES`B…Œ;LbR…Ã//cº†` qdˆ ßmŸ‡Z€€lâQøe%T°ŒŽ]‚WhŒU8YÚ‹»LÖ\5‹iCs^N‹F9l`#‹d-2a Œ:aŸÇºqA…怀jåP¯”ÇcCST“ï[»U÷“"SXL’wK*Zƒ‘êAÍ\q‘®7Å^‘ë+n^S“M_Ã’ŠætW„ª€€x m¾RoÃnÂUlg—oÅXê^Ápè\Ho¶po22q¨r{#¶s«t§òx˜w€€pYapjOh¬c~kña!e’mžXàg–oža_‰ô4çbÄŠb(þc;‹·!dÐçvƒþ€€d•Up’7]?W»‘”VZýN[ÿŒEû]Ü><ë_aV30`u‘ ''`@’çc\)1xê‚Ö€€pàrRpiríU·aHsÄYXÞt·\JP]uµ_‘FÜvùb¿<½xweý0ÊzCi%"|±l] ˆƒo;€€oo Xgcp&Zø_ÊqE]äW|rw`«Os³c~E´ufF;·v·i"/Ñx|kò!‹z·n× ¹qq»€€mDl]Æe²ms`9^>nÏbºVp:eMØq±gŠD˜sBiî:¼tõld.áv°nÙ x¯qp ø}‚tr€€kii1c…c÷jÁe’\¤lVgªT¡mëi°LŠo‰kÁClq0mÊ9²rîoä-èt¨qý˜v†t7 D{µwo€€if]iTbBhk[iäl¼S9kngKFm[pBIoqÍ8®pÓs,ørŽuI¬tPw% Ÿzz±€€gªcÁo5`le­pYLgŸqÖQips%I¤k@t@¼lüuØ76n²wF+“pLx½Oq¦zs ^x2~9€€eãaWu'^šcjv Wme„vöOªgcwéGÖi9xê>ýjíyò5ƒl{)òmæ|c´nÎ~7ÒvO¤€€câ_A{T\¶aY{×U¥cv|`Mðe[|÷F%g5}ž=WhÝ~V3èj_2(dkk€k&lZ‚ gu.„T€€aõ]f«ZÙ_}ÕS×a•‚L+cs‚JDee@‚¢;Ÿf΃23hƒÊ&ªhÅ…AjS‡—Úw̓G€€_ú[Ј\Xá]؈AQÞ_Þˆ1J6a¢ˆ6BqcLˆV9¬d¥ˆ¶0;e¢‰y$Še©‹e®hÑŒBÿzï‚€€^Z_¡W\S9P ^BŽßH~_鎰@¹amŽ«7ób.{c,V"£b´‘ÕTgÏk}š€ö€€iˆv±RÉb&wTUþZáwúYERëx¸\dJÞyƒ_A¿z“b¦7ö{àeÍ,2}’hàá€kö *„ o}€€gês½X*`¢t¢ZøYxu‹]ÕQ˜vƒ`IŸw‡cN@›x¸f6ôzhÖ+={½k™ß~nh„‚ˆr3€€f:pç]|_ r_ëWús'bfP;tSdÄHfu‹g)?ƒvÚi‰5üxKkû*Pyânnç{òpû递u-€€dsn#bâ]`omdõVlp¼gNÎr iGsek0>YtÇm>4ðv@o^)UwÑq~ïy³s¾X~¿xv€€b­kuh][½lãjTìnVkãMnoÃm›EÝq6o\=6r§q3èt#rê(au®t¸wdv¬Ô}{˜€€`ÚhômìYôj…oRS+lpÂK¿mœr%D?os“;ªpu2mrv‰&÷sex œtÎz¼{:~Þ€€_f s‡X+hRt”QUju¬Iîk”v¼BvmwØ9ìn‚xÿ0·oÚzD%Opø{Äóri}ñZy_‚ €€]#d†yrVOfBz$O•hzÞH:i{š@Èk|d8Glq}F/m©~S#»nqÔUpc‚‘zÊ‚€€[>b¨‰TyddçMÍf €OFzg§€Â? iH6‘j[÷-bk^‚é!øk²„¦[n· °}%$€€YJa …ÿR†b¸†KØdb†MDŠeΆ= g†î4¢h$‡•+ihʈ¶Îh“‹ÓmŠ‹Fû€€€Wl_~Pºa!ŒáJb½ŒÎBÕd Œì;me6?2íeýŽ)§f7ÛÛf î¬lu‰ë€€€€b{“S1[)|V@Tm|tY\Lð|ø\aEY}‰_q<›~cbr3%‚e‚'…&h|üƒùkc-‡xp#€€`xÈX3Y¼ylZéSz]«K«zÎ`RD!{”c;{|ˆe¯2&}¯hp&’Bk#û×mÍ­…Zs€€^åv],X5vë_‹Q¥wÃaõJUxªdLBíyŸf¬:fzªi 10{Úkx%§}Xmæ£p[4ƒ_v_€€]6smb=VtgdJP$uff`HñvkhmA§w{j„9pâ}LsĆy‡€€[†pÙg^U qði!N°s jíG™t(l±@juLn€8vtpL/w¬r+#­yt { v]Ö|k€€Y½nvl˜SLo§nLùpÛoEïrq>Ïs5rŒ6‹t]t-’u‹u²"Êj<„Ë7ºk0…n/kà†_&wl/‡æÜlEŠc ^qãˆ]€€€€PodðŠKJ+f;ŠiCýgŠŸ=hs‹ 6 i<‹¾-Íi¨$°i~Öj1ª kpµ‡ €€€€ZQ€ÑS›S÷VM¿DYoF¶\X?‘ë_M7.‚’b6.ƒ‡e-"n…7hgˆ¡jVŠ#q`€€XØ~5X6R—~“ZÔLw~ö]yEyp`>\ûb¯6€¸eM-±gý!yƒJj—r†Ym ûˆt¡€€WO{¯\ÓQ|2_&K|»aD,}[cÐ=,~ f)4ú~Úh€, Öjè ‹UmG‹ƒðo¦¦†w¿€€U¶ya‹O˜yÄc–Išzne©BÏ{&g·;è{ìiÑ3Í|Èkç*ñ}Én†6p2¨r~W„(z¦€€Tv¦fQNwbhH1x!iñA}xëkÀ:«y¿m›2¤z¦os)Ú{«q^‚}sJÓ]u’‚t}M€€RUt]k8L[u,lÃF€uþnV?×vÔoâ9w±qz1x˜s(QytËz·vŠ},yJ€€€€P r=p8JœsqDµtrÑ> tÞt7Gu½uo/Ov—vÓ&‹wsx_=xFz@ {}À€€€NÁp'u‰HÒqv‡Bþr w<]rêx•5˜sÆyª-¢tzà$ÛuE|Q‰u´~o ®y=ú€€€€Län@{Go7{ÅA:p,|“:Ÿq}e3ÜqÐ~P+årvo#ré€ðŸsOƒ§ w–…Ö€€€€Jélƒ€ëEms‡?>n^‚88«o‚÷1îoÀƒà)ðp$…#!p#‡%>q3‰Jûv…f€€€€Ij¿‡wC?kµ‡à=}l¤ˆf6ðmH‰'08mÊ;(2mÛŒ1mPŽožŒé6u€„3€€€€RT†ŠSøLk†ŠVÀF£†’Y@†°\W9C†á_+11‡`aø(Gˆ7dΊŠ'gm [Mjˆxu€€Pæ„X-K„7Z¹EV„Z]L>„œ_Ñ8 „ôb]0 …ˆdç'6†ig|‡ˆ>iê ˜Š®l¨†xB€€Ou¼\rI«ø^¿D‚:a=‚—cZ6߃e©.òƒ«gò&.„•jE†Kl… àˆ4olƒ³{8€€MêW`ÃH1«bÚB–€dø<'€rg5™€ði-½ k/%‚‘mKz„/o_ *…ÚrxŽ}ù€€LJ}e2F¯}dgA4}Ëhû:Ø~EjÓ4X~Íl³,Œ†n#ã€{p~i‚rl €ƒ®u΀€€€J™zÌiÊE{Bkn?†{»m91|Cn¹2·|Õp`*ñ}r "J~rsÎѾu´ by耀€€Hüx¶ntCOyBoÞ=ºyÑqT7bzer·0çzÿt&)!{ªu£ s|nwJê}dyV r~€€€€GvÌslAw\t–<wíuÌ5­x‡v÷//y&x2'hy¾yްzT{-{E}§Ð}–Þ€€€€E4tèx“?§uy‹:1vz“3áv¬{—-cwB|µ%˜w´~ ÐwÿÝ#yH‚ÇY{惞€€€€C,rï~7=›s”8t5€1Ôt¼+Yu3‚A#…u^ƒä u#†nÚwO‡ëszO‚U€€€€ANq „Ž;Âq»…E6Hri†"0r݇;)‡s1ˆ¼!©s ‹¥r”Œª éu¢ˆºÖ|æ>€€€€I´"T DgŒÍV¿?;ŒYs9 Œf\!2´Œk^Ô*ðŒÄaƒ"8Žd4 f~Ö‘+j„áyc€€HVŠÆWûCŠZo=æŠa\æ7ÅŠc_[1zŠƒaÖ)ŠódI!‹Ðf¼Ž3há@ŽlÄ‚ª|.€€Gˆ“[íAÈu^+<¡ˆ^`m6Šˆob¬0Lˆœdñ(‰g*óŠ iaõŒKkf´Œo¹€—~Ê€€E¸†S_ù@p†Fb;E†@d56†]f/†‘h1'[‡j:¸ˆlDÕŠ-n3(‰Ås€€€€DTƒþd!?„ eô9î„gÌ3æ„Ai¨-·„{k&…mn|†oVÁ‡èqA¥‡žv²€€€€B¬ÎhY=iôiû8?‚ k¤29‚YmO, ‚¡o$oƒ7p¼Ê„)r‡2…vtŸ­…uz¦€€€€@øÎl•;¦€ n6j€Oo•0`€›q*,€ôrš"‹~t-Ö‚Nuçmƒ$x€{ƒh~c€€€€>í~q$9½~Drn4¤~…sÃ.Ÿ~Üu(cBvt ¼ºwóó€Zy¹ Î}'`›€€€€<ö|Luì7Ñ|„w2Á|½xI,½}y}&~}}zÑÌ}Ï|bè~~ƒ ~ÿà Õ€µ€€€€:ãzq{:5°z©|Z0ŽzÝ}™*Š{+~Û$I{~€Y‰{‡‚e~{œ„ô |熀€€€€€8–xSF3Šx®‚S.ŽyƒŒ(’yM…"My†‡|y8‰„iy…ŠŒD{„退€€€€ÿÿÿÿÿÿmft2 -Ge†¬Ôý % M u œÅîEt¥ÙHƒ¿ïHt ¢!Ï"ý$,%Z&Š'º(ê*+E,s-¢.Ò0132e3˜4Ë5ÿ728]9ˆ:´;á=>;?i@—AÅBóD"EPFzG£HËIôKLCMjNO¶PÜRS&TKUjV…W X¼Y×Zó\]*^F_b`aœb¹cÖdòf g&hAi]jyk•l²mÐnîp q-rMsntu¤v·wËxàyõ{ |"}9~Ph€€™‚±ƒÊ„ã…û‡ˆ*‰AŠX‹oŒ…›Ž°ÄØ‘ë’ý”•–.—<˜=™<š:›8œ52ž/Ÿ+ '¡#¢£¤¥¦§ ¨©ªªõ«ê¬á­×®Ï¯Ç°¿±¸²±³«´¦µ ¶›·—¸“¹ºŒ»ˆ¼…½¾o¿]ÀKÁ9Â'ÃÄÄòÅàÆÎǼȪɗʄËpÌ\ÍHÎ3ÏÐÐïÑ×ÒµÓ’ÔnÕIÖ#Öü×ÔØªÙ€ÚTÛ'ÛøÜÉݘÞgß5ààÎášâeã0ãûäÅåæ[ç%çïè¯ékê&êáëœìVííÈî€ï7ïíð£ñYòòÄóyô.ôäõšöP÷÷¿øwù/ùæúœûPüü²ý^þþ°ÿXÿÿ"7Ni‡¨É ê * Jl´Û.[Šºí8^…­Ö!"+#V$‚%°&Ù())*S+~,©-Ö/011a2‘3¿4è67;8e9‘:¾;ì=>J?z@ªAÖBûD!EGFlG’H·IÜKL$MGNjOŒP©QÅRàSüUV5WRXoYZ«[É\é^ _%`>aXbrcŒd¨eÄfágþij;k[l|mžn½oÓpêrst5uPvkwˆx¥yÄzâ|}"~Ca€{–‚°ƒË„憇ˆ8‰RŠm‹‡Œ¡ºŽÓë‘’“”,•9–F—R˜]™hšr›{œ„Œž”Ÿ› ¢¡¨¢¯£³¤ª¥¡¦™§¨‰©‚ª|«w¬r­o®l¯j°i±i²j³k´mµo¶s·v¸s¹pºm»k¼i½h¾f¿eÀeÁeÂeÃeÄeÅeÆeÇfÈeÉeÊdËbÌ`Í]ÎOÏ?Ð.ÑÒÒóÓÜÔÄÕªÖ×rØSÙ3ÚÚíÛÇÜŸÝuÞJßßîà¾áâZã&ãòä¼å…æBæþç¸èré,éåêëTì ìÀítî(îÛïŒð=ðíñœòKòùó§ôTõõ¯ö\÷ ÷·øfùùÂúnûûÁüfýý¤þ>þÕÿjÿÿ#6Ld~šµ Ï è  5Rp±ÔøAa‚£Åè / S!x"ž#À$à&'#(E)g*Š+­,Ñ-ö/0>1`2ƒ3¦4Ê5î7889]:ƒ;©<Ì=ç?@A:BUCqDŒE¦FÁGÛHôJ K#L:MPNgO}P“QªRÀS×TîVWX3YDZU[f\x]‹^ž_²`ÇaÛbñdef5gKhcizj’k«lÅmÞnùpq0rLsit†u¤vÁwÝxùz{2|O}l~‰¦€Ãà‚ý„…6†R‡mˆˆ‰£Š¼‹ÖŒîŽ2‘G’\“o”‚••–§—¸˜É™Ùšä›çœéëžîŸð ò¡ô¢ö£ø¤ú¥ü¦ÿ¨©ª «¬­®¯$°'±+²/³3´8µ=¶B·G¸M¹SºZ»`¼g½n¾u¿|À„Á‹Â“ÚĢŪƬǧȢɜʖË̆Í}ÎsÏgÐZÑLÒ=Ó+ÔÕÕðÖÚ×ÂØ¨ÙÚqÛSÜ4ÝÝòÞÎß©àƒáSâ!âîã¹äƒåKææØçœè_é!éâê¡ë_ììØí“îMïï½ðtñ*ñàò•óJóþô²õfööÏ÷ƒø8øíù¢úTûû²ü[ýýŸþ:þÓÿiÿÿ&8Ng – ¬ À Õ éþ*@Vlƒ™°ÇÞõ $<T m!…"#¶$Î%æ&þ().*E+\,s-‰. /¶0Ì1á2÷4 5"687M8c9x:;¢<·=Ì>á?öA BC4DHE\FpGƒH—IªJ½KÐLãMöOPQ-R@SRTeUwV‰WœX®YÁZÓ[å\÷^ _`.a@bRcddue‡f™gªh»iÍjÞkïmno"p3qCrTsdttu„v”w£x³yÂzÒ{á|ð}ÿ€,‚:ƒI„W…f†t‡‚ˆ‰žŠ¬‹ºŒÈÖŽãðý’ “”$•0–<—H˜S™^ši›sœ}‡žŸ˜ ¡¡©¢°£·¤½¥Ã¦È§Ì¨Ð©Ôª×«Ù¬Û­Ü®Ý¯Þ°Þ±Ý²Ü³Û´Ùµ×¶Õ·Ò¸Ï¹ËºÈ»Ä¼¿½»¾¶¿²À¬Á§Â¡Ã›Ä•ÅÆˆÇ€ÈyÉqÊhË`ÌVÍMÎBÏ7Ð,ÑÒÓÓõÔåÕÔÖÃ×°ØÙ‰ÚtÛ^ÜGÝ/ÞÞüßâàÇá«âŽãpäRå3ææñçÏè¬é‡êaë:ììèí¼îïbð3ññÔò£órôAõõßö¯÷€øPùùëú²ûuü0üãýþ0þÍÿgÿÿÿ€€îû€$Ý'õ€MÌ;€€»P€#€ºªf€N™€ˆZˆ˜€Ç·wµ‚$fÔp‚”Uøïƒý°~ÔˆHìº~뇅ÛÁ†¸Ê×1† ¹ðg…^©,¥„ݘ}í„o‡Â€;„w€•ƒØfu€ýƒV}ƒnü}à•ë!~ ŽêÚ!~:(ÉT~u‹¡¸’~¸Š§þˆÅ—†Y‡‡†õµ†{v^€……f€„žV=ƒºú<}˜æé<}U–PØ0}”“–Ç}ב9¶å~ŽÓ¦…~qŒ»–K~ÏŠµ…ý8ˆèu°°‡/eÊ€*…•V[€°„ø4|‰¡:ç@|ÅÄÖ=}šÅ«}G–åµ1}‘“¥}긕 ~Oå…~ËQuHˆËe}ˆ}Vw€U„Bö7|7©”å3|q¥3Ô|« ˜ÃŽ|윅³ }.˜]£}„”ª“N}è‘ ƒ“~\¸sö~áŠrd¬f‡mUÏó„vôl|±ñã?|A¬šÑñ|~¦ýÁ_|µ¢°ì|ê  þ}7˜Œ‘]}””"ë~r¯~~Œc’ˆ[Tµ„¡òu|"ºQáC|B´Ïí|^­˜¿Y|…§Å®â|¬¡ØŸ |ñœ}}F—<€_}­’gq|~"±bŠ~¢‰?S´2„Êð”|k±ßS|q»’Íæ|p´½M|ƒ­g¬Ð|–¦” |Ë _¨}šL~¬}l”¯p }Ö€=Ÿ_™uëš{‹´•¬|Ï™‘;néŒé`øˆÑS7•„½åT‚Ò½bÕ5‚%¶ãÄþb°µˆ€Åª¦=€£Ò—…½ž#‰-x˜{+S“am…@Ž\_Õ:‰—RZ<„ÜãxƒSÅ7Ó>‚нÛÂ⨶5³b€ñ¯I¤ €/¨M•]µ¡×‡V›y1 •”k²~þÒ^m~ðŠVQ–~ë„ùᯃîÍÑp‚ûÄ×Á é¼T±…´Ž¢%€=¬º“}­¥v…C9žYwx~ò—ªj~Ä‘/]5~®‹Pí~¥…賋È}sÙ슒}ÐËA‰K~3¼zˆ6~¡­Ì‡Ÿ†5¥N…\€Ab„£€ìrtƒû²c¶ƒ]‚wUV‚ƒSæáŠò„ÉØ‰Î„^Éoˆ™ƒïºÁ‡ƒ›¬2†„ƒK›…¥ƒ""„Õƒ€o„$ƒq»ƒƒ?cO‚éƒeU\‚Vƒ—å'Š.ŒÖa‰ŠêDZ‡ì‰ª¹†ïˆ›ª«…œC…†®Ž„T…䈃©…Gq ƒ „Åbï‚{„KUaðƒ×ãg‰Œ“sÔ›ˆ{‘zÅâ‡Zj·b†`£© …b‹ÙšÒ„“ŠKŒËƒÒˆÎ~ƒ0‡p^‚›†Ib•‚…(Uf‘„ᡉšÑÒÙˆ˜Ä"†Ø•<µ¶…Þ’¹§y„Þ/™j„싘ƒV‹¹}Ÿ‚¼‰µo»‚1‡¿bB³…ùUj9„JßʈϢ.Ðó‡·ž«Â%†Š›³À…‡—¾¥Œ„|”r—žƒª‘y‰ù‚뎒|E‚P‹àn¶Ç‰„q•t>ƒ7Èhž‚Œ¢\鈦Q{섺Íà̺(¿Ö¥´±Ï‹P­ã¤]‰_¨—"‡a¢GŠ}…¾œã~L„5—¤rh‚î’¯fïÅâ[€­‰GPÁ’„ÎÌ*_Á¾Ž º2°‹ƒ³4¢‰t¬«•]‡W¦ˆ¿… |šƒÿšpÏ‚­”yey Z}€b‰×P!D„àÒC—§{ŒÅ‘•J|¹’Ñ|—¬iŸ})ŸíŽf}Å“HŒh~~†ÅŠvPzˆ¨€…›h«†ð…]÷„Ò„šSςʄ5Áv›’’’µ¥˜¡Áª•‹ŽâžŒ’Ì5“V‹‰ˆFŠ}ˆ‹ˆºr°ˆÃ‡{h†€†M]¡„p…HS½‚w„`¿ç›Y˜y´˜_–¨R•<“”œÝ’q‘R‘®š†¸ |Š˜‹qˆM‰Lg'†‡Œ\ä„…öS‚„|¾k›7žQ²n˜5›M¦—•˜1›’-•UðC’w…Œ®ßz’Š-`p*‡Þ‹f… ˆÄ[ñƒ‹†ŸR%ƒ„¼½›[¤J°Ç˜5 ¡¤ö”ޜߙ‘ð™bŽSŽó•⃄ŒS’°y!‰Êœnì‡wŒ·e…:‰î[ƒ‡?QF „ž»›”ª.¯&˜N¥á£P”Ó¡y—Ú‘Î\Œ«Ž¹™=錕rw›‰q‘ÈmŒ‡ŽUcé„Ú‹Z‚»‡ÏP‚€ž„­¹o›ô° ­h˜«!¡”ò¦–‘Ï¡^ŠÓŽ™œ¡€‹Ï˜œ{{)|‡’•Ñ}"‡m’º}ë|ö­~ÓrBŒÆãg³‰ã]‡"‚`Rå„fƒÅ»£6€.°]ŸŸ€:¥Ý›ä€G›1˜’€SÁ•:€a†;’'€¦{ï" qmŒ?žg‰_‚W\¾†©ƒRØ„ƒö¹á¢¡…¯Ÿ …¤‡›I„”™ã—û„~”§ƒ¦…‘šƒgzõŽ›ƒDp¡‹½ƒVf{ˆáƒ\g†6ƒÒR̃¡„$¸’¢"Šö­¹ž‡‰ó£šÂˆé˜—q‡ñŽ&”†÷ƒÞ‘ †7y䎅oÉ‹8…eåˆf„À\…Ê„RÁƒG„P·7¡Á\¬\žŽÔ¡¹šJB—&–ó‹ÇŒØ“”ŠI‚­…‰xÚˆ‡Ün÷Š·†ÖeX‡ò…è[Ë…e…!R¶‚õ„xµÎ¡„•ĪâÔ“µ ,™ö‘™•œ–“•‹S“&@‹ÃwŒŠmÞŠ>ˆ‡d‡~‡[„ó…ÃR"‚„’´w¡[›©p¤˜‚ž™™»•Ú”–J“K‰¾’Ͷ¾¬Žev#Œ¢Œ.l¥‰ÎŠ#c‚‡ˆ1Z9„}†_Q?ü„£²ä¡t ¡§éœl™Œš&’Ž– —ˆG’|“Ý~WPÿtÔŒ=Ž@k‚‰e‹²b•†§‰DYe„†ñPq„²±[¡¤¦¦c­¢@›˜™{ž_‘ •㚪†Ä’@–ó|ᓉsp‹âBj>‰0az†DŠEXzƒ¨‡vO»„À¯À¡ù«u¤¿æ§™é™“¢£[•ßžZ…’š{9ŽÉ–qÓ‹‘’Jh³ˆ§Ž¯`…á‹>W\ƒA‡òO€¯„Í®6¢]°Ô£?ž&«Õ˜p™«¦Çä•ܡ胜’ yÉŽ–˜‡pm‹I”0g\ˆU^Ä…‰Œ!Vd‚çˆ`N’€Y„ر¸ªzÔ§÷¥ä{Nž~¡{̔ş|Y‹J™©|î •ù}ºx*’T~¨nuŽØÅdæ‹b [2ˆ‚hQτۃ簢©wȦΥGÄ@ ñÀ“‰ÒŠ™逇•Z€>w6‘¼€µm¯ŽF`dUŠ×‚4Z⇜ƒQÌ„v„¯¨ã„«¥­¤®„.œ Oƒ­’[œ`ƒIˆí˜i‚éz”Á‚ÆvN‘+‚Áló»‚÷cÌŠSƒUZ—‡&ƒÃQÉ„„A®h¨h‰•¤w¤+ˆ šÇŸÁ‡¤‘›Î†Ì‡°—Ñ…ö~V”*…]uN–„àl*.„˜cC‰Ó„sZQ†·„eQƃ½„i­:¨Ž~£A£¹™‡ŸB‹žÛ›GŠO†z—C‰}:“š‡ótS†þkfŒ¨†4bÉZ……Z†P„üQÃk„«ù§·“g¡ï£g‘„˜!žå—ŽwšßÎ…–ÏŒ{퓊{s"ˆ‰ jdŒ*‡Åaûˆã†˜Yp…Ü…’Q<‚õ„§ªÂ§ƒ˜9  £-•á–·ž¡“~ š‘8ƒ¯–qŽñz“’·ŒëqÝ‹iH‹·‰Caˆr‡¢X…d†!Pj‚m„·©Y§HŸB£š_•bži—i‹ºšH”ž‚_–‘ÖyQ’WPp°Ž°Œèh?‹Lг`6ˆˆ Wׄô†¨O«ï„Ƨ÷§°¢@ᣞȔžO›DŠ\š—ô•Û”©x’‘¤onŽSŽÂgŠèŒ_-‡¢‰ŒVû„‰‡"O„Ó¦}§ñ§5œ_£H£7’už]Ÿ.ˆÐš›Wy•³—‡v€‘Ê”møþ¢e¬Š‡t]·8ŠqU섇“Np„ߥ ¨<¬šú£w§‹‘žl¢ô‡zšž’~%•’š=u3‘”–6l´´’_dqŠ1޹\Ÿ†Ú‹AUƒ½‡øMñ€Ã„é§X°m{Pžx«¤{œ•䦷{ç¢,|`„‘˜|ä{Ú™L}«s\• ~˜j›ú»bŒð Y@‰‚vPÏ…I„¦m¯É¼y«›”ϦxŒ¡…ƒ|œçzܘžùr}”g€yié]6a„Œ]‚Yˆ”ƒPÕ„ã„3¥†¯7„"œ‚ªcƒ–“Æ¥fƒŠø Õ‚ª‚tœ;‚Wyê—ø‚Gq©“É‚Xi@Ç‚«a ‹Òƒ)XȃºPÚ„„„[¤®¸ˆ‘›y©Ú‡œ’§¤Î†¡‰× 8…ÜT›˜…!xà—U„¦p¾“*„Jhˆ1„+`–‹L„1X‹‡¨„PPß„*„£”®FŒÿšo©^‹ ‘¤EŠ;ˆ½Ÿ§‰€;šÿ‡éwÛ–»‡o×’’†;gÖŽ£…¥`%ŠÎ…/XW‡?„ÜPãƒÙ„¤¢­ï‘m™I©§T£ÜÚ‡‚Ÿ4Œ?š‚Š¬v³–7‰WnÅ’ ˆ f_rŠR†,WdžDžfPiƒa„»¡n­­•Ø$¨¸“š£Œ‘g†DžÚ^}ÆšYuƒ•Ç‹•m§‘”‰îeñ¦ˆw^ž‰Ý‡!W†L…éO§‚Ö„Ê 2­¢šT–ñ¨’—¨í£H”󅞈’s| ™¼üti•aÅl‘&‹®e7‰É]Ö‰oˆVN…Ù†dNö‚U„Øžý­«žÒ•¼¨…›¥Œ¶£!˜qƒéžQ•z{n™t’sA• ækÅ`cüŒÏ‹ \≈àU‚…i†ÓN[ã„ä°­Ñ£Y”e¨™Ÿ±‹S£œ‚‰ž:˜z™E•,qí”È’ j5nb³ŒjŒN[œˆ’‰°T„„õ‡:MÓ}„ïœa®§É“"¨³£šŠ£ ŸkXž'›{xå™—ŸpÇ”” i"¨a—ŒsZˆ.ŠmS¨„‡•M^$„ù<¶Ô|!•4±j|Mz«Ü|w……¦½|Í}Ö¡™},vœ¹}Þng—æ~¸fŒ“?Ó^ÜŽ¡W*Š!‚Oå…¯„%œ¶€ ”p°²ÛŒœ«§„Ÿ¥û |é Ó¡u#›øôm£—1€meò’•,^wŽ‚Vþ‰œƒ(Oó…I„N›Ùµƒù“§°ƒj‹¿ªh‚؃¾¥A‚s| ‚tP›@‚lè–ƒ‚ea‘ò‚^rƒVÔ‰ƒ¹P„é„t›´ý‡ñ’Ò¯x‡ŠÎ©Ä†‚Ƥ—…V{ Ÿe„œsfš„.l•Õƒâd‘PƒÝ]¹Œä„V®ˆ¨„CP „„˜šU´†‹æ‘ø®ôŠŸ‰â©/‰TÔ£úˆ6zžÀ‡r™é†QkI•/…¥d'¶…5]_Œ_„éVŠˆ;„ÃP„>„¹™s´$ã‘®‰ŽAˆÜ¨·Œ™€Ë£y‹y ž4‰¡q™Wˆpj]”œ‡ac`'†‡\ŋۅÐV ‡¿…AO©ƒÄ„Θ˜³Î“Ê®0‘ЇըWÐÁ£îx¾Œp˜ÚŠ{ij”‰b‡¦‡Ê\ ‹]†¯U^‡>…¸Nõƒ6„Ü—‚³¡—×­ð•m†Û¨’þ~Ë¢¯´w RŽro”˜hŒvhˆ“¤Š a½/ˆþ[_Šé‡T»†Æ†'NQ‚³„é–y³‰›×Ž­É˜ü…Ô§É–}Ç¢h“kv œýÃn›˜ Žag˜“=Œ'`׎Š Z…ŠvˆCT†P†ŠM‚?„ô•d³ŽŸêŒå­Àœ „¥§°™U|œ¢?–3tæœÁ“ m|—ÀRf~’å®_·ŽZ‹?YZ‰ýˆüS…Ô†æMDׄþ”@³ž£ç‹Ï­¿  ƒœ§›œ]{š¢˜Ìs꜎•Pl…—’eŒ’™^½ŽŒBXW‰‘‰£RK…h‡7LØ}…“P½F}gŒ·\}C…±R}~«’}Cw1¥Ê}zpC D~i”šÏ~Úb¡•‡í[ØN2U2‹%‚©O †„B’é¼}€Ê‹Š¶‹€Y„w°uä}Mª´¿vo¤ì¨o‰Ÿnïh욀ab!”Ï$[Ž©‚UŠšƒ5O"…§„h’u»Õ„1ŠûµÖƒsƒË¯®‚²|˜©ç‚=u³¤Õnמ¢ÇhK™Hâa§”‚T[G ‚øUŠƒºO7…G„Œ‘û»A‡¡Š_µ4†›ƒ ®ù…’{Ì©,„ÍtߣW„n àƒ´g•˜Šƒza!“nƒZÿŽtƒÔT퉞„7OJ„î„­‘iº½‹‰¸´¡‰Æ‚O®Rˆn{¨~‡Zt ¢¤†SmF+…žfá—Õ…`ž’Ç„ÇZ»ç„¥TÙ‰-„¬O[„œ„ÌʺBŽ¥‰´€­Å‹Yz.§é‰ðs3¢ˆ”lsœ‰‡ˆf—3†£_÷’,…úZ†«³–‡¬•“ÑwȦœ‘[pÍ –Žùj›ŒâcÕ•³Šõ]׬‰ˆª³/|݇ £w}u†»“×~…á„~²…&t_„yd€ƒØUv€Ùƒ>ð×y¯”*àÖzG’$ÐÚzæÁ{ˆŽ,±|4ŒP¡ü|ØŠ¨’˜}‰ ƒ~/‡‘sj~ë†#d8©„ÒU‰€wƒˆîÕxîœOÞây™oÎòz4–j¿Szà“¾¯Õ{—‘ €|EŽ˜‘X|÷Œ3‚ }³‰÷rÂ~‡ÀcçI…¼U›€ƒÌìÍxt¤qÜÐy ¯ÌÐyÆœ¿½‚}™¦žæç–%‘Íp’è…¸x)€¸Œ¶k€‰¿^ú€O†òR߀!„4Óã„g«ûÅ߃ª§z·é‚ܢЪ^‚=ž”›šN–Vƒ]€«’ovÀ[ŽÂjj€‹)^ 臻Qöµ„XÒ „”³Äƒ½­Ø¶‚Ó¨i¨y‚!£l›%mžeŽ7€â™µ§€c•u=€ Ái ÇŒ‚\þŒˆuQ)T„xÐ+„ûº3„ ´.³÷ƒ­û¦k‚9¨B™e¢Œ4€Ã¶€/—ÓsjÉ’ÉgvzÛ[¶:‰&Pt~ý„•Î\…ÁKÀD„iº€².ƒ8³ˆ¤¢‚N­ —J^¦ˆŠt€§ i~€šmqÕŽ”²f6Z›~ð‰ÇOÙ~±„¯ÕèŽxÃÈôŒ˜y£¼1‹z¯8‰â{t¢fˆ¨|e•_‡}Yˆo†}~_{*…ˆlm℟€‘`Ѓ÷T9‚ê‚öÔ:ˆÇF‹Á¶ºŠXè­˜‰-€ Ûˆ€Q“þ†÷€¢‡F…ñz8…}m*„!‚ `cƒN‚šT)‚€ƒ8Ò‰ŒK†AŘŠþ…¼¸Ó‰ …1¬ˆ‚„½Ÿ_‡e„J’®†eƒö†+…jƒ³yQ„…ƒl|ƒ¨ƒ_ý‚ÞƒvT‚ƒwÐÕ‹•ÃáŠR‹Æ·ˆýŠ€ªY‡å‰gІ͈N‘I…Ó‡Z„ù„Þ†rx^„…©kЃ2„ï_‚u„IT Àƒ±Ï‹“½Â.‰À‘×µiˆiߨÀ‡SŽœO†=ŒXï…GŠ¿ƒÐ„W‰3wsƒ†‡¿k.‚ÆS_E‚…SÿkƒçÍNЧšuÀX‰`—Þ³…ˆ•/¦å†é’Áš…ÎNŽ@„ÔŽ‚Jƒâ‹Þv-ƒ‰Éj8‚S‡¼^‚¤…ÚS[€ü„Ë—Šg¡"¾ˆ‰Ò±–‡Âšd¤ö†Ÿ—I˜•…x”(Œo„w‘E€œƒ~Žpt¾‚ª‹Áiæ‰]‡2† Rb€‚„2É·Šn§Ù¼°‰ £Ø¯Æ‡ŒŸ¶£,†[›æ–Î…)˜ŠÀ„ ”| ƒ üsh‚H®h Šs\œ€È‡[Q€„QÇ튖®€ºä‰©Ê­ô‡}¤ò¡]†9 n•„ô›ã‰ƒÝ—¤}k‚Ñ“|qóòŒfÎ'‹¶[™€iˆP·ª„mÆŠõµ"¹‰]¯¹«ü‡¥ª,Ÿd†D¤ø“„ߟ¾‡ƒ±šÕ{‚‘– p4¦‘qe5€ÔŒöZ_€ˆ«PN„†ÄU‹l»Å·C‰®µ ªC‡Ë¯Z®†N©n‘Q„Í£…kƒ‹èyñ‚X˜un¯c“7cÒ€‹ŽYOĉ>On~ÿ„œË>“Ëx¿F‘Øxû³‡Ñyì§Ž zۛȌ>{×ÄŠ›|ÞƒÞˆÿ}ûw¦‡$kx†€i_s„£±SèƒFƒÉ´’î~e½¸‘ ~¨±õ~î¦W:šN‹ŠŽpŠú‚½ˆt€€v¹†üjÂ…‡Ñ_„.‚ˆS͂߃OÈ’0„¨¼"S„E°\Žaƒá¤‚Œ²ƒ’˜à‹ƒH+‰vƒ ©‡ïƒ u׆}ƒj…ƒ1^™ƒ¾ƒXS³‚}ƒˆÆ…‘‰Šìºƒ±‰ç®´ÃˆÙ¢ìŒ‡ô—_Šm‡‹Ñˆæ†S€‡d…¤tè…û…il„—„^7ƒT„S›‚"ƒ¾Äå‘‘0¸è&Ž­3Þ¡d‹ŠŒ^•ë‰àŠÞŠ€ˆ[‰ˆ\†Ýˆ@t…~‡ hÌ„(…à]Ü‚ò„ÛS…΃ðÃ1¦—r·)ŽÇ•-«OŒÏ’ןŸ‹ ¸”1‰nŽ˜ˆä‡åŒ§}æ†eŠÅrÈ…ˆùg݃µ‡5]‚‚…˜Rá]„Áe£µpŽ…š·©yŒŠ—µÊŠÑ”ö’a‰’5‡,‡‚ª|O…ú0qk„˜ŠÓfȃDˆƒ\'‚ †QQî€Ý„1¿Ák£æ³­Žn T§¿ŒRœ©œŠŠ™C²ˆ¾•Ù…”‡%’¬zÔ…–“p%„1Œ¡eĂ܉Ã[Cž‡Q€e„K¾Žª±óŽv¥Þ¦Œ<¡‰š_Ša|Žüˆ™lƒï†Ú•ŸyF…?‘ènÁƒÕŽ`d”‚~ŠñZI;‡ PLú„b¼Cá°E°"Ž®«f¤ ŒT¦l˜|Š]¡»ˆ`‚†¢˜›w€„ó”Imƒ€"c ‚&ŒY€ßˆ6OŸ›„xºŽ‘H¶o®vŽð°â¢{Œl«;–ÚŠ[¥ß‹yˆC †€†q›vuô„°–ˆk¡ƒ4‘Æa¸Ø)X€ˆ½O G„ŠÀ¯™žwªµ«—x“ªé”†y…Ÿè’1zy• Ø{xŠ«|‹2‹…}¶sü‰|~ôhÛ‡w€Q]Î…µS6ƒ°ƒ3¿E˜Ñ}†´=–Y}Ù©t“É~/ž{‘‚~Œ“»7~ðˆÔv~Šø€sˆö€Ïh-†õ¥]c…‚€SƒJƒl½Ñ˜ƒO²Å•«ƒ §÷“ ‚Éà‚š’bŽ‚o‡ Œ„‚i}Šq‚wrBˆu‚§gˆ†y‚ñ\ý„§ƒCRþ‚郡¼W—€‰±C•ˆD¦j’…‡j›ŽH†°õŽ…ú†V‹ò…j{ø‰ä„ëq]‡ð„‰f憄:\Ÿ„<ƒÿR傃ӺՖþŽá¯Ã”ˆ¤ê‘öŒš¸ŠÍ“w‰‡…‹eˆjzá‰Z‡^p‡p†efM……x\HƒÙ„¯R΂<„¹?–£”«®"”)’¶£;‘³˜tKŽÛôƒ‘Šë‹WyˆÞ‰¼oW†öˆ5ei…†¸[ƒg…aR0È„#·»–`šc¬†“ä—סƒ‘H•;–¾Žù’ÏŒCŒ£b÷Š„Ž'xˆo‹þn†„‰ðdc„§‡ñZ¦‚ï† QHD„<¶–a 5ªÜ“É Ÿæ‘ ™Ñ•(ޝ–ËŠ²ŒK“Ä€zŠ#óv£ˆŽ8lÞ†‹Ÿcl„=‰YÌ‚†¯Ps€É„S´^–}¥ñ©:“É¢,žDïžT“‹Žš´‰Œ —~ñ‰Ó“°u.‡¬ck…¸>bKƒÛŠ4XÝ‚‡CO¹€[„g²­–Á«¨§€“ó§Lœ|ú¢Ý‘ÄŽqž¥‡T‹ßšo}7‰”–usƒ‡Y’˜iû…]Žß`׃|‹EW½·‡ÍOù„z± —±W¥è”(¬Zšî‘§L:Že¢w…Ë‹»§{¸‰]™r‡”«h… b_“ƒ(Œ?VÅ`ˆHN†£„жUŸ€w‚¬=œcxs¢m™,yn˜U–Mz^Žy“l{U„^º|jzlŽ }™p,‹~~áfˆó€K[݆‰ÃR„+ƒ[µžÃ|äªñ›©}M¡˜s}¼—•~#0’Æ~ƒ3 ykyÎoZŠñ€œegˆl‰[~†‚‚RƒÄƒ‘³Àž‚3©šþ‚Ÿ½—Éü•·”øã‹ò’&Ë‚…ÜxvŒê‚n‘Šj‚Rdчì‚À[%…œƒ:QöƒcƒÃ²h}‡‚¨<šd†äžQ—,†C”V”[…¬Š ‘Š…€âŽë„¦wkŒV„Km½‰ß„d<‡oƒôZÒ….ƒêQ僃ò±œþŒÓ¦Ü™Ý‹´œñ–›Š‘““ȉx‰Wõˆ^·ŽX‡ove‹Æ†’lî‰Y…Ïc°†ù…Z…„É„QÖ‚´„¯“œ¢’&¥^™{ƒ›f–0ŽØ‘|“V:‡Ú|‹š~SÛŠ'u!‹FˆÇk݈܇b݆‚†GYÜ„U…4QF‚?„=®.œ\—g£ä™2•=™Ô•ã“ì“ä†O޼|ÝqŒÄsÅŠÕŠáj°ˆh‰a醇iYƒÛ…ÔPn¹„T¬–œTœÆ¢\™š ˜Z•¡—AŽy’±”„á¿‘Û{ZrŠmŒði—‡ýŠ«a…£ˆ}X5ƒj†jO©=„i«œc¢ Ø™žÁ–Ù•|›gŒþ’|˜(ƒjz”èzŒ¼‘àq,ŠŽòhb‡šŒ*_õ…=‰€WUƒ†òNü€Î„|©uœ—§RŸ9™"£z•1•}Ÿ–‹X’f›ÊÈM˜x‚Œ{”no£‰ºûfë‡:¬^–„׊|VF‚™‡qNd€k„§ãœá¬ˆ·™J¨“¿•€££‰ì’TŸG€^%šñw!ŒB–×nO‰p’âe§†æ]e„}‹aU\‚=‡âMငœ¬¥‰w©¢ç¡Ùx}šžyVÜššz=‡ó—!{.~Ê“Û|EuÏš}yl„}~ÍcWŠf€DZ ‡yÑQ„žƒªø¤Ð|Ž¡À¡"|é˜ÒX}F«™ç}³†Æ–t~&}·“5~Çtáþ„kÂŒé€hbƉÚnY·†ü‚…Q „6ƒ´©Ô¤(b “ yG—šœ«+Ž|™=#…£•Í!|°’•Ksþhk Œ[þb=‰U‚‘Yj††ƒ2QƒÔƒã¨¥£†:ŸWŸÝ…ª–Pœ …9˜š„Ÿ„l•)„){•‘ôƒßsŽÌƒ«jD‹Êƒ a¶ˆÓƒ°Y"†ƒ×Pøƒy„§j£‹žŸRŠ•›r‰Œ˜ˆƒ=”‡/z€‘Y†qrŽ5…Çi†‹>…;a7ˆY„ÄXß…®„qPðƒ%„9¦¢¯íœÂžëŽu“«›Œ÷Š¡—ˆ‹‘ã” Š,y<Öˆöpé°‡Óh‹Š¼†Í`t‡ß…ÙXC…8… Pm‚¯„V¤Û¢e”´›nžœ’Æ’Aš«Ñ‰8—*Žñ€“¥wéh‹bo­<‰ÇgxŠFˆL_’‡i†æWw„½…O¥‚'„k£k¢N™¡š žm—+ìša”®‡é–Õ’M5“Fðv¯ÃnˆŒÐ‹®fw‰Ø‰½^¾†ü‡åV¹„J†'Nî©„¢¢Lžw˜¬žV›|Žš2˜y†–˜•˜}à’ü’½uh¬mRŒoˆe[‰r‹]Á†“ˆÓUçƒÝ†¥NN9„ ‘¢h£J—/ž`ŸÐŽš%œP…–y˜î|b’É••sôf’okëŒid‰ Œ‚\v†%‰»Tçƒo‡MÁ€Õ„ Ÿ¢›¨ •Èžw¤Œ²š ƒ¿–_œ{’˜Cr³*”¢jµ‹É‘'bÖˆµÈ[W…ÅŠŽT ƒ‡MH€~„®¢ «¬x$™¼§hxΑ¹£ yy‰vžýzNwší{/y9—|Bq,“<}thÏ~Í`‘‹æ€KX/ˆnæP#… ƒ¥¡ªò|ˆ˜¾¦®|É®¢N} ˆižC}s€jš4}æxA–^~pT’”Th Žï€H`‹T`Wë‡ì‚ŽP!„¡ƒÕ $ªL€â—»¦€¼ž¡›€”‡^€•f™ƒ€žwU•´€Ûo†‘ô2gzŽX½_›ŠÈ‚mW¬‡rƒ/P „>„Ÿ$©®…B–«¥`„¶Ž{ ñ„'†>œåƒÂ~N˜ÕƒevT• ƒ8n£‘Nƒ$fÈ¿ƒ>_%ŠAƒwWp†ÿƒÈPƒâ„,ž©%‰£•™¤Îˆ°` S‡º…(œC†î}=˜0†)uY”e…“mÅ®…f+„º^µ‰Â„wW:†”„XPƒŽ„Sœ÷¨¾Ž”k¤^Œ®Œ&Ÿ×‹Qƒï›ÁŠ| —¨ˆçt7“Ù‡äl»!†øe;Œ£†,^‰C…vV¬†„åO¦ƒ„n›Þ¨k’U“A¤˜ŠçŸwŽÖ‚²›Y0zÏ—7‹s “dŠk¢¨ˆÅdDŒ)‡]9ˆÊ†nUñ……lN삌„š›¨A–Ñ’ £Ç”–‰¼Ÿ"’XŒšû?y¬–ÑŽ-qö’øŒLjž7Š„c_‹·ˆà\xˆZ‡XUB…(…êNC‚ „“™c¨)›4Ô£Ÿ˜€ˆ†žæ•Ê€Zš´“=x~–»pÓ’œŽji‰ŽÓŒ5b^‹LŠ$[‡ìˆ2T„¸†]M¯œ„£˜¨,Ÿ—€£•œq‡(žÌ™K~ÿšŠ–Hw)–D“Soˆ’RhIŽwía$Šä‹iZZ‡w‰S„D†ÇM,7„±–èF£éŽ<£˜ C…õž¶œ¡}Ôšf™(v–•Ânj’’g4Ž&‚`ŠˆŒ‘YO‡‰ÅRÁƒÞ‡%L¼€ß„¾˜P±ÙxùȬùy‚‰¨z ‚£fzÀzïžÍ{s‹šb|}l^–}dâ‘À~î]Œ‰€fV3‰p‚OF…mƒÇ—‡±#|Üõ¬=} ˆ±§<}=9¢Ÿ}”zž}ôrµ™ ~“k¡•IRdM‘€H]&ŒíeVˆê‚ OL…ƒô–ðs€¾$«†€•‡Ò¦|€l€Z¡Þ€fy*C€gqé˜å€¦jí”™c¿r›\ÆŒY‚\UÔˆlƒ5OR„ „•ö¯É„¥ŽEªØ„%†ß¥Æƒ¥e¡&ƒDx8œ‡‚êq˜-‚Ëj&“ç‚Èc&Í‚û\f‹ÊƒPU©‡ôƒÁOX„D„F•(¯3ˆ‘hª:‡¶…ñ¥†Ú~w y†wJ›×…kp,—}„îib“;„‹b‘0„T\ ‹D„9U‚‡†„DO]ƒî„j”=®½ŒŒn©½‹N„餔Š}nŸëˆývC›C‡èo3–ç‡ h|’¤†DaÏŽŸ…¦[vо…"U‡ „ÅNñƒu„„“O®_W‹s©XŽÑƒÞ¤%H|bŸv‹Ëu9šÇŠRn5–g‰gŒ’"‡é`ûކéZŠ>†T^††…@ND‚é„•’:®”_Šk©’h‚â£Âp{kŸ Ž‹tDšVŒ®mI•ò‹f­‘ª‰}`5¤ˆZ‰È†ÙSÁ† …²M§‚h„¦‘2­ì˜M‰d¨Ê•êÜ£y“ˆzhž¹‘=sC™úŽûlQ•ŽŒïeÁ‘@‹_V5‰@YI‰T‡S…—†Mö„´­Ùœ>ˆB¨¬™w€°£N–±y@ž“ýr!™³‘Tk6•<Žàd­âŒ^@ŒÊŠcX/ˆÚˆ[R2…†yL¥„ÁŽô­Ö %‡-¨šœåª£*™­x@žQ–Žq&™w“jB”õ¨cÀ÷]QŒl‹jW;ˆo‰Qt„´†ÍL=7„ÌŽ™¸z%‡Û²¼zil­Fz¬zѨ{8t~¢Ú{ÓmüÐ|»g²˜Ò}Èa“öZª%€‚TUŠj‚$Nz…ʃ掷P}‰‡H±ë}ƒ€Â¬n}{z§6}¸sÀ¡ý~mHœú~˜g˜ P`Ÿ“<€IZ]ŽkT6‰Þ‚³Nˆ…_„š¶–€ð†²±'€ž€«œ€Jyj¦b€6s ¡(€/lœ-€pfx—I€Ó`*’‹{Zâ‚LT‰[ƒ;N•„û„9µì„V† °qƒ¾WªÖƒ%x£¥™‚Är> \‚nkÞ›d‚]eÍ–‡‚l_ª‘Ú‚¸YÊKƒ*Sþˆßƒ»N¡„ž„^ŒhµL‡Ç…[¯Ç†á~—ª…ûwÞ¤Þ…LqvŸ„ªk#š§„Ge$•΄_,‘1ƒðY…Œ½ƒýSåˆm„2N¬„H„‹½´¼‹H„¯2Š}Å©ƒˆàw¤>‡Ýpžø†çjSš†-db•+…‘^‰–…#YŒ/„ÑS{‡ë„¨NIƒÍ„˜‹´@ްƒâ®´6|ò¨ÿ‹ºv1£·ŠboÅžm‰i‚™uˆc›”‡]× †GXn‹¨…žRå‡c…M©ƒ@„¨Š8³è’Fƒ ®Ng|*¨‰Žˆuj£<ŒÔnþî‹-hÁ˜ô‰Ãb㔈{]1‰‡]WÝ‹*†^RY†å…~M‚½„·‰\³¥•Â5®“„{U¨-‘It—¢Ø;n-ƒ.Zg ˜(7a9“F‹:[Ž¥‰fV$Š/‡·Pì…ì†/L(â„Ї|³Cœµ€]­”™·y…§µ–ÃrÒ¢O“úlqœã‘JfB—ØŽÍ`s’ðŒxZ²ŽDŠNUG‰¿ˆNP=…~†yKȉ„Úí=yÛwXÞzqxxÏ{y­¿í{¹zİ×|q{衞}*|÷’k}ð~‚è~ºsF•€c΀xTžv‚ëTxˆqÜ?yD³ÍBz ý¾5zÒ€9¯?{¥€y 6|v€Ä‘=}Qò~+jrŠºcf€‚T©‚rélwU‡xÚdx.†ÝËry†>¼†yô…­­·zá…žÞ{È„¡|¸„1}¢ƒËq×~˜ƒjc‘ƒT²€Ÿ‚ÄçtvHvØqw:ýÉx7Œrº³y+‹¬z)‰¼`{ˆ„ŽÚ|‡T€}†4q$~ …b¨&„T»€=ƒåluc—mÖ{vc• Ç›wo’¸¸ëxp‘ªay{Žb›éz~Œgœ{‰Šv |”ˆ—p{}®†³bS~Ä„ûTÃäƒXã]tßWÔeuМ2Åzvê˜é¶Øwð•ö¨_xý’÷š z:‹ñ{ˆ}¬|"Šñot}AˆWa‹~Z…îT$ƒ—ártO§<Ò^uj£4ÃOv“žþ´®w™›?¦;x£—t˜y§“öŠz³ƒ|{À;n?|Ù‰õ`…}ð†ÞS'ƒÏß[t>¯ÐOu@ªGÁFvM¥B²­wK ®¤?xOœ –'yQ—¾ˆ\zZ“€z¢{d}m|y‹†_‘}އÂR?~³„Ý`tT¶éÎPuB±C¿>v:«g°©w*¦¢?x" ˆ”>y›s†‘z–qy {‘³kÊ|% ^€}7ˆ™Qt~Z„4Û]t«¾žÌ:u‰¸%½vo±s®zwJ«D x)¥’!y Ÿ/„‹yö™pw)zå“öj{ÞŽ’]2|é‰kPÀ~ „_Ùju.ÆYÊNuæ¿ »%v¡·†¬•we°‚ž-x/©pKxÿ¢Ò‚ÈyלSu…zµ–h—{Ÿÿ\|¤Š(P%}Æ„„âÐZv„Ô¯hw²Æµvxô¸‘’z ª³{]œLï|Ž€<}®z€”~ÅpÇ€ûãbJgT2ã‚>àï~"~ÒÙ~N~Äè~{~ç¶ß~²J¨ù~ç?€ Œæ €™~…€ p €y…aà€ñ‚T1v‚ß}…ªÑ }J…>Ã$}”„е9}à„s§u~1„™’~•ƒÎ‹Ç ƒ‰}›~ƒPo[ýƒ!a{€€‚úT/‚ÜÝ3| 7Ï-|g‹ûÁF|ÆŠ²³v}!‰š¥Ó}~ˆƒ˜}ï‡„Š‹~o†‰| ~ô…Ÿnª„„¹a€ƒèT.€°ƒ$ÛF{?”»ÍO{£’»¿v| ¦±À|oŽÍ¤:|ÖŒò–²}Q‹;‰U}Ú‰‰{¬~o‡èn†C`Dz„ÉT-€XƒfÙLz­œ3ËN{™i½j{‰–„¯Â{ñ“ì¢K|Z‘N”è|ØŽà‡¹}cŒxzV}ûŠ'm~£‡Ô`F…¯S×mz?£¢ÉWz· »S{3œD­­{š˜í >{ÿ•’ø|z’l…ñ}OxÔ}—ŒUkÚ~9‰^_~Ù†’R—~ƒÒÕcz-« ÇXzŒ¦®¹]zì¢+«À{Kž žV{¬™å‘+|#–„I|ª’$wk}:ŽyjÂ}ÖŠÚ^~s‡iQµ„Óuz@²bÅhzŠ­B·hzÓ§÷©Ï{&£œj{yž%U{療‚|d”íuä|í‘iz}€ŒG]~ˆ2Pî~¸„-Ñz‘¹¬ÃazȳŵLzü­°§µ{9¨šS{t¢eN{Í €Ÿ|6—Ät|¯’³gÖ}4·[Í}ƈôP?~d„SÏ”{ÀóÁ{ºC³s{$³h¥â{I­˜‚{o¦‹‹{¶ y~î| š|r|x”·fh|ñ Z¶}~‰¤O¨~„uØ‹„ÙuÊËh„[w¾uƒÙxM±Hƒuy…¤@ƒzÍ–÷‚Ð|‰¿‚š}J|‚v~nT‚aÂ`Ñ‚SSË‚L‚aÖÁƒ·|êɦƒT}e¼º‚ì}篡‚Ÿ~d¢²‚V~è••‚%uˆ“‚€{!ꀪmšßP`eÜöS¾á‚¬Ôô‚²ƒüÇâ‚dƒººü‚ƒw®ØƒB¡1Ÿƒ”B‚ñ‡uk‚Ûz9b‚Ólêc‚Ø_þk‚áS³|‚óÓ"΋Æ‘Š¹-P‰¬J ˆ#Ÿš€ò‡C’׀܆z†@€Ò…¹yB€×…l=€é„]_žƒÃS§ƒ6ÑJ’ÄH€Øh·o€œŽ£ª¤€už€O‹y‘v€AŠ…€=ˆ—xT€Q‡6k™€v…Ô_F€„˜S€ÇƒtÏc€…™"Â[€U–³µw€ ”-¨ºû‘æœ4Õœ¾Ç{ƒ…Å‹cw ܉[j¡€‡Q^…€/…qRÿ€[ƒ¨Í–€ Àvöœé³vÌ™œ¦»¥–¡š=y“£äi×ÐcŽu—v‹mi€™ˆÇ]½†GR äƒÖË™€ §¾‡Σ1±“‡Ÿ*¤âV›u˜k%—¸Œ+”7€: Ãt=thr4Š/\¦T‡Q0u„ɸ€®¼§É©`¯±k¤Ÿ£, 1–”~훺Ši~Ï—‡~”~¾“erÆ~Ång7~Û‹‡[§~õ‡ÌPn„&ÇÍ€c´×º°û¯­¨‡ª¡2¤æ”“~ÚŸ¿ˆx~©šß|¸~…–q ~‘qe£~ŠŒßZq~ŸˆOÃ~¹„IÅï€Î»°¸Þ€Aµœ«á¤¯gŸ@7©‹’Õ~Ê£«†É~†ž{~Q˜£o‡~@“TdD~CŽYf~T‰#O/~l„gÎZŠ^u$Â*‰Uvk¶5ˆAwÄ©ö‡^yä†zS‘…½{›…Q…|óx¤„a~BkéƒÇ£_gƒ8Si‚°‚‚̪‰O{ÍÀ€ˆ\|g´Ž‡_} ¨a†}œœb…Å~55…~Ü„,„m–w´ƒÕ€Rk2ƒD^ø‚ÁëSR‚G‚ÈÊóˆ\‚j¾Ï‡{‚V²á†‚B¦Î…Ñ‚2ší…‚#Žë„r‚)ƒƒÙ‚=vσN‚`j„‚Ç‚“^‚P‚ÉS<äƒ É7‡Š‰ ½†´ˆF±$…Ô‡|¥(…†Ë™c„j†‹ƒÑ…ƒæƒA„÷uނÄyiÙ‚M„^.惟S(‡ƒHÇu†Ù¤»]†Ž9¯x…'ŒÂ£‘„w‹m—äƒÊŠŒ4ƒ7ˆÞ€¿‚®‡°tô‚>†‹i8Û…h]Ôƒ„hS1ƒÅ¡†Y–5¹„…‰”­–„®‘ù¡¼ƒýý–ƒNþŠ‚¼Œ%C‚3ŠVs·Æˆ“hGg†Ñ]…5Rw€Áƒ±Ãã…ùœ¸·²…0™ñ«¬„[—Ÿ×ƒ¦”r”B‚ð‘ʈ΂YQ}¥ÍŒârV[Љg2€÷ˆ3\$€œ…ýQŠ€DƒÙÁú…â£AµÙ…ŸÑ©à„œJžƒW˜ø’ˆ‚™•¡‡,ý’~|#miq €øŒsf.€‰†[D€/†»P²ЃÿÀ(…ì©·´ „ø¥›¨ƒó¡fœPƒ'iÉ‚[™d…µ•›z“‘ão§€ ŽNdÿ€2ŠÉZM͇jOõh„ ¾I†+°"²$…"«\¦!„¦}šbƒ!¡ØŽá‚<-ƒ©ƒ˜Àx΀ؔjmÿ€Q1c|ÝŒ Y$sˆOM „?¼|†…¶‹°d…Z±¤n„«ƒ˜¶ƒ¦/9‚! Ù‚W›ÆwD€›–Ïl€ ‘ôb,‘0X#$ˆ¦N½~º„YÄAét£¹Ž_u뮌ÇwB¢´‹axŠ—™‰úyÞŒ7ˆ´{6€ó‡w| uD†K~i–…$†^„Sƒ ‚¡Â¬ŽîzÙ·nu{‚¬p‹í|3¡1Š™|Ú–&‰D}ˆŠêˆ~J׆ß!tZ…¿ÿhá„¡€ï] ƒàR킦‚âÁŽµÖŒ¢ ªÙ‹(Ÿ°‰à(”¿ˆ—<‰«‡ni~džL¥s{…7òh6„$‚P]5ƒ,‚²RÍ‚Dƒ¿mH‡-´1‹ä†–©1Šr…üž‰0…y“C‡ï„ùˆU†Î„“}Ÿ…¶„:rŽ„®ƒïgƒªƒ®\Ò‚Áƒ|R°éƒY½ÃŒ¡P²‹<Œ!§–‰ÈŠêœ”ˆ‹‰Ñ‘чOˆ¸‡†5‡½|~…$†Îq¨„*…åfîƒ7„ÿ\v‚^„:R••ƒŽ¼Œ'“o°ÎŠÄ‘£¥Ì‰PÍšÖˆŽ"†ÑŒf…w…¶ŠÕ{„¥‰Opyƒ®‡Ñf‚Á†U[»ë„ûQ÷"ƒ¹ºa‹Ê™¯Šl—£ûˆü”–™ ‡·’IŽ`†núƒÏ…MÒy„7‹¶o)ƒ=‰ªdû‚M‡£ZÐq…·Q€ŸƒÜ¸‹‹°Ÿ™­PŠ<œŽ¢Gˆµ™r—a‡e–„Œ¿†“’‚F„ìÍx!ƒÑŽmñ‚Ó‹wdáˆäYõ†iP=€%ƒý¶Ê‹´¥«–Š,¡ô ‘ˆž8•´‡/šª‹…Í—€³„›“¸v§ƒwhlž‚u5b߀ŠY€›‡ O„¹„´ÿ‹ç«š©ÅŠI§Už·ˆ‘¢ý“߇žÓ‰L…¢š¨~ô„^–­túƒ)’Èk ‚Žùam&‹„S$‹oƒûƒ‰Åƒ¿yKˆ%ƒ’o)†—ƒue"… ƒd[Iƒ¥ƒdQþ‚Tƒr´0’l‹4©ÜsŠ>ŸÈŽf‰C•¥Œšˆ_‹ÅŠÎ‡|܉+†¶x6‡’…þnM†…MdŠ„—„¢ZñƒA„Q₃¤²“‘òà¨8ú\žíДŒŒ_Š1ŠMŠî€dˆ¨‰vᇈYm/…’‡c­„…ãZ?‚Ë„ËQJ‹ƒË± ‘“–}¦Ÿ”gœi•’F’V‹ÀGˆŽ‰åŽG~Ùˆ;Œjuu†Šškõ…ˆ×b°ƒ¨‡Y^‚P…{Pmƒë¯K‘yœ+¤ñn™€šÐK–ÉÉ‹j”5‡ ‰†‘ }k‡Õ1t"†2ŒÑjÑ„°Š†aÃ:ˆIX݆!O£€ˆ„­¢‘v¡À£PWž™5›76‹.˜…‰;”è{ó‡‘èrÁ…ÓŽûi’„LŒ&`°‚Õ‰cW©t†¸Nò€„#«ð‘—§L¡˜e£—vŸ§~‹›ïƒÎ‰˜8zP‡;”ªq.…~‘2hƒðÊ_P‚uŠwV™‡ENVµ„:ªB‘Ó¬ÔŸþƒ¨l•ï£ûŒŠùŸ­‚VˆÛ›exå†þ—GoÑ…3“Df̓žO^‚‹sU®€¹‡ÄMÐ_„O°^›'tR¦Ý˜„u§•Ïvó”"“]x7ŠÚìy‚IŽ zâwáŒ[|ZnŠ+}Ýd\‡ü{Z¡…î'QTƒð‚ó¯šOyœ¥†—²zeœS•{6’Ö’œ{ô‰—7|´€%÷}”v拾~ŒmG‰™—c¾‡t€ºZA…téQ:ƒ‡ƒ,­§™Œ~Ù¤*–ó š÷”Ej‘‹‘窈_‰êT€Kuõ‹(€¿l‚‰ Mc(†ñóYæ„ÿ‚£Q#ƒ%ƒc¬C˜Ø„¢Ã–AƒÜ™‰““ƒ¢,‘7ƒf‡ŽÝƒ+}ጯƒtƒk±ˆ|ƒ b•†rƒ(Y‘„‘ƒVQ ‚ȃ–ª×˜=‰P¡]• ˆ—˜'’ì‡ÝŽØ’‡%…ÏŽ9†k|¼Œ…Ñsï‰ñ…Ejæ‡ð„Æb …ú„QYC„+ƒþPù‚sƒÅ©Y—ÅŽŠŸÚ•&Q–’oŒXŠÛ„[´‰ {b‹‰ˆ…rµ‰j‡xiÞ‡n†va=……}Xžƒ´„¦Pnýƒê§í—c“²ž^”È‘÷•’6‹Ï®Žz‚ÚHŒ¼y÷‹‹qeˆö‰‘h¼†÷ˆ`R…†¡W̃7…IO w„¦O—@˜òœÓ”–¬“—‘Á”_ŠbS’vŒåÓx¦Š¯°p.ˆŠ‹Ÿg®†‰‰£_u„˜‡¶W ‚Ã…âNå€ú„!¤Ä—1ž›P”n›I’‘Œ˜sˆî•¦€ Œ–’ÙwKŠW3nçˆ) f‡†#‹$^s„0ˆ»V3‚X†nN@€Š„9£-—@£:™µ”nŸæz‘{œŒ‡TŽî™:~xŒ_•éuÇŠ’¾ms‡Ñ«e%…ÂŒ¨](ƒÈ‰ºU4î†ðM¯€'„O¡”—f¨P˜2”|¤k ‘n ƒ…ñŽÏœ§}Œ.˜Òtw‰Ð•$l0‡„‘“có…lŽ\ ƒlŠ¢TW’‡eM3Єb¦‚ útŠäÈu¸•–š…vîŒö—‚x'„˜”}yj{ð‘£zÌssŽÑ|Gj”Œ}Õaɉd}Xä†Ù;P\„aƒ¥U )y^œ·œüz”f™»z؋˖À{˜ƒq“Å|^zãö}Kr‹Ž0~PiÕ‹‚oa9ˆØ€¨X†ZòPLƒ÷ƒT¤ Ÿo~›œA~g“+˜þ~°Šž– ‚U“TyãOÌq­•€Xi Šñ`±ˆQÌX@…ã‚¢P<ƒ“ƒ‡¢äž½‚èš=›Ž‚¼‘à˜I‚‰^•V‚q$’d‚VxÏ£‚\p»Œð‚th`ŠZ‚¦`+‡Î‚íWõ…rƒJP.ƒ5ƒ¸¡Ÿž"‡­˜ûšî‡Ÿ— †rˆ*”¬…ãý‘º…VwÃŽþ„êoÐŒP„g¦‰É„B_­‡R„W±… ƒçP!‚߃ä H§Œs—šo‹d:—ŠS†Ì”%‰O~©‘/ˆNv†Žq‡kn°‹Å†™f³‰C…Ô^ð†Ô…W„‘„ƒO¡‚h„žÿ@‘'–Fš ¦Ñ–¶Ž!…g“ºŒ§}K¼‹.u<û‰Õm}‹MˆŒe©ˆÊ‡T^†[†)VT„…Nâá„!Š •û”á™Ä“øŒ}–\‘ñ„“Xú|SŽt Œ3laŠÞŠrd±ˆYˆÆ]H…ë‡*Užƒž…§N4c„9œ"œï𵓀™—˜3‹!–•®‚È““;zºþÍrË2Ž‚k6ŠzŒLc ‡ðŠ*\W…~ˆTÖƒ/†(M›€ô„OšªœîŸk’™‰œo‰ž–™sL’â–…yGÁ“ŸqfŒåÛiߊŽ/bX‡‰‹[ …‰Sæ‚À† M€„b™2¤ž™‰ ˆK•ꀒ¼™¦xŒ–Gp0Œ¢“ h¶‰Ìîa=‡.ŒØZ„«‰ÜS‚^‡ L¢€9„sœË¦êu • £&v™ŸQw…Ù›»xE~Z˜%yxv””»zÕný‘Z|MgŽ}Þ_"ŠØ‹W!‡ÅVOy„˃D›Ð¦ye”¢ZzŒž…z¬„Кõ{i}S—f|.u£”} n*±~-fXwZ^¤ŠF€¢VÚ‡C‚Oq„_ƒxšÇ¥d}¬’û¡ž}ë‹}Ä~+ƒÆš8~ƒ|V–­~ãt½“Vkmb€ eµŒß€Ï^,‰º±V—†È‚¥Oiƒùƒ©™¹¤°ÿ‘â èÙŠY ³‚ª™©{E•ô¥sÆ’¢Çlˆaüe ŒB‚Q]¶‰1‚¾VY†TƒBOaƒ›ƒ×˜£¤†QÊ B…Ɖ>œ\…;˜˜Ï„Ìz=•C„erÔ‘ô„ k´Ž¹ƒìdc‹©ƒÎ]Hˆ°ƒ¿V…èƒÔOZƒC„—x£Š¦˜Ÿ¼‰·ˆ›ÐˆÆ€b˜@‡ïy”°‡q¹‘a†nj±Ž'…Ïc‰‹…A\ˆ/„ÁU•…m„dNæ‚Ë„!–Y£ŽäŽiŸN“†Â›`ŒA$—ÌŠÿwÖ”7‰Âp’刦ižª‡›b™Š¡†¤[Ö‡³…»Tà„í„ïN4‚C„9•¢Ù“K/žú‘‚…•šý¸}þ—bŽv¶“ÇŒZo€sŠÐhŸ7‰YaºŠ-‡÷[‡?†¨T9„v…qM’Å„O“Ó¢©—˜‹õž¾•[„_š³“|ΗüuŒ“lŽãndŒìg“ŒÎ‹ `ÉÀ‰=Z>†Î‡…S„…çMU„c’ƒ¢•›âŠŸž ™9ƒš‰–‘{x–Ø“þt=“&‘wm!¾f^ŒnŒÅ_—‰TŠ…Y†Xˆ\RŸƒ†ULˆ€ñ„t‘3¢˜ ‰_ž‘œ÷Ñše™ÙzO–¨–Ôs’ê“ál u‘eRŒŽ[^”ˆõ‹°X!…ï‰Q݃+†¶L€š„ƒ“R¬êuÖŒX¨ŒvÃ…¯¤w²~¹ x½x›æyÑq—ó{jU” |c;8~ \?Œl¯U?ˆ¿|Nª…,ƒi’ƒ¬ y³‹§¿zJ„Ï£Lzâ}ØŸ/{w%›|DpE—.}/iŸ“R~6bªd[؋Ѐ°U ˆ7‚N¨„¿ƒ›‘­«_}‰Š¤¦ù}ȃ뢀~|øžf~\vLšS~¶o–qBhò’ æb Žè€¸[v‹;©Tׇ·‚±N§„XƒÉÕª¥d‰¾¦Šæjû“`‰•dÓŸˆZ^¯Œ‡;X׈¡†1RÊ…R…?Lÿ‚„d‹ä¨T”Æ„À£Ô’×}äŸ3ëw› py–Ú/j’÷‹{cê1‰á]׋žˆ`Xˆ,†ùR!„Ý…ªL|­„uŠÈ¨(˜¦ƒ£ –V|ºžö” uâš½‘ÃoX–ˆ…hï’œlbÞŽÍ‹p\Í‹/‰ˆW‡³‡ºQR„g† LI„…‰¬¨ œ|‚£y™¸{¶žÁ–þt䚀”Nn_–A‘¯gþ’M5aöŽuŒÛ[çŠÏŠ“V#‡HˆgP ƒÿ†dK¥€ò„“‰ë³vüƒ´®!w©}Í©5xUw©¤€y:qÊŸÐz,k³›D{`eЖÆ|µ_—’[~4YøÓS{‰®¡Mê…‡ƒŒ‰V²-zYƒ­Hz½}¨V{ vò£¡{¹qžñ|[kšm}>e8•ü~?_ ‘ oY/R€¾SV‰"‚2Mð…ƒ»ˆÁ±U}·‚n¬n}Ñ|i§w}év?¢Æ~3p^ž~‡jb™Ÿd§•9Ã^¯î€¢X㌵¡S2ˆœ‚½Mõ„°ƒçˆ#°’¾«¦€ë{§¦¦€Àu|¡ò€¿oœD€Æi®˜Ïd”t]^4<âX˜Œ‚€Sˆ ƒ@Mú„N„‡r¯ä„{ªï„zè¥äƒ’t½¡,ƒEnÞœyƒhÿ˜ ‚ïci“·‚ô]½“ƒXQ‹ƒVRô‡¬ƒºMÿƒõ„7†·¯B‡ô€>ªN‡1z¥A†nsä †…Ïn›Ð…9h2—a„Ñb¬“„€]Ž÷„MWÖ‹„,R‹‡)„3Mžƒz„R†®±‹Vy©ÁŠIy4¤·‰=sŸüˆJm+›E‡^g_–Õ† aå’†…ø\nŽj…pW@Šv„üQú†¡„¦M‚ð„e…®PŽÔ~œ©Thxc¤<‹ÿr9Ÿ~гl_šÅ‰rfœ–Sˆ]a-’‡`[Ê醃V³‰÷…¿Qs†#…Lx‚p„w„=­ý’;}¿¨÷ww‹£ÔޏqcŸkŠšU‹}eÏ•áŠ`i‘ˆ½[q‡‹V‰}†sPÚ…«…qKþÿ„†ƒR­µ•®|Ш©“˜v–£~‘‰pož·‰j™™ó˜dã•z‹Ï_„‘$Š$Z&Œÿˆ”U‰‡P…1…ÉK’›„”‚o­r™{ô¨c–uÁ£4”*ožžh‘ÎiÉ™ž†d•!f^¿Ç‹hY]Œ›‰TCˆ’‡¹Oy„džK6C„¡ãóvæsÕ´wËt¬Çšxºvd¹Xy£wæ«5z•yvœÛ{Žz䎋|˜|XØ}ª}¦q~Ó~ôbXü€;Sú; âuq{ ÓÙv€{ÏÅÎw|¡·¥x¨}L©šy½}û›nzÒ~¨U{õb~Û}€pG~N€«aêƒKSø€Íúàt‚ñÑ÷uL‚ÝÃúv‚̵òw¹‚¯¨ xí‚’šz‚~Œ.{X‚s}ê|‚fo‘}΂[aƒ‚RSö€f‚NÞrêŠÌÏÿt<‰Ý uˆæ´"v݈¦bx%‡#˜•yg†WŠêzµ…|é{ý„ÍnÜ}R„a#~¤ƒOSô€‚žÜq咘ΠsIÜÀ*t¾²`vg¤Âwg‹¸—"x¹Š/‰­zˆ«{ï{r‡,n2|Ü…¥`Ê~?„>Sò­‚çÙñq šMËòr˜—Á¾t!•°Uu|’¯¢ÊvÜ8•Qx5òˆ y™‹³z•zû‰m1|k‡G`}Ó…3SXFƒ+×ùp‡¡÷Éærž‘»çs´›®4u—× ³vu”œ“ZwÑ‘›†?y5Ž¢yz–‹Ãl|ˆâ_ }g†$Ri~ÚƒjÕØpR©’ÇÔqÌ¥k¹ãsX¡¬;t¶!žÃv™‘‡ws•N„’xØ‘w¥z8üjî{ŸŠo^!}‡ QŽ~uƒ¥ÓÕpI±ÅÓqµ¬+·ás1§ªAt†¢NœÏußv¬w4˜í‚Øx’”qvyê(i©{H‹î]|©‡àPÍ~ƒÚÑÌp†¸Ã½qå²Ìµ¸sT¬ë¨t—§eš±uۡТwœŽ€çxi—_tSy¯’`h züs[ä|Xˆ´P#}Ê„ ÏÐpì¿çÁÎr+¹j³Õsw²Ã¦At¥¬t˜Úuצ‹Üw  7xCš-rÄyz”xf¥z¸ŽÛZÔ|‰rO‘}ƒ„4Ú%|4r~ÌÔ|–t¿±|ûuÖ²b}\wg¥:}Áy—É~Bz‡Šb~Ú| ||}rnŸ€1~ß`Ü€æ€ES‚©ÇØ@zÒy÷Êÿ{Yzнì{æ{¶°¶|h|£¨|í}S–c}ˆ~‰2~6~ò{•~é·mâ«€`m€nGSv=‚ÖXy”bÉ)z:s¼&z爯{‚š¢%|!®• |ÓÈ}˜Þz¨~\úm.+‚`û‚ASj€×‚kÔhxyˆÊÇDy8ˆºJz‡R­Pz¯†¬ ‡{_† “|!…o†Ô|õ„Øy­}Ì„Fl}~®ƒ¶_¤ƒ2S`€x‚µÒvwˆ(ÅexWޝ¸}y-)«Ÿyê‹Éžôz§Šg’5{w‰…Ÿ|X‡Ñx¸}@†ŒkÖ~9…A_J*„SV€ ‚úÐwvÔ—rÃdw°•7¶wx–’詨y[ÎzޱvzôŒ³„{ÚŠ·wk|ɈÆjÝ}ƆÐ^Š~¼„ýR½µƒ9ΔvEž®Ámw3›§´gx+˜…§žxó•³›y¸’ÝŽ•z/‚V{u„u÷|aŠîi¼}YˆX]•~K…áQÓBƒsÌv¥Ü¿lvì¢ ²vwОE¥ºx•š´™6yZ—Œ×z1“±€½{Ntœ| h¯|ô‰Ñ\±}ㆹPý~׃©Ê‰v¬õ½yvШ~°†w¤£æ£ÔxaŸ™—Xy›A‹yî—!zÍ“ s&{°gv|›‹<[¶}†‡„PA~xƒÙȆv4³÷»nvô®Å®nwº©q¡Ãxf¤n•PyŸd‰yΚ”};z›•Òqn{o‘6eé|KŒ©Zˆ}1ˆHO›~"„Æv†ºó¹Šw*µ¬šwÑ®õŸùxj©5“y£o‡ly°ê{žzn˜zoï{5“0d|ûY‚|æˆúO }Ø„*ÐkzqøÄ Xsž·æ5uZ«|vñŸ?x—’µz$†=+{¼yKU}=lC~É_kÍ€NS‚íΜ€0xýÂK€/yè¶2€.zà©Þ€2{À·€8|§‘W€W}Œ…€†~~xX€Áfkˆ €X^ûUCRù¨‚<ÌÈñÀ„"€%´w<€]¨AV€œ<q€Å ¤ƒøçEwp€2jØ€ˆà^’€â‚1RåD‚†Êë~†ä¾±~1†^²ª~a…Õ¦~Š…^šª~´„莢~õ„‚ÄE„vy¡ƒ¾j*€ ƒe^/€vƒRÒ€æ‚ÌÉ}!μä}[Œ˜°î}–‹X¤í}ÌŠ4™$~‰E~N‡þ–~¨†òu‹…éi†•„Ý]Ô€ƒìRÁ€ƒ Ç"|v”©º÷|¼’¿®ü}Ç£ }@Žö—U}{"‹™}Ë‹j€~)‰¶tK~œˆ h•!†Y]¡„ÇR(€!ƒFÅP{ï›v¹|E˜Ð­|–¡|Û“™•m}‘‰Ð}eŽº~s}ÃŒarç~3Šg~±‡Î\*,…ŸQC¨ƒ{ÃK{½¢<·#|žë«%|E›ƒŸJ|˜R“ª|¶•ˆ'}’ |î}cqœ}ÐŒf{~I‰4[L~À†kPr7ƒ¬Áa{®¨ëµA{ã¤ë©I| Óx|Gœð‘â|u™†w|¿•M{[}‘ p7}{ŽeO}튋ZZ~_‡)Oº~҃׿m{Õ¯ƒ³H{úª×§H|¦›~|>¡…ñ|Zœò„š|“˜“y•|Ù”Cn’}3 cÒ}š‹áY7~‡ßO~xƒÿ½€|¶±q|%°µ¥†|'«B™È|6¦ŽB|B Ã‚ü|m›¹x |¤–Åm%|ó‘èb‡}OX;}¸ˆ„N~)„!ÆÎ†Àq‰»T†s5°…st÷¤„åv’™6„Xx9ƒéyÑ‚ƒ†{xuþƒ4}iï‚ì~¶^ ‚®€WR¡‚x‚Å…x¹§…y®w„xz(£„{—»ƒ|Œ=ƒ2} €â‚â~u‚Ÿi8‚e€1]˜‚6@Rƒ‚‚[ÃW„y~š·ô„~ò¬Îƒ‘Q¡sƒ-¡–N‚ÊóŠù‚€€P΂C€¹t/‚)h‹ä¦]- Rf¬‚ Á’ƒ†…¶5ƒ$„É«‚¾„vŸÒ‚f„)”É‚ƒÝ‰žÓƒ ~¢¢ƒks?€ƒ>gágƒ\ÉW‚øRKO‚â¿Ê‚³‹“´}‚XŠž©iù‰¤ž?¬ˆ·“P_‡ÊˆK-†ð}}†rV€õ…Lg@€ñ„|\m€óƒÄR3€ùƒ½ñ‚‘ÿ²¤Àe§ŽkŽÁœt"5‘˜€×‹¥†´€¨Š.|€…ˆ½q$€x‡RfV€z…å[µ€€„“Qš€ˆƒS¼/“˜Z°ÔN–¥¬“Ú›€¼‘•Ì€oc…€>Qzƒ€‹EoÓ€ ‰EeL€‡GZÍ€…^Pº€ƒ‚ºA]ž¶®ú›Ñ£ç€®˜Û˜ä€_–Ž!€“*ƒuÛsyµÆn™¢‹-dR›ˆšYõ–†Oî’ƒ¯¸iI¤ú­,€å¡r¢!€zØ—*€"š]ŒrÇ–ÜÝŽ“„w˜`:mFHc2<‰ÝY 2†ÐO:(ƒÖ¶ƒg«,«F€ô§ 7€w¢É•I€ž¯Šœ¢š‘€X–uë’¹k·~ùŽåaÅ~ä‹Wó~Ö‡zNœ~Ƀù´§¡±T©¬„ž‰€w§§“¨ý¢è‰€ž'~’)™“tw~ß•j\~³¤`‰~—ŒCW~…ˆN~v„½FŒ q9²­Šðrà¨Z‰Ët™±ˆÁv6“?‡¶w߈{†Éyƒ}Ö…å{8rÃ…|äg²„@~¤\»ƒ…€`R<‚Ö‚4»£ŠôwV±‰ëx`¦ËˆÚyvœ4‡åzw‘Ó†ï{~‡5†||À…A}´qÝ„{~Øfÿƒ¹€ \Hƒ ’'€×”­‹èŽƒgŒ1:z¿ŠnmrPˆ¶­i‡ý`ï…s‚\XZƒõ‚ÆP=‚Šƒ<¤ª“„…՛בp…€“NM…+Š›e„Ï‚-‹„ry£‰Ã„(qXˆƒêhʆƒ´`f„ùƒ†X ƒƒpP$‚4ƒo£'’îŠ÷šTÞŠ%‘ÈŽ¾‰S‰"ŒÖˆy€ÄŠî‡žxU‰4†×p*‡ˆ†gÌ…û…c_ „{„³Wkƒ„O½ƒ˜¡µ’q˜Öi޵>ŽOd‡¡ŒeŒ OŠxвvøˆ¼‰mn釈2f·…‡^½„…ØV¡‚•„ÂNÙ5ƒ» ’-•&—K“RŽËî‘{†<‹þŸ}öŠ Áu´ˆN‹úm¿† Š>eµ…ˆ‘]ꃆðUå‚…^N'€¸ƒÜž’š-•Èß—ÖT©•|„Ñ‹°“|–‰µ¿tg‡ðŽxl‰†<Œ?d„§Š\õƒ"‡÷U°…íM‹€Hƒøœè‘õŸ+”.ÉœV‹¸ˆ™€ƒ@‹–¢{‰v“Çrô‡£‘k)…âŽMcP„D‹œ[½‚·ˆùT*F†tMä„›M‘û¤’­¾ ½ŠPl`å‹WšyÁ‰?–¦q³‡`“biø…’5b0ƒíZ°‚Z‰äS[€è†ìL‹„) âœ}qt˜Ñ™Èrù‘—t‡ˆø”rv‘Ûw¡xójyJpñ{ hŒŠ°|Õ`<ˆc~·WȆ:€ªO«„&‚¼Ÿª›“v6—Ÿ˜äwLä–)xg‡Ñ“Ÿyz€‘zw{ÆpŒZ}gÓŠ~p_®‡ÔãWq…»cO•ƒ¹‚÷žnšºzê–d˜{Žª•Y|5†©’Ù|Ù~ëY}€v÷Ž~Co;‹·g#‰€_'‡L W…B‚OƒSƒ.&™î •—HÓa”“€ …p’€A}Ä›€|uîL€ÏnS‹ 0fiˆã¥^¢†Ç‚+V҄ЂÀOk‚óƒb›Ü™9„S“Ù–‘„Œ$“ڃ݄B‘_ƒ¨|§Žåƒut쌛ƒXmrŠbƒEe¶ˆMƒ?^&†IƒBVŒ„gƒ`OY‚›ƒ’š˜¡‰’z•üˆ[ŠÁ“F‡²‚êʇ {\ŽO†fsºŒ…Õl\‰Ò…NḋĄÑ]o…É„[Uøƒì„NÝ‚#ƒ¹™0˜!¢‘•ŒŠ‰X’ЋrˆSŠYzÔ‰@rx‹Œˆ;k4‰W‡AcˇH†R\œ…L…lU;ƒl„šN'œƒØ—´—Ñ’\¸•&Ȉ’g3€Aå¡xÇcŒqN‹Š•j!ˆå‰&b܆ՇÄ[ׄ؆oTŒ‚õ…*Mƒõ–H—š–üŽV”ä”’’à~ò×w‚ŽÒpŠ·Œáiˆ}‹aÙ†i‰*Zñ„h‡cSÏ‚„…¯Lð€°„”Í—€›”ŒÚ”Á™….‘ì–•}}W”vŒ¿‘žnÁŠd9g»ˆŒæ`¢…þŠ•Y̓õˆRR킆+Lp€M„'“V—u ‹w”©ƒß‘Æš!|;%—+tጂ”@m—Š‘hf ‡Èާ_–…¡‹àXЃ‰*R+±†™Lö„;—¢3qùSžðs\‰k›¤tÂ(˜v;{&•^w½sÔ’cy`l­t{e%Œ›|é]µ‰Ê~ÎV‡€ËNÖ„Ž‚ç–†¡QvGMžwHˆdšÅxL%—¬yZz'”•zor쑦{ªkäŽÄ|üd‹ù~e]7‰6æUÒ†œyNÇ„ƒ•w }z‡Ž<>{#‡Q™ô{€–â|ny1“Ó}rð}òk$Ž~Øcâ‹^Ü\Àˆ©€÷UŒ† ‚ N¸ƒ¶ƒT”\Ÿ°~Ëœu†.™+@ –Œx+“Þq"3€KjUi€Èc=м^\Kˆ ‚UJ…«‚¿N«ƒTƒ†“;žùƒ Œ›¼‚ä…˜o‚¾}ý•`‚©w-’S‚˜p<|‚ i‹Œº‚µbžŠ!‚Ù[Þ‡žƒU…>ƒTNŸ‚úƒ³’ž]‡OŠË›!†ÇƒÚ—Õ†?|ʔŅÃv‘·…Lo(Žã„ëh‘Œ%„–aʉ“„L[8‡„ T‡„ÁƒèN-‚‚ƒ×ãÖ‹}‰—šŸŠ•‚˜—W‰­{Œ”FˆËtÏ‘6‡ënŽb‡ g„‹¦†a`ቅ¯Zw†š… SÙ„?„vMƒûƒó–xψZš8Žsi–æzg“Ò‹Ès°¿Š}løë‰Gf‹‹0ˆ`ˆ‡YÆ$…÷S8ƒÇ„ûLé~„ ŽS2”‡™ê’;€2–Žry8“u޶rŠ\k჋ae†ŠÄ‰Ð_ˆ-ˆLXð…°†ØRˆƒT…tLb„%˜8…Ç™¹–~Ø–S“Øwæ“0‘±qA “j§(‡d\Š]‹Ž]ý‡½‰™Wà…7‡³Q¶‚à…æKꀭ„9‹µœìœW„‹™’™±}ª–!—vÂ’ô”p%Ç‘øi—ŒÙ„cZŠ(]‡[ŠÇVõ„͈xQ‚z†KK„€W„KŽi§ùr‡ð¤#t È EuX{Jœv¶u˜ûxn‹•{y¬h5’ {Wa†Ž§}Zõ‹N~úTTˆ€÷N„탒§v–‡£Cw€ëŸbx†zo›Àyˆt6˜'zŽmÅ”²{ÂgŠ‘M}`ûú~yZŽŠ±üT‡‡˜N „|ƒEŒ®¦Gzd†2¢m{€ž‰{¦y’šî|Psd—[|ým“ñ}Ôfæ˜~À`wTÐZ+Š€÷S⇂2N„ƒx‹É¥w~5…E¡Ÿ~‚»~Ðx¦š $rƒ–Ž{l=“,÷f4Þ€…_ꌬ0YˉŒîS¯†Œ‚ÄMüƒ®ƒ§Š×¤º‚„U áý~!œùöwÁ™]ôq©•Êõkv’m‚e…)‚F_bŒ ‚ŠYp‰‚ÛS€†ƒLMõƒRƒÒ‰Ô¤…݃M >…~}œW…!v¸˜»„Äp¨•&„ij‡‘Ì„+d«Žƒü^ª‹vƒÜXàˆ{ƒÉS …›ƒÔM‚ÙƒóˆÞ£†‰›‚HŸ´ˆê{þ›Ñˆ;u¦˜5‡o›”Ÿ†Èi‰‘E†+cÀŽ…œ]ÝŠñ…X7‡ö„°Rl…„VLî‚R„ ‡Á£ƒ7ŸAŒgzú›X‹Mt©—ºŠ1n£”"‰hŸÉˆb拇,]Šu†SW™‡z…ŠQÛ„›„ÏL^Õ„$†®¢¾‘N€)žâÎyïšôŽRs£—SŒÕm£“·‹^g«ZŠbˆ´\MЇ{VÛ‡†UQ;„&…=Kàg„8…‘¢{•ž›“?xÅš¨‘ir~–ÿŠl‚“[²f•ö‹ò`øŒ¯ŠG[L‰ˆ§Uㆋ‡Pzƒ³…¤Kq„K„y¢N˜à}ùže–”wšg”Sq€–·’kŠ“ Úe¦ ¼`ŒQ‹·Zo‰+‰·U †"‡ËOÔƒN…þK€¯„[…R­äsÞ™©‰tëz.¥*uöt~ ïw4oœ¼x{ia˜¨yùcᔦ{“^ ²}OXXŒÉ&R©ˆ÷"M`…Fƒ5„²¬÷w4~ñ¨›wþy¤|Ʀ4wC¡±+qŸ€:lD™WNfÔ•iŠa¤‘™Ø\JWŠyt¨Ÿë‰€o ›»ˆ–i¹—“‡´dk“ª†ñ_gâ†?ZZŒB…§UŽˆÄ…!P–…c„§Kß‚&„8?¨IŽÑy`£è~sÊŸwŒ2n/›FŠòhß—‰½cš“2ˆ£^¡i‡žY¢‹É†±TåˆK…ÙP„í… Kj·„K~V§î’7xp£Š–rÓŸŽým8šàegé–±‹×bª’Êe]ºŽø‰ X¿‹S‡¿T‡Ñ†ŠOT„z…fKU„[}u§œ••w”£7“‘qüžÀ‘˜lcšˆ§g–TÆaÜ’c‹þ\ôŽ”ŠQWûŠíˆ±SA‡g‡'N»„…¶Jª„iÚsþnÎÍ)u#pà¿þvUs²£w|u¥ox®vÿ—÷yéxÌŠŒ{6zœ|¹|”|BnÏ~}è`ð}S]+ؘr`vªËTs¸wè¾=uy;°ùvnzW£ÚwÈ{x–Œy$|ˆ‰Vz}¢{»|~ n }‡Ÿ`}€ŽSO€•‡Öœpå~kÉmrg~ؼksùO¯Jum¨¢Rvꀕ2xe€Vˆ.yzÈ{q€þmU}P`~‘—SB€/ÞÔo‘† Çrq6…¸ºrì…P­€t{„ê ­v„…“»w£„$†ëyBƒÅyÆzÛƒclŸ|ƒ‚ü_­~"‚–S6Ï‚0Ò…n`ÃÅ€p Œ•¸¦qò‹\«Ås˜Š6ŸuC‰ ’Mvè‡ò…¯x™†ÚxÌzI…¿kó|„š_P}¼ƒ‡S+w‚{Ðnmu•FÃloN“P¶’q<‘H©Ärñc(tªvˆvZ‹§„x‰ÙwzyΈjø{”†;^’}N„~R–‚ÅÎpl¼œ¶Áan¯™î´tp¸— §¯rx”j›!t8‘ÁŽ¡uï=‚[w¯Œ»vygŠIi×{)‡Ó]Ÿ|à…pQ³~ ƒ ÌKle¤¿PnK ’²wpFœö¥Ár™‘™>sÏ–ŒÝuŠ’Û€¾wO›t¦yŒyhÉzʼn\\¾|y†VPä~9ƒKÊFl?«T½Rn§°{p ¢¼£ÑqÉž–—YsŒšb‹uD–dw’ms1x·Žg”zkŠØ[È|‡.P/}݃…È;la²r»=n5­z®Zp¨a¡¹qË£…•Ls}žœ‰u%™í}x}ªvz y±žBzßzî‘Ë{Ç|…k|Ã}Fx}Ç~akÀ~Ý_ 퀒RìÍ}v'}Á/w"}¦µx%~:¨Õy~¹œÄz«„t™šYŸ«uÉ—W” vù”Mˆzx4‘`}'y}ŽsqÊzÄ‹f¦|ˆÍ[Z}U†PM~›ƒSÁ‘qŧе€s £¹©štZŸÑÏu†œ’>v³˜Z†Æw딽{“y/‘#pgzp§e|{¶Š5Zl|ö†ÜOœ~:ƒ‰¿qÕ®I³xs©È§Št\¥/›Ëu| ËHv›œa„çwĘyÏxù“ÝnÆz,¹d{c‹ YP|ž‡£Nÿ}ヹ½Œr´ý±s0¯Ê¥»t`ª‚š ur¥jŽ”v… MƒGw¢›ZxGxÊ–tm]yï‘©bÃ{ŒïX[|PˆVNy}—ƒãÈ0~n)¼œ~Op7±H~r`¥¢~·tVš-~ñv[ŽbIx=‚¬³z(v{€/{øj:€¾}Ô^IŸR[ÛÆ\|­uºÚ}vh¯—}_wÒ¤ }¶y˜¬~z` ~{ž†|æu‰“~ i€€3c] €Ï€–R=qÐÄ„{`{ç¹{×|Œ­â|R}<¢s|Ä}Õ—8}6~s‹Á}À €l~Y©t¢~ü€FhЮ€í]4€[†R! ‚¡z5‚º·?zÆ‚ª¬{]‚ Ç{ã‚‘•¬|i‚ˆŠ_}‚9}°‚xs¬~g‚sh"-‚r\Îî‚lR€¯‚fÀ½y1‰µqy҈Ū`zyˆŸ){‡S”+{§† ‰|S…ó~ }…Fr½}Ù„™g}~µƒé\q‡ƒEQî€Y‚©¾Ìxd1³ƒyŽÉ¨tyÐYQzr‹ÿ’i{Š£‡f{ljS|˜|‰ˆq‡}[†¶f“~=…e[º„#QZé‚è¼ôw½–ѱ x…”µ¦yT’‹›jyý‹“z¢Ž‰…°{XŒ˜{ |Š©p4|ëˆÂeˆ}ɆÙZÕ~„üP‚mƒ#ºíwic¯²x%𤤭xç—Ö™§y•)Žßz9’w„zñÞy—{µGnù|„ŠÁdŽ}^ˆ>Z~.…ÊO¼~úƒ[¹w:£Ú­Ôwí v¢Øx£—áyI™«'yï–O‚}z£“x{bÖm§|,Œ±cq|ÿ‰“Y}ʆŠO~”ƒŒ·wCª7«Þwë¦/ ßx—¢•õy3ž ‹IyÍš$€µzu–Evk{'’ol{䎧b |©ŠéX }p‡DNv~8ƒ¸µwk°ƒªwü«ÖŸ$x§”Jy¢|‰ªy®Ú*zL™Wtözò”ãjÂ{£|`Ô|]Œ#W} ‡ëMò}èƒß¿#ƒ*mì´f‚áoü©ð‚–r$Ÿ‚]t”z‚'v‰ƒ‚ x~¦ÿyøsT‚{Úgþ‚}Ì\¹‚&°Qã‚A§½hÏtb²º¨uɨR€wA’dx“Iyåˆ7E{5}‰N|’rie}çgH‡H\E¬€šQ½Øó»¤€™zȱ€Œ{‹¦­€|Xœ €y} ‘ €t}¾†ù€†~r|y€¤0q‰€Îðfœ€¾[Ø9}Qšu‚;¹Úƒ,¯G‹H¤÷“išo#©›…¤̸{QûÛp›€9‚eò€‚‚/[r€Ë‚WQy‚€¸ ~‡ƒ­Œ~¢‡£O~·†˜â~Ï…ýޱ~é…z„W„ýz.Y„„o´ª„ eR€ ƒ”[€fƒ%Q[€Ã‚¿¶.}ËÊ«´}¡{~‹…—!~3Šh~T‰H‚Î~Œˆ3xÎ~ч n)†dpŽ„ýZaðƒ÷PÇ€P‚ù´i}.“þ©ç}b’9Ÿ¢}–m•V}½Ž´‹M}àŒú4~‹NwX~^‰¤mN~µˆcp†^Yƒs„ÅOó΃/²w|Øš,¨}—Ïæ}*•h“­}P“‰³}t°·}¯Žfuý}ôŒ l%~I‰æb~¨‡±X´…‡O2Uƒb°ž|¥ ?¦F|ÅGœ)|ãšE‘ÿ}—Nˆ}&”Q~2}\‘lt–}œŽŽjå}싽ao~EˆôWÕ~™†;Nˆ~郮¸|¢¦<¤b|¹¢¬šF|Ο+|å›…†Q|û—ó|…}%”xs}Y‘in}žš`}íŠ5VÎ~<†èMó~‰ƒ·¬Õ|¼¬'¢ž|¾§ü˜ |½£ÉŽ–|ÉŸž„É|Ô›s{|õ—^q¤}“Yh)}YT^ð}ž‹[Uë}釃Mr~5ƒÛ¶&ˆ:mͬ@‡oÒ¢¤†Áq똢†sÞŽØ…huÜ„´„ÔwÍz­„JyËp>ƒÏ{¿e؃\}Æ[q‚øÀQs‚ Ì´€†üsЪ¨†[u<¡…¶v¶—+…!xt„ypƒt„zÒy›ƒ›|Bo[ƒ3}±e'‚Ò/Zý‚€žQF‚8‚²Ô…ÜyÆ© …Oz›Ÿ‰„¿{z•µ„=|BŒƒ»}‚CƒR}àx–‚ó~¼nƒ‚Ÿd‚M€‘Z‚ uQׂX±(„Òº§d„XøæƒÚ€:”+ƒf€uŠ®‚ñ€´€ü‚˜€øwy‚ICm‚”cÙÍïZ*Ÿ‚DPõ{‚˜¯qƒì…¤¥¾ƒz…PœRƒ„ý’¯‚›„«‰L‚2„Z¼æ„va¦ƒÇl¾xƒ‚c=TƒAYË:ƒPÑ&‚Ó­ªƒ5‹£þ‚ÍŠš—‚a‰¶‘þˆÕ‡ºš‡ó~KS‡u†Ak§€ó…kbd€×„˜Y€ÁƒÍP>€°ƒ «ü‚‘J¢J‚CÒ˜ÚåŽTZ…Œã†!‹q|Í€ÛŠ s¹€¡ˆ¤j{€y‡Ean€[…èXC€A„Oo€(ƒ;ª#‚@— Þ• —8x’ÿËù„ €±Žñ{j€kŒõrv€0Šþid€‰`Šè‡)WzÊ…GN±ªƒi¨_‚œÅžØœš-•“-—Œ6€Ç”÷ƒ€\’\yÿ€Ðq(ÒKh8¦ŠÏ_„‚ˆZV£_…ðN :ƒ’¦Šú¢b‰Ÿ?“ÇœŠ{€Ÿ˜òt€(•ÍxmÒ’µo¯‡¥f×RŒ“^=&‰ˆU¥~þ†‘My~Öƒ·¤»‚§ì›Wƒ¤7’3€ú ˆû€|œË€ú™w™•rnhE‘Øe¦Ž5]"~ÕŠ›TÊ~©‡!Lû~~ƒ×­&^mÖ¤Œ+oЛDŠòqÜ’‰Îsɉˆ©uÁʇœw´v™†—y¸m… {¸cŠ„°}ÌYùƒÖÙPǃ ù«—Œ;si¢‹tؙԉñvT´ˆáwµ‡Í‡Òy~†Ùz‹u—…é| l2…}bá„%"YŠƒ\€«P›‚¡‚=ª‹+xí¡ ŠyÔ˜\‰zÄTˆ{ †‰‡|}~†}ht¡…A~^kf„n^bBƒ €qY!‚èwPq‚?‚}¨zŠ.~qŸ‰,~Ï–Óˆ$2â‡0…2†:ë|J…b€Qs•„•€¿jŽƒ×7a¥ƒ»X¿‚z‚:PJ₺¦á‰Uƒí÷ˆWƒÇ•X‡Tƒ£Œ~†gƒ|ƒæ…zƒW{„¯ƒ7rƒðƒi¼ƒEƒa‚¥‚ùXe‚‚òP&‚ò¥7ˆ¤‰aœS‡®ˆ·“¹†²ˆ Šñ…ʇb‚n„à†·yÆ„†qYƒ`…rh¶‚½„Ö`C‚%„=W½™ƒ¬O™ƒ$£¤ˆ ŽÀšº‡$’†5Œ]‰_…N‹.€î„c‰ÿxaƒˆ×p‚䇲gœ‚@†”_Z§…zVî„cNÒ€‹ƒQ¡å‡¨”'™†º’p‘…Ŷ‡ê„ÜŽý‰ƒðCwƒ)‹“næ‚p‰æf—̈C^1†¨V.€…N€ ƒ{ 9‡f™r—|†r—5…u”ö†o„‡’¶~ƒ•vuÂʎ?m­‚ Œe}e‰æ]Š€Ç‡ÆU`€0…­M}™ƒ ž~‡Pž¯•ņU›òR…O™4„Í„V–q|ƒX“±tJ‚‚÷lLºŽFd1 ‹\T€eˆßToʆBLñ3ƒÁœÄ‡O£Ö”*†E ‘‹Õ…0Pƒc„+š{5ƒ"–Äs‚B“‡kpWc€¹[G€‰ßSŸq†ÇLy~ÛƒÞ¤6’œmÿ›àâoø“Û"r‹u‚såƒM‹ãuÐzÊŠ_wÀrlˆäyÂi²‡w{Ça†}áXK„¿üO݃‚.¢É‘‰s&šƒÜt¡’Ž(v'Š5Œšw‹‚‹xòy·‰zhq€ˆ4{ïhî†Ø}`u…#Wç„B€ÃO¸ƒ‚o¡Y‡x9™Žçy9‘4@zAˆó‹À{,€ñŠC|x¯ˆâ}pž‡‹~h3†@2_ã„ú€]W‰ƒÌƒO–‚®‚¬Ÿæ˜}N—²Ž}ÓÌŒf~]‡¡Šï~Ó¸‰zIw—ˆ%Êoª†Û€Ugn…¤€í_T„v”W0ƒ[‚;Ov‚N‚æžsŽÄ‚^–L3‚kŽr‹™‚z†[Š(‚y~‰ˆ¹‚wv†‡n‚~n»†1‚‹f¯…‚¡^̓ú‚¾Vß‚ó‚èOXöƒœîއi”ÊŒ‰†ýŒòŠ÷†’„쉉†},ˆ…œuF†×…(m›…Ÿ„¹e¼„…„P^ ƒyƒíVC‚xƒ–NÖ~ƒK›w{Œ\“M‹ý‹x‹nŠwŠ“ƒt‰ ‰Ÿ{ćˆ©s÷†Y‡ºlj…#†Ðd´„…ï]3‚ù…U‚õ„@N€öƒs™Ó‘^‘Å‹‘ûŠŠŽ˜‚ˆ–%zv‡(‹¯rÁ…äŠBkO„¯ˆÛc¿ƒ“‡\h‚ƒ†-TÎ|„ßMs€xƒ™˜CŒË–FD‹A”fˆ‰­’†€µˆ;–y"†ÉŽ¥q‚…Œ½j)„IŠÜb¶ƒ)‰[€‚‡7T …rL߀ƒº–§Œ¦›#ެ‹˜Ì†ù‰z–v.ˆ” wª†ƒ‘¤p …0Ch݃íŒìa‚ÄŠZ]©ˆ=S,€¡…üL\¤ƒØ• Œ”Ÿë,Šø…•‰Oš@}ۇ˗Zve†E”zní„ê‘ g¾ƒœŽÕ`q‚l‹úY`J‰)Rj€C†wKìMƒò›8—ÿn]“¸•Áp:Œ‰“}r!„ö‘Vsú}¡1uÚuñ+wÉng‹0yËfƒ‰F{Ö^¹‡c}õV¹…ž€Oƒí‚`™÷–ùs’‚”Ãt‹^’‡uöƒÕqwZ|‹Ž^xÂt÷Œhz@mŠ~{ÒeЈ¤}q^,†Ó#V_…€ÚNæƒ~‚ž˜±–w·‘C“ÕxµŠ&‘£y¹‚±™z±{}“{«t‹¬|¹lÉÒ}Õe&ˆ ]¦†H€JV „¥N˃‚Ù—d•|]ú’ö|îˆáË}ƒ€ŽÈ~zbŒÇ~¡s Šë@kç‰êdt‡i€¥]$…ÂnU¼„2‚—êri~x•;t2wñ’vqwëjW‰yècF‹{ô\Qˆ¿~U"†~€EN;„S‚‘<œs0Š’™½tŒ„:–öuì}{”VwLvû‘ºx±p3@z3i™ŒÒ{Éb¨Šx}r[Ôˆ*/TÕ…ù€öN%ƒá‚Ê"›Œwg‰|˜Òx_ƒ'–yZ|y“~zZv î{]o`Ž|zhäŒ"}¦b‰Ø~ê[^‡›€BTŒ…|ŸNƒuƒš§{žˆ\—ô|6‚•:|Ñ{k’ª}ru~n¼~Ïh ‹i“at‰4€kZë‡QTG…‚AMýƒƒ8Ú™×χ?—&€ €ó”o€Fzg‘ဈt X€Ím¦Œý gbж|`܈–äZ~†Ž‚TT„˜‚ØMì‚´ƒiŒ¢™#„†–xƒß·“ƃ¼y6‘;ƒ›rý޳ƒ|l™Œ]ƒhfpŠƒ[`ˆƒWY݆ƒ[S…„ƒoM}‚;ƒ‹v˜†ˆ!„͕䇞~r“:‡wù±†™qÊŽ+†k{‹Ø…™ei‰œ…%_-‡…„»Y#……„ZRÞƒ•„LÛµƒ±Š#˜Œ]ƒ‹•k‹l}A’»Š}vÓ3‰p®­ˆ¢jq‹]‡½dv‰$†à^Z‡ †Xu… …KRCƒ„‰LG:ƒÏˆÞ—³‚N• #| ’SÊu¦ÉŒso‹B‹"i`Šï‰Öcyˆ´ˆ“]v†š‡ZW¬„•†.Qœ‚§…Kƀ̃里—p”›€ú”Á’Ýz´’‘%tYugnGŒè¯h-Š‹ýbXˆHŠW\f†&ˆ­V®„‡PØ‚4…|KT€k„†?—;˜ ¿”„–uy‰‘”Ts8,’-m0Œ™g#Š6ûa_‡é‹ô[|…À‰àUÒƒ¯‡ÖP/Ï…ãJ󀄉Œ£o½ƒ‘Ÿ°q]}æœ^rþwà™.t¯r–vfl’ûx?fÿz+_Ô|/YµŠ2~ISt‡f€xM…„°‚ºˆ©¢s…‚´ž½tØ}›gv,w˜DwqK•+xÙkH’.zUet@{æ_PŒd}YM‰–NS4†ÜMv„<‚ô‡¸¡"wLÈÔxJ|(š‚yIv4—hzGp‚”Y{Fj•‘i|hdÜŽ‰}š^Ò‹½~éX뉀JRù†Y·MgƒÎƒ*†È :{€Öœò{À{2™§|muM–‘}oª“†}ÁiÕ ~‰d4Í^^L‹€IXŠˆpCRÁ…Þ‚LMYƒgƒ\…ÉŸl~Ößœ%0zD˜ÙŠtm•ÄànÙ’»€7iÞ€¤c]ÊŠt¡X/‡è‚0RŽ…l‚×MMƒƒ‹„¾ž³‚Ÿ~Ñ›q‚¥y3˜)‚¬sd•‚ªmÛ’‚§h.8‚¶b»Œz‚Ï]‰ß‚óW¢‡]ƒ!R„êƒbL炃¯ƒÄž †S}ÈšÒ†x—“…½rN”……`lÌ‘€…g0ެ„´aÒ‹ò„n\N‰W„7Vþ†Õ„ Qƒ„dƒçLO‚ ƒÌ‚¢ˆŠ-|³šN‰xw— ˆÇqM“ÿˆ kÓû‡OfFŽ*†¢`ú‹s…þ[“ˆÙ…lVd†W„çP÷ƒè„dKŃç‰é{ ™ßŒÓv–š‹ÂpF“Чjч‰’eRµˆ‡`Šý‡ˆZƈb†—U¯…ß…¶P`ƒt„ÕKL#ƒþ€gœÃ‘¢zz™‡5t×–AŽÏo “.Wi°"‹äd>IŠ{_Š‹‰Yχí‡ÉTÇ…h†€O¬ƒ…?Jâ€Â„Wœ‚•Qyq™@“{sÔ•ô‘¯n"’Û×h·ÉŽ cOŒëŒF^0Š(Š“Xù‡†ˆÜSþ„ÿ‡4O‚¡…J‡€n„%€Á¨·pÀ{†¤ár-v˜¡s˜q\Qu.l_™vËg–x’aô’{zn\‡|jW;‹~}QàˆD€©LÝ…‚〧®t zâ£ÝuIuó vpp¶œ^wµk¸˜·xÿf~•+zwas‘²|\ŽL}­VçŠølQ¯‡´?LÔ„ƒe¦¼wsz)¢ïxWu;Ÿ$y9p›zz2k—Ý{-eî”]|U`ùò}[¸~èV˜Š[€SQ€‡,ÏLË„ƒN~œ¥ÛzÀy`¢{ctpžB|oHš›|·ja—}ieM“~A`m1([IŒï€(VJ‰Ä6QU†«‚WLöƒ~}Ϥÿ~x—¡5~ns¬l~ËnŽ™È3i³–1d°’Æ€&_äx€ºZÝŒJ_V‰7‚ Q-†5‚ÖL»ƒUƒ«|ø¤=twº w†rÇœ°™m®™²hÚ•|Ïcæ’‚_,ŽÓ‚DZB‹®‚’U‡ˆ¦‚éPÆ…°ƒUL]‚܃Ì|+£™„ÁvÝŸÕ„ŒqÚœ„Yl˜r„#gñ”âƒîc ‘ƒƒÏ^_ŽBƒºY“‹ƒ¸Tøˆƒ¿P?…'ƒÏKÏ‚Wƒæ{<£ˆ*uöŸ?‡špû›z‡ kè—ᆂg”T…üb?ø…‰]¢¼…!X„ÎTr‡–„ˆO„©„AKNÞƒýz\¢‹}už¿Š˜pšû‰¸k—bˆÚf;“Ôˆaiy‡<\Ù?†‚X9Š…ÛSч…CO9„5„¨JÝr„yy¢ŽÜt&žW¨oš“Œ|j –õ‹Ie>“aŠ`t‰[ïŒÆ‡ðWY‰§†íRý†§…øN”ƒÇ…Jy„$x¡·’/sDûšn@š8i.–—ˆdd’üŒ _¡›Šœ[%Œ\‰‡ãRG†@†šNƒg…ZJ%€¿„4ÐÚq-jŒÄdrm ¸%sÿo³«­ucrŸbvÑtk’ËxKv—†FyÚxÄyR{zÃlL}K|Ã_8~¨Rf€Ï€¡ÎíoarF‘pþsø¶kr«uê t?wJÖuÜxØ‘gw|zK…y-{ÅxVzé}k|¿~z^Æ~мRU€bÌæm¿yãÀ¦ozÊ´œqk{À¨as(|‰œTtî}Uv³~ƒîx…~ÍwfzV{j×|9€,^\~€ÇREü]ÊÒlCp¾«n:‰²¹pC§¦¡r!¸šºtÉŽ¤uåÓ‚±wÒÝvhy»Ýj${µØ]ø}£ÈR7œ²ÈÊjåˆê¼¿mˆB°éo/‡˜¤ñq(†í™+s'†?@u…•|w!„ëury#„6i{{7ƒw]›};‚¼R)D‚Æ»iÓ>ºµlŽÕ®ân_b¢ÿpm‹ÿ—Rr~Š—‹Œt…‰<õv–‡át/x¤†hŠzÀ…\å|˃µQ~Û‚RÄÅhû—w¸³kS•D¬ÑmÓ ûoàç•_qþŽÊ‰»tŒÁ~Nv(Š·rËx9ˆ´gwzQ†¬\|[„ªPÊ~l‚ Â h…ž–¶©jÕ›³ªàm:˜¾Ÿo^•ê“q‡“ ˆ s¡K|ÆuŠq€wÕŠÝfvyêˆ3[+{ó…’P ~‚éÀ›hC¥”´¯j‹¡ÿ¨ðléžTvjk¼œvôlã±8wìo|¥xÛqÒšyÏt9ŽGzßvk‚‰|x vV}Cz¯j~›|Å]Òè~ÂQà=€ÐÆYtQq¨ºÏutsb¯ƒv¡u3£ów»v̘•xÛxmŒîz yò`{S{}ub|¦|ñi\~~i]`lÈQÈ€Ò+ÄirÃxÒ¸ùtyЭÇumzÛ¢Yv¬{× wï|¯‹¤yB}‡€Dz¦~aty|1h«}‡€\ö~ö€ÇQ±€l‚ÂqqXõ·r΀2«÷tQ€u ªu­€¯•“w €îŠ@xxyôNs‚{twgü} \’~‡¼Qœ€ ÓÀzp‡µ;q«†Œª8sH†Ÿt½…¢”v4…-ˆæw¶„´}âyG„8r“z߃´gX|‡ƒ+\6~‚¤Qˆ¶‚¾xoí³@pnjŨCr‹–*tŠv’Ku‰S‡Ewˆ2|mx¼‡q]z^…çfo|„¸[ƒ}­ƒPýI‚i¼nH”ƱNp’ߦEqëí›;s"ouV…Œv§‹‘zÝxK‰Èp yïˆeg{œ†}­ƒi´{mŸ¯ ©„oCª‰ž¿pó¥ù“ÿrz¡ƒ‰yt uŒ˜©tÓw”Pj«x¦`Íz0‹ËW {ć¢MÁ}aƒ˜¿ºzÑjW´ë{SlǪa{ØoUŸ~|[q¥”Î|ât‰Å}†v;~Ó~>xyse zšgîë|Ç\v€Ç~ÛQ_§€ÿ½çy5q!³-yårߨ·zšt³í{CvT“X{ïwþˆw|²y”}´}…{3ry~g|Àg8]~W\€KÕQ@=U¼ wÁwÚ±jx–xë§ yqz œbz:{‘ï{|‡7{ä|ù|¢|Ò}ñq—}Ë~åf‹~Õâ[šÖ€ÇQ#€Ù¦º+vo~¯™we~î¥JxaSšÀyD¯nz(€…ß{€d{v|!€»p§}1eá~Qg[6g°Q€{ó¸FuG…/­ÎvR„飙we„¤™+x^„]ŽøyW„„z`ƒÌzP{xƒo¾|žƒ1e@}Ö‚ßZÛ~ÿ‚ŒPî€$‚9¶StV‹¶«åuyŠÊ¡·v¤‰Û—`w¬ˆóFx´ˆ ƒyɇ"xízë†8n–|…Ld`}[„ZZ,~ŠƒlPd´‚€´ysŒ’(ªtÉŸÐvŽî•‰w%f‹„x5‹ÝayPŠZwtzvˆÕmW{§‡Scb|ä…ÍYT~„IO›8‚òvs˜ˆ¨tO–Tžu”“Õv§‘é‰âw¿·Þxß‘vz ‹jl-{;‰Mbv|v‡1XŒ} …Nã~Ѱ‘r̞˦Isý›øœ>u5™’vP–Lˆ=wi“x~Ux‰²t®y±ïjðzß‹8aj|ˆ…W´}<…ÝNC~^ƒ:®£r¹¤ï¤]s㡚Ruž Cv*š †tw<—4|¦xT“Õsyq|i}z”(`{½‰ÚV¶|à†šMµ~ƒm¬¬rÉ«¢‰sà¦õ˜¡tü¢àަvž×„èwšÎ{0x$–Óq½y9’âh;zQŽô^ú{o‹UÛ|‡CM;}³ƒ˜·;£jK­7³l·£|Äo>™[ßq‰qýsà…,€4v{€yx]pf€ÐzeÌ7|Ë[(Ÿ~ôPå‚ +µ~p¥«~Wrn¡å~“tI—Ü~ÏuòŽ w¢ƒë`yEyïÀzôoƒ€-|˜e€©~HZ·$áP¿£|³¾|Âvò©ß}x I}vyN–_}Îz]Œ®~'{p‚¸~”|{xè }nª~ ds€!¿ZM€¯€ÇP›@ɱô{†}9¨${ú}¾ž›|p~J”Î|Þ~Ä‹=}MAm}θwÈ~[€3mÃ~ö€®cΞ1Yé€@¤Pz€ã‚°%zoƒo¦mzõƒ[œü{}ƒJ“K{ýƒ.‰×|~ƒ€,}‚óv¯}²‚Õlâ~c‚µc2#‚•YÚ‚tP[€‚T®FyŒ‰¤™z$ˆä›2zÀˆ7‘˜{N‡…ˆ={Û†Ñ~µ|y†u`}#…kkÊ}Ý„¶bZ~¥ƒÿXãbƒIOÒ€‚•¬xÍœ¢Ñy|ŽR™ez.ÜzÆ‹¼†–{YŠs}.{ü‰.sÿ|©‡éj}d†¥ah~*…`X~ä„O ˜‚Ôª‘xX•ž¡y“—´y¬‘àŽAzHþ…zâŽ{Å{‰Œ:r¸|8Š]i†|óˆ‡`†}¸†³WN~o„àNZƒ¨ºx›‚ŸÒzS•3x¾zñ’0oì{•2fü|DŒ2^F|ù‰6U‰}©†HM3~Tƒp¤þwå§›¦xw£n’y ŸÕ‰Vy—œ8€\z$˜›w^z»•n¤{X‘zeÍ{þç]1|ªŠ[T·}V†æL¼~ƒ™®Ë„zjY¥„l¶œ¢ƒÁo*“FƒpqoŠ#ƒ s¿€¡‚åuüw?‚³xEmx‚‘z‚cÀ‚y|ÐYí‚m Ps‚kU­)ƒpD£þ‚Õr ›!‚›sä‘Ù‚gu”ˆË‚5wJn‚xûv7ûz¹lï|rcì~:Y|óíPG‚¡«|Êv!¢d«wW™—Šx˜mnyº‡~Rzß~HI|uÞ}v”#‡>}’~à}¥Üvj}Ï»n3~‹eÙ~A‰]¶~‰‡jUY~É…VMAƒIŸ<} È–‰}*›*Ž}I˜‹…‘}Z•ã}J}h“;tî}Š“lÒ}´ðd}í‹D\…~,ˆ™Tn~h…ûLº~ ƒtr}£%”à}ŸûŒ”}#œÔ„},™¡{ê}2–ss¤}M“Ck¡}pct}¢Œâ[~}Ú‰¬S£~†ŽLF~Jƒ™¦Y‰`j‡Ýˆ”lו²‡Æo:‡qv„»†Cs¼{ÿ…”uùsd„îxDjm„UzŠaƒÄ|âX†ƒF-O͂ԇ¤Ìˆpœc‡^qÏ”J†ªs¤‹Ä†uWƒx…[wzÞ„ÅxËrm„6z”i ƒ³|^`ìƒ6~9X‚Ê€O¡‚kÏ£:†àuušâ†Cv¸’Ø…¤xŠn…y6‚@„}zkyʃý{¢qƒ†|ãh܃~.`R‚®‰W´‚U€ÑOx‚‚¡®…Âzä™\…9{¡‘Y„¯|d‰„*}€÷ƒ¥}Íx¥ƒ6~„p‚Ò@h‚z€_»‚*€ÕWUæ—OQª‚T „Æ€J—Ø„H€…çƒÉ€Ä‡¯ƒP€ø¹‚×.w‡‚xbo‡‚%™gFäÔ_,®‚Vý‚QO.T‚žlƒö…£–9ƒ……^ŽRƒ…†/‚¡„Ï~Q‚/„„v?Ù„7nbŽƒêfNWƒ ^h+ƒXV_ƒNª€Ü‚ɜփFŠã”£‚䊌»‚€‰W„«‚ˆŒ|ᧇÁtìT†ôm0 †'eE€Ö…]]Œ€ª„–Uœ€~ƒÊMò€S‚þ›‚Å(“‚bŽá‹>üšƒC”ŒJ{Œ)Šùs²€Ø‰§l€“ˆWdO€^‡ \À€2…ÅT耄zMKÔƒ/™u‚d•O‘s‚“ˆ‰»š‘ÂÔ1ðz1€ÄŽrp€sŒKjî€,Š|cHõˆ­[ØƆäT(–…L¸cƒ[—½‚0šeÃ˘$ˆd•å€?€ó“–x³€~‘Jq €%Žúi¤ÖŒ¯b™ŠVZ·dˆSH1…¶L7~þƒ‚–‚ŸeŽ-«œ¡†ž5™ä~ွ—wg€@”Mo×à‘h‡‹ŽºaG‹ÜY¾ ‰Rˆ~؆?KÈ~§ƒ¤óŽZjÍ–*m޳‹Êou†ÚŠ“q§@‰^sßwHˆ>vos‡&x^gG†z§_7…}Vï„*XNðƒGÁœ€%oç”Í‹ðqµkЏs…£‰˜uD~ˆ{vúv@‡qxºn’†nz‰f‹…x|^^¡„‰~EVƒ¬€"N˂ۂ› Œtç“jŠàv>Œ‰ºwž„iˆ¬xÜ|û‡¡zuD†«{`m»…½|²eÙ„Û~^ƒÿV2ƒ3€åN©‚t‚H™˜Šöyë’‰âzÉŠ¸ˆË{­ƒ"‡É|x{ΆÊ}Ct8…ã~lÒ…~ée„;Ë]Šƒx€¹U܂ NŠ‚‚†˜$Š~çˆùP‰e‡ë½ç†ó€z¬…ü€js4…#€Ákï„Vdgƒ¡}]‚úåU‚X‚PNm»‚¿–‰4ƒÚˆ7ƒÎ‡í‡5ƒÅ€ƒ†Dƒ§y]…Tƒ†r„ƒƒejÞƒ¾ƒFcƒƒ+\R‚vƒTúÛƒMôC‚ô•%ˆ„ˆ´¥‡•ˆ4†q†¡‡µ…¶‡ x„ʆ‰pÃý…òi½ƒ<…[bˆ‚’„Ê[„ô„>TDWƒ°MH€¼ƒ$“†ˆšŒ"‡Œ … †‹§}Ä…3Š—vÁ„J‰…o›ƒ€ˆsh±‚Çca ‚†ZZÅ{…YSœ€Ý„SL¬€@ƒP‘ú‡œ’dЍ†ªñƒ¢…´€|l„ËùuzƒáŒpnlƒŠægœ‚X‰a`¨­‡ßYë †dRé€m„êL#уwb‡[—!‰†h•<‚…o“[zð„‘_tƒ‘dm‚¿ffdù‹o_…G‰kXÜ€ ‡mR€…yKªnƒ›ŽË‡3›Ä‡†7™e€º…4— y¨„@”›rÚƒJ’.kø‚r¼eW¥T^Š€îŠÖWò€Aˆ\Qd§…÷KCƒ¹•t“kDŽx‘ºms‡Íóo¬€¼Ž=qÑy錉sür·Šív1kª‰\xvdG‡ÛzÂ]†d}!Ur…‚N#ƒ´ø”,’XoïA¡q¯†§Žèsx£Fu*xÝ‹¨vàqÈŠ x¦jÞˆ¢z|c‡4|^\x…Ð~QU„‚€ANƒC‚:’Ý‘Bt‚Œ™u×…sïw1~‡Œ]xzwÚŠÐyÄpä‰Z{j‡ï|bû†”}ô[÷…CzTÉ„€ùMë‚Ú‚y‘Ž?yйޣz„4zñ}_‹}{Òvˉø|µoóˆ}ŸiJ‡5~‘bQ…ñ’[y„º€ŸT|ƒ’©MÒ‚v‚´?Q}«‰x¾~,ƒŒ(~°|BЧ)uƉ)¢o ‡Í€h†€Ÿa®…T'[„9¸T5ƒ&‚NMº‚‚ëŽÜŽ…‚7ˆŒý‚P¨‹q‚kzù‰÷‚ytˆ‚†mî‡+‚“g…ç‚£`؄Ă¹Z[ƒ´‚ÔS­‚¨‚õMK£ƒ†Ö†«†¿ŒZ†\€FŠÛ†y¤‰f…±sJ‡ò…Ql†£„ñfq…d„“_î„B„;Y›ƒ0ƒêS‚$ƒ—LªƒGŒN‹3…Z‹ÒŠq~úŠQ‰±xhˆàˆâr‡pˆk«†%‡Beu„ë†t_ƒÉ…¯Xè‚¶„ñRgª„/L€¤ƒoŠžŒâŸƒþ‹dŽm}ª‰â?w'ˆqŒpꇊÆjŽ…¶‰ˆdp„{ˆN^,ƒX‡X‚B…êQÀ8„»K™€7ƒ’‰(Œ–”‚‹‹’h|:‰ŽÔuň*o˜†¦…iQ…T‹ÛcJ„Š8]‚舊WΆàPý€Ê…?K)Öƒ²‡³Œ\˜L0ŠÓ–@zù‰E”>t“‡Í’'ns†Vh?„ÿŽbLƒµ‹û\.‚†‰ÚVCg‡¾PU€i…´JÈ‚ƒÍ˜¼ké†Ì–tmõ€é”+pzœ‘ôrtÁt5n ¨vcg׋›x¡a:‰¡zíZ»‡²}KSó…Û±Mg„‚+‹æ—¢p …¿•cqÏè“$s‚y¦ÿu/s ŽàvàmLŒÙx©g#Šßzƒ`¤ˆö|mZB‡~hS§…V€eMQƒ¤‚kŠÁ–”tG„¤”bu—~Ø’/véxªx8r»Ž y‰lƒŒzîfxŠ)|``ˆS}æYІŠ}S_„×M<ƒ7‚§‰œ•–xtƒ„“oye}½‘GzYw£8{LqË0|@k­‹F}Be¿‰l~L_€‡­gYa…þ€S„_¶M)‚Ñ‚àˆr”­|™‚h’}/|­l}Çv§Žc~\pãŒ_~ójߊe ˆµ€3^ï‡ €ßXø…z’R߃ñ‚PM‚sƒ‡7“à€¿.‘Ê€ø{t³3u|°goÈ‹±œi܉ÛÕd#ˆ‚^,†z‚SX^„ò‚›Rcƒq‚ëL°ûƒA† “.„Íö‘#„ªz2„ŠtC„]nœ‹ „0hƉP„c&‡“ƒÙ]T…õƒ¸W®„lƒQƂ탂Lxƒh„´’Ÿˆö~µ•ˆhyŽˆ‡Ýs"Œ‡Im†Šš†·gňΆ#b=‡…“\‹…z…W ƒð„‘Q6‚r„K’€ÿƒŒƒn’*}yŒwÑŽ‹qûŒŠ&lkŠ$‰1f¼ˆYˆ:aJ†£‡G[³…†ZVNƒz…wP›ÿ„ŽK€”ƒ«‚‘Б |*¸v‚°Žlp¶‹¶k2‰¿‹ºe•‡îŠ_`8†0‰ Z´„އ°Ubƒ†ZOç…J²€5ƒÈ€Õ‘†”üzót“?u]]‘o‹_Íj#‰eŽd–‡Œ[_K…ÌŠ«Yׄ&ˆåT—‚–‡&OK,…tJYãƒà„­žl¾&›5n¯yï˜lp¢t\•¹r o“t£iZzvÁcÒóxï]ü‹}{3XG‰}ŠR^†»ìL»„t‚Zƒ¹œûp|~Cš/r$y—fsÍs”Âuqn?’+wh¨¨xØc<2z¬]ŠÍ|–Wáˆw~‘R†0€’L«ƒý‚˜‚›òt>}T™1u’x4–tvçrº“Ýx5m}‘Ry‚gþŽÞzëb­Œy|c]Š&}ñW‡áQä…¬1Lƒ‚ÒÈšõwÿ|]˜?yw@•‹zqÖ’ü{l­x{ûgFŽ} b‹¼~&\ˆ‰}RW#‡P€ŠQ­…0ÉLƒ$ƒ€Ãš{¶{d—_|ivS”¯}pû’%}Ækä§~nf“L%as‹â\ ˆÜ€ªVʆÉyQz„½‚VL‚‚ă:´™@tzT–˜ÕuA“ð€7oô‘m€ŠjêŽô€Ûe®Œ¡6`¤Še•[`ˆEþVD†<‚lQ „;‚åL$‚Lƒd~¶˜ƒƒyH•çƒ.t'“LƒAnàσ;iߎ\ƒ3dµŒƒ2_Á‰Ùƒ5Zž‡»ƒDU§…³ƒYPƒµƒoK—˃†}—é†èx1•O†“s’µ†Amá=…ßhèÎ…|cÏ‹‡…^ï‰W„ÅYê‡;„zU…4„8Oýƒ:ƒðKSƒ¦|s—gŠ•w”ωâr’6‰4lÜ¿ˆvgêQ‡»bà‹ ‡^ˆÝ†OY&†Â…¨Tl„¼… Op‚È„eJ©€êƒÂ{N–þŽ>uö”g7pè‘ÎŒ7k¹S‹fÏŒàŠ aÔŠ–ˆö]ˆd‡êX<†I†ÜS•„F…ØNË‚[„ÓJG€ŒƒÛzA–¤‘Õtï” loç‘t j¿Žõ™eÛŒ~Œ.`ìŠ0ŠÁ\=‡ú‰_Wq…à‡óRÛƒÞ†N=ü…4Ió€;ƒñ|B£sm´w| &o{sœãq@n1™¦s&i–vudµ“Yw_ñMy=ZâS{yUóŠm}ÈP㇀%L„É‚‡{”¢WqvÓŸrr^›Õtm˜ªu°hü•ŒwHd%’€y_x†zÕZ}Œ|¿U ‰É~¹P±†ÿ€¾L„O‚ÂzΡWtivžu¨q¤šâvälä—Áx.h_”®yxcœ‘±zç_ŽÇ|eZ‹ð}ýUR‰-£P‚†vPL ƒÝ‚úyü \w²uE%x±p×™öy®l%–Üz±g±“Ñ{³cá|Ô^‚Ž}ÿY´‹D?Uˆ—€‡PV…öÛLƒrƒ.y Ÿkzútsœ<{µp™|nkl–}+g’ý}çbk~¸^P’YMŠ¡€vT¼ˆ `P.…‚]Kúƒƒ^xBž—~Vs›o~Ço(˜M8j‹•A¨f.’C€a¤i€–]KŒ«X·Š«TH‡z‚?OÍ„ú‚àK¢‚—ƒ„wuà r±š¼Ên7—ôiœ”—‚eE‘ ‚4`Ɏ΂a\Œ‚“X ‰u‚ÓS¿†ìƒON„sƒ^K‚ƒ¢vy5„úqš„ÍmU–û„¢hÀ“û„qdm‘ „A_þŽ>„[Å‹ŽƒûWkˆðƒëS?†jƒäNÙƒöƒÓJ¨¡ƒ¿u“œ¤ˆBpÝ™‰‡Âlo–q‡GgÝ“s†ÅcŽ‚†F_*¹…ÎZÿ‹ …]V»ˆr„ûR§…ñ„£NZƒ…„>J@8ƒØt³œ,‹˜oËkp•ÿŠfß’ü‰/b‘ˆ`^79‡“ZŠŒ†ÐUå‡ö†Qä…}…]Mă„¢Iä€ÜƒîsÁ›ÁŽÝo˜­²j’•›Œf’”‹ja¸—ŠN]fŒÉ‰1YTŠˆU-‡Š‡ Q;…†MC‚¾„ùI–€Œ„ÇncfN»{pi7°qÓlH¤ssonú™uqºMvÂt@¨x‰vÉu‘zry"il|„{}]~Š}´Pþ€¡øÅ lkm๠n]p®]p_r@¢Ør2t*—…t v‹òuçwì€~wÕyÅtyÖ{}h´{ö}6\²~ ~ËPõ€4€aÃj–u^·¸lÂv¹¬”nÿx'¡6qyW– s zŠŠ§u{§bw%|Èsµy?}×h{n~è\O}–ÚPíÍ€ÄÁ hí|ȵÇkL}Zª¾m¾}õŸ…oé~r”‚r~ð‰Ht:a~2vlÒrÂx¡€5g[z逕[ò}&€àPæl ¿ gp„³æi÷ƒð¨ül“ƒÉånÞƒ“q(ƒT‡ôsiƒ} uµ‚ØqØx‚Šf»zk‚3[œ|¾×Pßv½f8‹?±éhæŠ[§k«‰sœ nˆˆ‘Dpo‡™†Zrư{u"…Åpªw„ÑeÙyðƒÓZó|M‚ÔPa~¬Ð»e4’E¯öhž¥ jõŽìšmmSooÝ‹·„§r@Š%ztªˆ“o`w‡dÙy|…gZ{ÚƒÍO¡~>‚*¸öd™&­õgm–Ú£-jT”€˜Vl×’4»oV߃qÅœx¨t9‹Zn-v£‰#cëy†ìYZ{q„¸Nò}Ø‚}¶ðd;Ÿâ¬gœì¡Oií™è–Œls–ìŒnö“ç|qhùw3sߎlçvH‹5bÜx±ˆbX…{…–NX}}‚Ç´äd"¦n©ýfî¢ÐŸKiÑŸ"”›lO›ƒŠ(nÇ—Û½q0”Nu•sÆknuüMa‹x\‰ÚWˆz¾†nMÑ},ƒ ²äd+¬ó¨f訦‡i»¤L’ìl. ˆ‹nœ›±~9pý—~t.sc“Xj'u¹?`gx‹3V­zt‡0M]|åƒD¿rüfm´:tAiD©™ul?ž·vÁnë”wóq¦‰ yBt.~!z§vºr¿|*y gU}Î{Œ[Éi}×P€0½6qm…²qršo¤§ít'qÞ'u‹sÒ’™vïu·¿xew­}yîy“qÕ{Š{`f£}@}1[`~ì~âPq€¡€“»Eo]tްŸqu÷¦;r×wq›™tfx¸‘1uôz†w{:{òy;|rpözï}žeú|·~ÐZý~väPb€<€ð¹OmÈ{Ž®Âo®|<¤wq£|ó™øsU}’´u~5….v»~ÈzÍx‚Yp zQáeU|2€jZ¡~€ÝPTÜH·]le‚s¬ïnm‚u¢Äp„‚z˜frS‚pŽCt‚eƒåuï‚Ry¯w΂=o)y¸‚d¹{´õZL}žÈPG„™µ`kD‰3«mlˆ‰ ào¥‡Ü–›q‰‡,Œ”sh†y‚\uK…ÄxQw:… ny2„Kcß{8ƒƒY§}+‚¹OËí³~jMÛ©l˜Žzžõnö”Ãp싼ŠÓrØŠg€¾tljvÜvÀ‡¼lÍx¼†cbézÁ…XÙ|´ƒ¦O~¥‚A±ii¸–c§)l”d(nZ’\“pZ^‰3rRŽ\>tLŒau‚vNŠdk©xNˆnbzS†zX|G„†Nf~9‚¯riPœÈ¥Hk™š(›\mñ—~‘Woô”܇qð’4}¹sí—tuñŒújrwðŠiayò‡ÞWM{æ…XMÑ}Ú‚Ô­si'££RkqŸÆ™lmËœ}{oÈ™@…Éqº•ÿ|s¯’Ér•u¬–i w¢Œi_½y›‰CVZ{†$MM}„ƒ«{i,©1¡|ke¥O—¹m¬¡fÞoŸ‡„@qŠ™§zžsx•Õq?un’ gÒw]ŽE^¦yNЉUˆ{B†ÛLÝ}:ƒI·.wŽf†­ xmiQ£0yRl<™znßzëq„Î{Ótz¡|Îvªoù}æyeK{›Z€D}úP v€fµ\uÂm7«SvØoS¡‘w÷q‡—„xñs°yéuƒzõwky|y_o}A{Adž~ˆ}-ZÇ~øOò €Ã³‚t%sÒ©–uhuEŸòv³vÈ–wÓxŒXxðy{‚_zzÇx‹{Y|nB|£}ccû}þ~¸Y¶QîOÝ€¦±¤r¨zg§Ït{-ž@uŠ{ý”uvÉ|¸Šéx}vyL~)wpz ~Þm_|cZ}y€?YZ~â€ÛOÈ€Hn¯ÉqT€æ¦rà œœtv6’ñuÐS‰…w%qÛx„ˆv\yï l…{l­bÃ|ü·Y~zºO¶ñº­Ûp?‡D¤0qé†ËšËs†Q‘9u …Ó‡èvr…S~dwá„ÒuyZ„OkpzäƒÄañ|~ƒ3Xe~‚ŸO:‚‚ ¬oVˆ¢ZqŒh˜ôrñ‹EvtoŠ,†z_z}ƒíq¼{ƒƒ›hÒ|›ƒB` }À‚æW/~ׂ†N±æ‚$¤t^‹D›¦u¡Ši’÷vꉌŠ)wòˆ® xï‡Îxíyõ†ïpp{†g¹|…-_*}C„GVo~Yƒ[Ng‚m¢µsË‘™áu ³‘TvSŽIˆwbŒÕ€+xi‹^w–yw‰ëo=zŠˆzf³{©‡ ^W|Ï…˜U¼}å„%M`~ò‚± ås^–Ó˜'tž”ݰuå’ä‡v÷ß~²xŽÖv;yŒÓnz&ŠÔeœ{DˆÖ]j|i†ÚTý}~„áLÓ~‰‚íŸ s#œo–Wte™íêu­—j…`v¹”Û}w¼’Lt½xÇ¿l yÖ8dXz\C| ˆT}!…–LW~,ƒ#:s ¡õ”©tBžâŒ]u}›Ñƒév‚˜´{·w•šssx…’‚knysc?z¤ŒW[D{¼‰>S]|φ7Kí}ÛƒR§h€½fçž´€Ïi“–N€älV€ênæ…€îq‚|4t s|'v jbYy'aY™{½Xã~>O.‚7€Ì¥Ã"l½'`nהؠqŒ1ÌsƒÉôu{€*wr…€hyi•€³{`¸})W·g#O Ϥ}¹r€›“~t “]~xu§ŠÖ~Àw‚Žx”yþVzq™¯{…hÒ€}`€~~WU€ñ€Nèlk¢m|hxD™ú|äy@‘Ô}dzD‰j}Ã{3C~|$xØ~†}pš~÷~hs~ö_‰ùðVù€‚€ÖNȵ À{:}÷˜f{Í~iX|b~ሠ|ÔI€}A²wº}¿€o¡~E€}g>~Û€ß^ý|CV¥€ŸN«€ºøžÿz@ƒ––´zçƒ€Žµ{’ƒm†‚|ƒO~“|Žƒ0vm}ƒnz}ª‚ìfG~M‚Ä^;~ù‚›V  ‚mN1€E‚>Syh‰• z(ˆ{zë‡Ú„ñ{x‡5}{û†u|Œ…émE}$…Be>}Ê„˜]c~xƒìUQƒ8M…À‚‚›~xÖŽš“\y“t‹„zTŒOƒ~zè‹{¼{s‰ísÔ| ˆ¼l&|¦‡dH}P†\\š~…-T¤~§ƒ÷LéF‚Á™Âxb“ø‘·y"’N‰öy夂zzŽíz[{5r{Ÿ‹~jÿ|=‰ÊcC|çˆ[¸}—†^Sì~=„©L`~Ù‚ù—ýx™>ýxÞ—ˆFy¥”ì€lz6’´xÙz»~q({NŽFiµ{çŒb|‰ÐZŸ}9‡ŽS}Ý…SKè~xƒ+–AwôžnŽax±›½†Ëyo™ yù–UwŠzw“žoñ{ãh—{œŽ1a |>‹hY­|戡R]}‰…ëK€~$ƒVŸ}…ig9—~…iÔÏ„¹l„‡Ç„Vo ÿƒñq™w܃œto߃Ov²g‡ƒy?_J‚Û{ÛVÌ‚¶~hN’‚žòƒèlª– ƒµnÀŽsƒƒpㆃArã~΂ütèvÍ‚Ãvínø‚yfÈ‚i{^±‚J}5Vi‚9BNn‚4Rœa‚”r”‚|s—‚fu8…;‚=v¹}§‚x}]–az&}k”sS}n‘¨lb}‡Ge¯}¨Œî^Å}ÚŠ{X ~ˆ QV~L…¦K ~‚ƒe—™Š%g¢G‰Yj5‰EˆŒlÙò‡¼oRzâ†ëqÑsw†)tPl3…ovÞd—„Åyk]„&|UMƒ•~žM¿ƒD–-ˆ¿l«Žòˆnň‡dpë€È†°réyÊ…ûtér…Svñk`„²ycè„{$\Œƒ’}OTôƒlM£‚£Ž”½‡yqž—†äsB†À†Ptî…³vyx¼…xq“„„y•j—ƒû{0cBƒ||×\ƒ~T¡‚š€3M‰‚<Õ“G†RvŒ1…Ðw¼…k…Nxò~c„Áz wŸ„2{'p—ƒµ|Ci½ƒ@}fb’‚Ù~‘[‡‚{ÇTS‚'€òMqÜ‚‘Ø…>{wŠ×„Ì|3„$„[|ô}6ƒÜ}žvƒZ~Eo£‚î~íh邌–aé‚=€C[ú€õT ¼¥MZƒ‚UU„O€U‰_ƒð€Ÿ‚¸ƒ‘€í{߃$uM‚¥Xn‚DŠgèî½a«ñZet‚'S†?‚\Lð ‚’ŽÜƒ……‡êƒ7„ïF‚ê„Ëz‚€„t‚„PmQµ„fØdƒÎ`)%ƒY§€ðƒRRွƒLX€Š‚ËA‚é‰ã†p‚ž‰Eì‚Rˆªy9î‡õrÍ„‡?l7/††eÛ€ã…Ð_Q€¨…Xö€v„nRH€Dƒ·KÍ€ƒ‹º‚jŽ’„þ‚!~ŽÙŒowïw‹Eq•Šk€¼ˆðd×€q‡È^j€8†ŸX.€…{Q¥Ö„RKT¦ƒ/Š*‚ “0ƒwÈ‘®}ƒ1v„Ž˜p?€°iÚ€Y‹ec³€ ‰Ï]\Ј)W5ž†…Pèq„çJêGƒYˆ£Í—³‚ ƒ•»{Â9“ÊuJ€Ï‘Ào€]»hÈ€¯b·³‹¬\su‰V^B‡uPF…jJ~õƒ~¥h6‰Áj«‚׌}m+|A‹5o•uë‰îro:ˆ¸t}h®‡‹wăqy•[…d|4Sç„h~ÑLýƒz€Ž^³lӇ㌉nܹ‹apí{3Š1rètí‰tånX‡ãvògï†Íy a-…Ç{2Z†„Í}gS˜ƒä•Lèƒ ÈŒqY†¨‹irù€ŠStŸz"‰9v3s÷ˆwÇm‚‡yfg9†{`–…%|ÉZ„=~“SNƒg€QLÕ‚ ‚ ‹¾‹`uâ…cŠ[wX‰VxWyˆJy…rô‡=z³l†F{çft…Y}!_÷„~hY™ƒ±ºS ‚ñLÂ=‚KŠnŠUzd„&‰_{6~-ˆi| wò‡h|Ôqú†e}›k¿…}~ce³„¢._]ƒàÿY+ƒ-€ÕRÉ‚ƒ­L²á‚†‰‰m~߂Έ†L|݇ »vµ†©€pÒ…¯€xj²„Ò€ÔdÄ„1^–ƒL‘X‚¥õRO‚‚YLQl‚¾‡ºˆ¤ƒ?z‡ÍƒG{‡†÷ƒRum† ƒGo›…ƒ;i•„@ƒ,căwƒ]¼‚ŃWß‚ ƒ Q¶ƒƒKÄ€ì‚ó†Bˆ‡²€‡.‡KzF†\†æt>…t†mn{„‰…óhƒ¹…wbØ‚ö„ý\ò‚G„‡W:¥„Q( ƒžKC€uƒ#„Ú‡|Œ~dž¬‹3y…ÛŠcs „÷‰mW„ˆœg€ƒA‡µaã‚€†Ó\Ó…ðV2…P‘€›„.JÓ€ ƒNƒh‡Q}]†IwŸ…xåq¸„‘Œ™lƒ¥‹PfV‚ÕŠ`Ђˆ¸[c‡`U–€Ã† Oá€3„¸Jp¯ƒt‚†Æ”‡|…ô’Üvi… ‘;p“„7†kƒI×eT‚vŒ"_ã°ŠuZAˆ¯TÍ€b†éOIØ…1J_ƒ•‡¹“úhðê’9kC|k{m›vŽŽºoópðŒýrQjö‹PtÁe"‰®wB^÷ˆ!yÏX熤|kR…8 LJƒÜ¸†—’¼m€Û‘o{ngquŸ»spŒtûj.Š{w dxˆïy%^j‡v{PXv† }‹R;„±ÂL=ƒiý…s‘—q9ÄúrÔzeŽ`tqt­ŒÆv o4‹0w£ip‰®yMc׈7{]å†Ñ|ÊX …w~£Qü„1€sL0‚ü‚?„G~uZ~£ŽñvšyOgwÛs­‹ÚynLŠOzWh£ˆÝ{ c'‡x|î]W†)~MW¤„é¶QÀƒ¸L$‚–‚|ƒ{yt}†úzZxBŒ}{Br¶Šù|%mk‰x}g݈}íb{†À~Ö\Î…ˆÇWB„c€¾Q‰ƒH¸L‚9‚´ÜŽ•}Œ|P#~w‹³~§q–Š9*l\ˆÀ¬fæ‡f€/a †€³\„ò=VµƒÙÊQ‚É‚YKÀĂ耰Ê{ŒgÀuÚ‹õpi‰•‚k=ˆ$‚:e߆҂[`³…‘‚|[O„i‚¤VƒR‚ÏP‚F‚õK=Eƒ`…¤yä‹Â…ptµŠg…>oSˆý„üj4‡“„ºdë†H„w_×…„6Z”ƒêƒûU}‚ÕƒÆP ̓†JŀуC~Œ’‰Ÿx®‹8‰s‰àˆsn8ˆy‡Ði'‡‡.cñ…ʆ‰^ô„”…èỸr…HTЂ`„®O^„ J]€jƒj|ÏŒ&“wfŠËŒ rH‰q‹³mˆаgþ†Ÿ‰°bÜ…Uˆª]󄇪Xß‚û†žSøì…”NÞ€ô„ŠJ€ƒŒ{‘‹Â‘vv:Šhq-‰ŽÅkô‡¥afý†:Œaì„]ƒ´‰FX‚”‡ÓS>‡†bNR€—„úI³¿ƒªå˜ùiÎzÀ–»l u甄nGp»’NpŠkÍrÏfˆþu0ah‹éw [õ‰æz$Vž‡ô|¸Q† OK¨„7í~Þ—Øm‡yЕ¢ozu“rqloð‘NsWk 3uAeÞ'wH`Ù‹'y^[‰7{ˆV?‡V}ÂPÎ…úK ƒÀ‚/}é–µqExå”rät.’rt‚o!]vjQŽQw¯e<ŒXy\`QŠm{[ˆ|åUæ†À~ÄPš„þ€KšƒQ‚n|å•§tùw꓎vKs;‘{wnBrxäi‡qz(dŠ‹‡{}_¸‰­|ÚZ•‡æ~HU†/ÁPi„‚8K“‚邨{Û”«x«vð’œy¯rP’z±mjŽ’{§hÁŒ›|šcÜŠ¿}—_"ˆõ~˜Z‡D£U:…§€²P=„ÈK‚‰‚ÞzÉ“Â|buà‘Á}qCÅ}ÈljÏ~hgЋàbÿЍ^^ˆQ€MY|†¬€ùT¾…¨OÚƒ‚\K<‚ƒyÃ’ò€tÔ‘€ep/€Ëk]&fÏ‹?Yb‰v¢]†‡ÁíXƆ ‚AT.„’‚™O[ƒ ‚ëJ—ƒ9x’<ƒ¼s¿TƒÀo+ŽoƒÄjfŒ‰ƒ³eኩƒŸa6ˆèƒ\¿‡;ƒ~X…ŸƒzS¨„ƒzNæ‚“ƒpJS$ƒaw…‘¥‡]r°Á‡n$↯iiŒ†DdîŠ"…Ú`Sˆe…o[ð†¼… Wh…$„©S ƒ„ONh‚$ƒêIò€¿ƒ„ve‘*ŠùqIŠNmk‰§hQ‹†ˆåcà‰¦ˆ%_V‡ç‡b[†=†¤V„¨…àRHƒ(…!MÔ»„^I€eƒ£uM¸Ž|p†ŽÜrlŒpg_‹‹Wbø‰9ŠC^|‡x‰*Z9…ΈUÕ„<†ùQŸ‚Á…ÜMU_„ÄIT€ƒ¾w÷žjÔs‘›elçot˜¸nõk–q fÉ“TsMb=³u]ÓŽ#wýY‹£zxTu‰8}O¤†Ö’K„Š‚w2œïn0rךBoÿnÆ—¢qËj\”ýs¨f*’du†a±×w‡]^\y–X·Šð{ÀT'ˆ—}øOx†G€/K„‚]vd›Ûq{r™:sn –¥t‘i²” v%e‘w¸a,yj\ïŒ{'X[ŠD|ÿSÞ‡ý~äOP…À€ÅKƒŸ‚™uˆšÍtÁq@˜8vm@•®w[hõ“ xªdäyõ`”Ž2{Y\n‹Ü|ÅWõ‰˜~DS•‡iËO)…BSKƒ4‚Òt¤™Éxpj—@ylw”Âzh<’>{%d:Æ|*_ÿi}@[î‹#~ZW‘ˆõSP†ß€§O„ÍØK ‚ÓƒsÀ˜ã{Zo„–d| k“ï|äg]‘u}¡cg~Z_=Œµ [@Š|çWˆZ€·Rä†PˆN°„K‚_JÂ^ƒ2rî˜~ n¤•¤j¡“6fsÄ€ bƒŽ^€w^iŒ€ëZ~‰èaV`‡ËáRe…Ä‚dN>ƒÇ‚âJQãƒYqë—]òm²”ï‚iÀ’Š‚Ie›!‚ga²Â‚ƒ]¦‹ƒ‚¦Yˉ^‚ËUɇF‚üQï…Cƒ3MÖƒNƒ\Iêqƒ}pÿ–º…0lÊ”S… hÛ‘õ„éd¼„¸`Ú3„ˆ\ÛŠø„ZYˆÙ„0U%†Ç„Qe„˃õMd‚ÞƒËI ƒœp–3ˆvkؓψgß‘s‡žcÄ ‡_茬† [öŠp† X9ˆQ…¦T`†F…*P³„S„´LÞ‚u„5I@€µƒ¸o•·‹ jì“XŠÝg‘Š"b‰T_Œ6ˆ‹[0‰ú‡¾W€‡Û†÷S¶…Õ†(Pƒì…]Lk‚„‘Hý€iƒÐ½k´b²TmˆeT§×ogh¹q>kÊ’›snï‡ÆuqØ} w tÄqÖyUw}f–{¶z8[ ~ |ÂOŸ€tT»iiƒ°|kŸkþ¦&mÌn—›ˆoäpè‘"rsC†ut+u|{évcw¼pêx´yÖeæ{&{ñZ¨}}ÞOŸ€ĹgzpÜ®“iÙr˜¤alFth™în˜v³pòw§…3sHy/zÕu«z¹p x|.e?z}¥ZM}~ñOŸž€.·ežx¬¬h:y¢˜jæz˜Kme{ Ž9oê{ÿƒäre|Þy³tê}½o#ww~ŠdzRY÷|§úOž=€’µcø@ªÕfÈ åiŸÕ–¼lE€ŒÎní€T‚¡qŠ€‰x›t.€¼nEvÚ€Üdy˜€ñY©|?€õOž~å€î³ b™†6¨æe‘…ËŸhš…`”÷k^„ô‹'n"„‡!pׄwFs‘ƒ£m,vOƒ c3y‚‘Y {ÍöO/~}Q±)al §d‹ägÇŠ·“%j¥‰£‰pm~ˆŽpE‡~uÝs†ikýuÔ…KbGx¡„%XJ{Y‚óN~¶¯`²“²¥cÕ‘î›Sg #‘viøŽc‡Ùl匡~o¼Šätr”‰&jãua‡iakx1…©W•zíƒãMã}¬‚­`1š.£.cT—Ê™‡f‰•]Ãi}’ø†>lr|žoQŽ-s6r/‹Îi¸u‰t`qwχVÑz„ÄMX}S‚g«_ü u¡3cq—–fSšeêiB—d„~l0”azÿo ‘jqºqäŽuh^t°‹‚_:wyˆUéz=…žLÞ}‚²©_覣Ÿ]bý¢þ•ãf$ŸTŒOi ›³‚úkô˜y—nË”pqq¡ôg2thi^-w-‰äU yô†bLv|¾‚óµ«pbm«œqye”¡Õrôhà—ÇtkkæõuénýƒÉw‚qâyºy0tÌo/{wdž|ûzTYË~è|ðO,€ß”³Æmíi`©Ùo¦kÖ 3qgnf–Csp»ŒŽtÒs‚‰v™uZx§xqw¡nOz`yËcõ|k{ûYk~k}ÿO$€rý±ØlpG¨m÷r ž‹oöså”ÁqÜu‘‹3sÅwEXu·xÞw¡w·z{myyÂ|cT{á}›Y}ôO€ €a¯èjAw#¦:lnx4œÓn¥yP“.p´zY‰ÇrÄ{i€t×|dvŒvö}^lœy ~Jb¸{Z5X»}„€O¬€¿­ûh²}â¤pk~N›,mk~¾‘«o#ˆhqΊ~àtäuv;€Œ–m_ŒÃƒ¥oÍ‹Gzˆr5‰ÊqŸt ˆJhŠw†É_¤yp…EVk{ƒ»Ma~‚*¦=e—lgº•T”jm“8Šõlå‘ ‚oYyqÈŒîpWt:ŠÕglv¤ˆ¾^´y †¨U®{a„LÛ}°‚y¤IdÐj›gzš¼’6j1˜ ‰2l¤•_€qo’µw’q| nísëcf"vPж]‹x´ˆ TÐ{ …`Le}]‚¿¢ddº£O™\gV —iþœ¾‡«li™|nÑ–=v;q8“m³s¤ÈevŒˆ\Šxg‰MTzÁ†L}‚ü®QtZb·¤òupeΛÞv‹i’zw¦kþ‰SxÅoÒyþqévr{HtÓl“|µwœb²~>zpX˜À}N½FÒ¬ƒrYiF£As±k¶šKun=‘v_p‡þw²rî~¤yu4unz†w…k¾|y¿b}­|X8C~N®€Ú€5ª°po¡rqŽ˜ºs«sj˜u)u!†µv¨vß}ƒx3xŠtwyÉz:jô{m{àau}"}WÞ~ÌN €u€“¨×nçv8ŸÑp¢w\—rexŠŽt y©…Zu¬zÎ|PwU{äsny|üj zÉ~ `Þ|›W‰~\€ N“€€ì§mi|“žoK}•q5}­Œ¥rú~3„t½~¼{&v‚;rmxMºiUz,€)`P|€’W;}ó€ìN‡¿>¥"l,‚ÊœLn2‚»“Áp@‚®‹r‚‚‚sù‚ŽyÅuÒ‚yq6w°‚chTyž‚=_{›‚V¨}}ÕNQ–£Vk"ˆäš…mIˆ4‘üoy‡ƒ‰Rql†Þ€îsW†y!„;^³{ƒ€Uò}‚»Mx~Úï¡ajkŽä˜¶l”¦SnÆŒf‡ÃpÆ‹)wrÁ‰êvþt¸ˆ¬nºv°‡mf=x¬†)]èz«„âUJ|’ƒ”Lå~l‚AŸˆiå”À–õl’òŽ«nD‘"†3pIP}ÿrK}u¤tI‹¬m‚vH‰Üe,xFˆ]zF†4T•|.„^Lc~ ‚Š©i¢šx•"k͘Œãn•¿„„p“b|jqû‘t-söŽªl)uôŒQcñwð‰ì[çy쇆SÁ{Ö…#Kò}³‚Ì›Òi~ “pkž(‹TmÅš=ƒo¿—Q{ q´”irçs­‘jþu©Žœbáw£‹ªZòyœˆ¹S {ˆ…ÑK}hƒ§x­c žGygf•Ùz%i7zål$„œ{©o{Å|‚qûs}itãiì~iw²`Í~zŽWq€‘}INU¨€ ¥HvÊi0œªw¾kŸ”Zx¶n#‹¹y§pvƒXz›rÐz§{›ur|¤wti"}Ày¼`1~ì|W€~>N?>€k£ŒuoE› v;q’ÜwasŠ^x{tÅ‚!y–v‹y–zºxEq4{æzhb}{Â_~`}‰V¸,N*€Ù€Ã¡Îs‹uV™gtÖv“‘Nv'wÙˆñwcy €×xžzFxsyÞ{up:{%|¦gš|y}Ð_ }Ù~þVc-€N€{ r${O—Ès‘{ýÍu|°‡‘v[}V˜w²}þwXy ~ŸoFzl@fØ{ÜÕ^„}Y€eV~Å€çN€%cžBp÷*– rƒIŽ"tl†uƒ…~&vð v x]µn yÍÉeå{MÐ]È|×ÐU‡~LÅMš´¶œ‹oó†é”YqŸ†tŒssP†„itÓ…|¦vO…t®wÉ„ªléyD„6dÞz˃¶\÷|Xƒ1T×}Ï‚ Lý8‚ š«o@Œ–’Ÿp틚ŠÝr ŠŸ‚ít.‰{Cu¹ˆ›skw?‡˜kÉxņ–cëzR…\5{â„‚T5}[ƒnLn~Å‚V˜ån¸’ ñph‰Hrqs°Œyßu@‹ÿr$vÍŠrj£xYˆçbéyé‡U[Z{z…ÃS‡|õ„.Kò~_‚›—ng—2p•„‡•qÑ“}Ösa‘mx^tê_pÀvuNi\x‹@a¾yމ#ZL{‡R½|™„èK„~‚Ø•Xn8œá“oâšM†q—¾~qs•&wtž’•oŒv&ÿhBw±p`½y?ŠÌYcz̈(R|I…K&}·ƒŸ·}cl—¥}gf`â}Èij‡Ë~+lJô~‘o7wÆro¾‡tögT€wÊ^ý€´z«V[X}sMó‚€Ež{Bi+– {Òk“Žz|dn †~|õp]~Á}ˆr¶v¸~!unØ~Àwgf–ky»^g€!|Uü€Û~]M×›€œpy«nÚ”˜zdp·{r¡…4{Ôtm}š|‰v=u¶}Bxmý~yØeá~Æ{¨]Ù”}‚U£€d>M¼7€ðšÎx2t„“ yuÕ‹•yñw.ƒÛzÃxw|d{“yÄt¤|h{ m}A|Te#~#}š]M ~åUOô€M£€Ú?™*vßz‘‚wÚzèŠ*x×{¹‚yÁ|{8z¨}Hs›{—~ l,|Š~Ëdl}ˆ„\Ë~€:UŒ€ãMŒ€„‡—ru¿žÝvÕ刖wî€/xì€syÜy怸rbzå€ök{ç4c†|õf\~ “Tw¶M"€Õ•ÍtÅ…Ž?u÷„†ýw-„„“x<„ExsyE„qzNƒÆiõ{Xƒƒb|mƒ6[O}‡‚äSÍ~‘‚†LŠ‚#”tŠ]ŒœuI‰œ…}vˆÝ~.w™ˆw%x®‡Toëy†ŒhèzÔ…Äaª{ï„öZ•}„%S0~ƒIL‚k’Xsˆ•‹tÀŽUƒýuú|Æw‹ÏuÔx3Šˆn¸yL‰?gÔzb‡ø`·{‚†¨YÅ|£…WR‰}±„Kˆ~°‚«¡s)”´‰Ytg’ø‚^u§‘?{>vÂ}tgwÖ¾mgxí‹øf zŠ6_ž{#ˆaXÅ|D†ˆQÈ}R„¯K~R‚äŽör𙼇Ït'—|€óu`•Byìvv“s*w„ÈlCxšŽ†e–y²ŒK^ªzЉôWè{ð‡œQ"}…KJÃ~ƒ˜bpcçöofljÛoi»‚lrl{@vois¼†r~Q†ìU™~›…£OÃ~à„YJ1!ƒ‚o|e“¬|t|§’vÄ|é„pë}ŽãkX}=Je }s‹¦`!}®Š Zg}õˆPTÖ~A†”O1~Œ„àIâ~ÒƒD‰°Šze&ƒž‰¢gÞ}܈Ìj wƇûmQqñ‡/pkÆirÈe¼…©u˜_\„ÿxjY„b{KRfƒÎ~$KàƒB ˆk‰ i¶‚pˆRl|ŇnYvÆèpŸq†6rçjð…ŒuyT„ey`s¢ƒîzyn4ƒx{‘h}ƒ|¨bò‚³}¿]‚d~ÙW^‚÷QháK³©‚$ƒ(„H{‰}tƒç|Fxƒ‡}rrƒ}·m‚¶~hg‚]b‚ Á\`Ì€mVÏ•PûdÁKa7‚d݃eÙ|*ƒ€3vĂɀq7‚n€Ûkñ‚$frÂia#z­[–@ñV.‚5Pr€â‚nJ怺‚¡€m‚©„8zׂa„&uŽ‚„pɃõjßwƒÓey1ƒ®`F€ñƒ‰ZÛ€¾ƒeU˜€’ƒAOô€kƒJv€H‚Ú‚ ˆwyŒÉ‡ütV‡‡„nî<†ûiÊ€ï†sd{€¯…ç_a€u…\Z€G„ÍTî€!„?Om€ƒ¥Jム}¨Œ©x/Q‹ÌsŠôm¬€ÅŠhœ€w‰cd€8ˆ,^b€‡>Y*؆=T¸…:NÏŸ„4I¿Šƒ8|N,Çvî€ë{qØ€«Ž8l–€]Œåg—€ ‹šbsЊE]†›ˆöX`w‡‰Sc\†NGJ„²Iv<ƒ^‚N'eõ|öÚhŽw쌑k+r„‹PmÉmYŠplgÖˆás!bw‡³uæ\¿†›x´W…•{Q„–~gK7ƒ¢I4Éj{팙lYvô‹nn—qŠEpÕlƒ‰ sgˆuiaÙ†ñwÉ\<…îz7Vµ„ø|²PÛ„ #K1ƒ/“€Œ†n1zÚ‹jpuñŠSqõp´‰@sØk³ˆ2u¼ff‡0w­aA†7y¦[¿…H{³VS„c}ÍP¢ƒ‹ØK,‚ÂÙ~è‹QrKy¾ŠJsÒtá‰GuZo»ˆEväjÔ‡Hxoe£†Zz`š…v{”[:„Ÿ}7UòƒÒ~ãPnƒ€ƒK(‚]‚}¸Š2vZx¢‰=w‹sÙˆKx»nʇXyëiû†i{dä…Œ|K_÷„¼}|Z¹ƒü~³U˜ƒJíP>‚ $K#‚‚V|}‰4zewqˆP{?r°‡n|m´†‰|ëhø…§}½cú„Ø~Œ_)„ZZƒc€+U‚¾€ýOÛ‚!ÊJÙŽ‚’{UˆV~WvF‡~Ûqƒ†®_l“…ÕÔgæ„ÿ€Fc„:€µ^Jƒ€$YV‚Ö”Tƒ‚6‚O_ ‚kJg‚Êz‡“‚_u†Ç‚}ph…ý‚k‰…/‚°fê„b‚Ábƒ§‚Ï]}‚÷‚ÝX©‚S‚íSú¹‚ÿNë*ƒJ€¤‚ýxˆî†Hså†(†oJ…e…Èjz„œ…{eêƒÕ….a0ƒ!„Þ\©‚w„ŽWðÙ„J ‚O‚…uïŽ&ycqyŒ¼z_mJ‹X{Yhæ‰û|Hd¿ˆ§}1`\‡e~\#†1 W¤…ùSCƒù€éN²‚æÖJ]Ý‚¼tçF|õpn‹ë}¦l<Š—~Wgâ‰F~ðcȇý„_y†Å€[W…€«Vû„€DR¿ƒqÜNA‚e‚kIôe‚ïs¿Œ{€¢o[‹-€ök?‰äJfòˆŠbã‡^Æ^¨†1‚Z›…‚=V^ƒý‚~RE‚ó‚ÁMÚï‚õI•€÷ƒr¦‹Î„5nNŠˆ„0j>‰H„,eþˆ„aû†Íƒý]Ò…¦ƒãYÙ„ƒÉUµƒƒ°Q¸‚~ƒ™MjƒƒtIB€–ƒHq†‹?‡Åm2‰ü‡ni$ˆ¿‡dð‡~†°`ü†D†E\ä……ÔXþ„ …eTëQ‚ „oLæƒíHù€@ƒmplŠÂ‹:l*‰‚Їh.ˆG‰Úd‡‰`…̈_\„©‡›XBƒ–†ÛTD‚–†Pm¦…-Lv€Å„WH»öƒs®˜¥ho¬–wj]kð”Wl°gÝ’0odq_Òüt"[Á‹ïvÂWX‰ðy|Sˆ|CNn†J„L·rÚ—lkUnæ•Kmmk6“8og2‘$q¥cdsÉ_Iv[P‹(x]Vü‰>zÆR¹‡e};NI…’£JƒÔür –?nžn$”0ptj’/rDf‹*t"bÍŽ1uþ^ÇŒDwôZäŠiyðV¤ˆ”|Ru†Í~)N'… €=Jƒc‚hÐŽí‚heQ4‚‘a¥‹t‚±^1‰À‚ÐZ˜ˆ"‚íW,†šƒ Sš…ƒ*P-ƒ¦ƒLLw‚;ƒ\Hæ€äƒckŸ…qgÚŽV…WdWŒ¡…?`³Šâ…]J‰.„æYÀ‡’„´Vd† „‚Ræ„“„JOƒ-„LÓƒËH£€ƒ„j ˆ‘fíˈ$c|Œ‡¼_ãŠb‡D\ƒˆ¯†ÏY‡†RU¸……×RJ„…KO‚ľKœx„,Hj€Gƒ¡²Ói]ë¨ôk axŸ\me-•oh—‹Þq)lés^o[xu¬r¤mÅx,u½cszÙxÚXÏ}†{ÄNQ€H~¶°Úf§e/§$hñh¶kDjõ“ùm›m£Šwoûp^€ªrir÷wtçu˜lêw‡xbÒzHz–Xz}|åNYÙ.®Ôdglc¥Ffûn}œi™p¬’pl3r¬‰n×t´{qzv¡vt(x‘lvçzlb:y½|LX*|‘}ýN`qŸ¬ÚbPs|£me-tÜšHhvHàjæwŸ‡µm¼xÿ~@p‹zGtñsa{kCvB|Æa¥y6}ûWß|! Ng€ ªè`uzq¡¢c‹{(˜¥f®{äbi­|“†]l¯}D}o¤}çsìrž~ˆjvu¢ax¶šWš{¹€ Nm~¶€k¨ñ^ì9ŸÀb6D–ØeŒQ¶h°[„ÓkÓg{¯nåjr´qùiiwuW`Zx6;W{GN ~P€Ø§]œ‡ßìa‡4• d¡††Œgâ…ðƒ=k…]z>nF„Åqmqm„)het’ƒ_…w¼‚ÐV^zÓ‚Mp}åG¥\ÂŽIœ`A “Uc͋ˊlg"Š‘Åju‰Wxém²ˆp?pë†Ýght…š^¿wJ„SU»zhƒLâ}‚¯£%\"”…š@_¥’±‘¢c4ÚˆÕf”€Jió)wm;‹Qo p~‰yf[sµ‡ ]Ývè…ÅU z ƒéLf}*‚ ¡0[К‰˜[_U˜Íb敱‡fE“H~®i¢ÞvlèŽwmµp*Œe%s`‰¥\Äv“‡6T8y»„ÆKù|Ü‚]ŸH[¨ j–š_ jŽ2b¢šj…eý—j}IiX”ltÐlž‘rlŽoÞŽds‹‚[ÒvHˆ†S„yv…ŒK›|™‚¥¬m!^o¢ÅnÁaå™Ñpfe~rh؇sÛlD~3u»o€túw±rÃkKyÓuàaž|yW¨~`{ýM瀲~þª$jÓe>¡ lÃh ˜;nºjïp³mœ†9r´pV}tÇròsûvëu–j}y,xa{‰z®WT}ã}Mç€Dn¨Bh°lŸMjçn&–£m%pY«o[rc„ñq–tv{êsÛvosv+xli¸x‹zZ`qzþ|PW}k~MçÝÙ¦]f½r¾‡i4t1”ük´u®Œ,nwƒœpƒxŽz¾rïyìrud{Khíwå|›_ãzv}íVº|ûMè}€=¤ydûyX›Ég§z+“ej[{мlì{Ñ‚So~|¡yr }cqt¡~$h*wD~Ò_]yözVu|“€Mè$€š¢‘cƒÙ÷f^÷‘©iB€-‰kõ€`€Øn¥€”xJqO€¿oæsü€æg6v³€ü^¦yt Uî| Mˆ~» ÇbD† ˜4eK…•ëh\…!‡{k*„½Qmò„]vçp°ƒôn¬spƒ‡f0v2ƒ]Ùxø‚UD{¨ÿLò~KižÒaqŒ(–hdz‹&ŽIgŒŠ"…öjm‰$}æmJˆ&uŸp‡"m‰rí†ekr'‹ctûˆð[6wˆÂS7z‰„”KŠ}6‚o™K`G~‘0cQšÎ‰^fb˜"\iD•syœl!’Êq²nüiÿqØrbt­ŠºZNw~ˆR‹zA…PK0|ð‚³¥@q5^蜟rƒbJ”LsÔeÊ‹¦u5iƒ@vloz„x#o¤qëy»ráhÞ{{v_Õ}Yy/VŒ5|5MC£uoeVš÷pšh’Èr7jðŠDsÖm™‚uzpMykw0rêpýxóu’hzÒx&_A|ÇzÆV8~¸}v§}½eêxå~Ž]¬{1[UZ}g€MhŽ€ÇœDh~U”Aj‚~¯Œ‹lð „–o;d|åq¾tísÁ€m"v€aexS€¡\üz®€ØT×|ñM !'šŒfé„H’iy„ŠÞlƒÄƒnrƒ{lp΃Ys˜s"ƒ kõuu‚ädwЂ›\7z0‚KT4|wîLz~­Š˜¨fŠÓh¨‰P‰JkBˆ…Šm·‡»zp'†ór]rކ'jÞtñ…ZcwW„…[€y¼ƒ­S|‚ÌK÷~Aæ–ßerÄ%h Žp‡·jª€m(‹Æx²o¢Šoq r‰iÂt‡¾b&ví†_Z²yV„ÿRû{¦ƒšK…}â‚8•e•Dgg´“k†jT‘”~~lϹw;oCáoÇq´Œh‰t$Š(a v“ˆ=Y²xý†PR={P„cK }‚“Sdßš¦‹Ëgs˜D„j •ç}l“„uönî‘(nq`ŽÄgzsÒŒf`vB‰ôXÕx¯‡‚Qš{…JÊ}D‚ÀžˆuF_g–zvCb·Ž»wBf"†­xQi\~àyel¥vÀz’oÒnÈ{Îs ff}'v,^~”y\U{€|lM!x†œ×s4er”ëtsh.Muµjÿ…_vým£}³xIpPu¹y¢rïmé{u™e¯|{x7]…~zàU'†}fM é›)qRkm“^rÉm—‹átBoÏ„u¼qæ|’w7tt¾xºvmzBx*e{Öz=\ÿ}s|\TØ~XM€¨€H™to“qb‘Æq>röŠgrìt”‚ÃtŽv!{av/wµsµwÔy=l3y{zÇdN{.|K\}|ê}ÔT~ž@Lú€I€ —¿nw>5oÖxGˆúq«yWysqz\z;u5{cr³v÷|akXxº}_c z~P\|i=TK~5€Lîò€ò–l®|ùŽŒn§}y‡ep¢}ü€r„~xxãtb~öq€v;mjLxãbÄyø€I[Z{倩SÌ}½€þL‘ƒM”]k‡‚•Œím¥‚……ÊoÅ‚v~q¾‚lw|s°‚dpwle›ŽéxQhM‡ãy7k€Œz&m°yu{pWr|røjã}u¥cT~xJ[Ý0zúT'€J}ŽL³h€"”©u¤k6rv½ma†‹wÖo˜WxòqµxezsÖq+{-uòj|Nxb±}uz7[]~¡|dSØÒ~tLŸ€{“sÿpÈ‹ôuFrk…'vŽt~wÍu´wIy wWp3zIxòiJ{ˆzb|Î|+Zá~}ÉSaQL€§€Î‘tr„vFŠzsïwhƒÏuZx|áv·y¯v6xzÑoCym{ëh~zÉ}af|.~Zl}—!SK~ø€!L}€QËq>{«ˆærÊ|M‚OtW|ò{~uÎ}“tòw@~5n"x°~Ðg‚zi`–{–õYË}€|RÑ~~€ùL!ßpŽ8p €ò‡YqÏ€És~/zu Qsžvvlñx”fuyˆ°_´{ ÂY|ÎR:}ÿÎKbÈŒ†oQ†*…Éq…Ê[r¹…mx¼tU… rdu넯kÖww„Le}xüƒé^ãzˆƒ~Xp|ƒQ¯}‰‚–K$~ên«‹<„EpeŠa}ír‰‰wgsȬq(ub‡Ñj¸vö†ñd~xƒ†^z…+Wµ{¨„CQ}"ƒQJ»~‡‚a‰En94‚®oùŽâ|dq¸”u÷s[Œ@oÑtöŠñi~v‰šcbxˆF]yµ†ßVÎ{J…uPp|Ç„J_~-‚¡‡ªmñ•5o©“@{ q`‘vt·rÿ©n¨t–ähov/ŒbmwÄŠO\'y_ˆmVzø†‰OÜ|x„¦J}Þ‚Ø‘}‚`•Š=}×c¹ƒ¯~.fð|Õ~j v=~ôm-oVgpIhšâsra€iv“Z€÷yÂST’|ßL=‚6€ š{°eÞˆÞ|7h†‚q|Àk;{³}QmÕu6}åptnq~}sgÚuÂ`î¹xlZ€a{!S}ÂL)Ë€bŽ!zk‡€z¸mB/{ooyz’|'qšt8|às¾m—}šuãg#~Tx`Wz>Y§Ð|yR¼€™~œLg€¶Œ£xupG†yTqøáz3s¯yf{ u\s/{àw l°|·x¸f_}Žzh_º~i|Y2E}ÌRw€'mL ‹$wue„ºx v¡~Ÿy wáxEyüyr/zëzRkÑ{Þ{†e¡|Ð|¹_#}É}æXÅ~ÃR7½€2Kõ€²N‰”uÕzqƒ>vò{7}6x |vøy|Âpþz}…jÂ{!~Bdµ|$~ý^`}/®X.~;€ZQÄB€ÿKž€@žˆtÂcÇuþ¯{Çw8ýuŸxU€Jo¿yk€˜i£z}€ßc¹{‹%]Œ| cW…}¶œQ6~ÁÉK"Áð†{sô„L€Nu5„"znvuƒùt`w¡ƒÌn—xǃ h™yåƒpbÐzüƒ>\È|ƒVè}:‚ÍP³~K‚‡J°M‚<„øsJ‰~àt’ˆsyu؇×sw ‡4mmx;†”g‹ya…îaàz€…J[ø{§„V8|΃ïP(}ãƒ7JM~炃lrÍÁ}atŒ³w£ui‹©qÂvŠ—l(wȉ‰fcxñˆt`Ôz‡a[{A†;U^|n…O‡}†ƒâIö~Œ‚ºær}’Y{üsÄÐv^u Pp”v9ÌkwbŒQecxŽŠÌ_íy¶‰MZ5z至T¢|†Nü}6„xI¬~=‚îŠq¥aN„$¡db~%Ÿg„wç¥j‹qî­m™k¤¿p©eƒÖsÆ_üvâX»‚,z R‚e}*K€‚¤€U‰ûf4‚Ý€!h×}€Hk„vÝ€unpû€¥p¬jÑ€ØsIdÓuò^€MxŸXH“{XQÃâ~Kt‚7€ª‡ª~hk™~µm;{ÖovuÒTqšp¦sÀjúuéd+€Nx]ö€¥zUWÜ|œQ‚e~ÐKiЀû†F|ðoÛ€L}aqz }Ñset»~?uo~«vÙi2x“cv‰zP]eý|Wq€s}ÜQF€ð–K_oG„à{œt›|'uóyt|²wOs®}7xžn,}»yëhb~C{5bÅ~Ë|~\Ú[}ÆWî Q€ƒ€OKUŒƒnzryN}¢{z;x${¼{+rw|V| m|ì|ìge}†}Çaè~ ~ \%~ÁtVƒe€EP¦€K€¥Ø‚ yk}ç|Gz*~gvÏzé~èq5{•]kä|<ÏfX|â€<`ü}†€¨[_~2Uç~ÞuP$‡ÏJ•€*‚#€Œx—‚‚zçy`‚‘uŽz'‚¢p z₤jÏ{—‚¦e_|J‚£`!|ø‚¡Z©}­‚›UW~c‚•O¬‚‚J-¹‚iwæ†üyx¸†œtMyˆ†?nàzK…Ôi¹{…jdb{Äû_@|y„ŽYæ}7„T³}õƒ¦O,~ªƒ'IÒU‚§}¬w_‹cx)x8Š›rñy‰×mšyщh‰zˆ4cM{K‡\^E|††Y|Í…ŸSç}“„µN–~NƒÆIƒ~ý‚Þ|>w²vÚwÓŽvqÁx¤Al€yfŒgƒz ŠÏb]zâ‰]m{¢ˆUX@|o‡S8}=…©N}þ„RI?~±ƒ ƒ¤…íb~……exº…hs „ÀkmÆ„enh„qb’ƒ¿t\¸ƒƒw.V÷ƒTzSPЃ,}rJу €œ‚i„]f¢|ç„i2w²ƒÛkÈr.ƒžnSlèƒbpßgXƒ,szañ‚ùv \4‚ÔxÐV‚·{P•‚¥~>JÍ‚›€î)‚ãk{½‚Âm>vŸ‚¢onq8‚„q•l‚is½f ‚PuíaX‚;x$[·‚,zjV-‚"|¾P^‚%JÉ‚1;ã€o‡z‹|qMu€xsp6ttÜk-qv£eÚrxl`±wz7[2‚| UÍ’}ëP*­¼JÅ΄~›€9sêy]€MuRtk€avºo=€sxjO€„y‚e€œzã` €¹|CZ±€ß}¦Ur  Oú=€kJÂsÇ}GxCxDyKs5nzTn“{TiG¶|Sd.à}M_?€ ~DZ €D;Tó€€1Oœ€À"J}‚ |~|‚vÙ~]}*qù~}Ólò~Ò~nh0c2;œ^bs€/YR´€ÀTdøPO%€AÕJ€‹‚Sz }F€Íu“}‘ pÑ}ÛKkß~}g.~^®bJ~¡Û]–~ä‚X©/‚4Sß|‚_N·Í‚}I´€‚”yN|„øtU|ä„Ðo§}7„ªjÈ}ƒ„wf+}Ë„Da_~„ \Ä~bƒ×Wó~¶ƒœSH ƒ`NAeƒIa¼‚Íwô{ÿ‰s|ZˆŒnc|²ˆ i˜|þ‡ve}F†å`\}—†L[Ù}é…´W~F… RŠ~¨„_M¶ ƒ¬If‚ÿv£{’qÑ{éŒ&mG|>‹:h’|ŠŠEd|Ò‰W_}}'ˆ][}~‡gVi}å†VQæ~P…BM?~¹„/HÚƒ+|ߊGcwó‰ueásSˆ¨h½n[‡âkœiž‡"n~dŒ†eqt_Ÿ…­tyZZ… w‰U,„yz¦O›ƒí}¿J1ƒj€ß{ψÌg+võˆi¨rf‡rl&m€†Èn§hÕ†#q)cÞ…ƒs¾_„èv_Yä„\yTЃÚ{ÍOjƒd~J4‚÷-z±‡hk9uê†Ôm]qn†Dol£…¶q¨h…-sÐc9„©v^„„+x?Ytƒ´zŽTzƒD|ëO<‚á7J6‚‹xyކoLtÖ…qpi…#rák·„¬t²gC„8v‚b„ƒÍxX]ëƒgz/Xüƒ |T$‚²~O‚gæJ9‚&½xf„ÞsTsÄ„wtÉol„v=jÓƒ¯wµfxƒOy,aÓ‚ùz£]V‚©|Xˆ‚e}“SÔ‚)Néõ€ŠJ;Éýw1ƒÅwSrœƒsxtnPƒ#y”iË‚Ñz±eƒ‚‚{Ë`ù‚<|ã\—ý}÷WîÊSa€#N•y5IþZ‚?v ‚Ð{7qz‚|m/‚R|Òh¸‚}“d‚Ï~O`— [ÊdÀWE:€yRß1N)€úÝI€ä‚€tÈ÷0pPÜl ‘€g»\€gc”)€Å_:€ý [ €ÕyV¨€µÔRf€™‚.MÅ€†‚yIF€x‚»s’<ƒ o,ƒk €éƒ'fº€½ƒ+b¤€‘ƒ-^_€oƒ+ZI€Pƒ)V€:ƒ$QÚ€(ƒMY€ƒ Hú€‚ïrT€¢†Øm÷€}†‘iá€Y†Me¡€/…÷až€…¢]oç…EYoÏ„èU<Ä{Q+¿„ LÙÁƒ“H·Ńq€(Š‘lÚ€‰çhÛÛ‰Cd­³ˆ“`¼Їé\¡q‡3X´^†T’\…°P”c„ÞLlo„ H~}ƒFv@Ž£dqèlfØm׌=i˜iy‹l`eV‰ïo(`߈Ìr \Ї®tüW܆¢wÿSB…¤{NZ„­~I ƒÁuGCgÑqŒ$jEm‹ lµh¶‰ûo*d¤ˆòq`F‡êt)\ †év¾Wv…òyjRõ…|"N4„"~ÌI©ƒKhtL‹ìkpŠém¥l+‰íoÇgöˆòqìcú‡þt _µ‡vA[’†,xzW…JzËR«„p}*Nƒ vI±‚ݯsOвo.o&‰ÀqkDˆÕrÝg$‡îtµc?‡v‡_†6xe[ …hzCV¬„ |5Rcƒß~-Mïƒ%€I¹‚vòrK‰‡rÙn4ˆ¦tejb‡ÊuîfX†öwvbˆ†(xù^t…ezZ„„¬|VFƒý}•RƒW$MЂ³€¯IÀ‚‚/q8ˆsv€m*‡¥wÀib†Ýxüeh†z1aª…]{a]®„«|’Yׄ}¿Uºƒb~ñQ¹‚Ì€!M†‚7LI‹©‚mp/‡}z l#†Ã{h\†{õdo…Y|Ö`¿„«}±\Ø„~ŒYƒjcU ‚Ô€?QC‚EM%ºçI25‚©o † }­k…ô~Hgf…M~âc‰„¦l_ç„ñ\ƒm€uXk‚Ý€õT‘‚P{PÖÉ‚LËG‚vHâ€Ì‚ßmò…á3j …?xfl„¢¾bž„ô_ ƒl‚&[L‚Ü‚UW¸‚V‚‚S÷Ò‚°PYV‚ÝLj€Þ‚úH€oƒlÒ…?„´hô„£„«eY„ „¥aœƒp„‰^‚Ú„lZo‚N„GVðÌ„!SCSƒïOº€åƒ¸Kö€}ƒyH`€ƒ:k¶„¶ˆg»diƒ…‡\`½‚í†î]J‚Z†ƒY±Ò† VCS…˜R©€å… O1€‚„{K“€(ƒéH+Öƒ^o‚“eLkÚ‘wgähtçjtd¹ŽNm"a1ŒÀoÏ]V‹.r Y™‰§u|Uˆ-xtQu†Ä{yM/…a~pI„Vn¬‘Êh™kXŽò‘Q\ °‰¯`ŒmÌc׋z+g‹‰½rQk1ˆfj©nЇbÌrj…¶[uý„[S.y‡ƒK„}µ—fW–”¸Ž[¥’çˆ_¶‘€=c{8x»g0WqjÖ‹xi‚ns‰œaÀr‡´Z%u«…ËRvy;ƒæK#|·‚•Whš^í[f—ü†‰_d•Ÿ~ãc(“0w~fßÄoæj…Ž[hƒn ‹ù`ØqÁ‰‰YRuc‡QØxù„¯JÐ|u‚]¢CjGZw™Ål ^:‘’mýb ‰oäeÄ€ÍqÑizx7€šhn>yBkHq¨n©Jjqijœ{°sJm›sÚuJpˆl/wYsd"yŠvp\*{ÒyoT~%|OLZ€~-˜œig®÷k²j&‰ mæl¯ûpoz—r&qyrêtXsÓkiv”v4cƒxåx”[²{E{SÔ}®}RLZ€—–àgomè]ièoÈ)lbqª€¬nºs}yrq uVqîsfw"j•uÇxñbÝx;z¼[=z»|S˜}=~KL[·û•!esÿÉhCuN†Àj÷v£km~wçxXoüy.púr}zjiÈtÿ{§b=w—|ÛZÐz:~S`|Õ5L[_€W“_cþyîŒ"fäz®…2iË{s}ÿlw|+wo|äo×qµ}•hÍtQ~Farw~ìZ7y·ŽRð|`€)L ~ô€À‘ºb¤¼Šˆe»僢hÑ€|‰kœ€=u¶nU€mn¤q €™gÃs»€Ã`—vx€åYy8Rb{èKŒ~‚,ôa­…eˆédÏ… ‚+g{0jÏ„PtxmŸƒòm‰pkƒ‘fÍs/ƒ1_Ëuú‚ÍXîxÄ‚gQß{züK~‘ŽE`ïŠß‡VdŠ€´gD‰$yÖj0ˆ>s;m ‡Xlloæ†qeÑr·…Œ^óuŽ„¢X:x`ƒ¹QR{‚ÏJ¶}¼êŒ`|(…²c°ŽÎ"fßvxaiËŒqål¢Š±k5o~‰LdºrT‡é]÷u2†zWYx … P¬z˃œJ^}i‚:Šç`7•R„.cb“v}Âfˆ‘¡wip¼p¾lDÝj)o"‹øcÉqýŠ]tâˆ)V—w†:Pz†„QJ}"‚•÷qå[ÈŽƒs3_]‡^tc õuÒfxÏw$jq`xžm‘jz*qbˆ{Ùtˆ[}xSbp{…LJ”Ro©a¹qAdÁ†rÚgÝ~ÂtmjËw¾uþmÀpvw©p«i]y_s£aë{,v–Z•}yšS~ñ|…Kû€Þp’·m’gž‹ooj„²qMl}“sov¸tãqjo—v»sËh¥xšv3aWz†xŸZ#|z{RÜ~z}{Kô€yÓ‘kœmwŠ m»o`ƒQoÚqR|ZqØs2u§sÎun®uÌvñgâwÍxÐ`½yÛz¯Y´{ð|•R ~ ~gK1giÜs6ˆŒl.tšþn~v{.p§w`t rÅx¼mÌtæzg%w{f`)y6|³YL{n~Rh} FKéÀ‡»h`xÔ†ùjßy³€…m[z•yÔo¦{lsgqã|Cl¹t}f9vU}å_jx~¬X¼zèpQü})€.KšU€êŒ*g~Q…qi¾~¢lg~öxonÎJrq" k”sròe:u»€D^˜x€ŽXzg€ÕQu|®K"~ßQŠ~fƒ°ƒèhÖƒƒ} k‰ƒXw%nƒ'pïpn‚öj…rÒ‚ÄdOu,‚’]Öw‚]W‚yð‚(Pù|=íJµ~r°ˆåe`ˆä‚ih!ˆ:|:j݇“uÚmd†áo¿oÚ†0isrJ…~c^t±„Ï]w „VÖy‰ƒkPs{Ü‚¶JV~‚‡?dæô€Ög­ŒÑz¸jo‹²tslõЉnuoh‰bhHq݈8bQtI‡\vÀ…àVy3„­OÕ{‰ƒyJ}¼‚O…©d”’äbgU‘Cygj¨s>l“ŽmYoŒegFq{ŠÃahsí‰'[Evm‡{UGxç…ÎON{A„%I»}s‚Ýu¼\}ˆòv¿_ú‚TwÂc{uxÈfútÚyÍjtmûzômßgK|*qV`V}stÉY†~ÉxMRy€1{ÅK¯£LŽYs›b‡tåe v/hzXwqjüsÝx°mèm#zpÒf™{_sÈ_Å|Æv¾Y~3yÄR4³|¸K¢8®ŒÖq§gš†/s/jÖt¶ly>v-nörêwžq`lUysÇeðz›v7_;|x®X§}¤{2Qô;}¢K•€Ô€ ‹JoÍm„Äq‘o~ŒsSqxtõrìqívŽtÛk}x.vÅe=yÍx³^­{sz£X>}|šQ·~É~ƒKŠ€v€d‰¹n(rzƒ]psñ}NrunwsÍvÞpùu‰xOj®wHy»d‘y{(^%zÍ|WÛ|–}ôQ~aVK€ €µˆ%l¼wÆànÖxÀ{épëy½u»rÑz²oÒt©{¨iªv€|™c²xR}ˆ]pz0~oWR|SQ}ç€4K2°†ªkw|ó€mm¼}jz}oý}âtgqü~]nšsê~Úh“uÓRb¿w´É\©y €:V·{‰€¨P—}iJ¿5s…jŠ‚ ~õlÙ‚y(o#‚s-q6‚mys8‚g’u2ýaßw"ù[ðyóV({ìP!|õÞJX~Å̃‹iʆø}‰l#†~wÓnv†qñp•…ŠlUr¢…fŒt¨„“`øv¢„[*x§ƒœU„z¦ƒ O¢|‘‚žIý~b‚þiD‹Ç| k¤ŠÛvdmý‰ôp›p‰kr*ˆelt4‡*_öv4†@ZCxC…JT¸zM„SO |<ƒWI­~ ‚b€thî{z¦kEu#m•µoro³ŒPjq¿ŠódssΉ“_uÔˆ;Y|wë†ÑT yÿ…gNŒ{òƒûIi}¾‚Ÿ‰¿yœ]Hƒ^zQ`®}L{d%vü{¼gpï|qjãj }AnBd€~q®^!uWëóx˜Qn€÷|K-‚–ˆSw˜bƒ‚xen|'y‡hguõzskDp{\n&iÙ|Tq cÜ}Qsþ]œ~UvöW€\yüQ.€w|öK!šô†êuÄgª€Ìvòjzüx l™tîyUÚ€ƒzCP@}AJv‚€AyÝgÎ{zz¯jCv.{€l¾p¬|>o&kn|õqeï}²sû`~pvqZþ0x÷U€ð{‹OÕ€Ä~Jr€—Áx:l”zBy:n›uz7p¦o¯{r¥j’{ït£e4|Êv¥`}¤x©Z…~ƒz·U'b|ÍO¥€O~ÝJn<€æ~kv¾qGywàræsüxÿtˆn¼yývi¿zñw²d€{éyF_m|ÞzÙZ}Ý|mTÔ~Ü~OyâšJj€ä0}uvuæw¿v·wrÃwôxWmy yƒh»zz¬cœ{#{Ô^©|,|ùYs}@~T^~S=O!h€aJ*€uƒ{²tWzgvtu¶{5q‚w|lqx<|Æg¦yY}…b¥zw~B]Ò{Ž~ýXÃ|¯¸SÙ}Í€qN´~ë'IÉþ×zDse~ìu'tÔKpUv<«k\wzÿf§x©€PaÁyÖ€ ] zû€ðX!|)BS^}R•NO~wßIq‚$xër™ƒNsåtƒAo(uƒ5jEvÖƒe¥xƒ`ÙyH‚î\@zw‚ÖWt{±‚¿RÐ|æ‚©Mâ~‚‹I$0‚iw‹r‡œr‘s†‡(máu†¸ivP†mr€`lh €ŽnÏcŠ€Æq©^ŸtYiKwƒTP›zˆN÷ü}‰IØ‚g€Š{7~ hv8~xjrq„~ãlßl‘;oFgÞq¬bèèt^€Bv•Xÿ€¢y"Sÿ{½NÌ}~PIÛý€Üyý|ˆlqu}nypz}¤p‚k¦~rŠg~Œtb;v]Œxx«XõzÈS¯€v|ìN¤IÞ›)xÆ{pËsü{Ërvo||utjÅ}uÈfN}’wma“~#y]~³zºX$O|cSdî~N€—ÀIà@owyáurÈzªvcnZ{ow°iº|x÷e[|¸z9`½}^{{\I~|ºW‘~²}úRùd9N1€€|I©€Ó¼vExÍyAq–y¯z2m/z{#h¤{J|dY{û|ç_×|±}Å[€}d~¢Vî~!€R~Þ€]MΡ7IP€_‚ tñwÙ}zpaxÍ~ly¼~Žg¢zŠ ck{L…_|ÿZÆ|Ò€wVX}›€ôR~dpMr/åIô‚Ss­w ‘o2x¸jÿy ßfžyãúb{z¯‚^*{‚*Z|K‚BU·}!‚\Q‹}ö‚vM~Ë‚†H»—‚’r]vk…˜mñwv…aiÍxy…-e‚yU„ëavz#„©]>zù„aY5{Ì„Tú|¯ƒÊPå}“ƒyL—~rƒ!H~D‚Êquõ‰†lÉvüˆæhÂwûˆKdx؇ª`–y§‡\szƒ†iX{\…ÆTX|K…PV}<„_L1~%ƒ©HI~ý‚ûw…d`2rï…cBn¦„ÑfTj„|ine»„&lŠaƒÝo»\‘ƒœrøWÃovKSƒNy®Nƒ<}I=ƒ4€{vzƒÉdOqþƒ¦gm˃„iÀiKƒSl|eƒ"o7`y‚ùr \‚ÔtåW_‚½w×R°zÙMꂳ}ÖIH‚€Îuh‚GhZq‚Fj»lã‚Fmh~‚8o~dU‚(qá_å‚tS[œ‚vÊW‚y[R|‚{úMÈ‚2~‘IQ‚VtI€Ülcoù€÷nokðpxg§r‡c™(t“_E9v¨[Lx¾VšgzæR6ˆ}M¨¹CIZñfs0„penø¸rkësÐfØ€uˆbã€2w=^ª€]xôZ–€ŠzªV8€Â|gQõ~&M‹IêIb•ªr ~Nt\mß~uÀiü~êw!eâ%xb[yÙ]ä™{3YëÚ|ŠU±€&}äQ”€v=MF€Ï€šI2)òpé}‚‚HZô‚¸mGzÕƒ§id{dƒ¬eÄ{탳aø|[ƒ¨^e|ÀƒœZ¦}.ƒ‰W}ƒuSM~ƒXO¬~Ÿƒ9KÐ$ƒH#¤‚ëlzK‡QhSz܆ôdË{g†œa{׆:]”|?…ÜYé|³…rVh}'… R·}³„ŽO(~E„Kr~Öƒ‘Gô_ƒqœ‰bahmˆ¾d]iʈ gOeŇpjOaø†ÃmN]Þ†pkYã…ys“U—„êvÖQ`„iz*Lïƒó}xH´ƒŠ€½p¡‡ìel®‡cgÅi†Þjoe†MmaT…ÀoÉ]Q…6rŽYq„³u\U?„:xGQ!ƒË{@LÖƒj~.Hă o®†‚hÇkφk(h4…°m„dY…;oä`¶„Ér?\Ì„[t¬YƒôwT냑y¯Pæƒ5|ML¾‚è~ÝHÔ‚§Xnµ…(lpjæ„Õn‰g\„…pœc˜„)r¯` ƒÎt»\;ƒ{vÔXŒƒ/xíT‚ç{P¬‚¤}TL§‚nƒHã‚AŸm¹ƒápjƒ£qåfŠƒhs¬b܃"uq_e‚Ýw.[¬‚£xóX‚pz´T8‚D|Pu‚~NL“ý€Hðãßlª‚²s¿hÿ‚Žu>e—‚lv¸aû‚;x,^˜‚ y—Z÷ä{WyÃ|oS¾©}áP”PLW„€¿HÆw‚$k£¡wFgþ˜x|dšy­aszÎ]»T{æZ2=|ÿVÎ*~S51Oº€LL `H~‚gj…€²zãfù€»{¾c­€Ä|–`3€¸}`\ð€ª~#Y}€¡~çV/€›¨R¶€—€qO\€•8K»€šõH<€£‚¤itã~_eøù~çb¼€l_T€å\"€ €WXÄ€€ÈUŽ€6R.€©Nï€$‚Kh€6‚H€J‚ÚhW1ÏdäO‚a±k‚N^]r‚x[@u‚žWù{‚½TÙƒ‚ØQŽš‚ìNb¶‚üK؃GÑûƒ g9~’…/cá~·…`È~Û„ÿ]ˆ~è„ÚZ}~ð„´WJ~û„„T>„RQ*„MêWƒÅJ®ˆƒzG¦¸ƒ3k‚b³h'Œxeƒe ‹xhHa›Šfk-^Z‰ZnZˈMqWW‡It*S‹†Ww^OÍ…vz£K償}ÙH5ƒÙ€új´Œfgd‹%h—dSŠ>k`õ‰Hm¾]ȈXpXZN‡isVñ†ƒuÑS=…§x³Oš„Ø{¤KÕ„~ƒHLƒbGiÝŠÂiSf¡‰ëk¦c¤‰mî`Xˆ=pG]=‡bršY؆ŽuV…ÆwoRô„ÿyÿOj„B|œKǃ’%Ha‚òi‰yl§e܈·n¸bç‡üpÀ_­‡1rÕ\£†ktâYT…±vÿV"…yR¤„V{RO:ƒ²}K¹ƒ¿Hu‚ŠÓh7ˆ?oôe‡ŽqÃb.†åsˆ_†/uW\ …~wXÓ„ÜxðU¶„Fz½RWƒµ|šOƒ+~vK­‚¦€MH‡‚*‚gH‡s;d/†‚tÉaR…ívO^9…KwÖ[Q„¯yTX-„ zØU(ƒœ|VQèƒ}ÞN‚¢bKy‚-€ãHd¿‚Qf`†vacH…•wµ`l…y]a„…z@Zˆƒû{sWzƒ{|©T‹ƒ}ØQl‚Ng‚€IK0´uH"R‚eU…"y«bW„³z­_•„H{§\šƒÍ|˜YσT}VÔ‚â~hSû‚xJPù‚ €6N¥!JìEýGç€ï‚ÈdS„K|Öahƒë}Ž^¶ƒ~A[̃"~çY‚¶‡V+‚N€#Sg쀺P}ŒWM¯1ðJ¡€à‚|G³€˜‚úcBƒ–ý`cƒ:€w]½‚â€íZæ‚}LX?‚¥Uo¶öRÂW‚BO낆M/€½‚ÃJG€€‚øG†€Kƒ&b4‚íƒ!_p‚™ƒF\ã‚JƒjZ ìƒWŠ‘ƒ”TÍ1ƒžR3€Ôƒ£Om€ƒ”LÁ€Xƒ}Iù€-ƒdG_€ ƒLæcèU°•¸f YË×h.^ … jb}¦mf)udo³jmKr…ndÞu¢qó\‹xíuãT|ey´Kñõ}”œa\°”c` Œ\f$c«„Nhäfÿ|~k²j_thnªm¬l}q¸qd=tútP\x\w©Sá{çzáL…~šC^Vc’oaDfVŠèd2i1ƒgKkã{bjmnŸswm©qIk¹pòsüc¤tXvª[«wÐyfS¯{p|L~˜˜g[ÄjRº_lp‰Zb[n™¥eÁp°z.i+rÐrql¡tàjßpvóbþs«y[?wH{S‚{}L2~º–ƒYkp÷]rx‡Õ`t€LdHu{ygõvùqok xmjoGyâb\s{QZØvÆ|ÁSWz™~"LD~`|”ŸW{wiD[`xM†7_Ay5~Øczw¸føzÿpQjË{Þin–|½a›ro}“ZIvI~fRðz+2Kü}ûú’ÞUÙ}²‹—Z}^1~,}db5~}vlf*~Ôo/j%hnu`Ïqî¼Y©uÔÿRhy½€?K}“€}‘T̃´‰êYƒoƒ ]<ƒ*| aZ‚çu:ej‚¥n$iw‚ag;my‚`qwÓYuh„QëyX;K}3€÷HSü‰~ˆSXDˆµ¬\‡íz»`²‡t dÕ†Jmhò…yfWm„©_NqƒÒXku ‚÷Qdy‚(J°|ßd“S†·W͹€)\ŒqyZ`J‹rÍdt‰Íkÿh‘ˆ{e_l‡+^mp±…ÌW™t¾„hPÆx¼ƒJ[|”Ä‹æS=”j…8W}’—~×[°Ëx(_íŽòq¸dk h;‹Jd‰lD‰|]ªp`‡šVåtz…´P>xƒÚJ|S‚˜Sg‰V} iiZ‰:kH^ mbb‘zoˆf˜r@qòjyj¬tzndbÉwBr?[z.v/S#}>zK˜€\}ê–~d×]Žøg`q‡Áidcì€5kÑgc—edáf\†Xg‚i1~ùjDkçwÚm n§proñqVi6råt a¤uòvÅZ0yyR½|I|:K¶…~ß“_Âj‹ÍbÃl4„äeÂn`}°hÌp‚v¾kÔr«onðtÈhorvça uGyYÉx…{0RŽ{Ø}EKÃ$N‘>]—peŠ5`Þqõƒzd s‹|rghuu«jªv©n–möx0g¬qAy¸`xt {…EVQuî„Oõy†‚õIÿ|ð߇Wa’C€Ó[P¨zÖ_0t™bÿtnžfº‹ÛhbjzŠ>bTn+ˆ¨[íqî‡U£uª…WOtyGƒ·Iº|­‚.’»kWN‹lÂ[5„”nf_7}[p;cvbrgo&t7j×hvqn²`ÀxßrŠYŠ{jv{R:~zVKC€À~>‘ hŽ]„‰üjŽ`؃‚laÜ{Ä|\e0|Jvhl|àpk™}ziºnÄ~cŸqä~£]8u3Võx;ÁP¢{Y€LJ®~Y€Ô‡#]h€´€ì`Ô€À{d4€ÌtÔgŒ€ÛnçjÕ€ìhÀn€ûbËqO \‹tVowÇ'P3zî4JJ}òA…“\…þx`…yªcu…!sšfÝ„¯mÊj5„>gÄm‹ƒÍaðpу^[Òt!‚ìUÕwf‚{O»z“‚ Iô}˜¢ƒû[ü‹"}ó_†Š9x7c‰SrFfkˆil˜iÀ‡ƒf±m†™`üpj…²Z÷sÆ„ÀUwƒÍO,zI‚ÝI¨}Gø‚n[–"|Š_!ŽºvóbœYq f‹ôkiXŠ–eÄl¹‰3`)p‡ÕZ;sv†iTlvÓ„üN±zƒ–Ig}‚C;n™X%†op [öñqx_Þy3sc§r¹t©glv~kBezxjo^´z{ráX|žvÉQ[~Üz¤Jò~Ž‹£l9^…møaJ~´oµd¤xq–gÝqÆsyk k6u…n\dØwœq¥^3yÎtôWµ| xVQ%~]{©Jó€²~üŠiðc̃ŸkÿfŠ}un iVwp/l pÝrTnÄjut“qzd>vÖt8]ºy'wWW{{yÛPó}å|¤Jô€Leˆ†gÃi‹‚4jkÀ|0lvmýuínÖp2oíq1rki­s›tŸcœvvÖ];xyyVüzð{ZPÃ}t}•JôìȆõeÑo/€Ðhipæzùjúr¢tßmŽtVopv hír«w»bÿu6yk\ÂwÑ{V§zm|ÉP˜} ~wJõ•€#…^d)t³Wföuèyžiºws¦lwxSmño'yˆgüqØz¹b4t~{è\ w4}V/yç~

    |–fJ³)€ƒÞb³z}çe¶z¾x=h­{irakŠ|lÉnV|×f÷q}aVsÛ~B[lv£~ôU§ye¤OÍ|€RJK~µ€ý‚La¡I|yd³|vóg·°q4j®æk·m”€fpt€S`ˆsD€ŠZÆv€ÂU(xî€úOe{®0Iî~Kd€Î`Å„Q{cå„u©föƒÎpiýƒˆj¤lòƒCeoãƒ_´r‚¿Zu¬‚~T–x‹‚?Nô{PþIœ}í¿I`-‰9y¡cZˆƒtFfw‡Ðn¾i€‡iylu†adom…ª^ÅrT„÷Y?uM„q%p™tkÃrÈuÆf#týw‰`±w)yLZõy_{ U\{‘|ÍOÅ}Ê~’J’ñ€U€fhKsázÍjÀu.u€m+v}oüoŠwÉj»qÚye>t*za_ñvn{ªZ\x¾|îTê{ ~0Op}RuJQƒ€¹fâxôyti‰yÀt0l$znÅn¢{ciŸq |;dDsr}_uÉ}åY¯x+~¸Tizƒ‰O|Õ€XIð #}ƒeÔ}êxh‹~Arõk4~˜m¥mÉ~õh™pKTc\rDZ^Su1€Yw£€nSòz €ÐN¤|c,I˜~ž„|dù‚µvÂg½‚™q»jr‚l„m‚ggo¨‚Pbpr3‚:]„t«‚%Xbw-‚Sfy£‚N9|òIK~>Ûz d[‡`u_g(†Øphiæ†SkIl…Êflo$…Eajq¶„Â\œt5„BW•vȃ¾RµyPƒ:M¹{´‚°I}è‚'y:cé‹ñtf³Šño@ik‰øj8lˆýern¯ˆ `ˆqH‡[ÔsΆ1Våvo…?Ry„NMK{oƒWHÎ}Ÿ‚i‚Hu¨Z|pv£] väwšaKq#xªdçk¦y»hŽeòzõl4`p|=oæZÄ}’s¢UH~êwrO™€^{EJ.×)€ñsŒ_-{?tÌbTuÚve…p9wUh§jÛx¡kÎeIzný_ê{ur9ZX|åuTñ~SxÚOgÝ|1J)kŒ’q—d>zsfòtÈtŠi®oNvl]jw’od©y#qÇ_lz´t‡Yò|@wXT }Äz9O8d}J$é~1o¶iIxÊqlk‹s®smÒn\tÎpiLv{rUdx/t›^çyßvåYŠ{y8TQ}6{“O ~ò}íJ€§€A|Óm÷nBw”oÞpr¡q½qðmtsšsÃh‰ulu•cawAwh^hy y;Y'zâ{ T|±|ÝNä~ˆ~¸J€P€’{slos%vJn†t‹qlp’uñl]rwUgt€x·bŠvoz]²xS{yX—z@|ÖSž|'~/N•~‘Ißâ€ðz*kwæumZx×p/o’yÈk6q­z½f‚s´{²a›u¹|¥\åw®}–Wóy¬~ˆS&{ yN3}‘€iI…kTx»j |žs»l`}on§}˜j%pÙ~e‰rö~ž`¿u!\'w¡W[y$€(R¶{%€°MÙ}3I4~ý¯w^i0+rwk’9mÚmåHip&\drSr_Þty‡[bvV·x¬¹R4z½ØMu|½îHí~‚uûh…™q%jø…Al˜mQ„ìgço˜„•cwqÉ„A^äs÷ƒîZ…vƒŸUõxAƒMQzf‚ýLý|l‚£H¯~H‚Gt©h ‰êoðjv‰!klΈ_fäo‡œbˆqP†ß^ s„†&YÇu¥…uUNwä„»Pýz„L—|&ƒAHz}ÿ‚…|ÏyG[w€yû^r|z¬b'mC{pe­hK|3i9c}lÌ^~ pkX×tSÊ€ wÞNˆ#{¨I…‚B€{¡wB_Üvpx7bùqŠy)flkz&i3g{ lIbx|/on]“}AržXt~YuàS}py3N_€ |ˆI‡ÔÞzhubd•uUv‘gIpŒw»jkxìl¬fÖzoWaã{Lr]|tËX}±wS5~ÞzN9€$}^IŠm€8y"s¡iGt/uk“o†vYmâj®w³p(fyrmaFz\t¸\ {­wW¶}yaRî~O{ÅN°~+IŒ €ŒwßqÿmîssˆoÕnŒuq½iÖv†seawúuz`®yqwZ\'zßy9WY|W{R¬}Ê|üMôE~ëIŽ€³€Ùv—pr€qÝr>tmlsäuhÑu‚vúdwwxo_äx¢yå[|z'{XVÓ{·|ËRL}A~sæ{ gruV{Ùcyvº|¡_¼x}e[Îyg~+X z²~ïT|¼PN}M€‰L=~–SHX΂nq‹~Ajs~¯fjt–bˆv…^àwjê[ xÏ€QWaz(€·SŽ{Š$Oß|â“Kë~5ûHt‚[lÙpâ‚.hðru‚EeKsù‚[auq‚j]òvׂxZ6xC‚V¥y¢‚ŠRé{‚’OQ|‚›K‡}à‚œGí$‚˜k±p?†gàqÞ…´dRsn…i`žtë…]$vV„ÓY~wÈ„‚Vy.„2R[z¯ƒÛN×|-ƒ†K1}–ƒ)GÃ~à‚Îr€Œ]im`­j€ÇcïeÜ€çgCaêjš]®>nY•~q}U<ÍuQ‚"x»L‘‚Ž|jHYƒ€q~Ðam dpi@`g^e(¯jUaGýmK]&€WpYY+€³spTëv¥PÇ…yëLz‚}2Hj‚€tp}/e…l}¡h hh~j·dm~‰mY`©~ÿo÷\¥xr§XÆïu\Tž€nx/P€ï{Ld‡}ñH{‚$€Æo{—i‹k+|0kÓgŠ|Ånc«}_pb`}õr«\~ŽuXW#wTTKÁy¾PZ€_|0LP~§HŠÀnzmj;zÕoxf·{‡qjbò|?sc_c|òuU[•}ªwNWê~]yCSû{CP'Ù}BL>€¡PH˜d[lãxÑqpi/y¦se¾zst·b{EvW^—|wðZã|àyWT}«{%S‡~|ÃOØQ~^L€)€Hs€úªkÐw¬uGh#xvšd¹y„wçazly.]º{LzmZ |/{¯V¬} |íS}ï~3O|~ÎvK¿²€¼H3€új¦v y(gw¨zcÅx¦{ `?y£{ö\ïz–|ÙYm{‹}ÀV|x~£R‹}kO&~V€|K|EeGø€)‚Ci‚u½|âfv×}bÎwå~_]xñ~«\"yð7X·zóÅUt{í€PR |ï€ãNÁ}évK1~ä‚GÅÒ‚ƒhQu€Œdèv(€Úa¾wA'^fxSg[CyX¤WòzbÚTÆ{b‚ Qq|t‚?N=}ƒ‚pJÕ~‚™G™…‚¼g=tO„$céu†„`Óv®„]‘wȃñZ„xÒƒÞWHyâƒÀT1z郟Pï| ƒwMÌ}+ƒMJ†~BƒGsB‚îlã„6^Åi9„aíeуÖeb&ƒ¦hG^°ƒxk~ZñƒVnÓWPƒ:r2Sdƒ/u´Oƒ.yJK•ƒ>|ÜGÖƒV€bkû‚šbyhg‚‹eZe‚~h5a}‚vk^‚qmÿZr‚ppýVê‚rtS‚~w+O_‚‘zeKˆ‚µ}—Gî‚့kf'g”+h¾dT@kN`Ô[mç]‰upzYù”s!VвuËRÓÖxšO2ü{wK{‚4~JH‚tj"™iËf·ÎlcŒ€nh`#€:pµ\ï€qrúYx€®uNV!€ëw R‡+z Ol|‚Kp»~óH‚Pi%~5mneÙ~„owbË~Ñqx_z#sy\ZtupXûÏwpU»€+ykR>€‰{vNÜ€æ}€KfL‘H-±”h!|óqdä}^rÎaä}Åtƒ^¨~1v3[~šwÙXV y„U0}{*QÕï|ÚN–€_~†K7€Õ€9HHÞg-{Ñt–cñ|Yv `ó|Ûwu]Ç}`xÓZÐ}ßz'W¢~b{T—~â|ÐQ]b~-NA݇Jõ€_€ßGՀ݂)fzÙx&bô{ryC`|zX\ø|{cZ}1|cVý}Å}gT ~S~ePï~ßoMóf€xJ¹ózG¡€|‚meyô{•aözŸ|c_&{B}*\${ì}åYS|~—VT}0ISx}ÇöPx~b€«M•~÷_Jt’‚ Gt€'‚©cÞy`ãy؆^"z‘€[8{G€wX{ô€ÞU›|š@RØ}6œOë}âõM~‚HJ:‚–GLÜ‚ÝbÙxN‚__ðy&‚‹]Ayô‚µZmz¶‚ÖWÊ{k‚õTû|ƒ RN|¸ƒOs}sƒL²~1ƒIÖ~íƒG*œƒ gšˆ`d‡qc+a½†äf+^–†]iG[œ…Þl^XV…_o›U*„årâQ¨„vQN4„,yÓJªƒâ}HG_ƒ£€¤f͆vcŠc͆fQa …™i ]÷…5kà[„×n¯Wà„zqTÊ„ tQdƒÒw­NƒŽzÛJ§ƒX}÷G}ƒ-€õf … fãc„ºii`a„kkã]`„"nrZƒÝpúWpƒžs˜Tnƒdv7Q#ƒ,yMì‚ù{ÙJ£‚Ö~žG™‚¾AeKƒ¨j;baƒol_±ƒ9n»\Áƒ qYÿ‚ÝsGVø‚¼ušT ‚¡wéPß‚„zYMÉ‚i|ÑJ¡‚\M|ðMj]~­Jvu€hG³‚bªåt_â€uˆ]Q€%wZ–€CxxX €_yâUF€{PR €¤|µOÑ€Á~)M€Û˜J;G€'‚Ta“~øw=^í&xw\}Ry§YÖ†zÑWZ¹{ðT®ê}R€~)Ol€@PLÕ€e€tJ€•GR€È‚“`~z]]ý~X{S[¢~|@Y~Õ}"V§}úTV~ÑQ›‹ŸNÿÁ€vL~õIIÅ€4‚G)€u‚Ë_}E}€\ú}~:Z©}Ô~îX.~(ŒUÞ~z€Sd~¼€¬Q~ô1N~<®L †‚#IvÚ‚”G€,‚ü^\|`€[ü|ÊYÏ}-lWl}ÃU1}î‚RÎ~6‚ZPˆ~q‚™N~È‚ÄK«&‚äI3ŒƒFèíƒ&ÿÿÿÿÿÿmft1!  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ ¡¢£¤¥¦§¨©ª«¬­®¯°±²³´µ¶·¸¹º»¼½¾¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖרÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿ  !""#$$%&&'())*+,--./01223456789:;<=>?@BCDEFHIJLMOPRSUWXZ\^`bdfhjmoqtvy|~ƒ†‰‹Ž’•—™›Ÿ¡£¥§¨ª¬­¯°²³µ¶·¹º»¼½¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÍÎÏÐÑÒÒÓÔÕÖÖרÙÙÚÛÛÜÝÝÞßßàááâããäååææçèèééêëëììíîîïïððñòòóóôôõöö÷÷øøùùúûûüüýýþþÿ  !""#$$%&&'())*+,--./01223456789:;<=>?@BCDEFHIJLMOPRSUWXZ\^`bdfhjmoqtvy|~ƒ†‰‹Ž’•—™›Ÿ¡£¥§¨ª¬­¯°²³µ¶·¹º»¼½¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÍÎÏÐÑÒÒÓÔÕÖÖרÙÙÚÛÛÜÝÝÞßßàááâããäååææçèèééêëëììíîîïïððñòòóóôôõöö÷÷øøùùúûûüüýýþþÿÿO3ÿ PBÿ¡RRÿ£Scÿ£Uuý£W†ö£Y—ï¢[¦é¢\²ä¡]½à _ÅÞŸaËÛžbÐÙdÔלeØÕ›fÜÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÿO3ÿ PBÿ¡RRÿ£Scÿ£Uuý£W†ö£Y—ï¢[¦é¢\²ä¡]½à _ÅÞŸaËÛžbÐÙdÔלeØÕ›fÜÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÿO3ÿ PBÿ¡RRÿ£Scÿ£Uuý£W†ö£Y—ï¢[¦é¢\²ä¡]½à _ÅÞŸaËÛžbÐÙdÔלeØÕ›fÜÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÿO3ÿ PBÿ¡RRÿ£Scÿ£Uuý£W†ö£Y—ï¢[¦é¢\²ä¡]½à _ÅÞŸaËÛžbÐÙdÔלeØÕ›fÜÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÿO3ÿ PBÿ¡RRÿ£Scÿ£Uuý£W†ö£Y—ï¢[¦é¢\²ä¡]½à _ÅÞŸaËÛžbÐÙdÔלeØÕ›fÜÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÿO3ÿ PBÿ¡RRÿ£Scÿ£Uuý£W†ö£Y—ï¢[¦é¢\²ä¡]½à _ÅÞŸaËÛžbÐÙdÔלeØÕ›fÜÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÿO3ÿ PBÿ¡RRÿ£Scÿ£Uuý£W†ö£Y—ï¢[¦é¢\²ä¡]½à _ÅÞŸaËÛžbÐÙdÔלeØÕ›fÜÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÿO3ÿ PBÿ¡RRÿ£Scÿ£Uuý£W†ö£Y—ï¢[¦é¢\²ä¡]½à _ÅÞŸaËÛžbÐÙdÔלeØÕ›fÜÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÿO3ÿ PBÿ¡RRÿ£Scÿ£Uuý£W†ö£Y—ï¢[¦é¢\²ä¡]½à _ÅÞŸaËÛžbÐÙdÔלeØÕ›fÜÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÿO3ÿ PBÿ¡RRÿ£Scÿ£Uuý£W†ö£Y—ï¢[¦é¢\²ä¡]½à _ÅÞŸaËÛžbÐÙdÔלeØÕ›fÜÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÿO3ÿ PBÿ¡RRÿ£Scÿ£Uuý£W†ö£Y—ï¢[¦é¢\²ä¡]½à _ÅÞŸaËÛžbÐÙdÔלeØÕ›fÜÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÿO3ÿ PBÿ¡RRÿ£Scÿ£Uuý£W†ö£Y—ï¢[¦é¢\²ä¡]½à _ÅÞŸaËÛžbÐÙdÔלeØÕ›fÜÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÿO3ÿ PBÿ¡RRÿ£Scÿ£Uuý£W†ö£Y—ï¢[¦é¢\²ä¡]½à _ÅÞŸaËÛžbÐÙdÔלeØÕ›fÜÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÿO3ÿ PBÿ¡RRÿ£Scÿ£Uuý£W†ö£Y—ï¢[¦é¢\²ä¡]½à _ÅÞŸaËÛžbÐÙdÔלeØÕ›fÜÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÿO3ÿ PBÿ¡RRÿ£Scÿ£Uuý£W†ö£Y—ï¢[¦é¢\²ä¡]½à _ÅÞŸaËÛžbÐÙdÔלeØÕ›fÜÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÿO3ÿ PBÿ¡RRÿ£Scÿ£Uuý£W†ö£Y—ï¢[¦é¢\²ä¡]½à _ÅÞŸaËÛžbÐÙdÔלeØÕ›fÜÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÿO3ÿ PBÿ¡RRÿ£Scÿ£Uuý£W†ö£Y—ï¢[¦é¢\²ä¡]½à _ÅÞŸaËÛžbÐÙdÔלeØÕ›fÜÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÿO3ÿ PBÿ¢QQÿ£Sbÿ¤Utþ¤W†ö¤Y–ï¤Z¤ê¤[±å¤\»â¤]Âߣ_ÈÝ£`ÍÚ¢aÒØ¡b×ÔŸdÛÒgÞÒgÞÒgÞÒgÞÒgÞÒgÞÒgÞÒgÞÒgÞÒgÞÒgÞÒgÞÒgÞÒgÞÒgÞÒgÞÒgÞÿžO3ÿ PAÿ¢QQÿ¤Sbÿ¤Usþ¥V„÷¦X”ð¦Y¢ë¦Z®ç§[·ã¨\Àߨ[ÈÛ§\ÎØ¥^ÓÔ¢b×Ò dÚÑžfÜÑžfÜÑžfÜÑžfÜÑžfÜÑžfÜÑžfÜÑžfÜÑžfÜÑžfÜÑžfÜÑžfÜÑžfÜÑžfÜÑžfÜÑžfÜÑžfÜÿžO3ÿ OAÿ¢PPÿ¤Raÿ¥Trÿ¦Vƒø§X“ñ¨Y ì©Z«æ©Z·à©YÁÛªYÉØ¨[ÎÔ¥_ÒÒ£bÕÑ¡dØÐ fÚРfÚРfÚРfÚРfÚРfÚРfÚРfÚРfÚРfÚРfÚРfÚРfÚРfÚРfÚРfÚРfÚÿžN2ÿ¡OAÿ£PPÿ¥R`ÿ¦Sqÿ§U‚ù©WðªXœèªY«áªX¸Ü¬VÂØ¬WÉÔ©\ÍÒ¦_ÑѤbÓУdÖСf×Сf×Сf×Сf×Сf×Сf×Сf×Сf×Сf×Сf×Сf×Сf×Сf×Сf×Сf×Сf×Сf×ÿžN2ÿ¡O@ÿ¤POÿ¦Q_ÿ¨Spÿ©T€ôªWì«Xä«W­Þ­U¹Ø°RÂÔ­XÈÒª\ÌѨ`ÏЦbÑÏ¥dÓÏ£eÕÏ£eÕÏ£eÕÏ£eÕÏ£eÕÏ£eÕÏ£eÕÏ£eÕÏ£eÕÏ£eÕÏ£eÕÏ£eÕÏ£eÕÏ£eÕÏ£eÕÏ£eÕÏ£eÕÿŸN2ÿ¢N@ÿ¤OOÿ§P^ÿ©RnûªU}ð¬W‹è¬Wžà­U®Ù´O¹Ô±SÁÑ®YÆÐ«]ÊÏ©`ÌΨbÎΧcÐΦeÒΦeÒΦeÒΦeÒΦeÒΦeÒΦeÒΦeÒΦeÒΦeÒΦeÒΦeÒΦeÒΦeÒΦeÒΦeÒΦeÒÿŸM2ÿ¢M?ÿ¥NNÿ¨O]ÿªRl÷¬Uyì¬Vä­UŸÜ³P®Õ·M¹Ñ²TÀϯYÄέ]ÇÍ«_ÉͪaËÍ©cĮ́dĮ̂dĮ̂dĮ̂dĮ̂dĮ̂dĮ̂dĮ̂dĮ̂dĮ̂dĮ̂dĮ̂dĮ̂dĮ̂dĮ̂dĮ̂dĮ̂dÎÿ M1ÿ£M>ÿ¦MLÿªN[ÿ«Rhò­Txè­TŽß±Q ×¿F®Ñ¸O·Ï´U½Í±ZÁ̯]ÄÌ®_ÆË¬aÈË«cÉ˪dË˪dË˪dË˪dË˪dË˪dË˪dË˪dË˪dË˪dË˪dË˪dË˪dË˪dË˪dË˪dË˪dËÿ L1ÿ¤L=ÿ¨LKÿ«NXû­Rdí®Szã°RÚ¾G ÒÀH­ÎºPµÌ¶VºË´Z¾Ê²]Àʱ_Âɯ`ÄÉ®bÅÉ®cÆÉ®cÆÉ®cÆÉ®cÆÉ®cÆÉ®cÆÉ®cÆÉ®cÆÉ®cÆÉ®cÆÉ®cÆÉ®cÆÉ®cÆÉ®cÆÉ®cÆÉ®cÆÉ®cÆÿ¡K0ÿ¥J<ÿªJHÿ­OSõ®Rcè°Q|ݹJÔÉ@ŸÎÂJªË½R±É¹W¶È·Z¹Èµ\»Ç´^½Ç³`¿Ç²aÀƱcÁƱcÁƱcÁƱcÁƱcÁƱcÁƱcÁƱcÁƱcÁƱcÁƱcÁƱcÁƱcÁƱcÁƱcÁƱcÁƱcÁÿ£I.ÿ¨H9ÿ­JDÿ¯OLî°Pfà¶K}ÖÔ7ÎËCÉÄL¦ÇÀS¬Æ½W±Å»Z³Åº\µÄ¹^·Ä¸_¸Ä·a¹Ã¶bºÃ¶bºÃ¶bºÃ¶bºÃ¶bºÃ¶bºÃ¶bºÃ¶bºÃ¶bºÃ¶bºÃ¶bºÃ¶bºÃ¶bºÃ¶bºÃ¶bºÃ¶bºÃ¶bºÿ¥G,ÿ¬E5ÿ¯K=õ°NOä´KhØÞ,~ÎÖ:ŽÈÎE™ÅÉN ÃÅS¦ÂÂW©ÁÁZ¬Á¿\­Á¾]¯À¾_°À½`±À¼a²À¼a²À¼a²À¼a²À¼a²À¼a²À¼a²À¼a²À¼a²À¼a²À¼a²À¼a²À¼a²À¼a²À¼a²À¼a²À¼a²ÿ¨D(ÿ¯E/ÿ±K9ê³JRÜÎ5iÎã1|ÇÚ=‰ÂÓG’ÀÎO™¾ËT½ÉW ½ÇZ£½Æ[¤¼Å]¥¼Å^¦¼Ä_§ºÃ`¨ºÃ`¨ºÃ`¨ºÃ`¨ºÃ`¨ºÃ`¨ºÃ`¨ºÃ`¨ºÃ`¨ºÃ`¨ºÃ`¨ºÃ`¨ºÃ`¨ºÃ`¨ºÃ`¨ºÃ`¨ºÃ`¨ÿ®?#ÿ²F%ò³H=àÅ:TÐä-hÆæ5xÀÞ@ƒ¼ÙIŠºÔO¹ÒT”¹ÐW–¸ÏZ˜¸Î[™·Í\š·Ì]›µÌ^œ³Ë_³Ë_³Ë_³Ë_³Ë_³Ë_³Ë_³Ë_³Ë_³Ë_³Ë_³Ë_³Ë_³Ë_³Ë_³Ë_³Ë_ÿ²Aü´E(å¾=?Ñã(TÇì1dÀë:qºäAz·àJµÜP†´ÚT‰³ØW‹²×Y°ÖZޝÕZŽ­Õ[¬Ô\«Ô]‘«Ô]‘«Ô]‘«Ô]‘«Ô]‘«Ô]‘«Ô]‘«Ô]‘«Ô]‘«Ô]‘«Ô]‘«Ô]‘«Ô]‘«Ô]‘«Ô]‘«Ô]‘«Ô]‘ÿ´Aìº>+Óá"?Éë,QÁò6_ºñ>i´ëDq±çJv°äPz­âS}ªáU¨àV€¦ßW¥ßX‚¤ÞYƒ¢ÞYƒ¡ÞZ„¡ÞZ„¡ÞZ„¡ÞZ„¡ÞZ„¡ÞZ„¡ÞZ„¡ÞZ„¡ÞZ„¡ÞZ„¡ÞZ„¡ÞZ„¡ÞZ„¡ÞZ„¡ÞZ„¡ÞZ„¡ÞZ„ÿ—J*ÿžP9ÿ QGÿ¡SWÿ¢Uhÿ¢Wxý¢Z‡ö¡\•ñ ]¡ìŸ^«éb³æ›e¹ãšh¾â™jÂá˜mÄà—oÇÞ–sÈÛ—tÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÿ—J*ÿžP9ÿ QGÿ¡SWÿ¢Uhÿ¢Wxý¢Z‡ö¡\•ñ ]¡ìŸ^«éb³æ›e¹ãšh¾â™jÂá˜mÄà—oÇÞ–sÈÛ—tÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÿ—J*ÿžP9ÿ QGÿ¡SWÿ¢Uhÿ¢Wxý¢Z‡ö¡\•ñ ]¡ìŸ^«éb³æ›e¹ãšh¾â™jÂá˜mÄà—oÇÞ–sÈÛ—tÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÿ—J*ÿžP9ÿ QGÿ¡SWÿ¢Uhÿ¢Wxý¢Z‡ö¡\•ñ ]¡ìŸ^«éb³æ›e¹ãšh¾â™jÂá˜mÄà—oÇÞ–sÈÛ—tÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÿ—J*ÿžP9ÿ QGÿ¡SWÿ¢Uhÿ¢Wxý¢Z‡ö¡\•ñ ]¡ìŸ^«éb³æ›e¹ãšh¾â™jÂá˜mÄà—oÇÞ–sÈÛ—tÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÿ—J*ÿžP9ÿ QGÿ¡SWÿ¢Uhÿ¢Wxý¢Z‡ö¡\•ñ ]¡ìŸ^«éb³æ›e¹ãšh¾â™jÂá˜mÄà—oÇÞ–sÈÛ—tÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÿ—J*ÿžP9ÿ QGÿ¡SWÿ¢Uhÿ¢Wxý¢Z‡ö¡\•ñ ]¡ìŸ^«éb³æ›e¹ãšh¾â™jÂá˜mÄà—oÇÞ–sÈÛ—tÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÿ—J*ÿžP9ÿ QGÿ¡SWÿ¢Uhÿ¢Wxý¢Z‡ö¡\•ñ ]¡ìŸ^«éb³æ›e¹ãšh¾â™jÂá˜mÄà—oÇÞ–sÈÛ—tÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÿ—J*ÿžP9ÿ QGÿ¡SWÿ¢Uhÿ¢Wxý¢Z‡ö¡\•ñ ]¡ìŸ^«éb³æ›e¹ãšh¾â™jÂá˜mÄà—oÇÞ–sÈÛ—tÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÿ—J*ÿžP9ÿ QGÿ¡SWÿ¢Uhÿ¢Wxý¢Z‡ö¡\•ñ ]¡ìŸ^«éb³æ›e¹ãšh¾â™jÂá˜mÄà—oÇÞ–sÈÛ—tÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÿ—J*ÿžP9ÿ QGÿ¡SWÿ¢Uhÿ¢Wxý¢Z‡ö¡\•ñ ]¡ìŸ^«éb³æ›e¹ãšh¾â™jÂá˜mÄà—oÇÞ–sÈÛ—tÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÿ—J*ÿžP9ÿ QGÿ¡SWÿ¢Uhÿ¢Wxý¢Z‡ö¡\•ñ ]¡ìŸ^«éb³æ›e¹ãšh¾â™jÂá˜mÄà—oÇÞ–sÈÛ—tÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÿ—J*ÿžP9ÿ QGÿ¡SWÿ¢Uhÿ¢Wxý¢Z‡ö¡\•ñ ]¡ìŸ^«éb³æ›e¹ãšh¾â™jÂá˜mÄà—oÇÞ–sÈÛ—tÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÙ—vÊÿ˜J*ÿžP8ÿ QGÿ¢SWÿ£Ugÿ£Wwý£Y‡÷¢[”ñ¢] í¡^«é `³æžd¹ãœg¾â›iÂàšlÆß™oÈÛ˜rËØ˜uÌÖ™wËÖ™wËÖ™wËÖ™wËÖ™wËÖ™wËÖ™wËÖ™wËÖ™wËÖ™wËÖ™wËÖ™wËÖ™wËÖ™wËÖ™wËÿ™K*ÿŸO8ÿ¡PGÿ¢RVÿ£Tfÿ¤Vvþ¤Y†÷¤Z“ò¤\Ÿí¤]©é¤_²æ¢b¸ä e¾âŸhÂàkÆÜœnÉØ›rÍÔ›uÍÒ›vÎÒ›vÎÒ›vÎÒ›vÎÒ›vÎÒ›vÎÒ›vÎÒ›vÎÒ›vÎÒ›vÎÒ›vÎÒ›vÎÒ›vÎÒ›vÎÒ›vÎÿ™K*ÿŸO8ÿ¡PFÿ£RVÿ¤Tfÿ¤Vvþ¥X…ø¥Z’ò¦[žî¦]¨ê¨^°ç¨a·ä¦d¼à¤gÁÝ¢jÅÙ¡mÉÓžrÎÏuÐΞvÐΞvÐΞvÐΞvÐΞvÐΞvÐΞvÐΞvÐΞvÐΞvÐΞvÐΞvÐΞvÐΞvÐΞvÐÿšK*ÿŸO8ÿ¡PFÿ£QUÿ¤Seÿ¥Vuÿ¦Xƒù§Y‘ó¨[œï©\¦ë«^­æ«a´á¬d¸Ýªh½Ù©iÃÔ§lÊͤqÐÉ¢uÒÉ¢uÑÉ¢uÑÉ¢uÑÉ¢uÑÉ¢uÑÉ¢uÑÉ¢uÑÉ¢uÑÉ¢uÑÉ¢uÑÉ¢uÑÉ¢uÑÉ¢uÑÉ¢uÑÉ¢uÑÿšK*ÿŸN7ÿ¢OFÿ¤QUÿ¥Sdÿ¦Utÿ§W‚ù¨Yô«Zšî­\£è®_©â¯b®Þ±f²Ú°f»Õ°gÃЫiÊʧkÐÅ¥oÓŦsÒŦsÒŦsÒŦsÒŦsÒŦsÒŦsÒŦsÒŦsÒŦsÒŦsÒŦsÒŦsÒŦsÒŦsÒÿ›L*ÿ N7ÿ¢OEÿ¤QTÿ¦Scÿ§Usÿ©VùªXñ­Z—ë¯]Ÿå±`¤à³a­Û·c´Ö¶eºÑ±fÂͬgÉʧhÏÅ¥kÒĦnÑĦnÑĦnÑĦnÑĦnÑĦnÑĦnÑĦnÑĦnÑĦnÑĦnÑĦnÑĦnÑĦnÑĦnÑÿœL*ÿ N7ÿ¢OEÿ¥PSÿ§Rbÿ¨TqÿªVõ¬YŠî¯[“ç±]œá³]§Ü¹]°Ö¹_·Ñ´b½Î±dÂÌ­fÈÊ©gÍÆ§iÐħkÐħkÐħkÐħkÐħkÐħkÐħkÐħkÐħkÐħkÐħkÐħkÐħkÐħkÐħkÐÿœL*ÿ N7ÿ£NDÿ¥PSÿ¨QaÿªSpû«V|ñ®Y‡ê±Z‘ã³ZžÝ¸Y©Ö¼Y²Ò¸]¸Î´`¾Ì°cÂÊ­eÇɪfËÈ©hÍÆ¨jÎÆ¨jÎÆ¨jÎÆ¨jÎÆ¨jÎÆ¨jÎÆ¨jÎÆ¨jÎÆ¨jÎÆ¨jÎÆ¨jÎÆ¨jÎÆ¨jÎÆ¨jÎÆ¨jÎÿM)ÿ¡M6ÿ¤NDÿ¦ORÿ©Q`ÿ«Sn÷¬Vyî¯Y„æ±Y“ßµX Ù¿T«Ò¼X³Î·\¹Ì´`¾Ê±bÂÉ®dÅȬfÉȪgËÆªiËÆªiËÆªiËÆªiËÆªiËÆªiËÆªiËÆªiËÆªiËÆªiËÆªiËÆªiËÆªiËÆªiËÆªiËÿžM)ÿ¡M6ÿ¤MCÿ§NPÿ«P^ÿ¬Tkó®Wuê°W†â³W•Û¾R¢ÓÁS¬Ï»X³Ì·\¹Ê´_½É²aÀȰcÃÇ®eÆÇ¬gÈĬhÉĬhÉĬhÉĬhÉĬhÉĬhÉĬhÉĬhÉĬhÉĬhÉĬhÉĬhÉĬhÉĬhÉĬhÉÿžL)ÿ¢L5ÿ¥LBÿ©MOÿ«P\û­Tgï¯Vuæ±UˆÞ¹S—ÕÇL£ÏÁS¬Ì¼X³É¸\¸È¶_»Ç³a¾Æ²cÁưdÃůfÅîgÆÃ®gÆÃ®gÆÃ®gÆÃ®gÆÃ®gÆÃ®gÆÃ®gÆÃ®gÆÃ®gÆÃ®gÆÃ®gÆÃ®gÆÃ®gÆÃ®gÆÿŸK(ÿ£K4ÿ¦K@ÿ«KMÿ­PXö¯Tbê°Txà¶RŠØÎE˜ÐÇM£ÌÁS«É½X±Çº\µÆ·^¹Å¶`»Å´b½Ä³d¿Ã²eÁÁ±fÂÁ±fÂÁ±fÂÁ±fÂÁ±fÂÁ±fÂÁ±fÂÁ±fÂÁ±fÂÁ±fÂÁ±fÂÁ±fÂÁ±fÂÁ±fÂÁ±fÂÿ K(ÿ¤J3ÿ¨I>ÿ¬LIÿ®QRï°Seã´QzÚÉD‹ÑÏE˜ËÈN¢ÈÂT©Æ¿Y®Ä¼\²Ãº^µÃ¹`·Ã·b¹Â¶cºÁµd¼¿µe½¿µe½¿µe½¿µe½¿µe½¿µe½¿µe½¿µe½¿µe½¿µe½¿µe½¿µe½¿µe½¿µe½¿µe½ÿ¡I'ÿ¦H1ÿ¬G;ÿ®MD÷°PQè³PhÜÂF|ÒØ<‹ËÏG—ÇÉOŸÄÅU¦ÂÂYªÁ¿\­Á¾^°À½`±À»a³Àºb´¾ºc¶¼¹d¶¼¹d¶¼¹d¶¼¹d¶¼¹d¶¼¹d¶¼¹d¶¼¹d¶¼¹d¶¼¹d¶¼¹d¶¼¹d¶¼¹d¶¼¹d¶¼¹d¶ÿ¢G%ÿ¨F.ÿ®G6ÿ±M<î²NTß½GjÓá3|ËÙ>ŠÅÑI”ÂÌP›ÀÈU¡¿ÆY¤¾Ä\§¾Â^©½Á_ª½Á`¬¼Àb­º¿b®¸¾c¯¸¾c¯¸¾c¯¸¾c¯¸¾c¯¸¾c¯¸¾c¯¸¾c¯¸¾c¯¸¾c¯¸¾c¯¸¾c¯¸¾c¯¸¾c¯¸¾c¯ÿ¥E"ÿ­B*ÿ±H.ö²K@ã¹GWÔá/kËä6{ÄÜA‡ÀÕJ½ÑQ•¼ÍVš»ËYºÊ[ŸºÈ]¡¹Ç_¢¹Ç`£·Æ`¤µÅa¥³Åb¦³Åb¦³Åb¦³Åb¦³Åb¦³Åb¦³Åb¦³Åb¦³Åb¦³Åb¦³Åb¦³Åb¦³Åb¦³Åb¦³Åb¦ÿ©Aÿ±B"ÿ³H,é·FCÖß*XÌè2jÃæ:w½ßCºÚKˆ¸ÖQŽ·ÓV‘¶ÒY”¶Ð[–µÏ]—´Ï^˜²Î^™±Í_š¯Í`›®Ìa›®Ìa›®Ìa›®Ìa›®Ìa›®Ìa›®Ìa›®Ìa›®Ìa›®Ìa›®Ìa›®Ìa›®Ìa›®Ìa›®Ìa›ÿ®>ÿ³Dñ¶D/ØÝ$EÌè-WÄî6f¼ë>r·åEzµàL€³ÝR„²ÛV‡±ÚX‰®ØZ‹¬Ø[Œ«Ö[ªÖ\ލÕ]§Õ^¦Ô_¦Ô_¦Ô_¦Ô_¦Ô_¦Ô_¦Ô_¦Ô_¦Ô_¦Ô_¦Ô_¦Ô_¦Ô_¦Ô_¦Ô_ÿ³>úµAáË/2Îç'EÄï1T½ô:a·ðAj²ëGq¯çMv®åRzªãT|§âV~¥áW£àX€¢àY¡ßZ‚Ÿß[‚žÞ[ƒÞ\„Þ\„Þ\„Þ\„Þ\„Þ\„Þ\„Þ\„Þ\„Þ\„Þ\„Þ\„Þ\„Þ\„Þ\„ÿµ>éÁ5 Ïå!2Æï+B¾ö5O·ù=Y²öDa®òIg§ïLk£íOn ëQpêSr›éUsšéVt™èVu˜èWu—èXv–çYv•çZw•çZw•çZw•çZw•çZw•çZw•çZw•çZw•çZw•çZw•çZw•çZw•çZw•çZw•çZwÿC#ÿœP0ÿžQ>ÿ RMÿ U\ÿ Wkÿ ZzýŸ\‡øž^’ôœ`œð™e£í—i©ë•m®ê”p±é”r³è”tµç“u¶ä“w·á“y¸ß”|¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸ÿC#ÿœP0ÿžQ>ÿ RMÿ U\ÿ Wkÿ ZzýŸ\‡øž^’ôœ`œð™e£í—i©ë•m®ê”p±é”r³è”tµç“u¶ä“w·á“y¸ß”|¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸ÿC#ÿœP0ÿžQ>ÿ RMÿ U\ÿ Wkÿ ZzýŸ\‡øž^’ôœ`œð™e£í—i©ë•m®ê”p±é”r³è”tµç“u¶ä“w·á“y¸ß”|¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸ÿC#ÿœP0ÿžQ>ÿ RMÿ U\ÿ Wkÿ ZzýŸ\‡øž^’ôœ`œð™e£í—i©ë•m®ê”p±é”r³è”tµç“u¶ä“w·á“y¸ß”|¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸ÿC#ÿœP0ÿžQ>ÿ RMÿ U\ÿ Wkÿ ZzýŸ\‡øž^’ôœ`œð™e£í—i©ë•m®ê”p±é”r³è”tµç“u¶ä“w·á“y¸ß”|¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸ÿC#ÿœP0ÿžQ>ÿ RMÿ U\ÿ Wkÿ ZzýŸ\‡øž^’ôœ`œð™e£í—i©ë•m®ê”p±é”r³è”tµç“u¶ä“w·á“y¸ß”|¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸ÿC#ÿœP0ÿžQ>ÿ RMÿ U\ÿ Wkÿ ZzýŸ\‡øž^’ôœ`œð™e£í—i©ë•m®ê”p±é”r³è”tµç“u¶ä“w·á“y¸ß”|¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸ÿC#ÿœP0ÿžQ>ÿ RMÿ U\ÿ Wkÿ ZzýŸ\‡øž^’ôœ`œð™e£í—i©ë•m®ê”p±é”r³è”tµç“u¶ä“w·á“y¸ß”|¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸ÿC#ÿœP0ÿžQ>ÿ RMÿ U\ÿ Wkÿ ZzýŸ\‡øž^’ôœ`œð™e£í—i©ë•m®ê”p±é”r³è”tµç“u¶ä“w·á“y¸ß”|¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸ÿC#ÿœP0ÿžQ>ÿ RMÿ U\ÿ Wkÿ ZzýŸ\‡øž^’ôœ`œð™e£í—i©ë•m®ê”p±é”r³è”tµç“u¶ä“w·á“y¸ß”|¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸Þ”}¸ÿC#ÿO0ÿŸP>ÿ RLÿ¡T[ÿ¡Wkÿ¡Yyý [†ø ]’ôž_›ð›d£í™hªë—l®é•p²è•rµç”t·ä”v¸á”x¹ß”{ºÜ”¹Û”€¹Û”€¹Û”€¹Û”€¹Û”€¹Û”€¹Û”€¹Û”€¹Û”€¹Û”€¹Û”€¹Û”€¹Û”€¹ÿ‘C#ÿO0ÿŸP=ÿ¡RLÿ¢T[ÿ¢Vjÿ¢Xxþ¢[…ù¢]‘ô¡^›ðŸb£íœgªêšk¯é—p³ç–r¶å–u¹á•w»Þ•z¼Û”€¼Ø•…¼×•†¼×•†¼×•†¼×•†¼×•†¼×•†¼×•†¼×•†¼×•†¼×•†¼×•†¼×•†¼×•†¼ÿ‘C#ÿO0ÿ P=ÿ¡QKÿ£SZÿ£Viÿ£Xwþ£Z„ù£\ô¤^šñ£`¢í e©êžj¯è›p´å™s¸á—uºÝ–y½Ú•€¾Ö—„¾Ó—†¿Ò—†¿Ò—†¿Ò—†¿Ò—†¿Ò—†¿Ò—†¿Ò—†¿Ò—†¿Ò—†¿Ò—†¿Ò—†¿Ò—†¿Ò—†¿ÿ’D#ÿžN/ÿ O=ÿ¢QKÿ£SYÿ¤Uhÿ¥Wvÿ¥Yƒú¥[Žõ§]˜ñ¨_¡î¦d¨ë¤i®æ o³ás¸Ý›w¼Ù™~¿Ô˜ƒÁÑ™…ÁΚ…ÁΚ…ÁΚ…ÁΚ…ÁΚ…ÁΚ…ÁΚ…ÁΚ…ÁΚ…ÁΚ…ÁΚ…ÁΚ…ÁΚ…ÁΚ…Áÿ“D#ÿžN/ÿ O<ÿ¢PJÿ¤RXÿ¥Ugÿ¦Wuÿ¦Yú¨[öª]–òª`Ÿíªd¦ç©i¬â¦n²Ý£r¸Ø z½Ò€ÀÍ›ƒÃËœƒÃʃÃʃÂʃÂʃÂʃÂʃÂʃÂʃÂʃÂʃÂʃÂʃÂʃÂʃÂÿ“D#ÿžN/ÿ¡O<ÿ£PJÿ¥RXÿ¦Tfÿ§Vtÿ¨X€ûªZ‹ö­]”ï¬aœè¬d£ã­h©Þ¬l±Øªr¸Ñ§y¾Ê£ÂÆ ÄÆŸÅÆ ‚ÄÆ ‚ÄÆ ‚ÄÆ ‚ÄÆ ‚ÄÆ ‚ÄÆ ‚ÄÆ ‚ÄÆ ‚ÄÆ ‚ÄÆ ‚ÄÆ ‚ÄÆ ‚ÄÆ ‚Äÿ”D#ÿžM/ÿ¡N<ÿ£OIÿ¥QWÿ§Teÿ¨VrÿªX~û¬Z‰ò®]’ë®a™å¯eŸà±h§Ú³k±Ò³p¸Ê®u¾Ã©{þ¦€ÆÀ£€ÆÁ£ÅÁ£ÅÁ£ÅÁ£ÅÁ£ÅÁ£ÅÁ£ÅÁ£ÅÁ£ÅÁ£ÅÁ£ÅÁ£ÅÁ£ÅÁ£Åÿ”D"ÿŸM/ÿ¡N;ÿ¤OIÿ¦QVÿ¨SdÿªUqÿ«X}ö®Z†ï°^Žè±b•â³fšÝ¸g¦Õ½i°Í¸m¸Å³q¾½°võ®~Ƹ¨Ç»¦€Æ¼¦Å¼¦Å¼¦Å¼¦Å¼¦Å¼¦Å¼¦Å¼¦Å¼¦Å¼¦Å¼¦Å¼¦Å¼¦Åÿ•D"ÿŸM.ÿ¢N;ÿ¤OHÿ§PVÿ©Rcÿ«Upû­X{ò°Z„ì²_Šå´cß·ešÙÂe¦Ð¾g°Ê¸i¸Ã´l¾¾°où®tƳ­{ȵ«€Æ¶ª€Æ¶ª€Æ¶ª€Æ¶ª€Æ¶ª€Æ¶ª€Æ¶ª€Æ¶ª€Æ¶ª€Æ¶ª€Æ¶ª€Æ¶ª€Æ¶ª€Æÿ–D"ÿŸM.ÿ¢M;ÿ¥NGÿ§PUÿªRbÿ¬Un÷®Xxï²[€è´_…â·bÜÀd™ÔÅd¥Í¾f¯Ç¸g·Â´i½¿±k¹®nÆ´­tDz®{Ʋ®}Ų®}Ų®}Ų®}Ų®}Ų®}Ų®}Ų®}Ų®}Ų®}Ų®}Ų®}Ų®}Åÿ–E"ÿ L.ÿ£M:ÿ¦NGÿ©OSÿ«R`þ­Ukô°Xtì´\zå¶]‡Þ½^’×Ì_œÐÆc¥Ê¿e®Å¹f¶Âµg¼¿²iÁº¯kĵ®oƲ¯uŲ¯wŲ¯wŲ¯wŲ¯wŲ¯wŲ¯wŲ¯wŲ¯wŲ¯wŲ¯wŲ¯wŲ¯wŲ¯wÅÿ—E"ÿ L-ÿ£L9ÿ§MFÿªNRÿ¬R^ú®Vhð²XoèµY}à»ZŠÙÍX•ÑÊ\ŸËÄ`§Ç¿c®Ä»e´Á·f¹¿´h¾º±iÁ¶°ló°qò°rò°rò°rò°rò°rò°rò°rò°rò°rò°rò°rò°rò°rÃÿ˜E"ÿ¡K-ÿ¤K8ÿ¨LDÿ¬MPÿ­RZö°Vcë³Wpâ¸W€ÛÊRÒÏT˜ÌÉZ¡ÈÃ^¨Ä¿a®Â»c³À¸e·¿¶f»»´h½·³j¿µ³n¿³³o¿³³o¿³³o¿³³o¿³³o¿³³o¿³³o¿³³o¿³³o¿³³o¿³³o¿³³o¿³³o¿ÿšF!ÿ¡J,ÿ¥J7ÿªJBÿ­NMý¯SVñ²UaæµUsÝÂP‚ÔÕKÍÎS™ÈÈX¡ÄÃ\¨ÂÀ`­À½b±¿ºdµ¾¸e·º·g¹¶¶i»´µl»³¶m»³¶m»³¶m»³¶m»³¶m»³¶m»³¶m»³¶m»³¶m»³¶m»³¶m»³¶m»³¶m»ÿ›F!ÿ¢I+ÿ§I5ÿ¬I?ÿ®OHø±RPê³Sdß¼OvÕÜB„ÍÔKÈÎR™ÄÈX¡ÁÄ\¦¿Á_«¾¿a®½½c±½»d³¹ºfµµ¹g¶²¸i·±¸j·±¸j·±¸j·±¸j·±¸j·±¸j·±¸j·±¸j·±¸j·±¸j·±¸j·±¸j·±¸j·ÿžG ÿ¤H*ÿ©G3ÿ®J;ÿ±OBð²QTâ¹NgØá9xÎÜB†ÇÔKÃÎR˜ÀÊXŸ¾Ç[£½Ä^§¼Â`ª»Àb¬»¿d®·¾e¯´½f±±¼h²°¼h²°¼h²°¼h²°¼h²°¼h²°¼h²°¼h²°¼h²°¼h²°¼h²°¼h²°¼h²°¼h²ÿ Gÿ¦F'ÿ¬E/ÿ°K5ø²NAç¶MWÛÕ:jÏä9yÇÝC…ÂÕL¿ÐS–¼ÍX›»Ê[ŸºÈ^¢¹Æ`¤¹Åa¦·Äc§´Ãc©±Âeª®Áf«®Ág«®Ág«®Ág«®Ág«®Ág«®Ág«®Ág«®Ág«®Ág«®Ág«®Ág«®Ág«®Ág«ÿ¢Eÿ©B$ÿ¯E)ÿ³K/íµKEÞÊHÑä/[Èë7jÀè>vºáF·ÜN†µÙS‹´ÖW޳ÔZ‘³Ò]“±Ñ^”¯Ð_–­Ð`—«Ïa—©Îb˜§Îc™§Ídš§Ídš§Ídš§Ídš§Ídš§Ídš§Ídš§Ídš§Ídš§Ídš§Ídš§Ídš§Ídšÿª=ÿ±BþµE!ç½?6Òã)IÈì2ZÀñ:g¹ëAqµæHx²âO~±ßT‚°ÝW…­ÛYˆªÚ[‰¨Ù\ЧØ]‹¥Ø^Œ¤Ö_¢Ö`Ž¡Õa Õa Õa Õa Õa Õa Õa Õa Õa Õa Õa Õa Õa Õaÿ¯=ÿµAíº?$Óá#7Éì-IÁó6Wºö>b´ðDj¯ëIp­èOuªæSy§äU{¤ãW}¢âX~ áYŸàZ€à[œß\›ß]‚™Þ^ƒ™Þ_ƒ™Þ_ƒ™Þ_ƒ™Þ_ƒ™Þ_ƒ™Þ_ƒ™Þ_ƒ™Þ_ƒ™Þ_ƒ™Þ_ƒ™Þ_ƒ™Þ_ƒ™Þ_ƒÿ´=õ¸=ÕÞ&Êê'7Áó0Fºø9Q´û@Z¯öFb«òKg¤ïMk íPnìRp›ëTq™êVr—éWs–éXt•èYu”èZu“è[v’ç\v‘ç\w‘ç\w‘ç\w‘ç\w‘ç\w‘ç\w‘ç\w‘ç\w‘ç\w‘ç\w‘ç\w‘ç\w‘ç\wÿ·;Ü×Ìé 'Ãò+5»ù4Aµýÿ¥OKÿ¨QWÿªTcÿ¬Vnü®Yxó°]€ì±b‡å²fß¶išÖ½n¤Ì´s¬Ä­y²½©··¦‡º¶¤Š¼·¢Š¼¸¡‹»¹¡Œº¹¡Œº¹¡Œº¹¡Œº¹¡Œº¹¡Œº¹¡Œº¹¡Œº¹¡Œº¹¡Œº¹¡Œº¹¡ŒºÿŽ=ÿœJ'ÿ¡L2ÿ¤M>ÿ¦OJÿ©QVÿ«Sbÿ­Wlø°Zuð²^|è³c‚â¶eÛÄgšÐÅl¤Æ»p¬¾´v³¶¯|·°¬ƒ»­ª‰¼°¦‰½²¥Š»´¤‹º´¤‹º´¤‹º´¤‹º´¤‹º´¤‹º´¤‹º´¤‹º´¤‹º´¤‹º´¤‹º´¤‹ºÿŽ=ÿK&ÿ¡L2ÿ¤M=ÿ§NIÿªPUÿ¬T`ý®Wiô²Zqì´_wå·c}Þ¾dŒÕÎf™ËÆi£ÁÀm¬¸¼r²°·x·ª´»¤³ˆ½¨­ˆ½¬©‰¼®¨‹»®¨‹»®¨‹»®¨‹»®¨‹»®¨‹»®¨‹»®¨‹»®¨‹»®¨‹»®¨‹»®¨‹»ÿ=ÿžK&ÿ¢K1ÿ¥L<ÿ¨MHÿ«PSÿ­T]ù°Wfð´[lé·`qá¼b|ÙÒa‹ÐÎd˜ÇÇg£¿Áj«¸¼m²²¹q·¬¶uº¦µ|½¡´…½¤°‰¼§®‹»§®‹»§®‹»§®‹»§®‹»§®‹»§®‹»§®‹»§®‹»§®‹»§®‹»§®‹»ÿ>ÿŸK&ÿ¢K1ÿ¦K;ÿªLFÿ¬PQÿ®TZõ²Xaì¶[gä»]tÜÉ]ÓÙ`ŠÌÏc—ÄÈe¡½Âgª¸½j°´ºlµ­·o¹¨µt»£µz¼¡¶„»Ÿ¶‹ºŸ¶‹ºŸ¶‹ºŸ¶‹ºŸ¶‹ºŸ¶‹ºŸ¶‹ºŸ¶‹ºŸ¶‹ºŸ¶‹ºŸ¶‹ºŸ¶‹ºÿ‘>ÿŸJ%ÿ£J0ÿ§J:ÿ«LDÿ­PNü°TVñµW[ç¹XjÞÄXwÕÝVƒÎ×\ÇÐb–ÁÉd ¼Ãf¨¸¿h®µ¼j³®¹l¶©·o¹¥·tº£·{¹¡·€¹¡·€¹¡·€¹¡·€¹¡·€¹¡·€¹¡·€¹¡·€¹¡·€¹¡·€¹¡·€¹¡·€¹ÿ“>ÿ I%ÿ¤I/ÿ©I8ÿ¬LBÿ¯QJ÷³TPë¶V^á¿TmØáK{ÏÜS†ÈÕYÃÏ^˜¾ÉbŸºÅd¥¸Áf«¶¾h¯°¼j²«ºl´§ºpµ¥ºuµ¢¹y¶¢¹y¶¢¹y¶¢¹y¶¢¹y¶¢¹y¶¢¹y¶¢¹y¶¢¹y¶¢¹y¶¢¹y¶¢¹y¶ÿ•>ÿ¡H$ÿ¦H-ÿªH6ÿ®L>ÿ±QDð´SQäºRbÛØGpÐâI}ÈÛQˆÃÔW‘¾Î\˜»Ê`ž¹Æc¤·Ãe¨µÁg«°¿h­¬¾j¯©½m°§¾r°¥½t°¥½t°¥½t°¥½t°¥½t°¥½t°¥½t°¥½t°¥½t°¥½t°¥½t°¥½t°ÿ—?ÿ¢G#ÿ§F+ÿ¬H3ÿ°M9ø³PAé·PTÝÊGeÑå@sÉáHÃÚP‰¾ÔV‘»Ï[—¹Ì_œ·Éa ¶Æd¤³Äe¦¯Ãg¨¬Âhª¨Áj«¦Àn¬¤Áp¬¤Áp¬¤Áp¬¤Áp¬¤Áp¬¤Áp¬¤Áp¬¤Áp¬¤Áp¬¤Áp¬¤Áp¬¤Áp¬ÿš@ÿ¤E!ÿªE(ÿ¯I.ÿ³M1ïµNDàÂGWÓä:gÊè?uÂáH½ÛPˆºÕV¸ÑZ”¶Î^™µÌ`œ´ÊcŸ°Èd¡­Çe¢ªÆf¤§Åh¥¤Åk¦£Äm¦£Äm¦£Äm¦£Äm¦£Äm¦£Äm¦£Äm¦£Äm¦£Äm¦£Äm¦£Äm¦£Äm¦ÿ@ÿ¦Cÿ¬E$ÿ²I'÷´K4å¼GHÕâ3YËé:hÃè@u¼âH~¹ÜP†¶ØUŒ´ÔZ³Ò]”²Ð`–°Îa˜­Ícš«Ìd›¨Ëe¥Êgž¢ÊiŸ¡Éj ¡Éj ¡Éj ¡Éj ¡Éj ¡Éj ¡Éj ¡Éj ¡Éj ¡Éj ¡Éj ¡Éj ÿ¢BÿªAÿ¯Eÿ´H#ë¹F7Öß-JÌé5[Äîf¶íDo²çKv¯äQ{®áU¬ßX‚©ÝZ…¦Ü\†£Û]ˆ¢Ú_‰ Ù`ŠžÙa‹œØbŒš×d™Öe™Öe™Öe™Öe™Öe™Öe™Öe™Öe™Öe™Öe™Öe™Öeÿ«< ÿ±A û¶AâÊ0*Îç)<Åð1K½õ:W·öAa±ñFi¬íKo«éQs§çTw£åVy äX{žãZ|œâ[~›á\™á]˜à^€–à`•ßa‚”ßb‚”ßb‚”ßb‚”ßb‚”ßb‚”ßb‚”ßb‚”ßb‚”ßb‚”ßb‚”ßb‚”ßb‚ÿ¯<ÿ¶> êÂ5Ïå",Æï,;¾ö5H·úÿ©OHÿ«SRÿ®V[ø²Ycð´^iè·cpß½dÕÍgŒËÃm—Á¹rŸ¸³x¦±®«««‡®¥©±¥¦“²¨¤“²ª£•°«¢–¯«¢–¯«¢–¯«¢–¯«¢–¯«¢–¯«¢–¯«¢–¯«¢–¯«¢–¯«¢–¯ÿˆ7ÿ˜Cÿ¡J)ÿ¤J2ÿ§L=ÿªOFÿ¬SPý°VXôµY^ì·_cä¼aoÚÔ`ÏÖeŒÄÌk–ºÂpŸ²»u¥ª¶|«¤³ƒ¯ž±Œ±œ®“² ª“²£§”±¥¦–¯¥¦–¯¥¦–¯¥¦–¯¥¦–¯¥¦–¯¥¦–¯¥¦–¯¥¦–¯¥¦–¯¥¦–¯ÿ‰7ÿ™Cÿ¡I(ÿ¥J1ÿ¨L;ÿ«ODÿ®SMú²VTð·ZXè»_]߯_nÓá^~ÉÙc‹¿Ñh•µÊmž«År¥£Àxª½€®—»ˆ±’¹“²—²“²œ®”±Ÿ«•¯Ÿ«•¯Ÿ«•¯Ÿ«•¯Ÿ«•¯Ÿ«•¯Ÿ«•¯Ÿ«•¯Ÿ«•¯Ÿ«•¯Ÿ«•¯ÿŠ7ÿšCÿ¢I'ÿ¦I0ÿ©L9ÿ¬OBÿ°SIöµVNìºZTâÁ\aÙéYlÎã]|ÄÚb‰¼Òf”´Ëi¬Æm£¦Ãq©žÀw­™¾}°”½…±½±“¸•°—³–¯—³–¯—³–¯—³–¯—³–¯—³–¯—³–¯—³–¯—³–¯—³–¯—³–¯ÿŒ7ÿ›Dÿ£H&ÿ§H/ÿªL7ÿ®O>ü²SDñ¸UJå¿VXÜÙSdÑéUpÈä]{ÀÛa‡¹Ód’³Ígš­Èj¡§Äm¦¡Âpª›Àu­—¿{¯“¾ƒ¯¿Ž®¿—®¿—®¿—®¿—®¿—®¿—®¿—®¿—®¿—®¿—®¿—®ÿ7ÿDÿ¤F%ÿ¨H-ÿ¬L4ÿ°O:÷µS=êºSMßÊO[ÓéJhÊèQtÂâY~»Û^‡¶Õc²Ïf—®Ëhž©Çj£¢Äm¦Ãp©šÂtª–Áz«“ƒªÁŠ«ÁŠ«ÁŠ«ÁŠ«ÁŠ«ÁŠ«ÁŠ«ÁŠ«ÁŠ«ÁŠ«ÁŠ«ÿ7ÿŸEÿ¦E#ÿªH*ÿ®L0þ³O3ð·P@âÁMPÕåA_ÌëGkÃçOv¼àV€·Û[ˆ³Õ`°Ñd•®Ífš©Ëhž¤Èk¡ Çm£Æq¤šÆv¤—Æ|¤“Ŧ“Ŧ“Ŧ“Ŧ“Ŧ“Ŧ“Ŧ“Ŧ“Ŧ“Ŧ“Ŧÿ’7ÿ¢Eÿ§D!ÿ¬H&ÿ±L*÷µM3ç¼LD×á9SÍé@aÄíFm½æMx·àT€³ÛZ‡°Ö^®Ób’­Ðe–¨Îf™¤Ìh› ËkÊmžšÉqŸ˜ÉvŸ—Ê{ž—Ê{ž—Ê{ž—Ê{ž—Ê{ž—Ê{ž—Ê{ž—Ê{ž—Ê{ž—Ê{ž—Ê{žÿ–8ÿ¤Bÿ©Dÿ®H!þ´K$í¹J6ßÖ8GÏè9VÆî@c¾íFn·æMx³áS°ÝY…®Ù]ЬÖ`Ž©Ôb‘¥Òd“¢Ñf•ŸÐh—œÏk˜šÎm™—Íqš•Íuš•Íuš•Íuš•Íuš•Íuš•Íuš•Íuš•Íuš•Íuš•Íuš•Íušÿš8ÿ§@ÿ¬Dÿ²Hõ·G'âÈ<9Ðå2IÇî:X¿ò@d¸íFn²èMv¯ãS|­àX«Ý\…¨Û^ˆ¤Ù`Š¡ØbŒžÖdŽœÕfšÔh‘—Ój’•Òm““Òp““Òp““Òp““Òp““Òp““Òp““Òp““Òp““Òp““Òp““Òp“ÿŸ9 ÿª@ÿ°DýµEèÀ>*Òã,<Èí4KÀó;X¹õBb²ïGk­ëMr«çSwªäW{¥âZ~¢à\ŸÞ^ƒœÝ`„šÜb†˜Ûc‡–Ûeˆ”Úg‰‘ÙiŠÙl‹Ùl‹Ùl‹Ùl‹Ùl‹Ùl‹Ùl‹Ùl‹Ùl‹Ùl‹Ùl‹ÿ¦: ÿ­@ ÿ´B î»>Óá$-Éì.=Áó6K¹ø=V³øD_®óIf©ïMl¦ìRp¢éUtžçXv›æZx™å\z–ä]{•ã_|“âa}‘âb~ádàf€‹àh‹àh‹àh‹àh‹àh‹àh‹àh‹àh‹àh‹àh‹àhÿ«;ÿ²?ö¹=ÕßÊë'.Áó0<ºù8H´ý?R®üEYª÷J`£ôMdòPh™ðSj–îUm”íWn’ìYpë[qŽë\rê^r‹é_s‰éatˆècu†èdv†èdv†èdv†èdv†èdv†èdv†èdv†èdv†èdv†èdv†èdvÿ°:ÿ¶;ÙÛÌé Âó*.»ú3:´þ;D¯ÿAL¨ÿFR ýHW™ûK[•ùN^’÷Q`öSbõUc‹ôWdŠóXeˆóZf‡ò[g†ò\g„ñ^hƒñ_iðajðajðajðajðajðajðajðajðajðajðajÿ´7çÅ'ÍçÃò# »ù.+µÿ65¯ÿ==¥ÿ@DÿCJ–ÿENÿHQÿKSŠÿNUˆþPW†ýRX„üSYƒüUY‚ûVZûW[€ûY[úZ\~ú[\|ù]]|ù]]|ù]]|ù]]|ù]]|ù]]|ù]]|ù]]|ù]]|ù]]|ù]]ò¼.ÏåÄñ¼ù'µÿ1'­ÿ7/£ÿ96šÿ=<“ÿ?@ŒÿBC‡ÿEF„ÿHH‚ÿKI€ÿMK~ÿNL}ÿPL|ÿQM{ÿRNzÿSNyÿTOxÿVOwÿWPvÿXPvÿXPvÿXPvÿXPvÿXPvÿXPvÿXPvÿXPvÿXPvÿXPvÿXPÿp2ÿ€:ÿŽD%ÿ—M1ÿ›S=ÿ›VIÿšYTÿ˜\_ÿ”^hÿdpÿŽjvÿo{ÿrÿu‚ÿ‹x„þ‰{…ýˆ~†û‡‡÷†ƒ‡õ……ˆò…‡ˆï…‰ˆì†‹‡ê†‡ê†‡ê†‡ê†‡ê†‡ê†‡ê†‡ê†‡ê†‡ê†‡ÿp2ÿ€:ÿŽD%ÿ—M1ÿ›S=ÿ›VIÿšYTÿ˜\_ÿ”^hÿdpÿŽjvÿo{ÿrÿu‚ÿ‹x„þ‰{…ýˆ~†û‡‡÷†ƒ‡õ……ˆò…‡ˆï…‰ˆì†‹‡ê†‡ê†‡ê†‡ê†‡ê†‡ê†‡ê†‡ê†‡ê†‡ê†‡ÿp2ÿ€:ÿŽD%ÿ—M1ÿ›S=ÿ›VIÿšYTÿ˜\_ÿ”^hÿdpÿŽjvÿo{ÿrÿu‚ÿ‹x„þ‰{…ýˆ~†û‡‡÷†ƒ‡õ……ˆò…‡ˆï…‰ˆì†‹‡ê†‡ê†‡ê†‡ê†‡ê†‡ê†‡ê†‡ê†‡ê†‡ê†‡ÿp2ÿ€:ÿŽD%ÿ—M1ÿ›S=ÿ›VIÿšYTÿ˜\_ÿ”^hÿdpÿŽjvÿo{ÿrÿu‚ÿ‹x„þ‰{…ýˆ~†û‡‡÷†ƒ‡õ……ˆò…‡ˆï…‰ˆì†‹‡ê†‡ê†‡ê†‡ê†‡ê†‡ê†‡ê†‡ê†‡ê†‡ê†‡ÿp2ÿ€:ÿŽD%ÿ—M1ÿ›S=ÿ›VIÿšYTÿ˜\_ÿ”^hÿdpÿŽjvÿo{ÿrÿu‚ÿ‹x„þ‰{…ýˆ~†û‡‡÷†ƒ‡õ……ˆò…‡ˆï…‰ˆì†‹‡ê†‡ê†‡ê†‡ê†‡ê†‡ê†‡ê†‡ê†‡ê†‡ê†‡ÿq2ÿ:ÿD%ÿ˜N1ÿ›S=ÿ›VIÿšXTÿ™[_ÿ–^hÿbpÿiwÿŽn|ÿr€ÿtƒþŒw…ýŠ{†ü‰~ˆøˆˆõ‡ƒ‰ò†…‰ï†ˆ‰ì†Š‰ê‡Œ‰çˆˆçˆˆçˆˆçˆˆçˆˆçˆˆçˆˆçˆˆçˆˆçˆˆÿs2ÿƒ:ÿ‘D%ÿšN0ÿR<ÿUHÿœWSÿ›Z^ÿ˜]hÿ“`qÿhxÿŽn}ÿŽrþŽu…ýŽw‡üŒ{‰ø‹~ŠôŠ‹ð‰„Œíˆ†Œêˆ‰Œçˆ‹ŒäŠŽ‹â‡”‹â‡”‹â‡”‹â‡”‹â‡”‹â‡”‹â‡”‹â‡”‹â‡”‹â‡”‹ÿt2ÿ…:ÿ“E%ÿœO0ÿQ;ÿžTGÿVRÿY]ÿ›\gÿ—_pÿ‘fxÿm~ÿrƒýu†üŽx‰øŽ{‹ó~늅犈劋ŽâŠŽŽàˆ—ŽÞƒ¤Þƒ¤Þƒ¤Þƒ¤Þƒ¤Þƒ¤Þƒ¤Þƒ¤Þƒ¤Þƒ¤ÿv1ÿ‡:ÿ”E$ÿO/ÿžP:ÿŸSFÿŸVQÿžX\ÿ[fÿš^pÿ•cxÿm~ÿ‘qƒûuˆøx‹ôŽ|îŽ~é‚匇‘⋌‘à‹ÞŠ—Ûƒª‘×€±’×€±’×€±’×€±’×€±’×€±’×€±’×€±’×€±’×€±’ÿw1ÿˆ:ÿ•E$ÿžN.ÿŸP9ÿ REÿ UPÿ X[ÿŸZeÿ]oÿšawÿ•k~ú“q„õ’t‰ñ‘xŒî|鎀‘䎄’àŒŒ“Þ‹”“ÛŠœ’؃¯“Ó„¯”Є®•Є®•Є®•Є®•Є®•Є®•Є®•Є®•Є®•Є®•ÿx1ÿ‰:ÿ—E#ÿžM.ÿ O9ÿ¡QDÿ¢TOÿ¢WZÿ¡Zdÿ ]mÿŸ`vúši}ô–p„ï•t‰ë“xæ‘}‘㎅“ÞŒ•Û†¡–Öƒ­–Ó†®–Ї­–͇¬—ʈ¬—ʈ¬—ʈ¬—ʈ¬—ʈ¬—ʈ¬—ʈ¬—ʈ¬—ʈ¬—ʈ¬—ÿy1ÿ‹:ÿ˜E#ÿŸM-ÿ¡N8ÿ¢PBÿ£SMÿ£VXÿ¤Zbÿ£\lû¥_tõ h|ï›pƒé˜t‰ä•yŽß’’ÛŒ’–Õ†£˜Ñ…«™Í‡ª™Ë‰ª™ÉŠª™ÆŠªšÄ‹ªšÄ‹ªšÄ‹ªšÄ‹ªšÄ‹ªšÄ‹ªšÄ‹ªšÄ‹ªšÄ‹ªšÄ‹ªšÿz1ÿŒ:ÿ™F#ÿ L,ÿ¢M7ÿ¤PAÿ¤SLÿ¥VVÿ¦Y`ý§\iö¨`rð¦gzé¡o‚ãœt‰Ý˜|×’”ÑŽ–˜Ì‹ŸšÇ‰¨œÅ‹§œÃŒ¨œÁ¨œ¿Ž¨œ¾Ž¨œ¾Ž¨œ¾Ž¨œ¾Ž¨œ¾Ž¨œ¾Ž¨œ¾Ž¨œ¾Ž¨œ¾Ž¨œ¾Ž¨œÿ|1ÿ:ÿšF"ÿ K,ÿ£M6ÿ¤P@ÿ¥SJÿ¦VTÿ¨Y^ùª\gò«aoëªfwä¨n€Ý¢u‰Õ€Ï˜‰–É”‘šÃ‘šœ¾£ž¼¥Ÿ»¥Ÿ»‘¦ž¹‘¦ž¹‘¦¹‘¦¹‘¦¹‘¦¹‘¦¹‘¦¹‘¦¹‘¦¹‘¦¹‘¦ÿ}1ÿŽ:ÿ›F"ÿ¡K+ÿ¤L5ÿ¥P?ÿ§SIÿ¨VRýªY[ö­\dî­alç®gtß®l€Ö©u‰Î£}‘Çž…—Á™›»––ž¶”  ´“£¡´”£¡´”¤ ´”¤ ³”¥Ÿ³”¥Ÿ³”¥Ÿ³”¥Ÿ³”¥Ÿ³”¥Ÿ³”¥Ÿ³”¥Ÿ³”¥Ÿ³”¥Ÿÿ~1ÿ;ÿœF!ÿ¢J*ÿ¤L4ÿ¦O=ÿ¨SGÿªVPú¬YXò°]`ë±bgã²esÚµj€Ð¯r‰È¨y‘À£—ºŸ‰œ´œ’Ÿ¯šœ¢¬˜¡£­˜¡£­˜¢¢®˜£¡®—¤ ®—¤ ®—¤ ®—¤ ®—¤ ®—¤ ®—¤ ®—¤ ®—¤ ®—¤ ÿ1ÿ;ÿG!ÿ¢I*ÿ¥L3ÿ§O<ÿ©SEÿ«VMö¯YUî²]\ç´bcÞºdsÓ¿hʶo‰Á¯v‘º©~˜³¥†¬¢Ž § ˜£¤ž ¤¥ ¤§œ ¤¨›¢¢©›£¡©›£¡©›£¡©›£¡©›£¡©›£¡©›£¡©›£¡©›£¡©›£¡ÿ€0ÿ‘;ÿžG ÿ£I)ÿ¦L2ÿ¨O:ÿªSBü­VJó²YQëµ^Vã¹abÙÏ`rÎÇfĽm‰»¶s‘³°{˜¬«‚¦¨Š¡ ¦”¤œ¥ž¥ž¢ž¦  Ÿ¥¢Ÿ¡££ž¢¢£ž¢¢£ž¢¢£ž¢¢£ž¢¢£ž¢¢£ž¢¢£ž¢¢£ž¢¢£ž¢¢ÿ0ÿ’;ÿŸG ÿ¤H(ÿ¦L0ÿ©O8ÿ¬R@ø¯VFïµYKè¹^OßÄ^aÓÝ^qÇÏd~½Åjˆ´¾q‘¬¹w˜¥³~Ÿ°‡¡™­¤”¬›¦•©ž¦˜¦ž¦›¤ ¤£¡££¡££¡££¡££¡££¡££¡££¡££¡££¡£ÿ‚0ÿ“;ÿ Gÿ¤H'ÿ§L/ÿªO6ÿ­R<õ²VAì¹YDãÀ]NÚçW`Íä\pÁÚb}·Ïh‡®Èn¦Ât—ž½{—¹ƒ¡‘·Œ¤Œµ—¦‹²ž§­ž¦“ª ¤–¨¡£–¨¡£–¨¡£–¨¡£–¨¡£–¨¡£–¨¡£–¨¡£–¨¡£–¨¡£ÿ„0ÿ•;ÿ¡Fÿ¥H%ÿ¨K,ÿ¬O3û°R8ñµU;ç½XBßÏXMÒïU_ÆìZn»ä`{°Üe†§ÔkŸÏr–—ÊxœÅ€ ‰Ã‰£ƒÁ”¥¿ž¦…¸Ÿ¥Š² ¤¯¡£¯¡£¯¡£¯¡£¯¡£¯¡£¯¡£¯¡£¯¡£¯¡£ÿ…0ÿ–;ÿ¢Eÿ¦H$ÿªK*ÿ®O/÷²R2ì¹T8âÇSEÖëLQÌôT]ÁîZl·å_y®Ýc„¦×h Òm”˜Îr™Ëx‰È¡ƒÇ‰£~Æ“£zÇ £¿¢¢ƒº¢¢ƒº¢¢ƒº¢¢ƒº¢¢ƒº¢¢ƒº¢¢ƒº¢¢ƒº¢¢ƒº¢¢ƒº¢¢ÿˆ0ÿ˜;ÿ¤Dÿ¨H!ÿ¬K&þ°O)òµQ-ç¿P;ØäCIÎíJUÄòPa»ïXl³ç^w¬àb¦Úf‰¡Ôj›Ñn•”Îr™ËwœˆÊ~ž„ɆŸ€ÊŸ|ÊœŸxÉ¥ŸxÉ¥ŸxÉ¥ŸxÉ¥ŸxÉ¥ŸxÉ¥ŸxÉ¥ŸxÉ¥ŸxÉ¥ŸxÉ¥ŸÿŠ0 ÿ›<ÿ¥Cÿ©Gÿ®K!ø³N"ìºN0àÑB?ÐéAMÇðGY½óMdµíTn¯ç[wªá`¦Üd†¡Øh‹›Ôk–Òn”‘Ðs–ŒÏw˜‰Î}™…Î…™‚ÎŽ™}Í–š}Í–š}Í–š}Í–š}Í–š}Í–š}Í–š}Í–š}Í–š}Í–šÿ0 ÿŸ<ÿ§Cÿ«Gÿ°Kò¶K$äÅD4Òå8BÉî?PÀóF\·óLf°ìRo«çXw¨â]}¥ÞbƒŸÛe‡šÙh‹–ÖkŽ‘ÔoŽÓs‘‹Ów’ˆÓ}’†Ó†‘‚Ò‹“‚Ò‹“‚Ò‹“‚Ò‹“‚Ò‹“‚Ò‹“‚Ò‹“‚Ò‹“‚Ò‹“‚Ò‹“ÿ‘0 ÿ£=ÿ©Cÿ®Gù´Ié¾D(Ôâ17Ëì8EÂó?R¹÷E]±òKg«íQn¨èWu¥ä\z¡á_œßb‚˜Ýe…”Ûh‡Úk‰Ùn‹ŠØqŒ‡×v„×|ƒØŒƒØŒƒØŒƒØŒƒØŒƒØŒƒØŒƒØŒƒØŒƒØŒÿ–0 ÿ¦? ÿ¬Cÿ²F ï¹CÖß(+Ìé1:Ãò8G»÷?S´ùE]­ôKe§ïPl¥ëVq¡èZvœå]y˜ã_|•âb~’àe€Žßg‚‹Þjƒ‰Ým„†Ýp…ƒÜt†Üx†Üx†Üx†Üx†Üx†Üx†Üx†Üx†Üx†Üx†ÿœ/ÿ©?ÿ°Cö¶BâÐ+Îç*-Åñ2;¼ø:Hµü@R¯ûF[©öLb£òPgŸïTlšìXo—êZr“é]tç_vŽæbx‹ådy‰äfz†äi{„ãk|âo}âr~âr~âr~âr~âr~âr~âr~âr~âr~âr~ÿ£2ÿ­>ÿ³@êÃ3Ïæ"!Æð,/½÷4;¶ý;F°ÿBOªþHV¤úL\÷Oa˜ôRd”òUg‘ðXjŽïZk‹î]m‰í_n‡ìao…ëcpƒëeq€êgr~éjs|élt|élt|élt|élt|élt|élt|élt|élt|élt|éltÿ©5ÿ²<ï¼6ÑãÆï$"¾÷..·ý79°ÿ>C«ÿDJ£ÿGP›ÿIU•üLY‘úP\ŽùS^‹÷V`‰öXa‡õZc…õ\dƒô]eó_f€óaf~òcg|ñehzñgizñgizñgizñgizñgizñgizñgizñgizñgizñgiÿ¯5÷¸6Óà Èí¾÷(!·ý1,±ÿ95ªÿ>= ÿAC˜ÿDH‘ÿFLÿJO‰ÿMR‡ÿPT„ÿRU‚þTVýVWýXX~üZY|û[Z{û][zú_[xúa\wùb]wùb]wùb]wùb]wùb]wùb]wùb]wùb]wùb]wùb]ÿµ1ÕØ Éì ¿ö!¸ý+±ÿ4(§ÿ70žÿ;6–ÿ>;ŽÿA@ˆÿCC…ÿGE‚ÿJGÿLI}ÿOJ|ÿQKzÿRLyÿTMxÿUMvÿWNuÿXNtÿZOsÿ\Prÿ]Prÿ]Prÿ]Prÿ]Prÿ]Prÿ]Prÿ]Prÿ]Prÿ]Prÿ]PÖÎËé Áõ ¸ü$®ÿ*£ÿ."šÿ2)’ÿ6.‹ÿ:2…ÿ=6€ÿ@8|ÿC:zÿFuÿL?sÿN@rÿO@qÿQApÿRAoÿTBnÿUBmÿWClÿXDlÿXDlÿXDlÿXDlÿXDlÿXDlÿXDlÿXDlÿXDlÿXDÿc. ÿt5ÿ‚=ÿŒF(ÿ’M3ÿ•S>ÿ–XIÿ“[RÿŽ^[ÿŒebÿ‰kgÿ†pkÿƒuoÿyqÿ}sÿ}tÿ{†uÿz‰vÿzŒvûyŽwøy‘wõy”wóy–vðz™vîz›uîz›uîz›uîz›uîz›uîz›uîz›uîz›uîz›uÿc. ÿt5ÿ‚=ÿŒF(ÿ’M3ÿ•S>ÿ–XIÿ“[RÿŽ^[ÿŒebÿ‰kgÿ†pkÿƒuoÿyqÿ}sÿ}tÿ{†uÿz‰vÿzŒvûyŽwøy‘wõy”wóy–vðz™vîz›uîz›uîz›uîz›uîz›uîz›uîz›uîz›uîz›uÿc. ÿt5ÿ‚=ÿŒF(ÿ’M3ÿ•S>ÿ–XIÿ“[RÿŽ^[ÿŒebÿ‰kgÿ†pkÿƒuoÿyqÿ}sÿ}tÿ{†uÿz‰vÿzŒvûyŽwøy‘wõy”wóy–vðz™vîz›uîz›uîz›uîz›uîz›uîz›uîz›uîz›uîz›uÿc. ÿt5ÿ‚=ÿŒF(ÿ’M3ÿ•S>ÿ–XIÿ“[RÿŽ^[ÿŒebÿ‰kgÿ†pkÿƒuoÿyqÿ}sÿ}tÿ{†uÿz‰vÿzŒvûyŽwøy‘wõy”wóy–vðz™vîz›uîz›uîz›uîz›uîz›uîz›uîz›uîz›uîz›uÿe- ÿv5ÿ„=ÿŽF(ÿ”N3ÿ—T>ÿ—XHÿ•[Rÿ‘^[ÿŽebÿ‹jhÿˆplÿ…upÿ‚xrÿ€}tÿ~vÿ|†wÿ{‰wü{Œxùzxõz’xòz•xðz˜xí{›wë|wë|wë|wë|wë|wë|wë|wë|wë|wÿg- ÿx4ÿ†=ÿF(ÿ–N2ÿšT=ÿ™WHÿ—ZRÿ”][ÿbbÿiiÿŠonÿ‡trÿ…xtÿ‚}wÿ‚xÿ}‡yü}Šzø|Ž{ô|‘{ð{•{í|˜{ë|›zè} yæz¨zæz¨zæz¨zæz¨zæz¨zæz¨zæz¨zæz¨zæz¨zÿi- ÿz4ÿˆ=ÿ’F'ÿ™N2ÿ›S<ÿšVGÿ™YQÿ–\Zÿ_bÿŽhiÿnoÿŠssÿ‡xvÿ„}yÿ‚zýˆ|÷~Œ}ó}}ï}”}ë|˜}è}}æ}¡|ây­}àw´~àw´~àw´~àw´~àw´~àw´~àw´~àw´~àw´~ÿj, ÿ|4ÿŠ=ÿ”F&ÿ›O1ÿœR;ÿœUFÿ›XPÿ˜[Zÿ”^bÿfiÿmoÿŒstÿŠwxü‡|zù„|÷ˆ~òŽî~“ê}˜€æ}žã}¤~á{®Ýv¸€Ûu¼Ûu¼Ûu¼Ûu¼Ûu¼Ûu¼Ûu¼Ûu¼Ûu¼ÿl, ÿ~4ÿŒ=ÿ–F&ÿO0ÿžQ:ÿTEÿœWOÿ›[Yÿ—^aÿdiÿmoýŽruùuyöŠ{|ò†~ðƒ‰€í€‘è~˜‚ä}¡‚á|©Þ|²Úwº‚Õw¿ƒÓw¾„Ów¾„Ów¾„Ów¾„Ów¾„Ów¾„Ów¾„Ów¾„Ów¾„ÿn, ÿ4ÿŽ=ÿ˜G%ÿžN/ÿŸP9ÿŸTCÿžWNÿZWÿ›]`ÿ–bhü‘lo÷quóuzïz~뉀脋‚倖ƒá|¥„Ýz²„Úyº„Õy¾„Ñz½†Í{¼‡Ë{¼‡Ë{¼‡Ë{¼‡Ë{¼‡Ë{¼‡Ë{¼‡Ë{¼‡Ë{¼‡Ë{¼‡ÿo+ ÿ4ÿ=ÿ™G$ÿŸM.ÿ P8ÿ SBÿ WLÿŸZVÿž]_üœ`g÷—jnñ“quì’tzçy㋃‚ß„‘…Û}£‡×y±ˆÓyºˆÏ{»ˆÌ}»ˆÉ~º‰Æ¹‰Ä¹ŠÄ¹ŠÄ¹ŠÄ¹ŠÄ¹ŠÄ¹ŠÄ¹ŠÄ¹ŠÄ¹Šÿq+ ÿƒ3ÿ‘=ÿ›G$ÿ L-ÿ¡P6ÿ¢S@ÿ¢VJÿ¢YSþ¡\]÷¢_eñhmë˜ptå•uzà‘|€Û‰‹„Õƒš‡Ð€£ŠÌ~¬‹É~·ŒÆ€·ŒÄ‚·‹Á‚·Œ¿ƒ·Œ¾ƒ·Œ¾ƒ·Œ¾ƒ·Œ¾ƒ·Œ¾ƒ·Œ¾ƒ·Œ¾ƒ·Œ¾ƒ·Œ¾ƒ·Œÿr+ ÿ„3ÿ’=ÿœG#ÿ¡L,ÿ¢P5ÿ£S>ÿ£VHÿ¤YQù¥\Zò§_cì£gkåžorÞ˜v{Ø’ƒÑŒ†Ì‰•ŠÇ†ŸŒÃ„¨Ž¿ƒ³½…´»†µŽº‡´¸‡´Ž·‡µŽ·‡µŽ·‡µŽ·‡µŽ·‡µŽ·‡µŽ·‡µŽ·‡µŽ·‡µŽÿs+ ÿ…3ÿ”=ÿžH"ÿ¡L+ÿ£O4ÿ¤S=ÿ¥VEü¦YNõ¨\Wîª`_çªggߤmrמw{Ï—‚É“ˆˆÄ‘Œ¿›ºŠ¤¶‰®’´Š±’´Š²‘³‹²‘²‹³±‹³±‹³±‹³±‹³±‹³±‹³±‹³±‹³±‹³ÿt* ÿ‡3ÿ•=ÿŸH!ÿ¢L*ÿ¤O2ÿ¥S;ÿ§VCø©YKñ¬[Sé­a[â®egÙªlrФt|È|ƒÂ™„‰¼•·’—²‘¡“®«”¬¯”¬°”¬°“¬±’¬±’¬±’¬±’¬±’¬±’¬±’¬±’¬±’¬±’ÿv* ÿˆ3ÿ–=ÿ H!ÿ£K(ÿ¥O0ÿ§R8þ©V@õ«YHí°\Oå±aWݵcfÒ²jrÉ©q|Á£yƒ»Ÿ‰´›ŠŽ¯˜“’ª–”¦•§–¤”­–¥”®–¦“®•¦“¯”¦“°“¦“°“¦“°“¦“°“¦“°“¦“°“¦“°“¦“°“¦“°“ÿw* ÿ‰3ÿ—=ÿ¡H ÿ¤K'ÿ¦O/ÿ¨R6úªU=ñ®XCé³\Iá·_WØÃ`e͸grðn|»©v„´¥~Š®¡†¨ž“£œ™•Ÿ›¤—œ™¬˜ž˜¬—Ÿ˜­– —®•¡–¯”¡–¯”¡–¯”¡–¯”¡–¯”¡–¯”¡–¯”¡–¯”¡–¯”ÿx* ÿŠ3ÿ™>ÿ¢Gÿ¤K&ÿ§O-ÿ©R3÷¬U9î±X?æ·\DÝÂ[UÑÊ^dÇÀeq½·l{µ°sƒ­«zЧ¨ƒ¡¥Œ“œ£––—¡ ˜”Ÿª™–«™˜œ¬˜š›­–›š®•›š®•›š®•›š®•›š®•›š®•›š®•›š®•›š®•ÿy) ÿŒ3ÿš>ÿ¢Gÿ¥K$ÿ¨O+þ«R0ó¯U5êµX8â½ZCØÝTTÌÒ\cÁÈcp·¿j{®¸pƒ§³wŠ ¯š¬ˆ”•ª’—¨™‹¦¨š¤ªš¢«˜“ ­—•Ÿ®–•Ÿ®–•Ÿ®–•Ÿ®–•Ÿ®–•Ÿ®–•Ÿ®–•Ÿ®–•Ÿ®–ÿ{) ÿ3ÿœ>ÿ£Gÿ¦K"ÿ©O(ú­R,ð²U0ç»X1ÞÌVAÑäSSÆÜZbºÑao°Ègz¨Án‚ ¼t‰™¸|“µ…“²—‡°š™‚®¥šƒ«ªš‡¨«™‹¦¬—¤­–¤­–¤­–¤­–¤­–¤­–¤­–¤­–¤­–ÿ}) ÿ3ÿž>ÿ¤Gÿ§K ÿ«N$ö¯R'ì¶T(âÃU0×éL?ËêQQ¿åY`´Ü_m©Óex¡Ìk™Çrˆ’ÃyŽ‹À‚’„½Œ–~»–˜y¹¢™x¶ª™}±«˜‚­¬—…«­–…«­–…«­–…«­–…«­–…«­–…«­–…«­–…«­–ÿ) ÿ‘3ÿ @ÿ¥Gÿ©Kþ­N ñ²Q!ç»R(Ý×J3ÐìL?ÄñPO¹îW^®ç]k¤ácvšÛi‘Õo†ŠÑv‹‚Î|ˉ“vÉ”–qÇ —mƬ—s¾­–x¸®–{´®•{´®•{´®•{´®•{´®•{´®•{´®•{´®•{´®•ÿ( ÿ”3 ÿ¢Aÿ§Gÿ«Kù°Nì¶OáÆI+ÓçA7ÉïIC¾öPN²÷V\¨ñ\h êas˜äf{ßl‚ˆÛrˆ€ØyŒzÕ‚tÓŒ’oÒ—“jÒ¤“hа“mǰ“p°“p°“p°“p°“p°“p°“p°“p°“p°“ÿ…(ÿ—2 ÿ¤Cÿ©Gÿ­Jó³Lå½H!Õâ8.Ìì?;ÂôFG·úMR«úR]¥óZfŸí`n™çew’âi}Šßm‚„Üs†~ÙyŠxØŒtÖŠpÖ”mÖŸgÖ¬ŽeÔµŽeÔµŽeÔµŽeÔµŽeÔµŽeÔµŽeÔµŽeÔµŽeÔµŽÿˆ'ÿ›3 ÿ¦C ÿ«Gû°Ië¸GÙÝ/%Îé72Äò>>»ùDJ±ýKU¨ùP^¢óWfî]m˜ébs’æfx‹ãj|†án€ßs‚}Þy„yÝ€…v݈…sÝ‘…oÜ›†kÛ¡‡kÛ¡‡kÛ¡‡kÛ¡‡kÛ¡‡kÛ¡‡kÛ¡‡kÛ¡‡kÛ¡‡ÿ'ÿŸ5ÿ©B ÿ®F ó´FãÈ7Ðæ.(Æð65½ø=AµýDL¬ÿJU¤ùO^ ôVe›ðZj”ì^oêbsŠçfv†åjyän{~âr}zâx~wá}uá„sáqâ”~qâ”~qâ”~qâ”~qâ”~qâ”~qâ”~qâ”~qâ”~ÿ’&ÿ£8ÿ¬Bü±Dè½<Òã%Èî.+¿ö77·ü=B¯ÿDL¨ÿJT¡úO\œöTa–óXf‘ð\jŒî_mˆìcp„êfr€éit}èmuzçqwwæuxuæzxræxqæ†xqæ†xqæ†xqæ†xqæ†xqæ†xqæ†xqæ†xqæ†xÿ™%ÿ©<ÿ¯Aï¸=ÔàÉì& Àõ0,¸ü88±ÿ>BªÿEJ¥ÿJRœýMW–úR\‘÷V`õYc‰ó\f†ò_hƒðbi€ïek}îhlzíknwíoouìrprìwpqë{qqë{qqë{qqë{qqë{qqë{qqë{qqë{qqë{qÿŸ&ÿ­<ù´<×Ü ËêÁô)!¹û2-²ÿ97¬ÿ@?¥ÿEGœÿHM”ÿKRÿOU‹ýSXˆûV[…ùY]‚ø\_€÷_`}öaa{õdcyôfdvôietólfróofpòrgpòrgpòrgpòrgpòrgpòrgpòrgpòrgpòrgÿ¦$ÿ±9ãÆ#Íè Âó!ºû+!³ÿ4+­ÿ<4£ÿ?;šÿBA“ÿEFŒÿIJˆÿLM…ÿPP‚ÿSRÿUS}ÿXU{þZVyþ]Wwý_XuüaYtüdZrûf[púi[núk\núk\núk\núk\núk\núk\núk\núk\núk\ÿ¯ð»,Ïå Ãò ºú%³ÿ.«ÿ4(¡ÿ8/˜ÿ;5ÿ?:ŠÿB>„ÿFAÿID~ÿLF{ÿOGyÿRIwÿTJvÿVKtÿXLrÿZMqÿ\Moÿ^Nnÿ`OlÿcPkÿePkÿePkÿePkÿePkÿePkÿePkÿePkÿePkÿePØÀÐÒÅð¼ú ²ÿ%§ÿ*žÿ/#•ÿ4)ÿ8.‡ÿ;2€ÿ?5|ÿB8yÿF:wÿI;uÿKpÿQ?nÿS@mÿUAlÿWAjÿYBiÿ[Chÿ]Cgÿ_Dgÿ_Dgÿ_Dgÿ_Dgÿ_Dgÿ_Dgÿ_Dgÿ_Dgÿ_DÎÆÂÕ¸ý ®ÿ £ÿšÿ$‘ÿ)‰ÿ.!‚ÿ3%|ÿ7)wÿ:+tÿ>-qÿA/oÿD0mÿF1lÿH2jÿJ3iÿL3hÿN4gÿP5fÿQ5eÿS6cÿU6bÿW7aÿY7aÿY7aÿY7aÿY7aÿY7aÿY7aÿY7aÿY7aÿY7ÿX+ÿh0ÿu7ÿ€? ÿ†G*ÿ‰M4ÿ‰R=ÿ…WFÿ‚^MÿeSÿ|lXÿyr\ÿvx_ÿt}aÿrƒbÿpˆcÿoŽdÿn‘eÿn”eÿn˜eþn›eúmŸe÷m£eôn§dñn«dðn­dðn­dðn­dðn­dðn­dðn­dðn­dðn­dÿX+ÿh0ÿu7ÿ€? ÿ†G*ÿ‰M4ÿ‰R=ÿ…WFÿ‚^MÿeSÿ|lXÿyr\ÿvx_ÿt}aÿrƒbÿpˆcÿoŽdÿn‘eÿn”eÿn˜eþn›eúmŸe÷m£eôn§dñn«dðn­dðn­dðn­dðn­dðn­dðn­dðn­dðn­dÿX+ÿh0ÿu7ÿ€? ÿ†G*ÿ‰M4ÿ‰R=ÿ…WFÿ‚^MÿeSÿ|lXÿyr\ÿvx_ÿt}aÿrƒbÿpˆcÿoŽdÿn‘eÿn”eÿn˜eþn›eúmŸe÷m£eôn§dñn«dðn­dðn­dðn­dðn­dðn­dðn­dðn­dðn­dÿZ+ÿi0ÿw7ÿ? ÿˆF*ÿ‹M4ÿ‹R=ÿˆWFÿ„]NÿdTÿ~kYÿ{q]ÿxw`ÿu}bÿsƒcÿq‰eÿoŽeÿo’fÿo•gÿo™gûng÷n¡gôn¥fòo©fïo®eîo¯eîo¯eîo¯eîo¯eîo¯eîo¯eîo¯eîo¯eÿ\*ÿl/ÿz7ÿ„? ÿ‹F)ÿŽM3ÿR=ÿŒWFÿ‡[Nÿ„cTÿjZÿ}p^ÿzwaÿw}dÿuƒfÿs‰gÿqhÿq“iÿp—iúp›iöp ióo¥iðp©híp®hêp´gén¸hén¸hén¸hén¸hén¸hén¸hén¸hén¸hÿ])ÿn/ÿ|6ÿ‡>ÿŽF)ÿ‘M2ÿ’R<ÿVEÿŒZNÿ‡bUÿ„i[ÿ€o_ÿ}vcÿz|fÿx‚hÿuˆiÿsŽjÿr”kúq™köqžkòp¤kîpªkëq¯jéq´iån¾känÁkänÁkänÁkänÁkänÁkänÁkänÁkänÁkÿ_)ÿp. ÿ~6ÿ‰>ÿF(ÿ”M2ÿ•R;ÿ”WEÿZMÿŠ`Uÿ‡h[ÿ„n`ÿ€udÿ}{gÿziþx‡küuŽlús–mõrœmñq£níqªméq°mçr¶läp¿màlÄnßkÆoßkÆoßkÆoßkÆoßkÆoßkÆoßkÆoßkÆoÿa(ÿr. ÿ6ÿ‹>ÿ“F'ÿ—M1ÿ˜S:ÿ˜WDÿ•[LÿŽ^Tÿ‹f[ÿˆmaÿƒteý€yiú}€køz‡mõwŽnóu—oðr¢përªpçq²oärºoápÁoÞmÆpÙlÌrØlÏrØlÏrØlÏrØlÏrØlÏrØlÏrØlÏrØlÏrÿc'ÿt- ÿƒ6ÿŽ>ÿ•F&ÿ™N/ÿ›T9ÿšWBÿ˜ZKÿ”^Tÿd[ÿ‹laû‡sf÷„xjó€mð}‡oíyqëv›rèsªräq¶rár¿qÝpÄqÙnËsÔnÍtÐoÌuÏpÌvÏpÌvÏpÌvÏpÌvÏpÌvÏpÌvÏpÌvÏpÌvÿe'ÿv- ÿ…5ÿ>ÿ˜G%ÿœO.ÿS7ÿœWAÿ›ZJÿ˜]Rþ‘bZùkaôŒrfïˆwkìƒoèˆqåz”sáv¢tßr±uÛo½v×nÌvÓqÌuÏrËwËsÊxÈsÉyÇtÉyÇtÉyÇtÉyÇtÉyÇtÉyÇtÉyÇtÉyÇtÉyÿf&ÿx- ÿ‡5ÿ’>ÿšH$ÿžP-ÿžS6ÿžV?ÿYHþ›\Pø—`Yó’j`íqfèvlã†pߌtÛyšvÖu¦xÒt°yÏs¼zÌsÈzÈuÈzÅvÇ{ÂwÇ{ÀxÆ|¿xÆ|¿xÆ|¿xÆ|¿xÆ|¿xÆ|¿xÆ|¿xÆ|¿xÆ|ÿh%ÿz, ÿ‰5ÿ”>ÿœI#ÿŸO+ÿ S4ÿ V<ÿ YEùŸ\Nó_Ví™h^æ”qeávlÛ‡„rÕvÐ~˜yÌ{¡{Èy«}Äx¶~ÁwÄ~¾zÄ~¼{Ä~º{Ä~¸|Ä~·|Ä~·|Ä~·|Ä~·|Ä~·|Ä~·|Ä~·|Ä~·|Ä~ÿi%ÿ|, ÿ‹5ÿ–>ÿžJ"ÿ O)ÿ¡R2ÿ¢V:ü¢YBô¢\Kí£^SçŸg[à™oeÙ’xmÒŒ‚s̈‹xÇ„”|Â~¾§€º~±·}¾‚µ~Á´Á²€Á±€Á°€Á°€Á°€Á°€Á°€Á°€Á°€Á°€Áÿk$ÿ}, ÿ5ÿ˜?ÿ K ÿ¡O(ÿ£R/ÿ¤U7÷¥X?ð¦[Gè©^Oá¥eZÙŸmeИvnÊ“~tÄŽ‡z¾Š~º‡™µ…£ƒ±„­„®ƒ¹„¬ƒ¾„¬„¿„«„¿ƒª„¿ƒª„Àƒª„Àƒª„Àƒª„Àƒª„Àƒª„Àƒª„Àƒª„Àƒÿl$ÿ+ ÿŽ5ÿš@ÿ Kÿ¢O&ÿ¤R-ü¥U4ó§X<ëª[Cä­^LÜ«cZÒ¥keÊžsn˜{u¼”ƒ{·Œ²Ž•‚­‹Ÿ…©Š©†¥‰µ‡¤ˆ¼‡¤‰¼†¤‰½…¤‰¾…¤ˆ¾„¤ˆ¾„¤ˆ¾„¤ˆ¾„¤ˆ¾„¤ˆ¾„¤ˆ¾„¤ˆ¾„ÿm$ÿ€+ ÿ4ÿ›Aÿ¡Kÿ£N$ÿ¥R+ù§U1ðªX8è¯Z>ß³\KÕ³`YÌ«heäpn¼žxuµš€{¯–‰€ª”’„¦‘œ†¡¦ˆžŽ²‰œŽº‰ºˆž»‡ž¼†žŒ½†žŒ½†žŒ½†žŒ½†žŒ½†žŒ½†žŒ½†žŒ½†ÿn#ÿ‚+ ÿ‘4ÿAÿ¢Kÿ¤N"ÿ¦R(õ©U.ì­W3ä´Y:Ú¿WJϹ^XƱfd½ªmnµ¤uv® }|©œ…£™Ž…ž—˜ˆš•£Š–”®‹”“¸‹–’¹Š—’º‰˜‘»‡™‘¼‡™‘¼‡™‘¼‡™‘¼‡™‘¼‡™‘¼‡™‘¼‡™‘¼‡ÿp#ÿ„+ ÿ“4ÿžBÿ£Kÿ¥N ü¨Q%ò«T*é±W-àºW9ÔÊSIÊÀ\WÀ¸dc·±km¯«ru¨¦z|¢£‚œ ‹…—ž•‰“œ ‹Žš«ŒŒ™·ŒŽ—·‹–¹Š’•ºˆ“•»ˆ“•»ˆ“•»ˆ“•»ˆ“•»ˆ“•»ˆ“•»ˆ“•»ˆÿq"ÿ…* ÿ•5ÿŸCÿ¤Kÿ§NùªQ"î®T%å·V'ÜÉP7ÏÑQHÄÇZVºÀbc±¸im©²ou¢­w|›ª–§ˆ†¤’‰‹¢Œ†¡¨‚Ÿ¶…¶Œˆ›¸‹‹š¹‰Œ™º‰Œ™º‰Œ™º‰Œ™º‰Œ™º‰Œ™º‰Œ™º‰Œ™º‰ÿs"ÿ‡* ÿ–5ÿ¡Eÿ¥Jÿ¨Nõ¬Qê²Sá¿S#ÖâG6ÉÚOF¾ÏXU´È`a«Áfl¢»mt›¶t{•²|ޝ„…ˆ¬Ž‰ƒª™Œ~¨¥z§²|¤¶€¢·‹ƒŸ¹Š„ž¹‰„ž¹‰„ž¹‰„ž¹‰„ž¹‰„ž¹‰„ž¹‰„ž¹‰ÿu!ÿ‰* ÿ˜6 ÿ£Fÿ¦JþªMñ¯Pæ¸RÝÐK!ÏçG4ÃâNE·ÚVS­Ò]`¤ËdjœÅks”Àqz¼y€†¹„€¶‹ˆz´–‹u²¢Œq°¯r­·Œv©¸‹z¦¹Š|¥¹‰|¥¹‰|¥¹‰|¥¹‰|¥¹‰|¥¹‰|¥¹‰|¥¹‰ÿw!ÿŒ)ÿ›7 ÿ¤Fÿ¨Jù¬Mì³OáÁKÔåA#ÊìH2½ëMB±äTQ§Þ[]Øbh•ÑhpŒÍow…Év}~Å‚xȆrÀ“‰m¾ Ši½¬‹hº¸Šl´¹Šq¯º‰r­ºˆr­ºˆr­ºˆr­ºˆr­ºˆr­ºˆr­ºˆr­ºˆÿz ÿ)ÿ9 ÿ¦F ÿªJó¯L æ¸JØà5Íé?&ÃñH1·óM?«îSN¡êZZ˜å`eŽáfm…Ýmt}ÙtzvÕ|~oÒ†‚jБ…eΞ‡aÌ«‡^ʺ‡bļ†g¼¼†hº¼†hº¼†hº¼†hº¼†hº¼†hº¼†hº¼†hº¼†ÿ~ÿ’)ÿ :ÿ¨F ý­I í³I àÉ;Ðæ4Æï=*¼öE5±ûL@¥ùRKžöYV—ó_`ïdhƒìjozéqtsåxylã|gáŒbà˜]ߦXÞµXØÁ\ÍÀ‚^ÊÀ‚^ÊÀ‚^ÊÀ‚^ÊÀ‚^ÊÀ‚^ÊÀ‚^ÊÀ‚^ÊÀ‚ÿ‚ÿ–*ÿ¤=ÿªEõ°Gå¼? Òâ*Éí4"¿õ<.¶üC9¬ÿIC¡ÿOM›ÿWU•ù]]õbc…ñgi~îlmxërqrèyulçwhæ‹ydå–yaå¢y]æ®yWä¿{VàÁ{VàÁ{VàÁ{VàÁ{VàÁ{VàÁ{VàÁ{VàÁ{ÿˆÿš+ÿ¨@ÿ­DìµAÕÞËê*Áó3%¸û;1¯ÿB;§ÿHEžÿMM˜ÿTT‘ûYZ‹÷^`…ôcdòghzðlkuîrmpìxolëpiëˆqfë’qcëœp`ë¨q^ê­r^ê­r^ê­r^ê­r^ê­r^ê­r^ê­r^ê­rÿŽÿŸ,ÿ«@õ±@ßÍ%Íç!Ãò+ºú4(²ÿ;2ªÿB<£ÿHD™ÿLK“ÿQQþVV‡û[[‚ù_^~÷cazõgcvókeròpgnñvikð|jhðƒjeð‹kbð•jað™jað™jað™jað™jað™jað™jað™jað™jÿ”ÿ¤+ÿ®=é¼2Ïä Åð#»ù,´ÿ5)¬ÿ<2¦ÿB;œÿFB“ÿIHÿNM‡ÿSQƒÿWTþ[W{ü_Yxûb[uùf]røj_o÷n`lösaiöxbfõ}ccõ…cbõˆcbõˆcbõˆcbõˆcbõˆcbõˆcbõˆcbõˆcÿœÿ«'ñµ5Òá Æî ½ø%´ÿ.®ÿ6(¦ÿ<1œÿ?8“ÿC>‹ÿGC†ÿLG‚ÿPJ~ÿTL{ÿWOxÿZPuÿ^RrÿaTpÿdUmþhVkýkWiýoXfüsYcüyZbü{Zbü{Zbü{Zbü{Zbü{Zbü{Zbü{Zbü{Zÿ¥ù¸ÔÒ Èì¾÷ µÿ'®ÿ0¤ÿ4&šÿ8-’ÿ<3Šÿ@8„ÿD<ÿH?{ÿLAxÿPCvÿSEsÿVGqÿYHoÿ\Imÿ_JkÿbKiÿeLgÿhMeÿkNbÿoOaÿqOaÿqOaÿqOaÿqOaÿqOaÿqOaÿqOaÿqO÷² ÑÄÈØ¿öµÿ ªÿ%¡ÿ+˜ÿ0"ÿ5(ˆÿ9,ÿ=0|ÿA4xÿE6uÿI8rÿL:pÿO;nÿQhÿY?gÿ\@eÿ_AcÿaBbÿdC`ÿhC_ÿiD_ÿiD_ÿiD_ÿiD_ÿiD_ÿiD_ÿiD_ÿiDÓ¾Èʻ۱ÿ§ÿ ÿ”ÿ%Œÿ+„ÿ0!}ÿ4%wÿ8(sÿ<*pÿ@,nÿD.kÿG/iÿJ1hÿL2fÿN2eÿQ3cÿS4bÿV5`ÿX5_ÿ[6]ÿ]7[ÿ`7[ÿa8[ÿa8[ÿa8[ÿa8[ÿa8[ÿa8[ÿa8[ÿa8ÊĽѭݢú™ÿÿ ‡ÿÿ%yÿ*sÿ/nÿ3jÿ7!gÿ;"eÿ>$cÿA%bÿC&`ÿE&_ÿH']ÿJ(\ÿL([ÿO)YÿQ*XÿS*WÿV+UÿX+UÿY,UÿY,UÿY,UÿY,UÿY,UÿY,UÿY,UÿY,ÿR,ÿZ, ÿh2ÿr:ÿxA!ÿ{H*ÿzN3ÿwV:ÿu^@ÿrfFÿomJÿktMÿi|OÿfƒQÿdŠRÿb‘Sÿ`˜Sÿ_žTÿ_£Tÿ_§Tÿ_¬Tÿ_±Tü_¶Tù`ºS÷`¿Sô`ÅRô`ÅRô`ÅRô`ÅRô`ÅRô`ÅRô`ÅRô`ÅRÿR,ÿZ, ÿh2ÿr:ÿxA!ÿ{H*ÿzN3ÿwV:ÿu^@ÿrfFÿomJÿktMÿi|OÿfƒQÿdŠRÿb‘Sÿ`˜Sÿ_žTÿ_£Tÿ_§Tÿ_¬Tÿ_±Tü_¶Tù`ºS÷`¿Sô`ÅRô`ÅRô`ÅRô`ÅRô`ÅRô`ÅRô`ÅRô`ÅRÿS+ÿ[+ ÿj2ÿt:ÿzA!ÿ}H*ÿ|N2ÿyT:ÿv]AÿseFÿplJÿmtNÿj{PÿgƒRÿeŠSÿcTÿa—Tÿ`žUÿ`£Uÿ`¨Uÿ`­Uý`²Uú`·U÷a¼TôaÁTñaÈSñaÈSñaÈSñaÈSñaÈSñaÈSñaÈSñaÈSÿU+ÿ^+ ÿl1ÿv9ÿ}@!ÿ€G*ÿ€M2ÿ|S:ÿy[AÿvdGÿskKÿosOÿlzQÿjSÿhˆUÿfVÿd–VÿbŸWÿa¤WÿaªWýa¯WùbµWöb»WóbÀVðbÆVíbÍUíbÍVíbÍVíbÍVíbÍVíbÍVíbÍVíbÍVÿW*ÿ`* ÿo1ÿy8ÿ€@ ÿƒF)ÿ„M2ÿR:ÿ|ZAÿybGÿvjLÿrqPÿoySÿm€Uÿj‡WÿiŽXÿf•XÿdžYÿc¦Yýc¬Yùc²Yõc¹Yñc¿YïdÅXìdËWébÎYébÎYébÎYébÎYébÎYébÎYébÎYébÎYÿX)ÿc)ÿq0ÿ|8ÿƒ? ÿ†F)ÿ‡L1ÿ…R:ÿXAÿ}`HÿyhMÿvpQÿrwTÿoWÿm†XÿkZÿi•[ÿfž[ýd©[ød¯\ôd·[ðd¾[íeÅZêfËYçdÎ[äaÑ\ãaÑ\ãaÑ\ãaÑ\ãaÑ\ãaÑ\ãaÑ\ãaÑ\ÿZ(ÿe(ÿt0ÿ7ÿ†>ÿŠF(ÿ‹M0ÿŠR9ÿ…WAÿ€_Hÿ}gMÿynRÿvvVÿs}Xÿp„ZünŒ\úk•]øiŸ]öf«^óeµ^îe½^ëfÆ]çgË\ädÎ]ácÒ_ÝbØ`ÝbÙ`ÝbÙ`ÝbÙ`ÝbÙ`ÝbÙ`ÝbÙ`ÝbÙ`ÿ]'ÿh(ÿw/ÿ‚7ÿ‰>ÿŽF'ÿM/ÿR8ÿ‹W@ÿ…\GÿeNÿ}mSþytWúv|Z÷sƒ\õq‹^ón•_ðk¡`îi­`ìf½`ègÇ`ägË_áfÐ_ÝeÖaÙdÝcÓeÝdÓeÝdÓeÝdÓeÝdÓeÝdÓeÝdÓeÝdÓeÝdÿ_'ÿj'ÿy.ÿ…6ÿ?ÿ‘G%ÿ“N.ÿ“S6ÿ‘W?ÿ‹[Fÿ†cMû‚kS÷}sXóz{[ðwƒ^ísŒ`êp—bçm£båj±câi¾bßgÊbÜgÕbÖfÜdÒgÜeÎhÛfÊiÚgÊiÚgÊiÚgÊiÚgÊiÚgÊiÚgÊiÚgÊiÚgÿa&ÿm&ÿ|.ÿˆ6ÿ?ÿ•H$ÿ—O,ÿ—T5ÿ–X=ÿ’[EùŠaLô†jSï‚rXë~z\çzƒ`äuŽbáqšdÞn¦fÚk°gÖi¿gÓhÍhÐiÚgÌkÙhÈkØiÅl×jÂmÖkÂmÖkÂmÖkÂmÖkÂmÖkÂmÖkÂmÖkÂmÖkÿb%ÿo&ÿ- ÿ‹6ÿ“@ÿ˜I"ÿšP*ÿœU2ÿ›Y;ú˜\Có‘_KíŒiRè†rXã‚z]ß|…bÚweÖs›hÒq¤jÎo®kËn¹lÈmÇlÄnÕlÁoÕl¾pÔm¼qÓn¹qÓn¹qÓn¹qÓn¹qÓn¹qÓn¹qÓn¹qÓn¹qÓnÿd$ÿq%ÿ- ÿ7ÿ•AÿšJ!ÿR(ÿžU0üX8ôœ[@í˜^Hç“gPápXÛ†y_Õ€„dÐ|hËy–kÇwŸmÄu©oÀt´p½sÁpºrÑp·tÑpµuÑq³uÐq²vÑq±vÑq±vÑq±vÑq±vÑq±vÑq±vÑq±vÑqÿf$ÿs$ÿƒ, ÿ7ÿ—BÿKÿŸR&ÿ U-÷ X5ï [=èŸ^Eà™eOÙ’nXÒŒw`̇€fǃ‰jÂ’n¾}›pº{¤r¶y¯s³x¼t¯xËt®yÎt­yÎt«zÎtªzÎsªzÎsªzÎsªzÎsªzÎsªzÎsªzÎsªzÎsÿg#ÿu$ÿ…, ÿ‘7ÿ™CÿŸMÿ¡Q#û¢U*ò¢W1ê£Z9â¤]BÚŸcNјkXÊ’t`Ä|g¾‰…lº†Žoµƒ—r±¡u­«v©~·w¦}Æw¥~Ëw¥~Ëv¤~Ìv¤~Ìu¤~Ìu¤~Ìu¤~Ìu¤~Ìu¤~Ìu¤~Ìu¤~Ìuÿi#ÿw#ÿ‡, ÿ“8ÿ›Dÿ Nÿ¢Q!÷£T'î¥W-æ¨Y4ݪZAÓ¥`NËžiXØqa½“yg·m²ŒŠq­‰“t©‡w¥…§y¡ƒ³zžƒÂzƒÈyƒÉyžƒÊxž‚Ëwž‚Ëwž‚Ëwž‚Ëwž‚Ëwž‚Ëwž‚Ëwž‚Ëwÿj"ÿx#ÿ‰, ÿ•8ÿEÿ¢Nþ£Qó¥T#ê¨V)á¬X1زT@ͪ]MŤfX½žna¶™vh°•~m«’‡r¦v¡šx‹¤{š‰°|–ˆ¾|–ˆÆ{–‡Ç{—‡Èz˜†Éx˜†Éx˜†Éx˜†Éx˜†Éx˜†Éx˜†Éx˜†Éxÿk!ÿz"ÿ‹, ÿ—9ÿŸFÿ£Nû¥Qð¨Sæ¬U$Ý´S0Ò¸R?Ȱ[L¿©dW·¤l`°Ÿshª›{n¤˜„rŸ•wš“–z–‘¡|’¬}»~ŽŒÅ}ŒÆ|‹Ç{’ŠÈz’ŠÈz’ŠÈz’ŠÈz’ŠÈz’ŠÈz’ŠÈz’ŠÈzÿm!ÿ|"ÿ- ÿ˜: ÿ¡Gÿ¤M÷§PìªRã±TÙÆG.Ì¿P>¶YK¹°bV±ªi`ª¥qg£¡xnžžs˜›‰w“™“{–ž}Š”©‡“·…’È‘Ä~‰Æ|‹Ç{‹Ç{‹Ç{‹Ç{‹Ç{‹Ç{‹Ç{‹Ç{ÿo ÿ~!ÿ-ÿš: ÿ¢Iÿ¥Mó©Pè®QÞ¹OÓÏD-ÇÅN<¼½WJ³¶_U«±g_¤¬ng¨vn—¥~s‘¢†xŒŸ{‡›~‚›¦€~™´€|˜Â€–•Å}„“Æ|„“Æ|„“Æ|„“Æ|„“Æ|„“Æ|„“Æ|„“Æ|ÿp ÿ€!ÿ‘-ÿœ; ÿ¤I ý§Mï«Oä³OÚÎBÍÖB+ÁÍL;¶ÅUH­¾]T¥¹e^ž´lf—°sm¬{sŠ©ƒw„¦{¤˜~z¢¤€v¡±s Â€wÃz›Ä~}˜Æ|}˜Æ|}˜Æ|}˜Æ|}˜Æ|}˜Æ|}˜Æ|}˜Æ|ÿrÿ‚ ÿ“.ÿž< ÿ¥I ø©L ë®M à¼K Óâ9ÇßA)»ÖJ9°ÎSG§È[RŸÂc\—¾ie¹pl‰µxq‚²€v|¯Šzw­•}r«¡n©®€k¨¾€m¥Ãq¢Ä~uŸÆ|uŸÆ|uŸÆ|uŸÆ|uŸÆ|uŸÆ|uŸÆ|uŸÆ|ÿuÿ… ÿ•.ÿ¡>ÿ§Ió¬Kæ´JÛØ5 Íç;ÁçA'µàI6©ÙQD ÒYP˜Í`ZÉgbˆÅniÁuo{¾~tt»‡xo¹’{j·Ÿ}fµ«~c³»~d°Å}h«Å}l§Æ|l§Æ{l§Æ{l§Æ{l§Æ{l§Æ{l§Æ{l§Æ{ÿxÿˆÿ˜/ÿ£@þ©Hí¯HàÀ>Ñã/Çì;¼ïC$¯êH3¤äPAšàWM‘Û^WˆÖe_€ÒlfyÏslsÌ{pmÉ…tgÇwbÅœz^é{[Á¹{Z¾Èz^¸Èzb²Èyb²Èyb²Èyb²Èyb²Èyb²Èyb²Èyb²Èyÿ|ÿŒÿœ/ÿ¦B÷¬FæµBÔß" Êê/Àò9¶öB%«ôJ0žðO=–ìVIŒé\RƒæcZ{ãjasáqglÞykf܃o`ÚŽr[×›tWÔ¨uSÒ¸uQÐËuTÉÍuXÁÌvXÁÌvXÁÌvXÁÌvXÁÌvXÁÌvXÁÌvXÁÌvÿ€ÿ‘ÿŸ0ÿ©Cï°BÜÏ"Íç$ Ãñ/¹ù8°þA)¦ýH3œûN<”ùVE‹ö[M‚ôaTzòg[sñm`lïudeî~g_ì‰jYë–lUé£mQæ±mOåÂmNßÎmOÔÒoOÔÒoOÔÒoOÔÒoOÔÒoOÔÒoOÔÒoOÔÒoÿ†ÿ•ÿ£.ú¬@åº5ÐãÅï%¼ø/³ÿ8!ªÿ@+¡ÿF4—ÿK=ÿQD‡ÿWKÿ]PyÿcUsüiYmúo\høv_cöa^õŠbYõ—cUõ¥cRõµcNõÄcLëËfLëÌfLëÌfLëÌfLëÌfLëÌfLëÌfLëÌfÿÿ›ÿ©*î²9ÓÛ Çì¾ö'µþ0­ÿ8#¥ÿ?,›ÿD5ÿH<ˆÿNB‚ÿSG|ÿYKwÿ^OrÿcRnÿhUjýnWeütY`û|[\ú†\Xú]Uùœ]Rú©\Oû»[Oû¼[Oû¼[Oû¼[Oû¼[Oû¼[Oû¼[Oû¼[ÿ”ÿ¢÷²×Ð Êê¿õ ·ý(¯ÿ1¦ÿ8$œÿ<,’ÿ@3‰ÿE9ƒÿK>}ÿPBxÿUEtÿZHpÿ^KmÿcMiÿgOfÿlQbÿrR^ÿyTZÿTWÿ‰USÿ’UPÿŸUPÿŸUPÿŸUPÿŸUPÿŸUPÿŸUPÿŸUPÿŸUÿœÿ­ÔÁÌÕÁó¸ü! ¯ÿ*¥ÿ/›ÿ4#’ÿ9)Šÿ>/‚ÿB4}ÿG8xÿL;tÿQ>pÿU@mÿYBjÿ]DhÿaFeÿeGbÿjI^ÿoJ[ÿtKXÿ{LTÿLQÿŠMQÿ‹MQÿ‹MQÿ‹MQÿ‹MQÿ‹MQÿ‹MQÿ‹Mÿ¦ ÕºËÇÀÚ·þ­ÿ £ÿ%™ÿ+ÿ0 ˆÿ5%ÿ:*zÿ?.vÿD1rÿH4oÿL6lÿP8iÿT9gÿX;dÿ[]ÿg?Zÿk@WÿoATÿtBQÿ{CQÿ{CQÿ{CQÿ{CQÿ{CQÿ{CQÿ{CQÿ{CØ´ÍÁÁγݩÿ ÿ –ÿ ÿ&…ÿ,~ÿ1 wÿ6#rÿ;'nÿ?)kÿD+hÿG-fÿK.dÿN/bÿR1`ÿU2^ÿX3\ÿ\4Zÿ_5Wÿc5Uÿg6Sÿk7Pÿo8Oÿo8Oÿo8Oÿo8Oÿo8Oÿo8Oÿo8Oÿo8ϼÄǵԦà›ÿ’ÿŠÿ ÿ!zÿ'tÿ,nÿ1iÿ5fÿ: dÿ>"aÿA#_ÿD$]ÿH%\ÿK&ZÿM'XÿQ(VÿT)TÿW)RÿZ*Qÿ^+Oÿa,Mÿe,Lÿe,Lÿe,Lÿe,Lÿe,Lÿe,Lÿe,Lÿe,ÆÂ¹Í©Øšâô„ÿ |ÿuÿ oÿ iÿ&eÿ+`ÿ/]ÿ3[ÿ7Yÿ:Wÿ=Uÿ@TÿCRÿEQÿHOÿKMÿNLÿQJÿTIÿW Gÿ[!Gÿ[!Gÿ[!Gÿ[!Gÿ[!Gÿ[!Gÿ[!Gÿ[!ÿK,ÿR,ÿY. ÿd6ÿj=ÿlD!ÿkL(ÿjV/ÿh^4ÿeg8ÿao;ÿ^x>ÿ\€@ÿYˆAÿV‘BÿT™CÿQ¡CÿP«CÿNµCÿNºDÿOÀDÿPÇCÿPÍCÿQÔCýQÛBúRßBøSáAøSáAøSáAøSáAøSáAøSáAøSáAÿL,ÿS,ÿ[. ÿe5ÿk=ÿmD!ÿlK(ÿkU/ÿi^4ÿff9ÿco<ÿ`w?ÿ]@ÿZ‡BÿXCÿU˜CÿS¡DÿQªDÿO´DÿO»EÿPÁDÿQÈDÿQÏDýRÖDûRÝCøSßBöTáBöTáBöTáBöTáBöTáBöTáBöTáBÿN+ÿV+ÿ]- ÿh4ÿn<ÿpC!ÿoJ(ÿnS/ÿl\5ÿie9ÿfm=ÿcu@ÿ`}Bÿ]…CÿZŽDÿX—EÿUŸFÿS¨FÿR³FÿQ¼FÿRÃFÿRÊFýSÒFúSÚE÷TÝEôVàDòVâDòVâDòVâDòVâDòVâDòVâDòVâDÿO*ÿX*ÿ`, ÿk4ÿq;ÿsB!ÿsI(ÿqQ/ÿo[5ÿlc:ÿik>ÿetAÿc|Cÿ`„Eÿ]ŒFÿZ•GÿXžGÿV§HÿT²HÿS¾HÿSÆHýTÍHùTÕGöVÛGóWÞFðXáFïTâGïTâGïTâGïTâGïTâGïTâGïTâGÿQ)ÿZ)ÿc+ ÿm3ÿt:ÿwA ÿwH(ÿtO/ÿrY5ÿob;ÿlj?ÿhrBÿezEÿc‚Fÿ`‹Hÿ]”Iÿ[IÿY¦JÿW²JÿUÀJüUÉJøUÒIõWØIñXÜHïYàGìVáIéUãJéUãJéUãJéUãJéUãJéUãJéUãJÿT(ÿ\(ÿf* ÿq2ÿx9ÿ{A ÿ|H'ÿzO/ÿvW5ÿs`;ÿoh@ÿlpCÿixFÿfHÿc‰Jÿ`’Kÿ^œKý[¦LûY±LúXÀL÷VÏLóXÕKïZÛKìYßJéWáKåVäMãVæNãVæNãVæNãVæNãVæNãVæNãVæNÿV'ÿ_'ÿi) ÿt1ÿ|9ÿ€@ÿG&ÿN.ÿzT5ÿw^;ÿsf@ÿpnEÿlwHþiJüfˆLùc‘M÷a›Nõ^¥Nô]²Nò[ÀNðZÐNìZÙMéZßLåYâNáXåPÝXéQÙXêRÙXêRÙXêRÙXêRÙXêRÙXêRÙXêRÿX'ÿb&ÿl( ÿx0ÿ€9ÿ„@ÿ…G%ÿ…M-ÿS4ÿ{[;ÿxdAýtmEúpuI÷l~Lôi‡Nñf‘Oïd›Píb¦Që`²Qè_¾Qæ]ÉPä]ÙOá[äPÛZéRÖ[éTÒ\éUÏ]éVÏ]éVÏ]éVÏ]éVÏ]éVÏ]éVÏ]éVÿ[&ÿd%ÿp'ÿ|0ÿ„9ÿˆ@ÿŠG$ÿŠM+ÿ‡S3ÿ€X:û}b@öxkFòttJïp}Mëm†Pèj‘Qæg›Rãe¦Sác°TÞa»TÛ_ÊTØ^ÞTÔ^èUÏ_èWË`èXÈaçYÅbçZÅbçZÅbçZÅbçZÅbçZÅbçZÅbçZÿ]%ÿg$ÿs&ÿ/ÿ‡9ÿŒAÿG"ÿM)ÿR1úˆW9ô‚_?ï}iEêxsJæt|Nâp†Qßl‘TÜj›VØg¥XÔe¯YÑdºYÎcÈZÌcÚZÈdçZÄeå[Áfä\¾fä]¼gä]¼gä]¼gä]¼gä]¼gä]¼gä]¼gä]ÿ_$ÿi#ÿv%ÿ‚/ ÿ‹9ÿAÿ“H ÿ”N'û“S/ôW6î‰]>è„gDâ~qJÝx{PÙt…TÔqWÐn˜ZÍm¡\Ékª]Æjµ^ÃiÂ_ÀhÒ_½iã^ºjá_¸ká`µká`´là`´là`´là`´là`´là`´là`´là`ÿa#ÿl"ÿx$ÿ…/ ÿŽ9ÿ“Bÿ—Iþ˜O$ö˜S,î–W3ç‘\;á‹eCÚ„nKÓ~xRÎzVÊwŠZÆu“]Âsœ_¿q¦a»o°b¸n½cµnÍc²nÞc°oÞc®oÞc­pÞc¬pÞc¬pÞc¬pÞc¬pÞc¬pÞc¬pÞc¬pÞcÿb"ÿn!ÿ{$ÿˆ0 ÿ‘:ÿ–BÿšJúœP!ñœU(éœX/á˜Z8Ù‘bCÑŠkLË…tSÆ}XÁ}†\½{`¹y˜bµw¡d±u«f®t¸g«sÇg©sÛf§tÛf¦tÛf¥tÛf¥tÛf¥tÛf¥tÛf¥tÛf¥tÛf¥tÛf¥tÛfÿd"ÿp ÿ}$ÿŠ0 ÿ“:ÿ™CÿLõŸSì V$ä X+ÛžX8Ò—`CÊ‘iLÄŒqS¾‡yY¹„‚^´‹b°~”e¬}žg©{¨i¥y´j¢xÂj xÕjŸxØiŸxØižxÙhžxÙhžxÙhžxÙhžxÙhžxÙhžxÙhžxÙhÿf!ÿrÿ€$ÿ0 ÿ•: ÿ›Dü Nñ¡Sè£U ߥU)Õ¤T7Ì]BÄ—fL½’nT·ŽvZ²Š_­‡‡c¨„f¥‚ši¡€¤k°lš~¾m—}Ðm—}Õl—}Ök—}Öj˜}Øj˜}Øj˜}Øj˜}Øj˜}Øj˜}Øj˜}Øjÿg ÿsÿ‚$ÿ0ÿ˜; ÿžEù¢Pí¤Rä§SÚ­L(Ï©Q6Æ¢[A¾dK¶˜lT°”tZ«|`¦„d¡Šhˆ—k™†¡m–„¬n’ƒ»o‚ÌoÓnÔm‘Õl‘€Ök‘€Ök‘€Ök‘€Ök‘€Ök‘€Ök‘€Ökÿi ÿuÿ„$ÿ‘0ÿš; ÿ G õ£Oê¦Qà¬PÔ¶D'Ê®O4À¨YA¸¢bK°iSª™qZ¥–y`Ÿ“e›Ši–Ž”l’ŒžnŽŠªp‹ˆ·qˆ‡Éqˆ†Ñp‰†Òo‹…Ôn‹„Ôm‹„Ôm‹„Ôm‹„Ôm‹„Ôm‹„Ôm‹„Ômÿjÿwÿ†$ÿ“0ÿœ< ÿ¢I ñ¥N æªOÛµGÏ»C%Å´M3»­W?²¨_J«£gS¤ŸoZŸœv`™™~e”–‡i”‘m‹’œp‡§qƒŽ´r€År€ŒÐq‚ŠÑp„‰Òo…‰Ón…‰Ón…‰Ón…‰Ón…‰Ón…‰Ón…‰Ónÿlÿyÿˆ$ÿ•0ÿž=û¤K í¨M â®L ÖÉ4ÊÂA$¿ºK2µ´U>­®]I¥ªeRŸ¦lZ™£t`“Ÿ|eŽœ„jˆšŽm„˜™p–¤r{”±sx“Âsx’ÏrzÐq}ŽÑp~Òo~Òo~Òo~Òo~Òo~Òo~Òoÿnÿ|ÿŠ#ÿ—0ÿ >÷¦KéªKÞ¸DÐÐ2ÄÈ?"ºÂI0°»R=§¶[HŸ±cQ˜­jY’ªq_Œ¦ye†¤‚i¡‹m|Ÿ–pw¡rs›®tpš¿to˜Îsr–Ðru”Ñpw“Òow“Òow“Òow“Òow“Òow“Òow“Òoÿpÿ~ÿ#ÿ™0ÿ¢>ò¨Iä¯GØÛ$ÊØ0¾Ð< ³ÊG.ªÄP;¡¾YF™º`O’µgW‹²o^…¯vc¬hy©ˆlt§“po¥Ÿrk£¬sh¢¼sf¡ÏsjžÐqm›Ñpo™Òoo™Òoo™Òoo™Òoo™Òoo™Òoo™Òoÿsÿ‚ÿ#ÿœ0þ¥?íªGߺ;Ñá%Äà/¸Ú:­ÓE+£ÍN8šÈVC’Ä^M‹ÀeU„¼l\~¹taw¶|fr´…jl²nh°œpc®©q`¬¹r^«Íqa§Ñpd£Òof¡Òof¡Òof¡Òof¡Òof¡Òof¡Òof¡Òoÿvÿ…ÿ“"ÿŸ/ø¨?æ¯AÕÝÊè&¾è3 ²ä:§ßC(œÚL5“ÔT@‹Ï\J„ÌcQ}ÉjXvÆr^pÃzcjÁƒge¿Žj`½šl\º§nX¸·nV¶ÊnW³Ôm[®Ôm]«Ôm]«Ôm]«Ôm]«Ôm]«Ôm]«Ôm]«Ômÿzÿ‰ÿ— ÿ£-ñ«;Þ¿+ÍåÂï'¸ð4®í>¢êD%—æK1ŽâS<…ßZE|ÜaMuÙhSnÕpYiÓx]cÑa^ÏŒeYÍ™gTʦhQȵiNÆÉiNÃÙhR¼ÙiT¸ØiT¸ØiT¸ØiT¸ØiT¸ØiT¸ØiT¸ØiÿÿŽÿ›û¨'è³0ÒØ Æí¼ö( ²÷4©ö=ŸôE#•òL-‹ïR7íX@yê_GqéfMkçmRdåuV_ä~ZYâ‰]Tà–_PÞ¤aLܳaIÚÇaGØßaJÎßbLÉÞcLÉÞcLÉÞcLÉÞcLÉÞcLÉÞcLÉÞcÿ…ÿ”ÿ¡ð±ÕËÉä ¾ôµü* ¬ÿ4¤ÿ<šþB%ýH-‡ûO5úV;xø\Aq÷cFköiJeõpN_ôxQYóƒTSòVOñWLï­WIíºWGëÍVEçÝYEáàZEáàZEáàZEáàZEáàZEáàZEáàZÿ‹ÿšüªÔ½ÌÏÁò¸û ¯ÿ+¦ÿ4œÿ9’ÿ?&ˆÿD-ÿK3zÿQ8sÿW=nÿ]AiÿcDcÿiG^ÿqIXÿzKRÿ…MMÿ’NHÿ¡OFþ±OEýÃNDûÖMBøÜOBøÜOBøÜOBøÜOBøÜOBøÜOBøÜOÿ“ÿ¢ÖµÌÄÂÔ¸û°ÿ!¦ÿ*ÿ0“ÿ6Šÿ;%€ÿ@+zÿG0tÿM4oÿS7jÿX:eÿ^=aÿc?]ÿiAXÿpCSÿxENÿ‚FIÿŽGEÿ›HAÿªH>ÿ¾H<ÿÏG<ÿÏG<ÿÏG<ÿÏG<ÿÏG<ÿÏG<ÿÏGÿœ Ù®ϽÄʶڭÿ¤ÿ ›ÿ&’ÿ,‰ÿ2€ÿ7"xÿ<'rÿB+nÿH.jÿN1fÿS3cÿX5_ÿ\7\ÿb9Yÿg:TÿmGÿ†?Cÿ?@ÿœ@=ÿ§@=ÿ§@=ÿ§@=ÿ§@=ÿ§@=ÿ§@=ÿ§@è¨Ñ·ÆÃ¹Ñ«Þ¡ÿ™ÿÿ"‡ÿ(ÿ.wÿ3pÿ8!kÿ>$gÿC'dÿH)aÿM+^ÿQ,\ÿV.YÿZ/Vÿ_1Sÿd2Pÿj3Kÿp4Hÿw5Dÿ~6Aÿ†6>ÿŽ7>ÿŽ7>ÿŽ7>ÿŽ7>ÿŽ7>ÿŽ7>ÿŽ7Ӳɾ½Ê®ÖŸá•ÿ Œÿ„ÿ {ÿ"tÿ(nÿ.hÿ3dÿ9aÿ=^ÿB![ÿF"YÿJ#WÿN%TÿR&RÿV'Oÿ[(Mÿ`)Jÿe*Fÿk*Cÿp+@ÿv,>ÿ{,>ÿ{,>ÿ{,>ÿ{,>ÿ{,>ÿ{,>ÿ{,˺ÀıТۓã‡û~ÿ wÿpÿ jÿ"dÿ(`ÿ-\ÿ2Yÿ7Wÿ;Tÿ?RÿBPÿFNÿJLÿMJÿQHÿVEÿZCÿ_ @ÿd =ÿi!;ÿm!;ÿm!;ÿm!;ÿm!;ÿm!;ÿm!;ÿm!ÿµÊ¦Ó—݈æzöpÿjÿ dÿ_ÿZÿ Vÿ& Rÿ* Pÿ/Nÿ2Lÿ6Jÿ9Hÿ<Fÿ@EÿCCÿGAÿK?ÿO>ÿS;ÿW9ÿ\7ÿ_7ÿ_7ÿ_7ÿ_7ÿ_7ÿ_7ÿ_ÿE-ÿL,ÿP-ÿU2 ÿ[:ÿ]Bÿ^Kÿ]U$ÿ[_(ÿYh,ÿVq/ÿRz0ÿOƒ2ÿL3ÿI•4ÿGž4ÿE§4ÿD°5ÿB»5ÿ@É5ÿ?Ü5ÿ?æ4ÿ@ë4ÿAí4ÿCð3ÿDò3ýFô2ýFô2ýFô2ýFô2ýFô2ýFô2ýFô2ÿG,ÿN+ÿR,ÿW1 ÿ^8ÿ`@ÿ`Jÿ`T$ÿ^])ÿ\f-ÿYo0ÿUx2ÿR‚3ÿO‹4ÿL”5ÿJœ5ÿH¥6ÿF¯6ÿDº6ÿCÈ6ÿAÛ6ÿAç6ÿBë5ÿDí5ÿEð4ýGò4úGô3úGõ3úGõ3úGõ3úGõ3úGõ3úGõ3ÿH+ÿO*ÿU+ÿZ0 ÿa7ÿc?ÿcHÿcR%ÿa\)ÿ^e-ÿ[n0ÿXv3ÿU€4ÿQ‰5ÿO’6ÿL›7ÿJ¤7ÿI­7ÿG¹8ÿEÇ8ÿDÙ7ÿCè7ÿDê7ÿFí6üHð6ùIò5÷Fô5öFô6öFô6öFô6öFô6öFô6öFô6ÿJ*ÿR)ÿW*ÿ]/ ÿd6ÿg>ÿfGÿfP%ÿdZ*ÿac.ÿ^l1ÿ[u4ÿX~6ÿT‡7ÿR8ÿO™8ÿM¢9ÿK¬9ÿJ·9ÿHÅ9ÿGØ9ÿFæ9þGë8ûIî8øJð7õHó7òGó8ñGô9ñGô9ñGô9ñGô9ñGô9ñGô9ÿM)ÿT(ÿZ)ÿa- ÿh5ÿk=ÿkEÿiN%ÿhX*ÿea/ÿbj2ÿ_s5ÿ[|7ÿX…9ÿUŽ:ÿS—:ÿQ¡;ÿOª;ÿM¶;ÿLÄ;ýJÓ;üJâ:ùKë:öJï9óJò9ïIó:ìHô<ëHô<ëHô<ëHô<ëHô<ëHô<ëHô<ÿO(ÿW'ÿ^(ÿe, ÿm4ÿp=ÿpDÿmL%ÿlV*ÿi_/ÿfh3ÿcp7ÿ_y9ÿ\ƒ:ÿYŒ<þV–<üTŸ=ûR©=ùQ´=÷OÁ=õOÎ=ôOß<òLè<ïMñ;ëLò=èKô>ãJö@áJö@áJö@áJö@áJö@áJö@áJö@ÿR'ÿZ&ÿa&ÿi* ÿq4ÿu<ÿvCÿtJ$ÿpS*ÿn\0ÿjf4ÿgn8ýcw:û`<ø]‹>öZ”?ôX?òV§@ðU²@îT½?íTÊ?êRÖ>èQæ=æNò?áMõAÜNöC×OöDÖOöDÖOöDÖOöDÖOöDÖOöDÖOöDÿT%ÿ]$ÿe%ÿn* ÿv3ÿz;ÿ{BÿzI#ÿvP)ÿrZ/ýoc4ùkl9ögu<òd>ða‰@í^“Aë\œBé[¦BçZ¯BäX¹BâWÆAàVÖAÞTçBÙRóDÔSõFÐTõGÌUõHËUõHËUõHËUõHËUõHËUõHËUõHÿW$ÿ`#ÿh#ÿr)ÿz2ÿ:ÿAÿ€H!ÿ}N(ûwV/öta4òpj9ílt=êh~@çeˆBäb‘Cá`›Dß_¤EÜ\­FÙZºGÖYÈGÓYÙGÐYèGÌXóIÈYôJÅZôKÁ[ôLÁ[óLÁ[óLÁ[óLÁ[óLÁ[óLÁ[óLÿY#ÿc"ÿl"ÿv)ÿ2 ÿ„:ÿ†Aÿ†Gû„M&õ~T-ïy^3êth9åpr=ál|AÝi†DÙfGÕd™IÒb¡JÏa«KÌ`µLÉ_ÂLÇ^ÒLÄ^äLÁ]òN½_ñOº_ðP·`ðP·`ðP·`ðP·`ðP·`ðP·`ðP·`ðPÿ["ÿe!ÿo!ÿz(ÿƒ2 ÿˆ:ÿ‹@ýŒGõŠL$î†R+è[1â|f8Üvo>ÖqyCÒn‚GÎl‹JÊj”MÇhNÄg¦PÁe°Q¾d¼Q»dÌR¸dßQµcîR²díS°eíS®eíT®eíT®eíT®eíT®eíT®eíT®eíTÿ]!ÿh ÿr ÿ}(ÿ†1 ÿŒ9ÿ@ø‘FðL èŽQ'á‰Y/Ú‚c8Ò|l?ÍxuEÈt~JÄr‡MÀpP½n˜R¹l¡T¶k«U³j·V°iÆV­iÚV«iêV©iêV¨jêW¦jêW¦jêV¦jêV¦jêV¦jêV¦jêV¦jêVÿ_ ÿjÿu ÿ€'ÿŠ1 ÿ9 ý”@ó–Fê–Kâ•O#ÚV/щ`8˃i@ÅqF¿{zK»x‚O·v‹R³t”U°rW­q§X©o³Y¦oÂZ¤nÔZ¢nçZ¡nçZ nçZŸoçYŸoçYŸoçYŸoçYŸoçYŸoçYŸoçYÿa ÿlÿw ÿƒ'ÿ1ÿ“9 ù—@ïšFåœKÜ›J"Ò•S.Ë]8Êf@½…nG¸vL³~Q¯|‡T«zW§xšZ¤v¤[¡u¯]žt½]›sÏ]™sä]™sä\˜så\˜så[˜så[˜så[˜så[˜så[˜så[˜så[ÿcÿnÿzÿ…&ÿ0ÿ–9 ö›A ëžGá¡KÖ¡E!Í›Q-Ä•Z7½c@¶‹kG±ˆsM¬„{R¨‚„V¤Y }–\| ^™z¬_–yº`“xË`‘wá_‘wâ_’wã^’wã]’wä]’wä]’wä]’wä]’wä]’wä]ÿeÿpÿ|ÿˆ&ÿ’0þ™9òžA ç¢H ܦEѦC Ç N,¿›X7·–a@°‘iGªŽqM¥ŠxR¡‡W…ŠZ™ƒ“]•ž`’©a~¶bŒ}ÇbŠ|ÞbŠ{àa‹{á`Œzâ_Œzâ_Œzâ_Œzâ_Œzâ_Œzâ_Œzâ_ÿfÿrÿ~ÿŠ%ÿ”0û›9î¡Aã¥I ×±5Ì«AÂ¥L+¹ V6±›_?ª—gG¥“nMŸvS›~W–‹‡[’‰^އ›a‹…¦c‡ƒ³d„‚Äd‚Údƒ€Þc„ßb…~á`†~á`†~á`†~á`†~á`†~á`†~á`ÿhÿtÿÿŒ%ÿ–/øž9ë¤AߪFÒ¶3ǰ?½ªJ)´¥T5¬¡]>¥dFŸ™lMš–sS•“{X‘„\ŒŽ_‡Œ˜bƒŠ£d€ˆ°e|‡Áfz†Öe|…Ýd}„ÞcƒßbƒàaƒàaƒàaƒàaƒàaƒàaÿjÿvÿƒÿŽ$ÿ™.ô¡8æ§AÚµ5ͼ1Á¶=·°H(®«R3¦§Z= £bF™ŸjM”œqSŽ™yXŠ—\…•‹`€“•c|‘¡ex®fu¾grŒÒft‹Üev‰Ýdxˆßcy‡ßby‡ßby‡ßby‡ßby‡ßby‡ßbÿlÿyÿ†ÿ‘#ÿ›-ð¤6â«=ÔÇÇÂ. ¼½;²·F&©²P2¡­X<šª`D“¦gLŽ£oRˆ vWƒž\~œˆ`yš“ct˜žep–«gm”»gk“Ïgl‘ÜfoÝdqÞcrÞcrÞcrÞcrÞcrÞcrÞcÿnÿ|ÿ‰ÿ”!ûž*ë¨1Ü·+ÎÍÁÉ, ¶Ä9¬¿D$£ºM0›µV:”±^C®eJ‡«lP¨tV|¦|[v£…_q¢bm œeiž¨feœ¸gc›Ìfc™Üeg–Ýdj”Þcj“Þcj“Þcj“Þcj“Þcj“Þcj“ÞcÿqÿÿŒÿ—õ¢%ä¯%ÓÌ ÇÔ»Ñ) °Ì6¦ÇA"ÃK-•¿T7»[@‡·cH€´jNz±qTt¯yYo­ƒ]j«`e©™ca§¦e^¥µe[¤Ée[¢Ýd^ŸÞcaœßcb›ßbb›ßbb›ßbb›ßbb›ßbb›ßbÿtÿƒÿÿ›î¨×À Ìп޴Ü&©Ö3ŸÑ?–ÍH*ŽÉQ4‡ÆY=ÃaEyÀhKs½oPm»wUh¹€Yc·‹]^µ—_Z³¤aV°³bS®ÇbR­ßaU©àaX¥àaY¤à`Y¤à`Y¤à`Y¤à`Y¤à`Y¤à`ÿxÿ‡ÿ”û¡Ù´ÏÄÄÔ¹æ¯å*£â4™Þ=ÚF&‡ÖO0ÓW9xÐ_@qÍfFlËmLfÉuPaÇ~T\ʼnWWÕZRÁ¢\O¾²]L¼Å]KºÝ\L¶ä\O°ä]P¯ä]P¯ä]P¯ä]P¯ä]P¯ä]P¯ä]ÿ}ÿŒÿ™î© ѹÈÈ¼Ú ³îªî, í7 •ê>‰çE"åM+yãU3rá]:kßd@eÝkE`ÛsIZÙ|MUÖ‡PPÔ”SLÒ¡TIϱUFÎÄUEÌÜUDÈëVGÀêWH¿éWH¿éWH¿éWH¿éWH¿éWH¿éWÿƒÿ’ÿ Õ±Ë¿ÀÍ´ì ¬÷ £÷, šö5õ<…óC~òL&wñT-pðZ3jîa8díh=^ìoAXëxDSèƒGNçIJæKGä¬LDã½LBáÓK?ÞéL@ÖîN@ÔîO@ÔîO@ÔîO@ÔîO@ÔîO@ÔîOÿŠ ÿ™ ÙªθÄÅ·Ó¬ù¤ÿ œÿ* ’ÿ2‰ÿ9ÿ?xþG%rýO*lýV/gü\3büc6]ûi9WúqMø‡@H÷•AEö¤BCõµABóÄA@òÖA<ñëC;ðîD;ðîD;ðîD;ðîD;ðîD;ðîDÿ’ é£ѱǾ»Ë®Ù£ÿ›ÿ“ÿ' Šÿ/ÿ6xÿ<rÿC"lÿJ&hÿP*cÿV-_ÿ\0Zÿc2Uÿi4Pÿq6Jÿ{8Fÿ‡9Aÿ–:=ÿ¦;<ÿ¶;:ÿÈ;9ÿâ:9ÿå:9ÿå:9ÿå:9ÿå:9ÿå:9ÿå:ûœԬʹ¿Å±Ñ£Þ™ÿ‘ÿ‰ÿ$ €ÿ+xÿ2pÿ7kÿ>fÿD!bÿJ$^ÿP&ZÿU(Vÿ[*Sÿa,Nÿh.Iÿp/Dÿy1?ÿ…2;ÿ“37ÿ¡34ÿ°32ÿÃ32ÿÉ32ÿÉ32ÿÉ32ÿÉ32ÿÉ32ÿÉ3اʹ¿µË¦Ö˜áŽÿ †ÿ~ÿ vÿ&oÿ-hÿ2cÿ8_ÿ>\ÿDXÿIUÿN!QÿS"NÿX#Kÿ^%Fÿe&Aÿm'=ÿv(9ÿ)5ÿŒ*1ÿ—*.ÿ¥+-ÿª+-ÿª+-ÿª+-ÿª+-ÿª+-ÿª+ϰż¹ÆªÐ›ÛŒäýyÿrÿkÿ fÿ'`ÿ-[ÿ2Wÿ7Tÿ<QÿANÿEKÿJHÿOEÿTCÿZ>ÿa:ÿi7ÿq 3ÿx 0ÿ!-ÿ‹!,ÿŽ!,ÿŽ!,ÿŽ!,ÿŽ!,ÿŽ!,ÿŽ!Ǹ¼Á®ÌžÔÞæuülÿfÿ`ÿ[ÿVÿ% Rÿ* Nÿ/ Kÿ4Iÿ8Fÿ<Dÿ@BÿE@ÿJ>ÿO;ÿT7ÿ[4ÿa1ÿh.ÿn+ÿv+ÿx+ÿx+ÿx+ÿx+ÿx+ÿx¿½±Ç¢Ï“Ø„ávékúbÿ[ÿUÿOÿJÿGÿ Dÿ$Bÿ)@ÿ->ÿ1=ÿ5 ;ÿ9 9ÿ= 7ÿB 5ÿG 2ÿL /ÿR ,ÿW *ÿ] 'ÿc'ÿd'ÿd'ÿd'ÿd'ÿd'ÿdÿA-ÿF,ÿI-ÿK0ÿL7 ÿP@ÿQJÿQTÿO^ÿLh!ÿHq#ÿE{$ÿB…%ÿ?Ž&ÿ=—'ÿ< 'ÿ:¨'ÿ8²'ÿ7¾'ÿ5Ì'ÿ4Û'ÿ4ç'ÿ3ñ'ÿ3ú&ÿ3ÿ&ÿ5ÿ%ÿ4ÿ$ÿ3ÿ$ÿ3ÿ$ÿ3ÿ$ÿ3ÿ$ÿ3ÿ$ÿ3ÿ$ÿB,ÿG+ÿK,ÿM/ÿO5 ÿS?ÿTIÿSSÿQ]ÿOf!ÿKp$ÿHz%ÿEƒ&ÿB'ÿ@•(ÿ>ž(ÿ<§(ÿ;±(ÿ9¼(ÿ8Ê(ÿ7Ø(ÿ7å(ÿ6ï(ÿ6ù'ÿ6ÿ'ÿ5ÿ&ÿ5ÿ%ÿ5ÿ&ÿ5ÿ&ÿ5ÿ&ÿ5ÿ&ÿ5ÿ&ÿ5ÿ&ÿD+ÿI*ÿN+ÿP.ÿR4 ÿV=ÿWGÿVRÿU[ÿRe"ÿOn%ÿKx&ÿH(ÿE‹(ÿC”)ÿAœ)ÿ?¥*ÿ>¯*ÿ<º*ÿ;È*ÿ:Ô*ÿ:â)ÿ9í)ÿ9÷(ÿ8þ(ÿ6ÿ'ý7ÿ'ú7ÿ(ú7ÿ(ú7ÿ(ú7ÿ(ú7ÿ(ú7ÿ(ÿE*ÿL)ÿQ)ÿS,ÿV2 ÿZ<ÿ[EÿZPÿXY ÿVc#ÿSl&ÿOv(ÿL)ÿI‰*ÿG’+ÿEš+ÿC£+ÿA­+ÿ@¸+ÿ?Ä+ÿ>Ð+ÿ>ß+ÿ=ë*þ<ô*ü:û)û9ÿ)÷9ÿ*ô8ÿ,ô8ÿ,ô8ÿ,ô8ÿ,ô8ÿ,ô8ÿ,ÿH(ÿO'ÿT(ÿW*ÿ\1 ÿ_:ÿ_Cÿ_Mÿ]W ÿZa$ÿWj'ÿTs)ÿP}+ÿM†,ÿK,ÿI˜-ÿG¡-ÿEª-þDµ-üDÀ-ûCÌ-ùCÛ-øAç,ö@ð+õ?ú+ó<ÿ-ï;ÿ.ë;ÿ/ë;ÿ/ë;ÿ/ë;ÿ/ë;ÿ/ë;ÿ/ÿK'ÿR&ÿX&ÿ\(ÿa0 ÿe9ÿeAÿcJÿbT ÿ_^%ÿ\g(ÿYq*ÿUz,ÿR„-ýP.ûN–/ùLŸ/÷J¨/öI±/ôI¼/óHÈ/ñGÔ.ïEã.íEï-ëAù/è?ÿ1ã>ÿ2à@ÿ3à@ÿ3à@ÿ3à@ÿ3à@ÿ3à@ÿ3ÿN&ÿU$ÿ\$ÿa'ÿg/ ÿk7ÿk?ÿiGÿfQ ÿd[%ÿae)ý^n,ùZx.÷W/ôT‹0òR”1ðQ1îP¥2íO®2ëN¹1éLÃ1çLÑ0åKâ/âHï1ÞEù4ÜDÿ6×Eÿ7ÓGÿ8ÓGÿ8ÓGÿ8ÓGÿ8ÓGÿ8ÓGÿ8ÿP$ÿY#ÿ_#ÿf&ÿl- ÿp6ÿq=ÿoEÿlN ýiX%ùfb)õbl-ñ_u/î\1ëY‰2éW’3çV›4äU£4âT¬4àR¶4ÞQÃ4ÜOÓ4ØOå4ÔMð7ÑLú9ÎKÿ:ÊLÿ;ÇMÿ<ÇMÿ<ÇMÿ<ÇMÿ<ÇMÿ<ÇMÿ<ÿS#ÿ\!ÿc!ÿj%ÿq,ÿv4 ÿw<ÿvCürKönU$ñk_)ìgi-èds0å`}3á^‡4ß\6ÜZ™7ÙX¢8ÖW«9ÓUµ:ÑUÂ:ÎTÑ:ËTã:ÈSñ<ÅRú=ÁRÿ?¾Sÿ?¼Tÿ@¼Tÿ@¼Tÿ@¼Tÿ@¼Tÿ@¼Tÿ@ÿV"ÿ_ ÿgÿo%ÿv+ÿ{3 ÿ}:ý}AõzHïtQ"éq\(ämg-ßiq1Ûez5Öb„8Óa:Ï_•<Í^=Ê]¦>Ç[°?ÄZ¼@ÂZË@¿YÞ@¼YíA¹XúB¶XüC³YüC±ZüD±ZüD±ZüD±ZüD±ZüD±ZüDÿX!ÿbÿjÿs$ÿz*ÿ€2 ÿƒ9÷ƒ@ïFè}N áyY&Ûtc.Õom3Ðlv8Ìi;Ègˆ>Åe@Ád˜B¾c¡C¼a«D¹`¶E¶_ÅE³_ØE°_éE®^÷F«^ùGª_øG¨`øG¨`øG¨`øG¨`øG¨`øG¨`øGÿZÿdÿnÿw#ÿ~)ÿ…1üˆ8 ò‰>éˆDá…LÙ€V&Òz`.Ìvi4Çrr:Âoz=¾mƒA»k‹C·j”E´hG±g¦H®f²I«eÀJ¨dÑJ¦dæJ¤côJ¢dõJ¡dõJ dõJ dõJ dõJ dõJ dõJ dõJÿ\ÿgÿqÿz"ÿ‚(ÿ‰0÷6 í<ãAÚŒHцR&Ê\.Ä}f5¾yn;¹vv?µsC±q‡F®oH«n™J¨m¢L¥k­M¢j»NŸiÌNiâM›hòNšiòM™ióM™ióM™ióM™ióM™ióM™ióM™ióMÿ^ÿiÿtÿ}"ÿ…&ÿŒ.ó‘5è•: Þ–=Ó’DÊP%ÈZ.½ƒc5·k;²|s@­y{D©wƒH¦uŒJ£s•MŸrŸOœpªP™o·Q—nÈQ•nÞQ“mïQ“mðP’mðP’mñO’mñO’mñO’mñO’mñO’mñOÿ`ÿkÿvÿ€!ÿˆ%û-ï•3ãš7Øœ6Í—BÅ’M$½ŽW-¶‰`5°…h<«‚pA¦xE¢|€IŸz‰L›x’O˜wœQ•u§R’t´TrÄTrÚT‹qíSŒqîRŒqîRŒpïQŒpïQŒpïQŒpïQŒpïQŒpïQÿbÿmÿyÿƒ ÿ‹$÷“+ê™0ß 2Ó¡4 È@¿˜K#·“U-°^5ª‹f<¥ˆmA …uFœ‚}J˜€…M”~P‘|™SŽz¤UŠx±VˆwÁV…vÖV„vêU…uìT…uíS†tîS†tîS†tîS†tîS†tîS†tîSÿdÿoÿ{ÿ… ÿŽ"ô–(æž,Ú¨'Φ2 á>ºI"²™S,«•\4¥‘d;ŸkAšŠrF–ˆzJ’…ƒNŽƒŒQŠ–T‡¡Vƒ}®X€|¾X~{ÒX}zèW~yêVyëU€xìT€xìT€xìT€xìT€xìT€xìTÿeÿqÿ}ÿˆÿ‘!ðš$â£%Ô® É«/ ¾¦<µ¢G!­žQ+¦šZ3Ÿ—b;š“iA•pFxKŒ‹€Oˆ‰‰R„‡“U€…ŸW|ƒ«Yy»Zv€ÏYuæXw~éWx}êVz|ëUz|ëUz|ëUz|ëUz|ëUz|ëUÿgÿsÿ€ÿŠü”ëÝ«ϳİ- ¹¬:°§E¨£O)¡ X2šœ_:”™g@–nFŠ“uK…‘~O‡S}‘Vy‹œXu‰©Zrˆ¸[o†Ì[n…ãZp„èXr‚éWsêVsêVsêVsêVsêVsêVÿiÿvÿ‚ÿ÷—æ£Õ³ ʹ¾¶+´²8ª­C¢©L(›¦U1•£]9 e?‰lE„šsJ˜{Oz–„Rv”ŽVq’šXn¦Zj޶[hÉ[gŒáZhŠèYkˆéXl‡êWl‡êWl‡êWl‡êWl‡êWl‡êWÿlÿyÿ…ÿò›تÏ·ÿ¸½(®¹5¥´@°J&–­S/ª[7‰§c>ƒ¤jD}¡qIxŸyNs‚Ro›ŒUjš—Xf˜¤Zc–³[`•Æ[_“ÞZa‘èYcéXeéWeéWeéWeéWeéWeéWÿoÿ|ÿ‰ÿ”ì¡ Ò®È»¼Å²Ä$¨Á2Ÿ½>—¹H#µQ-‰²Y5‚¯`<|­gBwªoGq¨vKl¦Ph¤ŠSc£•V_¡¢X[Ÿ±YYÄYWœÜXX™éX[—éW]•êV]•êV]•êV]•êV]•êV]•êVÿrÿ€ÿù™Ö§ͳÂÀµÍ «Í ¡Ê/ ˜Æ;ÃE ‰¿N)‚½V1{º^8u·e>pµlDj³tHe±}La¯‡P\­“SX« UT©¯VQ§ÁVO¥ÚUO£ëURŸëUUìUUìUUìUUìUUìUUìUÿvÿ…ÿ’ä ѬǸ»Å­Ó£×šÔ+ ‘Ñ8‰ÎBËK&zÉT-tÆ\4nÄc:iÂj?dÀrC_¾{GZ¼…KUº‘NQ¸žPMµ­QJ³¿QH²ØPH¯ìPJ«ïQL§ïQL§ïQL§ïQL§ïQL§ïQL§ïQÿ{ ÿŠý˜ Õ¦˱Á¾´Ê¦Ù â”á*Šß5‚Ü?zÚI!sØQ(mÕZ.gÓa4bÑi9]Ïp=XÍyAS˃DOÊGKÈHGÅ«JDþJCÂÕIB¿ëJB»õKD¶ôKD¶ôKD¶ôKD¶ôKD¶ôKD¶ôKÿ‚ ÿ‘ Ú ϬŸºÄ¬ÐŸç —ìì+†ë5 |ê>tèFmçO"gæW(bä_-]ãf1Xân5Sàv8Nß;JÝ>FÜ›?BÚª@@ؽA>ÕÕ@=Òé@;ÏõB<ÊùC<ÊùC<ÊùC<ÊùC<ÊùC<ÊùCÿ‰ò˜Ó¦ɲ¿¾²Ê¤Ö˜õ÷ˆ÷)÷3 vö:põCjôKeôS"`óZ&[óa)Vòi,Rñq/Mð{1Hï‡3Eî”5Bí£6?ì´6>êÆ6<éÞ58çï86ãú96ãú96ãú96ãú96ãú96ãú9ÿ’סͮù·Å©Ï›Ûûˆÿ€ÿ'xÿ/ pÿ6jÿ>eÿF`ÿM\ÿT!XÿZ#Sÿa&Nÿi(Jþr*Eþ|,Aý‰-=ý˜.;ü¨.9ü¹.8ûÎ.7ùÝ-5ùì-5ùì-5ùì-5ùì-5ùì-5ùì-ܜЩƵ»À­ÊŸÔß…þ ~ÿwÿ#pÿ+ iÿ2cÿ9_ÿ@[ÿFWÿLSÿSOÿYKÿ` Gÿh"Bÿp$>ÿ{%9ÿˆ&5ÿ˜'3ÿ¦'1ÿ¶(0ÿÈ(/ÿÛ'/ÿÛ'/ÿÛ'/ÿÛ'/ÿÛ'/ÿÛ'Ҧɲ¾¼±Æ¢Ï”Ù†â{ÿ sÿmÿgÿ% aÿ, \ÿ3Xÿ9Tÿ?QÿEMÿJJÿPGÿVCÿ]?ÿe:ÿn6ÿx2ÿ„.ÿ’+ÿ  )ÿ­ (ÿ¹ (ÿ¹ (ÿ¹ (ÿ¹ (ÿ¹ (ÿ¹ ˯Á¹µÂ¦Ë—Ó‰Ý{åqÿiÿbÿ]ÿXÿ%Sÿ+ Oÿ1 Lÿ7 Jÿ<GÿADÿFAÿL>ÿR:ÿY6ÿ`2ÿi.ÿs*ÿ}'ÿˆ$ÿ“"ÿž"ÿž"ÿž"ÿž"ÿž"ÿž͹¾ªÈ›ÏŒÙ}ápégþ_ÿYÿSÿMÿIÿ"Fÿ'Cÿ,Aÿ1>ÿ6<ÿ; :ÿ@ 7ÿE 4ÿK 0ÿR ,ÿY )ÿa %ÿj "ÿsÿ{ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚¼»®ÄŸÌÓÝsåfì]ýVÿOÿJÿ FÿBÿ>ÿ;ÿ!9ÿ&6ÿ*4ÿ.2ÿ2/ÿ7-ÿ<)ÿA&ÿH"ÿOÿVÿ^ÿeÿkÿkÿkÿkÿkÿkÿ<,ÿ@,ÿC-ÿC0ÿB6ÿA> ÿCIÿCTÿA^ÿ=hÿ:rÿ7|ÿ5…ÿ3Žÿ1–ÿ/žÿ.§ÿ,°ÿ+ºÿ+Äÿ*Ðÿ*ßÿ)ëÿ(õÿ(þÿ&ÿÿ$ÿÿ$ÿÿ#ÿÿ#ÿÿ#ÿÿ#ÿÿ#ÿÿ>+ÿB+ÿD,ÿE/ÿE4ÿE= ÿFHÿFRÿD]ÿAfÿ=pÿ:zÿ8ƒÿ6Œÿ4•ÿ2ÿ1¥ÿ/¯ÿ.·ÿ.Áÿ-Íÿ,Üÿ,éÿ,ôÿ*üÿ(ÿÿ(ÿÿ&ÿÿ%ÿÿ%ÿÿ%ÿÿ%ÿÿ%ÿÿ?*ÿD*ÿG*ÿH-ÿH3ÿI< ÿJFÿJQÿH[ÿEeÿAnÿ>xÿ<ÿ9Šÿ8“ÿ6›ÿ4£ÿ3¬ÿ2µÿ2¾ÿ1Êÿ1Ùÿ0æÿ/òÿ-úÿ,ÿý+ÿû(ÿû'ÿû'ÿû'ÿû'ÿû'ÿÿA)ÿF(ÿJ(ÿL+ÿL1ÿM: ÿODÿNNÿMXÿJbÿFlÿCvÿ@ÿ>ˆÿ<ÿ:™ÿ8¡ÿ7©ÿ7²ÿ6»ÿ6Çþ5Ôý5äû2ïú2øø0ÿö-ÿó+ÿ ó*ÿ ó*ÿ ó*ÿ ó*ÿ ó*ÿ ÿD'ÿJ&ÿN'ÿP)ÿR/ÿS7 ÿTAÿTKÿRVÿO`ÿLiÿHsÿE}ÿC… ÿAŽ ÿ?–!þ=Ÿ!ü=¦!û<¯!ù;¸!ø;à ö;Ñ õ8àó8íò7÷ï3þ ì1ÿ"é/ÿ#é.ÿ$é.ÿ$é.ÿ$é.ÿ$é.ÿ$ÿG&ÿM$ÿR$ÿU'ÿX-ÿY5 ÿZ>ÿYHÿWSÿU]ÿRgÿNpýKz!ûHƒ"ùFŒ"÷D”#õCœ#ôC¤#òB¬#ñAµ"ïAÀ"í?Í"ë>Þ!ê=ë æ:ö#ã7þ%á7ÿ&ß6ÿ'Þ6ÿ(Þ6ÿ(Þ6ÿ(Þ6ÿ(Þ6ÿ(ÿJ$ÿP#ÿV"ÿ[%ÿ^,ÿ`3 ÿ`;ÿ_Eÿ]OÿZZüWdøTm!õQw"òN€#ðL‰$îJ’%ìI™%êI¡%èH©%æG³$äF¾$ãEÌ#áDÞ"ÝAì%Ù@÷'Ö>ÿ)Ô>ÿ+Ñ=ÿ,Ð=ÿ,Ð=ÿ,Ð=ÿ,Ð=ÿ,Ð=ÿ,ÿM#ÿT!ÿZ ÿ`$ÿd*ÿf1ÿg9 ÿeAþbLø`Vô]aïYj"ìVt$éT~%æR‡&äQ'áP—'ßO 'ÝM¨(ÛK³(ÙJ¿(ÕIÎ)ÓIà)ÏHí*ÌGø,ÉFÿ.ÇEÿ/ÄEÿ0ÃEÿ0ÃEÿ0ÃEÿ0ÃEÿ0ÃEÿ0ÿO!ÿWÿ^ÿe#ÿj)ÿl.ÿm7 þl?÷hGñeRëb]æ_h"â\r%ßZ{'ÜW„)ÙU*ÕT•,ÒS-ÐR¦-ÎQ¯.ËP».ÉOÉ/ÆOÛ/ÃOë/ÀMø1½Lÿ3»Lÿ4¸Lÿ4·Mÿ4·Mÿ4·Mÿ4·Mÿ4·Mÿ4ÿR ÿ[ÿbÿj"ÿo'ÿr-ÿt4 ÷s<ïpDélNãiZÝfd#Øbn'Ó_w*Ð]€-Ì\ˆ/Ê[‘0ÇY™1ÄX¡2ÁWª3¿Vµ4¼UÃ4ºUÔ4·Uç4´Tõ6±Sÿ7¯Rÿ8­Sÿ8¬Sÿ8¬Sÿ8¬Sÿ8¬Sÿ8¬Sÿ8ÿUÿ^ÿfÿn!ÿt&ÿw+úz2ñz9 èx@átKÚpVÓl`$Îij)Éfs-Åd{0Âbƒ2¿aŒ4¼`”6¹_œ7¶]¦8³\°9±[¾9®ZÏ:¬Zã:©Zò:§Yþ;¥Yÿ<£Yÿ<£Yÿ<£Yÿ<£Yÿ<£Yÿ<£Yÿ<ÿWÿ`ÿjÿr ÿx$ÿ|)õ€/ë6 â€=Ù|GÑwRÊs]%Åpf*Àmo/¼jw2¸h5µg‡7²e9¯d˜;¬c¡<©b¬=¦a¹>¤`É>¡_ß>Ÿ_ð>^ü?œ^ÿ?›_ÿ?›_ÿ?›_ÿ?›_ÿ?›_ÿ?›_ÿ?ÿYÿcÿmÿvÿ|#ü'ð…,åˆ2܇9 уDÉ~OÂzY%½vb+¸sk0³ps4¯n{7¬mƒ:©k‹<¦j”>£iž@ g¨AfµB›eÅB˜dÚB–díB•cúB”cýB“cþB“cþA“cþA“cþA“cþA“cþAÿ[ÿeÿpÿyÿ€"ø…$ëŠ(àŽ-Ô5 ˉAÃ…L¼€V%¶}_+°yh1¬vo5¨tw9¤r<¡pˆ>žoA›nšB˜l¥D•k±E’iÁFiÕFhêEgùEgûDgüDgüDgüDgüDgüDgüDÿ]ÿgÿrÿ|ÿƒ ô‰"æ#Û•%Ï“2 Å?½ŠJµ†T$¯ƒ]+ªe1¥|m6¡zt:w|=šu„@—tB”r—E‘q¢FŽo®H‹n½HˆmÑH‡lçH†k÷G†kùG†kúF†kúF†kúF†kúF†kúF†kúFÿ_ÿiÿuÿ~ÿ†ïâ”Õš!ʘ0 À”<·G°ŒQ$ªˆZ+¤…b1Ÿ‚j6›q:—}y>“{AyŠDw”FŠuŸH†t«J„rºKqÎKpåJpõIo÷H€oøG€nøG€nøG€nøG€nøG€nøGÿaÿlÿwÿü‰ë‘ÝšОÅœ.»™:²•E«‘O#¤ŽX*Ÿ‹`1šˆh6•…o:‘‚v>€BŠ~‡E†|‘HƒzœJx¨L|w·LzvËMxuâLxtóKysöJzr÷Izr÷Izr÷Izr÷Izr÷Izr÷IÿcÿnÿyÿƒøŒæ•ÖŸ Ë¢À¡+¶ž8­šC¦–M"Ÿ“V)š^0•f6Šm:Œˆt?‡…|B„ƒ…F€I|€šKx~¦Mu|µNs{ÈNqzàNqyòLrxõKtwöJtvöJtvöJtvöJtvöJtvöJÿeÿpÿ|ÿ†óÙšУŧ»¦)±£6¨ŸA¡œK š™T(•–\/“d5‹k:†Žr?‹zC}‰ƒFy‡ŒIu†—Lr„¤Nn‚²OlÅOjÝOj~ðMl}ôLm|õKn{õKn{õKn{õKn{õKn{õKÿgÿsÿÿ‰î“Ô˦À¬µ«&¬¨4 £¥?œ¢I•ŸR'œZ.Š™b4…—i9€”p>{’xBw€FsŽŠIoŒ•Lk‹¢Nh‰°Oe‡ÂOc†ÚOc…îNeƒóMgôLgôKgôKgôKgôKgôKÿiÿvÿ‚þÙ˜Ï¡Ū¹±°±#¦®1 ž«=—¨G¥P%Š£X,„ `3žg8z›n=u™uAp—~El–ˆHh”“Kd’ M`®O^ÀO\×O[ŒìN]ŠóM_ˆôL`‡ôK`‡ôK`‡ôK`‡ôK`‡ôKÿlÿyÿ†õ‘ ԜʥÀ¯³· ©¸ ¡¶. ˜³:‘°DŠ­M#ƒªV*~¨]0x¦e6s¤l;n¢s?j |Cež…Gaœ‘I]›LY™«MV—½NT•ÔMT“ëLU‘ôLXõKXŽõKXŽõKXŽõKXŽõKXŽõKÿp ÿ} ÿŠ Ú—Ï¡Ūº´¬¾¢Àš¾+’¼7йAƒ¶K }´S'w²[-q°b3l­i8h¬q|ÁHv¿Q#p½Y)k»`.fºg3a¸o7\¶w;X´>S²ŒAO°™DK®¨EH¬¹FFªÐEF¨èEE¥÷EG¢úFH¡úFH¡úFH¡úFH¡úFH¡úFÿyÿˆÚ–ϡū»µ®¿ŸÊ‘Ó ŠÓ!ƒÒ/ {Ð;tÎEnÌNiÊV$dÉ^)_Èe-ZÆm1VÄu5QÂ8MÀ‹;I¾˜=E¼¦>Cº¸?A¹Î?@¶ç>?³ö?>°ÿ@?¯ÿ@?¯ÿ@?¯ÿ@?¯ÿ@?¯ÿ@ÿ€ôԜʧÀ±´»§Å˜ÏŠà ƒá{à+tß7 mÝAgÜJbÛS]Ú["XØc&TÖk*OÕs-KÓ}0GÒ‰2CЗ4@Î¥6>Ì·6<ËÍ6<Èæ5:Åõ78Âÿ88Áÿ98Áÿ98Áÿ98Áÿ98Áÿ9ÿˆڗΣĮº¸­ÂŸËÕ„í|íuí*nì4 hì>cëG^êPYêWTé_Pèg!Lço$Hæy&Då„)Aä’*=ã¡+;â±,9àÇ,8ßá+6Ûð-4Øû/3Öþ/3Öþ/3Öþ/3Öþ/3Öþ/ç‘ҟȪ¾µ²¾¤Ç–ЈÛ}ùuùnù'hù0bù9 ]ùAYøIUøPQ÷XM÷`I÷hDöq@ö| =õ‰":ô—#8ô§#6ó»#5ñÍ"4ñã!1ïò$0îö$0îö$0îö$0îö$0îö$֛˧²·»©ÄšÌŒÕ~ßtý mÿgÿ"aÿ+[ÿ3 Wÿ; SÿBPÿILÿPHÿWDÿ^@ÿg<ÿp8ÿ{4ÿ‰1ÿ˜/ÿ¨.ÿº-ÿÎ,ÿâ+ÿä+ÿä+ÿä+ÿä+ÿäΤů»¸­ÁŸÉÑ‚Útãkÿ dÿ^ÿXÿ$Sÿ,Pÿ3Lÿ: Iÿ@ FÿF CÿM@ÿS<ÿ[8ÿc4ÿm0ÿx,ÿ†(ÿ–'ÿ¤%ÿ±$ÿÃ$ÿÉ$ÿÉ$ÿÉ$ÿÉ$ÿÉÇ­¾¶±¿£Ç”Î…Öwßjæbÿ\ÿUÿPÿKÿ$Gÿ*Dÿ0Aÿ6?ÿ;<ÿA:ÿG 6ÿN 2ÿU .ÿ^ *ÿh 'ÿs #ÿÿÿšÿ§ÿ«ÿ«ÿ«ÿ«ÿ«À´µ¼§Ä˜Ë‰ÒzÛmãaêYþRÿMÿHÿDÿ@ÿ =ÿ%:ÿ*8ÿ/5ÿ42ÿ9/ÿ?,ÿF(ÿM$ÿVÿ`ÿjÿuÿÿŠÿÿÿÿÿ¹¹«ÁœÈÏ~ØpàcçXîOýJÿEÿ@ÿ <ÿ9ÿ6ÿ3ÿ1ÿ#.ÿ',ÿ,)ÿ1'ÿ6#ÿ<ÿCÿKÿTÿ]ÿe ÿm ÿp ÿp ÿp ÿp ÿpÿ8,ÿ;+ÿ<,ÿ<0ÿ:5ÿ8>ÿ6Hÿ3S ÿ1^ ÿ.h ÿ,rÿ)|ÿ'…ÿ%Žÿ$–ÿ"žÿ"¤ÿ ¬ÿ ´ÿ¾ÿÈÿÕÿäÿïÿùÿÿÿÿÿÿ ÿÿÿÿÿÿÿÿÿÿÿ9+ÿ<*ÿ>+ÿ>.ÿ<3ÿ<<ÿ:Gÿ7Q ÿ5\ ÿ2fÿ0pÿ-zÿ+ƒÿ)Œÿ'”ÿ&œÿ%£ÿ$ªÿ$²ÿ#»ÿ#Æÿ"Óÿ!âÿ!îÿøÿÿÿÿÿÿþÿþÿþÿþÿþÿÿ;*ÿ?)ÿA)ÿA,ÿ@2ÿ@;ÿ>D ÿ=O ÿ:Z ÿ7dÿ5nÿ2xÿ0ÿ.Šÿ,’ÿ+™ÿ*¡ÿ)¨ÿ(¯ÿ(¸ÿ'Ãÿ'Ïÿ&ßÿ$ìÿ#öý"þú ÿøÿ÷ÿ÷ÿ÷ÿ÷ÿ÷ÿÿ=(ÿA'ÿC'ÿD*ÿE0ÿE8ÿCB ÿBL ÿ@Wÿ=aÿ:kÿ7uÿ5~ÿ3‡ÿ1ÿ0—ÿ/žÿ.¥ÿ.­þ-µý-Àü,Ìú+Üù)éø)ôõ&üò#ÿï!ÿî ÿî ÿî ÿî ÿî ÿÿ@&ÿD%ÿG%ÿI'ÿJ.ÿK6ÿI? ÿHI ÿFTÿC^ÿ@hÿ=rÿ;{ÿ9„þ7Œü6”ú5›ù5¢ø4ªö4²õ3½ó2Éò1Ùð0çî.óê+üç(ÿå(ÿä'ÿä'ÿä'ÿä'ÿä'ÿÿB$ÿH#ÿL#ÿN%ÿQ,ÿQ3ÿO< ÿNF ÿLQÿJ[ÿGeüDoùAx÷?õ>‰ó<‘ñ<˜ð; î;§ì:°ë9»é8Çç7׿6çá2óÞ1üÜ0ÿÚ0ÿØ/ÿØ/ÿØ/ÿØ/ÿØ/ÿÿF#ÿK!ÿP ÿT#ÿX*ÿX1ÿU8ÿTB ÿSMûPX÷MbóJlðHuíF~ëD‡éCçC–åBžãA¦â@¯à?ºÞ>ÈÛ=ÚØ<èÓ:ôÐ9ýÎ8ÿ Ì8ÿ!Ê7ÿ"Ê7ÿ"Ê7ÿ"Ê7ÿ"Ê7ÿ"ÿI!ÿOÿTÿZ"ÿ^(ÿ_.ÿ]5ÿZ> ùYIóVTîS_êPiæNrãL{áK„ÞJŒÜI”ÙGœÖF¥ÔE®ÒD¹ÏDÆÍCÖÊCèÆBõ!ÃAþ#Á@ÿ$¿?ÿ%¾?ÿ&¾?ÿ&¾?ÿ&¾?ÿ&¾?ÿ&ÿLÿSÿYÿ`!ÿd&ÿe,ÿd2øb: ñ_Dë\PåZ[àWfÜUoØRxÔQÑP‰ ÏO!ÌN˜"ÊM #ÇL©#ÅK³$ÂKÀ$ÀJÐ$½Jã$ºIò&·Hþ(µGÿ)³Fÿ)²Fÿ*²Fÿ*²Fÿ*²Fÿ*²Fÿ*ÿOÿVÿ]ÿeÿi$ÿk*úk/ñi6éf@ âdLÜaWÕ^bÐ\kÌZs ÉX|#ÆW„$ÃV‹&ÀU“'¾T›(»S¤(¹R¯)¶Q»*´PË*±Pß*®Oï+¬Nü,ªNÿ-¨Mÿ-§Mÿ.§Mÿ.§Mÿ.§Mÿ.§Mÿ.ÿQÿYÿbÿiÿn"ÿq'ôr,êq2áo< ÙlHÑhSËf]Æcf Âao#¾_w&»^(¸\‡)¶[+³Z—,°Y -®Xª.«W·/©VÆ/¦VÚ/¤Uì/¢Tú0 Tÿ1ŸSÿ1Sÿ1Sÿ1Sÿ1Sÿ1Sÿ1ÿTÿ\ÿeÿmÿs úv$îx(ãx.Úv8 ÐsDÉpOÃmY½jb!¹gk%µes(²d{*¯bƒ-¬a‹.©`“0§_œ1¤^¦2¡]²3Ÿ\Â3[Õ4›[é4™Zø4—Yÿ4–Yÿ4•Yÿ4•Yÿ4•Yÿ4•Yÿ4•Yÿ4ÿVÿ_ÿiÿqÿwõ{!è}$Ý(Ò}4Éz@ÁvL»sV¶p_"±ng&­ko*ªjw-¦h/¤g‡1¡e3žd˜4›c£6™b®7–a½7”`Ð8’_æ7^ö7^ÿ7Ž]ÿ7Ž]ÿ7Ž]ÿ7Ž]ÿ7Ž]ÿ7Ž]ÿ7ÿXÿaÿkÿtÿzðãƒÖ…#Ì„1À>»}I´yS¯v\"ªtd'¦ql+¢os.Ÿm{1œlƒ3™kŒ5–i•7“hŸ9‘f«:Žeº;ŒdÍ;Šcã;‰bô:ˆbÿ:‡bÿ9‡aÿ9‡aÿ9‡aÿ9‡aÿ9‡aÿ9ÿZÿcÿnÿvü}ë‚݇Њ Ɖ/½†;µƒF®P©|Y"¤ya' wi+œtp/˜sx2•q€5’oˆ7n’9Œlœ;‰k¨<‡i·=„hÉ>‚gà=gò=€fÿ<€fÿ;€eÿ;€eÿ;€eÿ;€eÿ;€eÿ;ÿ\ÿfÿpÿyø€æ†׌ ËÁŽ,¸‹9 °ˆD©…N£W"ž_'š|f,–zn/’wu3u}6Œt†8‰r;†qš=‚o¥?€m´@}lÆ@{kÞ@zkð?zjý>zjÿ=ziÿ=ziÿ=ziÿ=ziÿ=ziÿ=ÿ^ÿhÿsÿ|óƒÚŠÑÆ“¼“*³7 «B¤ŠKž‡T!™„\'•‚d+k/|r3‰zz6†yƒ9‚w<u—>|t£@yr±AvqÃBtpÛAsoï@snü?tnÿ?tmÿ>tmÿ>tmÿ>tmÿ>tmÿ>ÿ`ÿjÿuÿ~ï† ÕŽÌ”Á˜·˜'®•5 ¦’@ŸI™ŒR ”ŠZ&‡b+‹„i/‡‚p3ƒ€x7~€:||Š=xz•?uy¡Arw®CovÀCmu×CmtíBmsûAmrÿ@nqÿ?nqÿ?nqÿ?nqÿ?nqÿ?ÿbÿmÿxÿÚŠÐ’ǘ¼œ²œ%©š2 ¢—=›”G”’PX%Š`+†Šg/ˆn3}†v7y„~:v‚ˆ>r€’@oŸBk}¬Ci{¾DgzÔDfyëCfxúBgwÿAhvÿ@hvÿ@hvÿ@hvÿ@hvÿ@ÿdÿp ÿ{÷… ÖŽÌ•œ¶¡­¡"¤Ÿ0;–šE—NŠ•V$…“^*€‘e/|Žl3wŒt7s‹|:o‰…=l‡@h…œBeƒªDb‚»D`€ÑD_éC_~øB`}þAb{ÿ@b{ÿ@b{ÿ@b{ÿ@b{ÿ@ÿf ÿs ÿ~ ã‰Ò’È™½ °¥ §§Ÿ¥-—£9 CŠžL„œT#™\(z˜c-v–j2q”r6m’z9iƒ=eŽŽ?ašB^‹¨C[‰¹DY‡ÎDX†çCX…÷BYƒþA[‚ÿA[‚ÿA[‚ÿA[‚ÿA[‚ÿAÿi ÿv ÿ‚ÙΖÞ¸¥ª«¡­™¬*’ª6 ‹§@„¥J~£R y¡Z&tŸa+ožh0kœp4gšx7c˜;^—Œ>Z•˜@W“¦BT‘·BRÌBQåBQŒöAQŠÿ@Sˆÿ@Sˆÿ@Sˆÿ@Sˆÿ@Sˆÿ@ÿmÿzí‡Ó’É›¿£³ª£²š´“´&‹²3 „°>}­Gw«PrªX#m¨_(i§f,e¥n1`£v4\¢8X Š;Tž–=Pœ¤?Mšµ?K˜Ê?J—ä?J•õ?I“ÿ>K‘ÿ>K‘ÿ>K‘ÿ>K‘ÿ>K‘ÿ>ÿrÿڌϗĠº¨­¯Ÿ·’½‹½!„»/}º: v¸Dq¶Ml´Ug³]$b±d(^°k,Z®s0U¬}3Qªˆ6M©•8J§£:F¥³;D£É;D¡ã:CŸô:Bÿ;C›ÿ;C›ÿ;C›ÿ;C›ÿ;C›ÿ;ÿwó…Ô’ÊÀ¦µ®¨¶™½ŠÆ‚Ç|Ç*uÅ6 oÄ@jÂJeÁR`¿Z\¾b#W¼i&S»q*O¹{-K¸†0G¶“2D´¡3A²±4?°Ç4>®á4=«ó4<©þ5;¨ÿ6;¨ÿ6;¨ÿ6;¨ÿ6;¨ÿ6ÿ~Ûϙţ»¬¯´¢¼“ăÍxÓrÓ$mÒ1gÑ< bÐF]ÏOYÎWUÍ_QËgMÊo"IÉy%EÇ„(AÆ‘*>Ä +<°,:ÁÅ,9¾à+8»ò,7¹ý.6·ÿ/6·ÿ/6·ÿ/6·ÿ/6·ÿ/ð†Ô•É ¿ªµ²¨ºšÂŒÉ|Ópájâeâ,`â7[áA VàJRßSNß[KÞcGÝlCÜv@Û<ÚŽ!9Øž"7Ö®"5ÔÃ"4ÒÞ"3Ïï#2Ìú$1Êÿ&1Êÿ&1Êÿ&1Êÿ&1Êÿ&ÚÍħº°®¹ À’ǃÏtÙkïeð_ð(Yð2Uï;QïD NïM JïUFî]Cîe@ín<íy9ì†7ì•5ë¥3é·2èÏ0çå-ãô,áü,áü,áü,áü,áüљǥ¾®³·¥¿—ňÌzÔlÞdú ^ýXý#Rý+Ný4Ký<HýDEýK AýS >ý[ :ýd7ün3üz0üˆ.û—,û¨*ú¼)ùÏ(øã(øð(øð(øð(øð(øðÊ£Á­·´ª½›ÄŒÊ~ÑpÚdã\ü VÿQÿLÿ$Hÿ,Dÿ3Aÿ:>ÿ@;ÿG8ÿO4ÿW1ÿ` -ÿk *ÿw &ÿ† $ÿ– "ÿ¥ !ÿ¶ ÿÈ ÿÛ ÿÛ ÿÛ ÿÛ ÿÛ Ä«º³®»ŸÂÉ‚Ït×gß[æTýNÿ JÿEÿAÿ#>ÿ);ÿ/8ÿ55ÿ;2ÿA.ÿH+ÿQ&ÿZ"ÿeÿsÿ€ÿÿžÿ«ÿ´ÿ´ÿ´ÿ´ÿ´½²²¹¤À•džÍwÕjÝ^äRêKûFÿAÿ =ÿ:ÿ6ÿ4ÿ#1ÿ(/ÿ.,ÿ3)ÿ9%ÿ@ ÿHÿQÿ\ÿhÿu ÿÿÿ—ÿ—ÿ—ÿ—ÿ—¶·¨¿™ÅŠË{ÒmÜ`âTéJïCû>ÿ9ÿ6ÿ2ÿ /ÿ,ÿ*ÿ(ÿ!%ÿ%"ÿ*ÿ0ÿ6ÿ>ÿG ÿQÿ[ÿeÿnÿvÿvÿvÿvÿvÿ3,ÿ5+ÿ6,ÿ4/ÿ15ÿ.=ÿ+Gÿ&Rÿ"]ÿhÿrÿ|ÿ…ÿÿ”ÿšÿ ÿ¨ÿ¯ÿ·ÿÁÿÌÿÜÿéÿ õÿ ýÿ ÿÿ ÿÿÿÿÿÿÿÿÿÿÿÿ5*ÿ7)ÿ8*ÿ7-ÿ43ÿ3<ÿ0Eÿ+Pÿ'[ÿ#fÿ!pÿyÿ‚ÿ‹ ÿ’ ÿ˜ ÿž ÿ¦ ÿ­ ÿµÿ¾ÿÊÿÙÿçÿóÿüþÿü ÿú ÿù ÿù ÿù ÿù ÿÿ7)ÿ9(ÿ:(ÿ:+ÿ81ÿ8:ÿ5Cÿ1Nÿ,Yÿ)cÿ'mÿ%w ÿ#€ ÿ!ˆ ÿ ÿ – ÿœ ÿ£ ÿª ÿ² ÿ¼ ÿÇ ÿÕ þåüñùú÷ÿôÿ òÿ òÿ òÿ òÿ òÿ ÿ9'ÿ<%ÿ=&ÿ=(ÿ=.ÿ=7ÿ;Aÿ8Kÿ3Vÿ0` ÿ.j ÿ+t ÿ)} ÿ(… ÿ'Œ ÿ&“ ÿ%š þ%¡ ý$¨ ü$° ú#¹ ù#Ä ÷!Ó ö ã ôï ðù íÿ ëÿ éÿ éÿ éÿ éÿ éÿ ÿ<%ÿ?#ÿA#ÿA%ÿC,ÿC4ÿA>ÿ>Hÿ:Rÿ7] ÿ5g ÿ2p þ1y ü/‚ ú.‰ ø- ÷,— õ,ž ô+¥ ò+­ ñ*· ð) î(Ð ì'á é%î å"ù â!ÿá ÿß ÿß ÿß ÿß ÿß ÿÿ>#ÿB!ÿE ÿG#ÿJ*ÿJ2ÿH:ÿEDÿAO ÿ>Y û|æ=ƒä<‹â<“à;šÞ;¢Ü9«Ú8µØ7ÃÕ6ÒÑ6äÎ5ðË4ûÈ3ÿÆ2ÿÄ2ÿÄ2ÿÄ2ÿÄ2ÿÄ2ÿÿEÿJÿNÿTÿX%ÿX,ÿV3ûR<óOF íMQ èJ\ äHgàFpÝEyÚDØC‰ÕBÒA—ÐAŸÎ@§Ì?±É?½Ç>ÌÄ>ßÁ=ï¾<û»;ÿ¹:ÿ·:ÿ·9ÿ·9ÿ·9ÿ·9ÿÿHÿNÿSÿZÿ^#ÿ_)ü]/óY7ëVAäTM ÞRY ÙOcÔNlÐLtÍK|ËK„ÈJ‹ÆI“ÃIšÁH£¿G¬¼F¸ºEÇ·EÚ´Dë±Cù¯Bÿ­Aÿ ¬Aÿ «Aÿ «Aÿ «Aÿ «Aÿ ÿKÿQÿXÿ_ÿc!ÿe&ôd+ëa3â^=Û\I ÓYTÎX^ÉVgÅToÂSw¿R¼Q†ºPޏO–µOž³N¨°M´ ®L ¬KÔ ©Kè!¦J÷"¤Iÿ#£Hÿ$¡Hÿ$¡Gÿ$¡Gÿ$¡Gÿ$¡Gÿ$ÿNÿUÿ]ÿdÿhúj"íj'ãh-Úf8ÐdD ÊaOÄ_Z¿]c»\k¸ZsµYz²X‚ ¯WŠ!­V’"«Uš#¨T¤$¦S¯%£R½%¡QÏ%ŸQå%Pô&›Oÿ'™Nÿ'˜Nÿ'˜Nÿ'˜Nÿ'˜Nÿ'˜Nÿ'ÿPÿXÿaÿhÿlóoæo!Ûn'Ñm4Èk@ ÁiK»fV¶d_²bg¯`o¬_v!©^~#¦]…$¤\Ž&¡[—'ŸZ (œY«)šW¹*˜VË*•Vá*”Uò*’Tÿ*‘Tÿ+Sÿ*Sÿ*Sÿ*Sÿ*Sÿ*ÿSÿZÿdÿkþpírßsÓu"Êt1Ár= ºoH´mR¯j[«hc§fk ¤er#¡cz%žb‚'›aŠ)™`“*–_,”^¨-‘\¶-[È.ZÞ.ŒYð.ŠYý.‰Xÿ-ˆXÿ-ˆWÿ-ˆWÿ-ˆWÿ-ˆWÿ-ÿUÿ]ÿgÿnùsçvÙw ÍzÃz.»x: ³uE­rO¨pX¤n` lh!jo$šiv'—g~)”f‡+‘e-cš.Œb¥0Ša³0‡_Ä1…^Û1„^î1ƒ]ü0‚\ÿ0\ÿ/\ÿ/\ÿ/\ÿ/\ÿ/ÿWÿ` ÿiÿqóvÚyÒ} Ç€½€+µ~7 ®{B§xL¢uUžs]šqe"–ol%“ms(l{*j„-‹i/ˆh—1…f¢2‚e°3€dÁ4~b×4}bì3|aû2{aÿ2{`ÿ1{`ÿ1{`ÿ1{`ÿ1{`ÿ1ÿYÿb ÿlÿsìy Õ~͂…¸…(°ƒ5©€@¢}J{S˜x[”vb"‘tj&rq)Špx+‡o.„mŠ0l”2~k 4{i­5yh¾6wgÓ6vfê5ueú4ueÿ3tdÿ3tdÿ3tdÿ3tdÿ3tdÿ3ÿZÿd ÿn ÿv Û|Ђdž¼‰³Š&«ˆ3¤…> žƒH˜€Q“}Y{`"‹yg&‡wn)„uv,s~/~r‡1{q’4xož6un«7rl»7pkÐ7ojè7oiø6oiÿ5nhÿ4ohÿ4ohÿ4ohÿ4ohÿ4ÿ\ ÿg ÿq ôyÖ€̆‹·¯Ž#¦1ŸŠ< ™ˆE“…NŽƒWŠ€^"†~e&‚|l)zt,{y|/xw…2uv5qt›7ns¨8lq¹9jpÎ9ioæ8in÷7hmÿ6ilÿ5ilÿ5ilÿ5ilÿ5ilÿ5ÿ^ ÿi ÿs ä|Ò„ÉŠ¾²’ª“ ¢’.›: ”C‹L‰ˆT…†\!„c%}‚j)y€q-u~z0r}ƒ3n{5kz™7hx¦9ev¶:cuË:btä9bsö8brÿ7bqÿ6cqÿ6cqÿ6cqÿ6cqÿ6ÿa ÿlÿvÚψÅŽ¹“­— ¤˜—,–•7 “AŠJ„ŽRŒZ {Ša%w‰h)s‡o,p…w/lƒ2h‚‹5e€—7b~¤9_}´:]{É:\zâ9[yô8\xÿ7\wÿ7\vÿ6\vÿ6\vÿ6\vÿ6ÿcÿoôzÖ„ËŒÁ“µ˜§œŸ˜)‘›5Š™?„—H•Pz“Xu‘_#qf'mŽn+jŒu.f‹~2b‰‰4^‡•7[†¢8Xƒ²9V‚Æ:U€à9U~ó8U}ÿ7U|ÿ7U|ÿ6U|ÿ6U|ÿ6U|ÿ6ÿfÿsà~҈Ǒ¼—°œ¡¡˜£’£%‹¡2„ < ~žFyœNtšVo™]!k—e%g–l)c”t-`“}0\‘‡3X“5T¡7Q‹°8O‰Ä8NˆÞ8N†ò7N…þ6Nƒÿ6Nƒÿ6Nƒÿ6Nƒÿ6Nƒÿ6ÿjÿwÚƒÎÖ¸œ¬¢›¨‘©‹ª!„©.~§9 x¦Cr¤Ln¢Ti¡[e c"ažj&]r*Y›{-Uš…0Q˜‘2N–Ÿ4K”¯5H’Ã5G‘Ý5Gñ4Gý4FŒÿ4F‹ÿ4F‹ÿ4F‹ÿ4F‹ÿ4ÿoî|ԉɓ¿›´¢¨§™­Š±ƒ²}²*v°6q¯@ l­Ig¬Qc«Y_ª`[¨h"W§p%S¥y(O£ƒ+K¢.G ž/Dž­0BÁ1A›Û0@™ð0@—ü1?•ÿ1?•ÿ1?•ÿ1?•ÿ1?•ÿ1ÿu܃ÏÅ™º¡¯§£­”³‚ºy¼t¼%o»2jº< e¹F`·N\¶VXµ^T´eP²m L±v#I¯%E®(B¬›)?ª«*<¨¿+;§Ù*;¤î*:¢û+9 ÿ,9 ÿ,9 ÿ,9 ÿ,9 ÿ,ô|ÕŠÊ–ÀŸ¶§ª­´Ž¹~ÀpÇ kÈfÈ,aÇ7]ÆA YÅJ UÄRQÃ[MÂcJÀkF¿tC¾?¼‹ <»™"9¹©#7·½#6µÖ"6²í"5°ú$3®ÿ%3­ÿ%3­ÿ%3­ÿ%3­ÿ%Ý…Ï’Å»¦±­¤´–º‡ÀwÇhÐ_Õ\Ö$XÕ0TÕ;PÔEMÓN IÓV FÒ_CÑg@Ðq=Ï|:Έ7Í—4˧2É»1ÇÓ1Äë0Áù.¿ÿ.¾ÿ.¾ÿ.¾ÿ.¾ÿÔŽÉš¿¤¶¬ª³œºŽ¿ÅpÍbÖXåTåPæ)Læ4Iæ>FåGCåP@åY=äb :äk 8ãv5ã‚2â‘0á¢.ßµ,ÞÌ+Ûæ*×ó)Óý)Óÿ)Óÿ)Óÿ)Óÿ͘㺫¯²¡¹“¿„ÅvËhÒ[ÝSó OôJõ#Fõ,Cõ5@õ==õE:õN7õW4õ`1ôk.ôw ,ô… )ó” (ò¦ &ñ» %ðÑ $ïå #ìô "ë÷ "ë÷ "ë÷ "ë÷ Æ¡½ª´±¦¹˜¿‰ÄzÊmÑ`ÙTáM÷HÿDÿ@ÿ$=ÿ,:ÿ37ÿ:4ÿA1ÿI-ÿR*ÿ\'ÿh#ÿt ÿ„ÿ•ÿ¥ÿ¸ÿÍÿáÿãÿãÿãÿãÀ©·±«¸œ¾Ã~ÉpÐd×WßMæF÷Aÿ =ÿ9ÿ6ÿ!4ÿ(1ÿ..ÿ4+ÿ:'ÿB#ÿKÿUÿaÿoÿÿÿ ÿ­ ÿ½ ÿÀ ÿÀ ÿÀ ÿÀº°¯¶¡½’ÃÉtÏgÖZÞOäEê>÷9ÿ5ÿ 2ÿ/ÿ,ÿ*ÿ!'ÿ&$ÿ,!ÿ2ÿ9ÿBÿL ÿX ÿfÿuÿƒÿÿÿ ÿ ÿ ÿ ³µ¥¼–‡ÇxÎjÖ]ÞQäGê>ï6ö2ÿ.ÿ+ÿ'ÿ %ÿ"ÿ ÿÿÿ#ÿ)ÿ0 ÿ8ÿAÿNÿZÿfÿqÿ}ÿÿÿÿÿ.+ÿ0*ÿ/+ÿ,.ÿ'4ÿ$<ÿFÿQÿ\ÿfÿ pÿ yÿ‚ÿ‰ÿÿ•ÿ›ÿ¢ÿ©ÿ±ÿ¹ÿÅÿÑÿáÿîÿùÿÿÿÿýÿüÿüÿüÿüÿÿ0*ÿ2)ÿ1)ÿ/,ÿ*1ÿ):ÿ%Dÿ OÿZÿdÿnÿwÿ €ÿ ‡ÿ Žÿ “ÿ ™ÿ ¡ÿ §ÿ ®ÿ·ÿÂÿÏÿàÿíý÷ûÿøÿ÷ÿöÿöÿöÿöÿÿ2(ÿ4&ÿ4'ÿ2*ÿ//ÿ.8ÿ,Bÿ'Lÿ!Wÿaÿkÿtÿ}ÿ…ÿ‹ÿ‘ÿ˜ÿžÿ¥ÿ¬ÿµþ¿ü Íû Þù ëööóþðÿïÿîÿîÿîÿîÿÿ5%ÿ7$ÿ7$ÿ5&ÿ5-ÿ56ÿ2?ÿ.Iÿ)Tÿ%^ÿ!hÿqÿzÿ‚ÿˆýü–ûœù¢øª÷²õ½ôËòÜðéìõé þç ÿå ÿå ÿå ÿå ÿå ÿÿ8#ÿ:!ÿ;!ÿ:#ÿ<*ÿ<3ÿ9<ÿ6Fÿ1Pÿ-[ÿ*eý'nú%wø%~ö$…ô$Œó#“ñ"šð" î!¨í!±ë¼éÉçÚäéàõÞÿÛÿÚÿ Ùÿ Ùÿ Ùÿ Ùÿ ÿ:!ÿ=ÿ>ÿ@!ÿB'ÿB0ÿ@9ÿ=Bÿ9Lû5W÷2aó/kð.sî-{ì-‚ê,Šè,‘æ+—ä+Ÿã*§á)°ß(¼Ý'ÊÚ&ÝÖ%ëÒ%÷ Ï$ÿ Í#ÿ Ë#ÿ Ê#ÿ Ê#ÿ Ê#ÿ Ê#ÿ ÿ=ÿAÿCÿGÿI%ÿI,ÿG5þD>÷@Hñu Ó=| Ð=„ Î<‹ Ì<’ Ê<™ Ç;¡ Å:ª Ã:µ À9þ8Ô»8ç¸7öµ6ÿ³5ÿ±5ÿ°4ÿ°4ÿ°4ÿ°4ÿÿDÿIÿNÿTÿW ÿW%öT,ìP4äM>ÝKJÖIUÑH_ ÍGh ÊFp ÇFwÄEÁE†¿D½D•»C¸B¦¶A±´A¾±@ϯ?ä¬>ó©=ÿ§=ÿ¦<ÿ¥<ÿ¥<ÿ¥<ÿ¥<ÿÿGÿLÿSÿYÿ\ú\!íZ&ãW.ÛU9ÒTEÌRP ÆQZ ÂPc¾Ok»Ns¸Mz¶L´K‰±K¯J˜­I¢ªH¬¨Gº¦FʤFà¡EðŸDýCÿœCÿ›Bÿ›Bÿ›Bÿ›BÿÿJÿOÿWÿ]ÿaòaå_Û]'Ð]4É\AÂ[L ½YV¸W_´Vg±Un®Tv¬S}©R„§QŒ¥P”£Pž O¨žNµœLÆšLÛ—Kî•Jû”Iÿ“Iÿ’Hÿ’Hÿ’Hÿ’HÿÿLÿR ÿ[ÿaüeëeÝcÑd"Èe0Àd=ºbH ´`R°^[¬]c¨[k¦Zr£Yy¡X€žWˆœV‘™Uš—T¥ •S²!’RÂ!Q×!Pë!Oú"ŒNÿ"‹Nÿ"ŠMÿ"ŠMÿ"ŠMÿ"ŠMÿ"ÿOÿV ÿ_ÿeöhäh Õh ÊkÁk-¹j9²hD ­fN¨dW¤c_¡agž`n›^u™]}–\… ”[!‘Z—"Y¢#X®$ŠV¿%ˆUÓ%†Ué%…Tù%„Sÿ%ƒSÿ$ƒRÿ$ƒRÿ$ƒRÿ$ƒRÿ$ÿQÿY ÿb ÿh ík ÖmÎn Äp»q*³p6¬nA ¦lK¢jTžh\šgd—ek”dr’by a"`Š#Š_”%‡^Ÿ&…\¬'ƒ[¼(€ZÐ(Yç(~X÷'}Wÿ'|Wÿ&|Wÿ&|Wÿ&|Wÿ&|Wÿ&ÿS ÿ[ ÿd üj ÛnÑrÉs¾vµw'­u4§s> ¡qHœoQ˜mY”la‘jhŽho‹gv!ˆe~#†d‡%ƒc‘'€bœ(~a©*{_¹*y^Í*x]å*w\ö*v\ÿ)v[ÿ(u[ÿ(u[ÿ(u[ÿ(u[ÿ(ÿU ÿ^ÿg ðmÖrÍvÃx¸z°{$¨{1¢y< œvF—tO“rWp^‹neˆml…kt"‚j|$i…'}g)zfš*we§,uc¶,rbÊ-qaã,p`õ+p`ÿ+p_ÿ*o_ÿ)o_ÿ)o_ÿ)o_ÿ)ÿW ÿ`ÿiáoÓvÉ{¾}³«€!¤/~:—{D ’yLŽwU‰u\†sc‚qj pq"|ny%ym‚(vlŒ*tk˜,qi¥-nh´.lgÈ.keá.jeó-jdÿ,jcÿ+jcÿ+jcÿ+jcÿ+jcÿ+ÿYÿcþlÛsÏzź‚®„ ¦…Ÿ„,™ƒ8“€A ~J‰|R„zZ€xa}wh zuo#vtw&sr€(pqŠ+no•-kn¢.hm²/fkÅ/ejÞ/diò.dhÿ-dgÿ,dgÿ,dgÿ,dgÿ,dgÿ,ÿ[ÿfôn×wÌ~Áƒ¶‡ªˆ ¡Šš‰*”ˆ5ކ? ‰„H„P€X{~_x|f t{m#qyu&nx~)kvˆ+hu“-es /br¯0`pÃ0^oÜ0^nð/^mþ.^lÿ-^lÿ-^lÿ-^lÿ-^lÿ-ÿ]ÿhåqÓ{È‚¾ˆ²‹¥œŽ•'3‰‹= ƒ‰F~ˆNz†Vv„]rƒdok#ks&h~|(e|†+b{‘-^zž/\x­0YvÁ0XtÚ0Xsï/Xrý.Xqÿ.Xqÿ-Xqÿ-Xqÿ-Xqÿ-ÿ`ÿkÜuÐŇºŒ®Ÿ“–””$Š“0„’; ~DyŽLtŒTp‹[mŠbiˆi!f†q%b…z'_„„*[‚,X€.U~«/S|¾0Q{×0Qyî/Qwü.Qvÿ-Rvÿ-Rvÿ-Rvÿ-Rvÿ-ÿcùoØzÌ„Á‹¶‘ª•š˜šŠš „™-~˜8x—A s•Jo”Rk’Yg‘`ch `Žo#\x&Y‹‚(U‰+Rˆ›-O†ª.L„¼.K‚Ô.K€ì-J~û-K}ÿ-K|ÿ,K|ÿ,K|ÿ,K|ÿ,ÿhçsÓȉ½‘³–¦›”ŸŠ  ‚¡}¡)w 5rž? mGiœOe›Wa™^]˜fZ—m V•v#R”€&O’Œ(K™*Hލ+F»,D‹Ò+D‰ë+D‡ú+D…ÿ+D…ÿ+D…ÿ+D…ÿ+D…ÿ+ÿmÜyυĹ–¯œ¢ “¤‚§z¨u¨%p¨1k§;g¦D b¥M^¤U[¢\W¡dS kPžtL~!HœŠ$Eš—&B˜¦'@–¹'>•Ð'>“ê&=ù'=ÿ'=Žÿ'=Žÿ'=Žÿ'=Žÿ'ósրʌÀ•¶œ«¢ž¦ª|¯q±l²h±,c±7_°A[¯I X®QT­YP¬aMªiI©rF¨|B§ˆ?¥• <£¥!:¢·!9 Ï!9žè!8›ø"7šÿ"6™ÿ#6™ÿ#6™ÿ#6™ÿ#ßzЈœ»›±¢¦¨˜¬‰±y¶h»b½_½&[½2W¼<S»EPºN M¹V I¸^F·fC¶o@µy=´…:²“7±£5¯µ3­Ì3«ç2¨÷1¦ÿ1¥ÿ1¥ÿ1¥ÿ1¥ÿ؃ÊÀš·¢­¨ ®’²‚·s¼cÃWÉ SÊQÊ*MÊ5JÊ?GÉHEÈQBÈY ?Çb <Æk 9Åv6Ä‚4Ã1Á /¿³.½Ê.»å-·õ,µÿ+´ÿ+´ÿ+´ÿ+´ÿÐŘ»¡²¨¦®˜´Š¸z½lÂ^ÉPÒGÚEÚBÛ+@Û6>Û@<ÛI9ÚR7Ú\4Ùf2Ùq/Ø~-ÖŒ +Õ )Ó¯ 'ÑÆ 'Ïá &Ëò %Èü %Çÿ %Çÿ %Çÿ %Çÿ É–¿¡¶¨¬®ž´¹€¾rÃdÉWÐKÙBé >ê;ë"9ë,7ì54ì>2ìG0ìQ-ì[+ëf(ër&ë$ê‘"é¢!è·æÏäçàõßûßûßûßûຨ±®£´•º†¾wÄiÉ\ÏPÖEß=î9ú6ú3û"1û*.û2+ü9(üB%üK"üV übüpü€ü’ú£ú·ùÍøâ÷î÷î÷î÷´®¨´™ºŠ¿{ÄmÊ`ÏTÖIÞ?ä8ï3ÿ0ÿ-ÿ*ÿ'ÿ%%ÿ,!ÿ2ÿ:ÿDÿOÿ\ ÿk ÿ{ÿÿ¡ÿ®ÿ¿ÿÌÿÌÿÌÿÌ·®¬³žº¿€ÄqÊdÐW×LÞBä9é1ï-ÿ)ÿ&ÿ #ÿ ÿÿÿ$ÿ*ÿ2 ÿ;ÿFÿTÿbÿsÿƒÿ’ÿ ÿªÿªÿªÿª°²¢¹“¿…ÄuÊgÑZÙNßDå;ê2î+ò&þ"ÿÿÿÿ ÿÿÿ ÿ"ÿ)ÿ2ÿ<ÿIÿWÿfÿsÿ€ÿ‡ÿ‡ÿ‡ÿ‡ÿ)*ÿ))ÿ'*ÿ#-ÿ3ÿ;ÿDÿ OÿZÿdÿnÿvÿ~ÿ…ÿŒÿ‘ÿ–ÿÿ¤ÿ©ÿ±ÿ»ÿÆÿÔÿçýôûýùÿùÿøÿøÿøÿøÿÿ+(ÿ,'ÿ*(ÿ&+ÿ 0ÿ9ÿBÿMÿ Xÿ bÿkÿtÿ|ÿƒÿ‰ÿÿ”ÿ›ÿ¢ÿ¨ÿ¯ÿ¹ÿÄýÔûåøòöüôÿóÿòÿòÿòÿòÿÿ.&ÿ.%ÿ-%ÿ)(ÿ&.ÿ%7ÿ @ÿJÿUÿ_ÿ hÿ qÿyÿ€ÿ‡ÿŒÿ’ÿ™þŸý¦ü®ú·ùÃøÒõäòñïûíÿëÿêÿêÿêÿêÿÿ0$ÿ1"ÿ0"ÿ-$ÿ-+ÿ+4ÿ)=ÿ#GÿRÿ\ÿeÿnÿvý}û„úŠø ‘÷ —õ ô ¤ó ¬ñ µïÂîÑìãèñäûâÿáÿßÿßÿßÿßÿÿ3!ÿ4ÿ4ÿ3!ÿ4(ÿ31ÿ0:ÿ+Dÿ&Nÿ"XübùkösózñðˆîŽì•ë›é¢ç«æµäÂâÒßäÛòØüÕÿÓÿÐÿÐÿÐÿÐÿÿ6ÿ8ÿ7ÿ9ÿ;&ÿ:-ÿ76ÿ4@ü/Jö+Tò(^î&gë$pè$wæ#~ä"…â"Œà"“ß!šÝ ¡Û «Ù¶ÖÃÓÓÐåÌóÉþÆÿÄÿÃÿÃÿÃÿÃÿÿ9ÿ;ÿ<ÿ@ÿA"ÿA*ÿ>2ù;;ò6Eì3Pç0Zã/dß.lÜ-tÚ-|×,ƒÔ,ŠÒ,Ð,—Î+ŸÌ+¨Ê*²Ç*¿Å)ÏÂ)â¾)ò»(þ¹'ÿ¸'ÿ ¶&ÿ ¶&ÿ ¶&ÿ ¶&ÿ ÿ<ÿ?ÿBÿFÿHÿG%øD-ï@6ç=@á9KÛ8VÖ7`Ò7hÏ7pÌ7wÉ7~Ç6…Å6ŒÃ6“Á6›¾5£¼5®º4º¸3ʵ2Þ²2ï ¯1ü ­0ÿ «0ÿ ª/ÿ ª/ÿ ª/ÿ ª/ÿ ÿ?ÿCÿGÿLÿNûM ïI'åE0ÝB:ÕBFÏBQÊA[ÆAdÂ@k¿@s½@y »?€ ¹?‡ ¶> ´>— ²=Ÿ °=© ®<¶ «;Å ©:Ú ¦:ì ¤9ú¢8ÿ 7ÿŸ7ÿŸ7ÿŸ7ÿŸ7ÿÿBÿFÿMÿRÿSòRåNÛJ(ÑK5ÊLAÄKL¿JV»J_ ¸Ig µHn ²Gu °G| ­Fƒ«FŠ©E’§E›¥D¥£C² BÁžAÔœ@é™?ø˜?ÿ–>ÿ•=ÿ•=ÿ•=ÿ•=ÿÿEÿI ÿQ ÿVûXêVÜPÑR#ÈT1ÁT=ºTH¶RR±Q[ ®Pc «Oj¨Nq¦Nx¤M¡L†ŸKŽK—›J¢™I®–H½”GÐ’FæEöDÿŽDÿCÿCÿCÿCÿÿHÿMÿU ÿZ ó[ ÝYÓW ÈZÀ\-¸\9²[D­ZN ©XW ¥W_¢Vf UmTt›S{™R‚–Q‹”P”’PžNªM¹‹L̉KãˆJô†Jÿ…Iÿ„Hÿ„Hÿ„Hÿ„HÿÿJ ÿQÿY ý]ß^Ô`Ë_ Áa¸c)±c5«a@¦`J ¢^S ž][›\c˜[j–Yp“Xw‘WV‡ŒU‘ŠT›‡S§…R¶ƒQÉPá€Oó~Nÿ~Nÿ}Mÿ}Mÿ}Mÿ}MÿÿL ÿTÿ\ð`ØdÎfÅe»g²i&«h2¥g= eG œdP ˜bX”a_’`f^mŒ]tŠ\|‡[„…ZŽ‚Y™€X¥~W³{UÆ yTÞ xSñwSþwRÿvRÿvQÿvQÿvQÿÿNÿWÿ_ÞcÓhÉk¿jµl­n#¦n/ l:škD –iM ’gUf]‹dd‰cj†bqƒay`‚~^‹{]– y\¢!w[±"tZÄ"sXÜ"rXð"qWý!qVÿ pVÿ pVÿ pVÿ pVÿ ÿPÿZûaÛgÏmÅpºp°q¨r ¡r-›q8•pB ‘nK lS‰jZ†iaƒgh€fo}ewzdxc‰ ub”!sa #p_¯$n^Á$l]Ù$l\î#k[ý#kZÿ"kYÿ!kYÿ!kYÿ!kYÿ!ÿRÿ\ñdØkÌqÁt¶u«v £wœw*–v6‘t?ŒrH ˆqP„oX€m_}lezkmwjtth}rg‡!of’#mež$jd­%hb¿&faÖ&f`í%e_ü$e^ÿ#e]ÿ"e]ÿ"e]ÿ"e]ÿ"ÿTÿ^äfÔnÉt¾x²z¦{ž|˜|(’{3Œy=‡wF ƒuNtV{r]xqcupkrnrom{ll„"ik$gjœ%dh«&bg½'`eÔ'`dë&`cû%`bÿ$`bÿ#`bÿ#`bÿ#`bÿ#ÿVÿaÞjÐrÅyº}¯¢™€“%€1‡~;‚|D ~{LzyTvx[svbouimtpjry gq‚"dpŽ$aoš&^m©'\k»'ZjÑ'Ziê'Zhú&Zgÿ%Zfÿ$Zfÿ$Zfÿ$Zfÿ$ÿYûdÚmÍvÂ}·«„„”…ކ"ˆ….‚„9}‚B yJ tRq~Ym|`j{ggzndxvaw€"^v‹$[t˜&Xr§'Vq¹'ToÏ'Tmè'Tlù&Tkÿ%Tjÿ$Tjÿ$Tjÿ$Tjÿ$ÿ]ïgÖrÊ{¿‚´†¨‰˜ŠŽ‹ˆ‹‚‹+}Š6x‰?s‡H o†Pl…Whƒ^e‚ebl^u[~~!X|Š#Uz–%Ry¥&Pw·'NuÍ'Msç&Nrø&Nqÿ%Npÿ$Npÿ$Npÿ$Npÿ$ÿ`àkÒwÆ€¼‡±‹¤Ž’ˆ‘ ‘|’(w‘3r=nŽE jMfŒUc‹\_Šc\ˆjY‡sU…|Rƒˆ!O‚•#L€£%I~µ%H|Ë%Gzå%Gy÷$Gwÿ$Gvÿ$Gvÿ$Gvÿ$Gvÿ$ÿeÜqÎ|Ã…¸Œ­‘ “Œ–‚—z˜u˜$p˜0l—:h–Cd•K `”S]“ZY’aViSqOŽ{LŒ†IŠ“!F‰¢"C‡³#A…É#Aƒä"Aõ"@ÿ"@~ÿ"@~ÿ"@~ÿ"@~ÿ"ðjÖwÊ‚¿‹µ’ª—œ™Œ›zžr m i ,eŸ7až@]žH ZP VœWS›_P™gL˜oI—yF–„B”‘@’ =±;Ç;â:Šô:‰ÿ:‡ÿ:‡ÿ:‡ÿ:‡ÿàpÑ~ʼn»‘±˜¦˜Ÿ‰¡v¦j¨d¨`©&]¨2Y¨<V§DS¦MO¥U L¤\ I£dF¢mC¡w@ ‚=Ÿ:ž8›°6™Å5—á5•ó4“ÿ4‘ÿ4‘ÿ4‘ÿ4‘ÿÙyˆÁ·˜­ž¢¢”¦…©t¬c±Z³V³S³,P²6M²@K±HH±PE°YB¯a ?®j <­t9¬7«4©œ2§­0¥Ã0£ß/¡ò.Ÿý-ÿ-ÿ-ÿ-ÿÒ‚ÆŽ¼—³ž©¤œ¨Ž¬~¯o³_¸P¾K¿H¿#F¿.D¿9A¿B?¾K=¾S:½\8½f5¼p3»| 0¹Š .¸™ ,¶« *´À )²Ü )¯ð (¬ü 'ªÿ'ªÿ'ªÿ'ªÿË‹Á–¸Ÿ®¥£ª•®†²wµhºZ¿LÅ@Ì ;Î9Î#7Î.6Î84ÎA2ÎK1ÎU/Í_-Íj*Ìv(Ë„&Ê•$Ȧ#Ƽ!ÄÖ!Áí!¾ú »ÿ »ÿ »ÿ »ÿÅ•¼ž³¥¨«›°Œ´}·n¼aÀTÆGÌ<Ó1Ü .à,à!*á+)á4'á>&áH$áS#á_!álázà‹ßžݲÛÌ×åÓóÑýÑýÑýÑý¿ž·¦­« ±‘µ‚¹t½fÂYÇMÍBÓ7Û-á*ñ 'ñ%ò #ò( ò0ó9óCóOó\ójózó ñŸ ð¶ ïÌíâëòëòëòëòº¦±«¥±–¶‡ºx¿jÄ]ÉQÎFÔ<Û2á)æ%õ"ÿ ÿÿÿ"ÿ*ÿ2ÿ< ÿHÿUÿeÿvÿŠÿžÿ°þÄýÝýÞýÞýÞ´¬©±›¶Œ»}ÀnÅaËTÐIÖ?Ý5â-ç%ëõÿÿÿÿÿ ÿ"ÿ*ÿ3ÿ?ÿNÿ^ÿpÿ‚ÿ•ÿ¥ÿµÿµÿµÿµ­°Ÿ¶‘¼‚ÁsÆeÌXÒKÚAß7ä/é'í ñõÿÿÿ ÿ ÿ ÿÿÿ!ÿ+ÿ6ÿDÿUÿfÿvÿ„ÿÿÿÿÿ$)ÿ#(ÿ)ÿ,ÿ1ÿ9ÿCÿMÿXÿaÿkÿsÿ{ÿ‚ÿ‡ÿÿ’ÿ—ÿžÿ¤ÿ«ü´û¾úËùÜøí÷ùöÿõÿôÿôÿôÿôÿÿ&'ÿ%&ÿ"&ÿ)ÿ.ÿ7ÿ AÿJÿUÿ_ÿhÿqÿxÿÿ…ÿŠÿÿ•þœü¢ù©÷±õ»ôÈóÜñëð÷ïÿïÿîÿîÿîÿîÿÿ)%ÿ(#ÿ%#ÿ %ÿ,ÿ5ÿ>ÿ GÿRÿ\ÿeÿnÿuÿ|ÿ‚ÿˆýú”ø™õ ò§ð¯î¹íÈëÚéêèöçþæÿåÿåÿåÿåÿÿ,"ÿ+ ÿ( ÿ#!ÿ#)ÿ!2ÿ;ÿEÿOÿ Xÿbþjûrùy÷õ…ô‹ò‘ð—ížê¥ç®å¹äÇâÙàéßõÝþÜÿÚÿÙÿÙÿÙÿÿ.ÿ.ÿ,ÿ*ÿ+&ÿ)/ÿ%8ÿAÿKüU÷^ôgñoî vì |ê ‚è ‰ç å •ãœá¤Þ®Ü¹ÙÇÖÙÔéÑùÎÿËÿÉÿÉÿÉÿÉÿÿ1ÿ1ÿ/ÿ1ÿ2#ÿ0+ÿ-3ý(=ö#FñQìZècåkâsàyÞ€Ü‡ÚØ”՛ӣѭιÌÈÊÛÆìÂúÀÿ¾ÿ¼ÿ¼ÿ¼ÿ¼ÿÿ4ÿ5ÿ4ÿ8ÿ8ÿ7&ü3/ó/8ë*Bå'Là%VÜ$`Ø#hÔ#oÒ$vÏ$}Í$ƒË$ŠÉ$‘Ç$˜Å$ Ã#ªÀ#µ¾"ļ!׸!êµ!ø³!ÿ±!ÿ¯ ÿ¯ ÿ¯ ÿ¯ ÿÿ7ÿ8ÿ;ÿ>ÿ>ýª ›=¸ ™<Ê –<à ”;ò ’:þ ‘9ÿ 8ÿ 8ÿ 8ÿ 8ÿ ÿ@ ÿDÿK ÿN ðM ÛGÒEÈI¿K-¹L9³LD®LM«KV§J^¥Ie¢Il  Hr žHy œG€ šFˆ ˜F‘ •E› “D¦‘C´BÆAÝ‹@ð‰?ýˆ?ÿ‡>ÿ‡>ÿ‡>ÿ‡>ÿÿC ÿHÿOöRÜQÒQÊN ¿Q·S(±T5«T@¦SI£RRŸQZPa šOh ˜No •Nu “M}‘L…KŽK˜ŠJ£ˆI±†HÄFÙ‚FîEü€DÿCÿCÿCÿCÿÿEÿLÿRäUÕXËYÂV¸X°Z%ª[1¤Z< YFœXO˜WW •V^ “Ue TkŽSrŒRy‰Q‚‡Q‹…P•‚O €N®~LÀ|KÕzJìyJûxIÿxHÿwHÿwHÿwHÿÿGÿOúUÜZÐ^Æ_¼]²^ª`!¤a.ž`9™_C•^L’\T [[ ŒZb‰Yh‡Xo„Wv‚V€Uˆ}T’{SžxR¬vQ½tPÓsOêrNúrMÿqMÿqLÿqLÿqLÿÿIÿRïXØ^ÌcÁe·c¬c¥ežf+™e6”d@cIŒaQ ‰`X †__ƒ^f€]m~\t{[|yZ…vYtXœrW©pU»nTÐmSèlRùkQÿkQÿkPÿkPÿkPÿÿJÿTá[ÔcÈg¾j²i§i  j™j(”j4i=‹gF‡fN ƒeU €c\}bczajx`qu_zs^ƒp]Žn\šl[¨jY¸hXÎgWçfVøfUÿfUÿfTÿfTÿfTÿÿMÿWÞ_ÑfÅlºn®n£m›n•o&n1Šm;†lDjL ~iS zhZwgaufhreopdwmckbŒh`˜f_¦d^¶b\Ìa[åaZ÷`Yÿ`Yÿ`Xÿ`Xÿ`XÿÿPúZÛbÎjÂp·r«sžr–ss#Šs/…r9qA|oI ynQ umXrk_pjfmimjhuhgefŠce–`d¤^bµ\aÊ[_ã[^ö[]ÿ[]ÿ[\ÿ[\ÿ[\ÿÿSð]ØfËn¿t´w§wšw‘x‹x …x,€w6|v?wtG tsO qrVmq]kpdhokemsbl}`kˆ]j”[h¢Xg³WeÈVdâVbõVaÿV`ÿV`ÿV`ÿV`ÿÿVã`ÔjÇr¼x±|£|•|Œ}†}€}){|4w{=szEoyM lxTiw[fubcti`sq]r{Zp†Wo’Un Sl±QjÆPiàPgôPfÿPeÿPeÿPeÿPeÿÿYßdÐoÄw¹}® €†‚ €ƒzƒ&v‚1q;m€CjK f~R c}Y`|`]{hZypWxyTw„QuOtŸLr¯KpÄJnßJmóJkÿJjÿJjÿJjÿJjÿû]ÛiÍsÁ|¶‚ª…œ…Ї€ˆy‰t‰#p‰.lˆ8h‡Ad†Ia†P ^…W [ƒ^X‚fUnRwN~‚K|I{Fy­DwÂCuÝCsñCrþCqÿCpÿCpÿCpÿêbÖnÉy¾³‡¦Š˜Š…zrmi+e5a>^ŽF[N XŒU U‹\RŠdO‰lLˆuH†€E…Cƒ›@¬>À=}Û={ð=yý=xÿ=wÿ=wÿ=wÿàhÑuꇰ¢Ž”„’t–k— e˜a˜&^˜1Z—:W—CT–KQ•RN”Z K“b H’jE‘sB~?Ž‹=š:‹ª9‰¾7‡Ù7„ï7‚ü7ÿ7€ÿ7€ÿ7€ÿÛoÌ|À†¶Ž¬“ž”•˜pœcŸ\ X  U ,R 6P ?MŸGJžOGžWE_ Bœg ?›q <š|9˜‰7—˜5•¨3“¼2‘Ö2î1û0‹ÿ0‹ÿ0‹ÿ0‹ÿÓwÇ„¼³”¨™ššŒœ}Ÿn£_§S© NªKª%Iª0Fª9D©BB©K@¨S=§[;§d8¦n6¥y 3¤† 1¢• /¡¦ -Ÿº ,Ó ,šì +˜ú *–ÿ *–ÿ*–ÿ*–ÿ̀Œ¸•¯›¥ –¡ˆ¤z¨k«[¯L²Bµ@µ=µ'<µ2:µ;8µD6µM4´V2´_0³i.²u,±ƒ)¯’(®£&¬·%ªÐ%§é$¥ø#£ÿ#¢ÿ#¢ÿ#¢ÿÇŠ½”´œ«¡Ÿ¦‘©‚¬s¯d²V¶H»;À3Ã1Ã/Ã&-Ã0,Ã9+ÃC)ÃM(ÃW&Ãb$Ân"Á} ÀŒ¾ž¼²ºÊ·æ´ö²ÿ±ÿ±ÿ±ÿÁ”¸œ¯¢¥§˜«‰¯z²kµ]¹P½CÂ7È,Î#Ó !ÔÔ"Ô+Õ5Õ?ÕKÔWÔdÔrÓƒÒ–Ъ ÍÀ ËÜ Èï Åú Äÿ Äÿ Äÿ»œ³£«¨­±´p¸c»VÀIÄ>Ê3Ï)Õ Üæ çèè'è0é: éF éTécèså†ã™â®ßÂÞÚÜèÛîÛîÛ®©¢®”²…¶uºh¾ZÂNÇBÌ8Ò.Ø%Ýâçöù ú ú!ú)û4ú@ùOø_öqô…ó™ò¬ñ¿ñÒðÝðÝðݱª¦®™³Š·z¼lÁ^ÅQÊFÏ;Õ2Û)à!äèë õ ÿÿ ÿÿÿ"ÿ,ÿ8ÿGÿYÿlÿÿ“ÿ¥ÿ²ÿ¶ÿ¶ÿ¶«®´Ž¸½pÂbÈUÍHÓ>Ú4ß+ã#çëî ñõÿÿÿÿ ÿÿÿ$ÿ0ÿ?ÿQÿdÿvÿ…ÿ’ÿ˜ÿ˜ÿ˜ÿ'ÿ'ÿ'ÿ*ÿ/ÿ6ÿ@ÿJÿUÿ_ÿhÿpÿxÿ~ÿ„ÿ‰ÿŽþ“ý˜üŸû¦ú®ù·øÄ÷Ôöåôóñÿïÿîÿíÿíÿíÿÿ!%ÿ$ÿ%ÿ'ÿ,ÿ4ÿ>ÿGÿRÿ\ÿfÿmÿuÿ{ÿü†ú‹ø÷–öõ£ô«ò´ñÁïÏîâëóèþæÿåÿåÿåÿåÿÿ##ÿ!!ÿ!ÿ#ÿ*ÿ 2ÿ;ÿEÿOÿYÿbÿjÿqûxø~õƒòˆñŽï”îší ë¨ê²è½æÌäâáðÞûÜÿÛÿÛÿÛÿÛÿÿ% ÿ#ÿÿÿ'ÿ/ÿ 8ÿAÿKÿUý_ùg÷nòuïzë€é…è‹æ‘å—ãžá¦ß¯Ý»ÛÌØßÓîÑùÐÿÏÿÎÿÎÿÎÿÿ)ÿ'ÿ"ÿ!ÿ $ÿ,ÿ4ÿ=ü G÷Qò[îcëjèqäwá}߃މÜڕ؜դҮлÍÊÊÞÈíÆøÄÿÃÿÂÿÂÿÂÿÿ,ÿ*ÿ&ÿ(ÿ( ÿ%(ÿ 0ø9ñCëMæVâ _Þ gÛ nØ tÕ zÓ €Ñ †Ï Í ”Ë ›É ¤Æ ®Ä ¼Á Ì¿ ༠ò¹ ÿ· ÿµ ÿ´ ÿ´ ÿ´ ÿÿ/ÿ-ÿ-ÿ/ÿ.ÿ+#õ&+ì!3ä=ÞHÙRÓ[ÐcÍjÊpÈvÆ|ăŠ¿‘½™»¢¹¬·º´˲à¯ñ¬þªÿ©ÿ¨ÿ¨ÿ¨ÿÿ2ÿ1 ÿ4 ÿ5ÿ4÷0ê+$à$,Ø"7Ð$BË%MÇ&VÃ'^À(f½(l»(s¹(y·(µ(†³(±(•¯(ž­'©ª'·¨&Ǧ%Ý£%ï¡$ýŸ$ÿž#ÿ#ÿ#ÿ#ÿÿ5 ÿ4ÿ9 ÿ; ü9ì4ß,Ó+%Ë.2Å0=¿2H»2R·3Z´3b²3h¯3o­3u«3{©2‚§2Š¥2’£2›¡1¦Ÿ0³/Ä›.Ù˜.í–-û•-ÿ”,ÿ“+ÿ“+ÿ“+ÿÿ8 ÿ9ÿ?ÿ@ï=Ý5Ó2É6 À9-º;9µÿCñDÛCÑAÉ= ¿@·B(±D4¬D?§DI¤DQ¡DYžC`œCgšBm˜Bt–B{”A‚’A‹@•Ž?Ÿ Œ>¬ ‰=½ ‡<Ñ …;è „;ø ‚:ÿ ‚9ÿ 9ÿ 9ÿ 9ÿ ÿ=ÿBþGßIÓLÊKÀG·H¯K$©L0¤L; LEœKN™KU–J]”Ic’IjHpŽHw ‹G ‰Fˆ ‡F‘ …Eœ ƒD© Cº BÎ }Aå {@ö z?ÿ y>ÿ y>ÿ y>ÿ y>ÿ ÿ>ÿFñKÚPÎSÃS¹N°P¨R ¢S-S8™RA•RJ’QRPYO`ŠNf ˆNm †Mt „L| L… K }Jš{I§xH·vGËuFãtEõsDÿrCÿrCÿrCÿrCÿÿAÿIâNÕUÉY¾Z³U©V¢XœY*—Y5“X>WGŒVO‰UV†T]ƒSc Sj Rq |Qy zP‚xPŒvO—sN¤qL´oKÉnJámIôlHÿlHÿlGÿlGÿlGÿÿCÿLßSÑZÅ^º_®\¤\ ]—^&’^2];‰\D†[LƒZS€YZ }Xa {Wg xVn vVvtUqTŠoS•mR¢kQ²iOÆhNàgMófLÿfLÿfKÿfKÿfKÿÿF÷OÛWÎ^Âc·dªaŸa˜b’c$b/ˆb9„aA€`I}_Qz^X w]^ u\e r[lpZtnY}lXˆiW“gV¡eU°cTÄbRÞaQòaPÿaPÿaOÿaOÿaOÿÿIíRØ[Ëb¿g³h¦f›e“fg!ˆg,ƒf6e?{dGxcNubU ra\ o`c m_jk_ri^{f]†d\’a[Ÿ_Y¯]XÂ\VÜ\Uñ[Tþ[Tÿ[Sÿ[Sÿ[SÿÿLãUÔ_Èf¼k¯l¢k–jŽkˆkƒk*~k4zj=viEshLpgS mfZ jea hdhfcpcbyaa„^`\_Z^­X\ÁWZÚVYðVXýVWÿVWÿVWÿVWÿÿOàYÑcÅj¹o¬pžo’n‰o ƒo}p'yo1uo:qnBnmJklQ hkX fj_ cifahn^gw[f‚YeŽWdœTb«S`¿Q_ØQ]ïQ\ýQ[ÿQ[ÿQ[ÿQ[ÿýRÝ]ÎgÂo·t¨s›ss„t }txu$tt/pt8ls@irHfrOcqV ap] ^oe[nlYmuVk€SjŒQišOgªMe½KdÖKbíLaüL`ÿL_ÿL_ÿL_ÿòUÙbËl¿s´x¤w—w‡x~ywzrz!nz,kz6gy>dyFaxM^wT [v[ Yuc VtkSssPq~NpŠKn˜Im¨Gk»FiÔFhìFfûFeÿFdÿFdÿFdÿåZÕgÇp¼x¯| {“|~xp€lh)e3a€<^€D[KY~RV}Y S|a P{iMzrKx|HwˆEu–Ct¦Ar¹@pÒ@në@lú@kÿ@jÿ@jÿ@jÿà`ÐlÄv¹~«€œ€€}ƒr†j‡ eˆaˆ%^ˆ/[ˆ9X‡AU‡HR†PP…WM„_ Jƒg G‚pE€zB‡?}•=|¥;z¸:xÐ:vé:tù:rÿ:qÿ:qÿ:qÿÛfÌrÀ|µ„¦„˜„‹…{‰nŒc]Y V+S5Q=NELŽMIŽUG\DŒe A‹n >Šx <ˆ…9‡“7…£5ƒ¶4Î4è4|ø3{ÿ3zÿ3zÿ3zÿÔmÇy¼ƒ±Š¡‰”Ї‹yj“^–T˜ P˜M˜%K˜0H˜9F˜AD—IB—Q?–Y=•b;”k8“v5’‚ 3‘‘ 1¡ /´ .‹Ì .‰æ -†÷ -…ÿ -„ÿ -„ÿ -„ÿ ÎvÂ¸Š¬Ž‘ƒ’u–gšZžM¡F¢C¢@¢)?¡3=¡<;¡D9¡L7 U5 ^3Ÿh1žs/,œŽ*šž)˜±'–É'”ä'’ö&ÿ&Žÿ&Žÿ&ŽÿÈ½Š´‘§”š•—šrže¢V¦I©<¬7¬5¬!3¬*2¬40¬</¬E-«N,«X*«b(ªn&©{$¨Š"¦›!¤®¢Å ážóœþšÿšÿšÿˆ¹’°™¤›—œ‰ |£o¨a«R­D±8´,¹ )¹'¹ %¹)$¹2"¹;!¹E¹O¸Z¸f·t¶„´•²¨°¿®Û«ð©ü§ÿ§ÿ§ÿ½’´š¬ ¢£”§†ªv¬h¯Z²Lµ?¹4½)ÁÆÉÉÉ$É-É7ÉBÉN É[ Èi ÇyÅŠÃÀ±¾É»áºï¸ø¸ø¸ø¸š°¡¨¥š©Œ¬|¯n²`µR¹F½:Á/Å%ÊÎÓ Ù ÚÚÚ'Ú2Ú>ÛKÚZÚiÙz×Ô¡Ò¶ÏÌÍßÌìÌìÌì³¢«¦Ÿ«‘¯‚²sµe¹W½KÀ?Å4É+Î!ÒØÜßæå æç è+é8ëFìVìhëzëŽê¡è³çÄæÓæÓæÓ®§¤¬–°‡´x¸i¼\ÀOÅCÉ8Î.Ò%ØÝà äæéôôóóô$ö1ù@ûRüdüwüŠüœüªü¶ü¶ü¶¨¬š±Œµ}ºn¿`ÃRÉFÎ;Ó1Ù(Ýâåè ëîïóþÿÿÿÿÿ)ÿ9ÿKÿ_ÿqÿÿÿ—ÿ—ÿ—ÿ&ÿ%ÿ %ÿ(ÿ+ÿ4ÿ=ÿHÿSÿ]ÿfÿnÿuÿ{ÿ€þ…ýŠüŽû“ú˜ùŸø¨÷²ö½óÍðáîðíüìÿëÿëÿëÿëÿÿ#ÿ"ÿ"ÿ$ÿ)ÿ2ÿ;ÿEÿPÿZÿcÿkýqúwù}ø‚ö†õ‹ôó–òñ¥ï®í¹êÉçÜåìäùãÿâÿáÿáÿáÿÿ!ÿÿÿ ÿ'ÿ/ÿ8ÿBÿLÿWÿ`ùgônótñyï~îƒíˆëê“éšç¢å«â¶ßÄÜÖÚ騸ÖÿÕÿÔÿÔÿÔÿÿÿÿÿ ÿ %ÿ,ÿ4ÿ>ÿHüSõ\ïcëjépçvæ{ä€â…áŠß‘ݗ۟بԳÑÀÏÓÍçËõÉþÈÿÇÿÆÿÆÿÿ"ÿÿÿÿ!ÿ)ÿ0þ:÷DñNéWä_áfßlÜrÚwØ|ՂӇюϕÍʦǰſÂÐÀä¾ò¼üºÿ¹ÿ¹ÿ¹ÿÿ%ÿ"ÿÿÿÿ$û,ò 5ê?äIÝSÙ[ÔbÑhÏnÍtËyÉDžȓÀ›½¤»°¹¾¶дä²ò¯ý®ÿ­ÿ­ÿ­ÿÿ(ÿ% ÿ% ÿ&ÿ#ûî&å/Ý 9Õ CÐ MÌVÈ^ÅdÃkÀq¾v¼|ºƒ¸ж‘´š²¤°°­À«Ó¨é¥ø¤ÿ¢ÿ¡ÿ¡ÿ¡ÿÿ+ ÿ(ÿ+ ÿ, ÿ)ï"âØ'Ï3É>ÃH¿Q»Y¸`¶g´ m² s° y® ¬ †ª ލ —¦ ¡¤­¢½ŸÐæ›÷™ÿ—ÿ—ÿ–ÿ–ÿÿ.ÿ-ÿ2ÿ1ó, ã$ ÕË""Ã&.¼(9·)C³*L°*U­+\«+c¨+i¦+o¥+u£,|¡+ƒŸ+‹+”›+ž™*ª—)º•(Í“(ä‘'õ&ÿŽ&ÿ%ÿ%ÿ%ÿÿ1ÿ3ÿ7ð6Ü2Ò/Ê* À.¸1)²24­3>©4H¦4P£5X¡5_Ÿ5e5k›4r™4x—4•4ˆ“4‘‘3›3¨2·‹1ʉ0á‡/ó….ÿ„-ÿ„-ÿƒ-ÿƒ-ÿÿ3ÿ8ú;ß<Ó>É;À6¶8¯:$©<0¤<:¡=D=Lš=T˜=[–=b”±y=Äw<Üv;ðt:ýt9ÿs9ÿs9ÿs9ÿÿ8ÿ@áEÒKÇN»M°H§H I›K(–K3’K<KEŒJM‰IT†I[„Ha‚Hh€Gn~Gv|F~yFˆwE“ uD  sC® qBÁ pAÙ n@î m?ý m>ÿ m>ÿ l=ÿ l=ÿ ÿ;÷CÜJÎQÂT¶S«N¢N šP•Q%Q0ŒQ9ˆPB…PJ‚OQ€NX}N^{MeyLlwLsuK| sK† pJ‘ nI lH¬ jG¿ iEÖ hDí gCü gCÿ fBÿ fBÿ fBÿ ÿ>ëFÙPËV¿Z±X¦TœT•UV"ŠV-†V7‚U?UG|TNySUwR\uRbsQiqPq nPy lOƒ jN hMœ fLªdK½cJÔbIìaHû aGÿ aFÿ aFÿ aFÿ ÿAäJÕTÈ[»^­]¡Z—YZŠZ…[*[4}Z=zYDwXKtXRqWYoV`mUg kUo iTw gT eSbRš`Q©^O»]NÒ\Më\Lú\Kÿ[Jÿ[Jÿ[JÿÿDáNÑXÅ_·a©`^“]‹^…_€_'{_1x^:t^Bq]Io\Pl[Wj[^hZe fYm dYu aX _W‹]V˜[U§YS¹XRÐWPéWOúWNÿWNÿWMÿWMÿüGÞRÎ\Âc³e¥d™bŽb†b czc$vc/sc8ob?laGjaNg`Ue`\c_c a^k ^]s \]~Z[‰XZ—VY¦TW¸RVÏRTèRSùRRÿRQÿRQÿRQÿóJÛVÌ`¿g°h¢g•f‰fgzhuh!qh,ng5kg=hgEefLceS`eZ^da \ci Ybr Wa|U`ˆR_•P]¤N\¶MZÍLYçLWøMVÿMUÿMUÿMUÿçN×[Èd¼k¬kžk’j„k|lulpmlm)im3fl;clC`lJ^kQ[jXYi_ Vhg Tgp RfzOe†Md“Kb¢IaµG_ÌG]æG\÷G[ÿGZÿGZÿGZÿãSÓ_Åi¹o¨nšnŽn~ovqorjrfr&cr0`r9^rA[qHXqOVpVTo^Qne Omn Llx Ik„Gj’Eh¡Cf³BeÊAcåAa÷B`ÿB_ÿB_ÿB_ÿßXÏdÂm´r¤r–rŠryupvix dx`y#]y-Zy6Xy>UxFSwMPwTNv\KudItl Fsv Dr‚ Ap?oŸ=m±y€ ;xŽ 9vž 8t° 6rÆ 6qâ 6nô 6mÿ 6lÿ 6kÿ 6kÿ ÕeÆp»yª{›zŽz‚|r€hƒ\†Uˆ QˆNˆ%Lˆ/Iˆ7Gˆ?E‡GC‡OA†W?…_<„h:ƒr8‚~5Œ 3œ 2}® 0{Ä 0yà 0wó /uÿ /tÿ /sÿ /sÿ ÏlÂw·€¥—‹€~q…d‰YMH‘E‘ C‘)@‘2?;=C;K:S8\5Že3o1Œ|/‹Š-‰š+‡¬*…Â)ƒÞ)€ò)~þ)}ÿ)}ÿ)}ÿÉt½±… „“„‡…zˆnŒ`‘U”H˜>š ;š8š#7š,5š53š=2™E0™N/™W-˜a+—l)–x'•‡%”—$’©"¿!ŽÛ"‹ð!‰ü!‡ÿ!‡ÿ!‡ÿÃ}¹‡«ŠœŠŠƒŒwj”^™QœE 8£/¤-¤+¤$*¤-(¤5'¤>%£G$£P"£[!¢f¡s ‚Ÿ“¥›º™Õ—í”ú“ÿ“ÿ“ÿ¾†µ¦™‘€•s™g[¢N¥A©5«)® °°°"°+°4°=¯G¯R¯^®k­{«Œ ªž §² ¥Ê £ä ¡ô Ÿý Ÿÿ Ÿÿ¹±—£——˜Š›}Ÿp¤d¨W¬I®<±1´&·º¾ ¿ ¿ ¿'¾1¾;½F½R¼`»oº€¸’¶¥³º±Ò¯æ­ñ­ó­ó´˜­ž¢Ÿ”£‡§y«k­]°O³C¶7¹,¼"ÀÄÇËÌÌÌ"Í,Í7ÎCÎQÍ`ËqʄȗƫÄÁÃ×ÁåÀçÀç° ©¤¨Ž«®p±b´T·Hº<¾1Â'ÅÉÍ ÐÓØÙ ÛÜÞ&à1á>ãNã_âqà…ߛݬ۾ÚÎÚÒÚÒ¬¥¡©“­„°u´g¸Y»LÀ@Ã5Ç+Ë"ÏÓØÜÞáäæè êíï+ò9õJö]öoõƒô–ô§ó¶ó¹ó¹¥ª˜®‰²z¶k»]¿PÄCÉ8Í.Ñ%ÖÛß âåèéëîðóö úý$ÿ4ÿEÿXÿkÿ}ÿŠÿ•ÿ˜ÿ˜ÿ$ÿ #ÿ#ÿ$ÿ)ÿ1ÿ;ÿFÿRÿ\ÿdÿkÿqÿwþ|ýü…ûŠúù”÷šö¡ó«ð·îÆíÚìíêûéÿéÿèÿçÿçÿÿ!ÿ ÿ ÿ!ÿ&ÿ/ÿ9ÿCÿNÿXÿ`ügúmøsöxõ}ô‚ó‡ñŒð‘ï—ìžé¨æ³åÁãÓáèàößÿÝÿÛÿÛÿÛÿÿÿÿÿÿ$ÿ,ÿ5ÿ@ÿKûTö]ódñjïoíuìzê~éƒçˆæã“àœÝ¥Û¯Ù¼ÖÎÔâÒòÏþÍÿÌÿÌÿÌÿÿÿÿÿÿ!ÿ)ÿ2ÿ<øFñPíXê_çfäkâqàvß{ÝÛ…ØŠÔҙϡͫ˸ÉÈÆÝÃðÁüÀÿ¿ÿ¿ÿ¿ÿÿÿÿ ÿ ÿÿ%ÿ.ø7ëAæKâSÞ[ÛbØgÔmÒrÐwÍ|ËɇǎŖžÀ¨¾µ»Å¸Û¶ì´ù³ÿ²ÿ²ÿ²ÿÿÿ ÿ ÿÿÿ ô(ê2ß<ÚEÔNÐVÍ]ÊcÇiÄnÂsÀx¾~¼„º‹¸“¶œ³¦±³®Ä¬Øªê¨÷§ÿ¦ÿ¦ÿ¦ÿÿ! ÿÿ ÿ ÿóç!Ú+Ó6Í@ÈIÃQÀY½_ºe¸ k¶ p´ v³ {± ‚¯ Š­ ’ª ›¨ ¦¦ ´£Ä¡ÚŸìú›ÿšÿšÿšÿÿ$ÿ ÿ#ÿ!÷ æØÎ $Ç/Á:»C·L´T±[¯a¬gªm©r§x¥£‡¡Ÿ™¥›³™Å–Ü”ï’ý‘ÿÿÿÿÿ&ÿ&ÿ)ò%Þ ÔÌ»*µ 5°!>¬"G©"O¦#V¤#]¢#c #iž$oœ$uš$|˜$„–$”$—’#¢#°Ž"ÂŒ!ÙŠ íˆ ü‡ÿ†ÿ†ÿ†ÿÿ)ÿ,ø.à-Ó-É*À$ ¸&°)%ª+0¦,:¢,CŸ-Kœ-Rš-Y˜-_–.e”.k’.r‘.y.-Š‹-”‰- ‡,®…+¿ƒ*Õ)ë(ú~(ÿ}'ÿ}'ÿ}'ÿÿ+ÿ1å2Ø8Ë9¿6¶1®0§3 ¢4+56™5?–6G”6N‘6U6\6bŒ6hŠ5oˆ5v†5~„5‡‚5‘€4}3«{2½z1Òx0êv/ùu.ÿu.ÿu-ÿu-ÿÿ/û5ß:Ñ@ÄB·?®:¦9 ;š<'•=2’=;=CŒ=KŠ=R‡=Y…<_ƒ§l=¸j<Îi;æh:÷g9ÿg8ÿg8ÿg8ÿÿ6å=ÕGÈM¸N«L¡H™G’HI ˆI+…I4I=~ID|HKyHRwGYuG_sGfqFmoFumEkEŠiD—gC¥eB¶dAÌb@åb?öa>ÿa=ÿa=ÿa=ÿÿ9áCÑLÄR³R¦QœL”LM‡N‚N(N1{N:xNBuMIsMOqLVoL]mKdkKkiJsgJ}eIˆcI•aH£ _G´ ^EÊ \Dã \Cö \Bÿ[Aÿ[Aÿ[Aÿù<ÞGÎQÀV¯V¢U˜RQˆR ‚R}S%yS.vS7sR?pRFnQMkQSiPZgPaeOicOqaO{_N† ]M“ [L¡ ZK² XIÈ WHâ WFõ WEÿ VEÿ VDÿ VDÿ ð?ÛKËU¼Y«YŸX”VŠUƒV |WwW"tW,pW5mW<kVChVJfUQdUXbU_`Tg^To\SyZR… XQ‘ VP  TO± SMÇ RLá RJô RIÿ RHÿ RHÿ RHÿ èBØPÈY¸\¨\›\Z…Z~[w[r\o\)k[2h[:f[Ac[HaZO_ZV]Y^[YeYXnWWw UWƒ SU QTž OS¯ NQÅ MPà MNó MMÿ MLÿ MLÿ MLÿ åGÔTÅ]´_¤_˜_Œ^^y_r`m`i`&f`0d`8a`?_`F\_MZ_TX^\V^dT]lR\v P[ NZŽ LY JW® HVÄ HTß HRó HQÿ HPÿ HPÿ HPÿ áLÐXÂa°b¡c”c‰b{csdme hede$ae-^f5\e=ZeDXeKUdSSdZQcbObjMatJ` H_ F^œ E\­ CZ BYÝ BWò CVþ CUÿ CTÿ CTÿ ÞQÍ]¿e¬ff‘f…fvhnigj bk^k [k*Yk3Wk;TkBRkIPjQNiXLi`JhhGgrEf~ Ce‹ Acš ?b« >`À =^Ü =\ñ =[þ =Zÿ =Yÿ =Yÿ ÙVÉb»i¨i™iijrminap\qXqUq'Sq0Pq8Nq@LqGJpNHpVFo^DngAmp?l|=k‰ ;j˜ 9h© 8f¿ 7dÚ 7bð 8aý 8`ÿ 8_ÿ 8_ÿ Ô\Åg¶m£m•m‰m}noqet[wUx QxNx#Kx-Ix5Hx=FxDDxLBwS@v\>vd;un9tz7r‡5q—3o¨2m½1lØ1iî1hü1fÿ1fÿ1fÿÏcÁn°qŸq‘q…qyskwbyW}MH€F€C€)B€1@€9>€A=€H;P9Y7~b5}l3|x1{…/y•-w¦,v»+tÕ+qí+oû+nÿ+mÿ+mÿÉj½uªvšuuvvxi|^€SƒH‡?‰=‰:‰#9‰,7‰45‰<4‰D2ˆL1ˆU/‡_-†i+…u*„ƒ(ƒ’&¤%¸$}Ò$zë$xú$wÿ$vÿ$vÿÄr¸{¤z•z‰z~{rfƒZˆO‹DŽ8’2“0“/“&-’.+’6*’>)’F'‘P&‘Z$d"q!Ž‹ ‰µ‡Î„邸ÿ€ÿ€ÿ¿{°Ÿ€‘†€z‚n†c‹VK“@–4™)œ %#"& œ/œ7œ?œI›S›^šk™y˜Š–œ”°’ÉåöŒÿ‹ÿ‹ÿº…ª‡š†Ž†ƒ‡w‹k_”S˜Gœ<Ÿ1¢&¥§ ¨¨¨%¨-§6§? §J ¦V ¥c¤q£‚¡“Ÿ¦¼›Ô™é˜ô—ù—ùµŽ¤—Œ€‘s•hš\žP¢D¦9ª.¬#®± ³µµµ!´*´4´>³J²X±f°v¯‰¬›ª°¨Ç¦Ý¥ë¤ò¤ò¯•¡”—”Š—}œq¡f¦ZªL­?¯4²)µ·º ¼¿À ÁÁÁ'Â1Â<ÃIÂXÁiÀz¿Ž¼¡º·¸Î·á¶é¶é¬¡œ•Ÿˆ¤|ªm¬_¯Q²E´9¸.»$¾ÁÄÇÉÌÍÏÐÒ!Ó,Õ9ØHØYÖjÕ}Ô’Ó§Ð¶ÏÆÏÐÏЩ£Ÿ¦‘ª‚­r°d³V¶I»=¾2Á(ÄÈË ÏÒÔ×ÛÝßâåè&ë4íDîWíkíì’ì£ì°ì¹ì¹£¨•«‡¯w³i·[»M¿AÃ5È+Ì!ÏÓØÛßáâäçêíñôø û/ÿ?ÿSÿhÿ|ÿŒÿ—ÿžÿžÿ"ÿ!ÿ!ÿ"ÿ%ÿ/ÿ:ÿEÿPÿYÿaÿgÿmþsüxû}úù†ø‹õó–ðî¤í¯ìÀêÓééçùåÿãÿâÿáÿáÿÿ ÿÿÿÿ#ÿ,ÿ7ÿBÿMÿUü]úd÷jõoôtòyñ~ð‚í‡ëŒè’æ™ä¡ã¬á»ßÌÝâÚôÖÿÕÿÔÿÔÿÔÿÿ ÿÿÿÿ!ÿ)ÿ3ÿ>úH÷QóYð`ífëképèuåzã~áƒÞ‰ÜÚ•ØÕ©ÓµÐÅÍÜÊïÈüÇÿÇÿÆÿÆÿÿÿÿÿÿÿ&ÿ/õ9ðCìLèTå[âbßgÝlÚqÖvÔzÒЅ΋̒ʛǥıÁÀ¿Ô½è»÷ºÿ¹ÿ¹ÿ¹ÿÿÿ ÿ ÿÿÿ!ö*é4ä>àGÜO×WÓ]ÏcÌhÊmÈrÆvÄ|ÂÀ‡¾¼˜¹¡¶­´»±Í¯å®õ­ÿ«ÿªÿªÿÿ ÿ ÿ ÿÿùå$Ý/Ö8ÑAÌJÈQÄXÁ^¿d½i»n¹s·xµ~³„±Œ®•¬Ÿªª§¸¥Ì£â¡òŸüŸÿžÿžÿÿÿÿÿ ûéÙÐ(É2Ä<¿D»L¸TµZ³`±e¯j­o«u©{§‚¥Š£“¡Ÿ©œ¸š˘á–ð•ú”ÿ”ÿ”ÿÿÿÿ÷ã Ø ÍÅ!¾,¸ 6´ ?° G­ OªV¨\¦a¤g¢l ržy€›ˆ˜’–”ª’ºÎŽ åŒ õŠ ÿ‰ ÿ‰ ÿ‰ ÿÿÿùáÔÉà º³&­1©:¥B¢JŸQW›]™c—i•o”u’}…ŽŒšŠ§‡¸†Ì„ä‚ö€ÿ€ÿÿÿÿÿ$å$Ø)È)½&¶¯©"!£#,Ÿ$5›%>˜%F•&M“&S‘&Z&_Ž&eŒ&kŠ&rˆ'z†'‚„&‚&˜€&¥~%µ|$Êz#âx"ôw"ÿw!ÿv ÿv ÿÿ$õ(Þ/Ï3¿3´0¬,¦) +š-'–.1“.:.B.I‹.Pˆ/V†/\…/bƒ/h/o/w}/€{/Šy.–w.£u-³s,Èr*áp*óo)ÿo(ÿn'ÿn'ÿÿ)è-Ø7Ç;·;¬8¤5ž2 ˜3“5#Ž5-‹66ˆ6>…6Eƒ6L€6S~6Y|6_{6ey6lw6tu6}s5ˆq5”o4¡m3±l2Åj1ßi0òh/ÿh.ÿg-ÿg-ÿÿ,ã5Ò>ÁA±A¦?ž<—9‘:Œ;‡<)„<2€<:~`=­^<Â];Û\:ð\9ý[8ÿ[7ÿ[7ÿì3Û@ËI·J¨JI“F‹E…E FzF#wG,tG4qG<oFCmFJjFPiEWgE^eEecEmaEv_D]DŽ\CœZB¬X@ÀW?ÚW>ïV=ýV<ÿV;ÿV;ÿè8×DÇM³N¤N™MJ†IJyKuK qK)nK2kK9iK@gKGeJNcJTaJ\_Jc^Jk\IuZI€XHŒVGšUFªSD¾RCØQAîQ@üQ@ÿQ?ÿQ?ÿå<ÓIÃP¯Q¡Q•Q‹O‚NzOtOpPlP&iP/fO7dO>aOD_OK^OR\OZZNaYNjWNsUM~SL‹QK™OJ©NH½MGÖLEîLDüLCÿLCÿLCÿâAÐM¿S¬TT’T‡S}RuSoTkTgT$dT,aT4_T;\TB[TIYTPWSXUS_SShRRqPR|NQ‰LO—JN¨IM¼HKÔGIíGHûGGÿGFÿGFÿßEÍQ»V¨WšXŽWƒWxWqXjX fYbY!_Y*\Y2ZY9XY@VYHTYORXVPX^NWfMWpKV{IUˆGT–ES¦DQºCOÓCNìCLûCKÿCJÿCJÿÛJÊU¶Y¤Z–[‹ZZs[l\e]`^\^Y^'W^0U^7S^>Q^FO^MM^TK]\I]eG\nE[yCZ†AY•@X¥?V¹>TÑ=Rë>Qú>Pÿ>Oÿ>OÿÖOÇZ²]¡]“^‡^|^n`fa`cZcVdSd$Qd-Od5Md<KdCJdKHdRFcZDbcBbl@aw>`„<^“;]£9[·8YÐ8Wê8Vù9Uÿ9Tÿ9TÿÒTÃ_­`aaƒaxbkebfZhTi PjMj!Kj*Hj2Gj9EjACjHBjP@iX>iaq>=qE;qM:pU8p^6oh4ns2m€0l/j -h´-fÌ-dç-bø-aÿ-`ÿ-`ÿÉa·h£h”h‡h{ipken[qRsGw@y=y;y"9y+8y26y:5yA4xI2xR1w[/we-vq+u~)s(rž'p²&nÊ&lå&j÷&hÿ&gÿ&gÿÄh±lžllƒmxmnoatWwNzC}9 4‚2‚1‚&/..6,=+E)N(€W&b%m#~{!|Š {œy¯vÇtãrõqÿoÿoÿ¿pªq™q‹qqurju_zT~I?…4ˆ+‹ (‹&‹ %‹(#‹0"‹7!‹?ŠHŠR‰]ˆi‡w††„˜‚«€Ã}à{ózþxÿxÿ¸w£v”v‡v|vryg}[‚P†E‰;0%“••• •(•0•8•A”K”W“c ’q ‘ ’¤ŠºˆÓ†ê„öƒþƒþ¯}|{„{z}nc†X‹LA“7–,™"›ž       ' 0Ÿ9ŸCžNž[hœxš‰˜œ–°“Ç‘àíõõ¨ƒ˜‚Œ‚ƒƒv‡k‹`T•I™>3 )¢¥§ ª« ««¬%«.«8ªCªP©^¨n§¥“£¥¡»ŸÔåœðœð¢Š•‰Œ‰€s’h—]œQ F¤;¨0«&­¯±³µ¶ ··¸"¸+¹6ºBºQ¹a·s¶‡´œ±®°Ä¯×®æ®æŸ‘•‘Š”~™ržf¤[©N­B¯6±+´!¶¹ »¾ÀÂÃÄ ÆÇÉ(Ë3ÍAÎQÍcÌvʋɢǸÄÄÃÔÃÔŸš•œ‰¡}§p¬a®S²Fµ:¸/»%¾ÁÄ ÆÉÊÍÐÒÕØ ÛÝ#à0ä?çQçdæxåŒåžä®ã½ã½¡¥“©„¬u¯f³X¶Jº>¾2Â(ÆÉÌ ÏÒÕÚÚÝàãæêîñô,ø=üPûdûxûŠû•û û ÿ ÿÿÿÿ#ÿ-ÿ9ÿDÿMÿVÿ]ÿdþjüoûtùy÷}õ‚ó‡ðŒï’í™ì¡êªé¶çÌäåá÷àÿßÿÞÿÞÿÞÿÿÿÿÿÿ!ÿ*ÿ5ÿ@ÿIþRúY÷`õfókñpîuìyé~çƒæˆäŽâ•áœß¥Ý²ÚÆÕÞÓñÑÿÐÿÐÿÏÿÏÿÿÿÿÿÿÿ'ÿ1ú;÷EóMðUì\ébægãláqÞuÝzÛل֊ԑҘϡ̯ɿÇÓÅêÃúÂÿÁÿÀÿÀÿÿÿÿ ÿÿÿ#õ-ï6ë@çHãPßWÚ]ÖcÓhÑlÏqÎvÌ{ʀȆÆÃ”Àž½ª»¹¹Ì·ãµô²ÿ±ÿ°ÿ°ÿÿ ÿ ÿ ÿÿõé'ã1Ý:×CÒKÍRÊXÈ^ÅcÃhÁmÀq¾v¼|º‚·‰µ‘²›°¦­´«Å¨Ü¦ï¥ý¤ÿ¤ÿ¤ÿÿ ÿÿÿ ÿäÜ"Ô,Í5Ç=ÃEÀM½TºY¸_¶d´i²m°r®x¬~ª…¨Ž¦˜££¡°žÁœØ›íšù™ÿ˜ÿ˜ÿÿÿÿüâ×ÎÆ&À/»8·@³H°O­U«Z©`§e¦j¤o¢u¡{ŸƒœŒš–˜¡•®“À’ÕéŽöŽþÿÿÿÿú âÔË Â¼¶)°2¬;¨C¥J£P Vž\a›f™l— r– y” ’ Š •  ‹¯‰À‡Õ…ê„÷ƒÿƒÿ‚ÿÿÿæÕƽ¸ ± « #¦-¢6ž>›E˜L–R”X’]‘cio‹v‰~‡ˆ…“ƒŸ®Á}Ú{ïzüyÿxÿxÿÿñß Ë$¼#²!«§¡œ(˜1”9‘AHN‹T‰Z‡_…eƒ l s {} …{ ‘yw¬u¿sÖríqûpÿpÿpÿÿç"Õ+Á-³-©+¢'" ˜$“%#&,Œ'5ˆ'=†'D„'J(P€(V~(\|(bz(ix(pv(yt(ƒr(Žp(›o'ªm&½k$Ôj$ìi#ûh"ÿh"ÿh!ÿú!á+Î2º4¬4¢2›0•,,‹-‡.(ƒ/1€/9~/@{/Fy/Mw/Su/Yt/_r/fp/nn/vm/€k/Œi/™g.¨f-»d+Òc*ëb)úa)ÿa(ÿa(ÿí%Ü2Ç9´:¦:œ8”6Ž3‰3ƒ44$|5-y55v5<t5Cr5Ip5Pn5Vm5]k5di5kg5tf5~d5Šb4˜`4§_3º]1Ñ\0é\/ù[.ÿ[-ÿ[-ÿé+Ø8Á=¯?¡?—>;ˆ9‚9 }9y:!u:*r:2p;9n:@l:Fj:Mh:Sf:Ze:ac:ia:r_:|]:ˆ\9–Z9¥Y7¸W6ÏV5èV3ùV2ÿU2ÿU2ÿå1Ó=½A«CC“B‹?ƒ>|>w?s?o?'l?/j?6h?=f?Dd?Jb?Q`?X_?_]?g[?pY?zX>‡V>”T=¤S<¶R:ÎQ9èP8øP7ÿP6ÿP6ÿâ6ÐB¹E§FšGF†C~BwCrCmDjD$gD,dD3bD:`DA^DG\DN[DUYD]XDeVDnTCyRC…QB“OA£N@µL>ÌL=çL;øK:ÿK:ÿK9ÿÞ;ÌFµH£J–J‹I‚GyGrGmH hHdH!aI)_I1\H8ZH>XHEWHLUHSTH[RHcQHmOHwMG„KF’JE¡HD´GBËGAæG?÷G>ÿG=ÿG=ÿÛ?ÈI±K M“MˆM~KtKnLhL cM_M\M'YM.WM5UM<SMCRMJPMROMYMMbLMkJLvHL‚FKEI DH³CFÊBDåBCöBBÿBAÿBAÿØCÃL­NOP…PzOpOiPcQ^RZRWR$TR,RR3PR:NRAMRHKRPJRXHR`GQiEQtCPAO@NŸ?L±>JÉ=Iä=Gö>Fÿ>Eÿ>EÿÓH¿P©Q™SŒSSvSkTdU^VXWUWQW"OW*MW1KX8IX?HXFFXNEWVCW^AVh@Vr>U]\<\f:[q9[}7YŒ5Xœ4V¯3UÆ3Sá3Qô3Oÿ4Nÿ4NÿÌSµW¡X’Y…YzZoZc]\_SaMbHcEcCc$Ac,?c3=d:j;j!:j)8j06j75j>4jF2jN1iW/ia.hl,gy+fˆ)e™(c«'aÂ'_Þ']ò'[þ(Zÿ(ZÿÁ^ª_˜`‰`}`rahc^fUhLkBn9q 5r3r2r%0r,/r3-r;,qB+qK)qT(p^&pi%ov#n…"l–!j© h¿fÜ dñ cý aÿ aÿ¹c£c“d…dydoeegZkQnHq>t4x,z*z(z 'z(&z/$z6#z>"zF yPyZxfwsv‚t“r¦p¼nØlïjüiÿiÿ±hhŽhhviljbmWqMuDx:{0%‚ ƒ„ƒ"ƒ)ƒ1ƒ9ƒAƒK‚Vb€o~ ~ |¡ y· wÐ ué s÷ rÿ qÿ©m—m‰m}msnip_tTxI|@€6„,‡"ŠŽŽŽ" Ž* 2 : DŒOŒ[‹h‰wˆˆ†šƒ®Å~Þ}î|ö{ù¢s‘r…rzrqtfx[}PE†;‰2(’• — ˜˜˜!˜*˜2˜<—G—S–a•o“‘“¦¼ŠÔˆè‡ò‡õ›yx‚xyxm}b‚W‡M‹B7“.—$™œž ¢ ¢££ £)£2£<£I¢W¡f vŸŠœžš²™É—ß—ë–ï–Švƒjˆ_T’I–?›4Ÿ*¡!¤¦ ¨ª­­®®¯¯&°1±<±J°Z°k®~­“¬©¨½§Ò¦ã¥ç“‡Š†‰sh”]šRŸG£<§2«'®¯± ³µ·¹º» ¼¾¿"Á.Ã:ÅKÄ]ÃqÁ…Àš¿°¾Å»Ï»Ô”Š‘~–rœg¢\¨P­C°7²,µ!¸º¼¾ÁÂÄÆÈÊÍ ÐÓ×+Ü9àJß^Þs܉ڞگٽÙÕ™ŠŸ~¥s¬d¯U²G¶;¸/¼$ÀÂÅÈÊÍÏÐÒÖÚÝáåéí(ò8öJ÷_ösö†õ•ô¡ô¦ÿÿÿÿÿ"ÿ,ÿ7ÿAÿJÿRÿZþ`üfùk÷pôtòyð~ïƒîˆìŽë•éç¦å²âÂßßÝöÜÿÛÿÚÿÚÿÚÿÿÿÿÿÿÿ(ÿ3ÿ=þFûNøVô\ðbígêlèpçuåzãâ„àŠÞ‘Ü˜Ú¡Õ­Ò½ÐØÎîÌþËÿÊÿÉÿÈÿÿÿÿÿÿÿ%û.÷8óAîIêQåWâ]ßcÝhÛlÙq×uÕzÓ€Ñ†ÏŒÌ”ÉÆ§Ã¸ÁÍ¿æ½øºÿ¹ÿ¸ÿ·ÿÿÿ ÿ ÿÿõ ï*ê3ä<ÞDÛLÖSÒYÐ^ÍcËhÉlÇqÅvÃ{Á¿ˆ¼º˜¸£µ²³Å°Ý­ò¬ÿ«ÿªÿªÿÿ ÿÿÿ ñéá$Ù.Ò6Î?ÊFÇMÃTÀY¾_»c¹h¸l¶q´w²}°ƒ®‹¬”ª §­¤¾¢Ô ëŸùžÿžÿžÿÿÿÿûä ÚÏÉ(Ä1¿9»A¸H´O²U°Z®_¬c«h©m§r¥x¤¡ˆŸ‘š©˜¹–Í•ä“÷’ÿ’ÿ’ÿÿÿÿãÖʼ#·,²4®<«C¨J¦P¤U¢Z _Ÿdi›o™u˜|–„”‘š¦µ‹Ê‰âˆó‡ü‡ÿ†ÿÿÿçÕǾ·±¬%¨/¤7¡>žE›K™Q—V–[”`’f‘kry‹‚‰†˜„¥‚µ€Éà}ð|ú|ÿ|ÿÿðÜǺ±­ §¢ž)š 2— 9” @’ G MŽ RŒ XŠ ]ˆc‡i…pƒx€~Œ|˜z¦x ·v Ëu âs ós ýr ÿr ÿÿ æÐ½°§¡ž ™”#,5‹<ˆB†I„N‚T€Z~_|fzmxuv~t‰r–p¤oµmËläköjÿiÿiÿóàÇ%µ'¨'Ÿ&˜#”‹‡(„ 0 8!>}!Ez!Ky!Pw!Vu!\s"cq"jp"rn"{l"‡j!”h!¢f ³eÉcãcõbÿbÿaÿëØ'¿,®.¡.˜-‘+Œ'ˆ%ƒ&'$|(,y(4w(;t(Ar(Gp(Mo(Sm(Yk)`j)gh)pf)yd)…b)’`( _'²]&È\%â\$ô[#ÿ["ÿ["ÿæ#Ð.¹2¨4œ4“2‹1….€, {-w. t.(r.0o.7m.>k.Di.Jh/Pf/Vd/]b/ea/m_/w]/ƒ[/Z.ŸX-°W,ÆV*áU)óU(ÿU(ÿU'ÿâ*Ê3´6¤8—9Ž7†54z3u3q3n4%k4-i44g4:e4Ac4Ga4M_4T^4[\4cZ4kY5uW5U4T3R2¯Q1ÅP/ßP.óO-ÿO,ÿO,ÿÞ/Å7°: <“=‰<9z8t8o8k8h8"e9*b91`97^9>\9D[9JY9QX9YV9aU9jS9tQ9€P9N8œM7®L5ÃK4ÞJ2òJ1þJ1ÿJ0ÿÛ4Á;¬>œ?@…?}=u<o<j< f=b=_=']=.Z=5X=;W=AU=HS=OR=WQ>_O>hN>rL>~K=ŒI<›H;¬G9ÂF8ÝF6òE5þE5ÿE4ÿ×9½>¨A™CŒC‚Cy@q@jAeA`A]BZB$WB+UA2SA8QA?OAFNBMMBULB]JBfIBqGB}EAŠD@šC?«B=ÁA<ÜA:ñA9ýA8ÿA8ÿÓ=¹A¥D•E‰F~FuDlDfE`F[FXFUF"RF)PF0NF6LF=JFDIGKHGSFG[EGeDFoBF{AE‰?D™>Cª=AÀ<@Û<>ð==ý=<ÿ=;ÿÏAµD¡G’H†I{IqHhHaI[JVK RKOKMK'JK.HK4GL;ELBDLICLQALZ@Lc?Kn=KzQOW09WE8WM7VV5V_4Vj2Uv1T…0S•/Q¦.O¼-MÖ.Lî.Jû.Iÿ.Hÿ¿L¨O–QˆQ{RqRfS\VUWMYE[@\ =\;]9]&7]-6]44];3]B2]J1\S/\].\h,[t+Zƒ*Y“)W¥(Uº'SÔ(Qí(Oû(Nÿ)Nÿ¹P£S’TƒUwUmVcWYZR[J]B`:c6c4d2d#0d*/d1-d8,c?+cG)cP(cZ'be%ar$a€#_‘"^£!\¸ YÒ!Wë!Vú"Uÿ"Tÿ²UWXXsYjY`[W^O`Fc>e5i.k+k*k(k&'k-%k4$k<#kD!jM jWibioh}fŽe cµ`Ï^ê\ù[ÿ[ÿ«Z˜[ˆ\{\p]g^]`ScKfBi:l0o&r"s ss"s)s0s7s?rIrSq_qkpzn‹lj² hËfçd÷cÿbÿ¤_’`ƒ`v`madbZePiGl>o5s,v"y| |||#|*|2|: {C {N zZzfxuw…u—sªpÂnÜmílöküœdŒe~dsejebhWlLpCs:w1z(~ƒ † †††$†,…4…=…G„Sƒ`‚o‘}¤{¹xÒvçuñt÷•j†iziqjik^oSsIx?|6€,ƒ#†‰ŒŽ$,5?KXŽgw‹‹ˆž†²„Ê‚áí€óo‚oxopoesZyP}E‚;‡1Š(“ •—™™šš›#›,œ6œA›Oš^šo˜—–”©’ÀØçïŠuuwumyb~W„L‰A7’-•$˜›Ÿ¡£¤¥ ¦¦§!¨+©6ªC©R¨c§v¦‹¤¢¢¸ ËŸÝŸæˆ||uj…_‹T‘I•?š4ž*¡!¥§©«­¯±²³´ µ¶¸)¹6»D»V»iº}¸“·ªµÁµÕ²Þˆ„†sŒi’^˜RžG¤=§3¬(°±³ µ·¹º¼¾ÀÂÄÆÉÍ&Ð4ÓEÒZÒn҄ИЪϹÏÄŠŽ~”sšh¡^§S®E±8´-·!º¼ ¿ÁÃÅÇÈÊÌÏÓØÜ áå#ë3ðDðZïqî‡í˜ì£ì«ÿÿÿÿÿÿ*ÿ4ÿ=ÿFÿNüUù\÷bõgólñqðuîzíë„éŠè‘æ™ã£à®Ý¾ÛÔÙð×ÿÖÿÔÿÒÿÎÿÿÿÿÿÿÿ&ÿ/þ9ùAôIòQîXì^écçhålãqâuàzÞ€Û†ØÕ•ҞϩͷËËÉëÇýÄÿÂÿÀÿÀÿÿÿ ÿÿÿü!ö+ï4ë<èEåLáSÞYÛ_×cÔhÑlÏqÍuË{ÉLjÅÙÀ£¾°¼Å¹âµö´ÿ³ÿ²ÿ²ÿÿ ÿÿÿ ÷ïå&à/Ü8Ø@ÓGÏNËTÈZÅ_ÃcÂhÀl¾q¼vº|¸ƒ¶‹´”²ž¯«¬¿©Ö§î¦þ¥ÿ¥ÿ¥ÿÿÿÿóé ÝÔ!Î*É3Å;ÁB¾I»O¹U·Zµ^³c±g¯l­q«w©~§†¥£™¡§Ÿ·Ì›æšø˜ÿ˜ÿ—ÿÿÿüæØ Ìľ%¹-¶5³=°D®J«P©U¦Z¥^£c¡h mžsœz›‚™‹—••£’±ÅŽÞñŒýŒÿŒÿÿÿç×Ⱦ ·±¬(©0¦8¤?¡EžKœP›U™Z˜_–d”i“o‘v~‡‹’‰Ÿ‡®…Àƒ×‚ïû€ÿ€ÿÿïÛǺ³«¦£"Ÿ*›3™:–@”F’LQV[‹`Šeˆl†s„{‚…€~{«y¾xÕwëv÷uþuÿÿäÌ »®¦ ¢™•%’-5<ŠBˆH†M…RƒW]c}i{py yw ƒusœq¬p¾nÔmélõlülÿðÛ±¥œ—• Œ ‰(†0ƒ7>C}I{NyTwZv`tgrnpwn‚lŽjœh¬gÁeÛdîcúc ÿc ÿêк ©""•!‹ˆƒ€#|+z3x9v?tErKpPnVm]kdilgue€cŒaš`«^¿]Ø\î[ü[ÿ[ÿäÈ"²&£)—)Ž(ˆ&ƒ# {w t!'r!/p"6n"<l"Bj"Gh"Mf"Se"Zc#aa#i_#r]#}\#ŠZ#™X"©W ½VÖUíUûTÿTÿÞ!Á(­,.’.‰-‚,|)x&t&p'm'$j(+h(2f(8d(>b(Da(J_)P])W\)_Z)gX)pV){U)‰S)—R(¨P&¼O%ÕO$ìN#ûN"ÿN!ÿØ&¼-¨0™23„1|0v.r,m, j-f- d-(a-/_.5^.;\.AZ.GX.MW.UU.\T/eR/oP/zO.‡M.–L-¦J,»I*ÓI)ìI(úI'ÿI&ÿÑ+·1¤4•6‰6€5x4r2l1h2 d2`2]2%[2,Y22W28U2>T2DR3KQ3RO3ZN3cL3mK4xI3†H3•F2¥E0¹D/ÒD-ëD,úD+ÿD+ÿÌ/³4 7‘9…:|9t7m6g6b6^7[7X7"U7)S7/Q75O7;N7BL7IK7PJ8XH8aG8kE8wD8„C7“A6¤@4¸?3Ñ?1ê?0ù?/ÿ@.ÿÈ3¯8:Ž<‚<x<p9i9c:];Y;U;R;P;&M;-K;3I;9H;@G;GF;’=:£<8·;7Ð;5é;4ù;3ÿ;2ÿÃ6«;™=‹??u?l=d=^>Y?T? P@M@J@$H@*F@1D@7C@>B@EA@L?AU>A^=Ah;@t:@‚9?‘8>¢7<¶6;Ï69é78ø77ÿ76ÿ¿:¨=–@ˆA|BrBiA`AYCTCODKDGEEE!CE(AE/?E5>E<=ECÿµA DFGuHkHaHWJQKKMDN?O y4}+"…‡ŠŒ‘ ‘’“”'”0•:”G”V“f’xޤŒ¸ŠÐ‰ãˆîlulnldpYuOzD:„0‰'’ ”—™›œžŸ &¡0¢<¢K¡\¡nŸ‚ž™°šÆ˜Ú—è}surlua{VK‡AŒ7‘,•#™œž ¢¤¦¨©ª« ­®°$²0³>³N³a²v°®£®¹­Í¬ß}yu|j‚_‰TI•?™4ž*£!¦© ¬­¯²³µ·¸¹»½ ¿Â"Æ0É@ÊRÊgÊ}ȒƦŸÄǃs‰i^—SH¤>¨4­*²´· ¹º¼¾¿ÁÃÅÈÊÎÒØÝá/åBæWçlçç•å å¬ÿÿÿÿÿÿ'ÿ/ÿ8ÿAýIûQøXö^ócðhîmìqêvè{æ€ä†âŽà–ޟ۫غÕÐÓêÒÿÎÿËÿÇÿÅÿÿÿ ÿ ÿÿÿ"û+÷4ô=ñEîMêSæZã_ádßhÝmÛqÙv×{ÔÒˆÐ‘ÍšË¥È³ÆÆÃá¿ü½ÿ¼ÿ»ÿºÿÿ ÿÿÿ þóî'é0ä8à@ÝHÚOÕUÒZÐ_ÎdÌhÊlÈqÆvÄ|ƒ¿‹¼”¹Ÿ¶¬´½±Ú°õ®ÿ®ÿ­ÿ­ÿÿÿÿúîåÞ#Õ+Ð3Í;ÊCÈJÅPÂUÀZ½_ºc¸h¶l´q²w°~®†¬ª™¨¦¦µ¤Ð¢ë¡ý ÿŸÿŸÿÿÿøëÝ ÒÉÃ&¿/¼6¹>¶E³K°P®U¬Z«^©c¨g¦l¤r£x¡€ŸŠ”› ™®—Æ•á“õ“ÿ’ÿ’ÿÿÿëÙËÀ¹´!¯*«1©9§?¥F£K¢P UžY^›cšh˜m–t”|’…Ž›Œ«Š¾‰×‡î†ü†ÿ…ÿÿîÛɼ² ¬¦¢$ ,4›:š@˜F–K”P’U‘Y^ŽcŒiŠpˆx†„‹‚—€§~¸|Ï{çz÷zÿzÿÿã˺®§¡ œ™–'“.‘5Ž<A‹G‰LˆP†U„Zƒ`fl}t{~yˆw–u£sµrÉqåpôpýoÿïÕ¿® £ ›˜“!‰)‡0…7ƒ=BH}L{RzWx\vctjsrq{o‡m”k¢i³hÉgáfñfúfÿçÊ µ¥š’‹ ˆ„€$~,{ 2y 8w >v Dt Ir Nq To Zm `k hi qg {e ‡c ”b £` µ_ Ê^â]ñ]ú\ÿÞ Â­ž“‹… {xu's.q4o:m@kEjKhQfWd^bf`n^y]…[“Y¢XµVÍVæUöUþUÿÔº¦!˜#$„#~!yvspm#j*h0g6e<cBaG`M^T\[ZcYlWwUƒS‘R¡P´OËNåNöNÿNÿÍ´"¡'“(ˆ)(x's%o"l i f!c!&a"-_"3]"9\"?Z"DX#JW#QU#XS#aQ$jP$uN$L#K# J!²H ÊHäHõHÿHÿÇ!¯'œ+Ž-ƒ-z,s+n)i'f& b&_'\'#Z'*X'0W'6U(;S(AQ(HP(NN(VM)_K)hI)sH)€F)ŽE(žD'±C%ÉB#ãB"õB!ÿB!ÿÂ%ª+˜.Š01v0o.i-d,`,\,Y,V, T,&R,-P,3N,9L,?K-EI-LH-TG.]E.fD.qB.~A-@,>+°>)Ç=(â='ô>&ÿ>%ÿ½)¦.•1‡3{4r3k2e0_0[0W0 S0P1N1$L1*J10H16F1<E1CD1JB2RA2[@2e>2p=2}<2Œ;1œ:/¯9.Æ9,á9+ô9*þ9)ÿ¹,£1’4„6x6o6h5a3[4V5Q5 N5K5H5!F5'D5-B53A5:@6A>6H=6P<6Y;7c97o86|76‹65›53®42Å40á4/ó5.þ5-ÿµ0Ÿ478u9l9d8\7V8Q9L9H9E9C:A:%?:+=:1<:8;:?9:F8;N7;X6;b5;m3;z2:‰19š07­06Ä04à02ó01þ11ÿ°3œ7‹:};r;i<a<X;R<L=G=C> @>=>;?#:?)8?/7?65?=4?D3?L2?V1?`0?l.?y->ˆ,=™+;¬+:Ã+8ß+6ò,5ý,4ÿ¬6˜:ˆ<z>o>f>^?T?M@GABB>C :C8D6D!4D'3D-1D40D;/DB.DJ-DT+D^*Dj)Cw(C‡'A˜&@«&>Â&<Þ&:ò'9ý'8ÿ¨:”=„?w@lAcAZBPCJDDE>G9H4I2J0J/J%-J+,J2+J8)J@(JH'JR&J\$Ih#Iu"H…!F– E© CÀ AÝ!?ñ!>ü"=ÿ£>@€BsChD_DWEMGGHAI;K4M.O ,P*P(P"'P)%P/$P6#P="PF POPZOfNsMƒL•J¨H¿FÛDðCüBÿžB‹D|FoFeG\HTHKKEK>M8P0R(V$W"W!WW%W,W3W:WCVLVWUcUqTR“P¦N½LÙJïIûHÿ˜F†HwIkJaJYKQLINBP;R4U,X$[^ ^^^"^(^/^7^?^I]T ]` \n [} Y W¢U·SÑ Qè Pö Oþ’KLsMhM^NVONPFS?U8X0[(^ adff f f$ f+f2e;eDeOd[cibxa‰_œ]±[ÊXâWðV÷ŒO{PnQdQ[RTSLUCY;[4_,b$ehkn nnnn&n-n6m?mJlVkcjri„g—e¬cÃaÝ`í_ô…TvUjUaUYVRXH[?`7c/f'ilo ruuvww w(w0w9vCvPu]tms~q’o¦m½kÖiéhò~ZqZgZ_ZX[N_Dc;h3k+n"ruwz}~ ~€€")‚2‚<H€Vf~x|Œ{¡x·vÏuätîx_m_e___UcKg@l7q.u&x{~ ƒ†‡ˆ ‰Š‹Œ"*Ž5Ž@NŒ^‹pŠ„ˆ›‡²„ǃނêtdkded\gQlGr=w3|)€ „‡‰ŒŽ‘“”•– —˜™ ›*œ5œCœT›f™{—’–©•“ؑãrjljdmYrNxC~9ƒ/ˆ%” •˜šœžŸ¡¢£¤¦¨ª*¬8¬I«[ªo©…¨›§±¦Ç¥ÛsplraxVK†@‹6‘,–"šž ¢¤§¨ª¬®¯±³µ ·º¾*Á9ÂLÁaÀw¿½¢¼´¼Ãtyj_†TŽI•?™4Ÿ*¤ ¨¬ ¯±³µ·¸º¼¾ÀÂÅÈÌÑ×+Ý<ßPßfß{ßÝ Û¬ÿÿ ÿ ÿÿÿ#ÿ,ÿ4û=øE÷MóSñYî_ìdëhémçqævä|â‚߉ܑ؜ӨиÍÎËêÉýÆÿÅÿÁÿ¾ÿÿ ÿÿÿ ÿü÷(ð0í9ëAéHæOãUàZÜ_ÙdÖhÓmÑrÎwË}ɄnjĖ¢¿°½Ä»ß¹ö¸ÿ·ÿµÿ³ÿÿÿÿÿöîå#à,Ý4Ù<ÔCÐJÌPÈUÆZÄ_ÂdÁh¿m½r»w¹~·†µ²›°¨®¹¬Ñªí©ÿ¨ÿ¨ÿ§ÿÿÿÿðæ ÚÑÌ'Æ/Á7¿>½E»K¸P¶UµZ³^±c°h®l¬rªy¨€¦‰¤•¡¡Ÿ±Æœä›üšÿ™ÿ™ÿÿþðàÐÆ¿·#³+±2¯9­@«F©K§P¦U¤Y£^¡cŸgžmœsš{˜„–”›’©¼ÜŽóÿŒÿŒÿÿòÞÍ¿µ ­©¦&£-¡4Ÿ:A›FšK˜P—T–Y•^“c‘hnŽvŒ‰Š‡–…¤ƒµ‚Ðê€ûÿÿøã̼°§¡™!—(•/“6‘;AŽFK‹OŠTˆY‡^…dƒjrz}…{‘yŸw±vÇuãtôtÿsÿîÓ½®£œ— ’#Š*ˆ1†7„<ƒAF€K~P}U{Zz`xfvntwr‚pŽnœm­lÂkÛjïjýiÿãDz¢˜‘‰ †„%~,|2z8y=wBvGtLsQqWo]nclkjthfŒešcªb¾aÙ`í`ø`þÖ¼© šˆƒ ~{x u's.q4p9n>mCkHjNhTfZeacias_~]‹[šZªY¿XÖWêWõWüÍ´¡“‰{wv s p m "k )i /h 5f ;e@cEaK`Q^X\`ZhXrV~TŒS›Q­P ÁO ÙO ëO ÷O ýÅ­›‚ztpmk hfc%a+_1^7\<[BYHWNVUT]RfPpN|MŠK™I«HÁGÜGðGûGÿ¾§–!ˆ#}$u$o"j gda^\!Z(X.V4U9S?QEPKNRL[KdInGzFˆD˜CªBÀAÚAïAüAÿ¸¢"‘%„'y(p(j&e%a#^![ X!U!S!%Q!+O!1N"6L"<J"BI"IG#PF#XD#bC$lA$y@#‡>#—=!©< ¾;Ù<î<û<ÿ´ ž&)€+u+m+f*a(\'X&U& Q&O&L&!J&(I&.G&3E'9D'?B'FA(N@(V>(`=(k;(w:(†9'–8&¨7%½6#Ø7!î7 û7 ÿ¯#š)Š,|.r.i.b.],X*S+O+L*I+F+D+%B++A+0?+6>+==,D<,L:-U9-^8-i6-v5,„4,•3*§2)¼2'Ö2&í3%ú3$ÿ«'—+‡.y0o1f1_1Y/S.N/J/F/ C/A/?/"4;494 74&64,44235925@15H05Q/5[.5g-5s+5‚*4“*2¥)1º)/Ô)-ì*,ú*+ÿ¤-1€3s5i6`6Y6R6J6D7@7<888694929$19*/90.97-:>,:F+:O*:Z):e'9r&9%8‘%6¤$5¹$3Ó%1ë%0ù&/ÿŸ14}6p7f8]9V9N9E:@;;<7<3= 1>/>->",>(*>.)>5(?<'?D%?M$?X#>c">p!= <;¢9¸7Ò5ë 4ù!3ÿ›4‰7y9m:c;Z;R;K<C>>>9?3A.C +C)D'D&D&$D,#D3"D:!DB DKDVCaCnB}A@¡>·;Ñ:ê9ø8ÿ—7…:v<j=_=W>O>H?@A;B6C/F)H$J"J JJ#J)J0J7J?JHJSI_IlH{GEŸCµAÏ?é=÷<ÿ’;€>r?f@\@TALAEC>D9F3H,J%MP QQQ Q&Q-Q4Q<PFPPP\ Oi Nx M‰ Kœ I± GÊ Eä Cô BüŒ?{AmBbCYCQDJEBF[5_-c%fil ortvw wxyz${,{5{AzNz]xnwu—t®qÆoÞnënWdW\WVWM[C_:d0i(l psvy{~€ ‚ƒ…†%‡.ˆ9ˆF‡V†g„{‚‘¨Á|×|æj\b\\\T_Id?i5o,s#w{~„†ˆŠ‹Ž ‘’”%•0—=–M•^“r’‰ ¸ŽÑãibcb[dPiFo;u1{'€„ˆ Š‘”–˜™šœž Ÿ¡¤%¦1§@¦S¥g£~ –Ÿ®žÅžØjhcjXpMvC|8‚.‰$’•˜šœŸ ¢¤¦§©«­°²¶&¹5¹G¸[¸q·ˆµ´¯´¿kpavV}K„@‹6‘+—!œ  £¦§ª¬®¯±³¶¸º½ÀÄ ÈÎ&Ó7ÕJÕaÓxÒѡϬÿ ÿÿÿ ÿÿþ(û0ù9ôAðHìOéUæZä_âcàhÞmÝrÛwØ}Õ„ÓЗΣ˳ÈËÆéÃÿÂÿÁÿ»ÿ¸ÿÿÿÿÿ ÿöð$ë-ä5á<ßDÝJÙPÕVÓZÑ_ÏcÍgËmÉrÇxć¿‘½œº«·ÀµÝ³÷²ÿ±ÿ¯ÿ­ÿÿÿÿùíåÜ Ó(Ï0Ì7Ê?ÉEÆKÃQÀU¾Z¼^ºb¸g¶m´r²y°®‹¬–ª£§¶¥Î¤í¢ÿ¢ÿ¡ÿ ÿÿÿöèÚ ÎÄÀ$¼+¹3¶:´@²F°K®P­U«Yª]¨b§g¥m¤s¢{ …žœœš¬˜Â–à•÷”ÿ”ÿ”ÿÿøåÒŹ³®ª'¨.¦5¥;¤A¢F KŸPTœX›]™b—h•n“v‘‰–‹¥‰¸ˆÒ‡í†ÿ†ÿ†ÿûæÑÀ²ª ¤Ÿœ"š)™0—6–<”A’FKOŽSŒX‹]Šcˆi†q„z‚„€~Ÿ}°{ÆzçyûyÿyÿïÕ¿°¥— “Ž$Œ+Š1‰7ˆ<†A…FƒJ‚OSX~^|ezlxuvtŒsšq©p¾oÞnónÿmÿàŰ¢˜’‰…ƒ&,~2}7{<zAxFwJvOtTsZqaohmqk{jˆh•f¥eºdÓdìcùcÿÓ¹¥˜Ž‡ƒ |zx!v(t.s3q8p=nAmFlKjQiWg^eecnay_…^’\£[µZÍZåZ÷Zÿǯ … ~ y wt rpm#k)j/h4g9e>dCbHaM_T^[\cZlXwVƒU’S¡R³RËQäQóQû¾¦ –‰~wqnl khfc%b+`0^5]:\?ZEY KW QU YS aR kP vN ƒL ’K ¢JµIËIãIñHù·  ‚xpkgdca ^\ Z'X,W2U7T=RBQHOOMWK`IjHuFƒD’C£B¸A ÎA åA óA ú°›‹}s kfa^\Y WUS#Q)O.N4L9K?IEGMFUD^BhAt?>‘<¢;¶;Ï;è;ö;þ«—‡ y#o#g#a#\!YVS PNL J&H+F1E6C<BC@J?R=\<f:r9€86¡6µ5Î5ç5÷6ÿ¦“ ƒ$v&k'c']&X$T"P!M!J G E C #A!(@!.>!4=!:<"@:"H9#P8#Z6#e5#q3#~2"Ž1! 0 ´0Í0æ0ö1ÿ¢$'r(h)`*Y)T(P%K%G%D% A%?%=% ;%%:%+8%17&76&>5'F3'N2(X1(c0(o.(}-',&Ÿ,$³+"Ì+ æ,ö-ÿž"Œ&|)o+e,],V,P+K)F)B)?)<)9)7)5)#3)(2*/1*50+</+D.,M-,W,,b+,n),|(+Œ(*ž'(²'&Ë'$å(#õ("þ›%ˆ)y,l-b.Z.S.M.G-B->-:.7. 4.2.0.!/.'-/-,/3+/:*0B)0K(0U'0`&0l%0{$/‹#.",±"*Ê"(ä#'õ$&þ˜'…,v.j/`0W1P0J0D0=1925222 /3-3+3*3%(4+'41&48%4@$4I#5S!4^ 4k4y3Š2œ0°.É,ã+ô*þ”*‚.s1g2]3T3M3G3@3955507-7)8'8&9$9"#9)"9/ 969>9G9Q9]9i8x7ˆ6š4¯2Ç0â/ô.ý.~1o3d4Z5Q5J5D6=77839.:(<$= !> >> >&>->4><>E>O>Z=g=v<‡:™9­7Æ5á3ó2ý‹1z4l6`7W7N8G8A8::5;0<+>%@C DDDD$D*D1D9DBDLDX Ce Bs Aƒ @– >ª <Á :Ü 8ï 7ú†5u7h9]:S:K:E;>;8=3>-@(B!EHK KKK! K' K. K6 J?JIJTIaHoGE‘D¥B»@Ô>é=ô9q;d<Y=P=I=B>‚M^€q~‡{zµyÏwã`UYUTTLWB\8a.f%kor vy|~ƒ„…‡ˆ ŠŒ *’6‘EVi‹—‰®ˆÇ‡Þ_ZZZS\Ha>g4m*r w|‚…ˆŠŒŽ’“•—˜›! ,¢;¡L `žvœŽš¥˜½˜Ña`ZaPgEm:t0z&€†Š’•–˜›Ÿ ¢¤§© ¬° ³.µ?´S²j°‚®™«®ªÂbgXmMsB{8‚-‰#Ž”˜œ ¢¤¥§ª¬®°²µ¹¼ÁÆ!Ê2ËFÊ]ÊsɉÉÇ«ÿÿÿÿ ÿÿö$ò-ð5î<íDêKæPâVß[Ý_ÚcØhÕlÓqÑx΀̈ɒǞĮÁÄ¿å¼ÿ»ÿ¶ÿ²ÿ¯ÿÿÿÿÿøìæ!â)Þ1Ù8Õ?ÔFÑLÎQÌVÊZÇ^ÆcÄgÂlÀr¾y»‚¹Œ¶—´¦±¹¯×­÷¬ÿªÿ§ÿ¤ÿÿÿÿñä ØÑÊ$Æ,Ã3Â:À@¾G¼LºQ¸U¶Y³^±b¯g­l«s©|¦†¤‘¢Ÿ °žÉìœÿœÿ›ÿ™ÿÿýíÝ˺¶ ³(±/¯5¬;«A¨G¦K¤P£T¡X ]Ÿbgœmšv˜–Š”—’§½ßŽùÿŒÿŒÿÿîØÄ¸® ©¥¢#ž*1œ7›<šA˜F—K•O”S“X‘]bŽhp‹y‰„‡‘…Ÿƒ³‚Ï€î€ÿÿÿñÛIJ§Ÿš–“‘%,Ž2Ž7<‹AŠEˆJ‡N†S„Xƒ]c€j}t{~y‹x™v«uÃtâsøsÿrÿâÆ±¤š“ ‰‡… ƒ'‚-2€7<}@|E{IyNxSwYu_sfqooyn†l”j¥i¹hÔgñgÿgÿÑ·¤—އ‚~ |zx"w(v.u3t7r<q@oEnJlOkTi[hbfkduba`Ÿ^²]Ì]é\ù\ÿ뚃|yusqom#l)j.i3h8f<e@dFcKaQ`W^_\h[rY~WŒV›U­TÆSáSóSý¹£’… { t omk hgec%b*`/_4^8\=[BZGXMWTU\SeRpP|NŠM™L«KÁJÛJîKû¯› ‹ ~tmhd ca `^\ Z&X+W0U5T:S?QDPKNRMZKdInG{F‰E™CªC¾BÙBìBö¨ •…xnga^[Z YVTR"Q (O -N 2L 7K <J BH IF QE YC cA n? {> Š= š< ¬;À;Ø;ê;õ£€sib\XUSQPMKJ$H*F/E4D:B@AG?O=X<b:m8z7Š6š5®4Å4 Ü4 ì4 öž‹|oe^XSPMKH FDB!A&?,>1=7;=:D8L7V5`4l2y1ˆ0™/¬.Ã.Þ/ð/ùšˆxl!b"Z"T"O KHEB @><:#9)7.645;3B2J1T/^.j-w,‡*˜*«)Â)Ý*ð*û–„u"i$_%W%Q$K#G"C @ = :864 3 &1 ,0 2/!9.!@-"H+"R*#])#i("v&"†%!—%ª$Á$Ü%ï%û“€!r$f&\'T'M'H&C%?$;$8$5$ 2$0$.$,$#+$)*%0)%6(&>'&F&'P%'[$'g"'u!&…!%– #© !ÀÛ ï!ú }$o&c(Y)Q)K)E)@(;(6(3(0(-)+)))')!&)'%*.$*5#*<"+E!+N +Y+f*s*ƒ)•'¨%¿#Ú"î!úŒ#z&l)`+V+N+H+B+=+7+1,.,+-(- %.$.".!.% .,/3/:/C/M/X/d/r.‚-”+§)¾'Ù&í%ùˆ%w)i+]-T-L-E-?-:-4.//+0&1#2 3333#3*40484A4K4V3b3p2€1’/¦-½+×*í)ù„(s,f.Z/Q/I0B0<07012-2(3$578999!9'9.969>9H9T 8` 8n 7} 6 4¢ 2¸ 0Ñ .ç -õ,o/b0W1N2F2@2:253/4+5&7!9;> ??? ?% ?+ >3 >;>E>P=\=j @CE HK KKKK%K,K4K=JHJTIcHrG„F—C¬BÃ@Ü>ìp7b9V9M:E:?:::5;.>(@"CFILOP QRRS!S(S0R9RDRPQ^PnO€M“L¨IÀGÚFêj;]<R=I=C===9=1@*D$GJMP RUW X XYZ[$[,[5[?ZKZYXiW{UT¥R¼PÖOée@Y@O@G@A@=@5C.G&K NQT WZ]__ `abcd&e/e9dFdTccav`‹^ \¸[ÑXç_DTDLDFDAC:G1K)O"SVZ ]`beghi jklm!o)p4o?oNn^lpk…iœg²fÌeãZIQIKHFH?J6O-T$Y\` cgiloqrst vwy{"}+~7}E|V{hy}w”uªsÃrÛWNPMLLDO;T1Y(^cg knrtwy|}€‚„ †ˆŠ#/Ž=M‹`‰u‡…¥ƒ»ÑVSRRKTAZ7_,e#jpsw{~€ƒ…‡‰‹Ž“ •˜›&ž4žDœWšl˜„–œ”²“ÇXXRYG_=e2l(rx} ‚…ˆ‹Ž’”–—™› £ ¦©­*±:¯M­b«z¨’¦©¤¼Y_OdDk:r/z%€‡Œ“–˜›œž¡£¥§©¬¯²¶»ÀÆ,È?ÅUÃmÁ„À™¾ªÿÿÿÿþøò!ì)ê1è8æ?åFãLßQÛVÖ[Ó_ÐcÍhËmÈsÆzÂÁ½›»ª¸À¶ã´þ³ÿ¬ÿ©ÿ¦ÿÿÿÿüî æÝÙ%Õ-Ñ4Í;ÊAÈGÅLÂQÀV¾Z¼^»c¹h·nµt³|°†®“«¢©µ§Ô¥ô£ÿ ÿœÿšÿÿÿ÷åÙÌÆÂ!»(¸/·6¶<µB³G±L¯P­U¬Yª^¨b§h¥n£v¡Ÿ‹œšš«˜Å—è•ÿ”ÿ‘ÿÿÿõãο¸ °«©$§+¦1¥7¤=£B¡FŸJžOœT›X™]˜b–i”p’y„Ž“Œ¢Š¸ˆÙ‡ø‡ÿ…ÿ„ÿøâȹ¬¤ž›™—&–,•2”8”=’A‘EIŽNS‹XŠ]ˆc†j„s‚}€Œ~›|®zÈyíyÿxÿxÿæÌµ¦• ‹‰!ˆ'‡-†2†7„<ƒ@DI~M|SzXy^weunsxq†o”n¥l¼làkùkÿkÿÒ·¥™ˆƒ€~|{"y(x.w3v7u<t@rDqHpMoSmZlajihsf€dŽcŸa´aÑ`ï`ÿ_ÿª™Œƒ}xu rpon$m)l.k3j7i;h?gDeIdOcUa]_e^o\|ZŠYšW­VÅVãU÷Uÿ´Ÿ‚ysoki gfec%b*b.`3_7^;]@\EZKYRWYVaTlRxP†O–N§M½LÙLóLÿ«—‡zqjeca_]\[ Z%Y*W/V3U8T<RAQGONNVL^KiIuG‚F’E£D¸DÓCëCù£€ t j c^ [ YX VUSR"P&O+M0L4K9J>HDGKESD\BgAs?>=¡<µ<Í<å<òœ‰ znd]XTR P O NLJI#G(F,E1C6B<AB?I>R<[;f9r8€66¡5³5É5ã5ñ— „ui`YSOLJH G E C B @ %? )> /< 4; :: A8 H7 Q5[3g2s0‚/ ’. ¢. µ.Ë.â.ï’€qe\UOJFDBA?=;:!8'7,62483?1G0P.Z-e+r*)’(¤'¹' Ï( ã( ïŽ|nbYQKFB?=;9 7532$0)//.5-<+D*N)X'd&p%$#£"¸"Ð"è#ó‹yk_V N H C>;853 1/-,!*')-(3':&B$L#V"b!o~¢·Ïçõ‡vh\!S"K"E"?!;!7 30.+ )'%$$# *" 1!!8 !A!J"U"a!n!} Ž¡¶Ïçõƒse"Z#P$H$B$=$8#4#/#,#)#&# ##"$ $$"$(%/%6%?&H&S&_%m%|$"  µÎæô€o!b$W%M&F&?&:&5&1%,&''$'!(())) )&)-*4*=*F*Q*^*k)z(Œ&Ÿ%³ "Ì!ä ó| l$_&T'K(C(=(7(3(.())%*!+,- ....$.+/2/;/D /O .[ .h -w ,ˆ+›)¯'Æ%ß $îy#i&\)Q*H*@*:*5*0*,+&,#,.02 34 4 3" 3( 30383A3K3X3e2t1…/—.«,Â*Û(êt&e)X+N,E,>,8,3,.,*-%.!0246 9 9999&9-949=8H8T8b7p65”3¨1¾/Ø.ép*a-U.J.B/;/6/1/-/(0#2468 ;> >???#?*>1>:>E>Q=^ @C DDEE E&E.E7EADMDZCjB{@Ž?¢<¹;Ñ:æf1X3M4D4=47434/4(6"9<>A DGIJ KKLM#M*M3M=LHLVKeJwH‹FŸE¶BÐAå`6T7I7A7;76626,9%<?BE HKMPQ RSTUV&V.V8UCTQTaRsQ‡OœM³LÌJä[:O:F:?::969/<(?!CFJ MORUWXZ [\]^!`)`3_>_L^[]m[‚Y˜W¯VÈUáU>K>C>>=:<3?+C$GKO RUX[^`abd efhi$k-k8jEiUhgf|e“c«aÃ`ÝQBHBBA?@8C/G'LQUY\_begiklno qsuw&y1x>wNv`utrŒp¤o½mÓNGHFDE=G4L+R!W\`dgjmpsuwxz|~€‚…ˆ(Š5‰EˆW†k„ƒ‚š€²~ÉMKIJCL9Q/W&]ch lotwy|ƒ…‡‰‹ “– š-›<šN˜c–z”’‘¨¿OPJQ@W5]+d!jp uy}…‡‰ŒŽ’”–˜›ž¡ ¥©$­3­E«Z©p¦‰£Ÿ¢´QVG\ž=²=Ë<æ<ù—…vi ` Y U QONL KJIH"G&F+E/C4B9A>@E>M=V;`:l8y7‰6š6­5Ã5ã5óp d[TNK H GF DCBA?#>'=,<1;69<8B7K5T4^2j1w0‡/˜/«.Á.Û.í‹y k`WOIEB@ ? > =<:9 7$6)5.443:1A0I/S- ^, j*w)‡(˜(ª(¾(Õ(é‡ ug\SKEA=;98 7 5 4 2 1 "0 '/ ,- 2, 9+ @)I(T&_%k#z" ‰" š! «"À"Ö"èƒ rdYOHB=964310.,+*$(*'0&7$?#H"R ]jx‰›¯ Ã Ø ènaVLE?:620-+) (&$#""(!. 5=FP\iwˆš®ÅÞë|k^SIB<73/,)&$" %,3;DOZgv‡™­ÄÞïxh[PG?940,)%! # * 1 9!B!M!Y!f t … — ª À Ù êueXM D!=!7!2!. * & " ""# #$$$!$(%/ %7 %@ %J %V %b$q$"“ ¦¼ÓæqbV!K"B#:#5#0#+"'"$"#$%'( ) ) ) )%),)4)<)G)R)_)n(~'%£#¸!Ðän_"R#H%?%8%2%-%)$%$"%&'(* - ....#.).1.:.D.O.\-k,{+Ž)¡'¶&Ì$ãj"[$O&E'<'6'0'+''&$' ')+,/1 2333 3'3.373@3L3Y2h1y0‹/Ÿ,´*Ë)áe%W'K(A):)3).)*)&)#)+-/1 36 7 8999$9+949=9H8V8e7v5‰43²0Ê/áa)S*H+>,7,1+-+)+&+ -024 69;< =>?@!@(@0@:@E?R>a=s<†:›9°8È5á\,O-D.;.5.0.,-)-#/257 9<?AB DEFGH$H,H6GAGNF]EnCƒA˜?®>Ç>àV0J1@19131/0,/&2 58;=@CEHIK LMOP Q(Q2P<PIOXNiL~K”I«GÄFÞQ4F4=47423/2)5"8<?B EHKNPQST VWY[#[-[7ZDZSXdWxUS§QÁOÛL8B8;86736-8&<@DG KNQTVYZ\]_ aceg'g1g>fLe^cra‰_¡]»\ÖG<@<:;7:1<)@!DIN RUX[^acdfhik mor!u+t7sFrXqko‚l›j´iÎE@??<>6@-E$JOT Y]`cfilnprtvxz |ƒ#†/…>„O‚c€y}’{ªyÂDEAC¹CµH³M±Q¯U®Y¬^ªd¨j¦s£~¡Šž˜œ«šÇ˜î“ÿÿŒÿ‰ÿõëàÍÀ¸³°¬ §'¦-¦3¥9¥>¤B¢G KŸOTœYš^˜d–k”v’‚Ž¡‹ºŠà‡ÿÿ~ÿ|ÿê߯´ª¤Ÿ ™—–"•(•.”4”9“=‘AEŽJN‹SŠXˆ^†e„n‚{€ˆ~˜|®{ÍyûvÿsÿqÿÞ®¡™’‹‰‡†„#„)„.ƒ3ƒ8‚<€@D~H|M{SyYx`vhtsrpo¤m¾kîjÿhÿgÿÇ®‘‰|y xwvu$u)u.t3s7r;q?oCnHmMkTj[hcgme{c‰bœa²_ß^ý]ÿ\ÿ³ƒysomkjih h%g)g.g2f6d:c>bCaH_O^V\^[gYuWƒV•U©SÎRòRÿRÿ¦’„vnhdb` ^^]] \%\)\-Z1Y5X:W?UDTJSQQZPcNpM~KJ¤HÁHæGþGÿš‰yme_[XVU TSRR Q%Q)P-O1N5M:K@JFIMGVF_DlCyAŠ@Ÿ?¶>Ø>õ>ÿ“€pf]VRONL KJIIH!H%G)E-D2C6B<@B?J>R=\;h:v9…7™7¯6Ë6ë6ü‹zj_WPKHFDC BA@??!>&=*<.;3:98?7G6O5Y3e2r1ƒ0•/©/Â.à.ô…sfZ Q J E A ?=<; :9877"5'4+30261=0D/M-X,c+p*€)‘(¥(º(Ô(ì€n a VMF@<9 7 654 3210/$-(,.+3*:)B(K'V%b$o#~""¡!µ"Ð"è{j ^RIB<8420 / . . ,+)(!'&&+%2$9#A! K U b o~¡´Ëâw gZOF?941.+)( ( & % # " ! $ * 1 8ALWdq ‘ ¢´Éàt dWLC<61-*'%#"  #)07@JVbp€“¥ ¸ ËßqaTI@93/*'$!  '.5>IT ` m }  ¡ µ Ì ám^RG>71,($!  $ + 3 ; EP]jz‹ž²ÈÞj[OD;4/*&"   "( 0 8 B M Z hw‰œ°ÅÝgXLA92,($  ! ####$&$-$5$?$J$W$e#u"‡!š¯ÅÚcUI? 6 0 * &" ! # %' (())#)*)3)<)G)T(c(s&†%™$­!Ä Û`RF!<"4"-"("$!!!  "#% ')+ ,-..!.(.0.9.D.Q-`-p+„*˜(¬'Â$Ü[ N"B#9$1$+$&### ""$&' ),.0 12444%4-464A4N3]2m1/–-«,Â,ÛW#J%?&6&/&)&%%"% $&(* ,/145 7 8:;;";*;3;>:J:Y9j8}6”4ª2Â1ÜR'E(;)3)-(((%'#&)+-0 257:;= >@BCC&C/B:BFAU@f?z=‘;¨:Á8ÜL+A+8,0+++(*&) +.14 69;>ABDE GIKM"M+L5LAKPIaHuG‹D¤B¾AÜG.=/5//.+-),#.158 ;=@CFHJLNP RTVW&W1V=UKT[RpQ†NŸMºK×B29232/1,/'1 59= @CFILORTVWY[ ^`c!d+c7cEbU`i^\—Y²XÏ>6763503+5#9=B FJMQTWZ\^`bdfh knq%r1q?oOnblxjh©fÄ<:794809'=BH MRVY\`cfhjlnprux {‚)‚7G[}pzˆyŸuº<>9<5=,B"HNTZ^cfiloruwy|~ƒ‡Š Ž’ —.•?”R‘g~–‰­>A;A1G'NU[agkpswz}€ƒ…ˆŠ“–šž £©$­4«G¨]¦s£Š ŸAF7L-T#[b iouy~ƒ†‰ŒŽ‘“–˜›ž¡¥©®´¼Ä+Æ>ÃS¿i¼¸”úòìéèã ߨÍ%Ì,Ë3Ë9Ê?ÊDÈIÅMÃRÁV¾[¼`ºf·l´t²~¯Š¬©³§Ö¤ü›ÿ“ÿ‹ÿˆÿòéâÝÑɾ¹·!¶'µ.´4³:²?±D¯H­L«QªU¨Z¦`¤f¢n wƒ›’˜©–Æ”ðÿ‰ÿƒÿ~ÿèÝ謧 ¤¢¡# ) /Ÿ4Ÿ9Ÿ>BœGšK˜O—T•Z“`‘hp{‹‰‰‡·…àƒÿ}ÿxÿtÿÜθ« ˜”‘Ž$Ž*/Œ4Œ8Š=‰A‡E†J„OƒTZa}j|uz‚x“v¬uÍt÷qÿmÿjÿ̳¤˜‡ƒ€ ~||{%{*{/{3{7y;x?wDuItNrTq[odmnlzjŠh¢g½féeÿbÿ`ÿ¸¡“…}wsponmm m%m)l.l2k6j:h>gCfIdOcVa^`h^t]ƒ[™Z±YÙXüVÿUÿ¥“„xojfcb a``` `%`)`-_1^5\9[>ZCYJWQVYTcRoQ}O‘N¨MÈMðKÿJÿšˆwld^[XVV UUTT T$S(R-Q1P5O9N?LEKLJUH^GjFwDŒC B»BäAÿ@ÿ|nd[UQNML JJIII I$H(G,F1E5D;BAAH@Q>Z=f<s:†:š9²8Ý7ú7ÿ‡tg\SMIFDBA A@@@? ?$>(=-<1:79=8D7M6W5b4o21”0ª/Í/ð/ÿ€naVMFA><;:9 88776!5%4)3.231:0A/J.T-_,l+}*)§(Â(å(úyi\QHA<854321 00/.-",&+++0*7)>(G'Q&\%k$z#Œ"¡!¹"Ù"òteW L C < 7 3 0 .,+* ) )('&&#%($-#4"<!E OZhwгÎépaS H @93/, ) ' % $$ #"!  %+2:CMZgv‡š®Åßl^ PE=60,(%"    #)09 B M Y gu†˜ªÂÜi [ MB:3-)%!       " ) 1:D N Z g v ‡ ™ « ¿ Öf XK@70+&"    ' . 6?JVds„–ª ¾ ÔcUH=5.($    $+3<GTbq‚•¨½Ò`RE;3,&"   !(1:EQ`o”§¾Ó]OB80*$   &. 7 B O^m€“§¼ÕYK?6.'"   ! "#$$$$,$5$@$L$Z#k"}!’§½ÔVH<3+%  !# % ')))")))3)=)J)X(i'{%‘$§"¾!ØQD90)# "$&(* ,.///'0/0:/F/U.e-y,Ž*¦(¾&ÚM@ 6!-!'!"  ! #%'),.0 2 4677#7,666C5Q5a3u2‹0¤.¾-ÛH"<#2$+$%#!"! !$& (+-02468 : <>? ?)>3>>=M<];q9ˆ8Ÿ6¼4ÛC%8&/&(&$%!$#$'* ,/2479;=?A CFII$H/H:GHFYDkBƒ@›>·=Ù>)4*-)'($'"&'*- 1469<?ACEGJL NQT S*R6QDPTOfM}K•J¯GÑ9-1-+,'+%) *.2 59<?BEHKMOQSVY \_a$`0_=^M\`ZuXV¨TÄ61/0+/)-$.27 ;?BFJMPSUXZ\^acfimo*n7mGlYkmh†fžd¸44/3-1)2 7<AFKNRVY]`bdgiknqtw{€#0€@~R{fx~v–t­4826.6%;AGMSX\`cfimortvy|ƒ‡‹•(•7’J^uŠŒˆ¢7;4:*@!FM U[afimqtwz}€ƒ†ˆŒ“–› ¦¬.ª@§U£k¡‚ž—:?0E&LT[bintx|€ƒ†‰Œ’•˜›ž¢§­´ ¼Å$Ë6ÇJÂ`¾uºŠ  !"$%&()*+-./02346789;<=>@ABDEFGIJKMNOPRSTUWXY[\]^`abcefgijklnopqstuwxyz|}~€‚ƒ…†‡ˆŠ‹ŒŽ‘“”•–˜™šœžŸ¡¢£¤¦§¨ª«¬­¯°±³´µ¶¸¹º»½¾¿ÁÂÃÄÆÇÈÉËÌÍÏÐÑÒÔÕÖ×ÙÚÛÝÞßàâãäæçèéëìíîðñòôõö÷ùúûüþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ  !"$%&()*+-./02346789;<=>@ABDEFGIJKMNOPRSTUWXY[\]^`abcefgijklnopqstuwxyz|}~€‚ƒ…†‡ˆŠ‹ŒŽ‘“”•–˜™šœžŸ¡¢£¤¦§¨ª«¬­¯°±³´µ¶¸¹º»½¾¿ÁÂÃÄÆÇÈÉËÌÍÏÐÑÒÔÕÖ×ÙÚÛÝÞßàâãäæçèéëìíîðñòôõö÷ùúûüþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ  !"$%&()*+-./02346789;<=>@ABDEFGIJKMNOPRSTUWXY[\]^`abcefgijklnopqstuwxyz|}~€‚ƒ…†‡ˆŠ‹ŒŽ‘“”•–˜™šœžŸ¡¢£¤¦§¨ª«¬­¯°±³´µ¶¸¹º»½¾¿ÁÂÃÄÆÇÈÉËÌÍÏÐÑÒÔÕÖ×ÙÚÛÝÞßàâãäæçèéëìíîðñòôõö÷ùúûüþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ ¡¢£¤¥¦§¨©ª«¬­®¯°±²³´µ¶·¸¹º»¼½¾¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖרÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿmft1!  !"#$%&'()*+,-./012456789:;<=>?@ABCDEFGHIJKLMNOPRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžžŸ ¡¢£¤¥¦§¨©ª«¬­®¯°±²³´µ¶·¸¹º»¼½¾¿ÀÁÂÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖרÙÚÛÜÜÝÞßàáâãäåæçèéêëìíîïðñòóôôõö÷øùúûüýþÿ  !""#$$%&&'())*+,--./01223456789:;<=>?@BCDEFHIJLMOPRSUWXZ\^`bdfhjmoqtvy|~ƒ†‰‹Ž’•—™›Ÿ¡£¥§¨ª¬­¯°²³µ¶·¹º»¼½¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÍÎÏÐÑÒÒÓÔÕÖÖרÙÙÚÛÛÜÝÝÞßßàááâããäååææçèèééêëëììíîîïïððñòòóóôôõöö÷÷øøùùúûûüüýýþþÿ  !""#$$%&&'())*+,--./01223456789:;<=>?@BCDEFHIJLMOPRSUWXZ\^`bdfhjmoqtvy|~ƒ†‰‹Ž’•—™›Ÿ¡£¥§¨ª¬­¯°²³µ¶·¹º»¼½¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÍÎÏÐÑÒÒÓÔÕÖÖרÙÙÚÛÛÜÝÝÞßßàááâããäååææçèèééêëëììíîîïïððñòòóóôôõöö÷÷øøùùúûûüüýýþþÿý¢Q‡Õ›dÜÕ›dÜÕ›eÜÕ›eÝÔ›fÞÔ›fÞÔ›gßÔ›gßÔ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàý¢Q‡Õ›dÜÕ›dÜÕ›eÜÕ›eÝÔ›fÞÔ›fÞÔ›gßÔ›gßÔ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàý¢Q‡Õ›dÜÕ›dÜÕ›eÜÕ›eÝÔ›fÞÔ›fÞÔ›gßÔ›gßÔ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàý¢Q‡Õ›dÜÕ›dÜÕ›eÜÕ›eÝÔ›fÞÔ›fÞÔ›gßÔ›gßÔ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàý¢Q‡Õ›dÜÕ›dÜÕ›eÜÕ›eÝÔ›fÞÔ›fÞÔ›gßÔ›gßÔ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàý¢Q‡Õ›dÜÕ›dÜÕ›eÜÕ›eÝÔ›fÞÔ›fÞÔ›gßÔ›gßÔ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàý¢Q‡Õ›dÜÕ›dÜÕ›eÜÕ›eÝÔ›fÞÔ›fÞÔ›gßÔ›gßÔ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàý¢Q‡Õ›dÜÕ›dÜÕ›eÜÕ›eÝÔ›fÞÔ›fÞÔ›gßÔ›gßÔ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàý¢Q‡Õ›dÜÕ›dÜÕ›eÜÕ›eÝÔ›fÞÔ›fÞÔ›gßÔ›gßÔ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàý¢Q‡Õ›dÜÕ›dÜÕ›eÜÕ›eÝÔ›fÞÔ›fÞÔ›gßÔ›gßÔ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàý¢Q‡Õ›dÜÕ›dÜÕ›eÜÕ›eÝÔ›fÞÔ›fÞÔ›gßÔ›gßÔ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàý¢Q‡Õ›dÜÕ›dÜÕ›eÜÕ›eÝÔ›fÞÔ›fÞÔ›gßÔ›gßÔ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàý¢Q‡Õ›dÜÕ›dÜÕ›eÜÕ›eÝÔ›fÞÔ›fÞÔ›gßÔ›gßÔ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàý¢Q‡Õ›dÜÕ›dÜÕ›eÜÕ›eÝÔ›fÞÔ›fÞÔ›gßÔ›gßÔ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàý¢Q‡Õ›dÜÕ›dÜÕ›eÜÕ›eÝÔ›fÞÔ›fÞÔ›gßÔ›gßÔ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàý¢Q‡Õ›dÜÕ›dÜÕ›eÜÕ›eÝÔ›fÞÔ›fÞÔ›gßÔ›gßÔ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàý¢Q‡Õ›dÜÕ›dÜÕ›eÜÕ›eÝÔ›fÞÔ›fÞÔ›gßÔ›gßÔ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàý¢QˆÕ›dÜÕ›dÜÕ›eÜÕ›eÝÔ›fÞÔ›fÞÔ›fßÔ›gßÔ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàü¢QˆÕ›dÛÕ›dÜÕ›eÜÕ›eÝÔ›fÞÔœfÞÔ›fßÔ›gßÔ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàü¢Q‰Õ›dÛÕ›dÜÕ›eÜÕ›eÝÔœfÞÔœfÞÔœfßÔ›gßÔ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàü¢Q‰Õ›dÛÕ›dÜÕ›eÜÕ›eÝÔœfÞÔœfÞÔœfßÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàü£QŠÕ›dÛÕ›dÜÕ›eÜÕ›eÝÔœfÞÔœfÞÔœfßÔœgßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàû£Q‹Õ›dÛÕ›dÜÕ›eÜÕ›eÝÔœfÞÔœfÞÔœfßÔœgßÔœgßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàû£Q‹Õ›dÛÕ›dÜÕ›eÜÕœeÝÔœfÞÔœfÞÔœfßÔœgßÔœgßÓœgßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàû£QŒÕ›dÛÕ›dÜÕ›eÝÕœeÝÔœfÞÔœfÞÔœfßÔœgßÔœgßÓœgßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàú£QŽÕ›dÛÕ›dÜÕ›eÝÕœeÝÔœfÞÔœfÞÔœfßÔœgßÔœgßÓœgßÓœgàÓœgàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàù£QÕ›dÛÕ›dÜÕœeÝÕœeÝÔœfÞÔœfÞÔœfßÔœfßÓœgßÓœgßÓœgßÓœgàÓœgàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàø£Q’Õ›dÛÕ›dÜÕœeÝÔœeÝÔœfÞÔœfÞÔœfßÔœfßÓœgßÓœgßÓœgßÓœgàÓœgàÓœgàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàö£Q—Õ›dÜÕ›dÜÕœeÝÔœeÝÔœeÞÔœfÞÔœfÞÓœfßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàó£QÕ›dÜÕœdÜÕœdÝÔœeÝÔeÞÔfÞÓœfÞÓœfßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàï£R¥Õ›dÜÕœdÜÕœdÝÔdÝÔeÞÔfÞÓœfÞÓœfßÓœfßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßë¢R®ÕœcÜÕœdÜÕdÝÔdÝÔeÞÓfÞÓœfÞÓœfßÓœfßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßç¢R·ÕœcÜÕcÝÕcÝÔdÝÓeÞÓfÞÓfÞÓœfÞÓœfßÒœfßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÿ¤MgçY·Õ›eÜÕ›eÜÕ›fÝÔ›fÝÔ›fÞÔ›gÞÔ›gßÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¤MgçY·Õ›eÜÕ›eÜÕ›fÝÔ›fÝÔ›fÞÔ›gÞÔ›gßÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¤MgçY·Õ›eÜÕ›eÜÕ›fÝÔ›fÝÔ›fÞÔ›gÞÔ›gßÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¤MgçY·Õ›eÜÕ›eÜÕ›fÝÔ›fÝÔ›fÞÔ›gÞÔ›gßÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¤MgçY·Õ›eÜÕ›eÜÕ›fÝÔ›fÝÔ›fÞÔ›gÞÔ›gßÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¤MgçY·Õ›eÜÕ›eÜÕ›fÝÔ›fÝÔ›fÞÔ›gÞÔ›gßÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¤MgçY·Õ›eÜÕ›eÜÕ›fÝÔ›fÝÔ›fÞÔ›gÞÔ›gßÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¤MgçY·Õ›eÜÕ›eÜÕ›fÝÔ›fÝÔ›fÞÔ›gÞÔ›gßÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¤MgçY·Õ›eÜÕ›eÜÕ›fÝÔ›fÝÔ›fÞÔ›gÞÔ›gßÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¤MgçY·Õ›eÜÕ›eÜÕ›fÝÔ›fÝÔ›fÞÔ›gÞÔ›gßÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¤MgçY·Õ›eÜÕ›eÜÕ›fÝÔ›fÝÔ›fÞÔ›gÞÔ›gßÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¤MgçY·Õ›eÜÕ›eÜÕ›fÝÔ›fÝÔ›fÞÔ›gÞÔ›gßÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¤MgçY·Õ›eÜÕ›eÜÕ›fÝÔ›fÝÔ›fÞÔ›gÞÔ›gßÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¤MgæY¸Õ›eÜÕ›eÜÕ›fÝÔ›fÝÔ›fÞÔ›gÞÔ›gßÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¤MgæY¹Õ›eÜÕ›eÜÕ›fÝÔ›fÝÔ›fÞÔ›gÞÔ›gßÔ›gßÔ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¤MhåYºÕ›eÜÕ›eÜÕ›fÝÔ›fÝÔ›fÞÔ›gÞÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¤MhåY»Õ›eÜÕ›eÜÕ›fÝÔ›fÝÔ›fÞÔ›gÞÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¤MhåY¼Õ›eÜÕ›eÜÕ›eÝÔ›fÝÔ›fÞÔ›gÞÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¤MhäœY½Õ›eÜÕ›eÜÕ›eÝÔ›fÝÔ›fÞÔ›gÞÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¤MiäœY¾Õ›eÜÕ›eÜÕ›eÝÔ›fÝÔ›fÞÔ›fÞÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¤MiãœZ¿Õ›eÜÕ›eÜÕ›eÝÔ›fÝÔ›fÞÔ›fÞÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¥MjâœZÁÕ›eÜÕ›eÜÕ›eÝÔ›fÝÔ›fÞÔ›fÞÔ›gßÔ›gßÓœgßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¥MjâœZÂÕ›eÜÕ›eÜÕ›eÝÔ›fÝÔ›fÞÔ›fÞÔœgßÔœgßÓœgßÓœgàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¥MkáœZÄÕ›dÜÕ›eÜÕ›eÝÔ›fÝÔ›fÞÔœfÞÔœfßÔœgßÓœgßÓœgßÓœgàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¥MkßœZÇÕ›dÜÕ›eÜÕ›eÝÔ›fÝÔ›fÞÔœfÞÔœfßÔœgßÓœgßÓœgßÓœgßÓœgàÓœgàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¥LlÞœ[ËÕ›dÜÕ›eÜÕ›eÝÔ›fÝÔœfÞÔœfÞÔœfßÔœfßÓœgßÓœgßÓœgßÓœgßÓœgàÓœgàÓœgàÓœgàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¥LnÛ›]ÐÕ›dÜÕ›eÜÕ›eÝÔœfÝÔœfÞÔœfÞÔœfßÓœfßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÿ¦LoØ›a×Õ›dÜÕ›eÜÕ›eÝÔœeÝÔœeÞÔfÞÓœfßÓœfßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÿ¦LrÕ›dÛÕ›dÜÕ›eÜÕœeÝÔœeÞÔeÞÓfÞÓœfßÓœfßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÿ§KuÕ›dÛÕ›dÜÕœdÜÕœdÝÔdÞÔeÞÓfÞÓœfÞÓœfßÓœfßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÿ§K}Õ›cÛÕœdÜÕœdÝÔdÝÔeÞÓeÞÓfÞÓœfÞÓœfßÓœfßÓœgßÓœgßÓœgßÓœgßÓœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßû§L†Õ›cÜÕœcÜÕcÝÔdÝÓeÞÓeÞÓfÞÓœfÞÒœfÞÒœfßÒœfßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßõ§MÕœcÜÕbÜÔžcÝÓdÝÓeÞÓeÞÒfÞÒfÞÒœfÞÒœfÞÒœfßÒœfßÒœfßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÿ¤JNüŸT‰ÕšeÜÕ›eÝÕ›fÝÔ›fÝÔ›fÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¤JNüŸT‰ÕšeÜÕ›eÝÕ›fÝÔ›fÝÔ›fÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¤JNüŸT‰ÕšeÜÕ›eÝÕ›fÝÔ›fÝÔ›fÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¤JNüŸT‰ÕšeÜÕ›eÝÕ›fÝÔ›fÝÔ›fÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¤JNüŸT‰ÕšeÜÕ›eÝÕ›fÝÔ›fÝÔ›fÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¤JNüŸT‰ÕšeÜÕ›eÝÕ›fÝÔ›fÝÔ›fÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¤JNüŸT‰ÕšeÜÕ›eÝÕ›fÝÔ›fÝÔ›fÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¤JNüŸT‰ÕšeÜÕ›eÝÕ›fÝÔ›fÝÔ›fÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¤JNüŸT‰ÕšeÜÕ›eÝÕ›fÝÔ›fÝÔ›fÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¤JNüŸT‰ÕšeÜÕ›eÝÕ›fÝÔ›fÝÔ›fÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¤JNüŸTŠÕšeÜÕ›eÝÕ›fÝÔ›fÝÔ›fÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÓ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¥JNûŸTŠÕšeÜÕ›eÝÕ›fÝÔ›fÝÔ›fÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¥JOûŸT‹ÕšeÜÕ›eÝÕ›fÝÔ›fÝÔ›fÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¥JOûŸTŒÕšeÜÕ›eÝÕ›fÝÔ›fÝÔ›fÞÔ›gÞÔ›gßÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¥JOûŸTŒÕšeÜÕ›eÝÕ›fÝÔ›fÝÔ›fÞÔ›gÞÔ›gßÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¥JOúŸTÕšeÜÕ›eÜÕ›fÝÔ›fÝÔ›fÞÔ›fÞÔ›gßÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¥JPúŸTŽÕšeÜÕ›eÜÕ›fÝÔ›fÝÔ›fÞÔ›fÞÔ›gßÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¥JPúŸTŽÕ›eÜÕ›eÜÕ›fÝÔ›fÝÔ›fÞÔ›fÞÔ›gßÔ›gßÔ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¥JPù TÕ›eÜÕ›eÜÕ›fÝÔ›fÝÔ›fÞÔ›fÞÔ›gßÔ›gßÔ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¥JPù TÕ›eÜÕ›eÜÕ›fÝÔ›fÝÔ›fÞÔ›fÞÔ›gßÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¥JQù TÕ›eÜÕ›eÜÕ›fÝÔ›fÝÔ›fÞÔ›fÞÔ›gÞÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¦JQø T‘Õ›eÜÕ›eÜÕ›eÝÔ›fÝÔ›fÞÔ›fÞÔ›fÞÔ›gßÔœgßÓœgßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¦IQø T’Õ›eÜÕ›eÜÕ›eÝÔ›fÝÔ›fÞÔ›fÞÔœfÞÔœgßÔœgßÓœgßÓœgàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¦IR÷ T“Õ›eÜÕ›eÜÕ›eÝÔ›fÝÔ›fÞÔœfÞÔœfÞÔœfßÔœgßÓœgßÓœgßÓœgàÓœgàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¦IRö T•Õ›eÜÕ›eÜÕ›eÝÕ›fÝÔ›fÞÔœfÞÔœfÞÔœfßÔœgßÓœgßÓœgßÓœgßÓœgàÓœgàÓœgàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ§ISõ U˜Õ›eÜÕ›eÜÕ›eÝÕ›eÝÔœfÞÔœfÞÔœfÞÔœfßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÿ§ITô U›Õ›dÜÕ›eÜÕ›eÝÕœeÝÔœeÞÔœfÞÔœfÞÓœfßÓœfßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÿ¨HVò UŸÕ›dÜÕ›eÜÕ›eÝÔœeÝÔeÞÔeÞÓœfÞÓœfßÓœfßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÿ¨HWï U¥Õ›dÜÕ›dÜÕœdÝÔdÝÔeÞÓfÞÓfÞÓœfÞÓœfßÓœfßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÿ©GZë U­Õ›dÜÕœdÜÕdÝÔdÝÓeÞÓfÞÓfÞÓœfÞÓœfßÓœfßÓœfßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÿªI]æŸVºÕ›dÜÕœcÜÔcÝÓdÝÓeÞÓfÞÓfÞÒœfÞÒœfÞÒœfßÒœfßÒœfßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÿ©JfßžXÉÕœcÜÔžbÝÓdÝÓeÝÓeÞÒfÞÒfÞÒfÞÒœfÞÒœfÞÒœfßÒœfßÒœfßÒœfßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßú©Kqæ¤PºÕž`ÜÔžcÝÓdÝÓeÝÒeÞÒfÞÒfÞÒfÞÒœfÞÒœfÞÒœfÞÒœfÞÒœfÞÒœfßÒœfßÒœfßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÿ¤H:ÿ QiíœZ«ÕšeÝÕšfÝÔ›fÝÔ›fÞÔ›gÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¤H:ÿ QiíœZ«ÕšeÝÕšfÝÔ›fÝÔ›fÞÔ›gÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¤H:ÿ QiíœZ«ÕšeÝÕšfÝÔ›fÝÔ›fÞÔ›gÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¤H:ÿ QiíœZ«ÕšeÝÕšfÝÔ›fÝÔ›fÞÔ›gÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¤H:ÿ QiíœZ«ÕšeÝÕšfÝÔ›fÝÔ›fÞÔ›gÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¤H:ÿ QiíœZ«ÕšeÝÕšfÝÔ›fÝÔ›fÞÔ›gÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¤H:ÿ QiíœZ«ÕšeÝÕšfÝÔ›fÝÔ›fÞÔ›gÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¤H:ÿ QiíœZ«ÕšeÝÕšfÝÔ›fÝÔ›fÞÔ›gÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¤H;ÿ¡QjìœZ«ÕšeÝÕšfÝÔ›fÝÔ›fÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¤H;ÿ¡QjëœZ­ÕšeÝÕšfÝÔ›fÝÔ›fÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÓ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¥H;ÿ¡QkêœZ¯ÕšeÝÕšfÝÔ›fÝÔ›fÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÔ›gßÓ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¥H;ÿ¡QlêœZ±ÕšeÝÕšfÝÔ›fÝÔ›fÞÔ›fÞÔ›gÞÔ›gßÔ›gßÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¥H<ÿ¡QléœZ²ÕšeÝÕšfÝÔ›fÝÔ›fÞÔ›fÞÔ›gÞÔ›gßÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¥H<ÿ¡QméœZ³ÕšeÝÕ›fÝÔ›fÝÔ›fÞÔ›fÞÔ›gÞÔ›gßÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¥H<ÿ¡QmèœZ´ÕšeÝÕ›fÝÔ›fÝÔ›fÞÔ›fÞÔ›gÞÔ›gßÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¥H<ÿ¡QnèœZµÕšeÝÕ›fÝÔ›fÝÔ›fÞÔ›fÞÔ›gÞÔ›gßÔ›gßÔ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¥H<ÿ¡QnçœZ¶ÕšeÜÕ›fÝÔ›fÝÔ›fÞÔ›fÞÔ›gÞÔ›gßÔ›gßÔ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¥G<ÿ¡Qnçœ[·ÕšeÜÕ›fÝÔ›fÝÔ›fÞÔ›fÞÔ›fÞÔ›gßÔ›gßÔ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¥G=ÿ¡Qoæ›[¸ÕšeÜÕ›fÝÔ›fÝÔ›fÞÔ›fÞÔ›fÞÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¦G=ÿ¡Qoå›[ºÕšeÜÕ›fÝÔ›fÝÔ›fÞÔ›fÞÔ›fÞÔ›gßÔ›gßÔ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¦G=ÿ¡Qpå›[¼ÕšeÜÕ›fÝÔ›fÝÔ›fÝÔ›fÞÔ›fÞÔ›gßÔ›gßÔœgßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¦G=ÿ¡Qqä›[¾ÕšeÜÕ›fÝÕ›fÝÔ›fÝÔ›fÞÔ›fÞÔœfßÔœgßÔœgßÓœgßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¦G>ÿ¡Qrã›[ÀÕ›eÜÕ›fÝÕ›fÝÔ›fÝÔ›fÞÔœfÞÔœfßÔœgßÔœgßÓœgßÓœgàÓœgàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¦G>ÿ¡Qsá›[ÄÕ›eÜÕ›eÝÕ›fÝÔ›fÝÔœfÞÔœfÞÔœfßÔœfßÓœgßÓœgßÓœgßÓœgàÓœgàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ§F?ÿ¢Qtß›\ÈÕ›eÜÕ›eÝÕ›eÝÔœfÝÔœfÞÔœfÞÔœfßÔœfßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgàÓœgàÓœgàÓœgàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ§F?ÿ¢QvÜ›^ÎÕ›eÜÕ›eÝÕ›eÝÔœeÝÔœeÞÔœfÞÔœfÞÓœfßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÿ¨F@ÿ¢PyØ›b×Õ›eÜÕ›eÜÕœeÝÔœeÝÔeÞÔfÞÓœfÞÓœfßÓœfßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÿ©EAÿ¢P|Õ›dÜÕ›eÜÕœdÜÕœdÝÔdÝÔeÞÓfÞÓœfÞÓœfßÓœfßÓœfßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÿªDCÿ£P€Õ›dÜÕ›dÜÕœdÝÕdÝÔdÞÓeÞÓfÞÓfÞÓœfÞÓœfßÓœfßÒœfßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÿ«DDþ£P†Õ›dÛÕœcÜÕcÝÔdÝÓeÞÓeÞÓfÞÒfÞÒœfÞÒœfÞÒœfßÒœfßÒœfßÒœfßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÿ¬EFú¤PÕœcÜÕbÜÔžcÝÓdÝÓeÞÒeÞÒfÞÒfÞÒfÞÒœfÞÒœfÞÒœfÞÒœfßÒœfßÒœfßÒœfßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÿ«GMö¦M“ߥOÆÔžbÝÓdÝÓeÝÒeÞÒeÞÒfÞÒfÞÒfÞÒfÞÒœfÞÒœfÞÒœfÞÒœfÞÒœfÞÒœfßÒœfßÒœfßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÿ«HWæ¬H„×Ì#›ÎÆ6¤ÌÀB­Ê»L´Ê·R¹Ê´W½Ê²ZÀʱ\Âʰ^Ãʯ_Äʯ`Äʯ`ÅÊ®aÅÊ®aÅÊ®bÆÊ®bÆÊ®bÆÊ®cÆÊ®cÆÊ®cÆÊ®cÆÊ®cÆÊ®cÆÊ®cÆÊ®cÆÊ®cÆÊ®cÆÊ®cÆÊ®cÆÊ®cÆÊ®cÆÿ£G+ÿ¡OPÿWâ™]ÁÕšfÝÔšfÝÔšfÞÔšgÞÔ›gÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›hßÔ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÿ£G+ÿ¡OPÿWâ™]ÁÕšfÝÔšfÝÔšfÞÔšgÞÔ›gÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›hßÔ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÿ£G+ÿ¡OPÿWâ™]ÁÕšfÝÔšfÝÔšfÞÔšgÞÔ›gÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›hßÔ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÿ£G+ÿ¡OPÿWâ™]ÁÕšfÝÔšfÝÔšfÞÔšgÞÔ›gÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›hßÔ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÿ£G+ÿ¡OPÿWâ™]ÁÕšfÝÔšfÝÔšfÞÔšgÞÔ›gÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›hßÔ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÿ£G+ÿ¡OPÿWâ™]ÁÕšfÝÔšfÝÔšfÞÔšgÞÔ›gÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›hßÔ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÿ£G+ÿ¡OPÿWâ™]ÁÕšfÝÔšfÝÔšfÞÔšgÞÔ›gÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›hßÔ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÿ£G+ÿ¡OQÿW‚á™^ÄÕšfÝÔšfÝÔšfÞÔšgÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÓ›gßÓ›gßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÿ£G+ÿ¡OQÿW„ß™_ÈÕšfÝÔšfÝÔšfÞÔ›fÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÿ¤G+ÿ¡ORþW…Þ™`ÊÕšfÝÔšfÝÔšfÞÔ›fÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÓ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÿ¤G+ÿ¡OSþW†Ý™aÍÕšfÝÔšfÝÔšfÞÔ›fÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÔ›gßÓ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÿ¤F,ÿ¡OSýžW‡Ü™aÏÕšfÝÔšfÝÔ›fÝÔ›fÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¤F,ÿ¡OSýžWˆÛ™bÑÕšfÝÔšfÝÔ›fÝÔ›fÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¤F,ÿ¡OTüžWˆÚšbÓÕšfÝÔšfÝÔ›fÝÔ›fÞÔ›fÞÔ›gÞÔ›gßÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¤F,ÿ¡OTüžW‰ÙšcÕÕšfÝÔšfÝÔ›fÝÔ›fÞÔ›fÞÔ›gÞÔ›gßÔ›gßÔ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¤F,ÿ¡OTüžWŠØšd×ÕšfÝÔšfÝÔ›fÝÔ›fÞÔ›fÞÔ›gÞÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¤F,ÿ¡NUûžW‹ÖšdÚÕšfÝÕšfÝÔ›fÝÔ›fÞÔ›fÞÔ›gÞÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¥F,ÿ¢NUûžW‹ÕšeÜÕšfÝÕšfÝÔ›fÝÔ›fÞÔ›fÞÔ›gÞÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¥F-ÿ¢NUûžWŒÕšeÜÕšfÝÕ›fÝÔ›fÝÔ›fÞÔ›fÞÔ›fÞÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¥F-ÿ¢NVúžWÕšeÜÕšfÝÕ›fÝÔ›fÝÔ›fÞÔ›fÞÔ›fÞÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¥E-ÿ¢NVúžWÕšeÜÕšfÝÕ›fÝÔ›fÝÔ›fÝÔ›fÞÔ›fÞÔœgßÔœgßÓœgßÓœgàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¥E-ÿ¢NWùžWÕšeÜÕšfÝÕ›fÝÕ›fÝÔ›fÝÔ›fÞÔœfÞÔœfßÔœgßÓœgßÓœgßÓœgàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¦E.ÿ¢NXøžW’ÕšeÜÕšeÝÕ›eÝÕ›fÝÔ›fÝÔœfÞÔœfÞÔœfßÔœfßÓœgßÓœgßÓœgßÓœgàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÿ¦E.ÿ¢NY÷žW”ÕšeÜÕ›eÝÕ›eÝÕ›eÝÔœfÝÔœfÞÔœfÞÔœfßÓœfßÓœgßÓœgßÓœgßÓœgßÓœgàÓœgàÓœgàÓœgàÓ›gàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÿ¦D.ÿ£NZõžW—ÕšeÜÕ›eÜÕ›eÜÕœeÝÔœeÝÔœfÞÔfÞÔœfßÓœfßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÿ§D/ÿ£M\ôžW›ÕšeÜÕ›eÜÕ›eÜÕœeÝÔœeÞÔeÞÔfÞÓœfÞÓœfßÓœfßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÿ¨C0ÿ£M^ñžW¡Õ›eÜÕ›dÜÕœdÝÕœdÝÔdÞÔeÞÓfÞÓœfÞÓœfßÓœfßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÿ©C1ÿ¤M`îžX¨Õ›dÜÕœdÜÕœdÝÔdÝÔeÞÓeÞÓfÞÓœfÞÓœfÞÓœfßÓœfßÒœfßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÿªB2ÿ¥LdêžX°Õ›dÜÕœcÜÕcÝÔdÝÓeÞÓeÞÓfÞÒfÞÒœfÞÒœfÞÒœfßÒœfßÒœfßÒœfßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÿ¬@3ÿ¦Lhì¡T¬ÕœcÜÕbÝÔcÝÓdÝÓeÞÒfÞÒfÞÒfÞÒfÞÒœfÞÒœfÞÒœfÞÒœfÞÒœfßÒœfßÒœfßÒœfßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÿ­A4ÿ¨Jië§N¡Û§KÊÔžcÝÓdÝÓeÝÒeÞÒfÞÒfÞÒfÞÒfÞÒfÞÒœfÞÒœfÞÒœfÞÒœfÞÒœfÞÒœfÞÒœfÞÒœfßÒœfßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÿ®C6ô«Jhß´@‹ÒË+ÌÆ;¥ÉÄD¨ÇÀK¬Ç½Q°Ç»U´Ç¹X¶Ç¸Z¸Ç·\¹Ç¶]ºÇ¶^»Çµ^»Çµ_¼Æµ`¼Æµ`¼Æ´`½Æ´a½Æ´a½Å´b¾Å´b¾Å´b¾Å´b¾Å´b¾Å´b¾Å´b¾Å´b¾Å´b¾Å´b¾Å´b¾Å´b¾ÿ®E=ã·=]ÑâoÈç)wÂã3}¿Þ<„½ÚC‰¼ÖJ޼ÓO’»ÑR•»ÏU—»ÎX™»ÍYš¹ÌZ›·ÌZœ¶Ë[µË[´Ë\ž³Ê\ž²Ê]Ÿ±Ê]Ÿ°É^ °É^ °É^ °É^ °É^ °É^ °É^ °É^ °É^ °É^ °É^ °É^ ÿ¡Gÿ N<ÿUaú›Zâ˜`ÁÔšfÝÔšfÝÔšgÞÔšgÞÔšgÞÔšgÞÔšgÞÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÿ¡Gÿ N<ÿUaú›Zâ˜`ÁÔšfÝÔšfÝÔšgÞÔšgÞÔšgÞÔšgÞÔšgÞÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÿ¡Gÿ N<ÿUaú›Zâ˜`ÁÔšfÝÔšfÝÔšgÞÔšgÞÔšgÞÔšgÞÔšgÞÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÿ¡Gÿ N<ÿUaú›Zâ˜`ÁÔšfÝÔšfÝÔšgÞÔšgÞÔšgÞÔšgÞÔšgÞÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÿ¡Gÿ N<ÿUaú›Zâ˜`ÁÔšfÝÔšfÝÔšgÞÔšgÞÔšgÞÔšgÞÔšgÞÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÿ¡Gÿ N<ÿUaú›ZŽâ˜`ÁÔšfÝÔšfÝÔšgÞÔšgÞÔšgÞÔšgÞÔšgÞÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÿ¡Gÿ N<ÿžUcù›Zà˜aÆÔšfÝÔšfÝÔšgÞÔšgÞÔšgÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›hßÔ›hßÔ›hßÔ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÿ¡Fÿ M=ÿžTdø›Z’Þ˜bÊÔšfÝÔšfÝÔšfÞÔšgÞÔ›gÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›hßÔ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÿ¢Fÿ M=ÿžTe÷›Z”ܘbÍÔšfÝÔšfÝÔšfÞÔšgÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÓ›gßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÿ¢Fÿ M>ÿžTeö›Z•Û™cÑÔšfÝÔšfÝÔšfÞÔ›gÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÿ¢Fÿ¡M>ÿžTfö›Z—Ù™dÔÕšfÝÔšfÝÔšfÞÔ›fÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÓ›gßÓ›gßÓ›gàÓ›gàÓ›gßÓ›gßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÿ¢Fÿ¡M>ÿžTgõ›Z˜Ø™d×ÕšfÝÔšfÝÔ›fÞÔ›fÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÿ¢Fÿ¡M?ÿžThõ›Z™ÖšeÚÕšfÝÔšfÝÔ›fÞÔ›fÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gßÓ›gßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÿ¢Fÿ¡M?ÿžThô›Z›ÕšfÝÕšfÝÔšfÝÔ›fÝÔ›fÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÿ¢Eÿ¡M?ÿžTió›ZœÕšfÝÕšfÝÔšfÝÔ›fÝÔ›fÞÔ›fÞÔ›gÞÔ›gßÔ›gßÔ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÿ£Eÿ¡M@ÿžTjó›ZÕšfÝÕšfÝÔ›fÝÔ›fÝÔ›fÞÔ›fÞÔ›gÞÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÿ£Eÿ¡M@ÿžTjò›ZžÕšfÝÕšfÝÕ›fÝÔ›fÝÔ›fÞÔ›fÞÔ›gÞÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÿ£Eÿ¡M@ÿžTkò›[ ÕšfÝÕšfÝÕ›fÝÔ›fÝÔ›fÞÔ›fÞÔ›gÞÔ›gßÔ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÿ£E ÿ¡LAÿžTlñ›[¡ÕšfÝÕšfÝÕ›fÝÔ›fÝÔ›fÞÔ›fÞÔ›fÞÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÓ›gßÿ£E ÿ¡LAÿžTlð›[£ÕšfÝÕšfÝÕ›fÝÔ›fÝÔ›fÞÔ›fÞÔ›fÞÔœgßÔœgßÓœgßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÿ£E ÿ¢LAÿŸTmï›[¥ÕšfÝÕ›eÝÕ›fÝÕ›fÝÔ›fÝÔœfÞÔœfÞÔœfßÔœgßÓœgßÓœgàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÿ¤D ÿ¢LBÿŸToî›[¨ÕšeÝÕ›eÝÕ›eÝÕ›eÝÔ›fÝÔœfÞÔœfÞÔœfßÔœgßÓœgßÓœgßÓœgàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÿ¤D ÿ¢LCÿŸTpì›[«ÕšeÝÕ›eÝÕ›eÝÕ›eÝÔœfÞÔœfÞÔœfÞÔœfßÓœfßÓœgßÓœgßÓœgßÓœgàÓœgàÓœgàÓ›gàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÿ¤D!ÿ¢LCÿŸTrê›[¯ÕšeÜÕ›eÜÕ›eÜÕœeÝÔœeÞÔœfÞÔœfÞÓœfßÓœfßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgàÓœgàÓœgàÓœgàÓœgàÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÿ¥C!ÿ£KEÿŸTtè›[´Õ›eÜÕ›eÜÕœeÝÕœeÝÔeÞÔeÞÓfÞÓœfßÓœfßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÿ¥C!ÿ£KFÿŸTwæœ[ºÕ›dÜÕ›dÜÕœdÝÔdÝÔeÞÓeÞÓfÞÓœfÞÓœfßÓœfßÓœgßÓœgßÓœgßÓœgßÓœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÿ¦B"ÿ¤KHÿŸT{äœZ¾Õ›dÜÕœdÜÕdÝÔdÝÓeÞÓeÞÓfÞÓœfÞÓœfßÓœfßÒœfßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÿ¨A#ÿ¤JJÿ SäžX¼ÕœcÜÕcÜÔcÝÓdÝÓeÞÓfÞÓfÞÒfÞÒœfÞÒœfÞÒœfßÒœfßÒœfßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÿ©@#ÿ¥ILÿ¤O{ç¡S·ÕœbÜÔžbÝÓdÝÓeÝÓeÞÒfÞÒfÞÒfÞÒfÞÒœfÞÒœfÞÒœfÞÒœfßÒœfßÒœfßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÿ«?$ÿ§HPú©Lvä©L¦Ø­BÆÔ¢\×ÓdÝÒeÝÒeÞÒfÞÒeÝÒžeÜÑŸeÛÑŸeÛÑŸeÚÑ eÚÑ eÙРeÙСeØÐ¡eØÐ¡eØÐ¡e×Тe×Ï¢e×Ï¢e×Ï¢e×Ï¢e×Ï¢e×Ï¢e×Ï¢e×Ï¢e×Ï¢e×Ï¢e×ÿ®<%ÿ¬FFé®GpÙÊ(ŒÏÌ0œÊÇ>£ÈÄF§ÆÂLªÅÁQ«ÄÀT¬ÄÀV­Ã¿X®Ã¿Z®Ã¾[¯Â¾\¯Â¾]¯Â¾]¯Â¾^°Á½^°À½_±¿½_±¾¼_²½¼`²¼¼`²¼¼`²¼¼`²¼¼`²¼¼`²¼¼`²¼¼`²¼¼`²¼¼`²¼¼`²ÿ°?#ò°CFÛÔ`Íæ#oÅæ.xÀã6|¼á>€ºßEƒºÜJ‡¹ÙNЏ×RŒ¸ÕTŽ·ÔVµÓW‘´ÓX’²ÒY“±ÒY”°ÑZ•¯Ñ[•¯Ð[–®Ð\–¬Ï]—«Ï^—«Ï^˜«Ï^˜«Ï^˜«Ï^˜«Ï^˜«Ï^˜«Ï^˜«Ï^˜«Ï^˜«Ï^˜ÿ²?$ßÏ =Ìè KÄï+S¾ô4Xº÷;^·õ@d´ñDi±îHm¬ëIp¨êLs¥èNu£çPw¡æQx åRzŸäTzžäU{ãV|œãW}›âW}šâX~™áY˜á[—á[€—á[€—á[€—á[€—á[€—á[€—á[€—á[€—á[€—á[€ÿ–;ÿžM+ÿœSHÿšXiû˜\‹ì•_«Ø™fØÔšgÞÔšgÞÔšgÞÔšgÞÔšgÞÔšgÞÔšgÞÔšgÞÔšhÞÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÿ–;ÿžM+ÿœSHÿšXiû˜\‹ì•_«Ø™fØÔšgÞÔšgÞÔšgÞÔšgÞÔšgÞÔšgÞÔšgÞÔšgÞÔšhÞÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÿ–;ÿžM+ÿœSHÿšXiû˜\‹ì•_«Ø™fØÔšgÞÔšgÞÔšgÞÔšgÞÔšgÞÔšgÞÔšgÞÔšgÞÔšhÞÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÿ–;ÿžM+ÿœSHÿšXiû˜\‹ì•_«Ø™fØÔšgÞÔšgÞÔšgÞÔšgÞÔšgÞÔšgÞÔšgÞÔšgÞÔšhÞÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÿ–;ÿžM+ÿœSHÿšXiû˜\‹ë•_­ÕšfÛÔšgÞÔšgÞÔšgÞÔšgÞÔšgÞÔšgÞÔšgÞÔšgÞÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÿ—;ÿžM+ÿœSIÿ›Xkú˜\Žè–_´ÔšfÝÔšgÝÔšgÞÔšgÞÔšgÞÔšgÞÔšgÞÔšgÞÔšgßÔšgßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÿ˜<ÿžM,ÿSJÿ›Xlù˜\å—`ºÔšfÝÔšfÝÔšgÞÔšgÞÔšgÞÔšgÞÔšgÞÔšgÞÔšgßÔ›gßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÿ™=ÿžM,ÿSKÿ›Xnø™\’ã—a¿ÔšfÝÔšfÝÔšgÞÔšgÞÔšgÞÔšgÞÔšgÞÔ›gßÔ›gßÔ›gßÔ›gßÔ›hßÔ›hßÔ›hßÔ›hßÔ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÿš=ÿŸL-ÿSLÿ›Xo÷™\”à˜aÅÔšfÝÔšfÝÔšgÞÔšgÞÔšgÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÔ›gßÔ›hßÔ›hßÔ›hßÔ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÿš>ÿŸL-ÿSLÿ›Xpö™\–Þ˜bÊÔšfÝÔšfÝÔšfÞÔšgÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÿ›>ÿŸL-ÿSMÿ›Xqõ™\™Û™cÐÕšfÝÔšfÝÔšfÞÔ›gÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÓ›gßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÿœ?ÿŸL.ÿSNÿ›Xrô™\œÙ™dÕÕšfÝÔšfÝÔšfÞÔ›gÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÔ›gßÔ›gßÓ›gßÓ›gßÓ›gßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÿœ?ÿŸL.ÿSNÿ›Xtò™\žÖšeÛÕšfÝÔšfÝÔ›fÞÔ›fÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gßÓ›gßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÿ?ÿŸL.ÿžSOÿ›Xuñ™\ ÕšfÝÕšfÝÔšfÝÔ›fÞÔ›fÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÿ@ÿ L.ÿžROÿ›Xvðš\£ÕšfÝÕšfÝÔšfÝÔ›fÝÔ›fÞÔ›gÞÔ›gÞÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gßÓ›gßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÿž@ÿ L/ÿžRPÿ›Xvïš\¥ÕšfÝÕšfÝÕ›fÝÔ›fÝÔ›fÞÔ›fÞÔ›gÞÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÿžAÿ L/ÿžRPÿ›Xwîš\§ÕšfÝÕšfÝÕ›fÝÔ›fÝÔ›fÞÔ›fÞÔ›gÞÔ›gßÔ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gßÓ›gßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÿžAÿ L/ÿžRQÿœXxíš\©ÕšfÝÕšfÝÕ›fÝÔ›fÝÔ›fÞÔ›fÞÔ›gÞÔ›gßÔ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gßÓ›gßÓ›hßÓœhßÓœhßÓœhßÓœhßÓœhßÓœhßÓœhßÓœhßÓœhßÿŸAÿ K/ÿžRRÿœXzìš\¬ÕšeÝÕšfÝÕ›fÝÔ›fÝÔ›fÞÔ›fÞÔ›fÞÔ›gßÔœgßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓœgßÓœhßÓœhßÓœhßÓœhßÓœhßÓœhßÓœhßÓœhßÓœhßÓœhßÿŸBÿ K0ÿžRRÿœX{ëš\®ÕšeÝÕ›eÝÕ›eÝÕ›fÝÔ›fÝÔœfÞÔœfÞÔœgßÔœgßÓœgßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓœgàÓœgàÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÿ Bÿ K0ÿžRSÿœX|é›\±ÕšeÜÕ›eÝÕ›eÝÕ›eÝÔœfÝÔœfÞÔœfÞÔœfßÔœgßÓœgßÓœgàÓ›gàÓ›gàÓ›gàÓ›gàÓœgàÓœgàÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÿ¡Cÿ¡K1ÿžRTÿœX~è›[´ÕšeÜÕ›eÜÕ›eÜÕœeÝÔœfÞÔœfÞÔœfÞÔœfßÓœgßÓœgßÓœgßÓœgàÓœgàÓœgàÓœgàÓœgàÓœgàÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÿ¢Dÿ¡K1ÿŸRUÿW€æ›[¸Õ›eÜÕ›eÜÕ›eÜÕœeÝÔœeÞÔœeÞÔœfÞÓœfßÓœfßÓœgßÓœgßÓœgßÓœgßÓœgàÓœgàÓœgàÓœgßÓœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÿ¢Cÿ¡J2ÿŸRWÿžW‚å›[¼Õ›eÜÕ›dÜÕœeÝÔœeÝÔeÞÔeÞÓœfÞÓœfßÓœfßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÿ£Cÿ¢J3ÿŸRYþžV„ãœZ¿Õ›dÛÕœdÜÕœdÝÔdÝÔeÞÓeÞÓfÞÓœfÞÓœfßÓœfßÓœgßÓœgßÓœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÿ£Bÿ¢J4ÿ Q[þ T„ãY¿Õ›dÜÕœcÜÕcÝÔdÝÓeÞÓeÞÓfÞÓœfÞÓœfßÒœfßÒœfßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÿ¤Bÿ£I5ÿ¡O[ÿ¢Q‚äŸV¼ÕœcÜÕcÝÔcÝÓdÝÓeÞÓfÞÒfÞÒfÞÒœfÞÒœfßÒœfßÒœfßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÿ¦Aÿ¤H7ÿ¥KXÿ§L|è¥P³ÕaÜÔžbÝÓdÝÓeÝÓeÞÒfÞÒfÞÒfÞÒfÞÒœfÞÒœfÞÒœfÞÒœfßÒœfßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÿ§?ÿ¥G9ÿ«GNðªL{ß­G¡Ö¶<»Ò«OÉѦZÐѤ^ÓѤaÔУbÕФbÔФcÔϤcÔϤcÓϤcÓÏ¥dÓÎ¥dÒÎ¥dÒÎ¥dÒΦdÒΦeÑͦeÑͧeÐͧeÐͧeÐͧeÐͧeÐͧeÐͧeÐͧeÐͧeÐͧeÐÿª>ÿ®@/ù­HNâ´ArÔÚ‰ÍÏ2—ÉÊ>ŸÆÆG¤ÅÄM§ÄÃQ©ÃÁTªÃÁW¬ÂÀY¬ÂÀZ­Â¿[®Â¿\®Â¿]®Á¾^¯¿¾^¯¾¾_¯½¾_¯»¾`°º¾`°¸¾a°¸¾a°¸¾a°¸¾a°¸¾a°¸¾a°¸¾a°¸¾a°¸¾a°¸¾a°ÿ­;ÿ±B*ç¶>JÓáaÉè(nÃç1w¾ã9|¼à@€ºÞGƒ¹ÜK†¸ÛOˆ·ÚR‰µÙT‹³ØUŒ±×VŒ¯ÖW­ÖXެÖXŽ«ÕY©ÕZ¨Õ[§Ô\¦Ô\‘¤Ô^‘¤Ó^‘¤Ó^‘¤Ó^‘¤Ó^‘¤Ó^‘¤Ó^‘¤Ó^‘¤Ó^‘¤Ó^‘ÿ³;ï·;*Òá>Èì$LÁò/T¼ö7Z¸ø=^µöBb±ôFe«òGg¦ñHi¢ïIk îKmžíMoœìOp›ëPqšêQr˜êSs—éTt–èUu•èVu”çWv“çYw’æZx‘æ[x‘æ[x‘æ[x‘æ[x‘æ[x‘æ[x‘æ[x‘æ[x‘æ[xù¶9Óà"Èì.Áô*6»ù3;¶ý9@­ÿ;D¦ÿ=I¡ÿ?MœÿAQ˜ÿCT”þEV‘ýGXüIZûK[ŒúM\‹ùN]‰ùP^ˆøQ_‡÷S`†÷Ta…öUa„öWbƒõYc‚õZc‚õZc‚õZc‚õZc‚õZc‚õZc‚õZc‚õZc‚õZcÿ‡. ÿ?ÿ—O4ÿ™WMÿ—[fÿ•]ô”_›è•cµÝ—fÍÔšgÞÔšgÞÔšgÞÔšgÞÔšgÞÔšhÞÔšhÞÔšhÞÔšhÞÔšhÞÔšhÞÔšhÞÔšhÞÔšhÞÔšiÞÔšiÞÔšiÞÔšiÞÔšiÞÔšiÞÔšiÞÔšiÞÔšiÞÔšiÞÿ‡. ÿ?ÿ—O4ÿ™WMÿ—[fÿ•]ô”_›è•cµÝ—fÍÔšgÞÔšgÞÔšgÞÔšgÞÔšgÞÔšhÞÔšhÞÔšhÞÔšhÞÔšhÞÔšhÞÔšhÞÔšhÞÔšhÞÔšiÞÔšiÞÔšiÞÔšiÞÔšiÞÔšiÞÔšiÞÔšiÞÔšiÞÔšiÞÿ‡. ÿ?ÿ—O4ÿ™WMÿ—[fÿ•]ô”_›è•cµÝ—fÍÔšgÞÔšgÞÔšgÞÔšgÞÔšgÞÔšhÞÔšhÞÔšhÞÔšhÞÔšhÞÔšhÞÔšhÞÔšhÞÔšhÞÔšiÞÔšiÞÔšiÞÔšiÞÔšiÞÔšiÞÔšiÞÔšiÞÔšiÞÔšiÞÿ‡. ÿ?ÿ—O4ÿ™WMÿ—[fÿ–]€ó”_œç•c·Û—fÐÔšgÞÔšgÞÔšgÞÔšgÞÔšgÞÔšhÞÔšhÞÔšhÞÔšhÞÔšhÞÔšhÞÔšhÞÔšhÞÔšhÞÔšiÞÔšiÞÔšiÞÔšiÞÔšiÞÔšiÞÔšiÞÔšiÞÔšiÞÔšiÞÿˆ. ÿ‘@ÿ™P5ÿ™WNÿ—[hþ–]„ð•_¢ã–cÀÕšgÜÔšgÞÔšgÞÔšgÞÔšgÞÔšgÞÔšgÞÔšhÞÔšhÞÔšhÞÔšhÞÔšhÞÔšhßÔšhßÔšhßÔšiÞÔšiÞÔšiÞÔšiÞÔšiÞÔšiÞÔšiÞÔšiÞÔšiÞÔšiÞÿ‰. ÿ’AÿšQ6ÿ™WPÿ—[jý—]ˆî•_¨ß—dÈÔšgÞÔšgÞÔšgÞÔšgÞÔšgÞÔšgÞÔšgÞÔšhÞÔšhÞÔšhÞÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšißÔšißÔšißÔšißÔšißÔšißÔšißÔšißÔšißÿŠ/ ÿ“Aÿ›R6ÿ™WQÿ˜[lû—]‹ì–_­Û˜eÐÔšgÝÔšgÞÔšgÞÔšgÞÔšgÞÔšgÞÔšgÞÔšhÞÔšhÞÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšißÔšißÔšißÔšißÔšißÔšißÔšißÔšißÿ‹/ ÿ”Bÿ›R7ÿšWRÿ˜[nù˜]é–_²×™fØÔšfÝÔšgÞÔšgÞÔšgÞÔšgÞÔšgÞÔšgÞÔšgßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÔšhßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÿŒ0 ÿ•Bÿ›R7ÿšWSÿ™Zpø˜\’ç—_·ÔšfÝÔšfÝÔšgÞÔšgÞÔšgÞÔšgÞÔšgÞÔšgÞÔšgßÔšhßÔšhßÔšhßÔ›hßÔ›hßÔ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÿ0 ÿ–CÿœR8ÿšWTÿ™Zrö™\•ä—`½ÔšfÝÔšfÝÔšgÞÔšgÞÔšgÞÔšgÞÔšgÞÔ›gßÔ›gßÔ›gßÔ›hßÔ›hßÔ›hßÔ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÿ0 ÿ–D ÿœR9ÿšWUÿšZtõ™\˜â˜`ÂÕšfÝÔšfÝÔšfÞÔšgÞÔšgÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÔ›hßÔ›hßÔ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÿŽ1 ÿ—D ÿœR9ÿšWVÿšZvô™\›ß˜aÇÕšfÝÔšfÝÔšfÞÔšgÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÔ›gßÔ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÿ1 ÿ˜E ÿœQ:ÿšWVÿšYwòš\žÝ™bÌÕšfÝÔšfÝÔšfÞÔ›fÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÔ›gßÓ›gßÓ›gßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÿ1 ÿ˜E ÿœQ:ÿšWWÿ›Yyñš\ Û™cÑÕšfÝÔšfÝÔ›fÝÔ›fÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÓ›gßÓ›gàÓ›gßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÿ2 ÿ™F!ÿœQ;ÿ›WXÿ›Yzðš\£Ù™dÕÕšfÝÕšfÝÔ›fÝÔ›fÞÔ›gÞÔ›gÞÔ›gßÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÿ‘2 ÿšF!ÿœQ;ÿ›VYÿ›Y{ïš[¥ÖšeÚÕšfÝÕ›fÝÔ›fÝÔ›fÞÔ›fÞÔ›gÞÔ›gßÔ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÿ‘2 ÿšF!ÿQ;ÿ›VZÿœX}î›[§ÕšeÝÕšfÝÕ›fÝÔ›fÝÔ›fÞÔ›fÞÔ›gÞÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gßÓ›hßÓ›hßÓ›hßÓœhßÓœhßÓœhßÓœhßÓœhßÓœhßÓœhßÓœhßÓœhßÿ’3 ÿ›G!ÿQ<ÿœVZÿœX~í›[©ÕšeÝÕšeÝÕ›fÝÔ›fÝÔ›fÞÔ›fÞÔ›fÞÔ›gßÓ›gßÓ›gàÓ›gàÓ›gàÓ›gàÓ›gàÓ›gßÓœhßÓœhßÓœhßÓœhßÓœhßÓœhßÓœhßÓœhßÓœhßÓœhßÓœhßÓœhßÿ“3 ÿ›H"ÿQ<ÿœU[ÿœXì›[«ÕšeÜÕ›eÝÕ›eÝÕ›fÝÔ›fÝÔ›fÞÔœfÞÔœgßÓœgßÓ›gàÓ›gàÓ›gàÓ›gàÓœgàÓœgßÓœgßÓœhßÓœhßÓœhßÓœhßÓœhßÓœhßÓœhßÓœhßÓœhßÓœhßÓœhßÿ“3 ÿœH"ÿQ=ÿU\ÿW€ëœ[­ÕšeÜÕ›eÜÕ›eÝÕ›eÝÔœfÝÔœfÞÔœfÞÔœfßÓœgßÓœgßÓ›gàÓ›gàÓ›gàÓœgàÓœgßÓœgßÓœhßÓœhßÒœhßÒœhßÒœhßÒœhßÒœhßÒœhßÒœhßÒœhßÒœhßÿ”4 ÿI"ÿQ>ÿT]ÿžWëœZ¯ÕšeÜÕ›eÜÕ›eÜÕœeÝÔœeÝÔœfÞÔœfÞÔœfßÓœgßÓœgßÓœgàÓœgàÓœgàÓœgàÓœgßÓœgßÒœgßÒœhßÒœhßÒœhßÒœhßÒœhßÒœhßÒœhßÒœhßÒœhßÒœhßÿ•4 ÿžJ"ÿQ?ÿžT]ÿžV‚êœZ±Õ›eÜÕ›dÜÕ›eÜÕœeÝÔœeÞÔeÞÔœfÞÓœfßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÓœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÿ–5 ÿŸJ#ÿžQ@ÿŸS^ÿŸUƒéY²Õ›dÜÕ›dÜÕœdÝÕœdÝÔeÞÔeÞÓfÞÓœfßÓœfßÓœgßÓœgßÓœgßÓœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÿ˜6 ÿŸJ#ÿžPAÿ R^ÿ T‚éžW±Õ›dÛÕœdÜÕœdÝÔdÝÔeÞÓeÞÓfÞÓœfÞÓœfßÓœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÿ™7ÿ I$ÿŸOAÿ¢P]ÿ£Q€ë¡U¯ÕœcÜÕœcÜÕcÝÔdÝÓeÞÓeÞÓfÞÓœfÞÒœfßÒœfßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÿœ9ÿ I%ÿ¢L@ÿ¥L[ÿ§Mzì¤Q­ÕœbÜÕžaÝÔcÝÓdÝÓeÞÓfÞÒfÞÒfÞÒœfÞÒœfÞÒœfßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÿŸ;ÿ¡H&ÿ¥I=ÿªHSö©Mzå©M¤ÚªHÅÔžaÜÓdÝÓeÝÒeÞÒfÞÒfÞÒfÞÒfÞÒœfÞÒœfÞÒœfÞÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒgÞÒgÞÒgÞÒgÞÒgÞÒgÞÒgÞÒgÞÒgÞÿ¢>ÿ£G&ÿ«C6ÿ¬IOé­Iwܹ<–ÓÁ5«Ï¸E·Î³O¾Í°UÂ̯YÅÌ®[ÆÌ­]ÇË­^ÇË­`ÇË­`ÇË­aÈÊ­bÈÊ­cÇÊ­cÇÊ­dÇÉ­dÇÇ­dÆÆ®eÆÄ®fÅÄ®fÅÄ®fÅÄ®fÅÄ®fÅÄ®fÅÄ®fÅÄ®fÅÄ®fÅÿ¥?ÿ©@ ÿ°C+ï°EPÝÃ3nÐß!‚ÊÕ1ÆÏ>—ÄËFœÃÉL ÂÇP£ÁÆT¥ÁÅW¦ÀÄY§ÀÃZ¨ÀÃ\©¿Â]ª½Â^ª»Á^«¹Á_«·Á`«µÁa«´Áb¬²Ác¬°Ád¬°Ád¬°Ád¬°Ád¬°Ád¬°Ád¬°Ád¬°Ád¬°Ád¬ÿ§=ÿ²;ù²A.ßÇ,JÏå!^Çë,kÁé4t½å;zºáB~¹ßH‚¸ÝM…·ÛP‡¶ÚS‰³ÙTаØV‹®ØWŒ¬×XªÖYލÖZާÕ[¥Õ\¤Ô]¢Ô_¡Ô`‘ŸÓb‘ŸÓb‘ŸÓb‘ŸÓb‘ŸÓb‘ŸÓb‘ŸÓb‘ŸÓb‘ŸÓb‘ÿ²3ÿ´<ãÅ+,Îæ>Åï(K¿ô2S»÷9Z·ø?_´õDc°óFfªñHi¥ïIk¡îKmŸíMnœìOo›ìPp™ëRq—êSr–êTs”éVt“éWt‘èYuèZvŽç\vŒç^wŒç_wŒç_wŒç_wŒç_wŒç_wŒç_wŒç_wŒç_wÿµ8êÀ.Îæ#Åð$.¾ö-6¹û5=³ÿ:B«ÿÿšWWÿšZrú™\Žì˜^¬Þ˜cÉÔšfÝÔšgÞÔšgÞÔšgÞÔšgÞÔšgÞÔšgÞÔšhßÔšhßÔšhßÔšhßÔ›hßÓ›hßÓ›ißÓ›ißÓ›ißÓ›ißÓ›ißÓ›ißÓ›ißÓ›ißÓ›ißÓ›ißÓ›ißÿ~%ÿ‡7ÿG)ÿ™U?ÿšWXÿ›Ytøš[‘ê˜]°Û™cÐÔšfÝÔšfÝÔšgÞÔšgÞÔšgÞÔšgÞÔšgßÔ›hßÔ›hßÔ›hßÔ›hßÓ›hßÓ›hßÓ›hßÓ›ißÓ›ißÓ›ißÓ›ißÓ›ißÓ›ißÓ›ißÓ›ißÓ›ißÓ›ißÿ%ÿˆ7ÿG)ÿšU@ÿ›WYÿ›Yu÷›[“è™]´Ø™d×ÕšfÝÔšfÝÔšgÞÔšgÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›ißÓ›ißÓ›ißÓ›ißÓ›ißÓ›ißÓ›ißÓ›ißÓ›ißÿ€&ÿ‰7ÿ‘H)ÿšT@ÿœVZÿœXvö›[•ç™]·ÕšfÝÕšfÝÔšfÝÔšfÞÔ›gÞÔ›gÞÔ›gßÔ›gßÔ›gßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›ißÓ›ißÓ›ißÓ›ißÓ›ißÓ›ißÓ›ißÓ›ißÿ&ÿŠ8ÿ’H*ÿ›TAÿœVZÿœXwöœZ—åš]ºÕšfÝÕšfÝÔšfÝÔ›fÞÔ›gÞÔ›gÞÔ›gßÔ›gßÓ›gßÓ›gàÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÒ›ißÒ›ißÒ›ißÒ›ißÒ›ißÒ›ißÒ›ißÒ›ißÿ‚&ÿŠ8ÿ’H*ÿ›SAÿU[ÿXxõœZ˜äš]½ÕšeÝÕšfÝÔ›fÝÔ›fÞÔ›fÞÔ›gÞÔ›gßÔ›gßÓ›gàÓ›gàÓ›gßÓ›hßÓ›hßÓ›hßÓ›hßÓ›hßÒ›hßÒ›hßÒ›hßÒ›hßÒ›hßÒ›hßÒ›hßÒ›hßÒ›hßÿ‚&ÿ‹8ÿ“I+ÿœSAÿU[ÿWyôœZšãš\¿ÕšeÝÕ›eÝÕ›fÝÔ›fÝÔ›fÞÔ›gÞÔ›gßÓ›gàÓ›gàÓ›gàÓ›gßÓ›hßÓ›hßÓœhßÓœhßÒœhßÒœhßÒœhßÒœhßÒœhßÒœhßÒœhßÒœhßÒœhßÒœhßÿƒ&ÿŒ9ÿ”I+ÿœRBÿžT\ÿžWzôY›â›\ÂÕšeÜÕ›eÝÕ›eÝÔ›fÝÔ›fÞÔ›fÞÔœgßÓ›gßÓ›gàÓ›gàÓ›gàÓœgßÓœhßÓœhßÒœhßÒœhßÒœhßÒœhßÒœhßÒœhßÒœhßÒœhßÒœhßÒœhßÒœhßÿ„'ÿ9ÿ•J+ÿRBÿžT\ÿžVzôžYœá›\ÄÕ›eÜÕ›eÜÕ›eÝÕ›eÝÔœfÞÔœfÞÔœfßÓœgßÓ›gàÓ›gàÓœgàÓœgßÓœhßÒœhßÒœhßÒœhßÒœhßÒœhßÒœhßÒœhßÒœhßÒœhßÒœhßÒœhßÒœhßÿ…'ÿŽ:ÿ–K,ÿžQBÿŸS\ÿŸUzóžXœàœ[ÅÕ›dÜÕ›dÜÕœeÝÔœeÝÔœeÞÔœfÞÓœfßÓœgßÓœgßÓœgàÓœgàÓœgßÒœgßÒœhßÒœhßÒœhßÒœhßÒœhßÒœhßÒœhßÒœhßÒœhßÒœhßÒœhßÒœhßÿ†'ÿ:ÿ˜L,ÿžPBÿ R\ÿ TzóŸWœàœZÆÕ›dÛÕ›dÜÕœdÝÔœeÝÔeÞÔfÞÓœfßÓœgßÓœgßÓœgßÓœgßÒœgßÒœgßÒœgßÒœhßÒœhßÒœhßÒœhßÒœhßÒœhßÒœhßÒœhßÒœhßÒœhßÒœhßÿ‡(ÿ;ÿ›M,ÿŸOBÿ¡Q[ÿ¢Syô¡UšážYÄÕ›dÜÕœdÜÕdÝÔdÝÔeÞÓfÞÓœfÞÓœfßÓœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœhßÒœhßÒœhßÒœhßÒœhßÒœhßÒœhßÒœhßÒœhßÿˆ(ÿ’<ÿN,ÿ¡NAÿ£OZÿ¤Pvö¤S–áŸWÃÕœcÜÕcÝÔcÝÔdÝÓeÞÓfÞÓœfÞÒœfßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœhßÒœhßÒœhßÒœhßÒœhßÒœhßÒœhßÒœhßÿŠ)ÿ“=ÿŸL+ÿ£L@ÿ¥LWÿ¨Mqö§P–ã£R¾ÕbÜÔžbÝÔdÝÓeÝÓeÞÒfÞÒfÞÒœfÞÒœfßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÒœgßÿŒ*ÿ•>ÿ¡J*ÿ¥H=ÿªHQüªMnë©O”ß©LµØ¨KÎÓžcÝÓdÝÓeÞÒeÞÒfÞÒfÞÒœfÞÒœfÞÒœfßÒœgßÒœgßÒœgßÒœgßÑgÞÑžgÜÏ hÚΡhØÎ¡hØÎ¡hØÎ¡hØÎ¡hØÎ¡hØÎ¡hØÎ¡hØÿ+ÿ˜@ÿ£F(ÿ«D7ÿ­IIï¬Loá¯HØÃ0§Ò¸A¸Ð°NÃϬWÉÏ©[ÌϨ^ÎΧ`ÏΧaÏΧbÐͧcÐͧdÏͧdĮ̈eĮ̈fÎË©fÍʪgÌÈ«hÊÅ«iʬjɬjɬjɬjɬjɬjɬjɬjÉÿ’-ÿŸCÿ¨A#ÿ¯C-÷¯ILã³DlØÜ…ÏÐ0–ËÈ>¢ÉÂG©Ç¿N®Ç¼S²Æ»W´ÆºZ¶Å¹\·Å¸^¸Å¸_¸Ä·a¹Â·a¹¿·bº½·cº»·d¹¹·f¹·¸g¸¶¹i·´¹k¶´¹k¶´¹k¶´¹k¶´¹k¶´¹k¶´¹k¶´¹k¶ÿ–/ÿ¥@ÿ±;ÿ±D-ç¶@LÕÞeÍå'vÆÞ0ƒÃØ<‹ÀÔD‘¿ÑK•¾ÎP˜½ÍS›½ËW¼ÊYž¼É[ ¹È\¡¶È]¢´Ç^¢±Ç`£®Æa¤¬Æc¤ªÆd¤¨Æf¤§Æh£¥Çk£¥Çk£¥Çk£¥Çk£¥Çk£¥Çk£¥Çk£¥Çk£ÿ›2ÿ®8 ÿ³>î·=.ÔßFËé%XÄî/e¿î7n»é=t¸åBy¶âH}µàM€´ÞQƒ±ÝS…­ÜU†«ÛVˆ¨ÚX‰¦ÙYФÙ[‹¡Ø\ŒŸØ^ŒÖ`›Öb™ÖdŽ—ÖgŽ•ÖiŽ•ÖiŽ•ÖiŽ•ÖiŽ•ÖiŽ•ÖiŽ•ÖiŽ•ÖiŽÿ§4ÿ´7õ·:Ôß+Êê";Ãñ,H½ö4Q¹ø;Xµù@]²öEb­óGe§ñHh¢ðJjžîLlœíNn™ìQo—ìRp•ëTq“êVr‘éXséZtè\u‹è_v‰çav‡çdw…æfw…æfw…æfw…æfw…æfw…æfw…æfw…æfwÿ´0þ·7ÕÞÉë"Áó'.¼ù06·ü7=°ÿ;B¨ÿ=G¡ÿ?KœÿAN—ÿCP’ÿESÿFTŒþIVŠþKWˆýMX†üOY…ûQZƒûS[úU\ùX]~ùZ^|ø\^zø__y÷b`y÷b`y÷b`y÷b`y÷b`y÷b`y÷b`y÷b`ÿµ4ÖØ ÉëÀõ!ºû*¯ÿ,%¥ÿ/*ÿ2.—ÿ42‘ÿ75Œÿ98‡ÿ<:ƒÿ><€ÿ@=~ÿB?|ÿD@zÿFAxÿHBwÿJBuÿLCtÿODrÿQEqÿSFoÿVGnÿXGlÿ[Hlÿ[Hlÿ[Hlÿ[Hlÿ[Hlÿ[Hlÿ[Hlÿ[HÓÌÉå ¼ú¯ÿ £ÿ™ÿ‘ÿ"Šÿ%„ÿ)ÿ-"zÿ0$wÿ3%sÿ5'qÿ7(oÿ9)mÿ<*lÿ>+jÿ@,iÿB-hÿD.gÿG/fÿI0dÿL1cÿN1bÿQ2`ÿT3`ÿT3`ÿT3`ÿT3`ÿT3`ÿT3`ÿT3`ÿT3ÿh#ÿg+ ÿm9ÿqD$ÿyM4ÿƒUEÿŠ[UÿŽ`cÿdoÿŽgyÿŽjýŽl‡ûŽn‹úŽoŽøŽq‘øq“÷r”ös•ös–öt—öu—öv—öw–öy•õy”ôz“óz’óz’óz’óz’óz’óz’óz’ÿh#ÿg+ ÿm9ÿrD%ÿzM4ÿ„UEÿŠ[UÿŽ`dÿdpÿŽgzÿŽjýŽl‡ûŽnŒùŽoøŽq’÷q”ör•ös–ös—õt˜õu˜õv˜öw—öy–õy•óz”òz“òz“òz“òz“òz“òz“òz“ÿi#ÿh+ ÿn9ÿsD%ÿ}N5ÿˆVGÿ\Xÿ_gÿctÿf~ýi†úkøŽm’öŽo•õŽp˜ôqšôr›órósòtžòužòvžówóxœñ‘y›ð‘z™ï‘z™ï‘z™ï‘z™ï‘z™ï‘z™ï‘z™ï‘z™ÿi#ÿj+ ÿp9ÿtE&ÿN7ÿ‹VIÿ’\Zÿ‘^jÿbwÿe‚ûh‹øk’öm—ôn›òŽpžñq ñq¢ðr£ðs¤ï‘t¤ï‘u¥ð‘v¤ð‘w£ï‘x¢î‘y í‘zŸì‘zŸì‘zŸì‘zŸì‘zŸì‘zŸì‘zŸì‘zŸÿj"ÿk+ ÿq9ÿvE'ÿ„O8ÿWKÿ”\]ÿ’^mÿ`{ýd‡ùgõj—ólñn¡ïo¤îp§íq©írªì‘r«ì‘s«ì‘t«í‘u«í‘w©ì’x¨ë’y§é’y¦é’z¥é’z¥é’z¥é’z¥é’z¥é’z¥é’z¥ÿk"ÿl, ÿs9ÿxE(ÿˆO:ÿ“XMÿ•\_ÿ”^pÿ‘_ûcŒöf–òižðk¤îm¨ìn¬ëp®êq°é‘q²é‘r³é’s³é’t³é’u²é’w±è’w¯ç’x®æ“y­å“z¬å“z¬å“z¬å“z¬å“z¬å“z¬å“z¬ÿl"ÿn, ÿt:ÿ|E)ÿŒP;ÿ—YOÿ–[bÿ•]sÿ“_ƒø‘b‘ó‘eœï‘h¥ì‘j¬ê‘l±è‘m´ç‘n·æ‘p¹å‘qºå’r»å’s¼å’t»å“uºå“v¸ä“w·ã“x¶â“z´â“z³â“z³â“z³â“z³â“z³â“z³â“z³ÿm"ÿo, ÿv:ÿ€F*ÿQ<ÿ—YPÿ—[dÿ–]wý”^ˆö“a–ð’d¢ì’g¬è“i´æ“jºä“k¾â“lÁá“nÃá”oÄà“pÅà“rÅá“sÄá“uÂà”vÁà”w¿ß”y½Þ”z»Þ”{ºÞ”{ºÞ”{ºÞ”{ºÞ”{ºÞ”{ºÞ”{ºÿn"ÿq, ÿw:ÿ„F*ÿ“R=ÿ˜XRÿ˜Zfÿ—\zû–^Œô”`œí”c©è”f´ä”h½á•iÃß•jÈÞ–kËÝ–kÍÜ–lÎÜ–mÏÜ–oÏÜ•qÍÜ•sÌÜ•uÊÜ•wÇÛ•yÅÛ•{ÂÛ•}ÀÛ•}ÀÛ•}ÀÛ•}ÀÛ•}ÀÛ•}ÀÛ•}Àÿo!ÿr, ÿy:ÿ‡G+ÿ—T>ÿ™XSÿ™Zhÿ™\}ù—]ñ•_¡ê•b°ä•e¼à–gÆÝ—hÍÚ—iÒØ˜iÖטiØÖ˜jÙÖ˜jÚטlÙØ—nר—pÕØ—rÒØ—tÏØ—vÌØ—yÈØ—{ÆØ—{ÆØ—{ÆØ—{ÆØ—{ÆØ—{ÆØ—{Æÿo!ÿs- ÿz;ÿ‹H,ÿšU?ÿšWTÿšYjÿš[ø™]“ï—^¦ç–b¶á–eÄÜ—fÏØ˜gØÔšgÞÔšhÞÔšhÞÔšhÞÔšhÞÔšiÞÔšiÞÓšjÞÔ™mÚÕ™pÖÕ™sÒÕ™vÍÕ™xËÕ™xËÕ™xËÕ™xËÕ™xËÕ™xËÕ™xËÿp!ÿt- ÿ{;ÿŽH,ÿšT@ÿ›VUÿ›Ykÿ›[öš\–í˜^ªä—a¼Ý˜eÌÖ™fÙÔšgÞÔšgÞÔšgÞÔšhÞÔšhÞÔšiÞÔšiÞÓšiÞÓšiÞÓšiÞÓškÜÓšo×ÓšsÒÓšuÐÓšuÐÓšuÐÓšuÐÓšuÐÓšuÐÓšuÐÿq!ÿu- ÿ|;ÿI,ÿ›S@ÿœVUÿœXlÿ›Z‚õ›\˜ë™^®â˜aÂÙ™eÔÔšgÝÔšgÞÔšgÞÔšgÞÔšhÞÔšhßÔšhßÓšißÓšißÓ›iÞÓ›iÞÓ›iÞÒ›lÛÒ›pÖÒ›rÓÒ›rÓÒ›rÓÒ›rÓÒ›rÓÒ›rÓÒ›rÓÿr!ÿv- ÿ~<ÿ“J-ÿœS@ÿUVÿWlÿœYƒô›[šêš]±ß™aÇÕšfÜÔšfÝÔšgÞÔšgÞÔšgÞÔšhßÔšhßÓ›hßÓ›ißÓ›ißÓ›ißÓ›ißÒ›iÞÒ›iÞÒœnØÑœqÕÑœqÕÑœqÕÑœqÕÑœqÕÑœqÕÑœqÕÿr!ÿw- ÿ€<ÿ•K-ÿR@ÿžTVÿžWmþY„óœ[œèš]´Ý™aËÕšfÝÔšfÝÔšfÞÔšgÞÔ›gÞÔ›gßÓ›hßÓ›hßÓ›hßÓ›ißÓ›ißÒ›ißÒ›ißÒ›iÞÑœmÙÑœo×Ñœo×Ñœo×Ñœo×Ñœo×Ñœo×Ñœo×ÿs ÿx. ÿƒ<ÿ—L-ÿQ@ÿžTVÿŸVmþžX„óZç›\¶ÜšaÏÕšfÝÕšfÝÔ›fÞÔ›gÞÔ›gßÓ›gßÓ›hßÓ›hßÓ›hßÓ›hßÒ›ißÒ›ißÒ›ißÒ›ißÑœmÚÐo×Ðo×Ðo×Ðo×Ðo×Ðo×Ðo×ÿs ÿy. ÿ…<ÿ™L-ÿžQ@ÿŸSVÿ UmþŸW„óžYçœ[·ÚšaÒÕ›eÜÕ›fÝÔ›fÝÔ›fÞÔ›gßÓ›gàÓ›gßÓœhßÓœhßÒœhßÒœißÒœißÒœißÒœißÐmÚОo×Оo×Оo×Оo×Оo×Оo×Оo×ÿt ÿz.ÿ‡=ÿ›N-ÿŸP@ÿ RUÿ¡Tlÿ V„óŸXœçZ·Ù›aÔÕ›eÜÕ›eÜÕ›eÝÔœfÞÔœfßÓ›gàÓœgàÓœhßÒœhßÒœhßÒœhßÒœißÒœißÒœißОmÙÏŸoÖÏŸoÖÏŸoÖÏŸoÖÏŸoÖÏŸoÖÏŸoÖÿu ÿ{.ÿŠ=ÿN,ÿ O?ÿ¡QTÿ¢Skÿ¢U‚ô¡W›çŸY¶Ùœ`ÔÕ›dÜÕœdÜÔœeÝÔeÞÓœfßÓœgßÓœgßÒœgßÒœhßÒœhßÒœhßÒœhßÑœißÑjÝÏŸn×ΠpÕΠpÕΠpÕΠpÕΠpÕΠpÕΠpÕÿu ÿ|.ÿŒ>ÿžM,ÿ¡N?ÿ£OSÿ¤Qiÿ¤S€õ£U˜é¡W²Ú\ÓÕœcÜÕcÝÔdÝÓeÞÓœfÞÒœgßÒœgßÒœgßÒœgßÒœhßÒœhßÒœhßÑiÞÏ lÚÍ¢pÔÌ¢qÒÌ¢qÒÌ¢qÒÌ¢qÒÌ¢qÒÌ¢qÒÌ¢qÒÿv ÿ~/ÿ>ÿŸL+ÿ¢L=ÿ¤MQÿ¦Ofÿ§P{÷§R”é¤T³Ü¡VÏÕbÜÔžcÝÓeÝÓeÞÒœfÞÒœgßÒœgßÒœgßÒœgßÒœgßÒœhßÑhÝÏ kÙÌ£nÕË¥rÑʦsÏʦsÏʦsÏʦsÏʦsÏʦsÏʦsÏÿw ÿ/ÿ“?ÿ J*ÿ¤J;ÿ§KNÿªMaûªPwî©Q•ä¨Q±Û§NÇÕ¡\ØÓdÝÓeÝÒfÞÒfÞÒœfÞÒœgßÒœgßÒœgßОgÜΠiÚÌ¢jÖÊ¥mÓȧpÐŪuÌ«xÊ«xÊ«xÊ«xÊ«xÊ«xÊ«xÊÿyÿ0ÿ—Aÿ¢H)ÿ§G8ÿ«HIÿ¬NZñ«Oyæ¬N•ܰG¬Õ´B½Ò¬QÉѧ[ÐѤ`ÔÑ¢cÖТd×Тe×Ï¢eÖÏ£fÕΤgÔË¥hÒȦiÐÆ¨lÎêoË¿¬rÉ»®wƹ¯zĹ¯zĹ¯zĹ¯zĹ¯zĹ¯zĹ¯zÄÿzÿƒ0ÿœBÿ¥E&ÿ¬C3ÿ®I@õ­M]ç¯KyݸB‘ÔÇ5£Ð½B°Í·M¹Ì³T¿Ì°YÂ˯]ÅË­`ÇÊ­bÈʬcÈɬeÈÆ­fÇÄ®hÆ¿®jź¯lÄ·°p´²sÁ°³y¾¯´{½¯´{½¯´{½¯´{½¯´{½¯´{½¯´{½ÿ|ÿŠ1ÿ¢Dÿ©A!ÿ¯C+ý¯IAê±I^Ý¿÷´A*áÅ2CÐã#XÉê,gÃê4s¾ã:|»ßC‚ºÛJ‡¸ØO‹·ÖSŽ·ÔW‘´ÒZ“°Ñ[•­Ð]–©Ï_—¦Îb˜£Îd™ Îg™Îk™œÏo˜šÐt—–Ïx˜“Ïz˜“Ïz˜“Ïz˜“Ïz˜“Ïz˜“Ïz˜“Ïz˜ÿˆ!ÿ¥4ÿ´6ÿµ=åÄ0*Ðä?Èì)OÁñ2[½ô9d¸ï?kµëDp²èIu±æNx¬äP{¨âS~¥áU€¢ßWŸÞZƒœÝ\„™Ý_…–Üb†“Ûe‡Ûh‡Ûl‡‹Ûp‡‰Üv†‰Üx†‰Üx†‰Üx†‰Üx†‰Üx†‰Üx†‰Üx†ÿ• ÿ²/ÿµ9ëÁ/Ïå'Æî%7Àô.B»ø6L·û<€ÿ@=~ÿC?{ÿF@yÿHBwÿKCuÿNDsÿPEqÿSFoÿWGmÿZHkÿ]IjÿaJhÿeKgÿgKgÿgKgÿgKgÿgKgÿgKgÿgKgÿgKÙÀËÌÀåµÿ©ÿ Ÿÿ—ÿ ÿ$ˆÿ(‚ÿ,"~ÿ0$yÿ3&uÿ6(rÿ8*pÿ;+nÿ>,lÿ@-jÿC.iÿF/gÿI0eÿK1dÿO2bÿR3`ÿU4^ÿY5\ÿ]6\ÿ^6\ÿ^6\ÿ^6\ÿ^6\ÿ^6\ÿ^6\ÿ^6ÍǽҬ۞ã“üŠÿ ‚ÿ {ÿ uÿpÿ lÿ$iÿ(fÿ+cÿ.aÿ0_ÿ3^ÿ6\ÿ8[ÿ;Yÿ>WÿAVÿDTÿG SÿK QÿN!OÿR"NÿT"NÿT"NÿT"NÿT"NÿT"NÿT"NÿT"ÿ]%ÿW*ÿT3 ÿY?ÿeG"ÿoN0ÿvV=ÿz\Hÿ|aRÿ~fYÿj`ÿmdÿ~phÿ}rkÿ}tmÿ|wnÿ{yoÿ{{pÿz}qÿz€rÿy‚rÿx†rÿx‰qÿxŒpÿxoÿxnýy‘lýy‘lýy‘lýy‘lýy‘lýy‘lýy‘lÿ]%ÿX*ÿV3 ÿZ?ÿhF$ÿsN1ÿyU?ÿ}[Jÿ€aTÿe]ÿ‚icÿlhÿolÿ€qoÿtqÿvsÿ~xtÿ~zuÿ}|vÿ|vÿ|‚vÿ{…vÿzˆvÿ{Šuÿ{Œsü|Žrúz‘qúz‘qúz‘qúz‘qúz‘qúz‘qúz‘qÿ^$ÿY*ÿW3 ÿ]>ÿlF%ÿvN3ÿ|T@ÿ€[Mÿƒ`Wÿ…e`ÿ…igÿ…llÿ„opÿƒqsÿ‚svÿuwÿwyÿ€yzÿ€{zÿ~{ÿ~{ÿ~„{ÿ}‡zÿ~‰yü~Šwú~Œv÷{’v÷{’v÷{’v÷{’v÷{’v÷{’v÷{’vÿ_$ÿZ*ÿY3 ÿa>ÿoF&ÿzN4ÿ€TBÿƒZOÿ†`Zÿˆecÿˆijÿˆlpÿ‡ntÿ†qxÿ…szÿ…u|ÿ„v}ÿƒxÿƒzÿ‚}€ÿ€€ÿƒÿ€…ü‡}ù‚‰|÷{ô|’{ô|’{ô|’{ô|’{ô|’{ô|’{ô|’{ÿ`$ÿ[)ÿZ3 ÿe=ÿtF'ÿ~N6ÿ…UDÿˆZQÿŠ`]ÿ‹dgÿ‹hnÿ‹kuÿŠnyÿ‰p}ÿˆr€ÿˆt‚ÿˆuƒþ‡w„þ‡y…þ†|†þ…~†þ„…û…ƒ„ø……‚ö„ˆ‚óñ}“ñ}“ñ}“ñ}“ñ}“ñ}“ñ}“ÿa$ÿ\)ÿ\3ÿi=ÿxF(ÿƒN7ÿŠUFÿŽ[TÿŽ^`ÿŽckÿŽgsÿŽjzÿŽmÿoƒþŒq†ýŒsˆüŒtŠû‹v‹û‹xŒûŠzŒûŠ}Œù‰‹öŠ€Šó‰ƒ‰ñ†ˆˆïƒˆí”‡í”‡í”‡í”‡í”‡í”‡í”‡ÿb#ÿ])ÿ^3ÿm=ÿ}F)ÿˆO9ÿVHÿ“\Wÿ‘^dÿaoÿfxÿŽiþŽl…üŽn‰úŽqùŽrøs‘øt’÷v“÷x“÷Žz“ô{’ñ}툈녎肕肕肕肕肕肕肕ÿc#ÿ^(ÿ`3ÿr<ÿF*ÿP:ÿ”WJÿ•[Yÿ”]gÿ_sÿd}þh…ûk‹ùŽn÷Žp”öq–õs™ôtšôv›ôx›òyšï‘{™ì‘|˜éŽ˜è‹‡–戎•ä…—“ä…—“ä…—“ä…—“ä…—“ä…—“ä…—“ÿd#ÿ_(ÿb3ÿv<ÿ†G+ÿ‘Q;ÿ˜XKÿ—Z[ÿ–]iÿ“^vÿaüfŠøj‘öm—ôo›òqžñr ñt¢ð‘v£ð‘x£í‘y¡ê‘{ ç‘} åŽ„Ÿã‹‹á‰“›ß†™ß†™ß†™ß†™ß†™ß†™ß†™ÿd#ÿ`(ÿf3ÿz<ÿŠG+ÿ•R<ÿ™WLÿ˜Z\ÿ—\lÿ–^yþ’_…ù‘döh—ókðn¢ïp¦î‘r¨í‘tªì‘v«ë’xªè’z©å’|¨â’§à‡¥ÞŒ‘£Ü‰š¡Ú‡£žÚ‡£žÚ‡£žÚ‡£žÚ‡£žÚ‡£žÚ‡£žÿe"ÿa'ÿi2ÿ~<ÿŽH+ÿšT<ÿšVMÿšY]ÿ™[mÿ˜]|ü•_ˆ÷“b“ó’fœð‘j£ím©ëp­ê‘q°é’s²é’v²æ“x±ã“z±à“}¯Þ’ƒ­ÜŽ«Ù™¨ÖŒŸ¥Ô‹¢¢Ô‹¢¢Ô‹¢¢Ô‹¢¢Ô‹¢¢Ô‹¢¢Ô‹¢¢ÿf"ÿb'ÿm2ÿ‚<ÿ’I,ÿ›S<ÿ›UMÿ›X^ÿ›Znÿš\}û˜^‹ö•`—ñ”d¡í“h©ê’k°è’nµæ’q¸å’sºä“vºá“y¹Þ”|¸Ü”µÚ“гב”¯Ô˜¬Ò›©ÏŸ¥ÏŸ¥ÏŸ¥ÏŸ¥ÏŸ¥ÏŸ¥ÏŸ¥ÿg"ÿc'ÿp2ÿ…=ÿ•J+ÿœR<ÿTMÿW^ÿœYoÿ›[úš]ô˜^šï–b¥ë•f¯ç”i¶ä“l¼ã“pÀâ“tÁà”wÀÜ”{ÀÚ•€¾Ø•†»Õ•‹·Ò”’³Ð”•°Î“˜¬Ë’œ¨Ë’œ¨Ë’œ¨Ë’œ¨Ë’œ¨Ë’œ¨Ë’œ¨ÿg"ÿd'ÿs1ÿˆ=ÿ—K+ÿQ;ÿžSLÿžV^ÿžXoÿZúœ\Žó›^œî˜`¨é—d³ä–g¼á•kÃß•nÇÞ”tÉÛ–wÈØ—|ÆÕ˜€ÂÓ˜„¿Ñ˜ŠºÎ—¶Ì—“²Ê––®È•šªÈ•šªÈ•šªÈ•šªÈ•šªÈ•šªÈ•šªÿh"ÿe'ÿv1ÿŠ=ÿšL+ÿžP;ÿŸRLÿ U]ÿŸWnÿŸYúž[Žó]í›^ªç™a¶â˜eÁÞ—iÊÜ—lÏÙ—rÐÕ˜vÎÓšyÊÒ›}ÆÐ›‚ÁÍ›‰½Ëš¸È™‘´Æ˜•°Ä—™«Ä—™«Ä—™«Ä—™«Ä—™«Ä—™«Ä—™«ÿi!ÿe&ÿx1ÿ=ÿM*ÿŸO:ÿ¡QKÿ¡S\ÿ¡Vmÿ¡X}ú Zó [œíž]ªæœ^¸ášcÄÛ™fÐØ˜j×Ôšo×ÑœsÒÐwÍΞ|ÈÍžÃÊžˆ¾ÇŒ¹ÅœµÃ›”±Á™˜¬Á™˜¬Á™˜¬Á™˜¬Á™˜¬Á™˜¬Á™˜¬ÿi!ÿf&ÿ{1ÿ>ÿžL*ÿ¡N9ÿ¢PIÿ£RZÿ¤Tkÿ¤V{ü£XŠõ£Y™î¢[§è¢\µá¡^ÃÛžcÑÑ›jÝОmÚΟrÔÍ¡vÎË¡{ÉÈ¢‚ÄÅ¡‡¾ÃŸŒºÁžµ¿”±¾œ˜­¾œ˜­¾œ˜­¾œ˜­¾œ˜­¾œ˜­¾œ˜­ÿj!ÿg&ÿ}1ÿ’>ÿŸK)ÿ¢L8ÿ¤NHÿ¥PXÿ¦Rhÿ§Twþ¨U…ø©W“ïªYŸçªY¯ÞªXÀÔ¨]ÎСfØÌ¢j×Ê¥qÒÉ¥vÍŦ}ÈÂ¥ƒÃÀ¤ˆ¾¾¢Œ¹½¡µ» ”±ºž˜­ºž˜­ºž˜­ºž˜­ºž˜­ºž˜­ºž˜­ÿk!ÿg&ÿ€1ÿ•?ÿ J(ÿ¤K6ÿ¦LEÿ¨NTÿªPcÿ«Spõ¬U|ì¬Vä­U¡Ü²Q±Ó³R¿Ï¬]ÉͧeÐɦiÑŨnÏÁ«vʼ¬€Æ»©„Áº§‰½¹¥¸·¤‘´¶¢”°µ¡˜¬µ¡˜¬µ¡˜¬µ¡˜¬µ¡˜¬µ¡˜¬µ¡˜¬ÿk!ÿi&ÿ„1ÿ˜@ÿ¢H&ÿ¦H4ÿ©IBÿ¬LOÿ¬Q\õ­Skë®S€â°R’Ú¼H¢Ò¾J°Í¶UºË±]ÂʬcÈÆ«gÊ¿¬lɺ­sƵ°}ò°‡¿²¬‹»±ªŽ·±¨’³°¦•¯°¤™«°¤™«°¤™«°¤™«°¤™«°¤™«°¤™«ÿl!ÿl%ÿ‡1ÿ›Aÿ¤F$ÿ©F1ÿ­G=ÿ®MH÷¯PXë¯Qná´N‚ÙÊ>’ÑÉB ÌÁM«É»V´Ç¶]ºÆ³b¿À±f»±kÁ´±qÁ¯³y¾ª¶…»¨´Ž¸©°‘´©­”±©ª—­©¨›ª©¨›ª©¨›ª©¨›ª©¨›ª©¨›ª©¨›ªÿm ÿq%ÿ‹1ÿŸBÿ¦C!ÿ­B,ÿ¯I6ü°MEí±N\á·JpØÛ/‚ÐÔ:ÊÌEœÆÆN¥ÄÁV¬Ã¼\²Â¹a¶»·e¹µ·i¹¯·n¹©¸v¸¤¹¶Ÿ»Œ³ž¹”° ´—­ °š«¡­§¡­§¡­§¡­§¡­§¡­§¡­§ÿo ÿv$ÿ1 ÿ£Bÿ«?ÿ°C%ÿ²I1ð²KHâ¹E^Öß+pÎá1€ÈØ=ŒÄÑG•ÁËP¿ÇV£¾Ã\¨½Á`¬µ¿c¯¯¾g°¬¿m®¥¾s¯Ÿ¾{¯š¿†­•Á“«“¾œ©•¹ž¦—´ ¤—´ ¤—´ ¤—´ ¤—´ ¤—´ ¤—´ ¤ÿp ÿ|#ÿ–2 ÿ§>ÿ°=ÿ³Dö³G4ä»AJÕß(^Íæ/nÆä6{ÁÝ@…¾×H¼ÒP“ºÎV˜¹Ë[¶É_ ¯Çb£©Æf¥¥Æk¥¢Çq£›Åx¥”ťƌ¤ŠÇ™¢†Æ£¡‰¿¥Ÿ‰¿¥Ÿ‰¿¥Ÿ‰¿¥Ÿ‰¿¥Ÿ‰¿¥Ÿ‰¿¥Ÿÿrÿƒ"ÿœ2ÿ­9 ÿ³>þ´C è»>6Õà$JÍè,[Æí4iÀé:s»ãA|¸ÞIƒ¶ÚPˆµ×V³ÔZ‘­Ò]”¨Ða–£Ïd˜žÎi™›Îo™˜Ïv—Î}™ŠÍ‡š„Α™ΙyÏ«—yÏ«—yÏ«—yÏ«—yÏ«—yÏ«—yÏ«—ÿtÿŒ!ÿ¤2ÿ²8ÿµ>ì»;#Ôà7Ìé(HÅï0V¿ó8aºð>jµëDq²çJw±ãP|­àT€¨ÞWƒ£ÜZ†žÚ^ˆšÙbŠ•ØfŒ‘ØlŒØrŒ‹ÙzŠ…Ø‚Œ׋yÖ•tÖ¡tÖ¡tÖ¡tÖ¡tÖ¡tÖ¡tÖ¡ÿ|ÿ•ÿ®1ÿµ9ó¹9Ôß#Ëê#4Äñ,B¾ö4N¹ù;W´øA_°ôFe¬ðKj¦íMn¡ëQqœéTt˜çXw”å[yä_{Œãc|ˆâh}„ân~âu~~ã}}{ã…|vâ~pá—pá—pá—pá—pá—pá—pá—ÿˆÿŸÿ´2ú¸7ÕÞÊê!Ãò(/½ø0:·ü8D³þ>K®ÿCQ§þEW ûG[™øJ^•öMa‘ôQdóTf‰òXh†ð\j‚ï`kîdl{îinxíonuívnsí}nqî…mnîmnîmnîmnîmnîmnîmnîmÿ•ÿªÿ¶3ÖÙ ÊëÁô"»ú+'¶þ40°ÿ97§ÿ;=Ÿÿ=B™ÿ@G’ÿCJÿEM‰ÿIP†ÿLR‚ÿPTÿSU}þWWzü[Ywû_Ztûd[qúi\nùo]kùu]hù{]fù„]fù„]fù„]fù„]fù„]fù„]fù„]ÿ£ ý¶ ÔÎÊê Áõ ¹ü$¯ÿ)¦ÿ-#žÿ0)—ÿ4.ÿ73Šÿ:6…ÿ=9€ÿ@;}ÿD=zÿG?wÿJAuÿNBrÿQDpÿUEmÿYFjÿ]HhÿbIeÿhJbÿmK_ÿrK\ÿzK\ÿzK\ÿzK\ÿzK\ÿzK\ÿzK\ÿzKÿ° ÒÄÅиá®ÿ¤ÿ ›ÿ“ÿ!Œÿ&†ÿ*€ÿ/#{ÿ2%vÿ6(rÿ9*pÿ<+mÿ@-kÿC.iÿF/gÿJ1eÿM2bÿQ3`ÿV4^ÿ[5[ÿ`6Yÿe7Vÿj8Rÿp9Rÿp9Rÿp9Rÿp9Rÿp9Rÿp9Rÿp9Ô¿ÆÉ·Ô¦Ý˜æÿ‡ÿ €ÿ zÿtÿoÿ$kÿ(hÿ,dÿ/bÿ2_ÿ6^ÿ9\ÿ<Zÿ@XÿC VÿG!TÿK"QÿP#OÿU$MÿZ$Kÿ_%Gÿe&Gÿe&Gÿe&Gÿe&Gÿe&Gÿe&Gÿe&ÉĹΩ֙ދä}ësýlÿgÿ bÿ^ÿ[ÿ Xÿ Uÿ# Sÿ& Pÿ) Oÿ-Mÿ0Kÿ3Jÿ7Hÿ:Fÿ?DÿCBÿH@ÿM>ÿR<ÿW<ÿW<ÿW<ÿW<ÿW<ÿW<ÿWÿR'ÿL-ÿF4ÿE; ÿTBÿ^J ÿeR*ÿiY3ÿk_;ÿkeBÿkjGÿkoJÿjsMÿiwPÿi{QÿhSÿgƒTÿf‡Tÿe‹UÿdUÿc•UÿbšUÿbžTÿb£Tÿb¨Rÿb¬Qÿb±Pÿ`¶Pÿ`¶Pÿ`¶Pÿ`¶Pÿ`¶Pÿ`¶PÿS&ÿM,ÿF4ÿI: ÿWAÿaI!ÿhQ,ÿlX5ÿm^=ÿndDÿniIÿnnMÿmrQÿlvSÿkzUÿj~Vÿi‚Wÿi†XÿhŠXÿgŽYÿf”Yÿf˜XÿeœXÿe¡Wÿe¦VÿeªTþc±Tüb¶Tüb¶Tüb¶Tüb¶Tüb¶Tüb¶TÿS&ÿM,ÿG4ÿL9 ÿZ@ÿdH"ÿkP-ÿnW7ÿp^?ÿqcFÿqhLÿpmPÿpqTÿouVÿnyXÿm}Zÿl[ÿl…\ÿk‰\ÿjŽ\ÿi“\ÿi–\ÿiš[ÿiŸZÿi¤Yþh©Xûe±Xùc¶Xùc¶Xùc¶Xùc¶Xùc¶Xùc¶XÿT&ÿN,ÿH3ÿP8 ÿ^?ÿhG#ÿnO/ÿrV9ÿt]BÿubIÿuhOÿtlTÿspXÿstZÿrx]ÿq|^ÿp€_ÿoƒ`ÿnˆaÿmŒaÿl‘aÿm”aÿm˜`ÿmœ^ým¡]új©]÷g²]õe·]õe·]õe·]õe·]õe·]õe·]ÿU&ÿO+ÿI3 ÿT6ÿc>ÿmF%ÿsM0ÿvU;ÿx[EÿyaMÿyfSÿxkXÿxo\ÿws_ÿvwbÿu{cÿt~eÿs‚fÿr‡fÿpŒfÿpfÿq“fÿq–eýršcùo¢cök«còh´cñg¹cñg¹cñg¹cñg¹cñg¹cñg¹cÿV%ÿQ+ÿK1 ÿY6ÿh>ÿrF&ÿyM2ÿ{S=ÿ}ZHÿ~`Pÿ~eWÿ}j]ÿ}naÿ{reÿzvgÿxziÿw}kÿvlÿu†lÿt‹mÿtŽlÿu’lüu•jøušiôp¥jðl¯jíi¸iëh½iëh½iëh½iëh½iëh½iëh½iÿW%ÿR+ÿO0 ÿ_5ÿn=ÿxE'ÿM4ÿ‚S?ÿ‚XJÿƒ_Tÿƒd[ÿƒibÿmgÿ€qjÿ~umÿ}xpÿ||qÿz€rÿy…sÿxŠsÿysûyr÷z”póuŸqîqªqëm´pèk½pæjÀoæjÀoæjÀoæjÀoæjÀoæjÀoÿX%ÿS*ÿS. ÿd4ÿs<ÿ~E(ÿ…M5ÿ‰SAÿŠYMÿ‰]Wÿ‰c_ÿˆhfÿ†llÿ…ppÿƒtsÿwvÿ€{xÿ~yÿ}„zÿ|‰zû}Œyö~wñz˜xíu¥xèq°xåoºwâl¾vàkÁuàkÁuàkÁuàkÁuàkÁuàkÁuÿY$ÿT*ÿW, ÿi3ÿx<ÿƒE(ÿ‹M5ÿTBÿ‘YNÿ]YÿŽabÿgjÿ‹kqÿ‰ouÿ‡syÿ†v|ÿ„z~ÿ‚~€ÿ€„€ú‡€õ‚‹ð€’ëzžæv¬âs·~Þp¼}ÛoÂ{ÙnÆzÙnÆzÙnÆzÙnÆzÙnÆzÙnÆzÿZ$ÿU*ÿZ+ÿm2ÿ}<ÿˆE(ÿN6ÿ•UCÿ–ZOÿ”\[ÿ_eÿdnÿŽiuÿn{ÿ‹rÿŠuƒþˆy…ý†~‡ú…ƒ‡ô†††ï†‹…逗†äz§†ßw³…ÛtºƒÖtÀ‚Òt€ÐtÃÐtÃÐtÃÐtÃÐtÃÐtÃÿ[$ÿV)ÿ^*ÿr2ÿ;ÿF(ÿ•O6ÿ™VCÿ˜YPÿ—[\ÿ”^gÿapÿgxÿŽlþq„üŽtˆûŒx‹ùŠ}òŠíŒ„Œè†â€¡Ý{°Œ×y¸ŠÒyºˆÎy¼†Ëy¾„ÊyÀƒÊyÀƒÊyÀƒÊyÀƒÊyÀƒÊyÀƒÿ\$ÿW)ÿa(ÿv1ÿ†;ÿ’F(ÿšQ5ÿ›TBÿ›WPÿšZ\ÿ˜\hÿ”_rÿd{ÿkƒüŽp‰úsŽøw‘ó{“ì“æ‡“à†™“Ú€¬“Ô²‘ϴ˶ŒÈ¹ŠÅ~»‡Ä~½†Ä~½†Ä~½†Ä~½†Ä~½†Ä~½†ÿ]#ÿX)ÿe'ÿy1ÿŠ<ÿ•G'ÿœP4ÿSAÿVOÿœX\ÿ›[hÿ™]sÿ”`}þh…úpøs“õy—ì}™ä‘‚˜ÞŠ•š×„ª™Ñ…¬˜Ì†®•È…±’Ä„³Â„¶Àƒ¹Š¾‚ºˆ¾‚ºˆ¾‚ºˆ¾‚ºˆ¾‚ºˆ¾‚ºˆÿ]#ÿZ(ÿh'ÿ}0ÿ<ÿ™H&ÿžO3ÿŸQ@ÿŸTMÿŸWZÿžYgÿ\rÿ›^}ý–e‡ù’oö’t—îzãŸÜŽ’ŸÓ‰¤ ÍЦžÈ‹¨œÅ‹«™ÂŠ®•¿‰±’¼ˆ´º‡·Œ¹†¸Š¹†¸Š¹†¸Š¹†¸Š¹†¸Š¹†¸Šÿ^#ÿ\'ÿk&ÿ€0ÿ<ÿœI%ÿ M1ÿ¡O>ÿ¢RKÿ¢UXÿ¢Wdÿ¢Zpÿ¡]{þ `†ù›ló–tšä’~£Øœ¤Îž¦È ¤Ä¢¢Á¥Ÿ¾©›¼¬—¹Ž¯”·Œ²‘¶‹µŽµŠ·ŒµŠ·ŒµŠ·ŒµŠ·ŒµŠ·ŒµŠ·Œÿ_#ÿ^&ÿn%ÿƒ0ÿ“<ÿŸJ$ÿ¢K/ÿ£M<ÿ¥PHÿ¦RUÿ§U`ÿ¨Xlÿ©[wøª`î©hâ¡tšÏ•©Å•˜¬Á–𫾖œ¨»– ¤¹•£¡·”§¶“«™´’®•²±’±Ž´°¶°¶°¶°¶°¶°¶ÿ_#ÿa%ÿq%ÿ†0ÿ–=ÿ¡H"ÿ¤I-ÿ¦K9ÿ¨NEÿ©RPÿ«UZþ®Xdõ±\mì³bvá¶f‡Î¹q›¸¨ƒ¬¯ ’²²ž–®³šª²›ž¦±š¢¢°˜¦ž°—ªš¯•­–­“°“¬’´¬µŽ¬µŽ¬µŽ¬µŽ¬µŽ¬µŽÿ`"ÿc$ÿt$ÿ‰0ÿ™=ÿ¢F ÿ¦G+ÿ©K5ÿ«N@ÿ­RIý±UQó¶XXêº^\àÂ`nÑÝ`…¾Íiš¥Àx¬—´‘´£©•°§¥™«©¢ž§©Ÿ¢¢©¦ž©›©š©™­–¨—°“¨•³§”µŽ§”µŽ§”µŽ§”µŽ§”µŽ§”µŽÿa"ÿe$ÿw$ÿŒ0 ÿ>ÿ¥Dÿ¨G'ÿ«K1ÿ®N9þ²R@ó¶UFè¼VUÞÎTcÑèTrÆà^¸Ðe–©Ãl¨—½}°‘»—®š¯šªžªž¦ ¦¢¢¢¢¦ž¢ ©š£­–£›°“¢˜³¢—µŽ¢—µŽ¢—µŽ¢—µŽ¢—µŽ¢—µŽÿa"ÿh#ÿ{#ÿ0 ÿ >ÿ§Cÿ«G#ÿ®K*ÿ²N0ô¶P;ç»PKÝÖFZÐéFiÆçOw¼ÝY…´Òa“«Éi œÄt¨Âˆ©‹¿¨’´ ¤–­£¡™©§š¥ª™œ¢­–œŸ°“œœ³œ›µŽœ›µŽœ›µŽœ›µŽœ›µŽœ›µŽÿb"ÿk!ÿ"ÿ”0 ÿ¤?ÿ©Bÿ®Gÿ²K"÷¶L/è»K?ÛÝ9OÏè>^ÆìDl½æLx¶ÝV„°Õ_©ÍfšœÉo ”É~ ˆÇ£ƒÃ£¡‰¸¥žŽ±¨›‘«¬˜“§¯•”¤±’•¡´•Ÿ¶•Ÿ¶•Ÿ¶•Ÿ¶•Ÿ¶•Ÿ¶ÿc!ÿo ÿƒ"ÿ˜/ÿ§> ÿ¬Bÿ±GûµH!ê»F2Øß/CÏç7RÆî>`¾îDl¶çLw±ßU­Ù]Š¥Ód’›Ïk˜”Îw™ŠÍ…š̘›zÈ©š½¬˜…µ®•ˆ®±’Šª³Œ¦¶Œ¤·ŒŒ¤·ŒŒ¤·ŒŒ¤·ŒŒ¤·ŒŒ¤·Œÿe!ÿtÿ‰ ÿž/ÿª> ÿ°B ÿ´Dí»B$ØÞ)5Îç0EÆî7S¿ó>_·ðEj±éLt­ãU|©Þ\„ ÙaŠ—ÕhÔq‘ŠÕ€Ó“wÒ “rͰ“wÁ²‘{¹´~³¶€®¸‹‚«¹‰‚«¹‰‚«¹‰‚«¹‰‚«¹‰‚«¹‰ÿg!ÿzÿÿ¤0ÿ®=ÿ³Aòº>ØÝ!'Îç*7Æï2E¿ô9R¸ø@]²óFf¬íLn©èTu¡äY{šà_€“Ýe„‹Ûl‡…ÛwˆÜ…†wÚ“ŠmÙ¦‹hÔ¸Šmȹ‰p¿»ˆs¸¼†uµ½…uµ½…uµ½…uµ½…uµ½…uµ½…ÿmÿÿ–ÿ©3ÿ²<ø¸; ÙÛÎç#(Æï,7¿õ4D¸ú;O³üBX­÷H`¨òMg îRlšëWq“è\våby†ãi|€âq~{â|}xãŠ|oá˜fà©`ݾbÑÁfÈ€hÃÃhÃÃhÃÃhÃÃhÃÃhÃÃÿuÿŠÿÿ®3ÿ¶8ãÏ ÎçÅð&(¿ö/5¸û7?³þ=I®ÿCQ§ýHWžùK]—öOb‘óTfŒðYj†î_mìeo{ëlqwêursê€rpìŽphêœs`è­uYè¿vYÞÈvZÖËvZÖËvZÖËvZÖËvZÖËvZÖËvÿ~ÿ“ÿ¥ÿ´0éÄ&Îæ Åð¾÷)%¸ü20²ÿ99­ÿ?A¤ÿBHœÿDM”ÿHRŽþLV‰üQY…úV\€ø[_|öaawõgcsônenówfjó‚efô‘daô e[ò®gTñ½iQïÈiQïÈiQïÈiQïÈiQïÈiQïÈiÿ‰ÿŸ ÿ°íÅÏß Åð ½ø#·þ, ±ÿ4)¨ÿ70Ÿÿ:7—ÿ=<ÿ@A‰ÿDE„ÿHH€ÿMK|ÿRNxÿVPuÿ[RqÿaTmÿgUiþoWdýxW`ý„W\þ‘WYþ VTþ°WQýºXQýºXQýºXQýºXQýºXQýºXÿ– ÿª Ö¿ËËÃò ºû ±ÿ!¨ÿ' ÿ+ ˜ÿ0&‘ÿ4+Šÿ80„ÿ<3~ÿ?7zÿD9vÿHpÿQ@lÿVAiÿ[CfÿaEbÿgF^ÿoGYÿxHUÿ„HQÿHMÿžHKÿ¨GKÿ¨GKÿ¨GKÿ¨GKÿ¨GKÿ¨Gÿ¥ØºÌƾҰà§ÿ žÿ –ÿŽÿ"ˆÿ'ÿ,{ÿ0"vÿ5%qÿ8(nÿ=*kÿA,hÿE-fÿJ/cÿN0`ÿS2]ÿY3Zÿ_5Vÿf6Qÿn7Mÿw8Iÿ8EÿŒ8Cÿ”9Cÿ”9Cÿ”9Cÿ”9Cÿ”9Cÿ”9Ú´ÍÁÀ˰֠ߓë‹ÿ„ÿ}ÿ vÿqÿ"lÿ'hÿ,dÿ0aÿ4^ÿ8\ÿ<Zÿ@WÿD UÿI!RÿO"OÿU#Lÿ[%Hÿc&Dÿk'@ÿs'<ÿ}(:ÿ„(:ÿ„(:ÿ„(:ÿ„(:ÿ„(:ÿ„(ϽÂÆ³Ð¢Ø“à…çyôoÿjÿeÿaÿ]ÿ Yÿ Vÿ$ Sÿ( Pÿ,Nÿ0Lÿ4Jÿ9Hÿ=FÿBCÿHAÿO>ÿV:ÿ]6ÿd3ÿl1ÿr1ÿr1ÿr1ÿr1ÿr1ÿrŵ˥Җڈázènðfÿ_ÿYÿTÿ PÿLÿIÿFÿCÿ@ÿ">ÿ&<ÿ):ÿ.8ÿ36ÿ84ÿ>2ÿD .ÿK +ÿR (ÿY 'ÿ] 'ÿ] 'ÿ] 'ÿ] 'ÿ] 'ÿ] ÿG)ÿB0ÿ<7ÿ>9ÿA> ÿKFÿROÿVW"ÿW^(ÿXe-ÿXl1ÿWr4ÿVx6ÿT~8ÿR…9ÿQ‹:ÿO’;ÿM™;ÿK¡<ÿI«<ÿHµ<ÿH»<ÿIÂ;ÿJË:ÿJÔ9ÿJÞ8ÿJå7ÿHé7ÿHé7ÿHé7ÿHé7ÿHé7ÿHé7ÿH)ÿB/ÿ<7ÿ@8ÿD= ÿNEÿUNÿXV#ÿZ]*ÿ[d/ÿ[k3ÿZq6ÿYw9ÿW};ÿUƒ<ÿSŠ=ÿR‘>ÿP˜>ÿM ?ÿK«?ÿK²?ÿL¹>ÿLÀ>ÿMÈ=ÿMÑ<ÿNÜ:ÿLä:ÿJç;ÿJç;ÿJç;ÿJç;ÿJç;ÿJç;ÿI(ÿC/ÿ>5ÿB7ÿH< ÿRDÿXLÿ\T%ÿ^\,ÿ_c1ÿ^j6ÿ]p9ÿ\v<ÿZ|>ÿY‚?ÿWˆ@ÿUAÿS—BÿQŸBÿNªBÿO°BÿO¶BÿP½AÿQÆ@ÿQÏ?ÿQÚ>ÿNá>üMä?üLä?üLä?üLä?üLä?üLä?ÿJ(ÿD/ÿA4ÿE5ÿM: ÿWBÿ]Jÿ`S'ÿbZ.ÿcb4ÿbh9ÿan=ÿ`t@ÿ^zBÿ]€Cÿ[‡EÿYŽEÿW•FÿTžGÿS¨GÿS­GÿT³FÿT»EÿUÃDÿVÌBýRÚCúQÞD÷PáDöPáDöPáDöPáDöPáDöPáDÿK(ÿE.ÿD2ÿI3 ÿR8ÿ\@ÿbH ÿeQ)ÿgX1ÿg`7ÿgf=ÿfmAÿdsDÿbyFÿaHÿ_…Jÿ]ŒKÿ[”KÿYLÿX¥LÿXªLÿY±KÿZ¹JÿZÁHüXÍH÷UÖIôTÛJñQÞJñPßJñPßJñPßJñPßJñPßJÿL'ÿF.ÿH0ÿM0 ÿX6ÿb>ÿgF"ÿkN+ÿlV3ÿm^:ÿle@ÿjkEÿiqIÿgwKÿe}Mÿd„Oÿb‹Pÿ`’Qÿ]œQÿ]¢Qÿ^¨Qÿ^¯Pÿ_·Oú^ÂNõZÐOñYÔPîUÙPêSÝPêSÝPêSÝPêSÝPêSÝPêSÝPÿM'ÿG-ÿK.ÿR. ÿ^5ÿh=ÿnE#ÿqL-ÿrT5ÿr[=ÿqbDÿpiIÿnoMÿluPÿj|SÿhƒUÿfŠVÿd’Wÿc™Wÿc Wÿc§Wþd®Vùd·Tó_ÆVî]ÎWêYÓWæXÙVãWÞVãWßVãWßVãWßVãWßVãWßVÿN'ÿH-ÿP,ÿW,ÿd3ÿn<ÿuC$ÿxK.ÿxQ7ÿxY@ÿw`GÿugMÿsmRÿqtUÿozXÿl‚Zÿk‰\ÿh’]ÿi—]ÿhŸ]ýi¦\÷i®[ñe½\ëbÉ]ç^Ï]â]Õ]Þ\Ü\Ù[â[Ù[â[Ù[â[Ù[â[Ù[â[Ù[â[ÿO&ÿJ,ÿT*ÿ\*ÿj2ÿt:ÿ{B$ÿ€J.ÿ€P8ÿ~VBÿ}^Jÿ{ePÿykVÿvrZÿty^ÿq`ÿo‰bÿm‘cÿm—cümŸcön§bïkµbégÄcäcËdÞaÓdÙaÜcÔaßbÐbàaÐbàaÐbàaÐbàaÐbàaÐbàaÿP&ÿM*ÿX(ÿa(ÿp1ÿ{:ÿ‚B$ÿ‡J.ÿˆP9ÿ‡UCÿƒ[KÿcSÿjYÿ|p^ÿxxbÿu€eÿrŠhÿq’iüq™iôq¢hîp­gçjÁjáfÉjÚeÒjÓfØiÎgÙhËgÚgÈgÜeÇgÜeÇgÜeÇgÜeÇgÜeÇgÜeÿQ&ÿP)ÿ\'ÿe'ÿu0ÿ€9ÿˆA#ÿI.ÿP8ÿUCÿŒZLÿˆ`Uÿ…h\ÿ‚obÿ}wgÿy€kÿu‹mýt“oôtoìu¨mån½oÞjÇpÕjÑqÏkÑpÊlÓnÆlÔmÃlÖkÀlØiÀlÙiÀlÙiÀlÙiÀlÙiÀlÙiÿR%ÿT'ÿ_&ÿj&ÿz/ÿ†8ÿŽA"ÿ“J,ÿ•P7ÿ–VBÿ”ZLÿ]Uÿ‹e^ÿ‡neÿ‚vkÿ~oþyŒrôw˜têv¦sâs»tÚnÈvÑoËwÊpÌvÅqÍtÁrÏr¾rÑp»qÓn¹qÕl¹qÕl¹qÕl¹qÕl¹qÕl¹qÕlÿS%ÿV&ÿb$ÿn%ÿ~.ÿŠ8ÿ“A ÿ˜J+ÿœR6ÿ›U@ÿ™YKÿ—\Uÿa^ÿŽkfüŠtmö„}sð}Œwèw¤yßwºxÔrÇ{ÌtÆ|ÅuÆ|ÀvÈz¼wÉx¹wÌv¶wÎsµvÐq³uÓo³uÓo³uÓo³uÓo³uÓo³uÓoÿS%ÿY%ÿe#ÿr$ÿƒ. ÿ8ÿ˜BÿL)ÿžQ3ÿžU>ÿžXHÿœ[Rþ™_\÷“ifðroè‹|và~”|×t·€ÍxÃÅzÁ‚¿{Á»|€·}Ä~´|Ç{²|Éx°{Ìv®zÎs­zÑq­zÑq­zÑq­zÑq­zÑq­zÑqÿT%ÿ[$ÿh"ÿu#ÿ†- ÿ“7ÿœDÿ M&ÿ¡Q0ÿ¢T:ÿ¢WDü¢ZNô¢^XìŸfcã˜rnÙ‚zÍ„–‚퇼€»‡·‚»‡³ƒ½†±ƒ¿ƒ®ƒÂ­‚Ä~«Çzª€Êx©Ìu¨}Ïr¨}Ïr¨}Ïr¨}Ïr¨}Ïr¨}ÏrÿU$ÿ^#ÿk!ÿy"ÿŠ, ÿ—8ÿŸFÿ¢L#ÿ£P,ÿ¥T5û¦W>ó¨ZGê¬^Pá¬d^Õ¥noÈš||»’ކ°Œ¤Œª‹¶ª‹·‹©‹º‰¨Š¼†§ˆ¿ƒ¦‡Ã¥…Æ|¤„Éy¤ƒËv£Îs£Îs£Îs£Îs£Îs£ÎsÿU$ÿ`"ÿn ÿ|!ÿŽ, ÿš:ÿ¢Hÿ¤Lÿ¦P'ü¨S.ó«V6ê±Y=á¶\JÕÀ^]dzin¹§u}«Ÿ†‰Ÿ™™–±’œ”´ž’·‹Ÿ»ˆŸŽ¾„ŸŒÁŸŠÅ}ŸˆÈzž†Êwž…Ítž…Ítž…Ítž…Ítž…Ítž…ÍtÿV$ÿb!ÿqÿ€ ÿ‘,ÿ<ÿ¤Hÿ§Lÿ©O!õ­S&ë²U+â½W3ÖÜOHÈÏY[ºÃdm«·o|­‰§–’‡£¯”Žž²‘“š¶•—º‰—”½…˜‘Á‚˜Ä~™ŒÇ{™ŠÉx™ˆÌu™ˆÌu™ˆÌu™ˆÌu™ˆÌu™ˆÌuÿW$ÿe ÿtÿƒÿ•-ÿ¡> ÿ¦Hÿ©Kø­Oí²Qã¾R!ÙæG0ËéMD½àVX®Ô`jŸÉkz¿y‡¸‘t´®”©²‘†£¶‹ž¹‰Žš½†–À‚‘“Ã’‘Æ{“Éy”ŒÌv”ŒÌv”ŒÌv”ŒÌv”ŒÌv”ŒÌvÿX#ÿhÿwÿ‡ÿ˜.ÿ¤A ÿ©G ý­Kð²Må»LØá<&ÎëF2ÂòMA³ïTT¥ç]f•ÞgvƒÔuƒsÍŒgÉ«o¹µŽx®·Œ¦º‰„¡½…‡œÀ‚‰˜Ä~‹•Æ{Œ“ÉyŽÌvŽÌvŽÌvŽÌvŽÌvŽÌvÿ["ÿkÿ{ÿŒÿœ/ÿ§Bÿ¬Gõ±Iç¹FØß0Îé:*ÄñB7¹øJD«ûRQ ÷\`“ìdpãp}rÜ‚…eÚ ‰aϺ‰k½º‰r±¼‡x©¾„}£Á€ŸÄ~ƒ›Ç{…˜Éx†•Ìv†•Ìv†•Ìv†•Ìv†•Ìv†•Ìvÿ^!ÿoÿ€ÿ‘ÿ 0ÿªBü¯Eë¶C ØÝ$Îç/!Åð8.¼ø@:±ÿGG¦ÿNSøX_“ðaj„éktwäy|máŽb઀^ÒÀƒeÁÀƒlµÁq¬Ãv¦Æ|y¢Èz{žÊw~šÍu~šÍu~šÍu~šÍu~šÍu~šÍuÿcÿtÿ†ÿ–ÿ¥0ÿ­@ñ´@ßÑ% Îæ%Æï/$½ø80´þ?<«ÿFH¢ÿMRšúV\ô]e„îfmxêqsoçviè™u]å²yYÖÆ|`ÆÆ|f¹Ç{j±ÉynªËwq¦Ìut¡Îst¡Îst¡Îst¡Îst¡Îst¡ÎsÿhÿzÿŒÿ›ÿ©.ù±<âÅ*ÏåÆï&¾÷0&¶þ81®ÿ?<§ÿFFÿKO”ýRW‹øZ^‚ôbexðkjpîwmiíˆncî¡mWë¹qUÜËtYËÍt^¿Îtc¶Ïrf°ÐqiªÑpiªÒpiªÒpiªÒpiªÒpiªÒpÿnÿÿ”ÿ¢ÿ°'ë¼.ÐãÆî¾÷(·þ1&°ÿ90©ÿ@: ÿDB•ÿHJÿOP…þVV~ú^[w÷f`põociô|ebôe\ô§dQòÀhPâÏjRÒÖkWÇÖkZ¿Ök]·×j]·×j]·×j]·×j]·×j]·×jÿvÿŠÿœÿ«ßÃÑÖ Çî¾÷ ·þ*°ÿ3$©ÿ9- ÿ=5–ÿA<ŒÿEC†ÿLHÿRMyÿYQsÿaTmýiWgüsZaû[Zû”[Uü¯YLùË]KêÒ_LÞÜaOÑßbRÇßbRÇßbRÇßbRÇßbRÇßbRÇßbÿÿ” ÿ¥ ÙºÎÇÇà¾÷·þ#®ÿ*¥ÿ0 ÿ4(”ÿ9/Œÿ=5ƒÿB:~ÿH>xÿNBsÿTEnÿ[HiÿbKdÿkM^ÿuOWÿ…OQÿ™OLÿµNGÿÓPEöÚSFëßTGßåVGßåVGßåVGßåVGßåVGßåVÿŠ ÿŸݳÏÁÄθ߰ÿ¨ÿ Ÿÿ#—ÿ)ÿ/!ˆÿ4&€ÿ9+yÿ=/uÿC2pÿI5lÿO8hÿU;dÿ\=_ÿc?ZÿlASÿxBMÿˆCGÿœCBÿ¹B?ÿàAAÿãD?úæF?úæF?úæF?úæF?úæF?úæFÿ˜ð¬Ñ¼ÅƷӨߟÿ—ÿ ÿˆÿ!ÿ'zÿ-tÿ2 nÿ7#jÿ=&fÿB(cÿH*`ÿN,\ÿT.Xÿ[0Tÿc2Nÿm3Hÿy4Bÿ‰5<ÿŸ67ÿ¼54ÿß57ÿî47ÿï47ÿï47ÿï47ÿï47ÿï4ý¦Ó·Ç¹ͪכàë…ÿ~ÿxÿ qÿlÿ$gÿ*bÿ/_ÿ4[ÿ:Xÿ?UÿDRÿJ OÿQ!KÿX"Gÿa$Aÿl%;ÿy&6ÿ‰'1ÿœ(-ÿ±()ÿÓ()ÿÔ()ÿÔ()ÿÔ()ÿÔ()ÿÔ(ճɾ¼È¬ÐÚŽâ€éuûlÿgÿ bÿ]ÿYÿ Uÿ% Rÿ* Oÿ/Lÿ4Jÿ9Gÿ?DÿEAÿL>ÿT9ÿ]4ÿh/ÿu*ÿƒ'ÿ’"ÿ¥"ÿ¦"ÿ¦"ÿ¦"ÿ¦"ÿ¦Ë»¾Ã¯ÌŸÓÛ‚ãuêj÷bÿ[ÿVÿ QÿLÿHÿEÿAÿ!?ÿ&=ÿ+;ÿ08ÿ66ÿ<3ÿC /ÿL *ÿV &ÿ` "ÿk ÿw ÿ„ ÿ… ÿ… ÿ… ÿ… ÿ… Á¿²È¢Î“Õ…ÝwäkëaóZÿTÿNÿJÿGÿ Cÿ@ÿ=ÿ;ÿ9ÿ 6ÿ$4ÿ)1ÿ..ÿ4+ÿ:&ÿA!ÿJÿSÿ[ÿfÿfÿfÿfÿfÿfÿ>,ÿ92ÿ67ÿ99ÿ9=ÿ8C ÿ%ÿ<ˆ&ÿ:'ÿ8™(ÿ6£(ÿ4®)ÿ1½)ÿ/Ñ)ÿ.ä)ÿ/ì(ÿ0ô(ÿ2ù'ÿ3ü&ÿ4ÿ%ÿ4ÿ%ÿ3ÿ%ÿ2ÿ&ÿ2ÿ&ÿ2ÿ&ÿ2ÿ&ÿ2ÿ&ÿ?+ÿ:2ÿ:4ÿ=6ÿ>9ÿ?? ÿEIÿHRÿI[ÿIc ÿHk#ÿFt&ÿC}(ÿA†)ÿ>*ÿ<˜+ÿ:¢+ÿ7®,ÿ5½,ÿ2Ô,ÿ3ß,ÿ4è,ÿ6ñ+ÿ7ö*ÿ8ù)ÿ:ü(ÿ8ý)ÿ5þ*ÿ3ÿ*ÿ3ÿ*ÿ3ÿ*ÿ3ÿ*ÿ3ÿ*ÿ@+ÿ;1ÿ=2ÿA4ÿB7ÿD= ÿJFÿMOÿNXÿNa"ÿNj&ÿKr)ÿI{+ÿF„-ÿCŽ.ÿA—/ÿ>¢/ÿ<®0ÿ9¿0ÿ8Ï0ÿ9Ú0ÿ;ä/ÿ<î/ÿ=ó.ÿ?÷,ÿ>ø-ÿ;ú.ý8û/û8ü/û8ü/û8ü/û8ü/û8ü/ÿA*ÿ<1ÿA0ÿD1ÿF5ÿJ; ÿPDÿSMÿTV ÿT_%ÿTg)ÿRp-ÿOx/ÿL‚1ÿIŒ2ÿF–3ÿC¢4ÿ@°5ÿ=Á5ÿ?Ê5ÿ@Ô4ÿAá4ÿBë3ÿCð2ÿDó2üAõ3ù=ö4ö<ø4ô<ú5ô<ú5ô<ú5ô<ú5ô<ú5ÿB*ÿ>/ÿD.ÿI/ÿK1ÿP8 ÿVAÿYJÿ[S"ÿ[\(ÿZe-ÿXm1ÿUv3ÿR6ÿNŠ7ÿK•8ÿH¢9ÿD²:ÿD½:ÿEÆ:ÿGÑ9ÿHß9ÿIé7þJì7ùGï9ôCñ:ðBô:ìA÷;éAø:éAø:éAø:éAø:éAø:ÿC)ÿA-ÿH,ÿN,ÿQ.ÿX5ÿ]=ÿ`FÿaP$ÿaY+ÿ`b0ÿ^j4ÿ[s8ÿX}:ÿT‡<ÿP”=ÿL¢>ÿI±?ÿJº?ÿLÄ?ÿMÐ?ÿNß>ûPæ<õLé>ðIì@ëGðAæGôAàF÷AÞGø@ÞGø@ÞGø@ÞGø@ÞGø@ÿD)ÿD+ÿM*ÿS*ÿW,ÿ_3ÿe;ÿgCÿhL&ÿgU-ÿf_3ÿdh8ÿ`q<ÿ]z?ÿY…AÿU“CÿP¢DÿO°DÿP¹EÿQÅDÿRÒDùTßBòRãDìNçFæMíGÞLòGÙMóGÔNõFÑOõFÑOõFÑOõFÑOõFÑOõFÿE)ÿH)ÿQ(ÿX(ÿ^)ÿf1ÿl9ÿoAÿoH'ÿnQ.ÿl[5ÿjd;ÿfn?ÿcwCÿ`‚Fÿ\HÿXžIÿT°JÿU»JýWÈJöWØHïWÞIèSãLáRêMÙSîMÑTðMÍUñLÉVóKÇVôKÇVôKÇVôKÇVôKÇVôKÿF(ÿL(ÿU&ÿ]&ÿc'ÿm/ ÿs7ÿw?ÿxG'ÿvN/ÿtX6ÿqa=ÿnjBÿjtGÿfJÿc‹Mÿ^›NÿZ¯OûZÀOó[ÐNì\ÙNåXàQÜWèSÒYêSÌZìSÇ[îRÃ\ïQÀ\ðP¾\ñO¾\ñO¾\ñO¾\ñO¾\ñOÿG(ÿO&ÿY$ÿb$ÿi%ÿs- ÿ{6ÿ>ÿF&ÿ€M.ÿ|T7ÿy^>ÿugEÿqqJÿm|NýiˆQùd™Sö`¯Tñ]ËTé_ÕRá\ßUÖ\æXÍ_çYÇ`èYÁaèX½bêWºbëU·bìT¶bíS¶bíS¶bíS¶bíS¶bíSÿH(ÿR%ÿ]#ÿf"ÿn#ÿz+ ÿ‚6ÿ‡>ÿ‰F$ÿŠM-ÿ‡S6ÿZ>ÿ}dEúxnLõszQðn‡UìišXçe°YâbÈXÛ`âYÐbä]Èdâ^Áfâ_¼gã^¸gä\´hæ[²hèY°géW¯gêV¯gêV¯gêV¯gêV¯gêVÿI'ÿU#ÿ`!ÿj ÿs!ÿ+ ÿˆ6ÿ?ÿG!ÿ’N*ÿS4üŒX<õ…aEï€lMézySãtˆYÝm›]Öi¯`ÏgÈaÉhàaÁjÞc»kÝd¶lÞc²mßb¯má`¬mã^«lå\©lçZ¨lèY¨lèY¨lèY¨lèY¨lèYÿK&ÿX"ÿc ÿnÿxÿ…+ ÿ6ÿ“@ÿ—Iÿ˜P'ú™U0ó—Y9ë‘^Bã‹jKÜwVÓz†]Ëu–cÄr§g¾o¾i¸pÙh³qØi¯rÙi¬sÚg©sÜe§sÞc¦rá`¤qã^£på\£pæ[£pæ[£pæ[£pæ[£pæ[ÿM%ÿZ!ÿfÿqÿ|ÿ‰+ÿ’7 ÿ˜BÿœKûžS"òŸW*êŸZ3á]>×”fLÍŒrXņa¼€h´|¡m­y¶o¨xÒo¦yÓn¤yÔm¢yÖj¡xÙh wÜeŸvßbŸuá`žtã^sä]sä]sä]sä]sä]ÿO$ÿ] ÿiÿuÿ€ÿ+ÿ–8 ÿDÿ¡Oô¢Sê¤U#á§W-Ö§V=ËŸbLÁ—mX¸‘zc®‹ˆk¦†šqŸ‚¯t™ÍtšÏrš€ÑpšÔmš~×j™|Úg™{Ýd™yßb™xâ_˜wã^˜wã^˜wã^˜wã^˜wã^ÿQ#ÿ_ÿlÿxÿ„ÿ‘+ÿš9ÿ¡G ø¤Oí§Qã¬SغG+̲R;Á©]K¶¢iX¬œud¢–ƒm™‘”t‘©xŠŠÈx‰Ìu‡Ïr‘…Òo’ƒÕl“Ùh“Üe“}Þc”|à`”{â_”{â_”{â_”{â_”{â_ÿS"ÿbÿoÿ|ÿˆÿ•+ÿž:þ¤Kñ¨M å­N Û½EÎÆB(½O9·µZI¬­eW¡§pc—¡~mœuƒ—¤y|•Âz€‘Êw…ŽÎtˆ‹ÑpŠˆÔmŒ…ØjƒÛfŽÝdŽàaŽ~á`Ž~á`Ž~á`Ž~á`Ž~á`ÿV!ÿdÿrÿ€ÿŒÿ™+ÿ¢;÷§Ié¬JߺEÒÜ2ÅÒ?%¹ÊK6­ÁVF¢ºaU—³laŒ­yl§Štv£ zo ½{s›Êxz–Íu~’Ðq‚ŽÓn„‹×j†ˆÚg‡…Ýe‰ƒßb‰‚àa‰‚àa‰‚àa‰‚àa‰‚àaÿX ÿgÿvÿ„ÿÿœ*ÿ¦<ï«FâµAÔß'Éæ4¼à="°ØH3¤ÏSC˜È]QÂi^»uiu¶†rk±œwc®¹yg§ËwnŸÍtt™Ðqx•Ón|ÖkÚhŠÜe‚ˆßcƒ†àaƒ†àaƒ†àaƒ†àaƒ†àaÿ[ÿkÿzÿ‰ÿ•ÿ &÷©:æ±?ÖÝËè(Áï6µë?¨åG.œßP>ÙZMƒÒfYwÌrdkǃmaÚrX¿¶tZ¶Îsc«Ïri£ÑpoœÔms—×jv“ÚgyÜe{ßc|‹àa|‹àa|‹àa|‹àa|‹àaÿ_ÿoÿÿÿšÿ¦ î°1ÜÑÍæÃð) ¹÷5¯õ?¤òH)—îP9‰éXG|åcSoáp]cÝeXÙ˜kPÓ¶mOÊÕlWºÔm^¯Ômd¦ÖkiŸÙimšÛfp–Ýdr“ßbt‘àat‘àat‘àat‘àat‘àaÿcÿtÿ„ÿ“ÿ ô°ÜÇ ÎÛ Äï»÷) ²þ4©ÿ=!ŸýF+“ûM6‡øV@{õ`JnókTbð{\Vî’`Nê±bIãÔcMÍÛfS¾ÚgY²Ûg_©Üec£Ýdgžßbišá`k˜â_k˜â_k˜â_k˜â_k˜â_ÿiÿzÿ‹ ÿ™þ¨ ÕºÎÌÅî¼÷´þ*¬ÿ4£ÿ<"˜ÿB+ŒÿI5ÿQ=wÿ[ElÿfLaÿsRVþˆVLý§WHûÏVGçÚ[JÒâ^OÂá`T·á`Y®â_\¨â^_£ä]a¡ä\a¡ä\a¡ä\a¡ä\a¡ä\ÿoÿ ÿ’ ÿ¡ Ö³ÍÁÄн÷µþ!­ÿ+£ÿ2™ÿ8!Žÿ>)„ÿD1{ÿM8rÿV>jÿ_DbÿkIXÿzLNÿOFÿ±ODýØNCìàSEÙçVJÈéXN½èXQ´èXT®éXV«éWV«éWV«éWV«éWV«éWÿvÿ‰ÿ›ڬϺÆÆºÕ±ÿ©ÿ¡ÿ&˜ÿ-Žÿ3…ÿ9&{ÿ@,tÿH1mÿP6gÿY;`ÿc?XÿoBOÿDFÿ—F?ÿ½FAÿáD?ôæI@âíLDÒïNGÇñOI¾ñOKºðPKºðPKºðPKºðPKºðPÿ€ ÿ“ë¥Ò´ÈÀ¼Í®Û¤ý ÿ”ÿ!Œÿ(ƒÿ.zÿ4 rÿ;%lÿB)gÿK-bÿS1\ÿ\4Vÿf6Nÿr9Fÿ„;=ÿž<7ÿË<:ÿê::þî=;ïò@<áöB?Ö÷D@Ð÷D@Ð÷D@Ð÷D@Ð÷D@Ð÷Dÿ‹ýŸÔ¯Ê¼¾Ç°Ò¢Þ–ôŽÿ‡ÿ ~ÿ!wÿ'pÿ.iÿ5dÿ< _ÿC#[ÿK%VÿS(Qÿ\*Kÿg,Cÿt.;ÿ‰04ÿ¤1.ÿÒ10ÿó03ÿø04ÿú35ôü56íþ66íþ66íþ66íþ66íþ6ÿ™Ø«Ì¸ÁÁ²Í£Ø•á‡ì~ÿwÿpÿ jÿ dÿ'_ÿ-Zÿ4Vÿ;RÿBNÿJJÿREÿ[ ?ÿg!8ÿv#1ÿŠ$*ÿ¦%%ÿÒ%$ÿü%)ÿÿ$,ÿÿ$+ÿÿ%+ÿÿ%+ÿÿ%+ÿÿ%+ÿÿ%ۧεþµÈ¥Ð–Úˆãzëpÿgÿaÿ \ÿWÿSÿ$ Oÿ* Kÿ1 Hÿ7Eÿ>AÿF>ÿN9ÿX3ÿd-ÿt&ÿˆ ÿ¢ÿËÿðÿÿÿÿÿÿÿÿÿÿÿÿбŻ¸Ä¨Ì™ÓŠÜ|äoìeý^ÿWÿQÿ LÿHÿCÿ?ÿ$<ÿ*:ÿ07ÿ74ÿ?0ÿG +ÿR %ÿ_ ÿn ÿ ÿ—ÿ± ÿÓ ÿê ÿê ÿê ÿê ÿêǹ»À«ÈœÎÕÞræfí\ùUÿOÿJÿFÿ Bÿ>ÿ;ÿ8ÿ5ÿ$2ÿ*/ÿ0+ÿ6'ÿ>!ÿHÿTÿcÿr ÿ…ÿ–ÿ¢ÿ¢ÿ¢ÿ¢ÿ¢½½¯ÅŸËÑ‚Øuàiç]îSõMÿHÿDÿ@ÿ=ÿ :ÿ7ÿ4ÿ2ÿ/ÿ,ÿ#*ÿ)&ÿ/#ÿ6ÿ?ÿIÿT ÿ_ÿkÿrÿrÿrÿrÿrÿ6.ÿ05ÿ26ÿ38ÿ2<ÿ0Bÿ+Iÿ&Sÿ&] ÿ%hÿ#rÿ!|ÿ‡ÿ‘ÿœÿ¦ÿ²ÿÂÿÖÿ îÿÿÿÿÿ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ6.ÿ15ÿ45ÿ56ÿ5:ÿ3@ÿ/Hÿ+Q ÿ+[ ÿ*fÿ(pÿ%{ÿ#…ÿ ÿ›ÿ¦ÿ³ÿÃÿÛÿòÿ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ7.ÿ24ÿ63ÿ84ÿ88ÿ6>ÿ3Eÿ2O ÿ2Yÿ0cÿ.nÿ+xÿ(ƒÿ%Žÿ"šÿ ¥ÿ³ÿÅÿßÿ÷ÿÿÿÿÿÿÿÿÿÿÿ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ8-ÿ52ÿ91ÿ<2ÿ<5ÿ;;ÿ8B ÿ9L ÿ9Vÿ7`ÿ4kÿ1vÿ.ÿ+ÿ(˜ÿ%¥ÿ"´ÿÉÿåÿýÿÿÿÿÿ!ÿÿ$ÿÿ'ÿÿ#ÿÿ"ÿÿ!ÿüÿüÿüÿüÿüÿÿ9-ÿ80ÿ=.ÿ@/ÿA2ÿ@8ÿ=? ÿ?Iÿ@Tÿ?^ÿÑ/ÿ<ë/ÿ>ö.þ?û-÷=ý/î<ÿ2ã<ÿ3Ü?ÿ4Ô@ÿ4ÐBÿ4ÌBÿ3ÌBÿ3ÌBÿ3ÌBÿ3ÌBÿ3ÿ=*ÿF'ÿN%ÿT$ÿX&ÿZ)ÿ^1 ÿa:ÿaDÿ`Oÿ_Y$ÿ]c)ÿZn,ÿVy/ÿR†1ÿN“3ÿK¡4ÿH³4ÿFÊ4üFã3ùCõ2òCú3èAü7ÞCþ9ÔFÿ:ÍHÿ:ÇIÿ:ÃJÿ9ÀKÿ8ÀKÿ8ÀKÿ8ÀKÿ8ÀKÿ8ÿ@)ÿJ%ÿR#ÿY"ÿ^#ÿb'ÿg/ ÿj8ÿjAÿhJÿgU%ÿe`+ÿbj/ÿ^u3þZ‚5úV7÷Sž8ôP°9ñOÂ8îLÙ8ëKð7âGû;ÖJû>ÍMü?ÆOý@ÀQÿ?¼Qÿ?¹Rÿ>¶Rÿ=¶Rÿ=¶Rÿ=¶Rÿ=¶Rÿ=ÿC'ÿM#ÿV!ÿ^ ÿd ÿi%ÿo- ÿs7ÿt?ÿrGÿoQ%ÿl\+úig1öer5ña9î];êZœ<æX«=âV½=ßTØ<ÙPñ?ÏQøCÆTùE¿VúE¹WúEµXûD²XüC¯XýB­Xÿ@­Xÿ@­Xÿ@­Xÿ@­Xÿ@ÿE%ÿP!ÿZÿcÿjÿp$ÿv,ÿ{5ÿ}>ÿ|EüyM$õtX+ðpd2êlo7åg};àc‹?Û`™BÕ]©DÐ[¼EÌZÕFÇYñG¿ZöI¸\õJ³]õJ¯^öI«_÷H©_ùG§^úE¥^üD¥^üD¥^üD¥^üD¥^üDÿH$ÿS ÿ^ÿgÿoÿv#ÿ}+ÿ‚4 ÿ…<û†Dó„K!ëT)åz`1Þtl9Öny?Ðk†EÊh”IÅe¢LÀc´M»bÌN¶aìN±bñO¬cðP¨dñO¥dóM£dôK¡döJ cøHŸcùFŸcùFŸcùFŸcùFŸcùFÿJ#ÿVÿaÿkÿtÿ|"ÿƒ)ÿ‰3 ü;óŽCêŽIâ‹Q%Ú…\1Ñ~g:ÉxsCÂtI¼pN·nœR±k­T¬jÄU¨iæT¤jìU¡jìTŸjîRjðPœiòN›hôLšhõJ™g÷H™g÷H™g÷H™g÷H™g÷HÿM"ÿYÿdÿnÿxÿ!ÿˆ(ÿ2ö”; ë—Bâ˜GØ•K$ÎX0ʼnc;½ƒnD¶~zL¯z‡R©w–V¤t§YŸr½Z›qàZ™qçY˜péW—pëU–oíS•nðP•mòN”lôL”jöJ”jöJ”jöJ”jöJ”jöJÿO!ÿ[ÿgÿrÿ|ÿ… ÿ&û•0ï›9äŸ@ Ú£<ΞG"ĘT0»’_;³jE«ˆuN¤ƒ‚Tž€‘Z˜}¢]“z·_ŽxÙ_Žwä]ŽvæZuéXsëUrîRpðPoòNnôLnôLnôLnôLnôLÿQ ÿ^ÿjÿuÿ€ÿŠÿ’#õš.é¡7Ý©:Ь7ƦD ¼¡Q.²›\:©–fE¢‘qNš~V“‰Œ\…ž`‡‚²b‚€Òbƒ~á`…|ä]‡zçZˆxêW‰vìT‰tïQ‰rñOŠqóMŠqóMŠqóMŠqóMŠqóMÿSÿ`ÿmÿyÿ„ÿŽü—î (á©.Ôº"ȵ3½¯A³ªM,ª¤X9¡ŸcD™›mN‘–yV‰’ˆ]‚™b{‹®du‰Ídx†ßb|ƒâ^~€å[}èX‚zëUƒxîR„vðP„tòN„tòN„tòN„tòN„tòNÿVÿcÿpÿ}ÿˆÿ’öœæ¨ؾ ÌÃÀ¿0 µ¹>«³J*¢®U7™©`B¤jM‡ vUœ„]w™–bo•ªej“ÉemßbrŠâ_v†å\yƒèY{êV}|íS~zïQxñOxñOxñOxñOxñOÿXÿfÿsÿÿÿ—î£Ö³ÎÄÃ͸É, ­Ä:£¾F&š¹R4´\?‡¯gJ~ªrSu§€[l¤’`e¡§d_žÅdb™ßbh“â_mŽä\q‰çYt…êVv‚íTwïRy}ñOy}ñOy}ñOy}ñOy}ñOÿ\ÿjÿwÿ…ÿ‘ùÖ«θÅɹׯÔ'¥Ï6›ÊC#‘ÅN0ˆÀY;~¼dFt·oOk´}Wc±][­¥`UªÃaV¤â_^ã^c–å[hèYlŒêVnˆíTp…îRr‚ðPr‚ðPr‚ðPr‚ðPr‚ðPÿ_ÿnÿ| ÿŠ ÿ— Ù¥бȾ½Î±â¨á'Ý3’Ø?‰ÓK*ÏV6uËa@lÇmIcÄ{QZÀVR½£ZM¹Á[L³æZS¨æZYŸçY_™éWc“ëUfíSh‹ïQjˆñOjˆñOjˆñOjˆñOjˆñOÿdÿrÿ‚ÿ æŸÒ«Ê·ÀÅ´Ôªì£ë)™ê6 Œæ>ãH$wáS/nÞ_9dÛjA[ÖyHRÓ‹NKÏ¢QFÌÁRCÆîRI·ìTO«ìUU¢ìTYœîS]—ïQ_“ðPbòNbòNbòNbòNbòNÿiÿx ÿ‰û˜զͲþ¸Ë«Ú£ö›ö(’õ3‡ó<}ñFtðQ'kî\0aíg8Xët>Oè‡CHåžFCâ»G=ÞëG@ËóKE»òMJ¯òNO§òNS óMVœóLX˜ôKX˜ôKX˜ôKX˜ôKX˜ôKÿoÿÿڠϭƸ¼Ä¯Ð¢ßšÿ’ÿ%Šÿ/€ÿ8vþ@nþK#fýU*_üa/Vûm4Mù~8E÷–;Aö³;=óÛ:8çö@<ÒøCAÂùFE¶ùGH­øGK§øGN¢ùGN¢ùGN¢ùGN¢ùGN¢ùGÿv ÿˆêšÒ¨É´¿¾³Ê¥Õ˜æÿˆÿ!€ÿ* wÿ3nÿ;hÿDaÿN#ZÿY(Rÿe+Iÿs/Aÿˆ1:ÿ¤36ÿË34ÿô24ðü77Ýþ:;Ìÿ=>Àÿ>A·ÿ?C°ÿ?C°ÿ?C°ÿ?C°ÿ?C°ÿ?ÿÿ“֣̰º¶Å¨ÏšÙè„ÿ}ÿuÿ% mÿ-fÿ5`ÿ>ZÿGTÿQNÿ["Fÿi%>ÿy'6ÿ‘)/ÿ²*,ÿæ*,ÿÿ)/úÿ,1èÿ04Üÿ26Ïÿ49Æÿ59Æÿ59Æÿ59Æÿ59Æÿ5ÿŒÛŸÏ¬Å·¹À«ÊÓÝçwÿ pÿjÿcÿ& ]ÿ-Wÿ6Rÿ>MÿGGÿQAÿ]9ÿk2ÿ}*ÿ˜ #ÿÀ! ÿø!&ÿÿ (ÿÿ!)øÿ$+íÿ&.ãÿ(.ãÿ(.ãÿ(.ãÿ(.ãÿ(ãšÑ©Çµ¼½®ÇŸÏØ‚áuèlÿdÿ \ÿWÿQÿ$Lÿ, Hÿ4 Dÿ< ?ÿE;ÿO4ÿ[,ÿj%ÿ~ÿœÿÌÿÿÿÿÿÿ!ÿÿ"ÿÿ"ÿÿ"ÿÿ"ÿÿ"ÿÿԦɲ¿º±Ã¡Ë’Ó„Üuåiì`ÿXÿRÿ LÿGÿAÿ =ÿ'9ÿ.5ÿ61ÿ?,ÿJ%ÿW ÿg ÿ} ÿ˜ ÿÄ ÿù ÿÿ ÿÿ ÿÿ ÿÿ ÿÿ ÿÿ ÿÿ ˰Á¸´À¥Ç•·Õxßkç_ïUýNÿIÿDÿ ?ÿ;ÿ7ÿ4ÿ"0ÿ),ÿ0(ÿ8#ÿAÿNÿ^ ÿrÿÿ¯ÿàÿÿÿÿÿÿÿÿÿÿÿÿö·½¨Ä™ÊŠÑ|ÙnábèWïLùGÿBÿ>ÿ:ÿ6ÿ 3ÿ0ÿ-ÿ)ÿ#&ÿ)"ÿ1ÿ9ÿDÿRÿdÿxÿÿ¥ÿÇÿÇÿÇÿÇÿǺ»«ÂœÇŽÍÓrÜfãZêPðGöAÿ=ÿ9ÿ6ÿ2ÿ/ÿ ,ÿ*ÿ'ÿ$ÿ!ÿ#ÿ*ÿ1ÿ; ÿGÿUÿcÿqÿƒÿƒÿƒÿƒÿƒÿ-1ÿ*5ÿ-5ÿ-7ÿ+;ÿ'Aÿ!HÿRÿ]ÿiÿuÿÿÿ˜ÿ¤ÿ±ÿ¿ÿÎÿâÿõÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.1ÿ,4ÿ/3ÿ05ÿ.9ÿ*?ÿ%FÿPÿ[ÿ gÿsÿÿ‹ÿ— ÿ¤ ÿ± ÿÁ ÿÒ ÿç ÿù ÿÿ ÿÿ ÿÿ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ ÿÿ ÿÿ ÿÿ ÿ/1ÿ/2ÿ21ÿ33ÿ27ÿ.<ÿ*Dÿ"MÿXÿdÿpÿ } ÿ Š ÿ— ÿ£ ÿ° ÿ¿ ÿÎ ÿã ÿô ÿÿ ÿÿ ÿÿ ÿÿ ÿÿ ÿÿ ÿÿ ÿÿ ÿÿ ÿÿ ÿÿ ÿÿ ÿÿ ÿ00ÿ20ÿ5/ÿ60ÿ64ÿ39ÿ/Aÿ)Jÿ!Uÿa ÿm ÿy ÿ† ÿ’ ÿÿ ªÿ ¸ÿ ÇÿÝÿïÿýÿÿÿÿ ÿÿ ÿÿ ÿÿ ÿÿÿÿÿÿýÿýÿýÿýÿÿ10ÿ5-ÿ9,ÿ;-ÿ:0ÿ86ÿ5=ÿ0Fÿ(Qÿ'] ÿ%h ÿ#tÿ €ÿŒÿ—ÿ£ÿ±ÿÀÿÓÿèÿøÿÿÿÿÿÿÿÿÿ ÿþ ÿø ÿóÿñÿñÿñÿñÿÿ3.ÿ9+ÿ=)ÿ?*ÿ?-ÿ>1ÿ;8ÿ7Bÿ5M ÿ4X ÿ1dÿ/oÿ,{ÿ)‡ÿ'’ÿ%žÿ#ªÿ!ºÿ Êÿ àÿòÿÿÿÿÿÿÿÿùÿñÿëÿæÿäÿäÿäÿäÿÿ6,ÿ<(ÿA'ÿD'ÿE)ÿD-ÿB4ÿ@> ÿ@H ÿ?Tÿ=_ÿ:jÿ7uÿ4ÿ2ÿ0™ÿ.¥ÿ,³ÿ+Ãÿ*×ÿ*ìÿ(üÿ%ÿýÿóÿê#ÿã'ÿÜ)ÿÖ+ÿÔ,ÿÔ,ÿÔ,ÿÔ,ÿÿ9)ÿ@&ÿF$ÿJ$ÿL%ÿK)ÿK0ÿJ: ÿJE ÿJPÿH[ÿEfÿBqÿ?|ÿ<ˆÿ:”ÿ7¡ÿ6­ÿ6¼ý5Ïû3æù1øô,ÿí'ÿ!ã,ÿ#Ú0ÿ$Ñ3ÿ$Ë5ÿ$Ç6ÿ$Å7ÿ$Å7ÿ$Å7ÿ$Å7ÿ$ÿ<'ÿD$ÿJ"ÿO!ÿR"ÿT&ÿU-ÿS5 ÿS@ ÿSKÿRWÿObÿLmÿHxýF„ úC!÷A!õ@©!ò?·!ð>É!í<â é9õ!ã4ÿ%Ü5ÿ'Ñ9ÿ)È<ÿ*Â>ÿ*¾?ÿ)º@ÿ)¹@ÿ)¹@ÿ)¹@ÿ)¹@ÿ)ÿ?%ÿG"ÿOÿUÿXÿ\$ÿ^+ÿ]2ÿ]< ÿ\GÿZRýX^øUiôQt!ðO#íL$êK™%çJ¥%äH´%áGÈ$ÝEã$ÖAö)Ñ?ÿ,ÉAÿ.ÁDÿ/ºFÿ/µGÿ/²Hÿ.¯Hÿ-®Hÿ-®Hÿ-®Hÿ-®Hÿ-ÿB$ÿK ÿSÿZÿ_ÿd"ÿg(ÿg/ÿg8 þeBøcMò`Zì]e çZq$ãW~&ßUŠ(ÛS—*×P¤,ÓO³-ÏMÆ-ËMá-ÆK÷0ÀIÿ3¹Kÿ4³Mÿ4®Oÿ4ªOÿ3¨Oÿ2¦Oÿ1¥Oÿ1¥Oÿ1¥Oÿ1¥Oÿ1ÿD"ÿNÿWÿ^ÿeÿk ÿn&ÿp,þq5 õp>îlHçiUàfb!Úbm'Ô_y+Ï]…/Ë[‘1ÇYž3ÃW¬5¿V¿6»UÙ6¶Tô7±Sÿ9«Uÿ9§Vÿ9¤Vÿ8¡Vÿ7ŸVÿ6žUÿ4Uÿ4Uÿ4Uÿ4Uÿ4ÿG!ÿQÿ[ÿbÿkÿqÿu$ÿx*öz1ìz: äwDÜtPÓo]#Ílh*Çhs/Âf4½c‹7¸b˜:´`¦<°^¸=¬]Ñ=¨\ï=£[ÿ> \ÿ>\ÿ=›\ÿ<™\ÿ:˜[ÿ8—[ÿ7–Zÿ6–Zÿ6–Zÿ6–Zÿ6ÿJÿTÿ^ÿfÿoÿvÿ{!ù&î‚-ä„5 Ú‚?Ð~LÈyX$Áuc,»qn2µny8°l…<«j’?§h¡B£f²CŸdÊD›cëC˜cüC–cýB”bÿ@“bÿ?’aÿ=‘`ÿ;‘_ÿ9‘^ÿ8‘^ÿ8‘^ÿ8‘^ÿ8ÿLÿWÿaÿjÿsÿ{ÿó†"ç‹'Ü-ÐŒ;LJH¿ƒT$·~_-±zj4«wu:¥t€? qCœoœF—m¬H“kÄIjæHŽiùGhúEgüCŒfþAŒeÿ?Œdÿ=‹bÿ;‹bÿ:‹bÿ:‹bÿ:‹bÿ:ÿNÿZÿdÿnÿwÿú†ìߔӗ'È”7¾D¶ŒQ#¯‡\-¨ƒf5¢p<œ||A–y‰F‘v—Jt¨Lˆq¿M…pâL„oõJ…møH…lúE…jüC†iÿ@†gÿ>†fÿ=†eÿ<†eÿ<†eÿ<†eÿ<ÿPÿ\ÿgÿqÿ{ÿ„ô‹ä”Ö ËŸ$Àœ4 ·˜A®”M"§Y, Œc5™ˆm<“„xC„Hˆ~“L‚{¤O}xºPzvÝOzuóM|söJ~qøGoûE€mýB€kÿ@jÿ>iÿ=iÿ=iÿ=iÿ=ÿSÿ_ÿiÿu ÿÿˆì‘ ÕšΣæ ¹£1 ¯ >§œJ!Ÿ˜U+˜”`4‘j<‹ŒtC„‰I~†Mxƒ¡Ps€¶Ro~ÙQp|ñOsyôLvv÷IxsúFyqüCzoþA{mÿ?{lÿ>{lÿ>{lÿ>{lÿ>ÿUÿaÿl ÿx ÿƒ õ Ö—ÏŸÆ©»­²«-¨¨; ¤G˜ R)‘]3‰™g;‚•qB{’~HtŒMnŒžQi‰³Se‡ÔRf„ðPk€óMn|öJqxùGsuûDtsýBuqÿ@vpÿ?vpÿ?vpÿ?vpÿ?ÿXÿdÿpÿ} ÿˆ ړќɥ¾¯³µª´)¡°8™¬D‘©O&‰¥Z0¢d9zžn@r›zGl™‰Le–›P`“°R[‘ÑR\ñObˆóMfƒöJi~øGl{ûEnxýBovÿApuÿ@puÿ@puÿ@puÿ@ÿ[ÿh ÿtÿîŽÔ˜Ì¡ê·µª¾¢½%šº4 ‘¶A‰³L#¯W,y¬a5q©l=j¦xCc£†I\¡˜MV®OR›ÏOR—òNXôL]‹öJa†øGeûEg~ýCi{þAizÿ@izÿ@izÿ@izÿ@ÿ_ÿl ÿyÿ‡ڔϞǧ½±±»¢ÇšÈ’Å0 ‰Â=¿Hy¼S(q¹^0i¶i8b³u>[°„DT­–HNª¬JJ§ÍJH¢öJOš÷IT“øHYŽúF\‰ûD_…ýBa‚ÿAb€ÿ@b€ÿ@b€ÿ@b€ÿ@ÿcÿpÿëŽÔšÊ¤Á­··ªÁ›ÍÓˆÒ*€Ï8xÌDpÊP"iÇ[*aÅf1ZÂs7S¿‚F¢ÿ>J›ÿ>M–ÿ=O’ÿ=Pÿÿg8ÿx1ÿ.ÿ©+ÿÖ)ÿý$öÿ(æÿ!+Öÿ$.Éÿ%0Àÿ'1½ÿ'1½ÿ'1½ÿ'1½ÿ'òŒÔÉ©À³µ»¦Ã˜Ê‰Ñ{Únãeü^ÿWÿQÿ%Lÿ/Gÿ8CÿC >ÿN 8ÿZ1ÿi+ÿ{%ÿ–"ÿµÿìÿÿÿÿóÿ"éÿ%ßÿ&Úÿ&Úÿ&Úÿ&Úÿڙ̧±¸¸©ÁšÈŒÏ}Öpßdç[ûTÿ NÿHÿCÿ$>ÿ-:ÿ56ÿ?0ÿJ*ÿW$ÿh ÿ| ÿš ÿÁ ÿù ÿÿ ÿÿ ÿÿ ùÿöÿöÿöÿöÿϤŰ»·­¿žÆŽÍÔqÞeäYëOúJÿDÿ ?ÿ:ÿ6ÿ 2ÿ(.ÿ0*ÿ9#ÿCÿQÿc ÿzÿ™ÿÆÿýÿÿÿÿÿÿ ÿÿ ÿÿ ÿÿ ÿÿÇ®½µ°¼¡Ã’ɃÐtÙgáZéNñEú@ÿ:ÿ6ÿ1ÿ -ÿ)ÿ&ÿ "ÿ(ÿ1ÿ; ÿHÿZÿqÿ‘ÿ¾ÿýÿÿÿÿÿÿÿÿÿÿÿÿ¿´´º¥Á–LJÌxÓkÜ_ãSëHñ>ø9ÿ4ÿ0ÿ-ÿ)ÿ%ÿ"ÿÿÿ!ÿ*ÿ3ÿ?ÿOÿcÿ~ÿ›ÿ¾ÿíÿýÿýÿýÿý·¸¨¿šÄ‹É}ÏoÖcÞWåLìCò:÷4ÿ0ÿ-ÿ)ÿ&ÿ#ÿ ÿ ÿÿÿÿ# ÿ,ÿ6ÿDÿUÿhÿ{ÿ‘ÿ™ÿ™ÿ™ÿ™ÿ%4ÿ&4ÿ'4ÿ&5ÿ#:ÿ?ÿGÿ Pÿ\ÿgÿsÿÿÿ™ÿ£ÿ®ÿ¹ÿÅÿÓÿëÿùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ&3ÿ(2ÿ*2ÿ)4ÿ&7ÿ!=ÿEÿNÿYÿeÿqÿ~ÿÿ˜ÿ¡ÿªÿ´ÿ¿ÿÏÿæÿõÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ'2ÿ+0ÿ-0ÿ-1ÿ*5ÿ%:ÿBÿKÿ Vÿcÿpÿ{ÿˆÿ”ÿÿ¦ÿ°ÿ»ÿÌÿàÿðÿýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ*0ÿ/.ÿ1-ÿ1.ÿ/2ÿ*7ÿ%>ÿGÿSÿ _ÿkÿwÿƒÿŽÿ˜ÿ¡ÿªÿµÿÆÿÙÿëÿúÿÿÿÿÿÿÿÿÿÿÿÿÿÿýÿýÿýÿýÿÿ..ÿ2+ÿ5*ÿ5+ÿ3.ÿ03ÿ+:ÿ#CÿNÿZÿfÿrÿ ~ÿ ‰ÿ”ÿÿ¦ÿ±ÿ¿ÿÏÿäÿõÿÿÿÿÿÿÿÿÿÿúÿ õÿ ðÿ ðÿ ðÿ ðÿ ÿ1+ÿ6(ÿ9'ÿ:'ÿ9*ÿ6.ÿ15ÿ.?ÿ*Jÿ%Vÿ bÿmÿxÿƒÿŽ ÿ˜ ÿ¡ ÿ­ ÿ¹ ÿÉ ÿÞÿðÿÿÿ ÿýÿ ùÿ óÿ ë ÿæ ÿáÿáÿáÿáÿÿ4)ÿ9%ÿ=#ÿ>#ÿ>%ÿ<)ÿ;1ÿ9;ÿ6Fÿ1Qÿ-]ÿ+h ÿ)s ÿ'~ ÿ%‰ ÿ$“ ÿ# ÿ"§ ÿ!³ ÿ!à þ Ö ýì øü óÿ îÿëÿâÿÚÿÒÿÎ ÿÎ ÿÎ ÿÎ ÿÿ7&ÿ=#ÿA!ÿD ÿD!ÿD%ÿD.ÿB7ÿ@AÿéÅ<üÀ:ÿ»9ÿ!´;ÿ!¯=ÿ!«>ÿ!¨>ÿ ¦>ÿ ¦>ÿ ¦>ÿ ¦>ÿ ÿ@ ÿHÿOÿTÿYÿ^ÿ`$ÿ_+û]3òY=ëWI äUVÞSbÙQnÔOyÏNƒÌMŽÈL™ÅK¦ ÁJ´ ¾HÈ!ºHä!µFú#±Dÿ%¬Dÿ&§Eÿ&£Fÿ& Fÿ%žFÿ$Fÿ#Fÿ#Fÿ#Fÿ#ÿCÿLÿSÿYÿ`ÿdÿg!üh'ñf.èc7àbD Ø_QÐ]]Ë[hÆYsÁX}!½Vˆ#ºU”%¶T '³R®(¯QÂ(¬PÞ(§O÷*£Mÿ+ Mÿ+œMÿ*™Nÿ)—Mÿ(–Mÿ'•Lÿ&•Lÿ&•Lÿ&•Lÿ&ÿFÿOÿVÿ]ÿeÿjÿmôo"èo(Þn1Ôl? ÌjLÅgX¿ecºbn"µ`x&±_ƒ)­]+©\›-¦Z©.¢Y¼/ŸWØ/œVô/˜Uÿ0•Uÿ/“Tÿ.‘Tÿ-Sÿ+Rÿ*ŽQÿ)ŽQÿ)ŽQÿ)ŽQÿ)ÿHÿRÿZÿa ÿiÿoúsëußwÔw,Êv; ÂsH»pT´m_ ¯ki%ªis)¦g~-¢eŠ0žc–2›a¥4—`·5”^Ñ5‘]ñ4Ž[ÿ4Œ[ÿ3‹Zÿ1ŠYÿ/‰Xÿ-‰Wÿ,ˆVÿ+ˆVÿ+ˆVÿ+ˆVÿ+ÿKÿTÿ] ÿe ÿmÿsòxã{Õ~Ë€(Á7 ¹|D²yP«v[!¦se&¡po+nz0˜l…3”j’6‘h 8f²9‰dÌ9†bî9„aÿ7„`ÿ6ƒ_ÿ4ƒ^ÿ1ƒ\ÿ/ƒ[ÿ.ƒZÿ-ƒZÿ-ƒZÿ-ƒZÿ-ÿMÿWÿ_ ÿi ÿq þx ã}Õ‚͆É$º‡4±„AªM¤~X!ž{b'™xk-”uv2r6‹pŽ9‡n;ƒl®=jÇ=|hë<{gÿ:|eÿ8|dÿ6}bÿ3}`ÿ1}_ÿ0}^ÿ.}^ÿ.}^ÿ.}^ÿ.ÿOÿYÿbÿlÿu ë|ÖƒΈÅ ¼ ³Ž0ªŒ>£ˆJ…T —‚_'‘h-Œ|r3‡y}7ƒwŠ;~u™>yrª?upÃ@snç?rmÿlpÿ;nmÿ9pkÿ6qiÿ4rgÿ2seÿ1seÿ1seÿ1seÿ1ÿTÿ^ ÿhÿtê}Ն̎”·š­¥œ*š8 –˜D”O‰’Y%ƒc,}Œl2w‰w7r†„_‹¢AZˆ¹BW…àAWƒÿ?\~ÿ=`yÿ:buÿ8erÿ5fpÿ4gnÿ2gnÿ2gnÿ2gnÿ2ÿYÿeÿqñ}ֈ̑™¸Ÿ«¦ž« —«!ª1ˆ§=¥Iz¢S t ]'nžg-gœr3a™8\—ŽS…ÿ¡þ5Ašÿ6F’ÿ5JŒÿ4M‡ÿ3Oƒÿ2Q€ÿ1Q€ÿ1Q€ÿ1Q€ÿ1ÿfÿs߃ґǛ¾¤´«¨²š¹‹ÀzÉtËnÊ.hÈ; bÇG\ÅSVÃ_PÁj K¿w%E½ˆ(@»œ+<¸´,:µÜ,8¯þ-7¨ÿ/<Ÿÿ0@—ÿ0D‘ÿ0Fÿ/H‰ÿ/H‰ÿ/H‰ÿ/H‰ÿ/ÿlü|ٌ̘⹪®±¡¸“¿ƒÆsÐhÙcÚ%^Ù4YØA SÖNNÔZHÓgCÑu>φ:Κ!6˳"4ÈÛ!2Áý$/»ÿ'2®ÿ)7¤ÿ*:ÿ+<˜ÿ+>”ÿ+>”ÿ+>”ÿ+>”ÿ+ÿtà†Ñ•Ç ½©´°§·™¾ŠÄ{ËlÕaè[éUé,Pè:LèGGçT Bça>æo9å€6ã”2â­/àÔ,Øù(Ðÿ(Åÿ,·ÿ"0­ÿ#2¦ÿ$4¢ÿ$4¢ÿ$4¢ÿ$4¢ÿ$ø~×ËÁ§¸¯¬¶ž½Ã€ÉrÐdÚZð T÷Oø%Iø1Eø<@÷I;÷V7÷d 2÷t .öˆ+õ (óÂ'ñï"èÿãÿ"Ñÿ%Äÿ(»ÿ*³ÿ*³ÿ*³ÿ*³ÿދϛŦ»®°µ¢¼“„ÈvÎiÖ\ßRñLÿGÿBÿ'>ÿ19ÿ<4ÿG/ÿU*ÿd%ÿw!ÿÿ« ÿÝ ÿÿ÷ÿ ðÿ äÿ×ÿÎÿÎÿÎÿÎÿӘȤ¾®´´¦»–ÁˆÇyÍkÔ_ÝRäIñDÿ?ÿ:ÿ6ÿ%2ÿ..ÿ8(ÿC"ÿQÿbÿwÿ“ÿ´ ÿì ÿÿÿÿýÿ õÿïÿïÿïÿïÿÊ£Á­·³©ºšÁŠÇ{ÎmÔaÜTãJé@ñ;ÿ6ÿ1ÿ-ÿ)ÿ %ÿ(!ÿ1ÿ<ÿJ ÿ\ÿtÿ’ÿ½ÿõÿÿÿÿÿÿÿÿÿÿÿÿÿÿ캳­¹ž¿ŽÅËqÒcÛVãJê@ï7ô2ÿ-ÿ)ÿ$ÿ !ÿÿÿ ÿ) ÿ3ÿAÿUÿmÿŽÿ¹ÿûÿÿÿÿÿÿÿÿÿÿÿÿ¼²±·¢¾“ÄÈuÎhÖ[ÞOæDí:ó0ù)ÿ%ÿ ÿÿÿÿÿ ÿÿ ÿ*ÿ8ÿKÿcÿÿ¦ÿßÿÿÿÿÿÿÿÿÿÿ´¶¦¼—Á‰ÆzÌmÒ`ÚTáIè?î6ó.ø&ý"ÿÿÿÿÿÿ ÿ ÿÿÿ%ÿ1ÿAÿUÿlÿ†ÿÿµÿµÿµÿµÿ 4ÿ"2ÿ!2ÿ4ÿ8ÿ>ÿEÿOÿYÿeÿqÿ|ÿŠÿ•ÿžÿ§ÿ°ÿºÿÃÿ×ÿéÿöÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ"2ÿ$0ÿ$0ÿ"2ÿ6ÿ;ÿ BÿLÿWÿbÿoÿ{ÿ‡ÿ‘ÿšÿ¢ÿ«ÿ´ÿ¿ÿÐÿâÿñÿþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ$0ÿ'.ÿ'-ÿ&/ÿ"3ÿ8ÿ?ÿIÿTÿ_ÿlÿwÿ‚ÿÿ•ÿžÿ¦ÿ®ÿ»ÿÈÿÚÿëÿùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ(.ÿ++ÿ++ÿ*,ÿ&/ÿ 4ÿ<ÿ DÿPÿ\ÿgÿsÿ~ÿˆÿÿ™ÿ ÿ©ÿ¶ÿÃÿÒÿæÿõÿÿÿÿÿÿÿÿÿÿÿÿýÿüÿüÿüÿÿ++ÿ.)ÿ0'ÿ/(ÿ++ÿ&0ÿ7ÿ@ÿKÿ Wÿbÿnÿyÿƒÿ‹ÿ”ÿœÿ¦ÿ°ÿ½ÿÎÿâÿôÿÿÿÿþÿüÿûÿõÿïÿíÿíÿíÿÿ/)ÿ2%ÿ4$ÿ3$ÿ1&ÿ,+ÿ(3ÿ%=ÿGÿRÿ^ÿiÿ tÿ~ÿ‡ÿÿ˜ÿ¢ÿ¬ÿ¹ÿÈÿßýñøÿôÿñÿîÿêÿáÿÛÿÚÿÚÿÚÿÿ2&ÿ6"ÿ8 ÿ8 ÿ6!ÿ3&ÿ3/ÿ08ÿ,Cÿ&Nÿ!Yÿdÿoÿyÿƒþ‹ü•úžø¨ö´ôÅòÛîïè ÿå ÿá ÿÜ ÿÔÿ Îÿ Éÿ Èÿ Èÿ Èÿ ÿ5#ÿ9ÿ<ÿ=ÿ<ÿ<"ÿ<+ÿ:4ÿ7>ÿ2Iÿ.Tþ*`ú(kö&uó&ð&ˆî%’ì%›ê$¦ç#³å"Ãâ ÚÝïØÿÒÿ Íÿ Êÿ Âÿ ½ÿ ¹!ÿ ¸!ÿ ¸!ÿ ¸!ÿ ÿ8 ÿ=ÿAÿBÿCÿFÿE'ÿC/ÿ@9ý=Dö9Pñ6[ì4gè3qå3{â2…ß2Ü1šÚ0¥Ö/²Ó.ÃÐ-ÛÊ-ñ Å,ÿ À*ÿ¼(ÿ¸(ÿ²*ÿ®+ÿ«,ÿª,ÿª,ÿª,ÿÿ;ÿAÿEÿHÿKÿNÿN#ÿL*úI4ñF?êCKä@WÞ?cÚ>m Õ>w Ñ> Î=‹ Ë=• È< Å;­Â:½¿9Óº9íµ7ÿ±5ÿ­4ÿ©4ÿ¥5ÿ¢5ÿ 5ÿŸ5ÿŸ5ÿŸ5ÿÿ>ÿEÿIÿLÿRÿVÿVùT%îQ-åN8ÝLEÕKRÏK] ËJh ÆIrÂI{¿H…¼G¹G›¶E§³D·¯C̬Bè§@þ¤?ÿ =ÿ=ÿ™>ÿ—>ÿ–=ÿ•=ÿ•=ÿ•=ÿÿAÿHÿMÿR ÿYÿ\ý]ï[äY%ÚW1ÐW?ÉWL ÃVX ¾Uc¹SmµRv²Q€¯P‹«O–¨N¢¥M±¢KÆŸJä›Iü˜Gÿ•Eÿ’EÿEÿDÿŽDÿCÿCÿCÿÿDÿKÿQ ÿW ÿ^ ÿaôbåaÙ_Îb,Æb;¾aH ¸_T³^^®\hª[q§Z{£X† W‘ Vž"šT­#—SÁ#”Qß#‘Pú#ŽNÿ#‹Lÿ"‰Lÿ!ˆKÿ ‡Jÿ†Iÿ†Iÿ†Iÿ†IÿÿFÿNÿTÿ\ÿb ûf ågØgÏhÅk(¼k7µjD ¯hO©fZ¥dd¡bmaw š_#–^%“]š&[©(ŒY½(‰WÛ(‡V÷(„Tÿ'‚Sÿ%Rÿ$Pÿ"€Oÿ!€Nÿ €Nÿ€Nÿ€NÿÿHÿP ÿWÿ`ÿfæjÖmÏoÆp½t$´s3­r@ §pL¡mVl`˜jj”hs#‘f}&d‰(Šb–*†a¥,ƒ_¹,€]Õ,}[õ+{Zÿ*zXÿ(zWÿ&zUÿ$zTÿ#zSÿ!zRÿ!zRÿ!zRÿ!ÿKÿS ÿZÿdõjÚoÐtÈv¾x µ{ ­{0¦y=  wHšuS•s]‘pf np$‰lz(…j…+h’-}g¢/zdµ0vcÑ0taó.s_ÿ,s^ÿ*s\ÿ(tZÿ&tXÿ$tWÿ#tWÿ"tWÿ"tWÿ"ÿMÿUÿ]ÿgânÔuËzÂ}·®‚§‚- €: ™~E”|PyZŠwc!…um%rw)}p‚,yn/umŸ1qj²2nhÎ2lgñ1keÿ.lcÿ,maÿ)n^ÿ'o\ÿ&o[ÿ$oZÿ$oZÿ$oZÿ$ÿOÿXÿaükÛsÐzÆ€½„°†§ˆ ‰)š‡7“…CƒMˆ€Wƒ~a ~{j%zyt)uw-quŒ0msœ2iq¯4eoÊ4dmï2ckÿ0ehÿ-geÿ+hcÿ(iaÿ'j_ÿ%j^ÿ%j^ÿ%j^ÿ%ÿQ ÿZÿdînÖx̀†¸Šª¡š%“Ž4Œ@ ‡ŠJˆT|…^wƒg$rq)n|-i|‰0ez™3`x¬4]vÇ4[tí3[rÿ1]nÿ.`kÿ,bhÿ)ceÿ(dcÿ&ecÿ&ecÿ&ecÿ&ÿT ÿ]ÿhßsÒ}È…¾‹³¥”š– “—!–0†”= €’HzRu[p‹e#k‰n'f‡z,a…‡/]ƒ—2X€ª4U}Å4S{ì3Sxÿ1Vuÿ.Yqÿ,[mÿ*]jÿ(^hÿ'_gÿ&_gÿ&_gÿ&ÿWÿaýmÛy΃ċº‘¯–¡š“Œ†,›9 yšDs˜On–Yi”b d’l%_w)ZŽ…-UŒ•0P‰¨2M†Ã2Kƒë1K€ÿ0N{ÿ.Qvÿ,Tsÿ*Vpÿ(Xnÿ'Xmÿ'Xmÿ'Xmÿ'ÿ[ÿeêrÕʉÀ‘¶—«œ ‹¤ƒ¥}¥'w¤5r¢A l¡LgŸVb`\œj!Wšu%R—ƒ)M•“,I“§.EÂ.Dê-CŠÿ-E„ÿ,I~ÿ+Lyÿ)Ovÿ(Qsÿ'Qrÿ&Qrÿ&Qrÿ&ÿ_ÿjÞyІż—²§¢™§‡«y® t®!o­0j¬<d«H _©RZ¨]U¦gP¤s K¢#F ‘&Bž¥(>œÀ(=™é';”ÿ)<ÿ)@ˆÿ(D‚ÿ'F~ÿ&Izÿ&Iyÿ%Iyÿ%Iyÿ%ÿdöqØËÁ–¸ž®¤¢¨“­ƒ²p¸i¹e¹)a¸7\·CW¶N R´YM³dH±pC¯~?­;«¤ 8¨¿!7¥é 4 ÿ"3œÿ$7“ÿ$;ÿ$=ˆÿ$@„ÿ#@ƒÿ#@ƒÿ#@ƒÿ#ÿiázщƕ½³¤©©›®Œ³|¸k¾]Å YÆVÆ.RÅ<MÄHIÃT EÂ` @Ám<¿{8½5»¢2¸¾1´é.®ÿ,©ÿ-¡ÿ1™ÿ4”ÿ6ÿ7Žÿ7Žÿ7ŽÿúrÙ„Ë’Áœ¸¤®ª¢¯“´„¹u¾fÄVÍKÕHÕ"EÕ1BÕ??ÕM;ÔZ8Óh4Òw 1Љ .Ï +̼*Èè 'Àÿ$»ÿ#³ÿ'©ÿ*¢ÿ,œÿ-›ÿ-›ÿ-›ÿá~ÑŽÆ›¼¤³ª§°™µŠ¹{¾lÄ^ÊQÓCÞ?ç;ç%9è36èA3èO/è],çm)ç€&å–$ã²"áßÙÿÐÿ Êÿ ¿ÿ´ÿ!®ÿ"¬ÿ"¬ÿ"¬ÿ׊ʙÀ£·ª¬°ž¶º€¿qÄdÊVÑJÚ>â9÷4ø1ø'.ù3*ù?&ùM"ù]ùoù†÷ öÅòôéÿäÿÝÿÐÿÆÿ Äÿ Äÿ Äÿ Η⺫°°¢¶“»„ÀuÅgËZÑNØCà8æ2û-ÿ*ÿ&ÿ$"ÿ/ÿ:ÿIÿZ ÿo ÿ‰ÿ§ÿÜÿÿùÿõÿîÿåÿâÿâÿâÿÆ¡½«´°¦¶–¼‡ÁxÇjÍ]ÒPÚEà;æ1ì*ù&ÿ"ÿ ÿÿÿ(ÿ4ÿBÿUÿlÿ‰ÿ²ÿìÿÿÿÿÿÿûÿúÿúÿúÿ¿ª¶°ª¶›»‹Á|ÆmÍ_ÔRÝFã<è3í*ò"ùÿÿÿÿ ÿÿ ÿ+ÿ:ÿNÿgÿ‡ÿ³ÿñÿÿÿÿÿÿÿÿÿÿÿÿ¹°­µŸº¿ÄrÊeÑXÙKá@è5î+ô"øüÿÿ ÿÿÿÿÿÿ"ÿ1ÿEÿ_ÿƒÿ¬ÿòÿÿÿÿÿÿÿÿÿÿ±´£º”¾†ÃxÈjÎ]ÔQÝFã<ê2ï*ô!ùýÿÿ ÿÿÿÿÿ ÿÿÿ*ÿ<ÿTÿrÿ•ÿµÿæÿòÿòÿòÿ2ÿ0ÿ0ÿ2ÿ6ÿ<ÿCÿLÿWÿbÿnÿzÿ‡ÿÿ˜ÿ ÿ¨ÿ°ÿ¹ÿÇÿÝÿíÿúÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ0ÿ.ÿ.ÿ0ÿ4ÿ9ÿ@ÿIÿTÿ_ÿkÿwÿ‚ÿŒÿ”ÿ›ÿ£ÿªÿ³ÿÃÿÒÿåÿõÿÿÿÿÿÿÿÿÿÿÿÿýÿúÿúÿúÿÿ!.ÿ",ÿ!+ÿ-ÿ0ÿ 5ÿ=ÿFÿPÿ\ÿgÿrÿ}ÿ‡ÿÿ–ÿÿ¥ÿ®ÿ¼ÿÉÿÝÿïÿþÿÿÿÿÿÿÿÿûÿ÷ÿôÿôÿôÿÿ$+ÿ&)ÿ%(ÿ")ÿ,ÿ2ÿ8ÿBÿLÿXÿbÿmÿxÿÿŠÿ‘ÿ˜ÿŸÿªÿµÿÁÿÓÿçÿùÿÿÿÿÿÿýÿõÿñÿïÿïÿïÿÿ((ÿ*&ÿ*$ÿ'%ÿ!'ÿ,ÿ4ÿ=ÿHÿSÿ^ÿiÿsÿ|ÿ…ÿŒÿ“ÿœÿ¥ÿ¯þ»üËúãù÷÷ÿöÿõÿòÿïÿéÿåÿåÿåÿÿ,%ÿ."ÿ.!ÿ,!ÿ'"ÿ &ÿ0ÿ9ÿDÿ NÿZÿdÿnÿwÿ€ÿˆÿþ˜û¡÷«ó·ðÊîâìôêÿèÿäÿßÿÝÿÖÿÓÿÓÿÓÿÿ/#ÿ1ÿ2ÿ0ÿ,ÿ*#ÿ(,ÿ%5ÿ?ÿIÿUÿ_ý iú s÷ {ô „ò Œð•îžì¨ê¶åÉâáßõÚÿÓÿÏÿÌÿÉÿÃÿ¿ÿ¿ÿ¿ÿÿ2 ÿ5ÿ6ÿ5ÿ3ÿ4ÿ2'ÿ/0ÿ*:ÿ%Eø!Pó[ïeëoèxåãŠà“ÞÛ©Ø·ÕÊÑãË÷ÆÿÂÿ¾ÿºÿ¶ÿ³ÿ°ÿ°ÿ°ÿÿ5ÿ9ÿ;ÿ:ÿ;ÿ<ÿ:"ÿ7+ú45ò/@ë,Kå*Wà)aÜ)kØ)uÔ)~Ñ)‡Î)‘Ì)šÉ)¥Æ(³Ã(Å¿'ß»&õ¶%ÿ²$ÿ®"ÿ ¬!ÿ ¨!ÿ ¥"ÿ £#ÿ £#ÿ £#ÿ ÿ8ÿ<ÿ?ÿ? ÿCÿDÿBø>$í;.ä79Ý5EÖ5RÐ6]Ì7gÈ7pÅ7yÁ7‚¿7Œ¼7–¹6¡¶6®³4À°3Ù¬2ò ¨1ÿ ¤/ÿ ¡-ÿ ž,ÿ ›-ÿ ™-ÿ ˜-ÿ ˜-ÿ ˜-ÿ ÿ;ÿ@ÿC ÿEÿJ ÿKúIìDá?%×?2ÏA@ÈCLÃCX¾CbºCk·Ct ´B} ±B‡ ®A‘ «Aœ ¨@© ¦>º £=ÒŸ<î›:ÿ˜9ÿ•7ÿ“5ÿ‘5ÿ5ÿŽ5ÿŽ5ÿŽ5ÿÿ>ÿCÿFÿKÿP ÿQ ïN áHÔGËL,ÃN;¼OG·NS²N] ®Mf «Lo ¨Lx¥K‚¢JŒŸI˜H¥šGµ—EÍ”DëBÿŽ@ÿ‹>ÿ‰=ÿˆ<ÿ†<ÿ†;ÿ†;ÿ†;ÿÿAÿF ÿJÿQÿUëVÚUÒRÉSÀW'¹X6²XC­XN¨WY ¤Vb¡UkžTt›S}˜Rˆ•Q“’O¡N±ŒLȉJè†Iÿ„Gÿ‚Eÿ€DÿCÿBÿ~Aÿ~Aÿ~AÿÿCÿIÿMÿUòZÛ\Ñ^É]À\·`#°a2ªa?¤`J  _U œ]^˜\g•[p’ZzX„ŒW‰V…T­‚RÄPä}Oÿ{MÿyKÿxJÿxHÿxGÿwFÿwFÿwFÿÿEÿKÿQÿYà^ÔcËfÂe¸e ¯h©i/¢h;gG ˜fQ”d[cdamŠ`v†^€ƒ]Œ€[š |Zª!yXÀ!vVá!tTý sSÿrQÿrOÿrMÿrLÿrKÿrKÿrKÿÿG ÿNÿU÷]ÛdÏiÆl¼m±l©o¢p+œo8–nD ’lNkX‰ia†gj‚fs~d}{c‰!wa—#t_§$q]½$n[ß$mZü"kXÿ kVÿkTÿlRÿlPÿlOÿlOÿlOÿÿJ ÿPÿXèaÖiËoÁr·t«s¢uœv(–v5tA ‹sK‡qU‚o^~ng{lpwjz sh†"pg”$le¤&icº&faÜ&e_û$d]ÿ"d[ÿ eXÿfVÿgUÿgTÿgTÿgTÿÿLÿSÿ\àeÒnÇt½x²z¥zœ|–}$|2Š{>…yI €wR|v[xtdtrmppw loƒ#hm‘&ek¢'ai·(^gÙ'^eù%]cÿ#^`ÿ!_]ÿa[ÿaYÿbXÿbXÿbXÿÿNÿUû`ÜjÎsÄy¹~¯Ÿ•‚ƒ!Šƒ/„‚;€F z~Pu}Yq{bmykiwu eu#at&]r (Zoµ(WmÕ(Vkø&Vhÿ$Wfÿ"Ycÿ [`ÿ\]ÿ\\ÿ\\ÿ\\ÿÿQÿXìdØoËxÀ¶„«‡šˆ‰ˆŠƒŠ,~‰8x‡C s†Mo„Vk‚_fhbr^}~"Z{%Vyž'Rv³(OtÓ'Oq÷&Onÿ$Pkÿ"Sgÿ UdÿVbÿWaÿWaÿWaÿÿTÿ\áiÒuÇ~½…²Š§–Žˆ‘|‘'v‘5q@mŽJ hŒSd‹]_‰f[‡pW…| Rƒ‹#Nœ%K~±&H|Ñ&Gyö%Guÿ#Hrÿ"Kmÿ NjÿOgÿPfÿPfÿPfÿÿWÿbÝoÎ{Ĺ‹¯¢““”€—x™s™"o™0j˜<f–F a•P]”ZX’dTnOŽzK‰ G‹š"Cˆ°#A…Ï"@‚õ"?~ÿ!@zÿ CuÿFqÿHnÿIlÿIlÿIlÿÿ[ìh×vÊ‚¿‹µ’¬—ž˜š{žo j¡f¡+b 7^ BYžM UWQœaLšlH™xD—‡@•™<“®:Ï9Œõ8ˆÿ7„ÿ;~ÿ>yÿ@uÿAsÿAsÿAsÿÿ`áoÑ~ʼn»’²˜¨šŸ‹¡z¥h©_«[«#Xª1Tª=Q©HM¨S I§^ E¥iA¤v=¢…9¡—6ž­3œÎ3˜õ1“ÿ/ÿ2‰ÿ5ƒÿ8ÿ9|ÿ9|ÿ9|ÿøgÚxˆÁ‘·™®Ÿ¤£–¦†©v¬d°TµO¶L¶(I¶5FµBCµM@´Y<³e9±r 5°‚ 2®•/¬«-©Ì,¥õ* ÿ(›ÿ)–ÿ,ÿ.‹ÿ/ˆÿ/ˆÿ/ˆÿãq҂Ƽ™³ ª¥©Ž¬¯o²_·O½Bà >Ä<Ä)9Ä77ÄD5ÃQ2Ã_/Âm,Á~*¿‘'½©%ºÊ$´ó"®ÿ ©ÿ ¥ÿ!ÿ$˜ÿ%•ÿ%•ÿ%•ÿÚ}ËÁ˜¸ ¯¦£ª•®†±vµg¹Y¾KÄ=Ë0Ó ,Õ*Õ((Õ6&ÕD%ÕT#Õd!ÔuÓŠÑ£ÎÄÈñÁÿ»ÿµÿ¯ÿ¨ÿ ¤ÿ ¤ÿ ¤ÿ Љŗ¼ ³§¨«š°‹´|·m»_¿QÅDË8Ñ,Ú#è !éé'ê4êBêSêfé{è” æ³áäÚÿÑÿËÿÇÿ ½ÿ ¸ÿ ¸ÿ ¸ÿÉ•¿ ¶§­¬Ÿ±¶€¹q¾cÂVÇIÌ>Ó3Ú(áêû üü$ý0 ý>üQüfü~ùœôÈð÷ìÿèÿâÿÙÿÒÿÒÿÒÿ ¹¨°­£²“·„¼tÀfÅYÊLÐAÖ6Ý,â#çìýÿ ÿÿÿ*ÿ9ÿLÿdÿ€ÿ¦ÿÝÿÿýÿúÿôÿïÿïÿïÿ»¨³­§²˜¸ˆ¼xÂiÈ[ÎNÔCÛ8á.æ%êîò üÿÿÿ ÿÿ"ÿ2ÿFÿ`ÿÿ©ÿèÿÿÿÿÿÿÿÿÿÿÿÿ¶®«²œ·¼~ÀoÆaÌTÓGÜ;ã0é&ïóö ùüÿÿÿÿÿ ÿÿ*ÿ>ÿZÿ}ÿ¨ÿóÿÿÿÿÿÿÿÿÿÿ®± ·’»ƒ¿uÄgÊZÐNØBß8å.ë%ðõù ýÿÿÿÿÿÿÿÿÿ"ÿ7ÿSÿuÿžÿÑÿÿÿÿÿÿÿÿÿ0ÿ.ÿ.ÿ 0ÿ4ÿ9ÿ@ÿIÿTÿ`ÿlÿxÿ‚ÿ‹ÿ“ÿšÿ¢ÿ©ÿ±ÿ»ÿÉÿãÿôÿÿÿÿÿÿÿÿÿÿÿÿÿÿûÿûÿûÿÿ.ÿ,ÿ,ÿ-ÿ1ÿ6ÿ=ÿFÿPÿ]ÿiÿtÿ}ÿ†ÿŽÿ•ÿœÿ£ÿ«ÿ´ÿÄÿÚÿìÿüÿÿÿÿÿÿÿÿþÿøÿôÿôÿôÿÿ+ÿ)ÿ)ÿ*ÿ -ÿ2ÿ8ÿBÿLÿXÿdÿoÿxÿÿ‰ÿÿ—ÿÿ¥ÿ¯ÿ½ÿÎÿãÿöÿÿÿÿÿÿüÿöÿñÿíÿíÿíÿÿ!(ÿ!&ÿ%ÿ&ÿ)ÿ.ÿ4ÿ=ÿGÿSÿ_ÿjÿsÿ{ÿƒÿŠÿ‘ÿ˜ÿŸÿªÿµÿÄÿÚÿïüÿ÷ÿöÿôÿíÿèÿãÿãÿãÿÿ$%ÿ$"ÿ"!ÿ!ÿ$ÿ (ÿ0ÿ9ÿCÿNÿZÿdÿnÿvÿ~ÿ…üŒú“ùœø¥ö¯õ½óÐñçìýéÿçÿæÿãÿÝÿÕÿÕÿÕÿÿ("ÿ(ÿ&ÿ!ÿÿ#ÿ,ÿ5ÿ?ÿIÿUÿ_ÿiüq÷yó€ð‡îì—ë é«æ¸äÊàåÛùÙÿÕÿÓÿÑÿÍÿÇÿÇÿÇÿÿ+ÿ,ÿ+ÿ&ÿ ÿÿ(ÿ0ÿ :ÿDüP÷Zódïmêtå|ã„áŒß”ÜÚ¨Ö¶ÓÉÏâËöÈÿÄÿÀÿ½ÿ¼ÿ·ÿ·ÿ·ÿÿ.ÿ0ÿ.ÿ+ÿ)ÿ(ÿ%#ÿ ,ü5ô?îJè Uã _ß hÜ qØ yÕ Ò ŠÏ “Í Ê ¨Ç ·Ä ËÀ æ» ý· ÿ³ ÿ° ÿ® ÿ¬ ÿ¨ ÿ¨ ÿ¨ ÿÿ1ÿ3ÿ3 ÿ/ÿ2ÿ1ÿ-ù(%î"/æ9ÞEØPÒ[ÎdËmÇ uÄ!}Â!†¿!¼"šº!¥·!´´ɱä¬û¨ÿ¥ÿ¢ÿ ÿžÿœÿœÿœÿÿ4ÿ7ÿ7ÿ7ÿ9 ÿ8ù3ë-à'&Ö%2Ï)?É+KÃ-V¿/`¼0i¹0q¶0y³0‚±0Œ®0–¬/¢©/°¦-Ä£,àŸ+øœ*ÿ˜(ÿ–&ÿ•$ÿ“#ÿ‘$ÿ‘$ÿ‘$ÿÿ7ÿ: ÿ:ÿ>ÿ@ú>í8 Þ/Ò/É4,Á7:»:F·;Q³;[¯ÿDùFßCÖAÐ;Æ=½A'¶D5±EB¬FM¨FW¤F`¡EiŸEqœEz šDƒ —DŽ ”Cš ’A¨ @» Œ>Ö ‰=ó †;ÿ „9ÿ ‚7ÿ €5ÿ 4ÿ ~4ÿ ~4ÿ ~4ÿ ÿ= ÿ@ÿBÿIâK×NÍMÅI¼H³L"­N1§O>£OIŸOS›O\˜Ne •Mm “Mv L KŠŠJ–ˆH¤…G·‚EÑCñ|Bÿz@ÿy=ÿx<ÿw;ÿ v:ÿ v:ÿ v:ÿ ÿ? ÿBÿGõNÜSÐVÆW½T³R «U¥W-ŸX:›XE—WO“VY Ua Tj ŠSr‡R|„Q†P“~O¡{M³xKÎvIïtHÿrFÿqCÿpBÿp@ÿp?ÿp?ÿp?ÿÿAÿEÿKäR×YË]Á_·]¬Z¤]ž_*™_6”_B^LŒ]U ‰\^ …[f‚ZoYx|WƒyVvUžsS°pQÊnOílMÿkKÿjIÿjGÿjEÿjDÿjDÿjDÿÿCÿGÿOàWÒ_Çc¼e±d¥bd—e&’f3e?‰dI…cR ‚b[~ad{`lx^vu]€q\nZœkX®hVÈfTëeRÿdPÿdNÿdLÿdJÿeIÿeHÿeHÿÿEÿJöSÜ]ÎdÃi¸l¬jŸh—j‘l#Œl0‡k<ƒjFiP {hXxgatejqdsnc~ja‹g`™d^«a\Å_Zé^Xÿ^Uÿ]Sÿ^Qÿ_Oÿ_Mÿ_Mÿ_MÿÿGÿKéWØbÊi¿oµq§p™o‘p ‹r†r-r9}pCyoM unVqm^nkgjjpgh{dgˆ`e—]c©ZaÃX_çX]ÿWZÿWXÿXUÿYSÿZQÿZQÿZQÿÿJÿOã\ÓgÇn¼t°v£u“u‹w …x€x*{x6wwAsvJ otS ks\hredpn`oy]m†Yk•Vi§SgÀQdåQbÿQ_ÿQ]ÿSZÿTWÿUUÿUUÿUUÿÿLÿTßaÏlÄt¹z¬{Ÿ{Ž|…}~~y&u3p~>l|Gh{Q ezYayb]wlZuwVt„Rr“Op¥Lm¾JkäJhÿJeÿJcÿL_ÿN\ÿOZÿOZÿOZÿÿOóYÛfÌqÀz¶€¨€š€‹‚~„v†r†"n†/j…:f„DbƒN ^‚W Z€`WjS}tO{‚Ky‘Hw¤Eu½CrâCoÿClÿCiÿEeÿGbÿI_ÿI_ÿI_ÿÿRæ_ÕmÈw½€³†¤…–†‡ˆw‹n iŽfŽ*b6^A[ŒKWŠT S‰] OˆgL†rH„€D‚A€¢>~»<{álÿ@iÿBfÿBfÿBfÿÿVàfÐsÃ~¹‡®‹Ÿ‹’Œ„Žs’f•`–\–$Y–1V•<S”GO”QL’[ H‘e DpAŽ~=Ž:‹¡7ˆº6…á5ÿ4}ÿ4yÿ6tÿ8pÿ:mÿ:mÿ:mÿó]ÚnË{¿†¶Žª‘œ‘Ž’€”p˜aœUŸ QŸOŸ*LŸ6IžAFLCW@œb<šm 9™{ 6—Œ 3–Ÿ0“¹/à.Œÿ,‡ÿ,ƒÿ-ÿ/zÿ2vÿ2vÿ2vÿåfÓwÆ„»Ž²•¦—™—Š™|œmŸ]¤N§E©B© @©.>©:<¨E9¨Q6§]4¦i1¥x.£‰+¢)Ÿ·'œß&˜ÿ %“ÿ $ÿ #‹ÿ &†ÿ (ÿ (ÿ (ÿ ÝqÌ€Á·•¯œ£ž”Ÿ†¡w¤i¨Z¬J¯;³4µ2µ"0µ/.µ;,µH+´U)´c&³r$±„"°™ ­´ªÜ¥þ ÿ›ÿ˜ÿ’ÿŽÿÿÿÓ|Æ‹¼•³«¢Ÿ¥‘¨ªq­c¯T³E·7»*Á"Å Å Å-Å:ÅHÄXÃhÃ|Á’¾­»Ôµü®ÿªÿ¦ÿ¡ÿœÿœÿœÿˈÀ•·ž¯£¥§–«‡­x°i³[¶Mº?¿3Ä'ÉÏÖ Ø Ø) Ø8×HÖZÕmÔ„ў;ÈìÂÿ½ÿ·ÿ³ÿ®ÿ®ÿ®ÿÄ”»ž³¥ª¨›­Œ°|³m·_ºR¾EÂ9Ç-Ì"ÒÙ Þé çæ%ç4èFéZèpè‹å©ãÙÝÿÕÿÐÿÌÿÃÿÂÿÂÿ¾ž¶¦­ª ®³€¶qºc¾UÃHÇ<Ì1Ñ'×Ýâ æì÷öõõ.øBúYúrúø´öîóÿîÿçÿßÿßÿßÿ¸¦°«¤¯”´„¹t½fÃXÇKÍ?Ò4Ø*Þ âæêîðüÿÿ ÿÿ(ÿ<ÿVÿsÿ•ÿÆÿûÿÿÿÿøÿøÿøÿ³¬¨°™´Š¹{½lÂ^ÇPÎCÕ7Þ+ä"èìðóöøüÿÿÿÿÿ!ÿ6ÿRÿrÿ—ÿÌÿÿÿÿÿÿÿÿÿÿ¬¯ž´¸¼rÁeÆWÌKÒ?Ú4á)çìñ öúþÿÿÿÿÿÿÿÿÿ/ÿMÿpÿ—ÿÃÿ÷ÿÿÿÿÿÿÿ-ÿ,ÿ ,ÿ.ÿ0ÿ6ÿ<ÿFÿRÿ^ÿkÿuÿ~ÿ‡ÿŽÿ•ÿœÿ¢ÿªÿ³ÿ¿ÿÎÿçÿýÿÿÿÿÿÿÿÿÿÿûÿ÷ÿõÿõÿÿ+ÿ)ÿ )ÿ+ÿ.ÿ2ÿ9ÿBÿNÿZÿfÿpÿyÿÿ‰ÿÿ–ÿÿ¤ÿ¬ÿ·ÿÅÿâÿõÿÿÿÿÿÿÿÿúÿôÿïÿíÿíÿÿ(ÿ&ÿ&ÿ 'ÿ*ÿ.ÿ4ÿ=ÿIÿVÿaÿkÿtÿ|ÿƒÿŠÿÿ—ÿžÿ¥ÿ¯ÿ¿ÿÕÿíÿÿÿÿþÿúÿñÿéÿãÿàÿàÿÿ%ÿ#ÿ"ÿ "ÿ%ÿ(ÿ0ÿ9ÿEÿQÿ\ÿfÿnÿvÿ}ÿ„ÿŠÿ‘ÿ˜þŸý©ü¸øÊõãóùñÿðÿîÿãÿÜÿ×ÿÕÿÕÿÿ"ÿÿÿÿÿ#ÿ,ÿ5ÿ@ÿKÿWÿaýiûpùw÷~ö„ô‹ò’ñšï¥ì±èÁåÚãñáÿÞÿÚÿÕÿÏÿÊÿÈÿÈÿÿ"ÿ!ÿÿÿ ÿ ÿ(ÿ0ÿ;ÿFýQö[ñcîkìréyçå†ãá–Þ Ú«Ö»ÓÐÐìÍÿÉÿÅÿÃÿÁÿ½ÿ¼ÿ¼ÿÿ&ÿ%ÿ!ÿÿÿÿ #ÿ,ÿ6ù@ïKèUä^àfÝmÚt×{ԂъΓËȨŷÂÍ¿è»û·ÿµÿ³ÿ°ÿ­ÿ«ÿ«ÿÿ*ÿ)ÿ% ÿÿÿÿû &ñ0é:ßEÚPÔYÐaÍiÊpÇxĈ¿‘¼›º§··´̰ç¬ü©ÿ¥ÿ£ÿ¡ÿ ÿŸÿŸÿÿ-ÿ, ÿ)ÿ&ÿ' ÿ#úìâ (Ø 3Ð ?ËJÆTÂ]¾e»m¹t¶|´…±¯š¬¦©·§ΣëŸÿœÿ™ÿ—ÿ–ÿ•ÿ“ÿ“ÿÿ/ÿ0ÿ,ÿ.ÿ.ø)ë! ÝÒÉ-Â9¼"E·$O´%X°&a®'i«(q©(y¦(‚¤(Œ¢(–Ÿ(£'´š%Ê—%è“#ÿ"ÿŽ ÿŒÿ‹ÿŠÿ‰ÿ‰ÿÿ2 ÿ3ÿ0ÿ5ò4Þ0Õ,Î$ Ä&¼+'µ.4°0@¬2K¨3T¥4]¢4e 4mž5u›5~™4ˆ–4“”3 ’2°1ÆŒ/å‰.ý†,ÿƒ)ÿ‚'ÿ%ÿ$ÿ$ÿ$ÿÿ5ÿ5ÿ6ú;à<Ô>Ë;Â5¹3±7"«:0¦<<¢=Gž>P›>Y˜>b–>j”>r‘>z=„Œ=Š<‡;­„9‚7â~6ü|4ÿz2ÿx/ÿw-ÿw,ÿv,ÿv,ÿÿ8ÿ8ÿ<æ@ÙFÍHÂG¸A¯> ¨B¢D+F8™GC•GM’GVG^Ff‹FnˆEw…EƒDŒ €Cš }B© z@¿ x>ß u<ú s:ÿ r8ÿ p6ÿp4ÿo3ÿo2ÿo2ÿÿ:ÿ;ÿ@áGÓNÇQ»P°K§H KšM(–O4’O?ŽOI‹ORˆN[…Nc‚Mk€Lt }K~ zJ‰ wI— tH¦ rF¼ oDÜ mBù k@ÿ j>ÿ i<ÿ i9ÿi8ÿh8ÿh8ÿÿ<ÿ=òDÜNÎUÂXµWªT Q™S“U$V1‹V<‡VF„UO€UX~T`{Sh xRq uQ{ rP†pO”mM¤jL¹gJÙfHødFÿ cCÿ cAÿ b?ÿ b>ÿ c=ÿ c=ÿ ÿ>ÿ?çIØTÊ[¾^°]¤ZšX“Z[!‰\.„]9\C}\Lz[UwZ] tYf qXn nWxkV„iT’fS¢cQ¶`OÕ_Mö^Kÿ]Iÿ \Fÿ \Dÿ ]Bÿ ]Bÿ ]Bÿ ÿ@ÿCãOÓYÆ`ºc«bŸ`”_` ‡b‚c+~c6zbAwbJtaRq`[ n_c k^lh]ve[‚bZ_Y \V´YTÓXRõXPÿWMÿWKÿ WHÿ XGÿ XFÿ XFÿ ÿBþGàTÐ^Ãeµh§g›fe‡f g|h'xi4th>qgGnfPkfX hea ecjbbt^a[_X^žU\²SYÑRWôQUÿQRÿQOÿRMÿ RKÿ SJÿ SJÿ ÿDòKÜYÌcÀj±l£k—k‰klzmvn$rn0on;kmDhlMelV bk^ ^jg [hqXg}Ue‹RcœOa±L_ÏK\óKZÿKWÿKTÿLRÿ MPÿ MOÿ MOÿ ÿFèPØ^Éh½p­pŸp“p‚qzrstot lu-ht8etBbsK^rS[q\ Xpe UnoQm{Nk‰KjšHg¯FeÍEbòD`ÿD]ÿEZÿFWÿ GUÿ HTÿ HTÿ ÿIäWÒdÅnºu©u›tuwsyl{ h{d{)a{4^{>[zHXyQUxZ Qwc Nvm KtyGr‡Dq˜Ao­?lË>iñ>fÿ>cÿ>`ÿ?]ÿ AZÿ AYÿ AYÿ ýMß]ÎjÁtµ{¤z—y‹z||n€e‚_ƒ\ƒ$Yƒ0Vƒ;T‚DQNM€WJaG~k D|w @{†=y—:w¬8tÊ8qð7mÿ7jÿ7gÿ8cÿ :aÿ ;_ÿ ;_ÿ ëTÙdÉq¾{°€ “‡y‚j†^ŠV‹S‹P‹*M‹6K‹@HŠJE‰SBˆ^?‡h<†u 9„„ 6‚• 4€ª 1~É 1zð 0vÿ 0rÿ 0oÿ 0kÿ 2hÿ 3gÿ 3gÿ å\ÒlÅyºƒ«…œ„„ƒ…uˆfZM”G”E”#B”/@”:>“D<“O:’Z7‘e4r1/“,‹©*ˆÇ*„ï)€ÿ(|ÿ 'xÿ (uÿ *qÿ +pÿ +pÿ ÞfÌuÀ¶Š§‹™ŠŒŠŒqd”V˜H›<ž 8ž6ž&4ž22=1H/T-œ`+›n(š~&˜$–¦"”Å!î ‹ÿ†ÿƒÿÿ |ÿ!zÿ!zÿÕpÇ¼Š³’£‘–ˆ‘{”m˜`œR D£6¦+© (©&©'%©3#¨>!¨K ¨X§g¦x¤Œ¢¢ Áœì—ÿ“ÿŽÿ‹ÿˆÿ†ÿ†ÿÍ{Á‰¸“¯š ˜“˜…›wžj¡]¥O©@¬3¯&²¶ ¶¶%¶2¶?¶M µ] ´n ²‚°™­µ©à¤ÿ ÿœÿ™ÿ–ÿ “ÿ “ÿƇ¼“´›« Ÿ¡£¦tªe¬V®H±;´.¸"»À ÄÆÆ"Å0Å>ÅNÄ`ÂtÀŒ½§¹Ìµ÷°ÿ¬ÿ¨ÿ¤ÿ¢ÿ¢ÿ¿“·œ¯¢§¥˜©‰«y®j°\³M¶A¹4½)ÁÅÊÎÒÓÕÖ,Ù<ÛNÙbÖzԗиÍíÇÿÀÿ¼ÿ¸ÿµÿµÿº²£«§«®}±nµ`¸R¼E¿9Ã-Ç"ÌÐ ÕÙÞáä çé'ì8ðLðdîí¢éÏæÿãÿÞÿÒÿÍÿÍÿµ¤­¨¡¬’±´q¸c½UÁGÆ;Ê0Ï&ÓÙÞáåçëîòöù!þ4ÿJÿeÿ„ÿ¬ÿìýÿúÿñÿîÿîÿ°©¥­—²‡µx¹i¾ZÃLÉ>Ð2×'Ýáå éìïòóöúþÿ ÿÿ/ÿGÿfÿ‰ÿ²ÿ÷ÿÿÿÿÿÿÿÿ©­›²¶~¹p¾bÂTÈGÎ;Ô/Ü$ãèíòöùûüþÿÿÿÿÿÿ)ÿDÿeÿŠÿ±ÿëÿÿÿÿÿÿÿ +ÿ)ÿ*ÿ*ÿ-ÿ2ÿ:ÿDÿQÿ]ÿhÿqÿyÿÿˆÿÿ–ÿœÿ¤ÿ¬ÿ·ÿÅÿØÿïÿÿÿÿÿÿÿÿüÿôÿïÿëÿëÿÿ(ÿ &ÿ&ÿ'ÿ*ÿ.ÿ6ÿ@ÿMÿYÿdÿlÿtÿ{ÿƒÿ‰ÿÿ–ÿÿ¥ÿ¯ÿ»ÿÌÿéÿÿÿÿÿÿýÿóÿëÿæÿãÿãÿÿ%ÿ#ÿ"ÿ$ÿ%ÿ)ÿ0ÿ;ÿHÿTÿ_ÿgÿoÿuÿ}ÿƒÿŠÿÿ—ÿžÿ§ÿ²þÃýâüøúÿùÿòÿèÿáÿÜÿÙÿÙÿÿ"ÿ ÿ ÿÿ ÿ#ÿ,ÿ7ÿCÿNÿYÿaÿiÿpÿwÿ}ýƒüŠû‘ø˜õ òªð½îÔíîëÿçÿäÿÝÿÓÿÍÿÊÿÊÿÿÿÿÿÿÿÿ'ÿ2ÿ=ÿIþSû[øcõjóqñwï}í„ê‹æ’ãšá¦ßµÝÉÚåÔûÑÿÏÿÌÿÅÿÀÿ¼ÿ¼ÿÿÿÿÿÿÿÿ#ÿ-þ8ôCñMíVé^æeãkàrÝxÚ~Ö…ÓіΡˮÈÁÄÛÁô¾ÿ¼ÿºÿµÿ°ÿ®ÿ®ÿÿ ÿÿ ÿ ÿÿÿÿ'í1ç<âFÞPÙXÔ`ÐfÍmÊsÇzʼnÀ“½ºª¶»³Ô°ð®ÿªÿ§ÿ¦ÿ¥ÿ£ÿ£ÿÿ#ÿ ÿÿÿ ÿ üî ß+Ø6Ñ@ÌJÈSÃ[Àb½i»o¸v¶~´†±®›«¨¨¹¦Ñ£íŸÿœÿ›ÿ™ÿ˜ÿ—ÿ—ÿÿ& ÿ$ÿÿÿúì ÚÑ#Ê/Ã:¾D¹ M¶ V³ ^° e®l«t©|§…¤¢› ©»š Õ– ò“ ÿ ÿŽ ÿÿŒÿ‹ÿ‹ÿÿ) ÿ'ÿ"ÿ$ð ßÕÎ Å ¼(¶4±>¬H©Q¦Z£a¡iŸp x› ˜ Œ– ˜“¦‘¹ŽÓ‹ñˆÿ…ÿƒÿ‚ÿÿ€ÿ€ÿÿ,ÿ*ÿ)ó*ß,Ó+Ç'¿ ¸°""ª%/¥':¡)Dž*M›+V™,^–,e”-m’-u-~Ž-‰‹,•‰+£†*¶„(Ѐ'ï}%ÿ{#ÿy!ÿxÿwÿwÿwÿÿ/ÿ,ÿ/ä3Ö8É8¼4´/­*¦. 1*œ36˜4@•5J’6R7Z7b‹7j‰7r†7{„6†6’5¡|3³z2Íw0ít.ÿr,ÿq)ÿp'ÿo%ÿo$ÿo$ÿÿ1ÿ.ó4Þ<ÏBÀB´?«:¤68˜;&“=2><Œ?FŠ?O‡?W…?_‚?g€?o}>x{>ƒx=v<žs;°q9Én7ël5ÿj2ÿi0ÿh.ÿh,ÿg+ÿg+ÿÿ3ÿ2è:ÙDÊJºI­G¤Bœ@–AC"ŒE.ˆF9…GC‚GLGT}F\zFdxFluEusD€pCnB›kA­i?Çf=ée;ÿc8ÿb6ÿa4ÿa2ÿa1ÿa1ÿÿ5ÿ6äAÓJÆP´O§NžK–HI‰K…L+M6~N@{NIxMQvMYsLaqLjnKslJ}iIŠ fH™ dF« aDÄ _Bç ]@ÿ\>ÿ\;ÿ[9ÿ[7ÿ[6ÿ[6ÿÿ7ù:àFÏPÁU°T£S™QO‰P ƒR~S({T3xT=uTFrSOoSWmR_jRghQpeP{ bOˆ `M— ]L© ZJ XGå WEÿ VCÿV@ÿV>ÿU<ÿV:ÿV:ÿÿ8í>ÜLÌV¼Z«YŸX”WŠUƒW}XxY%uZ1rZ;oZDlYLjYTgX]dWebVn _Uy \T† YS• WQ§ TOÀ RLä QJÿ QGÿ PEÿPBÿP@ÿP?ÿP?ÿÿ:éCØQÈ[¸^§^›]\„[}]w^r_"o_.l`8i_Af_Jd^Ra^Z^]c\\l Y[w VY„ SX“ PV¥ NT¾ LQâ KOÿ KLÿ KIÿKGÿKEÿKCÿKCÿÿ<åIÓVÅ`³b£b—aŒa~awcpdleie*fe5ce>`eG^dO[dXXcaVbj S`u P_‚ M]’ J\¤ GY¼ FWá ETÿ EQÿ ENÿ ELÿEJÿFHÿFHÿÿ?áOÐ\Âe¯fŸf“fˆfxgqijj fkbk'`k2]k;ZkDXjMUjURi^OhhLfs Ie€ Fd Cb¢ A_» ?]à ?Zþ ?Wÿ ?Tÿ ?Qÿ?Oÿ@Mÿ@MÿñDÝUÌb¿k«jœjj„jtmkocq^r[r#Xr.Vr8SqAQqJNpSKo\HnfFmqCl~ @jŽ =h¡ ;f¹ 9dß 9`þ 9]ÿ 9Zÿ9Wÿ9Uÿ:Sÿ:SÿêKØ\Èhºp¦o—n‹n€oqrgu\xVySyPy)Ny4Ky=IxFGxPDwYAvc>uo€L<V9a7~l4|z2{Š/yž-v¶+tÜ+pý+lÿ*hÿ+eÿ+cÿ,`ÿ,`ÿÞ\Ìk¿v¯zyx„xxyl}^S…Fˆ>Š;Š9Š(7Š25Š<4‰F2‰Q0ˆ].‡i,†w)…ˆ'ƒœ%€µ#}Ú#yü#uÿ"qÿ#nÿ"lÿ$iÿ$iÿÖeÇs»©€™~Œ}~t€h„Z‰NŒB5“/”-”+”*)“5(“?&“J$’V"’d!‘r„Ž™‹²ˆ×ƒüÿ{ÿxÿuÿsÿsÿÎoÁ}·‡¤†•„‰„}…pˆdŒWJ”>—1›$žŸž ž+ž6žAN\œl›~™” –¬ “Ï ÷ Šÿ †ÿ ƒÿ ÿ~ÿ~ÿÇz¼‡² Œ“‹‡‹yŽl’`–SšF:¡.£!¦© ª ªª*ª6©C¨R§b¦t¤‰¢¢ŸÁ›ì—ÿ“ÿÿŒÿŠÿŠÿÁ†¸‘­–ž“’“ƒ•u™i]¡P¥C¨6«*­°³¶···)·6·D¶Uµg´}±–®´ªâ¦ÿ¡ÿžÿœÿ™ÿ™ÿ»‘³š«žžœž¢s¦gªX­J¯=±0´$·º ½ÀÃÄÅÆ'Ç5ÉDÉXÈmdžĥ¿Ñ»ÿµÿ±ÿ­ÿ©ÿ©ÿ¶›¯¡¨¤š¨‹ªz­k°\²NµA¸5»)¾ÂÅ ÉËÏÒÕ ÙÜ"ß2âDãZâtá‘à¹ÚïÒÿÎÿÄÿ¾ÿ¾ÿ²¢«¦Ÿ©­°o´`·Q»DÀ8Ã,Ç"ÊÎ ÒÖÛÝáäèì ñõ-øBú\ùzøœøÑõÿòÿçÿÞÿÞÿ­§£«”¯„²t¶eºV¿HÅ:Ê/Ï$ÔØÝáåèêìîó÷üÿÿ(ÿ>ÿ]ÿ€ÿ§ÿçÿÿÿÿÿÿÿÿ§«™¯Š³{¶mº^¿QÄCÊ7Ð+×Þäéîðóõöøúÿÿÿÿÿ$ÿ<ÿ[ÿ‚ÿ¯ÿìÿÿÿÿÿÿÿ(ÿ'ÿ&ÿ'ÿ)ÿ0ÿ8ÿCÿPÿ\ÿdÿmÿtÿ{ÿ‚ÿ‰ÿÿ—ÿžÿ¥ÿ¯ÿ¼ÿÎÿæÿúÿÿÿÿÿÿöÿîÿéÿåÿäÿÿ %ÿ$ÿ#ÿ#ÿ%ÿ+ÿ3ÿ>ÿKÿVÿ_ÿhÿoÿvÿ|ÿƒÿŠÿÿ—ÿŸÿ¨ÿ³ÿÃÿÚÿôÿÿÿÿöÿíÿåÿßÿÛÿÚÿÿ "ÿ ÿÿÿ ÿ%ÿ-ÿ9ÿFÿQÿZÿbÿiÿpÿvÿ}ÿƒÿŠÿþ˜ü û«ù¹øÌöîôÿðÿìÿâÿÙÿÓÿÏÿÎÿÿÿ ÿÿÿÿÿ)ÿ4ÿ@ÿKÿTÿ\ÿdýjûpùwö}ôƒñŠï‘í™ë£é¯çÄääàûÞÿÜÿÓÿÊÿÃÿ¿ÿ¾ÿÿÿ ÿÿÿÿÿ$ÿ/ÿ:ûDøNõVñ^îdëkçqäwâ}à„Þ‹Û“ÙըѼÍÖÊòÈÿÅÿÁÿ¸ÿ´ÿ±ÿ°ÿÿÿÿ ÿ ÿÿÿ÷)ñ3ì>èGäPßWÛ_ÖeÓkÑqÎwÌ~É…ÇŽÄ—À¤½´ºÊ·é´ÿ°ÿ®ÿ¬ÿ¨ÿ¦ÿ¥ÿÿÿ ÿ ÿÿ ÿ÷è#á-Ü7ÔAÏIËRÇYÄ`Âf¿l½s»y¸µ‰²“° ­®ªÃ¦à£û¡ÿ ÿžÿÿ›ÿšÿÿ ÿÿ ÿÿÿ âÙÐ'É1Ä;¿D»L¸Tµ[²b°h­n«u©}§†¤‘¢œŸ«œ¿™Ý—ö”ÿ’ÿ‘ÿÿÿÿÿÿÿÿñ ßÔÊ ¼+·5²>®GªO¨W¥^£d¡kŸr{›„˜–›“«¿Ü‹õˆÿ†ÿ…ÿ„ÿƒÿƒÿÿ"ÿÿñàÐÅ¿ ¸± $« /¦9¢BŸKœSšZ˜a–h”p‘x‚Ššˆª…À‚àû}ÿ{ÿy ÿy ÿx ÿx ÿÿ$ÿü ä$Ô'Ã&¸"±¬¥ *›4˜ >”"G’#O#V$^‹$e‰%m‡%u…%‚%‹€$˜}#¨z"¾x Ýuúsÿqÿpÿpÿoÿoÿÿ'ÿ!ë&Ü0Ê3º1¯.§*¢# œ&–)%’*0Ž,:‹-C‰.K†.S„/Z‚/b€/j~/r{/|y/ˆv.–t-¦q+»o)Ûm(øj%ÿi#ÿh ÿgÿgÿgÿÿ)ÿ'æ0Õ9Á;²:§7Ÿ4™0“0Ž2!Š4,†56ƒ6?€7H~7P|8Xy8_w8gu8ps7zq7†n6“l5£i3¹g1Øe/÷c-ÿa*ÿa(ÿ`&ÿ`$ÿ`$ÿÿ*÷+á8ÐA»B¬A¡?˜<’9Œ9†;‚<)~=3{><y>Ev?Mt?Ur?]p?en>ml>wi=ƒg<‘d;¡b:¶_7Õ]5ö\3ÿ[0ÿZ.ÿZ,ÿZ*ÿZ*ÿÿ,í1Ü>ËG¶G¦G›E“B‹@…A B{C%xD0uE9rEBpEJnERlEZiEbgDkeDubC`B]AŸ[?´X=ÒW;õV8ÿU5ÿT3ÿT1ÿT/ÿT/ÿÿ.é7ØDÆL±L¢L—KŽI…FHyIuJ"qK-oK7lK@jLHhKPfKXcK`aJi^Js\IYHWFžTD²RBÐQ@ôP=ÿO:ÿO8ÿN6ÿN4ÿN4ÿÿ/å=ÓJÁP­PžP“P‰N€LyNsOoPlQ*iQ4gQ=dQEbQM`QV]P^[PgYOqVN}SM‹QKœNI±LGÏKDóJBÿI?ÿI<ÿI:ÿI8ÿI8ÿü2âBÐO¼T©TšTT…SzRsTmUiVfW'cW1aW:^WC\WKZVSXV\UUeSToPS{MR‰KPšHO¯FLÍEIòDGÿDDÿDAÿD?ÿD=ÿD<ÿð6ÞHÌT¸X¥X—X‹XXtXmZg[ c\`\$]].[]8Y]@V]IT\QR[ZO[cMZmJYyGXˆDV™BT®@QÌ?Oñ?Lÿ?Iÿ?Fÿ?Cÿ?Bÿ?Aÿì=ÚMÉY³\¡\“\‡\}\o^g`aa\bYb!Vc+Tc5Rc=PbFNbNKaWIaaF`kD_wA]†>\—)H(S&~_$}m"|} {x¥vÃrìnÿjÿgÿdÿbÿbÿÏdÁr­u›tŒs€rvsku_yR}H€<„0ˆ&Š #Š"Š# Š-Š7‰A‰MˆZ‡h†x…Œ‚¢À|êwÿtÿpÿnÿlÿkÿÉn¼{§{–y‰x}xryf}ZN…C‰8Œ, ’• ••$•.”9 ”E “R’a‘q…›ж†Þ‚ÿ~ÿzÿxÿwÿvÿÂy·„¢’€†~{n‚b†V‹JŽ>’3•(˜›ž   $Ÿ/Ÿ;žHžWh›{™’–¬’ÒŽùŠÿ‡ÿ„ÿ‚ÿÿ¼…¯‹žˆ†…†w‰k_‘R–G™;0 $£¥ §ª«««$«/«<«Kª]©p§ˆ¤¢¡Çõ™ÿ•ÿ’ÿÿÿ·ª“›‘Ž‚‘t•h™\žO¢D¦8©,¬!®° ³µ·¸ ¹º!»-½<½N¼cºz¸—´·±ë­ÿ§ÿ¤ÿŸÿžÿ³™©›™›€Ÿs¤f©Y­J¯=±1´%·¹»¾ÀÃÅÈÊÍÐ+Ó;ÖPÕg҄ϨËÝÇÿÃÿ¼ÿ²ÿ±ÿ¯ ¨¤œ§ª|­l¯]²N¶A¹4¼)ÀÂÅ ÈÌÏÐÔØÝá äè)î;òRñnðŽî¼ìÿæÿÞÿÒÿÐÿ«¥ ¨‘¬¯q³b·R»DÀ7Ä+È ÍÐ ÓØÛßàãæëðõùý%ÿ;ÿUÿtÿšÿÎÿÿÿÿõÿóÿ¤©–­ˆ°y´j·[¼MÀ@Æ2Ë&ÑÙ ßãæéíïïòõúÿÿÿ ÿ ÿ9ÿXÿ|ÿ¦ÿÝÿÿÿÿÿÿÿ&ÿ#ÿ#ÿ#ÿ'ÿ-ÿ6ÿBÿMÿWÿ`ÿhÿpÿvÿ}ÿƒÿŠÿ‘ÿ˜ÿŸÿ©ÿµÿÆÿßÿõÿÿÿÿûÿòÿéÿãÿßÿÜÿÿ#ÿ!ÿÿÿ"ÿ'ÿ0ÿ=ÿHÿRÿ[ÿcÿjÿqÿwÿ}ÿƒÿŠÿ‘ÿ™ÿ¡ÿ¬ÿ»ÿÏÿëýÿúÿòÿèÿßÿØÿÒÿÏÿÿÿÿÿÿÿ!ÿ+ÿ7ÿBÿLÿUÿ]ÿdÿkÿqÿwþ}üƒúŠù’÷šö¤ô±òÃîÞëüêÿæÿÛÿÏÿÇÿÂÿÀÿÿÿÿÿÿÿÿ&ÿ1ÿ<ÿEÿNþWù^õdòkðpîvì}ê„è‹æ“äœá¨Ý¸ÚÑ×ôÔÿÒÿÇÿ¾ÿ¹ÿ¶ÿ´ÿÿ ÿÿ ÿ ÿÿÿ!ý+ø5ô?ïGëPçWä^áeÞjÜpÙvÖ}Ԅь͖ɡǯÄÈÁè½ÿ¹ÿ·ÿ±ÿ¬ÿªÿ¨ÿÿÿ ÿÿÿ ÿôí%ç/à8ÜAØJÓQÏXÌ_ÈeÆkÃpÀw¾~¼†¹·š´©±½¬Ûªø§ÿ¦ÿ£ÿ ÿÿœÿÿ ÿÿÿÿí åÜÒ)Ì2È;ÄD¿K¼S¹Y¶_´e²k°r®y«©‹§–£¤ ¶žÐ›ï™ÿ—ÿ–ÿ”ÿ’ÿ‘ÿÿÿ ÿÿïßÓÉÂ#¼-·6³>°F­MªT¨[¦a¤g¡nŸu}›‡™“– “±ÈŽëŒÿŠÿ‰ÿˆÿ‡ÿ‡ÿÿÿ ÿñÞÎżµ¯&«0§9£A IžP›W™]—c•j“r‘z„Šž‡¯…Ç‚ç€ý~ÿ|ÿ{ÿ{ÿ{ÿÿÿ ù äÏÀ¶ ± «¥  *œ4˜ <– D“ L‘ SZa‹h‰p†y„ƒŸ|±y Êw éu ÿsÿrÿqÿqÿpÿÿÿëÙ Ã"µ «¥¡ ›–%’/Ž8‹@‰H†O„V‚]€e~m|vywtœr¯oÉmëkÿiÿhÿhÿg ÿg ÿÿûä%Î*º,¬+¢(›%—’ ‰"+…$4‚%<&D}&L{'Sy'Zw'bu'js'sp'~n'‹l&ši%­g#Æe!écÿaÿ`ÿ`ÿ_ÿ_ÿÿï Þ.Æ3³4¥3›1”.Ž*‰(„*€,'|-0z.9w/Au/Is0Pq0Xo0_m0hk0qi0|f/‰d.˜a-«_+Ä])ç['ÿZ$ÿY"ÿYÿYÿXÿÿ ê)Ù6¿9¬:Ÿ9•85‡3‚1 }3x4#u5-r66p6>n7Fl7Mj7Uh7]f7ed7ob7z_6‡]5–Z4©X2ÂV0æT-ÿS+ÿS(ÿR%ÿR$ÿR#ÿÿ!æ0Ó<º>§?š?>ˆ;9{9v:r; o<*l=3j=;g=Ce>Kd>Sb>[_>c]=m[=xY<…V;•T9§R7ÁP5åN3ÿM0ÿM-ÿM+ÿM)ÿM(ÿø%â6ÎAµC£D–D‹Cƒ@{>u?p@lAiB'fC0dC9aDA_DI^DP\DYZCaWCkUBvSAƒP@“N?¦K<¿I:ãH8ÿH5ÿH2ÿG0ÿG.ÿH-ÿñ*Þ;ÉE±GŸH’H‡G~FvDoEjF fGcH$`I.^I6\I>ZIFXINVIVTI_QHiOHtMG‚JE‘HD¤EA½D?âC<ÿC9ÿB7ÿB4ÿB2ÿB1ÿí1ÚAÄI­KœLŽLƒKzKpJjKdM `N]N"ZN+XO4VO<TODROLPOTNN]LNgIMrGL€DKBI£@G¼>Dá>Aÿ=>ÿ=;ÿ>9ÿ>7ÿ>6ÿé6ÖF¿M¨O˜O‹O€OvOkOdQ^SZSWTTT(RT1PT9NTALTJJTRHT[FSeCRqAQ~>P`D<`M;`V9_a6^m4]z2\‹0ZŸ.X¸-UÝ-Qý,Nÿ-Kÿ-Hÿ-Fÿ-EÿÜJÉX°Zœ[Œ[€[u[k\__WaNdEg@g=g;g&9g/8g76g@4gI3fS1f^/ej-dx+c‰)a'_¶&\Ü&Xý&Uÿ&Qÿ&Oÿ&Mÿ'LÿÕRÄ_ª_—`ˆ_|_q_ha\dSfJi@l7o 4o2o!0o*.o3-n<+nE)nO(mZ&mg$lu"j‡ i›f´cÚ`ü\ÿXÿVÿTÿRÿÏZ¼d¤d’d„dxdndeeYiOlFo;r0v)x'w%w$#w-"w6 w@vJvVuctrsƒq˜n±kÖgûdÿaÿ^ÿ\ÿ[ÿÉdµjžjŽi€huhliakVoKrAv7y,} €&0€9€DP~^ }m |z“w«tÍpô lÿ iÿ gÿ eÿ dÿÃm­p™o‰n}mrmio]rRvFz<~2'„ˆ‹Œ‹‹'‹2Š<ŠI‰Wˆf†x„‚¤~Äzíwÿsÿpÿnÿmÿ½x¦w”u†tzspsewY{NBƒ7‡-‹" “• –––(–3•@•N”^’o‘…Ž‹¼†éƒÿÿ|ÿzÿyÿµ€Ÿ~|ƒzzzm}aU†IŠ>Ž3’(•˜šŸ  ¡¡¢)¢5¢B¡S fž{•™²–á‘ÿÿ‰ÿˆÿ†ÿ­ˆ›…Žƒ„‚v…i‰]ŽQ“F–:š/ž$¡¤¦¨«­­ ®¯°(±5²E±X°n®ˆ¬©§Õ¤ÿ¡ÿ›ÿ—ÿ”ÿ¨™ŽŒ‚Žt’g—[œO¡C¥8©-­!¯± ³µ·¹»½¿ ÁÄ%Æ5ÈHÈ_ÇyĘÃÄ»ù·ÿ²ÿ¬ÿ©ÿ¦™›—™s¢f¨Z­K°>³1¶%¹»¾¿ÂÅÆÉÌÏÔÙÞ"ã3èIçeå†ã«âëÜÿÔÿÈÿÂÿ©£ž¦ª~¬n°^³O·@»4¾(ÂÆÈËÎÑÔÕØÜáåëðõ û3ÿLÿjÿ‘ýÄýÿùÿïÿéÿ¢§”«…®v±g´X¸I½;Â.Ç!ÍÓØÜàâäçèëîóùþÿ ÿÿ4ÿPÿqÿšÿÏÿÿÿÿÿÿÿ"ÿ ÿÿ ÿ#ÿ*ÿ4ÿ>ÿIÿSÿ\ÿcÿkÿqÿxÿ~ÿ„ÿŠÿ’ÿšÿ£ÿ®ÿ½ÿÔÿïÿÿÿÿùÿíÿäÿÝÿÕÿÐÿÿÿÿÿÿÿ#ÿ.ÿ9ÿCÿLÿUÿ]ÿdÿkÿqÿwÿ}ÿ„ÿ‹ÿ“ÿ›ÿ¦þ³üÆùãöûõÿîÿâÿÖÿÌÿÆÿÂÿÿÿÿÿÿÿÿ(ÿ3ÿ=ÿFÿNÿWÿ^ÿeýküqúwø}ö„õ‹ò”ðžíªéºæÓäñâÿàÿÏÿÄÿ¾ÿºÿ·ÿÿÿÿÿ ÿÿÿ#ÿ-ÿ6û?ùHöPóXð_íeêkçpävâ}ß„ÝÚ–Ö¢Ó°ÐÅÍåÊÿÄÿ¾ÿ¶ÿ±ÿ®ÿ¬ÿÿÿ ÿÿÿÿüó'î0ê9çBãJÞQÙXÕ_ÒdÐjÍpËvÉ}Æ…ÃÁš¾§»¹¶Ü³ù°ÿ¯ÿ©ÿ¥ÿ¢ÿ ÿÿ ÿÿÿüó éá!Û+Ó3Î<ËDÇKÄRÁY¾^¼d¹j¶p´w±®ˆ¬“© §±¤Í¢î ÿÿ›ÿ˜ÿ–ÿ”ÿÿÿÿÿîâÕÍÅ%¿.»6¸>µF±M®S«Y©_§e¥k£q¡yŸƒ›š˜«–“ä‘þÿŽÿŒÿŠÿ‰ÿÿ ÿÿîÞÏÄ ¼µ°(¬1¨9¥@¢G NTœZš`˜f–m”u’~‰•‹¦ˆ»†Ú„ù‚ÿ€ÿÿ~ÿ~ÿÿ ÿùáÌ¿·®©¤" +œ4™;–C”I’PVŽ\ŒbŠiˆq†{ƒ†“£|¶yÖwõvÿtÿtÿsÿsÿÿ ÿëÒ ¿±© ¤Ÿ›–&’/7Œ>‰E‡L…RƒY`g}o{ yx …v“s¢q·oÓmòkÿjÿiÿiÿiÿÿõáÇ´§ž˜– ‘  ‰*…2‚:€A}H{OyVw]uesmqwnƒl’j¢g¹eÙcöa ÿ` ÿ`ÿ`ÿ`ÿÿîØ ¾$«&Ÿ%–# ‹ˆƒ%|.y6v>tErLp Sn Zl bj kh uf ca ^¶\Ö[÷YÿXÿXÿXÿXÿÿè Î)¶+¥-˜-*ˆ(ƒ%" {#w$!s%+q&3n';l(Bj(Ih(Pf)Xe)`b)i`)s^)\(ŽY'ŸW%´U"ÔS!öRÿQÿQÿQÿQÿöã(Ç/°2Ÿ3“3‰1‚/|-x+s+o,l-'j.0g/8e/?c0Fa0M_0U^0]\0fY0qW0}U/ŒR.P,³N)ÒM'õL%ÿK"ÿK ÿKÿKÿñß/Á4«7›8Ž8„7}4w3q2m2i3f4$c5-a65_6<]6D[6KY6SW6[U6eS6oQ6{O5ŠL4œJ2±H/ÐF-ôF*ÿE(ÿE%ÿE#ÿE!ÿí$Ú5¼9§;–<Š<€;x9q7l8g9 c:`;"];*[<2Y<:Wl<f>a?]@Z@WA(UA0SA8QA?OBGMBOLAWJAaGAlE@xC?‡A>™?<¯=9Í<7ó;4ÿ;1ÿ<.ÿ<,ÿ<+ÿæ1Ï=³AŸCCƒDxCpBgBaC[EWETFQF%OG-MG5KG=IGDHGMFGUDG_BFj@Ew=D†;C˜9A­7>Ì7;ò78ÿ66ÿ73ÿ71ÿ7/ÿâ6ÊB¯E›FŒGGuGlGaG[IVJQK NLKL"IL+GL3EM:CLBBLJ@LS>L]R7=R?;RH9RQ8R[6Qf4Ps2Oƒ/N•-L«,IÉ+Fð,Bÿ,?ÿ,<ÿ-:ÿ-9ÿÚB¿J¦M“N„NxNnOdOZRSSKUDX?X=Y;Y$9Y,7Y46X<4XE2XN1XX/Wd-Vq+U)T“'R©%OÈ%Lï%Hÿ&Eÿ&Bÿ&@ÿ'>ÿÔI¹O¡QR€RtRjSaTWVPXGZ?]7_ 4_2` 1_(/_0._9,_A*_K)^U'^a%]o#\~!Z‘X¨UÆRîOÿKÿ Hÿ Fÿ DÿÎQ²TœVŠV|VqVgW^XTZL]C_:b1f+g)g'g#&g,$g4"f=!fGfRe^dkc|a_¥\ÄYíUÿRÿOÿMÿKÿÈY«Z–[†[x[mZd[[\Q`Hb?e6h,k!o ooo&o/o8nBnMmZlhkx iŒ g¢ d¾ aç ]ÿ Zÿ WÿUÿSÿ¿_¤`‘`_t_j_b_XbMfDh;k1o'rux y x x( x2w<wGvTubtrr†pœm·iàfþcÿ_ÿ]ÿ\ÿµfžf‹e}dqdhd_eThIl?p6s,v"z} €‚‚‚!‚+5@€M\~l}€z–w±sÚpülÿjÿgÿfÿ¬m—l†kyjoigi[mPqEu:y1|'€ƒ†‰‹ ‹Œ",8ŒE‹TŠeˆy‡‘ƒ«€Ñ{ûxÿtÿsÿqÿ¤t‘rƒqwooocrWwL{@6„,‡!‹ ’•– ——˜#™.™:™J˜\—p•‡“¦ŽË‹ø‡ÿƒÿ€ÿ}ÿ{ywxvly_~SƒG‡<Œ1'”—™›ž ¢£¤¥§"¨.©=¨O§d¦}¤š¢Âœó˜ÿ–ÿÿŒÿ˜ƒŒ‚v‚i‡\ŒP’D–9š.ž#¢¥§©«­°²³´ ¶¸!»/¾@½U¼mº‹·²µï®ÿ«ÿ¤ÿŸÿ—ŒŽŠ‚Œtg–[œN¡B§8ª-®"²´ ¶·º¼½ÀÂÅÉÌÐÕ/ÛCÛ\ÛyØœÕÒÑÿÈÿ½ÿ·ÿš–—œt¢h¨\®L²>¶1¸%»¿ ÂÄÅÉËÌÎÑÖÜâç íô-ùEød÷‡ö±õóôÿçÿÛÿž¤‘©‚¬s¯d²TµEº7¾)ÃÉÍÐÓÖÚÝàßâåëñ÷ýÿÿ.ÿHÿjÿ•ÿÊÿÿÿÿÿÿÿÿÿÿÿ ÿ'ÿ1ÿ:ÿCÿLÿUÿ]ÿeÿlÿrÿxÿ~ÿ…ÿŒÿ“ÿÿ¨ÿ·ÿÌÿèÿÿÿÿøÿêÿÝÿÑÿÊÿÆÿÿÿÿÿÿÿ!ÿ)ÿ3ÿ=ÿFÿOÿWÿ_ÿfÿlÿrÿxÿ~ÿ…þü•ú ø­öÀóÛñöïÿìÿÙÿËÿÃÿ¿ÿ¼ÿÿÿÿÿÿÿÿ$ÿ-ÿ7ÿ@ÿIÿQýXú_øfökôqòwð~î…ìé—æ¤ã´àËÝêÚÿÓÿÆÿ½ÿ·ÿ³ÿ±ÿÿÿ ÿ ÿÿ ÿÿþ(ú1õ:ñCïKìRèYå_ãeàjÝpÙwÕ~цÎʜƪþÀܾø¼ÿ·ÿ¯ÿªÿ§ÿ¥ÿÿ ÿÿÿÿúñë#ã,ß4Ü=ÙDÔLÎRÉXÆ^ÃdÁj¿p½wº¸ˆµ“² °²­Ë«ï©ÿ§ÿ¡ÿÿšÿ™ÿÿÿÿÿôç ÝÒÌ&È/Â7½?»F¸LµR³X°^®d¬iªp¨x¦£‹ ™ž¨œ½šå—ÿ–ÿ”ÿ‘ÿÿÿÿÿÿðáÒÆ¿¹!²)®1¬9ª@§G¥M¢S Xž^œdšj˜r–z”…‘’¡´‹Ö‰÷‡ÿ…ÿ„ÿ‚ÿÿÿÿôáÍÀ¶¯¨¤$¡,ž4›;™B–H”N’S‘Y_f‹m‰v†€„‚›¯}Ë{îyÿyÿxÿwÿvÿÿÿèϽ°©¢ œ™–'’/6=‹CˆI‡O…Uƒ[b~i|rz}x‰v˜sªqÄpènÿmÿlÿlÿlÿÿôÜ ° ¤ œ˜“Œ!ˆ*…2‚8€?~E|KzQxXv_tgrppzm‡k—i¨gÂeåcþbÿbÿaÿaÿÿìη¦š’Š ‡ƒ%|-y 4v ;t Bs Hq Oo Vm]kfiofzdˆa —_ ª] Ã[äZýYÿXÿXÿXÿúäůž “Š„€~ zv s)p1n8l>jEhLfSd[bc`m]x[†Y–V©TÄRéQÿQÿP ÿP ÿPÿó ܾ"¨%˜''„%}#x urnk%h-f 5d ;b!B`!I^"P\"XZ"aX"jV"vT!„Q ”O§MÂKçJÿJÿIÿIÿIÿîÓ#·(¢+“,‡,~+w)r'n%j$ g%d&"a'*_(2](9[(?Y)FW)NU)VS)_Q)hO)tM(‚J'’H&¦F#ÀD!æDÿCÿCÿCÿCÿêÌ)±-0Ž1‚1y0r.m-h+d, `,]-[.'X./V/6T/=S/DQ/KO/TM/]K/gI/rF.€D-‘B,¥@)¿>'å>$ÿ>"ÿ>ÿ>ÿ>ÿæ$Ç-­1™4Š5~5u5n3h1b1^2Z2W3T4%R4,P54N5;M5BK5II5RG5[E5eC4q@4>3<1£:/½9,ã9)ÿ9'ÿ9$ÿ9"ÿ9 ÿâ+Â1¨5–8‡9z9q8j8c5]7X8T8Q9O9"L:*J:1H:8G:?E:GC:PA:Y?:c=9o;9}98Ž76¢54¼41â4.ÿ4+ÿ4)ÿ4&ÿ5%ÿÞ0½5¤9’;ƒ<w<n<f<]:X<S=N> K>H?F?'D?/C?6A@=?@E=?Mn5>|3<1;¡08».6á/3ÿ/0ÿ/-ÿ0+ÿ0)ÿÙ5¸9 =Ž>€?t@j?b@X@RAMBHCEDBD@E$>E,=E3;E;9EC8EK6EU4D`2Dl0Cz.AŒ,@ *=º):à)8ÿ*5ÿ*2ÿ+/ÿ+.ÿÒ9³>œ@‹B|CpCgC_CTENFHHBI>J®B˜D‡FxFmFdG[GQJKKDL=O7P 4Q2Q0Q&/Q.-Q5,Q=*QF(PP&P[%Oh#Nw!MˆKH·EÞBÿ?ÿ<ÿ 9ÿ 8ÿÅC¨F“I‚ItJiJ`JXKNNHOAQ9S0W,X*X(X"&X*%X2#X:"WC WMVYVeUtS†Q›OµLÜHþEÿBÿ@ÿ>ÿ½I£KM~NqNfN]NUOLQES=V5Y,\#_ ___%_-_6_?^I^U]c\rZ„ X™ V² SÖ OûLÿIÿGÿEÿµNœQ‰RyRmRcRZRRSIVAY9[0^'behhg g(g1 g: fE fPe^dmb`“^¬[ÎWôTÿPÿNÿMÿ­U–V„WuWiV`VXVPXE\=_4b+e"hk oppp"o+o4o?nJmXlhkyif§cÉ`ò\ÿYÿWÿUÿ¥\\\q[g[^[V[K_Ac8f/i&mpsvx xyy$y.y8xDwRvbuss‰q¢nÃjðfÿcÿaÿ_ÿb‰bzan`e`]`RcGg}3‚)†Š ’”—˜™› œžŸ(¡5¡F Zžqœ™±•å’ÿÿ‹ÿ‡ÿŠw~uvtkv^{Q‚F†:‹/%”˜›œŸ¡£¦§©«­¯±(´8³L²e±€®¡¬Ö¥ÿ¢ÿœÿ˜ÿ‰€}uh…\‹O‘C–8›-Ÿ"¤§ ª¬®°²´·¹»¾Á ÅÊ)Î;ÏSÏnÌ’È¿ÆþÂÿµÿ®ÿŒˆ‚‰th•[›O¢B¨8¬-±"µ¸ »½¾ÀÃÄÆÉÍÑ×Ýãé*ï@ð[ð{ï¤ìäéÿÛÿÎÿ•ƒšw l§`®P²A¶1»$¿à ÆÊÌÍÐÓÕÖÚÞãéðöýÿ)ÿDÿeÿ‹ÿ¼ÿùÿÿûÿÿÿÿÿÿÿ%ÿ,ÿ4ÿ=ÿGÿPÿXÿ_ÿfÿmÿsÿyÿÿ†ÿŽÿ˜ÿ¢ÿ°ÿÅÿåþþûÿóÿåÿÓÿÈÿÃÿÀÿÿÿÿÿÿÿÿ%ÿ.ÿ8ÿAÿJÿRÿYÿ`ÿfÿlÿrÿyüù‡öóšð§í¸êÖæôãÿßÿÐÿÄÿ½ÿ¸ÿµÿÿÿÿ ÿÿ ÿÿ ÿ)ÿ2ÿ;ÿDÿLùSôZï`íeëkèræxäáˆß’ÛØ¬ÓÄÐæÌÿÉÿÀÿ·ÿ°ÿ­ÿªÿÿ ÿÿÿÿÿüö$ò-î5ç>äFáMÞSÚY×_ÔdÑjÎqÌwÉʼn”¿¢»µ¸Óµô³ÿ¯ÿ¨ÿ£ÿŸÿžÿÿÿÿÿúñ çàÖ'Ð0Í8Ë?ÉFÅMÁS¾X»^¸c¶i³p±x®¬Œ©™§ª¤Â¢æŸÿžÿšÿ–ÿ”ÿ’ÿÿÿÿ÷çÙÎľ"º*·2³9±@®G¬M©R§X¥]£c¡jŸqy›„˜‘– “µ‘Ô÷ŽÿŒÿ‰ÿ‡ÿ†ÿÿÿöãÑø °¬§%¤-¢4 :žAœGšM—R•X“]‘dksŠ~ˆŠ†™„«‚Æ€ðÿ~ÿ|ÿ{ÿzÿÿýçϾ²¨¢™ –(”/’6<B‹H‰M‡S…Xƒ_fn}x{„y“w¤u¼särÿqÿpÿpÿoÿÿò׿®£œ– ‘Ž‹"ˆ*…1ƒ7=C}I{NyTx[vbtjqto€mkŸi·hÚfùfÿeÿeÿeÿÿèɳ¢˜Œ‡ „~%{,y3v9t?sEqKoQmXk_iggqe}cŒa_²]Ñ\ö[ÿZÿZÿZÿøÜ¾ ¨š‡ ~{yu r(p/m5l;jAhHfNdUb]`f^p\}Y‹WœU±TÐRòRÿQÿQÿQÿñѵ¡’‡yus q m j $h+f2d8b?`E^L\SZ\XeVpS|QŒNžLµJ ÓI óIÿIÿIÿIÿê É®› Œ!!x rnki eb `(^/\5Z<XBVITQRYPcNmKzIŠGœD³CÔBøBÿB ÿB ÿB ÿä¨!•%‡&{'s&m$h"d a^[Y %V!,T!3S"9Q"@O"GM"NK#WI#aG"lD"yB!ˆ@ ›>²<Ò<÷<ÿ<ÿ<ÿ<ÿÞ¼!£'‘)‚+w+n+h)c'^&[%X%U&R'"P')N(0L(6J(=H)DG)LE)UC)_@(j>(w<'‡:&š8$°6!Ñ6ö6ÿ6ÿ7ÿ7ÿÖ ¶&Ÿ+-~/s/j/d.^,Y+U+Q, N,L-J-&H.-F.4D.;B.BA.J?.S=.];.h9-u6,†4+˜2)¯1&Ð1$õ1!ÿ1ÿ2ÿ2ÿÐ%±*›/‰1{2o2g2`2Z1T0O1L1 H2F2D3$B3+@32>39=4@;4H94Q73[53g32t11„/0—-.®++Î,)õ,&ÿ-#ÿ-!ÿ.ÿÊ)­.—2†4w5l5d6\5V5O5J6F7B7@8>8!<8):9099679>59F49O28Y08e.7s+6ƒ)5–(3­&0Í&-ô'*ÿ((ÿ(%ÿ)#ÿÅ-¨2“5‚7t8i9`9Y9R9I:D;@<<= :=8>6>&4>-3>41></>D.>M,=X*=c(m?c?Z?R@JACC=D7F0H,J*J(J &J'%J.#J6"J? IHISH_GmF~D’B©?É<ò9ÿ6ÿ4ÿ2ÿ³;š?†AvBjB_BWCOCGEAF:H3J,M$P !Q QQ#P+P3P;PEOPO]NkM|K I¦ FÅ Bî?ÿ<ÿ:ÿ8ÿ¬@•C‚ErFfF\FTFLGEH>J7L/O(RVXXXX'X/X8 WA WL VYUgTwR‹P¢M¿IèFÿCÿ@ÿ?ÿ¥FH|InJbJYJQJJJBM:O3R+U#X[_ ```"_*_3_<^H]T\c[sZ‡WU»QåNÿKÿHÿFÿžL‰MwNjN_NVNONHO>R6U.Y&\_b eg hhh$g-g7gBfOe]dnb‚`™]¶ZâWÿSÿQÿOÿ–R‚SrSfS\RURNRDV:Y1])`!cfiln oppq'q1q<pHoWnil|k•g²eß`ÿ]ÿZÿYÿŽY|YnXcX[WTVJZ?^5b,e$iloruwx yz{ |)}4|A|Pzbyvvt®pÜmÿhÿfÿdÿ‡_w_k^b][\P_Ec:h0l'psv y|‚ƒ„ …‡ˆ!‰,‹9ŠH‰Z‡o„‰‚©~Õ{ÿxÿtÿpÿfseiccbXeLiAn6t+x!|€ ƒ†ˆ‹’ “•—#™/š>™Q—g•“¢‘Ñ‹þˆÿ„ÿÿ}mrkkialTqHv<|1&†‹Ž“–˜šœž ¢¤ ¦©"¬1¬C«Z©u¦•£Ä¡þ›ÿ–ÿ’ÿ|ttrkt^yQ€E†9Œ.‘#–š  ¢¤¦¨«­¯²´¸»¿#Ä4ÄKÂgÁ†¾­¼í¸ÿªÿ¤ÿ|v}iƒ]‰QD—7œ,¢!¦ª ®±´µ·º»¾ÀÃÇÊÏÖß$å8çRçrä›àÒÞÿÓÿÇÿƒ‡vk“_™T G§;¯-µ"¹½¿ÂÅÅÉËÌÎÑÕÛáèîôú&ÿ>ÿ]ÿÿ®ÿñýÿïÿÿÿÿÿÿÿ ÿ(ÿ0ÿ9ÿBÿKÿSÿ[ÿaÿgÿmÿsÿzÿ‚ÿŠÿ’ÿÿ«ü¿úÞ÷úóÿåÿØÿÍÿÄÿ½ÿºÿÿÿÿ ÿ ÿÿÿ!ÿ*ÿ3ÿ<ÿEÿMÿUÿ[ÿaþgülúrøyöóŠð”ì¡é±åËáíÞÿÔÿÈÿ¿ÿ·ÿ²ÿ¯ÿÿÿ ÿÿÿ ÿÿÿ%û.ù7÷?öGôNðUì[è`åfâkàqÝxڂ֌җΦʻÇÝÃþÀÿµÿ®ÿ©ÿ¥ÿ£ÿÿÿÿÿÿû õê æ)ã1ß9Û@ÙHÔNÑTÎZË_ÈdÆjÃpÁx½ƒºŽ·œ³®°È­ð«ÿ¦ÿ ÿœÿ™ÿ˜ÿÿÿÿþñæÖÐÊ#Ä+Â3À:¾A¼G¸MµS±X¯^¬d©j§q¥z¢† “£›¹˜à–ÿ•ÿ’ÿÿÿŒÿÿÿýëÙÉ¿ ·²¯&¬-©4¦;¤A¢G MžRœWš]˜c–j”r’~ŠšŠ­ˆÌ†ó…ÿƒÿÿ€ÿÿÿþêÔ´«¥¡ ™(—/–5”<“AGLR‹W‰]‡d…l‚w€ƒ~’{£y¾xåvÿvÿuÿtÿsÿÿóØ¿®¤œ– ’ŽŒ#Š*ˆ0†6…<ƒAGL}R{Xy_wguqr}p‹nl³kÔjüiÿiÿhÿhÿþãÆ°¡–Š…‚€~%|,z2x8v=tBsHqNoTm[kcimfxd†b—a«_Ë^ò]ÿ]ÿ^ÿ^ÿõÖ¹¤–Œ„€| xvt!q'o.n4l9j>hDfJdPcWa`_i]u[ƒY“W¦UÃTêTÿTÿTÿTÿìÊ®œ ‚ { v sp nki#g*d0b6a;_A^G\NZUX^VgTsQO‘M¤L¾KçJÿJÿJÿJÿáÀ ¦”†{snjh gda_&],[ 2Y 8W >V ET LR TP ]N gK sI F ’D ¥C¿BäBþAÿBÿBÿÙ¸ Ž€umhc`_]ZX"U)S/R6P<NBLJJRH[FfCrA?’<§;Ã: æ: ÿ:ÿ;ÿ;ÿÑ ±›‰{!p!h!b ^ZXUSPN&L-J3H9G@EGCPAY?d<p:8‘6¦4Â3é4ÿ4ÿ5 ÿ5 ÿʬ–!…$v%l&d%]%Y#U!RO L J G!#E!*D"0B"7@">?"E="M;"W9"b6"n4!}2 0¤.À.è.ÿ/ÿ/ÿ0ÿħ ’%€'s)h)`)Y)T'P%L%I%F&C&A'!?''>'.<(5:(;9(C7(K5(U3(`1'm.'|,%Ž*$£)!¿(ç)ÿ*ÿ*ÿ+ÿ¾¢$Ž(}+o,e,],V,P+K*G*C+@+=,;,:-%8-,6-25-93-A1-J/-S--_+,k),{'*%(¢#&¾##æ$!ÿ%ÿ&ÿ&ÿ¹"ž(Š+y.l/b/Y/R/M/F/A/=0:1 715242#22)120/27-2?,2H*2R(2]&1j#0y!/Œ -¡+½(å%ÿ "ÿ! ÿ"ÿ´&š+†/v1i2_2V2O2I2B3<4854617/7.7 ,7'*7.)75'7=&7E$7P"7[ 6h5x4Š2 /¼-ä*ÿ'ÿ$ÿ"ÿ¯*–/ƒ2r4f5\5S5L5F6>7984:/;+< )='=%=$$=+"=2!=:=C4?.A'D GJ JJJ%I,I4I> IH HT GaFpEƒC˜@²=Ø:ú7ÿ4ÿ 2ÿ9‡<u=g>[?R?J?D?>?7A1D*F#ILP Q Q Q!P(P0P9ODOPN]MlLI”G®DÓ@÷=ÿ;ÿ8ÿ–>‚@pBcBXBOBHBBB;C3F-I&LOR UX XXX$X,W5W?VKVYUhS{R‘OªLÏH÷EÿBÿ@ÿD|ElF_FUFMFFE@F8I0L(O!RVY\^ __``'`0`:_F_T^d\vZY§UÍQ÷NÿJÿIÿˆJuKgK[KRJKIFI^C\J[QYYWbUmSzQŠOžM¶LâKÿKÿKÿMÿÛ¹¡ w pkhe ca_]%[*Z0X5W:U@SGRNPVN_LjIwG‡EšD²CÖBùBÿCÿCÿϯ™ ˆzphc_ ]\ ZXV!T'R-P2O8M=KDILHTE^CiAv?†=™<¯:Ï:ö:ÿ;ÿ;ÿƨ “‚tjb]YVU T Q O M $K *I 0G 6F <DCBK@T>^<j9w7 ˆ5 š4 °3Ð3ó3ÿ3ÿ4ÿ¿ £Ž}oe]XSPNL JHF!D'B-@3?9=A;I9R7\5h2v0‡.›,´+ Ô, ô,ÿ-ÿ.ÿ¸ž‰xk a!Y S NKHFCA?=$<*:1877>5F3P1Z/g,u*†(š&²%Ö&÷'ÿ( ÿ( ÿ³™…u"h#^$V$O#J#F!C@= ; 9 7!"6!(4!.2"51"</"D-"N+"Y)!e'!s% …#™!± Ô ù"ÿ#ÿ$ÿ®•#q%d&Z'R'L&G&B%>$;%8%5&3&1&0&&.',-'3+':)'B''L%'W#'d!&r%ƒ#˜!°Óøÿÿÿ©‘"}&n(a)W*O*I)C)>)9)5*2*/+-+,,*,#(,*',1%,8#,@",J ,U+b+p)‚(–&¯#Ò øÿÿÿ¤ %z)k+^,T,L,F,@,;,4.0/-/*0 '1%1$1!"1'!1.161>1H1T0`/o.-•*®'Ñ%÷"ÿÿÿŸ$‰)v,g.[/Q/I/C/=/8011-2)4$5 6677%7,746<6F6R5_5m 3~ 2’ 0ª-Ë *ò 'ÿ$ÿ"ÿ›(…,r/d1X2N2G2@2;253/4+5&7 :< <<<"<)<1<: 48536-7(9";>A C C C B&B-B6B?AKAX@f>w=‹;£9Â5ì2ÿ/ÿ-ÿ2z5j6\8Q8H8A7;76819*;$>@CFI JII"I*I2H;HGGTFbEsDˆB ?À;ì8ÿ6ÿ3ÿ‰7u9e;X;N;F;?:::5;->'@ CFI LO PPQQ%Q.P7PBOON^MpK…JF¾Dê@ÿ<ÿ;ÿ‚<o>`?U?K?C>>=9=1@)D#FJM PSUV WXY!Y)Y2Y=XJXZVlURšQºMêJÿEÿBÿ{BjC\DQCIBBA>@5C-G%KNQ UW[]^ `abc#d-c8cEbUaf_}]—Z¸VêSÿPÿMÿtHdHXHOGHFCE:H1K(P SWZ^`dfgi jkmn&o1o>nNmakwi’f³dè_ÿ\ÿYÿmN`NUMNLIJ?L5Q,U"Z^aehjnqrtv wy{~)6~F|Yzox‹t­qãlÿiÿeÿhT]TUROPFR;W0\&afimqtwz}ƒ…‡‰Œ!-=ŽQŒg‰„†§Þÿxÿtÿe[\YWWNYA^6d+i ot w{‚…‡ŠŒŽ‘“•˜ ›ž$¢3¡GŸ^œz™ž”Ò’ÿ‹ÿ…ÿda__W`Jf=l1s&x~„ˆ‹Ž‘“•˜šœŸ¡¤§« ¯´(¸;¶S²p®•©Ç¦ÿ¢ÿ›ÿhgagTmHsŠ2‘&—ž ¤ª­¯±´·¸»½ÀÄÈÍÒÚâëó1óNòqñ›ð×íÿáÿÿÿ ÿ ÿÿÿÿ ÿ(ÿ0ÿ9ÿAÿIÿQÿXÿ^ÿdÿjÿpÿvþ~ü‡ù’öžó¯ïËê÷âÿÍÿ¾ÿµÿ°ÿ«ÿ©ÿÿ ÿÿÿÿ ÿÿÿ"ÿ+ÿ3ÿ<üCüJùQ÷Wô]òcïiíoêvç~äˆà•ܤعÑäÌÿ½ÿ¯ÿ§ÿ¡ÿžÿÿÿÿÿÿþý øôí&è.æ6å=åDãJàPÜUÙ[ÔaÑgÎnËvÇÄ‹À™¼¬¸É³ø¬ÿ¡ÿšÿ•ÿ“ÿ‘ÿÿÿÿøòåÞÐÍ Ê(È0Ç7Æ=ÅDÂI¿O¼TºY·_´f±n®w«¨¥ ¢·ç›ÿ“ÿÿ‰ÿ‡ÿ†ÿÿÿõæÕÇ» ¶²°"®)­0¬7«=¨C¥H¢MŸRœXš^—f•o“y†–‹ª‡Ñ…ú„ÿÿ|ÿzÿzÿÿõå˹­¥¡ ›™$–*“1“7’<AŽGŒLŠQˆW†^„gq}}Œzžw¾têsÿpÿoÿnÿnÿ÷æÉ´¥š”Œˆ…„%ƒ+‚17<}A{FzKxQvXt`rjpum„k•i°g×eÿdÿcÿbÿcÿìÒµ¢”Œ…€{ xwu t&s,r1q7o;m@lFjLiRgZedcoa}_\¥[ÆYóXÿXÿXÿYÿàÀ§•ˆxsomkih"g'f-e2c7b<`A^G]N[UY_WjUwSˆQO¸NæMÿMÿNÿOÿÔ³‹~tmiec a_^]#[)Z.X3W8U=TCRJPRO[MfKrIƒG—E¯DÕCûCÿDÿEÿȪ”ƒvkd`]ZX WUS R%Q*O/N4L:K@IFGOFXDbBp@>’<¨;È;ö;ÿ;ÿ<ÿ½¡Œ| o e ] X U SQ ONLJ"I'G,F1D7C=AD?L>V<`9m7|64¤3Ã3í3ÿ3ÿ4ÿ´›† vi_XRNL J I HEDB$@*?/=5<;:C8K6U4`2m0|.-£,¿+æ,ÿ,ÿ-ÿ®• qd[SMIFDBA ? = < !:'9-745:3B1K/U-a+n)~' & ¤%¿%å%ÿ&ÿ&ÿ¨ }m`WOIDA>=; 9754%2+01/8-@+I)S'_%m"} §Å ç þ ÿ!ÿ¤Œyi]SLE@=:7531/.",(*/)6'>%G#Q!]k{¥Äëÿ ÿ ÿŸˆuf Z!P!H!B!=!9 5 2/- + ) ( &!&%!-#!4!!< !E!P!\ jzޤÃëÿÿÿš„q c#W#M$E$?$:$6#2#-$*$(%%%#&"& &$&+&2&:&C&N&Z%h$y# !£ À çÿÿÿ–€ n#`%T&J&C&<&7&3&/')(%)"*+ +++"+(+0+8+A+L+Y *f )v '‰&Ÿ#» ãÿ ÿ ÿ’|#k&\(Q)G)@):)5)0),*&+#,.0 0111&1-15 0> 0I0U/c.r-…+œ(·%à"üÿÿ"x'g)Y+N+D,=+7+2+.,),%. /146 6 6 6#6*626;5E5R4`3p2ƒ1™.µ*ß'ü%ÿ"ÿˆ&s*c-U.J.B.;.5.0.,.'/"1368< <<< <'AK@Y?j>}<”;°7Ü5ý1ÿ.ÿ{0i3Z4N5D4<47323.3'5!8;=@CFG HIJJ'J0J:IFIUHeFzD’B®>Ü;þ8ÿ6ÿu5d7V8J8A8:76625+8#;>AD GJMN OQRS"S+S6SARPQaOvMJ¬IÚDÿBÿ>ÿn;^<Q<G<?;::69.;'>BEI LORUWX Y[\^&^0]<]K\\ZpX‹VªRØPÿKÿIÿh@YANAE@>>;=3?*C"GKO RUX[^`ac dfh j*j6iEhWfkd†a¥^Ó\ÿVÿTÿbFUFKEDD@B8D.H%MQU Y]_cfiklnp rtw#y/x=wOuds~pŸlÎiÿgÿ`ÿ\LRKKJFG>I3N)SY] aeiloruwy{~€ ƒ†‰&‹5ŠGˆ\†v‚˜~ÆyývÿpÿYRRPMNEP9U.[#`f joswz}€ƒ…ˆŠ’•™+ž=œSšm–’»÷‰ÿ‚ÿYXUUMVA\4c)iou{~ƒ‡ŠŒ‘”–™œŸ¢¦ª°!µ2´H±c¬„§¯¢ðžÿ•ÿ]]V^Jc?j3p'w~ …Œ“–š› ¢¤§ª®²·½ÄË'Ñ=ÍXÇyÁ¤ºè·ÿ¬ÿaeUkJq@x4)†”𠣦ª­®°³µ¹½ÁÆÌÓÜäì,ìHêiéçÅáÿÎÿÿ ÿÿÿ ÿÿÿÿ$ÿ-ÿ5ÿ=ÿEÿLÿSÿYÿ^ÿdÿjÿqÿyý‚û÷šôªðÅëíâÿÅÿµÿªÿ¤ÿ ÿÿÿÿÿÿüûýÿÿ'þ/ý7ü?üFûLøRöXó]ñbîhëoçxã„ßÚŸÕ´ÏÚÊÿ·ÿ§ÿžÿ˜ÿ•ÿ“ÿÿÿý÷óóíéæ!ä)ã1â8â?ßEÙKÒQÍVÉ\ÆbÃhÀo¼y¸‡´•±¨­Å©ñ£ÿ—ÿ‘ÿŒÿ‰ÿˆÿÿýóìçÕÎ ÉÆÃ#½+¹2¸8¸>·D´J±O¯U¬Zª`¨g¥p¢zŸ‹œœ™³–Ý“ÿ‡ÿ€ÿ~ÿ}ÿ|ÿÿóçØÅ¸²­ §£¢%¡+ 2Ÿ8Ÿ>œCšH˜M–S”Y’`hr‹ˆ‘…¥‚Æ€ôyÿtÿqÿoÿoÿöæÒ¼«¢œ”‘Œ&‹,‹1Š7‰<‡A…FƒLRY}a{jyuv‡tšq´oálÿhÿfÿeÿdÿèÔ¸¦˜ˆƒ€ }|{ z&y,x1w7u<sAqFpLnSlZjdhnf~d‘b¨aË_ÿ\ÿZÿZÿZÿÚÀ§•‰€xtqomkj!j'i,i1g6e;d@bFaM_U]^[hYwW‰UžT»RóQÿPÿPÿPÿͰ™‰|rlheb `_^^"](\-[1Y6W<VATHSOQYOcMqKJ–H´FâEÿEÿFÿFÿÁ¥qhb^[XV UTSR#Q(P-N2M7K=JDHKGTE^ClA|?=ª<Ð<ü;ÿ<ÿ>ÿ¶œ‡wi`ZURON LKJI H%G*E/D4B:A@?H>Q<[:h8w6‹5¢4Ã3ñ3ÿ4ÿ6ÿ­“€oc Z S MJHFE CBA@">'=,<1:79=7E6N4Y2e0t.‡-œ,¹+ä,ÿ,ÿ.ÿ¥zj ^UMHD A ??=<:97$6)5.342;0C/L-W+c)r'„&™%²%Þ%ÿ%ÿ%ÿŸˆu fZPIC>;98 8 6531!0'/ ,- 3, :* B( L& W$ c" r ƒ—°Õùÿ ÿšƒ qbVLE?:74321 /-,*%)+'2%9#B!LXet† ™ °Óöÿÿ– m^SIA;730.,* )'&$##)!07@JVds†›¶ Öõÿÿ‘{i[OF>840-*'%# !  '.5>IUbr ƒ ˜ ± Ô ÷ ÿ ÿwfXLC<61-)&"      % , 4!< G R _n•­ÐôÿÿˆtcU I!@!9!3!.!* ' #!"#$%%%%"&) %1 %9%C%O$\$k"}!’«Íóÿÿ„p_!R"F#=#6#1#,#(#%#!#%&(* * ** *&*.*6*@*L)Y)h(z&$©!Ìôÿÿl!\$O%C&;&4&/%*%&%#%&()+ . 0000#0+03/=/H/V.e-x+Ž)§&Ì$ó ÿÿz!h%X'K(@(8(2(-(('%'"'*+- 034556 6(505:5E4S4c2v1Œ/¦-Ë)õ&ÿ$ÿu%c)T*G+=+6+0*+*')$)+.02 589 :;<<$<-<6? @BCE D)D2D>CKB\Ao?‡=£:Ê9÷4ÿ2ÿi/Y1K2@28120./+.$0369 ;>ADFH IKMN$N.M9LGKWJkHƒF¡CÉAø<ÿ:ÿc4S5G6=56413.1(3 7:= @CFIMOPR TVXY)Y4XBWRVfT~QNÆKøIÿCÿ\:N:C:;96735,7#;?C FIMPSVXZ\^ `ce#f/e<dLba`x]˜ZÂVøTÿQÿV?J?A>;<7:0<'?DI MQTX[^adfhjl oru't5sEqYoqmi»eöaÿ]ÿREHDAB=?6A+F!KP UY^adgjnpruwz| €ƒ ˆ-†=„Q‚jˆz±vðqÿlÿOJHHDF=G1L&RX^cgkoruy|~„†‰Œ ”˜$œ5šI—a”€¨Šç†ÿ}ÿOPKMDM8S,Z `g mrv{ƒ†‰ŒŽ‘”—𡦠«²*´>°W¬u§œ¡Øÿ’ÿSTMTAZ6a*gnu|‚ˆŒ“•˜š £¦ª®³¹ÁÉÒ3ÐLÊj‘»Çµÿ¨ÿW\LaAg6n+u|ƒŠ–› £¤§©«®±µº¿ÆÍÖáé(íAè`â‡Ú»ÐÿÆÿÿÿÿýú ùúü ÿ(ÿ0ÿ8ÿ?ÿGÿNÿUÿ[ÿ`þfülùs÷{ô†ð’ë¥æÂáìÑÿ¹ÿ¬ÿ¡ÿ›ÿ–ÿ”ÿÿÿûõññ òôø"û+ò2ñ:ñAñHðNíSêYç^äeákÝsÙ}Ó‰Ï—Ê®ÄØ¿þ«ÿžÿ“ÿŒÿ‹ÿ‰ÿÿûñêææè äÕÔ$Ò,Ò3Ñ:Ð@ÏGËLÈRÅWÂ]¿c¼k¹tµ±®Ÿ©½¦ðœÿÿ‰ÿ€ÿ}ÿ|ÿýðåÝØÌŹ ¶´²&±-±3±9±?¯E¬JªP§U¤\¡cŸkœv™ƒ–””©‘ÚŒþ‚ÿ{ÿuÿrÿqÿóäÕÆ¸¯£  œ›š ™'—-–3–8•>“C‘HNT‹[‰c†mƒyŠ~{¿yôtÿnÿiÿgÿfÿçÓ¬ ”Šˆ …ƒƒ!‚'‚-‚27<}A{FyMwTu\seqqo€m’k¬háeÿaÿ^ÿ]ÿ\ÿÕ¨™ƒ|ytsrqp!o'o,o1m6l;j@iFgMeUc_ai_w]‰[ŸYÊXüUÿRÿRÿRÿǰšŠ|snife cbba"a'a,_1]6\;Z@XGWOUXScRpPN–L¹KíIÿHÿHÿHÿ¼¡Ž|pga]ZXW VUTS"S'R,P1O6M<LBJIHSG^EjDzBA¬?Û>ÿ>ÿ>ÿ?ÿ±—ƒrf]WSPNL JIIHH#G(F,D2C7A>@E>N=Y;e:t8‹7£6È4þ4ÿ6ÿ7ÿ§zk_VOJGECA A@?? >$<);.:48:7A6J4U3a1o/„.œ,À,ò,ÿ-ÿ/ÿž‡sdYOHC?=;:9 8776!5&3+2017/>.G-Q+^)m(&–%µ$ä%ÿ%ÿ'ÿ—n`S J C = 9 6543 210/.#,(+.*4);'E&O$["j!{’­×þÿ!ÿ‘|i [ OE>94 1 / . -, +*)'!&&%,$2":!CMZhzާÊõÿÿwe WKB:50-*)( ' & $# "  $ * 1 9 B N Z hy£Åïÿÿˆs bTH?72-*'$#"  #*1:DO\ j z Ž ¥ Á é ÿ ÿ„ o^QE<5/*'#!!(/8 A LXfw‹£À èÿÿ€ k[MB92,($!  % , 4=HUdt‰ ¿è ÿ ÿ|hXJ?60*%" " ) 1 : ERas‡ ¿éÿ ÿwdUG<4-(#  !#$$$ $'$/$8$B$O#_#p!†Ÿ¾êÿÿs`QD : 1 + & "! #%' ()**$*,*5*@)M)\(n&…%ž"¿ìÿÿn\M!A"7#/#)"$" !  !#% '*, -/00!0)020=/J/Y-l,‚*'À&í!ÿÿi X#I$=%4%,%'$#$ #"#%( *,/13 4677&7/696F5V4i31œ/À,ï*ÿ&ÿc%S'E(:(1(+'&'"% $&(+ -/2579 ;=??"?+?6>C=R@B DGII'H2H?GNE`CxB•?¼<ò9ÿ7ÿW.H/=/4/-.),'*!,/2 58;>ADFIKM PRU"T-T9SIQ[OsMI¸FñBÿ@ÿQ3D4:322-0+.$037 ;>ADHKNQSUXZ ]`b'a4`C^V\lYŠW¯SîPÿJÿK8@88725/3)4 8<AEILPSWZ]_bdgjmq r-q<oOmeiƒf§bç^ÿXÿG>>=8;58.9$=CHMRUZ]adgjloqtx{„&„5‚G€]|zxžsÛoÿhÿDC>A;>5>)DJPV[`dhkorux{~„‡‹”š-˜?–V’rŽ•‰Ê„ÿ{ÿEHAE‹C‰H‡N…Uƒ]€g}t{…x™u¶sëlúeýbÿ`ÿ_ÿÓÁ±¢“Šƒ€}{zzy"x'w,w2v7t<rApGoNmVk_ikfzeŽd§bÔ_ùYýVÿUÿTÿ±ž‹xqnkj hgff"f'f,e1d5b:a@_G]P[YYdXqU…TœR¿RõMýKÿKÿJÿ¶¢Ž}qhc_]ZY XXWW"W'V,U0S5R;PAOIMSK]JjH|G“E±DäBþAÿ@ÿ@ÿ¬•€qe]VSOMLK KKJJ"J'H,G1F6D<CCAL@X>d<u;Š:¦9Õ8ÿ7ÿ7ÿ8ÿ¢‹vg\SMGECA@ @@?>=#<(;,92887?6G5S4_3o1ƒ0/Ê.þ.ÿ.ÿ0ÿ™n`TKD?<:876 55543$2)1.04/;-C,O+[*k)}(•&»&ò%ÿ'ÿ(ÿ‘yhYNE=8521/. . ---+ *%)+(1'8&@%K$W"g!y ‘°ãÿÿ"ÿ‹tcTI?83/,*((' '&&%$"#(".!5 =HTct¨Úÿÿÿ…o_PD ; 4 / * ' $#"! !   %+3;ERasˆ¤Êùÿÿ€k[L A 8 1 + & #    #)1:DP_ p … ž ¿ ï ÿ ÿ{gW I>5.(#          ! ( 0 9 D Q _ o ƒš·ãÿÿwd TF;2+%!     '.7AN\m ™ ´Þþÿr ` PC8/(#   $+4?KZk€˜µ ß ýÿo ]M@5-&!   ")2<IXj~˜¶á ÿ ÿkYJ=3*$  '/:FUf}˜·äÿÿgUF:0("  ! #$$$$%-$7$D$S#e!{ •¸èÿÿbQB7-&  !#% (***"***4*A)P)b'x&”#¸!êÿÿ]M?3 * # !$&)+- /111(111>1L0^/t,‘+³'ì$ÿ#ÿXH!;"0#(""!  "%'),/13 68::$:.::9H8[6p4Ž2±/ì,ÿ)ÿR#C%7&-&&%!$" !# &(+.1479<> ADE D*C6BDAW@l>ˆ;­8é5ÿ2ÿL(>)3*+)%(!&#$' *-0369<?ADGJ MPP%P1O?MRKgI‚F§Cá?ÿ;ÿF-:.0-),%*#'(,/369=@CFILORUX\_ ^,]:[MYaW{S P×KÿFÿA262.1*/',",159=ADHKORUX[^ae imp&n4lFj[gtb™_Ì[ÿSÿ<746/4-1'16;@EINRVY]`cehkorw {„-‚>S{lvr¼oýdÿ:<5:27-7"<B HNTX\aeiloruy|€„ˆ “™%™6–K“dŽ…‰¯„òxÿ;@8=4<(BIPX^dilquy}€ƒ‡ŠŽ‘•šŸ¥¬´-±B¬\§|¢¤ä’ÿ?D@ABDEFGIJKMNOPRSTUWXY[\]^`abcefgijklnopqstuwxyz|}~€‚ƒ…†‡ˆŠ‹ŒŽ‘“”•–˜™šœžŸ¡¢£¤¦§¨ª«¬­¯°±³´µ¶¸¹º»½¾¿ÁÂÃÄÆÇÈÉËÌÍÏÐÑÒÔÕÖ×ÙÚÛÝÞßàâãäæçèéëìíîðñòôõö÷ùúûüþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ  !"$%&()*+-./02346789;<=>@ABDEFGIJKMNOPRSTUWXY[\]^`abcefgijklnopqstuwxyz|}~€‚ƒ…†‡ˆŠ‹ŒŽ‘“”•–˜™šœžŸ¡¢£¤¦§¨ª«¬­¯°±³´µ¶¸¹º»½¾¿ÁÂÃÄÆÇÈÉËÌÍÏÐÑÒÔÕÖ×ÙÚÛÝÞßàâãäæçèéëìíîðñòôõö÷ùúûüþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ  !"$%&()*+-./02346789;<=>@ABDEFGIJKMNOPRSTUWXY[\]^`abcefgijklnopqstuwxyz|}~€‚ƒ…†‡ˆŠ‹ŒŽ‘“”•–˜™šœžŸ¡¢£¤¦§¨ª«¬­¯°±³´µ¶¸¹º»½¾¿ÁÂÃÄÆÇÈÉËÌÍÏÐÑÒÔÕÖ×ÙÚÛÝÞßàâãäæçèéëìíîðñòôõö÷ùúûüþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ ¡¢£¤¥¦§¨©ª«¬­®¯°±²³´µ¶·¸¹º»¼½¾¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖרÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿmft1!  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ ¡¢£¤¥¦§¨©ª«¬­®¯°±²³´µ¶·¸¹º»¼½¾¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖרÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿ  !""#$$%&&'())*+,--./01223456789:;<=>?@BCDEFHIJLMOPRSUWXZ\^`bdfhjmoqtvy|~ƒ†‰‹Ž’•—™›Ÿ¡£¥§¨ª¬­¯°²³µ¶·¹º»¼½¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÍÎÏÐÑÒÒÓÔÕÖÖרÙÙÚÛÛÜÝÝÞßßàááâããäååææçèèééêëëììíîîïïððñòòóóôôõöö÷÷øøùùúûûüüýýþþÿ  !""#$$%&&'())*+,--./01223456789:;<=>?@BCDEFHIJLMOPRSUWXZ\^`bdfhjmoqtvy|~ƒ†‰‹Ž’•—™›Ÿ¡£¥§¨ª¬­¯°²³µ¶·¹º»¼½¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÍÎÏÐÑÒÒÓÔÕÖÖרÙÙÚÛÛÜÝÝÞßßàááâããäååææçèèééêëëììíîîïïððñòòóóôôõöö÷÷øøùùúûûüüýýþþÿÿ…' ÿ’* ÿœ0ÿ¦6ÿ±='ÿ¸D8ÿ¾LLøÃTaïÇZuèÉ`ˆâÄd˜Þ¾f¥Ú¹g±Ö´h»Ô­iÆÑ¦jÑÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÿ…' ÿ’* ÿœ0ÿ¦6ÿ±='ÿ¸D8ÿ¾LLøÃTaïÇZuèÉ`ˆâÄd˜Þ¾f¥Ú¹g±Ö´h»Ô­iÆÑ¦jÑÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÿ…' ÿ’* ÿœ0ÿ¦6ÿ±='ÿ¸D8ÿ¾LLøÃTaïÇZuèÉ`ˆâÄd˜Þ¾f¥Ú¹g±Ö´h»Ô­iÆÑ¦jÑÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÿ…' ÿ’* ÿœ0ÿ¦6ÿ±='ÿ¸D8ÿ¾LLøÃTaïÇZuèÉ`ˆâÄd˜Þ¾f¥Ú¹g±Ö´h»Ô­iÆÑ¦jÑÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÿ…' ÿ’* ÿœ0ÿ¦6ÿ±='ÿ¸D8ÿ¾LLøÃTaïÇZuèÉ`ˆâÄd˜Þ¾f¥Ú¹g±Ö´h»Ô­iÆÑ¦jÑÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÿ…' ÿ’* ÿœ0ÿ¦6ÿ±='ÿ¸D8ÿ¾LLøÃTaïÇZuèÉ`ˆâÄd˜Þ¾f¥Ú¹g±Ö´h»Ô­iÆÑ¦jÑÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÿ…' ÿ’* ÿœ0ÿ¦6ÿ±='ÿ¸D8ÿ¾LLøÃTaïÇZuèÉ`ˆâÄd˜Þ¾f¥Ú¹g±Ö´h»Ô­iÆÑ¦jÑÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÿ…' ÿ’* ÿœ0ÿ¦6ÿ±='ÿ¸D8ÿ¾LLøÃTaïÇZuèÉ`ˆâÄd˜Þ¾f¥Ú¹g±Ö´h»Ô­iÆÑ¦jÑÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÿ…' ÿ’* ÿœ0ÿ¦6ÿ±='ÿ¸D8ÿ¾LLøÃTaïÇZuèÉ`ˆâÄd˜Þ¾f¥Ú¹g±Ö´h»Ô­iÆÑ¦jÑÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÿ…' ÿ’* ÿœ0ÿ¦6ÿ±='ÿ¸D8ÿ¾LLøÃTaïÇZuèÉ`ˆâÄd˜Þ¾f¥Ú¹g±Ö´h»Ô­iÆÑ¦jÑÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÿ…' ÿ’* ÿœ0ÿ¦6ÿ±='ÿ¸D8ÿ¾LLøÃTaïÇZuèÉ`ˆâÄd˜Þ¾f¥Ú¹g±Ö´h»Ô­iÆÑ¦jÑÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÿ…' ÿ’* ÿœ0ÿ¦6ÿ±='ÿ¸D8ÿ¾LLøÃTaïÇZuèÉ`ˆâÄd˜Þ¾f¥Ú¹g±Ö´h»Ô­iÆÑ¦jÑÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÿ…' ÿ’* ÿœ0ÿ¦6ÿ±='ÿ¸D8ÿ¾LLøÃTaïÇZuèÉ`ˆâÄd˜Þ¾f¥Ú¹g±Ö´h»Ô­iÆÑ¦jÑÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÿ…' ÿ’* ÿœ0ÿ¦6ÿ±='ÿ¸D8ÿ¾LLøÃTaïÇZuèÉ`ˆâÄd˜Þ¾f¥Ú¹g±Ö´h»Ô­iÆÑ¦jÑÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÿ…' ÿ’* ÿœ0ÿ¦6ÿ±='ÿ¸D8ÿ¾LLøÃTaïÇZuèÉ`ˆâÄd˜Þ¾f¥Ú¹g±Ö´h»Ô­iÆÑ¦jÑÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÿ…' ÿ’* ÿœ0ÿ¦6ÿ±='ÿ¸D8ÿ¾LLøÃTaïÇZuèÉ`ˆâÄd˜Þ¾f¥Ú¹g±Ö´h»Ô­iÆÑ¦jÑÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÿ…' ÿ’* ÿœ0ÿ¦6ÿ±='ÿ¸D8ÿ¾LLøÃTaïÇZuèÉ`ˆâÄd˜Þ¾f¥Ú¹g±Ö´h»Ô­iÆÑ¦jÑÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÑ›jÝÿ†' ÿ“* ÿ0ÿ§6ÿ³<'ÿ»D8ýÁKLõÈSaíÍYvåÑ]‰ßË`šØÃa¨Ñ»a´Ì´b¾Æ­cÇÀ¦cÑ»ŸdÛ»ŸdÛ»ŸdÛ»ŸdÛ»ŸdÛ»ŸdÛ»ŸdÛ»ŸdÛ»ŸdÛ»ŸdÛ»ŸdÛ»ŸdÛ»ŸdÛ»ŸdÛ»ŸdÛ»ŸdÛ»ŸdÛÿ‡' ÿ”* ÿž0ÿ¨6ÿ´<&ÿ½C7úÅKLñÍRaêÕWvàÔ[ŠÖÍ]šÎÄ^§Ç¼_²À¶`»¹°aı©aÌ©¤cÔ©¤cÔ©¤cÔ©¤cÔ©¤cÔ©¤cÔ©¤cÔ©¤cÔ©¤cÔ©¤cÔ©¤cÔ©¤cÔ©¤cÔ©¤cÔ©¤cÔ©¤cÔ©¤cÔÿˆ' ÿ•* ÿŸ0ÿª6ÿ¶<&ÿÀC7÷ÉJKíÔQaäßUwÚØY‰ÏÎ\™ÆÅ]¥½¾^¯¶¸_·®³_¿§­`ÇŸ¨bΟ¨bΟ¨bΟ¨bΟ¨bΟ¨bΟ¨bΟ¨bΟ¨bΟ¨bΟ¨bΟ¨bΟ¨bΟ¨bΟ¨bΟ¨bΟ¨bÎÿ‰' ÿ–* ÿ 0ÿ«6ÿ·<%þÃC6óÎIKèÜOaßäTvÒÛXˆÈÐ\–½Ç]¢µÁ]«­»^³¦¶_»ž±`—¬bÈ—¬bÈ—¬bÈ—¬bÈ—¬bÈ—¬bÈ—¬bÈ—¬bÈ—¬bÈ—¬bÈ—¬bÈ—¬bÈ—¬bÈ—¬bÈ—¬bÈ—¬bÈ—¬bÈÿŠ& ÿ—) ÿ¢0ÿ­6ÿº<$ûÇB5ïÔHJãåN`ÙæSuËÜX†ÀÒ[”¶Ê\Ÿ­Ä]§¥¿^¯žº_µ—µ`¼±bÁ±bÁ±bÁ±bÁ±bÁ±bÁ±bÁ±bÁ±bÁ±bÁ±bÁ±bÁ±bÁ±bÁ±bÁ±bÁ±bÁÿ‹& ÿ™) ÿ£0ÿ¯7ÿ¼<#÷ËB4êÜGIßìL_ÒèSsÄÞW„¹ÔZ‘®Í\›¦Ç]£žÂ^©—¾_°ºaµ‰¶cº‰¶cº‰¶cº‰¶cº‰¶cº‰¶cº‰¶cº‰¶cº‰¶cº‰¶cº‰¶cº‰¶cº‰¶cº‰¶cº‰¶cº‰¶cº‰¶cºÿ&ÿš* ÿ¥1ÿ±7ÿ¿EºÿFTªöOažïTl”éYtŒå\z†â_~€ßa‚{Ýc…wÛfˆrÙh‹rÙh‹rÙh‹rÙh‹rÙh‹rÙh‹rÙh‹rÙh‹rÙh‹rÙh‹rÙh‹rÙh‹rÙh‹rÙh‹rÙh‹rÙh‹rÙh‹ÿ$ÿ©,ÿ¶5òÇ5×å0 É÷71»ÿ=A®ÿDO üNZ•õTcŒðYj…í\o€ê_r{èbuwædxsåfzpãi|pãi|pãi|pãi|pãi|pãi|pãi|pãi|pãi|pãi|pãi|pãi|pãi|pãi|pãi|pãi|pãi|ÿ¢%ÿ¯.ü½4àØ*Ìï. ½ÿ5/¯ÿ;<£ÿBG–ÿLQýSX…ùY^ö]b{ô`ewòbgtñdipïgkmîimmîimmîimmîimmîimmîimmîimmîimmîimmîimmîimmîimmîimmîimmîimmîimmîimÿ¨&ÿ¶.îÈ,Ðè%Áú,±ÿ3+¢ÿ96—ÿ@?ŒÿJG„ÿRM}ÿWQyÿ\Tuþ_WrýaXpûcZmúf\kùh]kùh]kùh]kùh]kùh]kùh]kùh]kùh]kùh]kùh]kùh]kùh]kùh]kùh]kùh]kùh]kùh]ÿ¯&ø¿*ÕáÅô#´ÿ)¤ÿ0&—ÿ7/Œÿ>7‚ÿG={ÿOAvÿUErÿZGpÿ\Imÿ^JkÿaKiÿcMhÿeNhÿeNhÿeNhÿeNhÿeNhÿeNhÿeNhÿeNhÿeNhÿeNhÿeNhÿeNhÿeNhÿeNhÿeNhÿeNhÿeNþ¸#ÝÖÉî ¸ÿ §ÿ&™ÿ-!Œÿ4(ÿ;.xÿC3sÿK6oÿQ9lÿV:jÿYeÿ_?dÿa?dÿa?dÿa?dÿa?dÿa?dÿa?dÿa?dÿa?dÿa?dÿa?dÿa?dÿa?dÿa?dÿa?dÿa?dÿa?dÿa?ÿ}' ÿŠ) ÿ•.ÿž4ÿ§:#ÿ­C2ÿ°LCÿ²UVû²^hõ°fyï­n‡êªu“æ¥{⟀¥ßš„«Û–‰±Õ‘¶À€‹»³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½ÿ}' ÿŠ) ÿ•.ÿž4ÿ§:#ÿ­C2ÿ°LCÿ²UVû²^hõ°fyï­n‡êªu“æ¥{⟀¥ßš„«Û–‰±Õ‘¶À€‹»³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½ÿ}' ÿŠ) ÿ•.ÿž4ÿ§:#ÿ­C2ÿ°LCÿ²UVû²^hõ°fyï­n‡êªu“æ¥{⟀¥ßš„«Û–‰±Õ‘¶À€‹»³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½ÿ}' ÿŠ) ÿ•.ÿž4ÿ§:#ÿ­C2ÿ°LCÿ²UVû²^hõ°fyï­n‡êªu“æ¥{⟀¥ßš„«Û–‰±Õ‘¶À€‹»³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½ÿ}' ÿŠ) ÿ•.ÿž4ÿ§:#ÿ­C2ÿ°LCÿ²UVû²^hõ°fyï­n‡êªu“æ¥{⟀¥ßš„«Û–‰±Õ‘¶À€‹»³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½ÿ}' ÿŠ) ÿ•.ÿž4ÿ§:#ÿ­C2ÿ°LCÿ²UVû²^hõ°fyï­n‡êªu“æ¥{⟀¥ßš„«Û–‰±Õ‘¶À€‹»³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½ÿ}' ÿŠ) ÿ•.ÿž4ÿ§:#ÿ­C2ÿ°LCÿ²UVû²^hõ°fyï­n‡êªu“æ¥{⟀¥ßš„«Û–‰±Õ‘¶À€‹»³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½ÿ}' ÿŠ) ÿ•.ÿž4ÿ§:#ÿ­C2ÿ°LCÿ²UVû²^hõ°fyï­n‡êªu“æ¥{⟀¥ßš„«Û–‰±Õ‘¶À€‹»³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½ÿ}' ÿŠ) ÿ•.ÿž4ÿ§:#ÿ­C2ÿ°LCÿ²UVû²^hõ°fyï­n‡êªu“æ¥{⟀¥ßš„«Û–‰±Õ‘¶À€‹»³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½ÿ}' ÿŠ) ÿ•.ÿž4ÿ§:#ÿ­C2ÿ°LCÿ²UVû²^hõ°fyï­n‡êªu“æ¥{⟀¥ßš„«Û–‰±Õ‘¶À€‹»³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½ÿ}' ÿŠ) ÿ•.ÿž4ÿ§:#ÿ­C2ÿ°LCÿ²UVû²^hõ°fyï­n‡êªu“æ¥{⟀¥ßš„«Û–‰±Õ‘¶À€‹»³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½ÿ}' ÿŠ) ÿ•.ÿž4ÿ§:#ÿ­C2ÿ°LCÿ²UVû²^hõ°fyï­n‡êªu“æ¥{⟀¥ßš„«Û–‰±Õ‘¶À€‹»³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½ÿ}' ÿŠ) ÿ•.ÿž4ÿ§:#ÿ­C2ÿ°LCÿ²UVû²^hõ°fyï­n‡êªu“æ¥{⟀¥ßš„«Û–‰±Õ‘¶À€‹»³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½³wˆ½ÿ~' ÿ‹) ÿ–.ÿŸ4ÿ¨:"ÿ¯C1ÿ´KCÿ¶TVù·\ió¶d{í³kŠè°r—ã©v¢à£z«Üž~²Ø™ƒ¹Ï‘†À·~‚Ä«w‚Ä«w‚Ä«w‚Ä«w‚Ä«w‚Ä«w‚Ä«w‚Ä«w‚Ä«w‚Ä«w‚Ä«w‚Ä«w‚Ä«w‚Ä«w‚Ä«w‚Äÿ& ÿŒ) ÿ—.ÿ 4ÿª:"ÿ±B1ÿ·JCÿºSV÷¼[jð¼b|êºhŒåµm›á®q§Ý¨t±Ú¢w¹Ö{ÁË’}ɯ|yͧ}ǧ}ǧ}ǧ}ǧ}ǧ}ǧ}ǧ}ǧ}ǧ}ǧ}ǧ}ǧ}ǧ}ǧ}Çÿ€& ÿ) ÿ˜.ÿ¡4ÿ«:!ÿ´B0ÿºICþ¾RVõÁYjîÂ`}çÂeâ»ižÞ´k«Û­n¶Ø§pÀÔ¡rÉÌ›xή†vФ…|ʤ…|ʤ…|ʤ…|ʤ…|ʤ…|ʤ…|ʤ…|ʤ…|ʤ…|ʤ…|ʤ…|ʤ…|ʤ…|ʤ…|Êÿ& ÿŽ( ÿ™.ÿ¢4ÿ­:!ÿ¶A0ÿ½IBûÂQVóÆXkëÉ^äÈbßÁe Ûºf®Ø´g»Ô®jÃϪnÊɦsЮ’uÒ¡ŽzÌ¡ŽzÌ¡ŽzÌ¡ŽzÌ¡ŽzÌ¡ŽzÌ¡ŽzÌ¡ŽzÌ¡ŽzÌ¡ŽzÌ¡ŽzÌ¡ŽzÌ¡ŽzÌ¡ŽzÌ¡ŽzÌÿ‚& ÿ( ÿš.ÿ£4ÿ®: ÿ¸A/ÿÀHBøÆPVðÌVkèÑ[áÎ_’ÛÆa£Ó½`±Í¶c»Ç°eÃÁ«hʺ§lа£tÓ ˜yΠ˜yΠ˜yΠ˜yΠ˜yΠ˜yΠ˜yΠ˜yΠ˜yΠ˜yΠ˜yΠ˜yΠ˜yΠ˜yΠ˜yÎÿƒ&ÿ( ÿ›.ÿ¤4ÿ°: ÿº@/ýÃHAôËOVìÓUläÚY€ÛÑ\“ÑÇ^¢È¾_¯Á¶_ºº±a³¬cɬ§fϤ¥mÒŸ¦xΟ¦xΟ¦xΟ¦xΟ¦xΟ¦xΟ¦xΟ¦xΟ¦xΟ¦xΟ¦xΟ¦xΟ¦xΟ¦xΟ¦xÎÿ„&ÿ‘( ÿœ.ÿ¦4ÿ±:ÿ¼@.úÆGAðÐNVçÜSkÞÝX€ÓÓ\‘ÈÉ] ¿À^¬·¹^¶¯³^¿¨­_Ç ©bÍ™§hЕ¨rΕ¨rΕ¨rΕ¨rΕ¨rΕ¨rΕ¨rΕ¨rΕ¨rΕ¨rΕ¨rΕ¨rΕ¨rΕ¨rΕ¨rÎÿ…%ÿ’( ÿ. ÿ§4ÿ²:ÿ¿@-÷ÊG@ìØMUãåRk×àWÌÕ[ÁË\¶Â]©­¼]²¦¶^ºŸ±_Á—­`ȪeÌ‹ªlÌ‹ªlÌ‹ªlÌ‹ªlÌ‹ªlÌ‹ªlÌ‹ªlÌ‹ªlÌ‹ªlÌ‹ªlÌ‹ªlÌ‹ªlÌ‹ªlÌ‹ªlÌ‹ªlÌÿ†%ÿ“( ÿž. ÿ©4ÿ´:þÂ@,óÏF?çàLTÞëQjÐâV}ÄÖZ¹Í\š®Å]¥¥¿]®žº^µ—µ_»±aÁˆ®eŃ­jǃ­jǃ­jǃ­jǃ­jǃ­jǃ­jǃ­jǃ­jǃ­jǃ­jǃ­jǃ­jǃ­jǃ­jÇÿ‡%ÿ•' ÿ . ÿª4ÿ¶:ûÆ?+îÕF=áèJTØíPiÉäU{½ÙYбÐ\—§È\¡žÃ]©—¾^¯º`µ‰¶bº‚³e¾}²iÀ}²iÀ}²iÀ}²iÀ}²iÀ}²iÀ}²iÀ}²iÀ}²iÀ}²iÀ}²iÀ}²iÀ}²iÀ}²iÀ}²iÀÿ‰$ÿ—' ÿ¡. ÿ­5ÿ¹:÷Ë?)èßC=ÜïHSÑðOgÂæUyµÜX‡ªÓ[’ Ì]›—Ç^¢Ã_¨‰¿a­ƒ¼c²|¹f¶x¸i¸x¸i¸x¸i¸x¸i¸x¸i¸x¸i¸x¸i¸x¸i¸x¸i¸x¸i¸x¸i¸x¸i¸x¸i¸x¸i¸x¸i¸ÿ‹$ÿ™'ÿ¤/ ÿ¯5ÿ½;ñÑ>(àé@=ÖõGRÉóNeºèTu¬ßX‚¢Ø[Œ™Ñ]”Í_›‰É` ƒÆb¤}Ãd¨wÀg¬s¿j®s¿j®s¿j®s¿j®s¿j®s¿j®s¿j®s¿j®s¿j®s¿j®s¿j®s¿j®s¿j®s¿j®s¿j®ÿ#ÿ›(ÿ§/ ÿ³6úÂ<éÚ;(Ùð>=ÐüDQÀöMb°ìSp¤ãW|šÝ[…‘Ø^ŒŠÓ`’ƒÐb–}ÍdšwËfsÉi oÇk£oÇk£oÇk£oÇk£oÇk£oÇk£oÇk£oÇk£oÇk£oÇk£oÇk£oÇk£oÇk£oÇk£oÇk£ÿ‘#ÿŸ(ÿª0ÿ·7 óÈ9Üæ6)Ðö=<ÆÿBNµùL]§ðSj›éWt’ã[|Šß^‚ƒÛa‡~ÙcŠyÖeŽtÔh‘oÒk“kÑm•kÑm•kÑm•kÑm•kÑm•kÑm•kÑm•kÑm•kÑm•kÑm•kÑm•kÑm•kÑm•kÑm•kÑm•ÿ•"ÿ£)ÿ¯1ü½8 æÓ3Òí5)Åý;:ºÿAJªþKWžöRb“ïWkŠë\rƒç_w}äazyâd}uàf€qßh‚mÝk…jÜm†jÜm†jÜm†jÜm†jÜm†jÜm†jÜm†jÜm†jÜm†jÜm†jÜm†jÜm†jÜm†jÜm†jÜm†ÿ›!ÿ¨*ÿµ3òÅ3 Õå,Çö3)¹ÿ:7¬ÿ?DŸÿIO”üQY‹÷W`ƒó\e}ð_ixîbluíeoqëgqnêiskèluhçnvhçnvhçnvhçnvhçnvhçnvhçnvhçnvhçnvhçnvhçnvhçnvhçnvhçnvhçnvÿ¡"ÿ®+û¼0ÜÛ# Êð*»ÿ1&¬ÿ72 ÿ>=”ÿGFŠÿPN‚ÿVT|ý[Xwû_[tùb^qøe_nögalõiciôkdgómegómegómegómegómegómegómegómegómegómegómegómegómegómegómeÿ¨"ÿ¶*êË%Îé!¾ü(®ÿ.# ÿ5-”ÿ<5ŠÿD=ÿMCzÿTGuÿZJrÿ]Moÿ`OlÿbPjÿdQhÿfSfÿiTeÿkUeÿkUeÿkUeÿkUeÿkUeÿkUeÿkUeÿkUeÿkUeÿkUeÿkUeÿkUeÿkUeÿkUeÿkUÿ°!óÁ#ÒäÂö±ÿ%¡ÿ+”ÿ2&‰ÿ9-~ÿ@3wÿJ8rÿQ;nÿW=lÿZ?jÿ]Ahÿ_BfÿaCeÿcCcÿeDbÿfEbÿfEbÿfEbÿfEbÿfEbÿfEbÿfEbÿfEbÿfEbÿfEbÿfEbÿfEbÿfEbÿfEbÿfEúºÕÚ Æñµÿ ¤ÿ!–ÿ'‰ÿ. ÿ6%uÿ<*nÿD-jÿL0gÿQ2dÿU3cÿX4bÿZ5aÿ\5`ÿ^6_ÿ`7^ÿa7^ÿa7^ÿa7^ÿa7^ÿa7^ÿa7^ÿa7^ÿa7^ÿa7^ÿa7^ÿa7^ÿa7^ÿa7^ÿa7^ÿa7ÿv' ÿƒ( ÿ,ÿ–2ÿž9ÿ£A,ÿ¦K;ÿ¦UKÿ¥_[ÿ¢ijûžsvõš|𖄉쓌蓕匘™â‰œÞ†£ŸÐ}¢¢Ât ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤ÿv' ÿƒ( ÿ,ÿ–2ÿž9ÿ£A,ÿ¦K;ÿ¦UKÿ¥_[ÿ¢ijûžsvõš|𖄉쓌蓕匘™â‰œÞ†£ŸÐ}¢¢Ât ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤ÿv' ÿƒ( ÿ,ÿ–2ÿž9ÿ£A,ÿ¦K;ÿ¦UKÿ¥_[ÿ¢ijûžsvõš|𖄉쓌蓕匘™â‰œÞ†£ŸÐ}¢¢Ât ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤ÿv' ÿƒ( ÿ,ÿ–2ÿž9ÿ£A,ÿ¦K;ÿ¦UKÿ¥_[ÿ¢ijûžsvõš|𖄉쓌蓕匘™â‰œÞ†£ŸÐ}¢¢Ât ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤ÿv' ÿƒ( ÿ,ÿ–2ÿž9ÿ£A,ÿ¦K;ÿ¦UKÿ¥_[ÿ¢ijûžsvõš|𖄉쓌蓕匘™â‰œÞ†£ŸÐ}¢¢Ât ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤ÿv' ÿƒ( ÿ,ÿ–2ÿž9ÿ£A,ÿ¦K;ÿ¦UKÿ¥_[ÿ¢ijûžsvõš|𖄉쓌蓕匘™â‰œÞ†£ŸÐ}¢¢Ât ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤ÿv' ÿƒ( ÿ,ÿ–2ÿž9ÿ£A,ÿ¦K;ÿ¦UKÿ¥_[ÿ¢ijûžsvõš|𖄉쓌蓕匘™â‰œÞ†£ŸÐ}¢¢Ât ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤ÿv' ÿƒ( ÿ,ÿ–2ÿž9ÿ£A,ÿ¦K;ÿ¦UKÿ¥_[ÿ¢ijûžsvõš|𖄉쓌蓕匘™â‰œÞ†£ŸÐ}¢¢Ât ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤ÿv' ÿƒ( ÿ,ÿ–2ÿž9ÿ£A,ÿ¦K;ÿ¦UKÿ¥_[ÿ¢ijûžsvõš|𖄉쓌蓕匘™â‰œÞ†£ŸÐ}¢¢Ât ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤ÿv' ÿƒ( ÿ,ÿ–2ÿž9ÿ£A,ÿ¦K;ÿ¦UKÿ¥_[ÿ¢ijûžsvõš|𖄉쓌蓕匘™â‰œÞ†£ŸÐ}¢¢Ât ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤¾r ¤ÿw& ÿ„( ÿ,ÿ—2ÿŸ8ÿ¥@+ÿ¨J;ÿ©TKÿ¨^\þ¦gkù¢pyóŸy„闉•哛⎕Ÿß‹š£Ö…ž¦Æz›©¸q™«µp™«µp™«µp™«µp™«µp™«µp™«µp™«µp™«µp™«µp™«µp™«µp™«µp™«ÿx& ÿ…( ÿ+ÿ™2ÿ¡8ÿ¨@+ÿ¬I:ÿ®SLÿ­\]ú¬enõ¨m|ð¥u‰ë¡}“朄œâ–Уߒ¨ÛŽ”­Ìƒ”±»w‘´¯s“²®t•°®t•°®t•°®t•°®t•°®t•°®t•°®t•°®t•°®t•°®t•°®t•°®t•°ÿy&ÿ†( ÿ’+ÿš2ÿ£8ÿ«?*ÿ¯H:ÿ²QLÿ²Z^ø²coò¯jí«rè§y™ä ~¢àš„ªÜ•‰±Ø‘¶Â€‹º°tˆ½©w¶¨x’³¨x’³¨x’³¨x’³¨x’³¨x’³¨x’³¨x’³¨x’³¨x’³¨x’³¨x’³¨x’³ÿz&ÿˆ' ÿ“+ ÿœ2ÿ¤8ÿ­?*ÿ²H:ÿ¶PLý·X_ö·`qðµgë²nå¬tá¥y¨Þž}²Ú˜‚¹Ó’‡¿¼ƒ…À«y…Á¤{Œ¹£|¶£|¶£|¶£|¶£|¶£|¶£|¶£|¶£|¶£|¶£|¶£|¶£|¶ÿ{%ÿˆ' ÿ”+ ÿ2ÿ¦8ÿ¯?)ÿµG9ÿ¹OLû¼W_ó½^rí¼eƒè¹k“ã±o¡ß©r®Û£v¸ÕŸ}½Ï›„À¹ŒƒÃ¨€ƒÃ €Š»žŒ¹žŒ¹žŒ¹žŒ¹žŒ¹žŒ¹žŒ¹žŒ¹žŒ¹žŒ¹žŒ¹žŒ¹žŒ¹ÿ|%ÿ‰' ÿ•+ ÿž2ÿ§8ÿ±>)ÿ·F9ÿ½NLùÁV_ñÃ]sêÃc…å¿h–à·j¥Ü°n±Ö«s¸Ð§y¾Ê£¸–Ä¥ˆÅœ†ˆ¾š†Š»š†Š»š†Š»š†Š»š†Š»š†Š»š†Š»š†Š»š†Š»š†Š»š†Š»š†Š»š†Š»ÿ}%ÿŠ' ÿ–+ ÿŸ2ÿ¨8ÿ³>(ÿºE9þÀMLöÆU`îÉ[sèË`†âÅd˜Ý¾g§Ö¹k±Ñ³p¸Ê®u¾Ã©{÷¢€Æ¢‘€Æ˜Œ†¿—Œ‰½—Œ‰½—Œ‰½—Œ‰½—Œ‰½—Œ‰½—Œ‰½—Œ‰½—Œ‰½—Œ‰½—Œ‰½—Œ‰½—Œ‰½ÿ~%ÿ‹' ÿ—+ ÿ 2ÿª8ÿµ>(ÿ½E8ûÄLKóËT`ìÐYtäÒ^ˆÞËa™ÖÅe¦Ï½h°È¸l¸Â³q¾¼°wõ®~Æ¡›Ç•“…Á“’ˆ¾“’ˆ¾“’ˆ¾“’ˆ¾“’ˆ¾“’ˆ¾“’ˆ¾“’ˆ¾“’ˆ¾“’ˆ¾“’ˆ¾“’ˆ¾“’ˆ¾ÿ~%ÿŒ& ÿ˜+ ÿ¡2ÿ«8ÿ·='ÿ¿E8øÈLKïÑR_èÚXtßÖ[ˆÕÎ_™ÌÅb¦Ä¾e°½¸h¸¶´l¾°°pé®wÆŸ¨~È’›„™‡¿™‡¿™‡¿™‡¿™‡¿™‡¿™‡¿™‡¿™‡¿™‡¿™‡¿™‡¿™‡¿ÿ$ÿ& ÿ™+ ÿ¢2ÿ¬8ÿ¸=&ýÃD7ôÍKJëÙQ_ããVtØÛZ‡ÍÏ]˜ÃÆ_¥º¾b¯²¸d·«´g½¥±kž®qƘ­zÇŽ¥ƒÂŒ¢†ÀŒ¢†ÀŒ¢†ÀŒ¢†ÀŒ¢†ÀŒ¢†ÀŒ¢†ÀŒ¢†ÀŒ¢†ÀŒ¢†ÀŒ¢†ÀŒ¢†ÀŒ¢†Àÿ€$ÿŽ&ÿš+ ÿ£2ÿ®8ÿ»=%úÇD6ðÓJIåâP^ÜæUsÐÜY†ÅÐ\–ºÇ]£°¿^®¨¹`¶¡µc¼š²fÀ”¯kÄ®sÆŠ±ƒÂˆ®†Àˆ®†Àˆ®†Àˆ®†Àˆ®†Àˆ®†Àˆ®†Àˆ®†Àˆ®†Àˆ®†Àˆ®†Àˆ®†Àˆ®†Àÿ‚$ÿ&ÿ›, ÿ¥2ÿ°8ÿ¾=$öÌC4êÜIHàëN^ÕéTrÈÞXƒ¼Ó[’±É\Ÿ¦Â\ª¼]³–·^¹´b¾‰±fÁ‚°nò{À€³€¾€³€¾€³€¾€³€¾€³€¾€³€¾€³€¾€³€¾€³€¾€³€¾€³€¾€³€¾€³€¾ÿƒ$ÿ‘%ÿ, ÿ§2ÿ²8ýÁ="ñÒC2ãåGHÛñM]ÍìSp¿àW€³ÕZލÍ\šžÆ]¤•Á^«Ž¼_²‡¹a·€¶e»y´j½u´t½uµy»uµy»uµy»uµy»uµy»uµy»uµy»uµy»uµy»uµy»uµy»uµy»uµy»ÿ…#ÿ”%ÿŸ, ÿª3 ÿ¶8øÆ= êÜ@2ÜîDGÔöK[ÄîRm¶ãW}ªÚZ‰ Ò\”–Ì^œÇ_£†Ãa¨€Àc­z½f±t»j³oºqµnºtµnºtµnºtµnºtµnºtµnºtµnºtµnºtµnºtµnºtµnºtµnºtµnºtµÿˆ#ÿ–%ÿ¢,ÿ­3 ÿº9òÌ<àè<2ÕõCFËúJY»ðQi­æVw¡ÞYƒ—Ø\ŒŽÒ_“†Îa™ËcžzÈe¡tÆh¥oÃl¨jÂqªiÁsªiÁsªiÁsªiÁsªiÁsªiÁsªiÁsªiÁsªiÁsªiÁsªiÁsªiÁsªiÁsªÿ‹"ÿ™%ÿ¥-ÿ±4 û¿:éÕ8×î;2Íü@EÀþHV±ôPe¤ëVq™äY{Þ]ƒ‡Ú`‰€ÖbŽzÓe’uÑg•pÏj˜kÍmšgËrfËsžfËsžfËsžfËsžfËsžfËsžfËsžfËsžfËsžfËsžfËsžfËsžfËsžÿ!ÿ&ÿ©.ÿµ6óÆ7Úä2 Íõ92Áÿ?BµÿGQ§ùO^›ñUiëZqˆæ]x€âa}zàcvÝf„qÛh‡mÚk‰iØnŒdÖsŽcÕtcÕtcÕtcÕtcÕtcÕtcÕtcÕtcÕtcÕtcÕtcÕtcÕtÿ” ÿ¢&ÿ®/ü¼5äÔ.Ïí1!Âý80µÿ=?©ÿEKœþNV’øU_‰óZfï^l{ìbpvêdsrègvoæixkålzhão|dâr~cáscáscáscáscáscáscáscáscáscáscáscáscásÿšÿ¨'ÿ´0ðÆ.Óå'Ä÷/ ¶ÿ6-¨ÿ<9ÿCD’ÿLM‰ÿTTüZZ{ù^^vöbarôedoóhflòjhiñligïokcîrmcîsmcîsmcîsmcîsmcîsmcîsmcîsmcîsmcîsmcîsmcîsmcîsmcîsmÿ¡ÿ®'ø½,ÖßÇò&¸ÿ,©ÿ3)œÿ93’ÿ@;ˆÿJC€ÿRHyÿXMtÿ]Pqÿ`RnÿcTkþeViýhWgüjYeümZbûp[búq\búq\búq\búq\búq\búq\búq\búq\búq\búq\búq\búq\búq\ÿ¨ÿ·$áÒËì »þ#«ÿ)ÿ0$‘ÿ7,†ÿ=2}ÿG8wÿO&ÿI3ÿTAÿ›_Oÿ™j\ÿ•ugÿ‘pû‰w÷Š’}ó‡šð„ …즈ꪊç|¯Œày³ŽÓs³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³ÿp' ÿ{( ÿ†+ ÿŽ0ÿ•7ÿ›>&ÿI3ÿTAÿ›_Oÿ™j\ÿ•ugÿ‘pû‰w÷Š’}ó‡šð„ …즈ꪊç|¯Œày³ŽÓs³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³ÿp' ÿ{( ÿ†+ ÿŽ0ÿ•7ÿ›>&ÿI3ÿTAÿ›_Oÿ™j\ÿ•ugÿ‘pû‰w÷Š’}ó‡šð„ …즈ꪊç|¯Œày³ŽÓs³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³ÿp' ÿ{( ÿ†+ ÿŽ0ÿ•7ÿ›>&ÿI3ÿTAÿ›_Oÿ™j\ÿ•ugÿ‘pû‰w÷Š’}ó‡šð„ …즈ꪊç|¯Œày³ŽÓs³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³ÿp' ÿ{( ÿ†+ ÿŽ0ÿ•7ÿ›>&ÿI3ÿTAÿ›_Oÿ™j\ÿ•ugÿ‘pû‰w÷Š’}ó‡šð„ …즈ꪊç|¯Œày³ŽÓs³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³ÿp' ÿ{( ÿ†+ ÿŽ0ÿ•7ÿ›>&ÿI3ÿTAÿ›_Oÿ™j\ÿ•ugÿ‘pû‰w÷Š’}ó‡šð„ …즈ꪊç|¯Œày³ŽÓs³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³ÿp' ÿ{( ÿ†+ ÿŽ0ÿ•7ÿ›>&ÿI3ÿTAÿ›_Oÿ™j\ÿ•ugÿ‘pû‰w÷Š’}ó‡šð„ …즈ꪊç|¯Œày³ŽÓs³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³ÿp' ÿ{( ÿ†+ ÿŽ0ÿ•7ÿ›>&ÿI3ÿTAÿ›_Oÿ™j\ÿ•ugÿ‘pû‰w÷Š’}ó‡šð„ …즈ꪊç|¯Œày³ŽÓs³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³Ëo³ÿq&ÿ}( ÿ‡* ÿ0ÿ—6ÿž>&ÿ H3ÿ SBÿŸ]Pÿh^ÿ™rjý•|tø‘…|ôŽ‚ðŠ–‡ì‡‹é„£Žæ¨‘â­“Öy®•Éq¬—Ám¬˜Ám¬˜Ám¬˜Ám¬˜Ám¬˜Ám¬˜Ám¬˜Ám¬˜Ám¬˜Ám¬˜Ám¬˜Ám¬˜ÿr&ÿ~' ÿŠ* ÿ’0ÿš6ÿ¡=%ÿ£G3ÿ¤QBÿ¤[Qÿ¢e`ÿŸomù›xyô—‚ð’ŠŠë’ç‹™”䇟˜à„¤›Õ~¦žÇu¤ »n£¡¸q§¸q§¸q§¸q§¸q§¸q§¸q§¸q§¸q§¸q§¸q§¸q§ÿs&ÿ€' ÿ‹* ÿ”/ÿœ6ÿ£<%ÿ§F2ÿ©OBÿ©YRÿ¨cbü¥lq÷¡t}ñœ}ˆì˜†‘甎˜ä”žàŠš¢Ù…ž¦Èzœ©ºqš«²rŸ¦°t£¡°t£¡°t£¡°t£¡°t£¡°t£¡°t£¡°t£¡°t£¡°t£¡°t£¡°t£¡ÿu%ÿ& ÿ) ÿ–/ÿž6ÿ¦<$ÿªE2ÿ­NBÿ®WSþ­adøªisó§qî¢y鞗嘈Ÿà’ަܔ¬Í‚•°½w“²±r”±¬v›©©x ¤©x ¤©x ¤©x ¤©x ¤©x ¤©x ¤©x ¤©x ¤©x ¤©x ¤©x ¤ÿu%ÿƒ& ÿŽ) ÿ—/ÿŸ5ÿ¨<#ÿ­D2ÿ±MBÿ³VSü²^eö±fuð­n„ë©u‘ç£|✂¦Þ•ˆ¯Ø’²Èˆ‘´¸~µ«w´¦z˜­£|§£|§£|§£|§£|§£|§£|§£|§£|§£|§£|§£|§ÿv%ÿ„& ÿ) ÿ™/ÿ¡5ÿª;#ÿ°D1ÿ´LBÿ·TTù¸\fó·dwî´k‡é°r•ä¨w¢ß¡}«Ø„°Ñ™Œ´Ä¶³…Ž·¦|Ž·¡~•¯Ÿ€›ªŸ€›ªŸ€›ªŸ€›ªŸ€›ªŸ€›ªŸ€›ªŸ€›ªŸ€›ªŸ€›ªŸ€›ªŸ€›ªÿw%ÿ…& ÿ) ÿš/ÿ¢5ÿ«;"ÿ²C1ÿ·KAÿ»ST÷½[fñ½bxë»h‰æµm˜á®s¤Ù¨z¬Ð¢€±Êž‡µÁ™¸°ŒŒ¹¢‚Œ¹œ‚“²š„™¬š„™¬š„™¬š„™¬š„™¬š„™¬š„™¬š„™¬š„™¬š„™¬š„™¬š„™¬ÿx$ÿ…&ÿ‘) ÿ›/ÿ£5ÿ­;"ÿµC0ÿºJAý¿RTõÃYgîÄ`yèÃe‹ã¼jšÜ¶p¤Ò®v¬Ê§}²Ã£ƒ¶½¡‹¹­”‹»Ÿˆ‹»˜‡‘´–ˆ—®–ˆ—®–ˆ—®–ˆ—®–ˆ—®–ˆ—®–ˆ—®–ˆ—®–ˆ—®–ˆ—®–ˆ—®–ˆ—®ÿy$ÿ†%ÿ’) ÿœ/ÿ¤5ÿ¯;!ÿ·B0ÿ¾IAùÄQTóÉXgëË^zåÊbÞÄhšÖ½n¤Ì´s¬Ä­y²½©··¦‡ºªœŠ¼›Š¼”Œµ’Œ•¯’Œ•¯’Œ•¯’Œ•¯’Œ•¯’Œ•¯’Œ•¯’Œ•¯’Œ•¯’Œ•¯’Œ•¯’Œ•¯ÿy$ÿ‡%ÿ“) ÿ/ÿ¦5ÿ°; ÿºB/üÂI@õÊPSîÐVgèÕ[{àÒaŒÙÍg™ÐÅl¤Æ»p¬¾´v³¶¯|·°¬ƒ»§§‰½˜˜‰½’Ž·‘”±‘”±‘”±‘”±‘”±‘”±‘”±‘”±‘”±‘”±‘”±‘”±ÿz$ÿˆ%ÿ”) ÿž/ÿ§5ÿ²; ÿ½A.ùÆH?ñÐOSéÚUgâßY{ÙØ_‹ÏÎd™ÆÇh£¾Ám¬·¼r²°·x·ª´»¤³ˆ½”¢ˆ½‹™¸‰—“²‰—“²‰—“²‰—“²‰—“²‰—“²‰—“²‰—“²‰—“²‰—“²‰—“²‰—“²ÿ{#ÿ‰%ÿ–) ÿŸ/ ÿ©5ÿ´;þÀA-õËG>ìÙNRãåSgÚâXzÏÙ]‹ÅÏa˜»Çe¢³Áh««¼m²¤¹r·Ÿ¶wº™µ€½‘¯ˆ½†¢¹ƒž’³ƒž’³ƒž’³ƒž’³ƒž’³ƒž’³ƒž’³ƒž’³ƒž’³ƒž’³ƒž’³ƒž’³ÿ}#ÿ‹$ÿ—) ÿ¡0 ÿ«6ÿ¶;úÅ@+ðÒG=åâLQÞîReÑåWxÅÚZ‰»Ð^–°Èa¡§Âdª ½g°™ºlµ“·q¹¶x»‡µ‚¼®¹~¨’³~¨’³~¨’³~¨’³~¨’³~¨’³~¨’³~¨’³~¨’³~¨’³~¨’³~¨’³ÿ~#ÿ$ÿ™)ÿ£0 ÿ­6ÿº;öÊ@)êÜF;ÞìJPÖñQdÈçVv¼ÜY†°Ñ\”¥Ê]ŸœÄ`§”¿c®¼f³‡¹k¶·q¸{·z¹y¸‰·y¶“²y¶“²y¶“²y¶“²y¶“²y¶“²y¶“²y¶“²y¶“²y¶“²y¶“²y¶“²ÿ€"ÿ$ÿ›)ÿ¥0 ÿ°6ý¾;ñÑ@'âæB;ÙòHOÎôPb¿êUs²ßX‚§Õ[œÎ]™’È^¢‰Â`©¿b¯{¼f²v»k´qºsµn»´p¾Œ°p¾Œ°p¾Œ°p¾Œ°p¾Œ°p¾Œ°p¾Œ°p¾Œ°p¾Œ°p¾Œ°p¾Œ°p¾Œ°ÿ‚"ÿ‘#ÿ*ÿ¨1 ÿ³7øÃ<éÚ<'Ûï@;ÑúFNÄ÷O`¶ìTo©ãX}žÛ[ˆ”Ô^‘ŠÎ`™ÊbŸ{Çd£uÄg§pÂkªkÀq¬gÀy­fÁƒ«fÁƒ«fÁƒ«fÁƒ«fÁƒ«fÁƒ«fÁƒ«fÁƒ«fÁƒ«fÁƒ«fÁƒ«fÁƒ«ÿ…!ÿ”#ÿ *ÿ«1ÿ¸8 ñÉ:Üæ7(Òö>:ÊÿDLºúM\¬ðSj èXv–á[€ŒÛ^ˆ„ÖaŽ|Òd“vÏg—pÍišlËmgÉqŸcÈx¡aÈ~¢aÈ~¢aÈ~¢aÈ~¢aÈ~¢aÈ~¢aÈ~¢aÈ~¢aÈ~¢aÈ~¢aÈ~¢aÈ~¢ÿ‰ ÿ˜#ÿ¤+ÿ°2ú½8 æÔ4Óì6(Èû=9¾ÿBI°ýLW£õSc˜íXnŽç\v…ã_}~ßb‚wÜe†rÚh‰nØkŒiÕndÔs‘`Òx“^Ñ}”^Ñ}”^Ñ}”^Ñ}”^Ñ}”^Ñ}”^Ñ}”^Ñ}”^Ñ}”^Ñ}”^Ñ}”^Ñ}”ÿÿœ#ÿ©,ÿµ4ñÆ3 Öä-Êõ5(½ÿ;7²ÿAE¥ÿJQ™úR[ôXd†ï\kë`pyècusæfxoäi{kâl}háodßs‚_Þw„]Ý{…]Ý{…]Ý{…]Ý{…]Ý{…]Ý{…]Ý{…]Ý{…]Ý{…]Ý{…]Ý{…]Ý{…ÿ“ÿ¡$ÿ®,ú¼1ÞÙ& Ìî,¿þ3'±ÿ93¥ÿ??šÿHIÿQR‡üWYø\_yõactódfpñgimïjkjîlmgìoocërq`êws]ézt]ézt]ézt]ézt]ézt]ézt]ézt]ézt]ézt]ézt]ézt]éztÿšÿ§$ÿµ+ëÉ'Ðè#Áù*²ÿ1$¥ÿ7/™ÿ=8ÿFA†ÿOGÿVMxÿ\Qtÿ`UpýcWlüfZjûi[gùk]eøn^b÷q`_öua]õxb]õxb]õxb]õxb]õxb]õxb]õxb]õxb]õxb]õxb]õxb]õxbÿ¡ÿ¯"ôÀ$ÓâÄô!´ÿ'¦ÿ- ™ÿ4)Žÿ;1„ÿB7|ÿL.rÿG2nÿO5jÿU7gÿY9eÿ];dÿ__ÿf>]ÿi?\ÿl@ZÿoAZÿoAZÿoAZÿoAZÿoAZÿoAZÿoAZÿoAZÿoAZÿoAZÿoAZÿoAÿ³×ÎÊê ºýªÿ ›ÿŽÿ&ƒÿ-yÿ4!qÿ:%jÿB(fÿH*cÿN,aÿS-_ÿV.]ÿZ/\ÿ\0\ÿ^0Zÿ`1Yÿb2Xÿe2Wÿg3Wÿg3Wÿg3Wÿg3Wÿg3Wÿg3Wÿg3Wÿg3Wÿg3Wÿg3Wÿg3Wÿg3ØÅÌÓ½ð ­ÿÿ ÿ„ÿ"yÿ)qÿ0jÿ6dÿ<aÿB!^ÿF"\ÿJ#ZÿN$YÿP$XÿS%WÿU%VÿW&TÿY&Sÿ\'Rÿ^'Rÿ^'Rÿ^'Rÿ^'Rÿ^'Rÿ^'Rÿ^'Rÿ^'Rÿ^'Rÿ^'Rÿ^'Rÿ^'ÿi'ÿt( ÿ~* ÿ†.ÿŒ5ÿ’'ÿ»F6úÂMHôÈU[îÌ[nåÎbÛÅiŒÑ¼p—DzuŸ¿¬|¥·§ƒª±¤‹®¬£”°Ÿ—”±•Ž”°Œœ©Œ£¡Œ£¡Œ£¡Œ£¡Œ£¡Œ£¡Œ£¡Œ£¡Œ£¡Œ£¡Œ£¡ÿv#ÿ„$ÿ&ÿš- ÿ¢3ÿ¬9ÿ·>&ý¿E5öÈLGïÐSZéÙYnàØ`~ÕÎgŒËÃm–ÁºrŸ¸³x¦±®«ª«‡®¥©±› “²•“±‹‘šªŠ‘¡£Š‘¡£Š‘¡£Š‘¡£Š‘¡£Š‘¡£Š‘¡£Š‘¡£Š‘¡£Š‘¡£Š‘¡£ÿw#ÿ…#ÿ‘&ÿ›- ÿ¤3ÿ®9ÿº>%ùÄE4ñÏKFéÜRZâæWmÙà^~ÏØe‹ÄÌk–ºÂpŸ²»u¥ª¶|«¤³ƒ¯ž±Œ±—«“²Šž“²…˜™¬„– ¤„– ¤„– ¤„– ¤„– ¤„– ¤„– ¤„– ¤„– ¤„– ¤„– ¤ÿx"ÿ†#ÿ“'ÿ- ÿ¦3ÿ°9þ¾>$õÊD3ëÙJDâçPXÛëVlÎã\|ÅÙbŠ»Ñg•²Ëlž«Ær¥£Áxª½€®—»ˆ±‘¹“²…©“² ˜­~Ÿ¥~Ÿ¥~Ÿ¥~Ÿ¥~Ÿ¥~Ÿ¥~Ÿ¥~Ÿ¥~Ÿ¥~Ÿ¥~Ÿ¥ÿy"ÿˆ#ÿ”'ÿŸ- ÿ¨3ÿ³9úÂ="ðÒC0ääHCÜïNWÑîUjÅäZ{ºÚ^‰°Òc“§ÌhœŸÇl£˜Ãr©‘Àx­‹¾€°…½Š±¸”±x«˜­w¦ž¦w¦ž¦w¦ž¦w¦ž¦w¦ž¦w¦ž¦w¦ž¦w¦ž¦w¦ž¦w¦ž¦w¦ž¦ÿ{!ÿŠ"ÿ–'ÿ¡.ÿ«4 ÿ·9öÇ>éÜB/ÝíFCÕöMVÈñSh»åXy¯Ü[‡¥Ó_‘œÍcš“Èg¡‹Äl¦„Âqª~Àx­y¿€®u¾Œ¯r»™«q²Ÿ¥q²Ÿ¥q²Ÿ¥q²Ÿ¥q²Ÿ¥q²Ÿ¥q²Ÿ¥q²Ÿ¥q²Ÿ¥q²Ÿ¥q²Ÿ¥ÿ}!ÿŒ"ÿ™'ÿ£.ÿ®4 ý»9ðÍ=àè=/ÕôDBÎüKT¿óRe±èWu¥ßZ‚›Ö\Ð_—‡ËcÇg¢xÅk¦sÃq¨nÂxªk‚ªiÃ’¨kÄ¡£kÄ¡£kÄ¡£kÄ¡£kÄ¡£kÄ¡£kÄ¡£kÄ¡£kÄ¡£kÄ¡£kÄ¡£ÿ€ ÿ!ÿœ'ÿ¦.ÿ²5 øÁ:æ×9ØîÿcIÿnTÿŠy]ÿ‡…dÿ…‘jý‚œoù¤sõ{¬vòx²yîu¹{èr¿}ßnÁ~ÔiÃËhÅ}ÆiÉyÆiÉyÆiÉyÆiÉyÆiÉyÆiÉyÆiÉyÆiÉyÆiÉyÆiÉyÿh%ÿt%ÿ~' ÿˆ+ ÿŽ2ÿ”8ÿ˜@&ÿ™K2ÿ˜V?ÿ–`Kÿ’kWÿvaý‹iúˆŒqø†—võ‚¡{ñ~©í{¯‚éw·…ßrº‡Òm»ˆÉj»‡ÂlÁ¾mÅ}¾mÅ}¾mÅ}¾mÅ}¾mÅ}¾mÅ}¾mÅ}¾mÅ}¾mÅ}¾mÅ}ÿi%ÿu%ÿ€' ÿŠ+ ÿ1ÿ–8ÿœ?%ÿJ2ÿœT?ÿ›^Lÿ˜iYý”sdù}nöŒˆvòˆ’}ï…œƒì¥‡é}¬‹áy³ŽÒr³Æl²‘Ám·Œ»o½†·pÁ·pÁ·pÁ·pÁ·pÁ·pÁ·pÁ·pÁ·pÁ·pÁÿk$ÿw%ÿ‚& ÿŒ+ ÿ“1ÿ™7ÿŸ>%ÿ¡H1ÿ¡R?ÿ \Nýf[ùšphõ•zsðƒ|쌄臖‹ä‚Ÿà~§”Ö{®•Éu®–¾p®•¹q³³s¹‰°t¾„°t¾„°t¾„°t¾„°t¾„°t¾„°t¾„°t¾„°t¾„°t¾„ÿl$ÿx$ÿ„& ÿ+ ÿ•1ÿ›7ÿ¢>$ÿ¤G1ÿ¥P?ÿ¥ZNú£d]õ mkð›vwê–‚å‡ŒàŠ’Ûˆš•Ö…¤—Ï‚«™Ázª™·u«™±u¯”¬w¶©x»‡©x»‡©x»‡©x»‡©x»‡©x»‡©x»‡©x»‡©x»‡©x»‡ÿm$ÿy$ÿ†%ÿ+ ÿ—1ÿž7ÿ¥=#ÿ¨F0ÿªO?ü«XO÷ªb_ñ¦jnë¡r|äšzˆÞ•ƒØ’”ÑŽ–˜Ì‹ŸšÇ‰¨œº€¨œ¯z¨œªy¬˜¦{³£|¸Š£|¸Š£|¸Š£|¸Š£|¸Š£|¸Š£|¸Š£|¸Š£|¸Š£|¸Šÿn#ÿ{#ÿ‡%ÿ‘+ ÿ™1ÿ 7ÿ¨<"ÿ¬E0ÿ¯N?ù±VOó±_`í®gpå¨nÞ¢w‰Ö€Ï˜‰–É”’šÃ‘›œ¿¤ž³†¥Ÿ©¥Ÿ£}©› °“ž€¶ž€¶ž€¶ž€¶ž€¶ž€¶ž€¶ž€¶ž€¶ž€¶ÿo#ÿ|#ÿ‰%ÿ’+ ÿš1ÿ¢6ÿ«ö·TOð¸]aè·drà°lשt‰Î£}‘Çž…—Á™›»––ž¶”  ­£¡£…£¡œ‚¦žš„®•˜„´˜„´˜„´˜„´˜„´˜„´˜„´˜„´˜„´˜„´ÿp#ÿ}#ÿŠ$ÿ”+ ÿœ1ÿ¤6ÿ­ô¾SOíÁ[aäÁbrÛ¸jЯr‰È¨y‘À£—ºŸ‰œ´œ’Ÿ¯šœ¢§”¡£Œ¡£–‡¤ ”ˆ¬˜“ˆ²‘“ˆ²‘“ˆ²‘“ˆ²‘“ˆ²‘“ˆ²‘“ˆ²‘“ˆ²‘“ˆ²‘“ˆ²‘ÿq"ÿ"ÿ‹$ÿ•+ ÿž1ÿ¦6ÿ°<ÿ¹B-øÀJ=ñÇQNéÌYaßÊ`qÔÀhʶo‰Á¯v‘º©~˜³¥†¬¢Ž § ˜£¡œ ¤—“ ¤Œ¡£ŽŒªšŒ°“Œ°“Œ°“Œ°“Œ°“Œ°“Œ°“Œ°“Œ°“Œ°“ÿr"ÿ€"ÿ$ÿ—+ ÿŸ1 ÿ¨6ÿ²;ý½B+õÇI;íÐPMåÛW`ÚÔ_qÎÇf~Ľl‰»¶s‘³°{˜¬¬‚¦¨Š¡ ¦”¤›¥Ÿ¥‘šž¦ˆ’ ¤ˆ‘¨œ‡‘®•‡‘®•‡‘®•‡‘®•‡‘®•‡‘®•‡‘®•‡‘®•‡‘®•‡‘®•ÿs"ÿ"ÿŽ$ÿ™+ÿ¡1 ÿ«6ÿ¶;ùÃA*ðÏH:æÞNLÞæU_ÓÞ]pÈÐd}½Æjˆ´¾q‘¬¹w˜¥´~Ÿ°‡¡™­¤”¬›¦‹£ž¦‚™ž¦—§–­––­––­––­––­––­––­––­––­––­–ÿu!ÿƒ!ÿ$ÿš+ÿ¤1 ÿ­6þº;ôÊ@'éÚG7àêLJØìS^Ìå[nÁÛa|·Ðh‡®Én¦Ãt—ž½{—ºƒ¡‘·Œ¤‹µ—¦„®ž§{£ž¦zŸ¦žzœ¬˜zœ¬˜zœ¬˜zœ¬˜zœ¬˜zœ¬˜zœ¬˜zœ¬˜zœ¬˜zœ¬˜ÿv!ÿ…!ÿ’$ÿœ+ÿ¦1 ÿ°7ú¾;ïÑ@%âæD6ÚñKIÐóR\ÄíYm¹ä_z¯Üe†¦ÕkžÏr–—Êx›Æ€ ˆÃ‰£‚Á”¥}¾Ÿ¦u¯Ÿ¥s¨¥žs¥«˜s¥«˜s¥«˜s¥«˜s¥«˜s¥«˜s¥«˜s¥«˜s¥«˜s¥«˜ÿx ÿ‡ ÿ”$ÿŸ+ÿ©2ÿ´7õÄ<çÛ=#ÛïB5ÒøHHÈùPZºðWk®æ\x¤Þaƒ›ØfŒ“Òl“‹Îr™ƒËy}É wÇŒ¢sÇ—£n¡£l¶¦l°¬˜l°¬˜l°¬˜l°¬˜l°¬˜l°¬˜l°¬˜l°¬˜l°¬˜l°¬˜ÿ{ÿŠÿ—%ÿ¢,ÿ¬2ý¹8 îÊ:Üæ8$Òô@5ËÿFG¾ýOX°òUg¤èYu™à]€Úb‰‡Õg~Ñl•wÎr™qÌyœlÊ‚žhÊŸeÊ™ŸeÉ©›eÀ­–eÀ­–eÀ­–eÀ­–eÀ­–eÀ­–eÀ­–eÀ­–eÀ­–eÀ­–ÿ~ÿÿš%ÿ¥,ÿ°3÷¿8ãÖ4Óì8$Éù?5ÀÿDE³ÿMT§öTb›íYnæ\y†ß`‚|Úc‰tÕgmÒm“gÐs–cÏ{—_΄˜]Ϙ\Р–]Ó¯’]Ó¯’]Ó¯’]Ó¯’]Ó¯’]Ó¯’]Ó¯’]Ó¯’]Ó¯’]Ó¯’ÿÿ‘ÿž%ÿ©,ÿ¶3îÇ3 Öä.Êó7$¿ÿ=3µÿBB©ÿKOûS[’óYfˆí]oèavwãe|pàijÝm…dÚrˆ_Ùx‹[×€ŒWÖ‰TÖ–TÙ¢‹TÙ¢‹TÙ¢‹TÙ¢‹TÙ¢‹TÙ¢‹TÙ¢‹TÙ¢‹TÙ¢‹TÙ¢‹ÿ†ÿ–ÿ¢%ÿ®,ø½1ÛÜ% Íí.Áû5$´ÿ;1©ÿA>ŸÿII”ÿRSŠúX\‚õ^czñbisífnmêjrhènvcæsy_äx{[ã~}Wâ…~SáPá˜Pá˜Pá˜Pá˜Pá˜Pá˜Pá˜Pá˜Pá˜Pá˜ÿ‹ÿ›ÿ§$ÿµ*éÊ&Ðç# Ãö,¶ÿ3#©ÿ9.žÿ?9”ÿGB‹ÿPJ‚ÿXQ{ý]Wuúb\o÷g`jõkcfóofbñsh_ðxj[ï}lWíƒnTì‹oQì’pQì’pQì’pQì’pQì’pQì’pQì’pQì’pQì’pQì’pÿ’ÿ¡ÿ®"óÀ#ÓâÆò# ¸ÿ*ªÿ0 žÿ6*“ÿ=2‰ÿE:ÿNAzÿVFtÿ\JoÿaNkÿeQgÿiTdþmVaýqX^üuZ[ûz[Xú]Uù†^Rø_Rø_Rø_Rø_Rø_Rø_Rø_Rø_Rø_Rø_ÿšÿ¨ú¸ÖÙ Éîºþ «ÿ&žÿ,“ÿ3$ˆÿ:+~ÿA1wÿK6qÿS:mÿY>iÿ^@fÿbCcÿfEaÿjF^ÿnH\ÿqIYÿuJWÿzLTÿMRÿ†NRÿ†NRÿ†NRÿ†NRÿ†NRÿ†NRÿ†NRÿ†NRÿ†NRÿ†Nÿ¢ÿ²ÖÌËæ ¼û­ÿ Ÿÿ"“ÿ(ˆÿ/~ÿ6$tÿ=(mÿE,iÿN/eÿT1cÿY3aÿ]5_ÿa7]ÿd8[ÿh9Yÿl:Wÿp;TÿtPÿ~>Pÿ~>Pÿ~>Pÿ~>Pÿ~>Pÿ~>Pÿ~>Pÿ~>Pÿ~>ÿ¬ØÃÍÑ¿ð ¯ÿ ÿ “ÿ‡ÿ$}ÿ+tÿ2lÿ9 gÿ@#cÿF%`ÿL']ÿQ([ÿU)YÿY*Wÿ]+Uÿa,Tÿd-Sÿg-Qÿk.Oÿp/Mÿt0Mÿt0Mÿt0Mÿt0Mÿt0Mÿt0Mÿt0Mÿt0Mÿt0Mÿt0Û¼ÎÉÁÙ±ð¢ÿ ”ÿ ˆÿ }ÿ tÿ'lÿ.fÿ4aÿ9]ÿ?ZÿDXÿHVÿLTÿP SÿS QÿV!PÿY"Nÿ\"Mÿ`#Kÿd#Iÿg$Iÿg$Iÿg$Iÿg$Iÿg$Iÿg$Iÿg$Iÿg$Iÿg$Iÿg$ÐÂÄεܤí–ÿ‰ÿ}ÿ sÿ kÿ"eÿ)_ÿ.[ÿ3Wÿ8Uÿ<Sÿ@QÿCPÿFNÿIMÿLLÿNKÿQIÿTHÿWFÿZFÿZFÿZFÿZFÿZFÿZFÿZFÿZFÿZFÿZÿ[(ÿe(ÿm* ÿs-ÿx2ÿz:ÿ~C!ÿ|Q)ÿy^1ÿvk8ÿrw>ÿp„Bÿn‘FÿmIÿl¨Kÿj²Mÿi»NÿgÀOÿeÆPÿcËQýaÑRù`ÙSõ_ßSï]âTê\ãTê\ãTê\ãTê\ãTê\ãTê\ãTê\ãTê\ãTê\ãTÿ[(ÿe(ÿm* ÿs-ÿx2ÿz:ÿ~C!ÿ|Q)ÿy^1ÿvk8ÿrw>ÿp„Bÿn‘FÿmIÿl¨Kÿj²Mÿi»NÿgÀOÿeÆPÿcËQýaÑRù`ÙSõ_ßSï]âTê\ãTê\ãTê\ãTê\ãTê\ãTê\ãTê\ãTê\ãTê\ãTÿ[(ÿe(ÿm* ÿs-ÿx2ÿz:ÿ~C!ÿ|Q)ÿy^1ÿvk8ÿrw>ÿp„Bÿn‘FÿmIÿl¨Kÿj²Mÿi»NÿgÀOÿeÆPÿcËQýaÑRù`ÙSõ_ßSï]âTê\ãTê\ãTê\ãTê\ãTê\ãTê\ãTê\ãTê\ãTê\ãTÿ[(ÿe(ÿm* ÿs-ÿx2ÿz:ÿ~C!ÿ|Q)ÿy^1ÿvk8ÿrw>ÿp„Bÿn‘FÿmIÿl¨Kÿj²Mÿi»NÿgÀOÿeÆPÿcËQýaÑRù`ÙSõ_ßSï]âTê\ãTê\ãTê\ãTê\ãTê\ãTê\ãTê\ãTê\ãTê\ãTÿ](ÿg'ÿo) ÿv, ÿz2ÿ}9ÿB!ÿO*ÿ}\2ÿzi:ÿuu@ÿs‚EÿqIÿp›Mÿn¦Oÿm°Qÿl¹Sÿj¿TÿgÄUýeÊVùcÐWöbØXð`ÜYé^ßYä]áYä]áYä]áYä]áYä]áYä]áYä]áYä]áYä]áYÿ_'ÿi'ÿr( ÿy+ ÿ~1ÿ‚8ÿ†@!ÿ…M*ÿ‚Y4ÿf<ÿ{rDÿx~Jÿv‹Oÿt—Sÿs¢Vÿq¬Xÿp¶Zþm½\üjÃ^øhÉ_ôfÏ`îdÔaçbØaÞ_ÜbÚ`à`Ú`à`Ú`à`Ú`à`Ú`à`Ú`à`Ú`à`Ú`à`Ú`à`ÿ`&ÿk&ÿt' ÿ|* ÿ‚0ÿ†7ÿŠ?!ÿ‰K+ÿ‡W5ÿ„c>ÿ€oGÿ}{Nÿz‡Tÿx“Yÿwž\ÿu¨`ýs²búpºd÷mÁfókÈgíhÎiåeÑjÝcÔjÔcÚgÐcÝeÐcÝeÐcÝeÐcÝeÐcÝeÐcÝeÐcÝeÐcÝeÐcÝeÿb%ÿm%ÿv' ÿ* ÿ…0ÿŠ7ÿŽ>!ÿŽI+ÿŒU6ÿ‰`@ÿ†lJÿ‚wRÿƒYþ|^üzšcúx¤gøu®jör¶lóp¿nîmÇpåiËqÜfÍrÓeÑqÌfÕlÈgØiÈgØiÈgØiÈgØiÈgØiÈgØiÈgØiÈgØiÈgØiÿd%ÿo%ÿy& ÿ‚) ÿˆ0ÿ6ÿ’= ÿ’H+ÿ‘S6ÿ^Bÿ‹iLÿ‡tVü„€^ù‹dö}–jôz nñw©rït±uìr»wænÃyÚjÆ{ÐgÇzÉhÌvÃiÑp¿jÔm¿jÔm¿jÔm¿jÔm¿jÔm¿jÔm¿jÔm¿jÔm¿jÔmÿe$ÿp$ÿ{%ÿ„) ÿ‹/ÿ6ÿ•< ÿ—F+ÿ–Q7ÿ”\Cÿ‘fOûqY÷‰|cô…‡kð‘qí}šwêy¤{æu¬ãr¶‚Ûo¾ƒÎk¿ƒÆj€ÀlÇzºmÍu·mÐq·mÐq·mÐq·mÐq·mÐq·mÐq·mÐq·mÐq·mÐqÿf$ÿr#ÿ}%ÿ‡) ÿŽ/ÿ“5ÿ™<ÿœE*ÿœO7ÿšZDû—dQö”n]òxh튂q鄌yä~”€à{ž„Üy§†Øx²‡Ñv»ˆÅp»‡½n¾…·pòqÉy¯qÌu¯qÌu¯qÌu¯qÌu¯qÌu¯qÌu¯qÌu¯qÌu¯qÌuÿh#ÿt#ÿ$ÿ‰( ÿ/ÿ–5ÿœ;ÿ C)ÿ¡M7ü WE÷žaSò›k`ì•tlæ}wሆÜ…„Ö‚š‡Ñ€£‰Í~­‹È|·‹¼v·‹´s¹‰¯t¿ƒ«uÅ}¨uÉy¨uÉy¨uÉy¨uÉy¨uÉy¨uÉy¨uÉy¨uÉy¨uÉyÿi#ÿu"ÿ$ÿ‹( ÿ“/ ÿ™4ÿŸ:ÿ¤B)ÿ¦L6ù¦UEó¥_Tí¢hcæœpqß–yzÙ‘ƒÒŒŒ†Ì‰–ŠÈ†ŸŒÃ„¨Ž¿ƒ³´|´«wµ¨y¼‡¤y€¢yÆ|¢yÆ|¢yÆ|¢yÆ|¢yÆ|¢yÆ|¢yÆ|¢yÆ|¢yÆ|ÿj"ÿw"ÿƒ#ÿ( ÿ•. ÿœ4ÿ¢:ÿ©A(ü¬J5ö­SEï­]Uèªeeà¤nrØw{З‚É“ˆˆÄ‘Œ¿Œ›ºŠ¤¶‰¯‘­‚±’¤|²‘¡}¸Š}¿ƒœ~Ã~œ~Ã~œ~Ã~œ~Ã~œ~Ã~œ~Ã~œ~Ã~œ~Ã~œ~Ã~ÿl"ÿx"ÿ…#ÿ(ÿ—. ÿž4ÿ¥:ÿ­@&ù±I5ò´QDëµZUã³ceÚ«krФt{É|ƒÂ™„‰¼•·’—²¡“®«”¦‰¯”‚°”š‚¶—‚½†–‚Á–‚Á–‚Á–‚Á–‚Á–‚Á–‚Á–‚Á–‚Áÿm"ÿz!ÿ†"ÿ‘(ÿ™. ÿ 4ÿ¨9þ²?%÷·G3ï¼ODçÀXUÞ»aeÓ²iqʪq{£yƒ»Ÿ‰µ›ŠŽ¯˜“’ª–”¦•§–Ÿ­–—ˆ®–“‡³‘†»ˆ†¿ƒ†¿ƒ†¿ƒ†¿ƒ†¿ƒ†¿ƒ†¿ƒ†¿ƒ†¿ƒÿn!ÿ{!ÿˆ"ÿ’(ÿ›. ÿ£4ÿ¬9ü¶>$ô¾F2ìÆNBãËVTÙÄ_d͹gqİn{»©vƒ´¥~Š®¡†¨ž“£œš–Ÿ›¤—™—¬˜¬—Œ±’‹‹¹ŠŠŠ½…ŠŠ½…ŠŠ½…ŠŠ½…ŠŠ½…ŠŠ½…ŠŠ½…ŠŠ½…ŠŠ½…ÿo!ÿ| ÿŠ"ÿ”(ÿ. ÿ¥4ÿ¯9ù»>"ñÆE0èÑL@ÞÔTSÒÌ]cÇÀep½·l{µ°sƒ­«zЧ¨ƒ¡¥Œ“œ£––—¡¡˜’Ÿª™‰•«™†‘¯”„·Œ„޼‡„޼‡„޼‡„޼‡„޼‡„޼‡„޼‡„޼‡„޼‡ÿp ÿ~ ÿ‹"ÿ–(ÿŸ. ÿ¨4 ÿ²9öÀ> îÏD-ãàJ?ØßRRÌÔ[bÁÉco·¿iz®¸pƒ§³wŠ ¯š¬ˆ”•ª’—¨™Š¦¨š‚ªš~˜®–~•µ}”º‰}”º‰}”º‰}”º‰}”º‰}”º‰}”º‰}”º‰}”º‰ÿr ÿ€ÿ"ÿ˜(ÿ¡/ÿ«4 ý¶9óÆ=çÜC*ÝìH=ÐæPPÅÞYa»Ò`n°Égy¨Âm‚ ½t‰™¸|“µ…“Œ²—‡°š™‚¯¥š{§ªšv ­—vœ´vš¹Švš¹Švš¹Švš¹Švš¹Švš¹Švš¹Švš¹Švš¹Šÿtÿ‚ÿ"ÿš(ÿ¤/ÿ®4 ù»9íÎ=ßé>)ÖñG;ÉíON¾æW_³Þ^l©Ôew¡Ík€™Èqˆ‘ÄyŽŠÀ‚’„¾Œ–~»—˜yº£™s´ª™oª­—o¥´o¢¸Šo¢¸Šo¢¸Šo¢¸Šo¢¸Šo¢¸Šo¢¸Šo¢¸Šo¢¸Šÿvÿ…ÿ’"ÿ)ÿ§/ÿ²5ôÁ9 ãÙ9Öí=)Î÷E:ÁôML¶îU\«è\j¡âbu™Üh~‘Öo…‰Òv‹‚Ï{̉“uÊ•–pÈ¡—lŬ—g¸®•g°´Žh¬¸Šh¬¸Šh¬¸Šh¬¸Šh¬¸Šh¬¸Šh¬¸Šh¬¸Šh¬¸Šÿxÿˆÿ•"ÿ )ÿ«/ü·5íÉ6 Øå4Îò<)ÄûC9¹ûKJ­öSY¢òYg˜ë_räez†ßj‚~Ûq‡wØyŒpÕƒkÓŽ’gÒš“cÒ§“`̱’`À·Œ`ººˆ`ººˆ`ººˆ`ººˆ`ººˆ`ººˆ`ººˆ`ººˆ`ººˆÿ|ÿ‹ÿ˜"ÿ¤)ÿ¯/ö¾4ÞÚ, Ïë3Åø;)ºÿA8¯ÿIG¤þQT™öXaŽî\l„è`u{ãf|sßklÜr†fÚz‰aØ„‹]ØŒZלŒWØ©ŒXÕ»ˆX̾…X̾…X̾…X̾…X̾…X̾…X̾…X̾…X̾…ÿ€ÿÿœ"ÿ¨)þµ.êÉ,Òå)Çó2»ÿ9(¯ÿ?6¥ÿFBšÿONüWY†ö]b}ðajuëfpmèjvgäozaâv~[à}V߆‚SÞ‘ƒPÞƒP஀Qâ¼~Qâ¼~Qâ¼~Qâ¼~Qâ¼~Qâ¼~Qâ¼~Qâ¼~Qâ¼~ÿ…ÿ”ÿ¡!ÿ®&ô¾)ÖßÉî(½ü0°ÿ7'¥ÿ=2›ÿD=‘ÿNG‡ÿVPþ\Wwùb]qõgbkòlgeðqj`ívn[ì}pWê„rSétPé–tMè£uKé¬tKé¬tKé¬tKé¬tKé¬tKé¬tKé¬tKé¬tKé¬tÿ‹ÿšÿ§ü¶"ßÓÍé¿ø'²ÿ.¥ÿ4$šÿ;.ÿA7‡ÿK?ÿTFxÿ[KqÿaPlÿfTgýjXcûo[_ùu][ø{_Wö‚aTõ‰cQô‘dMôœeKó£eKó£eKó£eKó£eKó£eKó£eKó£eKó£eKó£eÿ’ÿ ÿ¯ëÆÏåÂô´ÿ$§ÿ+šÿ1 ÿ8(…ÿ>/|ÿH6vÿQ;pÿY?lÿ^CgÿcFdÿhI`ÿmK]ÿrMZÿwOVÿ~PTÿ„RQÿŒSNÿ•TLÿ›ULÿ›ULÿ›ULÿ›ULÿ›ULÿ›ULÿ›ULÿ›ULÿ›Uÿšÿ©ô¼ÑÒÄñ¶ÿ ¨ÿ!›ÿ'ÿ-…ÿ4"{ÿ;(qÿC,lÿM0hÿU3eÿ[6bÿ_8_ÿd:]ÿhWÿr?Tÿx@Rÿ}BOÿ„CMÿŒDKÿ’DKÿ’DKÿ’DKÿ’DKÿ’DKÿ’DKÿ’DKÿ’DKÿ’Dÿ£ý´ ÒÈÇÚ¸þ©ÿœÿ ÿ"„ÿ){ÿ0rÿ7 jÿ>#fÿF&bÿM(_ÿS*\ÿY,Yÿ^-Xÿb/Vÿf0Sÿk1Qÿp2Oÿu3Mÿz4Jÿ5Iÿ†5Iÿ†5Iÿ†5Iÿ†5Iÿ†5Iÿ†5Iÿ†5Iÿ†5Iÿ†5ÿ® ÓÁÈκޫþ œÿÿ „ÿzÿ%qÿ,jÿ2dÿ9`ÿ?\ÿEYÿK WÿO!UÿT"SÿX#Qÿ\$Oÿa%Mÿe&Kÿi&Iÿn'Gÿt(Eÿx(Eÿx(Eÿx(Eÿx(Eÿx(Eÿx(Eÿx(Eÿx(Eÿx(Õ»ÊÆ½Ô­ážúÿ „ÿyÿ pÿ iÿ'cÿ-]ÿ3Zÿ8Wÿ=TÿBRÿFPÿJNÿMMÿQKÿUIÿXGÿ\Fÿ`CÿeBÿhBÿhBÿhBÿhBÿhBÿhBÿhBÿhBÿhÍÁÀ̱ؠâ’õ…ÿyÿpÿhÿ bÿ" \ÿ' Wÿ,Tÿ1Qÿ5Oÿ9Mÿ=Kÿ@JÿCHÿFGÿIFÿLDÿOCÿRAÿV?ÿY?ÿY?ÿY?ÿY?ÿY?ÿY?ÿY?ÿY?ÿYÿU)ÿ^(ÿe* ÿj- ÿm2ÿn:ÿoCÿoQ#ÿl`)ÿik.ÿex2ÿc…5ÿb’8ÿ`:ÿ_©;ÿ^²=ÿ]»>ÿ\Å>ÿ\Ï?ÿZÖ@ÿWÞ@ÿVäAÿVêAüUïAöTñAôSòAôSòAôSòAôSòAôSòAôSòAôSòAôSòAÿU)ÿ^(ÿe* ÿj- ÿm2ÿn:ÿoCÿoQ#ÿl`)ÿik.ÿex2ÿc…5ÿb’8ÿ`:ÿ_©;ÿ^²=ÿ]»>ÿ\Å>ÿ\Ï?ÿZÖ@ÿWÞ@ÿVäAÿVêAüUïAöTñAôSòAôSòAôSòAôSòAôSòAôSòAôSòAôSòAÿU)ÿ^(ÿe* ÿj- ÿm2ÿn:ÿoCÿoQ#ÿl`)ÿik.ÿex2ÿc…5ÿb’8ÿ`:ÿ_©;ÿ^²=ÿ]»>ÿ\Å>ÿ\Ï?ÿZÖ@ÿWÞ@ÿVäAÿVêAüUïAöTñAôSòAôSòAôSòAôSòAôSòAôSòAôSòAôSòAÿV(ÿ_(ÿg) ÿl, ÿp1ÿq9ÿrBÿsO#ÿp^*ÿlj/ÿiv4ÿfƒ8ÿd;ÿc›=ÿb¦?ÿa°@ÿ`¹Aÿ_ÃBÿ^ÍCÿ\ÔDÿZÝDÿYãEûXéE÷WìEðUïFîUðFîUðFîUðFîUðFîUðFîUðFîUðFîUðFÿX'ÿa'ÿi( ÿo+ ÿt0ÿv8ÿw@ÿxL$ÿv[+ÿrg2ÿns7ÿk<ÿiŒ?ÿg˜Bÿf£Dÿe¬Fÿc¶HÿcÀIÿaËJÿ_ÒKþ]ÛKù\âLô[æLîYéMçXìMäXîLäXîLäXîLäXîLäXîLäXîLäXîLäXîLÿZ'ÿd&ÿl'ÿs* ÿw/ÿz7ÿ|?ÿ}J$ÿzX,ÿwe4ÿsp:ÿp|?ÿm‰Dÿk”GÿjŸJÿi©Lÿg²Nÿf½OÿcÆQýbÑRø`ÚSó^àSì]ãTå[åTÞ[êQÜ\ìPÜ\ìPÜ\ìPÜ\ìPÜ\ìPÜ\ìPÜ\ìPÜ\ìPÿ\&ÿf%ÿn&ÿu) ÿ{/ÿ~6ÿ€=ÿ‚H%ÿU-ÿ|b6ÿxm=ÿtyCÿq…Hÿo‘LÿnœPþl¦Rüj¯UûiºVùfÂX÷eÎYócÙZë`Ü[ã^ß\Ü^äZÔ_éVÒ_ëUÒ_ëUÒ_ëUÒ_ëUÒ_ëUÒ_ëUÒ_ëUÒ_ëUÿ]%ÿh%ÿq&ÿy( ÿ.ÿ‚5ÿ…<ÿ‡F%ÿ…S.ÿ‚_7ÿ~j@ÿzvGÿv‚MýtRúq˜Vøo¢Zöm¬\ôkµ_òi¿aðgËbêeÓdábØdØaÝcÑbâ_Ëbæ[ÉbçYÉbçYÉbçYÉbçYÉbçYÉbçYÉbçYÉbçYÿ_$ÿj$ÿs%ÿ|' ÿ‚.ÿ‡4ÿŠ;ÿŒD%ÿŠP/ÿˆ\9ÿ„gBý€rKú|~R÷x‰Yôu”^òsžbïp§eím°hêkºjçiÇlàfÏnÕdÔmÎeÙhÇeÝdÁfá`¿fã^¿fã^¿fã^¿fã^¿fã^¿fã^¿fã^¿fã^ÿa$ÿl#ÿv$ÿ' ÿ†- ÿŠ3ÿŽ:ÿ‘C$ÿN/ÿŽY:ý‹dEø†oOô‚zXñ~…_íyeêu˜kçr¡oãnªsàlµtÝlÃuÕjÍuÊhÎsÄiÓn¾jØi¸jÝd¶jßb¶jßb¶jßb¶jßb¶jßb¶jßb¶jßb¶jßbÿc#ÿn"ÿx#ÿ‚&ÿ‰- ÿŽ3ÿ“9ÿ–A$ÿ–L/ý•W;ø‘aGólRîˆv]ꃀfå}‰náx“sÝvvØu§xÔs±yÐr½yÊpÈzÀlÉyºmÎsµnÓn¯nÙh®nÛf®nÛf®nÛf®nÛf®nÛf®nÛf®nÛf®nÛfÿd#ÿp"ÿ{"ÿ…&ÿŒ, ÿ’2ÿ—8ÿœ@#ÿœJ.ù›T;ó™_Iî•iVèrbâ‰{kÜ„…qÖ€vÑ}™yÍ{¢{Éy¬}Åx·~ÁvÄ~¶qÅ}°qÊx¬rÏr¨rÕl¦r×j¦r×j¦r×j¦r×j¦r×j¦r×j¦r×j¦r×jÿf"ÿq!ÿ}"ÿ‡&ÿ, ÿ•2ÿš8ÿ >!ü¢H.õ¢R;ï¡\JèfXá—odÚ‘ymÒŒ‚s͇‹xÈ„”{Þ~¿§€»}²·}À®wÁ¨vÆ|¤vËv¡wÒpŸvÔmŸvÔmŸvÔmŸvÔmŸvÔmŸvÔmŸvÔmŸvÔmÿg!ÿs ÿ!ÿ‰&ÿ‘, ÿ˜2ÿž7ÿ¥= ø¨G-ñ©P;ê©ZJâ¥cYÚŸmdјumÊ’~tÄŽ‡y¿Š}º‡™€µ…£ƒ±ƒ®„®‚»„¦}¾„ {€{Èyš{Ïs™{Ñp™{Ñp™{Ñp™{Ñp™{Ñp™{Ñp™{Ñp™{Ñpÿh!ÿu ÿ!ÿ‹&ÿ“, ÿš2ÿ¡7ý©=õ®E+î²N:å³WJݬaXÓ¥jdÊžrnØ{u¼”ƒ{·Œ²•‚­‹Ÿ…©‰ª†¥ˆ¶‡Ÿƒ¼‡™€¿ƒ–€Å|”Ìu“Îs“Îs“Îs“Îs“Îs“Îs“Îs“Îsÿj ÿvÿƒ ÿ&ÿ–,ÿ1 ÿ¤7ú­<òµC)ê»L8á»UIÖ´_XÍ«hdĤpn¼žxuµš€{¯–‰€ª“’„¦‘œ†¡¦ˆžŽ²‰˜Šº‰’…¼†„ÃŽƒÊx‚Ìu‚Ìu‚Ìu‚Ìu‚Ìu‚Ìu‚Ìu‚Ìuÿk ÿxÿ…ÿ&ÿ˜,ÿ 1 ÿ¨6ø±;ï½B'æÅJ6ÜÃSHк]WDzec½ªmmµ¥uu® }|©œ…£™Ž…ž—˜ˆš•£Š–”¯‹‘¸‹ŠŠºˆ‰‰Á‡‡Èz‡‡Êw‡‡Êw‡‡Êw‡‡Êw‡‡Êw‡‡Êw‡‡Êw‡‡Êwÿlÿyÿ†ÿ‘&ÿš,ÿ¢1 þ«6õ¶;ìÅA%âÒH5ÖÌQGËÁ[VÁ¹cc·±km¯«ru¨¦z|¢£‚œ ‹…—ž•‰“œ ‹Žš¬Œ‰—·Œƒ¸‹‚Ž¿ƒŒÆ|€‹Éy€‹Éy€‹Éy€‹Éy€‹Éy€‹Éy€‹Éy€‹Éyÿnÿ{ÿˆÿ“&ÿœ,ÿ¥1 ü¯6ò¼;èÏ?!ÞÝE3ÐÓOEÅÉYU»Áab±¹hl©²ou¢­w|›ª•§ˆ†¤’‰‹¢Œ†¡©‚Ÿ¶{—·Œz”½…z‘Å}zÇ{zÇ{zÇ{zÇ{zÇ{zÇ{zÇ{zÇ{ÿoÿ}ÿ‹ÿ•&ÿŸ,ÿ¨1ø´6 îÃ:ãÜ>ÖåD1ÊÝMD¾ÑVS´É_`«Âfk¢»mt›¶t{”²|ޝ„…ˆ¬‰‚ªšŒ}¨¦y§³sŸ¶s›¼†s˜Ãs–Æ|s–Æ|s–Æ|s–Æ|s–Æ|s–Æ|s–Æ|s–Æ|ÿqÿ€ÿÿ˜&ÿ¢,ÿ¬1õ¹6 êÌ9Úç:ÏëC/ÃäLB·ÜTQ­Ó\^¤ÌdiœÆjr”Áqz½y€†¹„¶‹ˆy´—‹t²£Œp±°lª·Œk¤¼†kŸÃkžÅ}kžÅ}kžÅ}kžÅ}kžÅ}kžÅ}kžÅ}kžÅ}ÿtÿ‚ÿÿ›&ÿ¥,ý°1ðÀ5ÞÛ2Ñë9ÈòB-»ìJ?¯æRO¦àZ\Úag”ÓhpŒÎow„Êv}}Æ‚wĉ†qÁ”‰l¿¡Šh¾®‹d¸¹Šc°½†c©Ãd§Å}d§Å}d§Å}d§Å}d§Å}d§Å}d§Å}d§Å}ÿvÿ†ÿ“ÿž%ÿ©+÷¶1éÊ/Óå/Éð8¾ø@,³ôH<§ïPKêWX”æ_cŒâelƒÞls|ÛtyuØ}~nÔ‡‚iÒ’„dП†`έ‡\̼†[À¿ƒ[¶Å}\³Ç{\³Ç{\³Ç{\³Ç{\³Ç{\³Ç{\³Ç{\³Ç{ÿzÿŠÿ—ÿ¢%ÿ®*ð¾,×ß"Ìì.À÷7µÿ>+ªüE9ŸøNG•õUT‹ò\^‚ðcgzíinrépslæxxfã‚|`â~[ Wà©€U຀SÔÄ~TÈÉyTÄÊwTÄÊwTÄÊwTÄÊwTÄÊwTÄÊwTÄÊwTÄÊwÿ~ÿŽÿ›ÿ§#ùµ%âÐÏç"Ãô-·ÿ5«ÿ<* ÿB6–ÿKBŒÿTLƒý[Vzùa^rôgekðlkdìro^êzsXè„uTçwPæwNç«wMè½vMàÌrMÛÏqMÛÏqMÛÏqMÛÏqMÛÏqMÛÏqMÛÏqMÛÏqÿ„ÿ“ÿ ÿ®îÃÒãÆð# ¹ý,¬ÿ3¡ÿ9'–ÿ@1ŒÿI;ƒÿRD{ÿZKtÿaQmþfWgúl[bør_]õycWó‚fSò‹hOñ–iLð¢jIð°jHñÂhHòËhHòËhHòËhHòËhHòËhHòËhHòËhHòËhÿŠÿ™ÿ§ø¸ÔÓ Èí¼ú! ®ÿ)¢ÿ0–ÿ6#Œÿ=,‚ÿF4zÿP:sÿY@nÿ_EiÿdIdÿjM_ÿpP[ÿwRWÿUSþˆWOý‘XLü›YJû¦ZGû¶ZFû½ZFû½ZFû½ZFû½ZFû½ZFû½ZFû½ZFû½Zÿ‘ÿ ÿ°ÕÇËÚ¾ø°ÿ £ÿ&—ÿ,Œÿ3‚ÿ:&wÿA+pÿK1kÿU5gÿ\8cÿa<`ÿg>\ÿmAXÿsCUÿzEQÿ‚FNÿ‹HKÿ”IIÿžJFÿªKEÿ°KEÿ°KEÿ°KEÿ°KEÿ°KEÿ°KEÿ°KEÿ°Kÿš ÿ©Ö¾ÌÍÀå²ÿ¤ÿ —ÿ!Œÿ(ÿ/xÿ6nÿ=#iÿF'dÿN*`ÿU-]ÿ\/Zÿa1Xÿg3Uÿm4Rÿs6Oÿz7Lÿ8IÿŠ9Gÿ“:DÿŸ;Cÿ£;Cÿ£;Cÿ£;Cÿ£;Cÿ£;Cÿ£;Cÿ£;Cÿ£;ÿ£ Ù·ÎÅÂÔ³ì¥ÿ˜ÿŒÿ ÿ#wÿ*oÿ1gÿ8bÿ?^ÿF [ÿM"XÿS$UÿX%Rÿ^&Pÿd(Mÿi)Kÿo*Hÿv+Fÿ|+Dÿƒ,Aÿ-@ÿ‘-@ÿ‘-@ÿ‘-@ÿ‘-@ÿ‘-@ÿ‘-@ÿ‘-@ÿ‘-߱пÄ˶ڦë˜ÿ Œÿ€ÿ vÿ nÿ%gÿ,`ÿ2\ÿ9Xÿ?UÿDRÿIPÿNNÿSLÿXIÿ]GÿbEÿgBÿm @ÿs!>ÿ{!=ÿ}!=ÿ}!=ÿ}!=ÿ}!=ÿ}!=ÿ}!=ÿ}!=ÿ}!ÒºÇĹЩݙèŒÿ€ÿ uÿmÿ fÿ _ÿ& Zÿ,Vÿ1Rÿ7Pÿ;Mÿ@KÿDIÿHHÿLFÿPDÿTBÿX?ÿ]=ÿb;ÿg:ÿj:ÿj:ÿj:ÿj:ÿj:ÿj:ÿj:ÿjÉÀ¼Ê­ÔÞŽç€üuÿlÿ eÿ^ÿYÿ! Tÿ& Pÿ* Mÿ/ Kÿ3 Iÿ6 Gÿ:Eÿ=Dÿ@BÿD@ÿG?ÿK=ÿN;ÿR9ÿV8ÿX8ÿX8ÿX8ÿX8ÿX8ÿX8ÿX8ÿXÿN)ÿV)ÿ\*ÿa- ÿb2ÿb:ÿ`Cÿ]Rÿ]`!ÿ[l%ÿXx(ÿV…*ÿT‘+ÿS-ÿR§.ÿQ°.ÿQ¹/ÿPÃ/ÿOÍ0ÿOÚ0ÿMå0ÿJí0ÿJõ0ÿIû0ÿIþ0þHÿ0þHÿ0þHÿ0þHÿ0þHÿ0þHÿ0þHÿ0þHÿ0ÿN)ÿV)ÿ\*ÿa- ÿb2ÿb:ÿ`Cÿ]Rÿ]`!ÿ[l%ÿXx(ÿV…*ÿT‘+ÿS-ÿR§.ÿQ°.ÿQ¹/ÿPÃ/ÿOÍ0ÿOÚ0ÿMå0ÿJí0ÿJõ0ÿIû0ÿIþ0þHÿ0þHÿ0þHÿ0þHÿ0þHÿ0þHÿ0þHÿ0þHÿ0ÿO)ÿW(ÿ^*ÿb- ÿe2ÿe9ÿcBÿaPÿ`_"ÿ^j&ÿ[w)ÿY„,ÿW.ÿV›/ÿU¦0ÿT¯1ÿS¸2ÿRÁ2ÿQÌ3ÿQÙ3ÿOã3ÿMì3ÿLô4ÿLú4ÿKü4ùKþ3ùKþ3ùKþ3ùKþ3ùKþ3ùKþ3ùKþ3ùKþ3ÿQ(ÿZ'ÿa(ÿf+ ÿh0ÿi7ÿh@ÿgMÿe]#ÿch(ÿ`t,ÿ^/ÿ\1ÿZ˜3ÿY£4ÿX¬5ÿWµ6ÿV¿7ÿVÊ8ÿTÕ8ÿRà9ÿQë9ÿPô9üP÷9÷Où9ñOü9ñOü9ñOü9ñOü9ñOü9ñOü9ñOü9ñOü9ÿS'ÿ\'ÿc'ÿi* ÿl/ ÿm6ÿm?ÿmJÿkZ$ÿhf*ÿeq.ÿb~2ÿ`Š5ÿ^–7ÿ] 9ÿ\ª:ÿ[²;ÿZ¼<ÿYÇ=ÿVÑ>ÿUß>þTê?úTò?ôSô?ïRö?éSú=éSú=éSú=éSú=éSú=éSú=éSú=éSú=ÿU&ÿ^&ÿf&ÿl) ÿp. ÿr5ÿr=ÿsGÿqW%ÿmc,ÿjo1ÿg{5ÿd‡9ÿc’<ÿa>ÿ`§?ÿ^°Aÿ]ºBþ\ÄCýYÎDûXÝEøXéEòVîFëUñFæVôDàVøAàVøAàVøAàVøAàVøAàVøAàVøAàVøAÿW&ÿ`%ÿi%ÿo( ÿt- ÿv4ÿw<ÿyEÿwS&ÿta-ÿol4ÿlw9ÿiƒ=ÿgAÿešDýd£Fûb¬Húa¶Iø^¿Kö]ÌLô\ÛMð[çMèYêNáYîLÜZòIÕZ÷FÕZ÷FÕZ÷FÕZ÷FÕZ÷FÕZ÷FÕZ÷FÕZ÷FÿY%ÿc$ÿk$ÿs' ÿx, ÿ{3ÿ}:ÿCÿ}P'ÿz]/ÿvi7ÿqt=þn€Bûl‹Gùi–JögŸMôe¨Pòd²Rða¼Sî`ÈUì_ØVå]ãWÝ\èUÖ]ìRÐ^ñNÊ^õKÊ^õKÊ^õKÊ^õKÊ^õKÊ^õKÊ^õKÊ^õKÿ[$ÿe#ÿn#ÿv%ÿ|+ ÿ€2ÿ‚9ÿ…Aÿ„M(ÿZ1ÿ}f9ûxqAøt|Hôq‡Mòn‘Rïk›Vìi¤Yêf­[çd¸^åbÄ`âaÔaÚ`ß`Ñaå[ÊaéWÅbìT¿bðP¿bðP¿bðP¿bðP¿bðP¿bðP¿bðP¿bðPÿ]#ÿh"ÿq"ÿz%ÿ€+ ÿ…1ÿˆ8ÿ‹?ÿŠK(ÿˆW2ú„b<õmEñ{xMív‚TêrŒZæn–_ãkŸcßi©eÜh´fÙhÁfÕgÑfÎeÛfÅeßb¿fä]ºfèYµfìTµfìTµfìTµfìTµfìTµfìTµfìTµfìTÿ_"ÿj!ÿt!ÿ}$ÿ„* ÿ‰1ÿ7ÿ>ÿ‘H(úT3ôŒ_>ï‡jHêtRå{}[áw‡aÜt‘eØrœgÓp¥iÏn¯kÌm»kÉmÊkÃkÖk»jÚgµjßb±jã^¬jèY¬jèX¬jèX¬jèX¬jèX¬jèX¬jèX¬jèXÿa"ÿl ÿv ÿ€$ÿ‡* ÿ0 ÿ‘6ÿ–=ü—F'õ–Q3ï”\?égKâˆpW݃z^Ö„cÑ{hÌy—kÈv mÄtªoÁsµp½rÃp¹qÑp±oÕl¬oÚg¨oßb¤nä\¤nä\¤nä\¤nä\¤nä\¤nä\¤nä\¤nä\ÿb!ÿn ÿy ÿƒ$ÿ‹*ÿ‘0 ÿ–5ÿ›;øžD&ñžO2êœY@â—cMÛ‘mWÓ‹w_͆€eÇ‚‰jÃ’m¾}œpºz¥r¶y°s³x½t°wÎt¨tÐq¤tÖk sÜfœrá`œrá`œrá`œrá`œrá`œrá`œrá`œrá`ÿd ÿpÿ{ÿ…$ÿ*ÿ”/ ÿ™5üŸ;ô¤B$ì¦M1ä¤W?ÜžaMÓ˜jWË’s`Å|f¿‰…kº…Žoµƒ—r±¡u­«vª}¸w§}Èw xÌuœxÒo™xØi–wÞc•wÞc•wÞc•wÞc•wÞc•wÞc•wÞc•wÞcÿe ÿqÿ}ÿˆ#ÿ)ÿ—/ ÿ4ù¤:ð«A"è¯J/߬T>Õ¥_LÌžhWĘp`½“yg·m²ŒŠq­‰“t©‡w¥…¨y¡ƒ´zž‚Ãz˜}Éy•}Ïr’|ÕlzÜezÜezÜezÜezÜezÜezÜezÜeÿgÿsÿÿŠ#ÿ’)ÿš/ÿ¡4ö©9í²? ä¹H-Ú³R=Ï«\KŤfW¾žn`¶™vg°•~m«’‡r¦v¡šy‹¤{™‰°|–ˆ¿|ƒÆ{ŽÍuŒ€Ón‰~Ùh‰~Úh‰~Úh‰~Úh‰~Úh‰~Úh‰~Úh‰~ÚhÿhÿuÿÿŒ#ÿ•)ÿ/ý¤3 ó­8éº>àÁF,ÓºP<ɱZK¿ªcV·¤k`°Ÿshª›{n¤˜„rŸ•wš“–z–‘¡|’­}޼~‰‰Å}††Êw……ÐqƒƒØjƒƒØjƒƒØjƒƒØjƒƒØjƒƒØjƒƒØjƒƒØjÿjÿvÿƒÿŽ#ÿ—)ÿŸ.ú¨3 ð³7æÃ<ÛÉC*ÎÁN;÷XIº°aV±ªi_ª¦qg£¡xnžžs˜›‰w“™“{Ž–ž}Š”ª†“¸‚ÃŒÈy~ŠÏs}‡Õl}‡Õl}‡Õl}‡Õl}‡Õl}‡Õl}‡Õl}‡Õlÿkÿxÿ…ÿ#ÿš)ÿ£.÷¬3ìº7 âÍ:ÕÒA)ÈÈL:½¿VH´·_T«²g_¤¬ng¨un—¥~s‘¢†xŒŸ{‡›~‚›§€~™µ€z—€w’Ç{wÍtvŒÔmvŒÔmvŒÔmvŒÔmvŒÔmvŒÔmvŒÔmvŒÔmÿmÿzÿˆÿ“#ÿœ(ÿ¦.ó±2èÂ5 ÝÞ4ÏÛ?'ÂÏJ8·ÇTG­À\S¥ºd]µkf—°sm¬{sŠ©ƒw„§{~¤˜~y£¤€u¡²rŸÂ€o™Æ|o–Ìvo’Òoo’Óoo’Óoo’Óoo’Óoo’Óoo’Óoo’Óoÿoÿ}ÿ‹ÿ–"ÿ (üª-ï¸1ãÍ2Ôå3Èâ>%¼ÚH6±ÐRD§ÉZQžÄb\—¿idºpk‰¶xq‚³€v|°Šzv®•}q¬¢mª¯€j©Á€g¢Å|hžËvhšÒph™Òoh™Òoh™Òoh™Òoh™Òoh™Òoh™Òoÿrÿ€ÿŽÿ™"ÿ£'÷¯+éÀ-×à'Ìê4Áê<"µãF3©ÜOB ÔXN—Ï_YÊgbˆÆni€Âuoz¿~ts¼‡xnº“{i¸ }d¶­~a´¾~_®Æ{`¨Ìv`¢Òo`¢Òo`¢Òo`¢Òo`¢Òo`¢Òo`¢Òo`¢Òoÿuÿ„ÿ‘ÿœ!ÿ¨%ñ¶'áÒÏç'Äñ4¹ñ=­ìE/¢çM>˜âUKÝ]U‡Ùd^€ÕlexÑskqÎ|pkË…tfÉ‘waÇžy\ĬzY½zW½ÉxWµÎsX­ÓnX­ÓnX­ÓnX­ÓnX­ÓnX­ÓnX­ÓnX­Ónÿxÿˆÿ•ÿ¡û®!éÃÒâÇî( »ø2°ø:¤õB,šñK:íSF‡êZPèbYwåi`pãpeiáyjc߃n^ÝqYÛsUØ«tQÕ½tOÑÏsPÆÒoQ¼×jQ¼×jQ¼×jQ¼×jQ¼×jQ¼×jQ¼×jQ¼×jÿ}ÿŒÿšÿ¦ò·ÕÕ Êê¾ö' ²ÿ0¦ÿ8›ý?*‘ûH5ˆøP@~öXIvõ_RoófXhòm^bðvb\ï€fWî‹hRì™jNë©kKé·kIèÌjIÞÖgJÐÝdJÏÝdJÏÝdJÏÝdJÏÝdJÏÝdJÏÝdJÏÝdÿ‚ÿ’ÿŸý®ÖÆÍÛ Áôµÿ& ¨ÿ.ÿ5‘ÿ<&‡ÿD/ÿN8wÿV?pÿ^FiÿeKdþlP^ýsTXý}XSûˆ[Où”]Kø¢^Hø²_EøÂ_EôÓ]EéÝ[EéÝ[EéÝ[EéÝ[EéÝ[EéÝ[EéÝ[EéÝ[ÿ‰ÿ˜ÿ§ؼÎÌÃë ·ýªÿ# žÿ+“ÿ2ˆÿ9"}ÿ@)uÿJ/oÿT5iÿ\:dÿb>`ÿiB[ÿpEVÿyHRÿ„JNÿLJÿ›NGÿ©OEÿ¸PCÿÎPAÿÜOAÿÜOAÿÜOAÿÜOAÿÜOAÿÜOAÿÜOAÿÜOÿ‘ ÿ  ä²ÐÂÆÒ¹õ ¬ÿŸÿ “ÿ'ˆÿ.~ÿ5tÿ<"lÿE'gÿN+bÿW/_ÿ^2[ÿe4Wÿl7Sÿt9Oÿ|;Lÿ‡=Hÿ“>Eÿ ?Cÿ¬@Aÿ¼A>ÿÓA>ÿÔA>ÿÔA>ÿÔA>ÿÔA>ÿÔA>ÿÔA>ÿÔAÿšô«Ò»ÈȻ٭ø  ÿ”ÿ ˆÿ#~ÿ*uÿ1lÿ8fÿ?aÿH"]ÿO$YÿV&Uÿ](Rÿd*Oÿk+Lÿt-Hÿ|.Eÿ†/Bÿ‘1@ÿ1=ÿª2;ÿ»3;ÿ»3;ÿ»3;ÿ»3;ÿ»3;ÿ»3;ÿ»3;ÿ»3ÿ¤ÔµÊ¾ϯݡö”ÿˆÿ}ÿ tÿ%lÿ,eÿ2_ÿ9Zÿ@VÿGSÿMPÿSMÿYJÿ` Gÿg!Dÿn"Aÿw#>ÿ~$<ÿˆ%:ÿ’%7ÿ &7ÿ &7ÿ &7ÿ &7ÿ &7ÿ &7ÿ &7ÿ &װ̽ÁȲԢà”ô‡ÿ |ÿrÿjÿ cÿ% ]ÿ,Xÿ2Tÿ8Pÿ>NÿCKÿHIÿNFÿSDÿXAÿ_>ÿe;ÿl9ÿs6ÿ{3ÿ„3ÿ…3ÿ…3ÿ…3ÿ…3ÿ…3ÿ…3ÿ…ιõͦؖâ‡ð{ÿqÿ iÿbÿ\ÿ Vÿ% Qÿ* Nÿ0 Kÿ5 Iÿ9Fÿ>DÿBBÿF@ÿK>ÿP;ÿU9ÿZ6ÿ`4ÿe1ÿm1ÿm1ÿm1ÿm1ÿm1ÿm1ÿm1ÿmƾ¹È©ÐšÚ‹ã|ìqÿhÿaÿ ZÿUÿPÿLÿ#Iÿ(Fÿ, Dÿ0 Bÿ3 @ÿ7 >ÿ: <ÿ> ;ÿB 9ÿF 7ÿJ 4ÿO 2ÿS /ÿY /ÿY /ÿY /ÿY /ÿY /ÿY /ÿY /ÿY ÿH*ÿO*ÿT+ÿW. ÿX3 ÿV:ÿTEÿRRÿO_ÿLlÿJxÿG… ÿF‘!ÿDœ!ÿC¥"ÿB®"ÿB·"ÿAÀ#ÿ@Ë#ÿ@Ö#ÿ@ã#ÿ>í#ÿ<õ"ÿ;ü"ÿ;ÿ"ÿ:ÿ"ÿ:ÿ"ÿ:ÿ"ÿ:ÿ"ÿ:ÿ"ÿ:ÿ"ÿ:ÿ"ÿ:ÿ"ÿI*ÿP)ÿU*ÿY- ÿZ2 ÿX9ÿVDÿTQÿQ^ÿOkÿLwÿJ„!ÿH"ÿGš#ÿF¤#ÿE­$ÿD¶$ÿD¿$ÿCÉ$ÿBÕ$ÿBâ$ÿ@ì$ÿ>ô$ÿ>û$ÿ=ÿ$ÿ<ÿ$ÿ<ÿ$ÿ<ÿ$ÿ<ÿ$ÿ<ÿ$ÿ<ÿ$ÿ<ÿ$ÿ<ÿ$ÿJ)ÿR(ÿX)ÿ\, ÿ]1 ÿ\8ÿZAÿXNÿU\ÿSiÿQu!ÿO#ÿM%ÿK˜&ÿJ¢&ÿI«'ÿI³'ÿH½(ÿGÇ(ÿGÓ(ÿFà(ÿCê(ÿCó(ÿBû(ÿAÿ(ÿAÿ(ýAÿ(ýAÿ(ýAÿ(ýAÿ(ýAÿ(ýAÿ(ýAÿ(ÿL(ÿT'ÿZ(ÿ^+ ÿ`/ ÿ`6ÿ^?ÿ[LÿY[ÿXg ÿUr#ÿS&ÿQ‹'ÿP–)ÿN *ÿN©*ÿM±+ÿLº+ÿKÅ,ÿKÑ,ÿHÞ,ÿGé,ÿGó,ÿFú,üEÿ,úEÿ,öFÿ+öFÿ+öFÿ+öFÿ+öFÿ+öFÿ+öFÿ+ÿN'ÿV&ÿ]'ÿb)ÿd. ÿe5ÿc>ÿ`Hÿ^Xÿ]d"ÿ[p&ÿX|)ÿVˆ+ÿU“,ÿSž.ÿR¦/ÿQ¯/ÿP¸0ÿPÃ1ÿNÎ1ÿLÛ1þKè2üKò2ùJú2öJÿ2òJÿ0îKÿ/îKÿ/îKÿ/îKÿ/îKÿ/îKÿ/îKÿ/ÿP&ÿY%ÿ`&ÿe(ÿh, ÿj4ÿi<ÿgEÿeUÿcb$ÿ`m(ÿ^y,ÿ[…/ÿZ1ÿX›2ÿW£4ÿV¬5ÿUµ6þTÀ7üQÊ7ûPÙ8øPæ8õOò8ñNû8íOÿ7èOÿ5åPÿ4åPÿ4åPÿ4åPÿ4åPÿ4åPÿ4åPÿ4ÿS%ÿ\$ÿc$ÿi&ÿm+ ÿo2ÿo:ÿnCÿlQ ÿj_&ÿgj+ÿcv0ÿa3ÿ_6ý]—8ü\ :úZ©<øY²=öW¼>õUÈ?óTÖ@ðSå@ìSñAçTù?âTü<ÝTÿ:ÙUÿ8ÙUÿ8ÙUÿ8ÙUÿ8ÙUÿ8ÙUÿ8ÙUÿ8ÿU$ÿ^#ÿf#ÿm%ÿr* ÿt1ÿu9ÿuAÿtM!ÿr\(ÿng.ÿjr4üg}8ùd‰<öb“?ô`œAò^¥Dð]¯EîZ¸GìYÄHêXÓIæWäJâXñHÛXöEÔYúBÏYþ?ËYÿ=ËYÿ=ËYÿ=ËYÿ=ËYÿ=ËYÿ=ËYÿ=ÿW#ÿa"ÿi"ÿq$ÿv) ÿz0 ÿ{7ÿ|?ÿ}J!ÿzX)ývd1øqo8õmz=ñi„BîgŽFëd˜Jéb¡Mæ`ªOã]´Qá\ÁRÞ\ÑRÚ[ãRÔ]ïOÍ]ôKÇ^øHÃ^ûE¿^ýB¿^ýB¿^ýB¿^ýB¿^ýB¿^ýB¿^ýBÿZ"ÿc!ÿl!ÿt"ÿ{)ÿ/ ÿ6ÿƒ=ÿ„G!üT*ö}`3òxk;ísvCéo€Iåk‰Oáh“SÞfUÛe¦VØd±XÔc½XÑbÌXÍaßXÇaëVÁbïQ¼bóM·böJ´bøG´bøG´bøG´bøG´bøG´bøG´bøGÿ\!ÿf ÿoÿx"ÿ(ÿ„. ÿ‡5ÿ‰;ý‹D!ö‰Q*ð†]5ê€g?åyqHàu{OÛr…SÖoWÒm™YÎl¢[Ëj¬\Èi·]ÄhÅ^ÁgØ^¼få\µgêW±gîR­gòNªgôKªgôKªgôKªgôKªgôKªgôKªgôKÿ^ ÿhÿrÿ{"ÿƒ(ÿˆ. ÿŒ3ÿ:ø“Bñ‘N*êŽY6ãˆdAÝ‚nJÕ}xQÐyVËvŠZÇt”]Ãr_Àp§a¼o²b¹n¿b¶mÐb±lßb«lå\§kéW¤kîR¡kñO¡kñO¡kñO¡kñO¡kñO¡kñO¡kñOÿ_ ÿjÿuÿ~!ÿ†'ÿŒ-ÿ‘3 ü•9óš@ìšK)ä–W6ÜaAÓŠkKÍ…tRÇ€}XÂ}†\¾z_ºx˜b¶v¢d²t­e¯sºf¬sÊf¨qÛf¢pá`Ÿpæ[œoêV™oíS™oíS™oíS™oíS™oíS™oíS™oíSÿaÿlÿwÿ!ÿ‰'ÿ,ÿ•2 øš7ï >æ¢I'ÞT5Ô—^AÌ‘hKÅ‹qS¿‡yY¹ƒ‚^µ‹b°~”e­|žg©z¨i¥yµj¢xÅj wØišuÝd—tâ_”sçY’rëV’rëV’rëV’rëV’rëV’rëV’rëVÿcÿnÿyÿ„!ÿŒ'ÿ“,ÿ™1 õŸ6ë§<â©G%Ø¥R4Í\AÅ—eK½’nS·vZ²Š_­‡ˆc©„‘f¥‚ši¡€¥k~±lš}Àm—}Ól“zÚhxßbwä\ŒvèYŒvèYŒvèYŒvèYŒvèYŒvèYŒvèYÿdÿpÿ|ÿ† ÿ&ÿ–,ü0ñ¥5ç®;ݰD$ѪO3Ç£Z@¿cK·˜kS°”sZ«|`¦„d¡Šhˆ—k™†¡m–„­n’ƒ¼o‚Ïo‹Ök‰}Ýd‡{â_…zæ[…zæ[…zæ[…zæ[…zæ[…zæ[…zæ[ÿfÿrÿ~ÿ‰ ÿ’&ÿ™+ø¡0îª4 ã¶9ظA"̰M2Á©X?¹£aJ±žiSª™qZ¥–y`Ÿ“e›Ši–Ž”l’ŒŸnŽŠªp‹ˆ¹qˆ‡Ëq„„Ôm‚Ûg€àa~ä]~ä]~ä]~ä]~ä]~ä]~ä]ÿgÿtÿ€ÿ‹ ÿ”%ÿ*õ¥/ê°2 ßÁ5Ѿ?!ƶK0¼¯U>³©^I«¤gR¤ nZŸœv`™™~e”–‡i”‘m‹’œp†§qƒŽµrÇr|‰Òo{‡Ùiz„Þcy‚â_y‚â_y‚â_y‚â_y‚â_y‚â_y‚â_ÿiÿvÿƒÿŽ ÿ—%ÿ *ñª-å¸0ÚÌ/ÌÅ=Á½I/¶µS<­¯\H¥ªdQŸ¦lY™£t`“Ÿ|e„jˆšŽmƒ˜™p–¥rz”²sw“ÄstÐqtÖks‰Ýes‡à`s‡à`s‡à`s‡à`s‡à`s‡à`s‡à`ÿkÿxÿ…ÿÿš$û¤(í°+áÃ+ÓÕ, ÆÌ;»ÄG-°½Q;§·ZFŸ²bP˜­iX’ªq_Œ§ye†¤‚i¡‹m{Ÿ–pv¢sr›°tošÁtl—Ïrl“ÕllÛflßblßblßblßblßblßblßbÿmÿ{ÿˆÿ“ÿ"ö¨%è¸%ÛÙÌÝ* ÀÔ8´ÍD+ªÆO8¡ÀWD™»_N’¶gW‹³n^…¯vc~¬hyªˆls¨“pn¦ rj¤­sg£¾sd Ïrd›Õle—Ûfe”ßbe”ßbe”ßbe”ßbe”ßbe”ßbe”ßbÿpÿ~ÿ‹ÿ–ÿ¡ ð® áÆÑâÅå+ ¹Þ7­×B(£ÐL6šÊUB’Å]L‹ÁeT„¾l[}ºtaw·|fqµ†jk³‘mf±žpb¯«q^­¼q\«Ñp\¥Ök] Ûf^ßb^ßb^ßb^ßb^ßb^ßb^ßbÿsÿÿÿšü¦é¹ÔÔ Éê¾ì- ²ç6¦â@$œÝJ2“ØS>‹Ò[HƒÎbP|ËjWuÈq]oÅzbiÃfcÁj^¿œlZ¼©mVº»nT¸ÐmT±ÙiU«ÝdV§àaV§àaV§àaV§àaV§àaV§àaV§àaÿwÿ†ÿ“ÿŸó®ÕÅÌÚ Áò¶ó, ªð6Ÿì> •éG.‹åP9ƒâXC{ß`KsÜgRmÙoXgÖx\aÔ‚`\ÒŽdWÏ›fRÍ©gOË»hLÉÑgMÂÝdN¹á`N´ã]N´ã]N´ã]N´ã]N´ã]N´ã]N´ã]ÿ{ÿ‹ÿ˜ÿ¦عÎÊÄè ¹ú­û* ¢ù3–ö;ŒôD)ƒñM3zïUÿ²7<ÿÄ7:ÿÜ79ÿí79ÿí79ÿí79ÿí79ÿí79ÿí79ÿí7ÿš٫θÄķѨߛþ ÿ„ÿzÿ$ qÿ+iÿ3bÿ:]ÿBYÿIUÿQRÿX Nÿ_"Jÿg#Gÿp%Cÿy&@ÿ„'=ÿ’(:ÿ )8ÿ®*6ÿ¿*5ÿÏ*5ÿÏ*5ÿÏ*5ÿÏ*5ÿÏ*5ÿÏ*5ÿÏ*ܦѴǿºË«Öœáüƒÿyÿpÿ hÿ& aÿ-[ÿ3Wÿ:SÿAOÿGLÿNIÿTFÿ[Bÿb?ÿk;ÿu8ÿ~5ÿŠ3ÿ–0ÿ£/ÿ°/ÿ°/ÿ°/ÿ°/ÿ°/ÿ°/ÿ°Ó°É»½Å®ÐŸÛäƒùxÿ nÿgÿ_ÿ Yÿ% Tÿ+ Oÿ2 Lÿ7Iÿ=FÿBDÿHAÿN>ÿT:ÿ[7ÿc3ÿk0ÿt.ÿ}+ÿ‡)ÿ)ÿ)ÿ)ÿ)ÿ)ÿ)ÿ˸À¿²Ê¢Ó“Ý„çv÷lÿdÿ ]ÿWÿQÿMÿ#Iÿ)Fÿ. Cÿ3 Aÿ7 ?ÿ< <ÿ@ :ÿE 8ÿK 4ÿQ 1ÿW .ÿ^+ÿe)ÿl'ÿr'ÿr'ÿr'ÿr'ÿr'ÿr'ÿrý¶Å¦Í—Õˆßyèlôcÿ\ÿUÿ PÿKÿGÿDÿ!Aÿ%?ÿ)=ÿ-;ÿ19ÿ47ÿ85ÿ=2ÿA0ÿF-ÿL *ÿQ 'ÿV &ÿZ &ÿZ &ÿZ &ÿZ &ÿZ &ÿZ &ÿZ ÿC+ÿH*ÿM+ÿO.ÿN3 ÿM; ÿJEÿGQÿD^ÿ@kÿ=wÿ;„ÿ9ÿ8šÿ7£ÿ6¬ÿ5´ÿ5½ÿ4Çÿ3Òÿ3àÿ3ëÿ0ôÿ/üÿ.ÿÿ.ÿÿ,ÿÿ,ÿÿ,ÿÿ,ÿÿ,ÿÿ,ÿÿ,ÿÿD*ÿJ)ÿO*ÿQ-ÿQ1 ÿP9 ÿMCÿKOÿH\ÿDiÿAuÿ?‚ÿ=ÿ<˜ÿ;¡ÿ:ªÿ9²ÿ9»ÿ8Åÿ8Ðÿ7Þÿ6éÿ4óÿ3ûÿ3ÿÿ1ÿÿ1ÿÿ1ÿÿ1ÿÿ1ÿÿ1ÿÿ1ÿÿ1ÿÿE)ÿL(ÿQ)ÿT+ÿU0 ÿS7 ÿQBÿONÿLZÿHgÿFsÿCÿA‹ÿ@•ÿ?Ÿÿ>¨ÿ=°ÿ=¹ÿ<Ãÿ<Îÿ;Üÿ9çÿ8òÿ7úÿ6ÿÿ6ÿþ5ÿþ5ÿþ5ÿþ5ÿþ5ÿþ5ÿþ5ÿÿG(ÿN'ÿT(ÿW*ÿX/ ÿW5 ÿU?ÿSKÿPXÿMeÿJqÿH}ÿFˆÿE“ÿD ÿC¥ ÿB®!ÿA¶!ÿAÀ!ÿ@Ì!ÿ?Ú!ÿ=æ!ÿ<ñ!ÿ;ù!ý;ÿ!û:ÿ ù:ÿø:ÿø:ÿø:ÿø:ÿø:ÿø:ÿÿJ'ÿQ&ÿW&ÿ[)ÿ\- ÿ\4 ÿZ=ÿXHÿUVÿRcÿPnÿNz ÿL†"ÿJ#ÿIš$ÿH£$ÿG«%ÿF´%ÿF¾%ÿFÊ&ÿCÖ&ÿBå&üAð&ù@ù&ö@ÿ%ô@ÿ$ò@ÿ#ñ@ÿ#ñ@ÿ#ñ@ÿ#ñ@ÿ#ñ@ÿ#ñ@ÿ#ÿL&ÿT$ÿZ%ÿ_'ÿa+ ÿb2 ÿa;ÿ]EÿZSÿX`ÿWk!ÿTw#ÿR‚%ÿP'ÿO—(ÿN )ÿM¨*þL±+ýL»+ûIÆ,úHÓ,÷Gã,ôGï,ðFù,íFÿ+ëGÿ)éGÿ(éGÿ(éGÿ(éGÿ(éGÿ(éGÿ(éGÿ(ÿO$ÿW#ÿ^#ÿc%ÿf)ÿh1 ÿg9ÿeBÿbOÿ`]ÿ^h#ÿ[s'ÿY*þWŠ,ûU”.úT/øS¥0öR®1ôP¸2óNÃ3ñMÑ3îLâ4êLï4æLú2äMÿ0âMÿ/ÝNÿ-ÜNÿ,ÜNÿ,ÜNÿ,ÜNÿ,ÜNÿ,ÜNÿ,ÿQ#ÿZ"ÿa"ÿg#ÿl(ÿn/ ÿn7ÿl?ÿjKÿhY!ÿee&übp+ù_{/ö]†2ó[4ñY™6ïX¡8íV«9ëT´;éSÀ<çRÎ=ãQà=ßQï<ÛRú9ØSÿ6ÓTÿ4ÎTÿ2ÍTÿ1ÍTÿ1ÍTÿ1ÍTÿ1ÍTÿ1ÍTÿ1ÿT"ÿ] ÿe ÿk!ÿq'ÿt. ÿt5ÿt=ÿsGÿpU"ùmb)õim/ñfw4íc‚8ê`‹;ç^•>å\AâZ¦CßX±DÝX½DÚWÍEÖVßEÑWîCÎXú?ÊYÿ<ÅYÿ:ÁYÿ7ÀYÿ6ÀYÿ6ÀYÿ6ÀYÿ6ÀYÿ6ÀYÿ6ÿV!ÿ`ÿhÿo ÿu'ÿy- ÿ{3ÿ{;ÿ|CøyQ#òu]+íqi2èls9äh}>àe‡CÜcEÙbšGÕa£IÒ_­JÏ^¸KÌ]ÆKÉ]ÙKÅ\êJÁ^øF½^ýB¸^ÿ?´_ÿ<³_ÿ;³_ÿ;³_ÿ;³_ÿ;³_ÿ;³_ÿ;ÿX ÿbÿkÿs ÿz&ÿ,ÿ2 ÿ‚9ù„Aò‚M#ë}Z,åxd5ßso=ÚpyBÔmƒFÐjŒIÌh•LÉgžNÆe§OÂd²P¿cÀP½bÐQ¹bäP¶côL±cøG­düD©cÿ@¨cÿ?¨cÿ?¨cÿ?¨cÿ?¨cÿ?¨cÿ?ÿ[ÿeÿnÿwÿ~%ÿƒ+ÿ‡1 ü‰7ó‹?ìŠJ"ä†V,Ýa6Õ|k>ÏwuDÊt~IÅq‡MÂoO¾m™R»l¢S·j­T´iºU±hÊU®gßU«hïQ¦hôL£h÷H gûDŸhüCŸhüCŸhüCŸhüCŸhüCŸhüCÿ]ÿgÿqÿzÿ‚%ÿˆ*ÿŒ0 ø5î“<å“G ÝŽS,Ô‰^7̓h?Æ~qFÁzzK¼w‚O¸u‹R´s”U±ržW­p¨XªoµY§nÄZ¤mÙY¡mêVmðPšlôL˜løH—kùG—kùG—kùG—kùG—kùG—kùGÿ^ÿiÿsÿ}ÿ†$ÿŒ)þ‘.ó–4 éš:à›EÕ–Q+Í\6ÅŠe?¾…nF¸vL´~Q¯{‡T«yW¨xšY¤v¤[¡t°\žs¿]›rÒ]™ræZ•qìT“pðPoõKoöJoöJoöJoöJoöJoöJÿ`ÿkÿvÿ€ÿ‰#ÿ(ú•-ï›2 å¢8Ú¡BÏœN*Æ–Y6¾c?·‹kG±‡sM¬„{R¨‚„V¤Y }—\{¡^™z­_–y»`“xÎ`‘vã^ŽuéW‹tîS‰ròN‰róM‰róM‰róM‰róM‰róM‰róMÿbÿmÿxÿƒÿŒ#ÿ“(÷š,ë¡0àª5Ô§@É¡L)À›W5¸–`?±’hG«ŽpM¥ŠxR¡‡W…ŠZ™ƒ“]•ž`’©aŽ~¸bŒ|Êb‰{àa†yæZ„wëUƒvðPƒvñOƒvñOƒvñOƒvñOƒvñOƒvñOÿcÿoÿzÿ…ÿŽ"ÿ–&óž*ç§.Û²0 έ>ĦJ(º¡U4²œ^>«—fF¥“nMŸvS›~W–‹‡[’‰^އ›aŠ…¦c‡ƒ´d„Æd€Þc~ä]~|éW|zîR|yïQ|yïQ|yïQ|yïQ|yïQ|yïQÿeÿqÿ}ÿˆÿ‘!ý™%ï£(â¯)Õº- ɳ;¾¬H'µ¦R3¬¢\=¥dFŸ™lMš–sS•“{X‘„\ŒŽ_‡Œ˜bƒŠ¤dˆ±f|‡Ãfy†Úexƒâ_wçYv~ìTv~íSv~íSv~íSv~íSv~íSv~íSÿgÿsÿÿŠÿ” ù#ê¨$Þº!ÐÀ* Ĺ9¹²F%¯­P2§¨Y< £bE™ iL”œqRŽšyX‰—\…•‹`€“–c{‘¡ew¯ftÀgrŒÖfq‰á`p†æ[pƒëVpƒìTpƒìTpƒìTpƒìTpƒìTpƒìTÿiÿuÿ‚ÿÿ—õ¡å¯ØÊÊÆ(¾À7³¹C#ª´N0¡¯W;šª_D“§gK£nRˆ vW‚ž\}œˆ`xš“ct˜Ÿep–¬gl”½gj“Ógißbiå\i‰êWi‰ëVi‰ëVi‰ëVi‰ëVi‰ëVi‰ëVÿkÿxÿ…ÿÿ›ï§Þ¼ ÐÐ ÃÎ$·È4­ÁA!¤¼K.›·U8”³]B¯eJ‡«lP¨tV{¦|[v¤†_q¢‘bl ehžªfd»gb›Ðfa˜ßbb”ä]béWbêVbêVbêVbêVbêVbêVÿnÿ{ÿˆÿ”üŸè¯ ÒÁÈÖ ¼×!±Ñ1¦Ë>ÅI+•ÁR6¼Z?†¹bGµiNy²qSs°yXn®ƒ]i¬Ž`dªšc`¨¨d\¦¹eY¥ÎdY¡àaZå\[˜éW[—êV[—êV[—êV[—êV[—êV[—êVÿqÿÿÿ˜ô¦Ô¶ËÆÀÚ µá ©Ü/ŸÖ;–ÑF'ŽÌO2†ÈX;Å`CxÂgJr¿oPl½wUfºYa¹Œ\\¶˜_X´¦aT²·aQ°ÍaQ­ã^R§çZS¢ëVS¡ìUS¡ìUS¡ìUS¡ìUS¡ìUS¡ìUÿuÿ„ ÿ‘ÿžØ®Ï»ÄË¸é ®é"£æ/ ˜ã9ßC#†ÛM-~×U6wÔ]>pÑeEjÎmJdÌuO_ÊSYÈŠVUÆ—YPæ[MÁ·[J¿Í[I¼çYJµëVK®îRL­ïQL­ïQL­ïQL­ïQL­ïQL­ïQÿzÿ‰ ÿ— å¦Ò³ÈÁ½Ñ±ó§ò"œð- ‘î7‡ë@~éI'vçR0oå[7iãc>cájC]ßsGXÝ}KRÛ‰NNÙ—QJÖ¦RFÔ·SDÒÎSCÏèQDÈñOEÀôLE¾ôKE¾ôKE¾ôKE¾ôKE¾ôKE¾ôKÿ€ ÿ úžÕ¬̹Áǵ֩ýžû “ú* ‰ø3~÷;uõE!nôO(hóW/bò_5\ñg:Wïo>RîyAMí„DHì’FEë¡GBé±H@èÇH>æâG>âôE?Ø÷D?ÕøC?ÕøC?ÕøC?ÕøC?ÕøC?ÕøCÿ‡ÿ—٧ϳÅ¿¹Í«Ü ÿ•ÿŠÿ' ÿ/uÿ7lÿ@fÿI!aÿS%\ÿ\)Wÿd-Sþl0Nýt3Jü6Fü8Bû›9?ú«:=úÂ;;øÒ::÷é99óú99ñû99ñû99ñû99ñû99ñû99ñû9ÿâ¡Ñ®Èº½Æ¯Ò¡ß•ÿŠÿ€ÿ# vÿ+ nÿ3fÿ:`ÿC[ÿLWÿTSÿ\"Nÿe$Jÿn&Gÿw(Cÿƒ*?ÿ’+<ÿ -:ÿ²-8ÿÇ-6ÿá-5ÿë-5ÿð-5ÿð-5ÿð-5ÿð-5ÿð-5ÿð-÷šÔ©Ë¶ÀÀ³Ì¤×•âŠÿ ÿvÿmÿ& fÿ- _ÿ4Zÿ<UÿDQÿLNÿSJÿ[FÿcBÿl>ÿv;ÿ‚7ÿ‘ 5ÿ¡!3ÿ¯"1ÿÁ"0ÿÛ"/ÿà"/ÿà"/ÿà"/ÿà"/ÿà"/ÿà"إͲü¶Ç§Ñ˜ÛŠä~ÿtÿlÿdÿ ^ÿ' Wÿ- Sÿ4 Oÿ;KÿBHÿHEÿOAÿV=ÿ^:ÿg6ÿq2ÿ|/ÿŠ,ÿ˜*ÿ¦(ÿ·(ÿ¼(ÿ¼(ÿ¼(ÿ¼(ÿ¼(ÿ¼ϯŹºÂ«Ì›ÕŒß~çrþjÿ bÿ[ÿUÿPÿ%Kÿ+Hÿ1 Eÿ7 Bÿ= ?ÿB <ÿH 9ÿO 5ÿV1ÿ_-ÿh*ÿs'ÿ~$ÿˆ!ÿ• ÿ™ ÿ™ ÿ™ ÿ™ ÿ™ ÿ™ȶ½¾¯ÇŸÏÙ€ârëgü_ÿXÿ RÿLÿHÿDÿ!@ÿ'>ÿ,;ÿ09ÿ56ÿ:4ÿ@1ÿF-ÿM )ÿT %ÿ\ "ÿe ÿl ÿv ÿy ÿy ÿy ÿy ÿy ÿy À»²Ã£Ë”Ò…Ûvãiì^úVÿOÿJÿ FÿBÿ?ÿ<ÿ9ÿ"7ÿ&5ÿ*3ÿ.0ÿ2.ÿ7+ÿ<(ÿB$ÿH!ÿNÿTÿ[ÿ]ÿ]ÿ]ÿ]ÿ]ÿ]ÿ>+ÿC*ÿF+ÿG.ÿG3ÿD; ÿAD ÿ>Pÿ:]ÿ6iÿ2uÿ0‚ÿ.ÿ,—ÿ+ ÿ*§ÿ)±ÿ)¹ÿ(Ãÿ(Îÿ'Üÿ'çÿ%òÿ#ûÿ"ÿÿ"ÿÿ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ@*ÿE)ÿH*ÿJ,ÿI2ÿG9 ÿDC ÿANÿ=[ÿ:gÿ6tÿ4€ÿ2‹ÿ0•ÿ/žÿ.¦ÿ-¯ÿ-·ÿ,Áÿ,Ìÿ+Úÿ+æÿ(ñÿ'úÿ'ÿÿ%ÿÿ$ÿÿ$ÿÿ$ÿÿ$ÿÿ$ÿÿ$ÿÿ$ÿÿA)ÿG(ÿK(ÿL+ÿL0ÿJ7 ÿHA ÿEMÿBYÿ>eÿ;qÿ8~ÿ6‰ÿ5“ÿ4œÿ3¤ÿ2¬ÿ2µÿ1¾ÿ0Éÿ0Öÿ/äÿ-ðÿ,ùÿ+ÿÿ*ÿÿ)ÿý)ÿý)ÿý)ÿý)ÿý)ÿý)ÿÿC(ÿI'ÿM'ÿP)ÿP.ÿN5 ÿL? ÿJJÿGVÿCcÿ@oÿ={ÿ<†ÿ:ÿ9™ÿ8¢ÿ7ªÿ7²ÿ6¼ÿ6Çÿ6Ôÿ3âÿ2îÿ1øý0ÿû0ÿù/ÿ÷/ÿ÷/ÿ÷/ÿ÷/ÿ÷/ÿ÷/ÿÿE&ÿL%ÿQ%ÿT'ÿU,ÿT3 ÿR< ÿPHÿMTÿI`ÿFlÿDxÿBƒÿ@ÿ?—ÿ>Ÿÿ>§ÿ=°ÿ<¹ÿ<Äÿ:Ñþ9àû8íø7÷õ6ÿò6ÿñ6ÿï6ÿï6ÿï6ÿï6ÿï6ÿï6ÿÿH%ÿO$ÿU$ÿX%ÿZ)ÿZ1 ÿX9 ÿVDÿSQÿP]ÿMiÿKuÿI€ÿGŠÿF”ÿEœ þD¤ üC­!ûC¶!ùBÁ!ø@Î!ö?ß!ò>ì!ï>÷!ì>ÿ é>ÿç>ÿæ>ÿæ>ÿæ>ÿæ>ÿæ>ÿæ>ÿÿK$ÿR"ÿX"ÿ]#ÿ`(ÿa/ ÿ`7 ÿ\@ÿYMÿVZÿTfÿRqþP|!ûN†#ùM$÷L™%õK¡&óJª'òI³'ðG¾(îFÌ(ìEÝ(èDë(äE÷'áEÿ&ÞEÿ$ÜEÿ#ÚFÿ"ÚFÿ"ÚFÿ"ÚFÿ"ÚFÿ"ÚFÿ"ÿN"ÿV ÿ\ ÿa!ÿf&ÿg- ÿg5 ÿd=ÿ`Hÿ^Vý\cùZn"öWx%óUƒ(ðTŒ*îR•,ëQž-éP§.çN°/åM»0ãLÉ1àKÜ1ÜKë0ØL÷.ÓLÿ,ÐMÿ*ÎMÿ(ÌMÿ'ÌMÿ'ÌMÿ'ÌMÿ'ÌMÿ'ÌMÿ'ÿP!ÿYÿ`ÿfÿk%ÿn,ÿn3 ÿl;ÿiDûgRöd_!ñaj&í^u*é\.æZˆ1ãX‘3àVš5ÝU£6ÛT­7ØS¹7ÕRÇ8ÒQÙ8ÍQê8ÊR÷5ÇSÿ2ÄSÿ/ÂTÿ-¿Tÿ,¿Tÿ,¿Tÿ,¿Tÿ,¿Tÿ,¿Tÿ,ÿS ÿ\ÿdÿjÿp$ÿt*ÿu1 ÿt8ûrAôpNîm[#èif)ãfp/ßbz3Û`„6Ö_Ž9Ó]–:Ð\Ÿ<Í[¨=ÊZ³>ÇYÀ>ÄXÐ>ÀWä>½Xô;ºYÿ8¸Zÿ5µ[ÿ2²Zÿ0²Zÿ0²Zÿ0²Zÿ0²Zÿ0²Zÿ0ÿUÿ_ÿgÿoÿu#ÿy)ÿ{/ ý|6 ô{>íyJæuW$ßqb+Ùml2Ójv6Îh:Êeˆ=Çd‘?ÄcšAÀa£B½`­Cº_ºD¸^ÊD´]ÞD±]ïA®_ü=¬`ÿ:©_ÿ7§_ÿ5§_ÿ5§_ÿ5§_ÿ5§_ÿ5§_ÿ5ÿXÿaÿjÿsÿz"ÿ~(ÿ.øƒ4 î„;å‚GÞ~S$Õz^,Îuh3Éqr9Änz=Àlƒ@¼jŒC¹i•EµgžF²f¨H¯e´I¬dÃIªc×I¦cëG¤dùB¢dÿ>Ÿeÿ;dÿ8dÿ8dÿ8dÿ8dÿ8dÿ8ÿZÿdÿmÿvÿ~!ÿƒ'þ‡,òŠ2 èŒ9ß‹DÕ†P#Í[-Æ|e4Àxn:»uv?¶rB²p‡E¯oH«mšJ¨l¤K¥j¯M¢i¾M hÑMhæL›i÷G™iýB–hÿ?•hÿ<•hÿ<•hÿ<•hÿ<•hÿ<•hÿ<ÿ\ÿfÿpÿyÿ ÿ‡%ùŒ*í‘/ã•5 Ø“AÍM#ňX,¾ƒb4¸k;³{s@®y{DªvƒG¦uŒJ£s–M q Np«Pšo¹Q—nÌQ”lâP“môK‘múFlýBkÿ?kÿ?kÿ?kÿ?kÿ?kÿ?ÿ^ÿhÿrÿ|ÿ…ÿ‹$õ‘(è—,Ý1 ј>Ç“K"¿ŽV,·‰_4±…h;«‚pA§xE£|€IŸz‰L›x’O˜wœQ•u¨R’sµSrÇTŒqÞS‹ròN‰p÷IˆoûE†nþA†nþA†nþA†nþA†nþA†nþAÿ_ÿjÿuÿÿ‡ÿ"ð–%ä(Ø£-Ëž<Á™H!¹”S+±]4«‹e;¥ˆmA …uFœ‚}J˜€†M”~P‘|™SŽz¥UŠx²V‡wÃV…vÛV„vïQ‚tôKsøG€rüD€rüD€rüD€rüD€rüD€rüDÿaÿlÿwÿ‚ÿŠû’ ìš!ߥ!Ѩ+Æ£:¼žF³™Q*«•[3¥‘c;ŸŽkAšŠrF–ˆzJ’…ƒNŽƒŒQŠ–T†¢Vƒ}¯X€|ÀX}{ÖX|zíS{xòNzwöIyvúFyvúFyvúFyvúFyvúFyvúFÿcÿnÿyÿ„ÿ÷–çŸÚ®Ì­(Á©8¶£D®ŸO)¦›Y2 —a:š“iA•pFxKŒ‹€O‡‰‰Rƒ‡”U…ŸX|ƒ¬Yx½Zv€ÓYu€ëUt}ðPs{õKszøGszøGszøGszøGszøGszøGÿeÿpÿ|ÿ‡ÿòšâ¦Ó´dz&»®5±©B¨¥M(¡¡V1š_9”šf@–nFŠ”uK…‘~O‡S|‘Vx‹Xt‰ªZqˆº[n†ÐZn†éWmƒïQm€óMm÷Im÷Im÷Im÷Im÷Im÷IÿgÿrÿÿŠÿ”ìŸÕ¬̺ Áº#µµ3«¯@£«J&›§T0•¤]8 d?‰lE„šsJ˜{Oz–„Su”Vq’›Ym¨Zi¸[gÍ[fŒæXf‰îRf†òNf„öJf„öJf„öJf„öJf„öJf„öJÿiÿuÿ‚ÿú˜Ù¥аÆÀºÁ¯¼0 ¦·=²H$–¯R.«Z6ˆ¨b=‚¥iD}¢qIx yNsž‚RnœUiš˜Xe˜¦Zb—¶[_•ËZ^”åX_‘îS_ŽòN_‹õK_‹õK_‹õK_‹õK_‹õK_‹õKÿlÿx ÿ†ÿ‘ì Ó©ʵ¾Ä³È©Å- ŸÀ:—»E!·O+ˆ´X3‚±`;{®gAv«nFp©vKk§€Of¥ŠSb¤–V]¢¤XZ ´YWžÉYUœãWW™îRW•òNX’õJX’õJX’õJX’õJX’õJX’õJÿoÿ} ÿŠ ÿ– ×£ήĺ·È«Ñ¢Î)™Ê7ÆBˆÂL'¿U0z¼]7tºe=n·lCiµtHd³}L_±ˆOZ®”RV¬¢TRª³UO¨ÈUM¦ãTO£ñOPŸôLPœ÷IPœ÷IPœ÷IPœ÷IPœ÷IPœ÷Iÿs ÿ‚ÿ âҨɴ¾À°Î£ÝšÛ$‘Ö3‰Ò>ÏI"yÌR+sÊZ2mÈb8gÅj=bÃrB\Á{FW¿†JS½“LNº¡NK¸²OH¶ÇOF´ãNG±õKH«÷HI§úFI§úFI§úFI§úFI§úFI§úFÿxÿ‡û•֣ͮù·Æ©Óç”æ$Šä0 á;yßEqÝO%kÛX+eÙ`1`×h6ZÔp;UÒz?PÐ…BLÎ’DHÌ¡FDʲGBÈÈGAÅäFAÂöDA½ýBB·ÿ@B·ÿ@B·ÿ@B·ÿ@B·ÿ@B·ÿ@ÿ~ÿŽÛЩǴ¼¿¯Ë¡Ù–òñ"ƒð- xï7qíAjìKdëT$^ê\)Yée.Tçm2Oæw5Jå‚8Fã:BâŸWÿGSÿPOÿXJÿaFÿjBÿt >ÿ€!;ÿ#8ÿž$6ÿ±$4ÿÉ$3ÿÜ$2ÿï#1üû#1üû#1üû#1üû#1üû#1üû#ݛѨdz½¼¯Ç Ð’Úƒåyÿ pÿiÿaÿ'[ÿ/ Uÿ7 Qÿ?MÿFIÿNEÿVAÿ^=ÿh:ÿs6ÿ€2ÿ0ÿ .ÿ°,ÿÆ+ÿÞ+ÿñ+ÿñ+ÿñ+ÿñ+ÿñ+ÿñԥʰÀ¹³Ã¤Ì•Ô†Þxæoÿgÿ`ÿYÿ Sÿ'Nÿ.Jÿ5 Gÿ< CÿC @ÿJ <ÿQ 8ÿY4ÿc0ÿn-ÿz)ÿ‰&ÿš$ÿ©#ÿ¹"ÿÉ"ÿÉ"ÿÉ"ÿÉ"ÿÉ"ÿÉ̮··¿§È˜Ð‰Úzâmédÿ]ÿ VÿPÿKÿGÿ%Cÿ+@ÿ1=ÿ6:ÿ<7ÿC3ÿJ /ÿR +ÿ[ 'ÿe #ÿq ÿ~ ÿŠ ÿ— ÿ¥ ÿ¥ ÿ¥ ÿ¥ ÿ¥ ÿ¥ ŵº¼«ÄœÌÓ}ÝoæcíYÿRÿLÿGÿCÿ?ÿ;ÿ 8ÿ%6ÿ*3ÿ/0ÿ4-ÿ:*ÿ@&ÿH!ÿPÿZÿdÿmÿwÿ‚ÿ‚ÿ‚ÿ‚ÿ‚ÿ‚½¹¯Á È‘΂ÖsßfèYðOýIÿDÿ@ÿ<ÿ 9ÿ5ÿ3ÿ0ÿ.ÿ#,ÿ')ÿ,'ÿ1$ÿ7 ÿ=ÿDÿLÿSÿZ ÿa ÿa ÿa ÿa ÿa ÿaÿ:+ÿ>*ÿ@+ÿ@.ÿ?3ÿ<:ÿ7D ÿ3O ÿ.\ ÿ*h ÿ&t ÿ#€ ÿ!‹ ÿ• ÿ ÿ¤ ÿ­ ÿµ ÿ¾ ÿÉ ÿÖ ÿä ÿï ÿú ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ;*ÿ?)ÿB*ÿB,ÿA1ÿ>9ÿ:B ÿ7N ÿ2Z ÿ.f ÿ+r ÿ'~ ÿ%‰ ÿ#“ ÿ#› ÿ"¢ ÿ!« ÿ ³ ÿ ¼ ÿÇ ÿÓ ÿâ ÿî ÿø ÿÿ ÿÿ ÿÿ ÿÿ ÿÿ ÿÿ ÿÿ ÿÿ ÿÿ ÿ=(ÿA(ÿD(ÿE+ÿD0ÿA7ÿ?@ ÿ ÿAI ÿ>U ÿ9aÿ6mÿ3yÿ1„ÿ/Žÿ/–ÿ.žÿ-¦ÿ,®ÿ,·ÿ+Áÿ+Îÿ)Þÿ(ëÿ'öý%þú$ÿø#ÿö#ÿ õ#ÿ õ#ÿ õ#ÿ õ#ÿ õ#ÿ ÿA&ÿG$ÿK$ÿM&ÿM*ÿK2ÿJ< ÿHF ÿDRÿ@^ÿ=jÿ:uÿ8€ÿ7Šÿ6“ÿ5›ÿ4£ÿ4«ÿ3´ÿ3¾ÿ1Ëþ0Ûû/é÷.ôô-ýñ,ÿï,ÿí,ÿí,ÿí,ÿí,ÿí,ÿí,ÿÿD$ÿJ#ÿO"ÿR$ÿR'ÿS/ÿQ8 ÿNC ÿKOÿH[ÿEgÿBrÿ@}ÿ>‡ÿ>ý<˜ü< ú;¨ù;±÷:¼ö8Èô7Ùñ6çí5ôé5þç5ÿå5ÿã5ÿâ5ÿâ5ÿâ5ÿâ5ÿâ5ÿÿG#ÿN!ÿS ÿW!ÿY&ÿZ-ÿX5 ÿU? ÿRKÿOWÿLcþIoûHyøFƒöEŒôD•òCðB¥îB®í@¹ë?Æé>Öå=çá=ôÞ=þÛ=ÿØ>ÿÔ>ÿÓ>ÿÓ>ÿÓ>ÿÓ>ÿÓ>ÿÿJ!ÿRÿWÿ[ÿ_$ÿa+ÿ`3 ÿ]< ÿYGÿVTúS`öQkòPuïNìL‰ éK‘!çJš#åI¢#ãH¬$àG·%ÞFÄ%ÜEÕ%×Dç%ÓEô$ÏEÿ"ÌFÿ!ÉFÿÇFÿÆFÿÆFÿÆFÿÆFÿÆFÿÿMÿUÿ[ÿ`ÿe#ÿh*ÿh1ÿe9 þaB÷_Oñ\\ìZgèWq!äU{$áS…&ÞRŽ(ÛQ—)ØP *ÕO©+ÒN³,ÏMÀ,ÍLÐ,ÉLã,ÅLó*ÂMþ(¿Mÿ&½Mÿ$ºNÿ#¹Nÿ"¹Nÿ"¹Nÿ"¹Nÿ"¹Nÿ"ÿPÿXÿ_ÿeÿk"ÿn(ÿo.ÿm6 ÷j>ïhKèeXâbc Ý_m%Ø]w(Ô[+ÐZ‰-ÍX’/ÊWš0ÇV£1ÅU­2ÂT¹2¿SÉ3¼RÝ3¸Rî1µSü.²Tÿ+°Tÿ)¯Tÿ'®Tÿ'®Tÿ'®Tÿ'®Tÿ'®Tÿ'ÿSÿ[ÿcÿjÿp ÿt&ÿu,ùu3 ïs;çqGßnTØj_"Ñgi'Ìes+Èb|/Äa„1Á_3¾^•5»]ž6¸\¨7µ[´8³ZÂ8°YÕ8¬Xé8ªYù4¨Zÿ0¦Zÿ.¤[ÿ+¤[ÿ+¤[ÿ+¤[ÿ+¤[ÿ+¤[ÿ+ÿUÿ^ÿfÿnÿuÿy$þ|*ò}0è|8 ßzDÕvPÎr[#Èoe)Âln.¾iw1ºg4¶fˆ7³d9°c™:­b£<ªa®=§`½=¥_Ï=¢^å= _ö9ž`ÿ5œ`ÿ2›`ÿ/š`ÿ/š`ÿ/š`ÿ/š`ÿ/š`ÿ/ÿWÿ`ÿiÿrÿyÿ~"ø‚'ì„-á…3 Ö‚@Í~LÅyX#¿vb*¹rj/µps3°n{7­lƒ:©jŒ<¦i•>£hŸ?¡fªAže¸A›dÉB˜càB–dò=•dÿ9”eÿ6“dÿ3’dÿ2’dÿ2’dÿ2’dÿ2’dÿ2ÿYÿcÿlÿuÿ|ÿ‚ ó‡$æ‹(Û/ω=Æ…I¾€U#·|^*²yg0­vo5¨tw8¥r<¡pˆ>žn‘@›m›B˜l¦D•j³E“iÄEhÛEŽhðAŽhý=hÿ9‹gÿ6‹gÿ5‹gÿ5‹gÿ5‹gÿ5‹gÿ5ÿ[ÿeÿnÿxÿ€þ†îŒ á’"Ô”,É;¿‹G·†R#°ƒ\*«d0¦|l5¡yt:žw|=šu„@—tŽB”r˜E‘p£FŽo°H‹mÀHˆlÖH‡líE†lü@…lÿ<„kÿ8„kÿ7„kÿ7„kÿ7„kÿ7„kÿ7ÿ]ÿgÿqÿ{ÿƒùŠéÛ˜Ι)Õ8¹‘E±ŒP"«‰Y*¥…b0 ‚j6›q:—}y>”{AyŠDw”F‰u H†s¬Jƒr½KqÒKpêHpúB~pÿ>}oÿ:}nÿ9}nÿ9}nÿ9}nÿ9}nÿ9ÿ_ÿiÿsÿ}ÿ†ôã•Ԟɞ&¾š6 ´–B¬’M!¥ŽW)Ÿ‹`0šˆg6•…o:‘‚v>€BŠ~ˆE†|’HƒzJxªL|wºLyuÏMwtçJxuøEwtÿ@wrÿpvÿ=pvÿ=pvÿ=pvÿ=pvÿ=ÿbÿm ÿy ÿƒþŒß–ÒŸɧ ½¨!³¥1 ª¡>¢I›™S'•–[/“c5Š‘k:†Žr?ŒzC}‰ƒFy‡Iu†˜Lq„¥Nn‚´OkÉOiâNjöHj}üCj{ÿ?j{ÿ>j{ÿ>j{ÿ>j{ÿ>j{ÿ>ÿeÿp ÿ{ ÿ†õ ֚͢¬·®­«/ ¤§<œ£G• Q&Y-Šša4…—h9€•p>{’xBv€FrŽ‹In–Lj‹£Nf‰²OdˆÆOa†àOc…ôIcƒûDcÿAc€ÿ?c€ÿ?c€ÿ?c€ÿ?c€ÿ?ÿgÿr ÿ ÿŠ Û•Ñžȧ¼±±´§±,Ÿ®9—ªD§N$ФW+„¡_2~Ÿf8yœn=tšuAo˜~Ek–ˆIg””Kc“¡N_‘°O\ÄOZßN[óI\ŠûE\ˆþA\‡ÿ@\‡ÿ@\‡ÿ@\‡ÿ@\‡ÿ@ÿj ÿvÿƒ ÷ŽÖ™Í¢ë¶¶ª»¡¹(™¶6‘²AНK!ƒ¬T)}©]/w§d5r¥k:m£s?h¡|CdŸ†F_’I[œŸLW™¯MT˜ÃMR–ÝLS”óHT’ûDUÿAUŽÿ@UŽÿ@UŽÿ@UŽÿ@UŽÿ@ÿm ÿzÿ‡ܔўȧ½±°»¢Ä šÃ#’À2 м>ƒ¹H|¶Q%v´Z,p²b2k¯i7f­q;a¬z?\ª„CX¨FT¦žHP£®IM¢ÂJK ÝIKžòFLœýBM˜ÿ?N—ÿ>N—ÿ>N—ÿ>N—ÿ>N—ÿ>ÿqÿø֙ͣí¸¶ªÁšÍ’ÍŠË.‚È:{ÅEtÂN oÀW'i¿_-d½g2_»o6Z¹x:U·‚=Q´@L²BI°­DF®ÁDD¬ÝCD©óAE¨ÿ>F£ÿ½Þ;>¹ó:>¶ÿ8?³ÿ6?±ÿ6?±ÿ6?±ÿ6?±ÿ6?±ÿ6ÿ}ö̥֚¯¸¹ªÃœÌ؃çzç%ræ1kä<eãF_áPZàYUßa"QÞj&LÜt*HÛ-DÚ/@Øœ1=Õ­2;ÓÂ29Ñà19Íó08Êÿ08Æÿ/8Æÿ.8Æÿ.8Æÿ.8Æÿ.8Æÿ.ÿ…ܕТƬ½¶°¿¢È“Ñ…Ý{ôsô!kó,cò6 ^ò@XñJTðSOð\KïeGîoCíy"?í‡$<ì–%9ë§&7éº&5èÕ%4äï%3áü%2Þÿ%2Ýÿ%2Ýÿ%2Ýÿ%2Ýÿ%2Ýÿ%ëԞʩÀ³µ¼§Å˜ÍŠÖ{ásÿkÿdÿ']ÿ0Wÿ9 SÿB NÿKJþSFþ\Bþf>ýp:ý}7ýŒ4üœ2û¯0úÈ/ùá.÷ò,óÿ,òÿ,òÿ,òÿ,òÿ,òÿٚͦı¹¹«ÂÊŽÑÛræjÿ cÿ\ÿ Vÿ)Pÿ1Lÿ9HÿA EÿI AÿQ <ÿZ8ÿd5ÿo1ÿ|-ÿ+ÿž)ÿ±(ÿÉ'ÿä%ÿñ%ÿö%ÿö%ÿö%ÿö%ÿöФƯ½·°¿¡Ç‘΃Ötßhç`ÿZÿSÿNÿ!Iÿ(Eÿ/Bÿ6>ÿ=;ÿD7ÿL3ÿT /ÿ^ +ÿj &ÿx "ÿˆ ÿš ÿ¬ ÿ¼ ÿÔ ÿÞ ÿÞ ÿÞ ÿÞ ÿÞ É­¿µ³½¤Å•̆ÓwÜjä^ëVÿPÿ KÿFÿAÿ=ÿ$:ÿ*7ÿ04ÿ61ÿ=-ÿD)ÿL$ÿV ÿbÿoÿ~ÿÿœÿ¬ÿ±ÿ±ÿ±ÿ±ÿ±´·º¨Â™ÈŠÏzØlá_éTïLÿFÿAÿ=ÿ 9ÿ5ÿ2ÿ0ÿ#-ÿ(*ÿ.'ÿ4#ÿ:ÿBÿLÿVÿb ÿnÿzÿ‡ÿŠÿŠÿŠÿŠÿŠº¸­¿žÅË€ÒqÛdãWëKóCÿ=ÿ9ÿ5ÿ1ÿ.ÿ +ÿ)ÿ&ÿ$ÿ !ÿ%ÿ+ÿ1ÿ7ÿ@ ÿIÿRÿ[ÿdÿgÿgÿgÿgÿgÿ6+ÿ9*ÿ:+ÿ:.ÿ73ÿ3:ÿ-Dÿ'Oÿ![ÿgÿsÿÿ‰ÿ“ÿšÿ¡ÿ¨ÿ ²ÿ »ÿ Åÿ Ñÿ àÿíÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ7*ÿ;(ÿ<)ÿ<,ÿ:1ÿ68ÿ1Bÿ,Mÿ'Yÿ"eÿqÿ|ÿ‡ÿ‘ÿ˜ÿŸÿ¦ÿ¯ÿ¸ÿÂÿÎÿÞÿêÿ öÿ ÿÿ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ9(ÿ='ÿ?'ÿ?*ÿ=/ÿ96ÿ6@ÿ2Kÿ-Wÿ(c ÿ$n ÿ!y ÿ„ ÿŽ ÿ• ÿœÿ¥ÿ­ÿµÿ¿ÿËÿÚÿéÿôÿþÿÿÿÿý ÿû ÿû ÿû ÿû ÿû ÿÿ<&ÿ?%ÿA%ÿB(ÿ@,ÿ=3ÿ<=ÿ9Hÿ4T ÿ/` ÿ,k ÿ)v ÿ& ÿ$‹ ÿ$“ ÿ#š ÿ"¢ ÿ"© ÿ!² ÿ ¼ ÿ È ÿ×ÿæÿòüüùÿöÿõÿôÿôÿôÿôÿôÿÿ>%ÿB#ÿE#ÿF%ÿE)ÿD1ÿB:ÿ@E ÿ

    ÿKI ÿGU ÿD`ûAkø@võ>€ò=ˆð<‘î<™ì;¡ë;ªé9´ç9Àå7Ïá7âÝ6ñÙ6üÕ6ÿÒ6ÿÏ6ÿÎ6ÿÎ6ÿÎ6ÿÎ6ÿÎ6ÿÿG ÿMÿRÿUÿY"ÿZ)ÿY1ÿU: ÿRE üOQöL]ñJhíHrêG|çF…åEŽâD–àCžÞB§ÛA²Ù@¿Ö?ÏÒ?âÎ?ñÊ?ýÇ?ÿÄ?ÿÂ?ÿÁ?ÿÁ?ÿÁ?ÿÁ?ÿÁ?ÿÿJÿQÿVÿ[ÿ` ÿb'ÿa.ÿ^6úZ@ óWLìTYçRdâPnÞOxÛM×LŠÔK’ÑK›ÏJ£ ÌI­!ÊH¹!ÇGÇ!ÄGÛ!ÀFì!¼GúºGÿ·GÿµGÿ³Gÿ³Gÿ³Gÿ³Gÿ³GÿÿMÿTÿZÿ`ÿfÿh%ÿh+ûf3ñc< é`Hâ^UÜ[`ÖYjÑWtÍV|!ÊT…"ÇS$ÄR•%ÁRž&¿Q§'¼P³'¹OÁ(·NÓ(³Mç(°N÷%­Nÿ#«Nÿ!ªNÿ¨Nÿ¨Nÿ¨Nÿ¨Nÿ¨NÿÿPÿWÿ^ÿeÿkÿn"ÿo(ón/ék7àiD ØfPÐc\ÊafÆ_o"Â]w$¾\€'»[ˆ(¸Z*µY™+³X¢,°V­-­U»-«TÌ.§Tâ.¥Tô+£Tÿ( Uÿ%ŸUÿ$žUÿ"žUÿ"žUÿ"žUÿ"žUÿ"ÿRÿZÿaÿiÿoÿs øu%ìu+át3×q@ ÎnLÆkXÀib »fk$·ds'´c{*°aƒ,­`Œ.«_”/¨^ž1¥]©2£[¶2 ZÇ3YÝ3›Zð0™Zþ-˜Zÿ*—Zÿ'–Zÿ&–Zÿ&–Zÿ&–Zÿ&–Zÿ&ÿUÿ]ÿdÿmÿsÿxò{!å|%Ú|.Îy< ÅvI¾rT¸o^!³mg%®ko)«iw,§g/¤f‡1¡e3Ÿdš4œb¤5™a±6—`Â7”_Ø7’^í5‘^ü1_ÿ-_ÿ+Ž_ÿ)Ž_ÿ)Ž_ÿ)Ž_ÿ)Ž_ÿ)ÿWÿ_ÿgÿpÿwü|ìÞƒÒƒ*Ç€9 ¾}F·yQ°v[!«sd&§ql*£os. m{1œkƒ3™jŒ5–i–7”g¡9‘f­:Žd½:ŒcÒ:Šbé9‰cú4ˆcÿ1ˆcÿ.‡cÿ,‡cÿ,‡cÿ,‡cÿ,‡cÿ,ÿYÿaÿj ÿsÿzö€å„؉ˉ'Á‡7 ¸ƒC°Nª|X!¥ya' vi+œtp/™rx2•q€5’o‰7m“9Œlž;‰jª<‡i¹=„hÎ=‚fæ=gø7gÿ3gÿ0€gÿ.€gÿ.€gÿ.€gÿ.€gÿ.ÿZÿcÿm ÿvÿ}ñƒÙ‰ÑŽÅ%»Œ4 ²‰Aª…L¤‚V!Ÿ^'š|f+–zm/’wu3u}6Œt†9‰r;…p›=‚o§?m¶@}lÊ@zjã?zkö:zkÿ6zkÿ2yjÿ0yjÿ0yjÿ0yjÿ0yjÿ0ÿ\ÿe ÿp ÿyÿ€ä‡ÓŽË“ À”"¶’2­Ž?¥ŠIŸ‡S ™„\&•‚d+k/|r3‰zz6†xƒ:‚w<u˜?{t¤@xr³AvqÇBsoàAsoõmtÿ9mtÿ6mrÿ3mrÿ3mrÿ3mrÿ3mrÿ3ÿ`ÿjÿu ÿ ãˆÓÊ–¿œ´ž«œ-£™:›–E•’OX%Š`*†‹g/ˆn3}†v7y„~;u‚ˆ>q€“@n Bk}®Dh{ÁDezÛDfyñ?fyÿ;gxÿ7gwÿ5gwÿ5gwÿ5gwÿ5gwÿ5ÿb ÿlÿxü‚ٌϓڹ¡®£¦¢*žŸ8 –œC˜MŠ–V$…“^)€‘e.{l3wt7s‹|:o‰†>k‡‘@g†žCd„¬Da‚¿D^ÙD^€ð@_þ<`~ÿ8`}ÿ6`}ÿ6`}ÿ6`}ÿ6`}ÿ6ÿe ÿoÿ{ì†Ô˘ÁŸ´¥¨© ¨'˜¥5 ‘¢@ŠŸJ„S"š[(z˜c-u–j1q”r6l’z9h‘„=d@`œB\‹«CY‰½DWˆÖCW†ï@X†þY–š@U”©AR’¼BPÕBOŽî?Qý;QŒÿ8RŠÿ6RŠÿ6RŠÿ6RŠÿ6RŠÿ6ÿkÿxô…Ö̚¡·©ª°š·’·‹µ.„³:}°Dw®Nq¬V"lª^'h¨f,c§n0^¥v4Z£€7V¡Œ:QŸ™=N¨>Kœ»?HšÔ>H˜î¶º1<´Õ1;±ï0;®þ/;¬ÿ-;ªÿ,;ªÿ,;ªÿ,;ªÿ,;ªÿ,ÿ|ތјȢ¾«³³¦»—ˆÊxÕoÛjÛ)eÚ6_ØA ZÖKVÕTQÔ]MÒfIÑpEÏ{"A·$>Í–&;˦'8É»(7ÇÖ'6Ãð'6¿ÿ&5½ÿ&5»ÿ%5»ÿ%5»ÿ%5»ÿ%5»ÿ%ö…ה̟©¹±¬¹žÀÇ€ÐqÛiêcê$]ê/Wé:SèE OèO KçXGæaCåk?åv<äƒ9ã’6á¤4à¸2ÞÓ1Úí0Õû/Òÿ.Ïÿ.Ïÿ.Ïÿ.Ïÿ.ÏÿÝМƧ½°²·£¿•ƆÍwÕiàcø\ùVù)Qø3Mø<IøEE÷O A÷X =÷b:öm6öy3öˆ1ô™.ô­-òÃ+ñâ*íõ(éÿ(èÿ(èÿ(èÿ(èÿ(èÿԙɥÀ®¶µ¨¾™ÄŠÊ|ÒnÛaãZÿ UÿOÿ!Jÿ*Fÿ2Bÿ;?ÿC;ÿL7ÿU3ÿ_ /ÿk +ÿy (ÿŠ &ÿœ $ÿ° #ÿË "ÿä !ÿõ þÿ þÿ þÿ þÿ þÿ ̣íº´¬¼ÃŽÉÐqØdàXçRÿLÿGÿCÿ ?ÿ(;ÿ/8ÿ65ÿ>1ÿF-ÿO(ÿZ$ÿf ÿuÿ†ÿ™ÿ¬ÿÂÿÜÿíÿíÿíÿíÿíŬ¼³°º¡Á’ȃÏtÖgÞZåOìIÿCÿ?ÿ;ÿ7ÿ4ÿ#1ÿ).ÿ/+ÿ6&ÿ>!ÿFÿQÿ^ÿlÿ} ÿÿ ÿ²ÿÃÿÃÿÃÿÃÿÿ²´¸¦¿—ŇÌxÓiÝ\äPêGð?þ;ÿ6ÿ2ÿ /ÿ,ÿ)ÿ&ÿ!#ÿ' ÿ-ÿ4ÿ<ÿG ÿSÿ`ÿnÿ~ÿ‹ÿ—ÿ—ÿ—ÿ—ÿ—¸¶ª½›ÃŒÈ}ÏoÖaßTçHï>õ7þ2ÿ-ÿ*ÿ&ÿ#ÿ!ÿ ÿÿÿÿ#ÿ* ÿ1ÿ;ÿEÿQÿ]ÿgÿpÿpÿpÿpÿpÿ2+ÿ4*ÿ4+ÿ3-ÿ/3ÿ):ÿ"CÿNÿZÿfÿ rÿ|ÿ‡ÿÿ—ÿžÿ¤ÿ­ÿ·ÿÁÿÌÿÜÿéÿõÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ3)ÿ6(ÿ6)ÿ5,ÿ21ÿ-8ÿ&Aÿ LÿXÿdÿoÿ zÿ „ÿÿ•ÿœÿ¢ÿ«ÿ³ÿ½ÿÉÿØÿæÿóÿýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ6(ÿ8&ÿ9'ÿ8)ÿ5.ÿ05ÿ,?ÿ'Iÿ!UÿaÿlÿwÿÿŠÿ’ÿ™ÿ  ÿ ¨ÿ °ÿ ºÿ ÅÿÓÿãÿñÿûÿÿþÿüÿûÿúÿúÿúÿúÿÿ8&ÿ;$ÿ<$ÿ<&ÿ9+ÿ52ÿ3<ÿ/Gÿ*Rÿ%^ÿ!iÿtÿ~ÿ‡ÿÿ–ÿžÿ¥ÿ­ÿ¶ÿÁÿÏÿáþîú ù÷ ÿõÿóÿòÿñÿñÿñÿñÿÿ;$ÿ>"ÿ@"ÿ?#ÿ='ÿŠÝ=’Ú=šØ<£Õ;­Ò:¸Ð:ÆÍ9ÙÉ9êÅ9ùÁ8ÿ¿8ÿ½8ÿº8ÿº8ÿº8ÿº8ÿº8ÿÿGÿMÿQÿUÿZÿ[$ÿZ+þV3õR>íOJ çLV áKaÜIkØHuÔG}ÐG…ÎFËE•ÉEžÆD§ÄC²ÁB¿¾BлAå·Aõ´Aÿ±Aÿ¯Aÿ®@ÿ®@ÿ®@ÿ®@ÿ®@ÿÿJÿPÿUÿ[ÿ`ÿb!ÿa(õ^/ìZ8ãXE ÜVR ÔT]ÏRgÊQpÇPxÃO€ÀNˆ¾N»M˜¹L¡¶K¬´J¹±IÊ®Hß«Hñ¨Hÿ¦Hÿ¤Hÿ¢Hÿ¢Hÿ¢Hÿ¢Hÿ¢HÿÿMÿTÿYÿ`ÿeÿgùh$íf*âb3Ùa@Ð_M É]XÃ[b¿Yk»Xs¸W{µVƒ²U‹ ¯T“!­S"ªR§#¨Q³#¥PÄ$£OÙ$ Ní#Oü ›OÿšOÿ™Nÿ™Nÿ™Nÿ™Nÿ™NÿÿOÿVÿ\ ÿdÿiÿlòmål$Ùk.Ïi<ÆgI¿eTºc^µag±_o­^w ª]~"¨\‡$¥Z%¢Z˜& X£'W¯(›V¾)™UÒ)–Té(”Tú%“Tÿ"‘Tÿ TÿTÿTÿTÿTÿÿRÿYÿ` ÿhÿmûpêrÝqÐr*Æq8¾nE·lP±iZ¬gc¨fk ¥ds#¢cz%Ÿa‚'œ`‹(š_”*—^Ÿ+”]«,’[º-ZÎ-Yæ-ŒY÷)ŠYÿ&‰Yÿ#‰Yÿ!‰Xÿ!‰Xÿ!‰Xÿ!‰Xÿ!ÿTÿ[ ÿc ÿkÿqôtãv ÔwÉy&¿x5·uB¯rMªpW¥m`¡kh!jo$šhw'—g)”f‡+’d‘-c›.a§/Š`¶0ˆ_É1…]â0„]õ,ƒ]ÿ)‚]ÿ&]ÿ$]ÿ$]ÿ$]ÿ$]ÿ$ÿVÿ^ ÿf ÿn ÿt êx Ö{Í}Â#¹~3°{? ©xJ£uTŸs]šqe"—ol%“mt(l{*Žj„-‹i/ˆg˜1…f¤2‚d³3€cÆ3}bß3|aó0|aÿ,{aÿ){aÿ&{aÿ&{aÿ&{aÿ&{aÿ&ÿXÿ` ÿiÿq ÷wÙ|Ѐǃ ¼… ³„0«= ¤~Hž{R™xZ•vb"‘ti%rq(Špx+‡o.„m‹0l•2~j¡4{i°5ygÂ6vfÜ6ufñ2ufÿ.ueÿ+teÿ(teÿ(teÿ(teÿ(teÿ(ÿYÿbÿlÿtæ{ÔË…Áˆ·Š®‰.¦†; ŸƒF™€O”~X{`"‹yg&‡wn)„uv,s~/~rˆ2{q“4woŸ6tm­7rl¿7pkØ7njï4ojþ0ojÿ-oiÿ*oiÿ)oiÿ)oiÿ)oiÿ)ÿ[ ÿdÿnýwÛ~Ð…ÇŠ»Ž±¨Ž+¡Œ8 š‰C”†MƒVŠ^"†~e&‚|l)~zt,{y|0xw…2tv5qtœ7nrª8kq½9ipÔ9hoí6hný1inÿ.imÿ+imÿ+imÿ+imÿ+imÿ+ÿ] ÿfÿqðzւ͉ÂŽ¶’«”£“(œ‘6 •ŽA‹K‰‰T…†\!€„c%|‚j)y€r-uz0q}ƒ3n{Ž5kzš7gx¨9dwº:buÒ:atì7btü3bsÿ/brÿ,brÿ,brÿ,brÿ,brÿ,ÿ` ÿiÿtÞ~ӇɎ¾“±—¦™ž™%——3”?Š‘I„RZ {‹a$w‰h(s‡p,o…x0k„3h‚Œ5d€˜8a¦9^}¸:[{Ï:Zzê8[yû3\xÿ0\xÿ-\xÿ-\xÿ-\xÿ-\xÿ-ÿbÿmýxڂϋŒº˜­œŸŸ ˜Ÿ"‘0Š›< „˜F~–Oy”Wu’_#qf'mn+iv.e‹2aŠŠ5]ˆ—7Z†¥8W„¶9T‚Î9S€é8Tû3Uÿ0U~ÿ.U~ÿ-U~ÿ-U~ÿ-U~ÿ-ÿeÿqí|Õ‡ËÁ—¶¨¡™¥’¥‹¤-„¢9 ~ CxžMsœUoš]!j˜d%f—l)b•t,^”}0Z’ˆ3V•5Sޤ7OŒµ7MŠÍ7Lˆè6M‡ú2M†ÿ0N…ÿ-N…ÿ-N…ÿ-N…ÿ-N…ÿ-ÿiÿuÝ‚ÑÇ•½œ²¢¤§’¬Š­„¬(}ª5w¨@q¦Jm¥Rh£Zd¢b"` j%[Ÿr)W|,S›‡/Oš”2K˜£3H–´4F”Ì4E’è3Eú0Fÿ.Gÿ,Gÿ+Gÿ+Gÿ+Gÿ+ÿm÷{؈͓Û¹¢­¨Ÿ­Ž³¶{¶#u´1p²< j±Ff¯Oa®W]¬_Y«g!T©p$P¨z'L¦…*H¤“,E£¢.B¡´/?ŸÌ/>è.?šú,?™ÿ*?—ÿ(?—ÿ(?—ÿ(?—ÿ(?—ÿ(ÿsà‚ÒÈ™¿¡´¨¨®š³Š¹xÁqÁmÀ+g¿7c¾B ^¼KY»TUº]Q¸eM·nIµx!E´„#B²‘%>°¡';®³(9¬Ì'9ªé'8¦û&8¤ÿ%8£ÿ$8¢ÿ$8¢ÿ$8¢ÿ$8¢ÿ$üzÚŠÍ–ÄŸº§¯­¢´“ºƒÀsÇfÎbÎ!^Î0YÍ;UÌF QËO MÊYIÉbFÇkBÆu?Å‚;Ã8Á 6¿³4½Ì3ºê3¶ü2´ÿ2±ÿ2°ÿ2°ÿ2°ÿ2°ÿà„Ò’È¿¦µ­¨´šº‹¿|ÅlÍ^ØWßSà&Pß3Lß>IÞIEÝS BÝ] >Üg;Ûr8Ú5ØŽ2ÖŸ0Ô³.ÒÍ.Îê,Êú,Çÿ+Äÿ+Ãÿ+Ãÿ+Ãÿ+Ãÿ؎̛¥¹­®³ º‘¿‚ÅsËeÓXÞRïMðIð*Eð5Bð?>ïI;ïS8ï]4îh1îu /î„ ,ì• *ë© )êÁ 'èà %ãö $àÿ #Ýÿ #Ýÿ #Ýÿ #Ýÿ #Ýÿ Иƣ½¬³²¥¹–¿‡ÄxÊjÑ]ÚQâKý FÿBÿ!>ÿ+;ÿ38ÿ<4ÿE0ÿO-ÿZ)ÿg%ÿt#ÿ…!þ˜ý­üÊûæø÷ôÿôÿôÿôÿôÿÉ¢À«·²ª¹›¿‹Ä|ÊnÐaØUàJçDü?ÿ:ÿ7ÿ 4ÿ'1ÿ/.ÿ7)ÿ?%ÿI!ÿTÿaÿqÿƒÿ˜ÿ«ÿÅÿá ÿö ÿø ÿø ÿø ÿøª¹±®·Ÿ¾Ä€ÊqÐdØWßLåBë;û7ÿ3ÿ /ÿ,ÿ)ÿ!&ÿ(#ÿ/ÿ7ÿ@ÿKÿY ÿiÿ|ÿÿ£ÿ¸ÿÉÿÎÿÎÿÎÿμ±²¶£½”„ÈuÏgØYàMæCë:ð3û/ÿ+ÿ'ÿ#ÿ !ÿÿÿÿ&ÿ- ÿ6ÿAÿOÿ^ÿnÿÿÿŸÿ¢ÿ¢ÿ¢ÿ¢µ´§»™ÀŠÆ{ËlÒ_ÛRãFê;ñ2ö+û&ÿ"ÿÿÿÿÿ ÿÿ ÿÿ#ÿ+ÿ6ÿBÿPÿ]ÿjÿwÿyÿyÿyÿyÿ.*ÿ/)ÿ.*ÿ+-ÿ&2ÿ 9ÿBÿ MÿYÿeÿoÿ{ÿ…ÿŒÿ”ÿ›ÿ¡ÿ¨ÿ²ÿ»ÿÇÿÓÿâÿïÿüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ0)ÿ1(ÿ1(ÿ.+ÿ)0ÿ#7ÿ@ÿJÿ Wÿbÿmÿxÿ‚ÿŠÿ‘ÿ˜ÿžÿ¦ÿ¯ÿ¸ÿÃÿÏÿÞÿîÿúÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ2'ÿ3%ÿ3&ÿ1(ÿ--ÿ&4ÿ"=ÿHÿTÿ_ÿ jÿtÿÿ‡ÿŽÿ•ÿ›ÿ¤ÿ«ÿ´ÿ¿ÿÌÿÛÿìÿøÿÿýÿûÿúÿùÿùÿùÿùÿÿ4%ÿ6#ÿ7#ÿ5%ÿ1)ÿ,1ÿ*;ÿ$EÿPÿ\ÿgÿqÿ {ÿ ƒÿ ‹ÿ ‘ÿ ™ÿ ÿ¨ÿ°ÿ»ÿÇÿÙýéùööÿóÿñÿðÿïÿïÿïÿïÿÿ7"ÿ9 ÿ: ÿ9!ÿ6%ÿ4.ÿ27ÿ.Bÿ(Mÿ#Xÿcÿmÿwÿ€ÿ‡ÿŽþ–ýû¥ù­ø·öÅôÖñ çí õé ÿç ÿå ÿã ÿâ ÿâ ÿâ ÿâ ÿÿ: ÿ=ÿ>ÿ=ÿ<"ÿ<*ÿ:4ÿ7>ÿ2Iÿ-Tÿ)_ÿ&iü$sù#|ö"„ô"‹ò!“ñ!šï ¢í«ë¶éÃçÔãçßõÜÿØÿÓÿÑÿÐÿÐÿÐÿÐÿÿ=ÿAÿCÿCÿDÿD'ÿB0ÿ?:ÿ;Eþ6Pø3[ô0fð.oí.xê-€ç-ˆå,ã,˜á+ ß*©Ý*µÛ)ÃØ'ÕÓ'çÏ'öÊ(ÿÇ'ÿÅ'ÿÃ'ÿÂ&ÿÂ&ÿÂ&ÿÂ&ÿÿ@ÿEÿGÿHÿLÿL$ÿJ,ÿF5úC@ó?Kí«»>·¸=Ƕ<ݲ;ï¯;ý¬;ÿª:ÿ©:ÿ¨9ÿ ¨9ÿ ¨9ÿ ¨9ÿ ÿGÿLÿPÿUÿYÿZüY#ïU+åP4ÜOAÔMNÍMY ÈLc ÄKkÀJs½J{ºIƒ·I‹µH“³Gœ°F¥®E²«DÁ©CÕ¦Cê£Cú¡BÿžBÿBÿœBÿœBÿœBÿœBÿÿIÿOÿS ÿZÿ^ÿ`ó^æ[$ÛX/ÐX<ÈWIÂVT ¼U^¸Tg´So±Rv®Q~¬P†©OާO—¥N¡¢M¬ K»žJΛIæ˜I÷–Iÿ•Iÿ”Hÿ“Hÿ“Hÿ“Hÿ“HÿÿLÿR ÿXÿ_ ÿcúdêcÜ_Ða)Ça8¿`E ¸^P ³]Z®[c«Zk§Yr¥Xy¢W VŠU’›Tœ˜S¨–R¶ ”PÉ ‘Oá OôNÿŒNÿ‹Nÿ‹Nÿ‹Nÿ‹Nÿ‹NÿÿNÿU ÿ[ÿc ÿg òh àg ÓfÈi%¾i5¶gA °eLªcV¦b_¢`gŸ_nœ^v™]}—\†”[!’Y™"X¤#W²$‹UÅ$ˆTÝ$†Tò"…Sÿ„SÿƒSÿƒSÿƒSÿƒSÿƒSÿÿQÿWÿ_ÿfújÜlÓmËmÀp"·o1¯m> ©kI£iSŸh\›fd˜ek•cr’bz a‚"_‹#Š^•%ˆ]¡&…[¯'ƒZÁ'€YÙ'~Xï%}Xÿ"}Xÿ|Wÿ|Wÿ|Wÿ|Wÿ|WÿÿS ÿZÿbÿiênÖqÍsÄs ºu±u.©s;£qF oP™mY•ka‘jhŽho‹gw!‰e#†dˆ%ƒc’'€bž(~`¬*{_½*y]Ô*w\í(v\ý%v\ÿ"u\ÿ u[ÿu[ÿu[ÿu[ÿÿU ÿ\ÿeülÜqÒvÈx¾y´{«{,¤y9vD ˜tN“rVp^‹neˆml…kt"‚j|$h…'|g)zf›*we©,tcº,rbÑ,p`ë+p`ü'p`ÿ$o`ÿ"o_ÿ o_ÿ o_ÿ o_ÿ ÿV ÿ^ÿgñoØuÎzÄ~¸®€¦€)Ÿ~6˜|A “yKŽwTŠu\†sc‚qj pq"|ny%ymƒ(vl*sk™,pi§-nh¸.lfÎ.jeé-jeû)jdÿ%jdÿ#jcÿ"jcÿ"jcÿ"jcÿ"ÿXÿ`ÿjárÔyÊÀƒ³„¨…¡…&š„4“? ŽI‰|R„zZ€xa}wh yuo#vtw&sr€(pq‹+mo—-jn¤.glµ/ekÌ/cjç/diù*diÿ'dhÿ$dhÿ#dhÿ#dhÿ#dhÿ#ÿ[ÿcÿmÜvÑ~ƃ¼‡®‰£Šœ‹#•‰1އ= ‰„G„‚P€W{~_w|f t{m#qyu&mx~)jv‰+gu•-dt¢/ar³0^qÉ0]oå0]nø+^mÿ(^mÿ%^lÿ$^lÿ$^lÿ$^lÿ$ÿ]ÿfôpÙz͂ȸŒª – /‰: ƒŠD~ˆMz†Uv…]rƒdnk#k€s&g~|)d}‡+a{“-]z¡/Zx±0XvÇ0Vtã0Ws÷,Wrÿ(Xrÿ&Xqÿ%Xqÿ%Xqÿ%Xqÿ%ÿ_ÿiãtÔʇ¿´‘¦”˜––Š•,„“8~‘B yKtSpŒ[lŠbi‰i!e‡q%a†z(^„…*Z‚‘-WŸ.T°/Q}Å0O{â/Py÷,Pxÿ(Qwÿ&Qwÿ%Qwÿ%Qwÿ%Qwÿ%ÿbÿnÝyЄƌ¼’°–£š‘œ‰œƒœ(}š4x™? s—Hn•Qj”Yf’`b‘h_o#[Žx&WŒƒ(SŠ+P‰ž-M‡®.J…Ä.Hƒá-Iö*I€ÿ(Jÿ&J~ÿ$J~ÿ$J~ÿ$J~ÿ$ÿfôrÙ̉‘¸—­œŸ ‹£¤|£#v¢1q¡<lŸE hžNdV`›^\šeX˜nT—w"P•‚%L”Ž'I’)F®*CŽÃ*BŒá*BŠö(Bˆÿ&C‡ÿ$C†ÿ#C†ÿ#C†ÿ#C†ÿ#ÿjáxӅȾ—´©¢›¦‰©y¬s¬n«+iª7e©A a¨K \¦SY¥[U¤cQ¢lM¡uI € Fž#Bœ$?›­%=™Ã%<—á%;”ö#<’ÿ"<‘ÿ!<ÿ <ÿ <ÿ <ÿ þqۀΌĖº°£¤¨•¬…°q¶i·e¶$a¶2]µ<Y³F U²O Q±XM°`J¯iF­sB¬~?ªŒ<©›9§¬7¥Ã6£á5 ÷5žÿ5œÿ5›ÿ5›ÿ5›ÿ5›ÿãyԈɔÀ¶¤¬©ž®²¶n¼^ÃYÃVÃ)SÃ5OÂ@LÁJIÀS E¿] B¾f?½p;¼|8ºŠ5¸š3·¬1´Ã0²â/®÷/«ÿ.©ÿ.¨ÿ.¨ÿ.¨ÿ.¨ÿ܃Αě»£±ª¥¯—´ˆ¸x½hÂYÊMÒ IÓGÓ*DÓ7AÒB?ÒL<ÑW9Ða6Ðl 4Ïx 1͇ .̘ ,ʪ *Èà *Åâ )Àø(½ÿ'ºÿ'¹ÿ'¹ÿ'¹ÿ'¹ÿÓÈ™¿£¶ª«¯µŽ¹¾pÃbÉTÐGÚ@å<æ:æ+8æ66æA3æL1æW.åc,åp*ä'ã%â¤#à¼!ÞÝ ØóÔÿÑÿÎÿÎÿÎÿÎÿ̗¢ºª°¯¢µ“º„¿uÄgÉZÐMØBà;õ 7÷4÷!1÷*.ø4+ø=(øH%øT"÷a÷o÷ö”õ©ôÄòæîùéÿèÿèÿèÿèÿÅ¡½ª´¯§µ˜»ˆÀyÅkÊ^ÐQØFß<å5õ1ÿ -ÿ*ÿ'ÿ&$ÿ. ÿ7ÿAÿNÿ\ÿl ÿ~ ÿ”ÿ©ÿÅÿèÿ÷ÿÿÿÿÿÿÿÿ¿©·¯«µœ»ŒÀ}ÆnÌaÑTÙIß?å5ê.õ*ÿ&ÿ #ÿ ÿÿÿ'ÿ/ÿ9 ÿEÿTÿeÿyÿÿ¥ÿºÿÒÿåÿåÿåÿ幯¯´¡º‘¿‚ÅrËdÒVÛJá@æ7ì.ð&õ"ÿÿÿÿ ÿÿ ÿÿ&ÿ/ÿ;ÿJÿZÿmÿ‚ÿ“ÿ¥ÿ²ÿ²ÿ²ÿ²³³¥¹–¾ˆÃxÈjÏ]ÖOßCæ8í/ò'öùÿÿÿÿ ÿÿÿ ÿÿÿ%ÿ0ÿ>ÿNÿ^ÿmÿ|ÿ‡ÿ‡ÿ‡ÿ‡ÿ))ÿ))ÿ()ÿ$,ÿ1ÿ8ÿAÿLÿWÿcÿnÿxÿ‚ÿŠÿ‘ÿ—ÿžÿ£ÿ«ÿµÿ¿ÿÌÿÜÿêÿøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ+(ÿ,'ÿ*'ÿ&*ÿ /ÿ6ÿ >ÿIÿUÿ`ÿkÿtÿ~ÿ‡ÿŽÿ”ÿšÿ¡ÿ©ÿ±ÿ»ÿÇÿÖÿçÿ÷ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ.&ÿ/$ÿ.%ÿ*'ÿ$+ÿ2ÿ<ÿ FÿRÿ]ÿhÿqÿ{ÿƒÿŠÿ‘ÿ—ÿžÿ¥ÿ­ÿ·ÿÃÿÑýæûõúÿùÿøÿ÷ÿ÷ÿ÷ÿ÷ÿ÷ÿÿ1#ÿ1"ÿ1"ÿ.$ÿ('ÿ#/ÿ 9ÿCÿNÿ Yÿdÿnÿwÿÿ†ÿÿ”ÿœÿ¢ÿªÿ³ü¾øÐõãòòñýïÿîÿíÿìÿìÿìÿìÿÿ3!ÿ5ÿ4ÿ2ÿ-#ÿ+,ÿ)6ÿ#@ÿJÿUÿ`ÿjÿ sÿ {ÿ ƒý ‰û ‘ù˜øŸö§ô°ò½ðÍìáèðæüãÿáÿÞÿÛÿÛÿÛÿÛÿÿ6ÿ8ÿ8ÿ6ÿ5 ÿ4(ÿ12ÿ-<ÿ'Fÿ"Qÿ\üføoõwòð†îŽì•êè¥æ¯ä¼âÌß áÚñÖýÑÿÎÿÌÿËÿËÿËÿËÿÿ9ÿ<ÿ=ÿ;ÿ<ÿ<%ÿ:.ÿ68ÿ1Bú,Mô(Xï&bë$lè$tå$|â#„à#‹Þ"“Û"›Ù!¤Ö!¯Ó »ÑËÎßÉñÅ ÿÂÿ¿ÿ½ÿ»ÿ»ÿ»ÿ»ÿÿ=ÿ@ÿAÿBÿDÿC!ÿA)þ=3õ9=í5Hç2Tâ0^Ý0hÙ/qÕ/yÒ/€Ï/ˆÍ/Ë/—È/ Æ.©Ã.µÁ-ž,Ùº,ì·+û³+ÿ±+ÿ¯*ÿ®*ÿ®*ÿ®*ÿ®*ÿÿ@ÿCÿEÿHÿKÿKÿH$óD-é?7áâž=ô›=ÿ ™<ÿ ˜<ÿ —;ÿ —;ÿ —;ÿ —;ÿ ÿFÿJ ÿNÿT ÿWûVëSÞLÒN*ÉO8ÁPE»OP¶NZ ²Nb ®Mj «Lq¨Ly¦K€¤Jˆ¡I‘ŸI›H¦›G³˜FÅ–EÝ“Dñ‘CÿCÿŽBÿBÿBÿBÿBÿÿHÿMÿRÿYÿ[ ò[ ßV ÓTÈW%¿Y4·XA±WL¬VV ¨U^ ¥Tf¢SmŸRtœR|šQ„˜P•O–“N¡‘M¯LÀŒJ׊IîˆIþ‡Hÿ†Hÿ…Gÿ…Gÿ…Gÿ…GÿÿK ÿPÿVÿ]ó`Û_Ò^Ê\¿_!¶`0¯`=©_H¤]R  \[[c™Zj—Yq”Xx’W€V‰U“‹TžˆR«†Q¼„OÒNë€NüNÿ~Mÿ}Mÿ}Mÿ}Mÿ}MÿÿM ÿRÿZþ`ÞcÔfËfÂd ¸f¯g-¨f:¢eE cO ™bW•a_’_f^m]uŠ\}ˆ[……YƒX›€W¨~V¸{TÎySèxSúwRÿwRÿvQÿvQÿvQÿvQÿÿOÿUÿ]ócÚhÏkÆl»j±l©m*¢l7œjB—iL “gUf\Œdd‰cj†brƒ`y_‚~^Œ{]˜ y\¥!vZµ"tYË"rWå"qWùqWÿpVÿpVÿpVÿpVÿpVÿÿQÿWÿ`ãfÕlËpÁrµp«q£r'q4—p?’nI lR‰jZ†iaƒgh€fo}ewzd€xcŠ ua•"r`£#p_³$n]È$k\ã$k[÷ k[ÿjZÿjZÿjZÿjZÿjZÿÿSÿZÿcÞjÒqÇu½w°v¦wžw$˜v2’u=sG ˆqP„oW€m_}lezkmwjtth}rg‡!of“#le $jc°%gbÅ&e`á%e`ö"e_ÿe^ÿe^ÿe^ÿe^ÿe^ÿÿUÿ]õfÚnÎuÄy¹|¬| |™|!“|/z;‡xE ƒvMtU{r\xqcupkrnrom{ll…"ik‘$fjž%ch®&agÃ'_eÞ&_dô#_cÿ _cÿ_bÿ_bÿ_bÿ_bÿÿWÿ_éiÖrËyÁ~¶¨‚› ”‚Ž-ˆ8‚}B ~{KyzSvxZrwbouiltpisy fqƒ"cp$`oœ&]m¬'[kÁ'YjÝ'Yhó$Yhÿ!YgÿYfÿYfÿYfÿYfÿÿYÿcàmÓvÈ~½ƒ²†¤‡–‡އˆ‡*‚…6}ƒ@ x‚I t€Qq~Xm}`j{ggzncyw`w"]v$Zt›&Wsª'Tq¿'SoÛ'Rnò%Smÿ!SlÿSkÿSkÿSkÿSkÿÿ\ýfÜqÏ{Ńºˆ¯‹¡ˆ‚&}Œ3wŠ=sˆF o‡Ok…Vh„^dƒeam]€uZ~!W}‹#S{™%Py©&Nw½'LvÙ&Ltñ$Lsÿ!MrÿMqÿMqÿMqÿMqÿÿ_ïkØvÌ€Áˆ·«‘ž“Š””{”"v“/q‘:mD iL eTbŒ\^‹c[‰kWˆtT†~P…Š!Mƒ˜#J¨$G¼%E}×$E{ñ#Ezÿ FxÿFwÿFwÿFwÿFwÿÿcápÓ|Ȇ¾Ž³“¨—›™†›y› s›o›+k™7f˜@b—I _–Q[•YX”aT’iQ‘rM|IމFŒ— CЧ!Aˆ»"?‡Ö!>„ð ?‚ÿ?ÿ?ÿ?ÿ?ÿ?ÿþiÜw΃Čº”°™¥—Ÿ…¡r£j£g£%c¢2_¢<[¡FWŸN TžV Q_MœgJ›pFš{C˜‡?—–=•¦:“»9‘Ö8Žñ8Œÿ8Šÿ8‰ÿ8‰ÿ8‰ÿ8‰ÿæoÖ~ÊŠÀ“¶š¬Ÿ £’¥¨m«a­ ]­Y­+V¬7S«AOªJL©S I©\ F§d B¦n?¥y<¤†9¢•6¡¦4Ÿ»3×2šñ2—ÿ1•ÿ1”ÿ1”ÿ1”ÿ1”ÿßxІő¼š² ¨¥›¨‹«{®j²Y·Q¹N¹"K¹/I¸:F¸DC·N@¶W=µa;´k 8³v 5²„ 2°“0¯¥.­º,«Ø,§ò+¤ÿ*¢ÿ* ÿ* ÿ* ÿ* ÿׂÊÀ™¸¡®¦¢«“®„±tµe¹U¿FÆ@È>È"<È/:È:8ÇE6ÇP4ÆZ1Æe/År,Ä€*Â(À£&¾¹%¼×$·ò#´ÿ "±ÿ "¯ÿ "¯ÿ "¯ÿ "¯ÿ όŘ¼¡³§¨¬š°‹´{·l»^ÀPÆCÍ6Õ0Û.Û ,Û,*Û7)ÛC'ÛO&Û\$Ûi"Úy ÙŠÖžÔµÑÓÍïÉÿÅÿÂÿÂÿÂÿÂÿÈ–¿ ·§­¬Ÿ²¶ºr¾dÂVÇJÍ>Ô3Ü+ê (î%î #ï* ï4ï?ïLïYïiîzíŽì¥ ê¿ èâ âù ßÿ Ýÿ Ýÿ Ýÿ Ýÿ º¨±­¤²•·†»vÀhÄ[ÊNÏCÕ8Ý.â&ì"ý ÿÿÿ%ÿ.ÿ9 ÿEÿTÿfÿyÿý§ûÆ÷åôùòÿòÿòÿòÿ¼¨´­¨²š¸Š½zÂkÇ^ÌQÒFØ;ß2ä)è íüÿÿÿ ÿÿ&ÿ1ÿ=ÿMÿ`ÿuÿ‹ÿ¦ÿ½ÿÝÿõÿõÿõÿõ·®¬²ž¸½ÂpÇaÎTÕGÜ=á3æ+ë"ïòûÿ ÿ ÿÿÿÿÿ(ÿ4ÿDÿWÿlÿƒÿ˜ÿ¬ÿÆÿÇÿÇÿǰ±£·”¼…ÀvÅhËZÒMÛ@â5é+ï#òõø û ÿÿÿÿÿÿ ÿÿÿ*ÿ:ÿLÿ_ÿsÿƒÿ“ÿ“ÿ“ÿ“ÿ%(ÿ$(ÿ!)ÿ+ÿ0ÿ7ÿ@ÿIÿVÿ`ÿkÿvÿÿ‡ÿÿ”ÿšÿ ÿ§ÿ±ÿºÿÆÿÕÿçÿõÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ''ÿ&%ÿ$&ÿ)ÿ-ÿ 4ÿ<ÿGÿSÿ]ÿhÿrÿ{ÿƒÿŠÿÿ–ÿœÿ¤ÿ¬ÿµÿÁÿÐÿâÿñÿþÿÿÿÿýÿûÿúÿúÿúÿÿ*$ÿ)#ÿ'#ÿ"%ÿ*ÿ0ÿ:ÿDÿOÿZÿeÿnÿwÿÿ†ÿŒÿ’ÿ™ÿ¡ÿ¨þ±ý¼üÉúÜùîøýöÿõÿòÿñÿðÿðÿðÿÿ,"ÿ, ÿ* ÿ%"ÿ%ÿ-ÿ7ÿ AÿKÿVÿaÿjÿsÿ{ÿ‚ÿˆÿŽþ–ûø¤õ­ó·òÄðÚîëíùëÿéÿçÿåÿäÿäÿäÿÿ/ÿ0ÿ.ÿ*ÿ#!ÿ"*ÿ3ÿ=ÿGÿ Rÿ]ÿfÿoþwû~ù„÷‹ô’ñ™í¡ê©è´æÃäÔâèàöÞÿÛÿØÿÕÿÕÿÕÿÕÿÿ2ÿ3ÿ2ÿ.ÿ,ÿ+&ÿ'/ÿ!9ÿCÿNüX÷ bó kð sí zë é ˆçå—áŸÞ¨Ü³ÙÁÖÓÓçÐ÷ËÿÈÿÆÿÅÿÄÿÄÿÄÿÿ6ÿ7ÿ6ÿ3ÿ4ÿ3"ÿ0+ÿ+5ü%>õ IîTé^ågâoÞwÜ~Ù†ÖÔ•ÑϦͲÊÀÇÓÃè¿ù¼ÿ¹ÿ¶ÿµÿ´ÿ´ÿ´ÿÿ9ÿ;ÿ: ÿ;ÿ<ÿ:ÿ7&ù2/ï-9ç(Dá&OÛ%ZÕ%cÑ&lÎ&sË'zÉ'‚Æ'‰Ä'‘Á'™¿'¢¼'­º&»¸%Í´%ä±$ö­$ÿ«#ÿ©#ÿ¨"ÿ§"ÿ§"ÿ§"ÿÿ<ÿ> ÿ> ÿB ÿCÿAù<í7(â22Ú/>Ò1JÌ2UÇ3_Ã3g¿4o¼4vº4}¸4„µ4Œ³3”±3®2¨¬2¶ª1ǧ0Þ¤/ò¡.ÿŸ.ÿ-ÿœ-ÿ›,ÿ›,ÿ›,ÿÿ?ÿB ÿCÿH ÿI ýGîAá:Õ8+Ì;9Å=E¿>Pº>Z¶>b³>j°>q­>x«=©=‡§=¤<™¢;£ ;± ž9Á œ8Ø ˜8î –7þ ”6ÿ“5ÿ’5ÿ‘5ÿ‘5ÿ‘5ÿÿB ÿEÿHÿMÿNòK âD Ô@ÉD&ÁG4¹HA´HL¯HU«G^¨Ge¥Fm£Ft  E{ žE‚ œD‹ šD” —CŸ •B¬ “A¼ ‘@Ñ Ž?ê Œ>û Š=ÿ ‰<ÿ ˆ<ÿ ˆ;ÿ ˆ;ÿ ˆ;ÿ ÿE ÿHÿMÿRïSÛQÒNÊJ¿N!·P0°Q<ªPG¦PQ¢OZŸNa œNi ™Mo —Lw •L~’K‡JŽI›ŒH¨‰G¸‡FÌ…DæƒDùCÿ€BÿBÿ Aÿ Aÿ Aÿ ÿGÿJÿQøVÞXÓZÊXÁT ·V¯X,¨X9¢XDžWNšVV —U^ ”Te ‘SlRsŒQzŠQƒˆP…O—ƒN¤L´~KÈ|IâzI÷yHÿxHÿxGÿwGÿwGÿwGÿÿIÿMÿUéZØ^Î`Ä_¹\¯]§_)¡_6œ^A—]J“\S [[ Zb ŠYi‡Xp…Ww‚V€€U‰}T”{S¡yQ°vPÅtNßsNõrMÿqLÿqLÿqLÿqLÿqLÿÿKÿPÿXß^ÓcÉf¾f³b©c¡e%›e3–d>‘bGaP ‰`X †__ƒ]f\m~[t{Z}yY‡vX’tWžrV®oTÁmSÜlRókQÿkQÿkPÿkPÿkPÿkPÿÿMÿSö[ÜbÐhÅkºl­h£iœj"–j0i;‹gE‡fM ƒdU €c\}bczajx`ru_zs^„p]n\œkZ«iY¿gWÙfVñeVÿeUÿeTÿeTÿeTÿeTÿÿOÿVê^ØfÌlÁp¶q©nžn –o‘o-‹n9†lB‚kK ~iS zhZwgaufhreopdxmb‚jah`še_©c]¼a\Ö`[ð`Zÿ_Yÿ_Yÿ_Xÿ_Xÿ_XÿÿQÿYâbÔjÉq¾t³v¥t™s ‘t‹t+†s6q@}oI ynQ umXrl_pjfmimjhvgg€ef‹be˜_d§]bº[`ÔZ_îZ^ÿZ]ÿZ]ÿZ\ÿZ\ÿZ\ÿÿSÿ\ßfÑoÆu»y°{¢z”yŒy†y(x4|v>wuF tsN prVmq]jpdhokentbl~_k‰\j–Yh¥Wg¸UeÑTcíTbþTbÿUaÿU`ÿU`ÿU`ÿÿVõ_ÛjÎsÃz¸~­€Ÿ€†~€~${~1v|;r{DoyL kxT hw[evbbuj_sr\r|Yq‡Vo•Sn¤Ql·OjÐNiìNgþOfÿOfÿOeÿOeÿOeÿÿXçc×oËxÀµƒª†œ‡‰…„z…!u„.qƒ9mBi€J fR c~Y`}`\{hYzpVyzSw†Pv“Mt¢KrµHqÎHoëHmýHlÿHkÿIkÿIkÿIkÿÿ\áhÓtÇ}¼„²‰§Œ™…Œy‹ s‹o‹*kŠ5g‰?cˆG`‡O ]†W Z…^VƒfS‚oP€xM„I}’G|¡Dz´BxÍAvêAtýBsÿBrÿBqÿBqÿBqÿûaÝnÎzÃ¹Š¯¤’–“‚“r“k“g“%d’1`‘;]DYLVŽT S\ PŒdM‹mI‰wFˆƒC†@… >ƒ³<Ì;ê;|ü;{ÿ;yÿ;yÿ;yÿ;yÿçg×uÊ€À欕¡˜“š€šn›b›^›[›,Xš7Uš@R™IO˜QL—Z I–b F•kB”u?’<‘: 7³6‹Ì5‰ê5†ü4„ÿ4ƒÿ4‚ÿ4‚ÿ4‚ÿánÑ|ƈ¼²–¨›žŽ }¡j£Z¥T¥Q¤$O¤0L¤;I£DF¢MD¢VA¡_> h ;Ÿs 8€ 5œŽ3›Ÿ1™²/—Ì/”ê.‘ý-ÿ-Žÿ-ÿ-ÿ-ÿÚwÌ…Á¸—¯¥¡—¤ˆ¦w§fªV­I° E°C¯'A¯3?¯==®G:®Q8­Z6¬e3«p0ª}.©Œ,§ *¥² (£Ì (¡ë'ý &›ÿ &™ÿ %˜ÿ %˜ÿ %˜ÿ ÒÆŽ½—´ž«£Ÿ¦©¬p®a±RµCº8¾ 5¾3¾'2½20½=.½H-½S+¼^)»k'ºy%¹‰#·›!µ¯³Ê¯ê¬ý©ÿ§ÿ¦ÿ¦ÿ¦ÿË‹Á–¸ž°¤¥¨—¬ˆ¯x±i´[¸M¼?Â2È'Î $Ï"Ï#!Ï/Ï:ÏFÏSÎaÍpÍË”ɪÆÅÂç¾ýºÿ¸ÿ·ÿ·ÿ·ÿÅ•¼Ÿ´¥«©®Ž±~µo¸a¼SÀFÅ:Ê/Ð$ÖÞäää*å6åC åQ äaãsà‡ÞœÜ´ØÒÔîÒþÏÿÎÿÎÿÎÿ¿Ÿ·¦¯ª¢¯’´ƒ·s»e¿XÃKÈ?Í4Ò*Ù!ßäó÷ ÷ø%ø0ø=öMõ_òrñ‰ïŸîºìÞêðéýèÿèÿèÿº§²«¦°—µ‡¹x½iÂ[ÇNÌBÑ8×.Ý%áæê òÿÿ ÿÿÿ)ÿ6ÿFÿZÿpÿ‡ÿ þ·þÔýëýóýóý󴬪°œµŒº}¿mÄ_ÊQÐEÖ:Ü0á'åéíðóþÿÿÿ ÿÿ ÿ.ÿ>ÿSÿiÿÿ—ÿ­ÿÃÿÏÿÏÿÏ®° µ’¹ƒ¾tÂfÈXÎJÖ>Þ2å(ë îñô ÷ùþÿÿÿÿÿ ÿÿ%ÿ5ÿIÿ_ÿtÿˆÿ•ÿœÿœÿœÿ 'ÿ'ÿ(ÿ*ÿ/ÿ5ÿ=ÿGÿSÿ^ÿjÿsÿ|ÿ„ÿ‹ÿ‘ÿ—ÿœÿ¢ÿªÿ¶ÿÂÿÐÿãÿôÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ"%ÿ!$ÿ%ÿ'ÿ ,ÿ2ÿ9ÿEÿOÿ[ÿfÿpÿxÿ€ÿ‡ÿÿ“ÿ˜ÿžÿ§ÿ±ÿ»ÿÉÿÝÿîÿüüÿùÿøÿ÷ÿ÷ÿ÷ÿ÷ÿÿ%#ÿ#"ÿ"ÿ$ÿ(ÿ.ÿ6ÿBÿLÿWÿbÿlÿtÿ|ÿ‚ÿ‰ÿŽÿ”þ›ý£ü«ûµúÃøÔ÷èô÷ðÿîÿíÿìÿìÿìÿìÿÿ( ÿ&ÿ#ÿÿ#ÿ +ÿ4ÿ>ÿHÿSÿ^ÿhÿpÿwþ~ú„÷Šöõ—óŸò¦ð°ï½íÍêâæõãÿáÿàÿßÿßÿßÿßÿÿ+ÿ*ÿ'ÿ ÿÿ'ÿ1ÿ:ÿDÿOÿYÿcük÷sòzî€ì†ëŒé“çšå¢ã¬á¸ßÉÛßÖñÓýÑÿÐÿÏÿÎÿÎÿÎÿÿ.ÿ.ÿ+ÿ%ÿ#ÿ #ÿ-ÿ5ÿ ?ýJ÷Uò_îgêoäuâ|à‚Þ‰ÛÙ—Ö Ó©Ð¶ÍÆÊÛÇíÅûÂÿÀÿ¾ÿ¼ÿ¼ÿ¼ÿÿ1ÿ1ÿ.ÿ+ÿ+ÿ)ÿ$(ÿ1ö:ïEé Pã Zß cÚ kÖ rÓ xÑ Ï †Ì ŽÊ •È žÅ ©Â ¶¿ ƽ ܹ ñ¶ ÿ² ÿ° ÿ¯ ÿ® ÿ® ÿ® ÿÿ5ÿ5 ÿ3 ÿ3 ÿ3ÿ0þ+"ò%+é4à?ÙKÓUÎ^ÊfÇmÄtÁ{¿‚¼Šº’¸›¶¥³²±®Ù«î¨þ¥ÿ£ÿ¡ÿ ÿ ÿ ÿÿ8ÿ8 ÿ7ÿ:ÿ: ÿ6ò0å)"Û"-Ñ$9Ê'EÄ)P¿+Y»,b¸,i¶,p³-w±-~¯-…­-Žª,—¨,¡¦+­¤*½¢)ÒŸ)ê›(û™'ÿ—'ÿ–&ÿ•%ÿ•%ÿ•%ÿÿ; ÿ<ÿ=ÿ@ÿ@õ; å2Ø*Í/'Ä24½5@·6K³7U¯7]¬7e©7l§7r¥7y£7¡7‰Ÿ6’œ6š5©˜4¸–3Í“2æ‘1ø0ÿ/ÿŒ/ÿ‹.ÿ‹.ÿ‹.ÿÿ>ÿ?ÿBÿFîEÜAÔ;Ë7Á;!¸>0²?<­@G¨@P¥@Y¢@aŸ@h@nš@u˜?}–?…”>Ž’>˜=¥Ž<´‹;lj9á‡9õ…8ÿƒ7ÿ‚6ÿ‚5ÿ‚5ÿ‚5ÿÿ@ÿBÿGôJÝKÓLÊGÁB ·E¯G+©I8£ICŸILœHU™H]–Hd“Gj‘GqFxF ‹EŠ ˆD• †C¡ „B¯ ‚Aà €?Ý }?ó |>ÿ z=ÿ z<ÿ y<ÿ y<ÿ y<ÿ ÿCÿDÿKâO×SÌTÂR¸L®M§O'¡P4œP?—PI”OQ‘OYŽN`‹Mg‰Mn ‡Lu „K} ‚K† €J‘ ~I{H¬yF¿wEÙuDðtCÿ sBÿ rAÿ rAÿ rAÿ rAÿ ÿDÿHùOÞUÒZÇ[¼Z±T§U V$šW1•W<‘VFUNŠUV‡T]„Sd ‚Rj Qr }Qz zPƒxOŽvNštM©qK»oJÔnIîmHÿlGÿlFÿ kFÿ kFÿ kFÿ ÿFÿKìSÚZÎ_Ãa¸`«Z¡[š\ ”].\9Š\C‡[KƒZS€YZ }Xa {Wh xVo vUwtU€qT‹oS˜mQ¦kP¹iNÑgMìfLþfLÿeKÿeJÿeJÿeJÿÿIÿNãWÖ_Êd¿f´f¦a›a ”bŽb+‰b6…a@`I}_Pz^W w]^ u\e r[lpZunY~kX‰iW–gV¤dU¶bSÎaRê`Qý`Pÿ`Oÿ_Oÿ_Oÿ_OÿÿJÿRà[ÒcÇh¼k°k¢h–f g‰g(„f4e>{dFxcNubU ra\ o`c m_jk_rh^|f]‡c\”a[¢^Y´\WÌ[Vè[Uü[TÿZSÿZSÿZSÿZSÿÿL÷UÝ_ÏgÄm¹p­pŸn‘l‰kƒl%~k1zj;viDshLpgS mfZ jea hdhecpcbz`a…^`’[_ Y]²W\ÊUZçUYûUXÿUWÿUWÿUWÿUWÿÿNìXÚcÌkÁq¶uªvœtŒqƒp~p"yp.uo9qnAnmIklQ hkX ej_ cig`io]hx[fƒXeUdŸSb±Q`ÈO_åP]úP\ÿP[ÿP[ÿP[ÿP[ÿÿPå\ÕgÉp¾v³y§{šz‡v}vxvsv+pu6lt?isGfrOcqV `p] ]oe[nmXmvUlRjŽOiMg¯KfÆJdäJbùJaÿJ`ÿJ`ÿJ`ÿJ`ÿÿTáaÒlÆu»{°¥—€„}w| q|n|(j{3g{=czE`yM]xT [w[ Xvc UtkRsuOr€LqIoœGm®ElÅDjãDhùDgÿDfÿDeÿDeÿDeÿ÷YÝfÎqÂz¸€­„¢†”‡…qƒkƒgƒ$dƒ0`‚:]BZ€JWRU~Y R}a O|jL{sIy~FxŒCv›Au¬?sÄ=qâ=oø>mÿ>lÿ>kÿ>kÿ>kÿè_ØlÊw¿€µ†ªŠŸ’~Œn‹c‹_‹\‹+YŠ6V‰?S‰GQˆON‡WK†_ H…h E„q B‚}?Š=š:}¬8{Ã7yá7wø7uÿ7tÿ7sÿ7sÿ7sÿâfÒsÆ~»‡²Œ¨‘“”|”j“[”V“S“%Q“1N’:L’CI‘LFTD]Af>p ;Œ{ 9‹‰ 6‰™4‡«2…Ã1ƒâ1€ø 0~ÿ 0}ÿ 0{ÿ 0{ÿ 0{ÿ ÜnÍ{Á…¸®“¥—™™Ššy›f›VœKHFœ*Dœ4Bœ>@›G>›P;šY9™c7˜m4—y1–‡/”˜ -“ª +‘ *Žâ *‹ø )‰ÿ )‡ÿ )…ÿ )…ÿ )…ÿ Ôvȃ½´”«™¡”Ÿ„ t¡c£R¤C§<§:§ 8§,6§65¦@3¦I2¦T0¥^-¤i+£v)¢…' –%Ÿ©#Á#šá"—ø!”ÿ!“ÿ!‘ÿ!‘ÿ!‘ÿ΀Œ¹•±›¨Ÿœ¢¤}¦m¨^ªN¬@°2³-´+´ )´+'´5&³@$³K#³V!²c ±p°€¯’­¦ª¿¨à¤ø¡ÿ ÿžÿžÿžÿÇŠ½•µœ­¡¢¥”¨…ªu¬f®W±I´;¸/¼#ÁÅÅÅ'Ä2Ä>ÄJÃXÃgÂw ÀŠ ½Ÿº¶·Ó´ñ ±ÿ ¯ÿ ­ÿ ­ÿ ­ÿÁ”¹±£¨§šª‹­{°l³^¶P¹C½7Á+Æ!ËÏ Õ ÖÖ!Ö-Ö:ÖHÕXÔhÓ{ÑΦËÂÇãÄöÂÿÁÿÁÿÁÿ¼´¤¬¨Ÿ¬°€³q·cºU¾HÁ<Æ1Ê'ÏÔÚ Þâãäå'ç5èDéVéhè}ç”å«âÊßëÜùÚÿÚÿÚÿ·¥¯©£­•²…¶uºf¾YÂKÇ?Ë4Ï*Ô!ÚÞâåéòñ ðò õ.÷>úRúfú|ú”ú¯øÆ÷áõòõòõò²ª§®™³Š·z¼kÁ\ÆNËBÐ7Õ-Ü#àäè ëíïôÿþþ ÿÿ&ÿ7ÿLÿbÿyÿÿ¥ÿ¹ÿÍÿÍÿÍ«®ž³·»rÀcÅUËGÒ;Ú/á%æêí ðóõ÷øÿÿÿÿÿÿÿ0ÿDÿZÿpÿ„ÿ“ÿžÿžÿžÿ&ÿ%ÿ&ÿ)ÿ-ÿ2ÿ:ÿEÿQÿ]ÿhÿqÿyÿÿˆÿŽÿ“ÿ™ÿŸÿ¦ÿ­ÿºÿÌÿàÿñÿÿÿÿÿÿÿÿÿÿýÿüÿüÿÿ$ÿ#ÿ#ÿ %ÿ*ÿ/ÿ7ÿBÿNÿYÿdÿmÿuÿ}ÿƒÿ‰ÿÿ•ÿ›ÿ¡ÿ©ÿ¶ÿÄÿÖýëúûùÿøÿ÷ÿöÿöÿõÿõÿÿ !ÿ ÿ ÿ!ÿ%ÿ*ÿ4ÿ>ÿJÿUÿ`ÿiÿqÿxÿÿ…ÿŠþý–üœú¥ù°ø½õÍñäïõíÿìÿëÿêÿéÿéÿéÿÿ#ÿ ÿÿÿ ÿ(ÿ1ÿ;ÿFÿQÿ\ÿeýlútøzö€õ…ó‹ò‘ð˜ï¡íªê¶æÆãÛáîßÿÝÿÜÿÚÿØÿØÿØÿÿ&ÿ$ÿÿÿÿ %ÿ-ÿ6ÿAÿLþWö`ñhîoìuê{èæ†äŒâ”àœÝ¥Ù±Õ¿ÒÒÐêÍúËÿÈÿÆÿÅÿÅÿÅÿÿ)ÿ'ÿ"ÿÿÿ ÿ )ÿ2ÿ<øGðRè[äcájÞpÛvÙ|Ö‚Ó‰ÑΘˢȭŻÂÎÀå½öºÿ¸ÿ·ÿ¶ÿ¶ÿ¶ÿÿ-ÿ+ÿ& ÿ# ÿ"ÿÿ$ú-ñ7éBàLÚVÕ^ÑeÎlËrÉxÆÄ†Á¿–¼Ÿº«·¹´̲ã¯ô¬ÿªÿ¨ÿ§ÿ§ÿ§ÿÿ0ÿ. ÿ*ÿ+ÿ)ÿ%øì&â 0Ù ;Ñ FËPÇYÃa¿h¼nºu¸{¶ƒ³‹±“¯¬©ª¸§Ì¥å¢øŸÿÿ›ÿ›ÿšÿšÿÿ3 ÿ2ÿ0ÿ2ÿ0ú* ê!ÝÒ(É5Â@¼ K¸"T´#\±#c¯$j¬$qª%w¨%~¦%‡¤%¢%™ $¥#´›"Ç™"á–!õ“!ÿ’ ÿÿÿÿÿÿ6ÿ5ÿ6ÿ8ò5ß-Ø&Ï!Ä&#¼*0µ,;°-F¬.O¨/X¥0_£0f¡0mŸ0s1z›0ƒ˜0Œ–0–”/¡’.°-ÂŽ,Ü‹+ò‰*ÿ‡)ÿ†(ÿ…(ÿ…(ÿ…(ÿÿ9ÿ8ÿ<ó=Þ=Ô;Ì5Ã/ ¹2±5+ª77¥8B¢9Kž9T›:[™:b–:i”9o’9w9~Ž9ˆŒ8’Š8ˆ7«†5¾„4Ö3ï2ÿ}1ÿ|0ÿ|0ÿ{/ÿ{/ÿÿ;ÿ;ÿAâC×GÌFÂB¸;¯<§?'¡@3A>™BG•BP’BWA^Ae‹Al‰@s‡@{…@„ƒ?Ž€>š~=¨|<ºz;Ñx:ëv8þu7ÿt6ÿs6ÿs6ÿs6ÿÿ=ÿ?òEÝKÑOÆO»L°E§EŸG#šH/•I:‘IDILŠHTˆH[…GbƒGhFoFw|E€zE‹xD— vC¥ tB¶ r@Í p?é n>ü m=ÿm<ÿl;ÿl;ÿl;ÿÿ@ÿCåIÙQÌUÁV¶TªN L˜N“O,ŽO7ŠOA†OIƒNQ€NX~M^|LeyLlwKtuK} sJˆ qI” nH¢ lG³ jEÊ iDæ hCú gBÿ fAÿ f@ÿf@ÿf@ÿÿBÿGâOÔWÈ[½]±[¤UšS ’TU)ˆU4„U>€TF}SNzSUwR\uQbsQjqPq oOz lO… jN‘ hMŸ fK°dJÇbHäaGù `Fÿ `Fÿ `Eÿ `Eÿ `Eÿ ÿCøJÞTÐ[Ä`¹b­a [”YŒZ‡Z&‚Z1~Z;zYDwXKtWRqWYoV`mUg kUo iTx gSƒ dRbQ`P®^OÅ\Mâ[Lø[Kÿ [Jÿ ZIÿ ZIÿ ZIÿ ÿEíMÛXÍ`Áe¶gªfœb_‡__#|_/x^8u^Aq]Io\Pl[Wj[^hZe fYm cYv aX ^W\VœZT¬XSÂVQàVP÷VOÿ UNÿ UMÿ UMÿ UMÿ ÿFæQØ\Êd¾i³k§kšhŠdc{d wd,sc6ob?lbFjaNg`Ue`\c_c `^k ^^t \]Y[‹WZšTY«RWÁQUÞPTöPSÿPRÿ PQÿ PQÿ PQÿ ÿIãVÔaÇh»m°p¥p—n…i{huiqh)nh3jg<hgDefLbfS`eZ^da [ci Ybr Va}T`ŠQ_˜O^©M\¿KZÝKYõKWÿKVÿ KUÿ KUÿ KUÿ ýMàZÐeÄm¹r®u¢u•t‚pvn pnln&hm1em:cmB`lJ]kQ[kXXj` Vih Shq Qg{NfˆKd—Ic¨Ga½E_ÛE^ôE\ÿE[ÿEZÿ EZÿ EZÿ ðRÜ_ÍjÁq¶w«z {’z€wptitft"bt-`s7]s?ZrGXrOUqVSp^Pof Mno Kmz Hl‡Ej•Ci¦Ag¼@eÙ?có?bÿ?`ÿ @_ÿ @_ÿ @_ÿ èWØeÉo½w³|©€ž~~m|b{_{\{*Yz4Wz=TyERyLOxTMw\JvdGum Dtx Bs… ?q”=p¥;n»:lØ9jò9hÿ 9gÿ 9fÿ 9eÿ 9eÿ ã^ÒkÅuº}°‚¦†›ˆŽˆ{†j„\ƒ WƒTƒ%R‚0O‚9M‚AJJH€RFZCbA~l>|w ;{„ 9z“ 7x¤ 5vº 3t× 3rò 3pÿ 3nÿ 3mÿ 3lÿ 3lÿ ÝeÍqÁ{·ƒ­‰¤Œ™Ž‹xŽgWŒNŒKŒH‹*F‹4D‹=BŠE@ŠN>‰W<ˆ`9‡j7†u4…‚2ƒ’0‚¤.€¹ -~Ö-{ò,xÿ,vÿ ,uÿ ,uÿ ,uÿ ÖlÈy½ƒ´Š«¡“–•‡•u•c•S•D• @•>•#<•-:”78”@7”I5“R3“\1’g/‘r,€*Ž(¢'‹¹%ˆÖ%…ò%‚ÿ$€ÿ$ÿ$ÿ$ÿÏuù‹°‘¨–ž™‘››pœ_œO@Ÿ4  2 0Ÿ%.Ÿ/-Ÿ8+žB*žL(žW&b%œn#›}!šŽ˜ –·”Ô‘òŽÿŒÿŠÿŠÿŠÿɾе’­˜¤œ™ŸŠ z¡j¢Z£K¥=§/ª$¬ "¬ ¬$«.«8«CªNªZ©h¨w¦‰¥£´ Ñðšÿ˜ÿ–ÿ–ÿ–ÿɺ“²šªŸ ¢‘¤‚¦r§c©T«F­8°,³ ¶º »» º+ º7 ¹B¹O¸^¶mµ³“±¨®Âªâ¨ø¦ÿ¤ÿ¤ÿ¤ÿ½“µ›® ¥¤—§ˆ©x«i®[°M³@¶3¹(½ÀÄÈÊÊÊ'Ê3Ê@ÊOÈ`ÇqņÛÀ³½Ôºï¸þµÿ´ÿ´ÿ¸œ±¢©¦œ©¬}¯n²`µR¸E»9¿.Ã#ÇËÏÒÖØ ÚÛ"Ý.Þ<àMà_ÝsÜŠÚ£Õ½ÓßÑõÐÿÏÿÏÿ´£­§¡«’¯‚²s¶d¹V½HÁ=Å1É'ÍÑÕ ÚÝàäæèëî(ð7óIô^ôtòŒñ§ïÃíÝìðìôìô¯¨¥¬—°‡´w¹h½ZÂLÇ@Ë4Ï)Ô ÙÞ âåçéìïòõùü!ÿ2ÿDÿ[ÿqÿˆÿ ÿ¸ÿÐÿÖÿÖ©¬œ±µ~¹o½aÂRÇEÎ7Õ,Ý!áåéìîñóôöùýÿÿ ÿÿ+ÿ?ÿUÿlÿÿ’ÿŸÿ¢ÿ¢ÿ%ÿ$ÿ$ÿ'ÿ*ÿ0ÿ8ÿDÿPÿ\ÿgÿoÿwÿ~ÿ„ÿŠÿÿ–ÿœÿ¢ÿªÿ´ÿÂÿÜÿïÿÿÿÿÿÿÿÿüÿøÿöÿöÿÿ"ÿ!ÿ !ÿ$ÿ&ÿ,ÿ5ÿ@ÿLÿXÿcÿkÿrÿyÿ€ÿ†ÿ‹ÿ‘ÿ—ÿÿ¥ÿ­ÿ½üÑúçùù÷ÿöÿõÿôÿðÿíÿíÿÿ ÿÿÿÿ"ÿ(ÿ1ÿ<ÿHÿTÿ^ÿgÿnÿtÿ{ÿþ†ýŒû’ú˜øŸõ¨ò·ðÇîÞìòëÿéÿæÿäÿãÿáÿáÿÿÿÿÿÿÿ%ÿ.ÿ8ÿDÿOÿYübùi÷oõuó{òð‡îŒí“éšæ¤ä°á¾ßÒÝêÚúÖÿÓÿÑÿÑÿÐÿÐÿÿ!ÿÿÿ ÿÿ"ÿ*ÿ4ÿ?ûJôTð\ídêjèpåvã|áއێؖԟҪϷÌÉÊáÆöÃÿÂÿÀÿÀÿ¿ÿ¿ÿÿ$ÿ ÿ ÿ ÿ ÿÿ%ÿ/ø9ëDçNâWÞ^Ûe×kÔqÑwÎ}˃ɉƒěÁ¥¿²»Â¸Ü¶ð³ÿ±ÿ°ÿ¯ÿ¯ÿ¯ÿÿ'ÿ$ ÿÿÿÿÿ ô)æ3Þ>ØHÒQÎYÊ`ÆgÃmÁr¾x¼º†·Žµ—²¢¯¯­ÀªÖ¨ì¥û¤ÿ¡ÿ ÿ ÿ ÿÿ* ÿ'ÿ!ÿ"ÿ ÿðä!×,Ï7ÉBÃK¿T» [¸ bµ i³ o± u® |¬ „ª Œ¨ –¥ ¡£ ®¡ Àž Ö› î˜ ÿ— ÿ• ÿ” ÿ” ÿ” ÿÿ.ÿ*ÿ)ÿ)ø$ëá Ó Ê %Á1»<µF±O­Wª^¨d¥k£q¡xŸˆ›’™—«”½’Ôíÿ‹ÿŠÿ‰ÿ‰ÿ‰ÿÿ0ÿ-ÿ/õ/á+Ø(Î!Ƽ´!,®$7©%A¥&J¢'RŸ(Yœ(`š)g˜)m–)t”)|’)„)ŽŽ)šŒ(§Š'¸‡&Ï…%êƒ$ý#ÿ€"ÿ!ÿ~!ÿ~!ÿÿ3ÿ0þ5ã6Ø8Í6Ã1º( ±*©-'£/2Ÿ0=›1F—2N•2V’3\3cŽ3jŒ3pŠ3xˆ3†2‹„2–‚1¤0µ}/Ë{.æy,úw+ÿv*ÿv)ÿu)ÿu)ÿÿ5ÿ5î:Ý@ÐBÅB»=±6§5 7"š9.–:9’:B:JŒ;R‰;Y‡;_…;fƒ:m:t:}}9‡z9“x8 v7±t6Çr4ãq3øo2ÿn1ÿn0ÿn0ÿn0ÿÿ7ÿ:å@×GÊK¿K´G©@Ÿ=˜?’@*ŽA5ŠA>‡BG„BNAUA\}Ac{Ajx@qv@zt?„r?p>n=®l;Ãk:ài9öh8ÿg7ÿg6ÿf5ÿf5ÿÿ9ú>àFÒMÆQºR¯O£I˜E ‘F‹G'‡H2ƒH;HD|HKzGRwGYuG`sFgqFnoEwmEkDiC›gB«eAÀc?Ýb>ôa=ÿa<ÿ`;ÿ`:ÿ`:ÿÿ;îAÝLÎSÂW¶X«VžP’LŠL…M$€M/|N8yMAvMHsLOqLVoK]mKdkKliJtgJeI‹cH™aG© _E¾ ]DÚ \Bó[Aÿ[@ÿZ?ÿZ?ÿZ?ÿÿ=èFÙQÊX¾\³]§\šVR„RR!zR,vR6sR>pRFnQMkQTiPZgPbeOicOraN|_N‰ ]M— [K§ YJ» WH× VGò VEÿ UDÿUCÿUCÿUCÿÿ?åJÕUÇ\»a°b¥a—]ˆW~WyWtW)qW3nW<kVChVJfUQdUXbU``Tg^Tp\SzZR‡ WQ• UP¥ SN¹ RLÕ QKð PJÿ PHÿ PHÿPGÿPGÿþCáOÑYÄ`¹e®g¢f”cƒ]y\ s\o\&k\0i[9f[Ac[HaZO_ZV]Y^[YfYXnWWy TW… RU“ PT£ NS¸ LQÓ KOï KNÿ KMÿ KLÿ KKÿKKÿôFÞSÎ^Áe¶i«k k’idtanaja#fa.ca7a`?^`F\`MZ_UX^\V^dT]mQ\w O[ƒ LZ’ JY¢ HW¶ GVÑ FTî FRÿ FQÿ FPÿ FPÿ FPÿ ëJÚXËb¿i´n©pžqo~joghfdf af+^f4\f<YfDWeKUeSSdZPcbNckLbuIa‚ G` E^¡ C]µ A[Ï @Yí @Wÿ @Vÿ @Uÿ @Tÿ @Tÿ çPÖ]Çg¼n±s§v›vŽu|qmnal^l[l'Xl1Vl:TlBQkIOkQMjXKiaHijFhtCg€ Ae ?dŸ =b³ ;aÎ ;_ì ;]ÿ ;[ÿ ;Zÿ ;Zÿ ;Zÿ âVÑcÄl¹t¯y¤|™}Œ{zyjv[t WsTs$Qs.Os6Ms?KrFIrNGqVDp_Bph@or=n;l9kž 7i² 5gÍ 5eë 5cþ5aÿ5`ÿ5`ÿ5`ÿÞ\ÍiÀr¶z¬¢‚—ƒŠƒx€h~W|N{L{I{)G{3Ez;DzCBzK@yT>x\;xf9wq7v}4tŒ2s0q±/oÌ/më.jþ.iÿ.gÿ.gÿ.gÿØcÈo½y³€ª… ˆ•ŠˆŠuˆd†T…F„ B„@„$>„.<ƒ6;ƒ?9ƒG7‚P6‚Z4d1€o/|-}‹+|œ)z°(xË(uê'sþ'qÿ'oÿ'oÿ'oÿÑkÃw¹€°‡§Œž“ƒq`ŽQŽAŽ8Ž6Ž4Ž'2009/B-ŒK,ŒU*‹`(Šk&‰y%ˆ‰#†›!„¯ ‚Êê|þzÿxÿxÿxÿËt¿µˆ­Ž¤“›•Ž–}–m–\–L–>—/˜)™(˜&˜($˜1#—;!—D —O–Z•g”u“…‘˜­ÈŠé‡þ„ÿƒÿ‚ÿ‚ÿÅ~ºˆ²ª–¡™–›‡œwœgWžHž: -¡£¤¤¤(£1£;¢F¢S¡`  n Ÿ ’›§˜À–à“÷‘ÿÿŽÿŽÿ¿ˆ¶‘¯—§œŸŽ ¡o¢`£Q¥B§5©)«­°²±±%°0°;¯G®U­d¬uª‰¨¦µ£Ó ïžþœÿœÿœÿº‘²™«ž£¡•¤…¦u§f©X«J­=¯0²%µ·º½¾¿¿#¿.¿:¿G¿W½h¼{º’·©´Ç±é®ù­ÿ¬ÿ¬ÿµš® §£š¦‹©{«k®]°O³B¶6¹*¼ ¿ ÅÈËÌ ÎÏÐ*Ñ7ÓFÓXÒlÑϙ̱ÉÔÆñÄÿÃÿÃÿ±¡ª¥Ÿ¨¬€¯p²aµS¸F¼:¿.Ã$ÆÊÍÑÓÖÛÝà ãæ#è2ëCìXënê…éžé¼æÕåëäõäõ­§£ª”®…±tµeºW½IÂ=Æ1Ê&ÎÒÖ Ûßáâåèìïó÷û,ÿ>ÿUÿnÿˆþžþ¶þÍþÝþݧª™¯‹²|¶mº^¿PÄBÊ4Ñ)ÖÜà ãçêìîïñôøýÿÿÿ'ÿ:ÿPÿiÿ‚ÿ˜ÿ¦ÿ¯ÿ¯ÿ#ÿ"ÿ#ÿ$ÿ(ÿ.ÿ7ÿCÿOÿ[ÿeÿlÿsÿzÿÿ‡ÿÿ’ÿ˜ÿŸÿ§ÿ°ÿ¼ÿÍÿëÿýÿÿÿÿýÿõÿðÿíÿíÿÿ!ÿ ÿ ÿ!ÿ$ÿ)ÿ3ÿ?ÿKÿWÿ`ÿhÿoÿuÿ|ÿ‚ÿˆÿÿ“ÿšÿ¡þªûµúÇøã÷ööÿóÿñÿìÿèÿåÿåÿÿÿÿÿÿÿ$ÿ/ÿ;ÿGÿRÿ[ÿcÿjÿpÿwý|ü‚ûˆùŽö”ó›ð£ï®íÁë×éîæÿãÿáÿßÿÝÿÚÿÚÿÿÿÿÿÿÿ"ÿ+ÿ6ÿBÿMýVú^÷eôkòqðwî|ì‚éˆæŽä•áߩݸÚËÖäÑøÏÿÍÿÌÿËÿÊÿÊÿÿÿÿ ÿÿÿÿ'ÿ1ø=ôGðPìXé`æfãlàqÝwÚ|Ö‚Ô‰ÑϘ̤ɰÆÁÂÚÀð½ÿ¼ÿ»ÿ¹ÿ¸ÿ¸ÿÿÿ ÿÿ ÿÿÿ"ö,ë6æAáJÝSØZÓaÏgÌlÉrÇwÅ}„À‹¾”»ž·ª´º²Ï¯ê­üªÿ©ÿ§ÿ§ÿ§ÿÿ! ÿÿÿÿ ÿøä%Ý0Ö;ÐDËMÆTÂ[¿b¼gºm¸sµy³°‡®«š©¦¦µ¤Ê¡äž÷œÿ›ÿšÿšÿšÿÿ$ÿÿÿÿö ã×Î*Ç4Á>»G·O´V±]®c¬i©o§u¥|£„¡Žž˜œ¤™´—È•á“ô‘ÿÿŽÿÿÿÿ'ÿ!ÿ úäÜÓÊÁ"¹ -³ 8®AªJ¦Q¤X¡_Ÿek›r™y—•‹’–£Ž³Œɉä‡ù…ÿ„ÿƒÿ‚ÿ‚ÿÿ*ÿ$þ'å&Ú'Ï$ƽ ´­(§3¢<žE› M˜ T–![“!a‘!g"n"u‹"}‰"‡‡"’…!Ÿƒ ¯Ä~à|özÿyÿxÿxÿxÿÿ,ÿ*ë,Ý2Ð4Å2»-²$©#¢&#œ(.˜)8”*A‘*HŽ+P‹+W‰+]‡,c…,jƒ,q,z,„}+{+œy*¬w)Àu'Üs&ôq%ÿp$ÿp#ÿo#ÿo#ÿÿ.ÿ/ä5Ö<É>¾=³8©2Ÿ-™0“1*24‹3=ˆ3E…3L‚4S€4Y~4`|4gz4nx4vv4€t3Œr3™p2©n0½m/Øk.òi,ÿi+ÿh*ÿh*ÿh*ÿÿ/ò3ß=ÐCÄF¸F­B¢<—6 7‹9&‡:0ƒ:9:A};Iz;Px;Vv;]t;dr:kp:sn:}m9‰k9–i8¦g7ºe5Ôc4ïb3ÿa1ÿa0ÿa0ÿa0ÿÿ1ê9ÚCËJ¿M´M¨JD‘>‰>ƒ?"@-{@6xA>uAEsALq@So@Zm@ak@hj@qh?{f?†d>”b=£`<·^:Ñ]9í\8ÿ[6ÿ[6ÿZ5ÿZ5ÿÿ4æ>ÖIÈO¼S°S¥Q˜K‹E‚D}ExF*uF3rF;oFCmFJkEPiEWgE^eEfcEnaDx_D„]C’[B¡YAµX?ÎW>ìV<ÿU;ÿU:ÿU9ÿU9ÿü7âCÒMÄT¹X­Y¢W”Q†L|JvKrK'oK0lK8iK@gJGeJNcJUaJ\_Jd^Il\IvZH‚XHVGŸTE³RCÌQBêP@þP?ÿP>ÿP=ÿP=ÿó;ßHÏRÂY¶]«^Ÿ\‘X‚RwP qOmP$iP-fO6dO=aOD_OK^OR\OZZNbXNjVNtTM€RLŽPKžNJ±LHÊKFéKEýKCÿKBÿKAÿKAÿì?ÜMÌV¿]³a¨cb^XrUkTgU!dT+aT3_T;\TB[TIYTPWSXUS`SSiQRsOR~MQŒKOœIN¯GLÈFJçFIüFGÿFFÿFFÿFFÿéDØQÉ[¼b±f¦g›gd}_mZfZbZ^Z(\Z1ZY9XY@VYGTYORYVPX^NXgLWqJV}GU‹ET›CS®BQÇAOæAMüALÿAKÿAJÿAJÿåIÔVÆ_ºf¯j¤l™l‹j{elb`_\_Y_%V_.T_6R_>P_EO_MM^TK^]H]eF\oD\{B[Š@Yš>X­bzjY†0† -†+†!*†*(†2'…;&…D$…N"„X!ƒd‚q€’~¦{¿yàvùtÿrÿqÿqÿÆs»}²†ªŒ¡˜’‹’z’j‘Y‘J;-!‘ ‘‘"‘+4=GSŽ_mŒ}‹ ‰£ †» ƒÛ €ö ~ÿ |ÿ{ÿ{ÿÀ|·†¯Ž§“Ÿ–“˜„˜t˜d˜T˜E˜7™*š›  œ! œ+ œ5›?›KšX™f˜v–ˆ”œ‘²ÏŒìŠýˆÿ†ÿ†ÿ»†³¬•¤™›œŒ|lž]ŸNŸ? 2¢&£¥ §¨ ¨¨ ¨*¨5§@¦N¦]¤l£¡“Ÿ©œÆ™æ—ú”ÿ“ÿ“ÿ·¯—¨œ¡Ÿ’¡‚¢s£d¤U¦G§9©-«!­¯ ±´µ µµ¶(¶3¶@¶Oµa³s±‰¯ ¬ºªÝ¨ö¤ÿ£ÿ£ÿ³™¬ž¥¡˜¤ˆ¦x¨i©Z«L®?°2²'µ·º½¾ÁÂÄÅÆ%È1Ê?ËPÊcÈyΔ¿Ê½ë»ûºÿºÿ¯ ¨£¦©}«m®_°P´C¶7º+½ Àà ÅÈÊÍÐÒÕ ÙÛ!Þ.â>åQäfä~â–à¶ÞÞÙî×û×û«¥¡¨’«‚®r²c¶T¹F½:À.Ä#ÈËÏÒÕÚÛÞáåéí ðó*÷<ûQûhûú™ú²úÊùäù䥩—­ˆ°y´j·[¼LÁ>Æ1Ì&ÑÕÚÝáäçéêìïóøýÿÿ$ÿ8ÿOÿhÿ€ÿ—ÿ¦ÿµÿµÿ!ÿ!ÿ!ÿ"ÿ%ÿ,ÿ5ÿBÿOÿYÿbÿiÿpÿwÿ}ÿƒÿ‰ÿÿ•ÿœÿ£ÿ­ÿ¹ÿÉÿàÿúÿÿýÿ÷ÿðÿëÿèÿçÿÿ ÿÿÿÿ ÿ&ÿ1ÿ>ÿJÿTÿ]ÿeÿlÿrÿxÿ~ÿ„ÿ‰ÿÿ–üû¦ú±øÀöØõôòÿîÿíÿçÿâÿÞÿÝÿÿÿÿÿÿÿ"ÿ-ÿ9ÿEÿOÿXÿ`ÿgÿmýsûxù~ö„ôŠñð—î ìªê·èÏäêàýÞÿÝÿÛÿÕÿÑÿÐÿÿÿ ÿÿÿÿÿ)ÿ4ÿ?ýIúR÷Zôañgîmësèxå~ä„âŠà‘ݙۣذÓÅÏßÌõÊÿÈÿÆÿÄÿÁÿÀÿÿÿ ÿ ÿ ÿÿÿ$ø/ó:ðCìLèTä\àbÜhØmÕrÓxÐ~΄̋ɓÆÂ«¿»¼Ðºë·ý´ÿ±ÿ±ÿ°ÿ°ÿÿ ÿÿÿÿ ÿöë)å3à=ÛFÕNÏVË\ÈbÆhÃmÁs¿x¼¹†¶Ž´˜±¤®³¬Ç¨á¥÷¤ÿ£ÿ¢ÿ¢ÿ¡ÿÿÿÿÿÿüåÝ#Õ-Î7È@ÃH¿P»W¸]¶c³h±n®s¬zª§‰¥”¢ŸŸ­¿šÛ™ò—ÿ•ÿ”ÿ”ÿ“ÿÿÿÿÿ ïá×ÎÆ'¿1¹:´C°J­RªX§^¥d£i¡oŸvœ}š†˜‘•œ“ª‘½ŽÕŒíŠý‰ÿˆÿ‡ÿ‡ÿÿÿÿèÝÒ ÊÁ¹²*¬4§=£E  L S› Y˜ _– e” l’ szŽ„ŒŠ ›‡ ª… ¼ƒ Õ î ÿ} ÿ| ÿ|ÿ{ÿÿ!ÿìß"Ñ#Ç ½´¬ ¥$ .›8—@”G‘NU[‹a‰h‡o…wƒ€€‹~˜|§zºxÓvïtÿsÿrÿrÿqÿÿ#ü"ä)Ö/É0¾.³(©!¡š• *‘"3#<Š#C‡$J…$Q‚$W€%]~%d|%kz%sx%|v%ˆt$”r$£p#¶n!Ïm ìkÿjÿjÿiÿiÿÿ$í(Þ2Ï8Â:·9¬4¢.—& ‘(Œ*%‡+/„,8€,?~,F{-My-Sw-Zu-as-hr-pp-yn-…l-’j,¡h+³f)Ìe(éc'þb&ÿb%ÿa$ÿa$ÿÿ&è0Ù:Ê@½C²A§=œ80ˆ0ƒ2!2+{34x4<u4Cs4Jq4Po4Wm4]l4ej4mh4vf4‚d3c3ža2±_0É]/ç\-ü[,ÿ[+ÿ[*ÿ[*ÿý+ä7Ó@ÅF¹I®I£E—@Š97|8w9(t91q:9o:@l:Fj:Mh:Tg:[e:bc:ja:t_:^9\8œZ7®X6ÆW4åV3ûU1ÿU0ÿU/ÿU/ÿò.à<ÏFÂL¶O«OŸL’G†Az= u>q>$m?.k?6h?=f?Dd?Jb?Q`?X_?`]?h[?rY?}X>‹V=šT<¬R:ÄQ9ãP7úP6ÿO5ÿO4ÿO4ÿí4ÝAÌK¿Q³T¨URMHuC oCkC!gD+eD3bD:`DA^DG\DN[DVYD^WDfVCpTC{RB‰PB˜N@ªL?ÂK=áK;ùJ:ÿJ9ÿJ8ÿJ8ÿê9ÙFÉO¼V±Y¦ZšXŒS~NpIiHeHbI(_H0\H7ZH>XHEWHLUHTTH\RHdPHnNHyLG‡KF—IE©GCÀFAàE@øE>ÿE=ÿE<ÿE<ÿç=ÕJÆTºZ®^¤_˜]ŠY{TlOdM`M\M%YM.WM5UM<SMCRMJPMROMZMMcKMlILxGL†EK•CI§BH¿AFÞ@D÷@Bÿ@Aÿ@@ÿ@@ÿãBÒOÃX·^¬b¢d–c‰_yZjV^S ZSWS"TR+RR3PR:NRAMRHKRPIRXHRaFRkDQvBP„@O”>N¦=L½Vu^T<]^;]h9\s7[5Z‘3Y¤2Wº1UÚ1Sô1Qÿ1Pÿ1Oÿ1NÿÖSÇ_ºg°n¦rœt‘t„rtoflUhGe CeAe"?e*=e21lF0lO.kY-kc+jo)i~'hŽ&f¡$e¸#cÖ$`ó$^ÿ$\ÿ$[ÿ$[ÿÌa¿l´t«z¢™Ž‚o~_{Oy?v2u 0u.u!,u*+u2)t:(tB'tK%sU$sa"rm q{pŒnŸl¶jÔhòeÿdÿcÿbÿÇi»s±{©‚ †—ˆŒ‰}‡l…[ƒK<€-%#"~$ ~,~4~=}F}Q|]|j{xyŠwu´sÒpñnÿlÿkÿkÿÁq·{®ƒ¦‰ž•ˆwŽgŒV‹GŠ9‰*‰‰Š‰‰%‰-‰6‰@ ˆK ‡X †e…tƒ…˜­|Éyèwüuÿtÿtÿ¼{³„«‹¤œ“‘””q”a“Q“B’4“'“” ••••%”.”8“C“P’^‘m’‹§ˆÁ…ã‚÷€ÿÿÿ¸…°©“¡—˜™‰šyšišZšKš<›0œ#ž Ÿ     $ / : FŸUždœv›‹˜ –¹“ÜôŽÿŒÿŒÿ´Ž­•¦šžœž€Ÿp a R¡D¢6£*¥¦§©«¬¬¬­#­.®:®I­Y¬kª©—¥°£Ñ¡ïŸÿžÿÿ°—©œ£Ÿ•¡†£v¤f¥W§I©<ª/­#®° ²´¶¸¹º ¼½ ¿+À9ÁJÀ^¿r½‰»¤¹Ãµä³ù±ÿ±ÿ¬ž¦¡š¤‹¦{¨kª\¬M¯@±4´(·¹¼¾ÀÂÄÆÉËÎÑÔ(Ú7ÞJÝ_ÛxדկÔÔÒðÎùÍý©£Ÿ¦©€¬p¯a²RµC¹7»+¿ ÂÅ ÈÊÍÐÑÔØÜàä èì%ñ6öJöbözô–ò´ñÔñìñò£§•«†®v±gµX¹I½:Ã.Ç"ËÏ ÓÖÙÝàáãæêîó÷ûÿ#ÿ5ÿJÿcÿ|ÿ•ÿ¦ÿ·ÿ¾ÿ ÿÿÿÿ#ÿ*ÿ4ÿAÿLÿVÿ_ÿfÿmÿsÿyÿÿ…ÿ‹ÿ‘ÿ˜ÿ ÿ©ÿµÿÆÿÝÿóüÿùÿóÿìÿæÿãÿáÿÿÿÿÿÿÿ$ÿ0ÿ=ÿGÿQÿZÿaÿhÿoÿtÿzÿ€ÿ†ýŒü’ûšù£ø­ö¼ôÐñìíÿìÿêÿâÿÜÿ×ÿÔÿÿÿÿÿÿÿ ÿ+ÿ7ÿBÿLÿTÿ\ÿcüiùoötôzñ€ð†îŒí“ëœé¦æ³âÄßåÜûÚÿØÿÓÿÊÿÆÿÃÿÿ ÿÿ ÿ ÿÿÿ'ÿ2ý<úF÷OóWð]ìdèiånãtázßÝ†ÛØ•ÔŸÐªÍ¼ÊØÇñÅÿÀÿ½ÿºÿ¸ÿ¶ÿÿ ÿ ÿÿÿÿø!ó,ï6ë@çIâPÝWØ^ÕdÒiÏnÍtËyɀƇ¿˜¼£ºµ·Ê³æ¯ü­ÿ¬ÿ«ÿªÿ©ÿÿÿÿÿÿ öëå&ß0Ù:ÒBÍJÉRÅXÂ^Àc½i»n¸tµz³±‰®’«ž¨¬¥¿¢Û óžÿÿœÿ›ÿ›ÿÿÿÿÿúä ÝÔ Í*Æ4Á<¼D¸LµS²Y¯^¬cªi¨n¦u¤|¡„Ÿœ™™¦—·•Î’ë‘ÿÿŽÿŽÿÿÿÿÿïáØÍž$·.²7­?©F¦M£S¡YŸ_d›j˜p–w”‘‰•¢Š²ˆÊ†æ„ùƒÿ‚ÿÿÿÿÿ ï áÔÊ À¸°ª'¥0 9A™H—N”T’Z`ŽfŒlŠtˆ|…‡ƒ’€ ~±|ÇzãxöwÿvÿuÿuÿÿüæØÊ ¿µ¬ ¤ž ™ *”3‘;ŽB‹IˆO†V„\‚b€i~p|yz„wuŸs±qÈpænúmÿl ÿl ÿk ÿÿîß&Ï+Â,·*¬%¢™ “Ž%Š.†7ƒ>€E~K|QyXw^vetmrvp€nlœj­hÄfãeúdÿcÿcÿcÿÿè&Ø/È5¼7±5¦0›*‘"‰!„# €$*|%3y%:w&At&Gr&Np&To'[m'bk'ii'rg'}e'Šc&™a%ª`$Á^"à]!ø\ ÿ[ÿ[ÿ[ÿõ ã.Ñ7Ã=·?¬>¡9–4Š-){+w,&t,/q-7o-=l-Dj-Jh-Qg.We._c.ga.p`.{^.ˆ\-—Z,¨Y+¿W)ÝV(öU'ÿU%ÿU$ÿT$ÿï&Þ4Í>¿C³F¨EA‘<…6y1 t1p2#m2+j33h3:e3Ac3Ga3M`4T^4\\4d[4mY4xW3…V3•T2¦R0¼Q/ÛP-õO,ÿO+ÿO*ÿN)ÿë-Ú:ÉC¼I°K¥KšHŽC€=s7m7i8f8(c80a87_9>]8D[8KY9RX9YV9bU9kS9vQ9ƒP8“N7¤L5ºK4ØJ2ôJ1ÿI/ÿI/ÿI.ÿè2Ö?ÆH¹N®P£Q˜NŠI}Do=g<c=`=%]=-[=4Y=;W=AU=HT=OR=WQ>`O>iM=tL=‚J<‘H;¢G:¸E8ÖE7òD5ÿD4ÿD3ÿD2ÿä7ÒDÃM·R¬U¡V•TˆOzJkDbA^BZB#WB+UA2SA8QA?OAFNBMMBUKB^JBhHBsFB€EAC@¡A>·@<Ô@;ñ@9ÿ?8ÿ?7ÿ?6ÿá<ÏHÁQµWªZŸ[”Y†UwPiK]G XFUF RF(PF/MF6LF=JFDIGKHGSFG\EGfCGqAF~?EŽ>D KpQG=QP;QY:Qc8Qn7P{5O‹3N2L³1JÏ1Hî1Gÿ1Eÿ1Dÿ1CÿÕKÅW¹_®e¤išjj‚gsde`U\FX CW@W >W(=W/;W6:W>8WE7WN5WW4Wa2Vl1Vz/UŠ-Tœ,R±+PÍ+Ní+Lÿ+Jÿ+Iÿ+HÿÐQÂ]¶e¬k¢o˜pŽp€nrkdhSdB`;^9^7^%6^,4^33^;1^C0^K/^U-]_+]k*\x([ˆ'Z›%X°$VÌ$Tì%Rÿ%Pÿ%Oÿ%NÿÌX¾c³k©q u—wŒwupraoPk@h3f 1f/f .f(,f0+e7)e?(eH'eR%e\#dh"cv b†a™_®]ÊZëXÿWÿUÿUÿÇ_ºj°r§wŸ{•~‹~~|my]wMs=q.o'n&n$n##n+!n3 n;mDmNmYlfktj„h—g¬dÈbê`ÿ^ÿ]ÿ\ÿÂg·q­y¥ƒ”…‰…zƒi€Y~I|:z,yx www&w.w6w?vJvUub tp s q“o¨mÂjã hú fÿ eÿ dÿ½p³y«£†›Š’Œ…‹u‰dˆS†E„6ƒ(ƒ‚‚ ‚ ‚‚'0:D€P]~k}|{Žy£v»tÝqôoÿnÿmÿ¹y°‚¨‰¡Ž™Ž‘~‘n^NŽ@2% ŽŽ (2=ŒH‹VŠe‰v‡Š„ž‚µÕ|ñzÿxÿxÿ´ƒ­‹¦‘Ÿ”––‡–v–g–W–H•:–-– ——˜™™™™ ™)™4™?˜M—]–n”“˜¯ŒÏ‹î‡þ†ÿ…ÿ°ª“£˜œšŽ›}œmœ^œOA3ž'Ÿ ¡¢£¤¤ ¥¥¦(¦4§A¦Q¥c£w¢ ©Ä›ç˜û—ÿ–ÿ­–§š “Ÿ„ s¡d¢U£F¥9¦,§ ©ª «­®°±² ³´µ'·4¹C¸U·j¶€´›±¼­Þ«öªÿ©ÿª¤Ÿ˜¢‰¤y¥i§Z©K«=¬1¯%±³µ·¹º¼¾ÀÂÅ ÈË#Î2ÑEÐZÐq΋ͦËÊÊïÆýÃÿ§¢¤Ž§~©n«^®O±Aµ4¶(º¼¿ÂÃÆÉÉÌÎÒÖÜàå ê1ðDï]îxí•ë¯ëÏêéêö¡¥’©ƒ¬s¯d²T¶Eº7¾+ÂÆÉ ÍÏÑÕØÙÛÞâæëðõúÿ0ÿEÿ]ÿxÿ–ÿ­ÿÃÿÔÿÿÿÿÿ ÿ'ÿ3ÿ?ÿIÿSÿ[ÿcÿjÿpÿvÿ{ÿÿ‡ÿŽÿ•ÿÿ¦ÿ²ÿÂÿÚüñøÿ÷ÿðÿçÿáÿÝÿÙÿÿÿÿÿÿÿ"ÿ.ÿ:ÿDÿNÿVÿ^ÿeÿkÿqÿvþ{ü‚ûˆúù–÷Ÿõªó¸ðÌìçêþèÿåÿÜÿÒÿÌÿÈÿÿÿÿÿÿÿÿ)ÿ4ÿ?ÿHÿQÿYû_÷eôkòpðvî{í‚ëˆéç˜ä¢à¯ÝÀÚÚ×øÔÿÐÿÈÿÁÿ½ÿ»ÿÿÿ ÿ ÿÿÿÿ$ý/ù9öBóKîSéYæ`ãeákßpÝuÛ{؂Չё͛ʦǵÄÍÁî¼ÿ¹ÿ¸ÿ³ÿ°ÿ¯ÿÿ ÿÿÿÿ ùóî)é3å<àEÚLÕTÒZÏ`ÌeÊjÇoÅuÂ{¿‚¼Šº”·Ÿ´¬°Ä¬áªù¨ÿ§ÿ¥ÿ£ÿ¢ÿÿÿÿÿúë äÞ#Ö-Ð6Ë?ÇFÂN¿T¼Z¹_·d´i²o°u­|«„¨¥˜¢¦Ÿ¹Ñ›ï˜ÿ—ÿ–ÿ•ÿ•ÿÿÿÿùæÝÓËÄ'¾0º9¶A²H®N«T©Z§_¤d¢j pžw›~™ˆ–’” ‘°ŽÇŒäŠú‰ÿˆÿˆÿˆÿÿÿöåÙÎÅ ¼µ!¯*«3§;£B IO›T™Z—_•e’krŽz‹ƒ‰Ž†›„«¿Ý~ö|ÿ{ÿ{ÿzÿÿýèÚ Í Á¸¯¨£#ž,š5–<“C‘IŽOŒUŠZˆ`†fƒnv|‹z˜w§u¼tØrðqÿpÿoÿoÿÿï àÐø®¤œ–‘&/Š7‡ >„ D‚ J€ P~ V| \y cw ju ss}q ‰o —m §k ¼i Öh ðgÿfÿeÿeÿÿ èØ#È(»)°&¦!œ’ ‹†!‚*2|9y@wFuLsRqXo_mgkoiyg†e”c¥aº`Ø^ó]ÿ]ÿ\ÿ\ÿóâ$Ð-Â2¶3«1 -•'Š|x%u.r5p<n Bl Hj Nh Uf!\d!cb!l`!v^!ƒ] ’[ ¢Y·WÓVñVÿUÿUÿUÿîÝ,Ë5½:±;¦:›60„)y# t$p%!m%*j&1h'8f'>d'Db'K`'Q^(X\(`[(iY(tW(€U'T' R%µP$ÑO"ïO!ÿN ÿNÿNÿé%Ø2Ç;º@®B£A˜=Œ8€2s+l*i+e,&c,.`-5^-;\-AZ-GY-NW-VV.^T.gR.qP.~O-M-žK+³J)ÎI(íI'ÿH%ÿH$ÿH$ÿå,Ó8ÄA·F«H G•D‰?|9n3f0b1_2#\2+Z22X28V2>T2ER2KQ3SO3[N3eL3oJ3|I2‹G2œF0±D/ÌC-ìC,ÿC*ÿC)ÿC)ÿâ1Ï=ÁE´K©MžM“K†Ey@k:`6 \6Y6 V7(S7/Q75O7;N7BL7IK7QI8YH8cF8nE8zC7ŠB6›@5¯?3Ê>2ë>0ÿ>/ÿ>.ÿ>-ÿÞ6ÌB¾J²O§RœR‘PƒKvFh@[< V;S;P;%M;,K;3I;9H;@G;GE<ˆ=;™;9®:8É96é94ÿ93ÿ:2ÿ:1ÿÛ;ÉF¼O°T¥W›WV‚QsLfGXBP@M@J@#H@*F@1D@7C@>B@E@AM?AV>A_¬5<Ç5:è58þ57ÿ56ÿ55ÿ×?ÆK¹S®X£\™\Ž[€WrSeNVIKEGEEE CE(AE.?E5>E<ç0=ý0;ÿ0:ÿ09ÿÓEÃP·X¬]¢a˜aŒ`]qYdUUPFK AK?K=K%;K,:K38K:7KA6KI4KR3K\1Kg0Jt.J„-I•+Gª*EÄ*Cæ*Aü+@ÿ+>ÿ+>ÿÏJÀU´]ªb f–g‹f~dp`c]TXCS;Q9Q7Q"5Q*4Q02Q71Q?0QG.QP-QZ+Pf*Ps(O‚'N”%M¨$KÃ$Iä$Fü%Eÿ%Cÿ%CÿËP½[²b¨hžk•mŠl}jogbdR`A[4X 1X0X.X&-X.+X5*X<)XD'WN&WX$Wd#Vq!V€ T’S§QÁNãLûJÿIÿHÿÇWºa¯i¦nr“s‰s|qnn_kOg?d/`)_'_&_"$_*#_1"_9 _A_K^U^a]o\[‘Y¥W¿UâSúQÿPÿOÿÂ^¶h¬o¤u›x’zˆz{yku[rKo™0š$š› ›œž žžŸ#Ÿ. ;ŸJž\oœ…šž—½“á’ùÿÿ«”¥™ž›‘qžbžRŸD 6¡)¢£¥¥¦§©©ª«¬®"¯.±<°N¯b®z¬“ª°©Ù¤ñ£ÿ¢ÿ¨›¢ž– ‡¡w£g¤W¥H§;¨.ª"¬­ ¯°²³µ·¸º¼ ¾Á Ä.È>ÈRÈiǃßÁÿë¿þ¼ÿ¥ ›¢Œ¤|¦l©\ªM­>°2²%µ·¹¼½¿ÁÂÄÇÊÍÒ×Ýá-åAæXçqæä¨ãÈâçáùŸ¤‘§ªq¬a°Q³B·5¹(½ÁÄÇÊËÎÐÐÓÕÚßäêï õû+ÿ@ÿ[ÿxÿ“ÿ­þÂþÙÿÿÿÿÿÿ%ÿ0ÿ;ÿFÿOÿXÿ`ÿfÿmÿrÿxÿ}ÿƒÿŠÿ‘ÿ™ÿ¢ÿ®ÿ½ûÕøïöÿõÿíÿãÿÙÿÒÿÎÿÿÿÿÿÿÿ ÿ+ÿ6ÿ@ÿJÿSÿZÿaÿgþmýrüxú}ù„÷‹ö’ô›ò¦î´ëÈéãæúäÿßÿÐÿÈÿÃÿÁÿÿÿÿ ÿ ÿÿÿ&ÿ1ÿ;ÿDþMùTõ[òbðgîmírëwé}ç„åŒâ”ÞžÛ«Ø»ÔÓÑðÌÿÇÿÀÿ»ÿ·ÿµÿÿ ÿÿÿÿ ÿü!ø+ô5ð>ìGçNäVá\ßbÜgÚl×qÔwÑ}Î…Êȗޱ¾Å¹æ¶ÿ´ÿ²ÿ­ÿªÿ¨ÿÿÿÿÿûôíè&â/Ü8ÖAÓHÏPÌVÉ\ÆaÃfÁk¾q¼w¹~·†´±š­¨ª¹§Û¥ö£ÿ¡ÿŸÿœÿ›ÿÿÿÿÿíå ÝÔ!Í*Ç2Ã;¿B¼I¸PµV³[°`®e¬kªp¨w¥¢‰Ÿ“ š±—Ë•ê“ÿ‘ÿÿÿŽÿÿÿÿêßÔËü$·-²5®<ªC¨J¥P£U¡ZŸ`œešk˜r–y“‚‘Ž™‹ª‰¿†Þ…÷ƒÿ‚ÿÿÿÿÿìÞÐÆ¼ µ®¨'£/ 7œ>šD—J•P“U‘Z`fŠlˆt…}ƒˆ€•~¤{·yÒwïvÿuÿuÿuÿÿñâÒ Åº°¨ ¡›!—)“18?ŠEˆJ†P„U‚[€a}h{pxyv„t‘q o²nÌlëkþjÿiÿiÿþé Ùɼ±§–‹#‡+ƒ3€9~@|EzKwQuWs]qdolmvkigže°cÉbç`ú`ÿ_ÿ_ÿóâÐ Â%µ%ª# –‹ „ { &w -u4r;pAnFlLkSiYgaeicsa_][±YËX éW üW ÿV ÿV ÿíÜ"Ê*¼/°0¥-š)#„z uq!n)k0i7g=eBcHaO_V^]\fZpX|VŠT›R®QÉPéOÿOÿOÿNÿèÕ*Å2¸7¬8¡6–2‹-&slif%c ,a 3_!9]!?[!EY!KW"RV"ZT"cR"mP"yO"ˆM!˜K ¬JÆIæHýHÿHÿHÿä$Ñ1Á9´=©?ž>“:‡5{/n(e$a%^&![&)Y&0W'6U'<T'BR'HP'OO(XM(aK(kJ(wH(†F'–E&ªC$ÃB#äB!üB ÿBÿBÿß*Í6¾>²C¦EœDA„<w6k0_+ Z+W+U+&R,,P,3O,9M,?K,EJ-MH-UG-^E-iD-uB-„@,•?+¨=)Á=(ã=&û=%ÿ=$ÿ=#ÿÜ0Ê;»C¯H¤JšJŽGBt=g7Z1T0Q0N0#L0*J00H16F1<E1CD1JB2SA2\@2g>2s<2‚;1“:0§8.À8,á8+ú8)ÿ8(ÿ8'ÿØ5Ç@¹G­L¢O˜OLGrBe=W8N5K5H5 F5'D5-B53A5:@6A>6H=6Q<6[:7e97r7665’44¥33¾31à3/ù3.ÿ3,ÿ3+ÿÔ:ÄD·L«Q¡T–T‹R}MpHcDV>I: E:C:@:%?:+=:1<:8::?9;F8;O7;Y5;d4;p2;1:/9¤.7½.5Þ.3ø.2ÿ/0ÿ/0ÿÐ>ÁI´Q©VŸX•YŠW|SoObKTEE@ @?=?;?"9?)8?/6?65?=4@E3@M1@W0@b.@o-?~+>*=£);»(9Ý)8÷*6ÿ*5ÿ*4ÿÍC¾N²U§[ž]”^‰]{YnVaRSMDH:D7D5E 4E'2E-1E40E;.EC-EK,EU*Ea)Em'D|&CŽ$B¡#@º#>Û$<ö$:ÿ%9ÿ%8ÿÉI»S°Z¦`œc’d‡c{`m\aYSUBO4K 1K/K.K$,K++K2)K9(K@'KI%KS$K_"Jl!JzIŒG E¸CÚAö?ÿ>ÿ=ÿÆO¸Y­`¤e›h‘j†izglc`aP\@W1S*R(R&R!%R($R/"R6!Q> QGQQQ]PjPyO‹MŸK·IØGõEÿDÿCÿÂUµ_«f¢l™op†oynlk]hMc=_.\"Y YYY$Y+Y3Y;YDXNXZWgWwV‰T R´ PÓ MòKÿJÿIÿ½]²f©m r˜uw…wxuiqYnJk:g,ecbaa a'a/a7 a@ `K `W_d^s]…[˜Y¯WÌUëSþQÿPÿ¹e¯m§tŸy—}Ž~„~u|dxTvEr6p(nl k kkj"j*j3j<iGiSh`gofd”bª_Ç]è[úYÿXÿµm¬v¥|•„…€„p‚_O}@z2y$wv uuuut%t-t7sAsNr\qko|nk¦iÂfådùbÿaÿ±vª~£…œ‰”‹Š‹yŠiˆY†I„;ƒ-‚ €€€ €€€'0;~G}V|ezwyŒv¢t½ráoømÿlÿ®€§‡¡š’‘‚rbŽRŽCŒ5Œ(Œ‹‹‹ŒŒ ŒŒŒŒ(Œ3‹@ŠN‰_ˆq††„¸~Ý|ö{ÿzÿ«Š¥Ÿ“˜•‰–y•i•Y•I•;”.•"•• •–———˜˜˜™)š5™C˜T—g•}“–’³ŽÔŒó‹ÿ‰ÿ¨’¢—œ™š›o›_›PœAœ4'žŸŸ ¡¡££¤¥ ¦§¨)©7©H¨[§q¥Š¤¦¡ÍŸó›ÿ›ÿ¦š œ”ž…Ÿt d¡U¢F¤8¤+¦§¨ªª¬¬®°±²´¶¹¼(¿8ÀK¿c½}»˜¹¸¸â·û¶ÿ£ž™ Š¢z¤j¦Z§Jª<¬/®"°² ³µ¶¸º»¾ÀÂÅÈÌ ÑØ)Ý;ßQßjß…Û¤ØÇÖêÕú¢¥§oª_­O¯@³3µ&¹¼ ¾ÁÃÄÇÉÊÌÎÒØÝãéîô(ø>úWûqûŽú©ùÀùØÿÿÿÿÿÿ"ÿ-ÿ8ÿBÿKÿTÿ[ÿbÿiÿnÿtÿzÿ€ÿ†ÿÿ•ÿžþªû¹÷ÐõìôÿòÿëÿÜÿÏÿÉÿÆÿÿÿÿ ÿ ÿÿÿ(ÿ3ÿ=ÿFÿNÿVÿ]ýcûiúnùt÷yö€ô‡óð—í¢ê¯çÃåßâøßÿÖÿÈÿÂÿ½ÿ»ÿÿ ÿ ÿÿÿ ÿÿ$ÿ.ÿ7û@÷HóPðWî^ìcêiènæsåyâ€ßˆÜØšÕ¦Ò·ÏÎÊíÄÿÂÿ»ÿµÿ±ÿ¯ÿÿÿÿÿÿýøó(í2è:äBáJÞQÛXØ]ÕcÒhÐmÍsÊyȀʼn’¿ž¼¬·Á³ß±ü®ÿ¬ÿ§ÿ£ÿ¡ÿÿÿÿÿöîçà#Ù,Ó5Î=ËDÇKÄQÁW¿]¼bºg¸l¶r´y±®‹ª–§£¤´¢ÍŸóÿ›ÿ™ÿ–ÿ•ÿÿÿÿñçÞ ÔËÅ'À/»7·>´E±K®Q¬Wª\¨a¦f¤l¢sŸ{œ„šŽ—›”ª‘Âåþ‹ÿŠÿ‰ÿˆÿÿÿðãØÌ»´!¯*ª1§8¤?¡EŸKQ›V™[—a•f“mtŽ}‹ˆˆ”…£ƒ¹€Ö~ô}ÿ{ÿ{ÿzÿÿôæÖɾµ­§¡$,™3–:“@‘FKP‹V‰[‡a„g‚o€x}‚zŽxu°sÊqêpÿoÿoÿoÿÿëÜ˾³©¡ š•&Œ-‰4†:„@‚F€K~Q|Vy\wcujssp~nŠl™iªhÂfâeûdÿdÿcÿôãѶ«¡ —‰„ €'|/z5w;uAsFrLpQnXl_ifgoezc‡a–_§]¾\Þ[õZÿYÿYÿíÜʼ"°"¤ š… }xt"q)n0l6j <h Ag Ge Mc T` [^ c\ mZ xX †V •U §S ¾RÜQóQÿPÿPÿçÔ Ä(¶,«- *•&Š tmjg$d+b1`7^=]C[IYPWWU`SjQuOƒN“L¦J¾IßI÷HÿH ÿH ÿâÏ(¿0²4§5œ3‘/†*z#nea^ \'Z.X4V:T?RFQLOTM]KgJsHF‘D¤C¼BÝB÷BÿAÿAÿÝ#Ê/¼7¯:¤<™:Ž7‚2v,j%_ ZW T $R *P!1N!6M!<K!CI"JH"QF"[D#eC#pA#~?">!¢=¹;Ú;ö<ÿ<ÿ<ÿÙ)Ç5¹<­@¢B—AŒ=8s3g-Z'S%P%M%!K&'I&-G&3F&9D'@C'GA'O@(X>(c=(o;(}:'8& 7%¸6#Ø6!õ6 ÿ6ÿ6ÿÔ/Ä:¶AªE G•FŠC}>p:d4W.M* J*G*E+$C++A+1?+7>+==,D<,M:,V9-a7-m6-{4,Œ3+Ÿ2)¶1'Õ1&ó1$ÿ2#ÿ2"ÿÑ4Á>´E©JžL”LˆI{Dn?b:U5H0 D/A/?/"=/(;/.:/480;70B61K51T31_21k01y/0Š./-.´,,Ó,*ò-(ÿ-'ÿ-&ÿÎ8¾B²I§NP’Q‡NzJlEaAS;E6>4;49474&64,44235925@15I06R.6]-6j+5x*5‰)4œ'2³'0Ò'.ñ(-ÿ(+ÿ)*ÿË=¼G°N¥S›U‘V†TyPlK`GRBD=99 694929$19*/90.:7-:>,:G*:Q):\':h&:v%9ˆ#8›"7²!4Ð"3ð#1ÿ#/ÿ$.ÿÇB¹L®S£XšZ[…YxVkR_NRJCE4? 0>.?,?!+?(*?.(?5'?<&?E$?O#?Z"?g ?u>†=š;°9Ï7ï5ÿ4ÿ3ÿÄG·Q¬X¢]™`a„_w\jY_VRRAL2G)E(E&E%E%#E,"E3!E:ECEMEXDeDsC„B˜@¯>Í<î:ÿ9ÿ8ÿÀM´W©^ c—eŽgƒfwcj`_]OY?T0O#L LLL"L)K0K8K@KJKVKcJqIƒH—F­ DÊBì@ÿ>ÿ=ÿ½T±]§dŸi–lm‚lvjjh\dL`<[-X USSSS&S-S5S= RG RS R`QnPO“M¨KÄHåFûDÿ Cÿ¹[®d¥kp•sŒt‚svrgnXkHg9c*`^\ \ \["[)[1[:[DZPZ]YkX|VT¤R¿OáM÷LÿKÿµc«l£rœw”z‹{zsxbuSrCn5k'ig feeee%d-d6d@cLbYah`x_‹\¡Z»WÝVõSÿRÿ±l©t¡zš“Š‚~m~]{Mx>v0t#rqpp ooo n(n1n;mGlTkcjthˆfd·bÙ^ô]ÿ\ÿ®u¦} ‚™†‘‰ˆˆw‡g„W‚G€9~+}|{zzz zyy"y+y5xAwOv^uosƒr™n³lÕjóiÿfÿ«¤†žŠ—Ž€ŽoŒ_‹OŠ@ˆ2‡%‡† ……†…… ………$….…9…GƒW‚i€}~•}¯yÏwðuÿtÿ¨ˆ¢Žœ‘–“‡“w“g’W‘G‘9,‘‘‘’ ’’“$”/“=’N‘auŒ¨ŠÍ†î„ÿƒÿ¦‘ •›—˜}˜m˜]˜M™?˜1™$™š šš›œžžŸ ¡$£1£A¢T¡iŸƒœ ›Âšì—ÿ•ÿ£˜žš“œƒœrbžSŸC 6 (¢£¤¥¥¦§¨ª«¬­¯ ²´#·3·F¶\µu´‘²¯¯Û­ú¬ÿ¡—žˆ x¢h£X¤H§:¨,ª ¬­®°°²³´·¹º½ÀÄÈÎ#Ô5ÖJÔdÒѠοÍåÌøœ¡£}¥m§]ªM¬=°0±#´· ¹»½¾ÀÂÃÅÈËÏÔÚßåì%ò9õQõkõˆô§ñÄðáÿÿÿÿÿÿÿ*ÿ5ÿ>ÿGÿOÿWÿ^ÿdÿjÿpÿuÿ{ÿÿˆþüšù¥öµôËòéðÿïÿäÿÔÿÊÿÃÿÀÿÿÿ ÿÿÿÿÿ%ÿ0ÿ9ÿBÿJýRûYù_÷eöjôoóuñ{ð‚í‰ê“çžå«ã½àÚÝöÖÿÏÿÄÿ¼ÿ·ÿµÿÿ ÿÿÿÿ ÿÿ!þ*ù4ô<ðDîLëSèYæ_ädâjàoÝuÚ{ׂԌҖϢ̲ÈÉÂê¾ÿ¼ÿµÿ¯ÿ«ÿ¨ÿÿÿÿÿÿùòì%å.á7Ý?ÚFÕMÒSÏYÌ^ÊcÇiÅnÃtÁ{¿„¼Ž¹™µ¨±»®Ù«ö©ÿ¥ÿ ÿÿ›ÿÿÿÿùñè àÖ Ð)Ë1Ç9Ã@¿G¼M¹S·Xµ]³b±h¯n­t«}§†¥‘¢ŸŸ¯œÇ™ê—ÿ•ÿ“ÿÿÿÿÿûëàÕËý$¸,³3¯:¬AªG§L¥R¤W¢\ bžgœnšv—•Š’–¥ŒºŠÞ‡ü…ÿ„ÿ‚ÿÿÿúêÝÏÄ» ³­¨&¤. 5;šA˜G–L”Q’V‘\bh‹oˆx…ƒ‚€ž}°zÏxðwÿvÿuÿtÿÿïßÏÁ·®¦ ›!–(’/5;ŠAˆF†K„QƒV\c|jzrw}t‰r—pªnÂlåjýiÿiÿiÿöåÔÄ·¬£› ”ŽŠ#†*‚06}<{AyFwKuQsWr^oemnkxh„f’d¤bº`Ú_õ^ÿ^ÿ^ÿîÝ˼°¥›‘‰ ƒ~y$v+s1q6o<mAlGjLhRfYdaaj_t]€[Y WµVÒUñTÿTÿSÿçÔöªŸ•Š€w rnk%h,f2d7b=aB_H]N[UY]WfUqR~QOžM³LÏKíKþJÿJÿáξ&±)¥*›'#…zogc ` ^ '\ -Z 3X 8V >TDRJQROZMdKoI|GŒEžD ´C ÏB ìBþBÿBÿÜÉ&º.­1¢2—0Œ,'u!j_ ZWU#S)Q/O4M:L@JGHNFWEaClAz?Š>œ<²;Ð;ð;ÿ;ÿ; ÿÖ"Ä-¶4ª8Ÿ9•7‰3~/r)f#ZROMK%I+G1F7D=BDAL?T>_<j:x9ˆ7š6°5Î5î5ÿ5ÿ6ÿÒ(Á3´:¨=?“>‡:{5o0c*W$M HF D "B (@ .?!4=!:¦BœD‘C†@y;m6a1T+H&B$@%=%;%%:%+8%17&86&?5'G3'P2'[1'f/'t.'…,&—+%­*#Ê*!ì+ÿ+ÿ+ÿË3¼<¯C¤GšII„EwAk<_7R2E-<):)7)5)#3)(2*/1*50+=/+E.,N-,Y+,e*,s(+ƒ'*–&)¬%'È%%ê&$ÿ'"ÿ'!ÿÈ7¹A­G£L™MŽNƒKvFjB^>Q9D48/ 4.2.0. /.&-/-,/3+/;*0C)0L'0W&0c$0q#0"/•!-ª +Ç *é!(ÿ"&ÿ"%ÿÅ<·E«L¡P—RS‚PuLiH]DQ@C;55.3,3+3)4$(4+'41&49$5A#5J"5U 5b5o4€3“2©0Å.è,þ+ÿ*ÿÂ@µJ©Q U–WŒXVtShO]KPGCB4=)9 '9%9$9""9)!9/ 97:?:H:S:`9n9~8’6§4Ä2æ0þ/ÿ.ÿ¿F²O§VžZ•]‹]€\tYhV]SPOAI2D$@ ??? ?&?-?4?=?F?Q?^?l>}=;¦ 9Á 7ä5ü4ÿ3ÿ»L°U¦\`”cŠc€bt`h]]ZNV>P0L"HFFFF#F*F2F:FD EO E\ EjDzCA¡?»=Ý;ö 9ÿ 8ÿ¸R­[¤b›f“iŠjisghdZaK\;X-TQN M M M M'M/M7MAMLLYLgKwI‰HžE·CØAò?ÿ>ÿµZªb¢išm’p‰qpsnekVhFc8_)\YWVVVV$V,U4U>UITVSdRtQ†O›M³JÓHðFÿEÿ±b¨j p™t‘wˆx~wqu`qQnBj3g%ec a` `__ _(_0^:^E]R\a[pZƒX˜U°SÐPïNÿMÿ®j¦rŸx˜|‡|~l{[xKt=r/p!nlkjjjii#h+h5hAgNf\emcb•^­\ÍZîXÿVÿ«s¤{€–„†††uƒeTE|7z)ywvuut ttts&s/s;rHqWphn{l‘kªgÉeìcÿbÿ¨}¢„œˆ•‹ŽŒ~‹m‰]‡M†>„0ƒ#‚ €€€€€ (€3A~P|b{uyŒw¥uÆqêoþnÿ¥‡ Œš”‘…‘teTŽE7Œ)ŒŒ‹‹‹‹ŒŒŒŒŒ +8GŒYŠmˆ…† „À‚é~ý}ÿ£ž“™•‹–{–j•[•K•<”.•"•• ••––—˜˜™™ šœ,ž;N›d™|——•¶”â“þÿ¡–˜‘ššp›`›PœA3&žŸ Ÿ  ¡¡£¤¥¦§©ª­¯.±@°U¯m­Š©ª§Ô¦÷¥ÿ ›–†žvŸf¡V¢F£8¤*¦¨©ª««­­¯°²´¶¹¼ÀÅË0ËFÊ_ÊzșŷÄàÂùšŸ‹¡{£k¥[§K©;¬.­!°³´¶¸¸º¼¼¾ÁÄÇÊÏÖÞå ì3ïKîgì…ë¥éÄèáÿÿ ÿ ÿ ÿÿÿ'ÿ1ÿ;ÿCÿKÿSÿZÿ`ÿfÿlÿqþwý}ûƒù‹ö•ó¡ò¯ðÃîãìýèÿÛÿÎÿÅÿ¿ÿ»ÿÿ ÿÿÿÿ ÿÿ"ÿ,ÿ5ÿ>üFùN÷Uõ[óañfïkîpëvé}æ„äâ˜ß¥Ý·ÚÑÓòÍÿÉÿÀÿ¸ÿ²ÿ¯ÿÿÿÿÿÿÿþø'ò0î8ë@èHäOâUß[Ý`ÚeÖjÔpÑvÏ}͆ËÈĬ¿Â»ä¸ÿ¶ÿ°ÿ©ÿ¤ÿ¢ÿÿÿÿÿûôìä"Þ*Ù3Ô;ÑBÍIÊOÆUÄZÂ_Àd¾j¼oºv¸~µ‰±”­¢«µ¨Ñ¥ó¢ÿ ÿ›ÿ˜ÿ–ÿÿÿþôëá ÖÎÈ&Ã-¿5»<·C´I²N°T®Y¬^ªc¨i¦p£w¡ŸŒœ™šª–Á”ä‘ÿÿÿŠÿ‰ÿÿÿðåÙÌü¶ °(¬/©6¦=£C¡HŸMR›X™]—c•i“p‘yŽ„Œ‘‰ †´„Òøÿ~ÿ|ÿ{ÿÿòãÔǼ´ ¬¦¡#*™1–7”=’BGŽLŒRŠWˆ]†c„j‚s}|Šz™wªuÅsìqÿpÿoÿoÿùéØÇº°§  ™”%Œ,‰1†7„=‚B€G~L|QzWx]vetmqwo„l’j£h¼fßeûdÿcÿbÿðßͽ±¦•Žˆƒ&|,y2w7u<sBqGoLnRlXj`gherc~`^\³ZÑYòXÿXÿXÿèÕÄ ¶ªŸ •‹ƒ }xs!p'm-k2i7g=fBdGbM`T^[[dYnWzUˆSšQ­PÉOêNÿNÿNÿáͽ°¥š… zr mie"b(`-^3\8Z=YCWIUPSXQaOkMwK…I—GªFÄEæEûEÿDÿÛǸ$¬'¡'–$‹ €uj b ]ZX#V)T.R4P9N?MEK LI TG ^E iC uA „@ •>©=Â=ã<ø<ÿ<ÿÔÂ%µ+¨/ž/“-ˆ)|$qf[S P N L$J*H/F5E;CABI@Q>[<f;s9ƒ7•6ª5 Ä5 ã5 ø5 ÿ5ÿÏ!¿+±2¦5›64…0y,n&b WL HFD!B&@,>2=8<>:F9O7Y5d4q21“/¨.Ã.å/û/ÿ/ÿË'¼1¯7£;™<Ž;ƒ7w2k-`(T"HA?=;#9)8/655<4C2L1V/b.o,+‘)¦(Á(ã)ü*ÿ*ÿÈ-¹6­<¢@—A@=u8j3].Q)E#< 864 3 &1 ,0 2/!9.!A-"J+"T*"`("m'"}%!$ ¥#¿#â$û%ÿ%ÿÅ1·:«A D–F‹E€Bs>h9\5P0D+8% 2$0$.$,$#+$)*%0)%7(&?'&H&'R$'^#'l!'| &Ž$£"½ àú ÿ ÿÂ6´?©EŸI•KŠJHrCg?[;O6C26,-)+)))')!&)'%*.$*5#*=!+F +Q+]+j+z*)¢'¼%ß#ù"ÿ ÿ¿;²C§IN“P‰O~MrIfE[BO=B964(/ %.#.".!.% /,/3/;/D0O0[/i/x.‹- +º)Ý'ø&ÿ%ÿ½?°H¥NœS’U‰U}SqPfLZIODB@4:&64444#4*41494B5M4Y4g4w3Š 2ž 0· .Ù,ö*ÿ)ÿºD®M¤T›X‘ZˆZ}YqVeSZPOLAG2A$=: :::!:':/:7:@ :K :W :e9t8‡7›5³3Ò1ï/ÿ .ÿ·J¬S¢Y™]`‡`|_q]eZ[WMS>M/I"EA @ @ @ @% @,@4@>@H@U@b?r>„<˜;¯8Î6ì4ü3ÿ´Q©Y `˜df†g|fqdfaY^IY:T,PMJH HHH"H*H2H;GFGRF`EoEC•A¬>Ê<ê:û9ÿ°X§`Ÿf—km†n|mqkdhUdE`6\(XUSR QQQP'P/P8OCOON]MlL~K“HªFÇCéBû?ÿ­`¥hn–rŽu…u|tor_nPj@g2d$a^ ]\ [ZZY#Y+Y4X?XLWZViT{SP¨NÅLçIûHÿªi£pœv•z|…|z{jxYtJq;n-lihffe eddc&c0b;bGaV`f^x\[¥WÂUçTüRÿ§r¡y›~”‚ƒ„ƒs€c~R{Cx5v'tr qppoo onn!n*m5mBlPkaitg‰e¡b¿`å^ü]ÿ¥{Ÿ‚™†“‰ŒŠ|ˆk†[„K‚<€.!}|{{{zzz zzz#z.y;xJw[vnt„qp»lâjûiÿ£…žŠ˜Ž’ƒŽrbŒR‹C‰4ˆ'ˆ‡ †††††††† ‡‡‡%ˆ2‡A†R…gƒ~€—µ}ßzûwÿ¡Žœ‘—“Š“y“h“Y’H’:‘,‘‘‘‘‘‘‘’“““”•–—'—6–I•]”t’­ŽØùŒÿ •›—˜˜n˜^˜N™>š1™#š› ›››œœžŸŸ ¡¢¤¦©)ª:ªO¨h¥…££¡È ñŸÿžš”›…œtdžTŸC¡5¡'¢¤ ¥¥¦§¨¨©«¬®°²µ¹ ½Á,Ã@ÂXÂsÀ‘¼´¸â·ý˜žŠŸy¡i£Y¤I¦9©,ª¬®°±³³´¶¶¸º½ÀÃÈÍÔ Ýå.æGäcä€ãŸâÀààÿ ÿÿÿ ÿÿÿ$ÿ.ÿ7ÿ?ÿHÿOÿVÿ\þbýgûmúrøxõó‡ñï›í©ë¼èÛåùÞÿÓÿÈÿÀÿºÿ¶ÿÿÿÿÿÿ ÿÿÿ)ý2ú:÷BôJòPïWí\ëbégæläráxà€ÝˆÛ“Ø Ô°ÏÊÉíÆÿÃÿ¹ÿ²ÿ­ÿ©ÿÿÿÿÿÿÿøñ#ì,è5ä=áDÞJÚQÖVÓ\ÐaÎfÌkÊqÈxÆÃ‹À—»¦·»´Ý²û¯ÿ©ÿ£ÿŸÿœÿÿÿÿÿöî äÝÖ'Ñ/Ì7É>ÄEÁJ¿P½U»Z¹`·eµk³q°y­ƒª§¥®¢Éžíœÿšÿ•ÿ’ÿÿÿÿùïäØÎÇÀ#»*·1³8°>­D«J©O§T¥Y£_¡dŸkr›{™†–”“¤ºŽÝ‹ü‰ÿ†ÿ„ÿ‚ÿÿøëÞÐż ´®©%¥,¢2Ÿ9œ>šD˜I–N•S“X‘^dk‹tˆ~†‹ƒ›€®}Ê{ïyÿxÿvÿuÿüíÝÍÀµ­¦ › –'“-39‹>‰CˆH†M„R‚X€^~e{nywv„t“q¤o¼mãkÿjÿiÿhÿóâÐÀ´©¡™ “ŽŠ"†(‚.3}8{=zBxGvLtRrYp`nhkri~fŒdb²`×^÷]ÿ\ÿ\ÿêØÆ·« —ˆ ‚}y#v)s.p3n8m=kBjGhMfSd[ac_m\xZ‡X—V«TÉSíRÿQÿQÿâξ °¤ š †}wrnk#h)e.c3b8`=^B\HZOXVV_ThQtO‚M’K¦JÀIãHûGÿGÿÚǸ« •‹€ um hc`]$Z)X/V4U9S>QDOJMRK[IeGqECA¢@º?Û?ø>ÿ>ÿÓÁ³!§$œ$‘"†{pf ] XURP%N*L/J4I:G@EGCNAX?b=n;|:8 7¶7×6ò6ÿ6ÿͽ#¯)¤,™,Ž*ƒ&x!mbWN JHF D&B +@ 0? 6= << C: K8 U6 `4 l3 {1 Œ0 Ÿ/¶/Ô/ð/ÿ/ÿÉ ¹*¬/¡3—3Œ1-u)j#_SHA?<;"9'8-62593@2I0S/^-k+z*Œ( '¸' Ö( ð( ÿ)ÿÅ&¶/ª5Ÿ8•9Š84s/h*\%QE; 8542$1*/0.6->+F*P(\'i%x$Š"ž!¶!×"ó#ÿ# ÿÂ,´4¨:ž=“>‰=}:q5f1Z,O&C!81/-,!*')-(4';&D$N#Z!g vˆœµÔóÿÿ¿0²9¦>œB’CˆB|?p;e6Y2N-B)7$, )'%$$# +" 1!!9 !B!L"X"e!t!‡ ›³Óòÿÿ½5°=¥C›F‘H‡G{EoAd<X9M4A/6+*& #$!$ $$"$)%/%7&@&J&V&d&s%…$š"² Ññÿÿº9®A£GšKM†LzJnFcBX?M;A662)-) ))) )'*-*5*>+H+U+b*q *ƒ (˜ '¯ %Í #í !ÿÿ¸>¬F¢L˜PR…QzPnMcIXFMBA>59'4/ ..//$/+/3/< 0F 0R 0`/o/€-•,«)È'è&ý$ÿµCªK R—UŽX„WyVnScPXMMIAE2?$:75 5 5 5" 5)515:5D5P5^4m4~2’1¨/Å,å*ø)ÿ²I¨QžW–[^„]y\nZcWYUMP=K/F!B> < <<< <'ïFìLéRæXã]ácßhÝmÛsØ{ÕƒÓК˫ÆÂÂæ¿ÿ½ÿ³ÿ¬ÿ§ÿ£ÿÿÿÿÿÿú ñë å)á1Ý9Ú@ÔFÐLÍRËWÉ\ÇaÅgÃmÁt¾|»†·’³¡±´®Ò«ö¨ÿ£ÿžÿšÿ—ÿÿÿÿúðæ ÜÔÎ$É,Ä3À:½@ºF·LµQ³V²[°`®f«m¨t¦~¤‰¡—ž¨›Á˜ç–ÿ”ÿÿŒÿŠÿÿÿôèÝÏÆ ¿¹³&¯.¬4©:§@¤F¢K PŸUZ›`™f—m•v“€ŽžŠ³‡Ó…ø‚ÿ€ÿ~ÿ|ÿÿòäÕȽ´ ­§£"Ÿ(›/˜5–:”@’EINT‹Y‰_‡g…o‚y†|•y¨wÂtêrÿqÿpÿoÿ÷çÕŹ®¦Ÿ ™”$*Š/‡4…:ƒ?CH~M|SzYx`uisrp~nkŸi¶gÚeüdÿcÿbÿíÛɺ­£›“ˆƒ%|*y/w4u9s>qCpHnMlTj[hcelcx`‡^—\¬YÉXóWÿVÿVÿäп±¥›‘‰‚ |xsp%m*j/i4g9f>dCbH`O^V[^YgVsTR‘P¤NÀMçLÿKÿKÿÛǸ « Ÿ •‹€xr mie b%_*]/\4Z9X>VCTJRQPYNcKnI|GŒEŸD¸BÜBùAÿAÿÒÁ²¦›†{phc^ZW T%R*Q/O4M9K?IEHMEUC_Ak?x=ˆ;›:²9Ñ9ñ8ÿ8ÿ̼®¢!—!Œ‚wlaY TPMJ!H&F+E0C5A;?A>I<R:\8h6u4…3˜2®1Ê1í0ÿ0ÿǸ!«'Ÿ*•)Š'#si^S J FC@>"=';,91876>4F3O1Z/f-s,„+—*¬)È)è)ü)ÿô(¨-0’0ˆ.|*q&f![PE< 97 5 4 #2 (0 ./ 4- ;, C* M( X' d% s$ ƒ# —" ¬"Ç"æ"ù"ÿ¿%²-¦3›6‘6†4z1o-d(Y#NB81 .-+*%(*'1&8%@#J"V bq‚–­ É ç ùÿ½*¯2¤8š;<…:y7n3c.W)L$A 6, (&$#""(!. 6>HTao•«Éêü ÿº/­7¢<˜?ŽA„?x=l8b4V0K+@'5"+" %,4<FR_n“ªÇéþÿ¸3«;¡A—DEƒDxBl>a9V6K2@-5)*$ # * 2!:!D!P!] !l !} ‘ § ã û ÿµ8©?ŸE–HŒJ‚IwGkD`@V=K8@450*,'$$$$!%(%0 &8 &B &N&[&j%{$Ž#¤!¿à÷ÿ³<¨DžJ•M‹OOwMkJ`FVCK?@;57'2-* * * * *&+.+7+@+L+Y+h*x)Œ'¢%¼#Ý!ô ÿ±A¦IœO”SŠUTvSkPaMVJLGAC2=%84 1 0000%1,151>1J0W0f/v/Š- +¹(Û&ó%ÿ®G¤O›U’YŠ[€[vYkWaTWRLN=H/C!?;8 8777"7*737<7H6U6d5t4ˆ2ž0·.Ù,ó)ÿ«N¢Vš[‘_‰a€av`l^b\WYHT9O+JFCA@ ??> >(>0>:=E=S`/]"YWTSR QPPO!O*N4N?MML\KmIH˜E²CÔAó?ÿ¤fm–quˆw€wwvfrVnFj8g*db_^]\[ [ZYY%X0X;WIVYUjS~Q–O°LÔJôHÿ¢o›u•z}ˆ~€~o{_xNu@q1o$mj iggffe edd c*c6bDaT`f^{\“Z­XÑTôSÿ xš~•‚Ž„ˆ…xƒh€W~G{8x*wusrqqqqpp ooo#o/n=mNlajvhŽf©dÎbó^ÿž‚™‡”ŠŽ‹€Šoˆ^†N…>‚0#€}}||||||| |||'|5{FzYyow‰t¤rÉpñoÿ‹˜Ž“†uŽeTŒDŒ6Š'Љ ‰ˆˆˆˆˆˆˆ‰‰Š Š‹+Œ<‹P‰f‡€…žƒÀì€ÿœ’—”Œ”|”k“Z“J“;’,’“““’“““”••–—˜™›œ ž1Eœ\›v™”–µ”ä“ÿ›—‘˜˜q˜`™O™?›1š#›œžžž ¡¢£¤¦¨«®²"µ5´M±i¯ˆ­©ªÐ©ö•›†œvfžUŸD¡5£'£¥ ¦¨¨©©ª¬¬­¯±³¶º¾ÃÉÐ'Ô=ÓWÒtΕʽÇéÿÿÿÿÿÿÿÿ'ÿ0ÿ8ÿ@üGùN÷TôZò_ïdíjëoévè}æ†ãáÞ¯ØÊÑïÎÿÇÿ¼ÿ´ÿ®ÿªÿÿÿÿÿÿÿý÷"ó+ï3ì;éBåHáNÞTÛYÙ^ÖcÔiÒoÐvÎ~ˈǕ¤¾»»ß¹þ¶ÿ¬ÿ¦ÿ¡ÿžÿÿÿÿÿýó êäÞ&Ù.Ô5Ï<ËBÈHÅNÃSÁX¿]½b»h¹o¶w³€°Œ­šª­§É¤ñ¡ÿÿ˜ÿ•ÿ’ÿÿÿÿõêÞÔÌÆ!À(»0¸6µ<²B°H®M¬RªW¨\¦b¤h¢p yžƒ›‘˜¢•¹’ßÿÿ‰ÿ†ÿ„ÿÿûîâÓÈ¿ ·±¬#¨*¥1¢6 <žAœFšK˜P—U•[“a‘hqŒ{Šˆ‡˜„¬Ë~ó|ÿzÿxÿwÿûíÞÍÀ¶­§¡œ˜%•+’16Ž;Œ@ŠEˆJ‡O…Uƒ[b~j|ty€vs¢q»nãlÿkÿjÿjÿñá;²¨ ™ “ŽŠ ‡&ƒ+0~6}:{?yDwIvNtUq\odmmjyhˆe™c¯aÑ_÷]ÿ]ÿ]ÿçÓ´§•ˆ ‚}y!v's+q0o5m:k>jCiIgOdVb^`h]sZX’U¦TÂRêQÿPÿPÿÝɹ¬ •Œƒ|wrnj"g'e+c0a4`9^>\DZJXQUYSbQnO{LŒJŸH·GáFþEÿEÿÓÁ²¦ š…{sl hc`\"Z&W+V0T4R9P?NEMLJTH^FiDvA‡?™>¯=Ó<õ;ÿ;ÿÌ» ­¡–‹ vld^ YUQO"M&K+I0G5F:DABH@P>Z;e9r8‚6”5«4É3í3ÿ2ÿŶ©ž“ˆ}rh ]TP KHEC"A'?,=1;6:=8D6M4W2b0o/-‘,§+Â+ä+ü+ÿÁ²¦%›''†$z!oeZP FB><97#6(4-2319/A-I+T*`(m&}%$¤$½#á#ø#ÿ½¯&¤+™.Ž.„+x(m$cWMB 9 530.-$+)*/(6'>%G#Q!^ k{Ž¢»Üôÿº$­+¡1—34‚2w.k*a%U!K@6- ) ' & $ # &! , 3 ; DP\j { Ž ¢»Ûòÿ·)«1 6–8‹97v4j0`,T'I"?5+" #)19BN[iz £ ¼ Û òÿµ.©5ž:”=Š>€<u:i6_1S.I)>%4 *  '.7@L Y g w‹ ¹Ùô ÿ³2§9?“B‰CAt?h;^7S4I/>+4'*#  % , 5 >JWeuˆž¶Õïÿ±6¥>œC’FˆH~GtDhA^=S:I6?25.+*%    #!+!3"="H"U"c!s!†œ´Òîý¯;¤BšH‘KˆM~LsJhG^CTAJ=?966(0,'%&&&"&)'1';'F'S'a&q%„#š"²Ðíü¬@¢H™MP‡R}RsPhM^JTHJDAA3;%62 .- ,,, ,',0,9,D,Q,_+p*ƒ(˜&°$Î"í ýªF M˜SV‡X}XsWiT_RUOLL=F/A!=964 3333%3-372B2O2^1n0/–,®*Í'í&ý¨LŸT—YŽ]†^}_s^i[`YVWGQ8L*GC@=< ;::9#9+959@8M8[7l65•2­0Ì.ì+ÿ¥T[•`Žd†e}ftejcaaQ\BW4R&NK HFED CBA A(A2@=@J?Y>j=};“9¬7Ë5í3þ£\›c”gk†m}mtlkj[fKb<^.Y VSQONM LKJJ%J/I:HGHVFgEzC‘Bª>Ë<î:ÿ¡dšk“os†t}tuteoTlEh6d(a^\ZYXWV UUT S*S6RCQRPdNxLK¨IÉEïDÿŸm™s“x{†|~{nx^uMr>n0k"igeccbba` __^%^1]>\N[`YtW‹U¦SÈQïNÿw˜|’€Œ‚†ƒv€f}U{Ew6u)sqonmmmllkkjjj*i8hHgZfodˆa¢_Ä^î[ÿœ€—…’ˆŒ‰~‡m…]ƒL‚=.}!|{yyxxxxwwwwww"w0v@uSthrom¾kêjÿ›‰–Œ‘Ž…tŒcŠR‰B‰3‡%†† …ƒƒƒƒƒ„„„„…… †‡&‡6†J„`ƒy–}·{æzÿš–’Š’z’i‘YH9*Ž‘‘’“”•–™+˜?—U–o“‘®Ûü™•–€–o–^–M—=˜/—!˜™™š™™šš›œžŸ¡£¥¨«­1¬Iªc©€§¡¥É£ó”™…št›dœSœBž3 % ¡¢¤¤¤¥¦§§¨ª¬®°²¶»ÁÈ"Ì8ËQÇpÓÁ·Àåÿÿÿÿÿÿÿÿ#ÿ,ü5ú<÷DóJðPíVê[è`çeåkãqáxß܋ژԨÍÂÊèÇÿÁÿ·ÿ®ÿ¨ÿ¤ÿÿÿÿÿÿÿ ÷òí'é0å7á>ÝDØJÕPÓUÑZÏ_ÍdËjÈqÆyƒ¾ºž·³´Ô²ù®ÿ¦ÿ ÿœÿ™ÿÿÿÿÿ÷ìäÝÖ"Ð*Ê1Æ8Ã>ÀD¾I¼OºT¸Y¶^´d±j®r¬{©‡§”¤¦¡Áê›ÿ—ÿ“ÿÿÿÿÿúïâÖÌ Ä¾¸%´,±2®8«>©C§H¥M£R¡W ]žcœkšs—~•‹’œ²ŒÕ‰ü‡ÿƒÿ€ÿÿÿöèÚËÁ¸°ª¥ ¢&ž-œ3™8—=•B”G’L‘QV]‹d‰l†vƒƒ€’}¦zÂxívÿtÿrÿqÿöæÕƺ¯§  ›–’"'Œ-‰2‡7…<„A‚E€JP}Vz]xeuos{p‰nœk´hÜfÿeÿdÿdÿëÙÆ¸¬¢š“ˆ„€#}(z,x1v6u;s@qEpJnPlWj_ghetb‚_”]©ZÉXòWÿVÿWÿàÌ»®¢˜ˆ‚ |wtp#m(k,i1g5f:e?cDaJ_Q\YZcWnT{RŒP N»LäKÿJÿKÿÕ³¦›†~wq lheb#_'],\0Z5X:V?TERLOTM^KiIvG†DšB±AÔ@û?ÿ?ÿÌ»­¡–‹€vmhc^ZWT#Q'O,N0L5K:I@GGEOBY@d>q<:”8©6É6ò5ÿ5ÿŶ ¨’‡| qg_Y TPLJG"E'C,B1@6><<C:K8U6`4m2|0/¤.Â-ç-ÿ-ÿ¿ ±¥š„xnd YPK GC@=;#9(7-62483?1H/Q-]+j)y(‹&Ÿ&º%ß%ù%ÿ»­¢#—$Œ$!vkaVLC> :7420$.)-.+5)<(D&N$Z#g!v ˆµÕóÿ¸«$Ÿ)•+Š+€)t%i!_TI? 62 .+)' &%$+#1!9 ALXet†›²Ððÿµ"¨*/“1‰1~/s+h(^#RH=4+ & # "(.6?J V ds…š°Îìý²'¦/œ4’6ˆ7}5r1g.\)Q%G =3)      % , 4= H T b r… ™ ±Ì ê û°,¥3š8‘;‡;|:q7f3\/Q+F'<#3)     " ) 2;FR`p‚—® Ê é ú®1£8™<?†@|?q<e8[5Q2G-<)3%)!    (09DP_n–¬Éè ù¬5¡<˜AŽD…E{DpBe>[;Q8G4=04-+)% &.7BO]m”«Çæùª: A—EŽI„JzIpGfD[AQ>H;>754)/*%" """"$",#6#@#M#["k!} ’ªÅçù¨?žF–KN„OzOpMfJ\HREIB@?3:%50 ,) ((((#(+(4(>(K(Y'i&|%‘"¨!Åæú¦DL”QŒT„UzUpTfQ]OSMJJ=D/?!:631 0/..!.).2.=.I-X-h+z*(§&Ä$å!û¤K›R“W‹[ƒ\z\q[gY^WUTGO8J*EA=:87 6555&505:4G4U3f2x0Ž/¥,Ã*æ(ú¢RšY’^‹bƒczcqbh`__PZAU3P%LH EBA@ ?>==#<-<8@ABDEFGIJKMNOPRSTUWXY[\]^`abcefgijklnopqstuwxyz|}~€‚ƒ…†‡ˆŠ‹ŒŽ‘“”•–˜™šœžŸ¡¢£¤¦§¨ª«¬­¯°±³´µ¶¸¹º»½¾¿ÁÂÃÄÆÇÈÉËÌÍÏÐÑÒÔÕÖ×ÙÚÛÝÞßàâãäæçèéëìíîðñòôõö÷ùúûüþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ  !"$%&()*+-./02346789;<=>@ABDEFGIJKMNOPRSTUWXY[\]^`abcefgijklnopqstuwxyz|}~€‚ƒ…†‡ˆŠ‹ŒŽ‘“”•–˜™šœžŸ¡¢£¤¦§¨ª«¬­¯°±³´µ¶¸¹º»½¾¿ÁÂÃÄÆÇÈÉËÌÍÏÐÑÒÔÕÖ×ÙÚÛÝÞßàâãäæçèéëìíîðñòôõö÷ùúûüþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ  !"$%&()*+-./02346789;<=>@ABDEFGIJKMNOPRSTUWXY[\]^`abcefgijklnopqstuwxyz|}~€‚ƒ…†‡ˆŠ‹ŒŽ‘“”•–˜™šœžŸ¡¢£¤¦§¨ª«¬­¯°±³´µ¶¸¹º»½¾¿ÁÂÃÄÆÇÈÉËÌÍÏÐÑÒÔÕÖ×ÙÚÛÝÞßàâãäæçèéëìíîðñòôõö÷ùúûüþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ ¡¢£¤¥¦§¨©ª«¬­®¯°±²³´µ¶·¸¹º»¼½¾¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖרÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿmft1!  !"#$%&'()*+,-./012456789:;<=>?@ABCDEFGHIJKLMNOPRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžžŸ ¡¢£¤¥¦§¨©ª«¬­®¯°±²³´µ¶·¸¹º»¼½¾¿ÀÁÂÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖרÙÚÛÜÜÝÞßàáâãäåæçèéêëìíîïðñòóôôõö÷øùúûüýþÿ  !""#$$%&&'())*+,--./01223456789:;<=>?@BCDEFHIJLMOPRSUWXZ\^`bdfhjmoqtvy|~ƒ†‰‹Ž’•—™›Ÿ¡£¥§¨ª¬­¯°²³µ¶·¹º»¼½¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÍÎÏÐÑÒÒÓÔÕÖÖרÙÙÚÛÛÜÝÝÞßßàááâããäååææçèèééêëëììíîîïïððñòòóóôôõöö÷÷øøùùúûûüüýýþþÿ  !""#$$%&&'())*+,--./01223456789:;<=>?@BCDEFHIJLMOPRSUWXZ\^`bdfhjmoqtvy|~ƒ†‰‹Ž’•—™›Ÿ¡£¥§¨ª¬­¯°²³µ¶·¹º»¼½¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÍÎÏÐÑÒÒÓÔÕÖÖרÙÙÚÛÛÜÝÝÞßßàááâããäååææçèèééêëëììíîîïïððñòòóóôôõöö÷÷øøùùúûûüüýýþþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðÛïÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÙÁØÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿìÖëÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿôàõÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿñªŒ«ôÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÛŠaŠÞÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¦ñÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿîÚïÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÛ¶°Ìÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿè¡iU„ÛÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÖ†AaÉÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿß–g\ŠÝÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ;¿ÝÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿóËÃÎòÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿì¬~cibµÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÁvBA ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ³j+0•ýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÊ}" ‘þÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÁd[dgÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÜ¿¯³ÆÉÛÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿãδ‘’¿ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÓŸƒr<@©ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿå‘\12šÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÄd&(ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ·Wˆûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ·ƒøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿuD{÷ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿܳ†X7põÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿúÑ£xWH;_ñÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿóÖǸêÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿܼÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿôаˆaDXËÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿý»hC9ªÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¾sBŽÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ6 ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿçixùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÕ qôÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ†jðÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿbìÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ€T$WèÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿùЧwF$GáÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÛ¯…[?)7Úÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþܽ ƒkZSÙÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿë̾üÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿèÒ³ÁÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿïÇ¢‚hM3€þÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÚª~V3cßÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÒ†S%FÄÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ”B -¬ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿâb˜ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿɈÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿŸzÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿnÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿTcÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ„Yÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¼Qûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ^G HùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÝÃdG3 AõÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿëÆ²ŸŠp[M;AïÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿçÏôñÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿòØÃäÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿð˪x_GG¼ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÏŸuR3%šÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿú¡j;|ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ®UbíÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿéjI×ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ®4Äÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿc"´ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¥ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ8˜ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿdŒÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ“‚ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÊyÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ5qÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‚mÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿæUA1!nÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿó×¼¡•ˆzk\PD3nÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿôàÔÈ»ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿïÝÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿàë“~eLqÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÑ¢zY=# XÞÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÜ“]0 7½ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿø9¡ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ©/‰ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿPsÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÆ`ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÙNòÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ(>ãÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿR0Öÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ{#Éÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¨¿ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÞ·ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿO²ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ™¯ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ/ ¬ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ§  «ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¼ª“‰‚{ri_TE4¨ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿõè×ÙÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿìÓ¼§Žy]«ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ絎oU=% –ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿóŸa4uÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿæu+Vòÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿy:×ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÅ !Àÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿž ¬ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÍ›ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ÷ ‹ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿI|ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿqnÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿšbÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÅ Yÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿú;QÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿpMÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¸ JÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿQHÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÍEþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿŸ?úÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿȨž›•„|viYIìÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿúÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ÷êâëÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÝ´•z`I3BãÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿºyI#%Âÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿò+£ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ_…ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|kÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‹TÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÂ@ùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿï.éÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿEÚÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿnÍÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ–Áÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¾¶ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿè1¬ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ`£ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ•ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿØ1™ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|–ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿõ=’ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿË#ŠÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÚ)wÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÕÎÆ¼±¨¢‘–²ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿá¥xT7!)wÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ’=Iÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿa/äÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿTÉÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿt±ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¶›ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿêˆÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿDxÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿoiÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ˜\ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¿ Qÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿè0FÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿZ=ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‰5ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¾.ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ[*ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ®%þÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿrøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿVìÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿhÚÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ³%;Oe~š·Þÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿܱ›Œƒ{tomlls~’ôÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ…6ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿPjÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ[Rÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿª;ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿç&ûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿFêÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿtÛÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÅÂÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿì6·ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ^®ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿˆ¥ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¶œÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿëK•ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿŠÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿàBŠÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ®ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ˜ pÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ­(Cb¾ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿó’¡¶ËáùÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿìÞÓËÆÂÀÁÄÇÓâýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿaF2# ßÿÿÿÿÿÿÿÿÿÿÿÿÿÿR¼ÿÿÿÿÿÿÿÿÿÿÿÿÿÿœ§ÿÿÿÿÿÿÿÿÿÿÿÿÿÿå“ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿEÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿypÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¦bÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÏUÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ÷AJÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿg@ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ6ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¹.ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿçI%ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ|ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¼,ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿy ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿéMÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÚ?8ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿðZ#7I\q‡¡¾Þÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ÷Ë­–„uja[UPKJLQ`x­ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ©W/8ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÞ#ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ?ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ}÷ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¯éÿÿÿÿÿÿÿÿÿÿÿÿÿÿÜ'ÜÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿPÑÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿvÇÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿœ½ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÃ%µÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿíP¬ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ}¥ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ±'ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿöa•ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¶)Šÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ xÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿˆ 0Ga}›¼øÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ§’¦¸ËàøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿøâÒÅ»³¬¦£ ž¢¨³ÌêÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿžuYC1"&Åÿÿÿÿÿÿÿÿÿÿÿÿÿÿ/•ÿÿÿÿÿÿÿÿÿÿÿÿÿÿƒÿÿÿÿÿÿÿÿÿÿÿÿÿÿ»uÿÿÿÿÿÿÿÿÿÿÿÿÿÿê2gÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ_[ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿˆQÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ®FÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÓ6=ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿú]4ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ…+ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ²*"ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿè[ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿž ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ÷hÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÕG5PnÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÏFASdvŠŸ·Ñðÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿýùõôòòüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ鼟Œ}qg^XRMIGDGRd¬ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ‡3 ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÅÿÿÿÿÿÿÿÿÿÿÿÿÿÿý;ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿnÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿšöÿÿÿÿÿÿÿÿÿÿÿÿÿÿÃ%ìÿÿÿÿÿÿÿÿÿÿÿÿÿÿéKãÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿpÚÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ–Ñÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¾6ÉÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿéaÀÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ•´ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÝW©ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¯-8TÎÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ•$5H]t©Æèÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¬«»ÍàôÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿéÖǽ´­§¢ž››œž«ºÖüÿÿÿÿÿÿÿÿÿÿÿÿÿÿæy_L=0' &OÞÿÿÿÿÿÿÿÿÿÿÿÿÿÿ>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ}€ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¯sÿÿÿÿÿÿÿÿÿÿÿÿÿÿÙ;gÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿc]ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿˆTÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ­$KÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÒIBÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿùq8ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿœ%-ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÕV!ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ›%2Lÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ÷v-C\w•´Õõÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿãlhz‹±ÇàüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿúöòðììíòøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÆ¥“†|tmhc^YVTV\l„­áÿÿÿÿÿÿÿÿÿÿÿÿÿÿ’0@ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÈÿÿÿÿÿÿÿÿÿÿÿÿÿÿôOÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ{ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ£ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÈ>ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿìcÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿˆÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¯9þÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÛcôÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ›* &?ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿåk$=Xw–·ÕÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÃK9J[l€•®ÉçÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÔËÝïÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿñÜÏŽ·²®«©ª©®¶ÄáÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿóxcUIB<72.*'%&+4Kp¤ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿfÇÿÿÿÿÿÿÿÿÿÿÿÿÿÿ–Ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¿4”ÿÿÿÿÿÿÿÿÿÿÿÿÿÿæ\Šÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ €ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¥-wÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÊRmÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿîybÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¦;-IŒÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿâq /JjŒ®ÏîÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿºH+;Mav«Éëÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ«—ª½ÐåüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþüûùúýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÔª”ˆ„€~|{}€ˆ”¬Ëþÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¾E6,$  Bw¾ÿÿÿÿÿÿÿÿÿÿÿÿÿÿåP+ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ{ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¡(ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÆMÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿéqÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ•,ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿºR"Bcÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿì€/Lm‘µÚøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ½S ,>Qh½àÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ uŠœ°ÅÝøÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ÷ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿùèÞ×ÒÏÌËËÎÎÕßêüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¥}tmhda_^]^chvˆ¯Úÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¡) %[¢ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÆJ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿêqÒÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ”*Éÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¸N7ÜÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÚq@e‰ªÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ—8 <[¥ÎñÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÊh );PgŸÀäÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¨dx‹ŸµÎêÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÕéüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ˽·²¯­­­°µ¸ÄÕãÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿaZUQONMMORZezšËÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ˜)J—åÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¼Pjÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿßt*Qtÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ–6?g‘·âÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ¸Y5SvœÄíÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿà‚(1EZsޝÑúÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ»ltˆžµÐìÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿËÓêÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿüúùûüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿúµ£Ÿœžž£¦°½Éàïÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ÷ŒPLIGHIJLSYh|™Èÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ <.\ÓÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÁ`Ak–Àîÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿß‚) 9VwšÄìÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ£K/CXp‹¨ÊñÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÒ„x‘¨ÁÝýÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÕÊçÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿòéççéìòûÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿþµ˜••—œ£®µÂÖêÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿžUIJMRY^pްàÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ²V0Jh…§Í÷ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÍp>^y”²Ôõÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿò£…¦ÁÝüÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿëÒíÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿdesc Little CMS Little CMSdesc2.x 2.xlibjpeg-turbo-2.1.5/testimages/test2.icc.txt000066400000000000000000000020661436506551100210020ustar00rootroot00000000000000Little CMS Copyright (c) 1998-2011 Marti Maria Saguer Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. libjpeg-turbo-2.1.5/testimages/testimgari.jpg000066400000000000000000000120061436506551100213100ustar00rootroot00000000000000ÿØÿàJFIFÿÛC    $.' ",#(7),01444'9=82<.342ÿÛC  2!!22222222222222222222222222222222222222222222222222ÿÉ•ã"ÿÌ ÿÚ ?ÿº¹# ÝQ­]Ó°Ï{6¹5S\ÔºÌR4´fLâǸ¶íFòX®Ù«wÌÊÑôKE©îf&ùÐãjØ-â¨Âì5\›ðÀ6$_Ìê°¹•è°R9HÌŸçŒ>­[n=‰øthü-€¥çHr&D¸=iÂ,{¹m[Ôö3ßåf:¼ «Lõ‘|#òÀ´¯ŠþÙ³¢O”¿ŠðÁŒ¦¥Ñ¡2¯O_Õó”S®&¯ÊP;oW»Mnïá'øñL…wõ ’:; ùpÛ 1ù…òçü.³W˜ï,çt8¡¨ƒãONùX»æ¯E?èy“ÏÎ9B[¶¹~j_"A0éuH2k¹ÕÃd€Á;O‰‡ §û¤±ù’ ’Ìß 4[JZògLoGÏ›ÝSo”(˜pc_I0íˆRùÐæ³Ù¶3IÀË>ð Òd-Q2p€•†ü'º‘뀓<óü‚íˆlSaïî³Ãp%NÆb33ÏQz0J,IœŒXÞIþõÌ!†·ˆY1äÓÅV÷(Ž7hâÁ ¹#¿mRñšJTÑg<7ØðËMÁ‚‘^ÄVBpFä žHž‡nòàË!qIC¨è¬5Óv(7œðaJz7ç;¨TšE¾U3~Sæ3¬‘?¹˜ÓDV¦£}VżS)äÚÛ[S-Cðå–t—ýõNwýH®ÅòŸ&2í&íqȃéÎztÊQP‡Ø¹}_Ôíà>~kÑFzJ¹NÄW)mG]ýº¡Cëý󺕾ÀúÃ!8üÀ"*c`M1(}HÌܧÊëjEáÀ‹<•€õ¹èœ#)d@¢4R­m¢×•Âÿ”nfÝ;ˆIdÅJ• Êrmæ$‡/_Žª×4 E:þ/ñßa,µ5߆ ŠâšúÓ6Egç­š“xÓQ|×ô1bG/,U˜.£¤$Ï€“ZõÖÁ€~’ÕÊÊr{ËyÇÙš$Û'²,›«ÊsòŸJ‚1œl°êkp'=¼LM4W¾•òË?ÎÝÙã¤]·¬˜0‚¬­›R¡˜õýD-Úñng”P^qǦ_׿€9^‚7sï.Ͳ¯Y q<;öÕ¥wÛZ´Ž¦ÝNü¯¬g Ó/ûèv÷%®·•}UÓO_Êi¸µÒÿÕO[†±ë‡*ïAõX“cá"Qßov&(—ÝjÒOWF0‚»Å4’«\Cò>ê9Ó”Áƒ¬L3˜yÛÚµ%¢;PÚͦ\ÜÖä ÷Í.t rä’ô«lJ0*ÙïK~Š.½ ÁÖ5… w}# m<,öÃOG°œöðÓ˜&²yšà"Ÿs'™–Õ?g("B/½þõ(R·>×<‚æÃUï ‰]eRÍR– §õn`lh3¦!o<{;5Ë¹åŸ­ŠŒ,Qry^jio ¡V6HÕ}d=²fBHfoÐ9]‡€¹þ¤Þq£3s(]ªC“3~⯶ʋò64Û)}‚×V×[~}@ó žJv5.ÌïAkü¹rõ,×{•ˆ~îë)ø·g+é×zSi¨•ΤéÝMòsö[c14¨y$VªôΕk=¤Gàå ß‹æÛS•çf~ûªRê\ænh «ày?|š‘ÈoQ¹áb æ¼ÖUHòO„/¶ ©&&ø¢êàúÝ;Þ=€©Øñ'ó˜ñC?°¹)`»}Gç.íÚû²ðeñÓ%¥ð7óTpÌsã0©"Ls¦n)‘dŒçöd¯ã…z7Ï7ˈ«йD;‘¢Iaç‡ÂvI]TKHƪæNÚ–`ÚDÕ—ÅÌ‚ Kcå+ç°z!¡ üÝãŒAÄ&H¬*ͬ䞯º0P¼\õ6ÍÅÍ9WÑÚܬb%—Ÿh€FÜò{{jÛXå ày/¬(ñ¥³å:yxe­Mi j0ŠW¼žÒ®±§…‡Õ<úÃn}.3"‹Ú|Ô»pAïúÀJUHKÒ$ß%®$ù_Ôwóïlà ÖÁHµ—<ëK0©ÎçN°7Ðæ\ƒÔŸÜf¡ªj†¤÷¶Œ¶låÔOæäŒzI.Ùk1øÜè»óBšg:\7Ð\t •{§woe +H˜J¨d¯?•ç 1´bYg¤¿Œ¿åm&(•”F‡U“è[¤È oSËÎx£I¶îÆÓœz¨YÎ,è븉”ö«¤+²ò•3RÑ}PÓjöÿ‘íïùPÊÇ$ÃÌ Äÿ©PÇu§÷Í}•÷Ÿâ! ©hêÉ^ã× Ù"Ýìª$ÚG3œ‚!|ÄgH?º…,?ª9»Þª‚ò ¢Wv¬rá9(ªu€ïÕÅ­÷oçi&¸:5°Ó«+3úz¯…Ó¨¥ÇyUñŽQM€Ý$Cföé‰bó&¿ëˆ üÊô¯4K×n‘µ©¦`ï8fÏËÁîÖ¦‰“?tȨö+Qwq³¨*ÂPe\ÃÇþuh¡uhöÑ'È2ïöÈ)b*n@øéÖ°W•®3Êg®’Û9;f´ÏcÝG ±nihSt¶  QOóvùƒIc¼5‘ŒªO Ÿì8†åÛ¶ž9Ü€QÊÉ…cQ^Þ XLË‘ ØW¸”dÏŸåeA- rìÊ[  ÖèTQÃÛ榩'šƒÝâcMS€ÆÓˆ¹†9`éϸòXmj¥îû%¿’«!#ºÎ ÁÖB÷ªäd+1Œ ù©dêçh¾5è.¬dË”½Z—t¨#NƒÔŸr!²?’Ô3™Õf›ÉEØ.|ŠÄŒ,$ÌøïÈü‰6C€iŠœ7ƒ©×bÁ²¯•&YŽxe)Ñ„2^ãìë”f &h#¿ËBƒ9¶ƒß7`’)(M»² ¡ùÓi-E\sˆT™)m𦧽 /p‰¢¢¼)OI«ƒs= ê gƒ8?:#šû²au‹Uû뛢7bf˜ˆ–ÌÈý§Í ;t÷Á¢N 0)pYJMLe“çõ°žÁÌA›öñxÉ%Š‹{8©hèåu>àaȰ—znüP,Äýè*Jcܱ=•‰èYGrò­« <‚ºÄA6PPB±8ÝX¼ý1ÈÆ¢âm9T„˜!–[>ññJÃHŠìØìULTd2å4ÃlµÑeÜ×¶>4²éÿ÷÷ýTPw‚90a` í)çAäOUö¸b}~T=9½…£Ü·³óÆ>Ði<{øÆ=—Ÿò*wíÔ¡(£Øe÷†¡o\>G“›Î/\kgÛĶ#ÌjÈ<‰ŒZÕÎä%å¿v3𳎘Se:S¡/qñq¾X÷3Yì:u¯×?í>YÐOyHõÊÚ:רŸ×:šÑ#¯ÄÖú çª­h‘j2Äw+˜"ýrÇʺ®ù}¶}+}&JV ÂÎf*,e¸J?ÌF°­Þq6­Û¡§§gO×&¤ZöGŒÓŽ+ÆŽ¶%Øzâ}“·1Ú ÛñJ¯ .¢gÀéÜý ×1Ùò9vö(»sJ$IÊ-TرÅci•DºBŒj “ûQ‡Ä3§/ÿaã(DÙ¨ž´CFûfÇä•_ϽVgÖÔÔV@©·‘˜o.·‚Ú#š+·…H!óP]Ü Y|B#Ðäì¥jèpAå£ÔmÍ?Åu¿z,„0hTO̺/ª[TÛ­O)ºª.+ß x°ƒí‡A3üSê›ó3_õøÚÅV‹$ĽîyU6§‰½"6Z¥7kÌr[ZbüÚB#WD¶‚±|‹ìº˜^úv×ëº𠪈~ {ü˜;-Å|㡳ÐL°’YÜ 5¯ƒmŒ%ÕÜ%ðœ±Áy{ûm=$6ïœ]„Çnê•4Àˆ©£«Ì21ü6_7cžZÀM8¡6)‡(— ÔÖëe‘\°='f&᣾ý{™-Â`«ãÁ–ØOÖE’âѽEäï …µÇ%”À/±ýa(kB&uÈ·uݪ:“Û&©p£÷v·ÿ6|ÂÍúðF9í«8S=Ìß…×þ`Ä’ \ïš%œžË¶³É™`–ÉÏ'†K1’ìrÛ¼]æÞü9KfV¯Õ÷/¶`ιœKç—ßsw q´iíã?5Æ7xí‡|ìPYxr1±ÆTØÕ>ïuŠýG¯ „ìHû5$ G)×ã)Âåú1RüÉ\ùé)3Q4ZÜÍè( ^DAiYï+Úàì²i‚’jë”É(ÙÄŒl]PJAŠ#g *ÝlõtyË;YÜU®fXª´wN¯›ä!ëÇ7Þ´@q& Çï¢~Ù}TÜ¥} Í óÂä a z¢Mü²2œËÁ;ÛÖ)-PcS\C wëùÖTνKѺ‡„N]†˜¬¬bž\Jºvž¼\¦‘<á:÷T:C@É úÀøÚ"XaW‘uá™éV<åžÿ|9&¨ý0uN¤M -Üca®N³w V¦?kÈÊ~[ÝÔ>(p¹l³P£PÅCD1 é·´»KMÉòt˜éï*:½Ì<8¡e­C›ñÞüRÏa•ÈGŸMS¢xpxL‹°Ã¢+ÊðT3^•\´Ü-Ízq‡`4³ îïº;ϯÈfHëFn4×Qz±ŽJJ…–4Ry¦Í ô;½íºlF>5T/3XzóqÆŽé±î‘z=À‹`¼+P|ñÜm:|úh§õnŽP/u ]nÜ€0È[¢Ç϶ühûJïj—§µ·îgžDUÿ¦è*‡Þ‚s†+°‚¬zÐ>Jl7¹¯µ:`xÁdžãÇ–ÁoÈÌŠúR¿4­ªáàÒÞÂ3EaÇÌy«{% hYŸ € eúgR²Uç—r"!P{ë"%ÑTNTÔ.Y„ Á € ílëØëL ^´õÈn´wBæ1²â@ûf¸ç*ÎOïÙúµeb.ZlêEÆ Xk˜ƒkbôê(¿„†9é¾iy•*9:Ý—Þ{ñE £ß5e/¡LÖaO|'ÑU[µ&\‡Dÿ^ÿ®Ö˧ðVù )’SýÌœ¶{}ø¹Q/†¬«¶8 HªŒ¥¦Ú'8NáÐyRoÙbÊW9ÉWÕ:fº]öŒŸŸþ­ÍpâJzÙ—(ãé– :Òðœí¿V*ØRÆqµdÉg¾F(Bßµw¥KºnyÓ2@†÷ñEMŸ%ÇÔU3ÿðV‹¡“7³MŸ4˜?í]ÀkC ÷®nôW«ˆ],¹o8ã%Ûqž™7 f;“móƒññ£¦H û ó..RÝ)Udî BÑâNst‘HM"ýQY¾T ,”&ãLÚ}6´'…llä êçtw­á~FÆ¢æÜíF=©ŽN|žÈaŸ°-K')ŽÃj'i‹7i¦œQ¥K×ëætü°Yàyú}`»•¢55¨°?EHí$dÒšašyEDßoÞHv{ªù`ò·‰/xôËãI+Ÿ-ÈwqC…°xËD {U-G¤æãÿíx‚å\ðK_D<¶œËË !¿ä~K•HËz#¡r=zš=ž¦ˆQêÔ½ïÏð͹Y¼0´äw™6`H AG˜Ö7ç{ÊJ°¸6'×åŽèQ(ð9Q§\Ãþ~ÍÓ²pawçůB•¨†Ì³Ø «hÏ­ÈÏUËIVóÉ ñLµÒ÷´aÒ×fS'"MKÌù#ÙÏÂR¡ÚU®·#ttŒ³¡]«ü°Tu]» fK±çË4`Ñç[©\¹6¢®¤vëWh «* ß@¯”,‰<1c"ðH­­züx]d¨¾ŒHgsfŒ"ƒm+˜lïÝwàa+ŽËMaŸÂ—x„»Kñû7Ëâ ÙÎ7®s鼩ó‰}!‰ 4¶^¼~hiªÄŠeÊe¤ODn3w ƒOÛ¤Eå—Ú¹YXòõþ[Áÿåͧ;ãªÆ~¯ìÙ.´†SàLÛîÌoîÕÄÅ ^Ÿå,šZ±0Ý(tÓÖ*”7%Ì^ÍgI%¡è‘:ªSÀGžËÂà’B¿,˜­S‚Õ·yX.Œðï ñ™¦ÄOì‚îBøªÏXf#+ͯ­ hrZ3\´o»ùÆQÅW+@ÿÙlibjpeg-turbo-2.1.5/testimages/testimgint.jpg000066400000000000000000000131741436506551100213360ustar00rootroot00000000000000ÿØÿàJFIFÿÛC    $.' ",#(7),01444'9=82<.342ÿÛC  2!!22222222222222222222222222222222222222222222222222ÿÀ•ã"ÿÄ ÿĵ}!1AQa"q2‘¡#B±ÁRÑð$3br‚ %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùúÿÄ ÿĵw!1AQaq"2B‘¡±Á #3RðbrÑ $4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêòóôõö÷øùúÿÚ ?òåjvúf)4šc÷óFñQŠ3E‡qäÒñQîÅ8Ñ`¸ð©Ô°)ÊNiX ‰.J²j àS•ðjKF¤ù} iZÝ8f®|KÅ]µ˜õÏVŸSÓÀâ}ÛBI¸zÔs¸XɬønJ¼T·HÆ+•ÅÜúEN“]H‹TNÔÒüÔlÔÔO:u.…&€ÜÔEªX”±­ns¹Ø¹n½MVÕãqn0‡µ4ø î3[Z†YíÇ8«§zìËŒ(ªkvyƒQšÖÔ¬Z&<~5ŒÄ†Á®Äîx—¾Ââ•NÇ )›©wUº:Pf™#^Iâ¶uŘـFä×7áR§T]ݺW¥-Œz„‹¤mÅo…«J—2›zÎV¿Cάµ),.±óŽ£Öµ/õ—ÔâUh˜{‘]L¾ÓíeY©$ôëUu¨m ³mˆŠÂ­HIèaíSz–ÁED.” Í—·‘Ñ¡€#§ùYäažjuô«%ÚLhN+Kfi­ £šÅZæg–iÁ*éLu-׈DDô©RrjÂŒ ™HqD G°æ¬¹¦ ¡1½ü²GèƒFÙÐZÙZ[Ú,—)æLãr¡$;QÀ„™-Ó§mc:ÑZ¬2ú¶Œ›JÿÖ¥HäNáRä©ÚÀƒèjÊã,朻ÝÈÎTsór`æ»ÑÃÊÉ\¤Æ˜I5¨- qó÷T`ÿ…6+(b!ݼÓÙJ௭.xw6ú…vÖš>¥C§Ü-¬WL˜†RB¶}*X8QZïpæ²ÕyøzÒxoá— Ž•ÞÛÞ·g Õ]Ã×okæ¼dex­Û _;(UÀ=}«)BsÖÇV-»"³]´¤–=+Z“}»}+»O Ó/’q\_ˆìZÖVŒ 5MÅ\ËÙÊ:³Î¤2yÁëEn}÷J*®Ž›Äæ†ä85f'©e·ªê…®÷®—BÐ"ÔmË8É5ÌDÄ]·ƒç 2Ž€Öø8ÆU-!TÒ7Fv¡àˈË #Ð×3y¥ÝÚHVH{’ÈŒ¼€kTÒâ½3^L ᚨúž8”áÞ¦+¬Ô¼39Ï–€ã¡¬ëMË–/aÞ¼ÌEdýç¡Õ‡¥R¼¹i+³ìó¸ÊFì=@«v¬\É*¨zÔ×]-Ä1[ì†cš¥sîðŽp8ÍrV­M+AÜõðÙMe.j–Ó¦åVv.ÌK’MIP§,A~ûà} J¥a}Íyíží7wdQRvô©6»÷cý*`ÅÜŸ§JD¹••r3ԇ؎ôœÕGQ`PäÅK„”nƒÝOô¨¶ •Çv¨³gsQTýÞ£TÀž9È«®òCóeêŒ:¨UTrIúU ªm£BÅ£™r÷[85pìrMJ.û2„®fqÚ¯[1Âù¸'Ö©uêrGrfK¨SwŠÍÙïQ¬" f óÏj|Ž2Aæ¾n½yÖŸ4¹Âaiáir%f·ó!$ ã‘»'è9¡¤Y ÃôëU˜Ü2pjêE®b,~tö®vʧ)II¢«HYYHàœjtJ£óD¼´R.N)ñ«œeÏOjͶiB•ÅØÄ{úñšˆBÙä€;œŽ*R1Ë8þt$^n8ùj¨A·±ÞèBVæº#.FÁõ¥TvÎlÖƒéñEl^bD@‡¿½gË:£È,=¸¡Á­NwÉåÍd#îFÚßþºš9$cnWŸ”ž¼çOþµ*ˆÇ2ŸÞ3|›O t?Ÿô¨¦%g§•­©Š’nòw&¹šÞq¹Qão¨oðªr«DåXý)ËÈ«1Å[¸k™Ç\`Sóf6öº@¦´Œô®ºÙÞhԂăžÝ+—h#ÇÊ6Ÿ­t>IBz®x«ƒM‘:S¤í#B8˜J ‡$.IÆ3øT q$“ÝÆ‡æxНéþrá¶FIàšçn/ ®ùÔÙÀüku£¹ž&*XZögUðêÒ;Ng¹e¹Zô›jÆÕNgBހ׉ÙËw*nWÆîâ¯CnÈs,®ÍîjãUÅ*E#Ó`ñ$O!Æ6“W¤Ô*ÈŒ6÷¯6Šm kOKšy]âó0žôB§3³ ו¯öõ²ðO#ÞŠó«™dK™ÎJ+·ÙÈßš–m£Fဩ‚p&¹lmr5RHsZqi24aÜã=ª{+ˆ fÆî¸ô­—“N#­zxl2¼Ì'VÏAÚVž là’kmà¹HÚEµy#½[z%¥º—ûÖ–¡©ÚAnÞ^ÜQ“Qö4áuÜ× VTçíÔó9d‚bþ@mÝJ2àŠÎ•NÓš×»Ôb–ð°ÀÄ›ÈrzS¦Óâ»FžÍƒ!çoq^-JrŽçØàñðÅC•èÌ;H Þb)Úà è}¨«ji –%ÆPIÏN9¦Í*ܲʫ±Èà ðOµc+4tSR§>W°â|È—q9NþÞ”øY@$ùPŒ;qŠl«•–ç~>uÇCPÊ„ûg:¦vÂQäX–Íãr.‡î6>÷N?Zj£[Fe– 9%H+žÇŸÓóéNµ¿{xкê~RGÌ¿áZßi&ÊFfbäd9 Ö±ŠÝñ’Ü̸º¸¸ ­Ìߣ¿¥/öš0×4oŽõZdA%‘^YÆÐrrNM[]NCnÊW ÑM ­ØT §dµ)­¼‰™ÙæNˆÁ繨åZL3Ðiå²\óš0wdóPårU[!a†?80@;–Ïj`bÒ=M9ÏÈy¦©“:Š’åVkOÂî­4gº?ÏãY¦®è ¦¥-ÀáR" ÷<U?ˆÇd¬kêW1Ç=«”Õ¦h-³Œïý?­mÜÎ$rÄáG$ŸJã¯dMv®rONÕÜ‘ã罎R[Ëò;kÛàðXî=kJ¾ómBç‘ZQËï\ÒÑØø9+3MdÆ9©&¹xâ-¾[c®k&[’¼-dÞ‹¦Úd`¾Æ”/ÍqEjAp/ÞáØê‡“ž´TOLr ¢»>°Ín`Û]tÉ­Ý:U,Xö®mm]NEiÙ—Ž·‹Š’l軵Ž^k¹üµ`®‚Í>̃±¬}â5|8­‹»ˆ× Š÷èU¦éó&dÓ¹lÞIÐUon˜@Ûš«¶¡ ÇFkòõ® UûµË‰ÄB²ÜÒl¨ìZBÃÖº*PYNÒ@èkžU$ÕËkŸ³¿yà‚¾~´º³ÝÊS•Ghÿo^’Ù¬Øå°^ã?ýjæ”r*y$i»œ±êj1\2•ÙôÊ—-“bã ý¥9Õ¶«Њ…[%“Ò¬\©Ž(±Êm#߯ëE‰çºo¡~]§æ†§ó\BQIÛŽ™æ  Ìq´çéS¢9cÈè§vT ¤"!Ø }iHÏñÀTñÅç9-""ŽYœà Y%¶KUgå~ÿAT´Zʺ§h¢ lò{P:QÉ<óN [“)9Ë™Œaj=Õ$§ä<Õ#.*\nsW¬¡"Ð|޵«û5Šã”ïo§aþ}kÁ ÕòF>ïWÿtu­k‰3+1å»JÚŒ,îÌ㉇+©QèŒo_­~Íý伿²ÿõëL³¸Ô.cµ„ÌR˜.5+ÿ.yfsÏüë·ðýŒ:´˜ÅÆ2Ïè+ªsJ6[Ÿ˜ã^&«›ù/!n<;¦ÄC†›øÍCe7f¨ë^$Q¾Žf&<±þ#W"$B+š¢j×<™ßv+€XЇfsS"wnõ:@KŽ*/dMìD¶Ë´qEiyj8Èü詹Çöeô§,Tô¸¯Hôƨ(r =å‘×isŠ1F)Ý­„í$mœ’(ŽñŠ­Ët"±çˆÆÆ–û’î¶7­%Š]À8Yç½#ÆbrOãYºZ0˜\•Œäï7a]tÄò¯˜_åÅg ùÏ­XivÄ\ž‚¹ùLlPš_ß?=è®~ãS&áÈéš+§Ø²¹ÔÑ@æ–¬ìZš$Í©B“}Üô¬ÁZš7:œËUGâDÍÙç¤Ø[YÙG䯀•É U‹©ÌX 2j=)JØFÇûÂ2Û…]GbVÅ+ÙÙíGŠã-<×:£Þ»“¸þÒÇqö«)›½oÁ€-gßÞeÙ[Q–v‹kn±ÐUš(­I3µmÇZ´6÷Ь‰ü'ø”úƒÚ¼—ľ ¾Ð¦ƒ}Õ‘é 2¼óé^Ôzu¤ 2œ÷¬ªÒSõ:°Øº”ºôì|Ír @qÓ­g8æ½ç[øw¥êaåµÍ•Ãs”B}×ü1\£ð£]…ɵ{[•íµöŸÈÿsªr†Lm:ºìÏ=#4ÆSÒµµ QÐ'Hu%ÜnQ½[#ð5™†5Zº«¹ ü½êR¸©ÓÁ ²Gi?xXüƒÒ™Œñ[ÂB†Ç¥j,©i¢\È@Üë±~§ŠÈ¶yV`pX7}jÞ¯—Ž8bæ(ù>æ…¹Ë:²š9óši«=©6Ú·0+f“w5dÄ*6€öªIHàò*âÝÈcEq{VqVSÎjH¥1¶{zRq¸¬nEt²ƒƒVu9ü­4y"±€ ‘–êvšÔ+•’йFÎOTåFzQ]ŬC4ò (®t\ž¸­6ÝI•”€+é劌âŠ+8ü(ÍlsìÀ1ãõ¢Š+sSÿÙlibjpeg-turbo-2.1.5/testimages/testorig.jpg000066400000000000000000000132121436506551100210000ustar00rootroot00000000000000ÿØÿàJFIFÿÛC    $.' ",#(7),01444'9=82<.342ÿÛC  2!!22222222222222222222222222222222222222222222222222ÿÀ•ã"ÿÄ ÿĵ}!1AQa"q2‘¡#B±ÁRÑð$3br‚ %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚáâãäåæçèéêñòóôõö÷øùúÿÄ ÿĵw!1AQaq"2B‘¡±Á #3RðbrÑ $4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖרÙÚâãäåæçèéêòóôõö÷øùúÿÚ ?òåjvúf)4šc÷óFñQŠ3E‡qäÒñQîÅ8Ñ`¸ð©Ô°)ÊNiX ‰.J²j àS•ðjKF¤ù} iZÝ8f®|KÅ]µ˜õÏVŸSÓÀâ}ÛBI¸zÔs¸XɬønJ¼T·HÆ+•ÅÜúEN“]H‹TNÔÒüÔlÔÔO:u.…&€ÜÔEªX”±­ns¹Ø¹n½MVÕãqn0‡µ4ø î3[Z†YíÇ8«§zìËŒ(ªkvyƒQšÖÔ¬Z&<~5ŒÄ†Á®Äîx—¾Ââ•NÇ )›©wUº:Pf™#^Iâ¶uŘـFä×7áR§T]ݺW¥-Œz„‹¤mÅo…«J—2›"³•¯Ðó«-JK ,|ã¨õ­Kýeõ8•Z&äWS/„ôûYV@ªI=:Õ]jh,Ûb…â°«Rz{TÞ‡%°QQ ´óEeíäth`éþVE9gš@=*ÉE6„ÓŠÒÙškGè(æ±V¹™åšpJºSEDËG5Á¢=*T†œƒš°£¦RQGQì9«.i€hLoB?,‘Å: ѶEt¶V–ö‹%Êy“8ܨIÔ@°!&KtéÁÛXδV‡« º­£&Ò¿õ©Ry…cøT¹*v° ú²d8Ë9§.÷r3•üÜX9®Çtpò²W)1¦Mj h|ýÇU?áMŠÊˆwo4öR¸ëëKžÍ¿³ñ ­4}J‡O¸[X®™1 ¤…lúT°.p¢´ÞáÌ xŒdà:…Igl¥‰‘Jª˜ûú ¨Í5s‡©Nª§M^åÝ7÷!w`S[Rüðô®rYcy¹  Ï¥Y扶Ç+…ÏcMU6Ÿ Ʋ¿µ÷úé û­5gVÈë\^¯£½»–QÅw u6p_ó’—ýlhãШ­¡'Ðç\3^I«|Ï.1²žE[Ò½&mÂór‹UF`pS‚=ÅsWšÕŒø1ù‘çå‘FAúúVª©É‹Êêáµ–«ÈÃÖ“Ãx· ¸\t®öÞõ¸#9ªè~»{_5ã#+ÀÅnÛøbùÙB®ëíYJž¶Äw¤än¨B:ˆ£‡$*\$£t|ê¥Dèå°T®;°ÅE›;šŠ§îõ¤nðAÎE]w’˜C/TaÐÕBª£’OÒ­Sm-˺ÙÁ«‡c’jQwÙ”%s3ŽÕzÙŽÌíÁ>µIã1¹SÁ/Ú?r¨G äU'ÜçMÂ\ÝMHÁtÏpjx”6[5P†ä4|ÖµÌx‰]q’pk¢”¬uƺ–ƒq´qÁïŸjŠâtÉØL~Û½LqvàNO½\H‹#`¨2qÔÐÖ’ËnhÆH'zÑÉßC›*R§(Ôzu±èÞ0^h‘«¼ z×DGû£ò¯+øm«Ë%Äö¬Ù äþ¯Y¯>•×M¾[U®kÃfC4q•ËŠäõOEªÜüŠÕ×¼BDd'¯V€ÈûÜTÊVFz4prøJ•” È4Wq5›É3>:š)û¦VgÌL¨L š—4 ÆçM†"`WEáëĶbà“XBž¤©Èâµ£WÙϘ™BêǤé©ç9¨nuÅ„ Ÿ¥rúUÓ– äàVåÄmP ,½=+Øž21‚”˜aðs¯S’Ük2]@ʘ¸$VnÏza`£1ž{Säp±’5óUëδù¦}Ö O KÙ¥f·ó!$ ã‘»'è9¡¤Y ÃôëU˜Ü2pjêE®b,~tö¬9JJMZBÊÊGä{S¢U'š$…à•¢‘pÊqOŒm\ã.z{Vm³J¼®.Æ “ß׌ÔBÏ$ÜäqR•Ç,ãùБy¸@ãæ=ª¡ÞÇ{ÃÂVæº#.FÁõ¥TvÎlÖƒéñEj^bD½@‡¿½gË:£È,=¸¡Á­NwÉåÍd#îFÚßþºš9$cnWŸ”ž¼çOþµ*ˆÇ2ŸÞ3|›O t?Ÿô¨¦%g§•­©Š’nòw&¹šÞq¹Qão¨oðªr«DåXý)ËÈ«1Å[¸k™Ç\`Sóf6öº@¦´Œô®ºÙÞhԂăžÝ+—h#ÇÊ6Ÿ­t>IBz®x«ƒM‘:S¤í#B8˜J ‡$.IÆ3øT q$“ÝÆ‡æxНéþvá¶DIàšç./ ®ùÔÙÀüku£¹˜©a*·ü¬ê¾ZGc©Ì÷, ·#ë^•u­XÚ©Ìè[Ðñ+9nåMÊøÝÜUèmÙe•Ù½Í\j¸£àeQ¨¤zl%‰ä8ÆÒjôš€eY†ÞõæÑM´ iésO+¼^fÞˆTæva‡ž¼¬íN¿l¼È÷¢¼êæiæEó‡ÒŠíös7æå›hŸ`*`„œÉ®[\T’ÖœZLw8ÏjžÊÅbY±»®=+B%äÁˆÇë^ž̯3 Õ³Ðv•§ˆ8$šÛx.R6‘m^HÀä/_ÀVÞ‰gin¥Á>õ¥¨jv[·—· TcdÔ}…8]w4ÃU•9ûDõ<ÎY ˜¿wRŒ¸"³¥S´æµîõ¥¼,01&òž”é´ø®Ñ§³`ÈyÛÜW‹Rœ£¹öX<|1påz3Ò7˜Šv¸‚zjA*À†šH%…‰C±”sÓŽi³J·,²ªìr0Ã<íXÊÍÔ©Ï•ì8Ÿ2%ÜNS¿·¥>¥_•Á#·¦Ê±yQynwãç\t5 ܧøO¶qSªgl%ÞE‰¬Þ7!rè~ãcïtãõ¦ª5¬fY`“’QT‚¹ìyý?>”ë[÷· ¨Þ§å$|Ëþ­ö¢ÖR3³# ±ÉµŒV臈”–æeÅÕÅÈUhþfþý)° ц¸‘£|p¨úÓ" ,ŠòÎ6ƒ“’rjÚêrvR¸nŠhMnÂ¥ÎÉjS[x-13³ÌƒÏsQË ´˜f# 4>ÓËd¹ç4`îÉæ¡Êäª<¶Bà ~p`€w-žÔÀŤ,zšsŸóLS&t%%ʬ8ÖŸ…Ü ZhÏt$ŸÆ³M]ÑMJ[¤DîxÿªŽ6<ÉXØÔ®>b=«“Õ¦h-³Œïý?­mÜÎ$rÄáG$ŸJã¯dMv®rONÕÜ‘äg5½ŽQ[Ëò;kÛàðXî=kJ¾ómBç‘ZQËï\ÒÑØø)+3MdÆ9©&¹xâ-¾[c®k&[’¼-dÞ‹¦Úd`¾Æ”/ÍqEjAqöç¸‘Ž¨rNzÑP> §Hã„|‹Ï©äÕ´aJœÔö#;—,íÁõ8¨žuTÜ>‚¡»|ÊrrEß'е ‘[ìÛŒbY.Å÷““W!•\8>•$aÞœ·N•›9¨ãT%vmbšÄ äTý±ŒÆ –våŽjTõ;*cákĵqvÚ‡êjŒ’Tm'5;ˆ½j y5±2›»5´¹^(¤e82¹îE]CëùÕ(Wn¢¨ÅX3G y’“´œu­bŽZ•=Ý^ˆ}Ljl´{F‡H·iqûÉ›±®jæúîñL“ÊÌOSžµ«=½½ÙYgyäåž²ï.RR% pª¦¢¶ZŸ>­rfÿHê+¾·@mÓé^nq2Ù…z £·B=+Ý+©n'±"Äu¿ðî+Q!2ýÉëщx\JÕÁ%©Ÿ=Ùó©§j~™àc"D[Õqå3w®‚k8Fþó.ÊÚ‘ÙÚ-­ºÆAVh¢µ$£«hÖ:Ý¡¶¿dOá=¨=«ÈüMà‹íÚh7ÝXž’ó'ûÀ>•íT¸GZÊ­%?S« ‹©Aû¯NÇÌ— ”:ÖsŽkÞõχZV©¾[\ØÜ79A”'ÝÃÀê? µè\›Wµ¹^Ûiüø×:§(hÑèÔÆÓ«ªÑžxFiŒ§¥kk:£ Nê6þK¸Ü£z¶Gàk3 j´1uWr( ù{Ô¥p;S§‚dŽÒ~ð±ù¥3â"¶„… ŽJÔYRÓD¹¹×býO‘lò¬Àà°n úÕ½_/pÅÌQò}Í s–ue4sç4ÓV {Rlµn`VÍ&îjɈTmíT’‘ÁäUŻƊ>âö¬â¬§œÔ‘Jclöô¤ãqXÜŠée¬êsùZi òEc "85-Ôí5¨V+%r,Œ3ÔäQSéEtsvÑ ÓÊ€h¢¹ÑPcO\VLJ[f¥àQZCâAScÛìç#OFÇ8¬]OQ›æQ€:QE:ÊÌtõHÓÒIDÏ#<×RQU"\Ť'4QC%9$T;÷ǵʌòz(¥-ŠŽåŽÔŒp¹¢ŠS~ë%nxŸÆLj,ùãìÿÖ¼ì𹢊撳/ ÑóqRÁl²Ê2zœQEc7¹Ó^x~ ]3ÍŽVó1’Øëí\¸•‰ÁäQEM7u¨©¶÷ š5ê*¯J(®ˆì9‹ŽiÊ9¢Š¢u\rIcmt #ÒŠ*gð±=‹Z±X6ùh«ŸJ@M<’£8¢ŠÎ? 3[û8 F?Z(¢·5?ÿÙlibjpeg-turbo-2.1.5/testimages/testorig.ppm000066400000000000000000003061541436506551100210260ustar00rootroot00000000000000P6 227 149 255 0/-0/-10.21/51.51.62/62/83/83/:2/:2/:3-:3-:3-:3-:2/:2/91.80-80-91.:2/:2/80-80-80-80-80-80-80-80-6.+6.+6.+5-*5-*5-*4,)4,)4,)4,)4,)4,)4,)4,)4,)2-)/*$/,%0-&0-&1.'2/(30)30)63,63,74-85.96/96/:70:7.A:0B<0D>2F@4IA4JB5KC6KC6NE6MD5OC3NB2OC3OC3PD4RE5R?1Y?2b@4nB5}E6‹H8™G9£F7°H;¸F;¿F;ÅF=ÇG>ËH@ËH@ÐEBçFLíCLìEMëEIîCIïBDò?Cô=Aø;A÷:@ô:?ð-’?/’?/‘>.‘>,‘>,’<+’<+”>-”>-”=*”=*•>+•>+–?,–@/–?6•>5—=4Ÿ?3©B3³D3¼D4¿D4¹?0¶B3¬F:žH;‡G;oA2U9+C3&=52:659548437116005//5//72/72/72/61.61-61-50,41,//-.0-//-//-0/-0/-2.-2.-5,-4+,4*+3)*7(+=.1E69P:0U?1^A3jC4xD6…F5’E5œC3§C4¯A4µ@6¼B7ÀD:ÄE<ÅF=ÍC@áEIçBIèCIêDHíDGðCEó@Cö?Cø;A÷:@ô:?ð/µ@.´?-´?-´?-²?,°?-¯@-­?.ªA.¦A-¢B,Ÿ@,›@+˜@*–A,”>-’?/’?/‘>.‘>,=+’<+’<+”>-“=,”=*”=*”=*•>+–?,–@1•A6–?6˜>5¡?4«A3µD4½C4¿D5»A2·C6¬F:œH=…G:l@3S9*B4)>63:65:6584382271160060072/72/72/61.61-61-50,41,//-.0-//-//-0/-0/-2.-2.-4..5,-5+,3)*5)+<-0C47N8:d=>vDC†JIMNšTV¤aj¥l}rŽ‘{¢†€®…¹{„»ou©[[RIvOCiOFePH`PH_RN_[Yfnot…†ˆ”™•™ž—š ”™‘ƒ~qjk[][LVSJXSZVRaXQa/.,0/-0/-10.40/40/51.51.72.72.72.72.92,92,92,92,91.80.80.7/-7/-80.80.91/80.80.80.80.80.80.80.80.6.,6.,5-+5-+5-+4,*4,*4,*6.,6.,6.,6.,6.,6.,6.,4/+2-)1.)2/*30+30+41,52-52-63.63.74/74/850961961:70?8.@:.B<0D>2G?4H@5H@3H@3J@4I@1K?1K?1K?1L@2MA1NB2MA3QA2YB4dC4qC4|C2‡B2’A0˜<-¡;,§;.¯=2µ@6ºD:¿F=ÅD>ÙCEá@FãBGèCGêDFðCEôADø?Dú;@ù:?õ;@ð=@è@@ÝB>Ñ@;Æ@5·=.³@-³@-³@-²?-°?-¯>,­@,ª?-§@-¥@.¡@-A,›@+˜@*•@+”>-’?/‘>.‘>.‘>.=-=+=+‘>,‘>,’<+’<+“=,”>-•?.•?0•A6–?5š>3¤?3¯A4¹C5¿D5ÁC5ÀD8¹G<®I=™J=G;h@4Q:,B5,?74=77<66;5594183072/72/62/62/62/51.52-52-41,21,/1.-2./1./1.00.00.10.3/.5//4..5,-4*+4*+9-/>24I56[97l?:}FA†IDOM˜[`›fv•n‰Œwžƒ}­}‚¹u~·gl¤UU‰MEvLAkMAeOFcQHcNI_NK\[[esty‡‰ˆ‡Œ†Šˆ…†Š|xzlfhZZ[MVSLZU[ZT`[S`.-+/.,/.,0/-3/.40/40-51.61-61-61-61-81+81+81+80-80.7/-6.,6.,6.,6.,7/-80.80.80.80.80.80.80.80.80.5-+5-+5-+5-+4,*4,*3+)3+)6.,6.,6.,6.,6.,6.,6.,4/,30+30+30+41,41,52-52-52-52-63.63.74/85096196196/>7-?9-A;/B<0E=2E=2F>3F>1G=1G=1H<.I=/I=/J>0L@0JA0LE5NE4VE5^D3iD2sB1~A/†?-Œ9)”9'9*¤=.¬@3³E8¸H<ÁF>ÒDCÚACÞBEâDEèDEìBCó@C÷?Aú;@ù:?ö@åA@ÚB=Í@9Â@3¶>.°@,°@,°@,¯>,®?,®?,¬?+©@-¦?,£@- ?,œ@+˜@*–@)”?*‘>,‘>.‘>.‘>.=-=-<*<*=+=+=+=+’<+‘>,”>-’?/•A6—@6œ>2¦@4²B6¼C8ÁC7ÂB7ÂF<ºJ?¬KB—J@|F:b@4L:.A7-@85>88=77<66:5294183083062/62/62/32.52-32-21,12--2.-2./1./1.00.00.10.10.5106005//5,-4+,6,-:01D22T71c;3rB8{E;ƒIE‰RU_l‹i‚ƒs˜}y«x}µowµae¢SRŒMDyL@pL@hPEgQFfLC^HCWNLZ^^fjnquyxy~xz€vwzokoa`bUWYLTTL]WY]V]]V^------/.,/.,0/-10.3/,40-40-40-50,50,50,50,7/,7/,4/,4/,3.+3.+3.+3.+4/,4/,50-50-50-50-50-50-50-50-3.+3.+3.+2-*2-*1,)1,)1,)4/,4/,4/,4/,4/,4/,4/,4/,41,41,41,41,52-52-52-52-52-52-63.74/74/85096196/<5-=6,?8.@9/B90C;0C;0C;0E;/D:.F:.G;/H<.I=/J>0I@1JG6MH5RG5YF5bE3jD1uB/|?,‚;)‹:)“:*š=,£B2¬F8²J=¼J@ÌGBÔDCØDDÝEDãCCéAAð=@ô<>ù:?ù;=ô<>í?>áB>ÓC:ÅA5¹?0²?-¯@-®?,®?,®?.¬>-¬>-ª?-¨>.¤?- ?,ž?+š?,—?+•>*”?+‘>,?.?.>->-Ž=,Ž=,Ž=,Ž=,Ž=,Ž=,Ž=,<,>-‘>.‘@/”B4—A4ž@4¨@3¶A7¿C9ÅB:ÄA9¾C;·H?¦LC‘KCtE;Z>2E9-=6,A96@86?75>64=53<4294183062/43/43/23.32.23.12-02--2.,2.-2.-2./1./1.00.10.3205105104..2,,5,-7./>0/N5.Y9.e=1oA4tC0HA1JG6JI7NG5VF6\E3dC2lA0t?-|=,ƒ<*Œ;*”=,œ@1£F5ªJ:´J=ÄH@ÌEAÑFAÖE@ÞCAåA?ì>?ò;=÷;<ô:;ð<=é@=ÜC=ÍC8¾@2²?-®?,«@,«@,ª?+ª?-©>,©>,¨?,¥>-£@- ?,œ?-—?+•>*“>)‘?*?,>->->-Ž=,Ž=,Ž=,<+Ž=,‹<+<+‹<+‹<-Œ=,>/Ž?0”B4˜B3¡A3¬B5¹C9ÂC:ÅB:ÃB<»B:±HB£NGNEpH>T@5A;/96-@85A75?75>63=5394194173043/43/34/23.23.13.02-.3--3/-3/.3/.3/02/02/11/11/21/32032040/2.-1-,4..8.,G4-O4)X8+`<0e?6mGFyYd‚k…€uŸ||²w|¼nu»dh¯[[¡SLLB~OArL@hI=cH>`HB^ECX@BO2H@3HE6GE6KE5QD4YD3_B2g@/n=,v=,|:*…9+Œ:,“=.›B2¢F7¬F8¼G=ÂF>ÉF>ÐE>ÙD@âC?ê@@ð>>ò::ñ;:ì<<äA<ÖC;ÆD6µ@/ª=)ª?-©@-©@-©@-¨>.¨>.§=-¥>-£=. ?.ž?-š?-–?,”?+‘?*>)>+>->-Œ=,Œ=.Œ=.‹<-‹<-‹<-Š=-Š;,‰<,Š.Œ>1Œ?/’C4˜B3¡A3®B6¼C:ÃD=ÄC=ÀC=ºGB²QK¦YSXQsRIWI>CC793@72>63=60:5194083/63.43.43.34/23.13.13.02-.3--3/-3/.3/.3/.3/.3/02/02/00.11/22021/10./.,2.-4/,?0+D0)K3)T8-Z<4eGGu]jƒs‰€«…„¾~ƒÇtzÆmp½ee¯VSšLC‚K?qJ=hG;cE>_FB]DBW?AN;?H:BE>HGDMHGQIGQHJRGNVKUXM^ZOaYNaXO++++++,,,---.,-/-.0/-0/-1-,1-*1-*1-*2-)2-)2-)2-*2,,1++1++0**0**1++1++2,,0**0**0**0**0**0**0**0**2,,2,,2,,1++1++0**0**0**2,,2,,2,,2,,2,,2,,2,,2,,3/,3/,3/,3/,3/,3/,3/,3/,40-40-51.62/62/73084185092,:3+;4,<5->5.>5.>5.>5,B8/B8/E80F90G:1I<3J=4I?5FB6FB6JB5OA4UB3\@2c?1j<-q<.w9*}8)…7*Œ:,–>0›B4¤B5²F:ºE;ÁF>ÊG?ÔG@ÞFAçCAîB@í;;ë;;ç>;ßB;ÑD:¿D4°A.¤>(¦A-¦A-¦A-¥@.¥@.¤?-¤?-¤>/¢>.Ÿ@.œ?.˜?-•>+‘?*>)>+>->->-Œ=,Œ=.‹<-‹<-Š=-Š=-‰=/ˆ<.ˆ<.ˆ1‹?1‘D4–C3¢B4­C6ºC;ÁD>ÁD@»EA¹PL²[T¦f]‘f]u_T[UIHNBCI?<92?82>71;6094.74-63.43.43.43.34/23.13.13..3-.3-.3/-3/.3/.3/.3/.3/02/02///-11/22022010.0/-0/-3/,8,,<-*C0*K70S<6^HJtbn‡z”жŒÆ„ˆÏz€ÌtwÆjl·YW ID„E=nG^CAY@CV@DP>EKGQRKWUQ^WU`XT`VS]TT^SY_S^[LaZJaZJ,-/,-/--/--/------.,-.-+/.,/.,1-*0,)0,)0,)/+(/+(/+*/+*/+*/+*/+*/+*0,+0,+/+*/+*/+*/+*/+*/+*/+*/+*/+*/+*/+*0,+0,+1-,1-,2.-2.-2.-1-,1-,1-,1-,1-,1-,0,)1-*2.+3/,3/,3/,3/,3/,3/,3/,3/,3/,40-51.62/73080-92,:3-;4.=4/>5.>5.>5.@5/@6-B5-C6.D7/F91H;3G=4G>5H@5J@6P?5T>3X<1^90c7,m9.t8-|8-ƒ9.;/“=0˜?1ž>0§A3­A4µC8¾E:ÊG=ÔG>ÞE?åC@è@?êBAæDAÚE>ÈD8·B1ªA.¢B,¢A.¡@-¢?,¢>.¡=-¡=-¢>. ?/œ<,š=,˜<-•>-“=,=+Ž=*Œ=,‹<+‹<+Š=-‰<,‰<,‰<,ˆ:-‡;-‰=/‡=0‡=0‡=0ˆ>3ˆ@4‰A5‹A4‘E5—D4£E9±I>ºG@»D>»EA¸MGµ[S¯f_£qf‘sh~rdjj^V^SJRGLLBJF=B>5=90:6-74+63,33+54/34.34/23.02-/1,.0-,1--2.-2.-2.-2./1./1./1./1.02/02/11/11/11/11/11/40/4+0;/3A32C41J;8]NQym{‹…Ÿ“»”–ϕك‰ÓtzÆjn·`c¨Z[”LItHBdA>]>>X?BUAIVLU\U`bbqno~yv†|s€vlyohth_k_W_P^]Ib\Fc]G,-/,-/--/--/------.,-.,-/.,/.,0,+0,)0,)/+(/+(/+(.*).*).*)/+*/+*/+*/+*/+*/+*/+*/+*/+*/+*/+*/+*/+*/+*/+*/+*0,+0,+1-,1-,1-,1-,1-,1-,1-,1-,1-,1-,1-,0,+1-*2.+2.+3/,3/,3/,2.+2.+2.+2.+2.+3/,40-62/62/80.91.:2/;4.=4/>50>50>5.?4.?4.B5/B5-D7/E80G:2H;3H>5H>5L=6O>6R>5V;2Z90_7/i81p7.x8.8/Š:/<1–<1›=1¢@3§A3­C6´D8¾E:ÉF<ÔE=ÛC>ßD@àEAßGBÔG>ÄF:³D3¥B/žB-ŸC.žA/Ÿ@.ž?-ž?-ž?-ž>.Ÿ?/š=,™>,–=-”=,=+>+Œ=,Œ=,‹<+Š=+‰<,‰<,‰<,‡;+‡;-…<-†5=:188.44,11)23-23-12-01,/1,/1,.0-.0-/1.-2./1./1./1./1./1./1.02/02/11/11/11/11/11/2015+49-7<15?54I?=^UVys}Šˆž““¹”—Ê–Ô„‹ÏyÂqy¸kt­hnž]`XZqSUjRWjT^hZgmfvvr‚tˆ~’‡ƒ•‰~Žw‡zr€qftgZeT[ZE`ZBb\D-.0-.0-.0-.0-.0-.0.......,-.-+.-+-,*/+*.*).*'.*',+),*+,*+,*+,*+,*++)*+)*-+,-+,-+,-+,-+,-+,-+,-+,,*+-+,-+,-+,-+,.,-.,-.,-.,-/-./-./-./-./-./-./.,0,+0,+1-,2.-2.-2.-2.-1-,1-,1-,1-,1-,2.-3/.40/51.80.91/:20<41=31>42=31=4/?40?4.A4.A4.C60D71F93G:4H;5J;6K<7N=6P;6S:5W83[6.c60k6.t5,}7/‡9/;0”<2—=2ž@6 @4¢@3¨@3±C6ºD8ÅE<ÍD<ÕF@×HBÔIBÌI?¾E:®C3¡B0œA.B/œA/œ?.›>-›>-›>-›>/›?0˜<-–=-”<.“=.>-Œ=,Œ=.Š=-‰<,‰<,‰<,ˆ<,‡;-…<-„:-ƒ;-„<0‚<0‚<2‚>3ƒ?4…A8‡C:ˆD9”J=—H; H>¬KD²KF³LG²SM®`V­sg¦qŒz‘Ž{‚‰ws€ocqbXcUNRDMN@HI;DD8@@4:_[@-.0-.0-.0-.0-.0-.0.......,-.,--,*-,*/+*.*).*'.*),*+,*++)*+)*+)*+)**()*(),*+,*+,*+,*+,*+,*+,*+,*+,*+,*+,*+,*+-+,-+,-+,-+,.,-.,-.,-.,-.,-/-./-./-./+*0,+1-,1-,1-,1-,0,+0,+0,+0,+0,+0,+1-,2.-3/.40/91/:20;31<42=31=31=31=31>3/>3/@2/@3-A4.C60D71E82F93H94I:5J;6L:6N94Q83T50^72e60o6/x8/‚90‹;2<2”=3š@7›?4›?2Ÿ?1¥A2®B5¸C9¿E:ÈH?ËH@ÊJAÃH@¶F:ªB5žA0™@.šA/™@.˜?-—>,—>,™>,™=.˜?/–=-”=,“=.=-Ž=,Š=+Š=-‰<,‰<,ˆ;+‡;+‡;+„;,„;,ƒ;-€;,;/€<1=2>5ƒ@7ƒC:‡D<ˆE<”KB–H>žG@§JE®LI®QL­]Vªj^§€o¡yšš‚›ƒ†•€z‹xm{lbm_SZJQUFKO@EI:@D6;=057,13(01)/0(./*.-).-)/.*0/-0/-0/-0/-0/-0/-0/-//-0/-//-10.00.10.00.00.00.00.3.27,:6*83-1961HJ?bfX{€z‹““£–°Œ•¶ƒ²¯…™²¤¶’¨³”§«‘££Œ ž‡ž˜‚™}˜‰œ‹ˆ£”°š˜±›”­—‹£…›†~‘}k|iXfOSU=ZV;^Z?+/2+/2-.2-.2-.0-.0..0..0------.-+-,*-,*-,*,+),+),*+,*+,*++)*+)**()*()*(),*+,*+,*+,*+,*+,*+,*+,*+,*+,*+,*+,*+,*+,*++)*+)*-+,-+,-+,.,-.,-/-./-./-./+*0,+0,+1-,0,+0,+/+*/+*0,+/+*/+*0,+0,+2.-3/.40/:12:12;31<42=32=32<20<20>31=2.?1.?1.@2/A30B41C52D63C84D95E:6G96H94K84N50X72_60i70s80}:1†<1Œ>2>2—@6—?5—?5—?3œ@3£C5«C6³E8ºE;½G=¾H>¹G=°D8¦A5œ@1—@/—@-—@-–?.•>-”=,–=-–=/–=/•<.“;-’0->0-?1.@2/A30?40@51@72@93A:4B94C84F74H5/Q51X5/a6/l8-v:/€0‹=1“?5•>5“?5“?4•B4šB4 C4¥D4¬B5°D8´E:±E;ªB7¢@5š>1–>0•?.•@,”>-“=,“<+“<+”<.”<.“;-’<-<.;-‹<-‰<,‡;-‡;-†:*†:*†:*ƒ:)ƒ:+9+9-9-€<1<3?6€A8‚C<…F?ˆIBŠICŽIBG@—HD OK§VS§`Z©pe¤ƒrœ”}– …¨Šˆ§ˆƒ „~–~z‡uq|kdp\]iUR^JJS@BK:>E5<@29<134,22*1-*/+(/))0**1++2,,1++1++1++1++1++0,+0,+0,+1-,1-,1-,1-,/.,/.,/.,2,.8*75(13+(56&EK1\gGu‚d†“yޛБž”’žšž˜¥——´ž¢Å¥©Î­¥É­§É°§Ë±¤È¬—¾Ÿ‹³‘ˆ°²Ž²Ž²¬Š„¡‚€™{wŽrdx]R`FNR7QQ5SR6,03,03,03,03./1./1./1./1000//////////.,/.,/.,.-+/-./-..,--+,,*++)*+)**()+)*+)*+)*+)*+)*+)*+)*+)*,*++)*+)*+)**()*())'()'(+)*+)*,*+-+,.,-/-./-.0.//+*/+*/+*/+*/+*.*)-)(,('0,+0,+0,+0,+1-,3/.40/510:12;23<34<34=34<21<21;10<1/<1/>0/=/.>0-?1.@2/>3/=52;62;83<94=:5>93@72C60G4.O4-Y4,d5+n8,x:-;.…;.<4‘<5>3@3A2“B1—A2šA1 >1¦@4ªB7ªB9¦A7Ÿ>5˜>3•?2’?-’?-‘>,=+‘;,’<-’<-’<-‘;.‘;.<.;-Š;.ˆ:-‡;-„;,…9)…9)ƒ:)ƒ:)‚9*9+~8,~8,=2€=4€@7B9„E>…HCˆKFŒMFŒICŽGA˜JH¡SO¨]Z©hb©{n¤Žy™œ’§ˆ‰¬‹‚ªˆ€¡„€˜€~‹wxnjwcdr[ZgSQ]IKTCEL<@D60-?1.=2.=4/=60;81::29:49:4;81?61C2+J1,T1+^3,g7-o9-u=.{=0‡=4‹=3‹?2Œ@2Ž@3@1’?1•=/˜2¢B6¡C7žB7™?4–>2•?2”>/“=.=-<,Ž<.Œ=.Œ=.>/Ž<.Ž<.‹2>5€@7‚C:ƒG?†KCˆOH‹OGŒHEŽHF“OL˜[Vžg`uiž‡už˜€”¡…ª‹‰¬‹ƒ¨‡€¡„~›|ytˆoj~ccz^]qXWfOO\HIRAAH8>@399/85.7/,3+)2()2()3)*4*+0*,/+*0*,0**0*,0*,2),2),3*-1+-1+-1+-0,-0,-0,-1+/5*05+,4-%46!?F%T`8n}Rg‰™tžz¡~ˆ¡zЧ{‘¶‚›ÄˆŸËŸÉ™žÇÆš˜Á•Œ·Š‚­€…®‚Œµ‰„«‰®…‰©‚~œxvolƒfZnSJZ@GM3FJ1DF./0+.0+/0+01,01,12-12-21-43/43/43/62/51.41,3/,4/,50-50-4/,3.+3--1-,0,+0,+.,-.,-..0--/,,.++-*).))+.)/.)-/(/.)-/)-.)-.*+.*+/+*/+*-,*.-)--+./*./*./*------.,-/-./.,0/-2.+2.+2-*4,)5-*6.+90+:1,;2+;2+=4-=4->50>50>50=4/<3.<3.=2.<1-<1/;0.=/.>0/>0/@1.A0)@1*;4*77-39/39/560:3-?-+F*'L)'S*&Z/(`5,d<0k@0yA2€A0†A2‹B3@3“=0“;/’8-“;/”>/”A1•B2”C2’A0‘>.‘;.—:2—:2’;1>1ˆ?0„?/‚?.ƒ>.ˆ@1ˆ?0Š>1Š<0‰;/ˆ:.†:-ƒ;-{9+~@3w<.q7)w=/w=/v;-}?2{;/‚@4ˆE<ŠJAˆLB†MB„PE‡NE‘KI—SR”b[‘ocŒ}j‰‰q‰–|Šž‚¤‡¦‰Ž§Š§Œ‡¤ˆ~Ÿ‚uš{o—uiib„_[zXZsU[mSWeNPWEJK=C?6@93;0.6**4(*3'+3'+1&*,*-)+***,*(),'+.(,1(-2'-3(.3(.3(02(00)00)0/*1/*0/)-1++0-(//#CH4?B/01+01+01+01+12,12,21,32-43.43.74/74/63.52-50,50,7/,7/,6.,6.,3.+2-*1-,0,+/-./-./-0..0-,1+*/)*.)(-.)//(//(//(//)-/)-.*+.*+/+*0,+.-).-)./*./*./)/0+.....0....../.,/.,2.+3.+5-*5-*7.)8/(:/)<1+<2)=3*>5,>5,>5.?6/>5.=4-=4/<3.=2.<1-<1/;0.=/.>0/>00@1.C0*C0)A2+>3-:5/94.:2/<1/?-+D*)I*(N+'T/)Z5-`;2e=1pA1x@/€A0ˆ@2?4’>4”;3“;19.‹/‰=0ˆ<.‡;.„;,ƒ;-€;,x8,x<1t:.n9+t?/s>.r8*u:,}=1ƒA5‰E<‹H?ŠKB†MB„PCˆOF‘JH—SR’f]wi„†p€“wž„¥†ˆ§ˆ§Š§§Š¤‰Ÿƒwœ}o˜ve’iaŒaZƒ[Y{X\wXZnSSaJNUCFH;C@7<737/-3*+2)*1(+.(*,*-**,+),+),-(,/)-2(02(04)13)13)21*20+2.+2.+4.+22-13/.0,)--%8:-SXDox]€‹i‡–o†™l†žnˆ£p†¤p„¥pŠ­w“¶€™¹‡–¶„“³¯|†«x‚¨w‚¨yƒ¨|ƒ¦|„¤{x’uqˆnh{eYjWN[IEL<@D5;=/12,12,12,23-23-23-43.43.54/65085085085074/72.72.80-80-7/,7/,4/,3.+1-,1-,1-.0./0.1/-0..0,,.+*/+)./(/1'//)-/)-/)-/)-.*+.*+0,+0,+/.*/.*0/*0/*/0*/0+//-///0./0./0/-/.,1-*2-*6.+7/,90+:1*<1+=3*>4+?5,?6-@7.@7.@7.?6/>5.=4/=4/=2.<1-<1/;0.;0.<1/<1/?1.C2+E0+H/+K--L,/K+.I*/E+.A-,@.*A.(F/)N/*X1*b3-g5.j:,o;-x<1=4‡<6Œ<5:4:4Š;4‡=2†>2…?3†@4ŠB6ŒB5C6Ž?2=/Œ>1Š>.‡>/†?-†=.ˆ<,‰;.‰<,ˆ:-‡;+ƒ;,<)~=+{<+}=1z<1v:/v<0x@1x@1v<.v;-?5ƒC9‰F=‹H?‰JAˆLB‡NEŠNF’KI˜TQ–f\‘wh‡…n‚‘t{¤ƒ…¨‡ˆª‰ªŒ©ŒŽ¥‰ˆŸƒš}y˜xi–ma’e\‹a\†`^ƒa[|]UrVQgPHYGBPA:D93:2.3,+0**,)**(1(+1&*1&*1&*0'*1(+2).1+//*.-+.,+0+,0)-0(-0(-1)-01/23/./+(**"57*QVBmu]|Ši€k~“j™lƒŸo€ o~ m‚¤q‰«x¯|‹­zˆªx„©v‚¦v€¦u€¦w€¥y€£y‚¢}}›yw‘tp‡mh{eYkUN[IDH9>@399-23-23-34.34.45/45/54/54/761761:72:72:72961:51940:2/:2/91.80-50-50-3/.3/.3/03/01/01/20.1..0--/-+.0)02).0*.0*.0*.0*,/+,/+*1-,2.-0/+0/+10+10+01+12-11/1111/010.10.2.+3.+3.*91.92,;2+<3,?5,@6-A7.A7.B8/A8/B90A8/A81@70>50>50=2.=2.<1/<1/<1/<1/=20=2.B3.E2.M//R+0W(0U&.P'/I).C/.<1+;2+?2)H1)S0*_.*d/)i9/k;/u<3}<6†<9‰;9Š;7ˆ:6‰>9†?9†B9…B9…B9†B9‡A7ŠB6ˆ@1ˆA/ˆA/‡@.‡>-ˆ<,‰<,‰:+‹9+ˆ9*‡:*ƒ:)<){=(x>(x>*‚>3{7.z7.z<1v;-w=/|A3{@2€B7ƒE:†H=ˆI@‡KA‡MBˆOFŠQHŽSK\QŽh[‹tb…g€‹m~–vž|ƒ§ƒ„©‡ˆª‰‹ªŠ‹¦‡‡ ‚ƒš~}˜yq•oj“ifgfŒeg‹gd†e_~_\v[PhRK^KBPA8D62:/.4*,/(+*%2&(5%(4%(2&(1&*/)+/+,.,-++-*+-*+-(,-(,/',/',/*+-/+,1++0+(/,%99-PTCiqYvƒe{Œhyh|•kœn}žoyžk{ m€¥r‚§t€¥q}£p}£p~¤s~¥v~¥x}¤x|¡x}Ÿzz™wuqn‡je|bXlSN[GDF9?=1:8,45/45/45/560560671761761872983;83<94<94<94<73<73<41<41;30;3083072/61.61.5106216213123121/00./1-.2,04+.4+.4+.2,.2,,2,,2,,3/.3/,3/,40-21,21,32-32.22022032032051051.61.61-;30<5/>5.?6-A7.B8/E8/C9/E;2E;2E;2D:1C90B8/A60@5/>3/>3/=2.=2.=20=20>31>31@51F42M02T,4X)3W(2R)1K,1B30:6-77-:6*B4)M2)X/)^/)f:1j;3s<7z=:‚<:†<;‡;;†::‚;7>8@:‚C<ƒC:ƒC:…@9„@7‚C2‚C1ƒB0„?/‡>/ˆ<.‰:-‹9-Š8,‡8+…9+‚:+~=+x>*v?*x=+9-|/'‚8/„>4w4+t6+}A6}C7E:€G<‚I>„KB„KB†MDˆRH…WJ}`N{iQ€pYu]‚|bƒ†i†“uˆ|„¢~‚¦‚‚ª…‚¬†©„¥€{ž}z™wz’p{lyŒlwŒkumsŠmm„gkd`rZ[hTR[JIM>@@4;7,70&5*$6('5''3''1'&.((,+)++)+-*(,+(,+*,+*,+++-,*-,*-.*+,#$3+(50*85,BC5UZFfpWn}^tˆeqŠbuex˜ivšjs™htšiwŸkz¢nx lwŸmx n{¢s{¥u{¥w|£wyžuzœww–tsŽom†hd{_WkPN[GCC7>:195,560671671671782782872983983:94=:5>;6>;6>;6>95>95?74?74>63>63;63:5294194184195495484384343151240/6-06-.6-06-.4..4..4..4/,40-40-40-51.32-32-43.43.43/442542540841850:51:5/>71>7/@7.A8/C90D:0G:1H;2G=4G=4F<3F<3E;2C90B71A60@51@51?40?40?42?42@53?53@72D63I35P16T/6S.5P05J22C52=90<:.=9-C7)I6(Q3)W2)]2+d3,l50v64}77‚87ƒ77ƒ77~75}:4}<6~?8€?9ƒ@8†?;…A8C4€C1B1ƒ@0…=/‡;.ˆ:.‡9-…9,ƒ9,‚:,<,|=,y>,x?,|=,‡4,‹2,¡LE¨XQ‹A8|90‚F;€K=yH:zJ<{M@|NA}OBQE‡UJ‚_LrkOptS|uX‡w]yb˜iŸ‹s ”z—–z‘œ|‹£ˆ¨ƒ…§‚€¤~{Ÿy~™vƒ‘p…Žo„pŽpr{ŽpwŒmtˆlj~cfv\_hSV[GOM>GA3A7+=0';,'9+(6+)3+(/,',-'+-().().(+-(-,*/+*3)*4(*7'*7'(3($<3,E>4IG:QR@^cMgqVjyZoƒ^k„\l‰]p‘bq•eo•do—eršfuŸmrœjq›itžnx¢rz¤vy¢vyŸvvštw™vu”rokk„fc|^UlON\ECC7@91;4,782782782782893893:94:94:94;:5>;6?<7@=8@=8@;7@;7B:7B:7A96@85=84=84<73<73<73<74<74<74;639529338308/09/.8/080.80.80.61.61-61-61-52-63.63.63.74/54/540651841952;74<94=84@93@70A8/C90D:0G:1H<0I=1J>2J=4J=4J=4I<3F<3D:1C90B8/A81A81@72?61?61@72A83A83?74@85B86E:8G96I:7H96H94E80E8/E9-E9+G9,I9*K9+Q7*Z/&d/'n3-z63ƒ98‰;9‹;:‹=;‹A>‡@:ƒ>7<4:3‚<4ˆ=8‰@9ƒA5B3‚@2ƒ?2ƒ=1„<0;/€/|>/|>/|>/}>/=/†9/1+£;8ÎkfÛ~y­ZTD=ˆLAN@tJpQ?qR@tSB{WG‚[J~eOmsOpzU„y[˜u_©oc¶mf¾qk½wo»‚w±Œz§—~žž‚–¡¡~…y…™vˆ‘r‹rˆ‘r…“r”t}•sx“pt’pm‹ii„edx]]kRV^GMP;ED0B;+@3+?2,;0,70*30)00(./)./)01+30+7-,;+,?),D',F%,D'+F5-LC4VP@[XE`bLgmSjxWj{Wl‚[g‚Wg†Zl^o“cn”an–bršfskpšjo™irœnvŸsy¢xxžwvšvs—su—vs’rn‹lk„db{[UmMN\CGH:E<5@707827828938938939:4:94:94;:5<;6?<7@=8@=8@=8A<8A<8D<9C;8C;8B:7?:6>95>95=84>95>95>95>95=85<73:52<41:0/:0.91/91.91/91.91.72.61-61-63.63.63.74/74/74/540651952;83<94?:4B;5C<4A8/B:/D:0E;/H<0I=1J>2J>2K>5K>5K>5J=4F<3E;2C90B8/B92B92A83A83A83A83B94A:4@85A96B;5D=7F=8G<6K<5N;4M6.O7-Q6+Q6+R8+P9+P9)W7(f6*r6,~;3‰@9•D@›HDŸJGŸLF QJ™LDŽD;†<1„7-†8.Œ91=6ˆ>5‡>7†=6…<5…<5=4}=3z>3x@3vA3x@3z>3<3ƒ:3‰84’42˜(&³=;í{zþ•’Åhc–G@‰K@xH:nMhV@lWBt[E`L€hP{rQ…vUžt\´l^É__ÓV\ÙQ[×T\äouÙzx̆~À€µ•€«•}£’xŸvœŠrœŠt™u•u‘‘u‹‘u†‘s‚‘r|‹ny†ju{anpZgbN_TBUE5R/(9/&7.'6/'92*;0*>/,B-,G*,I),L'.I)*TB6YQ9B?:D?;D?;E@8E>8E>8B;5B;5B;5B;5B:7B;5B:7A:4A75A83A75@72@64>71>71>71<71<71;60:5/96185074/74/961961961:72<73>93A:2B;1C:1D<1F<2J>2L@4L@2N@3N@5N@7N@7L?6K>5J=4H;2F<3E;2B90B90@91?80?82?82@93@93<5/MD?M@:K:3T?:S73O0+a<6\3-`5.`4+^/'^/%f6,m=1q=0ŠJ>G;—I?ŸKAŸF>›>7›>7žD;¦ND¥QF©WK«YK¥OB™A5—;0›>6“98’:9Œ65†52†84„?8|@6r>1rB4oA2q=0w;1‚72Œ43’-1š',ÈHIèbaÅEDÍWUáyv«VO†F<„VFnS>i[AibFjeHj`En^D|dLjT’bL´l]ÑnhÛX]à;Lç-Eò+Hõ0Lö@YìI\ä[eånrâ{|Û€}Ûƒ؉‚Ã~w½wº„x¶†x²ˆx­‰y¨‹y¥Œxš€o™~m˜xi“ocbY„UM{IBxA>u:=8?>9>=8>=8A>9A>9B?:C@;D?;D?;FA=FA=E@8E>8E>8E>8E>8D=5D=7C<4D;4C:3B92B92B92B92B94A83@93@93>71<71<71;6096185085074/961961961:70<71>:1A:0B<0C;0E;/I=1J>0L@2L@2N@3N@3N@5N@7M?6K>5I<3H;2E;2E;2C:1B90A:2@91@93@93A:4B94E:4J71L.,V..j68u9;{;;…EC„E@…IA…IA‡H?ŽIB™NH¡PL¢OG“D7”B4šB6 D9 >3œ7-œ7-Ÿ=2£C5œ@1™@0 D5¤G6§F6®H:¶NE´LM¯HL¥@D™9;‘98>:ƒ@8x>3o>0zI;…LA„?8…-,’).³9DÒLWÜKNßMMÊ>=À@?Ð`\³YQ„@5ƒUEyaIe[@_^@ihIslOvgJ~dK–cN¼dXÖ_[æUZëANò,Eÿ&Eÿ&Hÿ'Iÿ.Nù3Nò7UE8[O7cZ;hbBifEnrO{ƒ^z‰bt†^r‰_p‰_p‹`r`u’dw”dw”dw”fs‘kx–t|—x{•x—}„œ„…‡ƒ›…™ƒz’|rˆqm„jhd`y[TmMP`ERSCVPDUOC8938938939:4;<6=>8?>9@?:@?:@?:C@;C@;C@;C@;E@7/@9/C:1C;0E;1F<0I=1K?1M?2NA1P@1P@3P?5M?4L>3K=2I<3H;2E;1E;1D;2C:1B;1A:0?;2@<3A=4D;4VE>U4/j25ŽAG­LWÃUbË]fÆ_c›B>—I?–LAœND¬QL¾URÌOSÄLM¥@6B0 @0¥?1¥;.£7+¤8+§=/«E6¡=-˜7$:'¥>-¬A1²C2·E;§02¯:B¹DL½LRºMR­KL–A>‚71{8/v6,x2*„1-œ37¹=GÕGWèM[âFIÏ53Ð:9½31ÈNKÆc]•K@Œ[J}cLk`DgdEtoOpSgLhN°hYäbbõQZôDQö7Iþ2Kÿ2Nÿ/Mÿ+Iÿ2Oü0K÷1Jõ5Nó5Nð2Kó3Lô8Qò@ZïC[îF_íIaëNcêQfèTjèVkåSjäRiäPjäNiçNlëPoòSsóVuþg†ñ`}å[uÕUlÎZmÉdr¨R]r-2^&'Y0,W:4Q?5C;.:8)>B3LN9VO3aV6e_?heDquT†e€‹ixˆdxŒiu‹etŠdr‹cvŒeyhzizj€•v„›Šž… Š’£—¨–˜©™–¦™‘¢’‡˜†zypƒmhc_vYTmMPcGTWDYVGYVG7827828939:4;<6=>8@?:A@;BA5G=3F<2E;1D:0D:0E;1E;2D;2E<3E<5E<5@91?80=82<71;60;60:5/:5/:70:70;7.;7.?8.@9/C;0D/J>0K?/M@0NA1P@1O?0O?2O>4L>3K=2J<3H;2E;1D:0D;2D;2B;1@<1@<3A=4B>5G=4S81[*&Š;@¾T`ÙTeæTgãUcËJO 41—;0’?1™A3®F=ÅIGÕBHÎ?C±B7§F5©B3¬@3¯?3°>3³B4µE7²G7©B1£<)¤;(©;*«:*®6&­3(¶97º9=½7>¼7<¿`õ@aøCf÷Agõ?eõ?gø?hüCmÿErÿIsÿOwÿQuþUvòSqçTpåaxÖfv·Wb~17j0/Y2+P8,G>/>A.;D/?G/QL/_T8g`CokN||`ˆŽr‡‘v~‹q|Œq|Žt|szqzŠm}Œoƒ’uˆ–|•£Œœ©•£®¦±¡¬´©±¸°°·°«µ­¡«¢•¡•ƒ‘‚s„qh|c]tXSlNQdHRZCWYDYZH671671782893:;5<=7?>9@?:BA5I=1H<0H<0E;/E;/E;/E;1E;1E;1D;2D;2A:2@91@91?80<71;60;60:5/;7.;7.;7.<8/?8.A:0C;0D/K?1M@0NA1NA0P@0O?0O?2O>4N=3K=2I;0G;/D:0D:0D<1D<1B;1@<1A=2A?3B?6K=4\50w32­LSÛ]iæM_å?S×6E·&+¨1+7(“;'—<)¬@3ÃD=Ô>?Í;<±?5¨B4ª@3­>3²@5¸C9¼G=»I>¬>/ª?/¨=+¦;)ª9)°:,·;/¼<1ÊFAÏEBÐ>?Ð79Ö7<ÞBEâLNÞSPÄC>ÇLDÍTLÔSMÙKJÜ@Cà5>á27Û4.Ú7.Ð1+Ï:4¿84³@9µ[P–TD{N9‚bI†kP…aG’[F®gUËrdçmhêEKò:Dê9Cç=8@?:@?:C@;DAGB>GD=GD=HC=ID>IE2J>2G=1G=1F<0F<0E;1E;1D;2C:1A:2A:2@91@91=82<71<71;60;7.;7.<8/<8-@9/A;/D0L?/M@0NA0NA0O?/O?/O?2N=3M<2L;1I;0G;/F90C9/C;0B<0B;1@<1@>2A?3B?6N;4n95—FEÄY_ÛWbßCQÞ8FÔ3;½++­1'¡8%˜:!—9 ¤;&¶>.Ã:2¾71§7,¢:-¥9/§7,¯:1¸A9ºE<·E:®>2­?0§<,¤6'ª6)¶>0ÃD;ÊG=¾8-Î@6âE@ìBBô=Aó9>ë27Þ.0Û75âGBèSLåNGÜ=9Ù10ã/2ê67Ù1(ÞÒA>ÒGDÝOMëWWíNSïDMò9Gö5Fø1Fø.Dû1Gþ7Nþ8Sý8Tþ9Wÿ:Xÿ;\ÿ>aÿAeÿCkÿjý?mú>nø>oô=mö:jÿHrÿ;aÿ?dÿJpÿKn÷NmïUoãYpèr‚Ä`j˜INt:8\6-P9+PC2UM:^QAreUˆ|n•‚Ÿ‘¦§Ÿ¡¦Ÿ–œ˜•ž›ž§¤¦¯¬¦¬ª¢§£¦¨£µ´°ÂÁ½ÌÉÂÑÎÇÕÐÌÕÐÍÔÎÐÕÏÓÑËÏËÆÊ¿½À°²¯˜Ÿ˜€Œ~m~kau\XoSVjNS`FV`EX`H560560560671782893:94;:5>=8>=8A>9C@;DAHC?HC?HE>HE>ID>JE?JF=JF=MF2@@4Q:2r1/©KLÁRX»>D½06Â03Á//º1)ª2"£9#>"™;›< ¡=#¥;%¤6%ž6) 8-£6/¥4,®92·@:¸C<²@6±B7­A4¨Å@7Ã>-Ï>-Ù5+á*&í"%ú%+ÿ+2ÿ.4í)*ç.+á3,ß4,à3,ä3-é0-ç2+Ú2%Ö6&Ð2&Ï7,Å6.½>7È`UÒq¦eSVBŠM:£WIÈf[ßd_çRTèCIõFMîAEß??Ô@<É@8Æ?9ÑFAãMLïJPô@Kù9Hý7Hü5Hø3E÷6Gú;Mû9Qü7Rû6Rý6Uÿ6Xÿ9]ÿ;aÿkÿ?mÿ@qÿBtÿBuþBuüBtùBpÿFmúAaþEeÿJlþKkÿVtÿ_zõ]vòj~æp~Ómx¯]aƒCAg6/hB7sUJye\Œ}v£–­£¡²®«¶¶¶²¶¹ª¯³°·½¶½Å¾ÁÊÂÂÊÄÃËÉÆÍÕÎÖÝ×ÛâÚØçÝÛéÝÝæÚÜåØßä×ààÔÞÙÏØÊÅ˺ºº¢§£ˆ’‡t‚qexb\sY[oS[jM\iK]gL561561561560561671983983<;6=<7@=8B?:DAHE>HE>HE2G=1E=2D;2C:1C:3A:2A:4@93?74<73<71>7/>7/<8/=90>:1B;3C<2D=3H@5I?3L@2MA1NA1P@0O@-O@-L?/L>1M<2L;1J91I81E80C90@9/>:/;;/<<0=>0>?1A?0S8-‡<7Ä\[ÊZY®86«.*²1+¯/&­2#¬9&¬B*ªF,¦D)£A&£A&£=$Ÿ9#¡:+£;0¦:0¦7.­<4¶C<·E;±A6«=0©=0©;.­=1»E9ÇMBÅE<¼8,¿6$Î;)Ý;.æ3,ñ+*ù(+ý&+û%'ø**õ.+ï2,ë4,è3*å3)ä2(à3%à:*Ñ2Ü?0Ï7*È8-Â?5³A6Ñl`¿gY¥RB¨NCËcZçhbæRRêAFôCKë>Dá;=Ö<<Í@9Á>4¶8,¹6.Ä94âHHé@Eð:F÷;Iú:Iø8G÷;Iû?NþAUÿ?Vþiÿ?mÿ>oÿ>pþ?rú@rø@t÷Aq÷CjÿMmÿSs÷JhìAaýTsÿg…ÿe‚÷]wï_xèg{ÜpÆqx§gg^X{ZQ—~wª™’¾°­Ä¼ºÆÂÃÈÇÌÇÇÏÃÃÏËÊØÍÉØÑÊÚ×ÎßßÔäæÛéêàëíãëïåæòèæôèèðäæîáèíàéêÝçäØâÑÊÑÁ¿Â««©‘–z†xlzibu_`rZcqWcpTcmT21/320542651875984984984;:5<;6==5??7AA9CC9EE=EE=HH@HH>HHENE>LC4J@4KA5MC9LB8F=4B90E<5C:5@93@85@85@86<74<42C97B94A96>95?:7>:7?;8@<9B?:D@7G@6J@4L@0O@-O@+L?,G@.G@0I;0K81M53L76J88F;9C@;6904.«=.­<,³=/¾D7ÅG;Á?2º2&Ç9+Ì8*Ð8+Ö8-Ü8.â5.é3/î1-ò/-ô.-ó0,ñ1,ê5,ä8,Ý:)Û:(Ü9&Ô3Ð3"Ï8'Æ7'¾6(ÂB5ÏSIÈMEÐTLá[Xî\\ðPRí>Cò9?÷?GêAFßCDÖBBÈ?9»<3±;/°HH9H?:F=8B;5D:8A96?74?74@85@85=85<73=31=31=52=85=96>:9>=;>=9B?:D?9G@6J@4M@0O@-P?+L@*B?,B?.F<0H:1J65I56F35@65A=::=6;>5@@4E<-J9)^B4€L>®QB«;- 2#¡6&£:'ž7$ž9%£>*¡;%§<(®?,³@.¶=,·9*¹7)¶8*ª9)¥:*¥:*¦<,©?/«A1«B/«@.®?.«:*²=,ÀF7ÆH:Á?2¼8+À6)Ë7+Ï7,Ð9.Ñ;-Ô8·;1®:-ª<-«=.¶E5ÆL?ÔNEÜGCä@Aï?Bû@Iþ@JùDM÷CLúDPÿFTþCTú?Tü>XÿBaÿGiÿCiü?iù@jùBpüFvþJzÿK|ÿJzÿHtõKpñQsõ\zù_{úWvüNqýEkúDlïEjÚKiÈ^r±nukLI~t°–‰Ì²¥äÓÉìãÜëçæêéîêçòíâóöãùûáúÿâýÿçÿÿìÿÿñýÿöþÿùûþú÷ýúõü÷ôúõòøïòôëîñèíïæëæÝàÜÖØÊÆÅ´³±ž ›Ž“Œ‰…‡‚•‡‰€†Œ~/.,0/-10.21/43/651762761:94:94<<4>>6@@6BB8CC9DD:IF=JHGG=EE93>:1>:194.:5/;60<92>;4?<5?<5@<3E>4G?4I?3L@2O?0P?/P?-L?,<;&:=(?<+A;-B71A62>42;30=84B;5H94N2.Y,)l/.ˆ<>¢GF£;0¢2$Ÿ1"¤9)¥<)Ÿ8%ž7$¢;(¤;&«>*±A-¶A/¹>.¼=.¾:-¾-­>-­<,²?-°8(¹>/ËK>ËG:¼6*º2&É9.Ð6,Ô6+Ô8,Ö:.Ø:/Ý9/ã6/é4-ð0-ô.+ô.+ð0+ç2'Ý6&Ô7$Ò7#Ý8%Ü5#Ú9'Ú>/Ó=.È6)Å9,ËA7É<5Î?9ÙEAåKIêJJéCCí@BëCCÞCAÕD?ÍB=Â=4¶:.®8*«:*¬;+¬8)ÀD8ÕNHÞJHâ?Bê=A÷BKÿHRô@Iô@IùCOýGTþEUú@Uû?XþA_ÿEgÿCiÿCkÿFpÿIwÿK{ÿL|ÿJzÿFxÿHwÿKtûOuÿZ|ÿa€ýUvñCdûIkÿTvÜ?\ÍI`Ø{†¸||aC;{p®ŽÕ³§óÛÑûìåúòðù÷ú÷ôýôìûúëÿÿêÿÿìÿÿîÿÿóÿÿ÷ÿÿûÿÿýüÿþûÿýùÿúøÿøöÿôøýòöûðôùðóðçêåßáÓÏξ½»­®©¢¥ž£™£—£«žž¦—›£–/.,/.,0/-10,21-43/54/650983983;;3==5??5AA7BB8CC9IF=JF;LI:MJ9PK8OL9QL9OL=LJ>QPL^]bmlzzz’‚¡€‚¨€€¦{u—rkŠe_{YSmTLdMEZG@PB;2?=1@<1?;/A;-F?/H?0K?1M@0O?0O?/P>0L?/@=*?>,@=.?;/?;2>93=:5:94<94E:6M51V-+j)-†18ž8C¬=C§8/¥7(¥:*ª?/¨?, 9&¡8%¤;&¥:&«<)´?-¹@/¾?0Á=0Å=1Ä>2½?3¶=2²9.®8*¯9+°:,²:,³9*¶;,º<.ÄB5ËE9È>3¿2(À2(Í9/Ö5+Ù5+Ú6-Û7-Þ7.â7-ç4-ì1*ó0,õ/,ô.+ï0(ä2&Û4$Ò5"Ð5!×2Ú0Ú4&Ü<.Ö=/Ñ:/Í=2ÒD:Ä5-Å60Ê;5ÙEAãNJåKIÞC?Ö=8Ó@9ÎA8È?5¿=0µ9-±9+¯9+±;-¬4&½?3ÑHBÙHEßABæ@DôGMýNUð?Gð?GöBMþHUþHWüBWú@XüA^ÿAcÿCfÿFmÿIrÿMyÿO|ÿL{ÿIyÿDvÿN~ÿR}þKrøMoÿVuÿUu÷MjñGdðLgÒ>VádtþŸ§ÓŽd92lJ@¥ypÐ¥œõÔËÿéãÿôòÿýÿÿüÿùóÿüïÿÿïÿÿðÿÿòÿÿôÿÿ÷ÿÿûýÿüûÿýúÿüøÿúøÿù÷ÿö÷ÿôøÿôøþó÷öëïìãäÚÔÔÉź¹´³´¬±´©°¶ª¶¾³°¸­¬´©10,10,0/+0/+10,21,43.54/77/880::2;;3>>4??5AA7DA8IE:LF:NH:PJ:RK9RM:SL5M@7K>5F<3B92=82:946;47<59<5>:1H4-Y2-x89”?D¦>E©8<ª;0«=,«@.¬A/©@-¥<)¦;'«>*§8%®;(¶=,¼=.Á<-Å;.Ê<0Ê=3Å?6¾>3º:/·7,¸8-¸8+º8+º8+»7+ÇA5ÍC8Æ9/Á1(Æ3)Ì8.Ï5+Û4+ß3)á4-â6,ä6-ç4-í2-ð/*õ/,ö/*ò/)í1(ã3&Ù4!Ð5Ï4×2Ù/Ø2$Ø6)×9-Õ;1Ö?6ØE=ÖF>Í@7É<5Ë@9ÖKDÙNGÒE>Å;1Å=1Ã=1ÀEòBLûIUÿJYýFXúCYûC]û@_ûBdÿElÿJsÿNzÿO|ÿLyþIvÿJwÿTÿT}ýJqùImÿStÿVtøNiëD^äF]êXkÿ–¢ÿµ¼óžŽHFk.)¦keÍ–óÈÁÿãÞÿñðÿüýÿýÿü÷þþöÿÿöÿÿøÿÿøÿÿúÿÿüÿÿýÿÿýüÿüùÿûøÿùøÿø÷ÿöøÿõ÷ÿôøÿôøýñóóéêäÜÚÖÑÍÍÊÃÉÉ¿ÊÊÀÊÍÂÉÐȾȿ¸Â¹65154/32.21,10+21,32-43.66.77/880::2<<2>>4@@6CA5JD8ME8OH8RK;TK:TM=SK>RKAQLIZW^li|~¸–™Ì™žØšžÞ™˜Ú”‘ÔŒŠÉ†…¿~µxv§nk–fe‡^[xWTiMKYDAJ>*F@*G?*H@+IA.IB0IA4HB6HA9G@:K=?ž52¨<0ª<+ª?-ª?-ª?-©>*¬?+°?-«8%²9(¹:+¿9-Ã9,È:.Í:0Ï<4Ë>5Æ;4Â91Á8.Á8.Â9/Â8.Ã6,Æ8.ÑC9ÑA8Ã0&Ã,#Ð7/Ö<4Ó2*à3,ä1*ç2+è3,ê3-í2+ð/*ó-*ö/*ö/*ò/)ì1(á4$Ú5"Ñ6 Ð5Ø7#Ù3#Ö3$Õ3&Õ5)Ô8,Ô<1Ö?6ìYQáRJÔIBÌC;ËF=ÍJ@ÈE;À>1¼:*½;+¼:*¹:)·9*¹;,¼>0¿A3ÁA6Â=4Æ=7ÏA=×EEÝGHäIMìMQèBFê@CðBKùKTþN[üJZüF\üF_øA_ùBaýEiÿJpÿNwÿOzÿNxÿLvÿQ{ÿR{þOvýOtÿVyÿ]{ÿSoîD^úTlîQd÷dtÿ’žÿ‹•ôƒ‰Ç`d§MMµjgΊXÿÞÙÿïîÿúúÿüþýûÿýúÿþûÿÿûÿÿûÿÿüÿÿûýÿûûÿûøÿûøÿüùÿûúÿûúÿøúÿöøÿó÷ýñóùíïòææçÝÛߨÒÛ×ÎÝÛÏàÞÒßáÖÜãÛÏØÓÅÎÉ=:5;8185063,41*41*52+63,74-85.:70;81>;2?<3A>5C?4KC8MC7PG8SJ;WK;UL=UK?SJCSJK]Wcomƒ‚‚¦’”Å› ÚŸ¦ê¢©ñ¡¥ïž ë™›å•˜Ý”•֑ʉ‰½‚ƒ±zy¡rq‘fc~ZWlPN\IGRFCNCAL??K==G;:@;9:=:5?;/C=-E@,F@*FA+EB/EC4CC7BC;AC>@ACBLD@NEEOCHNAIL?IJ?HECHAA=2L:.gF7ƒOAŽJ=?4”8+¥>/©>,«=,¬>-­@,¯@-°?-²=+±8'¶8)½9*Ã9,È8-Ì8.Ò91Ô;5Ï:4Í:3Ë81Ë81Ì92Í:2Ì70Ë6/Ô=6Õ>5Ò91Ì2(Î4*Ù<3Ú<3Ø4+ä1*é1)ì1*î1+ð0+ò/)ô-(ö,(ø.*ö/*ñ0)ê2(â5'Ù6%Ó6#Ï7"Ô9%Õ8%Ó6%Ò5&Ò4(Ó7+Ò8.Ð7/ãNGèXPçZSÚQIÌG>ÄD9¿@7¹>/¹<*¹<(¹<(¹:'¸9(º;*À>0ÃA4ÉD;Æ@7É@:ÑFCÕIHÖHGØGJßIKæFHèBDíDKõLSüP\ûO]ûL]ûK`öD^÷DaùFfýIlÿNuÿOxÿOxÿPy÷UzóUxôTvüYxÿ]{ÿZwûQkòI`ýWköUgêM^ö^mâKZæTaåTc×XcÁefȃ~å«§ÿÔÑÿëéÿóôÿøùÿþÿûüÿûüÿûüÿüûÿüúýýùúý÷÷ü÷ôÿú÷ÿûøÿüûÿûúÿøúÿóõýîñúëîðáäéÝÝäÙ×âÙÔæßÕëçÛñíáññåíòìÜåâÏØÕ@=6>;4:7074-52+52+52+63,74-85.96/;81=:1?<3@=4B>3JB7MC7SG9VJWK?TICSJM^Xfpmˆ„ƒ«“–Ëœ¤ã¤¬õ§°ý«°ÿ¦¬ú¡§ó ¤îŸ£ê¡á™›Ö•–Ì’’ĉˆ´zxŸji‹`]|XUpRPhOMeOKdKG^FBS@=H?:>?:6@<1A>/C@/CB0BC3BD7?D=>D@CVDHaMRhV[n\br`dobbje`dfXWaJDlG>„TF•XF“J7‘@-™>+¨A0®@/®@/¯@-°A.´A/²=+±8'µ7(¼8+Â8+È8-Í6-Ñ7/Õ81Ø;4Ò72Ñ83Ð72Ò93Ô94Ô94Ó83Ó6/ÞA:Õ8/Ñ3*Ö8/Ü>5Þ=5Ú91Ý6.ç2+ë0)ï/*ñ0+ô/)÷-)÷,(÷,(÷-)ô/)ð1)ê4)á5'Ú7&Ô7$Ð8#Î7"Ï8%Ï8'Ï6&Ð7)Ò9+Ñ7+Ï5+Ì5,ãNGód\ë`YÕOFÄA7º;2µ9-¸>)¸>'º='¹;%º9&½9*À2ÊD;ÊA9ÎE?ÕKHÔMJÎGDÍEEÖHGãIIæCDéFIòMSøSZùR\÷O^úOaôH^õG`øGdûIiÿNrÿQxÿRyÿTzðUuïZxù^}ý^|ùTrõMgùOiÿYnÿ[mÿctðM^øUfôO`üUgõL_äR_À^_»vqל˜úÉÅÿåãÿííÿôôÿÿýüÿÿûÿÿûÿÿûÿÿýýýýûüþøøýøõÿøõÿùöÿúùÿúùÿöøüðòøéìôææëÝÝèÚÙäÙÕèÝ×ðèÝùóåÿúìþþòõúöãìëÔÝÜB>5A=4@<3>:1<8/:6-84+84+62)62)72,83-;60>93A<6E>6I@7MC7RF8UI;WJ:XK;ZLA[NHTIMXR`gd|~§’Ê— ã ©ö¥°ÿª³ÿ«²ÿ¬´ÿ¬²üª±ùª¯ó¨¬ì©«èŸ¡Ú™šÒÁ±ur¡he’]Z‡XR~XQ{YQxVOpNI`C?M?:@?;:B?8>>4AC6BE:?D=:CB>FH?LUEWoSf„bqŽisŽtvx„o€_mŠ[c“XZžWU¦VM¦M?Ÿ@.:% :$¨=)¬=*®?,±@.³@.´?-¶=,¹;,º6'¿7)Ä6*Ë7-Ñ7-Ö8/Ú91Ú83×84Ø95Ù:6Ø93Ø61Ø61Ú83Þ;4çD=à=6Ú70ã@7þ[Rÿlcÿ]Tç?6å3)í2)ñ2*ô/)ô*&õ(%ø((ø**÷-+ó0,í2+ã1'Ú0#Ô1"Ô4$Ó:(Ì;&Ê<(Í<)Ï<*Ò:,Ò9+Ò8,Ñ7-Ú@8Ï81ÜGAôc^åXQËB<ÆA<·4*·:&¶<$¹<&º<&½:(¿:+Ä<0Æ>2Ç>6ÌC;ÙPJßXTÔNKÃ?;À?:ÏHDßIHâGEæJKïPTñRWïNVîLYñL\ùRføOf÷Jf÷JhüMnÿQuÿRvýRvôWvîXuõXwû[wÿ\xÿZsÿWnÿVkÿbuýVgÿ\mÿ[lñFXôDXÿQeîVeÆfgªieʋ網øÒÏÿêéýïîüø÷ùýüùÿÿùÿÿúÿþüþýÿýþÿúúþöôþùõÿû÷ÿùöÿöôÿööÿõõöèèæØØãÕÔÞÐÍáÖÐñçÞüôçþøèÿüéÿÿóúÿùèñðØáàC?6B>3A=4?;2=90;7.:6-95,73*73*72,83-:5/>93A<6D=5H?6LB8OE9TH8VI8WJ:YK@ZMGUJNXP_fay{¤ŠÉ”⛦õ£®þ«´ÿ¬µÿ®¶ÿ¯·ÿ°·ÿ¯¶ü¯´ø¯²õ©ªë¢£ã˜˜ØŒŠÉ€»uq®jf¡d_™`WŽ`VŠ]TVPtMIbFCTBAIAAC<<:AB=FEACD?A?@DBEOMRWVdch†quš}¢ˆ}Ÿ”|œ |˜¥pФ`u¬Yi¶VaºQU¸HF°@4¬;)¬<&®>(¨8$¨7%¬9'®9(±9(²9(µ7(¸6(»3%Â4(Ê7-Ó:2Ù<3Þ=5ß<5ß<5á>9ß<7ß<7á>9åB=èC=èC=æA;å@:æB9ä@7Ü8/Ô1(Ø5,ëH?ÿZQñ@6î6,ë,$î)#ø-)ÿ//þ,-ö((ú0.õ4/ï61ç6.Þ3)Ö2&Ô2%Ï6&Ë:'È;'Ê<(Í:(Ï9*Ð7)Ñ5)Ñ5)Ô:0Ï5-Ô=6åPJåTQÛLHÍB?·1(¼;(»=&½<'¾;'¾9(Á9+Â:.Ä:/È>4ËB:ÕNHÝXQÓRLÃD=¿C;ÌHCÛLHßJFåMLëSRíTWëPVéNVìOZ÷VføUhùSkúRlþQoÿRsÿStÿRuòMmøUtÿ\|ÿ_}ÿ\vÿUoûRiûReüUg÷RbÿZjÿZjóN^øScþYißS^¶`_—^W¶}Ù©¥îÈÅýáÞùééýøõúüùùÿÿøÿÿ÷ÿýúþýÿÿÿÿûûÿö÷ýøõþùõþùõþöóÿ÷öÿõõöêêêÜÛäÖÓÝÐÊßÕÌïåÛüõåÿùçÿýéÿÿïúÿøèñîÛáßFB7EA5C?4A=2?;0=9.<8-;7,84+84+83-83-:5/=82?:4A=4F?5JB7ND8RF6TG6WG7WIB[FKpW]‚cu—s—¤{§®«²{£¸vœÀp“ÂcƒÀSpÂF^ÐK\ÑHRÄ<<º5.¸9*µ<'°<%°;)°;*²:)´;*·<,»<-À<-Ä<.Ä6*Ë8.Ó<1Ù?5ßA8á>7á=4ß:4Ý84Ù40Ù40Þ93çB<ìE?éB<ä=5ã<4Ü5-Ø4+Û7-Ô2'Ì, Ö6*éG:õK>ò@6ï4-ð-)ö,*û-/ü+.ø*,ð*)ì/+é3/ã5.Ü4+Ù2)Õ1'Ñ3'Í7(Ë:)Í:(Ð:)Ò;*Ó:*Ô8+Ô8,Ñ4+Ö<4Õ:5Õ<7åONíYWÙEEÂ3/Á<-¿<(À;*À;*Á9+Á9+À8,À8,Æ=3ÇA6ÏJAØUKÓSJÆG>ÀD:ÇG>ÖKDÙJDÝLIäSPåSTâPSâMSåNWòXdöZhý[pþZrýUoûQnýPnÿQrýGmÿPvÿZ}ÿ[{ÿVrýSmþVmÿ\mûXiøZhû`nö`lí]gïfnìfmÉ\_ ]W{OF˜mfÁ˜”ݺ¸ðÔÓôàßÿõôùù÷ùÿýùÿÿ÷ÿÿúþýÿÿÿÿýÿÿøùüøõüùôüùôýøôÿùöÿøöùîìïäâåÚÖÛÐÊÜÒÈîäØýöäÿûèÿýçÿÿíúýôêðìÞãßIE9HD8FB6EA5B>3A=2?;0>:/:6-:6-94.94.:5/<71?:4@;5C?6HA7LD7OF5SF5UE5UH8VJ>YNLXNW^Zqpp–€†ºŒ–Ô•¡é©õ¨°ù©±ù­³ý°·ÿ±·ÿ²¹ÿ´¸ÿ´¸ÿ¯±ü«­ø¥§òŸžê—–⌋׃€Í}yÅum¶pgªf`ž_ZYX„QQuGGcB?R=5DH8BT=C`@EnCJ€OU—^gªgx½kÉnšËo˜ÉiÈ`ƒÉWxÆIgÄ;UÆ2HÙAPàDOÑ;=Ç82Ä?0½@,±:$­5$­5%¯6%³5&¶7(½9,Ã;-È2Ñ5&Ë.éF7óI<ýH?ü<9ô,,ñ#%õ')û/2ñ-.ì0/ä2.Þ3,Ú1*×0*Ö/)Ó0'Ó7+Ò9+Ö:-Ø<-Ú>/Û?0Ü@3Ü@3Ò6*æLBåJEÎ50ßGFóZ\ßIKÕA?È2ÈF9ÏOBÎPDÆH<¿C7ÁC7ÎH?ÑF?ÕJEÛPKÝROÙMLÚKMÝLQëX`ó[güaqÿauûWoõNhõMgÿMmÿOuÿRyÿUwÿTqüTmý[pÿcuÿizÿguúboõamídnãflÙhjÎghµfa^TeG<^U©ˆÍ«©æÈÈïÚÙÿóóùøöùýüøÿÿ÷ÿÿûÿÿÿþÿÿüÿÿùüþú÷ûúõûúõþûöÿýùÿûøþôòøíéêßÙÞÔËÝÓÉíæÖÿøæÿþèÿÿæÿÿëøúïêïèãæßNH:MG9LF8JD6HB6F@4D=3D=3?80>7/=60=60=60?82@85?:4C>8EA8LD9NE6RE4RE2VF6VH;ZMGVMR[Whlk‹~‚±Š“Δžãœ¦î§­÷©¯ù­°ý¯³ý°³ÿ°´þ°³ÿ¯³ý«®û¨«ø¤§ô ¢ïšœé“•⌋ن…уÉ|v¼mk¬dež_a’Y[„RQsNHbWFY_CQmBL‚FP˜LV¬U^¼[dÊZhÙRpâRußTuÙPlÒJbÍBWÇ8JÅ.?Ô8EãCMæGLØ>>Í>8ÌF:ÃH6·@,·>-¸=-º<-½>/Ã?0ÊB4ÐD7ÕE:ÙE9ÚB7Û>5Ù;2Ù6-Ù5,Ú3+Ù2*Õ0*×4-Û60Ý90ß80Þ7/Ý6.Ý6-Ö/&Ú6,Ø8,Ï2#Î2#Ò9)Õ>-Ô;+Ø<-èD8øJAýDAù56õ*-ö*-÷/2÷67í55ã41Ú1,×0*×/,Ù0-Ú1.ã81ä91ã;2â;2á=1ß=0Ü?0Ú>1Ñ7+ïWLøaZÓ;6Ñ;:æPQÜFHæPQÏ<4Ê:/Æ8,Å9,Ä:-Ä<.Ä<0À:.¾:-¾<.ÃA3ÇH9ÇI;ÂD6¾@2¼>0ÉF<ÊE<ÎIBÕPI×RMÕNKÔLL×LOéZ`ð^hüetÿhzü]qóOgóMeýNkÿVzÿTxÿRrøTmö]qûhxûjw÷erüetó_mì`kêktßruÃjfªd\žla}fVYI:kXJ”{t½ œÞÂÁîÕØþîïûõõûûûûÿÿùÿÿýþÿÿþÿÿûÿÿúýÿþúûþõûüöÿþùÿÿúÿþúÿûõÿ÷òñèáäÜÑáÙÌðé×ÿùæÿþèÿþåÿÿê÷ùëíðçèéáQK=PJ1ÃE6ÃE6ÅF7ÉE8ÎF8ÑG:×G<ÚG=Ö>3Õ;1Ö8/Ö5-Ö3*Ø4+Û4,Û7.Û81Þ;4à=4à<3Ý90Ü5-Ü5,Û7-Ò.$Ý;0Ú=.Í1"Ç.Î7&Ò<+Í:(Î8'Ô8)â:1ó=9ÿ@@ÿ<>þ37ó,/ê,.á+*Ø*)Ô+(×/,Þ44ä88é9;ð88ð75î73è71ã7-Ü6*×5(Ñ5&Í5(çPEÿmcÛHAÈ42×CCÔ?CêVVÙA<Ò>4Ë80Ç7,Æ:-Æ6D=5B;5A:4@93A:4B:7@;7A@;CC;IE:MG7OG4RF0VG2UH5WJASIHXR^jg‚}§‹“Ä’žÚ˜¢ç¤§ö¦§ú«©ü«¬þ¬­ÿ­®þ¬®û¬®û¨¬ö¦ªô¤¨ñ£§ð£§î §íŸ¤è¢æ™žâ”™Û‹“҆ʃ„ˆ·ƒ¨ˆyšmˆšcz©Xi»Q_ÐNZàIRèAIê=Aé=;ä?9ÝC9ÖH:ÎI8ÆG4ÂC0Å@1äTIàG?Ú;7Ø64Ø88Ù;<Ñ98È74À:/¾<.¿;.À:.Â8+Ã7*Æ3)Æ2(Ï5+Ð3*Ñ3(Ô3)Ö3*Ù5,Ý6.Ü8/ß>4Ý<2Ü;1Û8/Û7.Ú6-Ø4*×3)Õ3&Ó3%Ð4%Ð7'Ò=)Ñ>*Ê9$À2È:&Ê4%Õ1(ç51ú<<ÿ=@ÿ8>÷37ê-1á-.Ù--Ø0/Ü43ã9:é;=ð9=ö26ø03ô01í1/å2+Þ2(Õ1%Ï3$É1$Ñ=1új_äTLÈ95Ð@?Ë:=äRSäJHÜC=Ñ94É6.Ç9/Å;0Â<0¿=/º;*¼?-¾A/¼?-º;*º;(½;+¾<,¼>0¼>2ÀD:ÈLBÌPHÊNFÌLIÐNLç`dìahøhrÿo{ÿhx÷Zk÷UjþZrÿYsû]tîaræjtë}€ñ‡‰èwyÚ_dñgtþm|óeuëlwö‘•ì¢ŸÄ”Š¢|ikVHQSK>PJ>êDFå@DÙ8=Î65ÍB;ÉE9ÉC8ÇA5Æ>2Ã9.Â5+Â2'Æ2(Ë3(Î4*Ó5,Ø5.Ù4.Û4.Û4,äA8Þ>2Ù7,Ú6,ß8/à:.Û5)Õ1%Ø8(Í2 Ê1!Ï9(Ï9(Ç4"Ê7%ÔC0È7&Î8*Ø7-Þ5.ç40î53ö:9û?>ÿLKúHFòBBì>?ê<=è8;å26æ+2ô+1ø)/ô,.ï/.è1+à4*Ù5)Ó7(Æ0!À.ôdYë]SÏ@:ÔDCË;;ßMMêRQàHEÔ<9É6/Æ8.Æ9/Ã;/¾:+¾<,Á@-ÀA.¼=*·8%¸9&½<)¾?.µ7)´8,¸>3ÁG<ÅK@ÅIAÆJBËJEåa_æ^`ñdjþnwþkuó]iðXeø]mú^sõbtèdqãlrì~ù‹ö†…éqsøryÿy†õaqàXföˆ‘ÿ´´Ð®¢ ›‡]jPDR9QTAjbUœ‰‚ÚÀ¿òØÛöàãÿô÷ÿúýÿþÿýüÿþüÿÿýÿÿûÿþùýûÿúôÿôòþòùÿöüÿöûüôÿýöÿÿöÿÿóûõç÷ñáþùåÿýçþüãþýáÿÿêÿÿñýýóüüòXNBWOBWMAUM@TJ>RJ=RH4G?4H>4F?5GC:GE9JF:NI6RJ5UJ4VK5VK9XNEULMZTbkhƒ{~§‰Ã‘™×˜Ÿç£¤ö¥¢ù¤¡ü¡¢ü¡¥ÿ¢¨ÿ£«ÿ¤­ü¡ªõ¡©ñ¡¨ì¥¨íª©ï­©ó±©ö¬©ø ©ø—§ò’¡â–ŸÖ¦£Î¶ž¾¹…œ¸gz¿L]ÑERß>Mç;Gç?ß<=ÝEBÉ:4ÊD;ÊE<º1)ÜKFèJIéCEë>Bé<@æÚ<=Ô<;ÏB;È?7ÊD;ÑMAÍK>¿=0¸6)½9,¿7+Ã6,È5-Ë2*Ñ/*Õ0,Û2/Þ50ç@7ß9-Ú2%Ý3&å9+ç;-ß8(Õ2Ï2Ì4Ê5!Ç4"Ç4"Ê4%Í5(Ï5)Ê0&Í3)Ñ5)Ò6*Ó5)Õ3&×3'Ü4)à2)æ3.ë52ë33é/2ç-2è-4í.5ö-3ö+/ï+,í0.ê5.ã9,Ù7(Ð4%Ã-Ä3"çXHéYNË;3ßNIÅ41ÚHHáOPÜJJÔBBÍ<7È80Æ8.È:.È<-Æ=+Â;(¾9&¼;(»<)»>,º=+·<,´8,µ;0¹=1»?3»?3¾@4À@5ÄA7ïjaõpiêc_ômjûqqìadôgmÿpyÿlzûhxðdoébiëdjîlnîqoîqoûy{ÿ}…ùZlücwßbpû¬¯¶ªš}‘u]rQJY:LR8snZ¥•ˆË·°íÕÓÿîðÿöùÿ÷ûýøüüüþÿÿÿÿþÿÿþÿûÿþðÿôåþëæûêïÿðøÿöüÿôþÿóÿþñÿýñÿûîÿúêÿùæÿùãÿùáÿùáüúåÿÿõÿÿûÿÿûYOCYOCXNBVL@UK?TJ>SI=RHÁ31åOPçDGé@Eê;Bç8?â8;Ü9:Õ:8Ï;7ÔE?Æ=5Æ=5ÌG>ÌLAÂD6¸:,·9+¹7*¿7+Æ6-Ì5.Ò3/Ø3/á55ä84å>5á;-Þ6)ß5&â6(á5'Û6#Ó4Ñ9$Ë9"Ç9%Ç:&É<+Ë<,Ì8.Î4,Ó4.Ö5-Ó6-Ï7)Ë5&È5#Ë4!Ï4"Ø2$Þ2(ã0+æ.,æ,-æ,/æ-2é/4ì+.í,-ì0/è2.á5+Û5'Õ8'Ò9'Õ?.»*ÖD5Ñ?2ÙF>ëVPÚB?ØBAçUVâRRÜJJÔC@Î>6Ê:/È8-Ç8*É<+Ä;(¿:'½<)½>-º?-¹@/¶>.²:,´;0·=0¸>1º>2½?1ÁA4ÅC5ëi\òmdçb[ðkfõolèbañklütxÿq~ÿo|öhtí]fêY`ñbf÷qpþzxûvwÿx~ùRdþ[pä]nö¦©©¦“jŒk[sOO_;SZ;us\©ÖĺöáÜÿôóÿúûÿúûÿûüüüüüþýûÿÿúþÿõÿúíÿóáÿéáýæéÿëóÿñøÿòýÿòÿÿñÿýïÿýíÿúéÿöåûóàúòÝüôßü÷äýúóüüúÿÿý\PB[OA[OAZN@XL>WK=WK=VJDã=?å==åCá=DàBè;Aã8>Ü68Ö66Ñ96Í<7ÕHAÄ;1¾5+ÅA5ÍK>ÆH:»=/·8)º6)¿7)Ç7,Ï6.×50Þ71æ87é=9×3*×5*Ú6,Ü6*Ý5*Ý7)Ú:*×>,Å4!¿4¹4!º7#¼8)¾9*¾4*À-%ã?=å>8ß>6Õ<.Î8)È7$È7"Í8$Ò7%Õ3&×/&Ù.'Ü/+Ý/.Û//Ü./Û,)ß0+à5.Ü5,Õ3&Ð4%Ð9&Ñ>*ÔA/Â1 çSEÒ;0ÚA;ÞC?éKJðTUíTVèTTãOMÝIEÖC<Ï<2Ê7-Å6(Å8'À7%¼7&¹:'º=+·>-µ=-²=,°:,±;/µ<1µ=/·=0¹?0¾C4ÃE7Ü\Qêg]äaYðlgöpoçabìfgójqàR^ï^kõgsòemñ`gõfjùqqþxwútuÿnuóJ]øRhä[mñœ¡£œŠb`VoHRd>W`Axx^­¥’áÑÄÿîæÿøñÿüøÿþúÿþúýÿüûÿýûÿÿùÿýóÿ÷èÿîÜþãÚøÞáùáéüæïüèöýëýþîýúëÿúêÿøçúñàôèØòçÕöëÙøñáþúñýüøÿþû\PB\PB[OA[OAZN@YM?XL>XL>UI;TH:SG9RF8RF8RF8RF8QG;LE;KGÑ?@ÑEDÆA<º61Å>:êZYÝABã@Cæ=Bã:?Û89Ó97Ð<8ÎA8ÏE;Â:.»2(À/¸9(½8)Â9)Ì9/Ò:/Ú91à91è;7ë>8Ù2,Ù2*Ü3,Ý5,à5-ß7.Ü:/Ö=/É7(Æ:)Á<+¾<,¿;/Á;0Å<6Î95ëCBîA=ä@7Ú<1Ï9*É8%È:&É;%Ð=)Ð7'Ï1%Ñ1%Ô1(Ö3,Ô1,Ñ/*Ó2*Ó5,Ó7+Ð6*Í5'Ê7%Ì;(Ì>*Ì;(Ï<,ô^PàF<Ò3/Ó/-æ@@ûWXÿtuÿrqÿjgö^YçPIÕA7Ç5(½. Ä8'À8(»8&¸;)·<,µ=-²=,°<-¯;.®=/°0¼B3ÀF9ËMAß`Wâa[ôpløstæ_cä]aæ]dÖHTçYeógrôgoöelükpþsvþvvûpsûenñDXôKbåXkë’– •ƒ_zYRkCSh?\gEy|_°ª”çÜÊÿõèÿùðÿûñÿýôýÿ÷ûÿúùÿúöÿøòüôêúíÚøÞÎóÒÊëÌÏìÎ×îÔàïØéòÝò÷ãöõãûöãüõãõìÛíáÑéÝÍíáÑñèÙüõíü÷ñþùó\PB\PB[OA[OAZN@YM?YM?YM?WK=VJOGAÐ@?ÐIEÀ?9´3-ÈC<àUPÜDCáACä@Aá>?Ú?=Ô@<ÑD;ÏF<Ç=2À8*½5)½9*À>0¿=-½;+½<)Â:*Ç;*Ï;/Õ;/Û8/á90ç83é:5ç:6å63ä20æ21è43æ40Ý2+Ô0'Ì2(Ë7-É;1Å8/Á3/Ã40Í;<Ý?@ë8;í76ä71Ø5,Ì4&Æ5"Ä7#Å:%Ë=)Ë8&Ì4&Î5'Ô8,Õ;1Ó9/Ð8-Ð>1Ê;-Å8'Å8'Ç:(Ç<)Ç<)È;)Í>-Í:*Ø>2áC:Ô/-ä::à24à67×53Ö;7ÞC?æKFêQIëTIèTHäUGË?0Ä?.¾<,¸=-·=.´>0°?/®>0¬<.¬<0­=/¬<.­<,±=.·A3ºD6ÇMBÝbZàc]ïolôrrå`cå`eç`g÷kvûoz÷kví`hð_fýlqÿy|ÿy|úmsø^jóAWõD^èUh懤“ƒh€^[tJ_vJhwP‚ˆf³²–èâÌÿúéÿýíÿþïþÿòûÿôøÿôôÿñíûêåñãÚíÙÆèǻ伺޺¿Þ¼ÇàÀÍâÃØæÌãëÓìîØóðÝ÷òßóêÛìàÒèÚÍêÜÏïáÖòèßñèáòéâ[OA[OA[OAZN@ZN@YM?YM?YM?XL>XL>WK=VJQI>RJ?SK>UL;XM;YN:ZM:YL;XL@ULGYSWe^nnjƒut–~}¥„…±†‰´‡‰¹Š‹Á‹ÈŽÏŽŽÔÕÓ”Ó‹Ê„‰Á|¸u|²ov­io«ljœ€kŠ”dz®YvËPoãBdð7Vö4Lø9Iï@EåFBÝJCÛJEáGGèCJò=Nð>NäCI×BDÌA>ÎID»<5°4,ÊJAÕLFØBAÚ>?Û;;Û=<ÙA>ÔE?ÍG<ËG:À8*Á7*À8*¾9(¼8)¼9'½:(À;(Ä;)Ê=,Ò<.×;.Ü8.á6.ä6/è50é32è./ê-1î02õ47õ79î45æ21Ú.,×4/Õ63Ñ32Ï/1Ò/4Ü7>ê:Dí06î02æ21Ü3,Ñ5)Ê7'È9(É<(Æ8$É6$Ï7)Ô;-Ú>2ÝA5Ý@7ÙB7ÓG8ÉA1Ã<)Á:'Ã<)Æ=*Å<*Å8&Ì:+Î8*Í0'æC<Û2/ï?Aã.3Ú*,Õ1/Ó6/Õ83Ö92Ò8.Ì5*Æ2&À1#ÎE5ÆA2¼=.µ:+±9+¯9+«:,ª:,¬<0«=0¬>/¬<.«<+®=-³?0µA4ÉSIàg_ßd_èkiînoæchðjqõoxúp}üs}ömwîbködnÿrzÿx~ÿquúipøWfùAYô@[êQfâ}ƒ­–†zŽkn‡]o‰ZyŠ`—r¶·˜ßÞÂùôÞüúåÿÿïûÿïõÿïïÿëçúäÜïÙÑãÍÅÞÁ±Õ¯¨Ó¦ªÐ§°Ó«¶Ô®¼Ö±ÉÚºÒßÁàæÌèêÔòíÚóêÛîâÖìÛÑêÙÑìÛÓéÚÓæÙÑä×Ï[N>[N>[N>[N>ZM=ZM=ZM=ZM=ZM=YLUL=XLNÝAEÔFDÈA=ÉHB´:/±7,ÏPGÊC=Ï>9Ð64Ð21Ð53Ó>8ÒE<ÉG:ÃD5À8*Ã:*Â:*¿:'½8'¾9&¿:'Á:&Å:'Ë:)Ó:,Ù9+Ý7+á5+å4,ê3-ë*+ñ*-ø-3ü/4ÿ17ÿ39ÿ49ý58ù8;õ8<ò9?ò9Aô9Dø8Gû6Hþ5Gô+5ô-2í12ã4/Ù6-Ð8+Î:,Î=,Ë5&Ñ8*Ù;/à>3â>4ä=4å>6ßA6ÙJ<ÐH8ÉA1Ä<,Ã:*Â9'Æ8*È9)É2'Ó9/á@8ëD>Þ0/à..ì59è58Ø3/Õ7.×82×:1Õ;1Ò;0Í:0É;/ÖL?ÌF:¿@1´9*°6)¬6*«7*©8*¬;-­=/®>0­=/¬=,«<+­<.±=0ÁLBÚc[Þc^èkiðosêinõrzüvîfr÷oyùq{öjsþlvÿwÿu|ùhoùcn÷RbþB[÷[N>ZM=ZM=ZM=ZM=YLVJ>XL>YN7É83Ç/,Å*(È/*Î;4ÍC9ÃC6¼>/Á<-Ä;+Ã<)Á:'Â;(Ã<)Â;'Ã8%Ä5$Ê7%Ô8)Ù7*Þ6+á3*å3)ë3+õ33ÿ58ÿ8<ÿ4:ÿ-2ÿ(-ÿ(/þ+1ü-3ö)0ò&1÷)6ÿ,?ÿ*Aý!:ó/ö"1ó'0í,1æ0/Û2-Ô3+Ñ4+Ð6*Ô6+Ý90æ=6ë>7ë:4è71è51â92ßH=×K<ÓE7Ë=/Ä6(Â3%È5+Ï8-Î4,Ô6-æC<à93à21Ò ì89å55Õ0*Ò4+Ò4+Ï5+Î6+Ê6*È5+Å7+ãYNØRFÊH;¾@4·;/µ;0µ<1µ<1¯9-±;/²>1±=.¯;,­9*­9,®:-±<2ÐYQÜb]ìppôvyîmrõq|ör}ÿz…ÿ‰ÿx‚ôhq÷epÿq|ÿuÿkvø^jöOaÿA^÷8WéG^Ûntº‹™©…‚žn}™f€–gœq¡©„´º˜ÈÍ­ÕܽÌÙ»ÁÔ´²Ì©§ÂŸž¼˜š¶–²Œ°‡‰³†µ¹„•À‹œÂ¡Ã‘¨Å™²È¡¾ÎªËѵÚÙÄæßÍêÞÒéÖÏáÌÉÛÆÃÔÁ»Î½µÈ·°ZM=ZM=ZM=ZM=ZM=ZM=ZM=ZM=XK;XK;YLYM=YLCXMIXNO[QY]Ub`Yia\rjfokŽsp›vq§{u³„}ÁŠƒÉŒ‚LjÀŠ~¼ˆy²ƒr¨‡s¨t«‡l£†\„GN¤B9¶@<ÍC@Þ@?è:;õ=?ÿDE÷><ô>=í?@ê@CëBIêCMëANãALÑ??Å@9¾?6·>3°,»6%Á:'Ã<)Â;(À9%Â9&Æ;(Ç:(Ë:'Ð9(Ö6(Ø2$Ú."á0&ì7.õ=5õ82÷40÷0-ø**û&(û%'û%'û$)û&,÷!)ø".ÿ'7ÿ(>ÿ!;ÿ7ý1ÿ'8ï#.æ#+ã+-Ý--Ô+(Ó.*Ü41â64è64ï77ò65ó23ï./î,,å/,Ü92Ñ:1Ò91ìSK¼#Ä+#ßF@È.&Í.*Þ<7èE@â:7Ø/*Ú.*â51å<7ß>4Õ;/Ï5)Ë3&Ì5*Í;.Ë;0Å8.ìbXàZOÈC:¹6,º:/¸8-±3'´6*±1&°2&®2&°5&°6'²:*´<.³=1°:0ºC;Ö\Wìppñsvöx|ûyƒõq|ÿ|„ýw€út}üs{ÿr~ÿr~ÿmyÿgtü`nôI\ÿ>\ÿ>]ä@XÔelµ”’ |ƒm}™f~”c‡—j”Ÿwž¦ §…œ§…’£Š£|€Ÿvzšqyšo|r vƒ¤u‚­wƒ³y‹¸‘¼„•¾†—¾‡œ¾Œ¢½§¼“±¼š¾Â§Ï̹ßÓÇãÒÊÜÇÄÔ¿¼Ìº¶Á²«¹ª¥ZM=ZM=ZM=ZM=ZM=ZM=ZM=ZM=XK;XK;YL]M=]N;^O<\O<\O>]P@[OC[NFYNJZPQ\SX_U^_Wfd\tibƒng‘qjxp¬€y¼‰Ä‹€Ä¿~ºt«Œn¢—q¤¡u¨›kŸ™W}8è?:óA=õ=;õ;<ô;@ñ>Dî@IèAIâ@KÛBGÇ<9½=4¶<1±;/«:,®:-½A5ÐJAÚFBÜA=Ô63Ð51ÖA:ÍC8¼:,²5#½8'Â;(Ä=*Ä=*Ä;(Æ;(È;)Ë:)Ï9(Ï6&Ô2%Ú2%ã5*ê8.ð91ð91ç1&è0&ê.%ï,&ö+'û+)þ,+ÿ-.ü)/ú$,ú$0ÿ'7ÿ$;ÿ8ÿ3ü0õ0ö.9õ3<æ+2Û(,Ü.0Þ02Û+.ñ:>ô7=÷4:ö26÷05ø03ù25ô87Û2-Ú;5×82äE?äEAÎ/+Ñ2.Á"Ô51á?<èE@à=8Ø3-Ù2,Ý60Ý:1Ô:.Ï9*É5'Ç5(È9+Ê<0Ê<2Æ9/ícYáXNÉ@8º4+Â91Ã:0¿6,Â9/¿5+¿5+½4*»5)¸6)µ5(²7(°6)´;0¼C:ÓYTèljïqtöx|þ|„øv€þ|„üyùv~þuÿsÿp}ÿkwüdqý_nöI]ÿ>\ÿ>\êDZÓdj®Žy‹—qz”du’\xŽ]cŠ•k˜p‹•p…”mr‡`mˆ]iŠ]g^lbq•ey›izŸk¬t„±vŠ·|»}¼“¼‚—¼†›»‰›µˆ¢²­¶—¾½¨ÏÆ·ØÇ¿ÖÁ¼Ï¼¸Æ·´»­ª²¤£\L<\L<\L<\L<\L<\L<\L<\L]M=]N;^O<^O<\O<_RA]QA\PD[NFZOK[PN]QS]RZ_SgcXvh]…kb‘sk¤vµ‡|¾‰}»—…¿™€·›v©žpž®u¢ºv¥µi˜°Rv¸ù:Aö=Eï@GæAHÙ@EÏ@BÀ;6¸90±8-­9,ª9)­9*»?3ÏF>ÙD>Ø:7Ù75Ú;7ÜC=ÞPFÎH<µ3#¾9(Á:'Ä;)Æ=+É=,È<+É:)Ì9)Ï7)Ð3$Ó/#à5+î=5õ@9ò:2é4+à4&ß5&â2%å/$ì-%î+%ñ+(ó,)ó+-ð(+ò&/ø(6þ%:ý7ü3ø3ô%7ò0;ó5Aò8Cñ6Î;3Ò=6Ø=8×<7Õ>7Ð=3Ê<2Â:.»7*¶6)¹;/¼@6ÏTMãgeíorøz~ÿˆû|ƒû|ƒûyûx€ÿwÿsÿn}ÿgvû`pü[mõG^ÿ\ìFZÎ`cž~gy…]i„Qh…OmƒRt…X|‰^}ˆ`x„\q‚XazP_Pa…UfŽZn”auœg} j~£mƒ¬r„²tˆ¶x‹¹y‹¹y¹z‘º~”º“±•¬€›©†©­”ºµ¢Ç¹®Ë¸²È¶´¸¬¬ª¡¢ —š[K;[K;[K;[K;[K;[K;[K;[K;ZJ:ZJ:[K;[K;[K;\L<\L<\L<]K=]K=^M=^M=^M;^O<^O<^O<^Q@^Q@]OB[OC\NE\OG]PJ]OO^P_bTmdY{i^‰pgœ}u®…{·ˆ{³™…¸¥…´¯€ª¸z¡ÆxŸÑuœÊdŒÆMlÜFRßA@ÕA=ÏE;ÌH;ÍG;ÓE9ÞA:î@Aõ2ÎD:Õ<7Õ31à;9åA?áD?èSLßUJ¿:+Â:*¿8%À7%Ä;)É=,Ê=,Ë9*Î8)Î5'Ò2&Ù2)å9/ñ>7õ>8ð50ä/&à5+Þ6)à4*ã1'ç.)ê-)í+)í++ê),è',ë'1ò)9÷'=ø"<ü>û%Aû6Hä(6ç.<ÿP\ÿ`lÿP\ò9é=9æ?9á@8Ù?5Ï<2È:.Á9-»9,»<3ÌOIàc_ìnoú|ÿ„ˆý~…øy€øy€üyÿx‚ÿt‚ÿn}ýetù^n÷VhóE\ý8Vÿ^N>\O?_OB]OB^PE^OJbNYcRecTqdZ}le‘xr¢w¨ƒv¤”}§¬†«Â‰©Î‚žÚw”ál‰ÛXwÚD_ôCUûEQïJPáIHÑF?ËE<ÐE>ÚEAéCCð@Cõ@GõBHíDIßCDÏA?Ã@8¿@7µ=/®:+«:*ª9)®8*»;.Ì?6áFBâ=;îBBëAAÞ;6äKCæXLÕK>ÉA3À8(¼3#Á8(È<-É:*Ë7)Ð8+Î0%×3)à8/é;4í:5í62ë/-å,)ã0,ã1-ç10ì31ó25ö37÷48÷6;ì-5ê,6í.=ñ0Có-Fö)Hý+Nÿ3Rô9Lå3?ð@Mÿ_lÿkyÿWfõCSõ>Pî3Dí3Aí3@ê7=ã99Û83Î4*Ç/$Ë2*Ç.(Ð72òYTö\ZòXVÛAAâHFÜB@Ô<7Î70Í6-Ð9.Ï9+Ê7'Â5#¹8%³8&µ:(¹>.¹;-¶6+¼7.Ç>6ÛNGÙEAÎ50Ð1-á>9ç@:ã81ç51ë20î21ë52ç83á:2Ø:/Ð9.È:.¾5+º7-ÈIBÜ_Yënlû}€ÿ…‰ýƒõv}öw~üyÿx‚ÿsƒÿk}ýdvù^pôRgôF_ý8Vþ=ZïL]ÀTR{`CWhÑCAÖEBãEFèBDîAEíCFçDGÚDCËB<À@5»?3±;-©8(©:)ª9)°8*¼:-Ê;3èIEê@@ë=>å78Ú2/ßB;îZPôh[ÛQDÉA3¾4'Â6'È:,È9+Ë7+Ò8,Ñ0&Ú6-æ;4é;4ê40è/,ê-+ë--ó49õ3;ø3=ü3=ÿ1>ÿ1>ý1=ù1>õ0Aò1Dô4Kõ5Nõ/Pö-Qÿ2Yÿ>_æ3HùO\ÿanÿ_nÿWfûP`ôDXé8JóAQê:GÝ2;Ò/2Ê2-Â8-½;+½;+Ä:/À2(ÙJBúkcÝLGáPKÏ;9Ï;9àLJÔ@<Ë81Ê7-Î-±9+¯3'º:1ÊC=ÖGAÙD>Ô72×2.ç;7ì:6è2.í2-ò,-ô,,ó/0ï31è71â:1Ú<1Ò>2Ã6,º4)ÅB:ØYSçjhú|}ÿ†‰þ€„õv}÷xýz‚ÿx‚ÿqÿi{ûbtø]oòPe÷Ibÿ:Xþ@\ðO_ºQNqX:Sf8]uEa|InSv†Y{ˆ]~‹`g‚—l€œl}Ÿm|¤o}¨p€©o‚ªnƒ©l…©lˆ«qˆ®qˆ°r†³r„³oƒµp…·r‰¸t‹µv‰¬tŽ¥wš¨„°´™ÈïØÌÀÛÑÏÂÂÌ«±Á›¡±ZK8ZK8ZK8ZK8ZK8ZK8ZK8ZK8ZK8ZK8[L9[L9[L9\M:\M:]L:^K<`J<_L=_L=^M=_N>^O<^O<^O<_P=aP>aP>aP>aP>aP>bOAeMMdMW`O_aUmgb€uq’|v˜€s‘uŽ­€”Ά”ß~‡îqyùclúP[ú;Mÿ*Fÿ2QÿÉ@8¾>3¸>1¯9+¨7'©:)­<*´<,Á=1Ï?7à>;å99ã03â/2à42Û94çNFülaòh]ÙQCÆÍD>Á63É;7äUQÕF@É91È8-Ê;-É:)È9(Ä=)±>)¦<&¨;'¬=*«7(¬3(¼=4ÓLFÖGAÝE@Û96Ü30é73í62ë0+ô1-ý,/ÿ+-ú./ô1/í4/æ81ß;1Ø>2É9.½3(À;2ÏNHáa^÷yzÿˆŠÿƒ‡ùzû|ƒÿ{†ÿx„ÿn~þew÷^põZlëL`õIaü9Wû=YîM]³KHhQ1Qd6\tDf~Nv‡[Žc„h†’jˆ—n‰žsˆ¤t„¦t§r}¨p¨n©mƒ©l…©l…¨n‡«n…­o…¯o°l€²k‚¶n…·r‡³t‡­t§wœ¬…²¹šÈƯ×οÙÒÌ»¿Ê¤¬¿’š­[J8ZK8[J8ZK8[J8ZK8[J8ZK8[J8ZK8\K9[L9\K9\M:]L:]L:^K<^K<_L=^M=^M=^N>^N>\OaN=bL?hOKgNRbP\cWkjfwv•}|œx—‘z–«•Æ„’Ú}…ðuzýklÿY[ýDLÿ0Jÿ5Tÿ4½=0µ?1¬;+©8(­<,´?.»@1ÊA7ØC=Ù74á85ß//â30ç;7Ó0'Ñ5)ëUGÿvlë[PÑC7Ê<0Ë;0Ê8+Í6+Ô:0Ú70ß82å63ç32ê01í12ô36ý4<ÿ&7ÿ#9ÿ"9ÿ"9ÿ!8ÿ8þ6ø6ï4î9ð%Bð)Hî&Jñ'Mÿ3^ÿEhÿbuÿ`l÷WcñQ]òP]ïMZâ@MÔ2=Ú=FÌ7;»/.®/(¦5'¢;(œ@'œ>%ª9'²8+ÒVJ»;2Ä?8¾41½2/ÎC@åWSÕHAÈ91Ä6,Æ7)Ä5%Æ5$Ã:(±<(§:&¨7%­9*¬4&¯1%Â?5ÛRJÚIDáHCÞ;6Þ2.ê41í1/ï-+ü22þ,/ý+.ù+-ó++í-*æ1*ß4,Ö8,Ñ=1¿2(¼7.ÈIBÙ\Xówwÿ‰‹ÿ‡Šû€…þˆÿ}ˆÿv„ÿj|þ_s÷XlöTiëE]õD^õ6Uñ:VàLZ¥HC^K-Mc5Wo?b}Ju‹\‚•g‡˜lˆ›nŠ r‹¥vŒ¬z†«wªr~§m|¥i}¥g¥h‚¦i‚¥k‚¨mƒ«m‚¬l®h~°i³j„¶o‰¶s‰¯rެx™°„­»˜¿Å©ËʵËͶ½Åžªº‹—§]K7\K7]K7\K7]K7\K7]K7\K7^L8]L8^L8]L8^L8]L8^L8]L:]J<]K=^L>]M>\L=[N=]P?^SA`SB_RA`P@bQAcRBdQBdNAdLBjMIhKMdPYf[lnk†x{ž„­‰ˆ²ƒ©¥‡©¾ˆ Ð‚’ây~ðsqújbÿa^ùJWñ>Që:Lî?PïCQê@Mç=Hå>Fâ=Cß9Ê=4Á;0¹;-¨7'¯A0­<,¬6(¿A5ÌF=Í>6Ð72Ú85Ü71Þ5.Þ6-Þ8*Ý<*Ù:'Ó6%Ù;2ðSLòYQÙE9Ç8*Í>.ÔB3Ò:-Ô3+ðGBá//î5:ó6=î,7ÿBMñ'3ú&2ÿ)2ÿ(2ù'ý!+ÿ'0ÿ(0ñ'ð)ù+7ê .ì&7ñ-Cç#;ÿXsè.Eÿ]lÿ_iþZcùU\õPWëHMÝ?@Î95Ë>7ÄA7·?1¦7&š3"™6#š;'Ÿ<)§8-¯80ÂE?¿;7½31Å75Å54ÔDCÛLHÚKEÑD;È:0Ä4)Ç5(Ì5*Å5*¼1¹=3Ö_Yésqÿû„†û†ŒÿƒŽÿxˆÿh}ÿ_wÿ[uÿUoøLføEcñ:Yô;[æ?YÛ]i‹@;VF-L^6ZuBh‡Nw–]}œcg€¡jƒ¦p‚§q€§n¦m~¥l}¥i}£h£f£f£f~¤k¦mªn¬k~­g®f±gƒ³i‡µm‹´r°v®|𳉍¼™±Á¤²Á®¦²°˜žz…‹]K7]K7]K7]K7]K7]K7]K7]K7^L8^L8^L8^L8^L8^L8^L8^K:]K=^L>`N@^N?[N>[N>\P@^RB_SC]QC]OB_NDaOEbPFcOHeNHiMJgNQeS_h_tony~¨€‡»‡ŠÁž•Ê£‹»«£¹xÓyƒê|{ôvjöi`ø]aóOZìFRòHUùJYöFSï?Jë;Eä9Aà:>Ú::Õ=8Î?7È?5À6¾8,¿D5¹H6©>,™/)(’(ž-%±;7ÑTRÎHGÃ54Ç56Ñ==ëWUØGBÖGAÐA9Ç9/Æ3)Ê6,Ð7/Ï81Ç=3Â91Â5.Ä3.É4.Ñ83Ø?9ßF@äJBÞA8Ú6-Ý0*ç/-ò12û03û03ô04ó12ô02ó/0ó0.ï2.ç4-ß9-×=1¿3$¾aP@`P@]P?\O?\P@[RC\RF[QG\OG\OI_PMcQOfTTgUUhVVhW]h]nmh†sv£|ƒº‚ŠËŠÔ˜‘× ŠÊª‚´¹}ŸÏ€“䄆îvósjüfh÷S\íGQðFQöGT÷EQò@Lî=Gå8>à7:Ù99Ô<7Í@7ÅA4¾?0¶>-­>-ª<+«:,¸B6ÇH?À;2¼1*Ê:2Í6/Ð6.Õ7,Ø8,Ù7(Ù8&Ü9&à:*Ý4-Û4.âA9éOCÞH:È5%É3$Ù@2â>5õHDè13ò5;ù7@ø4@ÿESø2?ð)0ë#&ì$'ù13õ-/ï''ì&'õ12ë)*ö8:è+1â)1ì4@ÿR^ï=Mÿ\iþ^fñV\îOTñNSêEIÝ:;Õ74Ô?9À6,Á?2¼B5³=1¬7-¥3)¡,%œ' š%ª0+ÇECÂ::½--È35×ABô^]Ñ@;ÒC=ÐA9Ë=3Ì9/Ô=4ÛA9Û@;Û@<Ø=;Ý==ã@Aä>>à::ã?=ìJGàA;Ý<4Ù5,Ý2+ç1-ð31õ12ø02ô04ô02ô02ó/0ó0.ï2.ç4-ß9-Ø>2À4%º8+µ;0Ð[Tízwÿ“’û‡Šúƒ‰ý~‰ÿr‚ÿdyÿ[tÿTqÿNmÿFgû=aô<^ïFcßTg¢AHp;3SH2Qa<^yFh‡Nr“Zu˜^tš_xžc{£g|¤hy¢fy¢fy¡cx byŸb{Ÿb}Ÿb| cz¡h{¤j{§h{¨e{©a{©`}«`­b‡²jеn‹²s‰¬t†¦w‚žuy“np‡mTdYCOM4@>^M;^M;^M;^M;^M;^M;^M;^M;^M;^M;^M;^M;^M;^M;^M;^M;^L8`N:aP<`Q>]P?ZN>YOCXPEXOH[QO_UTbXYeX_iYcl\fk^glaimerok‚ttšy~µ†Ê†ŒÚŽáŽ‡×Ÿ‹Ó­ŠÄ³€©½yŽÌ{Þzò‚wÿsrÿcgùU\ôMTõGQôCMò>Iï;Då6;à88Û97Ô<7Í@6ÆB5¼A1·?.«:*­>-±=0¼F:ÍSHÇH?º5.º1)È91Í81Ô<1Ù=1Û;-Ù6'Ü6&à8+à5-Û2+á>5ìNBäL>Ò:,Ñ8*àB6ß7.ð>:é/0ð16÷4<ü8BÿNZÿLUý>Eò38â$&í/1ê,,ð22è**ë/.ò::Òæ37Ý,2è8BðENÿXcòNWØ=CÛBEáBGá>Cß:>Ý8<Ø88Ó97É83Â91½:2ÀA:ÍNHÖVSÐNNÃCB²72¶95ÏKIÙMLäRSïYZëSRñYVÉ51Î>6ÒB9Ð@7Ó?5ÙB9àC<ãA>é?@ç8=ì9?ò?Cð;@è58ì>?öMJÞ93Û60Ú3+Þ3,å4.í41ò21ô01ô02ö/2ö/2õ/0õ/.ñ1.é4-à8-Ù?3Â6'·5(´:/ËVOï|yÿ“’üˆ‹ý‰þz‡ýoücwÿXqÿOlÿFhÿ@cù9^ô?`éKdØZh…35g;0WO8XhDa{Kj‰Ps’Yt•\u˜^wby¡ez¢fw dv awŸavž`xžaxža{Ÿa| cz¢fz£g|¦fz§dz¨`z¨]|«]~­_†²g‹´nŒ³tŠ­s†¦u€qtŽii€dRbUFSL:G@_N<_N<_N<_N<_N<_N<_N<_N<^M;^M;^M;^M;^M;^M;^M;^M9]K5_M5`P9_P;\O?ZNBXOFXQKYPQ`W\g`hnfsshysg{sg}ri~pm~pq†sv—x|«|Á€†Ò…‰àŒŒæ•ãŒÚ „¿žuŸ l‚¬nq¼vlÒviòsmÿllÿgiþ^`ûRYõFMï;Dê7=ç6<â89Ý98Ö=7ÎA7ÆB5½B0¸@/­7)µA4°;1°;1ÈRHÕ\SÉME»;2¾90Á7-Ì9/×?4Û=1Ú6*Ü4'â6*à3,â70ä=5åE9âF9ÞB3ÞA2â>2Û0&ê72ì0/ï.1ñ.4ú7?ÿPXÿ]dÿZ_ÿOSá.1ã03à,/÷DGè66Ü,,Û-.ë>@Ý36Ù37ÿbhàÆE@å^[øhgÿopÿjjåKK×=;É40Ñ>7ØE=ÖC;Õ>5Õ<4Ø93Ü43ï6<ñ-9ð,6ò.8ð,6ë,3ó9>þJKß3/Ü3.Ú3+Ü3,ã5.ê40ï4/ò21ô02ö/2÷/2ö.0õ/.ñ1.ê3-â7-Ù?3Æ8*´2%²8-ÃNGï|yÿ’‘ÿˆŒÿ‰ÿw…úl|øatûTnýHgÿ>bÿ:_ú6\ôBbàNeÂWaq0,_?0[W>^lIf~Nk‰St’\u–_v™_xžcy¡ex dvž`vž`u_vž_wž_xŸ`{Ÿa| bz¢d{¥e|¦d|§by§^y§\{ª\}¬^€¬a…¯g‡®m‡ªp…¥sƒ r{•nrŠjfwe[k^RbU_N<_N<_N<_N<_N<_N<_N<_N<_N<_N<_N<_N<_N<_N<_N<_N:^L4_N4`N8^O<[N>YOEZSMZTT_ZahbprmzuŒ}t‘{q“zp“vp’qt“rxšu|¨y€¶{ƒÄ…φ‰Ú‹Þ–Ü™ŠÍ›…¶¢ƒ£ª„‘«~yŸl[›R?¼MBÔQIâWRëWUñSTñKOí>Cæ5;é9<æ9;à;9Ù>9Ó@8ÊB6ÁB1º?/´:-ºA6«5+£.$¾I?Ùg\ÙdZËUK¹=3¸5+À3)Î:0Ù;0Ú6,Þ3)ä6-ß1*å82ã;2Ý9/Þ>0ãF7äB5ß9-ß1(ê5.ð31ð./í*.ô17ÿEJÿV[ÿ]bÿ\aâ9<ã9<Õ+.ôJMâ89Ø00Û57Ì()Ì'+øW\Ý>CÖ:>Ò7=º#Å),Ü<>çBFÝ49Ù,2Þ17Ú16Í(.Ò37äKNöaeûhnùcl÷_kú`løbkÖLLÕNJê\ZêVTçMMãHFÏ42Î3/ÙA<àKDäOHßJCÙ@8×:3×50Ü.-õ1;û,<ø*7õ'4õ)4ø0:ÿ>CÿJLà1.Þ3,Ü3,Ý5,á4-ç4/í4/ñ42ô02÷/2ù.2ø-0ö..ò0.ë2-â7-Ù=1É;-´2%±7,»D>ìyvÿÿˆÿ|ˆÿqöhxö_rùRlùDcÿ9^ÿ6]ú8]ñGdÑN`¢IMe5+VD0[Y@^lIe|NkˆRt‘[w•_x™`{ždz evž`s›]s›\s›\tœ]v^wž_{Ÿaz¡bz¡b{¤b|§b{¦_x¦[x§Yz©Y{ªZ~ª_ƒ­e…¬k‡©m‰§s‰¥u„u|”rvˆpnlfwe_O?_O?_O?_O?_O?_O?_O?_O?^N>^N>^N>^N>^N>^N>^N>_N:aO7aP6aO9^O<[OC[RK\VV_Zakgvso†}z—‚~¡|¥}w£{u¥xv§sy©s}°z¸}ƒ¿€†Ä…‰ÉŽÎ”“Íš“Ç •½«›µ¼¦²É­©Å¦”ªˆmœfJœE2¯A4·A5ÃC:×IEéOOîJKì?Cë=?é;=ä<;ß=:Ù@:Ð@7È>1Á=0½:2¼@8¯4,§1'¼J@ÑbWÖg\ÕeYÃOBº>2º4)Ç7.Ö90Ù5,ß2+ç60ã1-ä50â7/ß8/à>1æD7ä>0Þ4'æ4*é0+ð3/ð..ï-.ò14ó78öBEöMRüY^éFKöQWÙ48ëFJÝ8<æAEÚ7:Ï/1Ñ05äHKÓ8<Ð7:¹#%Õ:>Û8;å;>ëÿ0>ú*8ü.:ÿ;EÿCHûADã1/ß4-Ý4-Ý5,â4-æ3,í4/ò53ô02÷/2ù.2ø-0ö..ò0.ë2-ã7-Ø:/Í>0µ1%±7,²;5ésqÿŠŠÿ‡ÿv†þi}óató[p÷PjúCbÿ8`ÿ8aù;aìLh¿O[~86]=0NF1VX@ZeEcxMj…RrŽ[v”^yša{ždxžatš]p˜Zp˜Yq™ZqšXt›\uœ]y_xŸ`y _y¢^z¥^y¤\x¤Yx¤Wy¥V{§X©_‚¬d„«h†¨l‡¥o†¢q€™ox‘jr…il~ddv^_O?_O?_O?_O?_O?_O?_O?_O?^N>^N>^N>^N>^N>^N>^N>_N0ÂG?àWQïWVñNOé@Cê=?æ<=ã><ß=:Ø=8Ñ:1É90Á80À<7¹:3·>5ÂPFÇXMÇ]PÑeXÓcUÃM?¼9/Å8.Ò91×4-ß2,ç60æ40â3.à5.ã<3çC7æB6â:-ß3'ê5,æ.&ð0-ð0-ð31ñ54ç-.ã35çBF÷X]öW\ÿouåDJëHMá=Dþ[`ÿouß>Cÿ}‚ÿmqêQTÔ>@Æ02Ö:=óILî9@ñ8@ø=Fò7Bè-8ô>Jÿ]hÿmwÿjrÿcn÷]gú^kÿapÿ]nùYeò\]ãOKâJGÕ74Ó01Ù54Ò0.Ø95ßD?ãJDãJBÙ@8Ó6/Ö4/Ü71é77ê'/ü0<þ2>ø,7ù0:ÿ>Eý>Cì44â3.à5.Þ6-ß4,á3*è3,ï4/ô43ö/2÷/2ù.2ø-0ø..ó0.ë2-ã7-×9.Ñ?2¶0%²6,°61çonÿ‡ˆÿ†Žÿp‚ücxñ\pôXn÷OiûBbÿ9aÿ`P@`P@_O?_O?`P@aQAbRB_O?]M=^N>aQAcSCbRB`Q>dS?aP>]P@^QI[QPZSZeapsq‰yxšz|¥~€±€¹~~ºyy·sr´nn¶twÈv{Ì€ƒÊ‹Æ–—䤾²°»¼¹´ËƳÓ̰ÙϬÛϧÜÏ£ÝУÙ˜٘Ѩˆ¸€g¡_IËzgÖtg½H?×QN÷ccéKLå?Aâ89ä:;â:9Ü75Ù53Ö;6Ë73À50ÇB;¹=3¿I?ÆXK¹OAÎdVÑcTÌXIÅG;Ä:/Í6-Ø7/á6/ã4/ß0-ß2,à70ä=4á=1Ý7+ß5(å7,å0'ê/(ì/+î1-î20ë40è51ã75×79æJNõY]îOT×8=×6<ùX`ÿ~„ÿ~†ÿouÿgoÿipÿflõ\añX[ûZ_ÿU\ÿDLü8Bû7C÷3Aï,:ì0>ñ=IÿS_ÿ`iÿgrÿepþbmÿbpÿ`oý]gíSSßFAÖ85Ö41×11×/.Ø31Û94áD=ÜB:Ù?7Ö<4×90Û81à93æ66ñ7<ô5<ö4<ö4<÷5=ò59ë35ã1/Þ3,Þ5.ß7.á6.ä3+é2,ï2,ö31÷03ø03ú/3ù.1ù//ô1/ì3.å7.à?5Ì8,¿6,¯/&¸;7ÒXWÿ˜šþ{ƒÿm€ÿe|ø\tðPjõHfüCeÿ;dù9`õNlÓRd‰=?R,!C;&CG.KM5Z`DZjEcxMqˆZx’bx–`t•\r–Yq˜Yl•Sm–Rn—So˜Tr™Xt›Zuœ]uœ[t›XtWv Xw¡Wv¢Wv¢Uu¡Tt S{¥[{£]zž^u—[m‹Ub~MXrCSj>AW0?U/`P@aQA`P@_O?`P@aQAcSC`P@_O?`P@bRBcSCbRB`P@fVG_QF]PH^TSaZad`omkƒvw–xz£{}®}¸x|¹rv¶lo´mp·oq¾uvÐ|~Õ‰‰Ó˜˜Î¨§Ç¹¶ÁÉźÓαÛתâÛ¥çÞ¥æÝ¢äÛ¤âØ£ÛÑ ÔǛӼœ»œ€©|eÅ‹wÊ}m´VJÒa[örpìZ[çKLã?@è>?ë>@è<<â66Û55Ö=8É83Ê?8¹6.¸>3¾LA¶H;È]MÝo`Ô`QÆH:½5)Å1'Ô6-Ü5-Û0)â51å95ä=7à<3Ü8.Û5)ß4*ã5*ì7.í5-í2-ë0+ç0,ã2,á4.Ý52Ö87Ø>@åJNóW[ú]dü\dþ]eÿaiôS[ïNVñQ[ÿ_gÿjqÿflõZ`óNTí4:ñ,5ô*6÷-9ñ'5å!/æ'6í7DþO\ÿZdÿblÿdmÿenÿcmý[hõQZåEEÞ<7Û64Þ63ß55Ü30Ú2/Û62à>9Û>7Ù<5×:3Û81ß82å95ç:6ë8;ë7:í6:ï6;ï79ì57å31ß2,Ý4-Ý6-ß7.â6,å2+ê1,ò1,õ20÷03÷03ú/3ù.1÷//ô1/ì3.å7.ß<3Ô=2Â8.¶1*·74ØZ[ÿ“ûs}ÿfzÿ^vùVq÷NkúGgü@cü^QA^QA^QA^QA_RB`SCaTD`SC_RB`SCbUEbUE`SC^PCbUM\QM[QRcYbkdtqm„vu•z|¥y{¬y~¶x|»ot¶ei°bf¯jn¸ruÆ}}ׇ„Ý—”Û©§Ø»¹ÏÍÉÈÜØ¿åá´éäªíè¦ðé¥íå¤çá§âÛ§×Ï¡ËÞ¸¯’©››‚l¨ƒp§o`œRGº]UÝmi÷uuï__äJLæAEëADì>@è8;ã68ß=;Ô;6ÔA:Ã81·7,·>3®=/·G9Ûj\ßi[Ú\NÊB6Æ3)Ñ4+Ù6-Ù2,Þ52éA>ìGCà=6Õ2)Õ1'Û3(Þ0'ç4-è1+ç.)æ/)ã2,ã80á=4àB9Æ-(Ê43ÜCEðVXú^b÷ZaóS[ñQ[éGRêHSïO[ü\fÿmvÿntôY_ã>Dé.5ô-4û2<ü2>õ+9í'6ö6EÿKW÷ISõPWøW_þ^fÿckÿ`i÷RYéBIÞ97Þ71ã75é<8ì<<æ95á51Ý60Ý:3Ù;2×90×90Ü71â94è;7é<8ã99ã99æ87è88è88æ66á40Û2+Ú6-Û7-Þ7.â6,ç2+ë0)ó0,÷10õ13õ13ø03÷/1÷//ó1/î3.ç6.Þ:1ÜD9È91»4.µ/.ä_bÿƒˆølwþbxþWsúPmþLlÿBh÷:`ô<`ìIfÔSgDJm<5O>,=<':?(ED/FH0Q\U'D[/E_2Ic6WJ:ZM=]P@^QA^QA^QA_RBaTD`SC`SCaTDaTDaTDaTD_RB]QEZOM[RWbXcjcsqm†vu•xz£z|­w|´sy·mr´dh¯]d¬ag±lr¾x{ʉ‰ß•‘夡䷴áÇÄÙÕÑÎáÝÄçä¹ëæ¯îê­îè¬éâ«ãÛªÚÓ©Ë¡»¶™¥¥›˜…“ˆv˜q™rc›bW³i`Ïrmû‹‰õutê[]æLNéDHí@Dì;Aé;=ß:8Û<8ßF@ÓC;Ã:0º:/°6)§1#¿I;ÛaRêj]ÛSGÊ:/Ì4)Ô6+×4-Ù42ñMKþZXíKFÚ91×4+Û4+Þ2(ß.&â-&á,%Þ-%Ü1)Ú6,Ù;0×?4Â/'Ä4,Î:8ÙCBßFHàEIäGNêMVñQ]öVbøXdù\gÿgrÿmuôYaÞ;@ë28ñ.4ó.7ò*4ë%2í)5ûô@?ï=;æ95à72Ý82Ú91Ù80Ù80Ü71ä84è96ê;8â:7à;9ã:7æ:8ç98å84à5.Ú3+Ú6,Ü8.Þ8,â6,ç2)ë0)ò/+ö0/ô23ô23÷03ö01ö0/ó1/î3.ç6.Ü8/àF<É91¿4/¶,,îfjÿy€øgtÿbyýTqþKkÿGjÿ=eó6\ë=^ãQhÄXeˆBBgC7[N;GF1AC-JH3EE-LU6Sc>btLlƒUp‹XoŒTmŒPiŽKiŽIhJh‘Kj“Ml“Rn•To•Xp—Xt›Xs›Uq™So—Qk”Nh‘KeŽHdG`‡D]AWy=Rq8Mi6Lf6Oe7Of8Ne7Oi9Sm>UH8XK;[N>\O?]P@]P@_RBaTD_RB`SCaTDaTD`SC`SC_RB^QIVMR_Xhnf{uqŠxt—xw¡xz«y{´tx·lq³bf­\c«`f°kq»v|Æ€„Γ•àŸžä®­ç½¼æËÉßÔÓØÝÛÎá߯åá¾æâ¼äß¹à×¶ÚÐµÎÆ±¾µ¦­§›™™ŒŽ‹…yŠ|q‘vk›si¨meºoi扄î~ósrñedñWYðMNîDGì?Aã:7à;7äB=ÞE?Ì<3Æ=3ÄB5°2$®0"ÈJ<ÜXKÖN@Ì=/Î7,Ñ7+Ñ3*Ö42õUUÿkhú]XãD>Ü;3ß;2ã80â4-ã2,â1+Ý0)Ô0'Í/$Æ/$Â0#Å9,À4'Á2*Ì;6×CAÛEGÛBGÚ@HàDOìP[òVcòVaú^iÿgoóYaáBGê:<í57ï28ï28ò2=÷9CÿHUÿVaå7@Ý4;ß6;ëADùJOüIMõgÿ9cõ8^æEdÙZm«V[wE>dJ=aYFTO;KI4PI7GE0GP3M]9ZlFf{Pm…SmŠRlŒMhJiŽIgHgJi’Lk”Rl•Sn”Wo–Wt˜Xs˜Un•Rk’OfKcŒHaŠF_ˆF[‚CY}@St;Pn8Ok:Rl=Xn@ZqCWo?Vq>WqARE5UH8XK;ZM=[N>\O?^QA`SC`SCaTDaTDaTD`SC`SCbUEbWQ^Vckf}yu~z›zy¡xy©vy°txµlq³cj°\c«^d®io¹w}LJшŒÓ™Ý£¥à°²ã¼¾åÆÇãÏÎÞÔÓØ×ÖÑÙ×ËÙÖÇØÐÅÒÉÀÌþʹ´¨¬£šŠ‹†yztyvquleleŽphŽa[`[ÀsmØyuð~}ü|yÿrqýccöSTðHHðDBê>:á<6áB<Ñ:3ÓC:ÞUKÂ>2¸6)½9,Â=.È?/ÐB4×C5Ö@1Ñ7-Ñ30êLMú_]òWSßD?Ù:4Û81á81æ93ç92ç92â:1Û:0Ñ9,Ê8+Å9*±)¸3"È@2ÓI>ÒD@Ë;:Ì7;Ï:@Ò8BâHRíUaðXdõ^g÷`iêU[ÜAEå@>ì?;ó@CûGJÿLTÿQYÿT]ÿV`á3<Ú/5Ý04è8;õ>Bø;?÷48ó04í42ï96ñ97î53ë20ê20ç40á4.ã<4à=4ß<5Þ;4á83ä73è43è43é99ç98è88ë99ë97é75â5/Þ3,Ü8.Ý9-Ý9-ß7*ä3)è1)ï0(ò1,ñ33ð43ó23ó11ó1/ò2/ì3.ç6.à91Ù<3Ì71Á0-Ñ@CÿnuýkuùbqðRiõHfÿ;cÿ5aÿ6bü?eäNiË]j‹GFjF:^M=^WDYR?RJ7OF5ID0DJ.GU2Sc>^sHgMj‡OjŠKgŒGgŒFfŽGfIh‘Ki’Nk”Rm“Vm”Uq•Up•Rk’OgŽKcŒH`‰E_ˆF_†G^‚E[~DYwAVr?Uo@YpB]rG^uG[sCYtAXs@NB2QE5UI9WK;XL\P@^RBaUEbVFbVFaUE`TDaUEfZJi^ZngwupŽ|x™{y wx¦vw­pu¯jo¯ch¬`g¯`f°em¶qxÀ~…ؙ͉ؗ Ö¡¨Öª±Û´¹ßº¿ßÀÁÝÃÃÛÇÆØÆÃÔÅÁкɼ³Ä»°Áµ¨¼¦˜¯–‹œˆ…Œqqquqppfewhe†nj„_Y•d_›ZT¹f`Ùsoðzvÿ{yÿvuÿhhüZXþRNõHBæ=8èE>Ù<5ÛG=ê\RÅ;0Ä<0½7+¿7)Ç>.ÑC5ÔB3ÔA1ØB4Ò86Ø>>ÝCCÜB@Ö=7Õ81Ø7/Þ7/å:3æ93å:3â;3Û>5ÖB6ÑE8ÌG6®-¼;%ÍJ8ÑL=Æ=5»0+À00Ê9>×AJâLWëU`ðZeð]eìYaßLTÔ>@Ï4/Ø7/à;9ê@@òCHõDJñBIî?Fâ5;ß26ã36ï8<ö8:ø14û/2ü14ï20ð95ñ85ì0.è,*ç0,æ3/á4.ä=5á>5à=4à<3ã:5æ95ê65ì65ì57ì57í57î68î66ë54ä2.Þ1+Þ7.Ý9-Ý9-ß7*á3(æ1&í1(ñ1,ð43î53ñ33ò21ó1/ò2/ì3.ç6.â;3Ò4+Ò:5Æ20èVYÿpxùcnòZiçI`óEfÿ8bÿ0^ÿ5bÿBhÜLe±PYk60^G7XK:UN;[O?VI9M@0JC0@F,AO.L\7Xj@bxGfJhˆIf‹FeŠDc‹BdŽFeŽHgLh‘OjSk’Sn’Rm‘QhNeŒKb‰HaˆG`‡H`‡Ha…H_‚H_}I]yH]wH`wKcxOczN]uC[vA[vAJC3MF6RI:TK-Á2"Ê7'ÛE7ÞE?Ó97Ì3.Î61Ô;5×=5Ý<4á=4ä;4ä92Þ5.×4+Ï5)Ê8+Å<,Â?-ÕT?ÈG2½<)¿;.Ã=2Ä;5Â74Â35ÜKPÞMRáPUåTYèY]åVXÜMQÓCBÉ5+Ñ7+Ù80Ý52â24å26æ18ç/9ì4>ì3;ó5?û9Bý4>ú+5ÿ(3ÿ0:ø-3ù59ù59ð./ë*+ê1/è43â51ã<6à=4à=4á=4ä;6ç:6ì87ï77ì46ë35ì25í34í55ê41ã1-Û0(Þ8,Ý:+Ý:+Þ8(à4&ã3$é3&ì4,î52î53ð42ð3/ò2/ð3-ì3.ç6.ä=4Í/&×>9Ì35ùbgÿoy÷[iðNcêC]ùEhÿ:eÿ0]ÿ6aöFjÉJ]“BHS-$WJ9SL:OH6[O?UI9F?/HF1>B'@J(IU1Sd:_rEe}Kg„JeˆHcˆCa‰Bc‹DcEeŽJgŽMhPiQlPkMfJcŠIaˆGb†Fb†Hc‡J_€G^H_}I`|Ka{Kd{Mf|Nf~N]xC]z@^{CDB6FD8KGRH>XJ?]M>`P@`Q>aR?`SB_VGcZSgb_ojnso~wq“zt ~x¨yw©pp¦gg£`a¢\_¤`b­fhµopÀyzÌ„‚ÖŽŠß–’眙栞ݡ¡×££Ù¤¤Ú¦£Ø¦¡×¥¡Ô¦ŸÓ¥žÑ¤œÍ¢šÉ¢™ÈŸ–Ù»Ž‚°ƒ|žrn}igld^`g[[kYUrWP}WNŒWO•RI©[QµXPÁZSØkdìyrù‚|ÿ‹†ùuqÿusí_]àQMÙECïZTÌ71Å2*Å7+Ã7(À7'Ã7&Æ9(Ê;+Ñ=/Õ?1Ò8.Ö<2Ø@5Ô<1Í5(Î4(Ø:/ãA6à90á90Þ7.×7+Ï7)É:*Æ?,ÄA/Â=.Æ@4ËE:ÍG<ÌC;Å<4¼3-¶+&Ç<9ÐEBÚPMàVSãYVáXRØNKÐC:Ì;*Ó:(Ü8,â5.è./ì*2ð(3ô'8ú->û,@û*?ý)?ÿ(?ÿ&?ÿ%=ÿ%=ÿ#:ÿ':ÿ+<þ,9ô,6í.5è45ç;9Ý84Ý:3Þ;4à;5ã:5æ95é73ë54ë35ì46ë54é54ç53â5/Ý5,Û5)Ü8,Û9*Ü9(Þ9&ß8&â7%ã6%æ4&ì5/í41ð50ñ4.ñ4.í5+ë6-å7,à90Ø7/Õ:6Û?BÿmwÿbsûSjõIcÿKjö6[ÿ6_ÿcçNj¯IV^$#E-!?:'HE4PMB1?G/BH&EK%KS.S]8[kDavKd~NdƒJc†F`ˆBa‰@c‹BeFjJlPn’Rl‘LjIgŒGf‹HfŠJf‰Ic…HaƒGe„KdIbIdJgKg€Ie~Ga}C\|=\=_‚B=?4@B7FC[K>^N>aP>`Q<^SA^VIc[Xhcinlyso†uo•vpžtp¢pm¢gfŸaaŸ]^¡]]¥ed°kjºusÆ}{φ‚ÙŽˆà”Žæ˜“å›–Ùœ˜Õ™Öžš×ž˜Ö—Õž•Ô•Ñž–Ñœ”Íœ“Ê›’ǚ牻ˆ®‚xtk|mdif]^f[YiZSoWM{UJŠVKšVK±]S»ZSÁXRÓfaàqjãvoí~wý‡…ÿ‡…÷uuîgdãUSëZUÇ2,Â/%Å7)Ã7&Á8&Á8&Ä8'È;*Ï;-Ó=/Õ9,Õ9,Ó:,Ò:,Ñ9+Ñ9+Ô8+Ø8,ß;1à90Ü8.Ö8,Ï9*È9(Á:&¾9&¾6*Á80Æ=5É@8ÊA9È?7Å<4Ã:2¿4-Ç>6ÒIAØOGÚQI×NFÌC;Ã7*Ë8&Ó8$Ý7)å4,í//ô+3ù)7þ);ÿ+Bÿ*Aÿ)Aÿ'Bÿ#@ÿ!<ÿ=ÿ;ÿ:ÿ ;ÿ%;ÿ);÷-9ð19ê7:å;;Ü94Ü:5Þ;4à;5ã:5æ95é73ë54ì46ì46ì65è64ä71ß6/Ü5,Ù5)Û9*Û9*Ü9(Ü9&Þ9&ß8%á8%ã6&ç5+ê3-ë4,ë4,ë5*ê5*ä7)â8+à<2Õ3.Ó54óTYÿesÿ[pöHcÿIhÿAdÿ;`þ4\ú]P?\SD^WMc]]ifmom{sq‰so”qk™jf˜c`•\[”ZZ˜\] \_¦hjµno¿wxÊÒ‡ƒØ‹‡ÜŠà’ݓӓ‘ÑÑăŽÐ“ŒÏ’‹Î•ŒÍ“‹Ç”‹Ä”‹À“‹¾Œ„³ƒz¥€r•|ewu^fi[[e\Wd[RgYLrVH„TH£ZQ½`YÉ\YÐZXÛcbákißokãvqûІÿІÿ…ƒÿ}y÷nhîaXÅ5,À2&Å9*Á:'À9&À9%Â9'Æ:)Ì:+Ð:,Ö:-Ô6*Î5'Ð8*Ô>/Ô>/Ï7)Ë/"Ú:.Ú8-Ù7,Ö8,Ð:+É:)Â9&¾7$¾6*À6,Â8.Å;1Ç=3Ê@6ËA7ÌB8Ç:1ËA7ÏE;ÐF<ÒH>ÑG=Ê@6Å7+Ì6%Ö6&ß7,è50ñ03ö-7û+9ÿ*<ü'=ü'=û%=ù#;û!:ú7ü7þ6ÿ8ÿ6ÿ$8ý*;÷2<ñ6=ë8;ä::Ü94Ü:5Þ;6à;7å95ç85é75ë54í36î47í55ê65æ72á6/Ü5,Ù5)Ú8)Ù9)Ú9'Û8%Ý8%Þ7$à7$á6%á5)â4)ã5*ã6(ä7)á7(ß7*Û7+Ý<2Ð1+Ø88ÿkrÿ]nþPiñ<[ÿHlÿ7]ÿ>eù5[î>bæVqª?Qa#(L/+;7+18(37&:;)B=*A<(@>)BB&?FXa4s~T€Œdw‡`i€Tb|MaI`‚E`…@a‰@dAhGjJkMl‘Nn“Mk‘HiŽIgŒGh‹Kh‹Kh‡Lg†KfƒKe‚Jc€HdIf‚Hf‚HeFb€Bc†DeŠEhH25*69.;<4A>7G@:KB=SF>VJ>XL>YM?YQD^WOc^bigron€roŒrm•jg”a_WW‹TUŽWX˜\_¢ac­ln»rsÃ{|΂ƒÕˆ†Ù‹‡ÛŒˆÜŠ×ÒΌώ‹Î‰ÏŽˆÐŽ†Ï…Î…ÊŽ…Æ…Á‡¼‡¶‰‚¬€xoŒ€_p|Y`lXYd[T^_Q_\IjWF}SEžUL¾\YÑZ\ÙX\äcgçkkáplåxsì|xízuþƒ~ÿ†ÿ{õkaÉ<2Ä8)Â;(À;(¿;&¾:%Á:'Å9(È9)Î8*Ù;/Ô6*Î5'Ï9*Ñ>.Ñ>.Ë8(Ç/!Ò6)Ó5)Ó5)Ó7*Ñ9+Í<+È=*Ä;)Ä:-Ä:/Æ90Æ9/Ç:1È;1É<3Ë=3ÔE=ÓE;ÐA9Ë=3Ì=5ÏA7Ï@8Î;1Ï6(Ù5)ã6/ë31ò/5÷+6ú*:ü)<ù&9÷&;ø'<ø'<û&<ý%:ÿ$:ÿ#:ÿ#8þ#7û&8ù,;÷5>ò9?è8:à87Ü94Ü:5Þ;6à;7å95ç85é75ë54î47ï58î66ê65æ72á6/Ü5,×5*Ù9+Ù9)Ù9)Ú9'Û8'Ý8%Þ7%Þ7%Û5%Ü6(Ý7'Ü9(Ü9(Û:(Ù9)×:+×:1Ñ4/ìILÿoyÿVjùE`ø<_ÿAgÿ3\ÿ8bø>cèMlÅOe€0=J C1-11'/7(5<,>A.B@+B<$E>$IF%U\0p~MŸr—¨|ƒ˜mj„W_{J]~E_ƒCa†Ac‹BfCkJm’Mm’Om’Oo”Nl‘KiŽIhHiŒLiŒLj‰NiˆMg„Le‚JdIe‚HgƒIh„IgƒHd‚DgŠHiŽIl‘L.4(36+891<;6B=9H@=MD=QG=SI=SK>UNDZUQa^eigumklkŠki‘b`XVˆPP†QQXYš`cªfj´orÁuxÉ|Ѓ„Ö†‡Ù‰ˆØŠ‰Ù‹ŠÖŒ‹Ï‹ŠÌŠ‰Í‰‡Ð‰…ш„ÑŠƒÑ‰‚ÐŒ„Ï‹„È…Á†º†°‡¥~w–m…„Yj€SZnVTc\RZaOZ_HeZDxUB“ME¸TRÐSWÛRYå^dèejãklæuqäunâoh÷~vÿ‚{ÿ‡~ôl`É?2Á8(À;(¿<(¿='À<'Â;'Å:'È9)Í7)Ø:/Ù8.Ò8,Ï9+Ì:+É:*È9)É7(Ï9+Ñ7+Ò8,Ñ7+Ï7*Ì8*Ë<,Ë>-Ê<0É=0Ê<2É;/È:0Ç9-Å7-Å5*Ð@7Ð@5Í=4É9.Ë80Î;1Í:2Ì5,Ð/%Ù0)ä20ì25ô/8ù-9û+;ü+>ü-?ü/@ü/@ü/@þ/Aÿ/?ÿ.@ÿ.@ÿ)9ü)8ø,8õ0:ñ6=í8=ã77Ü43Ü86Ü:7Þ;6â:7å97ç77ê65ì44ñ48ñ48ð67í76æ74á6/Ú6,×5*Ø8*Ö9(Ö9(Ø9&Ø9&Ù8&Ú7&Ù8&Õ8%Õ:&Ö;'Õ=(Ô=(Ô=*Ô=,Ô<.Ñ7/Û<9ÿ^eÿaqÿPi÷<[ÿAiÿ4_ÿ5aû1YôKlÛYq•>NZ%-C),:20.1*08-8A0=B,<<"A<UH(`[5|†T¢nª¾¨¾Ž¥wo‹[aK^F`„DcˆBgDl’Go”Np•Po“So“So”Ol‘KiŽIgŒGiŒLiŒLi‹OhŠNg†Ke„IdƒHe„Ih†Jh†Hg…Ge…FiŽKi‘Kl”N+1%.4*470894>:7B=:HA;KD1Î8*É5'Ê8)Ë<,É:,È:,É;/Ê<.Ê:/È9+È5+Ç5(Ê6,Ï;/Ò>4Ó?3Ö?6Õ>3Î7.É,#Ò+%Ü-*ç02ð39ö1;ú0>ý0Aþ1Bú1A÷1@÷1@ö0=÷/<÷-9ú,9ú*7ü0<ù/;ô0:ñ4;í6;æ69ß55Ú53Ü86Ý97ß:6â:7å97ç77ê65ì44ò59ò59ð67í76æ74à72Ú6-Ö6*Õ7+Ô8)Ô8)Ô9'Õ8'Õ8%×7'Ô9%Ð9$Î<%Ï=&Ï?'Î@(Î@*Ð?.Ó<1Ñ61ëHIÿfrÿOdÿHfû7[ÿAmý/]ÿ7aò4XäQk¼Ufm19E(,E697325426926=-5:#38CCja:…TŸ®w©Á‡µÍ™¯Ç•’®}v”be†Q`‚F`…BcˆBiFo•Jr˜Or—Rq•Up”To”Ol‘KhHf‹Fh‹KiŒLjŒOi‹Og†Kf…Je„If…Ii‡IjˆJi‡Ig‡FjJk“Mn–P(0#+1'14-561764<87@<9C>8IEù4>ú2?ú0@ù0@ò.<ï/<í/9í07ï-5ï,2ò+2ò+2ö3;ó4;ò5;í6:å57á55Þ65Ü75Ü86Ý97ß:8ã99æ87é77ê67ì46ô5:ô5:ñ7:î79ç85à72Ú6-Ô6+Ó7+Ñ8*Ð8*Ð9(Ð9(Ð9&Ñ8(Ð9&Ë9"È:"È=&Ç?'È@(È@*Ì=-Ï;1×96üU\ÿ^qÿGcÿ?aÿ;bÿ7gþ3bû8`íFdÅNa‰@IT15A55@:<:46?56>6389+6<"9CSZ.‚Q¢§q±ÅŠ¯ËŽ°Ë”¦Ã’®}{™eh‰R_E^ƒ@c‰@iDo•Js™Ps˜Sq•Uo“So’NlJh‹Gf‰EgŠJiŒLi‹Ni‹NfˆKd†Id†Ie‡Ji‰JjŠIi‰Hf‰Ej’Ll–No™Q&.!)/%-2+13.333764:97=<7GD=DD/Ê;+É:*Ç8(Æ7'È6'Ê6(Î8*Ð8+Ó;.Õ;/Õ9-Ò6*Õ7,Ú<1Ý<2Ü71è88ñ8=ø;Bû9Bú4Aö0=ò,;ï,:í/;ê19ê2:ë48í49ñ48ô36ó57ð37ï6;í9<é69â45Þ44ß76à;9Ý86Þ97á98ã99æ87é77ê67ì46ô5:ô5:ñ7:ì89æ95ß82Ø7/Ó7+Ð8+Í9+Í9+Ì;*Í:*Í:(Í:*Ì;(Å9"Ã;#Ã=$Â>'Ã?(Æ?,Ê<.Ð92ß<89?48F37C41=:)>D(GV-bs?›a­½±ËŒ«É‹¦Ã‹º„ެz{™ef‡PZ|@^?a‡>iDo•Jr˜Or—Rp”Tn’Ro’NlJgŠFeˆDf‰Ih‹Ki‹Ni‹NfˆKe‡Jd†IeˆHgŠHh‹GjŠGg‹Ek“Lm—OpšR)/#)/%(-&+-(///3317759:4==5?@8DE@KKKQQYVXe[[s^]}YX‚[Y‹^]–ee£nn¶wxÈØ„…⌌ðŠŠì†‡ä‚‚Ü€€Ö‚€Óƒ‚΂‚ȃ„ǃƒË„„ΆƒÐˆƒÓ‹„ÒŒ„ÏŠ€ÅŠ€¼‰€¯‡}Ÿ€xwozkegf]Xm[Qm[Mi\Lf^Kd_IeaHh`Io_FoP;…UA¦^PÀbZÑYXÝQTîS[ø\`ùggæYRÔD<Î70Ñ7/×:1Ö<0Ô;-Ï9*Í:(Ð:)Ñ:)Ô8+Ø8,Ü5,Ü5-Ð/%Í3)Ì8,Ê>/Å@/ÂA.¾=*½:(Â9)¾0"éWJàL@Ã/#Ñ=1Î2Ü<0Ù7,Ú8-â>4ìC<õBEò9?ñ3=ö4?ö2@ñ-;í-:í2=ì7@æ5;ä5:å78ë8;ð9;ò89ï77ò;=î<<ê::æ87á77ß76Ü75Ü75Þ97á98ã99æ::é9;ì9<í9<ï8<ô7;ó6:ð8:í9:ç;9à;5×90Ï7,Ê8+È9+Ç9+Æ:)Ç:)È;)È;*Ç<)Á9#Ä='¾:#¶4¼9%ÉD3Ï?6Ê0.ÿ^eÿVgÿIbÿ<\ø1X÷0Yû6cõBiçYo¬FQo33N3,B?6>C?7CD>IIGOPTSUaXYk[[u\Z^]‰db”kj¤utº~·‡ß‹Œéð‰‰ë…„ ؀~Ò€ÏË…†É†‡È‡ˆË‰ˆÎ‹ˆÏŒ†Î†ÌŽ…ÈŠ€¼‰±†|¡‚x‘{s€tknlb`e]Re_Oe^Lf^Kf^Kh]Ij^Hk_Io_Fw_G[C’YF­ZLÇVPÞRSõQXÿX_ðUSãKFÙ>9Õ60Ù6/Ü90Û9.Ö9*Ó7(Ñ8(Ò9)Ô8)×7+Ü5,ß4,Ý4-Î0'É5)È9+Ç>.ÄA/Á@-¿<*¾9(Ä8)Ë<.äREÜH<È4(Ì:-È:,Â4&Ê=,Ë<+Ê;*Ê;*Ë:)Ì9)Î8)Ð7)Ó7*Ö8,Ù7,Ø4*Õ1'Ø1(Þ7.ç<5øDGñ8>í/9ï/:ð0=î.;ë1<ë6?å6=Ü36Ø24ß:8îDDùIIøDCó?>é:7ç98å97â96á77à87á98á98à87â88å99ç9:é9;ì9<í9<ï8<ó6:ò59î68ê88ä;8Ü:5Ó9/Ë7+Æ8*Ã:*Â:*À;*Á<+Á<)Á<+Á<)½9$Â@*»:%³5º;(Á;/Ê94ØdãIe«?Lƒ?>`;3G;/:>08>2F<:R>=N0.S8/VK7ciEx[°pÂ}¡Æš¹}š¹€š¶ƒ©xrŽ^YuETp=\{B_@b†@iEm“Hl”Kk“Mj‘PiOgŒGe‰Cc†Bd‡EgŠJiŒLi‹NhŠMiOiMiŽKhHgŒGhGl’Im•Lp›SqœTtŸW-1#-1#,/&,.)//-11/34/56.:<1<>1@B7FGAKMLQRWVVbXWi\Yt^]fdŒpn zx·…ƒÎ‹ßêŽïŽŒíŠ‰ç‡„ßÓ|Ë}È€ņ…LjˆÆŠŠÊŒŠÉŽ‰É‡ÅŒ„¿‹‚·‰€­†|¡€v{p€ujpoeci_Vc]M_aL_aKc^Jg\Jl[In\Ho]Ir^FwaIxX?‡S=£VDÇXOãUSøOTþMSâ>=Þ<7Ý84Þ71á6/â7/Ý7+Ú7(Ô7&Ó8&Ô9'Õ8'Ø6)Ý5*à3,Ý4-Ë3(Ä6*Â8+Á<-Â>/Â>/Á<-À8*Ã5)ÜI?ÚF<ÕA7Ï<2Ä6*Ä:-¾6&Æ:)Ç:)È;*É:*Ë9*Ë7)Ì6(Î4(Õ9-Õ7,×4+×3*Ú3+ß6/å:3é<8ð<=í49ë07í29î3<í4<ë7@ê=CÝ7;áAAìNMøYUýYWúQNïB>å84â62à72à74à74á85â96ä::ä::á77ä88æ8:é9<ë8<ì9=ë8<ì8;ï58ï58ì57ç77â:7Ù:4Ï8/Ç7,Â8+¿:+½;+»<+»<+»<)»<+»<)¸9&½@*³9$±6$¶;+µ0'Ã40ìPTÿ[iÿJ`õ:Uð7Vñ@]ïHfçHdÍNa‚89e?6R@2DA09=,57)?7,L:0F.$R=,g]Bˆ_“ªt—»{–Áz–¿{”³zœ¸‡š´…€šm]vLHb5Nh8\wB_}?cƒ@hŒDl’Gk“Ji‘JgLgNd‰Dd‡Cc†DeˆFh‹KkŽNkOkOkOkOiMhJgHi‘Hl”Ko™Mu¡Vt¢Wv¤Y24&04&12*01+12-23.34.46+9;-;>-?A3DF9JKENPORQWTT^XVd\Zoda~nl”zw¬„‚ÃŒ‰Ö‘㔑ê“뎋≅قÌ|Ã|¿€~¿„‚Á†…Á‰ˆÂŠÃŒ‡¿‹„¸‡®…}¤…{€vŽyn~rgmmaak^Vi[Pc\J^aL]aJc^Jh[JmZKqZJtZIv[FsWAxR;ŠQ=«ZGÍ[PãTPðFIñ>AÛ2/Ü5/á51ã60ã5.á5+à6)Û8)Ö6&Ó8&Ò9'Ô9'Ø6)Ü6*à3,Ú6-É7*À8*¼7(½9*¿=-Â>/Ã;-Ä8+Æ3)éUKÔ=4Ì8.ÑA6¾4'À<-À<-À8(Ä8'Å9(Ç:)È9)Ë7)Ì6(Í3'Ò6*Ô3)Õ2)Ü5-ã:3é>7ì?9ì=:è45ì59ï6<î5;ê2:æ39ä7=â<@óUVübbÿmjÿidóVQäA<ß63Þ50ß61Þ71Þ63ß74á85â96å99æ::å78æ89è8;é9<ë8<ë8<ë8<ì7<ï6;î68ê67å97ß<7Ö<4Ì9/Å9,¾9*º;*·<*µ<)µ<+´=)´<+³<(³:'·@,­8&­8'³;-«+"Ã54ý`iÿTdúG]ð-=@-@C.DG4IK>MNFQPNRRRVUSYX]a_lkius›€}²ˆ†ÇŒŠÓ•’ᔑâÜ‹‡Ó„Ä}º|µ|³~·„º‡„¹‰…·Š„²†¨z›€x€tˆznzrfjm_^j[Ti[PjZKfZJb_Lb_Le^Li\Kn[Lr[Kw\K|[HVB‡S>›RA¶VFÏSIÚG@â88å33Ý1-ß3/â51ã4/á3,ß3)Þ6)Ü9(Ó8$Ð9$Ð;'Ñ:'Õ8)Ù7*Ý5,Ø7-Æ:+»9)µ6%·8'½;+Ã>/Ç;.Ç7,Ð90õ\TÖ=5É5+ÏA5¹4%·:(¼?-À;*Ã:*Æ:+È:,Ê;-Ì:-Ï8-Ñ7-Ð3*Ò1)Ö1+Þ71å<7ê>:é<8æ74é77ï;<ðë8>è7=ê7;ï8<î7;ê7:ä::ß=:Ö=7Ë;2Ã;/º8*µ:*³;*¯<)¯<*¬<(¬;)¬;)«<)­>+§9(§9*ª8-¬/)Ë@CÿhrôM^óH[îEZåH[ÙO^ÉT]·TWœXUdM?PM:LG4KF2FD-@C(>E$?I$KV.\gb{Be‚BiŠCkEi‘HfHbHcŽGb‡Bf†CgŠHiŒJkŽNmPn’Ro“Sk’Ok’Ok“Mi“Ki“Ik•Io™MržQv¤Yv¦Zw§[?=.=>0==3==5=<7<=7;=2;=/?B/@D-CG.FJ3KL:NOAQQIRRHYWJZZN`_]gerqn‰{y¡ƒ€·‡…Čьӊϊ…ǃº~y¯zw¦yv¥{v¬|y®€|®ƒ}©ƒ}£x—|t‹zrvksrffn`]j\Sk[NlZLl[Kk[Ki]Mg^Mi]Mj]Mo^Ns^Mz]M‚[J“`O›VG§N@¸J=Å@7Ï60Ø1+Þ1+á51â70â5/â4-à2)Þ4'Ü6&Ú;(Ñ9$Í;$Í<'Î;'Ñ:)Ö9*Ù7,Ó9-Â=,µ:(°5#³6$»9)Ä<.É;/Ë7-Ù?7ø[TãIAÎ:0Ì@3¸6&¬3 µ<)½:(¿7'À7'Ã7(Å7)É7*Î7,Ñ7-Ù<3Ü;3ß:4å<7ê>:ë>:ç85ã41è96ë;;ì::è8:ì>@øORÿbeÿppùheãUQÊ=6À1+É40Ö;7ß=;à;9â;5â;5â94á83ã75ä65å55æ66é69ê7:ê7;ë8<ë8>ë8>è7=ê7=ï8=ì8;è8:ã;:Ý>:Ó>7Ê=3À8ÛTXûepîK\ïI]éJ^ÛM[ÉQZ´VV ZRŠ`RPI7IN:NI5H@+;578>O%Lf6lŠTw”\„›e‰šd›f‘¢l•¬t˜°|ƒ•mn}\Q`C,ÊF7ÌB5Ê@5Ë?2Î@4ÔA7ÜE<ãF?â@;â=9ã:7ã75ã54ä65æ:8å<9ä?9à=8Ü:5ß@<êLIêQLÓ?;¸)#¸-&¿6.É>7Ñ@;Ö>9Ú;8ã;;ç==â96â96â96ä86å95ç:6é99ê::ê88ê88ë8;ë8;é9<è8;ç6<ç6<é6:æ68â89Þ:8Ö=8Í>6Â<1¹;-®8*ª;*¦;)¢;( ;'Ÿ<)ž;(š;'˜?-Œ5"™=.˜8*—/&Í\X÷y|ßX_æXdÛQ^ÊKT¹LO©VRž`U‘hV€nVPW8?J*<;C=UQ+lvD„¢f”Á~‡¼v†¸s|žbn‚MvR‚‡^u}V[b@;D)4<%5=(=D2XQ?YR@[TD\UE\UEc\Ib[IaYLbYRe][kaiqftuj{zn„|pˆs‹s‰|p„uj{mbrf^kc`k`_g_\c_Z^^ZY^YUaZRbZOe[Og[Ki\Kk\Il]Hm]Fm\Hj^HibOqfTqZJuOB‹WJœ\P¤ZM¬ZL¥M?¦E5§<,±7(Â8-Ñ80Ü41Ý1-ß6/Þ7.Þ7.Þ7.Þ7.Û7+Ù7*×7)Õ8)Ô8)Ò9)Ò9)Ò9+Ò9+Ô8+Í;,½;+¶>-®9(©1 «2!¸:+ÀÔH9Â=,·2#ÝPFÙKAÔE=ÕE<ÚG?ÞG@àC>á=;à74æ87í;;ì::ç77ã75à85Ü=7ÙF>ÏB9Ä:0¼3)·1&º6*¿;/Ä@4Ã:0Ê=4Ó@8Û@;â=;ç;;ì8;í9<ç7:å8:å8:å99å97å97å95å95á51á51ä65å76æ89ç9:ç9;ç9;ë;>æ9;ß9;Ü=:ÖA=ÍB;ÁA6·?1©9+£<+ =*›<(™:&–9'•8&9&A0‹<-‡/#’0'¼LJämoçloÍVZ½LNµNOªPO¢UO›XP—]R•aTŠjSWZ/:M7FTa)~ŽP›°o¡¼y¼y’µs~ah€N\mCYdBT]BHP9?D0:=,@C2=A2;?1]sBgƒHpKo“Kl’Gj’Ii“KgLlPm‘So“Sn“Pm’Mk“Jm–Jm˜IqœMqNrŸNr¡Pt£Rv§Vz©Y{©^y¦cm™ZcPWN?WN?WN?WN?WN?WN?WN?WN?XO@YPAZQB[RC\SD]TE^UF_VGd[Jd[LcYMcYOf[Uj_]nbdpdhreltgpvirvirsfmm`gg[_bXY^[VZZRZWPXULXTIXTH\VH^WGcZKcZIf[Ig\Hi]Gj^Fk_IiaJcbMngTv\MSF›WN«VO°RJ¸RF¯G:¬B2¬=,±9)¾8,Ë80Õ62Ù40Ý6.Ü8.Ü8.Ü8.Ü8.Ú8-Ù7,×7+×7+Õ7+Õ7+Õ7+Ô8+Ô8+Ô8+Î:,¾<.¶>.®9(¦1 §2 ²:)¹>.¾<.Æ:-È5+Ë4+Ò;2ÜE:áOBßQCÝOCÛF?Ø@;Ó;6Ò:5Ö=7Ú=8Ü86Þ44è8:ë78î79ë78ç77å97â=9ÛB<ÊA7À@5¸:,±6'¯5&²8)¸=-¿@1ÅA4Í@6×@7ß=8ã:7é77ï58ñ7<é6<ç6<ç7:æ89æ87å95å95ã:5â92ã:3ã:5ä;6ä;8ä;8æ::å8:ä:=ã:=ß<=Ù?=ÐA;Å@7·=2­<.¥;+ =*œ=+—<)–;(’:&‘8&Œ9'€9'€8)‰5*<5¿QP×eeÑ^a¸NN¬NL¤SOXQ˜\R—^S˜_T˜_VŒfQ`_/Sg*^r3zO™¯n¥¾|™²pˆ bj‚HbvCTe;KY8FP7@I69?158-:B4:C0@M3Rd>^tEh„IqMp”Ln’Hm“Jk“Lj‘Nm‘Sn’To“So”Ql”Mk”Hl—Hm˜HpJpJp Ls¢Qu¦Tx©Xx©Xx¨^m—Xb‹QY‚H]TE]TE]TE]TE]TE]TE]TE]TE\SD\SD]TE^UF_VG`WHaXIaXGe]Je]Jd[Je[Oe[Qf[Uh]Yi^\j^^j^`k_ak__i^\f[YbWU_VQZUOWTKUQHRNCQMBSOCWQCXRB^WG_XFaYFc[Fg\Hi^Hk`LicMbaMngUy_PˆXN¢[U±VQ²IE¸E@¹@8¸>3·;/¸8+¼8+Ã9.É;/Ñ:/Ù8.Û7-Ü8.Û9.Ú8-Ú8-Ù7,×7+×7+Õ7+Õ7+Ô8+Ô8+Ô8+Ò9+Í;,À>0·?/­:(£2 £2 ª9'³>,º?/Ä?0Ä8+Å2(È4*Ð<0ØF9ÝN@âNDÙ:6Ø43Ô20Ö42Û97á=<æ<=é;<í9<î5:ë27ê37è58å99á<:Ù@:¾8-µ:+±6'®4%­5%°8(µ<+»=.ÈD7ÐC9ÖB8Ý>8â96è66î66ï79ë6;ê7;ê7:è88è88ç:6æ:6æ;4ã:3ä;4ä;6ã<6ã;8â:9á99Þ88Ý9:Ü<<Ú@>ÓB=È?9º;2­7+¥7(¡;,<+™<+”;)“:(9&8%Š9&z6#y6%ˆ9, F=¹SOÀWT¸PO«IF¢MHœSLšZQ—^S—aW—aW˜_V‹ePsrFzV“¦n¤¹€«À‡ž³{|[[o<@S%AS+BQ0?L2:C06<.69058/9;.@A3=?4:=2=A3:C0@M3Qc=`vGi…Js’Or–Np”Jo•Lm•Nl“Pp”Tq•Uo–Sn–Pl”Ml•Il—Hn™IpLpLpŸNu¤Sx©Xyª[u¦Wq X_‰JVGOx@aXIaXIaXIaXIaXIaXIaXIaXI_VG`WH`WHaXIbYJcZKd[Ld[Je]Hf^If^Kg^Mg^Of\Pf\Rf\Sh]Wh]Wh]Wh]Wg]Tf\RdZPc[P]YNZVKVRFRNBPL@PM>TN@UO?XRBYTA[VC]XDaZGd]Jf_LfaMdcQleUv\OŠ[Q©b\¸ZX¶FD¹<:Ã<9Æ;6Ä92Â8-¾8,½;+¾?.Ç?/Ó9-Ù7,Ú8-Ù9-Ú8-Ù9-Ø8,Õ7+Õ7+Ô8+Ô8+Ô8+Ô8+Ô8+Ò9+Í;,Á?1·?/­:(¢3 ž3¢7#¬=)µ@.¼?-¿:+Ã7*Å5*Ë7+Î:.Î4C&:F.=F3;A3:=2:=4<=5::.?@2<>39<1<@29B/?L2Qc=awHj†Kt“Ps—Or–Lq—No—Pn–Pr—Ts˜Up˜Ro—Pm•Lm–Jn™Jp›KqžMržOt£Sy¨X|«]w§[mSe’M[„HS|DNw?d[Ld[Ld[Ld[Ld[Ld[Ld[Ld[LcZKcZKd[Ld[Le\Mf]Nf]Ng^Mf^Ig_Hh`IiaLiaNi`Oh_Ph_Pj`Tj`Ti`Qh_Ph_Nh_Nh`MhaOd^N`ZL[UGVPBPM>NK:NK:NK:QN=RO>TQ@VS@XWC[ZF]\H^]Kb`Qf^QmWJ†[R­jd¾c`ÁMMÈBCÐ;=Ô89Ó84Ì70Á9-º=+µB-¼B+Î;+×7)Ø8*×:+Ù9+Ö9*Ö9*Ô8)Ô8)Ô8)Ô8)Ò9)Ò9)Ò9)Ò9)Í;,Á?1¶>0«:(¡6"š4›7 £=&¯B-³;*º;,Â:,Ç9-Ë8.Î:0Ñ=3Ú;5é9<ì4<æ39ã28â38â59â38â17é6<é49ç4:ç7:ã9<Û76Ð21À/*´6*­9*­:(«:(«:(«:(¬9&¯7&¸:+Á;/Î>3Ø?7á>9ä;8è96ì87î68î66î66í74ê84è:3ç:3ä<3á:2ß;2ß<5Ü=7Û=:Ù><×=;Ô>=Î@<ÊC=ÅA<º>6­7-£5(ž7(š:*–;)“<)‘;*:(Š9&‰8%ˆ7$ƒ8%ƒ@-u4"{3%“G:¥RJ¡NFžNG¡WN™VM“YMZNŽ]O]R”`U—`YhWˆh˜¤|©ƒ€Žj]kHDS42@&$2-:&0;*5=.9?36;<4::099-?@2;=28;0;?18A.>K1PbÜ87Õ83Ç;.¼?-±C*µA(Ê;*Õ8)Õ8)Õ9*×:+Õ9*Õ9*Õ9*Ô8)Ò9)Ò9)Ò9)Ò9)Ò9)Ò9)Í;,Á?1¶>0«<)£:%™6•5›;#§A*²B.¹@/¿;,Ã7*Å2(Ë4+Ò;2ß=:ê5:î3<ë6=é8>ç:>ä;>ã:=â9<ß58á7:â9>á=>Û=>Ñ96Ã2/¶0'¯9+«=,«=,©>*ª=)©<(©:'«8%¯6%¹7)Å;0Ð=3Ù<5ß<7ä;8é:7î87ï75ï75î85ë:4é;4ç<4ä=4â>5à?7ÞA:ÛB<ÙA>ÕA?ÒA>ÍB?Á@:»@8³=3ª8-¡5(›5'™9)•<*‘;*<)Š<(‰;'†9'„7%ƒ6$€7&}:)t3!~9*—OA£YNœRG•OE™WK•YN[MŽZMŒ[MŽ\Q“_T™`Y‘gY~wZyƒ`r|ZVaC;E,/;%0;*0<.3=25=27=3?1:<17:/;?17@->K1Oa;bxIk‡Lu”Qu™Qt˜Ns™PršSq™Rs›RsœPr›Op™Mn˜LpšNsžOv Ty¥X{§\|¨]z¥]qŸWg”O]ŠEX‚BaˆOY€ISzCg^Og^Og^Og^Og^Og^Og^Og^Og^Og^Og^Oh_Ph_Ph_Pi`Qi`OjaPjbOjbOjbOi`Oi`OiaNiaNiaNh`Kh`Kh`Ih`IhaGhaGhaGg`Me^Kb[I\WDWR?PM:MJ9IH6IG8GH8GJ9GK:HL;IM>JN?KM?PPDXRF[OCiRD„ZN–VL°SLÔZYÛIJâ?Bá99Û75Ï;1Ã@.´B*³<$É:)Ó7(Ô8)Ó:*Õ9*Ó:*Ó:*Ó:*Ò9)Ñ:)Ñ:)Ñ:)Ñ:)Ñ:)Ñ:)Í;,Á=0µ=/¬=,£<)˜8"4•9 ¡A)­C-¶A/¿=/À6+Â/%Ç0'Ð6.Þ:8è59î6>ì;Cê?EæAEàBCÜ@AÚ@@Í12Ð66Ó:<Ñ=;É;9¿82µ4.­4)ª<-¥>+¦?,¥@,¥>+¥?)§<(©:'ª7%²7'¼8+Å8.Ì70Ô94Þ<9æ>;ë97ì95ì95ë:4é;4è;4å=4â>4àB7ÝC9ÚC<ÕB;ÏA=Ê?<Ç=;¿>9±<3©:/¢8+œ6(˜7'”8)‘:):(‹<+‰<*‡<)ƒ:'‚9(€7&6%}6$x3#x5%†C3˜UEWK”PCPD•ZL“YMZN\Q\Q’[T•\U™\WŽbUkbEWa>JS4=G,6?*3>-4>35?66=69@9=B;CF=EG/;9*78*=>0:<17:/:>07@-=J0N`:awHk‡Lu”Qu™Qt˜NtšQršSq™Rq›OrNqœMp›LošKrNu¡Ty¥X«`~©az¥^qœWf‘L_‰G]‡E^ˆIb‰PY€KSzEh_Ph_Ph_Ph_Ph_Ph_Ph_Ph_Ph_Ph_Ph_Ph_Ph_Pi`Qi`Qi`QmdUlcTj`Ti`Qh_Pg^Oh_Nh`MiaNiaLiaLiaLiaJh`IhaGh`IgaKg`Me^Kb[H\WDUR?QN=ML:EF6EH7DH7DH7CJ:CJ:CI;EI;IK>SQDSPAYM=eK:tD6–I?ÂYSÙQQàDEà::Ý86Ö<4Ê>/º=)µ8"É:)Ð9(Ñ:)Ò;*Ò;*Ò;*Ò;*Ò;*Ñ:)Ñ:)Ñ:)Ñ:)Ñ:)Ñ:)Ñ:)Í;,Á;0¶:.­<,§>+™9#3“7Ÿ?'¢9$¯<)À>0Ç=2Ì8.Ð7/Ù<5ã?=ì=Bî?DêDHâDEØ@?Ê;7À50»1.¹/,¼51¾:6»<6³:2ª8.¤8,¢;,¡=-Ÿ>+ ?,¡@-¡@-¡A+¤?+¦=*©;*­:(²7(¹5)¿5+É90Ö>9àC>å<7è;5è;5ç<4å<5ä=4á>5Þ@5ÜD9ØD:ÒC;ËB:Ä?:½<7¸85°93¢7-™8(•5'“6'‘:)<,‹:)…8&ˆ=*…<+ƒ<*€<)~9)}9&{6&{6&z2$€8*ŒG8–SC“QC‹L=RE™_S‘WL’YN”[R–]T—^W—\V—ZU_RaX;EM(6@8A&>G2=F53=2-7.1817>6CF?GJ?HI;BC1?>*;:&78(=>09;069.:>06?,=J0N`:awHj†Ku”Qt˜Pt˜NtšQršSq™RqœMqœLqœLp›Kp›LsQw£V{§\‚­e€«dx£^j•P]‡EYƒA^ˆHePcŠSZLSzEi`Qi`Qi`Qi`Qi`Qi`Qi`Qi`Qi`Qi`Qi`Qi`Qi`Qi`Qi`Qi_Sj`Wj`Wj_Yj`Wj`Vj`Vj`TjaRjaRjaPjaPjbOjbOjbOjbMjbMg_Jg_Jf^Ie_Ib]IZXCSP=ML:HI9EH7AE6@D5?E7?G8?G:?E9GK=IK=BF5KJ6\Q;aE0ƒJ9Àj]Üg`ãUSäFEåA@àA=Õ>5É=0Æ=-Æ4%Ë5&Ì6'Í7(Í7(Ï9*Ñ;,Ó=.Ò<-Ò<-Ò<-Ò<-Ò<-Ñ;,Ñ;,Î<-»2(¶7.±;/¨:+š7"”5–7!œ9"¬A-²=,º6)Á4*Í6/×<7âC?êHEèDEéFIÝCEÉ98»61´80®8.©4+«9/©9.¥9/ 8-›9,–:+“<+’<+–=+˜=*™>+š?,›@-@. A/£@-¢;*¥:(«7(°6)·7,¾8-Ä;3Ì<4Ú=6à=6â?8âA7âA9ÞB6Ú@6×@5ØH=ÒE;ÇA8»;2²5/ª3-¦0,Ÿ2+™9-’;*‘9+:*‹:)ˆ;+‡;+…<+:(~9)|9(|9(|9){8'y6&x3$w- ‹A6˜PD“MAMA’RF“UJŽRG˜\R˜\R‘UMTL—ZU•XS”WT“gZ]T5IQ*BL)BK,>H/7@+2=-4?14<1HPCZ]RX\MMO:DF.AA'==%:;)>?1;=2:=2<@24=*;H.PbF9=E6@F8>E5>F1HL5MI0U?(P<¼sdËcXà_ZëUTçGGâ@>àA>Ø?9Î:0Í9-Î<-Ï=.Ï=.Ï;-Î:,Î:,Î:,Î:,Ð:,Ð:,Ð:,Ð:,Ð:,Ð:,Í;.É?5ÅB:¼B7®=/ 7$—2–1›2¦5#²7(Ã:0ÑA8ßF@æIDéJFêKHÞCAÛEDÐB@¼;5¯9/©=0¥?1Ÿ=0Ÿ?1œ>2˜?1”>/=/Š>.‡@.ˆ?,Ž=*‘;*’<+“=,”>-–?,—>,š?-Ÿ@.¡=-¤:,¨8,¬8+±8-¶:0¼9/Ê;3Ð;4Ó?5ÖB8×C9ÖC9ÔD9ÑE8ÊB6ÃA4¹=3°:0©6/¢5. 5/™7.’0:<1:=2<@25>+;H.PbD6.›;+9* 8+¥9-©:/®9/¸90¾90Á;0Ä>3Å?4ÅA5ÄB4ÁA4¶:.²9.ª8-£7+ž6+š8-™8/“;1‹EI0?C(=@#:<$89';<.9;09<1=A36?,6Ñ>4Ò=6Ò>4Ó>7Ó?5Ó>7Ó>7Ô@<ÑB>ËD>ÆF=ÂF<ÃI>ÇM@ÏQEÙSJÞQJâMGäIEäFCâC@àA=ÛB=ÕFBÉD?º?7«=0 ?/šC2–H4”I6ŽG5ŒE3ˆC3…B2€A0~A/zA0}@.‚:,†8,…9+†:,†:,‡;-‡;+ˆ;+‰:+‹9+9*‘9+•9,™;/=1¢<0ª:/®9/°:0°:.°:.°:.¯9+®8*¨7)¥7*ž6)›6*•7+’8-9/Ž<0ˆ<.…<-„;,‚:+:+~9*~;+};+|:,z;,y;,w9,s8*q6(r7)u5)ŒC:“I>‘KAŠH<‡I<‹OD“TK—TL–QL›TP—QO”SO–\X_Xh^—~j””p…’fu‚WYh?CR+?O*P`CL1?E+?C*=A(;='78(:;-79.9<1=A37@-B1=I1?G/LG1S>+g=-•ZL­_Sœ>6ž3+¶?9ØXUóigödeëRUæJNéOQÚIDÓF<Í@7Ë>4Î?7ÒD:ÕF>×G>ÚJBÚJAÝJCÝJBÞKDÞKCàKEàKEëSRèTTãSRÝSPØSLØSLÛTNàUPàLHáIFãEBâC@äB@âC@äEBáGEÙIHÊDAº?8¬=2¡?2˜B1’E3G6ŒE3‰D4‡B3„A1?1~?0z?1|>/€:.ƒ9.ƒ9.„:/ƒ;-ƒ;-ƒ;-ƒ;-9*ƒ:+…9+‡9,Š;,;-<.“;/›:1ž9/Ÿ9- :.¡9,£9,¢8*¢8*Ÿ8)œ8)˜8(”8)9*Œ:,‰:-‡;-„:-‚:,9+€8*}7+}7+|8+{9+{9-y9-x:-v8-q5*o5)q7+u:,ŒH=ŽJ?‰I=„I;†L@ŒRF“WM˜XO˜QMœUQ—SP“VQ’`YˆbWƒg[‡{enrQZi@JY0BS)IZ0WiAdvNj|VXiEL[:?L.:D)C-B47@-;H.L^8_uFi…Jt“Pt˜Pt˜NtšQs›Tq›SnMmžLp¡Pw¨Y|ªaz¨`rXj”RZ‚C\„EaˆIeŒMgŽMgŽKhJg‹Mc†PZ|JRtBi`Qi`Qi`Qi`Qi`Qi`Qi`Qi`QkbSkbSkbSkbSkbSkbSkbSkaUlbYlbYlbYlbVlbVlcRlcRldQldQldQlcRlcTlbVlbXlbXlbXocUnbRkbQlcRlcTkbSg`Pd]M^WGYSCTN@MJ;KH9GE6FC4@C0;H.@I.OC-a=-„F;¬YS´NJž,+²:9¹=;ÓSRòpnþvvñehëX^ð^_ãUQÚPFÔG@ÐC:ÑD=ÔG>ÖGAÖG?ÙHCÚJBÜHDÝJCÞJFÞKDàKGàKGâHHáGIÜHHÙGGÖHD×HDØGDÛEDàBAäABæBAèBBçCBäB@ßA>ÛA?ÛIIÊC@¹<6®>3¢@3˜@2‘B3D3ŠA2ˆ@1‡?1…=1‚<2€<1=1=1;1;1ƒ:3;1;1€.™9+—:+“:*:+Š;,‡;+„;,‚:+‚:,9+€8*~6(|6*{5){5){7*x6*x8,x:/s7,p4)o5)r:-w=1‹M@‰K>„J<‚M=…QC‹VH’XM—WN“NI™TO—VR–]Ve\|_QgWGa_HEO->N)?O(J\4_qGk}SewMXj@N`8@Q-6E&7D*=F1=D4:>07;-8:,:;-68-9<1?C57@-9F,I[5[qBeFr‘Ns—Ot˜NtšQs›Tq›SmœLo Os¤Ux¨\z¨`s [i“Q`ŠHYB^†GeŒMgŽMgŽKeGgŒGhŒLa„NXzHQsAi`Qi`Qi`Qi`Qi`Qi`Qi`Qi`QkbSkbSkbSkbSkbSkbSkbSkbSlbXlbVlbVlcRlcRldOldOldMldMldMldOldQlcTlbVlbVlbVocUnbTkbSlcTmdUlcTjaRf_Ob[K^WGXQARLÐB>ÎA:ÒC?ÒC=ÔC@ÕD?ØDBØD@ÙECÚDCÝADÝADÞDFÝGHßIHàJIãIIåGHçACêADìBEìBEçAAâ@>Û=:Õ=:ÚFFÉ=<¹83±<3¦@4˜?1>0ŽA1‹=0Š<0‰;1ˆ:0‡81†93…:4„;4;3€<3:4€<3<3}=1}=3}=1|<0|=.|<0|=.};-{9)z8*{7*‚:.ƒ9.‡9-‰9.9.‘;.•<.–=-’9+‘9+Ž;+Š;*‡;+ƒ<*€;+<+€8*€8,~6*}5)|3*z4*z4*y5*u2)v6,w9.s7,p4*o5*s:/x@3‹QC†N?N=‚Q@…VF‰XIŽUJ’SJ“PJ—SP”TR‘\VŠe\n[LPK7EK1AN0KZ9WgC`rLgyQdyNWm?G\1AV-7H$1@!6B*=F5PK8MH5ID1DC.@F*DD([B,ˆTG¯\X«>A¬/5ÎHOÆ?EÀ;>»;<ÄFGØZ[ãefÛY[ÌGHÑJGÐEBÍB?ÐB>ÔFBÔFBÐB>Ê?8ÏD?ÏD?ÒD@ÔEAÖEBÙECÚDEÝDFß@Dß@DÞBEßEGáGGàFFàBCá>?èBDé@Cè>Aç=>ä>>ãA?áC@ßEC×CCÅ98¶50°;4¦?6š>3=/?2ˆ)=C5â@=ãA>ÞC?ÓB?Æ?;¶93ª70Ÿ:0—=2Ž>3†>2ƒ?4?3=2‚<4„93‡83‰92‰92…;0„<.„<.ƒ;-;/;/€:.€:.~:-~:-~:/~:/};/};/};/};/}90}90~80~8.€7.€7.8/9-€7.~8,}9.|8-{9-z8,x8,x8,x8.x8.w7-v8-v6,t6+s4+q5+m1'r6,n4)m3(o6+m4)q8-I=…SH…SJ‡RJˆQJŒQIQJ”QK•RL“TMTK‰[N‚cQo_HYU:MV7O_;j~YbxQZpIUjCRg@Pa=IY5DR17D&4>#2:#6;'<>0@B5@@6<>358-39-4:.7:/9=/;?.=B,=F)S_;arFo†RtUt”St™SsSsUužZ~§e~§ep˜YbŠK^†G^†H^„G`†IbˆKdŠMfNeŒMcŠK`‡H^„G_‚LTvDKm;i`Qi`QjaRjaRjaRkbSkbSkbSjaRjaRjaRjaRjaRjaRjaRjaRkbSkbSkbSkbSkbSkbSkbSkbSlcTlcTlcTlcTlcTlcTlcTnbTrbSqaRrbUrdWrfZogZmeXjdVgcWliZmjYjgThcOc^H[U=RL4PJ0I?&Q?)kP=XI„NDˆE=”EA±WV¸TT»QQÀPOÀNMÁMMÃMKÃKJÐTTÈHIÂ=>Ä=:ÐB@ÓEAÏB;Ç>4ÊD9ÊF:ËF=ÎH?ÔFBØDDÜAEÝAEáBFáCDáCDâDEâDEáEFáFDáFDàEAßD@àB?ßA>àA=àA=àA=ÞC?ÔE?ÈC<º>6­;1 90”:/Š<0ƒ=1€@4~@5~>4€=4ƒ:3†91‰92‰90‡;.…<-…<-„;,ƒ;-‚:,‚:,‚:,9-9-9/9/~:/~:/~:/~:/}90}90}90}90}90}90|90|90|90z:0z:0z:0y9/y9/x:/w9.w8/w8/t8.s7-r6,r6,p6+p6+l2'q7,m4)l3(o6+l3(p7,~H>…SJ…SLˆQLŒQMQL”PM•QN”SOŠOG…SH€[K{ePsiPilMfqQgxT^tMXnGPf@Ma>2;=04:04<15;16<0:A,>D*Q[9^mDnSsŒUr’Ss˜SsSsžVxŸ^|¢exžak‘T`†I]ƒF]ƒF\‚E`†Ia‡JdŠMe‹Ne‹NbˆK`†I^„I]LRtBIk9i`Qi`QjaRjaRjaRkbSkbSkbSjaRjaRjaRjaRjaRjaRjaRjaRkbSkbSkbSkbSkbSkbSkbSkbSlcTlcTlcTlcTlcTlcTlcTnbTqcVo_Rm\Rm_Tqd[og\ldYhbVfbWqma{xi~{j€zj{vcqjWe`JTT(MB.S@/U8*]7*m>4n70u91~;5‡@:’IB›PJ¥XP­ZT»^YºRO·GE¼B?ÈDBÑEDÓD@Ï@:ÐA;ÐC<ÒE>ÔG@ÖGCÚFFÛEFÞDFßCDßCDßCDàDEàDEßEEßECàFDßECÞDBÜD?ÛC>ÜC>ÜC>ÜC=ÛC>ÖE@ÏF@ÃB<³>5¢:1”8-‰9.ƒ;/‚@2?3~>2€>2ƒ:1†91‰92‰90‡;.…<-„:-„:-ƒ;-‚:,‚:.‚:.9-9-~:/~:/~:/~:/~:/~:/}90}90}90}90|90|90|90{8/{;1{;1z:0y;0y;0x:/x:/x:/t8.t8.s7-s7-r6,q5+p6+o5*j1&p7,m4)k2'l6*i3'm7+}G=‡PIˆQJŒQKŽQL‘RM“TO”UP‘VPŒWO‡[P~^OtbNoiQorUlwYfwUQeBK_:EY6DU3EV6GV9GT8ER8@J2*7;*:<.<>0;=/9;.6<25=26<26<0:0=@-=C)MW5Zi@h{Mn‡PpQs˜RuŸUtŸWz¡`w`n”Wc‰L\‚E\‚E\‚E[D_…Ha‡Jc‰LdŠMc‰La‡J_…H]ƒH[}JPr@Gh9i`Qi`QjaRjaRjaRkbSkbSkbSjaRjaRjaRjaRjaRjaRjaRjaRkbSkbSkbSkbSkbSkbSkbSkbSlcTlcTlcTlcTlcTlcTlcTnbTrdWpbUm_Tl_VkaWlcZle[jf]jf]yujˆ„x‘•’Œ~‰‚r}zg`cNOT>DG2GF2HC0F=,L<,VC4P9+R6*V4*Y4+\6+a9/e=3n>4ŠKBRL®UQ·OL¼FFÆABÒDCÙGGÔ@>ÕA?ÖB>ÖE@ÙECÚFDÛEDÝEDÞDDßCDßCDÞDDÞDDÝEDÞFCÞFCÛFBÛFBÚE?ØE>×D=×D=ÙD=ØE>ÔD<ÓF?ÉF>ºA8§;1˜8,Œ8-…;.ƒ@0@1~?0€>0ƒ:1„:/ˆ:0ˆ:.„:-„;,„:-„:-‚:,‚:,9-9-9-9-~:/~:/~:/~:/~:/~:/}90|90}90{8/{8/{8/{8/y9/{;1z<1y;0y;0x:/x:/x:/v:/t8.s7-s7-r6,q5+o5*o5*m4)j1&o6+l3(h2&k5)h2&l6*|F<ŠOGŒOJPKRM‘TO‘VPWPŒZQ‰]R…aUy_Pj[Hd_IdhO\fKN]@EU8AQ4>M0=L/?M3DQ7FR:GS;BK6>G2:A/9=,9=.9=.8<-7;-7=36=56;47=3:<1;=/dwIl…LpQušTw¡Wx¢Z{¢ar˜[e‹N\‚EZ€C\‚E\‚EZ€C_…H`†Ia‡JbˆKa‡J`†I^„G]ƒHZ|INp>Ef7haQhaQibRibRibRjcSjcSjcSibRibRibRibRibRibRibRibRkbSkbSkbSkbSkbSkbSkbSkbSlcTlcTlcTlcTlcTlcTlcTlcTrfZth\sf]ndZjaXle]snh{xq~w† ”¨¥œ«§œ¨¤™£‘™–‡z{kdgTOR?GJ7EH5BE2BE2EH5KL0B:-A7+@6*G5)S5*qB8ŒPHŸPK¯HI¿GIÌEIÓBEÖ@BÙ@BÚBAÜDCÚEAÛFBÝEBÜDAÞDDÞDFÞDFÞDFÞDDÝEDÝEDÛEDÚFB×FAÖF>ÔE=ÔE=ÓF=ÔE=ÕF>ÔA:ÓC;ÎE=ÁB9®>3Ÿ:.‘;.‹=0„?0?/€>.>.;/„:-‡;.‡;.„:-ƒ;-ƒ;-‚:,‚:,9+9-9-9/~:/~:/~:/}:1}:1}:1}:1|91z:1|91y90y90x8/x8/w8/y:1y:1x90v:0v:0u9/u9/t:/r7/q6.q6.p5-o4,o4,n3+m4+j1(m7-j4*h2(j4*f2'j6+}D;NGNHQJTLUOŽWPŠYR„\R{YMw]PkZJ]UBYXDY^HOYA?K3:H/7E.5A+5A+8D.?H3CL7EN9BK8@I6.5<,4:,5<45<56;56;49;0:-;@)GP1Sb;buGk„Kq‘RwœVy£Yy£[xŸ`n‘W`ƒIZ}C\E^G^G]€F`ƒIa„Jb…Kb…Kb…K`ƒI_‚H^IY{INo@Ef9haQhaQibRibRibRjcSjcSjcSibRibRibRibRibRibRibRibRkbSkbSkbSkbSkbSkbSkbSkbSlcTlcTlcTlcTlcTlcTlcTlcTkaUoe[pf\lcZkd\rmg„|‘Œ§£ µ±®ÄÁ¼ÉÆÁÉľÅÀºÀ¹±¹²¨¤œˆ‚rgdUPQ?FI8>E3;D1:F28E38E38C3:B34*P:/e?6€EA¡PO¿X[ËRWÊCIÕFJ×EFÚFFÜFEÞFCÞDBÞE@ÞCAÞDDÞDFÞDFÞDFÜDCÜDCÜDCÚDCÙEA×FAÕF@ÓF=ÓF=ÑG=ÑG=ÔE=Ô?8Õ@9ÐC:ÆC9¶A7¥=0–=/Œ=.†>/‚?/>.>.<-ƒ;-…;.…;.ƒ;-‚:,‚:,‚:,9+:+9-~8,~:/~:/~:/~:/}:1}:1}:1}:1z:1z:1z:1y90x8/v7.v7.t8.w8/u9/u9/t:/t8.s9.s9.r8-q6.q6.p5-o4,o4,m4+l3*j4*h2(m7-i3)f2'i5*e1&i5*{B9ŽMG’MH‘PJTLVO‡XN‚ZP|\Qs\Nl\M`WFVSBQRBJQ?@I64@,3<+2;*09(09(2;*5>-9B1G6;F5:C25@/3>-1<,3:33954954928919;.;>-;@*CL/O^7`sEk„Mr’SyžYy£Yw¡Yq˜Yf‰OZ}CX{A\E^G^G^G`ƒI`ƒI`ƒI`ƒI`ƒI_‚H^G^KXzHLm@Cd7haQhaQibRibRibRjcSjcSjcSibRibRibRibRibRibRibRibRkbSkbSkbSkbSkbSkbSkbSkbSlcTlcTlcTlcTlcTlcTlcTlbVj`VjaXkdZlh_uplˆ„Ÿžš°°®ÃÂÀÓÒÐâáßçæäçãàâÞÛÜ×ÓØÏÈμ²¸¥——‡zym]_YIKL:AF2I8>F7;C6;>5:;3983872==3C<2N71a84ˆHH¯]_Å`dÊWZÍQSÓNO×MKÛKJÞHGáFDãDAâBBßCFÞCGÞDFÝCEÝCEÝCEÜBBÛCBÚDCØD@ÕD?ÓF?ÒE>ÐE>ÐG=ÔE=Ù@:Ù@:ÑB:ÉD;¼C:¬@4™;/Œ9+‰=/ƒ>.>->-<,ƒ;,„<-„<-‚:,‚:,‚:.9-9-9-~8.}9.~:/~:/}:1}:1}:1}:1}:2}:2{;2y:1y:1x90w8/t8.s7-r8-t8.s9.r8-q8-r8-p7,p7,p7,o6-o6-o6-n5,m4+l3*l3*i3)h2(k7,h4)f2'h4)b0%f4)zA8MG“NI‘PJŽULˆXNYOxZOr\Nk^N_XHRPAKN=EI:9B13;,08)17+17-06,06,06*17+2:+4<-9D4;F5=H7-.800621622717829;0:<.:?)?H+LZ6]pCjƒLs’Vyž[w¡YsœVgP^IVyAX{C[~F[~F[~F]€H_‚J_‚J_‚J_‚J_‚J^I]€H]€JUvIJk@Ab7haQhaQibRibRibRjcSjcSjcSibRibRibRibRibRibRibRibRkbSkbSkbSkbSkbSkbSkbSkbSlcTlcTlcTlcTlcTlcTlcTlbVqh_ng_mhbtqj‡ƒ€¡ ž¼¼ºÍÏÎÏÏÏàààòòòúøùû÷ø÷óòñëëîãßèÐÆÝÁµÁ«¢‘}ub^\GKM7CH2AI2AH6@G7BD9BB:B=9C97?:6:=6>?7C82J.+e77QR´hjÆnmÀ\\ÇZWÐVS×QNÝMLâHHæCDåBEàDGÝDGÝDFÝCEÝCEÜBDÜBBÜBBÜDCÙCB×C?ÓD>ÒE>ÐE>ÑG=ÔE=ÜC=ÛA9ÒB:ÊD;¿E:°A6œ:-Œ6'Š-<,<,„<-„<-‚:,‚:,‚:.9-9-~8,}9.}9.~:/~:/}:1}:1}:1}:1}:2{;2z;2w;1x90v:0u9/s9.r8-r8-r8-q8-p7,n8,p7,m7+o6+o6+o6-o6-n5,m4+m4+j4*i3)h4)f2'k7,h4)c1&f4)b0%e3(xB8NH’OIRM‹VN„XOzZOq[Mj]MZTDIJ:@D5>D69A219,/7*6<247058157247025.06,08-2:-6A3:E5=J9>K9-,6..400511606718:/:<.:?+WzB[~FZ}EY|D\G_‚J_‚J_‚J^I^I]€H]€H]LStIHhA@^8icSicSicSicSicSicSicSicSicSicSicSicSicSicSicSjcSkbSkbSlcTlcTlcTmdUmdUmdUmdUmdUmdUmdUmdUmdUmdUldWjc[gd]vsn“’ޝ¯­ÄÆÅÚÜÛêîïóôöö÷ùüüþÿÿÿÿþÿÿûúüööýòî÷áÔòØÇàɷƵ¡ª ‡ˆ„ibbFEH-EI0CG0FE3GC7F<3C60G53I;:>=9>?:B:7I75cGF’jjÅ“’è­©Ò‹‡ÇtnÀ]XÆSPÕONàKMçFKéFKßDHßIKÛEGÕ@áGIàDGÖ:=Ú@@Ú@@ÙA@ÖB@ÔC>ÒC=ÐA;ÑA9ÞC>ÛA9Ó@9ÊA9¾B8°@5Ÿ:.8*Œ=0‡>/ƒ>.>-€=,€=,<,<,:+9-9-~8,~8.}9.|8-|8-|90|90|90|90z:1z:1z:1z:1y=5w<4w;3u:2t91q8/p7.p7.o6-m7-m7-l8-m7-l8-m7-m7-i2+m6/p92p92l5.g2*g2*h3+e0(i7.d2)^.$`0&_/%b2(s>6ŒOJQLˆQLRJ}XOx]RhXITN>DE5@D5:B37?24&ES2YkCj‚Ru“]y_r›Yk”R[~DXyDTu@Tu@XyDZ{F[|GZ{F^JbƒNbƒN^J\}H_€K`L_NTsJFd@4I:3L95K<9?:7CB@NIF]RPyjg£Ž‹Î²®èÅ¿ÿ×Ñ벩͂|Àc^ÊVVØRSßHMÚADÖDEÕEEØHHÜJKÛEFÕ<>Ö<>ÛACÙ??Ù??ÙA@×A@ÖB>ÓB=ÒA<ÔA:ÜA<Û@;ÔA:ËB:¿C;±A6 ;1’8-Œ=0‡>/ƒ>.>-€=,€=,<,<-9-9-9-~8,}9.}9.|8-|8-|90|90|90|90{;2{;2{;2z;2w<4u<3u:2s:1r90n8.p7.m7-m7-l8-l8-l8-l8-j8-l8-l8-k6.n70p92n91l7/i4,g2*e3*c1(d4*_/%^.$b2(^.$`0&p>7‚KF‡RN‡XR~XOrVKdRFRI:A?0<@18@15@23>04<14<15:37:379677577557246116/07//7,.9+1<.5B19F59H58G44E24B1.8//6/.3--2+23+46+8:-9=,7?(DQ3YkEjUv”`yœbp˜ZgQY|DWxCTtBTu@VvDYzEYyGYzE[{I_€K`€N\}H[{I^J^~L^{MSnKF_A9R5icSicSicSicSicSicSicSicSicSicSicSicSicSicSicSicSkbSkbSlcTlcTlcTmdUmdUmdUmdUmdUmdUmdUneVneVneVlfZed_y{x—™˜²¶·ÍÑÒäéìôùüúÿÿûÿÿüÿÿýþÿþþþÿþüÿÿûÿÿúÿÿôþüçúùÝðïÑáåÄÒØ´½Å  ¨ƒ‡‘l`gEQX9EH-DC.JD4LD9KA8J?;C;9SJKia_wvœ’¾³¯ÙÎÈêÜÓþèÝÿóéÿäÛð©£ÃecµBEÇDIÚRVÛUTÑMKÊDAÍCAÔFE×EFØDDÙCDÖ=?×>@Ø@?Ö@?ÖB@ÓB?ÓB?ÕA=Ù@;Ù@:ÓC;ËE<ÀD<²B7¡<2“9.Ž<0‰=0ƒ>/>.=-=-€=-€=-9-9/~:/}9.}9.}9.{8/{8/}:1}:1{;2{;2{;2{;2z;4x<4t;2q;1r90o9/n8.l8-l6,k7,l8-j8-j8-j8-j8-i9-j8-j8-n91m82m82m82m82i70f4-c1*e3,a0)],%_0(c4,\-%_0(sD<}PKVP~YQpSK^J?OC7@=.46(3:*1<,1<.2=/5=26<27:37:379679668368357227018008-.9+0;-2?.6C27E48G49H59F54>33:205.,2(/0(13(57*7;*6>'ER6[lJm„Zy–fyœfl“Z`‡NWwEWuCUrBUsAWtDXvDYvFYwEZwG^|J_|L]{I]zJ_}K^{KZwKPgJAW@3I2icSicSicSicSicSicSicSicSicSicSicSicSicSicSicSicSjcSkbSlcTlcTlcTmdUmdUmdUmdUmdUmdUneVneVneVofWmg[jkfƒ‡ˆ£§¨¹¾ÁÐÕØåíïóûýõýÿûÿÿûÿÿüÿÿüþûýþùþýøÿþ÷ÿÿóùýæöýÞî÷ØçñÎÞèÃÎÚ´¶À›¡«†€‡efmLNR7FH0JI7KI>Ó??Õ?>ÕA?ÕA?ÔC@ÓB?ÓB=Ö>9Õ@:ÒC=ÌE?ÀE>²A9¢=5•;2Ž<1‰=0ƒ>/>.=/=-€=-€Î@>Ð@?ÑA@ÒC?ÑC?ÑC?ÒC?Ó?;ÒA<ÐE@ÉE@½C>¯@9 =7•<4Ž<1‰<2ƒ=1=0=1=/=/=/~:/~:/~:/}9.|90|90{8/{8/|<3|<3|<3{;2z;4y:3y:3w;3n70m80m80l7/k6.i7.h6-h6-i7.h8.h8.g8.g8.g8.g8.h8.k92h6/f4-g5.i70h70e4-b1*c2+c4,_0(]1(]1(W+"c7.{ULtXTaNHN?8A7.=6,;9-9;.9<139-3;.5;/6<06<07:/68-47.69049238139/39/2:/19.19,08+.9+/:,1<.3>.6C2:E5Qn>Qn>Qn>Qn>Ro?Sp@TqAWtD[xH]zJ]zJ_|L`}MZwGSmFCU?6D7(6)gdSgdSgdSgdSgdSgdSgdSgdSgdSgdSgdSgdSgdSgdSgdSicSjcSkbSlcTlcTlcTmdUmdUmdUmdUmdUneVneVofWpgXpgXoh^lnmz‚…“š «µ·ÄÎÐÜæèí÷ùôþÿõþýöÿüúÿúûÿùûþóøúíõöèñôãõüêôýèôüåóùßòöÛéìÏØ×¹ÅĦ±°’ŽrggONP;GK:FL>HPEKQG{{sŸš”ž¸ØÎÌßÓÓçÛÛóëéü÷ôðïëüûöÿÿöÿýôÿøñÿóêÿçÞÿ×ËØ“ƒ¸eS¤K;´TF½WIµF;·@8ÈKEÇC>ÊC?ÍC@ÎC@ÎC>ÎC>ÍD>ÍB=ÑB<ÒC?ÎDAÅD?¸A=ª=8ž;6•<6Ž;3‰<4ƒ=3=2=1=1=1=/~:/~:/~:/}9.|90|90{8/{8/|<3|<3{;2z:1y:3x92w81u91n70m80l7/j8/i7.i7.h6-g7-h8.h8.g8.g8.g8.g8.g8.g8.h70h6/g5.g5.h70h70g6/f5.a2*e6.^2)\0'`4+a5,i=4uSJXG@E>6<5/:6-;8199/57,36+7:/5;/7:/7:/69.58-57,36+28,19,28.19,19.19,19,19,08+08+.9+/:,0;+3>.6A18C305;-57*35(13%04%18&HT>gw\wŒmv’lhˆ_RwKBh9KkWtDZwG]zJ^{K`}M_|LVsCNg@ÉD=ÈC<ÉB<ÑC?ÐE@ÌEAÂC=³=9¦;5œ;5•<6Œ<5‡<6…<5=4<3=1=1=1~:/~:/~:/}9.|90|90{80{80{;2{;2y:3x92w81v70v70t80n70k90j8/j8/j8/h8.h8.h8.g7-f7-f7-f7-d8-d8-d8-f7-g6/h70i81i81h70i81j;3l=5g80l=5c7.a5,oC:xLCtI@nMDD:167/45/891:;556.14+25,58/58/57,46+46+46+46)48*08).9)08+08)08+08)08)08)19,08+08+08+08+2:-3;.4<-9B1:C0;B2:A1:<.68*35'/3$29'IU?eu[oƒghƒbYyTInE?d8Hg;Li;Ol>Nk=MjUrDYvH[xJ]zL^{M\yKQn@G_;6B4+4/#)%gdSgdSgdSgdSgdSgdSgdSgdSgdSgdSgdSgdSgdSgdSgdSicSjcSjcSkcVlbVlbVmcWmdUmdUmdUleUmfVngWogZoi]oh^mjekormtzƒŠ¥®³ÃÌÑÕßáæîñôüþôýú÷ýùùþ÷úÿöýÿòýÿñüÿîýþðûøïþúñÿùïÿúíÿùéÿòßïàËÝηÁ²›¢—|ubb_NXZL^dXmwn|†}¦¬¢¾¿·ÚÕÏîäâüîîÿôôÿô÷þôõþøøûúøûýøüÿúøÿõôüñ÷ýñÿÿñÿùèÿôãÿÌ»½pœRE©SF¶TI²C:ÀIAÄH@ÇF@ÉF>ÉF>ÈE=ÆC;ÆC;ÍG>ÌG>ÇG>¼C;­>5 ;3˜;4‘>6Š=5†=6ƒ=5=4€<3€<1;1;1~:/~:/~:1}90|90|90{80{80z:1z:1x92w81v70v70u6/q6.m80k90k90j8/i9/i9/i9/i9/g7-f7-g7-f7-f7-f7-f7-f7-f5.j81m;4k:3j92j:0m>4oC8mA6oD;e=3d>3zVJ†dZyWMbLA>:13814927<569214-25,9<336-25,24)03(13(25*46+47,/7*-8*/7*/7*/7*/7*/7*/7*19.08-08-/7,/7,/7,08-08+7?09B14*00!''heVheVheVheVheVheVheVheVheVheVheVheVheVheVheVheVjdVjdVkeYldYlcZmeZmeXmfVg`NkfSnkXol]he\feasqr‚†Š“–ž¡«³¶ÃÈËØÝàêîïö÷ùùûúüþýþþüÿÿúýþöûüôúüñûýòüþóùúòúúòùùíüúëþüçù÷àéåÊÕÔ¶º¹›˜˜|qtY_dMdkYr}l„‚‘›´¹²ËÌÇãâÞòîë÷óòû÷öýùøüø÷ÿþüþþüþþüýÿúýÿúýÿúýÿúýÿúúü÷ÿÿúÿûöÿê娧 £`XœE>µNG¿MCÂF>ÄD9ËF=ÎI@ÎKAËH@ÇG<ÆG8ÃH8½J8³H8¦E5šB4‘B5‹C5†B7„B6ƒA5‚>3‚<2„:1†91†91€:2~:1|91|91{80z7/w7.w7.w7.w7.w8/w8/v7.u6-q5+o4,l7/i81i81h70h70g6/g6/g6/f5.g6/i70i81i81g6/f5.e3,h3-j5/m80k90j:0i;.j>1kA3gB2jI:dH:v_O~k\ŠxjŒoRJ=79.4:04:039/39/39/28.28.17-17-36-06,25,06,14+/5+/4-.5-/4-/4-/4-/4-/4-/4-05.05./4-.3,.3,/4-05./6.1;23=26@59C89D67B45@03>-4?.DQ=XfO[kQRbHEXKe>Ke>JeÃE9¼=4¾?6ÃE9ÄF7ÃJ7½L:³I9¦F6™C4‘C6E7…C7‚B8A7>5‚<4ƒ:3†91„93:3}:2{;2z:1y90x8/v7.v7.v7.v7.u9/u9/t8.r6,p6+m4+l7/i81j81h70i70h70g6/g6/e3,f4-g5.h6/j81j81k92k92k60l71k90k;1l<0j>1j@0iD2gH6lQ>gRAvgTue‹†s†ƒrKL<69.39/39/39/28.28.28.28.17-17-17-06,06,06,/5+/5+/4./4./4./4./4./4./4./4.05//4./4..3-.3-/4./4./6/.80/:22>44@66B66B66B45B16C1CP>P]IR`IIW@AO6BP7FV;Jb@Ke@LfAKe@Ic8~>5}=4<4}=4z;4x<4x<4w;3u:2t91t91t91r90r90r90r90o9/n8.l6,k5+m80j81l71j81k60i70i70h6/g5.g5.f5.g6/h70i81k:3l;4l;4j;3i:0h<1k?2jC4iD2fE2gJ8lVAjYGujV†m‘Ž{€mDG658-39/28.28.17-17-17-17-17-17-17-06,06,06,/5+/5+/4./4./4./4./4./4./4./4./4./4..3--2,-2,.3-/4..5.+5-+6.-9//;12>25A56B47D38E3?L:ER>CQ:;I28F->L3DT9J_@Jb@LdBKc?Ia=G`9F_8G`9RkDXpL]uS^vVZqTPgK=T8.A.&1-',0%*.heVheVheVheVheVheVheVheVheVheVheVheVheVheVheVheVheVheVkdZkdZlc\md[meZmfVniVljUlkWlm]pqi€‚ž¡¦¹¾ÄÄËÑÛåçõúýûÿÿüýÿüýÿþüýüûùÿþüÿÿûÿþùüüôõöîïñæëîãéìáîðãñóåñôãñôßòñÜêêÐØØ¼ÇÇ«²±•¡¡‰‘“}“€œž‘ª­¢¶»´ÀÅ¿ÜÜÚééçööôûûùýýûÿÿýÿÿýýýûþþüþþüþþüþþüþþüþþüþþüþþþûûýÿþÿÿþÿ÷òïüóìÿüóÿúíÿôäì²¹p•P@¢O?¸XJ·M?µE9ÀG<ÁA6ÈE;ÅIA½F>¯@9¡;6š=8—B??;‡@<@<}@;z?9y@9y@9y@9v=4v=4v=4u<3s=3r<2r<2r<2o;0o;0o;0n:/k9.k9.j8-i7.m82n72n72l71l71k60i70i70l:3j92h70f7/f7/g80h91g;2j?6f>4e=1f>2hC3iE5fG3cG2cJ6hV@i\IskV…‚ozor_9=,28,28.28.17-17-06,06,06,17-17-17-06,06,06,/5+/5+.3-.3-.3-.3-.3-.3-.3-.3-.3-.3--2,-2,-2,-2,.3--4-*4,)4,*6,+7-.:01=14@46B46C2:G5N4DX¿@7ÆC;ÅF@¿D?±>;¦:8ž::™>=‘=;Š?<„@=}@=xA6s>6r=5r=5r=5p>5p>5n>4m=3l<2k;1j;1i:0i:0j:0n72p62p62n72m61l71i70i70l;4k:3h91e90e90e90f;2d<2fB6dB6cC4dD5dG5dI6bI3_I2^L6eV?jbMrmW„ƒo„‡r\aM3:(28,28.28.17-17-06,06,06,17-17-17-06,06,06,/5+/5+.3-.3-.3-.3-.3-.3-.3-.3-.3--2,,1+,1+,1+,1+-2,-4-,6.+5-*4,*4+,6-.8-0:/2=/2=-5@/7B15A-2>*1=)5A-8F/=O7@T9FX>H\@J]?I^=K^>K`?TgI[oScvZauZZlTJ]G6G4'5&$-*$),"'*heVheVheVheVheVheVheVheVheVheVheVheVheVheVheVheVheVheVkdZkdZlc\md[meZlfVjgTkjUlnYorasvm…„Ÿ¤¨¸¿ÇÖßäí÷ùûÿÿûÿÿûüÿþÿÿÿþÿþýûÿÿûÿÿúüüôôôêëíâäæÙßãÕÞâÓãèÔçìÖéíÖêìÔëëÓèæÏßÚÄÓθÓÎºÌÆ¶ËøÐÉÁ×ÒÎàÛØêæåðïíóòðùù÷ýýûýýûýýûÿÿýþþüüüúþþüþþüþþüþþüþþüþþüþþüÿýüÿûüÿøùÿþýþÿýùÿýôÿøðÿõ÷ÿöð÷çÿÿíÿîÛͧ”¤kX¢[GªWE­L;¹D:ÀD<ÀE>¼E?´A>ª=:¢:9š:;•=6k<2i=4h<1h<3l;4o83r73p62p62n72l71j81i81h70g80e90e:1d<2e?4f@5dB6_C5aG8cL:dM;cM8`K6^L4]M4^R:bX?mhRss[€ƒnv{eFO:4=*39-39/28.28.17-17-17-17-17-17-17-06,06,06,/5+/5+.3-.3-.3-.3-.3-.3-.3-.3--2,,1+,1++0*+0*,1+,1+,3,/6/,6.+5-*4,*4++5,-7,.8--8*0;+4?/5@/4?.3?+4?.3@,7F19K3@O8CU;GW¸J=¹I>¸I@´G@¯D>¥=:œ:7–=9>:ˆ?9€A:yB;tD:pF:pE:q?8q>:q?8p?:p?8qB5j=7n=6o83r73q73p62n72l71j81i81d8/d90d<2d>3d@4cA5cA5_C5ZE4_NnlUtv^|kcmU2>(6B.3;.39/39/39/28.28.28.28.17-17-17-06,06,06,/5+/5+-2,-2,-2,-2,-2,-2,-2,-2,,1+,1++0*+0*+0*+0*,1++2+-4-+5-*4,*4,+5,+5,,6--7,,6+/:,2=/6A17B27B15@04?.2?-4C.:G3=L5AO8DT:JX?L\BTbI\kTcp\^mZUbQDRC2>0#/%'0-&,,$**heVheVheVheVheVheVheVheVheVheVheVheVheVheVheVheVjdVjdVkdZkdZlc\md[lfZlfVolYmlWjlWgkZgmcr{xŽ˜š¨±¸ÊÓØãìñøýÿ÷üÿúûÿþÿÿÿþÿúùõÿÿúýýõøøîññåéëÝæéØåéØçìÖæìÒéíÒêíÒèèÎèæÏèãÏáÚÈØÐÃØÎÄÝÒÌéÞÚøíëÿôöÿõùÿõûÿùüÿýþÿÿýÿÿýþþüþþüÿÿýÿÿýýýûþþüþþüþþüþþüþþüþþüþþüÿþúÿýûÿýûýüúùýüøÿÿõÿÿóÿÿíýúóÿûüÿúÿÿôÿöæÿóßÿãÍ×­•©oY¨WD®Q@¬O>¯OA±OB­K@¤C<™<5•>7?6‰@9A7{B7uD6qE8qE:p?8q>:s>:q>:q>:q>:r?;q@;sB=qB8l=7k>8m>8o>9o83q73o83m82m82j92h91f:1f;2d>3d@4bB5`C5]A3\@2WB1TG4\T?f^Gj_IbX?ZS9ZS7\W:[W2=/x=/t?/sB3uE7r=7s>:t=:t?;u@:s@9o>9k92m82l:3l;4l;4h<3g<3d>3c?3^>1dG9cG9T=-N9(M8'@1XRieJeaDVU7XX<^aDpt[z€fdlU>J2-9#2>*4-1=)3?+9E/BN8IU?O[GWcO]hWZeULWI/u@8t?9u>;u@:t?;p>7p=9tB;q>:p?8p?:o>7o>9m>6n=8m>6k<4l=5m>6k?6j?6gA6eA5bB5dG9[A2^G7_J9O>,F7$G8%?7"LL4HL3DG,CF+MM1[[?baC`aBZZ>dgJsw^sy_X`I:D,/;%7C/6>17=36<26<26<25;15;15;15;15;15;14:04:04:039/39/27127127116016016005/05/.3-.3--2,-2,,1+,1++0*+0**1**1*)0))0)*1**1*+2+,3,.5..5-.5-07/4;3:B7?F>BJ?;F8:E57B14?.3?+6B.)r>)tA,tD0vE6q?4n<3q<6tB9tB;o?5q@9xH>n=6m>4m>6m>4l=5j>3l=5j>5g?5gA6hB7gC7eC7cC6aD6^D5bK;UB1ZI7`S@RG3D<'E=(FA+BF-BH.AE*<@%?B%LO2_`AijKaaEnqTvzagmSJO95=&5=(=F39?38>48>48>47=37=37=37=38>48>48>47=37=37=36<26<25:45:449349338238238238205/05//4..3--2,,1++0*+0*).*).*).*).*).**/++0,,1-162/4.,1+,1+05/6;4=BK:4.8/-4--4-,2.gdUgdUheVheVheVifWifWifWifWifWifWifWifWifWifWifWkeWkeWmd[md[md]mf\mg[jiWkmXimVjoYjs`hthn}xˆ˜˜¦³¹¿ÊÐÓÜãëðööûÿüýÿýÿþÿÿýÿþúþþöýýñúûíøùéô÷äïóÜçìÕãçÎÜßÀ×Ú»ÖÖ¼Ù×ÂÝ×ÇÞ×ÍåÛÙìààøìðûðöÿõûÿùþÿúýÿûûÿûûÿýüÿþüþþüþþüþþüþþüþþüþþüþþüþþüþþüþþüþþüþþüþþüþþüýÿüúÿþøÿþûÿþþþþÿüþÿúÿÿùÿÿøþÿúýÿùüÿùùÿýúÿÿúÿÿøûÿõüþðÿÿïÿûëÿñßÿðÝÿïÚñÒ½´zyS>tJ4uH3vI4zM8~O;yL7nA.e7'{M@tE;qB8sD:oC8g;0d8-g=1i?3i?3i?3g?3g?3f>2f>2e?2cA5bB5`C5`D6_C5[D4ZE4WD3XI6OB/\T?oiSc^HMK4IG0IK3>D*?H-@F*B19?39?59?58>48>48>47=37=39?59?58>48>48>48>48>48>47<67<67<66;56;56;55:45:438238227105//4.-2,,1+,1++0,+0,+0,+0,+0,,1--2.-2.051.3/+0,+0*-2.3828=9;B:AL>@M;@M;=J68E14A-1?(1?(=J6BO;IVDJWFDPB;G;2>4.:0,6..5.-4-gdUgdUgdUheVheVifWifWifWifWifWifWifWifWifWifWifWkeWldWmd[md[md]mf\mg[jiWlnYinWiqZgs_drejyt…••£²·½ÈÎÒÛâêïõôùýûüÿýÿþÿÿýÿÿúÿÿøÿÿóþÿñüýë÷úåñõÞèíÖãçÌÙÜ¿ÕÕ¹ÒйÔѾÚÔÈàÙÑêàßôéíþóùÿ÷üÿûÿÿýÿÿþÿÿþüÿþúÿþúþþüþþüþþüþþüþþüþþüþþüþþüþþüþþüþþüþþüþþüþþüþþüýÿþúÿÿúÿÿûÿÿþþþÿýþÿüüÿûüÿûúÿúøÿù÷ÿúøÿüùÿÿûÿÿûýÿúýþùùôîÿþöÿýôÿüóÿûîÿ÷çûæÕéÒÀÏ´¡¶š…”uawVClI6mH6rM=uP@mF7jC4gB2kF6nI9nJ:oK;pL-;>39?59?58>48>47=37=37=38>48>48>48>48>48>48>48>49>89>89>89>88=78=77<67<66;56;55:438227105//4./4.-2.-2.,1-,1-,1-,1--2.-2.-10,0/,0/-2..211623764;4;G9=L9@O<@O:8F71?2-9-,6--4,,3+fcTgdUgdUheVheVifWjgXjgXifWifWifWifWifWifWifWifWldWldWmd[md[md]mf\mg[jiWkmXinWiqZgs_bpcgxr‚””£²·ÀËÑÔÝäëðöõúþûüÿýÿþÿÿýÿÿúÿÿøÿÿôÿÿóÿÿïúýèó÷àéïÕãçÌ×Ú½ÑѵÍË´Î˺ÖÏÅÞ×Ñìâã÷îóÿöþÿúÿÿýÿÿþÿÿÿýþÿúþÿùþÿúþÿúþþüþþüþþüþþüþþüþþüþþüþþüþþüþþüþþüþþüþþüþþüþþþýþÿýþÿýþÿýÿþýÿüþÿúþÿùÿÿ÷ýýóýýõþýøþýùÿþüþþþÿýÿÿþÿþùÿÿüÿÿûüûöóÿøòÿýôÿþñÿþíÿúéÿóà÷äÓçÒ¿Ôº©ºŸŽŸƒurd|]K}^LtUCbE3X;)Y<*[>,X=*`E2`E2`E2`G3`G3`G3`G3^I4\K7\M:\M:ZM:XM9UM8SM7QL6NL5QQ9jlT|€gmqXSY?FL2>G,48>48>48>47=37=38>48>48>49?59?59?5;@::?9:?9:?99>89>89>89>89>88=77<66;55:4493382382/40.3/-2.,1-+0,+0,+0,+0,+/.,0/-10.21/32/32/32.5.4@27F3=L7@O:?N7M:MJ9BC3>A6;A7;A7;A7:@6:@6:@69?58>48>48>49?59?5:@6:@6:@6;@:;@:;@::?9:?99>89>89>8:?9:?9:?99>88=78=78=77<6495384162/40-2.,1-,0/+/.,0/-10-10.21.23.23-12,2.+9*/@-6H2@I,A6>A6>A6=@7=@79?59?59?5:@6:@6:B7:B7;C8;@9;@9;@::?8:?9:?89>89>7;@:;@9;@:;@9:?9:?8:?9:?98?87=94;4382160/4..3/.3/.21.21-2.,2.,3,,3+,3+)6%$6*>"2F+8L3;O6>2??5>@5;>59?59?59A69A48C58C59C8:B79A69@88@58?79A69@8:B7:A9:B7:A9:B7;B:E=8B:8B:8B98@56>14O<>O<:L6@R8EW=FY=DX=@T;5H2+<*,6+-4,+2*ZfN[gO^hP_iQbjSckTglXhkXhiWghVifWifWkeWlfXmeZmgYmgYkhYkg[kg\je_jf]hfZfgWhiWglVfo\erajwnzЉœ«²ºÈÑÐÙàãèìò÷ûøþþùþúúÿøûþõùýïøùë÷øèõôâíìÚéæÓåâÏÜ×ÄÒ˹ʿ­Á´¤¹­¡¼¯¦Á¶²ËÁÀÛÐÖæßæûóþý÷ÿþûÿÿýÿþýÿýüÿüýÿüýÿþþþþþþþþþþþþþþþþþþÿþüÿþüÿþüÿþüÿýúÿüùÿüùÿýúÿýùÿþúÿþýÿýüÿüýÿýþÿþÿÿþÿÿýþýûüÿþýÿþûÿüúÿøóøíçòåÝöèßûðêÿúýÿüÿÿýÿÿÿýÿÿýþþüýÿþüýÿþýÿþýÿÿýÿÿþüÿý÷ÿÿðÿþèÿÿäúöÝýûâäàÇ‹‡lRM0SN1RK.QK+UO/UO/TO1TO1SO2SO2QP4QO6QM2PO3PN5NQ6MO7JP6HM6EM5HQ6FO4BK.?H)CH(GM+JP,KQ-OS0PT1VZ9^aB_bCZ]@VVWU>XV=YW>YW>XW;WV:XT9QK3PJ4LG4ID1DA2B@3A?3>@5<=59?59?59A67B48C57C57C5:B7:B79A68@58@59A6:B7:B7:B7:B7:B7:B7;C876=63=52>04C,9L,BY/Ga1Qo;Mm;Li=Fa>BY?F;J@?I>?J:@H9>F7>D8=B;>E>ZT>XR6:@6:@69A67B47B46B46B4;C8:B7:B79A69A6:B7:B7;C8;C8:B7:B7;C8F;=G<=G?=I?>H=>I9?G8>F7>D8=B;=D=;B;6@85A3:I2DW7Ri?[uE\zFXxFTqEIdA>U;2H3/@0.?-6H2@R8L_CReGSgKOcH@W=6I51;007/-4,YgNZhO\hP^jRblTemVinZjo[mn\lm[mk\mj[oi[oi[oi]oi[liZkhYjfZieZid^ie\ig[ghXghVchRajWerao|s{‹ŠŸ¦¢°¹ÁËÔÔÝäéñôòúüôúúñöòíðçèìÞâãÕÚÛËÒÑ¿ÌɸÉıþ«¿¸¦¼³¢Ê¾®ÓŸÜÐÄæÙÑíâàöìíÿôúÿùÿÿ÷ÿÿúÿÿüÿÿüÿýüÿüüþüþýþÿÿþþþþþþþþþþþþþþþþþþÿþüÿþüþýûþýûÿýúÿýúÿýúÿüùÿúöþùõÿýüÿûúýùúþúûþüýÿýþÿþÿÿýþÿüûÿýúÿüúÿøó÷ìæòåÝøêáÿôîÿúýÿüÿÿýþÿÿýÿÿûþÿúýÿþüýÿýüÿþýÿÿþÿÿÿýÿþõÿýìÿûåþúáÿüæÿÿéçâÌŒˆoRL2TO2TM0UN1UO/UO/VQ3VQ3UQ4SO2ON2NM1PL1NM1NL3KN3LN6KQ7LQ:JR:LU:IR7JS6OX9TY9U[9]c?fnG‚’c’¦sŸ°ƒ›ª” zˆ”pr{\\bFLP7LN6LK6LJ5LJ5QL8TM:VP:WQ;VP:SN;QL9MJ;IG:GE9CE:=>6:@6:@69A67B47B46B46B4;C8;C8:B7:B7:B7:B7;C8;C8;C8;C8;C8;C8F;=G<=G?=G<=H8?G8=E6=C7=B;:A:9@96@85A39H1BU5Ne;Vp@Vt@SsAPmAE`=9P6-C.+<,+<*1C-}m‰8v¤GHÇ€p¤#ßà#L0óøíÒñŸÚÅ I&>˽7÷^Ð5L_Ùú>øàõÿJK̪øþHè@–+íDXÈxÒ?‹BwÒÝx Ùûbù8$ H@x‘œ~Ùù)B¡õGàùz¼Šß¶$‹+ù¢Ÿ??§¸\—!Õê‰}Шf0#ßôüvóÞ*ô…¾ø½è½Gq™ÿLžÇçßp’ù÷Þ°—<\.ž´¼ȼ—ŸÛ…ý\!?p88"¯Íü"B>Þ9Ϫץã¨>bÈUï!?‡¯‹‡e£™÷#u[¯²é÷¦Ovä…F˜7§Oò“zö"Ú -þ{r«ëûÑ;ð2øßDB$~d¼6ý®Týà?/Ãôæq 4†ýñ(;?è ÞïÞ?«Ô‡‰¢ÏþÎê|áÉïGÐXéüñëƒ-?´1=æ’7Ž®,­ÛOI™XŒH/^uø|Ö°·ˆÑøq"öÂzGì=û¾Ø–-¤Y?KÜ1$†û[PH†×ùçpŽ!ÃÕö9ø|6ZN¦DÈqYÚ˜½×û£ ß!ш÷ÕU·® ý!ÿ9ÔŒ†»u¿ýÈ#ð“²úÇU!EJÒ[v¸OÕöƒ¿‹PŸ#Õ÷´L–Ü6õ`#“áãˆÓÇHX Ñ[ßp‹xŽÔ÷H8Hnª±²G©öÐ*„ß`U ñèÞÓ¸$;øeÔý6Ó:g]zôYºõ«Ï§é`tdµÖd»i@Èuª4ýT†ž½`?åミ ²/ ¦µ¾ßqRçýûÈ’ª ÞÏü®TöõA¼D„üý´ûꆿ¶Šeº‡dùÁÐö€ù`ÞêôHHꆡZSò8Ýû$…˜ÆB@rJ¥ÊÒýœ~è‘Ëf¥·%-‚Zp¦94¶4õÀ…€Ö¹ÚG„SÑ?¨,M ¨`y7ú å‚—!XUwbìÝö“„w?E –^ËÂæÞ<‡#Õ×ö¯0jNÈ}ï&zà£äøú½°NpQâ?ôU0ûmh’góü]Ý–‚û…Šø’BBÝž,|ùdqJ )~{(ÏF÷Å\gdz1_rûáèO´qTçãî¶Ý¾Ð—¸ʉãáMÝ¿õŽyÿ>r»1²GÇRò÷¿Í ƒFøØ¼dáøã&€üJA|e[§X_ÀYû­tùéâ³à‰ ?OñuU]ûÒð@Fy G‚ߡȼçÿ¤¾è'Ž:zy|­ÉÛ페È✞ŠMí%Ÿ´ÓÔ’|Œ$$/ œWµ>¨0Ráî ~àB¼ž1`L¯d¿)ù}Êsz fI¡ðƒXãúBÞg‘ @|€ñþŽ´=¿CÙÓäÔ ¿³¯§õyo¯Û ëÃW Y{[M²¾I1ðsîß4eÎŒàuÿtš}p:}$³ñióã•mñù"¶Ù¿ØšW <ƒáŸêÍ÷û|~ <‡ï“øCAŽ¥Ô=UPâ«èÇÔ®’œ<ó×”ôùöûÒ{àöe:¹QÜá7³àoéíý>ÚzEõrù ‡Ïõm {aïƒÛ›ŽW~üŒ‚oõpý?ŒN†_üìð<\MñíöêÈ!çOG¬+çí ®îËðËe¨ O·d$r,ë⛉üتHpO¯ÄâvÑ?úc—× q¼‡½›?Á.Ÿ§íŸxê$sȥ߄g’Wªƒ…€:ATq û’$£¬ÐLCâ•þËO§ kŸ-tµyüµâ¬‘^u‹‚ýÐ"r?’lÖ?*m˜‹0¿¦¶¾øAL» Ò¬—³†ð’­dŽ @ŽœC Û·r4½ãdL6÷Â¥T2ü¼ÿìâHoÀYÄ.[¢*vAg™sÛå‡ÕH :C «?ã_wv貎ÂÝ´¿h~_ȸµ ò1XÚbà"_<2 ¿30;¨íÚàffŸÏ¸ÈQäüžA+9œ —Ù²Êu@Ÿo¿©yøÞJÜ³Ü ôçò=ñ P¶_Rüç"²,ñüþÜ6%¨Z’'0~åýÒú:ÿ å§$syÀ†œâF@…ý! ‡›¸ïT_ª-ƒ´Áž­óÈIióC«õTTý_Õ»>?±Þó„­¸ðßôLjät÷ù‡R9AÉoÉý©1÷ }Àð=>ñq8p!¨!? >gp·Ç"=ÝÐ`oRáÍì_Ï0‹òySÛÄÍñÚs8?KyÀ„P)jñUÕo3H´z—Ï—ýØí÷$? 0Ÿo“!Ñÿ7ª~-õgZ#‡[Ò.?ðøXŸ"ÐC¤R ìêë øÇ³óSš. éð.ÙéŸß=!!æùåµ´ùñþ]ëóÄcûƒ#=˜h•§X~{¯ʪ<€å…Gù@"Ró8ˆõR#çõè°@Áñ’&>NBÒ3¤žpõø©@§ã<ÙË?ŠØ§äYwÂÓL[ãÌ$ÙÌ2 ­ÛÅñ»a‹QüÈpSή :ú‡ D·‘`s dßwà ¤'Ès ~ذzaqy~Çp­D¸3Ÿ¤1'wøÿÂ)Ë™l…Ÿ7ÈaÁŽŽ,#È"|}'{¤oí´&•ò‘ÊOì×®EÕ‰ÄÎ6[x…>bOIOô˜Ž">|† ùäNèœwwY{Ý?¥gœL·-‚Fz|3D~¡?ɲÏN§ñY̦ÔÚ¡Nßî vÏÂ}ÁOÇóéñóÓö <|þîûÓ C—EX8Ó‰í;š‰¾YR2ï–Ç‹lr@ïÐŽã¢Ø¿à‘š¡ùºØ©J¦È¶Ûý.‘²qÈ.äŸN?\XuŸC My\ ‡§&‰ú)%tXÿ“kÚåT*`k†WÜNŸn¼D·£õÛ+œ·0ã˜EUå¥RémÞØµ6 £ï! óî¼DêÓ˜º.ßÚµAÙ$w$Ž­1ØE,Û„d‡1NÕÝhª&Ô¶—íQÌrâg€? ?örÙ"Ý/Zl1þÊ:ÙŸžUÁ=dÕ{’E¨iú%1P†¸q/‰ˆú¬þ›oˆiùÚY²¥ð,ŸGš É ˆUKÁ ¥-Z â6Í‘Y‰)Ì\–5üâ¦ýËöÀ‹ÅU¼¬;žõ]Êåæ Ö3˜¹d²îµ‘>ÈE†pRÔÆ¿ô+æ!>:@òx/ªéú=!>Alˆ‹m×ì…KQ_ìý|p5Ê÷ýž±ê‘òáØ~¾äNh´pôE\W½‘UbÄ^np™ùp>@{„‚È C² ¼Z%±'fýÿ4ÛóÓíâ(@r þõµ¡££Ú›þB»DàC÷¥æ y¶JQý¦Mâ ¨j >«»ŽøG³·¿GÈFðò8¨ø«öÊüÐ<8H ¤(áëÝ_¨s<ŽSÜ5Dpùò$\ ýÓÑñ·»Ë‹ÈX1Á2ó|móÆË¾øBº5¶ÿ¦ÐµÏ¾GëþÙ*…™úào´0ŽÒ "@tF÷C÷ùÃûО·)Ú%†@ƒ5Àà <‚¬ÿX/›Õ79Ô„ƒzžÏÏ!Ö·í6Úç®7f­ÝõM]êäãåè½Ëð›Ã …ÂÞ˜Óg°bH3yWóg…#ÄH[éøò`;_Ôªüž?¬#—APHÓÞ ˆ?ÎÓ™î ,ÁŸ³óØGáA¡Ké}NxOÒù÷ €âÓÇŸóxñÄ=öBAý4þè°§¦ç™Í¿`6MÁPˆ8@¸@OÄ£ˆ‘ÔG~ÏŒý/߈y6!»¾8¨…áDjqúaP$ƒ€ÿ0ÝÁ`åOÇt|QêAàA/!û?ÙOž¾;˜#hTþwœ9ù/gDŽ‘’!:C.)þ)>º~¡ ”…psû‘"8xþóú€î¯…&xL¼Ÿ*³§^r 8¢àRË^–r5AG5¤ÝÕMϪ¦Ÿ{þ7Dõ¥i¼Š™ãeyä4*Ñölý¬ÑvÌŽÛ~(P†·õݧH&ÿ8G½¾ÏxRŽž=?PÔŒ?‡~@©µ3ËDû®NΨ‰ƒP’Uñ¤dÊœû³Ÿúÿ„0j¥\[ìç z‘EÂ;…‡õ}ãé#g¿Ž<âAÈUiÀ¾}3Lç&Ê“ŸR;/½O³Ü*Þ?}Û·úBP´ÔþC@Ôu…Ûäyì9ÿWüŸÿóãÞmpä“:žI:z|ò£C ~¬$$P|úßö…—ýƒÕ _"EœòèWÈg¦ž>#„}L=øuJw|ƒê¤&ßs£Ð÷ \Ìm_ 5ÀnàÚæ‡¿ ðóÉêÝyh5A¾à¥®ùöû€y Bÿ'Æ9žï"ï¨Ûéb ?zóÌñõ‡2/÷“¼vò~ž=#4ãŸ%-Q5je~_jÏYÏo³È‹ ±n,·;Ýõ†‡3Þ'Çßç駯g|ÙïØ¿ÀA7vš]šb÷•œèŸãšžS†ÔÈÈç³ä4ý='×Ö?Ý£2¿¿_ÕÃ6Tù›?…`D¿jéê¿Høy9„8*w2D‹!?:˜®˜–+«˜à˼«ƒt€þ) <oœ=Pñd aòâ.ße9Âî¢É>ÄC¬ž™Î~ÑZ‹òv9Mad‹iUdvæ=Âq'sáËÅ5“Y˜Û;’l¯·§0­Í Ã\žiÒDS,Kß»ti6ÉýPÍ•Oh+¼ðæ à·ÇÇýpø(þ_ϳˆ) ŸT. ¬š‰ A„¨¿`Guà†á¿0ƒfÆÎ1ò[3(o„J^s˜$Ž 3“ˇ/n‰í‡ÎþÏøãæý@g8G«u|ãÝÛiu_FøñÇ‘ÝÙë‰1Ù{X«…Qx¼i~§³•}!ÛóÇv† ›†K|WïB/1T†’=ú««òÛx2ê•Ä:vk’Y™uñ9KÍ¢ïöÚk¬Ì…S5sûµ‚BòE1ò~nõ"ý°"åQ`ÝFÊ©ëG'u«£˜»¿½(¼Hо?Ó÷@§ÏÎ ÞþÈWä$'È$€éR7"wÅc¦0×P¦ž¥7|Æœg;~¾(€ÞoO‘ „7¯uâ]3a´F—ÔüáO8 ñê> tÀ€áãÇõ7Æz±ä–fµ¢~¸eÄ<û8’¤ú7ÕzÀ|inþÓùëíá{á ŽËSŠ‹?ȤÏ&ÿ$úýêrCÈÖŸ³€FóÀxñäGŸóyz>9¨H Þp =à CO >~ýªTyÄF}Ÿ>¬ç |y57uXAz°Uþd ú¢ÞÐ÷ á„:¼Ùð¡ž,Þ±ÕXm?e7b]žHóv'óFR¡Röú"EgÙþýò|(ó~¡IÈT\µçÇáž“[$‡Ä4õE÷^0õA¿L–˜Rõ§îòðAÿÏúHoŸü}P×›¤Ý#~#õ ?tÐ^G¿¡\›Zn ÙHMR|9duñì—ºµ”ƒÛ<8'<ìj˜š'Fê~úWªûH*_Õ° 39k§ÄªuL¢O®U'ˆÏ´·§¤gÀóåÝ#<º‚Ý;¤ý=~!|²ç­ÙA©ÓJmêÜÊ;OXé!ɉÀŠ*z=%o’̤ь˜>܃§fS£–~BläêOOÈOönD†œ+ ƒ3ƒóBZ÷p\ dz/³GCßã¦Ã¦çðF~Ìý|ÌP–ûxûÅ8uíð2*¿ù=WÕ댟%°Nn³SÁÎZùQ0]ÚWI7wÏÈï×¶ tÌ{J¥>Ûîê“ZÇb:ŸÏ$ù ôŸŸ[níá ¥ÏéêáDš}/ …ü›÷Çl¤^¾Ýw~è”EßCQãœßc¸ôÛä™û/ÔC)­z>¯ë Ï<0!Ö!£Oôùöùê‚£ÜÈýB@‡lpðÐ\ƒ…xë C¾1"® Ayý»>ˆ žŽP¬t|[Õ²aí)ééý—¾R †°Hhý|ƒƒŸ­Ô|‡8HŸ‘>Bú ÷HÏ»çÓ¡ÓëÏ÷ÿKï‚pìI!<; ¢øÞÈž~O¨ÈèÙÖ^HÈ2äÞëÃí‰/ð`ž#Çí[¬üí<ÏŸ%!ìE¿ÔB#„Ÿô{ /b¨¹Ö–Ñú_$¬<B˜ÏHÏÏâÝÖ3Ê’?a#Ó½ç©J.3mãp1dnJ—Í¥Uó¿=ÈŒUÅ‚Ò*ˆ¾«Z*µ†°!Wè~[õ¨é‹ÁýÝÿ‰­Ì}tP^ä OÏ öøì(D‰ýÉÌ;¾¥ŠxçJ  Ìh\9°o¦$\4¾¨-??§ùÇPˆ©ù“ Þ°æòø¨‰ÛÛ=œY‚̓£ä* †@jŽ!ö}Oýœ÷?ÙGÛìˆÈHfaå³àõÌÝË5µ Šrä‰ã˜ÆœûµQ B//brl|ôß/o/—²ùkßÂ[úuþBG♾`GëþÔ å»4ä52;øª¯Ó¥³¶¨·ˆ88 /›w,Võ½•׋x†"C“¸D™døƒÊŸz­ê‡…»!<ÉûþXS##Èr*ÀMç…aÍ…rZ|y‡ánȰO™¿É½š?úõßû±w04ý¾ðÓÝãÇê°¼á›áž˜JÉÉÿ8N¼–p*,*€„ÏÈ!Z"Z!ï89Òpf~|},ßO¦+ýgZðŒv ãë²aYÐ/j?4Ô „AÂ5Rú‡°ŽÊêœ9Ÿ À}"8zXy Å{€7‰O[&ûv$< ¶æArÞ8ƒylàpH]>@váãã@ºÃq ê/ßz­çýQ²sZò2÷'ÝòŠköñ?rä(®ÓãÇÌ[…Èv)ù GwªÖ²nŸ>„$ê»÷vBÝP*ú€ðŸxâ¸ýD|ýÖý^FÞoƒ ɾ}í÷787 9xB>ßpj3î}ï§öÃÌ‹|…?¥ôÃþ°g«|z ;ö‡œ?ÞÎF®ª]¥ó7·ؒ]ŒŠ#£Ä.áµ´ò¸ü'¼GQùö{|„úQÿ¨j`°‡ápΨý‚[îÓ¡pg4!¨¸gþ>=lÊFýª–á¿þ±)Ô>Qrë’ ƒðªôÂ¥O£¬í“zH®ùšßí«ãöy ÐgœÀæ äWø¾?Î+µê¥rs55Âvw?<Ÿ¨ÿ _l8´vÏò÷Üóäoq!iˆ—Õòør,sV;àlùï÷ žFw Ò¼­a˃{ü!Õ$B/%ù9¿Æßé÷ˆCÙ›“ìÀíÌ>Êõ AÀàŸÝo7Ž…@•ÌÒø|Qæó¨Vy°Na¨[÷„]ÓÁþÈýØÐ ™’Ÿ§ãó§ê‚ú<}¢Ï]ׄ|<!»ãÛuâ³éãaÿš²úôwQðÐpÉŸþ Û?Ýd3àî°67lߥÄG¼d…7<zá¡ìäŸh+H"¥ám¢ðéöÑ,ð°(þ[œ$gèûx‡X#þ0‡ƒKˆ£ÃÓÆTü}Ñ[u„ƒʧýJÔÝÞš¹çà ñ@éûþxG•›¨! ^J}p±³Ú±pq"¶´-Ìú @‹¼uÇvð#È1ëºóDe%Íü¶Ðdì9-ù¿í@‰,—b7dy ØÉIxÜšYm>Ÿló »T&g·TþMÿ“pÿ­6ýk.ûn…Â2 7rù_OÝ Æv+eø¼ßA›>„QÄxAÅáT*¹¿Ñâo"+!Á}‘ѪÿOߺ9ÓUôÕSÔ¿tJÑ)%O ÁñpÒ b5ÁÃP)ó… jHHb_¦:Óüà7–ÈrYoe‡eTix÷‹<€îoÇ×ý\iY*zx‡DîX«ÚU"s#V~hzCŸ‘SÕ¡Kª‡HxoÔý>A½¨/œ#ñ`¦2­·u‚Doì¼h8ÖÙ‚ŸÔ7©ñ@xÿüÀáôxø³“ ÐΆO¾'Ùíê «Þ”†ÿÞW5†<È=ËÓÑ# ñî•“:Ç’«øGž§æ£=$ü…Ó ªïöF;~õ·PÑo =^xäK;타ú}.µŠ÷\uí‡Èøº-×›·Ÿ£ÀNNn¼œ=Ìùõ¶žC«ÑS|;*APŽ ­ü#‡¸îG¨…á³öT"#çÈT†ž?äáãǤ.,öUg·í?ÇP!ñùø-{Œ’šebÝl.Õ?݇dŸW"àwŸ¸Ùþ:>÷•oo7™Ý!@y +æñê—„{6/F¨‘çóúˆáë§ÚóÁߨD»×„FÚøÊ Õî:i°ž½·àá~N@‹Àù‚<Ô'Ó뇅Gªx„ñãÓO ¾NÝñ£ª€~ñHnNÔÅöö`H·È!²îݧöGXÆÁWm$ã=¯?ÏÉïžû©£ÓmÇîëýÐ_?? ÌÖGúá‡Ï‹‡™(ýHzwj‡U*âà¨T‹€‡?ÃÝ1Öt€ïݺ¿øï´ü»‚;§A˜ÙŸÑö„ú÷ ÇêA^ÕÝÃwÕ ë‚ ªµ–ËܰŸ‘"§È –Ô/nĆ|}Eª-`â>vð/^žªXö_U}/¥ï÷|‡0Ÿ¨$:?¨§œ'ÇÃÐgሕýD/ ºŽ·º:£€y#Ûíñú»Ù•`§ô}ŸðƒTgçú? @zOéþp†t p઱©‡_´¶ë¡óïqhÝÿå3á ä¿cîSÜ{dv_‡ẫÄø@¬. õyÂEjó!žØg¾B ×  àp ½`CP¶¡¥\2ÿ—üØoÔô=rýCÛýaÖ5 Ãñº"û8gÕ2D4¼ö랺xùü`šÅaÌ’Í–^üwZ jX{IZ«îqø¤ƒ-ÎûÀÓëñÔoH¿_™ÃÈeù ŸÑÓþˆ×û— >°³ÈETà—]ѰO)ÎïΟ¹T|.øÈ Î; OW)POu'ùè·Tï…°UÙ_hbñu ‚A,8|d'ê O§ê:ÃÑã°öD~‘y¨'Ü÷Œúô„‚õñX£c‹ê¹×ÉöôÏêY«Sµ=Å3:ûŸYžRs.Q}{ B]Tž(•AÄŸ›¿Ç1}!ïLo³ÀYÞ_ðIÜ?¥¿¿ìâúãÛ-2Øx|;®c!¹ ܸ“ÛöA„hÕÄ›•SëÕ4xªT—‹)ÉfC«Ž|«€êAC™Ä3óöݧy¿Õ“üœÖ`k~G‡A¼ß@GêìíC·ö|>ô‚¡¼xª¯d]‹Àlð©öS@RìàÖx÷O! š ÿGß„X›o·€s— ¡‚õ—!`²Õ™ÅÊh|Ÿ&½uO[vþO bY/ZÈY}K7ö†äÐ_‚ÜߟK|aaoë $¹Ñ¾;d ññÆÝNëTG?æI÷N‚ìùçê½·ßÞæ¶šìýÍNÊÌÓËÎr(™ÚiRäÓÉ‘ž^®"=7)ä=! ‹¹Qw¢¢¤2e!yÔß\UéH¿i쉦±Š‡u½K[Yí«Þ2™;n@WEX ‚ ôÜw žçŠŸ¢WxôQËn°XÒ+Ö~ø”LàJx£ˆ¯ÇÈv¤FýäWrxËÛêƒûCä°x¼fÁ•õÏ19Ê,’!tK¢_±->JqXÇÃâø½ëÛóÇbG_)o»·|00ÛuOädU&K ¢v_ÙøÝù÷ëÙpû¯ãçȾí÷ºïáýIS³û¿|ywÁ,ŸÞ÷GEï>áÅ{_ñìŒ}??§Õr.5ó€þÍë>à‘I÷¯›Õ#š=@*ʯ €'Õ¾Þ >}ÂCäññž#wÀý~hnNä¦â¬àz©án¨ñ² D†/Ÿt4ìÀm£ôy ÇN[C¬:Â#¿6;L\³©j‘o³¼Þ„,@ŽþØâ%!¼ @‡ðÀŽ´=ø*!¯ÚÝ]ט?±z§âñÚ€á«ïÿYôC¶Ë µàßP AÀßótÿvèoóÓ£ˆyW²vB†À¨ÇÈt|ú.ž©Ù4À0«ÄÅSâî;®ã—WZÉê‹âl=¨ Trœ §uм™äió‡¤ ä]¢ä{'kû?+Û G;ÈTx8$:¸Wëe¿ç¬d:!ýA({å=üÑf=k `Ÿ8Šè:¸rÁ@ƒ¹P E[vÄxHW%BHGÅÞB‚¨ô~—x¿0Þ±_ý•¹VEIúc>I‚Vªª˜+;¯ ÏàÝ?‹Š¯r@ˆÌ>Òâ“y‚{ÌJ"ó|d±® ÉÂÉ,E>øÒ³_‘•i˜ÀüI=mèœc#ªÚƒž‹ ïÓ_Ùƒ±:‡ÑêÃ´Š³êÿþÔ<ßÝœ3)Šû“Ù…±·ãûLh|‚H,úpZÉ6øuQW„ À-ç[(r)—Ÿä̓ÉÒ*|Ò;> ìé1²(ŸœUK­»môî…ë3ÕÄ…1Óä[ãÒxŽ.Åì‚Ëí܇0Ìl?r^ ¹º'"žOŸÄnG“TN¬¿RÁ…ý!È:¡ÖÄÀÙ3<è×Ë)ïøåAä'ÇïX¦^T< £ùÚ„ð΃Áâ@†¾Amuêø²•?Ì憿-/p8–ÊC±b~(­nÒ6d˜ð—Ã&õN0g[þaWž=EÕ²h#ðó©è'¹Tne{/àX¤°õt…·/ot9À^1Êq†xÑBÆ=xíiØé‘ý´¹RšËîxhÈgÛ50/(–CósÛí<:}ó’|ª"%—r^ü#RׄŸàPç{ac¬í_¢\“Ç3Y(!ɦ)7èñøµör­ÑPüŒ†½•ãê‰"›¼l8UQ#uLÊâÃ)…RcÄ[¯”¸Uc4&Pày¾@¿%ƒ–ä¦SÄUÆ—EKZú™¦—o±ñ¿CúÝYž8¯Ô-’Á½51ÏÖjIðžýð~C×ÌË™!¤H³‡Ó÷ý~#¹á ¨ER÷·jFù½¶ÿ“·Ùy´æUãTr»¨dξ´þ¦Ç‘Ã<Ð%?oÒŸSŠŸ³ñH¯mÕb…C?%·^’ºÉËÃ,Ù‰naKÈ«aÓ³>Ÿèð¢¼b¿FØ3– å³ñSÜn¶}ñ«bꇳÛåƒïP{üú-{D‡sÜ>è'¸›“þ6ÁŠÞñ+ûdvíØ\Zh~_¾ï 7ä0¼[î!!Ùä?â3ñpOâò{‚öÄø ò”¯õF<Œ—ÙHüøô]ʞŀ=½ã%ј_v ¨Ï·ÖBAtþ©áC¨ù —³Þ'êü pþgÈ/£¢_!'ï}‚`=Çrº·éà$ >ãçí§ÛÛ‚ߪ-§lNÌ…@ ï¶û?‚ó üUV1êÎ ¾oáôCÚ’HÓwM¯Rÿ7èûã‡úÉ7oú?‡ B—ã{*¦èOÜ@‡ Ü«Ý[.×v…P =tùôBÖ 6/â4ýž~³@/›Ò#¸‹yÂÞ!Ö8ˆ|ݰ¥ÕH?qên£¯ur0Að$¨ª£Á%N%-Í~¨HAÄ4â¾äv™×ƒ œ$"šñ ’ÜGT ]>ƒÈv¥¡QÍp=X2¼=¾âв Ø–…œ|pÊÌ3œ¨6-¨b-2¸†-×ÞËh¸L·ÆsŒw¾ýëôÏ€ð£Jzl®¯Låy9¾WÅÇtáõA×—nÉJϦU}kê+û×䊭 ‰”^ «Žc­íɧð‰~ðt\ˆØÚFÆwi’s„B¼¢ò˜U }hÿçÙ, èåÞð|œÕÂÒÛ?Ž,2|ŠÎ¬¯ã/ðˆQÚq´>°ò©öàô“‘NEe­ƒ ¯“¿|úÔàgÙß_Ãâ^½{?Úu6¬KUÇcéÇ>ã™åk,K…0øß]WLÃì_ª1î …ä$Âañ±zýÐ F=Üb;?¯E Üeð¤ãòÁ‚_ÂÉô—'5Ê$¿ÀùNÂ6x3“i¿÷ÀIí"—ØÓÄKLåp\Ÿ%ŠS•[`DâžèR(ÝnT¡,¥¦yoÎsLvÀ‹ä|ð Ft‘ÄpûÒòOíÊËùÀØCò¹³«Œ*Œåäª,3U sŸ&œ¤ï#þK‰häd³ÇÏ OêxÒØx@7•U¤$gþ)ÍíV0Ž _ƒ¦PVç:[cæ\šá¼€¶Ïr ·dVoO[âD­ò|‘‘@‘‡Ü‚€S§äåÍò8EòŠ˜qÛõÌIÙì=GDÓ§¢ÿÙlibjpeg-turbo-2.1.5/testimages/vgl_5674_0098.bmp000066400000000000000000001034661436506551100211060ustar00rootroot00000000000000BM6‡6(x`‡ ½kSÿº¢ÿº¢ eE0eE0åÌ™ fE0fE0fF0 fF0fF0fF0 gF0gF0gF0ÿ¶gF0hF0hF0hF0hF0hG0hG0iG0ÿæÔÿôÿζó”~¨Ž†¨Ž†¨Ž†¹qZ¨Ž†¨Ž†ÿ¶£¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†ÿ±˜¨Ž†¨Ž†¨Ž†¨Ž†ÿ¾§¨Ž†bs¿`r»,';ÿÿý¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨†¨†¨†¨†¨†¨†•bR>?hÿÿÿºpZCEu¨†ÿÐÀÿÙÂ¨Ž†¨Ž†¨†¨†¨†¨†¨†¨Ž†¨Ž†¨Ž†ÿ¹¡¨Ž†¨Ž†®p\ÿáÏÿ÷äÿÀ©ï“yåÌ™ó•{½kSëŽu^B.¨Ž†¨Ž†åÌ™ÿÀ®¸cL_B._B._B._B._B.`B.`B.`B.`B.`C.ÿÁª`C.ÿïÜÿ¶aC.aC.aC.aC/aC/aC/aC/aC/™l^ÿË»é~dÿׯ¨Ž†ÿâË¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†ÿÿÿ¹qZ¨Ž†ÿ¶£´`H¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†ÿñÝÿ±˜¨Ž†¨Ž†¨Ž†ÿ½®ÿ¾§¨Ž†¨Ž†bs¿`r¼`r¼,';¨Ž†¼mU¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†ÿíÚ¨Ž†¨Ž†¨Ž†¨Ž†¨†•bR>?h>?hºpZCEu¨Ž†¨Ž†ÿÙÂ¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨†¨†åÌ™¨†¨†¨†¨†¨†¨†ù¶¨ÿ¹¡¨†¨†ÿæÔ_PÿáÏÿ÷äÿìáÿÀ©ï“yåÌ™ó•{½kS ¨Ž†åÌ™åÌ™ëŽu¸cLëŽuëŽu ¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†Y?,ÿ¶Z?-Z?-Z?-Z@-Z@-Z@-Z@-ÿÿÿ¨Ž†¨Ž†¨Ž†ÿâË¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†ÿÿÿ¨Ž†ÿ¶£¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†ÿ¾§¨Ž†¨Ž†¨Ž†`s¼`s¼,';¨†ÿÿü¼mU¨Ž†¨Ž†¨†¨†¨†¨†ÿíÚ¨†¨Ž†¨Ž†È”ˆ•bR>?h>?hÿÿÿºpZ¨Ž†ÿÐÀÿÙ¨†¨†¨†¨†¨†¨†¨†åÌ™¨†¨†¨†ù¶¨ÿ¹¡¨†¨†ÿíÚÿæÔ^Oÿ÷äÿìáÿÀ©ï“yåÌ™»q[ÿ­”×håÌ™¨†¨†ÿÀ®¨†¨†¨†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨†¨†ÿïÜÿ¶¨†¨†¨†¨†¨†¨†¨†¨†¨†¨Ž†ÿÿþ©lYÿâË¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†ÿÿÿ¹qZ´`H¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†ÿñÝÿ±˜¨†ÿ½®ÿ¾§¨†¨†¨†bsÀ`s¼`s¼,';¨†¨Ž†ÿÿü¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†ÿíÚ݃l¨Ž†¨Ž†¨Ž†È”ˆ•bR>?h>?hCEuÿÿÿºpZÿÙÂ¨Ž†¨Ž†¨Ž†¨†¨†¨Ž†¨Ž†¨Ž†¨†¨†åÌ™åÌ™¨†¨†ÿ¹¡¨†¨†¨†¨†ÿæÔÿïÜšaOšaOÿíâÿÀ©ï“yåÌ™»q[½kSåÌ™ÿ§ ÿÀ®¸cL¨† ¨†¨†¨† ¨†¨†¨† ¨†¨†¨†¨†¨†ÿ¶¨†¨†¨†¨†¨†¨†¨†ÿÿþ©lY¨†¨†¨†¨†¨Ž†¨Ž†ÿÿÿ¹qZ¨†¨†¨†¨†¨†¨†¨†¨†¨†¨†ÿ±˜ÿ½®ÿ¾§¨†¨†¨†btÀas¼,';¨†¨†¼mU¨†¨†¨†¨†¨†݃l¨†¨†È”ˆ•bR>?hCEuCEuÿÿÿ¨†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨†ÿ©Žù¶¨ÿ¹¡ÿ©Žÿ©Ž¨†ÿïÜÿýíÿðàÿÀ©ï“yåÌ™ÿÿÿ»q[WCWC¨Ž†ÿÀ®ÁmT¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†ÿïÜÿ¶¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†©lY¨Ž†ÿÿþ©lY®YA¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†ÿ¶£¨Ž†ÿÿÿ¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†ÿñÝÿ¾§¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†btÀas¼as¼,';¨Ž†¨Ž†¨Ž†ÿÿü¼mU¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†Ýƒl¨Ž†¨Ž†¨Ž†È”ˆIR•>?h>?hCEuCEuÿÿÿºpZ¨Ž†¨†¨†¨†¨†¨†¨†¨†¨†¨†ÿßÌÿßÌÿßÌÿ¹¡ÿßÌÿßÌÿßËÿßËÿßËÿæÔÿïÜÿþîÿðàÿØÃÿÀ©ï“yåÌ™åÌ™»q[ ¨Ž†ÿÀ®¸cL ¶cK¨Ž†¨Ž† ¨Ž†¨Ž†¨Ž† ¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†ÿµ¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†©lY¨Ž†í¨–³nY¨Ž†¨Ž†¨Ž†ÿ¢‰´`H¨Ž†ÿÿÿ¹qZ¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†ÿ½®ÿ¾§¨Ž†¨Ž†¨Ž†¨Ž†as¼as¼,';¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†Ýƒl¨Ž†¨Ž†•bR>?h>?hCEuÿÙÂÿÿÿºpZ¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†ù¶¨ÿ¹¡¨†åÌ™¨†¨†ÿæÔÿïÜÿðáÿØÃÿǰåÌ™ó•{ÿÿÿ»q[¨Ž†¸cL¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†ÿµ¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†©lY¨Ž†ÿÿþÿÿÿ½gO¨Ž†¨Ž†¨Ž†Ý›‰ÿ¢‰ÿ¶£¨Ž†¨Ž†¨Ž†ÿÿÿ¹qZ¨Ž†¨Ž†¨Ž†”gY”gYÿôàÿîãÿëô–|½kSÿ®•ÿ¾§ÿñÝL=¨Ž†¨Ž†¨Ž†¨Ž†ctÀas¼as¼,';¨Ž†¨Ž†¨Ž†¨Ž†ÿÿû¼mU¨Ž†¨Ž†¨Ž†¨Ž†¨Ž†Ýƒl¨Ž†¨Ž†¨Ž†•bRIR•>?h>?hCEuÿÙÂ¨Ž†¨Ž†ÿÿÿ¨†¨†¨†¨†¨†¨†¨†¨†¨†¨†ù¶¨ÿ¹¡¨†¨†¨†åÌ™¨†¨†ÿæÔÿïÜÿþîÿðáÿØÃÿǰÿ¹¡åÌ™"½kSÿÿÿÿÀ® ¨†¨†¨† ¨†¨†¨† ¨†¨†¨† ¨†¨†¨† ¨†¨Ž†¨Ž†ÿµ¨†¨†¨†¨†¨†¨†ÿÿþÿàȨ†¨†¨†ÿ¶£´`H¨†¨†¨†ÿÿÿ¨†¨†Ð}ÿôàÿîãÿë½kSÿ½®ÿ¾§ÿ±˜¨†¨†¨†ctÀas½,';¨†¨†¨†¨†ÿ˸¨†¨†¨†݃l¨†¨†•bRIR•>?hÿпÿÙ¨†ÿÿÿºpZ¨†¨†¨†¨†¨†¨†ÿÁ²ÿ¹¡ÿ©Žÿ©Žÿ©Žò•|ò•|ò•|ÿïÜÿþîÿñáÿǰÿ¹¡åÌ™ó•{½kSÿÿÿ»q[¨†¨†¨†¨†¨†¨†¨†¨†¨†¨†¨†¨†¨†¨†¨†¨†¨†¨†¨†¨†¨†¨†ÿµ¨†¨†¨†¨†¨†ÿϾ¨†ÿÿýÿàȨ†¨†¨†¨†Ý›‰´`H¨†¨†¨†¨†¨†ÿÿÿ¹qZ¨†¨†Ž_O²r^ÿôàÿîãÿëô–|ÿ½®ÿ¾§¨†¨†ÿñÝÊqX¨†¨†›S>ctÀat½at½,';¨†¨†¨†¨†¨†ÿçÑÊq[¨†¨†¨†¨†ÿíÚ¨†¨†¨†•bRIS•>?h>?hÿÙÂCEv¨†¨†¨†ÿÿÿºpZ¨†¨†¨†¨†¨†¨†¨†ù¶¨ÿ¹¡ÿæÔÿïÜÿïÜ¿lS¿lS¿lS¿lSÿæÔÿïÜÿÿïÿñáÿØÄÿǰÿ¹¡åÌ™ÿð½kS$ÿÿÿ¨†¨†¨†¨†¨†ÿÔà ¨†¨†¨†¨†¨†¨†¨†!¨†¨†¨†¨†¨†¨†¨† ƒO@¨†¨†¨†¨†ÿϾ¨†ÿàȨ†¨†¨†¨†ÿ¶£åÌ™¨†¨†¨†¨†¨†ÿÿÿ¹qZ`P`Pÿôàÿïäÿëô–|ÿ¾§¨†¨†¨†ÿ±˜¨†¡ZE¨†at½at½,';¨†¨†¨†¨†¨†ÿù䨆¨†¨†¨†ÿíÚ¨†¨†•bRIS•>?hÿпÿÙÂÿÿÿ¨†¨†¨†ÿÿÿºpZ¨†¨†¨†¨†¨†ÿ¹¡¨†¨†¨†¨†¨†¨†¨†¨†åÌ™ÿñâÿØÄÿǰÿ¹¡åÌ™ÿÞÌÿð¸cLÿÿÿ»q[¨†¨†¨†ÿâШ†ö‘y¨†¨†¨†¨†¨†¨†¨†¨†¨†¨†¨†¨†¨†¨†¨†¨†ÿµ¨†¨†¨†¨†ÿ÷âˆL;ÿÿýÿàȨ†¨†¨†ÿ¶£´`H¨†ÿ¢‰¨†¨†¨†¨†¨†ÿíÚÿÿÿØ•‚ÿæÔ¦iUÿôàÿïäÿëÿ½®ÿ¾§¨†¨†¨†¨†ÿñݨ†×Žz¨†ctÁat½at½,';¨†¨†¨†¨†¶bJ¨†¨†¹jSÿݡXI¨†ÿíÚ¨†ÿ´›È”ˆ•bRIS•>?hÿÙÂCEvCEv¨†ÿÿÿ¨†¨†¨†ºpZ¨†¨†¨†¨†¨†ù¶¨ÿ¹¡¨†¨†¨†¨†¨†¨†¨†ÿ©Žÿ©Žÿ©Žÿ©ŽÿòâÿØÄÿǰÿ¹¡åÌ™ÿÞÌÿð ÿÿÿ  ÿöâ ¯V>  "   "   !   !  ÿïÜ     ©lYÿÿýÿàÈ j`ÿ¶£¨†ÿö⨆ÿÚà  ÿÿÿ¹qZÿæÔ‰ZKÿïäÿëÿ¾§½kS    ÿ±˜ ctÁat½,';    ÿøã¹jSÿÝËÿíÚ݃lÿòß•bRIS•ÿпCEvCEvÿ¿­¿t]¨†¨†ÿÿÿºpZÿʹ¨†ù¶¨ÿ¹¡¨†¨†¨†¨†¨†¨†¨†ÿñâÿØÄÿØÄÿǰÿ¹¡åÌ™ÿÀ®½kSÿÞÌÿðÿÿÿ»q[ ÿº¤ ÿÁ¬                  ÿµ   ÿ÷â©lYÿÿýÿàÈ j`ÿ¶£´`H¤_K  €I9      ÿÿÿ¹qZÿóßÿõæˆUEÿ½®ÿ¾§½kS     ÿ±˜›S> ctÁat½at½,';  ¶bJ    ÿøã Ú¡“ÿíÚ݃l È”ˆ•bRIS•ÿÙÂ>?hCEvCEvÿ±˜ ÿÿÿ  ÿ¿§ÿÿÿºpZ  ÿ¹¡        ܃jýž„  ÿáÏÿ÷åÿîãÿǰÿ¹¡åÌ™¸cLËsZÿðÿðÿÿÿ        #   "   "   ! ÿïÜÿµ! ÿ÷â©lY ÿàȨZD²W>  ¤_K ÿ¢‰     ¹qZÿóßÿöçÿ½®ÿ¾§ô–|½kS   Û¡”ÿ±˜ at¾at¾,';     ¹jS׆n  È”ˆ ÿÙÂ>?hCEv ÿ¿­ ÿ¿§  ÿÿÿ ù¶¨ÿ¹¡    ÃpW߃j   ÿ÷åÿîäÿ©ŽåÌ™ÿ§ŽËsZ¾kSÿðÿð»q[   ÿÁ¬                  ÿµ   ©lYÿ¾°ÿàÈÿòÜÿ¶£  ÿ¹¦  ÿ¢‰åÌ™      ÿÿÿ¹qZÿöçÿ¾§ÿɳÿ¨½kS    ÿë×׎zÿ±˜’kacuÁbt¾bt¾,';û² î¨—¶bJ      ÿ÷â  ݃lÿȲ•bR ÿÙÂ>?h>?hCEvCEv ÿ±˜ ÿ¿§¿t]  ÿÿÿ¾‡x¢hU     ©`J­V>      ÿáÏÿøåÿîäÿÀ©åÌ™ÿ¥ŒËsZ¾kSžXCÿðÿÿÿ»q[  YH$##""ÿïÜÿµ!ÿϾÿ¾°ÿàÈ!´`H Ý›‰ “ZI ÿöâ    Ü ” ÿæÔÿÿÿ^Nÿ¾§ÿɳív    ׎zÿ±˜cuÁbt¾,';¦qa¦qa¦qa¦qa¦qa¦qa¦qa¦qa¦qa¦qa¦qa¦qa¦qa¦qa¦qa¦qa¦qa¦qa¦qa¦qa¦qa¦qa¦qa¦qaÿêÕÿêÕÿéÔÿéÔÿßÎÿÛÉætÿ»¥ÿ»¥ÿ»¥ÿ»¥ÿ»¥ÿ»¥ÿ»¥ÿ»¥ÿ»¥ÿ»¥ÿ»¥yQDyQDyQDyQDÿÀ©åÌ™ÿê×ÿ§ŽËsZ¾kSžXC°V>ÿð»q[VHÿÁ¬                 ¢qb¢qb¢qb¢qb¢qb¢qb¢qb¢qb¢qb¢qb¢qb¢qb¢qb¢qb¢qb¢qb¢qb¢qb¢qb¢qb¢qb¢qbÿÿÿÿìÙÿî¹gPÿïÛÿïÚÿîÚÿîÚÿîÚÿîÚÿîÚÿîÙÿîÙÿîÙÿíÙÿíÙÿíÙÿíØÿíØÿíØÿíØÿíØÿìØÿì×ÿì×ÿì×ÿì×ÿì×ÿì×ÿëÖÿëÖÿëÖÿëÖÿëÖ|N@IS•>?h>?hCEvCEv”lbÿé׿t]ÿÀ±ÿæÐð’|      ÿêÿêÿêÿêÿêÿêÿêÿêÿêÿ»¥ÿ»¥ÿ»¥ÿ»¥½qZ½qZ½qZ½qZ½qZ½qZ½qZÿ˸ۅm¢qb¢qb¢qbÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ«’ÿ¢‰åÌ™ÿóßÿûêÿûê")¢ZFÿäÒÿÊ´»qZÿɳÿ¨ív   Û¡”  ÿñÝbu¾bu¾î¨—gE9ÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿüêÿ¾§¹gO¼pZ¼pZ¼pZ¼pZ¼pZ¼pZ¼pZ¼pZ¼pZ¼pZ¼pZÿ«¼pZÿïÜ„QA¼pZ¼pZ¼pZ¼pZ ÿøåÿîäÿÀ©åÌ™ï“yÿ§Žÿ§Žÿ§Žìvìvÿÿÿÿ§‘‰YIÿÁ¬ÿµÿ¼¥¥WA©lY´`H¨ZDÝ›‰ÿ¹¦ÿ«’ÿöâåÌ™gE9ÿÙÇÿÙÇÿÙÇÿɲÿÙÇÿÿÿ»qZÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÚÃÿÚÃÿÚÃÿÚÃÿÚÃÿÚÃÿÚÃÿÚÃÿÚÃÚ¡“ÿ÷âÿíÚÿÕÁ•bRIS•>?h>?hCEvCEvÿé×–_NÿÀ±ÿ«ñxñxÿ¸ ñxñxñxñxñxñxñxñxñxñxñxñx¼pZ¼pZ¼pZ¼pZ¼pZ¼pZËsZ¾kSžXCÿį‰YI'0ÿÁ¬'0&/&.gE9%.ÿÙÇÿÙÇÿÙÇ%-ÿÙÇÿÙÇÿÙÇ$,ÿÙÇÿÙÇÿÙÇ$,ÿÙÇÿÙÇÿÙÇ#+ÿÚÃÿÚÃÿÚÃ#*ÿÚÃÿÚÃÿŵ±X@ÿÚÃÿðæÿÿÿív¾kSWC׎zÿñÝÿ±˜¶bJÿ¯–׆nÿíÚÈ”ˆIS•>?hCEvCEvÿ±˜ÿ«¿t]ÿʹÿïÜÿ¸ ÿæÔÿ¹£ÿáÏÿøåÿÀ©åÌ™ï“yÿéÖÿ©Žÿ©Žÿ©ŽgE9gE9ÿÙÇÿÙÇÿÙÇÿį‰YIÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÚÃÿÚÃÿÚÃÿÚÃÿÚÃÿÚÃÿÚÃÿÚÃÿÚÃÿµ€UG´`HÿàÈÿñÛ¤_Kÿ«’ÿ¢‰¼kSÜ ”ÿŵÿɲÿôàÿðæÿÿÿ»qZív¾kSWCdu¿‡y¢gU,';ÿôà˜]KÿÿÿÈ”ˆ•bRIS•>?h>?hCEvCEvÿ½¯ÿÀ±ÿ«ÿÿÿÿʹÿ¸ ÿÙÈÿÙÈÿÙÈÿÙÈÿÙÈÿÙÈÿÙÈÿÙÈÿÙÈÿÙÈÿÙÈÿÙÈÿÙÈÿÙÈÿÙÈåÌ™ÿÙÈÿ¦ÿ¦ÿ¦ÿ¦ÿ¦ÿ¦ÿ¦ÿ¦ÿįÿįÿ¦(1ÿ¦ÿ¦ÿ¦(1ÿ¦ÿ¦ÿ¦'0ÿ¦ÿ¦ÿ¦'/ÿ¦ÿ¦ÿ¦&/ÿ¦ÿ¦ÿ¬–&.ó”{ó”{ó”{%-ó”{ó”{ó”{%-ó”{ó”{ó”{$,ó”{ó”{ó”{ÿɲó”{ó”{ó”{ó”{ÿÿÿ»qZó”{ó”{ó”{ó”{ó”{ó”{ÿÿÿýœ‚¾qZ¾qZ¾qZ¾qZ¾qZ½qZ½qZ½qZ½qZ½qZÈ”ˆ•bRÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿ«ÿÚÃÿÚÃÿÚÃÿÚÃÿïÜÿ¸ ÿÚÃÿÚÃÿÿòÿÿóÿøåÿïåÿÀ©ï“yó•{½kSÿñáÿñáÿįÿįÿåÓÿ¼¥ÿáÏÿ˵ÿϾÿàÈÿñÛ¤_KÿÛÉÿöâÙ•‚ÿŵÿɲÿôàÿðæÿëô–|ÿÿÿÿê×ÿê×ÿê×ÿê×ËtZ¾kS¾kSduÂÀjR´eN,';ÿ¯–û² ×†nÈ”ˆ¯U=¶ZAIS•>?h>?hòxòxòxòxÿÿÿÏu]ÿÀ±°X@ÿÿÿÏu]û‘xû‘x¼mU¼mUÿ¸ ¼mU¼mU¼mU¼mU¼mU¼mU¼mU¼mU¼mU¼mU¼mU¼mU¼mU¼mUåÌ™¼mU½kSÿÄ­ÿÄ­ÿįÿįÿÁ¬)2(1(1ÿ¼¥'0'/ÿóàÿ­”ÿàÈ&/&.ÿ«’%-%-ÿɲÿôàÿðæÿëÿÿÿ»qZWC›S>ÿñbu¿,';ÿôà•bRIS•>?hCEvCEvÿȲÿÀ±ÿ«¹dKÿ¤‹ÿïÜÿ¸ ÿ¹£Û ’ÿáÏÿøåÿưåÌ™ï“yó•{½kSÿÄ­ÿÄ­ÿÄ­ÿÄ­ÿÄ­ÿÄ­ÿÄ­ÿÄ­ÿÄ­ÿÄ­ÿįÿįÿ¼¥ÿ̹ÂkSÿôßÿ­”ªX@¨ZDÿ«’ÿ¹¦ÿ¢‰ÿŵÿɲÿôàÿðçÿëô–|½kSÿÿÿ»qZÛ¡”ÀjRbv¿ÿÿÿ´eNÿ¯–˜]K׆nÿ¿§•bRIS•>?h>?hCEvCEvÿ«ÿ¶¤ÿ¤‹­nZ¿t]ÿ¸ ö¯žÿ¹£“gZ“gZÿáÏÿøæÿïæÿÀ©åÌ™ÿÆ®Às[Às[Às[Às[Às[Às[Às[Às[Às[Às[Às[Às[Às[ÿįÿįÀs[ )3Às[Às[Às[Às[Às[Às[ÿ¼¥(2ÂkSÿôß(0}J:ÿðÚ'/ÿ«’ÿ¢‰ÿïÜÿɲåÌ™ÿôàÿñçÿëô–|½kSÿÿÿ׎zÿñbv¿bv¿ÿÿÿÿôàû² ׆nÿ¿§•bRIS•>?h>?hCEvÿÀ±ÿ«ÿ¶¤¹dKÿ¶­nZÿïÜÿ¸ ÿ¹£“fXÖ•ƒÿøæÿïæÿÀ©åÌ™ï’yó•{½kSÆoVÿÝÌÿįÿ¼¥óxóxÿ̹ÂkSóxóxóxÿ­”†K:†K:†K:†P@ÿ«’ÿ¹¦ÿöâÿŵÿɲÿÿÿÿØÅÿôàÿñçÿëô–|½kSÿÅ®ÿÿÿ»qZÿÅ®ÿÅ®ÿÅ®ÿñÀjRdvÃcv¿cv¿ÿÿÿû² Ú¡”ÿ¿§•bRIS•>?h>?hCEvCEvÿ«ÿ¶¤ÿݡXIÿõáÿ¤‹­nZÿÿÿÿ¸ ÿ¹£å̙ˊxËŠxÿáÏÿøæÿïæÿÀ©åÌ™ï’yì“zÆoVÆoVÆoVÆoVÆoVÿÝÌÿį *4ÿ¼¥ *3)2ÂkS)2ÿÒ»¨\Fÿ­”(1褓(1«X@«X@wNA'0ÿÛÉÿɲåÌ™ÿ®ÿñçÿë½kSÿ¡‡ÿÿÿ»qZdvÃcvÀÿÿÿ´eNÿ¯–׆nÿ¿§•bRIS•>?hCEvCEvÿÀ±ÿ«ÿ¶¤¹dKÿȲÿ¤‹Ž^N‹]N¿t]ÿïÜÿ¸ ®U=åÌ™Ž_OÿáÏÿøæÿÀ©åÌ™ï’yó•{½jRÿ¶ìvÿåÓÿÝÌÿįÿ¼¥ÿ̹®mYÿóàÿ­”褓ÿ©ÿ«’«X@ÿŵ±X@¦XB{RD{RDåÌ™ŽeYÿôàÿâÍÿɳô–|½kSÆpV|H8ÿÿÿ»qZÿñÀjRdvÃcvÀcvÀ,';ÿÿÿÿôàû² ×†nÿ¿§È”ˆ•bRIS•>?h>?hCEvCEvÿ´›ÿ«¹dKÿ¤‹ÿöâÿ ‡ÿ¿§ÿÿÿÿ¸ åÌ™_P_PÿáÏÿøæÿðæÿÀ©åÌ™¾ó•{½jRù˜~ÿ ‡ËsZù˜~ù˜~ù˜~ù˜~ù˜~ù˜~ù˜~ù˜~ù˜~ÿÝÌÿįÿ©!+5ÿ©ÿ©ÿ© *4ÿ©ÿ̹ÂkS *3ÿ©ÿ©ÿ©)3ÿÜÅÿ­”ÿ©)2ÿ©„XI„XI(1„XI„XIÿŵÿɲå ~TF~TFÛ›‹Û›‹ÿõáÿëó•{ÿȰ{RDzRDzRD»qZÿñzRD~TFcvÀcvÀ,';åŠÿ¿§È”ˆ•bR>?h>?hCEvÿÀ±ÿ«ÿ¶¤Âs\Âs\ÿõáÂs\Âs\Ò—ˆÿ¹£ÿïÜÿ¸ åÌ™ÿæÓÿæÓÿÜË_PÿøæÿðæÿÀ©è‘yó•{½jRÃt]Ãt]Ãt]Ãt]Ãt]¯bLÃt]Ãt]Ãt]Ãt]Ãt]Ãt]Ãt]Ãt]Ãt]Ãt]°YAÂt\ÿÝÌÿįÿ̹®mYÿÜÅÿóà}J:褓ÿ÷ãÿ«’ÿɲÿª“å }I:´X?’cTÍŒyÿõáÿñèÿëó•{½jR©_I©_Iív–mbÿÿÿ»qZ–mb–mbdvÃcvÀcvÀ,';ÿÿÿ´eNÿ˜}ÿ˜}ÿàÊùuùuùuùuùuùuùuÈ”ˆ•bRùu–mbIS•>?h>?hCEvÿÀ±ÿ«çŠs¹dKÿüçÿüçÿüçÿüçÿüçÿõáÿ¤‹ÿ¿§ÿßÈàƒiÿüæ²X?åÌ™ÿ¸ à‚iÿÜÅÿÜÅÿõáÿÜËÿñÝŠ\MÿøæÿðçÿÀ©åÌ™ï’y½jRÿàÉÿàÉÿßÈÿßÈÿßÈÿßÈÿßÈÿßÈÿßȬsb¬sbé”|¬sbÿÿÿÿÝÌÿį«td!,6«td«tdÿ̹!+5«td«td«td +4«td®mYÿÜÅ *4ÿ­”褓«td *3«td«tdÿäÎÿŵÿɲÿûçå ¨td_Pÿõáÿñèÿë½jR¨tdᜉ¨tdÿñÿÿÿ»qZÿÿÿdvÄcwÀ,';ÿÿÿÿÿÿÿÿÿÛ•‚ÿ¸ŸÿÿÿÿÿÿÈ”ˆIS•>?hCEvÿ«ޑ{õ‘yõ‘yõ‘yõ‘yõ‘yÿ¾§õ‘yõ‘y×åÌ™Ãt\ÿïÜÿ¸ Ãt\Ãt\Ãt\ÿñÝÿøæ‡YJ¾åÌ™ï’yÿ²™½jR U?¶‡|ÿ´ŸÿÖÆÿÿÿÿÝÌÿįÿ̹ÿÓÂÿÜÅÿóàò®¡ÿ©ÿɲ¢_Kÿõá`P¯nZÿõáÿñèÿëó•{½jRž[GÿôàÿñÀjR»qZdvÄcwÀcwÀ,';ÿÿÿõª—™UAÿ¸ŸÿèÖ•bRIS•>?h>?hÿÀ±ÿ«ÿ¶¤¹dKÿ¼£ÿ¾§ÿõáû›ÿùëÿùëÿ¨ÿ¨ÿ¸ „QAÿ¨ÿ¨ÿÜËÿñÝÿøæÿÿú„RCåÌ™ï’yï’yÿòßL<é”|•[IÂt\ÿÝÌÿį",6ÂkS!+5ÿÜÅÿ­”ÿ© *4ÿŵÿɲÿ·¡¢_Kÿÿÿÿ¯•ÿé×^Oÿõáÿòèÿëó•{½jRž[GÀjRÿÿÿ»qZcwÁcwÁ,';ÿÿÿ´eN­YB﫚M>ÿÁ«•bRIS•>?h>?hÿ«ÿ¶¤ÿñÞÿ¾§ÿõáåÌ™ÿDZÿDZÿDZÿDZÿDZÿ¸ ÿDZÿDZÿÜËÿñÝÿÿû¾åÌ™ï’yï’yó•{ÿ²™ÒÍ´ÒÍ´ÑË´ÑË´ÑË´ÑË´ÑʯÿÆ·ÑʯÑʯÏÅ£ÏÅ£ÏÅ£é”|Òɤ¬V>ÒɤÒɤÿ¸¥ÿÿÿÒÆžÒÆžÒÆžÿįÂkSο‡Î¿‡Ç³zdzzdzzdzzɵ{ɵ{ÿÜÅɵ{θ~ÿ­”θ~ÿ÷ãÈ´zÈ´zÿɲȴzÿ·¡Í¼‹¢_K™^Lÿ¯•ÑÓÿé×ÿõâˆYJÿòéÿëó•{½jRÎçž[Gÿñÿ´›ÌèÌèÌèÿÿÿ»qZcwÁcwÁ,';ÿÿÿ稛﫚ÿ¸Ÿ•bRIS•>?hÿÀ±ÿ«ÿ¶¤¹dKÿ¼£ÿ¾§ÿ¤‹ÿâÐÿïÜ„QAÿÜËÿñÝÿøæÿÿûè‘yåÌ™ÿ´›ï’yÿòßL<ÔϺÔѼÔѼÔѼ×Ѿ×Ѿ×Ѿ×Ó»×Ó»°YAÒϺÒϺÒϺÔͬÂt\Ôͬÿ̹ÿį‰YI"-7Ë·€Ë·€Ë·€"-7ȲxȲxÿ½¯!,6̳{ÿóàÿ­”!,5ÿ©ÿŵÿɲÿ¨ÿ¨¢_Kÿõáÿ¨ÿé×ÿÿõ…SCÿë½jRʾšÊ¾šÌèÌèÌèÍɰÿÿÿcwÁ,';Ïʱõª—Û•‚ÍǪ﫚ÏȧÿÁ«Ë¿Ë¿•bRÊÄŸÊÄŸIS•>?hCEvÿ¶¤Ç¾˜Ǿ˜ÿñÞÿ¾§ɾ˜É¾˜Æº–ÿ¤‹Æº–ÿ¨ÿ¨ÿ¨ÿ¨ÿ¨ÿ¸ ÿ¨ÿñÝÿùç¾åÌ™ÿ´›ýŸ†ó•{½jRÿ²™ÔϺÔѼÔѼܣ•ÿ÷ã×Ѿ×Ѿ×Ѿ×Ѿ×Ó»×Ó»é”|ÿ´ŸÒϺÒϺÒϺÒϺÔͬ•[IÔͬÂt\ÔͬÂkSÍ¿‹ÿį‰YIË·€Ë·€Ë·€Ë·€È²xȲx®mY¨\F̳{̳{ÿ­”̳{ÿ©ÿɲÿ·¡ÿʳÿʳÿʳ¢_Kÿʳÿʳÿ¯•ÿé×ÿõâÿÿõÿÖÂÿëó•{½jRʾšÿñʾšÎÁ›ÿ´›ÿæÓÎÁ›ÍŨÿÿÿ»qZcwÁ,';ÿº£­YBÿÿÿ´eNÍÅ õ¯¢Ì¿™ÿ¸ŸÌ¿™WGÈ¿šÈ¿š•bRË Ë Ë IS•ÿÀ±ÿ«ÿ¶¤¹dKɾ˜É¾˜É¾˜ÿ¾§ÿ¼£Ê¿™Ê¿™Ê¿™åÌ™û›ÿõáÄ»–ŵ‹ÿÜÊÿé×ÿé×ÉrYÉrYÉrYÿïÜÿ¸ ÿÜËÿñÝÿùçè‘yÿÓ¾åÌ™ÿ´›ýŸ†ÿ¡ˆ½jRÖÓ¾ÿçÕÿÿÿÕϼÓιÓιÓι×Ò½¶‡|×Ò½ÕÊ®ÕÊ®ÕÊ®Ùβÿ¸¥ÿÿÿÿ̹ÐÅŸÐÅŸÿį‰YI#.8Ò¿’Ò¿’ξ"-7®mY¨W@̺…"-7ÿóà̺…ÿŵÿɲ˻Œÿ©É¹Ž¢_KɹŽÊºŒÿé×ÿõâÿÿöÿƯó•{½jRÀjRǺŽá¥—ʾ–ʾ–Í¿›ÿÿÿ»qZ,';ËÂʸ‰ÿÿÿʸ‰É³ɳÿÁ«ÌÀ˜È”ˆ•bRËÀ ËÀ ËÀ ÿ«>?hÿ¶¤Æ»•Æ»•ÿ¾§ÿñÞÆ¸”åÌ™û›Å²‘ÿõáÀ³‡À³‡À³‡ůÿ½¨Û‡oÿ¸ Å®|ÿñÝÿÿüÿÓ¾åÌ™ýŸ†ÿ¡ˆäˆnÿÛÈÿ²™ÕϼÕϼÕϼÕϼÓιÓιÓιÓι×Ò½é”|¬V>×Ò½ÕÊ®ÕÊ®ÕÊ®ÕÊ®ÙβÿÖÆÙβÿ̹ÂkSÐÅŸÐÅŸÐÅŸÐÅŸÿį‰YIÒ¿’Ò¿’ξξ®mY¨W@̺…̺…¢aNÿ­”ÿɲÿ©Ë»ŒË»ŒÉ¹ŽÉ¹Ž¢_Kɹޙ^LʺŒÿé×ÿõâÿÿöÿÖÂÿƯÿ·žå‰oÿñÿêØÿÿÿʾ–ʾ–ÿ´›Ê¾–Í¿›ewÄdwÁÿÿÿ,';˺“ËÂʸ‰ÿÿÿʸ‰Ê¸‰¢cPɳÿ¸ŸÌÀ˜ÿÁ«È”ˆ•bRËÀ ËÀ ËÀ ÿ«>?hÿ¶¤¹dKCEvÆ»•ÿ¾§Æ»•Æ»•Ƹ”å̙Ƹ”×Ų‘Ų‘©n\ÿ£‹À³‡À³‡À³‡À³‡Å¯ÿ¨ÿ¨ÿ¨ÿïÜÿ¸ ¾è‘yÿÿýÿÓ¾åÌ™ÿ´›ýŸ†äˆn~ÿ²™Ñ͵Ñ͵Ñ͵ÐÉ®ÐÉ®ÐÉ®¬V>ÏÆ¥ÏÆ¥ξ”ξ”ξ”ÔÄŸ•[Iÿ̹Ât\ÌħÌħÌÀ˜ÿį‰YI#/9ËÁŸËÁŸÿÔÂ#.8̽œÌ½œ¢aNÿɲ¯V>ÿ©Ë¿›Ê¿™Ê¿™¢_Kü² Ê¾–ÿ¯•ÿÿöÿ×ÂÿƯÿñÀjRÆ·ù‘ù‘ÿ´›Ç·’ewÅdxÁÿÿÿ»qZÄ´ŠÉ½™™UA´eNÇ·Œƶ‹ÿòßÏ¿›È”ˆ•bRʾœÿÀ±ÿ«>?hCEvCEvÿ¾§¿°¿°åÌ™Á³û›À®‰©n\ÿ£‹¾²ˆ¾²ˆ¾²ˆÂ±†XG±†À³…ÿ¸ è‘yÿáÏÿÿýåÌ™ÿ´›ýŸ†ÿ¡ˆ~~Ôиÿ²™ÓεÓεÓεÐÈ«ÐÈ«ÐÈ«ÐÈ«°YAǣǣǣËÂËÂËÂËÂÍÁŸÍÁŸÿ̹ÂkSÐ Ñ!ÏÅ£ÏÅ£ÏÅ£ÌâÌâÿį‰YIÊÂÊÂÿÔÂÿÜŨ[FÌÆ£ÿŵÿɲÿ­”ÿ÷ãÆ¿žÆ¿žÇ¾œÇ¾œ¢_KǾœü² Ç¼–ÿõáʾ–ÿÿ÷ÿ×ÂÿƯÿ·žÿñÆpWƷƷù‘ù‘ù‘}K;Ç·’ewÅdxÂdxÂÿÿÿ»qZɽ™Ç·ŒÆ¹“ÿÿÿÇ·Œï«šÆ¶‹Æ¶‹ÿ¸ŸÏ¿›È”ˆÏ¿›Ê¾œÊ¾œÿ«IS•ÿ¶¤>?hCEvCEv¿°¿°¿°åÌ™Á³Á³û›Á³À®‰À®‰©n\ÿõá¾²ˆ¾²ˆ¾²ˆ¾²ˆÂ±†Û‡oÿ½¨ñ–}õ—}ÿïÜÿ¸ ÿáÏÿùæÿÓ¾åÌ™ÿ´›ýŸ†~‰‰ÿ²™ÓεÓεÓεÐÈ«ÐÈ«é”|ǣǣǣǣËÂËÂËÂÍÁŸÍÁŸÿ̹ÍÁŸÐ Ð Ð!Ð!ÌâÌâÌâÿį‰YI$/:ÊÂÿÜÅÿñÛÌÆ£ÿÉ²ÌÆ£ÿ­”Æ¿žÆ¿žÇ¾œÇ¾œ¢_KǾœÿÿöÿöçÿöç‘O<ÿ×ÂÿƯÿñÀjR™UAŹ•ĸĸĸÿ´›ÿº£dxÂdxÂ,';ÿÿÿoÛ•‚ɹ”ŵ‘﫚À³À³ÿòßµ•bRȺ–ÿÀ±ÿ«IS•¹dK>?hCFvÁ±åÌ™åÌ™Á±¿²ŒØ¿²Œº°ˆº°ˆ©n\º°ˆÿ£‹À²ˆÀ²ˆ娚ÁnVÕ|bXGû´£è‘yÿ¸ ÿÓ¾ÿÓ¾åÌ™ÿìÿ쉉‰šUAÿòßÿ²™ÎɰÎɰËÃ¥ËÃ¥¶‡|ËÃ¥ËÃ¥ËÃ¥ËÃ¥ËåˡˡˡˡÎĦÿ̹ÂkS•[IÎĦÐ Ð Ð!Ð!Ð!ÍÄ£ÍÄ£ÍÄ£ÿį‰YIÎÈ¥ÿÜÅÿñÛÿŵÿɲ̤ÿóàʤÿ©Ê¤ÉÀžÉÀž¢_KÉÀž×~e™^Lɽ™ÿ¯•ÿ×Âÿ×ÂÿƯÿñå‰oÆpW™UAÅ»™Çº”Ǻ”Ǻ”ÿôàǸ—ewÅdxÂdx·ÿÿÿ»qZb d d ´eNd À³“À³“Ä´` •bRÿÁ«` ÿ«Ĵÿ¶¤>?h>?hCFvCEvåÌ™Á±ŒÁ±ŒÁ±Œ¿±‡û›¿±‡ÿ¼£½±‡½±‡©n\½±‡ÿ£‹À°†À°†µgP½iQÁ±†Á±†ÿ½¨è‘yÀ²ˆÿïÜÿ¸ ÿùçÿñéåÌ™ÿ´›ýŸ†iÿ¡ˆÿ¡ˆÿ²™ÎɰÎɰËÃ¥é”|ËÃ¥ËÃ¥ËÃ¥ËÃ¥ˡˡˡÂkSÎĦÿ¸¥ÌŤÐ Ð ÇÐ!ÇÎÈ¥ÿįÿį$0;„ÿɲ褓ʤÿ­”ÿ÷ãÉÀžÉÀž¢_Kɽ™ü² É½™ÿõáÿóêÿñå‰oÆpW™UAǺ”Ǻ”ÿº£ÿ´šexÅexÂ,';¶ÿÿÿb d ÿÿÿÀ³“` Ä´•bRÿèÖÿÀ±ÿ¶¤¹dK>?hCFvCEvÁ±ŒÁ±ŒÁ±Œû›¿±‡¿±‡½±‡©n\½±‡ÿõá£\HÀ°†Û‡oû´£¾è‘yÀ²ˆÿ¸ ÿùçåÌ™ï’yÿáÏÿàÎäˆn»iQšUAÌŪÿòßÿ²™ÌŪÉæé”|ÉæÉæË¡Ë¡Ë¡Ë¡ÎĦÎĦÎĦÎĦÿ̹ÌĦÌĦÌĦÌĦÈ¥ȥȥРÐ!ÇÇÇ[ [ ÿįÿįÿŵÿɲ褓Íģˡÿ­”ÿ÷ãË¡ȿž²Y@¢_KÈ¿žÉ¿¡ü² É¿¡É¿¡ÿõáÿóëÀjRó•{å‰oÆpW™UAƾ ÈÀ›ÿº£ÈÀ›ÈÀ›ÿôàexÅexÂexÂ,';·¶ÿÿÿ»qZd ÿÿÿ` ` ` ` ` •bRÿÀ±ÿ«À±ÿ¶¤IS•>?h>?hCFvCEv»¯»¯»¯Ø¼­Œ¼­Œ¼­Œ¼­Œÿ¼£½­‰©n\½­‰ÿõáÿ£‹À³å¨š¼°Œû´£¼°Œè‘yÿ½¨»¯‹»¯‹ÿïÜÿ¸ ÿñéåÌ™ï’yÿáÏó•{ÿñÝšUAc ÍÄ©ÍÄ©ÿ´Ÿ°YAÈÂ¥ÆÃ¤ÆÃ¤ÆÃ¤ÍŨÎĦÎĦÂkSÌĦÌĦ•[IÈÂ¥ÈÂ¥ÿÿÿÐ ÇÇÇÇÿÚÇþ¦ ^K褓Íģˡÿ­”ÿ©È¿žÈ¿žÈ¿žÉ¿¡É¿¡É¿¡ÿõáÀjRó•{ÿòÞ™UAåÌ™ÿº£ÈÀ›ÈÀ›­YBex³,';¶b »qZd ´eN` ` ` •bRÀ±ÿ¶¤¹dK>?i>?iCFv»¯»¯Ø¼­Œ¼­Œ¼­Œ½­‰½­‰©n\À³ÿ£‹À³û´£¼°Œ¾ÿâÑ»¯‹»¯‹ÿ¸ ÿñéåÌ™ï’yŒ] ÿñÝc h ÿñÝÿòßÿ²™»iQª_IÈÂ¥ÈÂ¥ÆÃ¤ÆÃ¤ÆÃ¤ÆÃ¤ÍŨÍŨÍŨÿ̹ÌŪÌŪÌŪÌŪÿ¸¥ÌŪÌŪÌŪÌŪÿÿÿÐ ÇÇÇÇÇÿÿÿÿɲÿ­X ÉŨËÃ¥ËÃ¥ÿ­”ÿ©ÍÄ£ÍÄ£ÍÄ£ÍÄ£ÉÁ£ÉÁ£™^LÉÁ£ÿõáÀjRÿëó•{ÿòÞÿòÞÿòÞÿòÞÿòÞÿòÞÿòÞ»iQª_IexųexÃ,';Ÿ˜Ê¿¡¶ÿÿÿ»qZd ÿÿÿ` Á·•` È”ˆ•bRÿ«\ ÿ¶¤\ \ >?i>?iCFvCFv½²’½²’û›½²’¾±‘¾±‘¾±‘¾±‘Á·•ÿ¼£©n\Á·•¾³“ÿ£‹ÿȸۇo¾±‘¾±‘è‘y¾±‘±ÿ½¨Â±ÿáÏÿïÜÿ¸ åÌ™ÃýjRh h Êèh^ÿ²™ɿɿɿËÃ¥ËÃ¥ËÃ¥Êèÿ̹ÂkSÈÁ¨ÈÁ¨ÈÁ¨ÉÅ©ÉÅ©ÉÅ©ÌÆ¯Ô#ÌÆ¯ÇÇ[ ÁÿÛÉÿ­ÁX ÿóàÉÄ«ÿÜÊÉÄ«ÍÆ­ÍÆ­ü² ÿñÿóëÿë½jRÿÿý™UAåÌ™Èäõª—ÆÀ£exÆeyó³稛¶ÿÿÿ»qZ` ` ` È”ˆ•bR\ ÿ¶¤\ ^ >?iCFvCFvõ˜õ˜Ãµ˜Á³–Á³–Á³–Æ·—ƒP@Æ·—Ŷ–ÿ£ŠÿÜÊŶ–Ŷ–Ŷ–Áµ“T Ãÿùçÿ¸ åÌ™ÃÃ^ h h ÿлÃs[Êè¬V>ÿòßL<ɿɿɿËÃ¥ËÃ¥ËÃ¥ËÃ¥ÊèÊèÿ̹ÊèÈÁ¨ÈÁ¨ÈÁ¨ÈÁ¨ÈÁ¨ÿ¸¥ÉÅ©ÉÅ©ÉÅ©ÌÆ¯ÿÿÿÌÆ¯Ð!Ç[ ÇÇÁÇÁÿ­†XIÀÀÿ­”ÿ©ÉÄ«ÿñÝÉÄ«ÍÆ­ÍÆ­ÿÆ·ÍÆ­ÀjRÿóìÿëó•{½jRÿкÿкÊŬÈäåÌ™­YBÈäÆÀ£fyÆey÷·³Û•‚³·h ÿÿÿ` ´eN` ` È”ˆ•bR\ ¹dK\ ^ ^ c c CFvCFvØÃµ˜Ãµ˜Ãµ˜Á³–Á³–Á³–Á³–Æ·—Æ·—ÿ¼£Æ·—Ŷ–ÿ£Šÿ£‹Å¶–ÿðÝè‘yU ÃT ÃÃÃÃÿïÜÿ¸ ÃÃh g ÿ°—ÿÿÿÿ´Ÿé”|Ççÿ²™ÉæÉæÊħÊħÊħÊħÉÅ©ÿ̹ÉÅ©ÇçÇçÇçÇçÇçÿ¸¥ÆÃ§ÆÃ§ÊȰÊȰÂt\ÿ·¡` ÇÇÁX ÁÁÿ­ÿ­Àÿ­”»W ÌÆ¯ÌƯÿöãÎdzÿñÿõáÿôìÿëó•{½jRÿ±—Àt]ÌȰ­YBÌȰÌȰÈ«fyÃey÷··³³ÿÿÿ»qZÿÿÿǽ›` È”ˆ\ ¹dK^ ^ c c c CFvû›Ã¸šÃ¸šÃ¸šÄ¹›Ä¹›Ä¹›µ•µ•©n\ƒP@ÿ£ŠÁ¶–ÿ£‹è‘y¿²’ÃÿúèÃÃÃÃÃÿ¸ „QAÃó•{½jR\ ÿ°—ÿ°—ÿ°—ÿ°—ÿ°—ÿòßL<ÿ°—ÉæÊħÊħÊħÊħÉÅ©ÿ̹ÉÅ©ÉÅ©ÇçÇçÇçÇçÇçÆÃ§ÆÃ§ÆÃ§ÆÃ§ÊȰÊȰÿ·¡Ât\ó˜` [ ÇÁÁÁÁÀÿ­ÿ­ÿóàÿ­”»»ÆV ÎdzÿñÀjRÿõáÿôìÿëó•{½jRÚ€fËʶÿÿÿ•cRÌȰåÌ™ÌȰÈ«fyÆfyÃeyö¶··³³´ÿÿÿ»qZǽ›ÿÀ±•bR\ ¹dK^ ^ c c c X CFvCFvøšÃ¸šÃ¸šÃ¸šÄ¹›Ä¹›Ä¹›Ä¹›Âµ•µ•ñª˜ÿ¼£Á¶–Á¶–ÿõá¾è‘yU ÃÃÃÃÃÃÃåÌ™ÿÀ©ÿ¸ ÃMGBMGBMGBMGBMGBMGBÿ²™MGBMGBMGBMGBMGBÂkSMGBMGBMGBMGBMGBMGBMGBMGBMGBMGBMGBMGBMGB_ ÁÁÁÀÀÿÛÉÿ­ÿ­”»»ÆÆÿñMGBMGBMGBMGBMGBMGBMGByMGBMGBfyÆfyÃ,';MGB¶··³ÿÿÿtMAÿ«•bRÿ¶¤^ ^ c c X \ CFvMGBMGBMGBMGBMGCMGBMGBMGBMFBMFBÿ»«ÖŒwwOBÃÃÃÃÃÃÃÿïÜ„QANGCNGCNGCNGCNGCNGCNGCuuwuuwuuwuuwuuwuuwuuwuuwuuwuuwuuwuuwuuwuuwuuwuuwuuwuuwuuwuuwNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCÿ­˜k^Ž_ONGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCoJ>oJ>oJ>oJ>oJ>oJ>ÿŲÿŲÿŲÿŲÿƶþ«•mNE^ONGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCNGCåÌ™NGCNGCÿ¸ ½qZ½qZ½qZ½qZ½qZ½qZ½qZ½qZ½qZ½qZ½qZ½qZ½qZ½qZ½qZ½qZ½qZ½qZ½qZ½qZ½qZ½qZ½qZ½qZ½qZ½qZ½qZ½qZ½qZ½qZ½qZ½qZ½qZ½qZ½qZ½qZ½qZ½qZ½qZ½qZ½qZ½qZ½qZ½qZ½qZ½qZÿàÏçtÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÖÄÿ¹¤¿oW¼pY¼pY¼pY¼pY¼pY¼pY¼pY¼pY¼pY¼pY¼pY¼pY¼pY¼pY¼pY¼pY¼pY¼pY¼pY¼pY¼pY¼pY¼pY¼pY¼pY¼pY¼pY¼pY¼pY¼pY¼pY¼pY¼pY¼pY¼pY¼pY¼pY¼pYñwñwñwñwñwñwñw¬tdÂt]¬tdÿ²™¬td¬td¬td¬tdÂkS¬td¬td¬td¬td¬td¬td¬tdÄÁ¢ÄÁ¢ÈÀ¢ÈÀ¢Ä„rÈÀ¢ÈÄ«ÈÄ«°YA©te©teÿÿÿ©te©te©te©te] ÃÉÀ»»»ÿöáì’|ÿ¬ÿñÀjRÆÂÆÂÂÂV ÿÿÿ´aIÿÿÿÚ~euuu|||yyyyÉÁ£·y·vÿÿÿS ÿïÜ•bR«T<c Ž^OŽ^OŽ^OŽ^OËrZÿʱÿʱÿʱÿ¾©ÿ¾©ÿ¾©ÿ¾©ÿ¾©ÿ¾©ÿ¾©ÿ¾©ÿ¾©{RD{RDÿÜÄW ÿÁ¯¿iQÿ÷ãÁÁÁÁÁÁÃÃÃåÌ™ÃP O ½jRÍǰÍǰÇÀ§ÆpV´hRËŨËŨÿ²™ÅÀ§ÿ̹ÅÀ§ÈħÈħÈħÄÁ¢ÄÁ¢ÄÁ¢ÈÀ¢ÈÀ¢ÿϸÈÄ«ãxÈÄ«ËÆ±ËƱÿÿÿ©©ÿÓ½ÉÃ\ Éÿóàÿ­”ÿ¬…WIÆÂ±±u|||yyy‹\M‹\M‹\MËs\èŠqÈ”ˆ•bRËrZËrZËrZ\ \ U U U U Å¿¢Å¿¢ÉÁ£ÿ½¦ÿʱÿʱÿʱÿ¾¨ÿ¾¨ÿ¾¨ÿ¾¨ÿ¾¨ÿ¾¨ÿ¾¨{RDÁÿáÏÃP ÃÍ!ó•{½jRÌȰÌȰ¢U@ÈÁ¦ÈÁ¦ÈÁ¦ª_IÂt]Ìèÿ²™É§ÿ̹ÂkSɧÈĨÈĨÈĨÈĨȫȫȫȫȫÇëÿ®™ÇëÇ버yÊDzÊDzÊDzÍ̸Í̸Í̸¿t]©©©K ÿòßZ Òμ¿[ Éÿ­”ÿñÀjRÿ¬…WI‹\M‹\M‹\M‹\M‹\MèŠqèŠqèŠqèŠqèŠqèŠqèŠqèŠqèŠqÿ¡†y·ÿÿÿ·ÿ˹Ȕˆ•bRmX X \ \ U U U U U U ÉÄ¥ÉÄ¥ÉÄ¥ÉÄ¥ÿ½¦ÉÄ¥ÉÄ¥S ´´ÁÿÁ¯¿iQÁÿ÷ãü›ƒÁÿʱÿʱÿʱÿ¾¨ÿ¾¨ÿ¾¨ÿ¾¨åÌ™ÿ¾¨ÿ¾¨ÿ¾¨ó•{½jR娚ÈÁ¦ÈÁ¦ÈÁ¦ÈÁ¦ÌèšUAÿòßÿ²™ÿ̹ɧɧÈĨÈĨÈĨȫȫȫȫȫÿ®™Çë›_MãxÊDzÊDzÏʵÖÓ¾ÖÓ¾ÖÓ¾¿t]¯©†YK†YK†YK†YK†YK†YKù´¤Ö‡p‹\Mÿ¬ÿ¬èŠqèŠqèŠqèŠqèŠqèŠqÿ¢†°±±r|µyyyyyyÿÿÿËs\·ÿ˹Ȕˆ•bRÿµ}\ U U U U U U KKK’kaÈĨÈĨÇ¡´´Á¿iQÁÁü›ƒÁÁÁÁÁÁP åÌ™Í!ï’yÿʱÿ­”ÿ­”ÿ­”ÿ­”ÿ­”ÿ­”ÿ­”ÿ­”ÿ­”ÿ­”ÿ­”ÿ­”ÿº§Ãs[þž…þž…þž…þž…þž…þž…þž…þž…þž…þž…þž…þž…þž…þž…þž…þž…þž…þž…þž…þž…þž…þž…þž…þž…þž…þž…þž…þž…ÿ«‘ÿ«‘ÿ«‘ÿ«‘ÿ«‘ÿÿÿÿ¬”¦€ŒÿÜÉÿ¬…WI¦ÂÉÂɰ±±u|yyyyyyqqÿÿÿqÿ˹ÁkSÈ”ˆ–Q=ÿµ}}\ U U U U U U U KKK¯V=S S S S S ÀÿÁ¯ÀÁÁÁü›ƒÁÁÁÁÁÁQ P åÌ™ÿÀ©ï’yï’y½jRÆÂ¥ÞyÈħÈħÈħÿ̼ÈÄ«Ât]»dMÊÆ³ÊƳÊʸÊʸÊʸÒоÒоÒоÓϼÏ Ï ÕÑ¿ÕÑ¿Ï ÒÑÃÏ ÒÑÃÓÓŶa ©¯   ÃlU¦¦€Œÿ¬…WI‹Â­°o|yµyyqÿÿÿËs\ÁkSn•bRÿíÚÿµÈÇ­U U U U KKKÿ½¦R S S ÀÀ¿iQÁÀÁü›ƒÁÁÁÁP ËÿÀ©ï’yÿÿÿó•{½jRÆÂ¥—]KÈħÈħÈħÈħÿÝËÈÄ«ÈÄ«ÿßÍÅnWÿ©ÊÆ³ÊÆ³ÊʸÊʸÊʸÊʸÒоÒоÒо«V>ÒоÓϼÓϼãxÏ ÌÌÏ Ï Ï T Ï Ï ËÓÓŶËË©¯ žÿÔÂO ÿôá|G8¦€€ŒŒÿ¬ÿ¬‹‹‹‹‹‹‹°µvµµyµqqÿÿÿËs\nÿ˹ll•bRÿöâ´ÿµ„PAU U U U U KKKK:›ÿR R ÀR ÀÀÀÿÁ¯ÀÀÀÀÀÿ÷ãÁÁ´Q Q P ËÿÿÿåÌ™ÿÀ©ï’yÿÿÿó•{½jRÿ·¤ÉÀ¥ÉÀ¥ÿôàÌȰÌȰÅnWÿÿÿÿóàÑË´ÔÒÀÔÒÀÔÒÀÔÔÄÔÔÄÔÔÄÔÔÄÑÐÂÑÐÂÑЛ_MÌÏ Ï Ï T ËËËËQ ¯ÿÔ””ÿ¤‹¦€ÿÜÉÿ¬‹‹‹‹­‹µyµqqÿÿÿlÁkSl•bRÿöâÿŸ‡ÿµ([±(U U ÄÄK` R ÀÀÀÀÀ¿iQÀÀÀÿ÷ãÁÁÁQ Ì ÿÿÿåÌ™ÿÀ©ÄlVù›½jRÞyÿÑÁÿëØÿÿÿÉÀ¥ÉÀ¥ÌȰÌȰÿßÍÌȰÑË´Ât]ÿ©ÑË´ÔÒÀÔÒÀÔÒÀÔÒÀÔÔÄÿ®™ÔÔÄÔÔÄÔÔÄÑÐÂãxÑÐÂU ÂÕÕÇÏ ÌÌÏ Ï Ï Ï ËËËËË·ªÿÔžž”ÿ¤‹”ššÿÜÉÿ¬…WI‹‹‹‹‹‹µµ‰qqnÿÿÿËs\lÿ˹lli•bRiÿŸ‡pÿíÚÿµFŠÃÒ!^n¹c c ` ¸¸¸R ÀÀÀÀÿÁ¯ÀÀÀÀÀW Àü›ƒÀQ ´ËÿòßÿÿôÿÿÿåÌ™ÿÿÿÄlVï’yÛ€gÿúëËÄ©ɧɧɧÌÄ­ÅnWÌÄ­ÿÿÿÿ©Î̺ÒÏÀÒÏÀÒÏÀÔÓÅÔÓÅÔÓŲ„yÓÓÁÓÓÁU ÂÕÔÆÌÌÏ Ï ËËËL S ÃlUJ H ÿôá””š‹ÿ¬‹‹‹µ­s‰nnllÁkSii•bRÿŸ‡ººÃúc c ` ¸¸¸¸ÀÀÀÀÀÀÀÀQ cËÿòßÿÿôÿÿÿÿÿÿÿ¿¨ï’yù›Û€g·gOËÄ©ÿ·¤É§É§É§ÌÄ­ÿàÎÌÄ­ÌÄ­Î̺Î̺ÿóàÿ©ÒÏÀÕÓÁÕÓÁÕÓÁ«V>ÕÕÃÕÕÃÕÕÃÕÕÃãxÙÖÇÙÖÇÙÖÇÿôÁÂÁÎμÓ"ÌÏ Ï T ˹ËËS ÿÔ‹†††”ÿ¤‹”ššš‹ÿ¬ÿ¬‹‹””‰‰‰‰xÿÿÿËs\lÿ˹liiÈ”ˆ•bR¶ÿö⺺ÿíÚÿµÃººÄ` ZÞÿ_ _ ¸^ ^ ¸ÀÿÁ¯ÀÀÀÀÿàÎâ‡nâ‡nâ‡nü›ƒÉËâ‡nâ‡nÿòßÿÿôÿÿÿåÌ™ÿιÿ¿¨ÿ¯–ù›Û€gÊŬÿ·¤ÍÄ©ÍÄ©ÍÄ©ÿàÎÅnWÊŬÔнÔнÔнÿ©ÕÓÁÕÓÁÿ®™ÕÕÃÕÕÃÕÕÃÕÕÃãxÙÖÇÙÖÇÙÖÇÔ×Ç›_MÁÁ¹¹¹¹¹Ï ¹ËÿÔÂÃlU‹††††””ššš‹‹ÿÜÉÿ¬…WIˆ‰‰h xxÿÿÿ‚ÿ˹ippÈ”ˆ•bR¶ÿöâpºÿµÃººÃ_ _ T ^ ^ ^ ` ¿iQÀÀÀW W W ¢ÿ÷㢢¢¢ÿòßÿÿÿåÌ™ÿιÿ¿¨ÿ¯–ù›Û€g·gO–S?ÏǪ—]KÏǪÏǪÿàÎÉìÉìÉìÐʳÐʳÐʳÿ©ÔнÔнÿ®™ÔнÖÖÆÖÖÆÖÖÆÖÖÆ°YAÕÒÃÕÒÃÕÒÃÕÒÃÑÑ¿›_MÑÑ¿ÑÑ¿Á¹¹¹¹¹¹¹¹²ÃlU²²²‹††ÿôáE ”šššš‹‹‹‹ÿ¬…WI‰‰‰xf ÿÿÿËs\‚ÿ˹‚pL pÈ”ˆ•bR´¶ÿŸ‡ººÿíÚÿµÃºc OÆÿ_ _ ^ ^ ^ s` ÿÁ¯¸W W W W W ÿìÙ^ Ëÿ÷ã¸gP¸gP¸gP¸gP¸gPf\ÿÿÿåÌ™ÿϹÿ¿¨ÄƒÛ€g·gO–S?ÿ·¤ÏǪÿàÎÉìÉìÉìÐʳÐʳÿóàÿ¯™ÔнÔнÖÖÆÖÖÆãxÕÒÃÕÒÃÕÒÃÑÑ¿ü³¡ÑÑ¿Óѿȹ¹¹¹¹ÿÔ²²²²††ÿ¤‹”šš‹‹‹ˆˆ‰ÿ¬‰xÿÿÿËs\‚ÁkSkpÈ”ˆ–Q=´ÿŸ‡¶ºÿµ„PAc _ _ 6–ÿ^ ` ÿÁ¯¿iQW T ¸ÀÉ’¢ü›ƒ¢R ÿ¨ÿÿÿÿÿÿÿϹÿ¿¨æŽuÿ°˜ÿ°˜·gO–S?ÎŪÿ·¤ÎŪÅnWËÅ®ËÅ®ËÅ®ËÅ®ÍǰÍǰÍǰÍǰÿ©Ât]Ó̸Ó̸ÔÒÀÔÒÀ²„yÔÒÀÔÒÀÓϼÓϼÓϼÄÄÿôÓϼÓϼÓιÈÓιÁ¹¹¹¹¹ÃlU²²²²²²À…ÿ¤‹L Žšš‹‹‹E ˆ‹ˆ‰‰ÿÜÉÿ¬xxÿÿÿ‚‚ÿ˹‚kkke •bR¸¸²ÿöâ¶¶ººÿµÃE°ÿ_ M¦^ ` ` ` ^ ÿÁ¯cbbbbbÉŒŒŒŒü›ƒêvívmÿÿÿÄlVåÌ™ÿêÙÿϹăÿ¯–ù›Û€g–S?ÎŪÎŪÎŪËÅ®ËÅ®ËÅ®ÍǰÍǰÍǰÿóà}I9Ó̸ÔÒÀÔÒÀÔÒÀÔÒÀÓϼÓϼÓϼÄÄÌÉ´É ÈÈÁ¹¹ÿÔ²²²²²ÀÿôáO L N ‹Šˆ‡ˆ‰‰xÿ¬¾o¢gUÿ˹ÁkSke ke •bR¸¸¸ÿŸ‡¶¶ÿíÚÿµ½^ ` ` ^ ÿÁ¯¿iQX É £V ŒŒŒÉt[ü›ƒmÿÿÿÄlVåÌ™ÿιăŸvfbÿîÚ·gO–S?ÊŬÊŬÅnWÊŬÏʵÏʵÏʵÏʵÐɵÐɵÐɵÿ¯™Ðʳÿ©ÿÿÿÐʳÐ̹ãxÐ̹Ð̹Ð̹ÍʵÍʵÍʵÍʵÌÉ´ÌÉ´ÄÄÄÉ É ÈÈÈX ÿÔÂÃlU¹²²²²²ÀÀÀÀÿ¤‹‘¿“N ŠK ˆˆƒŠ‰~xxÿ÷äÿùêà„k‚ÁkSkkkke e •bR¸¸¸¸ÿŸ‡´¶U ÿµ¤![È` ` ^ ^ [ ÿÁ¯Y X U U U U ŒŒŒªiVºgO¢ü›ƒ¢£ÿÿÿjÿáÏåÌ™ÿôîæŽuŸŸÿýìÿýì–S?ÿàÏÃnUÃnUÏʵÏʵÐ̳Ïɲÿ¯™Ïɲÿ©ÏÆ«Ât]°YA̤̤ÏÈ­ÏÈ­ÏÈ­ɧɧÄÄÉ ÈÈÈX ¹È²S ÀÀÀÀÀ¿P L L ˆ~~~x‚‚ÿÜÇÿ¾§ƒWHkke e •bRe ¸¸ÿŸ‡´T L›ÿµ` ` ^ [ ÿÁ¯T U U U ŒŒbPŒU ÿ÷ãŒÿÿÿmÿáÏåÌ™æŽuŸŸó•{ÿýìÿýìÿýíÿàÏÅnWÿþíÿþîÿþî¥\G¥\GÐ̳ÏɲÏɲ«V>ÏÉ²ÏÆ«ÿóàÿ©ÿÿÿ±oZ„XI„XI„XI”„XI”l”l’’_ „XIÄÉ ÈÿÔÂÃlUÈÈX Ê Ê ²Ê ÀÀÀÀÿôáÀ¿¿ƒR ‚M ~~J D w‚‚‚‚‚ÁkSÿ¾§ÿ¾§ƒWHe e e e •bRe ¸¸¸ÿö⸲´U ÿµ` ^ [ [ Y ÿÁ¯W T T ÿÿÿ_ _ U ŒŒŒŒŒÿÛÉÿ÷ãÿÿÿÄlV¨¨¨åÌ™æŽu¨¨T ó•{½jRÿêÙÿáÏÍȯÍȯÿ·¤ÍɱÍɱÍɱÍÄ©«V>ÍÄ©ÍÄ©»s]»s]‘”ÍÃ¥””””””’’X ÊħÊħÊħÆÉ ÃlUS S S Ê ²X Ê ÀS Àÿôáÿ¤‹¿¿±¿ƒxP J I }‚‚ÿ˹kke ÿ¾§e e È”ˆ•bRe ¸¸ÿöâÿŸ‡¸¸œU ÿíÚ[ Y Y ÿÁ¯¿iQT ®_ U _ ÌŪö©•W ÉÄ£ŒÌèÿ÷ãÿÿÿ¨¨¨åÌ™¨¹¨Q ó•{½jRÿ½¥ÿáÏÅnWÍȯÍȯÿ·¤ÍɱÍɱÍɱ»s]»s]ÜiÜiÍÄ©‘ÍÃ¥ÿóà}I9””””””””’KX W ÁÊħÊħ®V>ÿÔÂË"U S W ÎÌ´S Ê Ê Ê W ÄS ÀÀÿ¤‹¿¿±±±±„uqO €E ÿ˹ÁkSke e e ÿÜÇÿ¾§ƒWHÈ”ˆ•bRU U ¸¸¸ÿŸ‡¸¸N V E²ÿÿµ„PAY Y ¿iQT ËÇ®_ _ ®‡‡‡»§‡‡¨¨ÿÿÿÄlV¨¨¨ăåÌ™¹¹ºS ½jRð“yÿáÏÍÀš¼s]¼s]ÜiËÃ¥ÿ¯™ø’ø’ø’‘‘ÿ©””””” KX ˧¸¸ÎÊ®ÃlUW W T W Ê V Ê ÄI S ÿôá¿¿±±±±ŒwN T I K H H ƒƒe È”ˆ•bRmm¸¸¸¸U Y Y ÿµÿÁ¯_Z »»ÌŪ»»»¸¨¸ÄlVü›ƒ¨¨¸åÌ™¹ºï’yó•{½jRÿáÏÅnWð“yð“yð“yð“yð“yð“yð“yÁs\Ás\““““‘‘ÿ©‘”i”””|óxóxóxóxóxóxóxóx¸ÿÔÂóxÎʲ²W ²W W W W ²ÄÄ·I H ÿôáÿ¤‹¹†††±†±Œ±Œ±Œÿ˹ÁkSw_ _ K ƒH me È”ˆ–Q=ƒWHS R S \ ÿöâ¸P »UÕÿ,-}ÿÿíÚÿµ¿iQ?­ÿ_ »»»»»»»»¸»¸¸ÿÿÿ¸¸¸¸¸¸åÌ™¸ºï’yï’yó•{½jRdB7dB7ÀlTÀlTÿ·¤Ä¶’›››“““ÿóàÿ¨i”Y iY N X ÍŨÍÅ¨ÍÆ«X ÿÕÃÃlUX Îʲ²²W ²²V ²£W ‰„†††††ŒŒŒÿ˹Œ‰ss^ _ K •bRÿ¾§ÿ¾§ƒWH5|ýÿöâÿŸ‡6wïY D­ÿÊÿµÇU »»»»»»¸¸ÿÿÿ¸¸_¸¸åÌ™ºÿÀ©ï’yÿ±˜ÿáЬtc¬tcY Y Y ¬tcW W ››››“““l‘ÿ¨‘dy¤Y Y Y X ÆÂ¥ÆÂ¥ÆÂ¥ÆÂ¥_PÑ͵Ñ͵ÿÕ訨¨¨²²²²²²V ££££W ÿôᄉ††††ŒŒŒŒŒÿ˹ÁkS‰sssƒƒ‰ms•bRsmsÿ¾§ÿ¾§…5|ýÿŸ‡».fËœ³³0…ÿÿíÚÿµU Ƕ»U ···»»»¸ÿÿÿÄlV¸¸¸] ¸¸¸åÌ™ÿõïÿÀ©ï’yï’yÅnWÿ«‘ù›Y Y ™›››““‘‘¢Y Y Y X ÆÂ¥ÆÂ¥ÆÂ¥ô±¡Ñ͵ÿÕÃÑÌ·¨¨¨¨²W ²²£££W ÿôáÿ¤‹‰††ŒŒŒŒÁkSW ssƒwT w•bRU U …ÿÜÇÿ¾§ÿŸ‡X =—ÿ³³ÿÁ¯ÿµ¶¶¶¶····f\ÿÿÿ¸¸¸ü›ƒ¸båÌ™ÿÀ©ï’yï’yÿáнjRY Y Y ÃnU¾nW™™™››››“oluÿ¨iY Y Y X ÍÃ¥ÍÃ¥ÓͺÓͺÓͺõ¢Œô±¡ÓͶÿÕÃÓͶÑлÑлÑлÑл¨¨¨²²²²W ££££¢¢ÿ¤‹¢}‰††I L ŒŒÿ˹N sssƒƒwƒwwq•bRqqqY X X ÿ¾§ÿ¾§(UŸ¼–ÁÁ¿iQ³ÿíÚÿµ¶¶¶¶¶¶····ÿÿÿ»»»¸_Pÿ­—†K:c°bLåÌ™°bL°bL°bL°bLÅnW½jR¨¨¨¨¸dLœZG™›››j¢iÿ¨iY Y N ÿÿÿÍÃ¥ÎÉ´ÎÉ´õ¢ŒÎÉ´ÒË·ÒË·ÒË·ÑͺÑͺÑͺÑͺåÌ™] ÿúì²²W W £££¢¢ÿ¤‹¢ K L ¢ŒŒŒÁkSssƒ±wwwqq•bRqqqd X X ÿÜÇÿ¾§ƒWH G‡T ÁÁÁÿµ„PA³¶LK¶··ÿÿÿÄlV_P¼gO¼gOÿË·ÿ»¥ÂÅåÌ™Åÿòáÿ¿¨ÿ­–ó•{½jR¨¨¨¨¨¨™–S?™™›k¨jiiÿóàÿ¨dyÎèÎèÎèÿÿÿÎÉ´õ¢Œ€€ÒË·ÃlUÒË·ÒË·ÑͺÑͺÑͺåÌ™ÓϽ¹gOÓϽcB7©^ W ÓϽ£Ñͺ£W ¢¢ÿôáÿ¤‹   K L ŒI ÿ˹ssƒƒƒw±wqqqÈ”ˆ•bRqqX d X d d iÿŸ‡ÿ¾§ÿ¾§ÿÁ¯¿iQ¹¸LÁÿµÁLLK¶¶ÃÿÿÿÄlV¼gO¼gOÁ»Á¸cLä‰sÅÀÅåÌ™ÅÀH ŽjR¨¨¨¨¨™™™nw«jjiiÿ¨N ÌÀžÌÀžÌÀžºs]€€ÿÕßeRÎÆ©Ï˳Ï˳åÌ™¹gOÍÆ²ÍƲÒ͸Ò͸Ò͸[ [ [ ÿÿÿÿé×ÿ¾¦  ¢P ¢ÿ˹sƒƒBB±jqqÈ”ˆ•bRqd X d d ±ÿŸ‡[ ÿ¾§ÿ¾§¹L¸ÿíÚLÀ_P¼gO¼gOÿÿÿÁÁLÿË·Àä‰sÀÀåÌ™ÀÅÅó•{½jR¨¨¨¨¨¨¨ÿÑÁ™O n«jjjjjiǾY ÿóàǾˆÌÀžˆuÌÀžˆƒƒÿÕÃÃlUô±¡ÎÆ©ÎÆ©åÌ™åÌ™Ï˳ƉxÍÆ²ÍÆ²ÍÆ²ÍƲÒ͸Ò͸Ò͸Ð˲ÔиÔиÿäÒÿôàÿÿÿ¢] ÿ¤‹ÿǯ¢W ¢¢‡ÿ˹Ï˸ƒL ƒwwwBjjG qÈ”ˆ•bR` d pd d d i[ ÿöâ±ÿÁ¯¿iQÿÜÇÿ¾§ƒWHLL_Pÿµ_P¼gO¼gOÂÂÿÿÿÄlVÿÁÁÿË·¸cLÀä‰sÁÁÄåÌ™ÄÄÄF ó•{½jR¨¨` Y ÿàÎk¤nnjjjO À°Œb ÿ¨ˆˆˆˆƒºs]ÿÕÃ̹˜̹˜å̙˾ž˾ž¹gOÊÀ¢ÊÀ¢ÊÀ¢ÿäÒÄnVÄnVÄnVÄnVÿôàÿÿÿÿ¾¦ÿôáÿ¤‹ ] ] ÁkS˜~N †jj` È”ˆ•bRd d d i[ [ ÿŸ‡ÿÁ¯±´ÿ¾§ÿ¾§¼gOÿíÚÿµÀÀÿÿÿ¹ÃLÁÿË·Áä‰sÁÁåÌ™ÄÄ¿ó•{½jR¨¨ppkµ³yyQ nnjjjÙ–„½¬…e™À°Œ™ÿ¨ˆˆˆˆƒÁ³Á³ÿÕÃÃlU̹˜Ì¹˜å̙ıŒÆ½›Æ½›Æ‰xƽ›Å»Å»Å»Å»ÊêÊêŸŸÎÆ¯ËÎÆ¯ ¢ÿêÙ ÿ¬’ÿ¤‹ ˜˜˜ÿ˹——] ‚rQ R N {†jjj•bR` d I d d i[ [ X ¸ÿŸ‡¿iQ_P¼gO¼gO¼gOÿÜÇÿ¾§ƒWHKÿµÀÀÀÿÿÿ¸¹LÃÃÿË·ÂÃÃÿõáÁÁÁåÌ™F ¿¿¿½jRkm³ppyyQ n•je™™™™ÿóàˆˆ½¬…¿¬†¿¬†ÿÕús]åÌ™ŸeRƽ›Æ‰xƽ›ŻŻP ¨¨Êꢟ¢¢¢¢ÿ¤‹˜˜ÿ˹ÁkS—‚ŒŒŒŒnnS G •bR` G d i[ Œ]NŒ]NÝ€gÿ÷è³±¶LLÿ¾§ÿíÚÿµÆÄlV¸L½ÿË·¸cLÃH ÃÁåÌ™¿À¿¿ÿÙÇÿÙÇÿÙÇÿÙÇhE:hE:ppÂyye–¸¥••™™™™™™ˆˆÿ¨ƒ¯W?¶¤¶¤·§‚ÿÕÃÃlUåÌ™åÌ™»®ˆŸeR»®ˆÁ°¹gOS Ð!ȸ”ªªª¨¨ŸŸ¢¢¢¢¢¢¢¢ÿôá|G8˜˜ÁkS———‚ŒŒE ŒsP P P Q Q •bRŒ]NŒ]NŒ]NÝ€gÝ€gÝ€gÝ€gR ¯ÿÙÇÿÀ§·¸°¶°¶·¾¾ÿ¾§ÿµ•bRÄlV¸¹K½½ÿË·½H ÃM ÃS ÃåÌ™Ã\ ÉD Àò”zÿÙÃÿÙÃÿÙÃÿÙÃÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇhE:hE:™mˆÿ¨¯W?yh·§‚ÃlUåÌ™·§‚»®ˆô±¡»®ˆÆ‰xÁ°Á°Á°Ð!ȸ”ªª¢¢ŸŸ¢¢¢¢ ¢˜˜ÿ˹———‚‚ŒBE ssŒ]NŒ]NÝ€g•bRÝ€gQ i Œ]NŒ]NŒ]NŒ]NŒ]NŒ]NŒ]NŒ]NŒ]NŒ]NŒ]NŒ]NÙ~fÙ~fÙ~fÙ~fÿ¾§¯cM‚VHK¿½ÿË·½U ÃÃÃÃÃåÌ™ÃÃD ÅÅò”zÑy_ÀlTpp¨™™™ŸÂY Y ––ÿÙÃÿÙÃÿÙÃÿÙÃÿÙÃÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇhE:hE:hE:¸§€¹gO¸¦S ÄÄÀÀÀR R ¢¢¢¨Ÿ¢¢¢Œ]NŒ]NŒ]NŒ]NŒ]NŒ]NŒ]NŒ]NŒ]NŒ]NŒ]NŒ]NŒ]NŒ]NÙ~fÙ~fÙ~fÙ~fÙ~fÙ~fÙ~f•bRÙ~fÙ~fÙ~fÙ~fÙ~fÙ~fÙ~fÙ~fÙ~fÙ~fÙ~fÙ~f··¸²¶¶¸L ¸ÿÛÈÿ¹£ÿº¢ÿѸÿ½¦ÿ½¦ÿ½¦‚VH‚VH½ÊÃÃÿõáÃÃåÌ™ÃÃÅÅÅÑy_ÀlT YD¨¨™Ÿ¿ÂY Y Y X X ™X hpÿ¨hjŒ]NŒ]NŒ]NŒ]NŒ]NŒ]NŒ]NŒ]NŒ]NŒ]NŒ]NŒ]NŒ]NÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇhE:hE:hE:Ù~fÙ~fÙ~fÙ~fÙ~fÙ~fÙ~fÙ~fÙ~fÙ~fÝhÝh{iBooN È”ˆ•bRi P Z e e jb Y ÿôàL µ·²L ´¸¾¾¾ÿº¢ÿº¢ÿѸÿ½¦ÿ½¦ÿ½¦‚VHÿõáÃŒ]NŒ]NŒ]NŒ]NŒ]NŒ]Nò”zÑx_ÀlT YDŒ]NŒ]NŒ]NŒ]NŒ]NŒ]NŒ]NŒ]NŒ]NŒ]NŒ]NŒ]NŒ]NŒ]NŒ]NÙ~fÙ~fÙ~fÙ~fÙ~fÙ~fÙ~fÙ~fÙ~fÙ~fÙ~fÙ~fÙ~fÙ~fÙ~fÙ~fÙ~fÙ~fÙ~fÙ~fÙ~fÿ¿¦ÿ¿¦»©„»©„ÿÙÃÿÙÃÿÙÃÿÙÃÿÙÃÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇhE:hE:hE:J ppiE Bd d ` tNA‚VHZ Z e e jjÿÙȽfO2Z Z êv®gŒ]NŒ]NŒ]NŒ]NŒ]NŒ]NŒ]NŒ]NŒ]NŒ]NŒ]NŒ]NŒ]NŒ]NØ}eØ}eØ}eØ}eØ}eØ}eØ}eØ}eØ}eåÌ™Ø}eØ}eØ}eØ}eØ}eÙ~fÙ~fÙ~fÙ~fÙ~fÙ~fÙ~fÙ~fÙ~fÙ~fÙ~fÙ~fÙ~fÙ~fY ¡X X X X ÿÕÃÃlU†YKíƒhMFBMFBMFBÿÚÉMFBˆ[Lˆ[Lˆ[Lõ–|õ–|õ–|õ–|õ–|õ–|ÿ¤‰R S T R ¼ÿÙÃÿÙÃÿÙÃÿÙÃÿÙÃÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿÙÇÿ³ÿ·¥Ó…nŒ]NŒ]NŒ]NŒ]NŒ]NØ}eØ}eØ}eØ}eØ}eØ}eØ}eØ}eØ}eØ}eØ}eØ}eØ}eØ}eØ}eØ}eØ}eØ}eØ}eº¸cLºÿÚÄÿº¢T T ÿõáÿäÒÿѸåÌ™ÿ½¦ÿ½¦ÿ½¦ÿ©dB7dB7dB7§§©©©©¦¦¦¦¦¿¿Y ÂÂÂÂÂX MFBX Y ÿ¨¤iVˆ[Lˆ[Lˆ[Lˆ[Lõ–|õ–|õ–|õ–|õ–|õ–|õ–|õ–|ÿ¤‰MFB¶MFBllqÿßÍb b Ç T T ¸¸¼¼ÿøìµÿòßµ¼¼µ§§§ppppipÿÙÃÿÝÌÈ”ˆù™Ø}eØ}ejb b ÿÚÈN N N K ¹êv^ ^ ´´^ ^ E µ¸¸¹¹¸ÿË·ººÈÿîÛÿÚÄÿº¢‚VHÁlTÿõá¹Z åÌ™ÿÿÿÿâÐÿѸÿ½¦ÿ½¦libjpeg-turbo-2.1.5/testimages/vgl_6434_0018a.bmp000066400000000000000000001034661436506551100212320ustar00rootroot00000000000000BM6‡6(w`‡kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkMHLMHLMHLMHLVQUVQUVQUkkkzzzÆ•zzzzzzVQUVQUVQU\W[\W[\W[ƕƕƕƕƕƕƕƕƕzzzÆ•zzzÆ•zzzzzzzzzzzzzzzzzzƕƕƕƕƕƕƕƕƕƕƕƕƕƕƕƕzzzÆ•zzzPPPPPP“nPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP›tXXX›t›t›tU’’›t›t›tXXX.i3.i3.i3.i3.i3.i3.i3ÃÄœœ›OOO›t›t›t›t›t›t›t›t›t›t›t›t›t›tkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkMHLMHLMHLMHLVQUVQUVQUVQUzzzƕƕzzzVQUVQUVQUzzz\W[\W[\W[zzzzzzƕƕƕzzzzzzzzzzzzzzzzzzzzzƕƕzzzzzzzzzzzzzzzzzzzzzzzzƕƕƕƕƕƕƕƕƕƕƕƕƕƕPPP“n“nPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPXXX›tU’›tXXX›t›tXXX.i3.i3.i3.i3.i3.i3.i3.i3.i3›t›t›t›t›tXXX›tXXX›t›t›t›t›t›t›tkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkMHLMHLMHLMHLVQUVQUVQUVQUVQUVQUVQUVQUVQUVQUVQUÆ•\W[\W[\W[zzzzzzzzzzzzzzzzzzƕƕƕzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzƕƕƕƕƕƕƕƕPPP“n“nPPPPPP“n“n“n“n“n“n“n“n“n“n“nPPPPPPPPPPPPPPPPPP’’’’XXXXXX›t.i3.i3.i3.i3.i3.i3.i3.i3.i3.i3›t›t›t›t›t›t›t›t›t›t›t›t›t›tkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkMHLMHLMHLVQUVQUVQUVQUVQUVQUVQUVQUVQUVQUVQUzzz\W[\W[\W[ƕƕzzzzzzzzzzzzzzzzzzƕƕƕƕƕƕzzzzzzzzzzzzzzzzzzƕƕƕƕzzzzzzzzzzzzzzzzzzƕƕ“n“nPPP“n“nPPP“n“n“n“n“n“n“n“n“n“n“n“n“n“n“n“n“nU’“nPPP’’›t›tXXX›››.i3.i3.i3.i3.i3.i3.i3.i3›t›t›t›t›t›tXXX›t›t›t›t›t›t›tkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkMHLMHLMHLMHLMHL:7:958VQUVQUVQUVQUVQUVQUVQUVQU\W[\W[zzzzzzzzzƕƕƕƕƕƕzzzzzzzzzzzzƕƕƕƕƕƕzzzzzzzzzzzzzzzzzzƕƕƕƕƕƕzzzPPPPPPPPPPPPPPP“n“n“n“n“n“nPPP“n“n™™™ÁÁÁÔÔÔÓÓÓËË˲²²€€€ccc“nU’U‹“n’“n“n›t}}}.i3.i3.i3.i3.i3.i3.i3›t›t›t›t›t›t›t›t›t›t›t›t›t›t›tkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkMHL:7::7::7:MHL:7:kkkkkkzzzzzzƕƕzzzzzzÆ•zzzƕƕzzzzzzzzzzzzzzzzzzƕƕƕƕƕƕzzzzzzzzzzzzƕƕƕƕƕƕzzzzzzzzzzzzƕƕƕPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP“n“n“nšššÇÇÇäää÷÷÷ÿÿÿÿÿÿóóóããã×××ÌÌÌËËËÉÉÉUzžµÄPPP’PPPPPPPPP.i3.i3.i3.i3.i3.i3.i3›t›t›t›t›t›t›t›t›t›t›t›t›t›t›tkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk:7::7::7::7::7:kkkkkkzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzƕƕƕƕƕƕzzzzzzzzzzzzƕƕƕƕƕƕzzzzzzzzzzzzƕƕƕƕƕƕzzzPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP™™™ÇÇÇäääöööüüüöööåååËËË©©©ŠŠŠ………©©©µµµLx’­¿ËÒÓ¬¬¬€€€bbbPPP.i3.i3.i3.i3.i3.i3›t›t›t›t›t›t›t›t›t›t›t›t›t›t›tkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk:7::7::7::7:kkkzzzzzzƕƕƕƕzzzzzzzzzzzzzzzzzzzzzzzzƕƕƕƕƕƕzzzzzzzzzzzzƕƕƕƕƕƕzzzzzzzzzzzzƕƕPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP˜˜˜ÅÅÅãããõõõüüüöööæææÅÅņ††ŠŠŠŠŠŠXXXXXXXXXXXX3j‹U’ÈÐÓÑÊÍÍÍ’ËËËÉÉɾ¾¾²²².i3.i3.i3.i3PPP.i3›t›t›t›t›t›t›t›t›t›t›t›tXXX›tkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkMHL958:7:kkkzzzzzzzzzƕƕƕƕzzzƕƕƕƕƕƕzzzzzzƕƕƕƕƕƕƕƕzzzzzzzzzzzzƕƕƕƕƕƕPPPPPPPPPPPPPPPPPPPPPPPPPPP•••ÄÄÄãããõõõüüüöööçççÆÆÆˆˆˆŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠXXXY™­¼’Ó’ÎÂ³ŽŽŽ’’¾¾¾ÈÈÈÎÎÎÍÍÍÌÌÌÊÊÊ.i3.i3¬¬¬PPPPPPPPPXXX›t›t›t›t›t›tXXX›t›t›tkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkMHLMHLMHLkkkkkkzzzzzzÆ•zzzzzzzzzzzzzzzzzzƕƕƕƕƕƕƕƕzzzzzzƕƕƕƕƕƕƕƕzzzzzzƕƕPPPPPPPPPPPPPPPPPPPPPPPP’’’ÃÃÃâââôôôüüüöööèèèÇÇÇ‹‹‹ŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠCr¦·ÄÍÓÐ’º¨ŽXXX“n’“nVVVššš¯¯¯¹¹¹ÃÃÃÌÌÌÍÍÍ“nPPPPPPPPP“n“n›t›t›t›t›t›t›t›tkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkMHLkkkkkkkkkkkkzzzzzzzzzƕƕzzzzzzƕƕƕƕzzzzzzƕƕƕƕƕƕƕƕzzzzzzƕƕƕƕƕƕzzzPPPPPPPPPPPPPPPPPPxxx¿¿¿âââôôôýýýöööéééÈÈÈŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠ†Ÿ²¿ÉÐÓÒ¿’’xEXXX’XXX’“n“n“n“n“n(((sssPPPPPPPPPPPPPPPPPPPPPPPPPPP›t›t›tXXX›tkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkzzzzzzzzzƕƕƕzzzƕƕƕƕƕƕƕƕzzzzzzƕƕƕƕƕƕƕƕzzzzzzÆ•PPPPPPPPPPPPPPPPPPZZZ···éééÿÿÿ÷÷÷êêêÉÉÉŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠPPPPPPªºÆÎÓÓÏȽ{{’’’’’’XXXXXXXXX“n“n“n“nPPPPPPPPPPPP“nPPPPPPPPPPPPPPP“n“nPPP›t›tkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkzzzzzzzzzƕƕzzzƕƕƕzzzzzzƕƕƕƕƕƕƕƕzzzzzzƕƕƕƕƕPPPPPPPPPPPPPPPPPPPPP§§§×××îîîîîîÓÓÓ•••ŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠPPPPPPPPPPPPPPPÂÌÒÓÑ˵¡…UXXXXXXXXX{’XXXXXXXXXXXXXXXXXXXXX“n“n“n“n“n“nPPP“nPPPPPPPPPPPPPPPPPPPPPPPPkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk¯ƒzzzzzzzzzƕƕƕƕƕƕƕƕƕƕƕƕƕƕƕƕƕƕƕzzzzzzPPPPPPPPPPPPPPPPPPÎÎÎèèèçççÌÌ̈ˆˆzzzŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠPPPGGGtttoookkkkkkXXX111ÓÒÏÆº©’kXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX“n“n“nPPPPPPPPP“nPPPPPPPPPPPPPPPPPPkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkzzzzzzƕƕƕƕƕƕƕƕƕƕƕƕƕƕƕƕƕƕƕƕPPPPPPPPPPPPPPPPPPpppÀÀÀâââééé×××   zzzzzzzzzŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠPPPPPP¸¸¸ººº¼¼¼FFFkkkkkkkkk›tXXXXXXÉ¿°›}BXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX“n“n“n“nPPPPPPPPPPPPPPPPPPkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkzzzzzzzzzƕƕƕƕƕƕƕƕƕƕƕƕƕƕƕzzzzzzPPPPPPPPPPPPPPPPPPCCC±±±ÜÜÜìììááá¹¹¹zzzzzzzzzzzzzzzŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠPPPPPP±±±µµµ¸¸¸»»»½½½›tkkkkkkkkk›tXXXXXX·¤Š^YYYXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXPPPPPP“nPPPPPPPPPkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkzzzzzzzzzƕƕƕzzzƕƕƕƕƕƕƕƕƕƕƕƕPPPPPPPPPPPPPPPPPP¡¡¡ÖÖÖìììåååÅÅÅzzzzzzzzzzzzzzzzzzzzzŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠPPPPPPPPPªªª¯¯¯³³³···ººº¾¾¾ÁÁÁkkkkkkkkk›tXXXXXXXXXXXXXXXXXX||||||XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXPPPPPP“nkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkzzzzzzzzzzzzƕƕƕƕƕƕƕƕƕƕƕƕzzzPPPPPPPPPPPPPPPPPP†††ÉÉÉæææèèèÏÏÏzzzzzzzzzzzzzzzzzzzzzzzzzzzŠŠŠPPPPPPPPPPPPPPP¢¢¢§§§¬¬¬±±±¶¶¶ººº¾¾¾ÂÂÂkkkkkkkkkkkkXXXXXXXXXXXXXXXXXX|||||||||XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk¯ƒzzzzzzzzzƕƕƕƕƕƕƕƕƕƕƕPPPPPPPPPPPPPPPPPPhhh¼¼¼àààëëëÚÚÚ¨¨¨zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzPPPPPPPPPPPPPPP444•••œœœ£££©©©®®®´´´¹¹¹½½½Â›tkkkkkkkkk›tXXXXXXXXXXXXXXX|||||||||||||||555XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkzzzzzzzzzzzzÆ•zzzÆ•zzzƕƕƕzzzzzzPPPPPPPPPPPPPPP&&&­­­ÚÚÚîîîããã½½½zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzPPPPPPPPPPPPPPPPPPKKK………ŽŽŽ–––žžž¥¥¥¬¬¬²²²···¼¼¼Â›tkkkkkkkkk›tXXXXXXXXXXXXXXX||||||||||||^^^JJJPPPPPPXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXPPPPPPPPPPPPXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkzzzzzzzzzzzzƕƕƕƕƕƕƕPPPPPPPPPPPPPPPPPP˜˜˜ÑÑÑêêêæææÈÈÈ~~~zzzzzzzzzzzzzzzzzzzzzzzzzzzPPPPPPPPPPPPPPPPPPPPPPPP+++|||†††™™™¡¡¡©©©°°°¶¶¶»»»ÂÂÂÊÊÊkkkkkkkkk„„„XXXXXXXXXXXXXXXXXX|||MMMkkkeeeeeePPPPPPPPPPPPPPPPPPPPPPPPXXXPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPXXXXXXXXXXXXPPPXXXXXXkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkzzzzzzzzzƕƕƕƕƕƕPPPPPPPPPPPPPPPPPP~~~ÅÅÅäääéééÓÓÓ———zzzzzzzzzzzzzzzzzzzzzzzzzzzPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP999JJJPPP(((”””žžž¦¦¦®®®´´´»»»ÂÂÂÊÊÊkkkkkkeeecccXXXXXXXXXXXXXXXXXXkkkkkkyyyUUUPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPXXXPPPPPPXXXkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkzzzzzzzzzzzzƕƕƕPPPPPPPPPPPPPPPZZZ¸¸¸ßßßìììÞÞÞ°°°zzzzzzzzzzzzzzzzzzzzzzzzzzzPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPjjj```PPPPPPPPPGGG¬¬¬´´´ºººÂÂÂËËËhhh___UUUOOOXXXXXXXXXXXXXXXkkkkkk‚‚‚PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkzzzzzzzzzzzzƒƒƒPPPPPPPPPPPPPPPPPP¨¨¨ØØØíííäääÁÁÁzzzzzzzzzzzzzzzzzzzzzzzzPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPQQQmmmjjjPPPPPPPPPPPPÂÂÂÍÍÍ>>>LLL===SSSXXXXXXXXX}}}tttkkk|||PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkzzzzzzƒƒƒ|||PPPPPPPPPPPPPPPÍÍÍççççççÌÌ̆††zzzzzzzzzzzzzzzzzzzzzPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPfffmmmUUUPPPPPPPPP@@@CCCwww………„„„€€€‹‹‹]]]PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP (kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk†††…dGGGGGGGGG…d…duuuÀÀÀâââêêê××מžžzzzzzzzzzzzzzzzzzzzzzPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP[[[mmm```QQQhhhwww€€€ƒƒƒ™™™|||PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP 0?kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk…d…d…d…dGGGGGG…d…d³³³ÝÝÝíííááá···zzzzzzzzzzzzzzzzzzzzzPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPlllrrr[[[PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP $6DYkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk…d…d…d…d…d…dGGGŸŸŸÕÕÕêêêäääÄÄÄzzzzzzzzzzzzzzzzzzzzzPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP+<I e*†kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk…d…d…d…d…d…d…duuuÂÂÂåååèèèÏÏÏzzzzzzzzzzzzzzzzzz…dGGGGGGGGGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP 3AR$s,0˜kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk…d…d…d…d…d…d999   ÄÄÄ×××××צ¦¦zzzzzzzzzzzzzzzzzz…dGGGGGGGGG…dXXXGGGGGGGGGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP $7E](~-/—0˜kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk…d…d…d…d…d…d…d†††¹¹¹ÐÐÐÍÍͬ¬¬zzzzzzzzzzzzzzzzzzGGG…d…dGGG…dGGGhhh³³³¶¶¶ººº½½½GGGGGGGGGGGGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP+;I!i*†.‘.•/—0˜kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk…d…d…d…d…d…dZZZ­­­ÉÉÉÎÎκºº{{{kkkzzzzzzzzzGGGGGGGGGGGG…d…d…d«€©©©®®®²²²···¼¼¼ÂÂÂÉÉÉÓÓÓÞÞÞXXX…dGGGGGGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP 2?S$t+‰-’.”/•/—/˜kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk…d…d…d…d…d…d…d”””¿¿¿ÏÏÏÉÉÉ¢¢¢kkkkkkkkkzzzGGGGGGGGGGGGGGGGGG…dGGG™™™¡¡¡§§§®®®´´´ºººÂÂÂÍÍÍáááöööy|gPSCPSCXXXGGGGGGGGGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP $7C^'},‹-‘-’.”/•/—0˜kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk…d…d…d…d…d…d…dzzzµµµÏÏÏÎÎβ²²eeekkkkkkkkkGGGGGGGGGGGGGGGGGGGGG…d«€•••———ššš¢¢¢§§§­­­µµµ½½½ÈÈÈÞÞÞûûûÿÿÿÿÿÿþþþììì\…ÿcÿi“ÿXXX…dGGGGGGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP *;H h)‚---‘.’.”/•/—0˜kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk…d…d…d…d…d…d:::¢¢¢ÅÅÅÏÏÏÁÁÁŒŒŒkkkkkkkkkkkkGGGGGGGGGGGGGGGGGG…d«€“““”””•••———™™™œœœŸŸŸ¤¤¤©©©°°°···ÃÃÃÒÒÒüüüÿÿÿÿÿÿÿÿÿîîîÐÐÐm—ÿqÿPSCPSCPSCXXXGGGGGGGGGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP0>O#p*…,Ž---‘.’.”/•/—0˜kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk…d…d…d…d…d…d…d‡‡‡ºººÐÐÐÍÍͪªªkkkkkkkkkkkkGGGGGGGGGGGGGGGGGGGGG…dhhh‘‘‘“““”””•••———™™™›››¡¡¡¥¥¥«««²²²ºººÈÈÈåååÿÿÿÿÿÿÿÿÿôôôÍÍÍsŸÿw¢ÿx¤ÿy¤ÿžžž›››ššš›››PSCXXX…dGGGGGGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP 4BX&x+ˆ,,Ž--.‘.’.”/•/—0˜kkkkkkkkkkkkkkkkkkkkkkkkkkk…d…d…d…d…d…d___°°°ËËËÎÎθ¸¸vvvkkkkkkkkkkkkGGGGGGGGGGGGGGGGGG…d«€‘‘‘“““”””•••———™™™›››œœœŸŸŸ¢¢¢§§§­­­´´´¿¿¿ÔÔÔúúúÿÿÿÿÿÿøøøÊÊÊ···y¤ÿy¤ÿx£ÿu ÿ–––––––––™™™›››žžž¢¢¢XXXGGGGGGGGGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP $7Ea(~,Š,Œ,,Ž--.‘.’.”/•0™6«kkkkkkkkkkkkkkkkkkkkk…d…d…d…d…d…d…d•••ÀÀÀÏÏÏÇÇÇkkkkkkkkkkkkGGGGGGGGGGGGGGGGGG…d«€‡‡‡ŠŠŠ›››uuu˜˜˜”””–––———™™™›››ŸŸŸ¡¡¡¤¤¤¨¨¨¯¯¯¶¶¶ÃÃÃéééÿÿÿÿÿÿôôôÊÊʵµµx£ÿv¡ÿtŸÿp›ÿm—ÿ‘‘‘“““•••———›››ŸŸŸ¢¢¢¤¤¤§§§yyyXXX…dGGGGGGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP ):H!i)+Š,‹,Œ,-Ž--.‘.’3¢5¨/—bkkkkkkkkkkkkkkk…d…d…d…d…d…d…d{{{¶¶¶ÐÐÐÎÎΰ°°kkkkkkkkkkkkGGGGGGGGGGGGGGGGGGGGG…d«€„„„‡‡‡GGGtttŒŒŒ§§§¹¹¹ÅÅÅ–––˜˜˜ššš›››   ¢¢¢¥¥¥¨¨¨¬¬¬°°°¹¹¹ËËËùùùÿÿÿûûûÌÌ̳³³¦¦¦rÿn˜ÿj”ÿgÿ‘‘‘”””˜˜˜   |||||||||||||||XXXGGGGGGGGGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP.=P$q*„+Š+‹,‹,Œ,-Ž-/•5§3¤)‚T(€)kkkkkkkkkkkk…d…d…d…d…d…d@@@£££ÆÆÆÎÎο¿¿‡‡‡kkkkkkkkkkkkGGGGGGGGG…dGGG…dGGG«€zzz'''eee‡‡‡³³³ÁÁÁÊÊÊÐÐÐÒÒÒ˜˜˜šššœœœžžž   ¢¢¢¥¥¥¨¨¨¬¬¬°°°µµµ¼¼¼ÜÜÜÿÿÿÿÿÿËË˲²²£££–––h‘ÿgÿk”ÿt ÿJŽŽŽ‘‘‘–––†††||||||||||||||||||||||||111111111GGG…dGGGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP 3@X&w+†+‰+Š+‹,Œ,Œ,0˜5¨1š h((€))‚)ƒkkkkkk…d…d…d…d…d…d…d‰‰‰»»»ÏÏÏÍÍÍ©©©kkkkkkkkkkkkGGGGGGGGGGGGGGGGGGGGG…d„„„rrrzzzTTT{{{”””§§§¶¶¶ÇÇÇÏÏÏÒÒÒÓÓÓÐÐЛ››šššŸŸŸ¡¡¡£££¦¦¦©©©¬¬¬°°°´´´»»»ÅÅÅîîîÿÿÿÐÐб±±   ’’’i’ÿq›ÿt ÿ-›|||ŠŠŠŽŽŽŠŠŠ|||||||||||||||||||||||||||111111111XXX…dGGGGGGPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP "5Ca'|+ˆ+ˆ+‰+Š,‹,‹/–5¨/•!j'|(()‚)ƒ*ˆ.“kkk…d…d…d…d…d…dddd±±±ÌÌÌÎÎη··qqqkkkkkkkkkkkkGGGGGGGGGGGGGGGGGGGGG«€¡¡¡fff:::nnnŒŒŒ¡¡¡±±±½½½ÆÆÆ›››ÓÓÓÑÑÑÌÌÌÄÄĸ¸¸›››ŸŸŸ¡¡¡¤¤¤¦¦¦©©©­­­°°°´´´¹¹¹ÂÂÂÚÚÚýýýÞÞÞ±±±‚‚‚———||||||ƒƒƒ‹‹‹|||||||||||||||||||||||||||||||||111!!!%%%XXXGGG…dGGGPPPPPPPPPPPPPPPPPPPPP &7F!j)€+‡+ˆ+ˆ+‰+Š/–5¨0˜!j&y(€()‚)ƒ+‹0™4¨9¶…d…d…d…d…d…d˜˜˜ÁÁÁÏÏÏÅÅŘ˜˜kkkkkkkkkkkkGGGGGGGGGGGGGGGGGGGGG«€›tgggQQQ___‚‚‚™™™«««¹¹¹ÃÃÃËËËÐÐÐÓÓÓÎÎÎÈÈȾ¾¾¯¯¯œœœ›››ŸŸŸ¡¡¡¤¤¤§§§©©©­­­°°°´´´¹¹¹ÀÀÀÒÒÒúúúîîî±±±›››ˆˆˆ}}}||||||{{{ŠŠŠ|||||||||||||||||||||||||||||||||||||||###'''+++///XXX…dGGGGGGPPPPPP *9L#o)‚+‡+‡+ˆ+ˆ-5¨1š#n"n'((‚)„,Ž16­;»?ÈBÐ…d…d…d…d}}}···ÐÐÐÎÎί¯¯kkkkkkkkkkkkGGGGGGGGGGGGGGGGGGGGGGGG«€›tXXXJJJvvv‘‘‘¥¥¥´´´¿¿¿ÈÈÈÎÎÎÒÒÒÓÓÓÑÑÑ›››´´´¤¤¤ŒŒŒjjj›››   ¢¢¢¤¤¤§§§ªªª­­­°°°´´´¸¸¸ÀÀÀÌÌÌòòòùùùµµµ™™™………wwwqqqrrr||||||||||||||||||||||||||||||||||||||||||||||||||||||&&&***...222555888;;;XXXGGG-:R$s*„*†*†*‡+ˆ4¥3¡#qY&{(€()†.’3¡8±<À@ÊBÒEÙGÝ…d…dEEE¦¦¦ÇÇÇÎÎν½½kkkkkkkkkkkk;;;GGGGGGGGGGGGGGGGGG«€XXXXXX+++hhhˆˆˆžžž¯¯¯¼¼¼ÅÅÅÌÌÌÐÐÐÓÓÓÒÒÒÏÏÏÊÊÊÁÁÁµµµyyyJJJ››››››   ¢¢¢¤¤¤§§§ªªª­­­±±±´´´¸¸¸¾¾¾ÉÉÉçççÿÿÿ¿¿¿———pppkkk˜˜˜|||||||||||||||||||||||||||||||||||||||||||||||||||Ë™kkk000444777:::===@@@AAA/<Z&x*†*†*†*‡0˜5ª(‚T$t(€(+‰/–4¦9¶>Ã@ÌCÕFÚGÝGÞGÞ…d‹‹‹½½½ÏÏÏËË˧§§kkkkkkkkkkkk GGGGGGGGGGGGGGGGGGGGGXXXXXXXXXWWW}}}–––©©©···ÂÂÂÊÊÊÏÏÏÒÒÒÒÒÒÐÐÐÌÌÌÅÅÅ»»»¬¬¬———xxx˜˜˜šššœœœ   ¢¢¢¥¥¥§§§ªªª®®®±±±µµµ¹¹¹¾¾¾ÆÆÆÚÚÚÿÿÿËËË———|||kkk£££||||||||||||||||||||||||||||||||||||||||||||||||Ë™kkkkkkkkkkkk999<<a'|*…*…*…*‡5ª1$s!h'|(€,‹0š6«;»>ÅAÏDØFÛGÜGÝFÜEØDÕ²²²ÍÍÍÎÎεµµlllkkkkkkkkkkkkGGGGGG…dGGGGGGGGGGGG«€XXXXXX@@@ppp¢¢¢²²²¾¾¾ÇÇÇÍÍÍÑÑÑÓÓÓÒÒÒÎÎÎÈÈÈ¿¿¿²²²   †††YYY–––˜˜˜šššœœœžžž   ¢¢¢¥¥¥§§§«««®®®±±±µµµ¹¹¹¾¾¾ÆÆÆÒÒÒøøøçççšššxxxeee||||||||||||||||||||||||||||||||||||||||||||||||kkkkkkkkkkkkkkkkkkkkkAAAAAA???>>><<<;;;999-B!h(*„*…*…2Ÿ5©%w d%w(€,‹1œ6­<¿?ÈBÒDÙEÚFÛFÜEÙDÕBÑ@Í?ÉÏÏÏÃÃÃ’’’kkkkkkkkkkkkC,GGGGGGGGGGGGGGG«€XXX<<Æ=Ã=Á­­­kkkkkkkkkkkkH7GGGooGGGGGGGGGhhhXXXXXXNNNxxx’’’¦¦¦µµµÀÀÀÉÉÉÎÎÎÒÒÒÒÒÒÑÑÑÍÍÍÆÆÆ¼¼¼®®®›››}}}===’’’“““•••———˜˜˜šššœœœžžž¡¡¡¢¢¢¥¥¥¨¨¨«««®®®²²²¶¶¶¹¹¹¿¿¿ÅÅÅÐÐÐæææüüü°°°ttt­­­||||||||||||||||||||||||||||||||||||Ë™kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk9997775553331118$t)ƒ)ƒ)„,‹7®*†&y'|,Œ2Ÿ8²>ÄAÍCÕDØEÙFÚE×CÓAÏ@Ë>Ç>Å=Â<¿¿¿¿¿¿¿kkkkkkkkkkkk?%LoooGGG«€XXXXXX000jjjŠŠŠŸŸŸ°°°¼¼¼ÆÆÆÌÌÌÑÑÑÓÓÓÒÒÒÏÏÏÉÉÉÀÀÀ³³³¢¢¢‰‰‰```‡€’’’”””•••———™™™šššœœœžžž¡¡¡£££¥¥¥¨¨¨ˆ€€¯¯¯²²²¶¶¶ººº¿¿¿ÅÅÅÏÏÏäääõõõÇÇÇuuu||||||||||||||||||||||||||||||||||||kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk444222000...#n)‚)ƒ)ƒ2ž6ª'}'{,2¡9µ?ÆAÎDÖEØEÙE×CÔBÐ@Ì?È>Æ=Ã<À¾¾¾¾¾¾¾¾¾¿¿¿¿¿¿kkkkkkE2LoooXXXGGGXXXXXXXXXZZZ———ªªª¸¸¸ÂÂÂÊÊÊÏÏÏÓÓÓÒÒÒÐÐÐËËËÄÄĹ¹¹ªªª”””sssEkÿ‡€‡€’’’”””•••———™™™šššœœœžžž¡¡¡£££¦¦¦©©©¬¬¬¯¯¯³³³¶¶¶ººº¿¿¿ÅÅÅÏÏÏáááòòòÚÚÚ}}}||||||||||||||||||||||||||||||Ë™kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk///---+++%t)‚)ƒ5©3¢(-‘3¤:¹?ÈBÏD×EØD×DÕBÑAÍ?É>Æ=Ã<Á;¾½½½¾¾¾¾¾¾¾¾¾¿¿¿¿¿¿¿¿¿kkk;SLoooXXXXXX›tXXXDDDsss£££³³³¿¿¿ÈÈÈÎÎÎÑÑÑÓÓÓÑÑÑÎÎÎÇÇǾ¾¾°°°JJJEjÿEjÿEkÿ‘‘‘“““”””•••———™™™šššœœœžžž¡¡¡£££¦¦¦©©©ˆ€€¯¯¯³³³···ººº¿¿¿ÅÅÅÎÎÎßßßðððÜÜÜŽŽŽ||||||||||||||||||||||||Ë™kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk((("l)‚7¯+Š,Ž4¥;º@ÉBÑD×DÖCÔCÒAÎ@Ë>Ç=Ä<Á<¾½½½½½½½½½½½½¾¾¾¾¾¾¾¾¾¿¿¿¿¿¿LLÀÿÀoooL›tXXXccc………®®®ºººÄÄÄÌÌÌÐÐÐÓÓÓÒÒÒÏÏÏÊÊʵµµ¥¥¥hhhttt~~~DiÿDjÿDjÿ‘‘‘“““”””–––———™™™šššœœœžžž¡¡¡£££¦¦¦ˆ€€ˆ€€ˆ€€³³³···»»»ÀÀÀÆÆÆÎÎÎÝÝÝíííÞÞÞ||||||||||||||||||||||||kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk"""7±,Œ4¥;¼@ÌCÓDÖCÔBÒBÐ@Ì?È>Ä=Á<¿;½¼¼¼¼¼¼½½½½½½½½½½½½¾¾¾¾¾¾¾¾¾¿¿¿LL_ooLLXXXQQQzzz”””§§§¶¶¶ÁÁÁÉÉÉÏÏÏÒÒÒÒÒÒÑÑÑÌÌÌÅÅÅ»»»¬¬¬———xxxOOOffftttChÿChÿDiÿDiÿ‘‘‘“““”””–––———™™™šššœœœžžž¡¡¡¤¤¤¦¦¦ˆ€€ˆ€€ˆ€€ˆ€€¸¸¸¼¼¼ÀÀÀÇÇÇÏÏÏÛÛÛëëëààà||||||||||||||||||Ë™kkkkkkkkkkkkkkkkkkkkkkkk  kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk4¥<¿AÎCÕDÖCÔBÒAÍ?É>Å=Â<À<½;»»»»¼¼¼¼¼¼¼¼¼¼¼¼½½½½½½½½½½½½¾¾¾¾¾¾¿¿¿¿¿¿LLLíoL666lll‹‹‹¡¡¡±±±½½½ÇÇÇÍÍÍÑÑÑÓÓÓÒÒÒÎÎÎÈÈÈ¿¿¿²²²   †††YYY¾¾¾OOOffftttChÿChÿChÿChÿ‘‘‘“““”””–––———™™™›››ŸŸŸ¡¡¡¤¤¤§§§ˆ€€ˆ€€ˆ€€ˆ€€¸¸¸¼¼¼ÁÁÁÈÈÈÐÐÐÛÛÛèèèæææ||||||||||||Ë™kkkkkkkkkkkkkkkkkkkkkkkk!!!!!!kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkDÖDÖCÔBÐ@Ë?Ç=Ã<À<¾;¼ººº»»»»»»»»»¼¼¼¼¼¼¼¼¼¼¼¼½½½½½½½½½½½½¾¾¾¾¾¾¾¾¾¿¿¿LLLLOÊO]]]™™™«««¹¹¹ÃÃÃËËËÐÐÐÓÓÓÒÒÒÐÐÐËËËÃÃ÷··¨¨¨ooo|¢|¢³³³NNNfffsssBgÿBgÿBgÿBhÿŽŽŽ‘‘‘“““”””–––———™™™šššŸŸŸ¡¡¡¤¤¤§§§EjÿEkÿEkÿµµµ¹¹¹½½½ÂÂÂÉÉÉÑÑÑÛÛÛæææ||||||||||||kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk%%%''''''"""kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkBÓAÎ?É>Å<Á<¾;¼:º¹¹¹¹¹¹ºººººº»»»»»»»»»¼¼¼¼¼¼¼¼¼½½½½½½½½½½½½½½½¾¾¾¾¾¾¿¿¿<4LGGGuuu¤¤¤´´´¿¿¿ÉÉÉÎÎÎÒÒÒÓÓÓÑÑÑÍÍÍÇÇǽ½½®®®›››}}}???|¢|¢|¢©©©KKKeeesssAfþAfÿAfÿAgÿŽŽŽ‘‘‘’’’”””•••———˜˜˜šššœœœžžž¡¡¡¤¤¤§§§DjÿDjÿDjÿµµµººº¾¾¾ÃÃÃÊÊÊÒÒÒÛÛÛååå||||||Ë™kkkkkkkkkkkkkkkkkkkkkkkkkkk  kkk///kkk+++))) kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk?È=Ã<¿;½:º:¸¹¹¹¹¹¹¹¹¹¹¹¹ºººººº»»»»»»»»»¼¼¼¼¼¼¼¼¼½½½½½½½½½½½½½½½¾¾¾¾¾¾K'''fff‡‡‡žžž¯¯¯»»»ÅÅÅÌÌÌÐÐÐÓÓÓÒÒÒÏÏÏÉÉÉÀÀÀ´´´¢¢¢‰‰‰```|¢|¢|¢|¢|¢ŸŸŸIIIdddsssAfþAfþAfÿAfÿŽŽŽ’’’”””•••–––˜˜˜šššœœœžžž¡¡¡¤¤¤§§§CiÿCiÿDjÿµµµººº¿¿¿ÄÄÄËËËÓÓÓÛÛÛãããË™kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk***)))......%%%kkkkkkkkkkkkkkkkkkkkkkkkkkk1œ:»:¹¸¸¸¸¸¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹ººººººººº»»»¼¼¼¼¼¼½½½½½½½½½½½½½½½TTT|||•••¨¨¨···ÂÂÂÊÊÊÏÏÏÒÒÒÒÒÒÐÐÐÌÌÌÄÄĹ¹¹ªªª”””tttXXX|¢|¢|¢|¢|¢|¢”””FFFcccrrr@eþ@eþ@eþ@eþŽŽŽ’’’“““”””–––˜˜˜™™™›››žžž   £££¦¦¦BhÿChÿCiÿµµµ¹¹¹¾¾¾ÄÄÄÌÌÌÔÔÔÛÛÛkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk!!!kkkkkkkkkkkk ***&&&111888)))kkkkkkkkkkkkkkkkkkkkkkkk···¸¸¸¸¸¸¸¸¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹ººº¼¼¼¼¼¼½½½½½½½½½¢¢¢²²²¾¾¾ÇÇÇÍÍÍÑÑÑÓÓÓÑÑÑÎÎÎÇÇǾ¾¾°°°IIIXXXXXX|¢|¢|¢|¢|¢|¢***DDDbbbrrrKqÿ@eý@eý@eþŽŽŽ’’’“““”””–––———™™™›››žžž   £££¦¦¦BhÿBhÿBhÿµµµ¹¹¹¾¾¾ÄÄÄËËËÔÔÔÛÛÛkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk"""kkkkkkkkkkkkkkk(((kkkkkk###111SSS+++kkkkkkkkkkkkkkkkkkkkk······¸¸¸¸¸¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹ººº¼¼¼½½½½½½¾¾¾¿¿¿¬¬¬¹¹¹ÄÄÄËËËÐÐÐÓÓÓÒÒÒÏÏÏÊÊʶ¶¶¥¥¥gggXXX›tXXXXXX|¢|¢|¢|¢|¢|¢###{{{aaarrr{{{?dý?dý?dý‘‘‘’’’”””•••———˜˜˜›››   ¢¢¢¦¦¦AgÿAgÿBgÿµµµ¹¹¹¾¾¾ÄÄÄËËËÒÒÒÙÙÙkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk $$$kkkkkkkkkkkkkkkkkkkkkkkkkkk 111***kkkkkkkkkkkkkkkkkk······¸¸¸¸¸¸¸¸¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹ºººººº¼¼¼½½½½½½½½½¾¾¾¾¾¾¾¾¾¿¿¿ÀÀÀÉÉÉÏÏÏÒÒÒÒÒÒÑÑÑÍÍÍÆÆÆ¼¼¼¬¬¬˜˜˜xxxXXXXXXXXXXXXXXXXXX|¢|¢|¢|¢|¢|¢zzz```qqq{{{?dü?dü?dü‘‘‘’’’“““”””–––˜˜˜šššŸŸŸ¢¢¢¥¥¥AfÿAfÿAgþµµµ¹¹¹¾¾¾ÃÃÃÊÊÊÑÑÑ×××kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk &&&kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk777ŠŠŠ)))kkkkkkkkkkkkkkkkkk9¶···¸¸¸¸¸¸¸¸¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹ººº¼¼¼½½½½½½½½½¾¾¾¾¾¾¿¿¿ÌÌÌÑÑÑÓÓÓÒÒÒÏÏÏÈÈÈ¿¿¿²²²   †††XXXXXXXXXXXXXXXXXXXXXXXX|¢|¢|¢|¢|¢|¢|¢HHH^^^pppzzz?cû?cû?cû‘‘‘’’’“““”””•••———™™™œœœŸŸŸ¡¡¡¥¥¥@eþAfþAfþµµµ¹¹¹¾¾¾ÃÃÃÊÊÊÐÐÐÖÖÖkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk((("""kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk"""AAA^^^%%%kkkkkkkkkkkkkkk(······¸¸¸¸¸¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹ººº¼¼¼¼¼¼½½½½½½¾¾¾¿¿¿ÓÓÓÒÒÒÐÐÐËËËÃÃø¸¸¨¨¨oooXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX|¢|¢|¢|¢|¢|¢FFFˆˆˆoooyyy?cû?cû?cûŒŒŒ‘‘‘’’’“““•••–––™™™›››žžž¡¡¡¤¤¤@eý@eþ@eþ´´´¹¹¹½½½ÃÃÃÉÉÉÏÏÏÔÔÔkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk(((&&&kkkkkkkkkkkkkkkkkkkkkkkk%%%YYY888kkkkkkkkkkkkkkk······¸¸¸¸¸¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹ººº¼¼¼½½½½½½½½½¿¿¿ÑÑÑÎÎÎÇÇǽ½½®®®›››}}}>>>XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX|¢|¢|¢|¢|¢|¢CCCWWWnnnyyy>cú>cú>cúŒŒŒŽŽŽ‘‘‘’’’’’’”””–––˜˜˜›››   £££?dü@eý@eý´´´¹¹¹½½½ÂÂÂÈÈÈÎÎÎÒÒÒÓÓÓkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk(((***kkkkkkkkkkkkkkkkkkkkkkkk)))TTT+++kkkkkkkkkkkkkkk······¸¸¸¸¸¸¸¸¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹ººº¼¼¼½½½½½½½½½½½½ÉÉÉÁÁÁ´´´£££‰‰‰```XXXXXXXXXXXXXXXXXX›t›t›tXXXXXXXXXXXX|¢|¢|¢|¢|¢|¢@@@VVV’’’xxx>bú>cú>cú>cúŽŽŽ‘‘‘’’’”””•••———šššŸŸŸ£££?dü?dü@dü´´´¸¸¸½½½ÂÂÂÈÈÈÍÍÍÐÐÐÐÐÐkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk%%%,,,%%%kkkkkkkkkkkk---777$$$kkkkkkkkkkkk·········¸¸¸¸¸¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹ººº¼¼¼½½½½½½½½½½½½¾¾¾ºººªªª”””sssXXXXXXXXXXXX›t›t›tXXXXXX›t›t›t›tXXXXXX€€€|¢|¢|¢|¢|¢<<bù>bù>bù>cú‘‘‘‘‘‘“““”””–––™™™œœœŸŸŸ¢¢¢?dû?dü?dü´´´¸¸¸½½½ÂÂÂÇÇÇÌÌÌÏÏÏÎÎÎkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk---+++kkkkkkkkkkkk"""000+++kkkkkkkkk2 ······¸¸¸¸¸¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹ººº¼¼¼½½½½½½½½½½½½¾¾¾¾¾¾žžžIIIXXX›t›tXXXXXX›t›t›t›tXXX›t›tXXXXXXXXXXXXXXXXXX|¢|¢|¢|¢888RRRaaaššš=a÷=bø>bø>bùŽŽŽ‘‘‘’’’“““•••˜˜˜›››žžž¢¢¢?dû?dû?cû³³³¸¸¸¼¼¼ÁÁÁÇÇÇËËËÍÍÍÌÌÌÈÈÈkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk)))333&&&kkkkkkkkkkkkkkk---$$$kkkkkkkkk\······¸¸¸¸¸¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹ººº½½½½½½½½½½½½¾¾¾¾¾¾¾¾¾ggg›tXXX›t›t›t›tXXX›t›tXXXXXXXXXXXX›tXXXXXXXXXXXXXXXXXXXXXXXX|¢|¢444QQQ___ttt<`õcú>cú?cû³³³···¼¼¼ÁÁÁÆÆÆÊÊÊËËËÉÉÉÆÆÆÂÂÂkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk 666///kkkkkkkkkkkkkkkkkk((( kkkkkkkkk······¸¸¸¸¸¸¸¸¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹ººº¼¼¼½½½½½½½½½¾¾¾¾¾¾¾¾¾¿¿¿›tXXX›tXXXXXXXXXXXXXXXXXXXXX›tXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX---PPP___hhh;_ó;`ô;`õ<`õ‹‹‹ŽŽŽ‘‘‘’’’”””———™™™œœœ   >cú>cú>cú²²²···¼¼¼ÁÁÁÅÅÅÉÉÉÉÉÉÈÈÈÄÄÄÀÀÀ¼¼¼kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk)))UUU+++kkkkkkkkkkkkkkk***kkkkkk((()))kkkkkk¯ƒ······¸¸¸¸¸¸¸¸¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹ºººººº¼¼¼½½½½½½½½½¾¾¾¾¾¾¾¾¾¿¿¿’›tXXX›tXXXXXX›t›t›t›tXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX›t›tXXXXXXXXX###NNN^^^hhhžžž:]ñ:^ò:^ò‹‹‹ŒŒŒŽŽŽ‘‘‘“““–––˜˜˜œœœ   >cù>bù>bú²²²¶¶¶»»»ÀÀÀÄÄÄÈÈÈÈÈÈÆÆÆÂ¾¾¾»»»kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk333UUU&&&kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk$$$,,, '''"""¯ƒ¯ƒ¯ƒ9µ······¸¸¸¸¸¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹ºººººº¼¼¼½½½½½½½½½½½½¾¾¾¾¾¾¾¾¾’XXXXXXXXXXXXXXXXXXXXX›t›tXXXXXXXXXXXXXXXXXXXXXXXXXXX›tXXXXXXXXXXXXXXXXXXLLL]]]gggžžž8Zì8[î9\ïŠŠŠ‹‹‹ŒŒŒŽŽŽ’’’•••———›››ŸŸŸ=bø>bù>bù±±±¶¶¶»»»ÀÀÀÄÄÄÇÇÇÆÆÆÄÄÄÀÀÀ¼¼¼¹¹¹µµµkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk$$$YYYAAA"""kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk¯ƒ###¯ƒ¯ƒ¯ƒ+‡······ÿÿÿÿ¹¹¹¹¹¹¹¹¹ººººººkkk½½½½½½½½½½½½¾¾¾¾¾¾¾¾¾XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX›tXXXXXXXXXXXXHHHZZZeeelll5Wç6Xé6YêŠŠŠ‹‹‹ŒŒŒ’’’”””———šššžžž>>444&&&¯ƒ¯ƒ¯ƒ¯ƒ¯ƒkkkkkk  GGGÿÿGGG¶¶¶ÿÿÿ¸¸¸¸¸¸¹¹¹¹¹¹ºººººº½½½½½½½½½½½½¾¾¾›tXXX›tXXX›t›t›t›t›t›t›t›t›t›t›t›t›t›t›t›t›t›tXXXXXX›t›t111JJJSSS¸¸¸)IÏ*JÏ*JÐ+Kч‡‡ˆˆˆ‰‰‰ŠŠŠŠŠŠ‹‹‹‘‘‘”””™™™2Uá3Uã3Vä­­­²²²¸¸¸½½½ÁÁÁÄÄÄÃÃÃÀÀÀ¼¼¼¸¸¸³³³¯¯¯¬¬¬¨¨¨¤¤¤kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk'''///111+++"""¯ƒkkkkkkkkkÿÿ…dkkkkkk¶¶¶···¸¸¸¸¸¸¸¸¸¸¸¸¹¹¹¹¹¹¹¹¹ºººººº¼¼¼¼¼¼¼¼¼½½½½½½½½½¾¾¾›t›t›t›t›t›t›t›t›t›t›t›t›t›t›t›t›t›t›t›t›t›t›tXXX›tXXX***FFFNNNÁÁÁ(HÌ(HÌ)IÍ)I͆††ˆˆˆ‰‰‰‰‰‰ŠŠŠ§®¨¯ŽŽŽ“““———/QÛ0RÝ1SÞ«««±±±···½½½ÁÁÁÄÄÄÅÅŽ½½¹¹¹µµµ²²²®®®«««§§§HHHkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk ***---+++((("""ÿ…dkkkkkkkkkkkk¶¶¶···¸¸¸¸¸¸¸¸¸¸¸¸¹¹¹¹¹¹¹¹¹ººººººººº»»»»»»¼¼¼¼¼¼¼¼¼½½½¾¾¾›t›t›t›t›t›t›t›t›t›t›t›t›t›tXXXXXXXXXXXX›t›t›t›t›tXXX›tXXX!!!@@@FFFËËËttt(GÊ'GÊ'GË………‡‡‡ˆˆˆ¦¬¦­¦­§®§®§®’’’–––-MÖ.N×.OÙ/PÚ°°°µµµ»»»ÀÀÀÄÄÄÆÆÆÃÃÿ¿¿»»»···³³³°°°®®®«««§§§kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk¯ƒ¯ƒ¯ƒkkk!!!(((***)))&&&$$$""" ÿÿkkkkkkkkkkkkkkkkkk'{¶¶¶···¸¸¸¸¸¸¸¸¸¸¸¸¹¹¹¹¹¹ººººººººº»»»»»»¼¼¼¼¼¼½½½¾¾¾›t›t›t›tXXX›tXXXXXX›t›t›t›tXXXXXXXXXXXXXXXXXXXXXXXX›t›t›tXXX›tXXX999ðððhhhqqq'FÉ'FÉ'FÊ„„„¤«¥«¥«¥¬¦¬¦­ŽŽŽ‘‘‘”””˜˜˜+KÓ,LÔ,MÕ®®®´´´ººº¿¿¿ÄÄÄÇÇÇÅÅÅÁÁÁ½½½¹¹¹µµµ²²²°°°­­­«««kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk¯ƒ¯ƒ¯ƒ¯ƒ¯ƒkkkkkkkkk!!!""""""ÿÿkkkkkkkkkkkkkkkkkkkkkj9¶¶¶···¸¸¸¸¸¸¸¸¸¸¸¸¹¹¹¹¹¹ººººººººº»»»»»»¼¼¼¼¼¼½½½½½½½½½¾¾¾›t›t›t›t›tXXX›t›t›t›t›tXXXXXXXXXXXX›tXXXXXXXXXXXXXXXXXXXXXXXX›tXXX›t333ÿÿÿeeeooo'FÈ'FÉ/1FI£ª£ª£ª¤ª¤«¤«“““———)JÏ*JÐ*KѬ¬¬²²²¸¸¸¾¾¾ÃÃÃÇÇÇÆÆÆÃÃÿ¿¿»»»¸¸¸´´´²²²¯¯¯­­­kkkkkkkkkkkkkkkkkkkkkkkkkkk¯ƒ¯ƒ¯ƒ¯ƒ¯ƒ¯ƒkkkkkkkkkkkkkkkGGGÿÿGGGkkkkkkkkkkkkkkkkkkkkkkkkj9j:¶¶¶···¸¸¸¸¸¸¸¸¸¸¸¸¹¹¹¹¹¹ºººººº»»»»»»»»»¼¼¼¼¼¼½½½½½½½½½¾¾¾›tXXX›tXXX›t›t›t›t›t›tXXXXXXXXXXXXXXXXXXXXX›tXXXXXXXXXXXX›tXXX›t›t›t+++RRRbbblll'FÈ()?BSW¢¨¢©¢©£©£©£ªŠŠŠŒŒŒ’’’–––(HÌ(HÍ)Iͪªª°°°···½½½ÂÂÂÇÇÇÇÇÇÆÆÆÂ¾¾¾»»»···µµµ²²²°°°fffkkkkkkkkkkkkkkkkkkkkk¯ƒ¯ƒ¯ƒ¯ƒ¯ƒkkkkkkkkkkkkkkkkkk…dÿ…dkkkkkkkkkkkkkkkkkkkkkkkkj:j:j:j:9µ···¸¸¸¸¸¸¸¸¸»»»»»»»»»¼¼¼½½½½½½½½½¾¾¾XXXXXX›tXXX›tXXX›t›t›t›t›t›t›t›t›t›t›t›tXXX›t›t›t›t›t›tXXX›tÿÿÿOOO___ 9;NQaeqv¡§¡§¢¨¢¨¢¨¢¨‰‰‰‹‹‹ŽŽŽ‘‘‘•••'GÊ'GË'G˨¨¨¯¯¯µµµ»»»ÁÁÁÆÆÆÉÉÉÉÉÉÅÅž¾¾»»»···´´´³³³jjjkkkkkkkkkkkkkkk¯ƒ¯ƒ¯ƒ¯ƒkkkkkkkkkkkkkkkkkkkkkGGGÿÿÿÿkkkkkkkkkkkkkkkkkkkkkj:j:j:j:j:j:%v¶¶¶···¸¸¸¸¸¸¸¸¸¹¹¹j:»»»»»»¼¼¼½½½½½½½½½¾¾¾…d…dGGGGGGXXXXXX›tXXX›tXXX›t›t›t›t›t›t›t›t›tXXX›t›tXXX›tXXX›t›t(((25HK\_mq|˜ž ¦ § §¡§¡§ˆˆˆ‰‰‰‹‹‹“““———'GÉ'GÉ'GÊ­­­³³³ºººÀÀÀÆÆÆÊÊÊËËËÉÉÉÆÆÆÂ¾¾¾»»»¸¸¸¶¶¶kkkkkkkkkkkk¯ƒ¯ƒ¯ƒ¯ƒkkkkkkkkkkkkkkkkkkkkkGGG…d…d…dÿÿkkkÿÿÿÿkkkkkkj:j:j:j:j:j:j:j:¶¶¶···¸¸¸¸¸¸¸¸¸¹¹¹¹¹¹¹¹¹ºººººº»»»»»»¼¼¼½½½½½½½½½3¤GGG…d…d…d…d…dGGGGGGXXXXXX›tXXX›t›t›t›t›t›t›t›t›tXXX›t›t›t›tßßß,.BEVZhlw|• ºÂÐØž¥Ÿ¥Ÿ¥Ÿ¦………‡‡‡ˆˆˆ‰‰‰ŒŒŒ‘‘‘–––'FÈ'FÈ'FÈ«««±±±···¾¾¾ÅÅÅËËËÏÏÏÎÎÎËËËÆÆÆÂ¾¾¾¼¼¼¹¹¹···kkkkkk¯ƒ¯ƒ¯ƒkkkkkk¯ƒkkkkkkkkkkkkkkk…dGGGGGGkkkkkkÿÿkkkkkkkkkkkkkkkÿÿÿÿj:j:j:j:j:ÿ¶¶¶···¸¸¸¸¸¸¸¸¸¸¸¸¹¹¹¹¹¹ººº»»»»»»»»»½½½½½½3¤6¬XXXXXXGGGGGGGGG…d…d…d…d…d…dGGGXXXXXX›t›t›t›t›t›t›t›t›tXXX›t$% #include #include #include #include #include #include #include #include "./tjutil.h" #include "./turbojpeg.h" #define THROW(op, err) { \ printf("ERROR in line %d while %s:\n%s\n", __LINE__, op, err); \ retval = -1; goto bailout; \ } #define THROW_UNIX(m) THROW(m, strerror(errno)) char tjErrorStr[JMSG_LENGTH_MAX] = "\0", tjErrorMsg[JMSG_LENGTH_MAX] = "\0"; int tjErrorLine = -1, tjErrorCode = -1; #define THROW_TJG(m) { \ printf("ERROR in line %d while %s:\n%s\n", __LINE__, m, \ tjGetErrorStr2(NULL)); \ retval = -1; goto bailout; \ } #define THROW_TJ(m) { \ int _tjErrorCode = tjGetErrorCode(handle); \ char *_tjErrorStr = tjGetErrorStr2(handle); \ \ if (!(flags & TJFLAG_STOPONWARNING) && _tjErrorCode == TJERR_WARNING) { \ if (strncmp(tjErrorStr, _tjErrorStr, JMSG_LENGTH_MAX) || \ strncmp(tjErrorMsg, m, JMSG_LENGTH_MAX) || \ tjErrorCode != _tjErrorCode || tjErrorLine != __LINE__) { \ strncpy(tjErrorStr, _tjErrorStr, JMSG_LENGTH_MAX); \ tjErrorStr[JMSG_LENGTH_MAX - 1] = '\0'; \ strncpy(tjErrorMsg, m, JMSG_LENGTH_MAX); \ tjErrorMsg[JMSG_LENGTH_MAX - 1] = '\0'; \ tjErrorCode = _tjErrorCode; \ tjErrorLine = __LINE__; \ printf("WARNING in line %d while %s:\n%s\n", __LINE__, m, _tjErrorStr); \ } \ } else { \ printf("%s in line %d while %s:\n%s\n", \ _tjErrorCode == TJERR_WARNING ? "WARNING" : "ERROR", __LINE__, m, \ _tjErrorStr); \ retval = -1; goto bailout; \ } \ } int flags = TJFLAG_NOREALLOC, compOnly = 0, decompOnly = 0, doYUV = 0, quiet = 0, doTile = 0, pf = TJPF_BGR, yuvAlign = 1, doWrite = 1; char *ext = "ppm"; const char *pixFormatStr[TJ_NUMPF] = { "RGB", "BGR", "RGBX", "BGRX", "XBGR", "XRGB", "GRAY", "", "", "", "", "CMYK" }; const char *subNameLong[TJ_NUMSAMP] = { "4:4:4", "4:2:2", "4:2:0", "GRAY", "4:4:0", "4:1:1" }; const char *csName[TJ_NUMCS] = { "RGB", "YCbCr", "GRAY", "CMYK", "YCCK" }; const char *subName[TJ_NUMSAMP] = { "444", "422", "420", "GRAY", "440", "411" }; tjscalingfactor *scalingFactors = NULL, sf = { 1, 1 }; int nsf = 0, xformOp = TJXOP_NONE, xformOpt = 0; int (*customFilter) (short *, tjregion, tjregion, int, int, tjtransform *); double benchTime = 5.0, warmup = 1.0; static char *formatName(int subsamp, int cs, char *buf) { if (cs == TJCS_YCbCr) return (char *)subNameLong[subsamp]; else if (cs == TJCS_YCCK || cs == TJCS_CMYK) { SNPRINTF(buf, 80, "%s %s", csName[cs], subNameLong[subsamp]); return buf; } else return (char *)csName[cs]; } static char *sigfig(double val, int figs, char *buf, int len) { char format[80]; int digitsAfterDecimal = figs - (int)ceil(log10(fabs(val))); if (digitsAfterDecimal < 1) SNPRINTF(format, 80, "%%.0f"); else SNPRINTF(format, 80, "%%.%df", digitsAfterDecimal); SNPRINTF(buf, len, format, val); return buf; } /* Custom DCT filter which produces a negative of the image */ static int dummyDCTFilter(short *coeffs, tjregion arrayRegion, tjregion planeRegion, int componentIndex, int transformIndex, tjtransform *transform) { int i; for (i = 0; i < arrayRegion.w * arrayRegion.h; i++) coeffs[i] = -coeffs[i]; return 0; } /* Decompression test */ static int decomp(unsigned char *srcBuf, unsigned char **jpegBuf, unsigned long *jpegSize, unsigned char *dstBuf, int w, int h, int subsamp, int jpegQual, char *fileName, int tilew, int tileh) { char tempStr[1024], sizeStr[24] = "\0", qualStr[13] = "\0", *ptr; FILE *file = NULL; tjhandle handle = NULL; int row, col, iter = 0, dstBufAlloc = 0, retval = 0; double elapsed, elapsedDecode; int ps = tjPixelSize[pf]; int scaledw = TJSCALED(w, sf); int scaledh = TJSCALED(h, sf); int pitch = scaledw * ps; int ntilesw = (w + tilew - 1) / tilew, ntilesh = (h + tileh - 1) / tileh; unsigned char *dstPtr, *dstPtr2, *yuvBuf = NULL; if (jpegQual > 0) { SNPRINTF(qualStr, 13, "_Q%d", jpegQual); qualStr[12] = 0; } if ((handle = tjInitDecompress()) == NULL) THROW_TJ("executing tjInitDecompress()"); if (dstBuf == NULL) { if ((unsigned long long)pitch * (unsigned long long)scaledh > (unsigned long long)((size_t)-1)) THROW("allocating destination buffer", "Image is too large"); if ((dstBuf = (unsigned char *)malloc((size_t)pitch * scaledh)) == NULL) THROW_UNIX("allocating destination buffer"); dstBufAlloc = 1; } /* Set the destination buffer to gray so we know whether the decompressor attempted to write to it */ memset(dstBuf, 127, (size_t)pitch * scaledh); if (doYUV) { int width = doTile ? tilew : scaledw; int height = doTile ? tileh : scaledh; unsigned long yuvSize = tjBufSizeYUV2(width, yuvAlign, height, subsamp); if (yuvSize == (unsigned long)-1) THROW_TJ("allocating YUV buffer"); if ((yuvBuf = (unsigned char *)malloc(yuvSize)) == NULL) THROW_UNIX("allocating YUV buffer"); memset(yuvBuf, 127, yuvSize); } /* Benchmark */ iter = -1; elapsed = elapsedDecode = 0.; while (1) { int tile = 0; double start = getTime(); for (row = 0, dstPtr = dstBuf; row < ntilesh; row++, dstPtr += (size_t)pitch * tileh) { for (col = 0, dstPtr2 = dstPtr; col < ntilesw; col++, tile++, dstPtr2 += ps * tilew) { int width = doTile ? min(tilew, w - col * tilew) : scaledw; int height = doTile ? min(tileh, h - row * tileh) : scaledh; if (doYUV) { double startDecode; if (tjDecompressToYUV2(handle, jpegBuf[tile], jpegSize[tile], yuvBuf, width, yuvAlign, height, flags) == -1) THROW_TJ("executing tjDecompressToYUV2()"); startDecode = getTime(); if (tjDecodeYUV(handle, yuvBuf, yuvAlign, subsamp, dstPtr2, width, pitch, height, pf, flags) == -1) THROW_TJ("executing tjDecodeYUV()"); if (iter >= 0) elapsedDecode += getTime() - startDecode; } else if (tjDecompress2(handle, jpegBuf[tile], jpegSize[tile], dstPtr2, width, pitch, height, pf, flags) == -1) THROW_TJ("executing tjDecompress2()"); } } elapsed += getTime() - start; if (iter >= 0) { iter++; if (elapsed >= benchTime) break; } else if (elapsed >= warmup) { iter = 0; elapsed = elapsedDecode = 0.; } } if (doYUV) elapsed -= elapsedDecode; if (tjDestroy(handle) == -1) THROW_TJ("executing tjDestroy()"); handle = NULL; if (quiet) { printf("%-6s%s", sigfig((double)(w * h) / 1000000. * (double)iter / elapsed, 4, tempStr, 1024), quiet == 2 ? "\n" : " "); if (doYUV) printf("%s\n", sigfig((double)(w * h) / 1000000. * (double)iter / elapsedDecode, 4, tempStr, 1024)); else if (quiet != 2) printf("\n"); } else { printf("%s --> Frame rate: %f fps\n", doYUV ? "Decomp to YUV" : "Decompress ", (double)iter / elapsed); printf(" Throughput: %f Megapixels/sec\n", (double)(w * h) / 1000000. * (double)iter / elapsed); if (doYUV) { printf("YUV Decode --> Frame rate: %f fps\n", (double)iter / elapsedDecode); printf(" Throughput: %f Megapixels/sec\n", (double)(w * h) / 1000000. * (double)iter / elapsedDecode); } } if (!doWrite) goto bailout; if (sf.num != 1 || sf.denom != 1) SNPRINTF(sizeStr, 24, "%d_%d", sf.num, sf.denom); else if (tilew != w || tileh != h) SNPRINTF(sizeStr, 24, "%dx%d", tilew, tileh); else SNPRINTF(sizeStr, 24, "full"); if (decompOnly) SNPRINTF(tempStr, 1024, "%s_%s.%s", fileName, sizeStr, ext); else SNPRINTF(tempStr, 1024, "%s_%s%s_%s.%s", fileName, subName[subsamp], qualStr, sizeStr, ext); if (tjSaveImage(tempStr, dstBuf, scaledw, 0, scaledh, pf, flags) == -1) THROW_TJG("saving output image"); ptr = strrchr(tempStr, '.'); SNPRINTF(ptr, 1024 - (ptr - tempStr), "-err.%s", ext); if (srcBuf && sf.num == 1 && sf.denom == 1) { if (!quiet) printf("Compression error written to %s.\n", tempStr); if (subsamp == TJSAMP_GRAY) { unsigned long index, index2; for (row = 0, index = 0; row < h; row++, index += pitch) { for (col = 0, index2 = index; col < w; col++, index2 += ps) { unsigned long rindex = index2 + tjRedOffset[pf]; unsigned long gindex = index2 + tjGreenOffset[pf]; unsigned long bindex = index2 + tjBlueOffset[pf]; int y = (int)((double)srcBuf[rindex] * 0.299 + (double)srcBuf[gindex] * 0.587 + (double)srcBuf[bindex] * 0.114 + 0.5); if (y > 255) y = 255; if (y < 0) y = 0; dstBuf[rindex] = (unsigned char)abs(dstBuf[rindex] - y); dstBuf[gindex] = (unsigned char)abs(dstBuf[gindex] - y); dstBuf[bindex] = (unsigned char)abs(dstBuf[bindex] - y); } } } else { for (row = 0; row < h; row++) for (col = 0; col < w * ps; col++) dstBuf[pitch * row + col] = (unsigned char)abs(dstBuf[pitch * row + col] - srcBuf[pitch * row + col]); } if (tjSaveImage(tempStr, dstBuf, w, 0, h, pf, flags) == -1) THROW_TJG("saving output image"); } bailout: if (file) fclose(file); if (handle) tjDestroy(handle); if (dstBufAlloc) free(dstBuf); free(yuvBuf); return retval; } static int fullTest(unsigned char *srcBuf, int w, int h, int subsamp, int jpegQual, char *fileName) { char tempStr[1024], tempStr2[80]; FILE *file = NULL; tjhandle handle = NULL; unsigned char **jpegBuf = NULL, *yuvBuf = NULL, *tmpBuf = NULL, *srcPtr, *srcPtr2; double start, elapsed, elapsedEncode; int totalJpegSize = 0, row, col, i, tilew = w, tileh = h, retval = 0; int iter; unsigned long *jpegSize = NULL, yuvSize = 0; int ps = tjPixelSize[pf]; int ntilesw = 1, ntilesh = 1, pitch = w * ps; const char *pfStr = pixFormatStr[pf]; if ((unsigned long long)pitch * (unsigned long long)h > (unsigned long long)((size_t)-1)) THROW("allocating temporary image buffer", "Image is too large"); if ((tmpBuf = (unsigned char *)malloc((size_t)pitch * h)) == NULL) THROW_UNIX("allocating temporary image buffer"); if (!quiet) printf(">>>>> %s (%s) <--> JPEG %s Q%d <<<<<\n", pfStr, (flags & TJFLAG_BOTTOMUP) ? "Bottom-up" : "Top-down", subNameLong[subsamp], jpegQual); for (tilew = doTile ? 8 : w, tileh = doTile ? 8 : h; ; tilew *= 2, tileh *= 2) { if (tilew > w) tilew = w; if (tileh > h) tileh = h; ntilesw = (w + tilew - 1) / tilew; ntilesh = (h + tileh - 1) / tileh; if ((jpegBuf = (unsigned char **)malloc(sizeof(unsigned char *) * ntilesw * ntilesh)) == NULL) THROW_UNIX("allocating JPEG tile array"); memset(jpegBuf, 0, sizeof(unsigned char *) * ntilesw * ntilesh); if ((jpegSize = (unsigned long *)malloc(sizeof(unsigned long) * ntilesw * ntilesh)) == NULL) THROW_UNIX("allocating JPEG size array"); memset(jpegSize, 0, sizeof(unsigned long) * ntilesw * ntilesh); if ((flags & TJFLAG_NOREALLOC) != 0) for (i = 0; i < ntilesw * ntilesh; i++) { if (tjBufSize(tilew, tileh, subsamp) > (unsigned long)INT_MAX) THROW("getting buffer size", "Image is too large"); if ((jpegBuf[i] = (unsigned char *) tjAlloc(tjBufSize(tilew, tileh, subsamp))) == NULL) THROW_UNIX("allocating JPEG tiles"); } /* Compression test */ if (quiet == 1) printf("%-4s (%s) %-5s %-3d ", pfStr, (flags & TJFLAG_BOTTOMUP) ? "BU" : "TD", subNameLong[subsamp], jpegQual); for (i = 0; i < h; i++) memcpy(&tmpBuf[pitch * i], &srcBuf[w * ps * i], w * ps); if ((handle = tjInitCompress()) == NULL) THROW_TJ("executing tjInitCompress()"); if (doYUV) { yuvSize = tjBufSizeYUV2(tilew, yuvAlign, tileh, subsamp); if (yuvSize == (unsigned long)-1) THROW_TJ("allocating YUV buffer"); if ((yuvBuf = (unsigned char *)malloc(yuvSize)) == NULL) THROW_UNIX("allocating YUV buffer"); memset(yuvBuf, 127, yuvSize); } /* Benchmark */ iter = -1; elapsed = elapsedEncode = 0.; while (1) { int tile = 0; totalJpegSize = 0; start = getTime(); for (row = 0, srcPtr = srcBuf; row < ntilesh; row++, srcPtr += pitch * tileh) { for (col = 0, srcPtr2 = srcPtr; col < ntilesw; col++, tile++, srcPtr2 += ps * tilew) { int width = min(tilew, w - col * tilew); int height = min(tileh, h - row * tileh); if (doYUV) { double startEncode = getTime(); if (tjEncodeYUV3(handle, srcPtr2, width, pitch, height, pf, yuvBuf, yuvAlign, subsamp, flags) == -1) THROW_TJ("executing tjEncodeYUV3()"); if (iter >= 0) elapsedEncode += getTime() - startEncode; if (tjCompressFromYUV(handle, yuvBuf, width, yuvAlign, height, subsamp, &jpegBuf[tile], &jpegSize[tile], jpegQual, flags) == -1) THROW_TJ("executing tjCompressFromYUV()"); } else { if (tjCompress2(handle, srcPtr2, width, pitch, height, pf, &jpegBuf[tile], &jpegSize[tile], subsamp, jpegQual, flags) == -1) THROW_TJ("executing tjCompress2()"); } totalJpegSize += jpegSize[tile]; } } elapsed += getTime() - start; if (iter >= 0) { iter++; if (elapsed >= benchTime) break; } else if (elapsed >= warmup) { iter = 0; elapsed = elapsedEncode = 0.; } } if (doYUV) elapsed -= elapsedEncode; if (tjDestroy(handle) == -1) THROW_TJ("executing tjDestroy()"); handle = NULL; if (quiet == 1) printf("%-5d %-5d ", tilew, tileh); if (quiet) { if (doYUV) printf("%-6s%s", sigfig((double)(w * h) / 1000000. * (double)iter / elapsedEncode, 4, tempStr, 1024), quiet == 2 ? "\n" : " "); printf("%-6s%s", sigfig((double)(w * h) / 1000000. * (double)iter / elapsed, 4, tempStr, 1024), quiet == 2 ? "\n" : " "); printf("%-6s%s", sigfig((double)(w * h * ps) / (double)totalJpegSize, 4, tempStr2, 80), quiet == 2 ? "\n" : " "); } else { printf("\n%s size: %d x %d\n", doTile ? "Tile" : "Image", tilew, tileh); if (doYUV) { printf("Encode YUV --> Frame rate: %f fps\n", (double)iter / elapsedEncode); printf(" Output image size: %lu bytes\n", yuvSize); printf(" Compression ratio: %f:1\n", (double)(w * h * ps) / (double)yuvSize); printf(" Throughput: %f Megapixels/sec\n", (double)(w * h) / 1000000. * (double)iter / elapsedEncode); printf(" Output bit stream: %f Megabits/sec\n", (double)yuvSize * 8. / 1000000. * (double)iter / elapsedEncode); } printf("%s --> Frame rate: %f fps\n", doYUV ? "Comp from YUV" : "Compress ", (double)iter / elapsed); printf(" Output image size: %d bytes\n", totalJpegSize); printf(" Compression ratio: %f:1\n", (double)(w * h * ps) / (double)totalJpegSize); printf(" Throughput: %f Megapixels/sec\n", (double)(w * h) / 1000000. * (double)iter / elapsed); printf(" Output bit stream: %f Megabits/sec\n", (double)totalJpegSize * 8. / 1000000. * (double)iter / elapsed); } if (tilew == w && tileh == h && doWrite) { SNPRINTF(tempStr, 1024, "%s_%s_Q%d.jpg", fileName, subName[subsamp], jpegQual); if ((file = fopen(tempStr, "wb")) == NULL) THROW_UNIX("opening reference image"); if (fwrite(jpegBuf[0], jpegSize[0], 1, file) != 1) THROW_UNIX("writing reference image"); fclose(file); file = NULL; if (!quiet) printf("Reference image written to %s\n", tempStr); } /* Decompression test */ if (!compOnly) { if (decomp(srcBuf, jpegBuf, jpegSize, tmpBuf, w, h, subsamp, jpegQual, fileName, tilew, tileh) == -1) goto bailout; } else if (quiet == 1) printf("N/A\n"); for (i = 0; i < ntilesw * ntilesh; i++) { tjFree(jpegBuf[i]); jpegBuf[i] = NULL; } free(jpegBuf); jpegBuf = NULL; free(jpegSize); jpegSize = NULL; if (doYUV) { free(yuvBuf); yuvBuf = NULL; } if (tilew == w && tileh == h) break; } bailout: if (file) fclose(file); if (jpegBuf) { for (i = 0; i < ntilesw * ntilesh; i++) tjFree(jpegBuf[i]); } free(jpegBuf); free(yuvBuf); free(jpegSize); free(tmpBuf); if (handle) tjDestroy(handle); return retval; } static int decompTest(char *fileName) { FILE *file = NULL; tjhandle handle = NULL; unsigned char **jpegBuf = NULL, *srcBuf = NULL; unsigned long *jpegSize = NULL, srcSize, totalJpegSize; tjtransform *t = NULL; double start, elapsed; int ps = tjPixelSize[pf], tile, row, col, i, iter, retval = 0, decompsrc = 0; char *temp = NULL, tempStr[80], tempStr2[80]; /* Original image */ int w = 0, h = 0, tilew, tileh, ntilesw = 1, ntilesh = 1, subsamp = -1, cs = -1; /* Transformed image */ int tw, th, ttilew, ttileh, tntilesw, tntilesh, tsubsamp; if ((file = fopen(fileName, "rb")) == NULL) THROW_UNIX("opening file"); if (fseek(file, 0, SEEK_END) < 0 || (srcSize = ftell(file)) == (unsigned long)-1) THROW_UNIX("determining file size"); if ((srcBuf = (unsigned char *)malloc(srcSize)) == NULL) THROW_UNIX("allocating memory"); if (fseek(file, 0, SEEK_SET) < 0) THROW_UNIX("setting file position"); if (fread(srcBuf, srcSize, 1, file) < 1) THROW_UNIX("reading JPEG data"); fclose(file); file = NULL; temp = strrchr(fileName, '.'); if (temp != NULL) *temp = '\0'; if ((handle = tjInitTransform()) == NULL) THROW_TJ("executing tjInitTransform()"); if (tjDecompressHeader3(handle, srcBuf, srcSize, &w, &h, &subsamp, &cs) == -1) THROW_TJ("executing tjDecompressHeader3()"); if (w < 1 || h < 1) THROW("reading JPEG header", "Invalid image dimensions"); if (cs == TJCS_YCCK || cs == TJCS_CMYK) { pf = TJPF_CMYK; ps = tjPixelSize[pf]; } if (quiet == 1) { printf("All performance values in Mpixels/sec\n\n"); printf("Pixel JPEG JPEG %s %s Xform Comp Decomp ", doTile ? "Tile " : "Image", doTile ? "Tile " : "Image"); if (doYUV) printf("Decode"); printf("\n"); printf("Format CS Subsamp Width Height Perf Ratio Perf "); if (doYUV) printf("Perf"); printf("\n\n"); } else if (!quiet) printf(">>>>> JPEG %s --> %s (%s) <<<<<\n", formatName(subsamp, cs, tempStr), pixFormatStr[pf], (flags & TJFLAG_BOTTOMUP) ? "Bottom-up" : "Top-down"); for (tilew = doTile ? 16 : w, tileh = doTile ? 16 : h; ; tilew *= 2, tileh *= 2) { if (tilew > w) tilew = w; if (tileh > h) tileh = h; ntilesw = (w + tilew - 1) / tilew; ntilesh = (h + tileh - 1) / tileh; if ((jpegBuf = (unsigned char **)malloc(sizeof(unsigned char *) * ntilesw * ntilesh)) == NULL) THROW_UNIX("allocating JPEG tile array"); memset(jpegBuf, 0, sizeof(unsigned char *) * ntilesw * ntilesh); if ((jpegSize = (unsigned long *)malloc(sizeof(unsigned long) * ntilesw * ntilesh)) == NULL) THROW_UNIX("allocating JPEG size array"); memset(jpegSize, 0, sizeof(unsigned long) * ntilesw * ntilesh); if ((flags & TJFLAG_NOREALLOC) != 0 && (doTile || xformOp != TJXOP_NONE || xformOpt != 0 || customFilter)) for (i = 0; i < ntilesw * ntilesh; i++) { if (tjBufSize(tilew, tileh, subsamp) > (unsigned long)INT_MAX) THROW("getting buffer size", "Image is too large"); if ((jpegBuf[i] = (unsigned char *) tjAlloc(tjBufSize(tilew, tileh, subsamp))) == NULL) THROW_UNIX("allocating JPEG tiles"); } tw = w; th = h; ttilew = tilew; ttileh = tileh; if (!quiet) { printf("\n%s size: %d x %d", doTile ? "Tile" : "Image", ttilew, ttileh); if (sf.num != 1 || sf.denom != 1) printf(" --> %d x %d", TJSCALED(tw, sf), TJSCALED(th, sf)); printf("\n"); } else if (quiet == 1) { printf("%-4s (%s) %-5s %-5s ", pixFormatStr[pf], (flags & TJFLAG_BOTTOMUP) ? "BU" : "TD", csName[cs], subNameLong[subsamp]); printf("%-5d %-5d ", tilew, tileh); } tsubsamp = subsamp; if (doTile || xformOp != TJXOP_NONE || xformOpt != 0 || customFilter) { if ((t = (tjtransform *)malloc(sizeof(tjtransform) * ntilesw * ntilesh)) == NULL) THROW_UNIX("allocating image transform array"); if (xformOp == TJXOP_TRANSPOSE || xformOp == TJXOP_TRANSVERSE || xformOp == TJXOP_ROT90 || xformOp == TJXOP_ROT270) { tw = h; th = w; ttilew = tileh; ttileh = tilew; } if (xformOpt & TJXOPT_GRAY) tsubsamp = TJSAMP_GRAY; if (xformOp == TJXOP_HFLIP || xformOp == TJXOP_ROT180) tw = tw - (tw % tjMCUWidth[tsubsamp]); if (xformOp == TJXOP_VFLIP || xformOp == TJXOP_ROT180) th = th - (th % tjMCUHeight[tsubsamp]); if (xformOp == TJXOP_TRANSVERSE || xformOp == TJXOP_ROT90) tw = tw - (tw % tjMCUHeight[tsubsamp]); if (xformOp == TJXOP_TRANSVERSE || xformOp == TJXOP_ROT270) th = th - (th % tjMCUWidth[tsubsamp]); tntilesw = (tw + ttilew - 1) / ttilew; tntilesh = (th + ttileh - 1) / ttileh; if (xformOp == TJXOP_TRANSPOSE || xformOp == TJXOP_TRANSVERSE || xformOp == TJXOP_ROT90 || xformOp == TJXOP_ROT270) { if (tsubsamp == TJSAMP_422) tsubsamp = TJSAMP_440; else if (tsubsamp == TJSAMP_440) tsubsamp = TJSAMP_422; } for (row = 0, tile = 0; row < tntilesh; row++) { for (col = 0; col < tntilesw; col++, tile++) { t[tile].r.w = min(ttilew, tw - col * ttilew); t[tile].r.h = min(ttileh, th - row * ttileh); t[tile].r.x = col * ttilew; t[tile].r.y = row * ttileh; t[tile].op = xformOp; t[tile].options = xformOpt | TJXOPT_TRIM; t[tile].customFilter = customFilter; if (t[tile].options & TJXOPT_NOOUTPUT && jpegBuf[tile]) { tjFree(jpegBuf[tile]); jpegBuf[tile] = NULL; } } } iter = -1; elapsed = 0.; while (1) { start = getTime(); if (tjTransform(handle, srcBuf, srcSize, tntilesw * tntilesh, jpegBuf, jpegSize, t, flags) == -1) THROW_TJ("executing tjTransform()"); elapsed += getTime() - start; if (iter >= 0) { iter++; if (elapsed >= benchTime) break; } else if (elapsed >= warmup) { iter = 0; elapsed = 0.; } } free(t); t = NULL; for (tile = 0, totalJpegSize = 0; tile < tntilesw * tntilesh; tile++) totalJpegSize += jpegSize[tile]; if (quiet) { printf("%-6s%s%-6s%s", sigfig((double)(w * h) / 1000000. / elapsed, 4, tempStr, 80), quiet == 2 ? "\n" : " ", sigfig((double)(w * h * ps) / (double)totalJpegSize, 4, tempStr2, 80), quiet == 2 ? "\n" : " "); } else { printf("Transform --> Frame rate: %f fps\n", 1.0 / elapsed); printf(" Output image size: %lu bytes\n", totalJpegSize); printf(" Compression ratio: %f:1\n", (double)(w * h * ps) / (double)totalJpegSize); printf(" Throughput: %f Megapixels/sec\n", (double)(w * h) / 1000000. / elapsed); printf(" Output bit stream: %f Megabits/sec\n", (double)totalJpegSize * 8. / 1000000. / elapsed); } } else { if (quiet == 1) printf("N/A N/A "); tjFree(jpegBuf[0]); jpegBuf[0] = NULL; decompsrc = 1; } if (w == tilew) ttilew = tw; if (h == tileh) ttileh = th; if (!(xformOpt & TJXOPT_NOOUTPUT)) { if (decomp(NULL, decompsrc ? &srcBuf : jpegBuf, decompsrc ? &srcSize : jpegSize, NULL, tw, th, tsubsamp, 0, fileName, ttilew, ttileh) == -1) goto bailout; } else if (quiet == 1) printf("N/A\n"); for (i = 0; i < ntilesw * ntilesh; i++) { tjFree(jpegBuf[i]); jpegBuf[i] = NULL; } free(jpegBuf); jpegBuf = NULL; free(jpegSize); jpegSize = NULL; if (tilew == w && tileh == h) break; } bailout: if (file) fclose(file); if (jpegBuf) { for (i = 0; i < ntilesw * ntilesh; i++) tjFree(jpegBuf[i]); } free(jpegBuf); free(jpegSize); free(srcBuf); free(t); if (handle) { tjDestroy(handle); handle = NULL; } return retval; } static void usage(char *progName) { int i; printf("USAGE: %s\n", progName); printf(" [options]\n\n"); printf(" %s\n", progName); printf(" [options]\n\n"); printf("Options:\n\n"); printf("-alloc = Dynamically allocate JPEG buffers\n"); printf("-bmp = Use Windows Bitmap format for output images [default = PPM]\n"); printf("-bottomup = Use bottom-up row order for packed-pixel source/destination buffers\n"); printf("-tile = Compress/transform the input image into separate JPEG tiles of varying\n"); printf(" sizes (useful for measuring JPEG overhead)\n"); printf("-rgb, -bgr, -rgbx, -bgrx, -xbgr, -xrgb =\n"); printf(" Use the specified pixel format for packed-pixel source/destination buffers\n"); printf(" [default = BGR]\n"); printf("-cmyk = Indirectly test YCCK JPEG compression/decompression\n"); printf(" (use the CMYK pixel format for packed-pixel source/destination buffers)\n"); printf("-fastupsample = Use the fastest chrominance upsampling algorithm available\n"); printf("-fastdct = Use the fastest DCT/IDCT algorithm available\n"); printf("-accuratedct = Use the most accurate DCT/IDCT algorithm available\n"); printf("-progressive = Use progressive entropy coding in JPEG images generated by\n"); printf(" compression and transform operations\n"); printf("-subsamp = When compressing, use the specified level of chrominance\n"); printf(" subsampling ( = 444, 422, 440, 420, 411, or GRAY) [default = test\n"); printf(" Grayscale, 4:2:0, 4:2:2, and 4:4:4 in sequence]\n"); printf("-quiet = Output results in tabular rather than verbose format\n"); printf("-yuv = Compress from/decompress to intermediate planar YUV images\n"); printf("-yuvpad

    = The number of bytes by which each row in each plane of an\n"); printf(" intermediate YUV image is evenly divisible (must be a power of 2)\n"); printf(" [default = 1]\n"); printf("-scale M/N = When decompressing, scale the width/height of the JPEG image by a\n"); printf(" factor of M/N (M/N = "); for (i = 0; i < nsf; i++) { printf("%d/%d", scalingFactors[i].num, scalingFactors[i].denom); if (nsf == 2 && i != nsf - 1) printf(" or "); else if (nsf > 2) { if (i != nsf - 1) printf(", "); if (i == nsf - 2) printf("or "); } if (i % 8 == 0 && i != 0) printf("\n "); } printf(")\n"); printf("-hflip, -vflip, -transpose, -transverse, -rot90, -rot180, -rot270 =\n"); printf(" Perform the specified lossless transform operation on the input image\n"); printf(" prior to decompression (these operations are mutually exclusive)\n"); printf("-grayscale = Transform the input image into a grayscale JPEG image prior to\n"); printf(" decompression (can be combined with the other transform operations above)\n"); printf("-copynone = Do not copy any extra markers (including EXIF and ICC profile data)\n"); printf(" when transforming the input image\n"); printf("-benchtime = Run each benchmark for at least seconds [default = 5.0]\n"); printf("-warmup = Run each benchmark for seconds [default = 1.0] prior to\n"); printf(" starting the timer, in order to prime the caches and thus improve the\n"); printf(" consistency of the benchmark results\n"); printf("-componly = Stop after running compression tests. Do not test decompression.\n"); printf("-nowrite = Do not write reference or output images (improves consistency of\n"); printf(" benchmark results)\n"); printf("-limitscans = Refuse to decompress or transform progressive JPEG images that\n"); printf(" have an unreasonably large number of scans\n"); printf("-stoponwarning = Immediately discontinue the current\n"); printf(" compression/decompression/transform operation if a warning (non-fatal\n"); printf(" error) occurs\n\n"); printf("NOTE: If the quality is specified as a range (e.g. 90-100), a separate\n"); printf("test will be performed for all quality values in the range.\n\n"); exit(1); } int main(int argc, char *argv[]) { unsigned char *srcBuf = NULL; int w = 0, h = 0, i, j, minQual = -1, maxQual = -1; char *temp; int minArg = 2, retval = 0, subsamp = -1; if ((scalingFactors = tjGetScalingFactors(&nsf)) == NULL || nsf == 0) THROW("executing tjGetScalingFactors()", tjGetErrorStr()); if (argc < minArg) usage(argv[0]); temp = strrchr(argv[1], '.'); if (temp != NULL) { if (!strcasecmp(temp, ".bmp")) ext = "bmp"; if (!strcasecmp(temp, ".jpg") || !strcasecmp(temp, ".jpeg")) decompOnly = 1; } printf("\n"); if (!decompOnly) { minArg = 3; if (argc < minArg) usage(argv[0]); if ((minQual = atoi(argv[2])) < 1 || minQual > 100) { puts("ERROR: Quality must be between 1 and 100."); exit(1); } if ((temp = strchr(argv[2], '-')) != NULL && strlen(temp) > 1 && sscanf(&temp[1], "%d", &maxQual) == 1 && maxQual > minQual && maxQual >= 1 && maxQual <= 100) {} else maxQual = minQual; } if (argc > minArg) { for (i = minArg; i < argc; i++) { if (!strcasecmp(argv[i], "-tile")) { doTile = 1; xformOpt |= TJXOPT_CROP; } else if (!strcasecmp(argv[i], "-fastupsample")) { printf("Using fastest upsampling algorithm\n\n"); flags |= TJFLAG_FASTUPSAMPLE; } else if (!strcasecmp(argv[i], "-fastdct")) { printf("Using fastest DCT/IDCT algorithm\n\n"); flags |= TJFLAG_FASTDCT; } else if (!strcasecmp(argv[i], "-accuratedct")) { printf("Using most accurate DCT/IDCT algorithm\n\n"); flags |= TJFLAG_ACCURATEDCT; } else if (!strcasecmp(argv[i], "-progressive")) { printf("Using progressive entropy coding\n\n"); flags |= TJFLAG_PROGRESSIVE; xformOpt |= TJXOPT_PROGRESSIVE; } else if (!strcasecmp(argv[i], "-rgb")) pf = TJPF_RGB; else if (!strcasecmp(argv[i], "-rgbx")) pf = TJPF_RGBX; else if (!strcasecmp(argv[i], "-bgr")) pf = TJPF_BGR; else if (!strcasecmp(argv[i], "-bgrx")) pf = TJPF_BGRX; else if (!strcasecmp(argv[i], "-xbgr")) pf = TJPF_XBGR; else if (!strcasecmp(argv[i], "-xrgb")) pf = TJPF_XRGB; else if (!strcasecmp(argv[i], "-cmyk")) pf = TJPF_CMYK; else if (!strcasecmp(argv[i], "-bottomup")) flags |= TJFLAG_BOTTOMUP; else if (!strcasecmp(argv[i], "-quiet")) quiet = 1; else if (!strcasecmp(argv[i], "-qq")) quiet = 2; else if (!strcasecmp(argv[i], "-scale") && i < argc - 1) { int temp1 = 0, temp2 = 0, match = 0; if (sscanf(argv[++i], "%d/%d", &temp1, &temp2) == 2) { for (j = 0; j < nsf; j++) { if ((double)temp1 / (double)temp2 == (double)scalingFactors[j].num / (double)scalingFactors[j].denom) { sf = scalingFactors[j]; match = 1; break; } } if (!match) usage(argv[0]); } else usage(argv[0]); } else if (!strcasecmp(argv[i], "-hflip")) xformOp = TJXOP_HFLIP; else if (!strcasecmp(argv[i], "-vflip")) xformOp = TJXOP_VFLIP; else if (!strcasecmp(argv[i], "-transpose")) xformOp = TJXOP_TRANSPOSE; else if (!strcasecmp(argv[i], "-transverse")) xformOp = TJXOP_TRANSVERSE; else if (!strcasecmp(argv[i], "-rot90")) xformOp = TJXOP_ROT90; else if (!strcasecmp(argv[i], "-rot180")) xformOp = TJXOP_ROT180; else if (!strcasecmp(argv[i], "-rot270")) xformOp = TJXOP_ROT270; else if (!strcasecmp(argv[i], "-grayscale")) xformOpt |= TJXOPT_GRAY; else if (!strcasecmp(argv[i], "-custom")) customFilter = dummyDCTFilter; else if (!strcasecmp(argv[i], "-nooutput")) xformOpt |= TJXOPT_NOOUTPUT; else if (!strcasecmp(argv[i], "-copynone")) xformOpt |= TJXOPT_COPYNONE; else if (!strcasecmp(argv[i], "-benchtime") && i < argc - 1) { double tempd = atof(argv[++i]); if (tempd > 0.0) benchTime = tempd; else usage(argv[0]); } else if (!strcasecmp(argv[i], "-warmup") && i < argc - 1) { double tempd = atof(argv[++i]); if (tempd >= 0.0) warmup = tempd; else usage(argv[0]); printf("Warmup time = %.1f seconds\n\n", warmup); } else if (!strcasecmp(argv[i], "-alloc")) flags &= (~TJFLAG_NOREALLOC); else if (!strcasecmp(argv[i], "-bmp")) ext = "bmp"; else if (!strcasecmp(argv[i], "-yuv")) { printf("Testing planar YUV encoding/decoding\n\n"); doYUV = 1; } else if (!strcasecmp(argv[i], "-yuvpad") && i < argc - 1) { int tempi = atoi(argv[++i]); if (tempi >= 1 && (tempi & (tempi - 1)) == 0) yuvAlign = tempi; else usage(argv[0]); } else if (!strcasecmp(argv[i], "-subsamp") && i < argc - 1) { i++; if (toupper(argv[i][0]) == 'G') subsamp = TJSAMP_GRAY; else { int tempi = atoi(argv[i]); switch (tempi) { case 444: subsamp = TJSAMP_444; break; case 422: subsamp = TJSAMP_422; break; case 440: subsamp = TJSAMP_440; break; case 420: subsamp = TJSAMP_420; break; case 411: subsamp = TJSAMP_411; break; default: usage(argv[0]); } } } else if (!strcasecmp(argv[i], "-componly")) compOnly = 1; else if (!strcasecmp(argv[i], "-nowrite")) doWrite = 0; else if (!strcasecmp(argv[i], "-limitscans")) flags |= TJFLAG_LIMITSCANS; else if (!strcasecmp(argv[i], "-stoponwarning")) flags |= TJFLAG_STOPONWARNING; else usage(argv[0]); } } if ((sf.num != 1 || sf.denom != 1) && doTile) { printf("Disabling tiled compression/decompression tests, because those tests do not\n"); printf("work when scaled decompression is enabled.\n\n"); doTile = 0; xformOpt &= (~TJXOPT_CROP); } if ((flags & TJFLAG_NOREALLOC) == 0 && doTile) { printf("Disabling tiled compression/decompression tests, because those tests do not\n"); printf("work when dynamic JPEG buffer allocation is enabled.\n\n"); doTile = 0; xformOpt &= (~TJXOPT_CROP); } if (!decompOnly) { if ((srcBuf = tjLoadImage(argv[1], &w, 1, &h, &pf, flags)) == NULL) THROW_TJG("loading input image"); temp = strrchr(argv[1], '.'); if (temp != NULL) *temp = '\0'; } if (quiet == 1 && !decompOnly) { printf("All performance values in Mpixels/sec\n\n"); printf("Pixel JPEG JPEG %s %s ", doTile ? "Tile " : "Image", doTile ? "Tile " : "Image"); if (doYUV) printf("Encode "); printf("Comp Comp Decomp "); if (doYUV) printf("Decode"); printf("\n"); printf("Format Subsamp Qual Width Height "); if (doYUV) printf("Perf "); printf("Perf Ratio Perf "); if (doYUV) printf("Perf"); printf("\n\n"); } if (decompOnly) { decompTest(argv[1]); printf("\n"); goto bailout; } if (subsamp >= 0 && subsamp < TJ_NUMSAMP) { for (i = maxQual; i >= minQual; i--) fullTest(srcBuf, w, h, subsamp, i, argv[1]); printf("\n"); } else { if (pf != TJPF_CMYK) { for (i = maxQual; i >= minQual; i--) fullTest(srcBuf, w, h, TJSAMP_GRAY, i, argv[1]); printf("\n"); } for (i = maxQual; i >= minQual; i--) fullTest(srcBuf, w, h, TJSAMP_420, i, argv[1]); printf("\n"); for (i = maxQual; i >= minQual; i--) fullTest(srcBuf, w, h, TJSAMP_422, i, argv[1]); printf("\n"); for (i = maxQual; i >= minQual; i--) fullTest(srcBuf, w, h, TJSAMP_444, i, argv[1]); printf("\n"); } bailout: tjFree(srcBuf); return retval; } libjpeg-turbo-2.1.5/tjbenchtest.in000077500000000000000000000272401436506551100171470ustar00rootroot00000000000000#!/bin/bash set -u set -e trap onexit INT trap onexit TERM trap onexit EXIT onexit() { if [ -d $OUTDIR ]; then rm -rf $OUTDIR fi } runme() { echo \*\*\* $* $* } EXT=bmp IMAGES="vgl_5674_0098.${EXT} vgl_6434_0018a.${EXT} vgl_6548_0026a.${EXT} nightshot_iso_100.${EXT}" IMGDIR=@CMAKE_CURRENT_SOURCE_DIR@/testimages OUTDIR=`mktemp -d /tmp/__tjbenchtest_output.XXXXXX` EXEDIR=@CMAKE_CURRENT_BINARY_DIR@ BMPARG= NSARG= YUVARG= ALLOC=0 ALLOCARG= PROGARG= if [ "$EXT" = "bmp" ]; then BMPARG=-bmp; fi if [ -d $OUTDIR ]; then rm -rf $OUTDIR fi mkdir -p $OUTDIR while [ $# -gt 0 ]; do case "$1" in -yuv) NSARG=-nosmooth YUVARG=-yuv # NOTE: The combination of tjEncodeYUV*() and tjCompressFromYUV*() does not # always produce bitwise-identical results to tjCompress*() if subsampling is # enabled. In both cases, if the image width or height are not evenly # divisible by the MCU width/height, then the bottom and/or right edge are # expanded. However, the libjpeg code performs this expansion prior to # downsampling, and TurboJPEG performs it in tjCompressFromYUV*(), which is # after downsampling. Thus, the two will agree only if the width/height along # each downsampled dimension is an odd number or is evenly divisible by the MCU # width/height. This disagreement basically amounts to a round-off error, but # there is no easy way around it, so for now, we just test the only image that # works. (NOTE: nightshot_iso_100 does not suffer from the above issue, but # it suffers from an unrelated problem whereby the combination of # tjDecompressToYUV*() and tjDecodeYUV*() do not produce bitwise-identical # results to tjDecompress*() if decompression scaling is enabled. This latter # phenomenon is not yet fully understood but is also believed to be some sort # of round-off error.) IMAGES="vgl_6548_0026a.${EXT}" ;; -alloc) ALLOCARG=-alloc ALLOC=1 ;; -progressive) PROGARG=-progressive ;; esac shift done exec >$EXEDIR/tjbenchtest$YUVARG$ALLOCARG$PROGARG.log # Standard tests for image in $IMAGES; do cp $IMGDIR/$image $OUTDIR basename=`basename $image .${EXT}` runme $EXEDIR/cjpeg -quality 95 -dct fast $PROGARG -grayscale -outfile $OUTDIR/${basename}_GRAY_fast_cjpeg.jpg $IMGDIR/${basename}.${EXT} runme $EXEDIR/cjpeg -quality 95 -dct fast $PROGARG -sample 2x2 -outfile $OUTDIR/${basename}_420_fast_cjpeg.jpg $IMGDIR/${basename}.${EXT} runme $EXEDIR/cjpeg -quality 95 -dct fast $PROGARG -sample 2x1 -outfile $OUTDIR/${basename}_422_fast_cjpeg.jpg $IMGDIR/${basename}.${EXT} runme $EXEDIR/cjpeg -quality 95 -dct fast $PROGARG -sample 1x1 -outfile $OUTDIR/${basename}_444_fast_cjpeg.jpg $IMGDIR/${basename}.${EXT} runme $EXEDIR/cjpeg -quality 95 -dct int $PROGARG -grayscale -outfile $OUTDIR/${basename}_GRAY_accurate_cjpeg.jpg $IMGDIR/${basename}.${EXT} runme $EXEDIR/cjpeg -quality 95 -dct int $PROGARG -sample 2x2 -outfile $OUTDIR/${basename}_420_accurate_cjpeg.jpg $IMGDIR/${basename}.${EXT} runme $EXEDIR/cjpeg -quality 95 -dct int $PROGARG -sample 2x1 -outfile $OUTDIR/${basename}_422_accurate_cjpeg.jpg $IMGDIR/${basename}.${EXT} runme $EXEDIR/cjpeg -quality 95 -dct int $PROGARG -sample 1x1 -outfile $OUTDIR/${basename}_444_accurate_cjpeg.jpg $IMGDIR/${basename}.${EXT} for samp in GRAY 420 422 444; do runme $EXEDIR/djpeg -rgb $NSARG $BMPARG -outfile $OUTDIR/${basename}_${samp}_default_djpeg.${EXT} $OUTDIR/${basename}_${samp}_fast_cjpeg.jpg runme $EXEDIR/djpeg -dct fast -rgb $NSARG $BMPARG -outfile $OUTDIR/${basename}_${samp}_fast_djpeg.${EXT} $OUTDIR/${basename}_${samp}_fast_cjpeg.jpg runme $EXEDIR/djpeg -dct int -rgb $NSARG $BMPARG -outfile $OUTDIR/${basename}_${samp}_accurate_djpeg.${EXT} $OUTDIR/${basename}_${samp}_accurate_cjpeg.jpg done for samp in 420 422; do runme $EXEDIR/djpeg -nosmooth $BMPARG -outfile $OUTDIR/${basename}_${samp}_default_nosmooth_djpeg.${EXT} $OUTDIR/${basename}_${samp}_fast_cjpeg.jpg runme $EXEDIR/djpeg -dct fast -nosmooth $BMPARG -outfile $OUTDIR/${basename}_${samp}_fast_nosmooth_djpeg.${EXT} $OUTDIR/${basename}_${samp}_fast_cjpeg.jpg runme $EXEDIR/djpeg -dct int -nosmooth $BMPARG -outfile $OUTDIR/${basename}_${samp}_accurate_nosmooth_djpeg.${EXT} $OUTDIR/${basename}_${samp}_accurate_cjpeg.jpg done # Compression for dct in accurate fast; do runme $EXEDIR/tjbench $OUTDIR/$image 95 -rgb -quiet -benchtime 0.01 -warmup 0 -${dct}dct $YUVARG $ALLOCARG $PROGARG for samp in GRAY 420 422 444; do runme cmp $OUTDIR/${basename}_${samp}_Q95.jpg $OUTDIR/${basename}_${samp}_${dct}_cjpeg.jpg done done for dct in fast accurate default; do dctarg=-${dct}dct if [ "${dct}" = "default" ]; then dctarg= fi # Tiled compression & decompression runme $EXEDIR/tjbench $OUTDIR/$image 95 -rgb -tile -quiet -benchtime 0.01 -warmup 0 ${dctarg} $YUVARG $ALLOCARG $PROGARG for samp in GRAY 444; do if [ $ALLOC = 1 ]; then runme cmp $OUTDIR/${basename}_${samp}_Q95_full.${EXT} $OUTDIR/${basename}_${samp}_${dct}_djpeg.${EXT} rm $OUTDIR/${basename}_${samp}_Q95_full.${EXT} else for i in $OUTDIR/${basename}_${samp}_Q95_[0-9]*[0-9]x[0-9]*[0-9].${EXT} \ $OUTDIR/${basename}_${samp}_Q95_full.${EXT}; do runme cmp $i $OUTDIR/${basename}_${samp}_${dct}_djpeg.${EXT} rm $i done fi done runme $EXEDIR/tjbench $OUTDIR/$image 95 -rgb -tile -quiet -benchtime 0.01 -warmup 0 -fastupsample ${dctarg} $YUVARG $ALLOCARG $PROGARG for samp in 420 422; do if [ $ALLOC = 1 ]; then runme cmp $OUTDIR/${basename}_${samp}_Q95_full.${EXT} $OUTDIR/${basename}_${samp}_${dct}_nosmooth_djpeg.${EXT} rm $OUTDIR/${basename}_${samp}_Q95_full.${EXT} else for i in $OUTDIR/${basename}_${samp}_Q95_[0-9]*[0-9]x[0-9]*[0-9].${EXT} \ $OUTDIR/${basename}_${samp}_Q95_full.${EXT}; do runme cmp $i $OUTDIR/${basename}_${samp}_${dct}_nosmooth_djpeg.${EXT} rm $i done fi done # Tiled decompression for samp in GRAY 444; do runme $EXEDIR/tjbench $OUTDIR/${basename}_${samp}_Q95.jpg $BMPARG -tile -quiet -benchtime 0.01 -warmup 0 ${dctarg} $YUVARG $ALLOCARG $PROGARG if [ $ALLOC = 1 ]; then runme cmp $OUTDIR/${basename}_${samp}_Q95_full.${EXT} $OUTDIR/${basename}_${samp}_${dct}_djpeg.${EXT} rm $OUTDIR/${basename}_${samp}_Q95_full.${EXT} else for i in $OUTDIR/${basename}_${samp}_Q95_[0-9]*[0-9]x[0-9]*[0-9].${EXT} \ $OUTDIR/${basename}_${samp}_Q95_full.${EXT}; do runme cmp $i $OUTDIR/${basename}_${samp}_${dct}_djpeg.${EXT} rm $i done fi done for samp in 420 422; do runme $EXEDIR/tjbench $OUTDIR/${basename}_${samp}_Q95.jpg $BMPARG -tile -quiet -benchtime 0.01 -warmup 0 -fastupsample ${dctarg} $YUVARG $ALLOCARG $PROGARG if [ $ALLOC = 1 ]; then runme cmp $OUTDIR/${basename}_${samp}_Q95_full.${EXT} $OUTDIR/${basename}_${samp}_${dct}_nosmooth_djpeg.${EXT} rm $OUTDIR/${basename}_${samp}_Q95_full.${EXT} else for i in $OUTDIR/${basename}_${samp}_Q95_[0-9]*[0-9]x[0-9]*[0-9].${EXT} \ $OUTDIR/${basename}_${samp}_Q95_full.${EXT}; do runme cmp $i $OUTDIR/${basename}_${samp}_${dct}_nosmooth_djpeg.${EXT} rm $i done fi done done # Scaled decompression for scale in 2_1 15_8 7_4 13_8 3_2 11_8 5_4 9_8 7_8 3_4 5_8 1_2 3_8 1_4 1_8; do scalearg=`echo $scale | sed 's/\_/\//g'` for samp in GRAY 420 422 444; do runme $EXEDIR/djpeg -rgb -scale ${scalearg} $NSARG $BMPARG -outfile $OUTDIR/${basename}_${samp}_${scale}_djpeg.${EXT} $OUTDIR/${basename}_${samp}_fast_cjpeg.jpg runme $EXEDIR/tjbench $OUTDIR/${basename}_${samp}_Q95.jpg $BMPARG -scale ${scalearg} -quiet -benchtime 0.01 -warmup 0 $YUVARG $ALLOCARG $PROGARG runme cmp $OUTDIR/${basename}_${samp}_Q95_${scale}.${EXT} $OUTDIR/${basename}_${samp}_${scale}_djpeg.${EXT} rm $OUTDIR/${basename}_${samp}_Q95_${scale}.${EXT} done done # Transforms for samp in GRAY 420 422 444; do runme $EXEDIR/jpegtran -flip horizontal -trim -outfile $OUTDIR/${basename}_${samp}_hflip_jpegtran.jpg $OUTDIR/${basename}_${samp}_Q95.jpg runme $EXEDIR/jpegtran -flip vertical -trim -outfile $OUTDIR/${basename}_${samp}_vflip_jpegtran.jpg $OUTDIR/${basename}_${samp}_Q95.jpg runme $EXEDIR/jpegtran -transpose -trim -outfile $OUTDIR/${basename}_${samp}_transpose_jpegtran.jpg $OUTDIR/${basename}_${samp}_Q95.jpg runme $EXEDIR/jpegtran -transverse -trim -outfile $OUTDIR/${basename}_${samp}_transverse_jpegtran.jpg $OUTDIR/${basename}_${samp}_Q95.jpg runme $EXEDIR/jpegtran -rotate 90 -trim -outfile $OUTDIR/${basename}_${samp}_rot90_jpegtran.jpg $OUTDIR/${basename}_${samp}_Q95.jpg runme $EXEDIR/jpegtran -rotate 180 -trim -outfile $OUTDIR/${basename}_${samp}_rot180_jpegtran.jpg $OUTDIR/${basename}_${samp}_Q95.jpg runme $EXEDIR/jpegtran -rotate 270 -trim -outfile $OUTDIR/${basename}_${samp}_rot270_jpegtran.jpg $OUTDIR/${basename}_${samp}_Q95.jpg done for xform in hflip vflip transpose transverse rot90 rot180 rot270; do for samp in GRAY 444; do runme $EXEDIR/djpeg -rgb $BMPARG -outfile $OUTDIR/${basename}_${samp}_${xform}_jpegtran.${EXT} $OUTDIR/${basename}_${samp}_${xform}_jpegtran.jpg runme $EXEDIR/tjbench $OUTDIR/${basename}_${samp}_Q95.jpg $BMPARG -$xform -tile -quiet -benchtime 0.01 -warmup 0 $YUVARG $ALLOCARG $PROGARG if [ $ALLOC = 1 ]; then runme cmp $OUTDIR/${basename}_${samp}_Q95_full.${EXT} $OUTDIR/${basename}_${samp}_${xform}_jpegtran.${EXT} rm $OUTDIR/${basename}_${samp}_Q95_full.${EXT} else for i in $OUTDIR/${basename}_${samp}_Q95_[0-9]*[0-9]x[0-9]*[0-9].${EXT} \ $OUTDIR/${basename}_${samp}_Q95_full.${EXT}; do runme cmp $i $OUTDIR/${basename}_${samp}_${xform}_jpegtran.${EXT} rm $i done fi done for samp in 420 422; do runme $EXEDIR/djpeg -nosmooth -rgb $BMPARG -outfile $OUTDIR/${basename}_${samp}_${xform}_jpegtran.${EXT} $OUTDIR/${basename}_${samp}_${xform}_jpegtran.jpg runme $EXEDIR/tjbench $OUTDIR/${basename}_${samp}_Q95.jpg $BMPARG -$xform -tile -quiet -benchtime 0.01 -warmup 0 -fastupsample $YUVARG $ALLOCARG $PROGARG if [ $ALLOC = 1 ]; then runme cmp $OUTDIR/${basename}_${samp}_Q95_full.${EXT} $OUTDIR/${basename}_${samp}_${xform}_jpegtran.${EXT} rm $OUTDIR/${basename}_${samp}_Q95_full.${EXT} else for i in $OUTDIR/${basename}_${samp}_Q95_[0-9]*[0-9]x[0-9]*[0-9].${EXT} \ $OUTDIR/${basename}_${samp}_Q95_full.${EXT}; do runme cmp $i $OUTDIR/${basename}_${samp}_${xform}_jpegtran.${EXT} rm $i done fi done done # Grayscale transform for xform in hflip vflip transpose transverse rot90 rot180 rot270; do for samp in GRAY 444 422 420; do runme $EXEDIR/tjbench $OUTDIR/${basename}_${samp}_Q95.jpg $BMPARG -$xform -tile -quiet -benchtime 0.01 -warmup 0 -grayscale $YUVARG $ALLOCARG $PROGARG if [ $ALLOC = 1 ]; then runme cmp $OUTDIR/${basename}_${samp}_Q95_full.${EXT} $OUTDIR/${basename}_GRAY_${xform}_jpegtran.${EXT} rm $OUTDIR/${basename}_${samp}_Q95_full.${EXT} else for i in $OUTDIR/${basename}_${samp}_Q95_[0-9]*[0-9]x[0-9]*[0-9].${EXT} \ $OUTDIR/${basename}_${samp}_Q95_full.${EXT}; do runme cmp $i $OUTDIR/${basename}_GRAY_${xform}_jpegtran.${EXT} rm $i done fi done done # Transforms with scaling for xform in hflip vflip transpose transverse rot90 rot180 rot270; do for samp in GRAY 444 422 420; do for scale in 2_1 15_8 7_4 13_8 3_2 11_8 5_4 9_8 7_8 3_4 5_8 1_2 3_8 1_4 1_8; do scalearg=`echo $scale | sed 's/\_/\//g'` runme $EXEDIR/djpeg -rgb -scale ${scalearg} $NSARG $BMPARG -outfile $OUTDIR/${basename}_${samp}_${xform}_${scale}_jpegtran.${EXT} $OUTDIR/${basename}_${samp}_${xform}_jpegtran.jpg runme $EXEDIR/tjbench $OUTDIR/${basename}_${samp}_Q95.jpg $BMPARG -$xform -scale ${scalearg} -quiet -benchtime 0.01 -warmup 0 $YUVARG $ALLOCARG $PROGARG runme cmp $OUTDIR/${basename}_${samp}_Q95_${scale}.${EXT} $OUTDIR/${basename}_${samp}_${xform}_${scale}_jpegtran.${EXT} rm $OUTDIR/${basename}_${samp}_Q95_${scale}.${EXT} done done done done echo SUCCESS! libjpeg-turbo-2.1.5/tjbenchtest.java.in000077500000000000000000000240711436506551100200660ustar00rootroot00000000000000#!/bin/bash set -u set -e trap onexit INT trap onexit TERM trap onexit EXIT onexit() { if [ -d $OUTDIR ]; then rm -rf $OUTDIR fi } runme() { echo \*\*\* $* "$@" } IMAGES="vgl_5674_0098.bmp vgl_6434_0018a.bmp vgl_6548_0026a.bmp nightshot_iso_100.bmp" IMGDIR=@CMAKE_CURRENT_SOURCE_DIR@/testimages OUTDIR=`mktemp -d /tmp/__tjbenchtest_java_output.XXXXXX` EXEDIR=@CMAKE_CURRENT_BINARY_DIR@ JAVA="@Java_JAVA_EXECUTABLE@" JAVAARGS="-cp $EXEDIR/java/turbojpeg.jar -Djava.library.path=$EXEDIR" BMPARG= NSARG= YUVARG= PROGARG= if [ -d $OUTDIR ]; then rm -rf $OUTDIR fi mkdir -p $OUTDIR while [ $# -gt 0 ]; do case "$1" in -yuv) NSARG=-nosmooth YUVARG=-yuv # NOTE: The combination of tjEncodeYUV*() and tjCompressFromYUV*() does not # always produce bitwise-identical results to tjCompress*() if subsampling is # enabled. In both cases, if the image width or height are not evenly # divisible by the MCU width/height, then the bottom and/or right edge are # expanded. However, the libjpeg code performs this expansion prior to # downsampling, and TurboJPEG performs it in tjCompressFromYUV*(), which is # after downsampling. Thus, the two will agree only if the width/height along # each downsampled dimension is an odd number or is evenly divisible by the MCU # width/height. This disagreement basically amounts to a round-off error, but # there is no easy way around it, so for now, we just test the only image that # works. (NOTE: nightshot_iso_100 does not suffer from the above issue, but # it suffers from an unrelated problem whereby the combination of # tjDecompressToYUV*() and tjDecodeYUV*() do not produce bitwise-identical # results to tjDecompress*() if decompression scaling is enabled. This latter # phenomenon is not yet fully understood but is also believed to be some sort # of round-off error.) IMAGES="vgl_6548_0026a.bmp" ;; -progressive) PROGARG=-progressive ;; esac shift done exec >$EXEDIR/tjbenchtest-java$YUVARG$PROGARG.log # Standard tests for image in $IMAGES; do cp $IMGDIR/$image $OUTDIR basename=`basename $image .bmp` runme $EXEDIR/cjpeg -quality 95 -dct fast $PROGARG -grayscale -outfile $OUTDIR/${basename}_GRAY_fast_cjpeg.jpg $IMGDIR/${basename}.bmp runme $EXEDIR/cjpeg -quality 95 -dct fast $PROGARG -sample 2x2 -outfile $OUTDIR/${basename}_420_fast_cjpeg.jpg $IMGDIR/${basename}.bmp runme $EXEDIR/cjpeg -quality 95 -dct fast $PROGARG -sample 2x1 -outfile $OUTDIR/${basename}_422_fast_cjpeg.jpg $IMGDIR/${basename}.bmp runme $EXEDIR/cjpeg -quality 95 -dct fast $PROGARG -sample 1x1 -outfile $OUTDIR/${basename}_444_fast_cjpeg.jpg $IMGDIR/${basename}.bmp runme $EXEDIR/cjpeg -quality 95 -dct int $PROGARG -grayscale -outfile $OUTDIR/${basename}_GRAY_accurate_cjpeg.jpg $IMGDIR/${basename}.bmp runme $EXEDIR/cjpeg -quality 95 -dct int $PROGARG -sample 2x2 -outfile $OUTDIR/${basename}_420_accurate_cjpeg.jpg $IMGDIR/${basename}.bmp runme $EXEDIR/cjpeg -quality 95 -dct int $PROGARG -sample 2x1 -outfile $OUTDIR/${basename}_422_accurate_cjpeg.jpg $IMGDIR/${basename}.bmp runme $EXEDIR/cjpeg -quality 95 -dct int $PROGARG -sample 1x1 -outfile $OUTDIR/${basename}_444_accurate_cjpeg.jpg $IMGDIR/${basename}.bmp for samp in GRAY 420 422 444; do runme $EXEDIR/djpeg -rgb -bmp -outfile $OUTDIR/${basename}_${samp}_default_djpeg.bmp $OUTDIR/${basename}_${samp}_fast_cjpeg.jpg runme $EXEDIR/djpeg -dct fast -rgb -bmp -outfile $OUTDIR/${basename}_${samp}_fast_djpeg.bmp $OUTDIR/${basename}_${samp}_fast_cjpeg.jpg runme $EXEDIR/djpeg -dct int -rgb -bmp -outfile $OUTDIR/${basename}_${samp}_accurate_djpeg.bmp $OUTDIR/${basename}_${samp}_accurate_cjpeg.jpg done for samp in 420 422; do runme $EXEDIR/djpeg -nosmooth -bmp -outfile $OUTDIR/${basename}_${samp}_default_nosmooth_djpeg.bmp $OUTDIR/${basename}_${samp}_fast_cjpeg.jpg runme $EXEDIR/djpeg -dct fast -nosmooth -bmp -outfile $OUTDIR/${basename}_${samp}_fast_nosmooth_djpeg.bmp $OUTDIR/${basename}_${samp}_fast_cjpeg.jpg runme $EXEDIR/djpeg -dct int -nosmooth -bmp -outfile $OUTDIR/${basename}_${samp}_accurate_nosmooth_djpeg.bmp $OUTDIR/${basename}_${samp}_accurate_cjpeg.jpg done # Compression for dct in accurate fast; do runme "$JAVA" $JAVAARGS TJBench $OUTDIR/$image 95 -rgb -quiet -benchtime 0.01 -warmup 0 -${dct}dct $YUVARG $PROGARG for samp in GRAY 420 422 444; do runme cmp $OUTDIR/${basename}_${samp}_Q95.jpg $OUTDIR/${basename}_${samp}_${dct}_cjpeg.jpg done done for dct in fast accurate default; do dctarg=-${dct}dct if [ "${dct}" = "default" ]; then dctarg= fi # Tiled compression & decompression runme "$JAVA" $JAVAARGS TJBench $OUTDIR/$image 95 -rgb -tile -quiet -benchtime 0.01 -warmup 0 ${dctarg} $YUVARG $PROGARG for samp in GRAY 444; do for i in $OUTDIR/${basename}_${samp}_Q95_[0-9]*[0-9]x[0-9]*[0-9].bmp \ $OUTDIR/${basename}_${samp}_Q95_full.bmp; do runme cmp -i 54:54 $i $OUTDIR/${basename}_${samp}_${dct}_djpeg.bmp rm $i done done runme "$JAVA" $JAVAARGS TJBench $OUTDIR/$image 95 -rgb -tile -quiet -benchtime 0.01 -warmup 0 -fastupsample ${dctarg} $YUVARG $PROGARG for samp in 420 422; do for i in $OUTDIR/${basename}_${samp}_Q95_[0-9]*[0-9]x[0-9]*[0-9].bmp \ $OUTDIR/${basename}_${samp}_Q95_full.bmp; do runme cmp -i 54:54 $i $OUTDIR/${basename}_${samp}_${dct}_nosmooth_djpeg.bmp rm $i done done # Tiled decompression for samp in GRAY 444; do runme "$JAVA" $JAVAARGS TJBench $OUTDIR/${basename}_${samp}_Q95.jpg -tile -quiet -benchtime 0.01 -warmup 0 ${dctarg} $YUVARG $PROGARG for i in $OUTDIR/${basename}_${samp}_Q95_[0-9]*[0-9]x[0-9]*[0-9].bmp \ $OUTDIR/${basename}_${samp}_Q95_full.bmp; do runme cmp -i 54:54 $i $OUTDIR/${basename}_${samp}_${dct}_djpeg.bmp rm $i done done for samp in 420 422; do runme "$JAVA" $JAVAARGS TJBench $OUTDIR/${basename}_${samp}_Q95.jpg -tile -quiet -benchtime 0.01 -warmup 0 -fastupsample ${dctarg} $YUVARG $PROGARG for i in $OUTDIR/${basename}_${samp}_Q95_[0-9]*[0-9]x[0-9]*[0-9].bmp \ $OUTDIR/${basename}_${samp}_Q95_full.bmp; do runme cmp $i -i 54:54 $OUTDIR/${basename}_${samp}_${dct}_nosmooth_djpeg.bmp rm $i done done done # Scaled decompression for scale in 2_1 15_8 7_4 13_8 3_2 11_8 5_4 9_8 7_8 3_4 5_8 1_2 3_8 1_4 1_8; do scalearg=`echo $scale | sed 's/\_/\//g'` for samp in GRAY 420 422 444; do runme $EXEDIR/djpeg -rgb -scale ${scalearg} $NSARG -bmp -outfile $OUTDIR/${basename}_${samp}_${scale}_djpeg.bmp $OUTDIR/${basename}_${samp}_fast_cjpeg.jpg runme "$JAVA" $JAVAARGS TJBench $OUTDIR/${basename}_${samp}_Q95.jpg -scale ${scalearg} -quiet -benchtime 0.01 -warmup 0 $YUVARG $PROGARG runme cmp -i 54:54 $OUTDIR/${basename}_${samp}_Q95_${scale}.bmp $OUTDIR/${basename}_${samp}_${scale}_djpeg.bmp rm $OUTDIR/${basename}_${samp}_Q95_${scale}.bmp done done # Transforms for samp in GRAY 420 422 444; do runme $EXEDIR/jpegtran -flip horizontal -trim -outfile $OUTDIR/${basename}_${samp}_hflip_jpegtran.jpg $OUTDIR/${basename}_${samp}_Q95.jpg runme $EXEDIR/jpegtran -flip vertical -trim -outfile $OUTDIR/${basename}_${samp}_vflip_jpegtran.jpg $OUTDIR/${basename}_${samp}_Q95.jpg runme $EXEDIR/jpegtran -transpose -trim -outfile $OUTDIR/${basename}_${samp}_transpose_jpegtran.jpg $OUTDIR/${basename}_${samp}_Q95.jpg runme $EXEDIR/jpegtran -transverse -trim -outfile $OUTDIR/${basename}_${samp}_transverse_jpegtran.jpg $OUTDIR/${basename}_${samp}_Q95.jpg runme $EXEDIR/jpegtran -rotate 90 -trim -outfile $OUTDIR/${basename}_${samp}_rot90_jpegtran.jpg $OUTDIR/${basename}_${samp}_Q95.jpg runme $EXEDIR/jpegtran -rotate 180 -trim -outfile $OUTDIR/${basename}_${samp}_rot180_jpegtran.jpg $OUTDIR/${basename}_${samp}_Q95.jpg runme $EXEDIR/jpegtran -rotate 270 -trim -outfile $OUTDIR/${basename}_${samp}_rot270_jpegtran.jpg $OUTDIR/${basename}_${samp}_Q95.jpg done for xform in hflip vflip transpose transverse rot90 rot180 rot270; do for samp in GRAY 444; do runme $EXEDIR/djpeg -rgb -bmp -outfile $OUTDIR/${basename}_${samp}_${xform}_jpegtran.bmp $OUTDIR/${basename}_${samp}_${xform}_jpegtran.jpg runme "$JAVA" $JAVAARGS TJBench $OUTDIR/${basename}_${samp}_Q95.jpg -$xform -tile -quiet -benchtime 0.01 -warmup 0 $YUVARG $PROGARG for i in $OUTDIR/${basename}_${samp}_Q95_[0-9]*[0-9]x[0-9]*[0-9].bmp \ $OUTDIR/${basename}_${samp}_Q95_full.bmp; do runme cmp -i 54:54 $i $OUTDIR/${basename}_${samp}_${xform}_jpegtran.bmp rm $i done done for samp in 420 422; do runme $EXEDIR/djpeg -nosmooth -rgb -bmp -outfile $OUTDIR/${basename}_${samp}_${xform}_jpegtran.bmp $OUTDIR/${basename}_${samp}_${xform}_jpegtran.jpg runme "$JAVA" $JAVAARGS TJBench $OUTDIR/${basename}_${samp}_Q95.jpg -$xform -tile -quiet -benchtime 0.01 -warmup 0 -fastupsample $YUVARG $PROGARG for i in $OUTDIR/${basename}_${samp}_Q95_[0-9]*[0-9]x[0-9]*[0-9].bmp \ $OUTDIR/${basename}_${samp}_Q95_full.bmp; do runme cmp -i 54:54 $i $OUTDIR/${basename}_${samp}_${xform}_jpegtran.bmp rm $i done done done # Grayscale transform for xform in hflip vflip transpose transverse rot90 rot180 rot270; do for samp in GRAY 444 422 420; do runme "$JAVA" $JAVAARGS TJBench $OUTDIR/${basename}_${samp}_Q95.jpg -$xform -tile -quiet -benchtime 0.01 -warmup 0 -grayscale $YUVARG $PROGARG for i in $OUTDIR/${basename}_${samp}_Q95_[0-9]*[0-9]x[0-9]*[0-9].bmp \ $OUTDIR/${basename}_${samp}_Q95_full.bmp; do runme cmp -i 54:54 $i $OUTDIR/${basename}_GRAY_${xform}_jpegtran.bmp rm $i done done done # Transforms with scaling for xform in hflip vflip transpose transverse rot90 rot180 rot270; do for samp in GRAY 444 422 420; do for scale in 2_1 15_8 7_4 13_8 3_2 11_8 5_4 9_8 7_8 3_4 5_8 1_2 3_8 1_4 1_8; do scalearg=`echo $scale | sed 's/\_/\//g'` runme $EXEDIR/djpeg -rgb -scale ${scalearg} $NSARG -bmp -outfile $OUTDIR/${basename}_${samp}_${xform}_${scale}_jpegtran.bmp $OUTDIR/${basename}_${samp}_${xform}_jpegtran.jpg runme "$JAVA" $JAVAARGS TJBench $OUTDIR/${basename}_${samp}_Q95.jpg -$xform -scale ${scalearg} -quiet -benchtime 0.01 -warmup 0 $YUVARG $PROGARG runme cmp -i 54:54 $OUTDIR/${basename}_${samp}_Q95_${scale}.bmp $OUTDIR/${basename}_${samp}_${xform}_${scale}_jpegtran.bmp rm $OUTDIR/${basename}_${samp}_Q95_${scale}.bmp done done done done echo SUCCESS! libjpeg-turbo-2.1.5/tjexample.c000066400000000000000000000353261436506551100164400ustar00rootroot00000000000000/* * Copyright (C)2011-2012, 2014-2015, 2017, 2019, 2021-2023 * D. R. Commander. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * This program demonstrates how to compress, decompress, and transform JPEG * images using the TurboJPEG C API */ #ifdef _MSC_VER #define _CRT_SECURE_NO_DEPRECATE #endif #include #include #include #include #include #ifdef _WIN32 #define strcasecmp stricmp #define strncasecmp strnicmp #endif #define THROW(action, message) { \ printf("ERROR in line %d while %s:\n%s\n", __LINE__, action, message); \ retval = -1; goto bailout; \ } #define THROW_TJ(action) THROW(action, tjGetErrorStr2(tjInstance)) #define THROW_UNIX(action) THROW(action, strerror(errno)) #define DEFAULT_SUBSAMP TJSAMP_444 #define DEFAULT_QUALITY 95 const char *subsampName[TJ_NUMSAMP] = { "4:4:4", "4:2:2", "4:2:0", "Grayscale", "4:4:0", "4:1:1" }; const char *colorspaceName[TJ_NUMCS] = { "RGB", "YCbCr", "GRAY", "CMYK", "YCCK" }; tjscalingfactor *scalingFactors = NULL; int numScalingFactors = 0; /* DCT filter example. This produces a negative of the image. */ static int customFilter(short *coeffs, tjregion arrayRegion, tjregion planeRegion, int componentIndex, int transformIndex, tjtransform *transform) { int i; for (i = 0; i < arrayRegion.w * arrayRegion.h; i++) coeffs[i] = -coeffs[i]; return 0; } static void usage(char *programName) { int i; printf("\nUSAGE: %s [options]\n\n", programName); printf("Input and output images can be in Windows BMP or PBMPLUS (PPM/PGM) format. If\n"); printf("either filename ends in a .jpg extension, then the TurboJPEG API will be used\n"); printf("to compress or decompress the image.\n\n"); printf("Compression Options (used if the output image is a JPEG image)\n"); printf("--------------------------------------------------------------\n\n"); printf("-subsamp <444|422|420|gray> = Apply this level of chrominance subsampling when\n"); printf(" compressing the output image. The default is to use the same level of\n"); printf(" subsampling as in the input image, if the input image is also a JPEG\n"); printf(" image, or to use grayscale if the input image is a grayscale non-JPEG\n"); printf(" image, or to use %s subsampling otherwise.\n\n", subsampName[DEFAULT_SUBSAMP]); printf("-q <1-100> = Compress the output image with this JPEG quality level\n"); printf(" (default = %d).\n\n", DEFAULT_QUALITY); printf("Decompression Options (used if the input image is a JPEG image)\n"); printf("---------------------------------------------------------------\n\n"); printf("-scale M/N = Scale the input image by a factor of M/N when decompressing it.\n"); printf("(M/N = "); for (i = 0; i < numScalingFactors; i++) { printf("%d/%d", scalingFactors[i].num, scalingFactors[i].denom); if (numScalingFactors == 2 && i != numScalingFactors - 1) printf(" or "); else if (numScalingFactors > 2) { if (i != numScalingFactors - 1) printf(", "); if (i == numScalingFactors - 2) printf("or "); } } printf(")\n\n"); printf("-hflip, -vflip, -transpose, -transverse, -rot90, -rot180, -rot270 =\n"); printf(" Perform one of these lossless transform operations on the input image\n"); printf(" prior to decompressing it (these options are mutually exclusive.)\n\n"); printf("-grayscale = Perform lossless grayscale conversion on the input image prior\n"); printf(" to decompressing it (can be combined with the other transform operations\n"); printf(" above.)\n\n"); printf("-crop WxH+X+Y = Perform lossless cropping on the input image prior to\n"); printf(" decompressing it. X and Y specify the upper left corner of the cropping\n"); printf(" region, and W and H specify the width and height of the cropping region.\n"); printf(" X and Y must be evenly divible by the MCU block size (8x8 if the input\n"); printf(" image was compressed using no subsampling or grayscale, 16x8 if it was\n"); printf(" compressed using 4:2:2 subsampling, or 16x16 if it was compressed using\n"); printf(" 4:2:0 subsampling.)\n\n"); printf("General Options\n"); printf("---------------\n\n"); printf("-fastupsample = Use the fastest chrominance upsampling algorithm available\n\n"); printf("-fastdct = Use the fastest DCT/IDCT algorithm available\n\n"); printf("-accuratedct = Use the most accurate DCT/IDCT algorithm available\n\n"); exit(1); } int main(int argc, char **argv) { tjscalingfactor scalingFactor = { 1, 1 }; int outSubsamp = -1, outQual = -1; tjtransform xform; int flags = 0; int width, height; char *inFormat, *outFormat; FILE *jpegFile = NULL; unsigned char *imgBuf = NULL, *jpegBuf = NULL; int retval = 0, i, pixelFormat = TJPF_UNKNOWN; tjhandle tjInstance = NULL; if ((scalingFactors = tjGetScalingFactors(&numScalingFactors)) == NULL) THROW_TJ("getting scaling factors"); memset(&xform, 0, sizeof(tjtransform)); if (argc < 3) usage(argv[0]); /* Parse arguments. */ for (i = 3; i < argc; i++) { if (!strncasecmp(argv[i], "-sc", 3) && i < argc - 1) { int match = 0, temp1 = 0, temp2 = 0, j; if (sscanf(argv[++i], "%d/%d", &temp1, &temp2) < 2) usage(argv[0]); for (j = 0; j < numScalingFactors; j++) { if ((double)temp1 / (double)temp2 == (double)scalingFactors[j].num / (double)scalingFactors[j].denom) { scalingFactor = scalingFactors[j]; match = 1; break; } } if (match != 1) usage(argv[0]); } else if (!strncasecmp(argv[i], "-su", 3) && i < argc - 1) { i++; if (!strncasecmp(argv[i], "g", 1)) outSubsamp = TJSAMP_GRAY; else if (!strcasecmp(argv[i], "444")) outSubsamp = TJSAMP_444; else if (!strcasecmp(argv[i], "422")) outSubsamp = TJSAMP_422; else if (!strcasecmp(argv[i], "420")) outSubsamp = TJSAMP_420; else usage(argv[0]); } else if (!strncasecmp(argv[i], "-q", 2) && i < argc - 1) { outQual = atoi(argv[++i]); if (outQual < 1 || outQual > 100) usage(argv[0]); } else if (!strncasecmp(argv[i], "-g", 2)) xform.options |= TJXOPT_GRAY; else if (!strcasecmp(argv[i], "-hflip")) xform.op = TJXOP_HFLIP; else if (!strcasecmp(argv[i], "-vflip")) xform.op = TJXOP_VFLIP; else if (!strcasecmp(argv[i], "-transpose")) xform.op = TJXOP_TRANSPOSE; else if (!strcasecmp(argv[i], "-transverse")) xform.op = TJXOP_TRANSVERSE; else if (!strcasecmp(argv[i], "-rot90")) xform.op = TJXOP_ROT90; else if (!strcasecmp(argv[i], "-rot180")) xform.op = TJXOP_ROT180; else if (!strcasecmp(argv[i], "-rot270")) xform.op = TJXOP_ROT270; else if (!strcasecmp(argv[i], "-custom")) xform.customFilter = customFilter; else if (!strncasecmp(argv[i], "-c", 2) && i < argc - 1) { if (sscanf(argv[++i], "%dx%d+%d+%d", &xform.r.w, &xform.r.h, &xform.r.x, &xform.r.y) < 4 || xform.r.x < 0 || xform.r.y < 0 || xform.r.w < 1 || xform.r.h < 1) usage(argv[0]); xform.options |= TJXOPT_CROP; } else if (!strcasecmp(argv[i], "-fastupsample")) { printf("Using fast upsampling code\n"); flags |= TJFLAG_FASTUPSAMPLE; } else if (!strcasecmp(argv[i], "-fastdct")) { printf("Using fastest DCT/IDCT algorithm\n"); flags |= TJFLAG_FASTDCT; } else if (!strcasecmp(argv[i], "-accuratedct")) { printf("Using most accurate DCT/IDCT algorithm\n"); flags |= TJFLAG_ACCURATEDCT; } else usage(argv[0]); } /* Determine input and output image formats based on file extensions. */ inFormat = strrchr(argv[1], '.'); outFormat = strrchr(argv[2], '.'); if (inFormat == NULL || outFormat == NULL || strlen(inFormat) < 2 || strlen(outFormat) < 2) usage(argv[0]); inFormat = &inFormat[1]; outFormat = &outFormat[1]; if (!strcasecmp(inFormat, "jpg")) { /* Input image is a JPEG image. Decompress and/or transform it. */ long size; int inSubsamp, inColorspace; int doTransform = (xform.op != TJXOP_NONE || xform.options != 0 || xform.customFilter != NULL); unsigned long jpegSize; /* Read the JPEG file into memory. */ if ((jpegFile = fopen(argv[1], "rb")) == NULL) THROW_UNIX("opening input file"); if (fseek(jpegFile, 0, SEEK_END) < 0 || ((size = ftell(jpegFile)) < 0) || fseek(jpegFile, 0, SEEK_SET) < 0) THROW_UNIX("determining input file size"); if (size == 0) THROW("determining input file size", "Input file contains no data"); jpegSize = (unsigned long)size; if ((jpegBuf = (unsigned char *)tjAlloc(jpegSize)) == NULL) THROW_UNIX("allocating JPEG buffer"); if (fread(jpegBuf, jpegSize, 1, jpegFile) < 1) THROW_UNIX("reading input file"); fclose(jpegFile); jpegFile = NULL; if (doTransform) { /* Transform it. */ unsigned char *dstBuf = NULL; /* Dynamically allocate the JPEG buffer */ unsigned long dstSize = 0; if ((tjInstance = tjInitTransform()) == NULL) THROW_TJ("initializing transformer"); xform.options |= TJXOPT_TRIM; if (tjTransform(tjInstance, jpegBuf, jpegSize, 1, &dstBuf, &dstSize, &xform, flags) < 0) { tjFree(dstBuf); THROW_TJ("transforming input image"); } tjFree(jpegBuf); jpegBuf = dstBuf; jpegSize = dstSize; } else { if ((tjInstance = tjInitDecompress()) == NULL) THROW_TJ("initializing decompressor"); } if (tjDecompressHeader3(tjInstance, jpegBuf, jpegSize, &width, &height, &inSubsamp, &inColorspace) < 0) THROW_TJ("reading JPEG header"); printf("%s Image: %d x %d pixels, %s subsampling, %s colorspace\n", (doTransform ? "Transformed" : "Input"), width, height, subsampName[inSubsamp], colorspaceName[inColorspace]); if (!strcasecmp(outFormat, "jpg") && doTransform && scalingFactor.num == 1 && scalingFactor.denom == 1 && outSubsamp < 0 && outQual < 0) { /* Input image has been transformed, and no re-compression options have been selected. Write the transformed image to disk and exit. */ if ((jpegFile = fopen(argv[2], "wb")) == NULL) THROW_UNIX("opening output file"); if (fwrite(jpegBuf, jpegSize, 1, jpegFile) < 1) THROW_UNIX("writing output file"); fclose(jpegFile); jpegFile = NULL; goto bailout; } /* Scaling and/or a non-JPEG output image format and/or compression options have been selected, so we need to decompress the input/transformed image. */ width = TJSCALED(width, scalingFactor); height = TJSCALED(height, scalingFactor); if (outSubsamp < 0) outSubsamp = inSubsamp; pixelFormat = TJPF_BGRX; if ((imgBuf = (unsigned char *)tjAlloc(width * height * tjPixelSize[pixelFormat])) == NULL) THROW_UNIX("allocating uncompressed image buffer"); if (tjDecompress2(tjInstance, jpegBuf, jpegSize, imgBuf, width, 0, height, pixelFormat, flags) < 0) THROW_TJ("decompressing JPEG image"); tjFree(jpegBuf); jpegBuf = NULL; tjDestroy(tjInstance); tjInstance = NULL; } else { /* Input image is not a JPEG image. Load it into memory. */ if ((imgBuf = tjLoadImage(argv[1], &width, 1, &height, &pixelFormat, 0)) == NULL) THROW_TJ("loading input image"); if (outSubsamp < 0) { if (pixelFormat == TJPF_GRAY) outSubsamp = TJSAMP_GRAY; else outSubsamp = TJSAMP_444; } printf("Input Image: %d x %d pixels\n", width, height); } printf("Output Image (%s): %d x %d pixels", outFormat, width, height); if (!strcasecmp(outFormat, "jpg")) { /* Output image format is JPEG. Compress the uncompressed image. */ unsigned long jpegSize = 0; jpegBuf = NULL; /* Dynamically allocate the JPEG buffer */ if (outQual < 0) outQual = DEFAULT_QUALITY; printf(", %s subsampling, quality = %d\n", subsampName[outSubsamp], outQual); if ((tjInstance = tjInitCompress()) == NULL) THROW_TJ("initializing compressor"); if (tjCompress2(tjInstance, imgBuf, width, 0, height, pixelFormat, &jpegBuf, &jpegSize, outSubsamp, outQual, flags) < 0) THROW_TJ("compressing image"); tjDestroy(tjInstance); tjInstance = NULL; /* Write the JPEG image to disk. */ if ((jpegFile = fopen(argv[2], "wb")) == NULL) THROW_UNIX("opening output file"); if (fwrite(jpegBuf, jpegSize, 1, jpegFile) < 1) THROW_UNIX("writing output file"); tjDestroy(tjInstance); tjInstance = NULL; fclose(jpegFile); jpegFile = NULL; tjFree(jpegBuf); jpegBuf = NULL; } else { /* Output image format is not JPEG. Save the uncompressed image directly to disk. */ printf("\n"); if (tjSaveImage(argv[2], imgBuf, width, 0, height, pixelFormat, 0) < 0) THROW_TJ("saving output image"); } bailout: tjFree(imgBuf); if (tjInstance) tjDestroy(tjInstance); tjFree(jpegBuf); if (jpegFile) fclose(jpegFile); return retval; } libjpeg-turbo-2.1.5/tjexampletest.in000077500000000000000000000200521436506551100175150ustar00rootroot00000000000000#!/bin/bash set -u set -e trap onexit INT trap onexit TERM trap onexit EXIT onexit() { if [ -d $OUTDIR ]; then rm -rf $OUTDIR fi } runme() { echo \*\*\* $* $* } IMAGES="vgl_5674_0098.bmp vgl_6434_0018a.bmp vgl_6548_0026a.bmp nightshot_iso_100.bmp" IMGDIR=@CMAKE_CURRENT_SOURCE_DIR@/testimages OUTDIR=`mktemp -d /tmp/__tjexampletest_output.XXXXXX` EXEDIR=@CMAKE_CURRENT_BINARY_DIR@ if [ -d $OUTDIR ]; then rm -rf $OUTDIR fi mkdir -p $OUTDIR exec >$EXEDIR/tjexampletest.log for image in $IMAGES; do cp $IMGDIR/$image $OUTDIR basename=`basename $image .bmp` runme $EXEDIR/cjpeg -quality 95 -dct fast -grayscale -outfile $OUTDIR/${basename}_GRAY_fast_cjpeg.jpg $IMGDIR/${basename}.bmp runme $EXEDIR/cjpeg -quality 95 -dct fast -sample 2x2 -outfile $OUTDIR/${basename}_420_fast_cjpeg.jpg $IMGDIR/${basename}.bmp runme $EXEDIR/cjpeg -quality 95 -dct fast -sample 2x1 -outfile $OUTDIR/${basename}_422_fast_cjpeg.jpg $IMGDIR/${basename}.bmp runme $EXEDIR/cjpeg -quality 95 -dct fast -sample 1x1 -outfile $OUTDIR/${basename}_444_fast_cjpeg.jpg $IMGDIR/${basename}.bmp runme $EXEDIR/cjpeg -quality 95 -dct int -grayscale -outfile $OUTDIR/${basename}_GRAY_accurate_cjpeg.jpg $IMGDIR/${basename}.bmp runme $EXEDIR/cjpeg -quality 95 -dct int -sample 2x2 -outfile $OUTDIR/${basename}_420_accurate_cjpeg.jpg $IMGDIR/${basename}.bmp runme $EXEDIR/cjpeg -quality 95 -dct int -sample 2x1 -outfile $OUTDIR/${basename}_422_accurate_cjpeg.jpg $IMGDIR/${basename}.bmp runme $EXEDIR/cjpeg -quality 95 -dct int -sample 1x1 -outfile $OUTDIR/${basename}_444_accurate_cjpeg.jpg $IMGDIR/${basename}.bmp for samp in GRAY 420 422 444; do runme $EXEDIR/djpeg -rgb -bmp -outfile $OUTDIR/${basename}_${samp}_default_djpeg.bmp $OUTDIR/${basename}_${samp}_fast_cjpeg.jpg runme $EXEDIR/djpeg -dct fast -rgb -bmp -outfile $OUTDIR/${basename}_${samp}_fast_djpeg.bmp $OUTDIR/${basename}_${samp}_fast_cjpeg.jpg runme $EXEDIR/djpeg -dct int -rgb -bmp -outfile $OUTDIR/${basename}_${samp}_accurate_djpeg.bmp $OUTDIR/${basename}_${samp}_accurate_cjpeg.jpg done for samp in 420 422; do runme $EXEDIR/djpeg -nosmooth -bmp -outfile $OUTDIR/${basename}_${samp}_default_nosmooth_djpeg.bmp $OUTDIR/${basename}_${samp}_fast_cjpeg.jpg runme $EXEDIR/djpeg -dct fast -nosmooth -bmp -outfile $OUTDIR/${basename}_${samp}_fast_nosmooth_djpeg.bmp $OUTDIR/${basename}_${samp}_fast_cjpeg.jpg runme $EXEDIR/djpeg -dct int -nosmooth -bmp -outfile $OUTDIR/${basename}_${samp}_accurate_nosmooth_djpeg.bmp $OUTDIR/${basename}_${samp}_accurate_cjpeg.jpg done # Compression for dct in fast accurate; do for samp in GRAY 420 422 444; do runme $EXEDIR/tjexample $OUTDIR/$image $OUTDIR/${basename}_${samp}_${dct}.jpg -q 95 -subsamp ${samp} -${dct}dct runme cmp $OUTDIR/${basename}_${samp}_${dct}.jpg $OUTDIR/${basename}_${samp}_${dct}_cjpeg.jpg done done # Decompression for dct in fast accurate default; do srcdct=${dct} dctarg=-${dct}dct if [ "${dct}" = "default" ]; then srcdct=fast dctarg= fi for samp in GRAY 420 422 444; do runme $EXEDIR/tjexample $OUTDIR/${basename}_${samp}_${srcdct}.jpg $OUTDIR/${basename}_${samp}_${dct}.bmp ${dctarg} runme cmp -i 54:54 $OUTDIR/${basename}_${samp}_${dct}.bmp $OUTDIR/${basename}_${samp}_${dct}_djpeg.bmp rm $OUTDIR/${basename}_${samp}_${dct}.bmp done for samp in 420 422; do runme $EXEDIR/tjexample $OUTDIR/${basename}_${samp}_${srcdct}.jpg $OUTDIR/${basename}_${samp}_${dct}_nosmooth.bmp -fastupsample ${dctarg} runme cmp -i 54:54 $OUTDIR/${basename}_${samp}_${dct}_nosmooth.bmp $OUTDIR/${basename}_${samp}_${dct}_nosmooth_djpeg.bmp rm $OUTDIR/${basename}_${samp}_${dct}_nosmooth.bmp done done # Scaled decompression for scale in 2_1 15_8 7_4 13_8 3_2 11_8 5_4 9_8 7_8 3_4 5_8 1_2 3_8 1_4 1_8; do scalearg=`echo $scale | sed 's/\_/\//g'` for samp in GRAY 420 422 444; do runme $EXEDIR/djpeg -rgb -bmp -scale ${scalearg} -outfile $OUTDIR/${basename}_${samp}_${scale}_djpeg.bmp $OUTDIR/${basename}_${samp}_fast_cjpeg.jpg runme $EXEDIR/tjexample $OUTDIR/${basename}_${samp}_fast.jpg $OUTDIR/${basename}_${samp}_${scale}.bmp -scale ${scalearg} runme cmp -i 54:54 $OUTDIR/${basename}_${samp}_${scale}.bmp $OUTDIR/${basename}_${samp}_${scale}_djpeg.bmp rm $OUTDIR/${basename}_${samp}_${scale}.bmp done done # Transforms for samp in GRAY 420 422 444; do runme $EXEDIR/jpegtran -crop 70x60+16+16 -flip horizontal -trim -outfile $OUTDIR/${basename}_${samp}_hflip_jpegtran.jpg $OUTDIR/${basename}_${samp}_fast.jpg runme $EXEDIR/jpegtran -crop 70x60+16+16 -flip vertical -trim -outfile $OUTDIR/${basename}_${samp}_vflip_jpegtran.jpg $OUTDIR/${basename}_${samp}_fast.jpg runme $EXEDIR/jpegtran -crop 70x60+16+16 -transpose -trim -outfile $OUTDIR/${basename}_${samp}_transpose_jpegtran.jpg $OUTDIR/${basename}_${samp}_fast.jpg runme $EXEDIR/jpegtran -crop 70x60+16+16 -transverse -trim -outfile $OUTDIR/${basename}_${samp}_transverse_jpegtran.jpg $OUTDIR/${basename}_${samp}_fast.jpg runme $EXEDIR/jpegtran -crop 70x60+16+16 -rotate 90 -trim -outfile $OUTDIR/${basename}_${samp}_rot90_jpegtran.jpg $OUTDIR/${basename}_${samp}_fast.jpg runme $EXEDIR/jpegtran -crop 70x60+16+16 -rotate 180 -trim -outfile $OUTDIR/${basename}_${samp}_rot180_jpegtran.jpg $OUTDIR/${basename}_${samp}_fast.jpg runme $EXEDIR/jpegtran -crop 70x60+16+16 -rotate 270 -trim -outfile $OUTDIR/${basename}_${samp}_rot270_jpegtran.jpg $OUTDIR/${basename}_${samp}_fast.jpg done for xform in hflip vflip transpose transverse rot90 rot180 rot270; do for samp in GRAY 420 422 444; do runme $EXEDIR/tjexample $OUTDIR/${basename}_${samp}_fast.jpg $OUTDIR/${basename}_${samp}_${xform}.jpg -$xform -crop 70x60+16+16 runme cmp $OUTDIR/${basename}_${samp}_${xform}.jpg $OUTDIR/${basename}_${samp}_${xform}_jpegtran.jpg runme $EXEDIR/djpeg -rgb -bmp -outfile $OUTDIR/${basename}_${samp}_${xform}_jpegtran.bmp $OUTDIR/${basename}_${samp}_${xform}_jpegtran.jpg runme $EXEDIR/tjexample $OUTDIR/${basename}_${samp}_fast.jpg $OUTDIR/${basename}_${samp}_${xform}.bmp -$xform -crop 70x60+16+16 runme cmp -i 54:54 $OUTDIR/${basename}_${samp}_${xform}.bmp $OUTDIR/${basename}_${samp}_${xform}_jpegtran.bmp rm $OUTDIR/${basename}_${samp}_${xform}.bmp done for samp in 420 422; do runme $EXEDIR/djpeg -nosmooth -rgb -bmp -outfile $OUTDIR/${basename}_${samp}_${xform}_jpegtran.bmp $OUTDIR/${basename}_${samp}_${xform}_jpegtran.jpg runme $EXEDIR/tjexample $OUTDIR/${basename}_${samp}_fast.jpg $OUTDIR/${basename}_${samp}_${xform}.bmp -$xform -crop 70x60+16+16 -fastupsample runme cmp -i 54:54 $OUTDIR/${basename}_${samp}_${xform}.bmp $OUTDIR/${basename}_${samp}_${xform}_jpegtran.bmp rm $OUTDIR/${basename}_${samp}_${xform}.bmp done done # Grayscale transform for xform in hflip vflip transpose transverse rot90 rot180 rot270; do for samp in GRAY 444 422 420; do runme $EXEDIR/tjexample $OUTDIR/${basename}_${samp}_fast.jpg $OUTDIR/${basename}_${samp}_${xform}.jpg -$xform -grayscale -crop 70x60+16+16 runme cmp $OUTDIR/${basename}_${samp}_${xform}.jpg $OUTDIR/${basename}_GRAY_${xform}_jpegtran.jpg runme $EXEDIR/tjexample $OUTDIR/${basename}_${samp}_fast.jpg $OUTDIR/${basename}_${samp}_${xform}.bmp -$xform -grayscale -crop 70x60+16+16 runme cmp -i 54:54 $OUTDIR/${basename}_${samp}_${xform}.bmp $OUTDIR/${basename}_GRAY_${xform}_jpegtran.bmp rm $OUTDIR/${basename}_${samp}_${xform}.bmp done done # Transforms with scaling for xform in hflip vflip transpose transverse rot90 rot180 rot270; do for samp in GRAY 444 422 420; do for scale in 2_1 15_8 7_4 13_8 3_2 11_8 5_4 9_8 7_8 3_4 5_8 1_2 3_8 1_4 1_8; do scalearg=`echo $scale | sed 's/\_/\//g'` runme $EXEDIR/djpeg -rgb -bmp -scale ${scalearg} -outfile $OUTDIR/${basename}_${samp}_${xform}_${scale}_jpegtran.bmp $OUTDIR/${basename}_${samp}_${xform}_jpegtran.jpg runme $EXEDIR/tjexample $OUTDIR/${basename}_${samp}_fast.jpg $OUTDIR/${basename}_${samp}_${xform}_${scale}.bmp -$xform -scale ${scalearg} -crop 70x60+16+16 runme cmp -i 54:54 $OUTDIR/${basename}_${samp}_${xform}_${scale}.bmp $OUTDIR/${basename}_${samp}_${xform}_${scale}_jpegtran.bmp rm $OUTDIR/${basename}_${samp}_${xform}_${scale}.bmp done done done done echo SUCCESS! libjpeg-turbo-2.1.5/tjexampletest.java.in000077500000000000000000000203761436506551100204460ustar00rootroot00000000000000#!/bin/bash set -u set -e trap onexit INT trap onexit TERM trap onexit EXIT onexit() { if [ -d $OUTDIR ]; then rm -rf $OUTDIR fi } runme() { echo \*\*\* $* "$@" } IMAGES="vgl_5674_0098.bmp vgl_6434_0018a.bmp vgl_6548_0026a.bmp nightshot_iso_100.bmp" IMGDIR=@CMAKE_CURRENT_SOURCE_DIR@/testimages OUTDIR=`mktemp -d /tmp/__tjexampletest_java_output.XXXXXX` EXEDIR=@CMAKE_CURRENT_BINARY_DIR@ JAVA="@Java_JAVA_EXECUTABLE@" JAVAARGS="-cp $EXEDIR/java/turbojpeg.jar -Djava.library.path=$EXEDIR" if [ -d $OUTDIR ]; then rm -rf $OUTDIR fi mkdir -p $OUTDIR exec >$EXEDIR/tjexampletest-java.log for image in $IMAGES; do cp $IMGDIR/$image $OUTDIR basename=`basename $image .bmp` runme $EXEDIR/cjpeg -quality 95 -dct fast -grayscale -outfile $OUTDIR/${basename}_GRAY_fast_cjpeg.jpg $IMGDIR/${basename}.bmp runme $EXEDIR/cjpeg -quality 95 -dct fast -sample 2x2 -outfile $OUTDIR/${basename}_420_fast_cjpeg.jpg $IMGDIR/${basename}.bmp runme $EXEDIR/cjpeg -quality 95 -dct fast -sample 2x1 -outfile $OUTDIR/${basename}_422_fast_cjpeg.jpg $IMGDIR/${basename}.bmp runme $EXEDIR/cjpeg -quality 95 -dct fast -sample 1x1 -outfile $OUTDIR/${basename}_444_fast_cjpeg.jpg $IMGDIR/${basename}.bmp runme $EXEDIR/cjpeg -quality 95 -dct int -grayscale -outfile $OUTDIR/${basename}_GRAY_accurate_cjpeg.jpg $IMGDIR/${basename}.bmp runme $EXEDIR/cjpeg -quality 95 -dct int -sample 2x2 -outfile $OUTDIR/${basename}_420_accurate_cjpeg.jpg $IMGDIR/${basename}.bmp runme $EXEDIR/cjpeg -quality 95 -dct int -sample 2x1 -outfile $OUTDIR/${basename}_422_accurate_cjpeg.jpg $IMGDIR/${basename}.bmp runme $EXEDIR/cjpeg -quality 95 -dct int -sample 1x1 -outfile $OUTDIR/${basename}_444_accurate_cjpeg.jpg $IMGDIR/${basename}.bmp for samp in GRAY 420 422 444; do runme $EXEDIR/djpeg -rgb -bmp -outfile $OUTDIR/${basename}_${samp}_default_djpeg.bmp $OUTDIR/${basename}_${samp}_fast_cjpeg.jpg runme $EXEDIR/djpeg -dct fast -rgb -bmp -outfile $OUTDIR/${basename}_${samp}_fast_djpeg.bmp $OUTDIR/${basename}_${samp}_fast_cjpeg.jpg runme $EXEDIR/djpeg -dct int -rgb -bmp -outfile $OUTDIR/${basename}_${samp}_accurate_djpeg.bmp $OUTDIR/${basename}_${samp}_accurate_cjpeg.jpg done for samp in 420 422; do runme $EXEDIR/djpeg -nosmooth -bmp -outfile $OUTDIR/${basename}_${samp}_default_nosmooth_djpeg.bmp $OUTDIR/${basename}_${samp}_fast_cjpeg.jpg runme $EXEDIR/djpeg -dct fast -nosmooth -bmp -outfile $OUTDIR/${basename}_${samp}_fast_nosmooth_djpeg.bmp $OUTDIR/${basename}_${samp}_fast_cjpeg.jpg runme $EXEDIR/djpeg -dct int -nosmooth -bmp -outfile $OUTDIR/${basename}_${samp}_accurate_nosmooth_djpeg.bmp $OUTDIR/${basename}_${samp}_accurate_cjpeg.jpg done # Compression for dct in fast accurate; do for samp in GRAY 420 422 444; do runme "$JAVA" $JAVAARGS TJExample $OUTDIR/$image $OUTDIR/${basename}_${samp}_${dct}.jpg -q 95 -subsamp ${samp} -${dct}dct runme cmp $OUTDIR/${basename}_${samp}_${dct}.jpg $OUTDIR/${basename}_${samp}_${dct}_cjpeg.jpg done done # Decompression for dct in fast accurate default; do srcdct=${dct} dctarg=-${dct}dct if [ "${dct}" = "default" ]; then srcdct=fast dctarg= fi for samp in GRAY 420 422 444; do runme "$JAVA" $JAVAARGS TJExample $OUTDIR/${basename}_${samp}_${srcdct}.jpg $OUTDIR/${basename}_${samp}_${dct}.bmp ${dctarg} runme cmp -i 54:54 $OUTDIR/${basename}_${samp}_${dct}.bmp $OUTDIR/${basename}_${samp}_${dct}_djpeg.bmp rm $OUTDIR/${basename}_${samp}_${dct}.bmp done for samp in 420 422; do runme "$JAVA" $JAVAARGS TJExample $OUTDIR/${basename}_${samp}_${srcdct}.jpg $OUTDIR/${basename}_${samp}_${dct}_nosmooth.bmp -fastupsample ${dctarg} runme cmp -i 54:54 $OUTDIR/${basename}_${samp}_${dct}_nosmooth.bmp $OUTDIR/${basename}_${samp}_${dct}_nosmooth_djpeg.bmp rm $OUTDIR/${basename}_${samp}_${dct}_nosmooth.bmp done done # Scaled decompression for scale in 2_1 15_8 7_4 13_8 3_2 11_8 5_4 9_8 7_8 3_4 5_8 1_2 3_8 1_4 1_8; do scalearg=`echo $scale | sed 's/\_/\//g'` for samp in GRAY 420 422 444; do runme $EXEDIR/djpeg -rgb -bmp -scale ${scalearg} -outfile $OUTDIR/${basename}_${samp}_${scale}_djpeg.bmp $OUTDIR/${basename}_${samp}_fast_cjpeg.jpg runme "$JAVA" $JAVAARGS TJExample $OUTDIR/${basename}_${samp}_fast.jpg $OUTDIR/${basename}_${samp}_${scale}.bmp -scale ${scalearg} runme cmp -i 54:54 $OUTDIR/${basename}_${samp}_${scale}.bmp $OUTDIR/${basename}_${samp}_${scale}_djpeg.bmp rm $OUTDIR/${basename}_${samp}_${scale}.bmp done done # Transforms for samp in GRAY 420 422 444; do runme $EXEDIR/jpegtran -crop 70x60+16+16 -flip horizontal -trim -outfile $OUTDIR/${basename}_${samp}_hflip_jpegtran.jpg $OUTDIR/${basename}_${samp}_fast.jpg runme $EXEDIR/jpegtran -crop 70x60+16+16 -flip vertical -trim -outfile $OUTDIR/${basename}_${samp}_vflip_jpegtran.jpg $OUTDIR/${basename}_${samp}_fast.jpg runme $EXEDIR/jpegtran -crop 70x60+16+16 -transpose -trim -outfile $OUTDIR/${basename}_${samp}_transpose_jpegtran.jpg $OUTDIR/${basename}_${samp}_fast.jpg runme $EXEDIR/jpegtran -crop 70x60+16+16 -transverse -trim -outfile $OUTDIR/${basename}_${samp}_transverse_jpegtran.jpg $OUTDIR/${basename}_${samp}_fast.jpg runme $EXEDIR/jpegtran -crop 70x60+16+16 -rotate 90 -trim -outfile $OUTDIR/${basename}_${samp}_rot90_jpegtran.jpg $OUTDIR/${basename}_${samp}_fast.jpg runme $EXEDIR/jpegtran -crop 70x60+16+16 -rotate 180 -trim -outfile $OUTDIR/${basename}_${samp}_rot180_jpegtran.jpg $OUTDIR/${basename}_${samp}_fast.jpg runme $EXEDIR/jpegtran -crop 70x60+16+16 -rotate 270 -trim -outfile $OUTDIR/${basename}_${samp}_rot270_jpegtran.jpg $OUTDIR/${basename}_${samp}_fast.jpg done for xform in hflip vflip transpose transverse rot90 rot180 rot270; do for samp in GRAY 420 422 444; do runme "$JAVA" $JAVAARGS TJExample $OUTDIR/${basename}_${samp}_fast.jpg $OUTDIR/${basename}_${samp}_${xform}.jpg -$xform -crop 70x60+16+16 runme cmp $OUTDIR/${basename}_${samp}_${xform}.jpg $OUTDIR/${basename}_${samp}_${xform}_jpegtran.jpg runme $EXEDIR/djpeg -rgb -bmp -outfile $OUTDIR/${basename}_${samp}_${xform}_jpegtran.bmp $OUTDIR/${basename}_${samp}_${xform}_jpegtran.jpg runme "$JAVA" $JAVAARGS TJExample $OUTDIR/${basename}_${samp}_fast.jpg $OUTDIR/${basename}_${samp}_${xform}.bmp -$xform -crop 70x60+16+16 runme cmp -i 54:54 $OUTDIR/${basename}_${samp}_${xform}.bmp $OUTDIR/${basename}_${samp}_${xform}_jpegtran.bmp rm $OUTDIR/${basename}_${samp}_${xform}.bmp done for samp in 420 422; do runme $EXEDIR/djpeg -nosmooth -rgb -bmp -outfile $OUTDIR/${basename}_${samp}_${xform}_jpegtran.bmp $OUTDIR/${basename}_${samp}_${xform}_jpegtran.jpg runme "$JAVA" $JAVAARGS TJExample $OUTDIR/${basename}_${samp}_fast.jpg $OUTDIR/${basename}_${samp}_${xform}.bmp -$xform -crop 70x60+16+16 -fastupsample runme cmp -i 54:54 $OUTDIR/${basename}_${samp}_${xform}.bmp $OUTDIR/${basename}_${samp}_${xform}_jpegtran.bmp rm $OUTDIR/${basename}_${samp}_${xform}.bmp done done # Grayscale transform for xform in hflip vflip transpose transverse rot90 rot180 rot270; do for samp in GRAY 444 422 420; do runme "$JAVA" $JAVAARGS TJExample $OUTDIR/${basename}_${samp}_fast.jpg $OUTDIR/${basename}_${samp}_${xform}.jpg -$xform -grayscale -crop 70x60+16+16 runme cmp $OUTDIR/${basename}_${samp}_${xform}.jpg $OUTDIR/${basename}_GRAY_${xform}_jpegtran.jpg runme "$JAVA" $JAVAARGS TJExample $OUTDIR/${basename}_${samp}_fast.jpg $OUTDIR/${basename}_${samp}_${xform}.bmp -$xform -grayscale -crop 70x60+16+16 runme cmp -i 54:54 $OUTDIR/${basename}_${samp}_${xform}.bmp $OUTDIR/${basename}_GRAY_${xform}_jpegtran.bmp rm $OUTDIR/${basename}_${samp}_${xform}.bmp done done # Transforms with scaling for xform in hflip vflip transpose transverse rot90 rot180 rot270; do for samp in GRAY 444 422 420; do for scale in 2_1 15_8 7_4 13_8 3_2 11_8 5_4 9_8 7_8 3_4 5_8 1_2 3_8 1_4 1_8; do scalearg=`echo $scale | sed 's/\_/\//g'` runme $EXEDIR/djpeg -rgb -bmp -scale ${scalearg} -outfile $OUTDIR/${basename}_${samp}_${xform}_${scale}_jpegtran.bmp $OUTDIR/${basename}_${samp}_${xform}_jpegtran.jpg runme "$JAVA" $JAVAARGS TJExample $OUTDIR/${basename}_${samp}_fast.jpg $OUTDIR/${basename}_${samp}_${xform}_${scale}.bmp -$xform -scale ${scalearg} -crop 70x60+16+16 runme cmp -i 54:54 $OUTDIR/${basename}_${samp}_${xform}_${scale}.bmp $OUTDIR/${basename}_${samp}_${xform}_${scale}_jpegtran.bmp rm $OUTDIR/${basename}_${samp}_${xform}_${scale}.bmp done done done done echo SUCCESS! libjpeg-turbo-2.1.5/tjunittest.c000066400000000000000000000752131436506551100166630ustar00rootroot00000000000000/* * Copyright (C)2009-2014, 2017-2019, 2022-2023 D. R. Commander. * All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * This program tests the various code paths in the TurboJPEG C Wrapper */ #ifdef _MSC_VER #define _CRT_SECURE_NO_DEPRECATE #endif #include #include #include #include #include #include "tjutil.h" #include "turbojpeg.h" #include "md5/md5.h" #include "cmyk.h" #ifdef _WIN32 #include #define random() rand() #else #include #endif static void usage(char *progName) { printf("\nUSAGE: %s [options]\n\n", progName); printf("Options:\n"); printf("-yuv = test YUV encoding/compression/decompression/decoding\n"); printf("-noyuvpad = do not pad each row in each Y, U, and V plane to the nearest\n"); printf(" multiple of 4 bytes\n"); printf("-alloc = test automatic JPEG buffer allocation\n"); printf("-bmp = test packed-pixel image I/O\n"); exit(1); } #define THROW_TJ() { \ printf("TurboJPEG ERROR:\n%s\n", tjGetErrorStr()); \ BAILOUT() \ } #define TRY_TJ(f) { if ((f) == -1) THROW_TJ(); } #define THROW(m) { printf("ERROR: %s\n", m); BAILOUT() } #define THROW_MD5(filename, md5sum, ref) { \ printf("\n%s has an MD5 sum of %s.\n Should be %s.\n", filename, md5sum, \ ref); \ BAILOUT() \ } const char *subNameLong[TJ_NUMSAMP] = { "4:4:4", "4:2:2", "4:2:0", "GRAY", "4:4:0", "4:1:1" }; const char *subName[TJ_NUMSAMP] = { "444", "422", "420", "GRAY", "440", "411" }; const char *pixFormatStr[TJ_NUMPF] = { "RGB", "BGR", "RGBX", "BGRX", "XBGR", "XRGB", "Grayscale", "RGBA", "BGRA", "ABGR", "ARGB", "CMYK" }; const int _3byteFormats[] = { TJPF_RGB, TJPF_BGR }; const int _4byteFormats[] = { TJPF_RGBX, TJPF_BGRX, TJPF_XBGR, TJPF_XRGB, TJPF_CMYK }; const int _onlyGray[] = { TJPF_GRAY }; const int _onlyRGB[] = { TJPF_RGB }; int doYUV = 0, alloc = 0, yuvAlign = 4; int exitStatus = 0; #define BAILOUT() { exitStatus = -1; goto bailout; } static void initBuf(unsigned char *buf, int w, int h, int pf, int flags) { int roffset = tjRedOffset[pf]; int goffset = tjGreenOffset[pf]; int boffset = tjBlueOffset[pf]; int ps = tjPixelSize[pf]; int index, row, col, halfway = 16; if (pf == TJPF_GRAY) { memset(buf, 0, w * h * ps); for (row = 0; row < h; row++) { for (col = 0; col < w; col++) { if (flags & TJFLAG_BOTTOMUP) index = (h - row - 1) * w + col; else index = row * w + col; if (((row / 8) + (col / 8)) % 2 == 0) buf[index] = (row < halfway) ? 255 : 0; else buf[index] = (row < halfway) ? 76 : 226; } } } else if (pf == TJPF_CMYK) { memset(buf, 255, w * h * ps); for (row = 0; row < h; row++) { for (col = 0; col < w; col++) { if (flags & TJFLAG_BOTTOMUP) index = (h - row - 1) * w + col; else index = row * w + col; if (((row / 8) + (col / 8)) % 2 == 0) { if (row >= halfway) buf[index * ps + 3] = 0; } else { buf[index * ps + 2] = 0; if (row < halfway) buf[index * ps + 1] = 0; } } } } else { memset(buf, 0, w * h * ps); for (row = 0; row < h; row++) { for (col = 0; col < w; col++) { if (flags & TJFLAG_BOTTOMUP) index = (h - row - 1) * w + col; else index = row * w + col; if (((row / 8) + (col / 8)) % 2 == 0) { if (row < halfway) { buf[index * ps + roffset] = 255; buf[index * ps + goffset] = 255; buf[index * ps + boffset] = 255; } } else { buf[index * ps + roffset] = 255; if (row >= halfway) buf[index * ps + goffset] = 255; } } } } } #define CHECKVAL(v, cv) { \ if (v < cv - 1 || v > cv + 1) { \ printf("\nComp. %s at %d,%d should be %d, not %d\n", #v, row, col, cv, \ v); \ retval = 0; exitStatus = -1; goto bailout; \ } \ } #define CHECKVAL0(v) { \ if (v > 1) { \ printf("\nComp. %s at %d,%d should be 0, not %d\n", #v, row, col, v); \ retval = 0; exitStatus = -1; goto bailout; \ } \ } #define CHECKVAL255(v) { \ if (v < 254) { \ printf("\nComp. %s at %d,%d should be 255, not %d\n", #v, row, col, v); \ retval = 0; exitStatus = -1; goto bailout; \ } \ } static int checkBuf(unsigned char *buf, int w, int h, int pf, int subsamp, tjscalingfactor sf, int flags) { int roffset = tjRedOffset[pf]; int goffset = tjGreenOffset[pf]; int boffset = tjBlueOffset[pf]; int aoffset = tjAlphaOffset[pf]; int ps = tjPixelSize[pf]; int index, row, col, retval = 1; int halfway = 16 * sf.num / sf.denom; int blocksize = 8 * sf.num / sf.denom; if (pf == TJPF_GRAY) roffset = goffset = boffset = 0; if (pf == TJPF_CMYK) { for (row = 0; row < h; row++) { for (col = 0; col < w; col++) { unsigned char c, m, y, k; if (flags & TJFLAG_BOTTOMUP) index = (h - row - 1) * w + col; else index = row * w + col; c = buf[index * ps]; m = buf[index * ps + 1]; y = buf[index * ps + 2]; k = buf[index * ps + 3]; if (((row / blocksize) + (col / blocksize)) % 2 == 0) { CHECKVAL255(c); CHECKVAL255(m); CHECKVAL255(y); if (row < halfway) CHECKVAL255(k) else CHECKVAL0(k) } else { CHECKVAL255(c); CHECKVAL0(y); CHECKVAL255(k); if (row < halfway) CHECKVAL0(m) else CHECKVAL255(m) } } } return 1; } for (row = 0; row < h; row++) { for (col = 0; col < w; col++) { unsigned char r, g, b, a; if (flags & TJFLAG_BOTTOMUP) index = (h - row - 1) * w + col; else index = row * w + col; r = buf[index * ps + roffset]; g = buf[index * ps + goffset]; b = buf[index * ps + boffset]; a = aoffset >= 0 ? buf[index * ps + aoffset] : 0xFF; if (((row / blocksize) + (col / blocksize)) % 2 == 0) { if (row < halfway) { CHECKVAL255(r); CHECKVAL255(g); CHECKVAL255(b); } else { CHECKVAL0(r); CHECKVAL0(g); CHECKVAL0(b); } } else { if (subsamp == TJSAMP_GRAY) { if (row < halfway) { CHECKVAL(r, 76); CHECKVAL(g, 76); CHECKVAL(b, 76); } else { CHECKVAL(r, 226); CHECKVAL(g, 226); CHECKVAL(b, 226); } } else { if (row < halfway) { CHECKVAL255(r); CHECKVAL0(g); CHECKVAL0(b); } else { CHECKVAL255(r); CHECKVAL255(g); CHECKVAL0(b); } } } CHECKVAL255(a); } } bailout: if (retval == 0) { for (row = 0; row < h; row++) { for (col = 0; col < w; col++) { if (pf == TJPF_CMYK) printf("%.3d/%.3d/%.3d/%.3d ", buf[(row * w + col) * ps], buf[(row * w + col) * ps + 1], buf[(row * w + col) * ps + 2], buf[(row * w + col) * ps + 3]); else printf("%.3d/%.3d/%.3d ", buf[(row * w + col) * ps + roffset], buf[(row * w + col) * ps + goffset], buf[(row * w + col) * ps + boffset]); } printf("\n"); } } return retval; } #define PAD(v, p) ((v + (p) - 1) & (~((p) - 1))) static int checkBufYUV(unsigned char *buf, int w, int h, int subsamp, tjscalingfactor sf) { int row, col; int hsf = tjMCUWidth[subsamp] / 8, vsf = tjMCUHeight[subsamp] / 8; int pw = PAD(w, hsf), ph = PAD(h, vsf); int cw = pw / hsf, ch = ph / vsf; int ypitch = PAD(pw, yuvAlign), uvpitch = PAD(cw, yuvAlign); int retval = 1; int halfway = 16 * sf.num / sf.denom; int blocksize = 8 * sf.num / sf.denom; for (row = 0; row < ph; row++) { for (col = 0; col < pw; col++) { unsigned char y = buf[ypitch * row + col]; if (((row / blocksize) + (col / blocksize)) % 2 == 0) { if (row < halfway) CHECKVAL255(y) else CHECKVAL0(y); } else { if (row < halfway) CHECKVAL(y, 76) else CHECKVAL(y, 226); } } } if (subsamp != TJSAMP_GRAY) { halfway = 16 / vsf * sf.num / sf.denom; for (row = 0; row < ch; row++) { for (col = 0; col < cw; col++) { unsigned char u = buf[ypitch * ph + (uvpitch * row + col)], v = buf[ypitch * ph + uvpitch * ch + (uvpitch * row + col)]; if (((row * vsf / blocksize) + (col * hsf / blocksize)) % 2 == 0) { CHECKVAL(u, 128); CHECKVAL(v, 128); } else { if (row < halfway) { CHECKVAL(u, 85); CHECKVAL255(v); } else { CHECKVAL0(u); CHECKVAL(v, 149); } } } } } bailout: if (retval == 0) { for (row = 0; row < ph; row++) { for (col = 0; col < pw; col++) printf("%.3d ", buf[ypitch * row + col]); printf("\n"); } printf("\n"); for (row = 0; row < ch; row++) { for (col = 0; col < cw; col++) printf("%.3d ", buf[ypitch * ph + (uvpitch * row + col)]); printf("\n"); } printf("\n"); for (row = 0; row < ch; row++) { for (col = 0; col < cw; col++) printf("%.3d ", buf[ypitch * ph + uvpitch * ch + (uvpitch * row + col)]); printf("\n"); } } return retval; } static void writeJPEG(unsigned char *jpegBuf, unsigned long jpegSize, char *filename) { FILE *file = fopen(filename, "wb"); if (!file || fwrite(jpegBuf, jpegSize, 1, file) != 1) { printf("ERROR: Could not write to %s.\n%s\n", filename, strerror(errno)); BAILOUT() } bailout: if (file) fclose(file); } static void compTest(tjhandle handle, unsigned char **dstBuf, unsigned long *dstSize, int w, int h, int pf, char *basename, int subsamp, int jpegQual, int flags) { char tempStr[1024]; unsigned char *srcBuf = NULL, *yuvBuf = NULL; const char *pfStr = pixFormatStr[pf]; const char *buStrLong = (flags & TJFLAG_BOTTOMUP) ? "Bottom-Up" : "Top-Down "; const char *buStr = (flags & TJFLAG_BOTTOMUP) ? "BU" : "TD"; if ((srcBuf = (unsigned char *)malloc(w * h * tjPixelSize[pf])) == NULL) THROW("Memory allocation failure"); initBuf(srcBuf, w, h, pf, flags); if (*dstBuf && *dstSize > 0) memset(*dstBuf, 0, *dstSize); if (!alloc) flags |= TJFLAG_NOREALLOC; if (doYUV) { unsigned long yuvSize = tjBufSizeYUV2(w, yuvAlign, h, subsamp); tjscalingfactor sf = { 1, 1 }; tjhandle handle2 = tjInitCompress(); if (!handle2) THROW_TJ(); if ((yuvBuf = (unsigned char *)malloc(yuvSize)) == NULL) THROW("Memory allocation failure"); memset(yuvBuf, 0, yuvSize); printf("%s %s -> YUV %s ... ", pfStr, buStrLong, subNameLong[subsamp]); TRY_TJ(tjEncodeYUV3(handle2, srcBuf, w, 0, h, pf, yuvBuf, yuvAlign, subsamp, flags)); tjDestroy(handle2); if (checkBufYUV(yuvBuf, w, h, subsamp, sf)) printf("Passed.\n"); else printf("FAILED!\n"); printf("YUV %s %s -> JPEG Q%d ... ", subNameLong[subsamp], buStrLong, jpegQual); TRY_TJ(tjCompressFromYUV(handle, yuvBuf, w, yuvAlign, h, subsamp, dstBuf, dstSize, jpegQual, flags)); } else { printf("%s %s -> %s Q%d ... ", pfStr, buStrLong, subNameLong[subsamp], jpegQual); TRY_TJ(tjCompress2(handle, srcBuf, w, 0, h, pf, dstBuf, dstSize, subsamp, jpegQual, flags)); } SNPRINTF(tempStr, 1024, "%s_enc_%s_%s_%s_Q%d.jpg", basename, pfStr, buStr, subName[subsamp], jpegQual); writeJPEG(*dstBuf, *dstSize, tempStr); printf("Done.\n Result in %s\n", tempStr); bailout: free(yuvBuf); free(srcBuf); } static void _decompTest(tjhandle handle, unsigned char *jpegBuf, unsigned long jpegSize, int w, int h, int pf, char *basename, int subsamp, int flags, tjscalingfactor sf) { unsigned char *dstBuf = NULL, *yuvBuf = NULL; int _hdrw = 0, _hdrh = 0, _hdrsubsamp = -1; int scaledWidth = TJSCALED(w, sf); int scaledHeight = TJSCALED(h, sf); unsigned long dstSize = 0; TRY_TJ(tjDecompressHeader2(handle, jpegBuf, jpegSize, &_hdrw, &_hdrh, &_hdrsubsamp)); if (_hdrw != w || _hdrh != h || _hdrsubsamp != subsamp) THROW("Incorrect JPEG header"); dstSize = scaledWidth * scaledHeight * tjPixelSize[pf]; if ((dstBuf = (unsigned char *)malloc(dstSize)) == NULL) THROW("Memory allocation failure"); memset(dstBuf, 0, dstSize); if (doYUV) { unsigned long yuvSize = tjBufSizeYUV2(scaledWidth, yuvAlign, scaledHeight, subsamp); tjhandle handle2 = tjInitDecompress(); if (!handle2) THROW_TJ(); if ((yuvBuf = (unsigned char *)malloc(yuvSize)) == NULL) THROW("Memory allocation failure"); memset(yuvBuf, 0, yuvSize); printf("JPEG -> YUV %s ", subNameLong[subsamp]); if (sf.num != 1 || sf.denom != 1) printf("%d/%d ... ", sf.num, sf.denom); else printf("... "); /* We pass scaledWidth + 1 and scaledHeight + 1 to validate that tjDecompressToYUV2() generates the largest possible scaled image that fits within the desired dimensions, as documented. */ TRY_TJ(tjDecompressToYUV2(handle, jpegBuf, jpegSize, yuvBuf, scaledWidth + 1, yuvAlign, scaledHeight + 1, flags)); if (checkBufYUV(yuvBuf, scaledWidth, scaledHeight, subsamp, sf)) printf("Passed.\n"); else printf("FAILED!\n"); printf("YUV %s -> %s %s ... ", subNameLong[subsamp], pixFormatStr[pf], (flags & TJFLAG_BOTTOMUP) ? "Bottom-Up" : "Top-Down "); TRY_TJ(tjDecodeYUV(handle2, yuvBuf, yuvAlign, subsamp, dstBuf, scaledWidth, 0, scaledHeight, pf, flags)); tjDestroy(handle2); } else { printf("JPEG -> %s %s ", pixFormatStr[pf], (flags & TJFLAG_BOTTOMUP) ? "Bottom-Up" : "Top-Down "); if (sf.num != 1 || sf.denom != 1) printf("%d/%d ... ", sf.num, sf.denom); else printf("... "); /* We pass scaledWidth + 1 and scaledHeight + 1 to validate that tjDecompress2() generates the largest possible scaled image that fits within the desired dimensions, as documented. */ TRY_TJ(tjDecompress2(handle, jpegBuf, jpegSize, dstBuf, scaledWidth + 1, 0, scaledHeight + 1, pf, flags)); } if (checkBuf(dstBuf, scaledWidth, scaledHeight, pf, subsamp, sf, flags)) printf("Passed."); else printf("FAILED!"); printf("\n"); bailout: free(yuvBuf); free(dstBuf); } static void decompTest(tjhandle handle, unsigned char *jpegBuf, unsigned long jpegSize, int w, int h, int pf, char *basename, int subsamp, int flags) { int i, n = 0; tjscalingfactor *sf = tjGetScalingFactors(&n); if (!sf || !n) THROW_TJ(); for (i = 0; i < n; i++) { if (subsamp == TJSAMP_444 || subsamp == TJSAMP_GRAY || (subsamp == TJSAMP_411 && sf[i].num == 1 && (sf[i].denom == 2 || sf[i].denom == 1)) || (subsamp != TJSAMP_411 && sf[i].num == 1 && (sf[i].denom == 4 || sf[i].denom == 2 || sf[i].denom == 1))) _decompTest(handle, jpegBuf, jpegSize, w, h, pf, basename, subsamp, flags, sf[i]); } bailout: return; } static void doTest(int w, int h, const int *formats, int nformats, int subsamp, char *basename) { tjhandle chandle = NULL, dhandle = NULL; unsigned char *dstBuf = NULL; unsigned long size = 0; int pfi, pf, i; if (!alloc) size = tjBufSize(w, h, subsamp); if (size != 0) if ((dstBuf = (unsigned char *)tjAlloc(size)) == NULL) THROW("Memory allocation failure."); if ((chandle = tjInitCompress()) == NULL || (dhandle = tjInitDecompress()) == NULL) THROW_TJ(); for (pfi = 0; pfi < nformats; pfi++) { for (i = 0; i < 2; i++) { int flags = 0; if (subsamp == TJSAMP_422 || subsamp == TJSAMP_420 || subsamp == TJSAMP_440 || subsamp == TJSAMP_411) flags |= TJFLAG_FASTUPSAMPLE; if (i == 1) flags |= TJFLAG_BOTTOMUP; pf = formats[pfi]; compTest(chandle, &dstBuf, &size, w, h, pf, basename, subsamp, 100, flags); decompTest(dhandle, dstBuf, size, w, h, pf, basename, subsamp, flags); if (pf >= TJPF_RGBX && pf <= TJPF_XRGB) { printf("\n"); decompTest(dhandle, dstBuf, size, w, h, pf + (TJPF_RGBA - TJPF_RGBX), basename, subsamp, flags); } printf("\n"); } } printf("--------------------\n\n"); bailout: if (chandle) tjDestroy(chandle); if (dhandle) tjDestroy(dhandle); tjFree(dstBuf); } #if SIZEOF_SIZE_T == 8 #define CHECKSIZE(function) { \ if ((unsigned long long)size < (unsigned long long)0xFFFFFFFF) \ THROW(#function " overflow"); \ } #else #define CHECKSIZE(function) { \ if (size != (unsigned long)(-1) || \ !strcmp(tjGetErrorStr2(NULL), "No error")) \ THROW(#function " overflow"); \ } #endif #define CHECKSIZEINT(function) { \ if (intsize != -1 || !strcmp(tjGetErrorStr2(NULL), "No error")) \ THROW(#function " overflow"); \ } static void overflowTest(void) { /* Ensure that the various buffer size functions don't overflow */ unsigned long size; int intsize; size = tjBufSize(26755, 26755, TJSAMP_444); CHECKSIZE(tjBufSize()); size = TJBUFSIZE(26755, 26755); CHECKSIZE(TJBUFSIZE()); size = tjBufSizeYUV2(37838, 1, 37838, TJSAMP_444); CHECKSIZE(tjBufSizeYUV2()); size = tjBufSizeYUV2(37837, 3, 37837, TJSAMP_444); CHECKSIZE(tjBufSizeYUV2()); size = tjBufSizeYUV2(37837, -1, 37837, TJSAMP_444); CHECKSIZE(tjBufSizeYUV2()); size = TJBUFSIZEYUV(37838, 37838, TJSAMP_444); CHECKSIZE(TJBUFSIZEYUV()); size = tjBufSizeYUV(37838, 37838, TJSAMP_444); CHECKSIZE(tjBufSizeYUV()); size = tjPlaneSizeYUV(0, 65536, 0, 65536, TJSAMP_444); CHECKSIZE(tjPlaneSizeYUV()); intsize = tjPlaneWidth(0, INT_MAX, TJSAMP_420); CHECKSIZEINT(tjPlaneWidth()); intsize = tjPlaneHeight(0, INT_MAX, TJSAMP_420); CHECKSIZEINT(tjPlaneHeight()); bailout: return; } static void bufSizeTest(void) { int w, h, i, subsamp; unsigned char *srcBuf = NULL, *dstBuf = NULL; tjhandle handle = NULL; unsigned long dstSize = 0; if ((handle = tjInitCompress()) == NULL) THROW_TJ(); printf("Buffer size regression test\n"); for (subsamp = 0; subsamp < TJ_NUMSAMP; subsamp++) { for (w = 1; w < 48; w++) { int maxh = (w == 1) ? 2048 : 48; for (h = 1; h < maxh; h++) { if (h % 100 == 0) printf("%.4d x %.4d\b\b\b\b\b\b\b\b\b\b\b", w, h); if ((srcBuf = (unsigned char *)malloc(w * h * 4)) == NULL) THROW("Memory allocation failure"); if (!alloc || doYUV) { if (doYUV) dstSize = tjBufSizeYUV2(w, yuvAlign, h, subsamp); else dstSize = tjBufSize(w, h, subsamp); if ((dstBuf = (unsigned char *)tjAlloc(dstSize)) == NULL) THROW("Memory allocation failure"); } for (i = 0; i < w * h * 4; i++) { if (random() < RAND_MAX / 2) srcBuf[i] = 0; else srcBuf[i] = 255; } if (doYUV) { TRY_TJ(tjEncodeYUV3(handle, srcBuf, w, 0, h, TJPF_BGRX, dstBuf, yuvAlign, subsamp, 0)); } else { TRY_TJ(tjCompress2(handle, srcBuf, w, 0, h, TJPF_BGRX, &dstBuf, &dstSize, subsamp, 100, alloc ? 0 : TJFLAG_NOREALLOC)); } free(srcBuf); srcBuf = NULL; if (!alloc || doYUV) { tjFree(dstBuf); dstBuf = NULL; } if ((srcBuf = (unsigned char *)malloc(h * w * 4)) == NULL) THROW("Memory allocation failure"); if (!alloc || doYUV) { if (doYUV) dstSize = tjBufSizeYUV2(h, yuvAlign, w, subsamp); else dstSize = tjBufSize(h, w, subsamp); if ((dstBuf = (unsigned char *)tjAlloc(dstSize)) == NULL) THROW("Memory allocation failure"); } for (i = 0; i < h * w * 4; i++) { if (random() < RAND_MAX / 2) srcBuf[i] = 0; else srcBuf[i] = 255; } if (doYUV) { TRY_TJ(tjEncodeYUV3(handle, srcBuf, h, 0, w, TJPF_BGRX, dstBuf, yuvAlign, subsamp, 0)); } else { TRY_TJ(tjCompress2(handle, srcBuf, h, 0, w, TJPF_BGRX, &dstBuf, &dstSize, subsamp, 100, alloc ? 0 : TJFLAG_NOREALLOC)); } free(srcBuf); srcBuf = NULL; if (!alloc || doYUV) { tjFree(dstBuf); dstBuf = NULL; } } } } printf("Done. \n"); bailout: free(srcBuf); tjFree(dstBuf); if (handle) tjDestroy(handle); } static void initBitmap(unsigned char *buf, int width, int pitch, int height, int pf, int flags) { int roffset = tjRedOffset[pf]; int goffset = tjGreenOffset[pf]; int boffset = tjBlueOffset[pf]; int ps = tjPixelSize[pf]; int i, j; for (j = 0; j < height; j++) { int row = (flags & TJFLAG_BOTTOMUP) ? height - j - 1 : j; for (i = 0; i < width; i++) { unsigned char r = (i * 256 / width) % 256; unsigned char g = (j * 256 / height) % 256; unsigned char b = (j * 256 / height + i * 256 / width) % 256; memset(&buf[row * pitch + i * ps], 0, ps); if (pf == TJPF_GRAY) buf[row * pitch + i * ps] = b; else if (pf == TJPF_CMYK) rgb_to_cmyk(r, g, b, &buf[row * pitch + i * ps + 0], &buf[row * pitch + i * ps + 1], &buf[row * pitch + i * ps + 2], &buf[row * pitch + i * ps + 3]); else { buf[row * pitch + i * ps + roffset] = r; buf[row * pitch + i * ps + goffset] = g; buf[row * pitch + i * ps + boffset] = b; } } } } static int cmpBitmap(unsigned char *buf, int width, int pitch, int height, int pf, int flags, int gray2rgb) { int roffset = tjRedOffset[pf]; int goffset = tjGreenOffset[pf]; int boffset = tjBlueOffset[pf]; int aoffset = tjAlphaOffset[pf]; int ps = tjPixelSize[pf]; int i, j; for (j = 0; j < height; j++) { int row = (flags & TJFLAG_BOTTOMUP) ? height - j - 1 : j; for (i = 0; i < width; i++) { unsigned char r = (i * 256 / width) % 256; unsigned char g = (j * 256 / height) % 256; unsigned char b = (j * 256 / height + i * 256 / width) % 256; if (pf == TJPF_GRAY) { if (buf[row * pitch + i * ps] != b) return 0; } else if (pf == TJPF_CMYK) { unsigned char rf, gf, bf; cmyk_to_rgb(buf[row * pitch + i * ps + 0], buf[row * pitch + i * ps + 1], buf[row * pitch + i * ps + 2], buf[row * pitch + i * ps + 3], &rf, &gf, &bf); if (gray2rgb) { if (rf != b || gf != b || bf != b) return 0; } else if (rf != r || gf != g || bf != b) return 0; } else { if (gray2rgb) { if (buf[row * pitch + i * ps + roffset] != b || buf[row * pitch + i * ps + goffset] != b || buf[row * pitch + i * ps + boffset] != b) return 0; } else if (buf[row * pitch + i * ps + roffset] != r || buf[row * pitch + i * ps + goffset] != g || buf[row * pitch + i * ps + boffset] != b) return 0; if (aoffset >= 0 && buf[row * pitch + i * ps + aoffset] != 0xFF) return 0; } } } return 1; } static int doBmpTest(const char *ext, int width, int align, int height, int pf, int flags) { char filename[80], *md5sum, md5buf[65]; int ps = tjPixelSize[pf], pitch = PAD(width * ps, align), loadWidth = 0, loadHeight = 0, retval = 0, pixelFormat = pf; unsigned char *buf = NULL; char *md5ref; if (pf == TJPF_GRAY) { md5ref = !strcasecmp(ext, "ppm") ? "112c682e82ce5de1cca089e20d60000b" : "51976530acf75f02beddf5d21149101d"; } else { md5ref = !strcasecmp(ext, "ppm") ? "c0c9f772b464d1896326883a5c79c545" : "6d659071b9bfcdee2def22cb58ddadca"; } if ((buf = (unsigned char *)tjAlloc(pitch * height)) == NULL) THROW("Could not allocate memory"); initBitmap(buf, width, pitch, height, pf, flags); SNPRINTF(filename, 80, "test_bmp_%s_%d_%s.%s", pixFormatStr[pf], align, (flags & TJFLAG_BOTTOMUP) ? "bu" : "td", ext); TRY_TJ(tjSaveImage(filename, buf, width, pitch, height, pf, flags)); md5sum = MD5File(filename, md5buf); if (strcasecmp(md5sum, md5ref)) THROW_MD5(filename, md5sum, md5ref); tjFree(buf); buf = NULL; if ((buf = tjLoadImage(filename, &loadWidth, align, &loadHeight, &pf, flags)) == NULL) THROW_TJ(); if (width != loadWidth || height != loadHeight) { printf("\n Image dimensions of %s are bogus\n", filename); retval = -1; goto bailout; } if (!cmpBitmap(buf, width, pitch, height, pf, flags, 0)) { printf("\n Pixel data in %s is bogus\n", filename); retval = -1; goto bailout; } if (pf == TJPF_GRAY) { tjFree(buf); buf = NULL; pf = TJPF_XBGR; if ((buf = tjLoadImage(filename, &loadWidth, align, &loadHeight, &pf, flags)) == NULL) THROW_TJ(); pitch = PAD(width * tjPixelSize[pf], align); if (!cmpBitmap(buf, width, pitch, height, pf, flags, 1)) { printf("\n Converting %s to RGB failed\n", filename); retval = -1; goto bailout; } tjFree(buf); buf = NULL; pf = TJPF_CMYK; if ((buf = tjLoadImage(filename, &loadWidth, align, &loadHeight, &pf, flags)) == NULL) THROW_TJ(); pitch = PAD(width * tjPixelSize[pf], align); if (!cmpBitmap(buf, width, pitch, height, pf, flags, 1)) { printf("\n Converting %s to CMYK failed\n", filename); retval = -1; goto bailout; } } /* Verify that tjLoadImage() returns the proper "preferred" pixel format for the file type. */ tjFree(buf); buf = NULL; pf = pixelFormat; pixelFormat = TJPF_UNKNOWN; if ((buf = tjLoadImage(filename, &loadWidth, align, &loadHeight, &pixelFormat, flags)) == NULL) THROW_TJ(); if ((pf == TJPF_GRAY && pixelFormat != TJPF_GRAY) || (pf != TJPF_GRAY && !strcasecmp(ext, "bmp") && pixelFormat != TJPF_BGR) || (pf != TJPF_GRAY && !strcasecmp(ext, "ppm") && pixelFormat != TJPF_RGB)) { printf("\n tjLoadImage() returned unexpected pixel format: %s\n", pixFormatStr[pixelFormat]); retval = -1; } unlink(filename); bailout: tjFree(buf); if (exitStatus < 0) return exitStatus; return retval; } static int bmpTest(void) { int align, width = 35, height = 39, format; for (align = 1; align <= 8; align *= 2) { for (format = 0; format < TJ_NUMPF; format++) { printf("%s Top-Down BMP (row alignment = %d bytes) ... ", pixFormatStr[format], align); if (doBmpTest("bmp", width, align, height, format, 0) == -1) return -1; printf("OK.\n"); printf("%s Top-Down PPM (row alignment = %d bytes) ... ", pixFormatStr[format], align); if (doBmpTest("ppm", width, align, height, format, TJFLAG_BOTTOMUP) == -1) return -1; printf("OK.\n"); printf("%s Bottom-Up BMP (row alignment = %d bytes) ... ", pixFormatStr[format], align); if (doBmpTest("bmp", width, align, height, format, 0) == -1) return -1; printf("OK.\n"); printf("%s Bottom-Up PPM (row alignment = %d bytes) ... ", pixFormatStr[format], align); if (doBmpTest("ppm", width, align, height, format, TJFLAG_BOTTOMUP) == -1) return -1; printf("OK.\n"); } } return 0; } int main(int argc, char *argv[]) { int i, num4bf = 5; #ifdef _WIN32 srand((unsigned int)time(NULL)); #endif if (argc > 1) { for (i = 1; i < argc; i++) { if (!strcasecmp(argv[i], "-yuv")) doYUV = 1; else if (!strcasecmp(argv[i], "-noyuvpad")) yuvAlign = 1; else if (!strcasecmp(argv[i], "-alloc")) alloc = 1; else if (!strcasecmp(argv[i], "-bmp")) return bmpTest(); else usage(argv[0]); } } if (alloc) printf("Testing automatic buffer allocation\n"); if (doYUV) num4bf = 4; overflowTest(); doTest(35, 39, _3byteFormats, 2, TJSAMP_444, "test"); doTest(39, 41, _4byteFormats, num4bf, TJSAMP_444, "test"); doTest(41, 35, _3byteFormats, 2, TJSAMP_422, "test"); doTest(35, 39, _4byteFormats, num4bf, TJSAMP_422, "test"); doTest(39, 41, _3byteFormats, 2, TJSAMP_420, "test"); doTest(41, 35, _4byteFormats, num4bf, TJSAMP_420, "test"); doTest(35, 39, _3byteFormats, 2, TJSAMP_440, "test"); doTest(39, 41, _4byteFormats, num4bf, TJSAMP_440, "test"); doTest(41, 35, _3byteFormats, 2, TJSAMP_411, "test"); doTest(35, 39, _4byteFormats, num4bf, TJSAMP_411, "test"); doTest(39, 41, _onlyGray, 1, TJSAMP_GRAY, "test"); doTest(41, 35, _3byteFormats, 2, TJSAMP_GRAY, "test"); doTest(35, 39, _4byteFormats, 4, TJSAMP_GRAY, "test"); bufSizeTest(); if (doYUV) { printf("\n--------------------\n\n"); doTest(48, 48, _onlyRGB, 1, TJSAMP_444, "test_yuv0"); doTest(48, 48, _onlyRGB, 1, TJSAMP_422, "test_yuv0"); doTest(48, 48, _onlyRGB, 1, TJSAMP_420, "test_yuv0"); doTest(48, 48, _onlyRGB, 1, TJSAMP_440, "test_yuv0"); doTest(48, 48, _onlyRGB, 1, TJSAMP_411, "test_yuv0"); doTest(48, 48, _onlyRGB, 1, TJSAMP_GRAY, "test_yuv0"); doTest(48, 48, _onlyGray, 1, TJSAMP_GRAY, "test_yuv0"); } return exitStatus; } libjpeg-turbo-2.1.5/tjutil.c000066400000000000000000000043231436506551100157530ustar00rootroot00000000000000/* * Copyright (C)2011, 2019 D. R. Commander. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #ifdef _WIN32 #include #include "tjutil.h" static double getFreq(void) { LARGE_INTEGER freq; if (!QueryPerformanceFrequency(&freq)) return 0.0; return (double)freq.QuadPart; } static double f = -1.0; double getTime(void) { LARGE_INTEGER t; if (f < 0.0) f = getFreq(); if (f == 0.0) return (double)GetTickCount() / 1000.; else { QueryPerformanceCounter(&t); return (double)t.QuadPart / f; } } #else #include #include #include "tjutil.h" double getTime(void) { struct timeval tv; if (gettimeofday(&tv, NULL) < 0) return 0.0; else return (double)tv.tv_sec + ((double)tv.tv_usec / 1000000.); } #endif libjpeg-turbo-2.1.5/tjutil.h000066400000000000000000000037521436506551100157650ustar00rootroot00000000000000/* * Copyright (C)2011, 2022 D. R. Commander. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #ifdef _WIN32 #ifndef strcasecmp #define strcasecmp stricmp #endif #ifndef strncasecmp #define strncasecmp strnicmp #endif #endif #ifdef _MSC_VER #define SNPRINTF(str, n, format, ...) \ _snprintf_s(str, n, _TRUNCATE, format, ##__VA_ARGS__) #else #define SNPRINTF snprintf #endif #ifndef min #define min(a, b) ((a) < (b) ? (a) : (b)) #endif #ifndef max #define max(a, b) ((a) > (b) ? (a) : (b)) #endif extern double getTime(void); libjpeg-turbo-2.1.5/transupp.c000066400000000000000000002660261436506551100163260ustar00rootroot00000000000000/* * transupp.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1997-2019, Thomas G. Lane, Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright (C) 2010, 2017, 2021-2022, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains image transformation routines and other utility code * used by the jpegtran sample application. These are NOT part of the core * JPEG library. But we keep these routines separate from jpegtran.c to * ease the task of maintaining jpegtran-like programs that have other user * interfaces. */ /* Although this file really shouldn't have access to the library internals, * it's helpful to let it call jround_up() and jcopy_block_row(). */ #define JPEG_INTERNALS #include "jinclude.h" #include "jpeglib.h" #include "transupp.h" /* My own external interface */ #include "jpegcomp.h" #include /* to declare isdigit() */ #if JPEG_LIB_VERSION >= 70 #define dstinfo_min_DCT_h_scaled_size dstinfo->min_DCT_h_scaled_size #define dstinfo_min_DCT_v_scaled_size dstinfo->min_DCT_v_scaled_size #else #define dstinfo_min_DCT_h_scaled_size DCTSIZE #define dstinfo_min_DCT_v_scaled_size DCTSIZE #endif #if TRANSFORMS_SUPPORTED /* * Lossless image transformation routines. These routines work on DCT * coefficient arrays and thus do not require any lossy decompression * or recompression of the image. * Thanks to Guido Vollbeding for the initial design and code of this feature, * and to Ben Jackson for introducing the cropping feature. * * Horizontal flipping is done in-place, using a single top-to-bottom * pass through the virtual source array. It will thus be much the * fastest option for images larger than main memory. * * The other routines require a set of destination virtual arrays, so they * need twice as much memory as jpegtran normally does. The destination * arrays are always written in normal scan order (top to bottom) because * the virtual array manager expects this. The source arrays will be scanned * in the corresponding order, which means multiple passes through the source * arrays for most of the transforms. That could result in much thrashing * if the image is larger than main memory. * * If cropping or trimming is involved, the destination arrays may be smaller * than the source arrays. Note it is not possible to do horizontal flip * in-place when a nonzero Y crop offset is specified, since we'd have to move * data from one block row to another but the virtual array manager doesn't * guarantee we can touch more than one row at a time. So in that case, * we have to use a separate destination array. * * Some notes about the operating environment of the individual transform * routines: * 1. Both the source and destination virtual arrays are allocated from the * source JPEG object, and therefore should be manipulated by calling the * source's memory manager. * 2. The destination's component count should be used. It may be smaller * than the source's when forcing to grayscale. * 3. Likewise the destination's sampling factors should be used. When * forcing to grayscale the destination's sampling factors will be all 1, * and we may as well take that as the effective iMCU size. * 4. When "trim" is in effect, the destination's dimensions will be the * trimmed values but the source's will be untrimmed. * 5. When "crop" is in effect, the destination's dimensions will be the * cropped values but the source's will be uncropped. Each transform * routine is responsible for picking up source data starting at the * correct X and Y offset for the crop region. (The X and Y offsets * passed to the transform routines are measured in iMCU blocks of the * destination.) * 6. All the routines assume that the source and destination buffers are * padded out to a full iMCU boundary. This is true, although for the * source buffer it is an undocumented property of jdcoefct.c. */ LOCAL(void) dequant_comp(j_decompress_ptr cinfo, jpeg_component_info *compptr, jvirt_barray_ptr coef_array, JQUANT_TBL *qtblptr1) { JDIMENSION blk_x, blk_y; int offset_y, k; JQUANT_TBL *qtblptr; JBLOCKARRAY buffer; JBLOCKROW block; JCOEFPTR ptr; qtblptr = compptr->quant_table; for (blk_y = 0; blk_y < compptr->height_in_blocks; blk_y += compptr->v_samp_factor) { buffer = (*cinfo->mem->access_virt_barray) ((j_common_ptr)cinfo, coef_array, blk_y, (JDIMENSION)compptr->v_samp_factor, TRUE); for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { block = buffer[offset_y]; for (blk_x = 0; blk_x < compptr->width_in_blocks; blk_x++) { ptr = block[blk_x]; for (k = 0; k < DCTSIZE2; k++) if (qtblptr->quantval[k] != qtblptr1->quantval[k]) ptr[k] *= qtblptr->quantval[k] / qtblptr1->quantval[k]; } } } } LOCAL(void) requant_comp(j_decompress_ptr cinfo, jpeg_component_info *compptr, jvirt_barray_ptr coef_array, JQUANT_TBL *qtblptr1) { JDIMENSION blk_x, blk_y; int offset_y, k; JQUANT_TBL *qtblptr; JBLOCKARRAY buffer; JBLOCKROW block; JCOEFPTR ptr; JCOEF temp, qval; qtblptr = compptr->quant_table; for (blk_y = 0; blk_y < compptr->height_in_blocks; blk_y += compptr->v_samp_factor) { buffer = (*cinfo->mem->access_virt_barray) ((j_common_ptr)cinfo, coef_array, blk_y, (JDIMENSION)compptr->v_samp_factor, TRUE); for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { block = buffer[offset_y]; for (blk_x = 0; blk_x < compptr->width_in_blocks; blk_x++) { ptr = block[blk_x]; for (k = 0; k < DCTSIZE2; k++) { temp = qtblptr->quantval[k]; qval = qtblptr1->quantval[k]; if (temp != qval && qval != 0) { temp *= ptr[k]; /* The following quantization code is copied from jcdctmgr.c */ #ifdef FAST_DIVIDE #define DIVIDE_BY(a, b) a /= b #else #define DIVIDE_BY(a, b) if (a >= b) a /= b; else a = 0 #endif if (temp < 0) { temp = -temp; temp += qval >> 1; /* for rounding */ DIVIDE_BY(temp, qval); temp = -temp; } else { temp += qval >> 1; /* for rounding */ DIVIDE_BY(temp, qval); } ptr[k] = temp; } } } } } } /* * Calculate largest common denominator using Euclid's algorithm. */ LOCAL(JCOEF) largest_common_denominator(JCOEF a, JCOEF b) { JCOEF c; do { c = a % b; a = b; b = c; } while (c); return a; } LOCAL(void) adjust_quant(j_decompress_ptr srcinfo, jvirt_barray_ptr *src_coef_arrays, j_decompress_ptr dropinfo, jvirt_barray_ptr *drop_coef_arrays, boolean trim, j_compress_ptr dstinfo) { jpeg_component_info *compptr1, *compptr2; JQUANT_TBL *qtblptr1, *qtblptr2, *qtblptr3; int ci, k; for (ci = 0; ci < dstinfo->num_components && ci < dropinfo->num_components; ci++) { compptr1 = srcinfo->comp_info + ci; compptr2 = dropinfo->comp_info + ci; qtblptr1 = compptr1->quant_table; qtblptr2 = compptr2->quant_table; for (k = 0; k < DCTSIZE2; k++) { if (qtblptr1->quantval[k] != qtblptr2->quantval[k]) { if (trim) requant_comp(dropinfo, compptr2, drop_coef_arrays[ci], qtblptr1); else { qtblptr3 = dstinfo->quant_tbl_ptrs[compptr1->quant_tbl_no]; for (k = 0; k < DCTSIZE2; k++) if (qtblptr1->quantval[k] != qtblptr2->quantval[k]) qtblptr3->quantval[k] = largest_common_denominator(qtblptr1->quantval[k], qtblptr2->quantval[k]); dequant_comp(srcinfo, compptr1, src_coef_arrays[ci], qtblptr3); dequant_comp(dropinfo, compptr2, drop_coef_arrays[ci], qtblptr3); } break; } } } } LOCAL(void) do_drop(j_decompress_ptr srcinfo, j_compress_ptr dstinfo, JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, jvirt_barray_ptr *src_coef_arrays, j_decompress_ptr dropinfo, jvirt_barray_ptr *drop_coef_arrays, JDIMENSION drop_width, JDIMENSION drop_height) /* Drop (insert) the contents of another image into the source image. If the * number of components in the drop image is smaller than the number of * components in the destination image, then we fill in the remaining * components with zero. This allows for dropping the contents of grayscale * images into (arbitrarily sampled) color images. */ { JDIMENSION comp_width, comp_height; JDIMENSION blk_y, x_drop_blocks, y_drop_blocks; int ci, offset_y; JBLOCKARRAY src_buffer, dst_buffer; jpeg_component_info *compptr; for (ci = 0; ci < dstinfo->num_components; ci++) { compptr = dstinfo->comp_info + ci; comp_width = drop_width * compptr->h_samp_factor; comp_height = drop_height * compptr->v_samp_factor; x_drop_blocks = x_crop_offset * compptr->h_samp_factor; y_drop_blocks = y_crop_offset * compptr->v_samp_factor; for (blk_y = 0; blk_y < comp_height; blk_y += compptr->v_samp_factor) { dst_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr)srcinfo, src_coef_arrays[ci], blk_y + y_drop_blocks, (JDIMENSION)compptr->v_samp_factor, TRUE); if (ci < dropinfo->num_components) { src_buffer = (*dropinfo->mem->access_virt_barray) ((j_common_ptr)dropinfo, drop_coef_arrays[ci], blk_y, (JDIMENSION)compptr->v_samp_factor, FALSE); for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { jcopy_block_row(src_buffer[offset_y], dst_buffer[offset_y] + x_drop_blocks, comp_width); } } else { for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { memset(dst_buffer[offset_y] + x_drop_blocks, 0, comp_width * sizeof(JBLOCK)); } } } } } LOCAL(void) do_crop(j_decompress_ptr srcinfo, j_compress_ptr dstinfo, JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, jvirt_barray_ptr *src_coef_arrays, jvirt_barray_ptr *dst_coef_arrays) /* Crop. This is only used when no rotate/flip is requested with the crop. */ { JDIMENSION dst_blk_y, x_crop_blocks, y_crop_blocks; int ci, offset_y; JBLOCKARRAY src_buffer, dst_buffer; jpeg_component_info *compptr; /* We simply have to copy the right amount of data (the destination's * image size) starting at the given X and Y offsets in the source. */ for (ci = 0; ci < dstinfo->num_components; ci++) { compptr = dstinfo->comp_info + ci; x_crop_blocks = x_crop_offset * compptr->h_samp_factor; y_crop_blocks = y_crop_offset * compptr->v_samp_factor; for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; dst_blk_y += compptr->v_samp_factor) { dst_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr)srcinfo, dst_coef_arrays[ci], dst_blk_y, (JDIMENSION)compptr->v_samp_factor, TRUE); src_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr)srcinfo, src_coef_arrays[ci], dst_blk_y + y_crop_blocks, (JDIMENSION)compptr->v_samp_factor, FALSE); for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { jcopy_block_row(src_buffer[offset_y] + x_crop_blocks, dst_buffer[offset_y], compptr->width_in_blocks); } } } } LOCAL(void) do_crop_ext_zero(j_decompress_ptr srcinfo, j_compress_ptr dstinfo, JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, jvirt_barray_ptr *src_coef_arrays, jvirt_barray_ptr *dst_coef_arrays) /* Crop. This is only used when no rotate/flip is requested with the crop. * Extension: If the destination size is larger than the source, we fill in the * expanded region with zero (neutral gray). Note that we also have to zero * partial iMCUs at the right and bottom edge of the source image area in this * case. */ { JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height; JDIMENSION dst_blk_y, x_crop_blocks, y_crop_blocks; int ci, offset_y; JBLOCKARRAY src_buffer, dst_buffer; jpeg_component_info *compptr; MCU_cols = srcinfo->output_width / (dstinfo->max_h_samp_factor * dstinfo_min_DCT_h_scaled_size); MCU_rows = srcinfo->output_height / (dstinfo->max_v_samp_factor * dstinfo_min_DCT_v_scaled_size); for (ci = 0; ci < dstinfo->num_components; ci++) { compptr = dstinfo->comp_info + ci; comp_width = MCU_cols * compptr->h_samp_factor; comp_height = MCU_rows * compptr->v_samp_factor; x_crop_blocks = x_crop_offset * compptr->h_samp_factor; y_crop_blocks = y_crop_offset * compptr->v_samp_factor; for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; dst_blk_y += compptr->v_samp_factor) { dst_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr)srcinfo, dst_coef_arrays[ci], dst_blk_y, (JDIMENSION)compptr->v_samp_factor, TRUE); if (dstinfo->_jpeg_height > srcinfo->output_height) { if (dst_blk_y < y_crop_blocks || dst_blk_y >= y_crop_blocks + comp_height) { for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { memset(dst_buffer[offset_y], 0, compptr->width_in_blocks * sizeof(JBLOCK)); } continue; } src_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr)srcinfo, src_coef_arrays[ci], dst_blk_y - y_crop_blocks, (JDIMENSION)compptr->v_samp_factor, FALSE); } else { src_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr)srcinfo, src_coef_arrays[ci], dst_blk_y + y_crop_blocks, (JDIMENSION)compptr->v_samp_factor, FALSE); } for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { if (dstinfo->_jpeg_width > srcinfo->output_width) { if (x_crop_blocks > 0) { memset(dst_buffer[offset_y], 0, x_crop_blocks * sizeof(JBLOCK)); } jcopy_block_row(src_buffer[offset_y], dst_buffer[offset_y] + x_crop_blocks, comp_width); if (compptr->width_in_blocks > x_crop_blocks + comp_width) { memset(dst_buffer[offset_y] + x_crop_blocks + comp_width, 0, (compptr->width_in_blocks - x_crop_blocks - comp_width) * sizeof(JBLOCK)); } } else { jcopy_block_row(src_buffer[offset_y] + x_crop_blocks, dst_buffer[offset_y], compptr->width_in_blocks); } } } } } LOCAL(void) do_crop_ext_flat(j_decompress_ptr srcinfo, j_compress_ptr dstinfo, JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, jvirt_barray_ptr *src_coef_arrays, jvirt_barray_ptr *dst_coef_arrays) /* Crop. This is only used when no rotate/flip is requested with the crop. * Extension: The destination width is larger than the source, and we fill in * the expanded region with the DC coefficient of the adjacent block. Note * that we also have to fill partial iMCUs at the right and bottom edge of the * source image area in this case. */ { JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height; JDIMENSION dst_blk_x, dst_blk_y, x_crop_blocks, y_crop_blocks; int ci, offset_y; JCOEF dc; JBLOCKARRAY src_buffer, dst_buffer; jpeg_component_info *compptr; MCU_cols = srcinfo->output_width / (dstinfo->max_h_samp_factor * dstinfo_min_DCT_h_scaled_size); MCU_rows = srcinfo->output_height / (dstinfo->max_v_samp_factor * dstinfo_min_DCT_v_scaled_size); for (ci = 0; ci < dstinfo->num_components; ci++) { compptr = dstinfo->comp_info + ci; comp_width = MCU_cols * compptr->h_samp_factor; comp_height = MCU_rows * compptr->v_samp_factor; x_crop_blocks = x_crop_offset * compptr->h_samp_factor; y_crop_blocks = y_crop_offset * compptr->v_samp_factor; for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; dst_blk_y += compptr->v_samp_factor) { dst_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr)srcinfo, dst_coef_arrays[ci], dst_blk_y, (JDIMENSION)compptr->v_samp_factor, TRUE); if (dstinfo->_jpeg_height > srcinfo->output_height) { if (dst_blk_y < y_crop_blocks || dst_blk_y >= y_crop_blocks + comp_height) { for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { memset(dst_buffer[offset_y], 0, compptr->width_in_blocks * sizeof(JBLOCK)); } continue; } src_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr)srcinfo, src_coef_arrays[ci], dst_blk_y - y_crop_blocks, (JDIMENSION)compptr->v_samp_factor, FALSE); } else { src_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr)srcinfo, src_coef_arrays[ci], dst_blk_y + y_crop_blocks, (JDIMENSION)compptr->v_samp_factor, FALSE); } for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { if (x_crop_blocks > 0) { memset(dst_buffer[offset_y], 0, x_crop_blocks * sizeof(JBLOCK)); dc = src_buffer[offset_y][0][0]; for (dst_blk_x = 0; dst_blk_x < x_crop_blocks; dst_blk_x++) { dst_buffer[offset_y][dst_blk_x][0] = dc; } } jcopy_block_row(src_buffer[offset_y], dst_buffer[offset_y] + x_crop_blocks, comp_width); if (compptr->width_in_blocks > x_crop_blocks + comp_width) { memset(dst_buffer[offset_y] + x_crop_blocks + comp_width, 0, (compptr->width_in_blocks - x_crop_blocks - comp_width) * sizeof(JBLOCK)); dc = src_buffer[offset_y][comp_width - 1][0]; for (dst_blk_x = x_crop_blocks + comp_width; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) { dst_buffer[offset_y][dst_blk_x][0] = dc; } } } } } } LOCAL(void) do_crop_ext_reflect(j_decompress_ptr srcinfo, j_compress_ptr dstinfo, JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, jvirt_barray_ptr *src_coef_arrays, jvirt_barray_ptr *dst_coef_arrays) /* Crop. This is only used when no rotate/flip is requested with the crop. * Extension: The destination width is larger than the source, and we fill in * the expanded region with repeated reflections of the source image. Note * that we also have to fill partial iMCUs at the right and bottom edge of the * source image area in this case. */ { JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height, src_blk_x; JDIMENSION dst_blk_x, dst_blk_y, x_crop_blocks, y_crop_blocks; int ci, k, offset_y; JBLOCKARRAY src_buffer, dst_buffer; JBLOCKROW src_row_ptr, dst_row_ptr; JCOEFPTR src_ptr, dst_ptr; jpeg_component_info *compptr; MCU_cols = srcinfo->output_width / (dstinfo->max_h_samp_factor * dstinfo_min_DCT_h_scaled_size); MCU_rows = srcinfo->output_height / (dstinfo->max_v_samp_factor * dstinfo_min_DCT_v_scaled_size); for (ci = 0; ci < dstinfo->num_components; ci++) { compptr = dstinfo->comp_info + ci; comp_width = MCU_cols * compptr->h_samp_factor; comp_height = MCU_rows * compptr->v_samp_factor; x_crop_blocks = x_crop_offset * compptr->h_samp_factor; y_crop_blocks = y_crop_offset * compptr->v_samp_factor; for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; dst_blk_y += compptr->v_samp_factor) { dst_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr)srcinfo, dst_coef_arrays[ci], dst_blk_y, (JDIMENSION)compptr->v_samp_factor, TRUE); if (dstinfo->_jpeg_height > srcinfo->output_height) { if (dst_blk_y < y_crop_blocks || dst_blk_y >= y_crop_blocks + comp_height) { for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { memset(dst_buffer[offset_y], 0, compptr->width_in_blocks * sizeof(JBLOCK)); } continue; } src_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr)srcinfo, src_coef_arrays[ci], dst_blk_y - y_crop_blocks, (JDIMENSION)compptr->v_samp_factor, FALSE); } else { src_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr)srcinfo, src_coef_arrays[ci], dst_blk_y + y_crop_blocks, (JDIMENSION)compptr->v_samp_factor, FALSE); } for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { /* Copy source region */ jcopy_block_row(src_buffer[offset_y], dst_buffer[offset_y] + x_crop_blocks, comp_width); if (x_crop_blocks > 0) { /* Reflect to left */ dst_row_ptr = dst_buffer[offset_y] + x_crop_blocks; for (dst_blk_x = x_crop_blocks; dst_blk_x > 0;) { src_row_ptr = dst_row_ptr; /* (re)set axis of reflection */ for (src_blk_x = comp_width; src_blk_x > 0 && dst_blk_x > 0; src_blk_x--, dst_blk_x--) { dst_ptr = *(--dst_row_ptr); /* destination goes left */ src_ptr = *src_row_ptr++; /* source goes right */ /* This unrolled loop doesn't need to know which row it's on. */ for (k = 0; k < DCTSIZE2; k += 2) { *dst_ptr++ = *src_ptr++; /* copy even column */ *dst_ptr++ = -(*src_ptr++); /* copy odd column with sign change */ } } } } if (compptr->width_in_blocks > x_crop_blocks + comp_width) { /* Reflect to right */ dst_row_ptr = dst_buffer[offset_y] + x_crop_blocks + comp_width; for (dst_blk_x = compptr->width_in_blocks - x_crop_blocks - comp_width; dst_blk_x > 0;) { src_row_ptr = dst_row_ptr; /* (re)set axis of reflection */ for (src_blk_x = comp_width; src_blk_x > 0 && dst_blk_x > 0; src_blk_x--, dst_blk_x--) { dst_ptr = *dst_row_ptr++; /* destination goes right */ src_ptr = *(--src_row_ptr); /* source goes left */ /* This unrolled loop doesn't need to know which row it's on. */ for (k = 0; k < DCTSIZE2; k += 2) { *dst_ptr++ = *src_ptr++; /* copy even column */ *dst_ptr++ = -(*src_ptr++); /* copy odd column with sign change */ } } } } } } } } LOCAL(void) do_wipe(j_decompress_ptr srcinfo, j_compress_ptr dstinfo, JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, jvirt_barray_ptr *src_coef_arrays, JDIMENSION drop_width, JDIMENSION drop_height) /* Wipe - discard image contents of specified region and fill with zero * (neutral gray) */ { JDIMENSION x_wipe_blocks, wipe_width; JDIMENSION y_wipe_blocks, wipe_bottom; int ci, offset_y; JBLOCKARRAY buffer; jpeg_component_info *compptr; for (ci = 0; ci < dstinfo->num_components; ci++) { compptr = dstinfo->comp_info + ci; x_wipe_blocks = x_crop_offset * compptr->h_samp_factor; wipe_width = drop_width * compptr->h_samp_factor; y_wipe_blocks = y_crop_offset * compptr->v_samp_factor; wipe_bottom = drop_height * compptr->v_samp_factor + y_wipe_blocks; for (; y_wipe_blocks < wipe_bottom; y_wipe_blocks += compptr->v_samp_factor) { buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr)srcinfo, src_coef_arrays[ci], y_wipe_blocks, (JDIMENSION)compptr->v_samp_factor, TRUE); for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { memset(buffer[offset_y] + x_wipe_blocks, 0, wipe_width * sizeof(JBLOCK)); } } } } LOCAL(void) do_flatten(j_decompress_ptr srcinfo, j_compress_ptr dstinfo, JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, jvirt_barray_ptr *src_coef_arrays, JDIMENSION drop_width, JDIMENSION drop_height) /* Flatten - discard image contents of specified region, similarly to wipe, * but fill with the average of adjacent blocks instead of zero. */ { JDIMENSION x_wipe_blocks, wipe_width, wipe_right; JDIMENSION y_wipe_blocks, wipe_bottom, blk_x; int ci, offset_y, dc_left_value, dc_right_value, average; JBLOCKARRAY buffer; jpeg_component_info *compptr; for (ci = 0; ci < dstinfo->num_components; ci++) { compptr = dstinfo->comp_info + ci; x_wipe_blocks = x_crop_offset * compptr->h_samp_factor; wipe_width = drop_width * compptr->h_samp_factor; wipe_right = wipe_width + x_wipe_blocks; y_wipe_blocks = y_crop_offset * compptr->v_samp_factor; wipe_bottom = drop_height * compptr->v_samp_factor + y_wipe_blocks; for (; y_wipe_blocks < wipe_bottom; y_wipe_blocks += compptr->v_samp_factor) { buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr)srcinfo, src_coef_arrays[ci], y_wipe_blocks, (JDIMENSION)compptr->v_samp_factor, TRUE); for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { memset(buffer[offset_y] + x_wipe_blocks, 0, wipe_width * sizeof(JBLOCK)); if (x_wipe_blocks > 0) { dc_left_value = buffer[offset_y][x_wipe_blocks - 1][0]; if (wipe_right < compptr->width_in_blocks) { dc_right_value = buffer[offset_y][wipe_right][0]; average = (dc_left_value + dc_right_value) >> 1; } else { average = dc_left_value; } } else if (wipe_right < compptr->width_in_blocks) { average = buffer[offset_y][wipe_right][0]; } else continue; for (blk_x = x_wipe_blocks; blk_x < wipe_right; blk_x++) { buffer[offset_y][blk_x][0] = (JCOEF)average; } } } } } LOCAL(void) do_reflect(j_decompress_ptr srcinfo, j_compress_ptr dstinfo, JDIMENSION x_crop_offset, jvirt_barray_ptr *src_coef_arrays, JDIMENSION drop_width, JDIMENSION drop_height) /* Reflect - discard image contents of specified region, similarly to wipe, * but fill with repeated reflections of the outside region instead of zero. * NB: y_crop_offset is assumed to be zero. */ { JDIMENSION x_wipe_blocks, wipe_width; JDIMENSION y_wipe_blocks, wipe_bottom; JDIMENSION src_blk_x, dst_blk_x; int ci, k, offset_y; JBLOCKARRAY buffer; JBLOCKROW src_row_ptr, dst_row_ptr; JCOEFPTR src_ptr, dst_ptr; jpeg_component_info *compptr; for (ci = 0; ci < dstinfo->num_components; ci++) { compptr = dstinfo->comp_info + ci; x_wipe_blocks = x_crop_offset * compptr->h_samp_factor; wipe_width = drop_width * compptr->h_samp_factor; wipe_bottom = drop_height * compptr->v_samp_factor; for (y_wipe_blocks = 0; y_wipe_blocks < wipe_bottom; y_wipe_blocks += compptr->v_samp_factor) { buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr)srcinfo, src_coef_arrays[ci], y_wipe_blocks, (JDIMENSION)compptr->v_samp_factor, TRUE); for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { if (x_wipe_blocks > 0) { /* Reflect from left */ dst_row_ptr = buffer[offset_y] + x_wipe_blocks; for (dst_blk_x = wipe_width; dst_blk_x > 0;) { src_row_ptr = dst_row_ptr; /* (re)set axis of reflection */ for (src_blk_x = x_wipe_blocks; src_blk_x > 0 && dst_blk_x > 0; src_blk_x--, dst_blk_x--) { dst_ptr = *dst_row_ptr++; /* destination goes right */ src_ptr = *(--src_row_ptr); /* source goes left */ /* this unrolled loop doesn't need to know which row it's on... */ for (k = 0; k < DCTSIZE2; k += 2) { *dst_ptr++ = *src_ptr++; /* copy even column */ *dst_ptr++ = -(*src_ptr++); /* copy odd column with sign change */ } } } } else if (compptr->width_in_blocks > x_wipe_blocks + wipe_width) { /* Reflect from right */ dst_row_ptr = buffer[offset_y] + x_wipe_blocks + wipe_width; for (dst_blk_x = wipe_width; dst_blk_x > 0;) { src_row_ptr = dst_row_ptr; /* (re)set axis of reflection */ src_blk_x = compptr->width_in_blocks - x_wipe_blocks - wipe_width; for (; src_blk_x > 0 && dst_blk_x > 0; src_blk_x--, dst_blk_x--) { dst_ptr = *(--dst_row_ptr); /* destination goes left */ src_ptr = *src_row_ptr++; /* source goes right */ /* this unrolled loop doesn't need to know which row it's on... */ for (k = 0; k < DCTSIZE2; k += 2) { *dst_ptr++ = *src_ptr++; /* copy even column */ *dst_ptr++ = -(*src_ptr++); /* copy odd column with sign change */ } } } } else { memset(buffer[offset_y] + x_wipe_blocks, 0, wipe_width * sizeof(JBLOCK)); } } } } } LOCAL(void) do_flip_h_no_crop(j_decompress_ptr srcinfo, j_compress_ptr dstinfo, JDIMENSION x_crop_offset, jvirt_barray_ptr *src_coef_arrays) /* Horizontal flip; done in-place, so no separate dest array is required. * NB: this only works when y_crop_offset is zero. */ { JDIMENSION MCU_cols, comp_width, blk_x, blk_y, x_crop_blocks; int ci, k, offset_y; JBLOCKARRAY buffer; JCOEFPTR ptr1, ptr2; JCOEF temp1, temp2; jpeg_component_info *compptr; /* Horizontal mirroring of DCT blocks is accomplished by swapping * pairs of blocks in-place. Within a DCT block, we perform horizontal * mirroring by changing the signs of odd-numbered columns. * Partial iMCUs at the right edge are left untouched. */ MCU_cols = srcinfo->output_width / (dstinfo->max_h_samp_factor * dstinfo_min_DCT_h_scaled_size); for (ci = 0; ci < dstinfo->num_components; ci++) { compptr = dstinfo->comp_info + ci; comp_width = MCU_cols * compptr->h_samp_factor; x_crop_blocks = x_crop_offset * compptr->h_samp_factor; for (blk_y = 0; blk_y < compptr->height_in_blocks; blk_y += compptr->v_samp_factor) { buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr)srcinfo, src_coef_arrays[ci], blk_y, (JDIMENSION)compptr->v_samp_factor, TRUE); for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { /* Do the mirroring */ for (blk_x = 0; blk_x * 2 < comp_width; blk_x++) { ptr1 = buffer[offset_y][blk_x]; ptr2 = buffer[offset_y][comp_width - blk_x - 1]; /* this unrolled loop doesn't need to know which row it's on... */ for (k = 0; k < DCTSIZE2; k += 2) { temp1 = *ptr1; /* swap even column */ temp2 = *ptr2; *ptr1++ = temp2; *ptr2++ = temp1; temp1 = *ptr1; /* swap odd column with sign change */ temp2 = *ptr2; *ptr1++ = -temp2; *ptr2++ = -temp1; } } if (x_crop_blocks > 0) { /* Now left-justify the portion of the data to be kept. * We can't use a single jcopy_block_row() call because that routine * depends on memcpy(), whose behavior is unspecified for overlapping * source and destination areas. Sigh. */ for (blk_x = 0; blk_x < compptr->width_in_blocks; blk_x++) { jcopy_block_row(buffer[offset_y] + blk_x + x_crop_blocks, buffer[offset_y] + blk_x, (JDIMENSION)1); } } } } } } LOCAL(void) do_flip_h(j_decompress_ptr srcinfo, j_compress_ptr dstinfo, JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, jvirt_barray_ptr *src_coef_arrays, jvirt_barray_ptr *dst_coef_arrays) /* Horizontal flip in general cropping case */ { JDIMENSION MCU_cols, comp_width, dst_blk_x, dst_blk_y; JDIMENSION x_crop_blocks, y_crop_blocks; int ci, k, offset_y; JBLOCKARRAY src_buffer, dst_buffer; JBLOCKROW src_row_ptr, dst_row_ptr; JCOEFPTR src_ptr, dst_ptr; jpeg_component_info *compptr; /* Here we must output into a separate array because we can't touch * different rows of a single virtual array simultaneously. Otherwise, * this is essentially the same as the routine above. */ MCU_cols = srcinfo->output_width / (dstinfo->max_h_samp_factor * dstinfo_min_DCT_h_scaled_size); for (ci = 0; ci < dstinfo->num_components; ci++) { compptr = dstinfo->comp_info + ci; comp_width = MCU_cols * compptr->h_samp_factor; x_crop_blocks = x_crop_offset * compptr->h_samp_factor; y_crop_blocks = y_crop_offset * compptr->v_samp_factor; for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; dst_blk_y += compptr->v_samp_factor) { dst_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr)srcinfo, dst_coef_arrays[ci], dst_blk_y, (JDIMENSION)compptr->v_samp_factor, TRUE); src_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr)srcinfo, src_coef_arrays[ci], dst_blk_y + y_crop_blocks, (JDIMENSION)compptr->v_samp_factor, FALSE); for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { dst_row_ptr = dst_buffer[offset_y]; src_row_ptr = src_buffer[offset_y]; for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) { if (x_crop_blocks + dst_blk_x < comp_width) { /* Do the mirrorable blocks */ dst_ptr = dst_row_ptr[dst_blk_x]; src_ptr = src_row_ptr[comp_width - x_crop_blocks - dst_blk_x - 1]; /* this unrolled loop doesn't need to know which row it's on... */ for (k = 0; k < DCTSIZE2; k += 2) { *dst_ptr++ = *src_ptr++; /* copy even column */ *dst_ptr++ = -(*src_ptr++); /* copy odd column with sign change */ } } else { /* Copy last partial block(s) verbatim */ jcopy_block_row(src_row_ptr + dst_blk_x + x_crop_blocks, dst_row_ptr + dst_blk_x, (JDIMENSION)1); } } } } } } LOCAL(void) do_flip_v(j_decompress_ptr srcinfo, j_compress_ptr dstinfo, JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, jvirt_barray_ptr *src_coef_arrays, jvirt_barray_ptr *dst_coef_arrays) /* Vertical flip */ { JDIMENSION MCU_rows, comp_height, dst_blk_x, dst_blk_y; JDIMENSION x_crop_blocks, y_crop_blocks; int ci, i, j, offset_y; JBLOCKARRAY src_buffer, dst_buffer; JBLOCKROW src_row_ptr, dst_row_ptr; JCOEFPTR src_ptr, dst_ptr; jpeg_component_info *compptr; /* We output into a separate array because we can't touch different * rows of the source virtual array simultaneously. Otherwise, this * is a pretty straightforward analog of horizontal flip. * Within a DCT block, vertical mirroring is done by changing the signs * of odd-numbered rows. * Partial iMCUs at the bottom edge are copied verbatim. */ MCU_rows = srcinfo->output_height / (dstinfo->max_v_samp_factor * dstinfo_min_DCT_v_scaled_size); for (ci = 0; ci < dstinfo->num_components; ci++) { compptr = dstinfo->comp_info + ci; comp_height = MCU_rows * compptr->v_samp_factor; x_crop_blocks = x_crop_offset * compptr->h_samp_factor; y_crop_blocks = y_crop_offset * compptr->v_samp_factor; for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; dst_blk_y += compptr->v_samp_factor) { dst_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr)srcinfo, dst_coef_arrays[ci], dst_blk_y, (JDIMENSION)compptr->v_samp_factor, TRUE); if (y_crop_blocks + dst_blk_y < comp_height) { /* Row is within the mirrorable area. */ src_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr)srcinfo, src_coef_arrays[ci], comp_height - y_crop_blocks - dst_blk_y - (JDIMENSION)compptr->v_samp_factor, (JDIMENSION)compptr->v_samp_factor, FALSE); } else { /* Bottom-edge blocks will be copied verbatim. */ src_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr)srcinfo, src_coef_arrays[ci], dst_blk_y + y_crop_blocks, (JDIMENSION)compptr->v_samp_factor, FALSE); } for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { if (y_crop_blocks + dst_blk_y < comp_height) { /* Row is within the mirrorable area. */ dst_row_ptr = dst_buffer[offset_y]; src_row_ptr = src_buffer[compptr->v_samp_factor - offset_y - 1]; src_row_ptr += x_crop_blocks; for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) { dst_ptr = dst_row_ptr[dst_blk_x]; src_ptr = src_row_ptr[dst_blk_x]; for (i = 0; i < DCTSIZE; i += 2) { /* copy even row */ for (j = 0; j < DCTSIZE; j++) *dst_ptr++ = *src_ptr++; /* copy odd row with sign change */ for (j = 0; j < DCTSIZE; j++) *dst_ptr++ = -(*src_ptr++); } } } else { /* Just copy row verbatim. */ jcopy_block_row(src_buffer[offset_y] + x_crop_blocks, dst_buffer[offset_y], compptr->width_in_blocks); } } } } } LOCAL(void) do_transpose(j_decompress_ptr srcinfo, j_compress_ptr dstinfo, JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, jvirt_barray_ptr *src_coef_arrays, jvirt_barray_ptr *dst_coef_arrays) /* Transpose source into destination */ { JDIMENSION dst_blk_x, dst_blk_y, x_crop_blocks, y_crop_blocks; int ci, i, j, offset_x, offset_y; JBLOCKARRAY src_buffer, dst_buffer; JCOEFPTR src_ptr, dst_ptr; jpeg_component_info *compptr; /* Transposing pixels within a block just requires transposing the * DCT coefficients. * Partial iMCUs at the edges require no special treatment; we simply * process all the available DCT blocks for every component. */ for (ci = 0; ci < dstinfo->num_components; ci++) { compptr = dstinfo->comp_info + ci; x_crop_blocks = x_crop_offset * compptr->h_samp_factor; y_crop_blocks = y_crop_offset * compptr->v_samp_factor; for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; dst_blk_y += compptr->v_samp_factor) { dst_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr)srcinfo, dst_coef_arrays[ci], dst_blk_y, (JDIMENSION)compptr->v_samp_factor, TRUE); for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x += compptr->h_samp_factor) { src_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr)srcinfo, src_coef_arrays[ci], dst_blk_x + x_crop_blocks, (JDIMENSION)compptr->h_samp_factor, FALSE); for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; src_ptr = src_buffer[offset_x][dst_blk_y + offset_y + y_crop_blocks]; for (i = 0; i < DCTSIZE; i++) for (j = 0; j < DCTSIZE; j++) dst_ptr[j * DCTSIZE + i] = src_ptr[i * DCTSIZE + j]; } } } } } } LOCAL(void) do_rot_90(j_decompress_ptr srcinfo, j_compress_ptr dstinfo, JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, jvirt_barray_ptr *src_coef_arrays, jvirt_barray_ptr *dst_coef_arrays) /* 90 degree rotation is equivalent to * 1. Transposing the image; * 2. Horizontal mirroring. * These two steps are merged into a single processing routine. */ { JDIMENSION MCU_cols, comp_width, dst_blk_x, dst_blk_y; JDIMENSION x_crop_blocks, y_crop_blocks; int ci, i, j, offset_x, offset_y; JBLOCKARRAY src_buffer, dst_buffer; JCOEFPTR src_ptr, dst_ptr; jpeg_component_info *compptr; /* Because of the horizontal mirror step, we can't process partial iMCUs * at the (output) right edge properly. They just get transposed and * not mirrored. */ MCU_cols = srcinfo->output_height / (dstinfo->max_h_samp_factor * dstinfo_min_DCT_h_scaled_size); for (ci = 0; ci < dstinfo->num_components; ci++) { compptr = dstinfo->comp_info + ci; comp_width = MCU_cols * compptr->h_samp_factor; x_crop_blocks = x_crop_offset * compptr->h_samp_factor; y_crop_blocks = y_crop_offset * compptr->v_samp_factor; for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; dst_blk_y += compptr->v_samp_factor) { dst_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr)srcinfo, dst_coef_arrays[ci], dst_blk_y, (JDIMENSION)compptr->v_samp_factor, TRUE); for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x += compptr->h_samp_factor) { if (x_crop_blocks + dst_blk_x < comp_width) { /* Block is within the mirrorable area. */ src_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr)srcinfo, src_coef_arrays[ci], comp_width - x_crop_blocks - dst_blk_x - (JDIMENSION)compptr->h_samp_factor, (JDIMENSION)compptr->h_samp_factor, FALSE); } else { /* Edge blocks are transposed but not mirrored. */ src_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr)srcinfo, src_coef_arrays[ci], dst_blk_x + x_crop_blocks, (JDIMENSION)compptr->h_samp_factor, FALSE); } for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; if (x_crop_blocks + dst_blk_x < comp_width) { /* Block is within the mirrorable area. */ src_ptr = src_buffer[compptr->h_samp_factor - offset_x - 1] [dst_blk_y + offset_y + y_crop_blocks]; for (i = 0; i < DCTSIZE; i++) { for (j = 0; j < DCTSIZE; j++) dst_ptr[j * DCTSIZE + i] = src_ptr[i * DCTSIZE + j]; i++; for (j = 0; j < DCTSIZE; j++) dst_ptr[j * DCTSIZE + i] = -src_ptr[i * DCTSIZE + j]; } } else { /* Edge blocks are transposed but not mirrored. */ src_ptr = src_buffer[offset_x] [dst_blk_y + offset_y + y_crop_blocks]; for (i = 0; i < DCTSIZE; i++) for (j = 0; j < DCTSIZE; j++) dst_ptr[j * DCTSIZE + i] = src_ptr[i * DCTSIZE + j]; } } } } } } } LOCAL(void) do_rot_270(j_decompress_ptr srcinfo, j_compress_ptr dstinfo, JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, jvirt_barray_ptr *src_coef_arrays, jvirt_barray_ptr *dst_coef_arrays) /* 270 degree rotation is equivalent to * 1. Horizontal mirroring; * 2. Transposing the image. * These two steps are merged into a single processing routine. */ { JDIMENSION MCU_rows, comp_height, dst_blk_x, dst_blk_y; JDIMENSION x_crop_blocks, y_crop_blocks; int ci, i, j, offset_x, offset_y; JBLOCKARRAY src_buffer, dst_buffer; JCOEFPTR src_ptr, dst_ptr; jpeg_component_info *compptr; /* Because of the horizontal mirror step, we can't process partial iMCUs * at the (output) bottom edge properly. They just get transposed and * not mirrored. */ MCU_rows = srcinfo->output_width / (dstinfo->max_v_samp_factor * dstinfo_min_DCT_v_scaled_size); for (ci = 0; ci < dstinfo->num_components; ci++) { compptr = dstinfo->comp_info + ci; comp_height = MCU_rows * compptr->v_samp_factor; x_crop_blocks = x_crop_offset * compptr->h_samp_factor; y_crop_blocks = y_crop_offset * compptr->v_samp_factor; for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; dst_blk_y += compptr->v_samp_factor) { dst_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr)srcinfo, dst_coef_arrays[ci], dst_blk_y, (JDIMENSION)compptr->v_samp_factor, TRUE); for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x += compptr->h_samp_factor) { src_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr)srcinfo, src_coef_arrays[ci], dst_blk_x + x_crop_blocks, (JDIMENSION)compptr->h_samp_factor, FALSE); for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; if (y_crop_blocks + dst_blk_y < comp_height) { /* Block is within the mirrorable area. */ src_ptr = src_buffer[offset_x] [comp_height - y_crop_blocks - dst_blk_y - offset_y - 1]; for (i = 0; i < DCTSIZE; i++) { for (j = 0; j < DCTSIZE; j++) { dst_ptr[j * DCTSIZE + i] = src_ptr[i * DCTSIZE + j]; j++; dst_ptr[j * DCTSIZE + i] = -src_ptr[i * DCTSIZE + j]; } } } else { /* Edge blocks are transposed but not mirrored. */ src_ptr = src_buffer[offset_x] [dst_blk_y + offset_y + y_crop_blocks]; for (i = 0; i < DCTSIZE; i++) for (j = 0; j < DCTSIZE; j++) dst_ptr[j * DCTSIZE + i] = src_ptr[i * DCTSIZE + j]; } } } } } } } LOCAL(void) do_rot_180(j_decompress_ptr srcinfo, j_compress_ptr dstinfo, JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, jvirt_barray_ptr *src_coef_arrays, jvirt_barray_ptr *dst_coef_arrays) /* 180 degree rotation is equivalent to * 1. Vertical mirroring; * 2. Horizontal mirroring. * These two steps are merged into a single processing routine. */ { JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height, dst_blk_x, dst_blk_y; JDIMENSION x_crop_blocks, y_crop_blocks; int ci, i, j, offset_y; JBLOCKARRAY src_buffer, dst_buffer; JBLOCKROW src_row_ptr, dst_row_ptr; JCOEFPTR src_ptr, dst_ptr; jpeg_component_info *compptr; MCU_cols = srcinfo->output_width / (dstinfo->max_h_samp_factor * dstinfo_min_DCT_h_scaled_size); MCU_rows = srcinfo->output_height / (dstinfo->max_v_samp_factor * dstinfo_min_DCT_v_scaled_size); for (ci = 0; ci < dstinfo->num_components; ci++) { compptr = dstinfo->comp_info + ci; comp_width = MCU_cols * compptr->h_samp_factor; comp_height = MCU_rows * compptr->v_samp_factor; x_crop_blocks = x_crop_offset * compptr->h_samp_factor; y_crop_blocks = y_crop_offset * compptr->v_samp_factor; for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; dst_blk_y += compptr->v_samp_factor) { dst_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr)srcinfo, dst_coef_arrays[ci], dst_blk_y, (JDIMENSION)compptr->v_samp_factor, TRUE); if (y_crop_blocks + dst_blk_y < comp_height) { /* Row is within the vertically mirrorable area. */ src_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr)srcinfo, src_coef_arrays[ci], comp_height - y_crop_blocks - dst_blk_y - (JDIMENSION)compptr->v_samp_factor, (JDIMENSION)compptr->v_samp_factor, FALSE); } else { /* Bottom-edge rows are only mirrored horizontally. */ src_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr)srcinfo, src_coef_arrays[ci], dst_blk_y + y_crop_blocks, (JDIMENSION)compptr->v_samp_factor, FALSE); } for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { dst_row_ptr = dst_buffer[offset_y]; if (y_crop_blocks + dst_blk_y < comp_height) { /* Row is within the mirrorable area. */ src_row_ptr = src_buffer[compptr->v_samp_factor - offset_y - 1]; for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) { dst_ptr = dst_row_ptr[dst_blk_x]; if (x_crop_blocks + dst_blk_x < comp_width) { /* Process the blocks that can be mirrored both ways. */ src_ptr = src_row_ptr[comp_width - x_crop_blocks - dst_blk_x - 1]; for (i = 0; i < DCTSIZE; i += 2) { /* For even row, negate every odd column. */ for (j = 0; j < DCTSIZE; j += 2) { *dst_ptr++ = *src_ptr++; *dst_ptr++ = -(*src_ptr++); } /* For odd row, negate every even column. */ for (j = 0; j < DCTSIZE; j += 2) { *dst_ptr++ = -(*src_ptr++); *dst_ptr++ = *src_ptr++; } } } else { /* Any remaining right-edge blocks are only mirrored vertically. */ src_ptr = src_row_ptr[x_crop_blocks + dst_blk_x]; for (i = 0; i < DCTSIZE; i += 2) { for (j = 0; j < DCTSIZE; j++) *dst_ptr++ = *src_ptr++; for (j = 0; j < DCTSIZE; j++) *dst_ptr++ = -(*src_ptr++); } } } } else { /* Remaining rows are just mirrored horizontally. */ src_row_ptr = src_buffer[offset_y]; for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) { if (x_crop_blocks + dst_blk_x < comp_width) { /* Process the blocks that can be mirrored. */ dst_ptr = dst_row_ptr[dst_blk_x]; src_ptr = src_row_ptr[comp_width - x_crop_blocks - dst_blk_x - 1]; for (i = 0; i < DCTSIZE2; i += 2) { *dst_ptr++ = *src_ptr++; *dst_ptr++ = -(*src_ptr++); } } else { /* Any remaining right-edge blocks are only copied. */ jcopy_block_row(src_row_ptr + dst_blk_x + x_crop_blocks, dst_row_ptr + dst_blk_x, (JDIMENSION)1); } } } } } } } LOCAL(void) do_transverse(j_decompress_ptr srcinfo, j_compress_ptr dstinfo, JDIMENSION x_crop_offset, JDIMENSION y_crop_offset, jvirt_barray_ptr *src_coef_arrays, jvirt_barray_ptr *dst_coef_arrays) /* Transverse transpose is equivalent to * 1. 180 degree rotation; * 2. Transposition; * or * 1. Horizontal mirroring; * 2. Transposition; * 3. Horizontal mirroring. * These steps are merged into a single processing routine. */ { JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height, dst_blk_x, dst_blk_y; JDIMENSION x_crop_blocks, y_crop_blocks; int ci, i, j, offset_x, offset_y; JBLOCKARRAY src_buffer, dst_buffer; JCOEFPTR src_ptr, dst_ptr; jpeg_component_info *compptr; MCU_cols = srcinfo->output_height / (dstinfo->max_h_samp_factor * dstinfo_min_DCT_h_scaled_size); MCU_rows = srcinfo->output_width / (dstinfo->max_v_samp_factor * dstinfo_min_DCT_v_scaled_size); for (ci = 0; ci < dstinfo->num_components; ci++) { compptr = dstinfo->comp_info + ci; comp_width = MCU_cols * compptr->h_samp_factor; comp_height = MCU_rows * compptr->v_samp_factor; x_crop_blocks = x_crop_offset * compptr->h_samp_factor; y_crop_blocks = y_crop_offset * compptr->v_samp_factor; for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks; dst_blk_y += compptr->v_samp_factor) { dst_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr)srcinfo, dst_coef_arrays[ci], dst_blk_y, (JDIMENSION)compptr->v_samp_factor, TRUE); for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) { for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x += compptr->h_samp_factor) { if (x_crop_blocks + dst_blk_x < comp_width) { /* Block is within the mirrorable area. */ src_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr)srcinfo, src_coef_arrays[ci], comp_width - x_crop_blocks - dst_blk_x - (JDIMENSION)compptr->h_samp_factor, (JDIMENSION)compptr->h_samp_factor, FALSE); } else { src_buffer = (*srcinfo->mem->access_virt_barray) ((j_common_ptr)srcinfo, src_coef_arrays[ci], dst_blk_x + x_crop_blocks, (JDIMENSION)compptr->h_samp_factor, FALSE); } for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) { dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x]; if (y_crop_blocks + dst_blk_y < comp_height) { if (x_crop_blocks + dst_blk_x < comp_width) { /* Block is within the mirrorable area. */ src_ptr = src_buffer[compptr->h_samp_factor - offset_x - 1] [comp_height - y_crop_blocks - dst_blk_y - offset_y - 1]; for (i = 0; i < DCTSIZE; i++) { for (j = 0; j < DCTSIZE; j++) { dst_ptr[j * DCTSIZE + i] = src_ptr[i * DCTSIZE + j]; j++; dst_ptr[j * DCTSIZE + i] = -src_ptr[i * DCTSIZE + j]; } i++; for (j = 0; j < DCTSIZE; j++) { dst_ptr[j * DCTSIZE + i] = -src_ptr[i * DCTSIZE + j]; j++; dst_ptr[j * DCTSIZE + i] = src_ptr[i * DCTSIZE + j]; } } } else { /* Right-edge blocks are mirrored in y only */ src_ptr = src_buffer[offset_x] [comp_height - y_crop_blocks - dst_blk_y - offset_y - 1]; for (i = 0; i < DCTSIZE; i++) { for (j = 0; j < DCTSIZE; j++) { dst_ptr[j * DCTSIZE + i] = src_ptr[i * DCTSIZE + j]; j++; dst_ptr[j * DCTSIZE + i] = -src_ptr[i * DCTSIZE + j]; } } } } else { if (x_crop_blocks + dst_blk_x < comp_width) { /* Bottom-edge blocks are mirrored in x only */ src_ptr = src_buffer[compptr->h_samp_factor - offset_x - 1] [dst_blk_y + offset_y + y_crop_blocks]; for (i = 0; i < DCTSIZE; i++) { for (j = 0; j < DCTSIZE; j++) dst_ptr[j * DCTSIZE + i] = src_ptr[i * DCTSIZE + j]; i++; for (j = 0; j < DCTSIZE; j++) dst_ptr[j * DCTSIZE + i] = -src_ptr[i * DCTSIZE + j]; } } else { /* At lower right corner, just transpose, no mirroring */ src_ptr = src_buffer[offset_x] [dst_blk_y + offset_y + y_crop_blocks]; for (i = 0; i < DCTSIZE; i++) for (j = 0; j < DCTSIZE; j++) dst_ptr[j * DCTSIZE + i] = src_ptr[i * DCTSIZE + j]; } } } } } } } } /* Parse an unsigned integer: subroutine for jtransform_parse_crop_spec. * Returns TRUE if valid integer found, FALSE if not. * *strptr is advanced over the digit string, and *result is set to its value. */ LOCAL(boolean) jt_read_integer(const char **strptr, JDIMENSION *result) { const char *ptr = *strptr; JDIMENSION val = 0; for (; isdigit(*ptr); ptr++) { val = val * 10 + (JDIMENSION)(*ptr - '0'); } *result = val; if (ptr == *strptr) return FALSE; /* oops, no digits */ *strptr = ptr; return TRUE; } /* Parse a crop specification (written in X11 geometry style). * The routine returns TRUE if the spec string is valid, FALSE if not. * * The crop spec string should have the format * [{fr}]x[{fr}]{+-}{+-} * where width, height, xoffset, and yoffset are unsigned integers. * Each of the elements can be omitted to indicate a default value. * (A weakness of this style is that it is not possible to omit xoffset * while specifying yoffset, since they look alike.) * * This code is loosely based on XParseGeometry from the X11 distribution. */ GLOBAL(boolean) jtransform_parse_crop_spec(jpeg_transform_info *info, const char *spec) { info->crop = FALSE; info->crop_width_set = JCROP_UNSET; info->crop_height_set = JCROP_UNSET; info->crop_xoffset_set = JCROP_UNSET; info->crop_yoffset_set = JCROP_UNSET; if (isdigit(*spec)) { /* fetch width */ if (!jt_read_integer(&spec, &info->crop_width)) return FALSE; if (*spec == 'f' || *spec == 'F') { spec++; info->crop_width_set = JCROP_FORCE; } else if (*spec == 'r' || *spec == 'R') { spec++; info->crop_width_set = JCROP_REFLECT; } else info->crop_width_set = JCROP_POS; } if (*spec == 'x' || *spec == 'X') { /* fetch height */ spec++; if (!jt_read_integer(&spec, &info->crop_height)) return FALSE; if (*spec == 'f' || *spec == 'F') { spec++; info->crop_height_set = JCROP_FORCE; } else if (*spec == 'r' || *spec == 'R') { spec++; info->crop_height_set = JCROP_REFLECT; } else info->crop_height_set = JCROP_POS; } if (*spec == '+' || *spec == '-') { /* fetch xoffset */ info->crop_xoffset_set = (*spec == '-') ? JCROP_NEG : JCROP_POS; spec++; if (!jt_read_integer(&spec, &info->crop_xoffset)) return FALSE; } if (*spec == '+' || *spec == '-') { /* fetch yoffset */ info->crop_yoffset_set = (*spec == '-') ? JCROP_NEG : JCROP_POS; spec++; if (!jt_read_integer(&spec, &info->crop_yoffset)) return FALSE; } /* We had better have gotten to the end of the string. */ if (*spec != '\0') return FALSE; info->crop = TRUE; return TRUE; } /* Trim off any partial iMCUs on the indicated destination edge */ LOCAL(void) trim_right_edge(jpeg_transform_info *info, JDIMENSION full_width) { JDIMENSION MCU_cols; MCU_cols = info->output_width / info->iMCU_sample_width; if (MCU_cols > 0 && info->x_crop_offset + MCU_cols == full_width / info->iMCU_sample_width) info->output_width = MCU_cols * info->iMCU_sample_width; } LOCAL(void) trim_bottom_edge(jpeg_transform_info *info, JDIMENSION full_height) { JDIMENSION MCU_rows; MCU_rows = info->output_height / info->iMCU_sample_height; if (MCU_rows > 0 && info->y_crop_offset + MCU_rows == full_height / info->iMCU_sample_height) info->output_height = MCU_rows * info->iMCU_sample_height; } /* Request any required workspace. * * This routine figures out the size that the output image will be * (which implies that all the transform parameters must be set before * it is called). * * We allocate the workspace virtual arrays from the source decompression * object, so that all the arrays (both the original data and the workspace) * will be taken into account while making memory management decisions. * Hence, this routine must be called after jpeg_read_header (which reads * the image dimensions) and before jpeg_read_coefficients (which realizes * the source's virtual arrays). * * This function returns FALSE right away if -perfect is given * and transformation is not perfect. Otherwise returns TRUE. */ GLOBAL(boolean) jtransform_request_workspace(j_decompress_ptr srcinfo, jpeg_transform_info *info) { jvirt_barray_ptr *coef_arrays; boolean need_workspace, transpose_it; jpeg_component_info *compptr; JDIMENSION xoffset, yoffset, dtemp; JDIMENSION width_in_iMCUs, height_in_iMCUs; JDIMENSION width_in_blocks, height_in_blocks; int itemp, ci, h_samp_factor, v_samp_factor; /* Determine number of components in output image */ if (info->force_grayscale && srcinfo->jpeg_color_space == JCS_YCbCr && srcinfo->num_components == 3) /* We'll only process the first component */ info->num_components = 1; else /* Process all the components */ info->num_components = srcinfo->num_components; /* Compute output image dimensions and related values. */ #if JPEG_LIB_VERSION >= 80 jpeg_core_output_dimensions(srcinfo); #else srcinfo->output_width = srcinfo->image_width; srcinfo->output_height = srcinfo->image_height; #endif /* Return right away if -perfect is given and transformation is not perfect. */ if (info->perfect) { if (info->num_components == 1) { if (!jtransform_perfect_transform(srcinfo->output_width, srcinfo->output_height, srcinfo->_min_DCT_h_scaled_size, srcinfo->_min_DCT_v_scaled_size, info->transform)) return FALSE; } else { if (!jtransform_perfect_transform(srcinfo->output_width, srcinfo->output_height, srcinfo->max_h_samp_factor * srcinfo->_min_DCT_h_scaled_size, srcinfo->max_v_samp_factor * srcinfo->_min_DCT_v_scaled_size, info->transform)) return FALSE; } } /* If there is only one output component, force the iMCU size to be 1; * else use the source iMCU size. (This allows us to do the right thing * when reducing color to grayscale, and also provides a handy way of * cleaning up "funny" grayscale images whose sampling factors are not 1x1.) */ switch (info->transform) { case JXFORM_TRANSPOSE: case JXFORM_TRANSVERSE: case JXFORM_ROT_90: case JXFORM_ROT_270: info->output_width = srcinfo->output_height; info->output_height = srcinfo->output_width; if (info->num_components == 1) { info->iMCU_sample_width = srcinfo->_min_DCT_v_scaled_size; info->iMCU_sample_height = srcinfo->_min_DCT_h_scaled_size; } else { info->iMCU_sample_width = srcinfo->max_v_samp_factor * srcinfo->_min_DCT_v_scaled_size; info->iMCU_sample_height = srcinfo->max_h_samp_factor * srcinfo->_min_DCT_h_scaled_size; } break; default: info->output_width = srcinfo->output_width; info->output_height = srcinfo->output_height; if (info->num_components == 1) { info->iMCU_sample_width = srcinfo->_min_DCT_h_scaled_size; info->iMCU_sample_height = srcinfo->_min_DCT_v_scaled_size; } else { info->iMCU_sample_width = srcinfo->max_h_samp_factor * srcinfo->_min_DCT_h_scaled_size; info->iMCU_sample_height = srcinfo->max_v_samp_factor * srcinfo->_min_DCT_v_scaled_size; } break; } /* If cropping has been requested, compute the crop area's position and * dimensions, ensuring that its upper left corner falls at an iMCU boundary. */ if (info->crop) { /* Insert default values for unset crop parameters */ if (info->crop_xoffset_set == JCROP_UNSET) info->crop_xoffset = 0; /* default to +0 */ if (info->crop_yoffset_set == JCROP_UNSET) info->crop_yoffset = 0; /* default to +0 */ if (info->crop_width_set == JCROP_UNSET) { if (info->crop_xoffset >= info->output_width) ERREXIT(srcinfo, JERR_BAD_CROP_SPEC); info->crop_width = info->output_width - info->crop_xoffset; } else { /* Check for crop extension */ if (info->crop_width > info->output_width) { /* Crop extension does not work when transforming! */ if (info->transform != JXFORM_NONE || info->crop_xoffset >= info->crop_width || info->crop_xoffset > info->crop_width - info->output_width) ERREXIT(srcinfo, JERR_BAD_CROP_SPEC); } else { if (info->crop_xoffset >= info->output_width || info->crop_width <= 0 || info->crop_xoffset > info->output_width - info->crop_width) ERREXIT(srcinfo, JERR_BAD_CROP_SPEC); } } if (info->crop_height_set == JCROP_UNSET) { if (info->crop_yoffset >= info->output_height) ERREXIT(srcinfo, JERR_BAD_CROP_SPEC); info->crop_height = info->output_height - info->crop_yoffset; } else { /* Check for crop extension */ if (info->crop_height > info->output_height) { /* Crop extension does not work when transforming! */ if (info->transform != JXFORM_NONE || info->crop_yoffset >= info->crop_height || info->crop_yoffset > info->crop_height - info->output_height) ERREXIT(srcinfo, JERR_BAD_CROP_SPEC); } else { if (info->crop_yoffset >= info->output_height || info->crop_height <= 0 || info->crop_yoffset > info->output_height - info->crop_height) ERREXIT(srcinfo, JERR_BAD_CROP_SPEC); } } /* Convert negative crop offsets into regular offsets */ if (info->crop_xoffset_set != JCROP_NEG) xoffset = info->crop_xoffset; else if (info->crop_width > info->output_width) /* crop extension */ xoffset = info->crop_width - info->output_width - info->crop_xoffset; else xoffset = info->output_width - info->crop_width - info->crop_xoffset; if (info->crop_yoffset_set != JCROP_NEG) yoffset = info->crop_yoffset; else if (info->crop_height > info->output_height) /* crop extension */ yoffset = info->crop_height - info->output_height - info->crop_yoffset; else yoffset = info->output_height - info->crop_height - info->crop_yoffset; /* Now adjust so that upper left corner falls at an iMCU boundary */ switch (info->transform) { case JXFORM_DROP: /* Ensure the effective drop region will not exceed the requested */ itemp = info->iMCU_sample_width; dtemp = itemp - 1 - ((xoffset + itemp - 1) % itemp); xoffset += dtemp; if (info->crop_width <= dtemp) info->drop_width = 0; else if (xoffset + info->crop_width - dtemp == info->output_width) /* Matching right edge: include partial iMCU */ info->drop_width = (info->crop_width - dtemp + itemp - 1) / itemp; else info->drop_width = (info->crop_width - dtemp) / itemp; itemp = info->iMCU_sample_height; dtemp = itemp - 1 - ((yoffset + itemp - 1) % itemp); yoffset += dtemp; if (info->crop_height <= dtemp) info->drop_height = 0; else if (yoffset + info->crop_height - dtemp == info->output_height) /* Matching bottom edge: include partial iMCU */ info->drop_height = (info->crop_height - dtemp + itemp - 1) / itemp; else info->drop_height = (info->crop_height - dtemp) / itemp; /* Check if sampling factors match for dropping */ if (info->drop_width != 0 && info->drop_height != 0) for (ci = 0; ci < info->num_components && ci < info->drop_ptr->num_components; ci++) { if (info->drop_ptr->comp_info[ci].h_samp_factor * srcinfo->max_h_samp_factor != srcinfo->comp_info[ci].h_samp_factor * info->drop_ptr->max_h_samp_factor) ERREXIT6(srcinfo, JERR_BAD_DROP_SAMPLING, ci, info->drop_ptr->comp_info[ci].h_samp_factor, info->drop_ptr->max_h_samp_factor, srcinfo->comp_info[ci].h_samp_factor, srcinfo->max_h_samp_factor, 'h'); if (info->drop_ptr->comp_info[ci].v_samp_factor * srcinfo->max_v_samp_factor != srcinfo->comp_info[ci].v_samp_factor * info->drop_ptr->max_v_samp_factor) ERREXIT6(srcinfo, JERR_BAD_DROP_SAMPLING, ci, info->drop_ptr->comp_info[ci].v_samp_factor, info->drop_ptr->max_v_samp_factor, srcinfo->comp_info[ci].v_samp_factor, srcinfo->max_v_samp_factor, 'v'); } break; case JXFORM_WIPE: /* Ensure the effective wipe region will cover the requested */ info->drop_width = (JDIMENSION)jdiv_round_up ((long)(info->crop_width + (xoffset % info->iMCU_sample_width)), (long)info->iMCU_sample_width); info->drop_height = (JDIMENSION)jdiv_round_up ((long)(info->crop_height + (yoffset % info->iMCU_sample_height)), (long)info->iMCU_sample_height); break; default: /* Ensure the effective crop region will cover the requested */ if (info->crop_width_set == JCROP_FORCE || info->crop_width > info->output_width) info->output_width = info->crop_width; else info->output_width = info->crop_width + (xoffset % info->iMCU_sample_width); if (info->crop_height_set == JCROP_FORCE || info->crop_height > info->output_height) info->output_height = info->crop_height; else info->output_height = info->crop_height + (yoffset % info->iMCU_sample_height); } /* Save x/y offsets measured in iMCUs */ info->x_crop_offset = xoffset / info->iMCU_sample_width; info->y_crop_offset = yoffset / info->iMCU_sample_height; } else { info->x_crop_offset = 0; info->y_crop_offset = 0; } /* Figure out whether we need workspace arrays, * and if so whether they are transposed relative to the source. */ need_workspace = FALSE; transpose_it = FALSE; switch (info->transform) { case JXFORM_NONE: if (info->x_crop_offset != 0 || info->y_crop_offset != 0 || info->output_width > srcinfo->output_width || info->output_height > srcinfo->output_height) need_workspace = TRUE; /* No workspace needed if neither cropping nor transforming */ break; case JXFORM_FLIP_H: if (info->trim) trim_right_edge(info, srcinfo->output_width); if (info->y_crop_offset != 0 || info->slow_hflip) need_workspace = TRUE; /* do_flip_h_no_crop doesn't need a workspace array */ break; case JXFORM_FLIP_V: if (info->trim) trim_bottom_edge(info, srcinfo->output_height); /* Need workspace arrays having same dimensions as source image. */ need_workspace = TRUE; break; case JXFORM_TRANSPOSE: /* transpose does NOT have to trim anything */ /* Need workspace arrays having transposed dimensions. */ need_workspace = TRUE; transpose_it = TRUE; break; case JXFORM_TRANSVERSE: if (info->trim) { trim_right_edge(info, srcinfo->output_height); trim_bottom_edge(info, srcinfo->output_width); } /* Need workspace arrays having transposed dimensions. */ need_workspace = TRUE; transpose_it = TRUE; break; case JXFORM_ROT_90: if (info->trim) trim_right_edge(info, srcinfo->output_height); /* Need workspace arrays having transposed dimensions. */ need_workspace = TRUE; transpose_it = TRUE; break; case JXFORM_ROT_180: if (info->trim) { trim_right_edge(info, srcinfo->output_width); trim_bottom_edge(info, srcinfo->output_height); } /* Need workspace arrays having same dimensions as source image. */ need_workspace = TRUE; break; case JXFORM_ROT_270: if (info->trim) trim_bottom_edge(info, srcinfo->output_width); /* Need workspace arrays having transposed dimensions. */ need_workspace = TRUE; transpose_it = TRUE; break; case JXFORM_WIPE: break; case JXFORM_DROP: break; } /* Allocate workspace if needed. * Note that we allocate arrays padded out to the next iMCU boundary, * so that transform routines need not worry about missing edge blocks. */ if (need_workspace) { coef_arrays = (jvirt_barray_ptr *) (*srcinfo->mem->alloc_small) ((j_common_ptr)srcinfo, JPOOL_IMAGE, sizeof(jvirt_barray_ptr) * info->num_components); width_in_iMCUs = (JDIMENSION) jdiv_round_up((long)info->output_width, (long)info->iMCU_sample_width); height_in_iMCUs = (JDIMENSION) jdiv_round_up((long)info->output_height, (long)info->iMCU_sample_height); for (ci = 0; ci < info->num_components; ci++) { compptr = srcinfo->comp_info + ci; if (info->num_components == 1) { /* we're going to force samp factors to 1x1 in this case */ h_samp_factor = v_samp_factor = 1; } else if (transpose_it) { h_samp_factor = compptr->v_samp_factor; v_samp_factor = compptr->h_samp_factor; } else { h_samp_factor = compptr->h_samp_factor; v_samp_factor = compptr->v_samp_factor; } width_in_blocks = width_in_iMCUs * h_samp_factor; height_in_blocks = height_in_iMCUs * v_samp_factor; coef_arrays[ci] = (*srcinfo->mem->request_virt_barray) ((j_common_ptr)srcinfo, JPOOL_IMAGE, FALSE, width_in_blocks, height_in_blocks, (JDIMENSION)v_samp_factor); } info->workspace_coef_arrays = coef_arrays; } else info->workspace_coef_arrays = NULL; return TRUE; } /* Transpose destination image parameters */ LOCAL(void) transpose_critical_parameters(j_compress_ptr dstinfo) { int tblno, i, j, ci, itemp; jpeg_component_info *compptr; JQUANT_TBL *qtblptr; JDIMENSION jtemp; UINT16 qtemp; /* Transpose image dimensions */ jtemp = dstinfo->image_width; dstinfo->image_width = dstinfo->image_height; dstinfo->image_height = jtemp; #if JPEG_LIB_VERSION >= 70 itemp = dstinfo->min_DCT_h_scaled_size; dstinfo->min_DCT_h_scaled_size = dstinfo->min_DCT_v_scaled_size; dstinfo->min_DCT_v_scaled_size = itemp; #endif /* Transpose sampling factors */ for (ci = 0; ci < dstinfo->num_components; ci++) { compptr = dstinfo->comp_info + ci; itemp = compptr->h_samp_factor; compptr->h_samp_factor = compptr->v_samp_factor; compptr->v_samp_factor = itemp; } /* Transpose quantization tables */ for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) { qtblptr = dstinfo->quant_tbl_ptrs[tblno]; if (qtblptr != NULL) { for (i = 0; i < DCTSIZE; i++) { for (j = 0; j < i; j++) { qtemp = qtblptr->quantval[i * DCTSIZE + j]; qtblptr->quantval[i * DCTSIZE + j] = qtblptr->quantval[j * DCTSIZE + i]; qtblptr->quantval[j * DCTSIZE + i] = qtemp; } } } } } /* Adjust Exif image parameters. * * We try to adjust the Tags ExifImageWidth and ExifImageHeight if possible. */ LOCAL(void) adjust_exif_parameters(JOCTET *data, unsigned int length, JDIMENSION new_width, JDIMENSION new_height) { boolean is_motorola; /* Flag for byte order */ unsigned int number_of_tags, tagnum; unsigned int firstoffset, offset; JDIMENSION new_value; if (length < 12) return; /* Length of an IFD entry */ /* Discover byte order */ if (data[0] == 0x49 && data[1] == 0x49) is_motorola = FALSE; else if (data[0] == 0x4D && data[1] == 0x4D) is_motorola = TRUE; else return; /* Check Tag Mark */ if (is_motorola) { if (data[2] != 0) return; if (data[3] != 0x2A) return; } else { if (data[3] != 0) return; if (data[2] != 0x2A) return; } /* Get first IFD offset (offset to IFD0) */ if (is_motorola) { if (data[4] != 0) return; if (data[5] != 0) return; firstoffset = data[6]; firstoffset <<= 8; firstoffset += data[7]; } else { if (data[7] != 0) return; if (data[6] != 0) return; firstoffset = data[5]; firstoffset <<= 8; firstoffset += data[4]; } if (firstoffset > length - 2) return; /* check end of data segment */ /* Get the number of directory entries contained in this IFD */ if (is_motorola) { number_of_tags = data[firstoffset]; number_of_tags <<= 8; number_of_tags += data[firstoffset + 1]; } else { number_of_tags = data[firstoffset + 1]; number_of_tags <<= 8; number_of_tags += data[firstoffset]; } if (number_of_tags == 0) return; firstoffset += 2; /* Search for ExifSubIFD offset Tag in IFD0 */ for (;;) { if (firstoffset > length - 12) return; /* check end of data segment */ /* Get Tag number */ if (is_motorola) { tagnum = data[firstoffset]; tagnum <<= 8; tagnum += data[firstoffset + 1]; } else { tagnum = data[firstoffset + 1]; tagnum <<= 8; tagnum += data[firstoffset]; } if (tagnum == 0x8769) break; /* found ExifSubIFD offset Tag */ if (--number_of_tags == 0) return; firstoffset += 12; } /* Get the ExifSubIFD offset */ if (is_motorola) { if (data[firstoffset + 8] != 0) return; if (data[firstoffset + 9] != 0) return; offset = data[firstoffset + 10]; offset <<= 8; offset += data[firstoffset + 11]; } else { if (data[firstoffset + 11] != 0) return; if (data[firstoffset + 10] != 0) return; offset = data[firstoffset + 9]; offset <<= 8; offset += data[firstoffset + 8]; } if (offset > length - 2) return; /* check end of data segment */ /* Get the number of directory entries contained in this SubIFD */ if (is_motorola) { number_of_tags = data[offset]; number_of_tags <<= 8; number_of_tags += data[offset + 1]; } else { number_of_tags = data[offset + 1]; number_of_tags <<= 8; number_of_tags += data[offset]; } if (number_of_tags < 2) return; offset += 2; /* Search for ExifImageWidth and ExifImageHeight Tags in this SubIFD */ do { if (offset > length - 12) return; /* check end of data segment */ /* Get Tag number */ if (is_motorola) { tagnum = data[offset]; tagnum <<= 8; tagnum += data[offset + 1]; } else { tagnum = data[offset + 1]; tagnum <<= 8; tagnum += data[offset]; } if (tagnum == 0xA002 || tagnum == 0xA003) { if (tagnum == 0xA002) new_value = new_width; /* ExifImageWidth Tag */ else new_value = new_height; /* ExifImageHeight Tag */ if (is_motorola) { data[offset + 2] = 0; /* Format = unsigned long (4 octets) */ data[offset + 3] = 4; data[offset + 4] = 0; /* Number Of Components = 1 */ data[offset + 5] = 0; data[offset + 6] = 0; data[offset + 7] = 1; data[offset + 8] = 0; data[offset + 9] = 0; data[offset + 10] = (JOCTET)((new_value >> 8) & 0xFF); data[offset + 11] = (JOCTET)(new_value & 0xFF); } else { data[offset + 2] = 4; /* Format = unsigned long (4 octets) */ data[offset + 3] = 0; data[offset + 4] = 1; /* Number Of Components = 1 */ data[offset + 5] = 0; data[offset + 6] = 0; data[offset + 7] = 0; data[offset + 8] = (JOCTET)(new_value & 0xFF); data[offset + 9] = (JOCTET)((new_value >> 8) & 0xFF); data[offset + 10] = 0; data[offset + 11] = 0; } } offset += 12; } while (--number_of_tags); } /* Adjust output image parameters as needed. * * This must be called after jpeg_copy_critical_parameters() * and before jpeg_write_coefficients(). * * The return value is the set of virtual coefficient arrays to be written * (either the ones allocated by jtransform_request_workspace, or the * original source data arrays). The caller will need to pass this value * to jpeg_write_coefficients(). */ GLOBAL(jvirt_barray_ptr *) jtransform_adjust_parameters(j_decompress_ptr srcinfo, j_compress_ptr dstinfo, jvirt_barray_ptr *src_coef_arrays, jpeg_transform_info *info) { /* If force-to-grayscale is requested, adjust destination parameters */ if (info->force_grayscale) { /* First, ensure we have YCbCr or grayscale data, and that the source's * Y channel is full resolution. (No reasonable person would make Y * be less than full resolution, so actually coping with that case * isn't worth extra code space. But we check it to avoid crashing.) */ if (((dstinfo->jpeg_color_space == JCS_YCbCr && dstinfo->num_components == 3) || (dstinfo->jpeg_color_space == JCS_GRAYSCALE && dstinfo->num_components == 1)) && srcinfo->comp_info[0].h_samp_factor == srcinfo->max_h_samp_factor && srcinfo->comp_info[0].v_samp_factor == srcinfo->max_v_samp_factor) { /* We use jpeg_set_colorspace to make sure subsidiary settings get fixed * properly. Among other things, it sets the target h_samp_factor & * v_samp_factor to 1, which typically won't match the source. * We have to preserve the source's quantization table number, however. */ int sv_quant_tbl_no = dstinfo->comp_info[0].quant_tbl_no; jpeg_set_colorspace(dstinfo, JCS_GRAYSCALE); dstinfo->comp_info[0].quant_tbl_no = sv_quant_tbl_no; } else { /* Sorry, can't do it */ ERREXIT(dstinfo, JERR_CONVERSION_NOTIMPL); } } else if (info->num_components == 1) { /* For a single-component source, we force the destination sampling factors * to 1x1, with or without force_grayscale. This is useful because some * decoders choke on grayscale images with other sampling factors. */ dstinfo->comp_info[0].h_samp_factor = 1; dstinfo->comp_info[0].v_samp_factor = 1; } /* Correct the destination's image dimensions as necessary * for rotate/flip, resize, and crop operations. */ #if JPEG_LIB_VERSION >= 80 dstinfo->jpeg_width = info->output_width; dstinfo->jpeg_height = info->output_height; #endif /* Transpose destination image parameters, adjust quantization */ switch (info->transform) { case JXFORM_TRANSPOSE: case JXFORM_TRANSVERSE: case JXFORM_ROT_90: case JXFORM_ROT_270: #if JPEG_LIB_VERSION < 80 dstinfo->image_width = info->output_height; dstinfo->image_height = info->output_width; #endif transpose_critical_parameters(dstinfo); break; case JXFORM_DROP: if (info->drop_width != 0 && info->drop_height != 0) adjust_quant(srcinfo, src_coef_arrays, info->drop_ptr, info->drop_coef_arrays, info->trim, dstinfo); break; default: #if JPEG_LIB_VERSION < 80 dstinfo->image_width = info->output_width; dstinfo->image_height = info->output_height; #endif break; } /* Adjust Exif properties */ if (srcinfo->marker_list != NULL && srcinfo->marker_list->marker == JPEG_APP0 + 1 && srcinfo->marker_list->data_length >= 6 && srcinfo->marker_list->data[0] == 0x45 && srcinfo->marker_list->data[1] == 0x78 && srcinfo->marker_list->data[2] == 0x69 && srcinfo->marker_list->data[3] == 0x66 && srcinfo->marker_list->data[4] == 0 && srcinfo->marker_list->data[5] == 0) { /* Suppress output of JFIF marker */ dstinfo->write_JFIF_header = FALSE; /* Adjust Exif image parameters */ #if JPEG_LIB_VERSION >= 80 if (dstinfo->jpeg_width != srcinfo->image_width || dstinfo->jpeg_height != srcinfo->image_height) /* Align data segment to start of TIFF structure for parsing */ adjust_exif_parameters(srcinfo->marker_list->data + 6, srcinfo->marker_list->data_length - 6, dstinfo->jpeg_width, dstinfo->jpeg_height); #else if (dstinfo->image_width != srcinfo->image_width || dstinfo->image_height != srcinfo->image_height) /* Align data segment to start of TIFF structure for parsing */ adjust_exif_parameters(srcinfo->marker_list->data + 6, srcinfo->marker_list->data_length - 6, dstinfo->image_width, dstinfo->image_height); #endif } /* Return the appropriate output data set */ if (info->workspace_coef_arrays != NULL) return info->workspace_coef_arrays; return src_coef_arrays; } /* Execute the actual transformation, if any. * * This must be called *after* jpeg_write_coefficients, because it depends * on jpeg_write_coefficients to have computed subsidiary values such as * the per-component width and height fields in the destination object. * * Note that some transformations will modify the source data arrays! */ GLOBAL(void) jtransform_execute_transform(j_decompress_ptr srcinfo, j_compress_ptr dstinfo, jvirt_barray_ptr *src_coef_arrays, jpeg_transform_info *info) { jvirt_barray_ptr *dst_coef_arrays = info->workspace_coef_arrays; /* Note: conditions tested here should match those in switch statement * in jtransform_request_workspace() */ switch (info->transform) { case JXFORM_NONE: if (info->output_width > srcinfo->output_width || info->output_height > srcinfo->output_height) { if (info->output_width > srcinfo->output_width && info->crop_width_set == JCROP_REFLECT) do_crop_ext_reflect(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, src_coef_arrays, dst_coef_arrays); else if (info->output_width > srcinfo->output_width && info->crop_width_set == JCROP_FORCE) do_crop_ext_flat(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, src_coef_arrays, dst_coef_arrays); else do_crop_ext_zero(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, src_coef_arrays, dst_coef_arrays); } else if (info->x_crop_offset != 0 || info->y_crop_offset != 0) do_crop(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, src_coef_arrays, dst_coef_arrays); break; case JXFORM_FLIP_H: if (info->y_crop_offset != 0 || info->slow_hflip) do_flip_h(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, src_coef_arrays, dst_coef_arrays); else do_flip_h_no_crop(srcinfo, dstinfo, info->x_crop_offset, src_coef_arrays); break; case JXFORM_FLIP_V: do_flip_v(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, src_coef_arrays, dst_coef_arrays); break; case JXFORM_TRANSPOSE: do_transpose(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, src_coef_arrays, dst_coef_arrays); break; case JXFORM_TRANSVERSE: do_transverse(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, src_coef_arrays, dst_coef_arrays); break; case JXFORM_ROT_90: do_rot_90(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, src_coef_arrays, dst_coef_arrays); break; case JXFORM_ROT_180: do_rot_180(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, src_coef_arrays, dst_coef_arrays); break; case JXFORM_ROT_270: do_rot_270(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, src_coef_arrays, dst_coef_arrays); break; case JXFORM_WIPE: if (info->crop_width_set == JCROP_REFLECT && info->y_crop_offset == 0 && info->drop_height == (JDIMENSION)jdiv_round_up ((long)info->output_height, (long)info->iMCU_sample_height) && (info->x_crop_offset == 0 || info->x_crop_offset + info->drop_width == (JDIMENSION)jdiv_round_up ((long)info->output_width, (long)info->iMCU_sample_width))) do_reflect(srcinfo, dstinfo, info->x_crop_offset, src_coef_arrays, info->drop_width, info->drop_height); else if (info->crop_width_set == JCROP_FORCE) do_flatten(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, src_coef_arrays, info->drop_width, info->drop_height); else do_wipe(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, src_coef_arrays, info->drop_width, info->drop_height); break; case JXFORM_DROP: if (info->drop_width != 0 && info->drop_height != 0) do_drop(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset, src_coef_arrays, info->drop_ptr, info->drop_coef_arrays, info->drop_width, info->drop_height); break; } } /* jtransform_perfect_transform * * Determine whether lossless transformation is perfectly * possible for a specified image and transformation. * * Inputs: * image_width, image_height: source image dimensions. * MCU_width, MCU_height: pixel dimensions of MCU. * transform: transformation identifier. * Parameter sources from initialized jpeg_struct * (after reading source header): * image_width = cinfo.image_width * image_height = cinfo.image_height * MCU_width = cinfo.max_h_samp_factor * cinfo.block_size * MCU_height = cinfo.max_v_samp_factor * cinfo.block_size * Result: * TRUE = perfect transformation possible * FALSE = perfect transformation not possible * (may use custom action then) */ GLOBAL(boolean) jtransform_perfect_transform(JDIMENSION image_width, JDIMENSION image_height, int MCU_width, int MCU_height, JXFORM_CODE transform) { boolean result = TRUE; /* initialize TRUE */ switch (transform) { case JXFORM_FLIP_H: case JXFORM_ROT_270: if (image_width % (JDIMENSION)MCU_width) result = FALSE; break; case JXFORM_FLIP_V: case JXFORM_ROT_90: if (image_height % (JDIMENSION)MCU_height) result = FALSE; break; case JXFORM_TRANSVERSE: case JXFORM_ROT_180: if (image_width % (JDIMENSION)MCU_width) result = FALSE; if (image_height % (JDIMENSION)MCU_height) result = FALSE; break; default: break; } return result; } #endif /* TRANSFORMS_SUPPORTED */ /* Setup decompression object to save desired markers in memory. * This must be called before jpeg_read_header() to have the desired effect. */ GLOBAL(void) jcopy_markers_setup(j_decompress_ptr srcinfo, JCOPY_OPTION option) { #ifdef SAVE_MARKERS_SUPPORTED int m; /* Save comments except under NONE option */ if (option != JCOPYOPT_NONE && option != JCOPYOPT_ICC) { jpeg_save_markers(srcinfo, JPEG_COM, 0xFFFF); } /* Save all types of APPn markers iff ALL option */ if (option == JCOPYOPT_ALL || option == JCOPYOPT_ALL_EXCEPT_ICC) { for (m = 0; m < 16; m++) { if (option == JCOPYOPT_ALL_EXCEPT_ICC && m == 2) continue; jpeg_save_markers(srcinfo, JPEG_APP0 + m, 0xFFFF); } } /* Save only APP2 markers if ICC option selected */ if (option == JCOPYOPT_ICC) { jpeg_save_markers(srcinfo, JPEG_APP0 + 2, 0xFFFF); } #endif /* SAVE_MARKERS_SUPPORTED */ } /* Copy markers saved in the given source object to the destination object. * This should be called just after jpeg_start_compress() or * jpeg_write_coefficients(). * Note that those routines will have written the SOI, and also the * JFIF APP0 or Adobe APP14 markers if selected. */ GLOBAL(void) jcopy_markers_execute(j_decompress_ptr srcinfo, j_compress_ptr dstinfo, JCOPY_OPTION option) { jpeg_saved_marker_ptr marker; /* In the current implementation, we don't actually need to examine the * option flag here; we just copy everything that got saved. * But to avoid confusion, we do not output JFIF and Adobe APP14 markers * if the encoder library already wrote one. */ for (marker = srcinfo->marker_list; marker != NULL; marker = marker->next) { if (dstinfo->write_JFIF_header && marker->marker == JPEG_APP0 && marker->data_length >= 5 && marker->data[0] == 0x4A && marker->data[1] == 0x46 && marker->data[2] == 0x49 && marker->data[3] == 0x46 && marker->data[4] == 0) continue; /* reject duplicate JFIF */ if (dstinfo->write_Adobe_marker && marker->marker == JPEG_APP0 + 14 && marker->data_length >= 5 && marker->data[0] == 0x41 && marker->data[1] == 0x64 && marker->data[2] == 0x6F && marker->data[3] == 0x62 && marker->data[4] == 0x65) continue; /* reject duplicate Adobe */ jpeg_write_marker(dstinfo, marker->marker, marker->data, marker->data_length); } } libjpeg-turbo-2.1.5/transupp.h000066400000000000000000000257161436506551100163320ustar00rootroot00000000000000/* * transupp.h * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1997-2019, Thomas G. Lane, Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright (C) 2017, 2021, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains declarations for image transformation routines and * other utility code used by the jpegtran sample application. These are * NOT part of the core JPEG library. But we keep these routines separate * from jpegtran.c to ease the task of maintaining jpegtran-like programs * that have other user interfaces. * * NOTE: all the routines declared here have very specific requirements * about when they are to be executed during the reading and writing of the * source and destination files. See the comments in transupp.c, or see * jpegtran.c for an example of correct usage. */ /* If you happen not to want the image transform support, disable it here */ #ifndef TRANSFORMS_SUPPORTED #define TRANSFORMS_SUPPORTED 1 /* 0 disables transform code */ #endif /* * Although rotating and flipping data expressed as DCT coefficients is not * hard, there is an asymmetry in the JPEG format specification for images * whose dimensions aren't multiples of the iMCU size. The right and bottom * image edges are padded out to the next iMCU boundary with junk data; but * no padding is possible at the top and left edges. If we were to flip * the whole image including the pad data, then pad garbage would become * visible at the top and/or left, and real pixels would disappear into the * pad margins --- perhaps permanently, since encoders & decoders may not * bother to preserve DCT blocks that appear to be completely outside the * nominal image area. So, we have to exclude any partial iMCUs from the * basic transformation. * * Transpose is the only transformation that can handle partial iMCUs at the * right and bottom edges completely cleanly. flip_h can flip partial iMCUs * at the bottom, but leaves any partial iMCUs at the right edge untouched. * Similarly flip_v leaves any partial iMCUs at the bottom edge untouched. * The other transforms are defined as combinations of these basic transforms * and process edge blocks in a way that preserves the equivalence. * * The "trim" option causes untransformable partial iMCUs to be dropped; * this is not strictly lossless, but it usually gives the best-looking * result for odd-size images. Note that when this option is active, * the expected mathematical equivalences between the transforms may not hold. * (For example, -rot 270 -trim trims only the bottom edge, but -rot 90 -trim * followed by -rot 180 -trim trims both edges.) * * We also offer a lossless-crop option, which discards data outside a given * image region but losslessly preserves what is inside. Like the rotate and * flip transforms, lossless crop is restricted by the JPEG format: the upper * left corner of the selected region must fall on an iMCU boundary. If this * does not hold for the given crop parameters, we silently move the upper left * corner up and/or left to make it so, simultaneously increasing the region * dimensions to keep the lower right crop corner unchanged. (Thus, the * output image covers at least the requested region, but may cover more.) * The adjustment of the region dimensions may be optionally disabled. * * A complementary lossless wipe option is provided to discard (gray out) data * inside a given image region while losslessly preserving what is outside. * A lossless drop option is also provided, which allows another JPEG image to * be inserted ("dropped") into the source image data at a given position, * replacing the existing image data at that position. Both the source image * and the drop image must have the same subsampling level. It is best if they * also have the same quantization (quality.) Otherwise, the quantization of * the output image will be adapted to accommodate the higher of the source * image quality and the drop image quality. The trim option can be used with * the drop option to requantize the drop image to match the source image. * * We also provide a lossless-resize option, which is kind of a lossless-crop * operation in the DCT coefficient block domain - it discards higher-order * coefficients and losslessly preserves lower-order coefficients of a * sub-block. * * Rotate/flip transform, resize, and crop can be requested together in a * single invocation. The crop is applied last --- that is, the crop region * is specified in terms of the destination image after transform/resize. * * We also offer a "force to grayscale" option, which simply discards the * chrominance channels of a YCbCr image. This is lossless in the sense that * the luminance channel is preserved exactly. It's not the same kind of * thing as the rotate/flip transformations, but it's convenient to handle it * as part of this package, mainly because the transformation routines have to * be aware of the option to know how many components to work on. */ /* * Codes for supported types of image transformations. */ typedef enum { JXFORM_NONE, /* no transformation */ JXFORM_FLIP_H, /* horizontal flip */ JXFORM_FLIP_V, /* vertical flip */ JXFORM_TRANSPOSE, /* transpose across UL-to-LR axis */ JXFORM_TRANSVERSE, /* transpose across UR-to-LL axis */ JXFORM_ROT_90, /* 90-degree clockwise rotation */ JXFORM_ROT_180, /* 180-degree rotation */ JXFORM_ROT_270, /* 270-degree clockwise (or 90 ccw) */ JXFORM_WIPE, /* wipe */ JXFORM_DROP /* drop */ } JXFORM_CODE; /* * Codes for crop parameters, which can individually be unspecified, * positive or negative for xoffset or yoffset, * positive or force or reflect for width or height. */ typedef enum { JCROP_UNSET, JCROP_POS, JCROP_NEG, JCROP_FORCE, JCROP_REFLECT } JCROP_CODE; /* * Transform parameters struct. * NB: application must not change any elements of this struct after * calling jtransform_request_workspace. */ typedef struct { /* Options: set by caller */ JXFORM_CODE transform; /* image transform operator */ boolean perfect; /* if TRUE, fail if partial MCUs are requested */ boolean trim; /* if TRUE, trim partial MCUs as needed */ boolean force_grayscale; /* if TRUE, convert color image to grayscale */ boolean crop; /* if TRUE, crop or wipe source image, or drop */ boolean slow_hflip; /* For best performance, the JXFORM_FLIP_H transform normally modifies the source coefficients in place. Setting this to TRUE will instead use a slower, double-buffered algorithm, which leaves the source coefficients in tact (necessary if other transformed images must be generated from the same set of coefficients. */ /* Crop parameters: application need not set these unless crop is TRUE. * These can be filled in by jtransform_parse_crop_spec(). */ JDIMENSION crop_width; /* Width of selected region */ JCROP_CODE crop_width_set; /* (force-disables adjustment) */ JDIMENSION crop_height; /* Height of selected region */ JCROP_CODE crop_height_set; /* (force-disables adjustment) */ JDIMENSION crop_xoffset; /* X offset of selected region */ JCROP_CODE crop_xoffset_set; /* (negative measures from right edge) */ JDIMENSION crop_yoffset; /* Y offset of selected region */ JCROP_CODE crop_yoffset_set; /* (negative measures from bottom edge) */ /* Drop parameters: set by caller for drop request */ j_decompress_ptr drop_ptr; jvirt_barray_ptr *drop_coef_arrays; /* Internal workspace: caller should not touch these */ int num_components; /* # of components in workspace */ jvirt_barray_ptr *workspace_coef_arrays; /* workspace for transformations */ JDIMENSION output_width; /* cropped destination dimensions */ JDIMENSION output_height; JDIMENSION x_crop_offset; /* destination crop offsets measured in iMCUs */ JDIMENSION y_crop_offset; JDIMENSION drop_width; /* drop/wipe dimensions measured in iMCUs */ JDIMENSION drop_height; int iMCU_sample_width; /* destination iMCU size */ int iMCU_sample_height; } jpeg_transform_info; #if TRANSFORMS_SUPPORTED /* Parse a crop specification (written in X11 geometry style) */ EXTERN(boolean) jtransform_parse_crop_spec(jpeg_transform_info *info, const char *spec); /* Request any required workspace */ EXTERN(boolean) jtransform_request_workspace(j_decompress_ptr srcinfo, jpeg_transform_info *info); /* Adjust output image parameters */ EXTERN(jvirt_barray_ptr *) jtransform_adjust_parameters (j_decompress_ptr srcinfo, j_compress_ptr dstinfo, jvirt_barray_ptr *src_coef_arrays, jpeg_transform_info *info); /* Execute the actual transformation, if any */ EXTERN(void) jtransform_execute_transform(j_decompress_ptr srcinfo, j_compress_ptr dstinfo, jvirt_barray_ptr *src_coef_arrays, jpeg_transform_info *info); /* Determine whether lossless transformation is perfectly * possible for a specified image and transformation. */ EXTERN(boolean) jtransform_perfect_transform(JDIMENSION image_width, JDIMENSION image_height, int MCU_width, int MCU_height, JXFORM_CODE transform); /* jtransform_execute_transform used to be called * jtransform_execute_transformation, but some compilers complain about * routine names that long. This macro is here to avoid breaking any * old source code that uses the original name... */ #define jtransform_execute_transformation jtransform_execute_transform #endif /* TRANSFORMS_SUPPORTED */ /* * Support for copying optional markers from source to destination file. */ typedef enum { JCOPYOPT_NONE, /* copy no optional markers */ JCOPYOPT_COMMENTS, /* copy only comment (COM) markers */ JCOPYOPT_ALL, /* copy all optional markers */ JCOPYOPT_ALL_EXCEPT_ICC, /* copy all optional markers except APP2 */ JCOPYOPT_ICC /* copy only ICC profile (APP2) markers */ } JCOPY_OPTION; #define JCOPYOPT_DEFAULT JCOPYOPT_COMMENTS /* recommended default */ /* Setup decompression object to save desired markers in memory */ EXTERN(void) jcopy_markers_setup(j_decompress_ptr srcinfo, JCOPY_OPTION option); /* Copy markers saved in the given source object to the destination object */ EXTERN(void) jcopy_markers_execute(j_decompress_ptr srcinfo, j_compress_ptr dstinfo, JCOPY_OPTION option); libjpeg-turbo-2.1.5/turbojpeg-jni.c000066400000000000000000001355351436506551100172310ustar00rootroot00000000000000/* * Copyright (C)2011-2023 D. R. Commander. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include #include "turbojpeg.h" #include "jinclude.h" #include #include "java/org_libjpegturbo_turbojpeg_TJCompressor.h" #include "java/org_libjpegturbo_turbojpeg_TJDecompressor.h" #include "java/org_libjpegturbo_turbojpeg_TJTransformer.h" #include "java/org_libjpegturbo_turbojpeg_TJ.h" #define BAILIF0(f) { \ if (!(f) || (*env)->ExceptionCheck(env)) { \ goto bailout; \ } \ } #define BAILIF0NOEC(f) { \ if (!(f)) { \ goto bailout; \ } \ } #define THROW(msg, exceptionClass) { \ jclass _exccls = (*env)->FindClass(env, exceptionClass); \ \ BAILIF0(_exccls); \ (*env)->ThrowNew(env, _exccls, msg); \ goto bailout; \ } #define THROW_TJ() { \ jclass _exccls; \ jmethodID _excid; \ jobject _excobj; \ jstring _errstr; \ \ BAILIF0(_errstr = (*env)->NewStringUTF(env, tjGetErrorStr2(handle))); \ BAILIF0(_exccls = (*env)->FindClass(env, \ "org/libjpegturbo/turbojpeg/TJException")); \ BAILIF0(_excid = (*env)->GetMethodID(env, _exccls, "", \ "(Ljava/lang/String;I)V")); \ BAILIF0(_excobj = (*env)->NewObject(env, _exccls, _excid, _errstr, \ tjGetErrorCode(handle))); \ (*env)->Throw(env, _excobj); \ goto bailout; \ } #define THROW_ARG(msg) THROW(msg, "java/lang/IllegalArgumentException") #define THROW_MEM() \ THROW("Memory allocation failure", "java/lang/OutOfMemoryError"); #define GET_HANDLE() \ jclass _cls = (*env)->GetObjectClass(env, obj); \ jfieldID _fid; \ \ BAILIF0(_cls); \ BAILIF0(_fid = (*env)->GetFieldID(env, _cls, "handle", "J")); \ handle = (tjhandle)(size_t)(*env)->GetLongField(env, obj, _fid); #ifndef NO_PUTENV #define PROP2ENV(property, envvar) { \ if ((jName = (*env)->NewStringUTF(env, property)) != NULL) { \ jboolean exception; \ jValue = (*env)->CallStaticObjectMethod(env, cls, mid, jName); \ exception = (*env)->ExceptionCheck(env); \ if (jValue && !exception && \ (value = (*env)->GetStringUTFChars(env, jValue, 0)) != NULL) { \ PUTENV_S(envvar, value); \ (*env)->ReleaseStringUTFChars(env, jValue, value); \ } \ } \ } #endif #define SAFE_RELEASE(javaArray, cArray) { \ if (javaArray && cArray) \ (*env)->ReleasePrimitiveArrayCritical(env, javaArray, (void *)cArray, 0); \ cArray = NULL; \ } static int ProcessSystemProperties(JNIEnv *env) { jclass cls; jmethodID mid; jstring jName, jValue; const char *value; BAILIF0(cls = (*env)->FindClass(env, "java/lang/System")); BAILIF0(mid = (*env)->GetStaticMethodID(env, cls, "getProperty", "(Ljava/lang/String;)Ljava/lang/String;")); #ifndef NO_PUTENV PROP2ENV("turbojpeg.optimize", "TJ_OPTIMIZE"); PROP2ENV("turbojpeg.arithmetic", "TJ_ARITHMETIC"); PROP2ENV("turbojpeg.restart", "TJ_RESTART"); PROP2ENV("turbojpeg.progressive", "TJ_PROGRESSIVE"); #endif return 0; bailout: return -1; } /* TurboJPEG 1.2.x: TJ::bufSize() */ JNIEXPORT jint JNICALL Java_org_libjpegturbo_turbojpeg_TJ_bufSize (JNIEnv *env, jclass cls, jint width, jint height, jint jpegSubsamp) { unsigned long retval = tjBufSize(width, height, jpegSubsamp); if (retval == (unsigned long)-1) THROW_ARG(tjGetErrorStr()); if (retval > (unsigned long)INT_MAX) THROW_ARG("Image is too large"); bailout: return (jint)retval; } /* TurboJPEG 1.4.x: TJ::bufSizeYUV() */ JNIEXPORT jint JNICALL Java_org_libjpegturbo_turbojpeg_TJ_bufSizeYUV__IIII (JNIEnv *env, jclass cls, jint width, jint align, jint height, jint subsamp) { unsigned long retval = tjBufSizeYUV2(width, align, height, subsamp); if (retval == (unsigned long)-1) THROW_ARG(tjGetErrorStr()); if (retval > (unsigned long)INT_MAX) THROW_ARG("Image is too large"); bailout: return (jint)retval; } /* TurboJPEG 1.2.x: TJ::bufSizeYUV() */ JNIEXPORT jint JNICALL Java_org_libjpegturbo_turbojpeg_TJ_bufSizeYUV__III (JNIEnv *env, jclass cls, jint width, jint height, jint subsamp) { return Java_org_libjpegturbo_turbojpeg_TJ_bufSizeYUV__IIII(env, cls, width, 4, height, subsamp); } /* TurboJPEG 1.4.x: TJ::planeSizeYUV() */ JNIEXPORT jint JNICALL Java_org_libjpegturbo_turbojpeg_TJ_planeSizeYUV__IIIII (JNIEnv *env, jclass cls, jint componentID, jint width, jint stride, jint height, jint subsamp) { unsigned long retval = tjPlaneSizeYUV(componentID, width, stride, height, subsamp); if (retval == (unsigned long)-1) THROW_ARG(tjGetErrorStr()); if (retval > (unsigned long)INT_MAX) THROW_ARG("Image is too large"); bailout: return (jint)retval; } /* TurboJPEG 1.4.x: TJ::planeWidth() */ JNIEXPORT jint JNICALL Java_org_libjpegturbo_turbojpeg_TJ_planeWidth__III (JNIEnv *env, jclass cls, jint componentID, jint width, jint subsamp) { jint retval = (jint)tjPlaneWidth(componentID, width, subsamp); if (retval == -1) THROW_ARG(tjGetErrorStr()); bailout: return retval; } /* TurboJPEG 1.4.x: TJ::planeHeight() */ JNIEXPORT jint JNICALL Java_org_libjpegturbo_turbojpeg_TJ_planeHeight__III (JNIEnv *env, jclass cls, jint componentID, jint height, jint subsamp) { jint retval = (jint)tjPlaneHeight(componentID, height, subsamp); if (retval == -1) THROW_ARG(tjGetErrorStr()); bailout: return retval; } /* TurboJPEG 1.2.x: TJCompressor::init() */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJCompressor_init (JNIEnv *env, jobject obj) { jclass cls; jfieldID fid; tjhandle handle; if ((handle = tjInitCompress()) == NULL) THROW(tjGetErrorStr(), "org/libjpegturbo/turbojpeg/TJException"); BAILIF0(cls = (*env)->GetObjectClass(env, obj)); BAILIF0(fid = (*env)->GetFieldID(env, cls, "handle", "J")); (*env)->SetLongField(env, obj, fid, (size_t)handle); bailout: return; } static jint TJCompressor_compress (JNIEnv *env, jobject obj, jarray src, jint srcElementSize, jint x, jint y, jint width, jint pitch, jint height, jint pf, jbyteArray dst, jint jpegSubsamp, jint jpegQual, jint flags) { tjhandle handle = 0; unsigned long jpegSize = 0; jsize arraySize = 0, actualPitch; unsigned char *srcBuf = NULL, *jpegBuf = NULL; GET_HANDLE(); if (pf < 0 || pf >= org_libjpegturbo_turbojpeg_TJ_NUMPF || width < 1 || height < 1 || pitch < 0) THROW_ARG("Invalid argument in compress()"); if (org_libjpegturbo_turbojpeg_TJ_NUMPF != TJ_NUMPF) THROW_ARG("Mismatch between Java and C API"); actualPitch = (pitch == 0) ? width * tjPixelSize[pf] : pitch; arraySize = (y + height - 1) * actualPitch + (x + width) * tjPixelSize[pf]; if ((*env)->GetArrayLength(env, src) * srcElementSize < arraySize) THROW_ARG("Source buffer is not large enough"); jpegSize = tjBufSize(width, height, jpegSubsamp); if ((*env)->GetArrayLength(env, dst) < (jsize)jpegSize) THROW_ARG("Destination buffer is not large enough"); if (ProcessSystemProperties(env) < 0) goto bailout; BAILIF0NOEC(srcBuf = (*env)->GetPrimitiveArrayCritical(env, src, 0)); BAILIF0NOEC(jpegBuf = (*env)->GetPrimitiveArrayCritical(env, dst, 0)); if (tjCompress2(handle, &srcBuf[y * actualPitch + x * tjPixelSize[pf]], width, pitch, height, pf, &jpegBuf, &jpegSize, jpegSubsamp, jpegQual, flags | TJFLAG_NOREALLOC) == -1) { SAFE_RELEASE(dst, jpegBuf); SAFE_RELEASE(src, srcBuf); THROW_TJ(); } bailout: SAFE_RELEASE(dst, jpegBuf); SAFE_RELEASE(src, srcBuf); return (jint)jpegSize; } /* TurboJPEG 1.3.x: TJCompressor::compress() byte source */ JNIEXPORT jint JNICALL Java_org_libjpegturbo_turbojpeg_TJCompressor_compress___3BIIIIII_3BIII (JNIEnv *env, jobject obj, jbyteArray src, jint x, jint y, jint width, jint pitch, jint height, jint pf, jbyteArray dst, jint jpegSubsamp, jint jpegQual, jint flags) { return TJCompressor_compress(env, obj, src, 1, x, y, width, pitch, height, pf, dst, jpegSubsamp, jpegQual, flags); } /* TurboJPEG 1.2.x: TJCompressor::compress() byte source */ JNIEXPORT jint JNICALL Java_org_libjpegturbo_turbojpeg_TJCompressor_compress___3BIIII_3BIII (JNIEnv *env, jobject obj, jbyteArray src, jint width, jint pitch, jint height, jint pf, jbyteArray dst, jint jpegSubsamp, jint jpegQual, jint flags) { return TJCompressor_compress(env, obj, src, 1, 0, 0, width, pitch, height, pf, dst, jpegSubsamp, jpegQual, flags); } /* TurboJPEG 1.3.x: TJCompressor::compress() int source */ JNIEXPORT jint JNICALL Java_org_libjpegturbo_turbojpeg_TJCompressor_compress___3IIIIIII_3BIII (JNIEnv *env, jobject obj, jintArray src, jint x, jint y, jint width, jint stride, jint height, jint pf, jbyteArray dst, jint jpegSubsamp, jint jpegQual, jint flags) { if (pf < 0 || pf >= org_libjpegturbo_turbojpeg_TJ_NUMPF) THROW_ARG("Invalid argument in compress()"); if (tjPixelSize[pf] != sizeof(jint)) THROW_ARG("Pixel format must be 32-bit when compressing from an integer buffer."); return TJCompressor_compress(env, obj, src, sizeof(jint), x, y, width, stride * sizeof(jint), height, pf, dst, jpegSubsamp, jpegQual, flags); bailout: return 0; } /* TurboJPEG 1.2.x: TJCompressor::compress() int source */ JNIEXPORT jint JNICALL Java_org_libjpegturbo_turbojpeg_TJCompressor_compress___3IIIII_3BIII (JNIEnv *env, jobject obj, jintArray src, jint width, jint stride, jint height, jint pf, jbyteArray dst, jint jpegSubsamp, jint jpegQual, jint flags) { if (pf < 0 || pf >= org_libjpegturbo_turbojpeg_TJ_NUMPF) THROW_ARG("Invalid argument in compress()"); if (tjPixelSize[pf] != sizeof(jint)) THROW_ARG("Pixel format must be 32-bit when compressing from an integer buffer."); return TJCompressor_compress(env, obj, src, sizeof(jint), 0, 0, width, stride * sizeof(jint), height, pf, dst, jpegSubsamp, jpegQual, flags); bailout: return 0; } /* TurboJPEG 1.4.x: TJCompressor::compressFromYUV() */ JNIEXPORT jint JNICALL Java_org_libjpegturbo_turbojpeg_TJCompressor_compressFromYUV___3_3B_3II_3III_3BII (JNIEnv *env, jobject obj, jobjectArray srcobjs, jintArray jSrcOffsets, jint width, jintArray jSrcStrides, jint height, jint subsamp, jbyteArray dst, jint jpegQual, jint flags) { tjhandle handle = 0; unsigned long jpegSize = 0; jbyteArray jSrcPlanes[3] = { NULL, NULL, NULL }; const unsigned char *srcPlanesTmp[3] = { NULL, NULL, NULL }; const unsigned char *srcPlanes[3] = { NULL, NULL, NULL }; jint srcOffsetsTmp[3] = { 0, 0, 0 }, srcStridesTmp[3] = { 0, 0, 0 }; int srcOffsets[3] = { 0, 0, 0 }, srcStrides[3] = { 0, 0, 0 }; unsigned char *jpegBuf = NULL; int nc = (subsamp == org_libjpegturbo_turbojpeg_TJ_SAMP_GRAY ? 1 : 3), i; GET_HANDLE(); if (subsamp < 0 || subsamp >= org_libjpegturbo_turbojpeg_TJ_NUMSAMP) THROW_ARG("Invalid argument in compressFromYUV()"); if (org_libjpegturbo_turbojpeg_TJ_NUMSAMP != TJ_NUMSAMP) THROW_ARG("Mismatch between Java and C API"); if ((*env)->GetArrayLength(env, srcobjs) < nc) THROW_ARG("Planes array is too small for the subsampling type"); if ((*env)->GetArrayLength(env, jSrcOffsets) < nc) THROW_ARG("Offsets array is too small for the subsampling type"); if ((*env)->GetArrayLength(env, jSrcStrides) < nc) THROW_ARG("Strides array is too small for the subsampling type"); jpegSize = tjBufSize(width, height, subsamp); if ((*env)->GetArrayLength(env, dst) < (jsize)jpegSize) THROW_ARG("Destination buffer is not large enough"); if (ProcessSystemProperties(env) < 0) goto bailout; (*env)->GetIntArrayRegion(env, jSrcOffsets, 0, nc, srcOffsetsTmp); if ((*env)->ExceptionCheck(env)) goto bailout; for (i = 0; i < 3; i++) srcOffsets[i] = srcOffsetsTmp[i]; (*env)->GetIntArrayRegion(env, jSrcStrides, 0, nc, srcStridesTmp); if ((*env)->ExceptionCheck(env)) goto bailout; for (i = 0; i < 3; i++) srcStrides[i] = srcStridesTmp[i]; for (i = 0; i < nc; i++) { int planeSize = tjPlaneSizeYUV(i, width, srcStrides[i], height, subsamp); int pw = tjPlaneWidth(i, width, subsamp); if (planeSize < 0 || pw < 0) THROW_ARG(tjGetErrorStr()); if (srcOffsets[i] < 0) THROW_ARG("Invalid argument in compressFromYUV()"); if (srcStrides[i] < 0 && srcOffsets[i] - planeSize + pw < 0) THROW_ARG("Negative plane stride would cause memory to be accessed below plane boundary"); BAILIF0(jSrcPlanes[i] = (*env)->GetObjectArrayElement(env, srcobjs, i)); if ((*env)->GetArrayLength(env, jSrcPlanes[i]) < srcOffsets[i] + planeSize) THROW_ARG("Source plane is not large enough"); } for (i = 0; i < nc; i++) { BAILIF0NOEC(srcPlanesTmp[i] = (*env)->GetPrimitiveArrayCritical(env, jSrcPlanes[i], 0)); srcPlanes[i] = &srcPlanesTmp[i][srcOffsets[i]]; } BAILIF0NOEC(jpegBuf = (*env)->GetPrimitiveArrayCritical(env, dst, 0)); if (tjCompressFromYUVPlanes(handle, srcPlanes, width, srcStrides, height, subsamp, &jpegBuf, &jpegSize, jpegQual, flags | TJFLAG_NOREALLOC) == -1) { SAFE_RELEASE(dst, jpegBuf); for (i = 0; i < nc; i++) SAFE_RELEASE(jSrcPlanes[i], srcPlanesTmp[i]); THROW_TJ(); } bailout: SAFE_RELEASE(dst, jpegBuf); for (i = 0; i < nc; i++) SAFE_RELEASE(jSrcPlanes[i], srcPlanesTmp[i]); return (jint)jpegSize; } static void TJCompressor_encodeYUV (JNIEnv *env, jobject obj, jarray src, jint srcElementSize, jint x, jint y, jint width, jint pitch, jint height, jint pf, jobjectArray dstobjs, jintArray jDstOffsets, jintArray jDstStrides, jint subsamp, jint flags) { tjhandle handle = 0; jsize arraySize = 0, actualPitch; unsigned char *srcBuf = NULL; jbyteArray jDstPlanes[3] = { NULL, NULL, NULL }; unsigned char *dstPlanesTmp[3] = { NULL, NULL, NULL }; unsigned char *dstPlanes[3] = { NULL, NULL, NULL }; jint dstOffsetsTmp[3] = { 0, 0, 0 }, dstStridesTmp[3] = { 0, 0, 0 }; int dstOffsets[3] = { 0, 0, 0 }, dstStrides[3] = { 0, 0, 0 }; int nc = (subsamp == org_libjpegturbo_turbojpeg_TJ_SAMP_GRAY ? 1 : 3), i; GET_HANDLE(); if (pf < 0 || pf >= org_libjpegturbo_turbojpeg_TJ_NUMPF || width < 1 || height < 1 || pitch < 0 || subsamp < 0 || subsamp >= org_libjpegturbo_turbojpeg_TJ_NUMSAMP) THROW_ARG("Invalid argument in encodeYUV()"); if (org_libjpegturbo_turbojpeg_TJ_NUMPF != TJ_NUMPF || org_libjpegturbo_turbojpeg_TJ_NUMSAMP != TJ_NUMSAMP) THROW_ARG("Mismatch between Java and C API"); if ((*env)->GetArrayLength(env, dstobjs) < nc) THROW_ARG("Planes array is too small for the subsampling type"); if ((*env)->GetArrayLength(env, jDstOffsets) < nc) THROW_ARG("Offsets array is too small for the subsampling type"); if ((*env)->GetArrayLength(env, jDstStrides) < nc) THROW_ARG("Strides array is too small for the subsampling type"); actualPitch = (pitch == 0) ? width * tjPixelSize[pf] : pitch; arraySize = (y + height - 1) * actualPitch + (x + width) * tjPixelSize[pf]; if ((*env)->GetArrayLength(env, src) * srcElementSize < arraySize) THROW_ARG("Source buffer is not large enough"); (*env)->GetIntArrayRegion(env, jDstOffsets, 0, nc, dstOffsetsTmp); if ((*env)->ExceptionCheck(env)) goto bailout; for (i = 0; i < 3; i++) dstOffsets[i] = dstOffsetsTmp[i]; (*env)->GetIntArrayRegion(env, jDstStrides, 0, nc, dstStridesTmp); if ((*env)->ExceptionCheck(env)) goto bailout; for (i = 0; i < 3; i++) dstStrides[i] = dstStridesTmp[i]; for (i = 0; i < nc; i++) { int planeSize = tjPlaneSizeYUV(i, width, dstStrides[i], height, subsamp); int pw = tjPlaneWidth(i, width, subsamp); if (planeSize < 0 || pw < 0) THROW_ARG(tjGetErrorStr()); if (dstOffsets[i] < 0) THROW_ARG("Invalid argument in encodeYUV()"); if (dstStrides[i] < 0 && dstOffsets[i] - planeSize + pw < 0) THROW_ARG("Negative plane stride would cause memory to be accessed below plane boundary"); BAILIF0(jDstPlanes[i] = (*env)->GetObjectArrayElement(env, dstobjs, i)); if ((*env)->GetArrayLength(env, jDstPlanes[i]) < dstOffsets[i] + planeSize) THROW_ARG("Destination plane is not large enough"); } for (i = 0; i < nc; i++) { BAILIF0NOEC(dstPlanesTmp[i] = (*env)->GetPrimitiveArrayCritical(env, jDstPlanes[i], 0)); dstPlanes[i] = &dstPlanesTmp[i][dstOffsets[i]]; } BAILIF0NOEC(srcBuf = (*env)->GetPrimitiveArrayCritical(env, src, 0)); if (tjEncodeYUVPlanes(handle, &srcBuf[y * actualPitch + x * tjPixelSize[pf]], width, pitch, height, pf, dstPlanes, dstStrides, subsamp, flags) == -1) { SAFE_RELEASE(src, srcBuf); for (i = 0; i < nc; i++) SAFE_RELEASE(jDstPlanes[i], dstPlanesTmp[i]); THROW_TJ(); } bailout: SAFE_RELEASE(src, srcBuf); for (i = 0; i < nc; i++) SAFE_RELEASE(jDstPlanes[i], dstPlanesTmp[i]); } /* TurboJPEG 1.4.x: TJCompressor::encodeYUV() byte source */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJCompressor_encodeYUV___3BIIIIII_3_3B_3I_3III (JNIEnv *env, jobject obj, jbyteArray src, jint x, jint y, jint width, jint pitch, jint height, jint pf, jobjectArray dstobjs, jintArray jDstOffsets, jintArray jDstStrides, jint subsamp, jint flags) { TJCompressor_encodeYUV(env, obj, src, 1, x, y, width, pitch, height, pf, dstobjs, jDstOffsets, jDstStrides, subsamp, flags); } /* TurboJPEG 1.4.x: TJCompressor::encodeYUV() int source */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJCompressor_encodeYUV___3IIIIIII_3_3B_3I_3III (JNIEnv *env, jobject obj, jintArray src, jint x, jint y, jint width, jint stride, jint height, jint pf, jobjectArray dstobjs, jintArray jDstOffsets, jintArray jDstStrides, jint subsamp, jint flags) { if (pf < 0 || pf >= org_libjpegturbo_turbojpeg_TJ_NUMPF) THROW_ARG("Invalid argument in encodeYUV()"); if (tjPixelSize[pf] != sizeof(jint)) THROW_ARG("Pixel format must be 32-bit when encoding from an integer buffer."); TJCompressor_encodeYUV(env, obj, src, sizeof(jint), x, y, width, stride * sizeof(jint), height, pf, dstobjs, jDstOffsets, jDstStrides, subsamp, flags); bailout: return; } static void JNICALL TJCompressor_encodeYUV_12 (JNIEnv *env, jobject obj, jarray src, jint srcElementSize, jint width, jint pitch, jint height, jint pf, jbyteArray dst, jint subsamp, jint flags) { tjhandle handle = 0; jsize arraySize = 0; unsigned char *srcBuf = NULL, *dstBuf = NULL; GET_HANDLE(); if (pf < 0 || pf >= org_libjpegturbo_turbojpeg_TJ_NUMPF || width < 1 || height < 1 || pitch < 0) THROW_ARG("Invalid argument in encodeYUV()"); if (org_libjpegturbo_turbojpeg_TJ_NUMPF != TJ_NUMPF) THROW_ARG("Mismatch between Java and C API"); arraySize = (pitch == 0) ? width * tjPixelSize[pf] * height : pitch * height; if ((*env)->GetArrayLength(env, src) * srcElementSize < arraySize) THROW_ARG("Source buffer is not large enough"); if ((*env)->GetArrayLength(env, dst) < (jsize)tjBufSizeYUV(width, height, subsamp)) THROW_ARG("Destination buffer is not large enough"); BAILIF0NOEC(srcBuf = (*env)->GetPrimitiveArrayCritical(env, src, 0)); BAILIF0NOEC(dstBuf = (*env)->GetPrimitiveArrayCritical(env, dst, 0)); if (tjEncodeYUV2(handle, srcBuf, width, pitch, height, pf, dstBuf, subsamp, flags) == -1) { SAFE_RELEASE(dst, dstBuf); SAFE_RELEASE(src, srcBuf); THROW_TJ(); } bailout: SAFE_RELEASE(dst, dstBuf); SAFE_RELEASE(src, srcBuf); } /* TurboJPEG 1.2.x: TJCompressor::encodeYUV() byte source */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJCompressor_encodeYUV___3BIIII_3BII (JNIEnv *env, jobject obj, jbyteArray src, jint width, jint pitch, jint height, jint pf, jbyteArray dst, jint subsamp, jint flags) { TJCompressor_encodeYUV_12(env, obj, src, 1, width, pitch, height, pf, dst, subsamp, flags); } /* TurboJPEG 1.2.x: TJCompressor::encodeYUV() int source */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJCompressor_encodeYUV___3IIIII_3BII (JNIEnv *env, jobject obj, jintArray src, jint width, jint stride, jint height, jint pf, jbyteArray dst, jint subsamp, jint flags) { if (pf < 0 || pf >= org_libjpegturbo_turbojpeg_TJ_NUMPF) THROW_ARG("Invalid argument in encodeYUV()"); if (tjPixelSize[pf] != sizeof(jint)) THROW_ARG("Pixel format must be 32-bit when encoding from an integer buffer."); TJCompressor_encodeYUV_12(env, obj, src, sizeof(jint), width, stride * sizeof(jint), height, pf, dst, subsamp, flags); bailout: return; } /* TurboJPEG 1.2.x: TJCompressor::destroy() */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJCompressor_destroy (JNIEnv *env, jobject obj) { tjhandle handle = 0; GET_HANDLE(); if (tjDestroy(handle) == -1) THROW_TJ(); (*env)->SetLongField(env, obj, _fid, 0); bailout: return; } /* TurboJPEG 1.2.x: TJDecompressor::init() */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJDecompressor_init (JNIEnv *env, jobject obj) { jclass cls; jfieldID fid; tjhandle handle; if ((handle = tjInitDecompress()) == NULL) THROW(tjGetErrorStr(), "org/libjpegturbo/turbojpeg/TJException"); BAILIF0(cls = (*env)->GetObjectClass(env, obj)); BAILIF0(fid = (*env)->GetFieldID(env, cls, "handle", "J")); (*env)->SetLongField(env, obj, fid, (size_t)handle); bailout: return; } /* TurboJPEG 1.2.x: TJDecompressor::getScalingFactors() */ JNIEXPORT jobjectArray JNICALL Java_org_libjpegturbo_turbojpeg_TJ_getScalingFactors (JNIEnv *env, jclass cls) { jclass sfcls = NULL; jfieldID fid = 0; tjscalingfactor *sf = NULL; int n = 0, i; jobject sfobj = NULL; jobjectArray sfjava = NULL; if ((sf = tjGetScalingFactors(&n)) == NULL || n == 0) THROW_ARG(tjGetErrorStr()); BAILIF0(sfcls = (*env)->FindClass(env, "org/libjpegturbo/turbojpeg/TJScalingFactor")); BAILIF0(sfjava = (jobjectArray)(*env)->NewObjectArray(env, n, sfcls, 0)); for (i = 0; i < n; i++) { BAILIF0(sfobj = (*env)->AllocObject(env, sfcls)); BAILIF0(fid = (*env)->GetFieldID(env, sfcls, "num", "I")); (*env)->SetIntField(env, sfobj, fid, sf[i].num); BAILIF0(fid = (*env)->GetFieldID(env, sfcls, "denom", "I")); (*env)->SetIntField(env, sfobj, fid, sf[i].denom); (*env)->SetObjectArrayElement(env, sfjava, i, sfobj); } bailout: return sfjava; } /* TurboJPEG 1.2.x: TJDecompressor::decompressHeader() */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJDecompressor_decompressHeader (JNIEnv *env, jobject obj, jbyteArray src, jint jpegSize) { tjhandle handle = 0; unsigned char *jpegBuf = NULL; int width = 0, height = 0, jpegSubsamp = -1, jpegColorspace = -1; GET_HANDLE(); if ((*env)->GetArrayLength(env, src) < jpegSize) THROW_ARG("Source buffer is not large enough"); BAILIF0NOEC(jpegBuf = (*env)->GetPrimitiveArrayCritical(env, src, 0)); if (tjDecompressHeader3(handle, jpegBuf, (unsigned long)jpegSize, &width, &height, &jpegSubsamp, &jpegColorspace) == -1) { SAFE_RELEASE(src, jpegBuf); THROW_TJ(); } SAFE_RELEASE(src, jpegBuf); BAILIF0(_fid = (*env)->GetFieldID(env, _cls, "jpegSubsamp", "I")); (*env)->SetIntField(env, obj, _fid, jpegSubsamp); if ((_fid = (*env)->GetFieldID(env, _cls, "jpegColorspace", "I")) == 0) (*env)->ExceptionClear(env); else (*env)->SetIntField(env, obj, _fid, jpegColorspace); BAILIF0(_fid = (*env)->GetFieldID(env, _cls, "jpegWidth", "I")); (*env)->SetIntField(env, obj, _fid, width); BAILIF0(_fid = (*env)->GetFieldID(env, _cls, "jpegHeight", "I")); (*env)->SetIntField(env, obj, _fid, height); bailout: SAFE_RELEASE(src, jpegBuf); } static void TJDecompressor_decompress (JNIEnv *env, jobject obj, jbyteArray src, jint jpegSize, jarray dst, jint dstElementSize, jint x, jint y, jint width, jint pitch, jint height, jint pf, jint flags) { tjhandle handle = 0; jsize arraySize = 0, actualPitch; unsigned char *jpegBuf = NULL, *dstBuf = NULL; GET_HANDLE(); if (pf < 0 || pf >= org_libjpegturbo_turbojpeg_TJ_NUMPF) THROW_ARG("Invalid argument in decompress()"); if (org_libjpegturbo_turbojpeg_TJ_NUMPF != TJ_NUMPF) THROW_ARG("Mismatch between Java and C API"); if ((*env)->GetArrayLength(env, src) < jpegSize) THROW_ARG("Source buffer is not large enough"); actualPitch = (pitch == 0) ? width * tjPixelSize[pf] : pitch; arraySize = (y + height - 1) * actualPitch + (x + width) * tjPixelSize[pf]; if ((*env)->GetArrayLength(env, dst) * dstElementSize < arraySize) THROW_ARG("Destination buffer is not large enough"); BAILIF0NOEC(jpegBuf = (*env)->GetPrimitiveArrayCritical(env, src, 0)); BAILIF0NOEC(dstBuf = (*env)->GetPrimitiveArrayCritical(env, dst, 0)); if (tjDecompress2(handle, jpegBuf, (unsigned long)jpegSize, &dstBuf[y * actualPitch + x * tjPixelSize[pf]], width, pitch, height, pf, flags) == -1) { SAFE_RELEASE(dst, dstBuf); SAFE_RELEASE(src, jpegBuf); THROW_TJ(); } bailout: SAFE_RELEASE(dst, dstBuf); SAFE_RELEASE(src, jpegBuf); } /* TurboJPEG 1.3.x: TJDecompressor::decompress() byte destination */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJDecompressor_decompress___3BI_3BIIIIIII (JNIEnv *env, jobject obj, jbyteArray src, jint jpegSize, jbyteArray dst, jint x, jint y, jint width, jint pitch, jint height, jint pf, jint flags) { TJDecompressor_decompress(env, obj, src, jpegSize, dst, 1, x, y, width, pitch, height, pf, flags); } /* TurboJPEG 1.2.x: TJDecompressor::decompress() byte destination */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJDecompressor_decompress___3BI_3BIIIII (JNIEnv *env, jobject obj, jbyteArray src, jint jpegSize, jbyteArray dst, jint width, jint pitch, jint height, jint pf, jint flags) { TJDecompressor_decompress(env, obj, src, jpegSize, dst, 1, 0, 0, width, pitch, height, pf, flags); } /* TurboJPEG 1.3.x: TJDecompressor::decompress() int destination */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJDecompressor_decompress___3BI_3IIIIIIII (JNIEnv *env, jobject obj, jbyteArray src, jint jpegSize, jintArray dst, jint x, jint y, jint width, jint stride, jint height, jint pf, jint flags) { if (pf < 0 || pf >= org_libjpegturbo_turbojpeg_TJ_NUMPF) THROW_ARG("Invalid argument in decompress()"); if (tjPixelSize[pf] != sizeof(jint)) THROW_ARG("Pixel format must be 32-bit when decompressing to an integer buffer."); TJDecompressor_decompress(env, obj, src, jpegSize, dst, sizeof(jint), x, y, width, stride * sizeof(jint), height, pf, flags); bailout: return; } /* TurboJPEG 1.2.x: TJDecompressor::decompress() int destination */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJDecompressor_decompress___3BI_3IIIIII (JNIEnv *env, jobject obj, jbyteArray src, jint jpegSize, jintArray dst, jint width, jint stride, jint height, jint pf, jint flags) { if (pf < 0 || pf >= org_libjpegturbo_turbojpeg_TJ_NUMPF) THROW_ARG("Invalid argument in decompress()"); if (tjPixelSize[pf] != sizeof(jint)) THROW_ARG("Pixel format must be 32-bit when decompressing to an integer buffer."); TJDecompressor_decompress(env, obj, src, jpegSize, dst, sizeof(jint), 0, 0, width, stride * sizeof(jint), height, pf, flags); bailout: return; } /* TurboJPEG 1.4.x: TJDecompressor::decompressToYUV() */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJDecompressor_decompressToYUV___3BI_3_3B_3II_3III (JNIEnv *env, jobject obj, jbyteArray src, jint jpegSize, jobjectArray dstobjs, jintArray jDstOffsets, jint desiredWidth, jintArray jDstStrides, jint desiredHeight, jint flags) { tjhandle handle = 0; unsigned char *jpegBuf = NULL; jbyteArray jDstPlanes[3] = { NULL, NULL, NULL }; unsigned char *dstPlanesTmp[3] = { NULL, NULL, NULL }; unsigned char *dstPlanes[3] = { NULL, NULL, NULL }; jint dstOffsetsTmp[3] = { 0, 0, 0 }, dstStridesTmp[3] = { 0, 0, 0 }; int dstOffsets[3] = { 0, 0, 0 }, dstStrides[3] = { 0, 0, 0 }; int jpegSubsamp = -1, jpegWidth = 0, jpegHeight = 0; int nc = 0, i, width, height, scaledWidth, scaledHeight, nsf = 0; tjscalingfactor *sf; GET_HANDLE(); if ((*env)->GetArrayLength(env, src) < jpegSize) THROW_ARG("Source buffer is not large enough"); BAILIF0(_fid = (*env)->GetFieldID(env, _cls, "jpegSubsamp", "I")); jpegSubsamp = (int)(*env)->GetIntField(env, obj, _fid); BAILIF0(_fid = (*env)->GetFieldID(env, _cls, "jpegWidth", "I")); jpegWidth = (int)(*env)->GetIntField(env, obj, _fid); BAILIF0(_fid = (*env)->GetFieldID(env, _cls, "jpegHeight", "I")); jpegHeight = (int)(*env)->GetIntField(env, obj, _fid); nc = (jpegSubsamp == org_libjpegturbo_turbojpeg_TJ_SAMP_GRAY ? 1 : 3); width = desiredWidth; height = desiredHeight; if (width == 0) width = jpegWidth; if (height == 0) height = jpegHeight; sf = tjGetScalingFactors(&nsf); if (!sf || nsf < 1) THROW_ARG(tjGetErrorStr()); for (i = 0; i < nsf; i++) { scaledWidth = TJSCALED(jpegWidth, sf[i]); scaledHeight = TJSCALED(jpegHeight, sf[i]); if (scaledWidth <= width && scaledHeight <= height) break; } if (i >= nsf) THROW_ARG("Could not scale down to desired image dimensions"); (*env)->GetIntArrayRegion(env, jDstOffsets, 0, nc, dstOffsetsTmp); if ((*env)->ExceptionCheck(env)) goto bailout; for (i = 0; i < 3; i++) dstOffsets[i] = dstOffsetsTmp[i]; (*env)->GetIntArrayRegion(env, jDstStrides, 0, nc, dstStridesTmp); if ((*env)->ExceptionCheck(env)) goto bailout; for (i = 0; i < 3; i++) dstStrides[i] = dstStridesTmp[i]; for (i = 0; i < nc; i++) { int planeSize = tjPlaneSizeYUV(i, scaledWidth, dstStrides[i], scaledHeight, jpegSubsamp); int pw = tjPlaneWidth(i, scaledWidth, jpegSubsamp); if (planeSize < 0 || pw < 0) THROW_ARG(tjGetErrorStr()); if (dstOffsets[i] < 0) THROW_ARG("Invalid argument in decompressToYUV()"); if (dstStrides[i] < 0 && dstOffsets[i] - planeSize + pw < 0) THROW_ARG("Negative plane stride would cause memory to be accessed below plane boundary"); BAILIF0(jDstPlanes[i] = (*env)->GetObjectArrayElement(env, dstobjs, i)); if ((*env)->GetArrayLength(env, jDstPlanes[i]) < dstOffsets[i] + planeSize) THROW_ARG("Destination plane is not large enough"); } for (i = 0; i < nc; i++) { BAILIF0NOEC(dstPlanesTmp[i] = (*env)->GetPrimitiveArrayCritical(env, jDstPlanes[i], 0)); dstPlanes[i] = &dstPlanesTmp[i][dstOffsets[i]]; } BAILIF0NOEC(jpegBuf = (*env)->GetPrimitiveArrayCritical(env, src, 0)); if (tjDecompressToYUVPlanes(handle, jpegBuf, (unsigned long)jpegSize, dstPlanes, desiredWidth, dstStrides, desiredHeight, flags) == -1) { SAFE_RELEASE(src, jpegBuf); for (i = 0; i < nc; i++) SAFE_RELEASE(jDstPlanes[i], dstPlanesTmp[i]); THROW_TJ(); } bailout: SAFE_RELEASE(src, jpegBuf); for (i = 0; i < nc; i++) SAFE_RELEASE(jDstPlanes[i], dstPlanesTmp[i]); } /* TurboJPEG 1.2.x: TJDecompressor::decompressToYUV() */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJDecompressor_decompressToYUV___3BI_3BI (JNIEnv *env, jobject obj, jbyteArray src, jint jpegSize, jbyteArray dst, jint flags) { tjhandle handle = 0; unsigned char *jpegBuf = NULL, *dstBuf = NULL; int jpegSubsamp = -1, jpegWidth = 0, jpegHeight = 0; GET_HANDLE(); if ((*env)->GetArrayLength(env, src) < jpegSize) THROW_ARG("Source buffer is not large enough"); BAILIF0(_fid = (*env)->GetFieldID(env, _cls, "jpegSubsamp", "I")); jpegSubsamp = (int)(*env)->GetIntField(env, obj, _fid); BAILIF0(_fid = (*env)->GetFieldID(env, _cls, "jpegWidth", "I")); jpegWidth = (int)(*env)->GetIntField(env, obj, _fid); BAILIF0(_fid = (*env)->GetFieldID(env, _cls, "jpegHeight", "I")); jpegHeight = (int)(*env)->GetIntField(env, obj, _fid); if ((*env)->GetArrayLength(env, dst) < (jsize)tjBufSizeYUV(jpegWidth, jpegHeight, jpegSubsamp)) THROW_ARG("Destination buffer is not large enough"); BAILIF0NOEC(jpegBuf = (*env)->GetPrimitiveArrayCritical(env, src, 0)); BAILIF0NOEC(dstBuf = (*env)->GetPrimitiveArrayCritical(env, dst, 0)); if (tjDecompressToYUV(handle, jpegBuf, (unsigned long)jpegSize, dstBuf, flags) == -1) { SAFE_RELEASE(dst, dstBuf); SAFE_RELEASE(src, jpegBuf); THROW_TJ(); } bailout: SAFE_RELEASE(dst, dstBuf); SAFE_RELEASE(src, jpegBuf); } static void TJDecompressor_decodeYUV (JNIEnv *env, jobject obj, jobjectArray srcobjs, jintArray jSrcOffsets, jintArray jSrcStrides, jint subsamp, jarray dst, jint dstElementSize, jint x, jint y, jint width, jint pitch, jint height, jint pf, jint flags) { tjhandle handle = 0; jsize arraySize = 0, actualPitch; jbyteArray jSrcPlanes[3] = { NULL, NULL, NULL }; const unsigned char *srcPlanesTmp[3] = { NULL, NULL, NULL }; const unsigned char *srcPlanes[3] = { NULL, NULL, NULL }; jint srcOffsetsTmp[3] = { 0, 0, 0 }, srcStridesTmp[3] = { 0, 0, 0 }; int srcOffsets[3] = { 0, 0, 0 }, srcStrides[3] = { 0, 0, 0 }; unsigned char *dstBuf = NULL; int nc = (subsamp == org_libjpegturbo_turbojpeg_TJ_SAMP_GRAY ? 1 : 3), i; GET_HANDLE(); if (pf < 0 || pf >= org_libjpegturbo_turbojpeg_TJ_NUMPF || subsamp < 0 || subsamp >= org_libjpegturbo_turbojpeg_TJ_NUMSAMP) THROW_ARG("Invalid argument in decodeYUV()"); if (org_libjpegturbo_turbojpeg_TJ_NUMPF != TJ_NUMPF || org_libjpegturbo_turbojpeg_TJ_NUMSAMP != TJ_NUMSAMP) THROW_ARG("Mismatch between Java and C API"); if ((*env)->GetArrayLength(env, srcobjs) < nc) THROW_ARG("Planes array is too small for the subsampling type"); if ((*env)->GetArrayLength(env, jSrcOffsets) < nc) THROW_ARG("Offsets array is too small for the subsampling type"); if ((*env)->GetArrayLength(env, jSrcStrides) < nc) THROW_ARG("Strides array is too small for the subsampling type"); actualPitch = (pitch == 0) ? width * tjPixelSize[pf] : pitch; arraySize = (y + height - 1) * actualPitch + (x + width) * tjPixelSize[pf]; if ((*env)->GetArrayLength(env, dst) * dstElementSize < arraySize) THROW_ARG("Destination buffer is not large enough"); (*env)->GetIntArrayRegion(env, jSrcOffsets, 0, nc, srcOffsetsTmp); if ((*env)->ExceptionCheck(env)) goto bailout; for (i = 0; i < 3; i++) srcOffsets[i] = srcOffsetsTmp[i]; (*env)->GetIntArrayRegion(env, jSrcStrides, 0, nc, srcStridesTmp); if ((*env)->ExceptionCheck(env)) goto bailout; for (i = 0; i < 3; i++) srcStrides[i] = srcStridesTmp[i]; for (i = 0; i < nc; i++) { int planeSize = tjPlaneSizeYUV(i, width, srcStrides[i], height, subsamp); int pw = tjPlaneWidth(i, width, subsamp); if (planeSize < 0 || pw < 0) THROW_ARG(tjGetErrorStr()); if (srcOffsets[i] < 0) THROW_ARG("Invalid argument in decodeYUV()"); if (srcStrides[i] < 0 && srcOffsets[i] - planeSize + pw < 0) THROW_ARG("Negative plane stride would cause memory to be accessed below plane boundary"); BAILIF0(jSrcPlanes[i] = (*env)->GetObjectArrayElement(env, srcobjs, i)); if ((*env)->GetArrayLength(env, jSrcPlanes[i]) < srcOffsets[i] + planeSize) THROW_ARG("Source plane is not large enough"); } for (i = 0; i < nc; i++) { BAILIF0NOEC(srcPlanesTmp[i] = (*env)->GetPrimitiveArrayCritical(env, jSrcPlanes[i], 0)); srcPlanes[i] = &srcPlanesTmp[i][srcOffsets[i]]; } BAILIF0NOEC(dstBuf = (*env)->GetPrimitiveArrayCritical(env, dst, 0)); if (tjDecodeYUVPlanes(handle, srcPlanes, srcStrides, subsamp, &dstBuf[y * actualPitch + x * tjPixelSize[pf]], width, pitch, height, pf, flags) == -1) { SAFE_RELEASE(dst, dstBuf); for (i = 0; i < nc; i++) SAFE_RELEASE(jSrcPlanes[i], srcPlanesTmp[i]); THROW_TJ(); } bailout: SAFE_RELEASE(dst, dstBuf); for (i = 0; i < nc; i++) SAFE_RELEASE(jSrcPlanes[i], srcPlanesTmp[i]); } /* TurboJPEG 1.4.x: TJDecompressor::decodeYUV() byte destination */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJDecompressor_decodeYUV___3_3B_3I_3II_3BIIIIIII (JNIEnv *env, jobject obj, jobjectArray srcobjs, jintArray jSrcOffsets, jintArray jSrcStrides, jint subsamp, jbyteArray dst, jint x, jint y, jint width, jint pitch, jint height, jint pf, jint flags) { TJDecompressor_decodeYUV(env, obj, srcobjs, jSrcOffsets, jSrcStrides, subsamp, dst, 1, x, y, width, pitch, height, pf, flags); } /* TurboJPEG 1.4.x: TJDecompressor::decodeYUV() int destination */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJDecompressor_decodeYUV___3_3B_3I_3II_3IIIIIIII (JNIEnv *env, jobject obj, jobjectArray srcobjs, jintArray jSrcOffsets, jintArray jSrcStrides, jint subsamp, jintArray dst, jint x, jint y, jint width, jint stride, jint height, jint pf, jint flags) { if (pf < 0 || pf >= org_libjpegturbo_turbojpeg_TJ_NUMPF) THROW_ARG("Invalid argument in decodeYUV()"); if (tjPixelSize[pf] != sizeof(jint)) THROW_ARG("Pixel format must be 32-bit when decoding to an integer buffer."); TJDecompressor_decodeYUV(env, obj, srcobjs, jSrcOffsets, jSrcStrides, subsamp, dst, sizeof(jint), x, y, width, stride * sizeof(jint), height, pf, flags); bailout: return; } /* TurboJPEG 1.2.x: TJTransformer::init() */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJTransformer_init (JNIEnv *env, jobject obj) { jclass cls; jfieldID fid; tjhandle handle; if ((handle = tjInitTransform()) == NULL) THROW(tjGetErrorStr(), "org/libjpegturbo/turbojpeg/TJException"); BAILIF0(cls = (*env)->GetObjectClass(env, obj)); BAILIF0(fid = (*env)->GetFieldID(env, cls, "handle", "J")); (*env)->SetLongField(env, obj, fid, (size_t)handle); bailout: return; } typedef struct _JNICustomFilterParams { JNIEnv *env; jobject tobj; jobject cfobj; } JNICustomFilterParams; static int JNICustomFilter(short *coeffs, tjregion arrayRegion, tjregion planeRegion, int componentIndex, int transformIndex, tjtransform *transform) { JNICustomFilterParams *params = (JNICustomFilterParams *)transform->data; JNIEnv *env = params->env; jobject tobj = params->tobj, cfobj = params->cfobj; jobject arrayRegionObj, planeRegionObj, bufobj, borobj; jclass cls; jmethodID mid; jfieldID fid; BAILIF0(bufobj = (*env)->NewDirectByteBuffer(env, coeffs, sizeof(short) * arrayRegion.w * arrayRegion.h)); BAILIF0(cls = (*env)->FindClass(env, "java/nio/ByteOrder")); BAILIF0(mid = (*env)->GetStaticMethodID(env, cls, "nativeOrder", "()Ljava/nio/ByteOrder;")); BAILIF0(borobj = (*env)->CallStaticObjectMethod(env, cls, mid)); BAILIF0(cls = (*env)->GetObjectClass(env, bufobj)); BAILIF0(mid = (*env)->GetMethodID(env, cls, "order", "(Ljava/nio/ByteOrder;)Ljava/nio/ByteBuffer;")); (*env)->CallObjectMethod(env, bufobj, mid, borobj); BAILIF0(mid = (*env)->GetMethodID(env, cls, "asShortBuffer", "()Ljava/nio/ShortBuffer;")); BAILIF0(bufobj = (*env)->CallObjectMethod(env, bufobj, mid)); BAILIF0(cls = (*env)->FindClass(env, "java/awt/Rectangle")); BAILIF0(arrayRegionObj = (*env)->AllocObject(env, cls)); BAILIF0(fid = (*env)->GetFieldID(env, cls, "x", "I")); (*env)->SetIntField(env, arrayRegionObj, fid, arrayRegion.x); BAILIF0(fid = (*env)->GetFieldID(env, cls, "y", "I")); (*env)->SetIntField(env, arrayRegionObj, fid, arrayRegion.y); BAILIF0(fid = (*env)->GetFieldID(env, cls, "width", "I")); (*env)->SetIntField(env, arrayRegionObj, fid, arrayRegion.w); BAILIF0(fid = (*env)->GetFieldID(env, cls, "height", "I")); (*env)->SetIntField(env, arrayRegionObj, fid, arrayRegion.h); BAILIF0(planeRegionObj = (*env)->AllocObject(env, cls)); BAILIF0(fid = (*env)->GetFieldID(env, cls, "x", "I")); (*env)->SetIntField(env, planeRegionObj, fid, planeRegion.x); BAILIF0(fid = (*env)->GetFieldID(env, cls, "y", "I")); (*env)->SetIntField(env, planeRegionObj, fid, planeRegion.y); BAILIF0(fid = (*env)->GetFieldID(env, cls, "width", "I")); (*env)->SetIntField(env, planeRegionObj, fid, planeRegion.w); BAILIF0(fid = (*env)->GetFieldID(env, cls, "height", "I")); (*env)->SetIntField(env, planeRegionObj, fid, planeRegion.h); BAILIF0(cls = (*env)->GetObjectClass(env, cfobj)); BAILIF0(mid = (*env)->GetMethodID(env, cls, "customFilter", "(Ljava/nio/ShortBuffer;Ljava/awt/Rectangle;Ljava/awt/Rectangle;IILorg/libjpegturbo/turbojpeg/TJTransform;)V")); (*env)->CallVoidMethod(env, cfobj, mid, bufobj, arrayRegionObj, planeRegionObj, componentIndex, transformIndex, tobj); return 0; bailout: return -1; } /* TurboJPEG 1.2.x: TJTransformer::transform() */ JNIEXPORT jintArray JNICALL Java_org_libjpegturbo_turbojpeg_TJTransformer_transform (JNIEnv *env, jobject obj, jbyteArray jsrcBuf, jint jpegSize, jobjectArray dstobjs, jobjectArray tobjs, jint flags) { tjhandle handle = 0; unsigned char *jpegBuf = NULL, **dstBufs = NULL; jsize n = 0; unsigned long *dstSizes = NULL; tjtransform *t = NULL; jbyteArray *jdstBufs = NULL; int i, jpegWidth = 0, jpegHeight = 0, jpegSubsamp; jintArray jdstSizes = 0; jint *dstSizesi = NULL; JNICustomFilterParams *params = NULL; GET_HANDLE(); if ((*env)->GetArrayLength(env, jsrcBuf) < jpegSize) THROW_ARG("Source buffer is not large enough"); BAILIF0(_fid = (*env)->GetFieldID(env, _cls, "jpegWidth", "I")); jpegWidth = (int)(*env)->GetIntField(env, obj, _fid); BAILIF0(_fid = (*env)->GetFieldID(env, _cls, "jpegHeight", "I")); jpegHeight = (int)(*env)->GetIntField(env, obj, _fid); BAILIF0(_fid = (*env)->GetFieldID(env, _cls, "jpegSubsamp", "I")); jpegSubsamp = (int)(*env)->GetIntField(env, obj, _fid); n = (*env)->GetArrayLength(env, dstobjs); if (n != (*env)->GetArrayLength(env, tobjs)) THROW_ARG("Mismatch between size of transforms array and destination buffers array"); if ((dstBufs = (unsigned char **)malloc(sizeof(unsigned char *) * n)) == NULL) THROW_MEM(); if ((jdstBufs = (jbyteArray *)malloc(sizeof(jbyteArray) * n)) == NULL) THROW_MEM(); if ((dstSizes = (unsigned long *)malloc(sizeof(unsigned long) * n)) == NULL) THROW_MEM(); if ((t = (tjtransform *)malloc(sizeof(tjtransform) * n)) == NULL) THROW_MEM(); if ((params = (JNICustomFilterParams *)malloc(sizeof(JNICustomFilterParams) * n)) == NULL) THROW_MEM(); for (i = 0; i < n; i++) { dstBufs[i] = NULL; jdstBufs[i] = NULL; dstSizes[i] = 0; memset(&t[i], 0, sizeof(tjtransform)); memset(¶ms[i], 0, sizeof(JNICustomFilterParams)); } for (i = 0; i < n; i++) { jobject tobj, cfobj; BAILIF0(tobj = (*env)->GetObjectArrayElement(env, tobjs, i)); BAILIF0(_cls = (*env)->GetObjectClass(env, tobj)); BAILIF0(_fid = (*env)->GetFieldID(env, _cls, "op", "I")); t[i].op = (*env)->GetIntField(env, tobj, _fid); BAILIF0(_fid = (*env)->GetFieldID(env, _cls, "options", "I")); t[i].options = (*env)->GetIntField(env, tobj, _fid); BAILIF0(_fid = (*env)->GetFieldID(env, _cls, "x", "I")); t[i].r.x = (*env)->GetIntField(env, tobj, _fid); BAILIF0(_fid = (*env)->GetFieldID(env, _cls, "y", "I")); t[i].r.y = (*env)->GetIntField(env, tobj, _fid); BAILIF0(_fid = (*env)->GetFieldID(env, _cls, "width", "I")); t[i].r.w = (*env)->GetIntField(env, tobj, _fid); BAILIF0(_fid = (*env)->GetFieldID(env, _cls, "height", "I")); t[i].r.h = (*env)->GetIntField(env, tobj, _fid); BAILIF0(_fid = (*env)->GetFieldID(env, _cls, "cf", "Lorg/libjpegturbo/turbojpeg/TJCustomFilter;")); cfobj = (*env)->GetObjectField(env, tobj, _fid); if (cfobj) { params[i].env = env; params[i].tobj = tobj; params[i].cfobj = cfobj; t[i].customFilter = JNICustomFilter; t[i].data = (void *)¶ms[i]; } } for (i = 0; i < n; i++) { int w = jpegWidth, h = jpegHeight; if (t[i].r.w != 0) w = t[i].r.w; if (t[i].r.h != 0) h = t[i].r.h; BAILIF0(jdstBufs[i] = (*env)->GetObjectArrayElement(env, dstobjs, i)); if ((unsigned long)(*env)->GetArrayLength(env, jdstBufs[i]) < tjBufSize(w, h, jpegSubsamp)) THROW_ARG("Destination buffer is not large enough"); } BAILIF0NOEC(jpegBuf = (*env)->GetPrimitiveArrayCritical(env, jsrcBuf, 0)); for (i = 0; i < n; i++) BAILIF0NOEC(dstBufs[i] = (*env)->GetPrimitiveArrayCritical(env, jdstBufs[i], 0)); if (tjTransform(handle, jpegBuf, jpegSize, n, dstBufs, dstSizes, t, flags | TJFLAG_NOREALLOC) == -1) { for (i = 0; i < n; i++) SAFE_RELEASE(jdstBufs[i], dstBufs[i]); SAFE_RELEASE(jsrcBuf, jpegBuf); THROW_TJ(); } for (i = 0; i < n; i++) SAFE_RELEASE(jdstBufs[i], dstBufs[i]); SAFE_RELEASE(jsrcBuf, jpegBuf); jdstSizes = (*env)->NewIntArray(env, n); BAILIF0(dstSizesi = (*env)->GetIntArrayElements(env, jdstSizes, 0)); for (i = 0; i < n; i++) dstSizesi[i] = (int)dstSizes[i]; bailout: if (dstSizesi) (*env)->ReleaseIntArrayElements(env, jdstSizes, dstSizesi, 0); if (dstBufs) { for (i = 0; i < n; i++) { if (dstBufs[i] && jdstBufs && jdstBufs[i]) (*env)->ReleasePrimitiveArrayCritical(env, jdstBufs[i], dstBufs[i], 0); } free(dstBufs); } SAFE_RELEASE(jsrcBuf, jpegBuf); free(jdstBufs); free(dstSizes); free(t); return jdstSizes; } /* TurboJPEG 1.2.x: TJDecompressor::destroy() */ JNIEXPORT void JNICALL Java_org_libjpegturbo_turbojpeg_TJDecompressor_destroy (JNIEnv *env, jobject obj) { Java_org_libjpegturbo_turbojpeg_TJCompressor_destroy(env, obj); } libjpeg-turbo-2.1.5/turbojpeg-mapfile000066400000000000000000000017351436506551100176370ustar00rootroot00000000000000TURBOJPEG_1.0 { global: TJBUFSIZE; tjCompress; tjDecompress; tjDecompressHeader; tjDestroy; tjGetErrorStr; tjInitCompress; tjInitDecompress; local: *; }; TURBOJPEG_1.1 { global: TJBUFSIZEYUV; tjDecompressHeader2; tjDecompressToYUV; tjEncodeYUV; } TURBOJPEG_1.0; TURBOJPEG_1.2 { global: tjAlloc; tjBufSize; tjBufSizeYUV; tjCompress2; tjDecompress2; tjEncodeYUV2; tjFree; tjGetScalingFactors; tjInitTransform; tjTransform; } TURBOJPEG_1.1; TURBOJPEG_1.4 { global: tjBufSizeYUV2; tjCompressFromYUV; tjCompressFromYUVPlanes; tjDecodeYUV; tjDecodeYUVPlanes; tjDecompressHeader3; tjDecompressToYUV2; tjDecompressToYUVPlanes; tjEncodeYUV3; tjEncodeYUVPlanes; tjPlaneHeight; tjPlaneSizeYUV; tjPlaneWidth; } TURBOJPEG_1.2; TURBOJPEG_2.0 { global: tjGetErrorCode; tjGetErrorStr2; tjLoadImage; tjSaveImage; } TURBOJPEG_1.4; libjpeg-turbo-2.1.5/turbojpeg-mapfile.jni000066400000000000000000000061721436506551100204160ustar00rootroot00000000000000TURBOJPEG_1.0 { global: TJBUFSIZE; tjCompress; tjDecompress; tjDecompressHeader; tjDestroy; tjGetErrorStr; tjInitCompress; tjInitDecompress; local: *; }; TURBOJPEG_1.1 { global: TJBUFSIZEYUV; tjDecompressHeader2; tjDecompressToYUV; tjEncodeYUV; } TURBOJPEG_1.0; TURBOJPEG_1.2 { global: tjAlloc; tjBufSize; tjBufSizeYUV; tjCompress2; tjDecompress2; tjEncodeYUV2; tjFree; tjGetScalingFactors; tjInitTransform; tjTransform; Java_org_libjpegturbo_turbojpeg_TJ_bufSize; Java_org_libjpegturbo_turbojpeg_TJ_bufSizeYUV__III; Java_org_libjpegturbo_turbojpeg_TJ_getScalingFactors; Java_org_libjpegturbo_turbojpeg_TJCompressor_init; Java_org_libjpegturbo_turbojpeg_TJCompressor_compress___3BIIII_3BIII; Java_org_libjpegturbo_turbojpeg_TJCompressor_compress___3IIIII_3BIII; Java_org_libjpegturbo_turbojpeg_TJCompressor_encodeYUV___3BIIII_3BII; Java_org_libjpegturbo_turbojpeg_TJCompressor_encodeYUV___3IIIII_3BII; Java_org_libjpegturbo_turbojpeg_TJCompressor_destroy; Java_org_libjpegturbo_turbojpeg_TJDecompressor_init; Java_org_libjpegturbo_turbojpeg_TJDecompressor_decompressHeader; Java_org_libjpegturbo_turbojpeg_TJDecompressor_decompress___3BI_3BIIIII; Java_org_libjpegturbo_turbojpeg_TJDecompressor_decompress___3BI_3IIIIII; Java_org_libjpegturbo_turbojpeg_TJDecompressor_decompressToYUV___3BI_3BI; Java_org_libjpegturbo_turbojpeg_TJDecompressor_destroy; Java_org_libjpegturbo_turbojpeg_TJTransformer_init; Java_org_libjpegturbo_turbojpeg_TJTransformer_transform; } TURBOJPEG_1.1; TURBOJPEG_1.3 { global: Java_org_libjpegturbo_turbojpeg_TJCompressor_compress___3BIIIIII_3BIII; Java_org_libjpegturbo_turbojpeg_TJCompressor_compress___3IIIIIII_3BIII; Java_org_libjpegturbo_turbojpeg_TJDecompressor_decompress___3BI_3BIIIIIII; Java_org_libjpegturbo_turbojpeg_TJDecompressor_decompress___3BI_3IIIIIIII; } TURBOJPEG_1.2; TURBOJPEG_1.4 { global: tjBufSizeYUV2; tjCompressFromYUV; tjCompressFromYUVPlanes; tjDecodeYUV; tjDecodeYUVPlanes; tjDecompressHeader3; tjDecompressToYUV2; tjDecompressToYUVPlanes; tjEncodeYUV3; tjEncodeYUVPlanes; tjPlaneHeight; tjPlaneSizeYUV; tjPlaneWidth; Java_org_libjpegturbo_turbojpeg_TJ_bufSizeYUV__IIII; Java_org_libjpegturbo_turbojpeg_TJCompressor_compressFromYUV___3_3B_3II_3III_3BII; Java_org_libjpegturbo_turbojpeg_TJCompressor_encodeYUV___3BIIIIII_3_3B_3I_3III; Java_org_libjpegturbo_turbojpeg_TJCompressor_encodeYUV___3IIIIIII_3_3B_3I_3III; Java_org_libjpegturbo_turbojpeg_TJDecompressor_decompressToYUV___3BI_3_3B_3II_3III; Java_org_libjpegturbo_turbojpeg_TJDecompressor_decodeYUV___3_3B_3I_3II_3BIIIIIII; Java_org_libjpegturbo_turbojpeg_TJDecompressor_decodeYUV___3_3B_3I_3II_3IIIIIIII; Java_org_libjpegturbo_turbojpeg_TJ_planeHeight__III; Java_org_libjpegturbo_turbojpeg_TJ_planeSizeYUV__IIIII; Java_org_libjpegturbo_turbojpeg_TJ_planeWidth__III; } TURBOJPEG_1.3; TURBOJPEG_2.0 { global: tjGetErrorCode; tjGetErrorStr2; tjLoadImage; tjSaveImage; } TURBOJPEG_1.4; libjpeg-turbo-2.1.5/turbojpeg.c000066400000000000000000002302041436506551100164400ustar00rootroot00000000000000/* * Copyright (C)2009-2023 D. R. Commander. All Rights Reserved. * Copyright (C)2021 Alex Richardson. All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* TurboJPEG/LJT: this implements the TurboJPEG API using libjpeg or libjpeg-turbo */ #include #include #include #define JPEG_INTERNALS #include #include #include #include #include "./turbojpeg.h" #include "./tjutil.h" #include "transupp.h" #include "./jpegcomp.h" #include "./cdjpeg.h" extern void jpeg_mem_dest_tj(j_compress_ptr, unsigned char **, unsigned long *, boolean); extern void jpeg_mem_src_tj(j_decompress_ptr, const unsigned char *, unsigned long); #define PAD(v, p) ((v + (p) - 1) & (~((p) - 1))) #define IS_POW2(x) (((x) & (x - 1)) == 0) /* Error handling (based on example in example.txt) */ static THREAD_LOCAL char errStr[JMSG_LENGTH_MAX] = "No error"; struct my_error_mgr { struct jpeg_error_mgr pub; jmp_buf setjmp_buffer; void (*emit_message) (j_common_ptr, int); boolean warning, stopOnWarning; }; typedef struct my_error_mgr *my_error_ptr; #define JMESSAGE(code, string) string, static const char *turbojpeg_message_table[] = { #include "cderror.h" NULL }; static void my_error_exit(j_common_ptr cinfo) { my_error_ptr myerr = (my_error_ptr)cinfo->err; (*cinfo->err->output_message) (cinfo); longjmp(myerr->setjmp_buffer, 1); } /* Based on output_message() in jerror.c */ static void my_output_message(j_common_ptr cinfo) { (*cinfo->err->format_message) (cinfo, errStr); } static void my_emit_message(j_common_ptr cinfo, int msg_level) { my_error_ptr myerr = (my_error_ptr)cinfo->err; myerr->emit_message(cinfo, msg_level); if (msg_level < 0) { myerr->warning = TRUE; if (myerr->stopOnWarning) longjmp(myerr->setjmp_buffer, 1); } } /********************** Global structures, macros, etc. **********************/ enum { COMPRESS = 1, DECOMPRESS = 2 }; typedef struct _tjinstance { struct jpeg_compress_struct cinfo; struct jpeg_decompress_struct dinfo; struct my_error_mgr jerr; int init, headerRead; char errStr[JMSG_LENGTH_MAX]; boolean isInstanceError; } tjinstance; struct my_progress_mgr { struct jpeg_progress_mgr pub; tjinstance *this; }; typedef struct my_progress_mgr *my_progress_ptr; static void my_progress_monitor(j_common_ptr dinfo) { my_error_ptr myerr = (my_error_ptr)dinfo->err; my_progress_ptr myprog = (my_progress_ptr)dinfo->progress; if (dinfo->is_decompressor) { int scan_no = ((j_decompress_ptr)dinfo)->input_scan_number; if (scan_no > 500) { SNPRINTF(myprog->this->errStr, JMSG_LENGTH_MAX, "Progressive JPEG image has more than 500 scans"); SNPRINTF(errStr, JMSG_LENGTH_MAX, "Progressive JPEG image has more than 500 scans"); myprog->this->isInstanceError = TRUE; myerr->warning = FALSE; longjmp(myerr->setjmp_buffer, 1); } } } static const int pixelsize[TJ_NUMSAMP] = { 3, 3, 3, 1, 3, 3 }; static const JXFORM_CODE xformtypes[TJ_NUMXOP] = { JXFORM_NONE, JXFORM_FLIP_H, JXFORM_FLIP_V, JXFORM_TRANSPOSE, JXFORM_TRANSVERSE, JXFORM_ROT_90, JXFORM_ROT_180, JXFORM_ROT_270 }; #define NUMSF 16 static const tjscalingfactor sf[NUMSF] = { { 2, 1 }, { 15, 8 }, { 7, 4 }, { 13, 8 }, { 3, 2 }, { 11, 8 }, { 5, 4 }, { 9, 8 }, { 1, 1 }, { 7, 8 }, { 3, 4 }, { 5, 8 }, { 1, 2 }, { 3, 8 }, { 1, 4 }, { 1, 8 } }; static J_COLOR_SPACE pf2cs[TJ_NUMPF] = { JCS_EXT_RGB, JCS_EXT_BGR, JCS_EXT_RGBX, JCS_EXT_BGRX, JCS_EXT_XBGR, JCS_EXT_XRGB, JCS_GRAYSCALE, JCS_EXT_RGBA, JCS_EXT_BGRA, JCS_EXT_ABGR, JCS_EXT_ARGB, JCS_CMYK }; static int cs2pf[JPEG_NUMCS] = { TJPF_UNKNOWN, TJPF_GRAY, #if RGB_RED == 0 && RGB_GREEN == 1 && RGB_BLUE == 2 && RGB_PIXELSIZE == 3 TJPF_RGB, #elif RGB_RED == 2 && RGB_GREEN == 1 && RGB_BLUE == 0 && RGB_PIXELSIZE == 3 TJPF_BGR, #elif RGB_RED == 0 && RGB_GREEN == 1 && RGB_BLUE == 2 && RGB_PIXELSIZE == 4 TJPF_RGBX, #elif RGB_RED == 2 && RGB_GREEN == 1 && RGB_BLUE == 0 && RGB_PIXELSIZE == 4 TJPF_BGRX, #elif RGB_RED == 3 && RGB_GREEN == 2 && RGB_BLUE == 1 && RGB_PIXELSIZE == 4 TJPF_XBGR, #elif RGB_RED == 1 && RGB_GREEN == 2 && RGB_BLUE == 3 && RGB_PIXELSIZE == 4 TJPF_XRGB, #endif TJPF_UNKNOWN, TJPF_CMYK, TJPF_UNKNOWN, TJPF_RGB, TJPF_RGBX, TJPF_BGR, TJPF_BGRX, TJPF_XBGR, TJPF_XRGB, TJPF_RGBA, TJPF_BGRA, TJPF_ABGR, TJPF_ARGB, TJPF_UNKNOWN }; #define THROWG(m) { \ SNPRINTF(errStr, JMSG_LENGTH_MAX, "%s", m); \ retval = -1; goto bailout; \ } #ifdef _MSC_VER #define THROW_UNIX(m) { \ char strerrorBuf[80] = { 0 }; \ strerror_s(strerrorBuf, 80, errno); \ SNPRINTF(errStr, JMSG_LENGTH_MAX, "%s\n%s", m, strerrorBuf); \ retval = -1; goto bailout; \ } #else #define THROW_UNIX(m) { \ SNPRINTF(errStr, JMSG_LENGTH_MAX, "%s\n%s", m, strerror(errno)); \ retval = -1; goto bailout; \ } #endif #define THROW(m) { \ SNPRINTF(this->errStr, JMSG_LENGTH_MAX, "%s", m); \ this->isInstanceError = TRUE; THROWG(m) \ } #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION /* Private flag that triggers different TurboJPEG API behavior when fuzzing */ #define TJFLAG_FUZZING (1 << 30) #endif #define GET_INSTANCE(handle) \ tjinstance *this = (tjinstance *)handle; \ j_compress_ptr cinfo = NULL; \ j_decompress_ptr dinfo = NULL; \ \ if (!this) { \ SNPRINTF(errStr, JMSG_LENGTH_MAX, "Invalid handle"); \ return -1; \ } \ cinfo = &this->cinfo; dinfo = &this->dinfo; \ this->jerr.warning = FALSE; \ this->isInstanceError = FALSE; #define GET_CINSTANCE(handle) \ tjinstance *this = (tjinstance *)handle; \ j_compress_ptr cinfo = NULL; \ \ if (!this) { \ SNPRINTF(errStr, JMSG_LENGTH_MAX, "Invalid handle"); \ return -1; \ } \ cinfo = &this->cinfo; \ this->jerr.warning = FALSE; \ this->isInstanceError = FALSE; #define GET_DINSTANCE(handle) \ tjinstance *this = (tjinstance *)handle; \ j_decompress_ptr dinfo = NULL; \ \ if (!this) { \ SNPRINTF(errStr, JMSG_LENGTH_MAX, "Invalid handle"); \ return -1; \ } \ dinfo = &this->dinfo; \ this->jerr.warning = FALSE; \ this->isInstanceError = FALSE; static int getPixelFormat(int pixelSize, int flags) { if (pixelSize == 1) return TJPF_GRAY; if (pixelSize == 3) { if (flags & TJ_BGR) return TJPF_BGR; else return TJPF_RGB; } if (pixelSize == 4) { if (flags & TJ_ALPHAFIRST) { if (flags & TJ_BGR) return TJPF_XBGR; else return TJPF_XRGB; } else { if (flags & TJ_BGR) return TJPF_BGRX; else return TJPF_RGBX; } } return -1; } static void setCompDefaults(struct jpeg_compress_struct *cinfo, int pixelFormat, int subsamp, int jpegQual, int flags) { #ifndef NO_GETENV char env[7] = { 0 }; #endif cinfo->in_color_space = pf2cs[pixelFormat]; cinfo->input_components = tjPixelSize[pixelFormat]; jpeg_set_defaults(cinfo); #ifndef NO_GETENV if (!GETENV_S(env, 7, "TJ_OPTIMIZE") && !strcmp(env, "1")) cinfo->optimize_coding = TRUE; if (!GETENV_S(env, 7, "TJ_ARITHMETIC") && !strcmp(env, "1")) cinfo->arith_code = TRUE; if (!GETENV_S(env, 7, "TJ_RESTART") && strlen(env) > 0) { int temp = -1; char tempc = 0; #ifdef _MSC_VER if (sscanf_s(env, "%d%c", &temp, &tempc, 1) >= 1 && temp >= 0 && temp <= 65535) { #else if (sscanf(env, "%d%c", &temp, &tempc) >= 1 && temp >= 0 && temp <= 65535) { #endif if (toupper(tempc) == 'B') { cinfo->restart_interval = temp; cinfo->restart_in_rows = 0; } else cinfo->restart_in_rows = temp; } } #endif if (jpegQual >= 0) { jpeg_set_quality(cinfo, jpegQual, TRUE); if (jpegQual >= 96 || flags & TJFLAG_ACCURATEDCT) cinfo->dct_method = JDCT_ISLOW; else cinfo->dct_method = JDCT_FASTEST; } if (subsamp == TJSAMP_GRAY) jpeg_set_colorspace(cinfo, JCS_GRAYSCALE); else if (pixelFormat == TJPF_CMYK) jpeg_set_colorspace(cinfo, JCS_YCCK); else jpeg_set_colorspace(cinfo, JCS_YCbCr); #ifdef C_PROGRESSIVE_SUPPORTED if (flags & TJFLAG_PROGRESSIVE) jpeg_simple_progression(cinfo); #ifndef NO_GETENV else if (!GETENV_S(env, 7, "TJ_PROGRESSIVE") && !strcmp(env, "1")) jpeg_simple_progression(cinfo); #endif #endif cinfo->comp_info[0].h_samp_factor = tjMCUWidth[subsamp] / 8; cinfo->comp_info[1].h_samp_factor = 1; cinfo->comp_info[2].h_samp_factor = 1; if (cinfo->num_components > 3) cinfo->comp_info[3].h_samp_factor = tjMCUWidth[subsamp] / 8; cinfo->comp_info[0].v_samp_factor = tjMCUHeight[subsamp] / 8; cinfo->comp_info[1].v_samp_factor = 1; cinfo->comp_info[2].v_samp_factor = 1; if (cinfo->num_components > 3) cinfo->comp_info[3].v_samp_factor = tjMCUHeight[subsamp] / 8; } static int getSubsamp(j_decompress_ptr dinfo) { int retval = -1, i, k; /* The sampling factors actually have no meaning with grayscale JPEG files, and in fact it's possible to generate grayscale JPEGs with sampling factors > 1 (even though those sampling factors are ignored by the decompressor.) Thus, we need to treat grayscale as a special case. */ if (dinfo->num_components == 1 && dinfo->jpeg_color_space == JCS_GRAYSCALE) return TJSAMP_GRAY; for (i = 0; i < TJ_NUMSAMP; i++) { if (dinfo->num_components == pixelsize[i] || ((dinfo->jpeg_color_space == JCS_YCCK || dinfo->jpeg_color_space == JCS_CMYK) && pixelsize[i] == 3 && dinfo->num_components == 4)) { if (dinfo->comp_info[0].h_samp_factor == tjMCUWidth[i] / 8 && dinfo->comp_info[0].v_samp_factor == tjMCUHeight[i] / 8) { int match = 0; for (k = 1; k < dinfo->num_components; k++) { int href = 1, vref = 1; if ((dinfo->jpeg_color_space == JCS_YCCK || dinfo->jpeg_color_space == JCS_CMYK) && k == 3) { href = tjMCUWidth[i] / 8; vref = tjMCUHeight[i] / 8; } if (dinfo->comp_info[k].h_samp_factor == href && dinfo->comp_info[k].v_samp_factor == vref) match++; } if (match == dinfo->num_components - 1) { retval = i; break; } } /* Handle 4:2:2 and 4:4:0 images whose sampling factors are specified in non-standard ways. */ if (dinfo->comp_info[0].h_samp_factor == 2 && dinfo->comp_info[0].v_samp_factor == 2 && (i == TJSAMP_422 || i == TJSAMP_440)) { int match = 0; for (k = 1; k < dinfo->num_components; k++) { int href = tjMCUHeight[i] / 8, vref = tjMCUWidth[i] / 8; if ((dinfo->jpeg_color_space == JCS_YCCK || dinfo->jpeg_color_space == JCS_CMYK) && k == 3) { href = vref = 2; } if (dinfo->comp_info[k].h_samp_factor == href && dinfo->comp_info[k].v_samp_factor == vref) match++; } if (match == dinfo->num_components - 1) { retval = i; break; } } /* Handle 4:4:4 images whose sampling factors are specified in non-standard ways. */ if (dinfo->comp_info[0].h_samp_factor * dinfo->comp_info[0].v_samp_factor <= D_MAX_BLOCKS_IN_MCU / pixelsize[i] && i == TJSAMP_444) { int match = 0; for (k = 1; k < dinfo->num_components; k++) { if (dinfo->comp_info[k].h_samp_factor == dinfo->comp_info[0].h_samp_factor && dinfo->comp_info[k].v_samp_factor == dinfo->comp_info[0].v_samp_factor) match++; if (match == dinfo->num_components - 1) { retval = i; break; } } } } } return retval; } /*************************** General API functions ***************************/ /* TurboJPEG 2.0+ */ DLLEXPORT char *tjGetErrorStr2(tjhandle handle) { tjinstance *this = (tjinstance *)handle; if (this && this->isInstanceError) { this->isInstanceError = FALSE; return this->errStr; } else return errStr; } /* TurboJPEG 1.0+ */ DLLEXPORT char *tjGetErrorStr(void) { return errStr; } /* TurboJPEG 2.0+ */ DLLEXPORT int tjGetErrorCode(tjhandle handle) { tjinstance *this = (tjinstance *)handle; if (this && this->jerr.warning) return TJERR_WARNING; else return TJERR_FATAL; } /* TurboJPEG 1.0+ */ DLLEXPORT int tjDestroy(tjhandle handle) { GET_INSTANCE(handle); if (setjmp(this->jerr.setjmp_buffer)) return -1; if (this->init & COMPRESS) jpeg_destroy_compress(cinfo); if (this->init & DECOMPRESS) jpeg_destroy_decompress(dinfo); free(this); return 0; } /* These are exposed mainly because Windows can't malloc() and free() across DLL boundaries except when the CRT DLL is used, and we don't use the CRT DLL with turbojpeg.dll for compatibility reasons. However, these functions can potentially be used for other purposes by different implementations. */ /* TurboJPEG 1.2+ */ DLLEXPORT void tjFree(unsigned char *buf) { free(buf); } /* TurboJPEG 1.2+ */ DLLEXPORT unsigned char *tjAlloc(int bytes) { return (unsigned char *)malloc(bytes); } /******************************** Compressor *********************************/ static tjhandle _tjInitCompress(tjinstance *this) { static unsigned char buffer[1]; unsigned char *buf = buffer; unsigned long size = 1; /* This is also straight out of example.txt */ this->cinfo.err = jpeg_std_error(&this->jerr.pub); this->jerr.pub.error_exit = my_error_exit; this->jerr.pub.output_message = my_output_message; this->jerr.emit_message = this->jerr.pub.emit_message; this->jerr.pub.emit_message = my_emit_message; this->jerr.pub.addon_message_table = turbojpeg_message_table; this->jerr.pub.first_addon_message = JMSG_FIRSTADDONCODE; this->jerr.pub.last_addon_message = JMSG_LASTADDONCODE; if (setjmp(this->jerr.setjmp_buffer)) { /* If we get here, the JPEG code has signaled an error. */ free(this); return NULL; } jpeg_create_compress(&this->cinfo); /* Make an initial call so it will create the destination manager */ jpeg_mem_dest_tj(&this->cinfo, &buf, &size, 0); this->init |= COMPRESS; return (tjhandle)this; } /* TurboJPEG 1.0+ */ DLLEXPORT tjhandle tjInitCompress(void) { tjinstance *this = NULL; if ((this = (tjinstance *)malloc(sizeof(tjinstance))) == NULL) { SNPRINTF(errStr, JMSG_LENGTH_MAX, "tjInitCompress(): Memory allocation failure"); return NULL; } memset(this, 0, sizeof(tjinstance)); SNPRINTF(this->errStr, JMSG_LENGTH_MAX, "No error"); return _tjInitCompress(this); } /* TurboJPEG 1.2+ */ DLLEXPORT unsigned long tjBufSize(int width, int height, int jpegSubsamp) { unsigned long long retval = 0; int mcuw, mcuh, chromasf; if (width < 1 || height < 1 || jpegSubsamp < 0 || jpegSubsamp >= TJ_NUMSAMP) THROWG("tjBufSize(): Invalid argument"); /* This allows for rare corner cases in which a JPEG image can actually be larger than the uncompressed input (we wouldn't mention it if it hadn't happened before.) */ mcuw = tjMCUWidth[jpegSubsamp]; mcuh = tjMCUHeight[jpegSubsamp]; chromasf = jpegSubsamp == TJSAMP_GRAY ? 0 : 4 * 64 / (mcuw * mcuh); retval = PAD(width, mcuw) * PAD(height, mcuh) * (2ULL + chromasf) + 2048ULL; if (retval > (unsigned long long)((unsigned long)-1)) THROWG("tjBufSize(): Image is too large"); bailout: return (unsigned long)retval; } /* TurboJPEG 1.0+ */ DLLEXPORT unsigned long TJBUFSIZE(int width, int height) { unsigned long long retval = 0; if (width < 1 || height < 1) THROWG("TJBUFSIZE(): Invalid argument"); /* This allows for rare corner cases in which a JPEG image can actually be larger than the uncompressed input (we wouldn't mention it if it hadn't happened before.) */ retval = PAD(width, 16) * PAD(height, 16) * 6ULL + 2048ULL; if (retval > (unsigned long long)((unsigned long)-1)) THROWG("TJBUFSIZE(): Image is too large"); bailout: return (unsigned long)retval; } /* TurboJPEG 1.4+ */ DLLEXPORT unsigned long tjBufSizeYUV2(int width, int align, int height, int subsamp) { unsigned long long retval = 0; int nc, i; if (align < 1 || !IS_POW2(align) || subsamp < 0 || subsamp >= TJ_NUMSAMP) THROWG("tjBufSizeYUV2(): Invalid argument"); nc = (subsamp == TJSAMP_GRAY ? 1 : 3); for (i = 0; i < nc; i++) { int pw = tjPlaneWidth(i, width, subsamp); int stride = PAD(pw, align); int ph = tjPlaneHeight(i, height, subsamp); if (pw < 0 || ph < 0) return -1; else retval += (unsigned long long)stride * ph; } if (retval > (unsigned long long)((unsigned long)-1)) THROWG("tjBufSizeYUV2(): Image is too large"); bailout: return (unsigned long)retval; } /* TurboJPEG 1.2+ */ DLLEXPORT unsigned long tjBufSizeYUV(int width, int height, int subsamp) { return tjBufSizeYUV2(width, 4, height, subsamp); } /* TurboJPEG 1.1+ */ DLLEXPORT unsigned long TJBUFSIZEYUV(int width, int height, int subsamp) { return tjBufSizeYUV(width, height, subsamp); } /* TurboJPEG 1.4+ */ DLLEXPORT int tjPlaneWidth(int componentID, int width, int subsamp) { unsigned long long pw, retval = 0; int nc; if (width < 1 || subsamp < 0 || subsamp >= TJ_NUMSAMP) THROWG("tjPlaneWidth(): Invalid argument"); nc = (subsamp == TJSAMP_GRAY ? 1 : 3); if (componentID < 0 || componentID >= nc) THROWG("tjPlaneWidth(): Invalid argument"); pw = PAD((unsigned long long)width, tjMCUWidth[subsamp] / 8); if (componentID == 0) retval = pw; else retval = pw * 8 / tjMCUWidth[subsamp]; if (retval > (unsigned long long)INT_MAX) THROWG("tjPlaneWidth(): Width is too large"); bailout: return (int)retval; } /* TurboJPEG 1.4+ */ DLLEXPORT int tjPlaneHeight(int componentID, int height, int subsamp) { unsigned long long ph, retval = 0; int nc; if (height < 1 || subsamp < 0 || subsamp >= TJ_NUMSAMP) THROWG("tjPlaneHeight(): Invalid argument"); nc = (subsamp == TJSAMP_GRAY ? 1 : 3); if (componentID < 0 || componentID >= nc) THROWG("tjPlaneHeight(): Invalid argument"); ph = PAD((unsigned long long)height, tjMCUHeight[subsamp] / 8); if (componentID == 0) retval = ph; else retval = ph * 8 / tjMCUHeight[subsamp]; if (retval > (unsigned long long)INT_MAX) THROWG("tjPlaneHeight(): Height is too large"); bailout: return (int)retval; } /* TurboJPEG 1.4+ */ DLLEXPORT unsigned long tjPlaneSizeYUV(int componentID, int width, int stride, int height, int subsamp) { unsigned long long retval = 0; int pw, ph; if (width < 1 || height < 1 || subsamp < 0 || subsamp >= TJ_NUMSAMP) THROWG("tjPlaneSizeYUV(): Invalid argument"); pw = tjPlaneWidth(componentID, width, subsamp); ph = tjPlaneHeight(componentID, height, subsamp); if (pw < 0 || ph < 0) return -1; if (stride == 0) stride = pw; else stride = abs(stride); retval = (unsigned long long)stride * (ph - 1) + pw; if (retval > (unsigned long long)((unsigned long)-1)) THROWG("tjPlaneSizeYUV(): Image is too large"); bailout: return (unsigned long)retval; } /* TurboJPEG 1.2+ */ DLLEXPORT int tjCompress2(tjhandle handle, const unsigned char *srcBuf, int width, int pitch, int height, int pixelFormat, unsigned char **jpegBuf, unsigned long *jpegSize, int jpegSubsamp, int jpegQual, int flags) { int i, retval = 0; boolean alloc = TRUE; JSAMPROW *row_pointer = NULL; GET_CINSTANCE(handle) this->jerr.stopOnWarning = (flags & TJFLAG_STOPONWARNING) ? TRUE : FALSE; if ((this->init & COMPRESS) == 0) THROW("tjCompress2(): Instance has not been initialized for compression"); if (srcBuf == NULL || width <= 0 || pitch < 0 || height <= 0 || pixelFormat < 0 || pixelFormat >= TJ_NUMPF || jpegBuf == NULL || jpegSize == NULL || jpegSubsamp < 0 || jpegSubsamp >= TJ_NUMSAMP || jpegQual < 0 || jpegQual > 100) THROW("tjCompress2(): Invalid argument"); if (pitch == 0) pitch = width * tjPixelSize[pixelFormat]; if ((row_pointer = (JSAMPROW *)malloc(sizeof(JSAMPROW) * height)) == NULL) THROW("tjCompress2(): Memory allocation failure"); if (setjmp(this->jerr.setjmp_buffer)) { /* If we get here, the JPEG code has signaled an error. */ retval = -1; goto bailout; } cinfo->image_width = width; cinfo->image_height = height; #ifndef NO_PUTENV if (flags & TJFLAG_FORCEMMX) PUTENV_S("JSIMD_FORCEMMX", "1"); else if (flags & TJFLAG_FORCESSE) PUTENV_S("JSIMD_FORCESSE", "1"); else if (flags & TJFLAG_FORCESSE2) PUTENV_S("JSIMD_FORCESSE2", "1"); #endif if (flags & TJFLAG_NOREALLOC) { alloc = FALSE; *jpegSize = tjBufSize(width, height, jpegSubsamp); } jpeg_mem_dest_tj(cinfo, jpegBuf, jpegSize, alloc); setCompDefaults(cinfo, pixelFormat, jpegSubsamp, jpegQual, flags); jpeg_start_compress(cinfo, TRUE); for (i = 0; i < height; i++) { if (flags & TJFLAG_BOTTOMUP) row_pointer[i] = (JSAMPROW)&srcBuf[(height - i - 1) * (size_t)pitch]; else row_pointer[i] = (JSAMPROW)&srcBuf[i * (size_t)pitch]; } while (cinfo->next_scanline < cinfo->image_height) jpeg_write_scanlines(cinfo, &row_pointer[cinfo->next_scanline], cinfo->image_height - cinfo->next_scanline); jpeg_finish_compress(cinfo); bailout: if (cinfo->global_state > CSTATE_START) { if (alloc) (*cinfo->dest->term_destination) (cinfo); jpeg_abort_compress(cinfo); } free(row_pointer); if (this->jerr.warning) retval = -1; this->jerr.stopOnWarning = FALSE; return retval; } /* TurboJPEG 1.0+ */ DLLEXPORT int tjCompress(tjhandle handle, unsigned char *srcBuf, int width, int pitch, int height, int pixelSize, unsigned char *jpegBuf, unsigned long *jpegSize, int jpegSubsamp, int jpegQual, int flags) { int retval = 0; unsigned long size; if (flags & TJ_YUV) { size = tjBufSizeYUV(width, height, jpegSubsamp); retval = tjEncodeYUV2(handle, srcBuf, width, pitch, height, getPixelFormat(pixelSize, flags), jpegBuf, jpegSubsamp, flags); } else { retval = tjCompress2(handle, srcBuf, width, pitch, height, getPixelFormat(pixelSize, flags), &jpegBuf, &size, jpegSubsamp, jpegQual, flags | TJFLAG_NOREALLOC); } *jpegSize = size; return retval; } /* TurboJPEG 1.4+ */ DLLEXPORT int tjEncodeYUVPlanes(tjhandle handle, const unsigned char *srcBuf, int width, int pitch, int height, int pixelFormat, unsigned char **dstPlanes, int *strides, int subsamp, int flags) { JSAMPROW *row_pointer = NULL; JSAMPLE *_tmpbuf[MAX_COMPONENTS], *_tmpbuf2[MAX_COMPONENTS]; JSAMPROW *tmpbuf[MAX_COMPONENTS], *tmpbuf2[MAX_COMPONENTS]; JSAMPROW *outbuf[MAX_COMPONENTS]; int i, retval = 0, row, pw0, ph0, pw[MAX_COMPONENTS], ph[MAX_COMPONENTS]; JSAMPLE *ptr; jpeg_component_info *compptr; GET_CINSTANCE(handle); this->jerr.stopOnWarning = (flags & TJFLAG_STOPONWARNING) ? TRUE : FALSE; for (i = 0; i < MAX_COMPONENTS; i++) { tmpbuf[i] = NULL; _tmpbuf[i] = NULL; tmpbuf2[i] = NULL; _tmpbuf2[i] = NULL; outbuf[i] = NULL; } if ((this->init & COMPRESS) == 0) THROW("tjEncodeYUVPlanes(): Instance has not been initialized for compression"); if (srcBuf == NULL || width <= 0 || pitch < 0 || height <= 0 || pixelFormat < 0 || pixelFormat >= TJ_NUMPF || !dstPlanes || !dstPlanes[0] || subsamp < 0 || subsamp >= TJ_NUMSAMP) THROW("tjEncodeYUVPlanes(): Invalid argument"); if (subsamp != TJSAMP_GRAY && (!dstPlanes[1] || !dstPlanes[2])) THROW("tjEncodeYUVPlanes(): Invalid argument"); if (pixelFormat == TJPF_CMYK) THROW("tjEncodeYUVPlanes(): Cannot generate YUV images from packed-pixel CMYK images"); if (pitch == 0) pitch = width * tjPixelSize[pixelFormat]; if (setjmp(this->jerr.setjmp_buffer)) { /* If we get here, the JPEG code has signaled an error. */ retval = -1; goto bailout; } cinfo->image_width = width; cinfo->image_height = height; #ifndef NO_PUTENV if (flags & TJFLAG_FORCEMMX) PUTENV_S("JSIMD_FORCEMMX", "1"); else if (flags & TJFLAG_FORCESSE) PUTENV_S("JSIMD_FORCESSE", "1"); else if (flags & TJFLAG_FORCESSE2) PUTENV_S("JSIMD_FORCESSE2", "1"); #endif setCompDefaults(cinfo, pixelFormat, subsamp, -1, flags); /* Execute only the parts of jpeg_start_compress() that we need. If we were to call the whole jpeg_start_compress() function, then it would try to write the file headers, which could overflow the output buffer if the YUV image were very small. */ if (cinfo->global_state != CSTATE_START) THROW("tjEncodeYUVPlanes(): libjpeg API is in the wrong state"); (*cinfo->err->reset_error_mgr) ((j_common_ptr)cinfo); jinit_c_master_control(cinfo, FALSE); jinit_color_converter(cinfo); jinit_downsampler(cinfo); (*cinfo->cconvert->start_pass) (cinfo); pw0 = PAD(width, cinfo->max_h_samp_factor); ph0 = PAD(height, cinfo->max_v_samp_factor); if ((row_pointer = (JSAMPROW *)malloc(sizeof(JSAMPROW) * ph0)) == NULL) THROW("tjEncodeYUVPlanes(): Memory allocation failure"); for (i = 0; i < height; i++) { if (flags & TJFLAG_BOTTOMUP) row_pointer[i] = (JSAMPROW)&srcBuf[(height - i - 1) * (size_t)pitch]; else row_pointer[i] = (JSAMPROW)&srcBuf[i * (size_t)pitch]; } if (height < ph0) for (i = height; i < ph0; i++) row_pointer[i] = row_pointer[height - 1]; for (i = 0; i < cinfo->num_components; i++) { compptr = &cinfo->comp_info[i]; _tmpbuf[i] = (JSAMPLE *)malloc( PAD((compptr->width_in_blocks * cinfo->max_h_samp_factor * DCTSIZE) / compptr->h_samp_factor, 32) * cinfo->max_v_samp_factor + 32); if (!_tmpbuf[i]) THROW("tjEncodeYUVPlanes(): Memory allocation failure"); tmpbuf[i] = (JSAMPROW *)malloc(sizeof(JSAMPROW) * cinfo->max_v_samp_factor); if (!tmpbuf[i]) THROW("tjEncodeYUVPlanes(): Memory allocation failure"); for (row = 0; row < cinfo->max_v_samp_factor; row++) { unsigned char *_tmpbuf_aligned = (unsigned char *)PAD((JUINTPTR)_tmpbuf[i], 32); tmpbuf[i][row] = &_tmpbuf_aligned[ PAD((compptr->width_in_blocks * cinfo->max_h_samp_factor * DCTSIZE) / compptr->h_samp_factor, 32) * row]; } _tmpbuf2[i] = (JSAMPLE *)malloc(PAD(compptr->width_in_blocks * DCTSIZE, 32) * compptr->v_samp_factor + 32); if (!_tmpbuf2[i]) THROW("tjEncodeYUVPlanes(): Memory allocation failure"); tmpbuf2[i] = (JSAMPROW *)malloc(sizeof(JSAMPROW) * compptr->v_samp_factor); if (!tmpbuf2[i]) THROW("tjEncodeYUVPlanes(): Memory allocation failure"); for (row = 0; row < compptr->v_samp_factor; row++) { unsigned char *_tmpbuf2_aligned = (unsigned char *)PAD((JUINTPTR)_tmpbuf2[i], 32); tmpbuf2[i][row] = &_tmpbuf2_aligned[PAD(compptr->width_in_blocks * DCTSIZE, 32) * row]; } pw[i] = pw0 * compptr->h_samp_factor / cinfo->max_h_samp_factor; ph[i] = ph0 * compptr->v_samp_factor / cinfo->max_v_samp_factor; outbuf[i] = (JSAMPROW *)malloc(sizeof(JSAMPROW) * ph[i]); if (!outbuf[i]) THROW("tjEncodeYUVPlanes(): Memory allocation failure"); ptr = dstPlanes[i]; for (row = 0; row < ph[i]; row++) { outbuf[i][row] = ptr; ptr += (strides && strides[i] != 0) ? strides[i] : pw[i]; } } if (setjmp(this->jerr.setjmp_buffer)) { /* If we get here, the JPEG code has signaled an error. */ retval = -1; goto bailout; } for (row = 0; row < ph0; row += cinfo->max_v_samp_factor) { (*cinfo->cconvert->color_convert) (cinfo, &row_pointer[row], tmpbuf, 0, cinfo->max_v_samp_factor); (cinfo->downsample->downsample) (cinfo, tmpbuf, 0, tmpbuf2, 0); for (i = 0, compptr = cinfo->comp_info; i < cinfo->num_components; i++, compptr++) jcopy_sample_rows(tmpbuf2[i], 0, outbuf[i], row * compptr->v_samp_factor / cinfo->max_v_samp_factor, compptr->v_samp_factor, pw[i]); } cinfo->next_scanline += height; jpeg_abort_compress(cinfo); bailout: if (cinfo->global_state > CSTATE_START) jpeg_abort_compress(cinfo); free(row_pointer); for (i = 0; i < MAX_COMPONENTS; i++) { free(tmpbuf[i]); free(_tmpbuf[i]); free(tmpbuf2[i]); free(_tmpbuf2[i]); free(outbuf[i]); } if (this->jerr.warning) retval = -1; this->jerr.stopOnWarning = FALSE; return retval; } /* TurboJPEG 1.4+ */ DLLEXPORT int tjEncodeYUV3(tjhandle handle, const unsigned char *srcBuf, int width, int pitch, int height, int pixelFormat, unsigned char *dstBuf, int align, int subsamp, int flags) { unsigned char *dstPlanes[3]; int pw0, ph0, strides[3], retval = -1; tjinstance *this = (tjinstance *)handle; if (!this) THROWG("tjEncodeYUV3(): Invalid handle"); this->isInstanceError = FALSE; if (width <= 0 || height <= 0 || dstBuf == NULL || align < 1 || !IS_POW2(align) || subsamp < 0 || subsamp >= TJ_NUMSAMP) THROW("tjEncodeYUV3(): Invalid argument"); pw0 = tjPlaneWidth(0, width, subsamp); ph0 = tjPlaneHeight(0, height, subsamp); dstPlanes[0] = dstBuf; strides[0] = PAD(pw0, align); if (subsamp == TJSAMP_GRAY) { strides[1] = strides[2] = 0; dstPlanes[1] = dstPlanes[2] = NULL; } else { int pw1 = tjPlaneWidth(1, width, subsamp); int ph1 = tjPlaneHeight(1, height, subsamp); strides[1] = strides[2] = PAD(pw1, align); dstPlanes[1] = dstPlanes[0] + strides[0] * ph0; dstPlanes[2] = dstPlanes[1] + strides[1] * ph1; } return tjEncodeYUVPlanes(handle, srcBuf, width, pitch, height, pixelFormat, dstPlanes, strides, subsamp, flags); bailout: return retval; } /* TurboJPEG 1.2+ */ DLLEXPORT int tjEncodeYUV2(tjhandle handle, unsigned char *srcBuf, int width, int pitch, int height, int pixelFormat, unsigned char *dstBuf, int subsamp, int flags) { return tjEncodeYUV3(handle, srcBuf, width, pitch, height, pixelFormat, dstBuf, 4, subsamp, flags); } /* TurboJPEG 1.1+ */ DLLEXPORT int tjEncodeYUV(tjhandle handle, unsigned char *srcBuf, int width, int pitch, int height, int pixelSize, unsigned char *dstBuf, int subsamp, int flags) { return tjEncodeYUV2(handle, srcBuf, width, pitch, height, getPixelFormat(pixelSize, flags), dstBuf, subsamp, flags); } /* TurboJPEG 1.4+ */ DLLEXPORT int tjCompressFromYUVPlanes(tjhandle handle, const unsigned char **srcPlanes, int width, const int *strides, int height, int subsamp, unsigned char **jpegBuf, unsigned long *jpegSize, int jpegQual, int flags) { int i, row, retval = 0; boolean alloc = TRUE; int pw[MAX_COMPONENTS], ph[MAX_COMPONENTS], iw[MAX_COMPONENTS], tmpbufsize = 0, usetmpbuf = 0, th[MAX_COMPONENTS]; JSAMPLE *_tmpbuf = NULL, *ptr; JSAMPROW *inbuf[MAX_COMPONENTS], *tmpbuf[MAX_COMPONENTS]; GET_CINSTANCE(handle) this->jerr.stopOnWarning = (flags & TJFLAG_STOPONWARNING) ? TRUE : FALSE; for (i = 0; i < MAX_COMPONENTS; i++) { tmpbuf[i] = NULL; inbuf[i] = NULL; } if ((this->init & COMPRESS) == 0) THROW("tjCompressFromYUVPlanes(): Instance has not been initialized for compression"); if (!srcPlanes || !srcPlanes[0] || width <= 0 || height <= 0 || subsamp < 0 || subsamp >= TJ_NUMSAMP || jpegBuf == NULL || jpegSize == NULL || jpegQual < 0 || jpegQual > 100) THROW("tjCompressFromYUVPlanes(): Invalid argument"); if (subsamp != TJSAMP_GRAY && (!srcPlanes[1] || !srcPlanes[2])) THROW("tjCompressFromYUVPlanes(): Invalid argument"); if (setjmp(this->jerr.setjmp_buffer)) { /* If we get here, the JPEG code has signaled an error. */ retval = -1; goto bailout; } cinfo->image_width = width; cinfo->image_height = height; #ifndef NO_PUTENV if (flags & TJFLAG_FORCEMMX) PUTENV_S("JSIMD_FORCEMMX", "1"); else if (flags & TJFLAG_FORCESSE) PUTENV_S("JSIMD_FORCESSE", "1"); else if (flags & TJFLAG_FORCESSE2) PUTENV_S("JSIMD_FORCESSE2", "1"); #endif if (flags & TJFLAG_NOREALLOC) { alloc = FALSE; *jpegSize = tjBufSize(width, height, subsamp); } jpeg_mem_dest_tj(cinfo, jpegBuf, jpegSize, alloc); setCompDefaults(cinfo, TJPF_RGB, subsamp, jpegQual, flags); cinfo->raw_data_in = TRUE; jpeg_start_compress(cinfo, TRUE); for (i = 0; i < cinfo->num_components; i++) { jpeg_component_info *compptr = &cinfo->comp_info[i]; int ih; iw[i] = compptr->width_in_blocks * DCTSIZE; ih = compptr->height_in_blocks * DCTSIZE; pw[i] = PAD(cinfo->image_width, cinfo->max_h_samp_factor) * compptr->h_samp_factor / cinfo->max_h_samp_factor; ph[i] = PAD(cinfo->image_height, cinfo->max_v_samp_factor) * compptr->v_samp_factor / cinfo->max_v_samp_factor; if (iw[i] != pw[i] || ih != ph[i]) usetmpbuf = 1; th[i] = compptr->v_samp_factor * DCTSIZE; tmpbufsize += iw[i] * th[i]; if ((inbuf[i] = (JSAMPROW *)malloc(sizeof(JSAMPROW) * ph[i])) == NULL) THROW("tjCompressFromYUVPlanes(): Memory allocation failure"); ptr = (JSAMPLE *)srcPlanes[i]; for (row = 0; row < ph[i]; row++) { inbuf[i][row] = ptr; ptr += (strides && strides[i] != 0) ? strides[i] : pw[i]; } } if (usetmpbuf) { if ((_tmpbuf = (JSAMPLE *)malloc(sizeof(JSAMPLE) * tmpbufsize)) == NULL) THROW("tjCompressFromYUVPlanes(): Memory allocation failure"); ptr = _tmpbuf; for (i = 0; i < cinfo->num_components; i++) { if ((tmpbuf[i] = (JSAMPROW *)malloc(sizeof(JSAMPROW) * th[i])) == NULL) THROW("tjCompressFromYUVPlanes(): Memory allocation failure"); for (row = 0; row < th[i]; row++) { tmpbuf[i][row] = ptr; ptr += iw[i]; } } } if (setjmp(this->jerr.setjmp_buffer)) { /* If we get here, the JPEG code has signaled an error. */ retval = -1; goto bailout; } for (row = 0; row < (int)cinfo->image_height; row += cinfo->max_v_samp_factor * DCTSIZE) { JSAMPARRAY yuvptr[MAX_COMPONENTS]; int crow[MAX_COMPONENTS]; for (i = 0; i < cinfo->num_components; i++) { jpeg_component_info *compptr = &cinfo->comp_info[i]; crow[i] = row * compptr->v_samp_factor / cinfo->max_v_samp_factor; if (usetmpbuf) { int j, k; for (j = 0; j < MIN(th[i], ph[i] - crow[i]); j++) { memcpy(tmpbuf[i][j], inbuf[i][crow[i] + j], pw[i]); /* Duplicate last sample in row to fill out MCU */ for (k = pw[i]; k < iw[i]; k++) tmpbuf[i][j][k] = tmpbuf[i][j][pw[i] - 1]; } /* Duplicate last row to fill out MCU */ for (j = ph[i] - crow[i]; j < th[i]; j++) memcpy(tmpbuf[i][j], tmpbuf[i][ph[i] - crow[i] - 1], iw[i]); yuvptr[i] = tmpbuf[i]; } else yuvptr[i] = &inbuf[i][crow[i]]; } jpeg_write_raw_data(cinfo, yuvptr, cinfo->max_v_samp_factor * DCTSIZE); } jpeg_finish_compress(cinfo); bailout: if (cinfo->global_state > CSTATE_START) { if (alloc) (*cinfo->dest->term_destination) (cinfo); jpeg_abort_compress(cinfo); } for (i = 0; i < MAX_COMPONENTS; i++) { free(tmpbuf[i]); free(inbuf[i]); } free(_tmpbuf); if (this->jerr.warning) retval = -1; this->jerr.stopOnWarning = FALSE; return retval; } /* TurboJPEG 1.4+ */ DLLEXPORT int tjCompressFromYUV(tjhandle handle, const unsigned char *srcBuf, int width, int align, int height, int subsamp, unsigned char **jpegBuf, unsigned long *jpegSize, int jpegQual, int flags) { const unsigned char *srcPlanes[3]; int pw0, ph0, strides[3], retval = -1; tjinstance *this = (tjinstance *)handle; if (!this) THROWG("tjCompressFromYUV(): Invalid handle"); this->isInstanceError = FALSE; if (srcBuf == NULL || width <= 0 || align < 1 || !IS_POW2(align) || height <= 0 || subsamp < 0 || subsamp >= TJ_NUMSAMP) THROW("tjCompressFromYUV(): Invalid argument"); pw0 = tjPlaneWidth(0, width, subsamp); ph0 = tjPlaneHeight(0, height, subsamp); srcPlanes[0] = srcBuf; strides[0] = PAD(pw0, align); if (subsamp == TJSAMP_GRAY) { strides[1] = strides[2] = 0; srcPlanes[1] = srcPlanes[2] = NULL; } else { int pw1 = tjPlaneWidth(1, width, subsamp); int ph1 = tjPlaneHeight(1, height, subsamp); strides[1] = strides[2] = PAD(pw1, align); srcPlanes[1] = srcPlanes[0] + strides[0] * ph0; srcPlanes[2] = srcPlanes[1] + strides[1] * ph1; } return tjCompressFromYUVPlanes(handle, srcPlanes, width, strides, height, subsamp, jpegBuf, jpegSize, jpegQual, flags); bailout: return retval; } /******************************* Decompressor ********************************/ static tjhandle _tjInitDecompress(tjinstance *this) { static unsigned char buffer[1]; /* This is also straight out of example.txt */ this->dinfo.err = jpeg_std_error(&this->jerr.pub); this->jerr.pub.error_exit = my_error_exit; this->jerr.pub.output_message = my_output_message; this->jerr.emit_message = this->jerr.pub.emit_message; this->jerr.pub.emit_message = my_emit_message; this->jerr.pub.addon_message_table = turbojpeg_message_table; this->jerr.pub.first_addon_message = JMSG_FIRSTADDONCODE; this->jerr.pub.last_addon_message = JMSG_LASTADDONCODE; if (setjmp(this->jerr.setjmp_buffer)) { /* If we get here, the JPEG code has signaled an error. */ free(this); return NULL; } jpeg_create_decompress(&this->dinfo); /* Make an initial call so it will create the source manager */ jpeg_mem_src_tj(&this->dinfo, buffer, 1); this->init |= DECOMPRESS; return (tjhandle)this; } /* TurboJPEG 1.0+ */ DLLEXPORT tjhandle tjInitDecompress(void) { tjinstance *this; if ((this = (tjinstance *)malloc(sizeof(tjinstance))) == NULL) { SNPRINTF(errStr, JMSG_LENGTH_MAX, "tjInitDecompress(): Memory allocation failure"); return NULL; } memset(this, 0, sizeof(tjinstance)); SNPRINTF(this->errStr, JMSG_LENGTH_MAX, "No error"); return _tjInitDecompress(this); } /* TurboJPEG 1.4+ */ DLLEXPORT int tjDecompressHeader3(tjhandle handle, const unsigned char *jpegBuf, unsigned long jpegSize, int *width, int *height, int *jpegSubsamp, int *jpegColorspace) { int retval = 0; GET_DINSTANCE(handle); if ((this->init & DECOMPRESS) == 0) THROW("tjDecompressHeader3(): Instance has not been initialized for decompression"); if (jpegBuf == NULL || jpegSize <= 0 || width == NULL || height == NULL || jpegSubsamp == NULL || jpegColorspace == NULL) THROW("tjDecompressHeader3(): Invalid argument"); if (setjmp(this->jerr.setjmp_buffer)) { /* If we get here, the JPEG code has signaled an error. */ return -1; } jpeg_mem_src_tj(dinfo, jpegBuf, jpegSize); /* jpeg_read_header() calls jpeg_abort() and returns JPEG_HEADER_TABLES_ONLY if the datastream is a tables-only datastream. Since we aren't using a suspending data source, the only other value it can return is JPEG_HEADER_OK. */ if (jpeg_read_header(dinfo, FALSE) == JPEG_HEADER_TABLES_ONLY) return 0; *width = dinfo->image_width; *height = dinfo->image_height; *jpegSubsamp = getSubsamp(dinfo); switch (dinfo->jpeg_color_space) { case JCS_GRAYSCALE: *jpegColorspace = TJCS_GRAY; break; case JCS_RGB: *jpegColorspace = TJCS_RGB; break; case JCS_YCbCr: *jpegColorspace = TJCS_YCbCr; break; case JCS_CMYK: *jpegColorspace = TJCS_CMYK; break; case JCS_YCCK: *jpegColorspace = TJCS_YCCK; break; default: *jpegColorspace = -1; break; } jpeg_abort_decompress(dinfo); if (*jpegSubsamp < 0) THROW("tjDecompressHeader3(): Could not determine subsampling type for JPEG image"); if (*jpegColorspace < 0) THROW("tjDecompressHeader3(): Could not determine colorspace of JPEG image"); if (*width < 1 || *height < 1) THROW("tjDecompressHeader3(): Invalid data returned in header"); bailout: if (this->jerr.warning) retval = -1; return retval; } /* TurboJPEG 1.1+ */ DLLEXPORT int tjDecompressHeader2(tjhandle handle, unsigned char *jpegBuf, unsigned long jpegSize, int *width, int *height, int *jpegSubsamp) { int jpegColorspace; return tjDecompressHeader3(handle, jpegBuf, jpegSize, width, height, jpegSubsamp, &jpegColorspace); } /* TurboJPEG 1.0+ */ DLLEXPORT int tjDecompressHeader(tjhandle handle, unsigned char *jpegBuf, unsigned long jpegSize, int *width, int *height) { int jpegSubsamp; return tjDecompressHeader2(handle, jpegBuf, jpegSize, width, height, &jpegSubsamp); } /* TurboJPEG 1.2+ */ DLLEXPORT tjscalingfactor *tjGetScalingFactors(int *numScalingFactors) { if (numScalingFactors == NULL) { SNPRINTF(errStr, JMSG_LENGTH_MAX, "tjGetScalingFactors(): Invalid argument"); return NULL; } *numScalingFactors = NUMSF; return (tjscalingfactor *)sf; } /* TurboJPEG 1.2+ */ DLLEXPORT int tjDecompress2(tjhandle handle, const unsigned char *jpegBuf, unsigned long jpegSize, unsigned char *dstBuf, int width, int pitch, int height, int pixelFormat, int flags) { JSAMPROW *row_pointer = NULL; int i, retval = 0, jpegwidth, jpegheight, scaledw, scaledh; struct my_progress_mgr progress; GET_DINSTANCE(handle); this->jerr.stopOnWarning = (flags & TJFLAG_STOPONWARNING) ? TRUE : FALSE; if ((this->init & DECOMPRESS) == 0) THROW("tjDecompress2(): Instance has not been initialized for decompression"); if (jpegBuf == NULL || jpegSize <= 0 || dstBuf == NULL || width < 0 || pitch < 0 || height < 0 || pixelFormat < 0 || pixelFormat >= TJ_NUMPF) THROW("tjDecompress2(): Invalid argument"); #ifndef NO_PUTENV if (flags & TJFLAG_FORCEMMX) PUTENV_S("JSIMD_FORCEMMX", "1"); else if (flags & TJFLAG_FORCESSE) PUTENV_S("JSIMD_FORCESSE", "1"); else if (flags & TJFLAG_FORCESSE2) PUTENV_S("JSIMD_FORCESSE2", "1"); #endif if (flags & TJFLAG_LIMITSCANS) { memset(&progress, 0, sizeof(struct my_progress_mgr)); progress.pub.progress_monitor = my_progress_monitor; progress.this = this; dinfo->progress = &progress.pub; } else dinfo->progress = NULL; if (setjmp(this->jerr.setjmp_buffer)) { /* If we get here, the JPEG code has signaled an error. */ retval = -1; goto bailout; } jpeg_mem_src_tj(dinfo, jpegBuf, jpegSize); jpeg_read_header(dinfo, TRUE); this->dinfo.out_color_space = pf2cs[pixelFormat]; if (flags & TJFLAG_FASTDCT) this->dinfo.dct_method = JDCT_FASTEST; if (flags & TJFLAG_FASTUPSAMPLE) dinfo->do_fancy_upsampling = FALSE; jpegwidth = dinfo->image_width; jpegheight = dinfo->image_height; if (width == 0) width = jpegwidth; if (height == 0) height = jpegheight; for (i = 0; i < NUMSF; i++) { scaledw = TJSCALED(jpegwidth, sf[i]); scaledh = TJSCALED(jpegheight, sf[i]); if (scaledw <= width && scaledh <= height) break; } if (i >= NUMSF) THROW("tjDecompress2(): Could not scale down to desired image dimensions"); width = scaledw; height = scaledh; dinfo->scale_num = sf[i].num; dinfo->scale_denom = sf[i].denom; jpeg_start_decompress(dinfo); if (pitch == 0) pitch = dinfo->output_width * tjPixelSize[pixelFormat]; if ((row_pointer = (JSAMPROW *)malloc(sizeof(JSAMPROW) * dinfo->output_height)) == NULL) THROW("tjDecompress2(): Memory allocation failure"); if (setjmp(this->jerr.setjmp_buffer)) { /* If we get here, the JPEG code has signaled an error. */ retval = -1; goto bailout; } for (i = 0; i < (int)dinfo->output_height; i++) { if (flags & TJFLAG_BOTTOMUP) row_pointer[i] = &dstBuf[(dinfo->output_height - i - 1) * (size_t)pitch]; else row_pointer[i] = &dstBuf[i * (size_t)pitch]; } while (dinfo->output_scanline < dinfo->output_height) jpeg_read_scanlines(dinfo, &row_pointer[dinfo->output_scanline], dinfo->output_height - dinfo->output_scanline); jpeg_finish_decompress(dinfo); bailout: if (dinfo->global_state > DSTATE_START) jpeg_abort_decompress(dinfo); free(row_pointer); if (this->jerr.warning) retval = -1; this->jerr.stopOnWarning = FALSE; return retval; } /* TurboJPEG 1.0+ */ DLLEXPORT int tjDecompress(tjhandle handle, unsigned char *jpegBuf, unsigned long jpegSize, unsigned char *dstBuf, int width, int pitch, int height, int pixelSize, int flags) { if (flags & TJ_YUV) return tjDecompressToYUV(handle, jpegBuf, jpegSize, dstBuf, flags); else return tjDecompress2(handle, jpegBuf, jpegSize, dstBuf, width, pitch, height, getPixelFormat(pixelSize, flags), flags); } static void setDecodeDefaults(struct jpeg_decompress_struct *dinfo, int pixelFormat, int subsamp, int flags) { int i; dinfo->scale_num = dinfo->scale_denom = 1; if (subsamp == TJSAMP_GRAY) { dinfo->num_components = dinfo->comps_in_scan = 1; dinfo->jpeg_color_space = JCS_GRAYSCALE; } else { dinfo->num_components = dinfo->comps_in_scan = 3; dinfo->jpeg_color_space = JCS_YCbCr; } dinfo->comp_info = (jpeg_component_info *) (*dinfo->mem->alloc_small) ((j_common_ptr)dinfo, JPOOL_IMAGE, dinfo->num_components * sizeof(jpeg_component_info)); for (i = 0; i < dinfo->num_components; i++) { jpeg_component_info *compptr = &dinfo->comp_info[i]; compptr->h_samp_factor = (i == 0) ? tjMCUWidth[subsamp] / 8 : 1; compptr->v_samp_factor = (i == 0) ? tjMCUHeight[subsamp] / 8 : 1; compptr->component_index = i; compptr->component_id = i + 1; compptr->quant_tbl_no = compptr->dc_tbl_no = compptr->ac_tbl_no = (i == 0) ? 0 : 1; dinfo->cur_comp_info[i] = compptr; } dinfo->data_precision = 8; for (i = 0; i < 2; i++) { if (dinfo->quant_tbl_ptrs[i] == NULL) dinfo->quant_tbl_ptrs[i] = jpeg_alloc_quant_table((j_common_ptr)dinfo); } } static int my_read_markers(j_decompress_ptr dinfo) { return JPEG_REACHED_SOS; } static void my_reset_marker_reader(j_decompress_ptr dinfo) { } /* TurboJPEG 1.4+ */ DLLEXPORT int tjDecodeYUVPlanes(tjhandle handle, const unsigned char **srcPlanes, const int *strides, int subsamp, unsigned char *dstBuf, int width, int pitch, int height, int pixelFormat, int flags) { JSAMPROW *row_pointer = NULL; JSAMPLE *_tmpbuf[MAX_COMPONENTS]; JSAMPROW *tmpbuf[MAX_COMPONENTS], *inbuf[MAX_COMPONENTS]; int i, retval = 0, row, pw0, ph0, pw[MAX_COMPONENTS], ph[MAX_COMPONENTS]; JSAMPLE *ptr; jpeg_component_info *compptr; int (*old_read_markers) (j_decompress_ptr); void (*old_reset_marker_reader) (j_decompress_ptr); GET_DINSTANCE(handle); this->jerr.stopOnWarning = (flags & TJFLAG_STOPONWARNING) ? TRUE : FALSE; for (i = 0; i < MAX_COMPONENTS; i++) { tmpbuf[i] = NULL; _tmpbuf[i] = NULL; inbuf[i] = NULL; } if ((this->init & DECOMPRESS) == 0) THROW("tjDecodeYUVPlanes(): Instance has not been initialized for decompression"); if (!srcPlanes || !srcPlanes[0] || subsamp < 0 || subsamp >= TJ_NUMSAMP || dstBuf == NULL || width <= 0 || pitch < 0 || height <= 0 || pixelFormat < 0 || pixelFormat >= TJ_NUMPF) THROW("tjDecodeYUVPlanes(): Invalid argument"); if (subsamp != TJSAMP_GRAY && (!srcPlanes[1] || !srcPlanes[2])) THROW("tjDecodeYUVPlanes(): Invalid argument"); if (setjmp(this->jerr.setjmp_buffer)) { /* If we get here, the JPEG code has signaled an error. */ retval = -1; goto bailout; } if (pixelFormat == TJPF_CMYK) THROW("tjDecodeYUVPlanes(): Cannot decode YUV images into packed-pixel CMYK images."); if (pitch == 0) pitch = width * tjPixelSize[pixelFormat]; dinfo->image_width = width; dinfo->image_height = height; #ifndef NO_PUTENV if (flags & TJFLAG_FORCEMMX) PUTENV_S("JSIMD_FORCEMMX", "1"); else if (flags & TJFLAG_FORCESSE) PUTENV_S("JSIMD_FORCESSE", "1"); else if (flags & TJFLAG_FORCESSE2) PUTENV_S("JSIMD_FORCESSE2", "1"); #endif dinfo->progressive_mode = dinfo->inputctl->has_multiple_scans = FALSE; dinfo->Ss = dinfo->Ah = dinfo->Al = 0; dinfo->Se = DCTSIZE2 - 1; setDecodeDefaults(dinfo, pixelFormat, subsamp, flags); old_read_markers = dinfo->marker->read_markers; dinfo->marker->read_markers = my_read_markers; old_reset_marker_reader = dinfo->marker->reset_marker_reader; dinfo->marker->reset_marker_reader = my_reset_marker_reader; jpeg_read_header(dinfo, TRUE); dinfo->marker->read_markers = old_read_markers; dinfo->marker->reset_marker_reader = old_reset_marker_reader; this->dinfo.out_color_space = pf2cs[pixelFormat]; if (flags & TJFLAG_FASTDCT) this->dinfo.dct_method = JDCT_FASTEST; dinfo->do_fancy_upsampling = FALSE; dinfo->Se = DCTSIZE2 - 1; jinit_master_decompress(dinfo); (*dinfo->upsample->start_pass) (dinfo); pw0 = PAD(width, dinfo->max_h_samp_factor); ph0 = PAD(height, dinfo->max_v_samp_factor); if (pitch == 0) pitch = dinfo->output_width * tjPixelSize[pixelFormat]; if ((row_pointer = (JSAMPROW *)malloc(sizeof(JSAMPROW) * ph0)) == NULL) THROW("tjDecodeYUVPlanes(): Memory allocation failure"); for (i = 0; i < height; i++) { if (flags & TJFLAG_BOTTOMUP) row_pointer[i] = &dstBuf[(height - i - 1) * (size_t)pitch]; else row_pointer[i] = &dstBuf[i * (size_t)pitch]; } if (height < ph0) for (i = height; i < ph0; i++) row_pointer[i] = row_pointer[height - 1]; for (i = 0; i < dinfo->num_components; i++) { compptr = &dinfo->comp_info[i]; _tmpbuf[i] = (JSAMPLE *)malloc(PAD(compptr->width_in_blocks * DCTSIZE, 32) * compptr->v_samp_factor + 32); if (!_tmpbuf[i]) THROW("tjDecodeYUVPlanes(): Memory allocation failure"); tmpbuf[i] = (JSAMPROW *)malloc(sizeof(JSAMPROW) * compptr->v_samp_factor); if (!tmpbuf[i]) THROW("tjDecodeYUVPlanes(): Memory allocation failure"); for (row = 0; row < compptr->v_samp_factor; row++) { unsigned char *_tmpbuf_aligned = (unsigned char *)PAD((JUINTPTR)_tmpbuf[i], 32); tmpbuf[i][row] = &_tmpbuf_aligned[PAD(compptr->width_in_blocks * DCTSIZE, 32) * row]; } pw[i] = pw0 * compptr->h_samp_factor / dinfo->max_h_samp_factor; ph[i] = ph0 * compptr->v_samp_factor / dinfo->max_v_samp_factor; inbuf[i] = (JSAMPROW *)malloc(sizeof(JSAMPROW) * ph[i]); if (!inbuf[i]) THROW("tjDecodeYUVPlanes(): Memory allocation failure"); ptr = (JSAMPLE *)srcPlanes[i]; for (row = 0; row < ph[i]; row++) { inbuf[i][row] = ptr; ptr += (strides && strides[i] != 0) ? strides[i] : pw[i]; } } if (setjmp(this->jerr.setjmp_buffer)) { /* If we get here, the JPEG code has signaled an error. */ retval = -1; goto bailout; } for (row = 0; row < ph0; row += dinfo->max_v_samp_factor) { JDIMENSION inrow = 0, outrow = 0; for (i = 0, compptr = dinfo->comp_info; i < dinfo->num_components; i++, compptr++) jcopy_sample_rows(inbuf[i], row * compptr->v_samp_factor / dinfo->max_v_samp_factor, tmpbuf[i], 0, compptr->v_samp_factor, pw[i]); (dinfo->upsample->upsample) (dinfo, tmpbuf, &inrow, dinfo->max_v_samp_factor, &row_pointer[row], &outrow, dinfo->max_v_samp_factor); } jpeg_abort_decompress(dinfo); bailout: if (dinfo->global_state > DSTATE_START) jpeg_abort_decompress(dinfo); free(row_pointer); for (i = 0; i < MAX_COMPONENTS; i++) { free(tmpbuf[i]); free(_tmpbuf[i]); free(inbuf[i]); } if (this->jerr.warning) retval = -1; this->jerr.stopOnWarning = FALSE; return retval; } /* TurboJPEG 1.4+ */ DLLEXPORT int tjDecodeYUV(tjhandle handle, const unsigned char *srcBuf, int align, int subsamp, unsigned char *dstBuf, int width, int pitch, int height, int pixelFormat, int flags) { const unsigned char *srcPlanes[3]; int pw0, ph0, strides[3], retval = -1; tjinstance *this = (tjinstance *)handle; if (!this) THROWG("tjDecodeYUV(): Invalid handle"); this->isInstanceError = FALSE; if (srcBuf == NULL || align < 1 || !IS_POW2(align) || subsamp < 0 || subsamp >= TJ_NUMSAMP || width <= 0 || height <= 0) THROW("tjDecodeYUV(): Invalid argument"); pw0 = tjPlaneWidth(0, width, subsamp); ph0 = tjPlaneHeight(0, height, subsamp); srcPlanes[0] = srcBuf; strides[0] = PAD(pw0, align); if (subsamp == TJSAMP_GRAY) { strides[1] = strides[2] = 0; srcPlanes[1] = srcPlanes[2] = NULL; } else { int pw1 = tjPlaneWidth(1, width, subsamp); int ph1 = tjPlaneHeight(1, height, subsamp); strides[1] = strides[2] = PAD(pw1, align); srcPlanes[1] = srcPlanes[0] + strides[0] * ph0; srcPlanes[2] = srcPlanes[1] + strides[1] * ph1; } return tjDecodeYUVPlanes(handle, srcPlanes, strides, subsamp, dstBuf, width, pitch, height, pixelFormat, flags); bailout: return retval; } /* TurboJPEG 1.4+ */ DLLEXPORT int tjDecompressToYUVPlanes(tjhandle handle, const unsigned char *jpegBuf, unsigned long jpegSize, unsigned char **dstPlanes, int width, int *strides, int height, int flags) { int i, sfi, row, retval = 0; int jpegwidth, jpegheight, jpegSubsamp, scaledw, scaledh; int pw[MAX_COMPONENTS], ph[MAX_COMPONENTS], iw[MAX_COMPONENTS], tmpbufsize = 0, usetmpbuf = 0, th[MAX_COMPONENTS]; JSAMPLE *_tmpbuf = NULL, *ptr; JSAMPROW *outbuf[MAX_COMPONENTS], *tmpbuf[MAX_COMPONENTS]; int dctsize; struct my_progress_mgr progress; GET_DINSTANCE(handle); this->jerr.stopOnWarning = (flags & TJFLAG_STOPONWARNING) ? TRUE : FALSE; for (i = 0; i < MAX_COMPONENTS; i++) { tmpbuf[i] = NULL; outbuf[i] = NULL; } if ((this->init & DECOMPRESS) == 0) THROW("tjDecompressToYUVPlanes(): Instance has not been initialized for decompression"); if (jpegBuf == NULL || jpegSize <= 0 || !dstPlanes || !dstPlanes[0] || width < 0 || height < 0) THROW("tjDecompressToYUVPlanes(): Invalid argument"); #ifndef NO_PUTENV if (flags & TJFLAG_FORCEMMX) PUTENV_S("JSIMD_FORCEMMX", "1"); else if (flags & TJFLAG_FORCESSE) PUTENV_S("JSIMD_FORCESSE", "1"); else if (flags & TJFLAG_FORCESSE2) PUTENV_S("JSIMD_FORCESSE2", "1"); #endif if (flags & TJFLAG_LIMITSCANS) { memset(&progress, 0, sizeof(struct my_progress_mgr)); progress.pub.progress_monitor = my_progress_monitor; progress.this = this; dinfo->progress = &progress.pub; } else dinfo->progress = NULL; if (setjmp(this->jerr.setjmp_buffer)) { /* If we get here, the JPEG code has signaled an error. */ retval = -1; goto bailout; } if (!this->headerRead) { jpeg_mem_src_tj(dinfo, jpegBuf, jpegSize); jpeg_read_header(dinfo, TRUE); } this->headerRead = 0; jpegSubsamp = getSubsamp(dinfo); if (jpegSubsamp < 0) THROW("tjDecompressToYUVPlanes(): Could not determine subsampling type for JPEG image"); if (jpegSubsamp != TJSAMP_GRAY && (!dstPlanes[1] || !dstPlanes[2])) THROW("tjDecompressToYUVPlanes(): Invalid argument"); jpegwidth = dinfo->image_width; jpegheight = dinfo->image_height; if (width == 0) width = jpegwidth; if (height == 0) height = jpegheight; for (i = 0; i < NUMSF; i++) { scaledw = TJSCALED(jpegwidth, sf[i]); scaledh = TJSCALED(jpegheight, sf[i]); if (scaledw <= width && scaledh <= height) break; } if (i >= NUMSF) THROW("tjDecompressToYUVPlanes(): Could not scale down to desired image dimensions"); if (dinfo->num_components > 3) THROW("tjDecompressToYUVPlanes(): JPEG image must have 3 or fewer components"); width = scaledw; height = scaledh; dinfo->scale_num = sf[i].num; dinfo->scale_denom = sf[i].denom; sfi = i; jpeg_calc_output_dimensions(dinfo); dctsize = DCTSIZE * sf[sfi].num / sf[sfi].denom; for (i = 0; i < dinfo->num_components; i++) { jpeg_component_info *compptr = &dinfo->comp_info[i]; int ih; iw[i] = compptr->width_in_blocks * dctsize; ih = compptr->height_in_blocks * dctsize; pw[i] = tjPlaneWidth(i, dinfo->output_width, jpegSubsamp); ph[i] = tjPlaneHeight(i, dinfo->output_height, jpegSubsamp); if (iw[i] != pw[i] || ih != ph[i]) usetmpbuf = 1; th[i] = compptr->v_samp_factor * dctsize; tmpbufsize += iw[i] * th[i]; if ((outbuf[i] = (JSAMPROW *)malloc(sizeof(JSAMPROW) * ph[i])) == NULL) THROW("tjDecompressToYUVPlanes(): Memory allocation failure"); ptr = dstPlanes[i]; for (row = 0; row < ph[i]; row++) { outbuf[i][row] = ptr; ptr += (strides && strides[i] != 0) ? strides[i] : pw[i]; } } if (usetmpbuf) { if ((_tmpbuf = (JSAMPLE *)malloc(sizeof(JSAMPLE) * tmpbufsize)) == NULL) THROW("tjDecompressToYUVPlanes(): Memory allocation failure"); ptr = _tmpbuf; for (i = 0; i < dinfo->num_components; i++) { if ((tmpbuf[i] = (JSAMPROW *)malloc(sizeof(JSAMPROW) * th[i])) == NULL) THROW("tjDecompressToYUVPlanes(): Memory allocation failure"); for (row = 0; row < th[i]; row++) { tmpbuf[i][row] = ptr; ptr += iw[i]; } } } if (setjmp(this->jerr.setjmp_buffer)) { /* If we get here, the JPEG code has signaled an error. */ retval = -1; goto bailout; } if (flags & TJFLAG_FASTUPSAMPLE) dinfo->do_fancy_upsampling = FALSE; if (flags & TJFLAG_FASTDCT) dinfo->dct_method = JDCT_FASTEST; dinfo->raw_data_out = TRUE; jpeg_start_decompress(dinfo); for (row = 0; row < (int)dinfo->output_height; row += dinfo->max_v_samp_factor * dinfo->_min_DCT_scaled_size) { JSAMPARRAY yuvptr[MAX_COMPONENTS]; int crow[MAX_COMPONENTS]; for (i = 0; i < dinfo->num_components; i++) { jpeg_component_info *compptr = &dinfo->comp_info[i]; if (jpegSubsamp == TJSAMP_420) { /* When 4:2:0 subsampling is used with IDCT scaling, libjpeg will try to be clever and use the IDCT to perform upsampling on the U and V planes. For instance, if the output image is to be scaled by 1/2 relative to the JPEG image, then the scaling factor and upsampling effectively cancel each other, so a normal 8x8 IDCT can be used. However, this is not desirable when using the decompress-to-YUV functionality in TurboJPEG, since we want to output the U and V planes in their subsampled form. Thus, we have to override some internal libjpeg parameters to force it to use the "scaled" IDCT functions on the U and V planes. */ compptr->_DCT_scaled_size = dctsize; compptr->MCU_sample_width = tjMCUWidth[jpegSubsamp] * sf[sfi].num / sf[sfi].denom * compptr->v_samp_factor / dinfo->max_v_samp_factor; dinfo->idct->inverse_DCT[i] = dinfo->idct->inverse_DCT[0]; } crow[i] = row * compptr->v_samp_factor / dinfo->max_v_samp_factor; if (usetmpbuf) yuvptr[i] = tmpbuf[i]; else yuvptr[i] = &outbuf[i][crow[i]]; } jpeg_read_raw_data(dinfo, yuvptr, dinfo->max_v_samp_factor * dinfo->_min_DCT_scaled_size); if (usetmpbuf) { int j; for (i = 0; i < dinfo->num_components; i++) { for (j = 0; j < MIN(th[i], ph[i] - crow[i]); j++) { memcpy(outbuf[i][crow[i] + j], tmpbuf[i][j], pw[i]); } } } } jpeg_finish_decompress(dinfo); bailout: if (dinfo->global_state > DSTATE_START) jpeg_abort_decompress(dinfo); for (i = 0; i < MAX_COMPONENTS; i++) { free(tmpbuf[i]); free(outbuf[i]); } free(_tmpbuf); if (this->jerr.warning) retval = -1; this->jerr.stopOnWarning = FALSE; return retval; } /* TurboJPEG 1.4+ */ DLLEXPORT int tjDecompressToYUV2(tjhandle handle, const unsigned char *jpegBuf, unsigned long jpegSize, unsigned char *dstBuf, int width, int align, int height, int flags) { unsigned char *dstPlanes[3]; int pw0, ph0, strides[3], retval = -1, jpegSubsamp = -1; int i, jpegwidth, jpegheight, scaledw, scaledh; GET_DINSTANCE(handle); this->jerr.stopOnWarning = (flags & TJFLAG_STOPONWARNING) ? TRUE : FALSE; if (jpegBuf == NULL || jpegSize <= 0 || dstBuf == NULL || width < 0 || align < 1 || !IS_POW2(align) || height < 0) THROW("tjDecompressToYUV2(): Invalid argument"); if (setjmp(this->jerr.setjmp_buffer)) { /* If we get here, the JPEG code has signaled an error. */ return -1; } jpeg_mem_src_tj(dinfo, jpegBuf, jpegSize); jpeg_read_header(dinfo, TRUE); jpegSubsamp = getSubsamp(dinfo); if (jpegSubsamp < 0) THROW("tjDecompressToYUV2(): Could not determine subsampling type for JPEG image"); jpegwidth = dinfo->image_width; jpegheight = dinfo->image_height; if (width == 0) width = jpegwidth; if (height == 0) height = jpegheight; for (i = 0; i < NUMSF; i++) { scaledw = TJSCALED(jpegwidth, sf[i]); scaledh = TJSCALED(jpegheight, sf[i]); if (scaledw <= width && scaledh <= height) break; } if (i >= NUMSF) THROW("tjDecompressToYUV2(): Could not scale down to desired image dimensions"); width = scaledw; height = scaledh; pw0 = tjPlaneWidth(0, width, jpegSubsamp); ph0 = tjPlaneHeight(0, height, jpegSubsamp); dstPlanes[0] = dstBuf; strides[0] = PAD(pw0, align); if (jpegSubsamp == TJSAMP_GRAY) { strides[1] = strides[2] = 0; dstPlanes[1] = dstPlanes[2] = NULL; } else { int pw1 = tjPlaneWidth(1, width, jpegSubsamp); int ph1 = tjPlaneHeight(1, height, jpegSubsamp); strides[1] = strides[2] = PAD(pw1, align); dstPlanes[1] = dstPlanes[0] + strides[0] * ph0; dstPlanes[2] = dstPlanes[1] + strides[1] * ph1; } this->headerRead = 1; return tjDecompressToYUVPlanes(handle, jpegBuf, jpegSize, dstPlanes, width, strides, height, flags); bailout: this->jerr.stopOnWarning = FALSE; return retval; } /* TurboJPEG 1.1+ */ DLLEXPORT int tjDecompressToYUV(tjhandle handle, unsigned char *jpegBuf, unsigned long jpegSize, unsigned char *dstBuf, int flags) { return tjDecompressToYUV2(handle, jpegBuf, jpegSize, dstBuf, 0, 4, 0, flags); } /******************************** Transformer ********************************/ /* TurboJPEG 1.2+ */ DLLEXPORT tjhandle tjInitTransform(void) { tjinstance *this = NULL; tjhandle handle = NULL; if ((this = (tjinstance *)malloc(sizeof(tjinstance))) == NULL) { SNPRINTF(errStr, JMSG_LENGTH_MAX, "tjInitTransform(): Memory allocation failure"); return NULL; } memset(this, 0, sizeof(tjinstance)); SNPRINTF(this->errStr, JMSG_LENGTH_MAX, "No error"); handle = _tjInitCompress(this); if (!handle) return NULL; handle = _tjInitDecompress(this); return handle; } /* TurboJPEG 1.2+ */ DLLEXPORT int tjTransform(tjhandle handle, const unsigned char *jpegBuf, unsigned long jpegSize, int n, unsigned char **dstBufs, unsigned long *dstSizes, tjtransform *t, int flags) { jpeg_transform_info *xinfo = NULL; jvirt_barray_ptr *srccoefs, *dstcoefs; int retval = 0, i, jpegSubsamp, saveMarkers = 0; boolean alloc = TRUE; struct my_progress_mgr progress; GET_INSTANCE(handle); this->jerr.stopOnWarning = (flags & TJFLAG_STOPONWARNING) ? TRUE : FALSE; if ((this->init & COMPRESS) == 0 || (this->init & DECOMPRESS) == 0) THROW("tjTransform(): Instance has not been initialized for transformation"); if (jpegBuf == NULL || jpegSize <= 0 || n < 1 || dstBufs == NULL || dstSizes == NULL || t == NULL || flags < 0) THROW("tjTransform(): Invalid argument"); #ifndef NO_PUTENV if (flags & TJFLAG_FORCEMMX) PUTENV_S("JSIMD_FORCEMMX", "1"); else if (flags & TJFLAG_FORCESSE) PUTENV_S("JSIMD_FORCESSE", "1"); else if (flags & TJFLAG_FORCESSE2) PUTENV_S("JSIMD_FORCESSE2", "1"); #endif if (flags & TJFLAG_LIMITSCANS) { memset(&progress, 0, sizeof(struct my_progress_mgr)); progress.pub.progress_monitor = my_progress_monitor; progress.this = this; dinfo->progress = &progress.pub; } else dinfo->progress = NULL; if ((xinfo = (jpeg_transform_info *)malloc(sizeof(jpeg_transform_info) * n)) == NULL) THROW("tjTransform(): Memory allocation failure"); memset(xinfo, 0, sizeof(jpeg_transform_info) * n); if (setjmp(this->jerr.setjmp_buffer)) { /* If we get here, the JPEG code has signaled an error. */ retval = -1; goto bailout; } jpeg_mem_src_tj(dinfo, jpegBuf, jpegSize); for (i = 0; i < n; i++) { xinfo[i].transform = xformtypes[t[i].op]; xinfo[i].perfect = (t[i].options & TJXOPT_PERFECT) ? 1 : 0; xinfo[i].trim = (t[i].options & TJXOPT_TRIM) ? 1 : 0; xinfo[i].force_grayscale = (t[i].options & TJXOPT_GRAY) ? 1 : 0; xinfo[i].crop = (t[i].options & TJXOPT_CROP) ? 1 : 0; if (n != 1 && t[i].op == TJXOP_HFLIP) xinfo[i].slow_hflip = 1; else xinfo[i].slow_hflip = 0; if (xinfo[i].crop) { xinfo[i].crop_xoffset = t[i].r.x; xinfo[i].crop_xoffset_set = JCROP_POS; xinfo[i].crop_yoffset = t[i].r.y; xinfo[i].crop_yoffset_set = JCROP_POS; if (t[i].r.w != 0) { xinfo[i].crop_width = t[i].r.w; xinfo[i].crop_width_set = JCROP_POS; } else xinfo[i].crop_width = JCROP_UNSET; if (t[i].r.h != 0) { xinfo[i].crop_height = t[i].r.h; xinfo[i].crop_height_set = JCROP_POS; } else xinfo[i].crop_height = JCROP_UNSET; } if (!(t[i].options & TJXOPT_COPYNONE)) saveMarkers = 1; } jcopy_markers_setup(dinfo, saveMarkers ? JCOPYOPT_ALL : JCOPYOPT_NONE); jpeg_read_header(dinfo, TRUE); jpegSubsamp = getSubsamp(dinfo); if (jpegSubsamp < 0) THROW("tjTransform(): Could not determine subsampling type for JPEG image"); for (i = 0; i < n; i++) { if (!jtransform_request_workspace(dinfo, &xinfo[i])) THROW("tjTransform(): Transform is not perfect"); if (xinfo[i].crop) { if ((t[i].r.x % tjMCUWidth[jpegSubsamp]) != 0 || (t[i].r.y % tjMCUHeight[jpegSubsamp]) != 0) { SNPRINTF(this->errStr, JMSG_LENGTH_MAX, "To crop this JPEG image, x must be a multiple of %d\n" "and y must be a multiple of %d.\n", tjMCUWidth[jpegSubsamp], tjMCUHeight[jpegSubsamp]); this->isInstanceError = TRUE; retval = -1; goto bailout; } } } srccoefs = jpeg_read_coefficients(dinfo); for (i = 0; i < n; i++) { int w, h; if (!xinfo[i].crop) { w = dinfo->image_width; h = dinfo->image_height; } else { w = xinfo[i].crop_width; h = xinfo[i].crop_height; } if (flags & TJFLAG_NOREALLOC) { alloc = FALSE; dstSizes[i] = tjBufSize(w, h, jpegSubsamp); } if (!(t[i].options & TJXOPT_NOOUTPUT)) jpeg_mem_dest_tj(cinfo, &dstBufs[i], &dstSizes[i], alloc); jpeg_copy_critical_parameters(dinfo, cinfo); dstcoefs = jtransform_adjust_parameters(dinfo, cinfo, srccoefs, &xinfo[i]); #ifdef C_PROGRESSIVE_SUPPORTED if (flags & TJFLAG_PROGRESSIVE || t[i].options & TJXOPT_PROGRESSIVE) jpeg_simple_progression(cinfo); #endif if (!(t[i].options & TJXOPT_NOOUTPUT)) { jpeg_write_coefficients(cinfo, dstcoefs); jcopy_markers_execute(dinfo, cinfo, t[i].options & TJXOPT_COPYNONE ? JCOPYOPT_NONE : JCOPYOPT_ALL); } else jinit_c_master_control(cinfo, TRUE); jtransform_execute_transformation(dinfo, cinfo, srccoefs, &xinfo[i]); if (t[i].customFilter) { int ci, y; JDIMENSION by; for (ci = 0; ci < cinfo->num_components; ci++) { jpeg_component_info *compptr = &cinfo->comp_info[ci]; tjregion arrayRegion = { 0, 0, 0, 0 }; tjregion planeRegion = { 0, 0, 0, 0 }; arrayRegion.w = compptr->width_in_blocks * DCTSIZE; arrayRegion.h = DCTSIZE; planeRegion.w = compptr->width_in_blocks * DCTSIZE; planeRegion.h = compptr->height_in_blocks * DCTSIZE; for (by = 0; by < compptr->height_in_blocks; by += compptr->v_samp_factor) { JBLOCKARRAY barray = (dinfo->mem->access_virt_barray) ((j_common_ptr)dinfo, dstcoefs[ci], by, compptr->v_samp_factor, TRUE); for (y = 0; y < compptr->v_samp_factor; y++) { if (t[i].customFilter(barray[y][0], arrayRegion, planeRegion, ci, i, &t[i]) == -1) THROW("tjTransform(): Error in custom filter"); arrayRegion.y += DCTSIZE; } } } } if (!(t[i].options & TJXOPT_NOOUTPUT)) jpeg_finish_compress(cinfo); } jpeg_finish_decompress(dinfo); bailout: if (cinfo->global_state > CSTATE_START) { if (alloc) (*cinfo->dest->term_destination) (cinfo); jpeg_abort_compress(cinfo); } if (dinfo->global_state > DSTATE_START) jpeg_abort_decompress(dinfo); free(xinfo); if (this->jerr.warning) retval = -1; this->jerr.stopOnWarning = FALSE; return retval; } /*************************** Packed-Pixel Image I/O **************************/ /* TurboJPEG 2.0+ */ DLLEXPORT unsigned char *tjLoadImage(const char *filename, int *width, int align, int *height, int *pixelFormat, int flags) { int retval = 0, tempc; size_t pitch; tjhandle handle = NULL; tjinstance *this; j_compress_ptr cinfo = NULL; cjpeg_source_ptr src; unsigned char *dstBuf = NULL; FILE *file = NULL; boolean invert; if (!filename || !width || align < 1 || !height || !pixelFormat || *pixelFormat < TJPF_UNKNOWN || *pixelFormat >= TJ_NUMPF) THROWG("tjLoadImage(): Invalid argument"); if ((align & (align - 1)) != 0) THROWG("tjLoadImage(): Alignment must be a power of 2"); if ((handle = tjInitCompress()) == NULL) return NULL; this = (tjinstance *)handle; cinfo = &this->cinfo; #ifdef _MSC_VER if (fopen_s(&file, filename, "rb") || file == NULL) #else if ((file = fopen(filename, "rb")) == NULL) #endif THROW_UNIX("tjLoadImage(): Cannot open input file"); if ((tempc = getc(file)) < 0 || ungetc(tempc, file) == EOF) THROW_UNIX("tjLoadImage(): Could not read input file") else if (tempc == EOF) THROWG("tjLoadImage(): Input file contains no data"); if (setjmp(this->jerr.setjmp_buffer)) { /* If we get here, the JPEG code has signaled an error. */ retval = -1; goto bailout; } if (*pixelFormat == TJPF_UNKNOWN) cinfo->in_color_space = JCS_UNKNOWN; else cinfo->in_color_space = pf2cs[*pixelFormat]; if (tempc == 'B') { if ((src = jinit_read_bmp(cinfo, FALSE)) == NULL) THROWG("tjLoadImage(): Could not initialize bitmap loader"); invert = (flags & TJFLAG_BOTTOMUP) == 0; } else if (tempc == 'P') { if ((src = jinit_read_ppm(cinfo)) == NULL) THROWG("tjLoadImage(): Could not initialize PPM loader"); invert = (flags & TJFLAG_BOTTOMUP) != 0; } else THROWG("tjLoadImage(): Unsupported file type"); src->input_file = file; #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION /* Refuse to load images larger than 1 Megapixel when fuzzing. */ if (flags & TJFLAG_FUZZING) src->max_pixels = 1048576; #endif (*src->start_input) (cinfo, src); (*cinfo->mem->realize_virt_arrays) ((j_common_ptr)cinfo); *width = cinfo->image_width; *height = cinfo->image_height; *pixelFormat = cs2pf[cinfo->in_color_space]; pitch = PAD((*width) * tjPixelSize[*pixelFormat], align); if ((unsigned long long)pitch * (unsigned long long)(*height) > (unsigned long long)((size_t)-1) || (dstBuf = (unsigned char *)malloc(pitch * (*height))) == NULL) THROWG("tjLoadImage(): Memory allocation failure"); if (setjmp(this->jerr.setjmp_buffer)) { /* If we get here, the JPEG code has signaled an error. */ retval = -1; goto bailout; } while (cinfo->next_scanline < cinfo->image_height) { int i, nlines = (*src->get_pixel_rows) (cinfo, src); for (i = 0; i < nlines; i++) { unsigned char *dstptr; int row; row = cinfo->next_scanline + i; if (invert) dstptr = &dstBuf[((*height) - row - 1) * pitch]; else dstptr = &dstBuf[row * pitch]; memcpy(dstptr, src->buffer[i], (*width) * tjPixelSize[*pixelFormat]); } cinfo->next_scanline += nlines; } (*src->finish_input) (cinfo, src); bailout: if (handle) tjDestroy(handle); if (file) fclose(file); if (retval < 0) { free(dstBuf); dstBuf = NULL; } return dstBuf; } /* TurboJPEG 2.0+ */ DLLEXPORT int tjSaveImage(const char *filename, unsigned char *buffer, int width, int pitch, int height, int pixelFormat, int flags) { int retval = 0; tjhandle handle = NULL; tjinstance *this; j_decompress_ptr dinfo = NULL; djpeg_dest_ptr dst; FILE *file = NULL; char *ptr = NULL; boolean invert; if (!filename || !buffer || width < 1 || pitch < 0 || height < 1 || pixelFormat < 0 || pixelFormat >= TJ_NUMPF) THROWG("tjSaveImage(): Invalid argument"); if ((handle = tjInitDecompress()) == NULL) return -1; this = (tjinstance *)handle; dinfo = &this->dinfo; #ifdef _MSC_VER if (fopen_s(&file, filename, "wb") || file == NULL) #else if ((file = fopen(filename, "wb")) == NULL) #endif THROW_UNIX("tjSaveImage(): Cannot open output file"); if (setjmp(this->jerr.setjmp_buffer)) { /* If we get here, the JPEG code has signaled an error. */ retval = -1; goto bailout; } this->dinfo.out_color_space = pf2cs[pixelFormat]; dinfo->image_width = width; dinfo->image_height = height; dinfo->global_state = DSTATE_READY; dinfo->scale_num = dinfo->scale_denom = 1; ptr = strrchr(filename, '.'); if (ptr && !strcasecmp(ptr, ".bmp")) { if ((dst = jinit_write_bmp(dinfo, FALSE, FALSE)) == NULL) THROWG("tjSaveImage(): Could not initialize bitmap writer"); invert = (flags & TJFLAG_BOTTOMUP) == 0; } else { if ((dst = jinit_write_ppm(dinfo)) == NULL) THROWG("tjSaveImage(): Could not initialize PPM writer"); invert = (flags & TJFLAG_BOTTOMUP) != 0; } dst->output_file = file; (*dst->start_output) (dinfo, dst); (*dinfo->mem->realize_virt_arrays) ((j_common_ptr)dinfo); if (pitch == 0) pitch = width * tjPixelSize[pixelFormat]; while (dinfo->output_scanline < dinfo->output_height) { unsigned char *rowptr; if (invert) rowptr = &buffer[(height - dinfo->output_scanline - 1) * pitch]; else rowptr = &buffer[dinfo->output_scanline * pitch]; memcpy(dst->buffer[0], rowptr, width * tjPixelSize[pixelFormat]); (*dst->put_pixel_rows) (dinfo, dst, 1); dinfo->output_scanline++; } (*dst->finish_output) (dinfo, dst); bailout: if (handle) tjDestroy(handle); if (file) fclose(file); return retval; } libjpeg-turbo-2.1.5/turbojpeg.h000066400000000000000000002241151436506551100164510ustar00rootroot00000000000000/* * Copyright (C)2009-2015, 2017, 2020-2021, 2023 D. R. Commander. * All Rights Reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * - Neither the name of the libjpeg-turbo Project nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS", * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #ifndef __TURBOJPEG_H__ #define __TURBOJPEG_H__ #if defined(_WIN32) && defined(DLLDEFINE) #define DLLEXPORT __declspec(dllexport) #else #define DLLEXPORT #endif #define DLLCALL /** * @addtogroup TurboJPEG * TurboJPEG API. This API provides an interface for generating, decoding, and * transforming planar YUV and JPEG images in memory. * * @anchor YUVnotes * YUV Image Format Notes * ---------------------- * Technically, the JPEG format uses the YCbCr colorspace (which is technically * not a colorspace but a color transform), but per the convention of the * digital video community, the TurboJPEG API uses "YUV" to refer to an image * format consisting of Y, Cb, and Cr image planes. * * Each plane is simply a 2D array of bytes, each byte representing the value * of one of the components (Y, Cb, or Cr) at a particular location in the * image. The width and height of each plane are determined by the image * width, height, and level of chrominance subsampling. The luminance plane * width is the image width padded to the nearest multiple of the horizontal * subsampling factor (1 in the case of 4:4:4, grayscale, or 4:4:0; 2 in the * case of 4:2:2 or 4:2:0; 4 in the case of 4:1:1.) Similarly, the luminance * plane height is the image height padded to the nearest multiple of the * vertical subsampling factor (1 in the case of 4:4:4, 4:2:2, grayscale, or * 4:1:1; 2 in the case of 4:2:0 or 4:4:0.) This is irrespective of any * additional padding that may be specified as an argument to the various YUV * functions. The chrominance plane width is equal to the luminance plane * width divided by the horizontal subsampling factor, and the chrominance * plane height is equal to the luminance plane height divided by the vertical * subsampling factor. * * For example, if the source image is 35 x 35 pixels and 4:2:2 subsampling is * used, then the luminance plane would be 36 x 35 bytes, and each of the * chrominance planes would be 18 x 35 bytes. If you specify a row alignment * of 4 bytes on top of this, then the luminance plane would be 36 x 35 bytes, * and each of the chrominance planes would be 20 x 35 bytes. * * @{ */ /** * The number of chrominance subsampling options */ #define TJ_NUMSAMP 6 /** * Chrominance subsampling options. * When pixels are converted from RGB to YCbCr (see #TJCS_YCbCr) or from CMYK * to YCCK (see #TJCS_YCCK) as part of the JPEG compression process, some of * the Cb and Cr (chrominance) components can be discarded or averaged together * to produce a smaller image with little perceptible loss of image clarity. * (The human eye is more sensitive to small changes in brightness than to * small changes in color.) This is called "chrominance subsampling". */ enum TJSAMP { /** * 4:4:4 chrominance subsampling (no chrominance subsampling). The JPEG or * YUV image will contain one chrominance component for every pixel in the * source image. */ TJSAMP_444 = 0, /** * 4:2:2 chrominance subsampling. The JPEG or YUV image will contain one * chrominance component for every 2x1 block of pixels in the source image. */ TJSAMP_422, /** * 4:2:0 chrominance subsampling. The JPEG or YUV image will contain one * chrominance component for every 2x2 block of pixels in the source image. */ TJSAMP_420, /** * Grayscale. The JPEG or YUV image will contain no chrominance components. */ TJSAMP_GRAY, /** * 4:4:0 chrominance subsampling. The JPEG or YUV image will contain one * chrominance component for every 1x2 block of pixels in the source image. * * @note 4:4:0 subsampling is not fully accelerated in libjpeg-turbo. */ TJSAMP_440, /** * 4:1:1 chrominance subsampling. The JPEG or YUV image will contain one * chrominance component for every 4x1 block of pixels in the source image. * JPEG images compressed with 4:1:1 subsampling will be almost exactly the * same size as those compressed with 4:2:0 subsampling, and in the * aggregate, both subsampling methods produce approximately the same * perceptual quality. However, 4:1:1 is better able to reproduce sharp * horizontal features. * * @note 4:1:1 subsampling is not fully accelerated in libjpeg-turbo. */ TJSAMP_411 }; /** * MCU block width (in pixels) for a given level of chrominance subsampling. * MCU block sizes: * - 8x8 for no subsampling or grayscale * - 16x8 for 4:2:2 * - 8x16 for 4:4:0 * - 16x16 for 4:2:0 * - 32x8 for 4:1:1 */ static const int tjMCUWidth[TJ_NUMSAMP] = { 8, 16, 16, 8, 8, 32 }; /** * MCU block height (in pixels) for a given level of chrominance subsampling. * MCU block sizes: * - 8x8 for no subsampling or grayscale * - 16x8 for 4:2:2 * - 8x16 for 4:4:0 * - 16x16 for 4:2:0 * - 32x8 for 4:1:1 */ static const int tjMCUHeight[TJ_NUMSAMP] = { 8, 8, 16, 8, 16, 8 }; /** * The number of pixel formats */ #define TJ_NUMPF 12 /** * Pixel formats */ enum TJPF { /** * RGB pixel format. The red, green, and blue components in the image are * stored in 3-byte pixels in the order R, G, B from lowest to highest byte * address within each pixel. */ TJPF_RGB = 0, /** * BGR pixel format. The red, green, and blue components in the image are * stored in 3-byte pixels in the order B, G, R from lowest to highest byte * address within each pixel. */ TJPF_BGR, /** * RGBX pixel format. The red, green, and blue components in the image are * stored in 4-byte pixels in the order R, G, B from lowest to highest byte * address within each pixel. The X component is ignored when compressing * and undefined when decompressing. */ TJPF_RGBX, /** * BGRX pixel format. The red, green, and blue components in the image are * stored in 4-byte pixels in the order B, G, R from lowest to highest byte * address within each pixel. The X component is ignored when compressing * and undefined when decompressing. */ TJPF_BGRX, /** * XBGR pixel format. The red, green, and blue components in the image are * stored in 4-byte pixels in the order R, G, B from highest to lowest byte * address within each pixel. The X component is ignored when compressing * and undefined when decompressing. */ TJPF_XBGR, /** * XRGB pixel format. The red, green, and blue components in the image are * stored in 4-byte pixels in the order B, G, R from highest to lowest byte * address within each pixel. The X component is ignored when compressing * and undefined when decompressing. */ TJPF_XRGB, /** * Grayscale pixel format. Each 1-byte pixel represents a luminance * (brightness) level from 0 to 255. */ TJPF_GRAY, /** * RGBA pixel format. This is the same as @ref TJPF_RGBX, except that when * decompressing, the X component is guaranteed to be 0xFF, which can be * interpreted as an opaque alpha channel. */ TJPF_RGBA, /** * BGRA pixel format. This is the same as @ref TJPF_BGRX, except that when * decompressing, the X component is guaranteed to be 0xFF, which can be * interpreted as an opaque alpha channel. */ TJPF_BGRA, /** * ABGR pixel format. This is the same as @ref TJPF_XBGR, except that when * decompressing, the X component is guaranteed to be 0xFF, which can be * interpreted as an opaque alpha channel. */ TJPF_ABGR, /** * ARGB pixel format. This is the same as @ref TJPF_XRGB, except that when * decompressing, the X component is guaranteed to be 0xFF, which can be * interpreted as an opaque alpha channel. */ TJPF_ARGB, /** * CMYK pixel format. Unlike RGB, which is an additive color model used * primarily for display, CMYK (Cyan/Magenta/Yellow/Key) is a subtractive * color model used primarily for printing. In the CMYK color model, the * value of each color component typically corresponds to an amount of cyan, * magenta, yellow, or black ink that is applied to a white background. In * order to convert between CMYK and RGB, it is necessary to use a color * management system (CMS.) A CMS will attempt to map colors within the * printer's gamut to perceptually similar colors in the display's gamut and * vice versa, but the mapping is typically not 1:1 or reversible, nor can it * be defined with a simple formula. Thus, such a conversion is out of scope * for a codec library. However, the TurboJPEG API allows for compressing * packed-pixel CMYK images into YCCK JPEG images (see #TJCS_YCCK) and * decompressing YCCK JPEG images into packed-pixel CMYK images. */ TJPF_CMYK, /** * Unknown pixel format. Currently this is only used by #tjLoadImage(). */ TJPF_UNKNOWN = -1 }; /** * Red offset (in bytes) for a given pixel format. This specifies the number * of bytes that the red component is offset from the start of the pixel. For * instance, if a pixel of format TJPF_BGRX is stored in * `unsigned char pixel[]`, then the red component will be *`pixel[tjRedOffset[TJPF_BGRX]]`. This will be -1 if the pixel format does * not have a red component. */ static const int tjRedOffset[TJ_NUMPF] = { 0, 2, 0, 2, 3, 1, -1, 0, 2, 3, 1, -1 }; /** * Green offset (in bytes) for a given pixel format. This specifies the number * of bytes that the green component is offset from the start of the pixel. * For instance, if a pixel of format TJPF_BGRX is stored in * `unsigned char pixel[]`, then the green component will be * `pixel[tjGreenOffset[TJPF_BGRX]]`. This will be -1 if the pixel format does * not have a green component. */ static const int tjGreenOffset[TJ_NUMPF] = { 1, 1, 1, 1, 2, 2, -1, 1, 1, 2, 2, -1 }; /** * Blue offset (in bytes) for a given pixel format. This specifies the number * of bytes that the blue component is offset from the start of the pixel. For * instance, if a pixel of format TJPF_BGRX is stored in * `unsigned char pixel[]`, then the blue component will be * `pixel[tjBlueOffset[TJPF_BGRX]]`. This will be -1 if the pixel format does * not have a blue component. */ static const int tjBlueOffset[TJ_NUMPF] = { 2, 0, 2, 0, 1, 3, -1, 2, 0, 1, 3, -1 }; /** * Alpha offset (in bytes) for a given pixel format. This specifies the number * of bytes that the alpha component is offset from the start of the pixel. * For instance, if a pixel of format TJPF_BGRA is stored in * `unsigned char pixel[]`, then the alpha component will be * `pixel[tjAlphaOffset[TJPF_BGRA]]`. This will be -1 if the pixel format does * not have an alpha component. */ static const int tjAlphaOffset[TJ_NUMPF] = { -1, -1, -1, -1, -1, -1, -1, 3, 3, 0, 0, -1 }; /** * Pixel size (in bytes) for a given pixel format */ static const int tjPixelSize[TJ_NUMPF] = { 3, 3, 4, 4, 4, 4, 1, 4, 4, 4, 4, 4 }; /** * The number of JPEG colorspaces */ #define TJ_NUMCS 5 /** * JPEG colorspaces */ enum TJCS { /** * RGB colorspace. When compressing the JPEG image, the R, G, and B * components in the source image are reordered into image planes, but no * colorspace conversion or subsampling is performed. RGB JPEG images can be * decompressed to packed-pixel images with any of the extended RGB or * grayscale pixel formats, but they cannot be decompressed to planar YUV * images. */ TJCS_RGB = 0, /** * YCbCr colorspace. YCbCr is not an absolute colorspace but rather a * mathematical transformation of RGB designed solely for storage and * transmission. YCbCr images must be converted to RGB before they can * actually be displayed. In the YCbCr colorspace, the Y (luminance) * component represents the black & white portion of the original image, and * the Cb and Cr (chrominance) components represent the color portion of the * original image. Originally, the analog equivalent of this transformation * allowed the same signal to drive both black & white and color televisions, * but JPEG images use YCbCr primarily because it allows the color data to be * optionally subsampled for the purposes of reducing network or disk usage. * YCbCr is the most common JPEG colorspace, and YCbCr JPEG images can be * compressed from and decompressed to packed-pixel images with any of the * extended RGB or grayscale pixel formats. YCbCr JPEG images can also be * compressed from and decompressed to planar YUV images. */ TJCS_YCbCr, /** * Grayscale colorspace. The JPEG image retains only the luminance data (Y * component), and any color data from the source image is discarded. * Grayscale JPEG images can be compressed from and decompressed to * packed-pixel images with any of the extended RGB or grayscale pixel * formats, or they can be compressed from and decompressed to planar YUV * images. */ TJCS_GRAY, /** * CMYK colorspace. When compressing the JPEG image, the C, M, Y, and K * components in the source image are reordered into image planes, but no * colorspace conversion or subsampling is performed. CMYK JPEG images can * only be decompressed to packed-pixel images with the CMYK pixel format. */ TJCS_CMYK, /** * YCCK colorspace. YCCK (AKA "YCbCrK") is not an absolute colorspace but * rather a mathematical transformation of CMYK designed solely for storage * and transmission. It is to CMYK as YCbCr is to RGB. CMYK pixels can be * reversibly transformed into YCCK, and as with YCbCr, the chrominance * components in the YCCK pixels can be subsampled without incurring major * perceptual loss. YCCK JPEG images can only be compressed from and * decompressed to packed-pixel images with the CMYK pixel format. */ TJCS_YCCK }; /** * Rows in the packed-pixel source/destination image are stored in bottom-up * (Windows, OpenGL) order rather than in top-down (X11) order. */ #define TJFLAG_BOTTOMUP 2 /** * When decompressing an image that was compressed using chrominance * subsampling, use the fastest chrominance upsampling algorithm available. * The default is to use smooth upsampling, which creates a smooth transition * between neighboring chrominance components in order to reduce upsampling * artifacts in the decompressed image. */ #define TJFLAG_FASTUPSAMPLE 256 /** * Disable JPEG buffer (re)allocation. If passed to one of the JPEG * compression or transform functions, this flag will cause those functions to * generate an error if the JPEG destination buffer is invalid or too small, * rather than attempt to allocate or reallocate that buffer. */ #define TJFLAG_NOREALLOC 1024 /** * Use the fastest DCT/IDCT algorithm available. The default if this flag is * not specified is implementation-specific. For example, the implementation * of the TurboJPEG API in libjpeg-turbo uses the fast algorithm by default * when compressing, because this has been shown to have only a very slight * effect on accuracy, but it uses the accurate algorithm when decompressing, * because this has been shown to have a larger effect. */ #define TJFLAG_FASTDCT 2048 /** * Use the most accurate DCT/IDCT algorithm available. The default if this * flag is not specified is implementation-specific. For example, the * implementation of the TurboJPEG API in libjpeg-turbo uses the fast algorithm * by default when compressing, because this has been shown to have only a very * slight effect on accuracy, but it uses the accurate algorithm when * decompressing, because this has been shown to have a larger effect. */ #define TJFLAG_ACCURATEDCT 4096 /** * Immediately discontinue the current compression/decompression/transform * operation if a warning (non-fatal error) occurs. The default behavior is to * allow the operation to complete unless a fatal error is encountered. */ #define TJFLAG_STOPONWARNING 8192 /** * Use progressive entropy coding in JPEG images generated by the compression * and transform functions. Progressive entropy coding will generally improve * compression relative to baseline entropy coding (the default), but it will * reduce compression and decompression performance considerably. */ #define TJFLAG_PROGRESSIVE 16384 /** * Limit the number of progressive JPEG scans that the decompression and * transform functions will process. If a progressive JPEG image contains an * unreasonably large number of scans, then this flag will cause the * decompression and transform functions to return an error. The primary * purpose of this is to allow security-critical applications to guard against * an exploit of the progressive JPEG format described in * this report. */ #define TJFLAG_LIMITSCANS 32768 /** * The number of error codes */ #define TJ_NUMERR 2 /** * Error codes */ enum TJERR { /** * The error was non-fatal and recoverable, but the destination image may * still be corrupt. */ TJERR_WARNING = 0, /** * The error was fatal and non-recoverable. */ TJERR_FATAL }; /** * The number of transform operations */ #define TJ_NUMXOP 8 /** * Transform operations for #tjTransform() */ enum TJXOP { /** * Do not transform the position of the image pixels */ TJXOP_NONE = 0, /** * Flip (mirror) image horizontally. This transform is imperfect if there * are any partial MCU blocks on the right edge (see #TJXOPT_PERFECT.) */ TJXOP_HFLIP, /** * Flip (mirror) image vertically. This transform is imperfect if there are * any partial MCU blocks on the bottom edge (see #TJXOPT_PERFECT.) */ TJXOP_VFLIP, /** * Transpose image (flip/mirror along upper left to lower right axis.) This * transform is always perfect. */ TJXOP_TRANSPOSE, /** * Transverse transpose image (flip/mirror along upper right to lower left * axis.) This transform is imperfect if there are any partial MCU blocks in * the image (see #TJXOPT_PERFECT.) */ TJXOP_TRANSVERSE, /** * Rotate image clockwise by 90 degrees. This transform is imperfect if * there are any partial MCU blocks on the bottom edge (see * #TJXOPT_PERFECT.) */ TJXOP_ROT90, /** * Rotate image 180 degrees. This transform is imperfect if there are any * partial MCU blocks in the image (see #TJXOPT_PERFECT.) */ TJXOP_ROT180, /** * Rotate image counter-clockwise by 90 degrees. This transform is imperfect * if there are any partial MCU blocks on the right edge (see * #TJXOPT_PERFECT.) */ TJXOP_ROT270 }; /** * This option will cause #tjTransform() to return an error if the transform is * not perfect. Lossless transforms operate on MCU blocks, whose size depends * on the level of chrominance subsampling used (see #tjMCUWidth and * #tjMCUHeight.) If the image's width or height is not evenly divisible by * the MCU block size, then there will be partial MCU blocks on the right * and/or bottom edges. It is not possible to move these partial MCU blocks to * the top or left of the image, so any transform that would require that is * "imperfect." If this option is not specified, then any partial MCU blocks * that cannot be transformed will be left in place, which will create * odd-looking strips on the right or bottom edge of the image. */ #define TJXOPT_PERFECT 1 /** * This option will cause #tjTransform() to discard any partial MCU blocks that * cannot be transformed. */ #define TJXOPT_TRIM 2 /** * This option will enable lossless cropping. See #tjTransform() for more * information. */ #define TJXOPT_CROP 4 /** * This option will discard the color data in the source image and produce a * grayscale destination image. */ #define TJXOPT_GRAY 8 /** * This option will prevent #tjTransform() from outputting a JPEG image for * this particular transform. (This can be used in conjunction with a custom * filter to capture the transformed DCT coefficients without transcoding * them.) */ #define TJXOPT_NOOUTPUT 16 /** * This option will enable progressive entropy coding in the JPEG image * generated by this particular transform. Progressive entropy coding will * generally improve compression relative to baseline entropy coding (the * default), but it will reduce decompression performance considerably. */ #define TJXOPT_PROGRESSIVE 32 /** * This option will prevent #tjTransform() from copying any extra markers * (including EXIF and ICC profile data) from the source image to the * destination image. */ #define TJXOPT_COPYNONE 64 /** * Scaling factor */ typedef struct { /** * Numerator */ int num; /** * Denominator */ int denom; } tjscalingfactor; /** * Cropping region */ typedef struct { /** * The left boundary of the cropping region. This must be evenly divisible * by the MCU block width (see #tjMCUWidth.) */ int x; /** * The upper boundary of the cropping region. This must be evenly divisible * by the MCU block height (see #tjMCUHeight.) */ int y; /** * The width of the cropping region. Setting this to 0 is the equivalent of * setting it to the width of the source JPEG image - x. */ int w; /** * The height of the cropping region. Setting this to 0 is the equivalent of * setting it to the height of the source JPEG image - y. */ int h; } tjregion; /** * Lossless transform */ typedef struct tjtransform { /** * Cropping region */ tjregion r; /** * One of the @ref TJXOP "transform operations" */ int op; /** * The bitwise OR of one of more of the @ref TJXOPT_COPYNONE * "transform options" */ int options; /** * Arbitrary data that can be accessed within the body of the callback * function */ void *data; /** * A callback function that can be used to modify the DCT coefficients after * they are losslessly transformed but before they are transcoded to a new * JPEG image. This allows for custom filters or other transformations to be * applied in the frequency domain. * * @param coeffs pointer to an array of transformed DCT coefficients. (NOTE: * this pointer is not guaranteed to be valid once the callback returns, so * applications wishing to hand off the DCT coefficients to another function * or library should make a copy of them within the body of the callback.) * * @param arrayRegion #tjregion structure containing the width and height of * the array pointed to by `coeffs` as well as its offset relative to the * component plane. TurboJPEG implementations may choose to split each * component plane into multiple DCT coefficient arrays and call the callback * function once for each array. * * @param planeRegion #tjregion structure containing the width and height of * the component plane to which `coeffs` belongs * * @param componentID ID number of the component plane to which `coeffs` * belongs. (Y, Cb, and Cr have, respectively, ID's of 0, 1, and 2 in * typical JPEG images.) * * @param transformID ID number of the transformed image to which `coeffs` * belongs. This is the same as the index of the transform in the * `transforms` array that was passed to #tjTransform(). * * @param transform a pointer to a #tjtransform structure that specifies the * parameters and/or cropping region for this transform * * @return 0 if the callback was successful, or -1 if an error occurred. */ int (*customFilter) (short *coeffs, tjregion arrayRegion, tjregion planeRegion, int componentIndex, int transformIndex, struct tjtransform *transform); } tjtransform; /** * TurboJPEG instance handle */ typedef void *tjhandle; /** * Pad the given width to the nearest multiple of 4 */ #define TJPAD(width) (((width) + 3) & (~3)) /** * Compute the scaled value of `dimension` using the given scaling factor. * This macro performs the integer equivalent of `ceil(dimension * * scalingFactor)`. */ #define TJSCALED(dimension, scalingFactor) \ (((dimension) * scalingFactor.num + scalingFactor.denom - 1) / \ scalingFactor.denom) #ifdef __cplusplus extern "C" { #endif /** * Create a TurboJPEG compressor instance. * * @return a handle to the newly-created instance, or NULL if an error occurred * (see #tjGetErrorStr2().) */ DLLEXPORT tjhandle tjInitCompress(void); /** * Compress a packed-pixel RGB, grayscale, or CMYK image into a JPEG image. * * @param handle a handle to a TurboJPEG compressor or transformer instance * * @param srcBuf pointer to a buffer containing a packed-pixel RGB, grayscale, * or CMYK source image to be compressed * * @param width width (in pixels) of the source image * * @param pitch bytes per row in the source image. Normally this should be * width * #tjPixelSize[pixelFormat], if the image is unpadded, or * #TJPAD(width * #tjPixelSize[pixelFormat]) if each row of the image * is padded to the nearest multiple of 4 bytes, as is the case for Windows * bitmaps. You can also be clever and use this parameter to skip rows, etc. * Setting this parameter to 0 is the equivalent of setting it to * width * #tjPixelSize[pixelFormat]. * * @param height height (in pixels) of the source image * * @param pixelFormat pixel format of the source image (see @ref TJPF * "Pixel formats".) * * @param jpegBuf address of a pointer to a byte buffer that will receive the * JPEG image. TurboJPEG has the ability to reallocate the JPEG buffer to * accommodate the size of the JPEG image. Thus, you can choose to: * -# pre-allocate the JPEG buffer with an arbitrary size using #tjAlloc() and * let TurboJPEG grow the buffer as needed, * -# set `*jpegBuf` to NULL to tell TurboJPEG to allocate the buffer for you, * or * -# pre-allocate the buffer to a "worst case" size determined by calling * #tjBufSize(). This should ensure that the buffer never has to be * re-allocated. (Setting #TJFLAG_NOREALLOC guarantees that it won't be.) * . * If you choose option 1, then `*jpegSize` should be set to the size of your * pre-allocated buffer. In any case, unless you have set #TJFLAG_NOREALLOC, * you should always check `*jpegBuf` upon return from this function, as it may * have changed. * * @param jpegSize pointer to an unsigned long variable that holds the size of * the JPEG buffer. If `*jpegBuf` points to a pre-allocated buffer, then * `*jpegSize` should be set to the size of the buffer. Upon return, * `*jpegSize` will contain the size of the JPEG image (in bytes.) If * `*jpegBuf` points to a JPEG buffer that is being reused from a previous call * to one of the JPEG compression functions, then `*jpegSize` is ignored. * * @param jpegSubsamp the level of chrominance subsampling to be used when * generating the JPEG image (see @ref TJSAMP * "Chrominance subsampling options".) * * @param jpegQual the image quality of the generated JPEG image (1 = worst, * 100 = best) * * @param flags the bitwise OR of one or more of the @ref TJFLAG_ACCURATEDCT * "flags" * * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr2() * and #tjGetErrorCode().) */ DLLEXPORT int tjCompress2(tjhandle handle, const unsigned char *srcBuf, int width, int pitch, int height, int pixelFormat, unsigned char **jpegBuf, unsigned long *jpegSize, int jpegSubsamp, int jpegQual, int flags); /** * Compress a unified planar YUV image into a JPEG image. * * @param handle a handle to a TurboJPEG compressor or transformer instance * * @param srcBuf pointer to a buffer containing a unified planar YUV source * image to be compressed. The size of this buffer should match the value * returned by #tjBufSizeYUV2() for the given image width, height, row * alignment, and level of chrominance subsampling. The Y, U (Cb), and V (Cr) * image planes should be stored sequentially in the buffer. (Refer to * @ref YUVnotes "YUV Image Format Notes".) * * @param width width (in pixels) of the source image. If the width is not an * even multiple of the MCU block width (see #tjMCUWidth), then an intermediate * buffer copy will be performed. * * @param align row alignment (in bytes) of the source image (must be a power * of 2.) Setting this parameter to n indicates that each row in each plane of * the source image is padded to the nearest multiple of n bytes * (1 = unpadded.) * * @param height height (in pixels) of the source image. If the height is not * an even multiple of the MCU block height (see #tjMCUHeight), then an * intermediate buffer copy will be performed. * * @param subsamp the level of chrominance subsampling used in the source image * (see @ref TJSAMP "Chrominance subsampling options".) * * @param jpegBuf address of a pointer to a byte buffer that will receive the * JPEG image. TurboJPEG has the ability to reallocate the JPEG buffer to * accommodate the size of the JPEG image. Thus, you can choose to: * -# pre-allocate the JPEG buffer with an arbitrary size using #tjAlloc() and * let TurboJPEG grow the buffer as needed, * -# set `*jpegBuf` to NULL to tell TurboJPEG to allocate the buffer for you, * or * -# pre-allocate the buffer to a "worst case" size determined by calling * #tjBufSize(). This should ensure that the buffer never has to be * re-allocated. (Setting #TJFLAG_NOREALLOC guarantees that it won't be.) * . * If you choose option 1, then `*jpegSize` should be set to the size of your * pre-allocated buffer. In any case, unless you have set #TJFLAG_NOREALLOC, * you should always check `*jpegBuf` upon return from this function, as it may * have changed. * * @param jpegSize pointer to an unsigned long variable that holds the size of * the JPEG buffer. If `*jpegBuf` points to a pre-allocated buffer, then * `*jpegSize` should be set to the size of the buffer. Upon return, * `*jpegSize` will contain the size of the JPEG image (in bytes.) If * `*jpegBuf` points to a JPEG buffer that is being reused from a previous call * to one of the JPEG compression functions, then `*jpegSize` is ignored. * * @param jpegQual the image quality of the generated JPEG image (1 = worst, * 100 = best) * * @param flags the bitwise OR of one or more of the @ref TJFLAG_ACCURATEDCT * "flags" * * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr2() * and #tjGetErrorCode().) */ DLLEXPORT int tjCompressFromYUV(tjhandle handle, const unsigned char *srcBuf, int width, int align, int height, int subsamp, unsigned char **jpegBuf, unsigned long *jpegSize, int jpegQual, int flags); /** * Compress a set of Y, U (Cb), and V (Cr) image planes into a JPEG image. * * @param handle a handle to a TurboJPEG compressor or transformer instance * * @param srcPlanes an array of pointers to Y, U (Cb), and V (Cr) image planes * (or just a Y plane, if compressing a grayscale image) that contain a YUV * source image to be compressed. These planes can be contiguous or * non-contiguous in memory. The size of each plane should match the value * returned by #tjPlaneSizeYUV() for the given image width, height, strides, * and level of chrominance subsampling. Refer to @ref YUVnotes * "YUV Image Format Notes" for more details. * * @param width width (in pixels) of the source image. If the width is not an * even multiple of the MCU block width (see #tjMCUWidth), then an intermediate * buffer copy will be performed. * * @param strides an array of integers, each specifying the number of bytes per * row in the corresponding plane of the YUV source image. Setting the stride * for any plane to 0 is the same as setting it to the plane width (see * @ref YUVnotes "YUV Image Format Notes".) If `strides` is NULL, then the * strides for all planes will be set to their respective plane widths. You * can adjust the strides in order to specify an arbitrary amount of row * padding in each plane or to create a JPEG image from a subregion of a larger * planar YUV image. * * @param height height (in pixels) of the source image. If the height is not * an even multiple of the MCU block height (see #tjMCUHeight), then an * intermediate buffer copy will be performed. * * @param subsamp the level of chrominance subsampling used in the source image * (see @ref TJSAMP "Chrominance subsampling options".) * * @param jpegBuf address of a pointer to a byte buffer that will receive the * JPEG image. TurboJPEG has the ability to reallocate the JPEG buffer to * accommodate the size of the JPEG image. Thus, you can choose to: * -# pre-allocate the JPEG buffer with an arbitrary size using #tjAlloc() and * let TurboJPEG grow the buffer as needed, * -# set `*jpegBuf` to NULL to tell TurboJPEG to allocate the buffer for you, * or * -# pre-allocate the buffer to a "worst case" size determined by calling * #tjBufSize(). This should ensure that the buffer never has to be * re-allocated. (Setting #TJFLAG_NOREALLOC guarantees that it won't be.) * . * If you choose option 1, then `*jpegSize` should be set to the size of your * pre-allocated buffer. In any case, unless you have set #TJFLAG_NOREALLOC, * you should always check `*jpegBuf` upon return from this function, as it may * have changed. * * @param jpegSize pointer to an unsigned long variable that holds the size of * the JPEG buffer. If `*jpegBuf` points to a pre-allocated buffer, then * `*jpegSize` should be set to the size of the buffer. Upon return, * `*jpegSize` will contain the size of the JPEG image (in bytes.) If * `*jpegBuf` points to a JPEG buffer that is being reused from a previous call * to one of the JPEG compression functions, then `*jpegSize` is ignored. * * @param jpegQual the image quality of the generated JPEG image (1 = worst, * 100 = best) * * @param flags the bitwise OR of one or more of the @ref TJFLAG_ACCURATEDCT * "flags" * * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr2() * and #tjGetErrorCode().) */ DLLEXPORT int tjCompressFromYUVPlanes(tjhandle handle, const unsigned char **srcPlanes, int width, const int *strides, int height, int subsamp, unsigned char **jpegBuf, unsigned long *jpegSize, int jpegQual, int flags); /** * The maximum size of the buffer (in bytes) required to hold a JPEG image with * the given parameters. The number of bytes returned by this function is * larger than the size of the uncompressed source image. The reason for this * is that the JPEG format uses 16-bit coefficients, so it is possible for a * very high-quality source image with very high-frequency content to expand * rather than compress when converted to the JPEG format. Such images * represent very rare corner cases, but since there is no way to predict the * size of a JPEG image prior to compression, the corner cases have to be * handled. * * @param width width (in pixels) of the image * * @param height height (in pixels) of the image * * @param jpegSubsamp the level of chrominance subsampling to be used when * generating the JPEG image (see @ref TJSAMP * "Chrominance subsampling options".) * * @return the maximum size of the buffer (in bytes) required to hold the * image, or -1 if the arguments are out of bounds. */ DLLEXPORT unsigned long tjBufSize(int width, int height, int jpegSubsamp); /** * The size of the buffer (in bytes) required to hold a unified planar YUV * image with the given parameters. * * @param width width (in pixels) of the image * * @param align row alignment (in bytes) of the image (must be a power of 2.) * Setting this parameter to n specifies that each row in each plane of the * image will be padded to the nearest multiple of n bytes (1 = unpadded.) * * @param height height (in pixels) of the image * * @param subsamp level of chrominance subsampling in the image (see * @ref TJSAMP "Chrominance subsampling options".) * * @return the size of the buffer (in bytes) required to hold the image, or -1 * if the arguments are out of bounds. */ DLLEXPORT unsigned long tjBufSizeYUV2(int width, int align, int height, int subsamp); /** * The size of the buffer (in bytes) required to hold a YUV image plane with * the given parameters. * * @param componentID ID number of the image plane (0 = Y, 1 = U/Cb, 2 = V/Cr) * * @param width width (in pixels) of the YUV image. NOTE: this is the width of * the whole image, not the plane width. * * @param stride bytes per row in the image plane. Setting this to 0 is the * equivalent of setting it to the plane width. * * @param height height (in pixels) of the YUV image. NOTE: this is the height * of the whole image, not the plane height. * * @param subsamp level of chrominance subsampling in the image (see * @ref TJSAMP "Chrominance subsampling options".) * * @return the size of the buffer (in bytes) required to hold the YUV image * plane, or -1 if the arguments are out of bounds. */ DLLEXPORT unsigned long tjPlaneSizeYUV(int componentID, int width, int stride, int height, int subsamp); /** * The plane width of a YUV image plane with the given parameters. Refer to * @ref YUVnotes "YUV Image Format Notes" for a description of plane width. * * @param componentID ID number of the image plane (0 = Y, 1 = U/Cb, 2 = V/Cr) * * @param width width (in pixels) of the YUV image * * @param subsamp level of chrominance subsampling in the image (see * @ref TJSAMP "Chrominance subsampling options".) * * @return the plane width of a YUV image plane with the given parameters, or * -1 if the arguments are out of bounds. */ DLLEXPORT int tjPlaneWidth(int componentID, int width, int subsamp); /** * The plane height of a YUV image plane with the given parameters. Refer to * @ref YUVnotes "YUV Image Format Notes" for a description of plane height. * * @param componentID ID number of the image plane (0 = Y, 1 = U/Cb, 2 = V/Cr) * * @param height height (in pixels) of the YUV image * * @param subsamp level of chrominance subsampling in the image (see * @ref TJSAMP "Chrominance subsampling options".) * * @return the plane height of a YUV image plane with the given parameters, or * -1 if the arguments are out of bounds. */ DLLEXPORT int tjPlaneHeight(int componentID, int height, int subsamp); /** * Encode a packed-pixel RGB or grayscale image into a unified planar YUV * image. This function performs color conversion (which is accelerated in the * libjpeg-turbo implementation) but does not execute any of the other steps in * the JPEG compression process. * * @param handle a handle to a TurboJPEG compressor or transformer instance * * @param srcBuf pointer to a buffer containing a packed-pixel RGB or grayscale * source image to be encoded * * @param width width (in pixels) of the source image * * @param pitch bytes per row in the source image. Normally this should be * width * #tjPixelSize[pixelFormat], if the image is unpadded, or * #TJPAD(width * #tjPixelSize[pixelFormat]) if each row of the image * is padded to the nearest multiple of 4 bytes, as is the case for Windows * bitmaps. You can also be clever and use this parameter to skip rows, etc. * Setting this parameter to 0 is the equivalent of setting it to * width * #tjPixelSize[pixelFormat]. * * @param height height (in pixels) of the source image * * @param pixelFormat pixel format of the source image (see @ref TJPF * "Pixel formats".) * * @param dstBuf pointer to a buffer that will receive the unified planar YUV * image. Use #tjBufSizeYUV2() to determine the appropriate size for this * buffer based on the image width, height, row alignment, and level of * chrominance subsampling. The Y, U (Cb), and V (Cr) image planes will be * stored sequentially in the buffer. (Refer to @ref YUVnotes * "YUV Image Format Notes".) * * @param align row alignment (in bytes) of the YUV image (must be a power of * 2.) Setting this parameter to n will cause each row in each plane of the * YUV image to be padded to the nearest multiple of n bytes (1 = unpadded.) * To generate images suitable for X Video, `align` should be set to 4. * * @param subsamp the level of chrominance subsampling to be used when * generating the YUV image (see @ref TJSAMP * "Chrominance subsampling options".) To generate images suitable for X * Video, `subsamp` should be set to @ref TJSAMP_420. This produces an image * compatible with the I420 (AKA "YUV420P") format. * * @param flags the bitwise OR of one or more of the @ref TJFLAG_ACCURATEDCT * "flags" * * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr2() * and #tjGetErrorCode().) */ DLLEXPORT int tjEncodeYUV3(tjhandle handle, const unsigned char *srcBuf, int width, int pitch, int height, int pixelFormat, unsigned char *dstBuf, int align, int subsamp, int flags); /** * Encode a packed-pixel RGB or grayscale image into separate Y, U (Cb), and * V (Cr) image planes. This function performs color conversion (which is * accelerated in the libjpeg-turbo implementation) but does not execute any of * the other steps in the JPEG compression process. * * @param handle a handle to a TurboJPEG compressor or transformer instance * * @param srcBuf pointer to a buffer containing a packed-pixel RGB or grayscale * source image to be encoded * * @param width width (in pixels) of the source image * * @param pitch bytes per row in the source image. Normally this should be * width * #tjPixelSize[pixelFormat], if the image is unpadded, or * #TJPAD(width * #tjPixelSize[pixelFormat]) if each row of the image * is padded to the nearest multiple of 4 bytes, as is the case for Windows * bitmaps. You can also be clever and use this parameter to skip rows, etc. * Setting this parameter to 0 is the equivalent of setting it to * width * #tjPixelSize[pixelFormat]. * * @param height height (in pixels) of the source image * * @param pixelFormat pixel format of the source image (see @ref TJPF * "Pixel formats".) * * @param dstPlanes an array of pointers to Y, U (Cb), and V (Cr) image planes * (or just a Y plane, if generating a grayscale image) that will receive the * encoded image. These planes can be contiguous or non-contiguous in memory. * Use #tjPlaneSizeYUV() to determine the appropriate size for each plane based * on the image width, height, strides, and level of chrominance subsampling. * Refer to @ref YUVnotes "YUV Image Format Notes" for more details. * * @param strides an array of integers, each specifying the number of bytes per * row in the corresponding plane of the YUV image. Setting the stride for any * plane to 0 is the same as setting it to the plane width (see @ref YUVnotes * "YUV Image Format Notes".) If `strides` is NULL, then the strides for all * planes will be set to their respective plane widths. You can adjust the * strides in order to add an arbitrary amount of row padding to each plane or * to encode an RGB or grayscale image into a subregion of a larger planar YUV * image. * * @param subsamp the level of chrominance subsampling to be used when * generating the YUV image (see @ref TJSAMP * "Chrominance subsampling options".) To generate images suitable for X * Video, `subsamp` should be set to @ref TJSAMP_420. This produces an image * compatible with the I420 (AKA "YUV420P") format. * * @param flags the bitwise OR of one or more of the @ref TJFLAG_ACCURATEDCT * "flags" * * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr2() * and #tjGetErrorCode().) */ DLLEXPORT int tjEncodeYUVPlanes(tjhandle handle, const unsigned char *srcBuf, int width, int pitch, int height, int pixelFormat, unsigned char **dstPlanes, int *strides, int subsamp, int flags); /** * Create a TurboJPEG decompressor instance. * * @return a handle to the newly-created instance, or NULL if an error occurred * (see #tjGetErrorStr2().) */ DLLEXPORT tjhandle tjInitDecompress(void); /** * Retrieve information about a JPEG image without decompressing it, or prime * the decompressor with quantization and Huffman tables. * * @param handle a handle to a TurboJPEG decompressor or transformer instance * * @param jpegBuf pointer to a byte buffer containing a JPEG image or an * "abbreviated table specification" (AKA "tables-only") datastream. Passing a * tables-only datastream to this function primes the decompressor with * quantization and Huffman tables that can be used when decompressing * subsequent "abbreviated image" datastreams. This is useful, for instance, * when decompressing video streams in which all frames share the same * quantization and Huffman tables. * * @param jpegSize size of the JPEG image or tables-only datastream (in bytes) * * @param width pointer to an integer variable that will receive the width (in * pixels) of the JPEG image. If `jpegBuf` points to a tables-only datastream, * then `width` is ignored. * * @param height pointer to an integer variable that will receive the height * (in pixels) of the JPEG image. If `jpegBuf` points to a tables-only * datastream, then `height` is ignored. * * @param jpegSubsamp pointer to an integer variable that will receive the * level of chrominance subsampling used when the JPEG image was compressed * (see @ref TJSAMP "Chrominance subsampling options".) If `jpegBuf` points to * a tables-only datastream, then `jpegSubsamp` is ignored. * * @param jpegColorspace pointer to an integer variable that will receive one * of the JPEG colorspace constants, indicating the colorspace of the JPEG * image (see @ref TJCS "JPEG colorspaces".) If `jpegBuf` points to a * tables-only datastream, then `jpegColorspace` is ignored. * * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr2() * and #tjGetErrorCode().) */ DLLEXPORT int tjDecompressHeader3(tjhandle handle, const unsigned char *jpegBuf, unsigned long jpegSize, int *width, int *height, int *jpegSubsamp, int *jpegColorspace); /** * Returns a list of fractional scaling factors that the JPEG decompressor * supports. * * @param numScalingFactors pointer to an integer variable that will receive * the number of elements in the list * * @return a pointer to a list of fractional scaling factors, or NULL if an * error is encountered (see #tjGetErrorStr2().) */ DLLEXPORT tjscalingfactor *tjGetScalingFactors(int *numScalingFactors); /** * Decompress a JPEG image into a packed-pixel RGB, grayscale, or CMYK image. * * @param handle a handle to a TurboJPEG decompressor or transformer instance * * @param jpegBuf pointer to a byte buffer containing the JPEG image to * decompress * * @param jpegSize size of the JPEG image (in bytes) * * @param dstBuf pointer to a buffer that will receive the packed-pixel * decompressed image. This buffer should normally be `pitch * scaledHeight` * bytes in size, where `scaledHeight` can be determined by calling #TJSCALED() * with the JPEG image height and one of the scaling factors returned by * #tjGetScalingFactors(). The `dstBuf` pointer may also be used to decompress * into a specific region of a larger buffer. * * @param width desired width (in pixels) of the destination image. If this is * different than the width of the JPEG image being decompressed, then * TurboJPEG will use scaling in the JPEG decompressor to generate the largest * possible image that will fit within the desired width. If `width` is set to * 0, then only the height will be considered when determining the scaled image * size. * * @param pitch bytes per row in the destination image. Normally this should * be set to scaledWidth * #tjPixelSize[pixelFormat], if the * destination image should be unpadded, or * #TJPAD(scaledWidth * #tjPixelSize[pixelFormat]) if each row of the * destination image should be padded to the nearest multiple of 4 bytes, as is * the case for Windows bitmaps. (NOTE: `scaledWidth` can be determined by * calling #TJSCALED() with the JPEG image width and one of the scaling factors * returned by #tjGetScalingFactors().) You can also be clever and use the * pitch parameter to skip rows, etc. Setting this parameter to 0 is the * equivalent of setting it to * scaledWidth * #tjPixelSize[pixelFormat]. * * @param height desired height (in pixels) of the destination image. If this * is different than the height of the JPEG image being decompressed, then * TurboJPEG will use scaling in the JPEG decompressor to generate the largest * possible image that will fit within the desired height. If `height` is set * to 0, then only the width will be considered when determining the scaled * image size. * * @param pixelFormat pixel format of the destination image (see @ref * TJPF "Pixel formats".) * * @param flags the bitwise OR of one or more of the @ref TJFLAG_ACCURATEDCT * "flags" * * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr2() * and #tjGetErrorCode().) */ DLLEXPORT int tjDecompress2(tjhandle handle, const unsigned char *jpegBuf, unsigned long jpegSize, unsigned char *dstBuf, int width, int pitch, int height, int pixelFormat, int flags); /** * Decompress a JPEG image into a unified planar YUV image. This function * performs JPEG decompression but leaves out the color conversion step, so a * planar YUV image is generated instead of a packed-pixel image. * * @param handle a handle to a TurboJPEG decompressor or transformer instance * * @param jpegBuf pointer to a byte buffer containing the JPEG image to * decompress * * @param jpegSize size of the JPEG image (in bytes) * * @param dstBuf pointer to a buffer that will receive the unified planar YUV * decompressed image. Use #tjBufSizeYUV2() to determine the appropriate size * for this buffer based on the scaled image width, scaled image height, row * alignment, and level of chrominance subsampling. The Y, U (Cb), and V (Cr) * image planes will be stored sequentially in the buffer. (Refer to * @ref YUVnotes "YUV Image Format Notes".) * * @param width desired width (in pixels) of the YUV image. If this is * different than the width of the JPEG image being decompressed, then * TurboJPEG will use scaling in the JPEG decompressor to generate the largest * possible image that will fit within the desired width. If `width` is set to * 0, then only the height will be considered when determining the scaled image * size. If the scaled width is not an even multiple of the MCU block width * (see #tjMCUWidth), then an intermediate buffer copy will be performed. * * @param align row alignment (in bytes) of the YUV image (must be a power of * 2.) Setting this parameter to n will cause each row in each plane of the * YUV image to be padded to the nearest multiple of n bytes (1 = unpadded.) * To generate images suitable for X Video, `align` should be set to 4. * * @param height desired height (in pixels) of the YUV image. If this is * different than the height of the JPEG image being decompressed, then * TurboJPEG will use scaling in the JPEG decompressor to generate the largest * possible image that will fit within the desired height. If `height` is set * to 0, then only the width will be considered when determining the scaled * image size. If the scaled height is not an even multiple of the MCU block * height (see #tjMCUHeight), then an intermediate buffer copy will be * performed. * * @param flags the bitwise OR of one or more of the @ref TJFLAG_ACCURATEDCT * "flags" * * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr2() * and #tjGetErrorCode().) */ DLLEXPORT int tjDecompressToYUV2(tjhandle handle, const unsigned char *jpegBuf, unsigned long jpegSize, unsigned char *dstBuf, int width, int align, int height, int flags); /** * Decompress a JPEG image into separate Y, U (Cb), and V (Cr) image * planes. This function performs JPEG decompression but leaves out the color * conversion step, so a planar YUV image is generated instead of a * packed-pixel image. * * @param handle a handle to a TurboJPEG decompressor or transformer instance * * @param jpegBuf pointer to a byte buffer containing the JPEG image to * decompress * * @param jpegSize size of the JPEG image (in bytes) * * @param dstPlanes an array of pointers to Y, U (Cb), and V (Cr) image planes * (or just a Y plane, if decompressing a grayscale image) that will receive * the decompressed image. These planes can be contiguous or non-contiguous in * memory. Use #tjPlaneSizeYUV() to determine the appropriate size for each * plane based on the scaled image width, scaled image height, strides, and * level of chrominance subsampling. Refer to @ref YUVnotes * "YUV Image Format Notes" for more details. * * @param width desired width (in pixels) of the YUV image. If this is * different than the width of the JPEG image being decompressed, then * TurboJPEG will use scaling in the JPEG decompressor to generate the largest * possible image that will fit within the desired width. If `width` is set to * 0, then only the height will be considered when determining the scaled image * size. If the scaled width is not an even multiple of the MCU block width * (see #tjMCUWidth), then an intermediate buffer copy will be performed. * * @param strides an array of integers, each specifying the number of bytes per * row in the corresponding plane of the YUV image. Setting the stride for any * plane to 0 is the same as setting it to the scaled plane width (see * @ref YUVnotes "YUV Image Format Notes".) If `strides` is NULL, then the * strides for all planes will be set to their respective scaled plane widths. * You can adjust the strides in order to add an arbitrary amount of row * padding to each plane or to decompress the JPEG image into a subregion of a * larger planar YUV image. * * @param height desired height (in pixels) of the YUV image. If this is * different than the height of the JPEG image being decompressed, then * TurboJPEG will use scaling in the JPEG decompressor to generate the largest * possible image that will fit within the desired height. If `height` is set * to 0, then only the width will be considered when determining the scaled * image size. If the scaled height is not an even multiple of the MCU block * height (see #tjMCUHeight), then an intermediate buffer copy will be * performed. * * @param flags the bitwise OR of one or more of the @ref TJFLAG_ACCURATEDCT * "flags" * * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr2() * and #tjGetErrorCode().) */ DLLEXPORT int tjDecompressToYUVPlanes(tjhandle handle, const unsigned char *jpegBuf, unsigned long jpegSize, unsigned char **dstPlanes, int width, int *strides, int height, int flags); /** * Decode a unified planar YUV image into a packed-pixel RGB or grayscale * image. This function performs color conversion (which is accelerated in the * libjpeg-turbo implementation) but does not execute any of the other steps in * the JPEG decompression process. * * @param handle a handle to a TurboJPEG decompressor or transformer instance * * @param srcBuf pointer to a buffer containing a unified planar YUV source * image to be decoded. The size of this buffer should match the value * returned by #tjBufSizeYUV2() for the given image width, height, row * alignment, and level of chrominance subsampling. The Y, U (Cb), and V (Cr) * image planes should be stored sequentially in the source buffer. (Refer to * @ref YUVnotes "YUV Image Format Notes".) * * @param align row alignment (in bytes) of the YUV source image (must be a * power of 2.) Setting this parameter to n indicates that each row in each * plane of the YUV source image is padded to the nearest multiple of n bytes * (1 = unpadded.) * * @param subsamp the level of chrominance subsampling used in the YUV source * image (see @ref TJSAMP "Chrominance subsampling options".) * * @param dstBuf pointer to a buffer that will receive the packed-pixel decoded * image. This buffer should normally be `pitch * height` bytes in size, but * the `dstBuf` pointer can also be used to decode into a specific region of a * larger buffer. * * @param width width (in pixels) of the source and destination images * * @param pitch bytes per row in the destination image. Normally this should * be set to width * #tjPixelSize[pixelFormat], if the destination * image should be unpadded, or * #TJPAD(width * #tjPixelSize[pixelFormat]) if each row of the * destination image should be padded to the nearest multiple of 4 bytes, as is * the case for Windows bitmaps. You can also be clever and use the pitch * parameter to skip rows, etc. Setting this parameter to 0 is the equivalent * of setting it to width * #tjPixelSize[pixelFormat]. * * @param height height (in pixels) of the source and destination images * * @param pixelFormat pixel format of the destination image (see @ref TJPF * "Pixel formats".) * * @param flags the bitwise OR of one or more of the @ref TJFLAG_ACCURATEDCT * "flags" * * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr2() * and #tjGetErrorCode().) */ DLLEXPORT int tjDecodeYUV(tjhandle handle, const unsigned char *srcBuf, int align, int subsamp, unsigned char *dstBuf, int width, int pitch, int height, int pixelFormat, int flags); /** * Decode a set of Y, U (Cb), and V (Cr) image planes into a packed-pixel RGB * or grayscale image. This function performs color conversion (which is * accelerated in the libjpeg-turbo implementation) but does not execute any of * the other steps in the JPEG decompression process. * * @param handle a handle to a TurboJPEG decompressor or transformer instance * * @param srcPlanes an array of pointers to Y, U (Cb), and V (Cr) image planes * (or just a Y plane, if decoding a grayscale image) that contain a YUV image * to be decoded. These planes can be contiguous or non-contiguous in memory. * The size of each plane should match the value returned by #tjPlaneSizeYUV() * for the given image width, height, strides, and level of chrominance * subsampling. Refer to @ref YUVnotes "YUV Image Format Notes" for more * details. * * @param strides an array of integers, each specifying the number of bytes per * row in the corresponding plane of the YUV source image. Setting the stride * for any plane to 0 is the same as setting it to the plane width (see * @ref YUVnotes "YUV Image Format Notes".) If `strides` is NULL, then the * strides for all planes will be set to their respective plane widths. You * can adjust the strides in order to specify an arbitrary amount of row * padding in each plane or to decode a subregion of a larger planar YUV image. * * @param subsamp the level of chrominance subsampling used in the YUV source * image (see @ref TJSAMP "Chrominance subsampling options".) * * @param dstBuf pointer to a buffer that will receive the packed-pixel decoded * image. This buffer should normally be `pitch * height` bytes in size, but * the `dstBuf` pointer can also be used to decode into a specific region of a * larger buffer. * * @param width width (in pixels) of the source and destination images * * @param pitch bytes per row in the destination image. Normally this should * be set to width * #tjPixelSize[pixelFormat], if the destination * image should be unpadded, or * #TJPAD(width * #tjPixelSize[pixelFormat]) if each row of the * destination image should be padded to the nearest multiple of 4 bytes, as is * the case for Windows bitmaps. You can also be clever and use the pitch * parameter to skip rows, etc. Setting this parameter to 0 is the equivalent * of setting it to width * #tjPixelSize[pixelFormat]. * * @param height height (in pixels) of the source and destination images * * @param pixelFormat pixel format of the destination image (see @ref TJPF * "Pixel formats".) * * @param flags the bitwise OR of one or more of the @ref TJFLAG_ACCURATEDCT * "flags" * * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr2() * and #tjGetErrorCode().) */ DLLEXPORT int tjDecodeYUVPlanes(tjhandle handle, const unsigned char **srcPlanes, const int *strides, int subsamp, unsigned char *dstBuf, int width, int pitch, int height, int pixelFormat, int flags); /** * Create a new TurboJPEG transformer instance. * * @return a handle to the newly-created instance, or NULL if an error * occurred (see #tjGetErrorStr2().) */ DLLEXPORT tjhandle tjInitTransform(void); /** * Losslessly transform a JPEG image into another JPEG image. Lossless * transforms work by moving the raw DCT coefficients from one JPEG image * structure to another without altering the values of the coefficients. While * this is typically faster than decompressing the image, transforming it, and * re-compressing it, lossless transforms are not free. Each lossless * transform requires reading and performing Huffman decoding on all of the * coefficients in the source image, regardless of the size of the destination * image. Thus, this function provides a means of generating multiple * transformed images from the same source or applying multiple transformations * simultaneously, in order to eliminate the need to read the source * coefficients multiple times. * * @param handle a handle to a TurboJPEG transformer instance * * @param jpegBuf pointer to a byte buffer containing the JPEG source image to * transform * * @param jpegSize size of the JPEG source image (in bytes) * * @param n the number of transformed JPEG images to generate * * @param dstBufs pointer to an array of n byte buffers. `dstBufs[i]` will * receive a JPEG image that has been transformed using the parameters in * `transforms[i]`. TurboJPEG has the ability to reallocate the JPEG * destination buffer to accommodate the size of the transformed JPEG image. * Thus, you can choose to: * -# pre-allocate the JPEG destination buffer with an arbitrary size using * #tjAlloc() and let TurboJPEG grow the buffer as needed, * -# set `dstBufs[i]` to NULL to tell TurboJPEG to allocate the buffer for * you, or * -# pre-allocate the buffer to a "worst case" size determined by calling * #tjBufSize() with the transformed or cropped width and height. Under normal * circumstances, this should ensure that the buffer never has to be * re-allocated. (Setting #TJFLAG_NOREALLOC guarantees that it won't be.) * Note, however, that there are some rare cases (such as transforming images * with a large amount of embedded EXIF or ICC profile data) in which the * transformed JPEG image will be larger than the worst-case size, and * #TJFLAG_NOREALLOC cannot be used in those cases. * . * If you choose option 1, then `dstSizes[i]` should be set to the size of your * pre-allocated buffer. In any case, unless you have set #TJFLAG_NOREALLOC, * you should always check `dstBufs[i]` upon return from this function, as it * may have changed. * * @param dstSizes pointer to an array of n unsigned long variables that will * receive the actual sizes (in bytes) of each transformed JPEG image. If * `dstBufs[i]` points to a pre-allocated buffer, then `dstSizes[i]` should be * set to the size of the buffer. Upon return, `dstSizes[i]` will contain the * size of the transformed JPEG image (in bytes.) * * @param transforms pointer to an array of n #tjtransform structures, each of * which specifies the transform parameters and/or cropping region for the * corresponding transformed JPEG image. * * @param flags the bitwise OR of one or more of the @ref TJFLAG_ACCURATEDCT * "flags" * * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr2() * and #tjGetErrorCode().) */ DLLEXPORT int tjTransform(tjhandle handle, const unsigned char *jpegBuf, unsigned long jpegSize, int n, unsigned char **dstBufs, unsigned long *dstSizes, tjtransform *transforms, int flags); /** * Destroy a TurboJPEG compressor, decompressor, or transformer instance. * * @param handle a handle to a TurboJPEG compressor, decompressor or * transformer instance * * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr2().) */ DLLEXPORT int tjDestroy(tjhandle handle); /** * Allocate a byte buffer for use with TurboJPEG. You should always use this * function to allocate the JPEG destination buffer(s) for the compression and * transform functions unless you are disabling automatic buffer (re)allocation * (by setting #TJFLAG_NOREALLOC.) * * @param bytes the number of bytes to allocate * * @return a pointer to a newly-allocated buffer with the specified number of * bytes. * * @sa tjFree() */ DLLEXPORT unsigned char *tjAlloc(int bytes); /** * Load a packed-pixel image from disk into memory. * * @param filename name of a file containing a packed-pixel image in Windows * BMP or PBMPLUS (PPM/PGM) format * * @param width pointer to an integer variable that will receive the width (in * pixels) of the packed-pixel image * * @param align row alignment of the packed-pixel buffer to be returned (must * be a power of 2.) Setting this parameter to n will cause all rows in the * buffer to be padded to the nearest multiple of n bytes (1 = unpadded.) * * @param height pointer to an integer variable that will receive the height * (in pixels) of the packed-pixel image * * @param pixelFormat pointer to an integer variable that specifies or will * receive the pixel format of the packed-pixel buffer. The behavior of * #tjLoadImage() will vary depending on the value of `*pixelFormat` passed to * the function: * - @ref TJPF_UNKNOWN : The packed-pixel buffer returned by this function will * use the most optimal pixel format for the file type, and `*pixelFormat` will * contain the ID of that pixel format upon successful return from this * function. * - @ref TJPF_GRAY : Only PGM files and 8-bit-per-pixel BMP files with a * grayscale colormap can be loaded. * - @ref TJPF_CMYK : The RGB or grayscale pixels stored in the file will be * converted using a quick & dirty algorithm that is suitable only for testing * purposes. (Proper conversion between CMYK and other formats requires a * color management system.) * - Other @ref TJPF "pixel formats" : The packed-pixel buffer will use the * specified pixel format, and pixel format conversion will be performed if * necessary. * * @param flags the bitwise OR of one or more of the @ref TJFLAG_BOTTOMUP * "flags". * * @return a pointer to a newly-allocated buffer containing the packed-pixel * image, converted to the chosen pixel format and with the chosen row * alignment, or NULL if an error occurred (see #tjGetErrorStr2().) This * buffer should be freed using #tjFree(). */ DLLEXPORT unsigned char *tjLoadImage(const char *filename, int *width, int align, int *height, int *pixelFormat, int flags); /** * Save a packed-pixel image from memory to disk. * * @param filename name of a file to which to save the packed-pixel image. The * image will be stored in Windows BMP or PBMPLUS (PPM/PGM) format, depending * on the file extension. * * @param buffer pointer to a buffer containing a packed-pixel RGB, grayscale, * or CMYK image to be saved * * @param width width (in pixels) of the packed-pixel image * * @param pitch bytes per row in the packed-pixel image. Setting this * parameter to 0 is the equivalent of setting it to * width * #tjPixelSize[pixelFormat]. * * @param height height (in pixels) of the packed-pixel image * * @param pixelFormat pixel format of the packed-pixel image (see @ref TJPF * "Pixel formats".) If this parameter is set to @ref TJPF_GRAY, then the * image will be stored in PGM or 8-bit-per-pixel (indexed color) BMP format. * Otherwise, the image will be stored in PPM or 24-bit-per-pixel BMP format. * If this parameter is set to @ref TJPF_CMYK, then the CMYK pixels will be * converted to RGB using a quick & dirty algorithm that is suitable only for * testing purposes. (Proper conversion between CMYK and other formats * requires a color management system.) * * @param flags the bitwise OR of one or more of the @ref TJFLAG_BOTTOMUP * "flags". * * @return 0 if successful, or -1 if an error occurred (see #tjGetErrorStr2().) */ DLLEXPORT int tjSaveImage(const char *filename, unsigned char *buffer, int width, int pitch, int height, int pixelFormat, int flags); /** * Free a byte buffer previously allocated by TurboJPEG. You should always use * this function to free JPEG destination buffer(s) that were automatically * (re)allocated by the compression and transform functions or that were * manually allocated using #tjAlloc(). * * @param buffer address of the buffer to free. If the address is NULL, then * this function has no effect. * * @sa tjAlloc() */ DLLEXPORT void tjFree(unsigned char *buffer); /** * Returns a descriptive error message explaining why the last command failed. * * @param handle a handle to a TurboJPEG compressor, decompressor, or * transformer instance, or NULL if the error was generated by a global * function (but note that retrieving the error message for a global function * is thread-safe only on platforms that support thread-local storage.) * * @return a descriptive error message explaining why the last command failed. */ DLLEXPORT char *tjGetErrorStr2(tjhandle handle); /** * Returns a code indicating the severity of the last error. See * @ref TJERR "Error codes". * * @param handle a handle to a TurboJPEG compressor, decompressor or * transformer instance * * @return a code indicating the severity of the last error. See * @ref TJERR "Error codes". */ DLLEXPORT int tjGetErrorCode(tjhandle handle); /* Backward compatibility functions and macros (nothing to see here) */ /* TurboJPEG 1.0+ */ #define NUMSUBOPT TJ_NUMSAMP #define TJ_444 TJSAMP_444 #define TJ_422 TJSAMP_422 #define TJ_420 TJSAMP_420 #define TJ_411 TJSAMP_420 #define TJ_GRAYSCALE TJSAMP_GRAY #define TJ_BGR 1 #define TJ_BOTTOMUP TJFLAG_BOTTOMUP #define TJ_FORCEMMX TJFLAG_FORCEMMX #define TJ_FORCESSE TJFLAG_FORCESSE #define TJ_FORCESSE2 TJFLAG_FORCESSE2 #define TJ_ALPHAFIRST 64 #define TJ_FORCESSE3 TJFLAG_FORCESSE3 #define TJ_FASTUPSAMPLE TJFLAG_FASTUPSAMPLE DLLEXPORT unsigned long TJBUFSIZE(int width, int height); DLLEXPORT int tjCompress(tjhandle handle, unsigned char *srcBuf, int width, int pitch, int height, int pixelSize, unsigned char *dstBuf, unsigned long *compressedSize, int jpegSubsamp, int jpegQual, int flags); DLLEXPORT int tjDecompress(tjhandle handle, unsigned char *jpegBuf, unsigned long jpegSize, unsigned char *dstBuf, int width, int pitch, int height, int pixelSize, int flags); DLLEXPORT int tjDecompressHeader(tjhandle handle, unsigned char *jpegBuf, unsigned long jpegSize, int *width, int *height); DLLEXPORT char *tjGetErrorStr(void); /* TurboJPEG 1.1+ */ #define TJ_YUV 512 DLLEXPORT unsigned long TJBUFSIZEYUV(int width, int height, int jpegSubsamp); DLLEXPORT int tjDecompressHeader2(tjhandle handle, unsigned char *jpegBuf, unsigned long jpegSize, int *width, int *height, int *jpegSubsamp); DLLEXPORT int tjDecompressToYUV(tjhandle handle, unsigned char *jpegBuf, unsigned long jpegSize, unsigned char *dstBuf, int flags); DLLEXPORT int tjEncodeYUV(tjhandle handle, unsigned char *srcBuf, int width, int pitch, int height, int pixelSize, unsigned char *dstBuf, int subsamp, int flags); /* TurboJPEG 1.2+ */ #define TJFLAG_FORCEMMX 8 #define TJFLAG_FORCESSE 16 #define TJFLAG_FORCESSE2 32 #define TJFLAG_FORCESSE3 128 DLLEXPORT unsigned long tjBufSizeYUV(int width, int height, int subsamp); DLLEXPORT int tjEncodeYUV2(tjhandle handle, unsigned char *srcBuf, int width, int pitch, int height, int pixelFormat, unsigned char *dstBuf, int subsamp, int flags); /** * @} */ #ifdef __cplusplus } #endif #endif libjpeg-turbo-2.1.5/usage.txt000066400000000000000000001125161436506551100161450ustar00rootroot00000000000000NOTE: This file was modified by The libjpeg-turbo Project to include only information relevant to libjpeg-turbo and to wordsmith certain sections. USAGE instructions for the Independent JPEG Group's JPEG software ================================================================= This file describes usage of the JPEG conversion programs cjpeg and djpeg, as well as the utility programs jpegtran, rdjpgcom and wrjpgcom. (See the other documentation files if you wish to use the JPEG library within your own programs.) If you are on a Unix machine you may prefer to read the Unix-style manual pages in files cjpeg.1, djpeg.1, jpegtran.1, rdjpgcom.1, wrjpgcom.1. INTRODUCTION These programs implement JPEG image encoding, decoding, and transcoding. JPEG (pronounced "jay-peg") is a standardized compression method for full-color and grayscale images. GENERAL USAGE We provide two programs, cjpeg to compress an image file into JPEG format, and djpeg to decompress a JPEG file back into a conventional image format. On most systems, you say: cjpeg [switches] [imagefile] >jpegfile or djpeg [switches] [jpegfile] >imagefile The programs read the specified input file, or standard input if none is named. They always write to standard output (with trace/error messages to standard error). These conventions are handy for piping images between programs. If you defined TWO_FILE_COMMANDLINE when compiling the programs, you can instead say: cjpeg [switches] imagefile jpegfile or djpeg [switches] jpegfile imagefile i.e., both the input and output files are named on the command line. This style is a little more foolproof, and it loses no functionality if you don't have pipes. You can also say: cjpeg [switches] -outfile jpegfile imagefile or djpeg [switches] -outfile imagefile jpegfile This syntax works on all systems, so it is useful for scripts. The currently supported image file formats are: PPM (PBMPLUS color format), PGM (PBMPLUS grayscale format), BMP, GIF, and Targa. cjpeg recognizes the input image format automatically, with the exception of some Targa files. You have to tell djpeg which format to generate. JPEG files are in the defacto standard JFIF file format. There are other, less widely used JPEG-based file formats, but we don't support them. All switch names may be abbreviated; for example, -grayscale may be written -gray or -gr. Most of the "basic" switches can be abbreviated to as little as one letter. Upper and lower case are equivalent (-BMP is the same as -bmp). British spellings are also accepted (e.g., -greyscale), though for brevity these are not mentioned below. CJPEG DETAILS The basic command line switches for cjpeg are: -quality N[,...] Scale quantization tables to adjust image quality. Quality is 0 (worst) to 100 (best); default is 75. (See below for more info.) -grayscale Create monochrome JPEG file from color input. By saying -grayscale, you'll get a smaller JPEG file that takes less time to process. -rgb Create RGB JPEG file. Using this switch suppresses the conversion from RGB colorspace input to the default YCbCr JPEG colorspace. -optimize Perform optimization of entropy encoding parameters. Without this, default encoding parameters are used. -optimize usually makes the JPEG file a little smaller, but cjpeg runs somewhat slower and needs much more memory. Image quality and speed of decompression are unaffected by -optimize. -progressive Create progressive JPEG file (see below). -targa Input file is Targa format. Targa files that contain an "identification" field will not be automatically recognized by cjpeg; for such files you must specify -targa to make cjpeg treat the input as Targa format. For most Targa files, you won't need this switch. The -quality switch lets you trade off compressed file size against quality of the reconstructed image: the higher the quality setting, the larger the JPEG file, and the closer the output image will be to the original input. Normally you want to use the lowest quality setting (smallest file) that decompresses into something visually indistinguishable from the original image. For this purpose the quality setting should generally be between 50 and 95 (the default is 75) for photographic images. If you see defects at -quality 75, then go up 5 or 10 counts at a time until you are happy with the output image. (The optimal setting will vary from one image to another.) -quality 100 will generate a quantization table of all 1's, minimizing loss in the quantization step (but there is still information loss in subsampling, as well as roundoff error.) For most images, specifying a quality value above about 95 will increase the size of the compressed file dramatically, and while the quality gain from these higher quality values is measurable (using metrics such as PSNR or SSIM), it is rarely perceivable by human vision. In the other direction, quality values below 50 will produce very small files of low image quality. Settings around 5 to 10 might be useful in preparing an index of a large image library, for example. Try -quality 2 (or so) for some amusing Cubist effects. (Note: quality values below about 25 generate 2-byte quantization tables, which are considered optional in the JPEG standard. cjpeg emits a warning message when you give such a quality value, because some other JPEG programs may be unable to decode the resulting file. Use -baseline if you need to ensure compatibility at low quality values.) The -quality option has been extended in this version of cjpeg to support separate quality settings for luminance and chrominance (or, in general, separate settings for every quantization table slot.) The principle is the same as chrominance subsampling: since the human eye is more sensitive to spatial changes in brightness than spatial changes in color, the chrominance components can be quantized more than the luminance components without incurring any visible image quality loss. However, unlike subsampling, this feature reduces data in the frequency domain instead of the spatial domain, which allows for more fine-grained control. This option is useful in quality-sensitive applications, for which the artifacts generated by subsampling may be unacceptable. The -quality option accepts a comma-separated list of parameters, which respectively refer to the quality levels that should be assigned to the quantization table slots. If there are more q-table slots than parameters, then the last parameter is replicated. Thus, if only one quality parameter is given, this is used for both luminance and chrominance (slots 0 and 1, respectively), preserving the legacy behavior of cjpeg v6b and prior. More (or customized) quantization tables can be set with the -qtables option and assigned to components with the -qslots option (see the "wizard" switches below.) JPEG files generated with separate luminance and chrominance quality are fully compliant with standard JPEG decoders. CAUTION: For this setting to be useful, be sure to pass an argument of -sample 1x1 to cjpeg to disable chrominance subsampling. Otherwise, the default subsampling level (2x2, AKA "4:2:0") will be used. The -progressive switch creates a "progressive JPEG" file. In this type of JPEG file, the data is stored in multiple scans of increasing quality. If the file is being transmitted over a slow communications link, the decoder can use the first scan to display a low-quality image very quickly, and can then improve the display with each subsequent scan. The final image is exactly equivalent to a standard JPEG file of the same quality setting, and the total file size is about the same --- often a little smaller. Switches for advanced users: -arithmetic Use arithmetic coding. CAUTION: arithmetic coded JPEG is not yet widely implemented, so many decoders will be unable to view an arithmetic coded JPEG file at all. -dct int Use accurate integer DCT method (default). -dct fast Use less accurate integer DCT method [legacy feature]. When the Independent JPEG Group's software was first released in 1991, the compression time for a 1-megapixel JPEG image on a mainstream PC was measured in minutes. Thus, the fast integer DCT algorithm provided noticeable performance benefits. On modern CPUs running libjpeg-turbo, however, the compression time for a 1-megapixel JPEG image is measured in milliseconds, and thus the performance benefits of the fast algorithm are much less noticeable. On modern x86/x86-64 CPUs that support AVX2 instructions, the fast and int methods have similar performance. On other types of CPUs, the fast method is generally about 5-15% faster than the int method. For quality levels of 90 and below, there should be little or no perceptible quality difference between the two algorithms. For quality levels above 90, however, the difference between the fast and int methods becomes more pronounced. With quality=97, for instance, the fast method incurs generally about a 1-3 dB loss in PSNR relative to the int method, but this can be larger for some images. Do not use the fast method with quality levels above 97. The algorithm often degenerates at quality=98 and above and can actually produce a more lossy image than if lower quality levels had been used. Also, in libjpeg-turbo, the fast method is not fully accelerated for quality levels above 97, so it will be slower than the int method. -dct float Use floating-point DCT method [legacy feature]. The float method does not produce significantly more accurate results than the int method, and it is much slower. The float method may also give different results on different machines due to varying roundoff behavior, whereas the integer methods should give the same results on all machines. -restart N Emit a JPEG restart marker every N MCU rows, or every N MCU blocks if "B" is attached to the number. -restart 0 (the default) means no restart markers. -smooth N Smooth the input image to eliminate dithering noise. N, ranging from 1 to 100, indicates the strength of smoothing. 0 (the default) means no smoothing. -maxmemory N Set limit for amount of memory to use in processing large images. Value is in thousands of bytes, or millions of bytes if "M" is attached to the number. For example, -max 4m selects 4000000 bytes. If more space is needed, an error will occur. -verbose Enable debug printout. More -v's give more printout. or -debug Also, version information is printed at startup. The -restart option inserts extra markers that allow a JPEG decoder to resynchronize after a transmission error. Without restart markers, any damage to a compressed file will usually ruin the image from the point of the error to the end of the image; with restart markers, the damage is usually confined to the portion of the image up to the next restart marker. Of course, the restart markers occupy extra space. We recommend -restart 1 for images that will be transmitted across unreliable networks such as Usenet. The -smooth option filters the input to eliminate fine-scale noise. This is often useful when converting dithered images to JPEG: a moderate smoothing factor of 10 to 50 gets rid of dithering patterns in the input file, resulting in a smaller JPEG file and a better-looking image. Too large a smoothing factor will visibly blur the image, however. Switches for wizards: -baseline Force baseline-compatible quantization tables to be generated. This clamps quantization values to 8 bits even at low quality settings. (This switch is poorly named, since it does not ensure that the output is actually baseline JPEG. For example, you can use -baseline and -progressive together.) -qtables file Use the quantization tables given in the specified text file. -qslots N[,...] Select which quantization table to use for each color component. -sample HxV[,...] Set JPEG sampling factors for each color component. -scans file Use the scan script given in the specified text file. The "wizard" switches are intended for experimentation with JPEG. If you don't know what you are doing, DON'T USE THEM. These switches are documented further in the file wizard.txt. DJPEG DETAILS The basic command line switches for djpeg are: -colors N Reduce image to at most N colors. This reduces the or -quantize N number of colors used in the output image, so that it can be displayed on a colormapped display or stored in a colormapped file format. For example, if you have an 8-bit display, you'd need to reduce to 256 or fewer colors. (-colors is the recommended name, -quantize is provided only for backwards compatibility.) -fast Select recommended processing options for fast, low quality output. (The default options are chosen for highest quality output.) Currently, this is equivalent to "-dct fast -nosmooth -onepass -dither ordered". -grayscale Force grayscale output even if JPEG file is color. Useful for viewing on monochrome displays; also, djpeg runs noticeably faster in this mode. -rgb Force RGB output even if JPEG file is grayscale. -scale M/N Scale the output image by a factor M/N. Currently the scale factor must be M/8, where M is an integer between 1 and 16 inclusive, or any reduced fraction thereof (such as 1/2, 3/4, etc. Scaling is handy if the image is larger than your screen; also, djpeg runs much faster when scaling down the output. -bmp Select BMP output format (Windows flavor). 8-bit colormapped format is emitted if -colors or -grayscale is specified, or if the JPEG file is grayscale; otherwise, 24-bit full-color format is emitted. -gif Select GIF output format (LZW-compressed). Since GIF does not support more than 256 colors, -colors 256 is assumed (unless you specify a smaller number of colors). If you specify -fast, the default number of colors is 216. -gif0 Select GIF output format (uncompressed). Since GIF does not support more than 256 colors, -colors 256 is assumed (unless you specify a smaller number of colors). If you specify -fast, the default number of colors is 216. -os2 Select BMP output format (OS/2 1.x flavor). 8-bit colormapped format is emitted if -colors or -grayscale is specified, or if the JPEG file is grayscale; otherwise, 24-bit full-color format is emitted. -pnm Select PBMPLUS (PPM/PGM) output format (this is the default format). PGM is emitted if the JPEG file is grayscale or if -grayscale is specified; otherwise PPM is emitted. -targa Select Targa output format. Grayscale format is emitted if the JPEG file is grayscale or if -grayscale is specified; otherwise, colormapped format is emitted if -colors is specified; otherwise, 24-bit full-color format is emitted. Switches for advanced users: -dct int Use accurate integer DCT method (default). -dct fast Use less accurate integer DCT method [legacy feature]. When the Independent JPEG Group's software was first released in 1991, the decompression time for a 1-megapixel JPEG image on a mainstream PC was measured in minutes. Thus, the fast integer DCT algorithm provided noticeable performance benefits. On modern CPUs running libjpeg-turbo, however, the decompression time for a 1-megapixel JPEG image is measured in milliseconds, and thus the performance benefits of the fast algorithm are much less noticeable. On modern x86/x86-64 CPUs that support AVX2 instructions, the fast and int methods have similar performance. On other types of CPUs, the fast method is generally about 5-15% faster than the int method. If the JPEG image was compressed using a quality level of 85 or below, then there should be little or no perceptible quality difference between the two algorithms. When decompressing images that were compressed using quality levels above 85, however, the difference between the fast and int methods becomes more pronounced. With images compressed using quality=97, for instance, the fast method incurs generally about a 4-6 dB loss in PSNR relative to the int method, but this can be larger for some images. If you can avoid it, do not use the fast method when decompressing images that were compressed using quality levels above 97. The algorithm often degenerates for such images and can actually produce a more lossy output image than if the JPEG image had been compressed using lower quality levels. -dct float Use floating-point DCT method [legacy feature]. The float method does not produce significantly more accurate results than the int method, and it is much slower. The float method may also give different results on different machines due to varying roundoff behavior, whereas the integer methods should give the same results on all machines. -dither fs Use Floyd-Steinberg dithering in color quantization. -dither ordered Use ordered dithering in color quantization. -dither none Do not use dithering in color quantization. By default, Floyd-Steinberg dithering is applied when quantizing colors; this is slow but usually produces the best results. Ordered dither is a compromise between speed and quality; no dithering is fast but usually looks awful. Note that these switches have no effect unless color quantization is being done. Ordered dither is only available in -onepass mode. -map FILE Quantize to the colors used in the specified image file. This is useful for producing multiple files with identical color maps, or for forcing a predefined set of colors to be used. The FILE must be a GIF or PPM file. This option overrides -colors and -onepass. -nosmooth Use a faster, lower-quality upsampling routine. -onepass Use one-pass instead of two-pass color quantization. The one-pass method is faster and needs less memory, but it produces a lower-quality image. -onepass is ignored unless you also say -colors N. Also, the one-pass method is always used for grayscale output (the two-pass method is no improvement then). -maxmemory N Set limit for amount of memory to use in processing large images. Value is in thousands of bytes, or millions of bytes if "M" is attached to the number. For example, -max 4m selects 4000000 bytes. If more space is needed, an error will occur. -verbose Enable debug printout. More -v's give more printout. or -debug Also, version information is printed at startup. HINTS FOR CJPEG Color GIF files are not the ideal input for JPEG; JPEG is really intended for compressing full-color (24-bit) images. In particular, don't try to convert cartoons, line drawings, and other images that have only a few distinct colors. GIF works great on these, JPEG does not. If you want to convert a GIF to JPEG, you should experiment with cjpeg's -quality and -smooth options to get a satisfactory conversion. -smooth 10 or so is often helpful. Avoid running an image through a series of JPEG compression/decompression cycles. Image quality loss will accumulate; after ten or so cycles the image may be noticeably worse than it was after one cycle. It's best to use a lossless format while manipulating an image, then convert to JPEG format when you are ready to file the image away. The -optimize option to cjpeg is worth using when you are making a "final" version for posting or archiving. It's also a win when you are using low quality settings to make very small JPEG files; the percentage improvement is often a lot more than it is on larger files. (At present, -optimize mode is always selected when generating progressive JPEG files.) HINTS FOR DJPEG To get a quick preview of an image, use the -grayscale and/or -scale switches. "-grayscale -scale 1/8" is the fastest case. Several options are available that trade off image quality to gain speed. "-fast" turns on the recommended settings. "-dct fast" and/or "-nosmooth" gain speed at a small sacrifice in quality. When producing a color-quantized image, "-onepass -dither ordered" is fast but much lower quality than the default behavior. "-dither none" may give acceptable results in two-pass mode, but is seldom tolerable in one-pass mode. HINTS FOR BOTH PROGRAMS If the memory needed by cjpeg or djpeg exceeds the limit specified by -maxmemory, an error will occur. You can leave out -progressive and -optimize (for cjpeg) or specify -onepass (for djpeg) to reduce memory usage. On machines that have "environment" variables, you can define the environment variable JPEGMEM to set the default memory limit. The value is specified as described for the -maxmemory switch. JPEGMEM overrides the default value specified when the program was compiled, and itself is overridden by an explicit -maxmemory switch. JPEGTRAN jpegtran performs various useful transformations of JPEG files. It can translate the coded representation from one variant of JPEG to another, for example from baseline JPEG to progressive JPEG or vice versa. It can also perform some rearrangements of the image data, for example turning an image from landscape to portrait format by rotation. For EXIF files and JPEG files containing Exif data, you may prefer to use exiftran instead. jpegtran works by rearranging the compressed data (DCT coefficients), without ever fully decoding the image. Therefore, its transformations are lossless: there is no image degradation at all, which would not be true if you used djpeg followed by cjpeg to accomplish the same conversion. But by the same token, jpegtran cannot perform lossy operations such as changing the image quality. However, while the image data is losslessly transformed, metadata can be removed. See the -copy option for specifics. jpegtran uses a command line syntax similar to cjpeg or djpeg. On most systems, you say: jpegtran [switches] [inputfile] >outputfile If you defined TWO_FILE_COMMANDLINE when compiling the program, you can instead say: jpegtran [switches] inputfile outputfile where both the input and output files are JPEG files. To specify the coded JPEG representation used in the output file, jpegtran accepts a subset of the switches recognized by cjpeg: -optimize Perform optimization of entropy encoding parameters. -progressive Create progressive JPEG file. -arithmetic Use arithmetic coding. -restart N Emit a JPEG restart marker every N MCU rows, or every N MCU blocks if "B" is attached to the number. -scans file Use the scan script given in the specified text file. See the previous discussion of cjpeg for more details about these switches. If you specify none of these switches, you get a plain baseline-JPEG output file. The quality setting and so forth are determined by the input file. The image can be losslessly transformed by giving one of these switches: -flip horizontal Mirror image horizontally (left-right). -flip vertical Mirror image vertically (top-bottom). -rotate 90 Rotate image 90 degrees clockwise. -rotate 180 Rotate image 180 degrees. -rotate 270 Rotate image 270 degrees clockwise (or 90 ccw). -transpose Transpose image (across UL-to-LR axis). -transverse Transverse transpose (across UR-to-LL axis). The transpose transformation has no restrictions regarding image dimensions. The other transformations operate rather oddly if the image dimensions are not a multiple of the iMCU size (usually 8 or 16 pixels), because they can only transform complete blocks of DCT coefficient data in the desired way. jpegtran's default behavior when transforming an odd-size image is designed to preserve exact reversibility and mathematical consistency of the transformation set. As stated, transpose is able to flip the entire image area. Horizontal mirroring leaves any partial iMCU column at the right edge untouched, but is able to flip all rows of the image. Similarly, vertical mirroring leaves any partial iMCU row at the bottom edge untouched, but is able to flip all columns. The other transforms can be built up as sequences of transpose and flip operations; for consistency, their actions on edge pixels are defined to be the same as the end result of the corresponding transpose-and-flip sequence. For practical use, you may prefer to discard any untransformable edge pixels rather than having a strange-looking strip along the right and/or bottom edges of a transformed image. To do this, add the -trim switch: -trim Drop non-transformable edge blocks. Obviously, a transformation with -trim is not reversible, so strictly speaking jpegtran with this switch is not lossless. Also, the expected mathematical equivalences between the transformations no longer hold. For example, "-rot 270 -trim" trims only the bottom edge, but "-rot 90 -trim" followed by "-rot 180 -trim" trims both edges. If you are only interested in perfect transformations, add the -perfect switch: -perfect Fail with an error if the transformation is not perfect. For example, you may want to do jpegtran -rot 90 -perfect foo.jpg || djpeg foo.jpg | pnmflip -r90 | cjpeg to do a perfect rotation, if available, or an approximated one if not. This version of jpegtran also offers a lossless crop option, which discards data outside of a given image region but losslessly preserves what is inside. Like the rotate and flip transforms, lossless crop is restricted by the current JPEG format; the upper left corner of the selected region must fall on an iMCU boundary. If it doesn't, then it is silently moved up and/or left to the nearest iMCU boundary (the lower right corner is unchanged.) Thus, the output image covers at least the requested region, but it may cover more. The adjustment of the region dimensions may be optionally disabled by attaching an 'f' character ("force") to the width or height number. The image can be losslessly cropped by giving the switch: -crop WxH+X+Y Crop to a rectangular region of width W and height H, starting at point X,Y. If W or H is larger than the width/height of the input image, then the output image is expanded in size, and the expanded region is filled in with zeros (neutral gray). Attaching an 'f' character ("flatten") to the width number will cause each block in the expanded region to be filled in with the DC coefficient of the nearest block in the input image rather than grayed out. Attaching an 'r' character ("reflect") to the width number will cause the expanded region to be filled in with repeated reflections of the input image rather than grayed out. A complementary lossless wipe option is provided to discard (gray out) data inside a given image region while losslessly preserving what is outside: -wipe WxH+X+Y Wipe (gray out) a rectangular region of width W and height H from the input image, starting at point X,Y. Attaching an 'f' character ("flatten") to the width number will cause the region to be filled with the average of adjacent blocks rather than grayed out. If the wipe region and the region outside the wipe region, when adjusted to the nearest iMCU boundary, form two horizontally adjacent rectangles, then attaching an 'r' character ("reflect") to the width number will cause the wipe region to be filled with repeated reflections of the outside region rather than grayed out. A lossless drop option is also provided, which allows another JPEG image to be inserted ("dropped") into the input image data at a given position, replacing the existing image data at that position: -drop +X+Y filename Drop (insert) another image at point X,Y Both the input image and the drop image must have the same subsampling level. It is best if they also have the same quantization (quality.) Otherwise, the quantization of the output image will be adapted to accommodate the higher of the input image quality and the drop image quality. The trim option can be used with the drop option to requantize the drop image to match the input image. Note that a grayscale image can be dropped into a full-color image or vice versa, as long as the full-color image has no vertical subsampling. If the input image is grayscale and the drop image is full-color, then the chrominance channels from the drop image will be discarded. Other not-strictly-lossless transformation switches are: -grayscale Force grayscale output. This option discards the chrominance channels if the input image is YCbCr (ie, a standard color JPEG), resulting in a grayscale JPEG file. The luminance channel is preserved exactly, so this is a better method of reducing to grayscale than decompression, conversion, and recompression. This switch is particularly handy for fixing a monochrome picture that was mistakenly encoded as a color JPEG. (In such a case, the space savings from getting rid of the near-empty chroma channels won't be large; but the decoding time for a grayscale JPEG is substantially less than that for a color JPEG.) jpegtran also recognizes these switches that control what to do with "extra" markers, such as comment blocks: -copy none Copy no extra markers from source file. This setting suppresses all comments and other metadata in the source file. -copy comments Copy only comment markers. This setting copies comments from the source file but discards any other metadata. -copy icc Copy only ICC profile markers. This setting copies the ICC profile from the source file but discards any other metadata. -copy all Copy all extra markers. This setting preserves miscellaneous markers found in the source file, such as JFIF thumbnails, Exif data, and Photoshop settings. In some files, these extra markers can be sizable. Note that this option will copy thumbnails as-is; they will not be transformed. The default behavior is -copy comments. (Note: in IJG releases v6 and v6a, jpegtran always did the equivalent of -copy none.) Additional switches recognized by jpegtran are: -outfile filename -maxmemory N -verbose -debug These work the same as in cjpeg or djpeg. THE COMMENT UTILITIES The JPEG standard allows "comment" (COM) blocks to occur within a JPEG file. Although the standard doesn't actually define what COM blocks are for, they are widely used to hold user-supplied text strings. This lets you add annotations, titles, index terms, etc to your JPEG files, and later retrieve them as text. COM blocks do not interfere with the image stored in the JPEG file. The maximum size of a COM block is 64K, but you can have as many of them as you like in one JPEG file. We provide two utility programs to display COM block contents and add COM blocks to a JPEG file. rdjpgcom searches a JPEG file and prints the contents of any COM blocks on standard output. The command line syntax is rdjpgcom [-raw] [-verbose] [inputfilename] The switch "-raw" (or just "-r") causes rdjpgcom to output non-printable characters in JPEG comments. These characters are normally escaped for security reasons. The switch "-verbose" (or just "-v") causes rdjpgcom to also display the JPEG image dimensions. If you omit the input file name from the command line, the JPEG file is read from standard input. (This may not work on some operating systems, if binary data can't be read from stdin.) wrjpgcom adds a COM block, containing text you provide, to a JPEG file. Ordinarily, the COM block is added after any existing COM blocks, but you can delete the old COM blocks if you wish. wrjpgcom produces a new JPEG file; it does not modify the input file. DO NOT try to overwrite the input file by directing wrjpgcom's output back into it; on most systems this will just destroy your file. The command line syntax for wrjpgcom is similar to cjpeg's. On most systems, it is wrjpgcom [switches] [inputfilename] The output file is written to standard output. The input file comes from the named file, or from standard input if no input file is named. If you defined TWO_FILE_COMMANDLINE when compiling the program, the syntax is: wrjpgcom [switches] inputfilename outputfilename where both input and output file names must be given explicitly. wrjpgcom understands three switches: -replace Delete any existing COM blocks from the file. -comment "Comment text" Supply new COM text on command line. -cfile name Read text for new COM block from named file. (Switch names can be abbreviated.) If you have only one line of comment text to add, you can provide it on the command line with -comment. The comment text must be surrounded with quotes so that it is treated as a single argument. Longer comments can be read from a text file. If you give neither -comment nor -cfile, then wrjpgcom will read the comment text from standard input. (In this case an input image file name MUST be supplied, so that the source JPEG file comes from somewhere else.) You can enter multiple lines, up to 64KB worth. Type an end-of-file indicator (usually control-D or control-Z) to terminate the comment text entry. wrjpgcom will not add a COM block if the provided comment string is empty. Therefore -replace -comment "" can be used to delete all COM blocks from a file. These utility programs do not depend on the IJG JPEG library. In particular, the source code for rdjpgcom is intended as an illustration of the minimum amount of code required to parse a JPEG file header correctly. libjpeg-turbo-2.1.5/win/000077500000000000000000000000001436506551100150675ustar00rootroot00000000000000libjpeg-turbo-2.1.5/win/gcc/000077500000000000000000000000001436506551100156235ustar00rootroot00000000000000libjpeg-turbo-2.1.5/win/gcc/projectTargets-release.cmake.in000066400000000000000000000052101436506551100236460ustar00rootroot00000000000000#---------------------------------------------------------------- # Generated CMake target import file for configuration "Release". #---------------------------------------------------------------- # Commands may need to know the format version. set(CMAKE_IMPORT_FILE_VERSION 1) # Import target "@CMAKE_PROJECT_NAME@::jpeg" for configuration "Release" set_property(TARGET @CMAKE_PROJECT_NAME@::jpeg APPEND PROPERTY IMPORTED_CONFIGURATIONS RELEASE) set_target_properties(@CMAKE_PROJECT_NAME@::jpeg PROPERTIES IMPORTED_IMPLIB_RELEASE "${_IMPORT_PREFIX}/lib/libjpeg.dll.a" IMPORTED_LOCATION_RELEASE "${_IMPORT_PREFIX}/bin/libjpeg-62.dll" ) list(APPEND _IMPORT_CHECK_TARGETS @CMAKE_PROJECT_NAME@::jpeg ) list(APPEND _IMPORT_CHECK_FILES_FOR_@CMAKE_PROJECT_NAME@::jpeg "${_IMPORT_PREFIX}/lib/libjpeg.dll.a" "${_IMPORT_PREFIX}/bin/libjpeg-62.dll" ) # Import target "@CMAKE_PROJECT_NAME@::turbojpeg" for configuration "Release" set_property(TARGET @CMAKE_PROJECT_NAME@::turbojpeg APPEND PROPERTY IMPORTED_CONFIGURATIONS RELEASE) set_target_properties(@CMAKE_PROJECT_NAME@::turbojpeg PROPERTIES IMPORTED_IMPLIB_RELEASE "${_IMPORT_PREFIX}/lib/libturbojpeg.dll.a" IMPORTED_LOCATION_RELEASE "${_IMPORT_PREFIX}/bin/libturbojpeg.dll" ) list(APPEND _IMPORT_CHECK_TARGETS @CMAKE_PROJECT_NAME@::turbojpeg ) list(APPEND _IMPORT_CHECK_FILES_FOR_@CMAKE_PROJECT_NAME@::turbojpeg "${_IMPORT_PREFIX}/lib/libturbojpeg.dll.a" "${_IMPORT_PREFIX}/bin/libturbojpeg.dll" ) # Import target "@CMAKE_PROJECT_NAME@::turbojpeg-static" for configuration "Release" set_property(TARGET @CMAKE_PROJECT_NAME@::turbojpeg-static APPEND PROPERTY IMPORTED_CONFIGURATIONS RELEASE) set_target_properties(@CMAKE_PROJECT_NAME@::turbojpeg-static PROPERTIES IMPORTED_LINK_INTERFACE_LANGUAGES_RELEASE "ASM_NASM;C" IMPORTED_LOCATION_RELEASE "${_IMPORT_PREFIX}/lib/libturbojpeg.a" ) list(APPEND _IMPORT_CHECK_TARGETS @CMAKE_PROJECT_NAME@::turbojpeg-static ) list(APPEND _IMPORT_CHECK_FILES_FOR_@CMAKE_PROJECT_NAME@::turbojpeg-static "${_IMPORT_PREFIX}/lib/libturbojpeg.a" ) # Import target "@CMAKE_PROJECT_NAME@::jpeg-static" for configuration "Release" set_property(TARGET @CMAKE_PROJECT_NAME@::jpeg-static APPEND PROPERTY IMPORTED_CONFIGURATIONS RELEASE) set_target_properties(@CMAKE_PROJECT_NAME@::jpeg-static PROPERTIES IMPORTED_LINK_INTERFACE_LANGUAGES_RELEASE "ASM_NASM;C" IMPORTED_LOCATION_RELEASE "${_IMPORT_PREFIX}/lib/libjpeg.a" ) list(APPEND _IMPORT_CHECK_TARGETS @CMAKE_PROJECT_NAME@::jpeg-static ) list(APPEND _IMPORT_CHECK_FILES_FOR_@CMAKE_PROJECT_NAME@::jpeg-static "${_IMPORT_PREFIX}/lib/libjpeg.a" ) # Commands beyond this point should not need to know the version. set(CMAKE_IMPORT_FILE_VERSION) libjpeg-turbo-2.1.5/win/jconfig.h.in000066400000000000000000000016531436506551100172710ustar00rootroot00000000000000#define JPEG_LIB_VERSION @JPEG_LIB_VERSION@ #define LIBJPEG_TURBO_VERSION @VERSION@ #define LIBJPEG_TURBO_VERSION_NUMBER @LIBJPEG_TURBO_VERSION_NUMBER@ #cmakedefine C_ARITH_CODING_SUPPORTED #cmakedefine D_ARITH_CODING_SUPPORTED #cmakedefine MEM_SRCDST_SUPPORTED #cmakedefine WITH_SIMD #define BITS_IN_JSAMPLE @BITS_IN_JSAMPLE@ /* use 8 or 12 */ #undef RIGHT_SHIFT_IS_UNSIGNED /* Define "boolean" as unsigned char, not int, per Windows custom */ #ifndef __RPCNDR_H__ /* don't conflict if rpcndr.h already read */ typedef unsigned char boolean; #endif #define HAVE_BOOLEAN /* prevent jmorecfg.h from redefining it */ /* Define "INT32" as int, not long, per Windows custom */ #if !(defined(_BASETSD_H_) || defined(_BASETSD_H)) /* don't conflict if basetsd.h already read */ typedef short INT16; typedef signed int INT32; #endif #define XMD_H /* prevent jmorecfg.h from redefining it */ libjpeg-turbo-2.1.5/win/jpeg.rc.in000066400000000000000000000020631436506551100167500ustar00rootroot00000000000000#include "Winver.h" #include "winres.h" VS_VERSION_INFO VERSIONINFO FILEVERSION @SO_MAJOR_VERSION@,@SO_AGE@,@SO_MINOR_VERSION@,0 PRODUCTVERSION @VERSION_MAJOR@,@VERSION_MINOR@,@VERSION_REVISION@,0 FILEFLAGSMASK 0x17L #ifndef NDEBUG FILEFLAGS VS_FF_DEBUG #else FILEFLAGS 0x0L #endif FILEOS VOS_NT_WINDOWS32 FILETYPE VFT_DLL FILESUBTYPE VFT2_UNKNOWN BEGIN BLOCK "StringFileInfo" BEGIN BLOCK "040904b0" BEGIN VALUE "CompanyName", "@PKGVENDOR@" VALUE "FileDescription", "libjpeg API DLL" VALUE "FileVersion", "@SO_MAJOR_VERSION@,@SO_AGE@,@SO_MINOR_VERSION@,0" VALUE "ProductVersion", "@VERSION@" VALUE "ProductName", "@CMAKE_PROJECT_NAME@" VALUE "InternalName", "jpeg@SO_MAJOR_VERSION@" VALUE "LegalCopyright", L"Copyright \xA9 @COPYRIGHT_YEAR@ The libjpeg-turbo Project and many others" VALUE "OriginalFilename", "jpeg@SO_MAJOR_VERSION@.dll" END END BLOCK "VarFileInfo" BEGIN VALUE "Translation", 0x409, 1200 END END libjpeg-turbo-2.1.5/win/jpeg62-memsrcdst.def000066400000000000000000000057711436506551100206550ustar00rootroot00000000000000EXPORTS jcopy_block_row @ 1 ; jcopy_sample_rows @ 2 ; jdiv_round_up @ 3 ; jinit_1pass_quantizer @ 4 ; jinit_2pass_quantizer @ 5 ; jinit_c_coef_controller @ 6 ; jinit_c_main_controller @ 7 ; jinit_c_master_control @ 8 ; jinit_c_prep_controller @ 9 ; jinit_color_converter @ 10 ; jinit_color_deconverter @ 11 ; jinit_compress_master @ 12 ; jinit_d_coef_controller @ 13 ; jinit_d_main_controller @ 14 ; jinit_d_post_controller @ 15 ; jinit_downsampler @ 16 ; jinit_forward_dct @ 17 ; jinit_huff_decoder @ 18 ; jinit_huff_encoder @ 19 ; jinit_input_controller @ 20 ; jinit_inverse_dct @ 21 ; jinit_marker_reader @ 22 ; jinit_marker_writer @ 23 ; jinit_master_decompress @ 24 ; jinit_memory_mgr @ 25 ; jinit_merged_upsampler @ 26 ; jinit_phuff_decoder @ 27 ; jinit_phuff_encoder @ 28 ; jinit_upsampler @ 29 ; jpeg_CreateCompress @ 30 ; jpeg_CreateDecompress @ 31 ; jpeg_abort @ 32 ; jpeg_abort_compress @ 33 ; jpeg_abort_decompress @ 34 ; jpeg_add_quant_table @ 35 ; jpeg_alloc_huff_table @ 36 ; jpeg_alloc_quant_table @ 37 ; jpeg_calc_output_dimensions @ 38 ; jpeg_consume_input @ 39 ; jpeg_copy_critical_parameters @ 40 ; jpeg_default_colorspace @ 41 ; jpeg_destroy @ 42 ; jpeg_destroy_compress @ 43 ; jpeg_destroy_decompress @ 44 ; jpeg_fdct_float @ 45 ; jpeg_fdct_ifast @ 46 ; jpeg_fdct_islow @ 47 ; jpeg_fill_bit_buffer @ 48 ; jpeg_finish_compress @ 49 ; jpeg_finish_decompress @ 50 ; jpeg_finish_output @ 51 ; jpeg_free_large @ 52 ; jpeg_free_small @ 53 ; jpeg_gen_optimal_table @ 54 ; jpeg_get_large @ 55 ; jpeg_get_small @ 56 ; jpeg_has_multiple_scans @ 57 ; jpeg_huff_decode @ 58 ; jpeg_idct_1x1 @ 59 ; jpeg_idct_2x2 @ 60 ; jpeg_idct_4x4 @ 61 ; jpeg_idct_float @ 62 ; jpeg_idct_ifast @ 63 ; jpeg_idct_islow @ 64 ; jpeg_input_complete @ 65 ; jpeg_make_c_derived_tbl @ 66 ; jpeg_make_d_derived_tbl @ 67 ; jpeg_mem_available @ 68 ; jpeg_mem_init @ 69 ; jpeg_mem_term @ 70 ; jpeg_new_colormap @ 71 ; jpeg_open_backing_store @ 72 ; jpeg_quality_scaling @ 73 ; jpeg_read_coefficients @ 74 ; jpeg_read_header @ 75 ; jpeg_read_raw_data @ 76 ; jpeg_read_scanlines @ 77 ; jpeg_resync_to_restart @ 78 ; jpeg_save_markers @ 79 ; jpeg_set_colorspace @ 80 ; jpeg_set_defaults @ 81 ; jpeg_set_linear_quality @ 82 ; jpeg_set_marker_processor @ 83 ; jpeg_set_quality @ 84 ; jpeg_simple_progression @ 85 ; jpeg_start_compress @ 86 ; jpeg_start_decompress @ 87 ; jpeg_start_output @ 88 ; jpeg_std_error @ 89 ; jpeg_stdio_dest @ 90 ; jpeg_stdio_src @ 91 ; jpeg_suppress_tables @ 92 ; jpeg_write_coefficients @ 93 ; jpeg_write_m_byte @ 94 ; jpeg_write_m_header @ 95 ; jpeg_write_marker @ 96 ; jpeg_write_raw_data @ 97 ; jpeg_write_scanlines @ 98 ; jpeg_write_tables @ 99 ; jround_up @ 100 ; jzero_far @ 101 ; jpeg_mem_dest @ 102 ; jpeg_mem_src @ 103 ; jpeg_skip_scanlines @ 104 ; jpeg_crop_scanline @ 105 ; jpeg_read_icc_profile @ 106 ; jpeg_write_icc_profile @ 107 ; libjpeg-turbo-2.1.5/win/jpeg62.def000066400000000000000000000057121436506551100166510ustar00rootroot00000000000000EXPORTS jcopy_block_row @ 1 ; jcopy_sample_rows @ 2 ; jdiv_round_up @ 3 ; jinit_1pass_quantizer @ 4 ; jinit_2pass_quantizer @ 5 ; jinit_c_coef_controller @ 6 ; jinit_c_main_controller @ 7 ; jinit_c_master_control @ 8 ; jinit_c_prep_controller @ 9 ; jinit_color_converter @ 10 ; jinit_color_deconverter @ 11 ; jinit_compress_master @ 12 ; jinit_d_coef_controller @ 13 ; jinit_d_main_controller @ 14 ; jinit_d_post_controller @ 15 ; jinit_downsampler @ 16 ; jinit_forward_dct @ 17 ; jinit_huff_decoder @ 18 ; jinit_huff_encoder @ 19 ; jinit_input_controller @ 20 ; jinit_inverse_dct @ 21 ; jinit_marker_reader @ 22 ; jinit_marker_writer @ 23 ; jinit_master_decompress @ 24 ; jinit_memory_mgr @ 25 ; jinit_merged_upsampler @ 26 ; jinit_phuff_decoder @ 27 ; jinit_phuff_encoder @ 28 ; jinit_upsampler @ 29 ; jpeg_CreateCompress @ 30 ; jpeg_CreateDecompress @ 31 ; jpeg_abort @ 32 ; jpeg_abort_compress @ 33 ; jpeg_abort_decompress @ 34 ; jpeg_add_quant_table @ 35 ; jpeg_alloc_huff_table @ 36 ; jpeg_alloc_quant_table @ 37 ; jpeg_calc_output_dimensions @ 38 ; jpeg_consume_input @ 39 ; jpeg_copy_critical_parameters @ 40 ; jpeg_default_colorspace @ 41 ; jpeg_destroy @ 42 ; jpeg_destroy_compress @ 43 ; jpeg_destroy_decompress @ 44 ; jpeg_fdct_float @ 45 ; jpeg_fdct_ifast @ 46 ; jpeg_fdct_islow @ 47 ; jpeg_fill_bit_buffer @ 48 ; jpeg_finish_compress @ 49 ; jpeg_finish_decompress @ 50 ; jpeg_finish_output @ 51 ; jpeg_free_large @ 52 ; jpeg_free_small @ 53 ; jpeg_gen_optimal_table @ 54 ; jpeg_get_large @ 55 ; jpeg_get_small @ 56 ; jpeg_has_multiple_scans @ 57 ; jpeg_huff_decode @ 58 ; jpeg_idct_1x1 @ 59 ; jpeg_idct_2x2 @ 60 ; jpeg_idct_4x4 @ 61 ; jpeg_idct_float @ 62 ; jpeg_idct_ifast @ 63 ; jpeg_idct_islow @ 64 ; jpeg_input_complete @ 65 ; jpeg_make_c_derived_tbl @ 66 ; jpeg_make_d_derived_tbl @ 67 ; jpeg_mem_available @ 68 ; jpeg_mem_init @ 69 ; jpeg_mem_term @ 70 ; jpeg_new_colormap @ 71 ; jpeg_open_backing_store @ 72 ; jpeg_quality_scaling @ 73 ; jpeg_read_coefficients @ 74 ; jpeg_read_header @ 75 ; jpeg_read_raw_data @ 76 ; jpeg_read_scanlines @ 77 ; jpeg_resync_to_restart @ 78 ; jpeg_save_markers @ 79 ; jpeg_set_colorspace @ 80 ; jpeg_set_defaults @ 81 ; jpeg_set_linear_quality @ 82 ; jpeg_set_marker_processor @ 83 ; jpeg_set_quality @ 84 ; jpeg_simple_progression @ 85 ; jpeg_start_compress @ 86 ; jpeg_start_decompress @ 87 ; jpeg_start_output @ 88 ; jpeg_std_error @ 89 ; jpeg_stdio_dest @ 90 ; jpeg_stdio_src @ 91 ; jpeg_suppress_tables @ 92 ; jpeg_write_coefficients @ 93 ; jpeg_write_m_byte @ 94 ; jpeg_write_m_header @ 95 ; jpeg_write_marker @ 96 ; jpeg_write_raw_data @ 97 ; jpeg_write_scanlines @ 98 ; jpeg_write_tables @ 99 ; jround_up @ 100 ; jzero_far @ 101 ; jpeg_skip_scanlines @ 102 ; jpeg_crop_scanline @ 103 ; jpeg_read_icc_profile @ 104 ; jpeg_write_icc_profile @ 105 ; libjpeg-turbo-2.1.5/win/jpeg7-memsrcdst.def000066400000000000000000000060741436506551100205710ustar00rootroot00000000000000EXPORTS jcopy_block_row @ 1 ; jcopy_sample_rows @ 2 ; jdiv_round_up @ 3 ; jinit_1pass_quantizer @ 4 ; jinit_2pass_quantizer @ 5 ; jinit_c_coef_controller @ 6 ; jinit_c_main_controller @ 7 ; jinit_c_master_control @ 8 ; jinit_c_prep_controller @ 9 ; jinit_color_converter @ 10 ; jinit_color_deconverter @ 11 ; jinit_compress_master @ 12 ; jinit_d_coef_controller @ 13 ; jinit_d_main_controller @ 14 ; jinit_d_post_controller @ 15 ; jinit_downsampler @ 16 ; jinit_forward_dct @ 17 ; jinit_huff_decoder @ 18 ; jinit_huff_encoder @ 19 ; jinit_input_controller @ 20 ; jinit_inverse_dct @ 21 ; jinit_marker_reader @ 22 ; jinit_marker_writer @ 23 ; jinit_master_decompress @ 24 ; jinit_memory_mgr @ 25 ; jinit_merged_upsampler @ 26 ; jinit_phuff_decoder @ 27 ; jinit_phuff_encoder @ 28 ; jinit_upsampler @ 29 ; jpeg_CreateCompress @ 30 ; jpeg_CreateDecompress @ 31 ; jpeg_abort @ 32 ; jpeg_abort_compress @ 33 ; jpeg_abort_decompress @ 34 ; jpeg_add_quant_table @ 35 ; jpeg_alloc_huff_table @ 36 ; jpeg_alloc_quant_table @ 37 ; jpeg_calc_jpeg_dimensions @ 38 ; jpeg_calc_output_dimensions @ 39 ; jpeg_consume_input @ 40 ; jpeg_copy_critical_parameters @ 41 ; jpeg_default_colorspace @ 42 ; jpeg_default_qtables @ 43 ; jpeg_destroy @ 44 ; jpeg_destroy_compress @ 45 ; jpeg_destroy_decompress @ 46 ; jpeg_fdct_float @ 47 ; jpeg_fdct_ifast @ 48 ; jpeg_fdct_islow @ 49 ; jpeg_fill_bit_buffer @ 50 ; jpeg_finish_compress @ 51 ; jpeg_finish_decompress @ 52 ; jpeg_finish_output @ 53 ; jpeg_free_large @ 54 ; jpeg_free_small @ 55 ; jpeg_gen_optimal_table @ 56 ; jpeg_get_large @ 57 ; jpeg_get_small @ 58 ; jpeg_has_multiple_scans @ 59 ; jpeg_huff_decode @ 60 ; jpeg_idct_1x1 @ 61 ; jpeg_idct_2x2 @ 62 ; jpeg_idct_4x4 @ 63 ; jpeg_idct_float @ 64 ; jpeg_idct_ifast @ 65 ; jpeg_idct_islow @ 66 ; jpeg_input_complete @ 67 ; jpeg_make_c_derived_tbl @ 68 ; jpeg_make_d_derived_tbl @ 69 ; jpeg_mem_available @ 70 ; jpeg_mem_init @ 71 ; jpeg_mem_term @ 72 ; jpeg_new_colormap @ 73 ; jpeg_open_backing_store @ 74 ; jpeg_quality_scaling @ 75 ; jpeg_read_coefficients @ 76 ; jpeg_read_header @ 77 ; jpeg_read_raw_data @ 78 ; jpeg_read_scanlines @ 79 ; jpeg_resync_to_restart @ 80 ; jpeg_save_markers @ 81 ; jpeg_set_colorspace @ 82 ; jpeg_set_defaults @ 83 ; jpeg_set_linear_quality @ 84 ; jpeg_set_marker_processor @ 85 ; jpeg_set_quality @ 86 ; jpeg_simple_progression @ 87 ; jpeg_start_compress @ 88 ; jpeg_start_decompress @ 89 ; jpeg_start_output @ 90 ; jpeg_std_error @ 91 ; jpeg_stdio_dest @ 92 ; jpeg_stdio_src @ 93 ; jpeg_suppress_tables @ 94 ; jpeg_write_coefficients @ 95 ; jpeg_write_m_byte @ 96 ; jpeg_write_m_header @ 97 ; jpeg_write_marker @ 98 ; jpeg_write_raw_data @ 99 ; jpeg_write_scanlines @ 100 ; jpeg_write_tables @ 101 ; jround_up @ 102 ; jzero_far @ 103 ; jpeg_mem_dest @ 104 ; jpeg_mem_src @ 105 ; jpeg_skip_scanlines @ 106 ; jpeg_crop_scanline @ 107 ; jpeg_read_icc_profile @ 108 ; jpeg_write_icc_profile @ 109 ; libjpeg-turbo-2.1.5/win/jpeg7.def000066400000000000000000000060151436506551100165650ustar00rootroot00000000000000EXPORTS jcopy_block_row @ 1 ; jcopy_sample_rows @ 2 ; jdiv_round_up @ 3 ; jinit_1pass_quantizer @ 4 ; jinit_2pass_quantizer @ 5 ; jinit_c_coef_controller @ 6 ; jinit_c_main_controller @ 7 ; jinit_c_master_control @ 8 ; jinit_c_prep_controller @ 9 ; jinit_color_converter @ 10 ; jinit_color_deconverter @ 11 ; jinit_compress_master @ 12 ; jinit_d_coef_controller @ 13 ; jinit_d_main_controller @ 14 ; jinit_d_post_controller @ 15 ; jinit_downsampler @ 16 ; jinit_forward_dct @ 17 ; jinit_huff_decoder @ 18 ; jinit_huff_encoder @ 19 ; jinit_input_controller @ 20 ; jinit_inverse_dct @ 21 ; jinit_marker_reader @ 22 ; jinit_marker_writer @ 23 ; jinit_master_decompress @ 24 ; jinit_memory_mgr @ 25 ; jinit_merged_upsampler @ 26 ; jinit_phuff_decoder @ 27 ; jinit_phuff_encoder @ 28 ; jinit_upsampler @ 29 ; jpeg_CreateCompress @ 30 ; jpeg_CreateDecompress @ 31 ; jpeg_abort @ 32 ; jpeg_abort_compress @ 33 ; jpeg_abort_decompress @ 34 ; jpeg_add_quant_table @ 35 ; jpeg_alloc_huff_table @ 36 ; jpeg_alloc_quant_table @ 37 ; jpeg_calc_jpeg_dimensions @ 38 ; jpeg_calc_output_dimensions @ 39 ; jpeg_consume_input @ 40 ; jpeg_copy_critical_parameters @ 41 ; jpeg_default_colorspace @ 42 ; jpeg_default_qtables @ 43 ; jpeg_destroy @ 44 ; jpeg_destroy_compress @ 45 ; jpeg_destroy_decompress @ 46 ; jpeg_fdct_float @ 47 ; jpeg_fdct_ifast @ 48 ; jpeg_fdct_islow @ 49 ; jpeg_fill_bit_buffer @ 50 ; jpeg_finish_compress @ 51 ; jpeg_finish_decompress @ 52 ; jpeg_finish_output @ 53 ; jpeg_free_large @ 54 ; jpeg_free_small @ 55 ; jpeg_gen_optimal_table @ 56 ; jpeg_get_large @ 57 ; jpeg_get_small @ 58 ; jpeg_has_multiple_scans @ 59 ; jpeg_huff_decode @ 60 ; jpeg_idct_1x1 @ 61 ; jpeg_idct_2x2 @ 62 ; jpeg_idct_4x4 @ 63 ; jpeg_idct_float @ 64 ; jpeg_idct_ifast @ 65 ; jpeg_idct_islow @ 66 ; jpeg_input_complete @ 67 ; jpeg_make_c_derived_tbl @ 68 ; jpeg_make_d_derived_tbl @ 69 ; jpeg_mem_available @ 70 ; jpeg_mem_init @ 71 ; jpeg_mem_term @ 72 ; jpeg_new_colormap @ 73 ; jpeg_open_backing_store @ 74 ; jpeg_quality_scaling @ 75 ; jpeg_read_coefficients @ 76 ; jpeg_read_header @ 77 ; jpeg_read_raw_data @ 78 ; jpeg_read_scanlines @ 79 ; jpeg_resync_to_restart @ 80 ; jpeg_save_markers @ 81 ; jpeg_set_colorspace @ 82 ; jpeg_set_defaults @ 83 ; jpeg_set_linear_quality @ 84 ; jpeg_set_marker_processor @ 85 ; jpeg_set_quality @ 86 ; jpeg_simple_progression @ 87 ; jpeg_start_compress @ 88 ; jpeg_start_decompress @ 89 ; jpeg_start_output @ 90 ; jpeg_std_error @ 91 ; jpeg_stdio_dest @ 92 ; jpeg_stdio_src @ 93 ; jpeg_suppress_tables @ 94 ; jpeg_write_coefficients @ 95 ; jpeg_write_m_byte @ 96 ; jpeg_write_m_header @ 97 ; jpeg_write_marker @ 98 ; jpeg_write_raw_data @ 99 ; jpeg_write_scanlines @ 100 ; jpeg_write_tables @ 101 ; jround_up @ 102 ; jzero_far @ 103 ; jpeg_skip_scanlines @ 104 ; jpeg_crop_scanline @ 105 ; jpeg_read_icc_profile @ 106 ; jpeg_write_icc_profile @ 107 ; libjpeg-turbo-2.1.5/win/jpeg8.def000066400000000000000000000061421436506551100165670ustar00rootroot00000000000000EXPORTS jcopy_block_row @ 1 ; jcopy_sample_rows @ 2 ; jdiv_round_up @ 3 ; jinit_1pass_quantizer @ 4 ; jinit_2pass_quantizer @ 5 ; jinit_c_coef_controller @ 6 ; jinit_c_main_controller @ 7 ; jinit_c_master_control @ 8 ; jinit_c_prep_controller @ 9 ; jinit_color_converter @ 10 ; jinit_color_deconverter @ 11 ; jinit_compress_master @ 12 ; jinit_d_coef_controller @ 13 ; jinit_d_main_controller @ 14 ; jinit_d_post_controller @ 15 ; jinit_downsampler @ 16 ; jinit_forward_dct @ 17 ; jinit_huff_decoder @ 18 ; jinit_huff_encoder @ 19 ; jinit_input_controller @ 20 ; jinit_inverse_dct @ 21 ; jinit_marker_reader @ 22 ; jinit_marker_writer @ 23 ; jinit_master_decompress @ 24 ; jinit_memory_mgr @ 25 ; jinit_merged_upsampler @ 26 ; jinit_phuff_decoder @ 27 ; jinit_phuff_encoder @ 28 ; jinit_upsampler @ 29 ; jpeg_CreateCompress @ 30 ; jpeg_CreateDecompress @ 31 ; jpeg_abort @ 32 ; jpeg_abort_compress @ 33 ; jpeg_abort_decompress @ 34 ; jpeg_add_quant_table @ 35 ; jpeg_alloc_huff_table @ 36 ; jpeg_alloc_quant_table @ 37 ; jpeg_calc_jpeg_dimensions @ 38 ; jpeg_calc_output_dimensions @ 39 ; jpeg_consume_input @ 40 ; jpeg_copy_critical_parameters @ 41 ; jpeg_core_output_dimensions @ 42 ; jpeg_default_colorspace @ 43 ; jpeg_default_qtables @ 44 ; jpeg_destroy @ 45 ; jpeg_destroy_compress @ 46 ; jpeg_destroy_decompress @ 47 ; jpeg_fdct_float @ 48 ; jpeg_fdct_ifast @ 49 ; jpeg_fdct_islow @ 50 ; jpeg_fill_bit_buffer @ 51 ; jpeg_finish_compress @ 52 ; jpeg_finish_decompress @ 53 ; jpeg_finish_output @ 54 ; jpeg_free_large @ 55 ; jpeg_free_small @ 56 ; jpeg_gen_optimal_table @ 57 ; jpeg_get_large @ 58 ; jpeg_get_small @ 59 ; jpeg_has_multiple_scans @ 60 ; jpeg_huff_decode @ 61 ; jpeg_idct_1x1 @ 62 ; jpeg_idct_2x2 @ 63 ; jpeg_idct_4x4 @ 64 ; jpeg_idct_float @ 65 ; jpeg_idct_ifast @ 66 ; jpeg_idct_islow @ 67 ; jpeg_input_complete @ 68 ; jpeg_make_c_derived_tbl @ 69 ; jpeg_make_d_derived_tbl @ 70 ; jpeg_mem_available @ 71 ; jpeg_mem_dest @ 72 ; jpeg_mem_init @ 73 ; jpeg_mem_src @ 74 ; jpeg_mem_term @ 75 ; jpeg_new_colormap @ 76 ; jpeg_open_backing_store @ 77 ; jpeg_quality_scaling @ 78 ; jpeg_read_coefficients @ 79 ; jpeg_read_header @ 80 ; jpeg_read_raw_data @ 81 ; jpeg_read_scanlines @ 82 ; jpeg_resync_to_restart @ 83 ; jpeg_save_markers @ 84 ; jpeg_set_colorspace @ 85 ; jpeg_set_defaults @ 86 ; jpeg_set_linear_quality @ 87 ; jpeg_set_marker_processor @ 88 ; jpeg_set_quality @ 89 ; jpeg_simple_progression @ 90 ; jpeg_start_compress @ 91 ; jpeg_start_decompress @ 92 ; jpeg_start_output @ 93 ; jpeg_std_error @ 94 ; jpeg_stdio_dest @ 95 ; jpeg_stdio_src @ 96 ; jpeg_suppress_tables @ 97 ; jpeg_write_coefficients @ 98 ; jpeg_write_m_byte @ 99 ; jpeg_write_m_header @ 100 ; jpeg_write_marker @ 101 ; jpeg_write_raw_data @ 102 ; jpeg_write_scanlines @ 103 ; jpeg_write_tables @ 104 ; jround_up @ 105 ; jzero_far @ 106 ; jpeg_skip_scanlines @ 107 ; jpeg_crop_scanline @ 108 ; jpeg_read_icc_profile @ 109 ; jpeg_write_icc_profile @ 110 ; libjpeg-turbo-2.1.5/win/projectTargets.cmake.in000066400000000000000000000101321436506551100214730ustar00rootroot00000000000000# Generated by CMake if("${CMAKE_MAJOR_VERSION}.${CMAKE_MINOR_VERSION}" LESS 2.5) message(FATAL_ERROR "CMake >= 2.6.0 required") endif() cmake_policy(PUSH) cmake_policy(VERSION 2.6) #---------------------------------------------------------------- # Generated CMake target import file. #---------------------------------------------------------------- # Commands may need to know the format version. set(CMAKE_IMPORT_FILE_VERSION 1) # Protect against multiple inclusion, which would fail when already imported targets are added once more. set(_targetsDefined) set(_targetsNotDefined) set(_expectedTargets) foreach(_expectedTarget @CMAKE_PROJECT_NAME@::jpeg @CMAKE_PROJECT_NAME@::turbojpeg @CMAKE_PROJECT_NAME@::turbojpeg-static @CMAKE_PROJECT_NAME@::jpeg-static) list(APPEND _expectedTargets ${_expectedTarget}) if(NOT TARGET ${_expectedTarget}) list(APPEND _targetsNotDefined ${_expectedTarget}) endif() if(TARGET ${_expectedTarget}) list(APPEND _targetsDefined ${_expectedTarget}) endif() endforeach() if("${_targetsDefined}" STREQUAL "${_expectedTargets}") unset(_targetsDefined) unset(_targetsNotDefined) unset(_expectedTargets) set(CMAKE_IMPORT_FILE_VERSION) cmake_policy(POP) return() endif() if(NOT "${_targetsDefined}" STREQUAL "") message(FATAL_ERROR "Some (but not all) targets in this export set were already defined.\nTargets Defined: ${_targetsDefined}\nTargets not yet defined: ${_targetsNotDefined}\n") endif() unset(_targetsDefined) unset(_targetsNotDefined) unset(_expectedTargets) # Compute the installation prefix relative to this file. get_filename_component(_IMPORT_PREFIX "${CMAKE_CURRENT_LIST_FILE}" PATH) get_filename_component(_IMPORT_PREFIX "${_IMPORT_PREFIX}" PATH) get_filename_component(_IMPORT_PREFIX "${_IMPORT_PREFIX}" PATH) get_filename_component(_IMPORT_PREFIX "${_IMPORT_PREFIX}" PATH) if(_IMPORT_PREFIX STREQUAL "/") set(_IMPORT_PREFIX "") endif() # Create imported target @CMAKE_PROJECT_NAME@::jpeg add_library(@CMAKE_PROJECT_NAME@::jpeg SHARED IMPORTED) set_target_properties(@CMAKE_PROJECT_NAME@::jpeg PROPERTIES INTERFACE_INCLUDE_DIRECTORIES "${_IMPORT_PREFIX}/include" ) # Create imported target @CMAKE_PROJECT_NAME@::turbojpeg add_library(@CMAKE_PROJECT_NAME@::turbojpeg SHARED IMPORTED) set_target_properties(@CMAKE_PROJECT_NAME@::turbojpeg PROPERTIES INTERFACE_INCLUDE_DIRECTORIES "${_IMPORT_PREFIX}/include" ) # Create imported target @CMAKE_PROJECT_NAME@::turbojpeg-static add_library(@CMAKE_PROJECT_NAME@::turbojpeg-static STATIC IMPORTED) set_target_properties(@CMAKE_PROJECT_NAME@::turbojpeg-static PROPERTIES INTERFACE_INCLUDE_DIRECTORIES "${_IMPORT_PREFIX}/include" ) # Create imported target @CMAKE_PROJECT_NAME@::jpeg-static add_library(@CMAKE_PROJECT_NAME@::jpeg-static STATIC IMPORTED) set_target_properties(@CMAKE_PROJECT_NAME@::jpeg-static PROPERTIES INTERFACE_INCLUDE_DIRECTORIES "${_IMPORT_PREFIX}/include" ) # Load information for each installed configuration. get_filename_component(_DIR "${CMAKE_CURRENT_LIST_FILE}" PATH) file(GLOB CONFIG_FILES "${_DIR}/@CMAKE_PROJECT_NAME@Targets-*.cmake") foreach(f ${CONFIG_FILES}) include(${f}) endforeach() # Cleanup temporary variables. set(_IMPORT_PREFIX) # Loop over all imported files and verify that they actually exist foreach(target ${_IMPORT_CHECK_TARGETS} ) foreach(file ${_IMPORT_CHECK_FILES_FOR_${target}} ) if(NOT EXISTS "${file}" ) message(FATAL_ERROR "The imported target \"${target}\" references the file \"${file}\" but this file does not exist. Possible reasons include: * The file was deleted, renamed, or moved to another location. * An install or uninstall procedure did not complete successfully. * The installation package was faulty and contained \"${CMAKE_CURRENT_LIST_FILE}\" but not all the files it references. ") endif() endforeach() unset(_IMPORT_CHECK_FILES_FOR_${target}) endforeach() unset(_IMPORT_CHECK_TARGETS) # This file does not depend on other imported targets which have # been exported from the same project but in a separate export set. # Commands beyond this point should not need to know the version. set(CMAKE_IMPORT_FILE_VERSION) cmake_policy(POP) libjpeg-turbo-2.1.5/win/turbojpeg.rc.in000066400000000000000000000017531436506551100200310ustar00rootroot00000000000000#include "Winver.h" #include "winres.h" VS_VERSION_INFO VERSIONINFO FILEVERSION 0,@TURBOJPEG_SO_AGE@,0,0 PRODUCTVERSION @VERSION_MAJOR@,@VERSION_MINOR@,@VERSION_REVISION@,0 FILEFLAGSMASK 0x17L #ifndef NDEBUG FILEFLAGS VS_FF_DEBUG #else FILEFLAGS 0x0L #endif FILEOS VOS_NT_WINDOWS32 FILETYPE VFT_DLL FILESUBTYPE VFT2_UNKNOWN BEGIN BLOCK "StringFileInfo" BEGIN BLOCK "040904b0" BEGIN VALUE "CompanyName", "@PKGVENDOR@" VALUE "FileDescription", "TurboJPEG API DLL" VALUE "FileVersion", "0,@TURBOJPEG_SO_AGE@,0,0" VALUE "ProductVersion", "@VERSION@" VALUE "ProductName", "@CMAKE_PROJECT_NAME@" VALUE "InternalName", "turbojpeg" VALUE "LegalCopyright", L"Copyright \xA9 @COPYRIGHT_YEAR@ The libjpeg-turbo Project and many others" VALUE "OriginalFilename", "turbojpeg.dll" END END BLOCK "VarFileInfo" BEGIN VALUE "Translation", 0x409, 1200 END END libjpeg-turbo-2.1.5/win/vc/000077500000000000000000000000001436506551100154775ustar00rootroot00000000000000libjpeg-turbo-2.1.5/win/vc/projectTargets-release.cmake.in000066400000000000000000000051761436506551100235350ustar00rootroot00000000000000#---------------------------------------------------------------- # Generated CMake target import file for configuration "Release". #---------------------------------------------------------------- # Commands may need to know the format version. set(CMAKE_IMPORT_FILE_VERSION 1) # Import target "@CMAKE_PROJECT_NAME@::jpeg" for configuration "Release" set_property(TARGET @CMAKE_PROJECT_NAME@::jpeg APPEND PROPERTY IMPORTED_CONFIGURATIONS RELEASE) set_target_properties(@CMAKE_PROJECT_NAME@::jpeg PROPERTIES IMPORTED_IMPLIB_RELEASE "${_IMPORT_PREFIX}/lib/jpeg.lib" IMPORTED_LOCATION_RELEASE "${_IMPORT_PREFIX}/bin/jpeg62.dll" ) list(APPEND _IMPORT_CHECK_TARGETS @CMAKE_PROJECT_NAME@::jpeg ) list(APPEND _IMPORT_CHECK_FILES_FOR_@CMAKE_PROJECT_NAME@::jpeg "${_IMPORT_PREFIX}/lib/jpeg.lib" "${_IMPORT_PREFIX}/bin/jpeg62.dll" ) # Import target "@CMAKE_PROJECT_NAME@::turbojpeg" for configuration "Release" set_property(TARGET @CMAKE_PROJECT_NAME@::turbojpeg APPEND PROPERTY IMPORTED_CONFIGURATIONS RELEASE) set_target_properties(@CMAKE_PROJECT_NAME@::turbojpeg PROPERTIES IMPORTED_IMPLIB_RELEASE "${_IMPORT_PREFIX}/lib/turbojpeg.lib" IMPORTED_LOCATION_RELEASE "${_IMPORT_PREFIX}/bin/turbojpeg.dll" ) list(APPEND _IMPORT_CHECK_TARGETS @CMAKE_PROJECT_NAME@::turbojpeg ) list(APPEND _IMPORT_CHECK_FILES_FOR_@CMAKE_PROJECT_NAME@::turbojpeg "${_IMPORT_PREFIX}/lib/turbojpeg.lib" "${_IMPORT_PREFIX}/bin/turbojpeg.dll" ) # Import target "@CMAKE_PROJECT_NAME@::turbojpeg-static" for configuration "Release" set_property(TARGET @CMAKE_PROJECT_NAME@::turbojpeg-static APPEND PROPERTY IMPORTED_CONFIGURATIONS RELEASE) set_target_properties(@CMAKE_PROJECT_NAME@::turbojpeg-static PROPERTIES IMPORTED_LINK_INTERFACE_LANGUAGES_RELEASE "ASM_NASM;C" IMPORTED_LOCATION_RELEASE "${_IMPORT_PREFIX}/lib/turbojpeg-static.lib" ) list(APPEND _IMPORT_CHECK_TARGETS @CMAKE_PROJECT_NAME@::turbojpeg-static ) list(APPEND _IMPORT_CHECK_FILES_FOR_@CMAKE_PROJECT_NAME@::turbojpeg-static "${_IMPORT_PREFIX}/lib/turbojpeg-static.lib" ) # Import target "@CMAKE_PROJECT_NAME@::jpeg-static" for configuration "Release" set_property(TARGET @CMAKE_PROJECT_NAME@::jpeg-static APPEND PROPERTY IMPORTED_CONFIGURATIONS RELEASE) set_target_properties(@CMAKE_PROJECT_NAME@::jpeg-static PROPERTIES IMPORTED_LINK_INTERFACE_LANGUAGES_RELEASE "ASM_NASM;C" IMPORTED_LOCATION_RELEASE "${_IMPORT_PREFIX}/lib/jpeg-static.lib" ) list(APPEND _IMPORT_CHECK_TARGETS @CMAKE_PROJECT_NAME@::jpeg-static ) list(APPEND _IMPORT_CHECK_FILES_FOR_@CMAKE_PROJECT_NAME@::jpeg-static "${_IMPORT_PREFIX}/lib/jpeg-static.lib" ) # Commands beyond this point should not need to know the version. set(CMAKE_IMPORT_FILE_VERSION) libjpeg-turbo-2.1.5/wizard.txt000066400000000000000000000250211436506551100163330ustar00rootroot00000000000000Advanced usage instructions for the Independent JPEG Group's JPEG software ========================================================================== This file describes cjpeg's "switches for wizards". The "wizard" switches are intended for experimentation with JPEG by persons who are reasonably knowledgeable about the JPEG standard. If you don't know what you are doing, DON'T USE THESE SWITCHES. You'll likely produce files with worse image quality and/or poorer compression than you'd get from the default settings. Furthermore, these switches must be used with caution when making files intended for general use, because not all JPEG decoders will support unusual JPEG parameter settings. Quantization Table Adjustment ----------------------------- Ordinarily, cjpeg starts with a default set of tables (the same ones given as examples in the JPEG standard) and scales them up or down according to the -quality setting. The details of the scaling algorithm can be found in jcparam.c. At very low quality settings, some quantization table entries can get scaled up to values exceeding 255. Although 2-byte quantization values are supported by the IJG software, this feature is not in baseline JPEG and is not supported by all implementations. If you need to ensure wide compatibility of low-quality files, you can constrain the scaled quantization values to no more than 255 by giving the -baseline switch. Note that use of -baseline will result in poorer quality for the same file size, since more bits than necessary are expended on higher AC coefficients. You can substitute a different set of quantization values by using the -qtables switch: -qtables file Use the quantization tables given in the named file. The specified file should be a text file containing decimal quantization values. The file should contain one to four tables, each of 64 elements. The tables are implicitly numbered 0,1,etc. in order of appearance. Table entries appear in normal array order (NOT in the zigzag order in which they will be stored in the JPEG file). Quantization table files are free format, in that arbitrary whitespace can appear between numbers. Also, comments can be included: a comment starts with '#' and extends to the end of the line. Here is an example file that duplicates the default quantization tables: # Quantization tables given in Annex K (Clause K.1) of # Recommendation ITU-T T.81 (1992) | ISO/IEC 10918-1:1994. # This is table 0 (the luminance table): 16 11 10 16 24 40 51 61 12 12 14 19 26 58 60 55 14 13 16 24 40 57 69 56 14 17 22 29 51 87 80 62 18 22 37 56 68 109 103 77 24 35 55 64 81 104 113 92 49 64 78 87 103 121 120 101 72 92 95 98 112 100 103 99 # This is table 1 (the chrominance table): 17 18 24 47 99 99 99 99 18 21 26 66 99 99 99 99 24 26 56 99 99 99 99 99 47 66 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 If the -qtables switch is used without -quality, then the specified tables are used exactly as-is. If both -qtables and -quality are used, then the tables taken from the file are scaled in the same fashion that the default tables would be scaled for that quality setting. If -baseline appears, then the quantization values are constrained to the range 1-255. By default, cjpeg will use quantization table 0 for luminance components and table 1 for chrominance components. To override this choice, use the -qslots switch: -qslots N[,...] Select which quantization table to use for each color component. The -qslots switch specifies a quantization table number for each color component, in the order in which the components appear in the JPEG SOF marker. For example, to create a separate table for each of Y,Cb,Cr, you could provide a -qtables file that defines three quantization tables and say "-qslots 0,1,2". If -qslots gives fewer table numbers than there are color components, then the last table number is repeated as necessary. Sampling Factor Adjustment -------------------------- By default, cjpeg uses 2:1 horizontal and vertical downsampling when compressing YCbCr data, and no downsampling for all other color spaces. You can override this default with the -sample switch: -sample HxV[,...] Set JPEG sampling factors for each color component. The -sample switch specifies the JPEG sampling factors for each color component, in the order in which they appear in the JPEG SOF marker. If you specify fewer HxV pairs than there are components, the remaining components are set to 1x1 sampling. For example, the default YCbCr setting is equivalent to "-sample 2x2,1x1,1x1", which can be abbreviated to "-sample 2x2". There are still some JPEG decoders in existence that support only 2x1 sampling (also called 4:2:2 sampling). Compatibility with such decoders can be achieved by specifying "-sample 2x1". This is not recommended unless really necessary, since it increases file size and encoding/decoding time with very little quality gain. Multiple Scan / Progression Control ----------------------------------- By default, cjpeg emits a single-scan sequential JPEG file. The -progressive switch generates a progressive JPEG file using a default series of progression parameters. You can create multiple-scan sequential JPEG files or progressive JPEG files with custom progression parameters by using the -scans switch: -scans file Use the scan sequence given in the named file. The specified file should be a text file containing a "scan script". The script specifies the contents and ordering of the scans to be emitted. Each entry in the script defines one scan. A scan definition specifies the components to be included in the scan, and for progressive JPEG it also specifies the progression parameters Ss,Se,Ah,Al for the scan. Scan definitions are separated by semicolons (';'). A semicolon after the last scan definition is optional. Each scan definition contains one to four component indexes, optionally followed by a colon (':') and the four progressive-JPEG parameters. The component indexes denote which color component(s) are to be transmitted in the scan. Components are numbered in the order in which they appear in the JPEG SOF marker, with the first component being numbered 0. (Note that these indexes are not the "component ID" codes assigned to the components, just positional indexes.) The progression parameters for each scan are: Ss Zigzag index of first coefficient included in scan Se Zigzag index of last coefficient included in scan Ah Zero for first scan of a coefficient, else Al of prior scan Al Successive approximation low bit position for scan If the progression parameters are omitted, the values 0,63,0,0 are used, producing a sequential JPEG file. cjpeg automatically determines whether the script represents a progressive or sequential file, by observing whether Ss and Se values other than 0 and 63 appear. (The -progressive switch is not needed to specify this; in fact, it is ignored when -scans appears.) The scan script must meet the JPEG restrictions on progression sequences. (cjpeg checks that the spec's requirements are obeyed.) More specifically: * An AC scan cannot include coefficients from more than one component. * An AC scan for a particular component must be preceded by a DC scan that includes the same component. * Only the first AC scan that includes a particular coefficient for a particular component can include more than one bit from that coefficient. Scan script files are free format, in that arbitrary whitespace can appear between numbers and around punctuation. Also, comments can be included: a comment starts with '#' and extends to the end of the line. For additional legibility, commas or dashes can be placed between values. (Actually, any single punctuation character other than ':' or ';' can be inserted.) For example, the following two scan definitions are equivalent: 0 1 2: 0 63 0 0; 0,1,2 : 0-63, 0,0 ; Here is an example of a scan script that generates a partially interleaved sequential JPEG file: 0; # Y only in first scan 1 2; # Cb and Cr in second scan Here is an example of a progressive scan script using only spectral selection (no successive approximation): # Interleaved DC scan for Y,Cb,Cr: 0,1,2: 0-0, 0, 0 ; # AC scans: 0: 1-2, 0, 0 ; # First two Y AC coefficients 0: 3-5, 0, 0 ; # Three more 1: 1-63, 0, 0 ; # All AC coefficients for Cb 2: 1-63, 0, 0 ; # All AC coefficients for Cr 0: 6-9, 0, 0 ; # More Y coefficients 0: 10-63, 0, 0 ; # Remaining Y coefficients Here is an example of a successive-approximation script. This is equivalent to the default script used by "cjpeg -progressive" for YCbCr images: # Initial DC scan for Y,Cb,Cr (lowest bit not sent) 0,1,2: 0-0, 0, 1 ; # First AC scan: send first 5 Y AC coefficients, minus 2 lowest bits: 0: 1-5, 0, 2 ; # Send all Cr,Cb AC coefficients, minus lowest bit: # (chroma data is usually too small to be worth subdividing further; # but note we send Cr first since eye is least sensitive to Cb) 2: 1-63, 0, 1 ; 1: 1-63, 0, 1 ; # Send remaining Y AC coefficients, minus 2 lowest bits: 0: 6-63, 0, 2 ; # Send next-to-lowest bit of all Y AC coefficients: 0: 1-63, 2, 1 ; # At this point we've sent all but the lowest bit of all coefficients. # Send lowest bit of DC coefficients 0,1,2: 0-0, 1, 0 ; # Send lowest bit of AC coefficients 2: 1-63, 1, 0 ; 1: 1-63, 1, 0 ; # Y AC lowest bit scan is last; it's usually the largest scan 0: 1-63, 1, 0 ; It may be worth pointing out that this script is tuned for quality settings of around 50 to 75. For lower quality settings, you'd probably want to use a script with fewer stages of successive approximation (otherwise the initial scans will be really bad). For higher quality settings, you might want to use more stages of successive approximation (so that the initial scans are not too large). libjpeg-turbo-2.1.5/wrbmp.c000066400000000000000000000431531436506551100155730ustar00rootroot00000000000000/* * wrbmp.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1996, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2013, Linaro Limited. * Copyright (C) 2014-2015, 2017, 2019, 2022, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains routines to write output images in Microsoft "BMP" * format (MS Windows 3.x and OS/2 1.x flavors). * Either 8-bit colormapped or 24-bit full-color format can be written. * No compression is supported. * * These routines may need modification for non-Unix environments or * specialized applications. As they stand, they assume output to * an ordinary stdio stream. * * This code contributed by James Arthur Boucher. */ #include "cmyk.h" #include "cdjpeg.h" /* Common decls for cjpeg/djpeg applications */ #include "jconfigint.h" #ifdef BMP_SUPPORTED /* * To support 12-bit JPEG data, we'd have to scale output down to 8 bits. * This is not yet implemented. */ #if BITS_IN_JSAMPLE != 8 Sorry, this code only copes with 8-bit JSAMPLEs. /* deliberate syntax err */ #endif /* * Since BMP stores scanlines bottom-to-top, we have to invert the image * from JPEG's top-to-bottom order. To do this, we save the outgoing data * in a virtual array during put_pixel_row calls, then actually emit the * BMP file during finish_output. The virtual array contains one JSAMPLE per * pixel if the output is grayscale or colormapped, three if it is full color. */ /* Private version of data destination object */ typedef struct { struct djpeg_dest_struct pub; /* public fields */ boolean is_os2; /* saves the OS2 format request flag */ jvirt_sarray_ptr whole_image; /* needed to reverse row order */ JDIMENSION data_width; /* JSAMPLEs per row */ JDIMENSION row_width; /* physical width of one row in the BMP file */ int pad_bytes; /* number of padding bytes needed per row */ JDIMENSION cur_output_row; /* next row# to write to virtual array */ boolean use_inversion_array; /* TRUE = buffer the whole image, which is stored to disk in bottom-up order, and receive rows from the calling program in top-down order FALSE = the calling program will maintain its own image buffer and write the rows in bottom-up order */ JSAMPLE *iobuffer; /* I/O buffer (used to buffer a single row to disk if use_inversion_array == FALSE) */ } bmp_dest_struct; typedef bmp_dest_struct *bmp_dest_ptr; /* Forward declarations */ LOCAL(void) write_colormap(j_decompress_ptr cinfo, bmp_dest_ptr dest, int map_colors, int map_entry_size); static INLINE boolean is_big_endian(void) { int test_value = 1; if (*(char *)&test_value != 1) return TRUE; return FALSE; } /* * Write some pixel data. * In this module rows_supplied will always be 1. */ METHODDEF(void) put_pixel_rows(j_decompress_ptr cinfo, djpeg_dest_ptr dinfo, JDIMENSION rows_supplied) /* This version is for writing 24-bit pixels */ { bmp_dest_ptr dest = (bmp_dest_ptr)dinfo; JSAMPARRAY image_ptr; register JSAMPROW inptr, outptr; register JDIMENSION col; int pad; if (dest->use_inversion_array) { /* Access next row in virtual array */ image_ptr = (*cinfo->mem->access_virt_sarray) ((j_common_ptr)cinfo, dest->whole_image, dest->cur_output_row, (JDIMENSION)1, TRUE); dest->cur_output_row++; outptr = image_ptr[0]; } else { outptr = dest->iobuffer; } /* Transfer data. Note destination values must be in BGR order * (even though Microsoft's own documents say the opposite). */ inptr = dest->pub.buffer[0]; if (cinfo->out_color_space == JCS_EXT_BGR) { memcpy(outptr, inptr, dest->row_width); outptr += cinfo->output_width * 3; } else if (cinfo->out_color_space == JCS_RGB565) { boolean big_endian = is_big_endian(); unsigned short *inptr2 = (unsigned short *)inptr; for (col = cinfo->output_width; col > 0; col--) { if (big_endian) { outptr[0] = (*inptr2 >> 5) & 0xF8; outptr[1] = ((*inptr2 << 5) & 0xE0) | ((*inptr2 >> 11) & 0x1C); outptr[2] = *inptr2 & 0xF8; } else { outptr[0] = (*inptr2 << 3) & 0xF8; outptr[1] = (*inptr2 >> 3) & 0xFC; outptr[2] = (*inptr2 >> 8) & 0xF8; } outptr += 3; inptr2++; } } else if (cinfo->out_color_space == JCS_CMYK) { for (col = cinfo->output_width; col > 0; col--) { JSAMPLE c = *inptr++, m = *inptr++, y = *inptr++, k = *inptr++; cmyk_to_rgb(c, m, y, k, outptr + 2, outptr + 1, outptr); outptr += 3; } } else { register int rindex = rgb_red[cinfo->out_color_space]; register int gindex = rgb_green[cinfo->out_color_space]; register int bindex = rgb_blue[cinfo->out_color_space]; register int ps = rgb_pixelsize[cinfo->out_color_space]; for (col = cinfo->output_width; col > 0; col--) { outptr[0] = inptr[bindex]; outptr[1] = inptr[gindex]; outptr[2] = inptr[rindex]; outptr += 3; inptr += ps; } } /* Zero out the pad bytes. */ pad = dest->pad_bytes; while (--pad >= 0) *outptr++ = 0; if (!dest->use_inversion_array) fwrite(dest->iobuffer, 1, dest->row_width, dest->pub.output_file); } METHODDEF(void) put_gray_rows(j_decompress_ptr cinfo, djpeg_dest_ptr dinfo, JDIMENSION rows_supplied) /* This version is for grayscale OR quantized color output */ { bmp_dest_ptr dest = (bmp_dest_ptr)dinfo; JSAMPARRAY image_ptr; register JSAMPROW inptr, outptr; int pad; if (dest->use_inversion_array) { /* Access next row in virtual array */ image_ptr = (*cinfo->mem->access_virt_sarray) ((j_common_ptr)cinfo, dest->whole_image, dest->cur_output_row, (JDIMENSION)1, TRUE); dest->cur_output_row++; outptr = image_ptr[0]; } else { outptr = dest->iobuffer; } /* Transfer data. */ inptr = dest->pub.buffer[0]; memcpy(outptr, inptr, cinfo->output_width); outptr += cinfo->output_width; /* Zero out the pad bytes. */ pad = dest->pad_bytes; while (--pad >= 0) *outptr++ = 0; if (!dest->use_inversion_array) fwrite(dest->iobuffer, 1, dest->row_width, dest->pub.output_file); } /* * Finish up at the end of the file. * * Here is where we really output the BMP file. * * First, routines to write the Windows and OS/2 variants of the file header. */ LOCAL(void) write_bmp_header(j_decompress_ptr cinfo, bmp_dest_ptr dest) /* Write a Windows-style BMP file header, including colormap if needed */ { char bmpfileheader[14]; char bmpinfoheader[40]; #define PUT_2B(array, offset, value) \ (array[offset] = (char)((value) & 0xFF), \ array[offset + 1] = (char)(((value) >> 8) & 0xFF)) #define PUT_4B(array, offset, value) \ (array[offset] = (char)((value) & 0xFF), \ array[offset + 1] = (char)(((value) >> 8) & 0xFF), \ array[offset + 2] = (char)(((value) >> 16) & 0xFF), \ array[offset + 3] = (char)(((value) >> 24) & 0xFF)) long headersize, bfSize; int bits_per_pixel, cmap_entries; /* Compute colormap size and total file size */ if (IsExtRGB(cinfo->out_color_space)) { if (cinfo->quantize_colors) { /* Colormapped RGB */ bits_per_pixel = 8; cmap_entries = 256; } else { /* Unquantized, full color RGB */ bits_per_pixel = 24; cmap_entries = 0; } } else if (cinfo->out_color_space == JCS_RGB565 || cinfo->out_color_space == JCS_CMYK) { bits_per_pixel = 24; cmap_entries = 0; } else { /* Grayscale output. We need to fake a 256-entry colormap. */ bits_per_pixel = 8; cmap_entries = 256; } /* File size */ headersize = 14 + 40 + cmap_entries * 4; /* Header and colormap */ bfSize = headersize + (long)dest->row_width * (long)cinfo->output_height; /* Set unused fields of header to 0 */ memset(bmpfileheader, 0, sizeof(bmpfileheader)); memset(bmpinfoheader, 0, sizeof(bmpinfoheader)); /* Fill the file header */ bmpfileheader[0] = 0x42; /* first 2 bytes are ASCII 'B', 'M' */ bmpfileheader[1] = 0x4D; PUT_4B(bmpfileheader, 2, bfSize); /* bfSize */ /* we leave bfReserved1 & bfReserved2 = 0 */ PUT_4B(bmpfileheader, 10, headersize); /* bfOffBits */ /* Fill the info header (Microsoft calls this a BITMAPINFOHEADER) */ PUT_2B(bmpinfoheader, 0, 40); /* biSize */ PUT_4B(bmpinfoheader, 4, cinfo->output_width); /* biWidth */ PUT_4B(bmpinfoheader, 8, cinfo->output_height); /* biHeight */ PUT_2B(bmpinfoheader, 12, 1); /* biPlanes - must be 1 */ PUT_2B(bmpinfoheader, 14, bits_per_pixel); /* biBitCount */ /* we leave biCompression = 0, for none */ /* we leave biSizeImage = 0; this is correct for uncompressed data */ if (cinfo->density_unit == 2) { /* if have density in dots/cm, then */ PUT_4B(bmpinfoheader, 24, (long)(cinfo->X_density * 100)); /* XPels/M */ PUT_4B(bmpinfoheader, 28, (long)(cinfo->Y_density * 100)); /* XPels/M */ } PUT_2B(bmpinfoheader, 32, cmap_entries); /* biClrUsed */ /* we leave biClrImportant = 0 */ if (fwrite(bmpfileheader, 1, 14, dest->pub.output_file) != (size_t)14) ERREXIT(cinfo, JERR_FILE_WRITE); if (fwrite(bmpinfoheader, 1, 40, dest->pub.output_file) != (size_t)40) ERREXIT(cinfo, JERR_FILE_WRITE); if (cmap_entries > 0) write_colormap(cinfo, dest, cmap_entries, 4); } LOCAL(void) write_os2_header(j_decompress_ptr cinfo, bmp_dest_ptr dest) /* Write an OS2-style BMP file header, including colormap if needed */ { char bmpfileheader[14]; char bmpcoreheader[12]; long headersize, bfSize; int bits_per_pixel, cmap_entries; /* Compute colormap size and total file size */ if (IsExtRGB(cinfo->out_color_space)) { if (cinfo->quantize_colors) { /* Colormapped RGB */ bits_per_pixel = 8; cmap_entries = 256; } else { /* Unquantized, full color RGB */ bits_per_pixel = 24; cmap_entries = 0; } } else if (cinfo->out_color_space == JCS_RGB565 || cinfo->out_color_space == JCS_CMYK) { bits_per_pixel = 24; cmap_entries = 0; } else { /* Grayscale output. We need to fake a 256-entry colormap. */ bits_per_pixel = 8; cmap_entries = 256; } /* File size */ headersize = 14 + 12 + cmap_entries * 3; /* Header and colormap */ bfSize = headersize + (long)dest->row_width * (long)cinfo->output_height; /* Set unused fields of header to 0 */ memset(bmpfileheader, 0, sizeof(bmpfileheader)); memset(bmpcoreheader, 0, sizeof(bmpcoreheader)); /* Fill the file header */ bmpfileheader[0] = 0x42; /* first 2 bytes are ASCII 'B', 'M' */ bmpfileheader[1] = 0x4D; PUT_4B(bmpfileheader, 2, bfSize); /* bfSize */ /* we leave bfReserved1 & bfReserved2 = 0 */ PUT_4B(bmpfileheader, 10, headersize); /* bfOffBits */ /* Fill the info header (Microsoft calls this a BITMAPCOREHEADER) */ PUT_2B(bmpcoreheader, 0, 12); /* bcSize */ PUT_2B(bmpcoreheader, 4, cinfo->output_width); /* bcWidth */ PUT_2B(bmpcoreheader, 6, cinfo->output_height); /* bcHeight */ PUT_2B(bmpcoreheader, 8, 1); /* bcPlanes - must be 1 */ PUT_2B(bmpcoreheader, 10, bits_per_pixel); /* bcBitCount */ if (fwrite(bmpfileheader, 1, 14, dest->pub.output_file) != (size_t)14) ERREXIT(cinfo, JERR_FILE_WRITE); if (fwrite(bmpcoreheader, 1, 12, dest->pub.output_file) != (size_t)12) ERREXIT(cinfo, JERR_FILE_WRITE); if (cmap_entries > 0) write_colormap(cinfo, dest, cmap_entries, 3); } /* * Write the colormap. * Windows uses BGR0 map entries; OS/2 uses BGR entries. */ LOCAL(void) write_colormap(j_decompress_ptr cinfo, bmp_dest_ptr dest, int map_colors, int map_entry_size) { JSAMPARRAY colormap = cinfo->colormap; int num_colors = cinfo->actual_number_of_colors; FILE *outfile = dest->pub.output_file; int i; if (colormap != NULL) { if (cinfo->out_color_components == 3) { /* Normal case with RGB colormap */ for (i = 0; i < num_colors; i++) { putc(colormap[2][i], outfile); putc(colormap[1][i], outfile); putc(colormap[0][i], outfile); if (map_entry_size == 4) putc(0, outfile); } } else { /* Grayscale colormap (only happens with grayscale quantization) */ for (i = 0; i < num_colors; i++) { putc(colormap[0][i], outfile); putc(colormap[0][i], outfile); putc(colormap[0][i], outfile); if (map_entry_size == 4) putc(0, outfile); } } } else { /* If no colormap, must be grayscale data. Generate a linear "map". */ for (i = 0; i < 256; i++) { putc(i, outfile); putc(i, outfile); putc(i, outfile); if (map_entry_size == 4) putc(0, outfile); } } /* Pad colormap with zeros to ensure specified number of colormap entries */ if (i > map_colors) ERREXIT1(cinfo, JERR_TOO_MANY_COLORS, i); for (; i < map_colors; i++) { putc(0, outfile); putc(0, outfile); putc(0, outfile); if (map_entry_size == 4) putc(0, outfile); } } /* * Startup: write the file header unless the inversion array is being used. */ METHODDEF(void) start_output_bmp(j_decompress_ptr cinfo, djpeg_dest_ptr dinfo) { bmp_dest_ptr dest = (bmp_dest_ptr)dinfo; if (!dest->use_inversion_array) { /* Write the header and colormap */ if (dest->is_os2) write_os2_header(cinfo, dest); else write_bmp_header(cinfo, dest); } } METHODDEF(void) finish_output_bmp(j_decompress_ptr cinfo, djpeg_dest_ptr dinfo) { bmp_dest_ptr dest = (bmp_dest_ptr)dinfo; register FILE *outfile = dest->pub.output_file; JSAMPARRAY image_ptr; register JSAMPROW data_ptr; JDIMENSION row; cd_progress_ptr progress = (cd_progress_ptr)cinfo->progress; if (dest->use_inversion_array) { /* Write the header and colormap */ if (dest->is_os2) write_os2_header(cinfo, dest); else write_bmp_header(cinfo, dest); /* Write the file body from our virtual array */ for (row = cinfo->output_height; row > 0; row--) { if (progress != NULL) { progress->pub.pass_counter = (long)(cinfo->output_height - row); progress->pub.pass_limit = (long)cinfo->output_height; (*progress->pub.progress_monitor) ((j_common_ptr)cinfo); } image_ptr = (*cinfo->mem->access_virt_sarray) ((j_common_ptr)cinfo, dest->whole_image, row - 1, (JDIMENSION)1, FALSE); data_ptr = image_ptr[0]; fwrite(data_ptr, 1, dest->row_width, outfile); } if (progress != NULL) progress->completed_extra_passes++; } /* Make sure we wrote the output file OK */ fflush(outfile); if (ferror(outfile)) ERREXIT(cinfo, JERR_FILE_WRITE); } /* * The module selection routine for BMP format output. */ GLOBAL(djpeg_dest_ptr) jinit_write_bmp(j_decompress_ptr cinfo, boolean is_os2, boolean use_inversion_array) { bmp_dest_ptr dest; JDIMENSION row_width; /* Create module interface object, fill in method pointers */ dest = (bmp_dest_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, sizeof(bmp_dest_struct)); dest->pub.start_output = start_output_bmp; dest->pub.finish_output = finish_output_bmp; dest->pub.calc_buffer_dimensions = NULL; dest->is_os2 = is_os2; if (cinfo->out_color_space == JCS_GRAYSCALE) { dest->pub.put_pixel_rows = put_gray_rows; } else if (IsExtRGB(cinfo->out_color_space)) { if (cinfo->quantize_colors) dest->pub.put_pixel_rows = put_gray_rows; else dest->pub.put_pixel_rows = put_pixel_rows; } else if (!cinfo->quantize_colors && (cinfo->out_color_space == JCS_RGB565 || cinfo->out_color_space == JCS_CMYK)) { dest->pub.put_pixel_rows = put_pixel_rows; } else { ERREXIT(cinfo, JERR_BMP_COLORSPACE); } /* Calculate output image dimensions so we can allocate space */ jpeg_calc_output_dimensions(cinfo); /* Determine width of rows in the BMP file (padded to 4-byte boundary). */ if (cinfo->out_color_space == JCS_RGB565) { row_width = cinfo->output_width * 2; dest->row_width = dest->data_width = cinfo->output_width * 3; while ((row_width & 3) != 0) row_width++; } else if (!cinfo->quantize_colors && (IsExtRGB(cinfo->out_color_space) || cinfo->out_color_space == JCS_CMYK)) { row_width = cinfo->output_width * cinfo->output_components; dest->row_width = dest->data_width = cinfo->output_width * 3; } else { row_width = cinfo->output_width * cinfo->output_components; dest->row_width = dest->data_width = row_width; } while ((dest->row_width & 3) != 0) dest->row_width++; dest->pad_bytes = (int)(dest->row_width - dest->data_width); if (use_inversion_array) { /* Allocate space for inversion array, prepare for write pass */ dest->whole_image = (*cinfo->mem->request_virt_sarray) ((j_common_ptr)cinfo, JPOOL_IMAGE, FALSE, dest->row_width, cinfo->output_height, (JDIMENSION)1); dest->cur_output_row = 0; if (cinfo->progress != NULL) { cd_progress_ptr progress = (cd_progress_ptr)cinfo->progress; progress->total_extra_passes++; /* count file input as separate pass */ } } else { dest->iobuffer = (JSAMPLE *)(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, dest->row_width); } dest->use_inversion_array = use_inversion_array; /* Create decompressor output buffer. */ dest->pub.buffer = (*cinfo->mem->alloc_sarray) ((j_common_ptr)cinfo, JPOOL_IMAGE, row_width, (JDIMENSION)1); dest->pub.buffer_height = 1; return (djpeg_dest_ptr)dest; } #endif /* BMP_SUPPORTED */ libjpeg-turbo-2.1.5/wrgif.c000066400000000000000000000443301436506551100155600ustar00rootroot00000000000000/* * wrgif.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1997, Thomas G. Lane. * Modified 2015-2019 by Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright (C) 2015, 2017, 2022, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains routines to write output images in GIF format. * * These routines may need modification for non-Unix environments or * specialized applications. As they stand, they assume output to * an ordinary stdio stream. */ /* * This code is loosely based on ppmtogif from the PBMPLUS distribution * of Feb. 1991. That file contains the following copyright notice: * Based on GIFENCODE by David Rowley . * Lempel-Ziv compression based on "compress" by Spencer W. Thomas et al. * Copyright (C) 1989 by Jef Poskanzer. * Permission to use, copy, modify, and distribute this software and its * documentation for any purpose and without fee is hereby granted, provided * that the above copyright notice appear in all copies and that both that * copyright notice and this permission notice appear in supporting * documentation. This software is provided "as is" without express or * implied warranty. */ #include "cdjpeg.h" /* Common decls for cjpeg/djpeg applications */ #ifdef GIF_SUPPORTED #define MAX_LZW_BITS 12 /* maximum LZW code size (4096 symbols) */ typedef INT16 code_int; /* must hold -1 .. 2**MAX_LZW_BITS */ #define LZW_TABLE_SIZE ((code_int)1 << MAX_LZW_BITS) #define HSIZE 5003 /* hash table size for 80% occupancy */ typedef int hash_int; /* must hold -2*HSIZE..2*HSIZE */ #define MAXCODE(n_bits) (((code_int)1 << (n_bits)) - 1) /* * The LZW hash table consists of two parallel arrays: * hash_code[i] code of symbol in slot i, or 0 if empty slot * hash_value[i] symbol's value; undefined if empty slot * where slot values (i) range from 0 to HSIZE-1. The symbol value is * its prefix symbol's code concatenated with its suffix character. * * Algorithm: use open addressing double hashing (no chaining) on the * prefix code / suffix character combination. We do a variant of Knuth's * algorithm D (vol. 3, sec. 6.4) along with G. Knott's relatively-prime * secondary probe. */ typedef int hash_entry; /* must hold (code_int << 8) | byte */ #define HASH_ENTRY(prefix, suffix) ((((hash_entry)(prefix)) << 8) | (suffix)) /* Private version of data destination object */ typedef struct { struct djpeg_dest_struct pub; /* public fields */ j_decompress_ptr cinfo; /* back link saves passing separate parm */ /* State for packing variable-width codes into a bitstream */ int n_bits; /* current number of bits/code */ code_int maxcode; /* maximum code, given n_bits */ int init_bits; /* initial n_bits ... restored after clear */ int cur_accum; /* holds bits not yet output */ int cur_bits; /* # of bits in cur_accum */ /* LZW string construction */ code_int waiting_code; /* symbol not yet output; may be extendable */ boolean first_byte; /* if TRUE, waiting_code is not valid */ /* State for GIF code assignment */ code_int ClearCode; /* clear code (doesn't change) */ code_int EOFCode; /* EOF code (ditto) */ code_int free_code; /* LZW: first not-yet-used symbol code */ code_int code_counter; /* not LZW: counts output symbols */ /* LZW hash table */ code_int *hash_code; /* => hash table of symbol codes */ hash_entry *hash_value; /* => hash table of symbol values */ /* GIF data packet construction buffer */ int bytesinpkt; /* # of bytes in current packet */ char packetbuf[256]; /* workspace for accumulating packet */ } gif_dest_struct; typedef gif_dest_struct *gif_dest_ptr; /* * Routines to package finished data bytes into GIF data blocks. * A data block consists of a count byte (1..255) and that many data bytes. */ LOCAL(void) flush_packet(gif_dest_ptr dinfo) /* flush any accumulated data */ { if (dinfo->bytesinpkt > 0) { /* never write zero-length packet */ dinfo->packetbuf[0] = (char)dinfo->bytesinpkt++; if (fwrite(dinfo->packetbuf, 1, dinfo->bytesinpkt, dinfo->pub.output_file) != (size_t)dinfo->bytesinpkt) ERREXIT(dinfo->cinfo, JERR_FILE_WRITE); dinfo->bytesinpkt = 0; } } /* Add a character to current packet; flush to disk if necessary */ #define CHAR_OUT(dinfo, c) { \ (dinfo)->packetbuf[++(dinfo)->bytesinpkt] = (char)(c); \ if ((dinfo)->bytesinpkt >= 255) \ flush_packet(dinfo); \ } /* Routine to convert variable-width codes into a byte stream */ LOCAL(void) output(gif_dest_ptr dinfo, code_int code) /* Emit a code of n_bits bits */ /* Uses cur_accum and cur_bits to reblock into 8-bit bytes */ { dinfo->cur_accum |= ((long)code) << dinfo->cur_bits; dinfo->cur_bits += dinfo->n_bits; while (dinfo->cur_bits >= 8) { CHAR_OUT(dinfo, dinfo->cur_accum & 0xFF); dinfo->cur_accum >>= 8; dinfo->cur_bits -= 8; } /* * If the next entry is going to be too big for the code size, * then increase it, if possible. We do this here to ensure * that it's done in sync with the decoder's codesize increases. */ if (dinfo->free_code > dinfo->maxcode) { dinfo->n_bits++; if (dinfo->n_bits == MAX_LZW_BITS) dinfo->maxcode = LZW_TABLE_SIZE; /* free_code will never exceed this */ else dinfo->maxcode = MAXCODE(dinfo->n_bits); } } /* Compression initialization & termination */ LOCAL(void) clear_hash(gif_dest_ptr dinfo) /* Fill the hash table with empty entries */ { /* It's sufficient to zero hash_code[] */ memset(dinfo->hash_code, 0, HSIZE * sizeof(code_int)); } LOCAL(void) clear_block(gif_dest_ptr dinfo) /* Reset compressor and issue a Clear code */ { clear_hash(dinfo); /* delete all the symbols */ dinfo->free_code = dinfo->ClearCode + 2; output(dinfo, dinfo->ClearCode); /* inform decoder */ dinfo->n_bits = dinfo->init_bits; /* reset code size */ dinfo->maxcode = MAXCODE(dinfo->n_bits); } LOCAL(void) compress_init(gif_dest_ptr dinfo, int i_bits) /* Initialize compressor */ { /* init all the state variables */ dinfo->n_bits = dinfo->init_bits = i_bits; dinfo->maxcode = MAXCODE(dinfo->n_bits); dinfo->ClearCode = ((code_int) 1 << (i_bits - 1)); dinfo->EOFCode = dinfo->ClearCode + 1; dinfo->code_counter = dinfo->free_code = dinfo->ClearCode + 2; dinfo->first_byte = TRUE; /* no waiting symbol yet */ /* init output buffering vars */ dinfo->bytesinpkt = 0; dinfo->cur_accum = 0; dinfo->cur_bits = 0; /* clear hash table */ if (dinfo->hash_code != NULL) clear_hash(dinfo); /* GIF specifies an initial Clear code */ output(dinfo, dinfo->ClearCode); } LOCAL(void) compress_term(gif_dest_ptr dinfo) /* Clean up at end */ { /* Flush out the buffered LZW code */ if (!dinfo->first_byte) output(dinfo, dinfo->waiting_code); /* Send an EOF code */ output(dinfo, dinfo->EOFCode); /* Flush the bit-packing buffer */ if (dinfo->cur_bits > 0) { CHAR_OUT(dinfo, dinfo->cur_accum & 0xFF); } /* Flush the packet buffer */ flush_packet(dinfo); } /* GIF header construction */ LOCAL(void) put_word(gif_dest_ptr dinfo, unsigned int w) /* Emit a 16-bit word, LSB first */ { putc(w & 0xFF, dinfo->pub.output_file); putc((w >> 8) & 0xFF, dinfo->pub.output_file); } LOCAL(void) put_3bytes(gif_dest_ptr dinfo, int val) /* Emit 3 copies of same byte value --- handy subr for colormap construction */ { putc(val, dinfo->pub.output_file); putc(val, dinfo->pub.output_file); putc(val, dinfo->pub.output_file); } LOCAL(void) emit_header(gif_dest_ptr dinfo, int num_colors, JSAMPARRAY colormap) /* Output the GIF file header, including color map */ /* If colormap == NULL, synthesize a grayscale colormap */ { int BitsPerPixel, ColorMapSize, InitCodeSize, FlagByte; int cshift = dinfo->cinfo->data_precision - 8; int i; if (num_colors > 256) ERREXIT1(dinfo->cinfo, JERR_TOO_MANY_COLORS, num_colors); /* Compute bits/pixel and related values */ BitsPerPixel = 1; while (num_colors > (1 << BitsPerPixel)) BitsPerPixel++; ColorMapSize = 1 << BitsPerPixel; if (BitsPerPixel <= 1) InitCodeSize = 2; else InitCodeSize = BitsPerPixel; /* * Write the GIF header. * Note that we generate a plain GIF87 header for maximum compatibility. */ putc('G', dinfo->pub.output_file); putc('I', dinfo->pub.output_file); putc('F', dinfo->pub.output_file); putc('8', dinfo->pub.output_file); putc('7', dinfo->pub.output_file); putc('a', dinfo->pub.output_file); /* Write the Logical Screen Descriptor */ put_word(dinfo, (unsigned int)dinfo->cinfo->output_width); put_word(dinfo, (unsigned int)dinfo->cinfo->output_height); FlagByte = 0x80; /* Yes, there is a global color table */ FlagByte |= (BitsPerPixel - 1) << 4; /* color resolution */ FlagByte |= (BitsPerPixel - 1); /* size of global color table */ putc(FlagByte, dinfo->pub.output_file); putc(0, dinfo->pub.output_file); /* Background color index */ putc(0, dinfo->pub.output_file); /* Reserved (aspect ratio in GIF89) */ /* Write the Global Color Map */ /* If the color map is more than 8 bits precision, */ /* we reduce it to 8 bits by shifting */ for (i = 0; i < ColorMapSize; i++) { if (i < num_colors) { if (colormap != NULL) { if (dinfo->cinfo->out_color_space == JCS_RGB) { /* Normal case: RGB color map */ putc(colormap[0][i] >> cshift, dinfo->pub.output_file); putc(colormap[1][i] >> cshift, dinfo->pub.output_file); putc(colormap[2][i] >> cshift, dinfo->pub.output_file); } else { /* Grayscale "color map": possible if quantizing grayscale image */ put_3bytes(dinfo, colormap[0][i] >> cshift); } } else { /* Create a grayscale map of num_colors values, range 0..255 */ put_3bytes(dinfo, (i * 255 + (num_colors - 1) / 2) / (num_colors - 1)); } } else { /* fill out the map to a power of 2 */ put_3bytes(dinfo, CENTERJSAMPLE >> cshift); } } /* Write image separator and Image Descriptor */ putc(',', dinfo->pub.output_file); /* separator */ put_word(dinfo, 0); /* left/top offset */ put_word(dinfo, 0); put_word(dinfo, (unsigned int)dinfo->cinfo->output_width); /* image size */ put_word(dinfo, (unsigned int)dinfo->cinfo->output_height); /* flag byte: not interlaced, no local color map */ putc(0x00, dinfo->pub.output_file); /* Write Initial Code Size byte */ putc(InitCodeSize, dinfo->pub.output_file); /* Initialize for compression of image data */ compress_init(dinfo, InitCodeSize + 1); } /* * Startup: write the file header. */ METHODDEF(void) start_output_gif(j_decompress_ptr cinfo, djpeg_dest_ptr dinfo) { gif_dest_ptr dest = (gif_dest_ptr)dinfo; if (cinfo->quantize_colors) emit_header(dest, cinfo->actual_number_of_colors, cinfo->colormap); else emit_header(dest, 256, (JSAMPARRAY)NULL); } /* * Write some pixel data. * In this module rows_supplied will always be 1. */ /* * The LZW algorithm proper */ METHODDEF(void) put_LZW_pixel_rows(j_decompress_ptr cinfo, djpeg_dest_ptr dinfo, JDIMENSION rows_supplied) { gif_dest_ptr dest = (gif_dest_ptr)dinfo; register JSAMPROW ptr; register JDIMENSION col; code_int c; register hash_int i; register hash_int disp; register hash_entry probe_value; ptr = dest->pub.buffer[0]; for (col = cinfo->output_width; col > 0; col--) { /* Accept and compress one 8-bit byte */ c = (code_int)(*ptr++); if (dest->first_byte) { /* need to initialize waiting_code */ dest->waiting_code = c; dest->first_byte = FALSE; continue; } /* Probe hash table to see if a symbol exists for * waiting_code followed by c. * If so, replace waiting_code by that symbol and continue. */ i = ((hash_int)c << (MAX_LZW_BITS - 8)) + dest->waiting_code; /* i is less than twice 2**MAX_LZW_BITS, therefore less than twice HSIZE */ if (i >= HSIZE) i -= HSIZE; probe_value = HASH_ENTRY(dest->waiting_code, c); if (dest->hash_code[i] == 0) { /* hit empty slot; desired symbol not in table */ output(dest, dest->waiting_code); if (dest->free_code < LZW_TABLE_SIZE) { dest->hash_code[i] = dest->free_code++; /* add symbol to hashtable */ dest->hash_value[i] = probe_value; } else clear_block(dest); dest->waiting_code = c; continue; } if (dest->hash_value[i] == probe_value) { dest->waiting_code = dest->hash_code[i]; continue; } if (i == 0) /* secondary hash (after G. Knott) */ disp = 1; else disp = HSIZE - i; for (;;) { i -= disp; if (i < 0) i += HSIZE; if (dest->hash_code[i] == 0) { /* hit empty slot; desired symbol not in table */ output(dest, dest->waiting_code); if (dest->free_code < LZW_TABLE_SIZE) { dest->hash_code[i] = dest->free_code++; /* add symbol to hashtable */ dest->hash_value[i] = probe_value; } else clear_block(dest); dest->waiting_code = c; break; } if (dest->hash_value[i] == probe_value) { dest->waiting_code = dest->hash_code[i]; break; } } } } /* * The pseudo-compression algorithm. * * In this version we simply output each pixel value as a separate symbol; * thus, no compression occurs. In fact, there is expansion of one bit per * pixel, because we use a symbol width one bit wider than the pixel width. * * GIF ordinarily uses variable-width symbols, and the decoder will expect * to ratchet up the symbol width after a fixed number of symbols. * To simplify the logic and keep the expansion penalty down, we emit a * GIF Clear code to reset the decoder just before the width would ratchet up. * Thus, all the symbols in the output file will have the same bit width. * Note that emitting the Clear codes at the right times is a mere matter of * counting output symbols and is in no way dependent on the LZW algorithm. * * With a small basic pixel width (low color count), Clear codes will be * needed very frequently, causing the file to expand even more. So this * simplistic approach wouldn't work too well on bilevel images, for example. * But for output of JPEG conversions the pixel width will usually be 8 bits * (129 to 256 colors), so the overhead added by Clear symbols is only about * one symbol in every 256. */ METHODDEF(void) put_raw_pixel_rows(j_decompress_ptr cinfo, djpeg_dest_ptr dinfo, JDIMENSION rows_supplied) { gif_dest_ptr dest = (gif_dest_ptr)dinfo; register JSAMPROW ptr; register JDIMENSION col; code_int c; ptr = dest->pub.buffer[0]; for (col = cinfo->output_width; col > 0; col--) { c = (code_int)(*ptr++); /* Accept and output one pixel value. * The given value must be less than n_bits wide. */ /* Output the given pixel value as a symbol. */ output(dest, c); /* Issue Clear codes often enough to keep the reader from ratcheting up * its symbol size. */ if (dest->code_counter < dest->maxcode) { dest->code_counter++; } else { output(dest, dest->ClearCode); dest->code_counter = dest->ClearCode + 2; /* reset the counter */ } } } /* * Finish up at the end of the file. */ METHODDEF(void) finish_output_gif(j_decompress_ptr cinfo, djpeg_dest_ptr dinfo) { gif_dest_ptr dest = (gif_dest_ptr)dinfo; /* Flush compression mechanism */ compress_term(dest); /* Write a zero-length data block to end the series */ putc(0, dest->pub.output_file); /* Write the GIF terminator mark */ putc(';', dest->pub.output_file); /* Make sure we wrote the output file OK */ fflush(dest->pub.output_file); if (ferror(dest->pub.output_file)) ERREXIT(cinfo, JERR_FILE_WRITE); } /* * Re-calculate buffer dimensions based on output dimensions. */ METHODDEF(void) calc_buffer_dimensions_gif(j_decompress_ptr cinfo, djpeg_dest_ptr dinfo) { } /* * The module selection routine for GIF format output. */ GLOBAL(djpeg_dest_ptr) jinit_write_gif(j_decompress_ptr cinfo, boolean is_lzw) { gif_dest_ptr dest; /* Create module interface object, fill in method pointers */ dest = (gif_dest_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, sizeof(gif_dest_struct)); dest->cinfo = cinfo; /* make back link for subroutines */ dest->pub.start_output = start_output_gif; dest->pub.finish_output = finish_output_gif; dest->pub.calc_buffer_dimensions = calc_buffer_dimensions_gif; if (cinfo->out_color_space != JCS_GRAYSCALE && cinfo->out_color_space != JCS_RGB) ERREXIT(cinfo, JERR_GIF_COLORSPACE); /* Force quantization if color or if > 8 bits input */ if (cinfo->out_color_space != JCS_GRAYSCALE || cinfo->data_precision > 8) { /* Force quantization to at most 256 colors */ cinfo->quantize_colors = TRUE; if (cinfo->desired_number_of_colors > 256) cinfo->desired_number_of_colors = 256; } /* Calculate output image dimensions so we can allocate space */ jpeg_calc_output_dimensions(cinfo); if (cinfo->output_components != 1) /* safety check: just one component? */ ERREXIT(cinfo, JERR_GIF_BUG); /* Create decompressor output buffer. */ dest->pub.buffer = (*cinfo->mem->alloc_sarray) ((j_common_ptr)cinfo, JPOOL_IMAGE, cinfo->output_width, (JDIMENSION)1); dest->pub.buffer_height = 1; if (is_lzw) { dest->pub.put_pixel_rows = put_LZW_pixel_rows; /* Allocate space for hash table */ dest->hash_code = (code_int *) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, HSIZE * sizeof(code_int)); dest->hash_value = (hash_entry *) (*cinfo->mem->alloc_large) ((j_common_ptr)cinfo, JPOOL_IMAGE, HSIZE * sizeof(hash_entry)); } else { dest->pub.put_pixel_rows = put_raw_pixel_rows; /* Mark tables unused */ dest->hash_code = NULL; dest->hash_value = NULL; } return (djpeg_dest_ptr)dest; } #endif /* GIF_SUPPORTED */ libjpeg-turbo-2.1.5/wrjpgcom.1000066400000000000000000000051021436506551100162020ustar00rootroot00000000000000.TH WRJPGCOM 1 "15 June 1995" .SH NAME wrjpgcom \- insert text comments into a JPEG file .SH SYNOPSIS .B wrjpgcom [ .B \-replace ] [ .BI \-comment " text" ] [ .BI \-cfile " name" ] [ .I filename ] .LP .SH DESCRIPTION .LP .B wrjpgcom reads the named JPEG/JFIF file, or the standard input if no file is named, and generates a new JPEG/JFIF file on standard output. A comment block is added to the file. .PP The JPEG standard allows "comment" (COM) blocks to occur within a JPEG file. Although the standard doesn't actually define what COM blocks are for, they are widely used to hold user-supplied text strings. This lets you add annotations, titles, index terms, etc to your JPEG files, and later retrieve them as text. COM blocks do not interfere with the image stored in the JPEG file. The maximum size of a COM block is 64K, but you can have as many of them as you like in one JPEG file. .PP .B wrjpgcom adds a COM block, containing text you provide, to a JPEG file. Ordinarily, the COM block is added after any existing COM blocks; but you can delete the old COM blocks if you wish. .SH OPTIONS Switch names may be abbreviated, and are not case sensitive. .TP .B \-replace Delete any existing COM blocks from the file. .TP .BI \-comment " text" Supply text for new COM block on command line. .TP .BI \-cfile " name" Read text for new COM block from named file. .PP If you have only one line of comment text to add, you can provide it on the command line with .BR \-comment . The comment text must be surrounded with quotes so that it is treated as a single argument. Longer comments can be read from a text file. .PP If you give neither .B \-comment nor .BR \-cfile, then .B wrjpgcom will read the comment text from standard input. (In this case an input image file name MUST be supplied, so that the source JPEG file comes from somewhere else.) You can enter multiple lines, up to 64KB worth. Type an end-of-file indicator (usually control-D) to terminate the comment text entry. .PP .B wrjpgcom will not add a COM block if the provided comment string is empty. Therefore \fB\-replace \-comment ""\fR can be used to delete all COM blocks from a file. .SH EXAMPLES .LP Add a short comment to in.jpg, producing out.jpg: .IP .B wrjpgcom \-c \fI"View of my back yard" in.jpg .B > .I out.jpg .PP Attach a long comment previously stored in comment.txt: .IP .B wrjpgcom .I in.jpg .B < .I comment.txt .B > .I out.jpg .PP or equivalently .IP .B wrjpgcom .B -cfile .I comment.txt .B < .I in.jpg .B > .I out.jpg .SH SEE ALSO .BR cjpeg (1), .BR djpeg (1), .BR jpegtran (1), .BR rdjpgcom (1) .SH AUTHOR Independent JPEG Group libjpeg-turbo-2.1.5/wrjpgcom.c000066400000000000000000000420701436506551100162710ustar00rootroot00000000000000/* * wrjpgcom.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1994-1997, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2014, 2022, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains a very simple stand-alone application that inserts * user-supplied text as a COM (comment) marker in a JFIF file. * This may be useful as an example of the minimum logic needed to parse * JPEG markers. */ #ifdef _MSC_VER #define _CRT_SECURE_NO_DEPRECATE #endif #define JPEG_CJPEG_DJPEG /* to get the command-line config symbols */ #include "jinclude.h" /* get auto-config symbols, */ #include /* to declare isupper(), tolower() */ #ifdef USE_SETMODE #include /* to declare setmode()'s parameter macros */ /* If you have setmode() but not , just delete this line: */ #include /* to declare setmode() */ #endif #ifdef DONT_USE_B_MODE /* define mode parameters for fopen() */ #define READ_BINARY "r" #define WRITE_BINARY "w" #else #define READ_BINARY "rb" #define WRITE_BINARY "wb" #endif #ifndef EXIT_FAILURE /* define exit() codes if not provided */ #define EXIT_FAILURE 1 #endif #ifndef EXIT_SUCCESS #define EXIT_SUCCESS 0 #endif /* Reduce this value if your malloc() can't allocate blocks up to 64K. * On DOS, compiling in large model is usually a better solution. */ #ifndef MAX_COM_LENGTH #define MAX_COM_LENGTH 65000L /* must be <= 65533 in any case */ #endif /* * These macros are used to read the input file and write the output file. * To reuse this code in another application, you might need to change these. */ static FILE *infile; /* input JPEG file */ /* Return next input byte, or EOF if no more */ #define NEXTBYTE() getc(infile) static FILE *outfile; /* output JPEG file */ /* Emit an output byte */ #define PUTBYTE(x) putc((x), outfile) /* Error exit handler */ #define ERREXIT(msg) (fprintf(stderr, "%s\n", msg), exit(EXIT_FAILURE)) /* Read one byte, testing for EOF */ static int read_1_byte(void) { int c; c = NEXTBYTE(); if (c == EOF) ERREXIT("Premature EOF in JPEG file"); return c; } /* Read 2 bytes, convert to unsigned int */ /* All 2-byte quantities in JPEG markers are MSB first */ static unsigned int read_2_bytes(void) { int c1, c2; c1 = NEXTBYTE(); if (c1 == EOF) ERREXIT("Premature EOF in JPEG file"); c2 = NEXTBYTE(); if (c2 == EOF) ERREXIT("Premature EOF in JPEG file"); return (((unsigned int)c1) << 8) + ((unsigned int)c2); } /* Routines to write data to output file */ static void write_1_byte(int c) { PUTBYTE(c); } static void write_2_bytes(unsigned int val) { PUTBYTE((val >> 8) & 0xFF); PUTBYTE(val & 0xFF); } static void write_marker(int marker) { PUTBYTE(0xFF); PUTBYTE(marker); } static void copy_rest_of_file(void) { int c; while ((c = NEXTBYTE()) != EOF) PUTBYTE(c); } /* * JPEG markers consist of one or more 0xFF bytes, followed by a marker * code byte (which is not an FF). Here are the marker codes of interest * in this program. (See jdmarker.c for a more complete list.) */ #define M_SOF0 0xC0 /* Start Of Frame N */ #define M_SOF1 0xC1 /* N indicates which compression process */ #define M_SOF2 0xC2 /* Only SOF0-SOF2 are now in common use */ #define M_SOF3 0xC3 #define M_SOF5 0xC5 /* NB: codes C4 and CC are NOT SOF markers */ #define M_SOF6 0xC6 #define M_SOF7 0xC7 #define M_SOF9 0xC9 #define M_SOF10 0xCA #define M_SOF11 0xCB #define M_SOF13 0xCD #define M_SOF14 0xCE #define M_SOF15 0xCF #define M_SOI 0xD8 /* Start Of Image (beginning of datastream) */ #define M_EOI 0xD9 /* End Of Image (end of datastream) */ #define M_SOS 0xDA /* Start Of Scan (begins compressed data) */ #define M_COM 0xFE /* COMment */ /* * Find the next JPEG marker and return its marker code. * We expect at least one FF byte, possibly more if the compressor used FFs * to pad the file. (Padding FFs will NOT be replicated in the output file.) * There could also be non-FF garbage between markers. The treatment of such * garbage is unspecified; we choose to skip over it but emit a warning msg. * NB: this routine must not be used after seeing SOS marker, since it will * not deal correctly with FF/00 sequences in the compressed image data... */ static int next_marker(void) { int c; int discarded_bytes = 0; /* Find 0xFF byte; count and skip any non-FFs. */ c = read_1_byte(); while (c != 0xFF) { discarded_bytes++; c = read_1_byte(); } /* Get marker code byte, swallowing any duplicate FF bytes. Extra FFs * are legal as pad bytes, so don't count them in discarded_bytes. */ do { c = read_1_byte(); } while (c == 0xFF); if (discarded_bytes != 0) { fprintf(stderr, "Warning: garbage data found in JPEG file\n"); } return c; } /* * Read the initial marker, which should be SOI. * For a JFIF file, the first two bytes of the file should be literally * 0xFF M_SOI. To be more general, we could use next_marker, but if the * input file weren't actually JPEG at all, next_marker might read the whole * file and then return a misleading error message... */ static int first_marker(void) { int c1, c2; c1 = NEXTBYTE(); c2 = NEXTBYTE(); if (c1 != 0xFF || c2 != M_SOI) ERREXIT("Not a JPEG file"); return c2; } /* * Most types of marker are followed by a variable-length parameter segment. * This routine skips over the parameters for any marker we don't otherwise * want to process. * Note that we MUST skip the parameter segment explicitly in order not to * be fooled by 0xFF bytes that might appear within the parameter segment; * such bytes do NOT introduce new markers. */ static void copy_variable(void) /* Copy an unknown or uninteresting variable-length marker */ { unsigned int length; /* Get the marker parameter length count */ length = read_2_bytes(); write_2_bytes(length); /* Length includes itself, so must be at least 2 */ if (length < 2) ERREXIT("Erroneous JPEG marker length"); length -= 2; /* Copy the remaining bytes */ while (length > 0) { write_1_byte(read_1_byte()); length--; } } static void skip_variable(void) /* Skip over an unknown or uninteresting variable-length marker */ { unsigned int length; /* Get the marker parameter length count */ length = read_2_bytes(); /* Length includes itself, so must be at least 2 */ if (length < 2) ERREXIT("Erroneous JPEG marker length"); length -= 2; /* Skip over the remaining bytes */ while (length > 0) { (void)read_1_byte(); length--; } } /* * Parse the marker stream until SOFn or EOI is seen; * copy data to output, but discard COM markers unless keep_COM is true. */ static int scan_JPEG_header(int keep_COM) { int marker; /* Expect SOI at start of file */ if (first_marker() != M_SOI) ERREXIT("Expected SOI marker first"); write_marker(M_SOI); /* Scan miscellaneous markers until we reach SOFn. */ for (;;) { marker = next_marker(); switch (marker) { /* Note that marker codes 0xC4, 0xC8, 0xCC are not, and must not be, * treated as SOFn. C4 in particular is actually DHT. */ case M_SOF0: /* Baseline */ case M_SOF1: /* Extended sequential, Huffman */ case M_SOF2: /* Progressive, Huffman */ case M_SOF3: /* Lossless, Huffman */ case M_SOF5: /* Differential sequential, Huffman */ case M_SOF6: /* Differential progressive, Huffman */ case M_SOF7: /* Differential lossless, Huffman */ case M_SOF9: /* Extended sequential, arithmetic */ case M_SOF10: /* Progressive, arithmetic */ case M_SOF11: /* Lossless, arithmetic */ case M_SOF13: /* Differential sequential, arithmetic */ case M_SOF14: /* Differential progressive, arithmetic */ case M_SOF15: /* Differential lossless, arithmetic */ return marker; case M_SOS: /* should not see compressed data before SOF */ ERREXIT("SOS without prior SOFn"); break; case M_EOI: /* in case it's a tables-only JPEG stream */ return marker; case M_COM: /* Existing COM: conditionally discard */ if (keep_COM) { write_marker(marker); copy_variable(); } else { skip_variable(); } break; default: /* Anything else just gets copied */ write_marker(marker); copy_variable(); /* we assume it has a parameter count... */ break; } } /* end loop */ } /* Command line parsing code */ static const char *progname; /* program name for error messages */ static void usage(void) /* complain about bad command line */ { fprintf(stderr, "wrjpgcom inserts a textual comment in a JPEG file.\n"); fprintf(stderr, "You can add to or replace any existing comment(s).\n"); fprintf(stderr, "Usage: %s [switches] ", progname); #ifdef TWO_FILE_COMMANDLINE fprintf(stderr, "inputfile outputfile\n"); #else fprintf(stderr, "[inputfile]\n"); #endif fprintf(stderr, "Switches (names may be abbreviated):\n"); fprintf(stderr, " -replace Delete any existing comments\n"); fprintf(stderr, " -comment \"text\" Insert comment with given text\n"); fprintf(stderr, " -cfile name Read comment from named file\n"); fprintf(stderr, "Notice that you must put quotes around the comment text\n"); fprintf(stderr, "when you use -comment.\n"); fprintf(stderr, "If you do not give either -comment or -cfile on the command line,\n"); fprintf(stderr, "then the comment text is read from standard input.\n"); fprintf(stderr, "It can be multiple lines, up to %u characters total.\n", (unsigned int)MAX_COM_LENGTH); #ifndef TWO_FILE_COMMANDLINE fprintf(stderr, "You must specify an input JPEG file name when supplying\n"); fprintf(stderr, "comment text from standard input.\n"); #endif exit(EXIT_FAILURE); } static int keymatch(char *arg, const char *keyword, int minchars) /* Case-insensitive matching of (possibly abbreviated) keyword switches. */ /* keyword is the constant keyword (must be lower case already), */ /* minchars is length of minimum legal abbreviation. */ { register int ca, ck; register int nmatched = 0; while ((ca = *arg++) != '\0') { if ((ck = *keyword++) == '\0') return 0; /* arg longer than keyword, no good */ if (isupper(ca)) /* force arg to lcase (assume ck is already) */ ca = tolower(ca); if (ca != ck) return 0; /* no good */ nmatched++; /* count matched characters */ } /* reached end of argument; fail if it's too short for unique abbrev */ if (nmatched < minchars) return 0; return 1; /* A-OK */ } /* * The main program. */ int main(int argc, char **argv) { int argn; char *arg; int keep_COM = 1; char *comment_arg = NULL; FILE *comment_file = NULL; unsigned int comment_length = 0; int marker; progname = argv[0]; if (progname == NULL || progname[0] == 0) progname = "wrjpgcom"; /* in case C library doesn't provide it */ /* Parse switches, if any */ for (argn = 1; argn < argc; argn++) { arg = argv[argn]; if (arg[0] != '-') break; /* not switch, must be file name */ arg++; /* advance over '-' */ if (keymatch(arg, "replace", 1)) { keep_COM = 0; } else if (keymatch(arg, "cfile", 2)) { if (++argn >= argc) usage(); if ((comment_file = fopen(argv[argn], "r")) == NULL) { fprintf(stderr, "%s: can't open %s\n", progname, argv[argn]); exit(EXIT_FAILURE); } } else if (keymatch(arg, "comment", 1)) { if (++argn >= argc) usage(); comment_arg = argv[argn]; /* If the comment text starts with '"', then we are probably running * under MS-DOG and must parse out the quoted string ourselves. Sigh. */ if (comment_arg[0] == '"') { comment_arg = (char *)malloc((size_t)MAX_COM_LENGTH); if (comment_arg == NULL) ERREXIT("Insufficient memory"); if (strlen(argv[argn]) + 2 >= (size_t)MAX_COM_LENGTH) { fprintf(stderr, "Comment text may not exceed %u bytes\n", (unsigned int)MAX_COM_LENGTH); exit(EXIT_FAILURE); } strcpy(comment_arg, argv[argn] + 1); for (;;) { comment_length = (unsigned int)strlen(comment_arg); if (comment_length > 0 && comment_arg[comment_length - 1] == '"') { comment_arg[comment_length - 1] = '\0'; /* zap terminating quote */ break; } if (++argn >= argc) ERREXIT("Missing ending quote mark"); if (strlen(comment_arg) + strlen(argv[argn]) + 2 >= (size_t)MAX_COM_LENGTH) { fprintf(stderr, "Comment text may not exceed %u bytes\n", (unsigned int)MAX_COM_LENGTH); exit(EXIT_FAILURE); } strcat(comment_arg, " "); strcat(comment_arg, argv[argn]); } } else if (strlen(argv[argn]) >= (size_t)MAX_COM_LENGTH) { fprintf(stderr, "Comment text may not exceed %u bytes\n", (unsigned int)MAX_COM_LENGTH); exit(EXIT_FAILURE); } comment_length = (unsigned int)strlen(comment_arg); } else usage(); } /* Cannot use both -comment and -cfile. */ if (comment_arg != NULL && comment_file != NULL) usage(); /* If there is neither -comment nor -cfile, we will read the comment text * from stdin; in this case there MUST be an input JPEG file name. */ if (comment_arg == NULL && comment_file == NULL && argn >= argc) usage(); /* Open the input file. */ if (argn < argc) { if ((infile = fopen(argv[argn], READ_BINARY)) == NULL) { fprintf(stderr, "%s: can't open %s\n", progname, argv[argn]); exit(EXIT_FAILURE); } } else { /* default input file is stdin */ #ifdef USE_SETMODE /* need to hack file mode? */ setmode(fileno(stdin), O_BINARY); #endif #ifdef USE_FDOPEN /* need to re-open in binary mode? */ if ((infile = fdopen(fileno(stdin), READ_BINARY)) == NULL) { fprintf(stderr, "%s: can't open stdin\n", progname); exit(EXIT_FAILURE); } #else infile = stdin; #endif } /* Open the output file. */ #ifdef TWO_FILE_COMMANDLINE /* Must have explicit output file name */ if (argn != argc - 2) { fprintf(stderr, "%s: must name one input and one output file\n", progname); usage(); } if ((outfile = fopen(argv[argn + 1], WRITE_BINARY)) == NULL) { fprintf(stderr, "%s: can't open %s\n", progname, argv[argn + 1]); exit(EXIT_FAILURE); } #else /* Unix style: expect zero or one file name */ if (argn < argc - 1) { fprintf(stderr, "%s: only one input file\n", progname); usage(); } /* default output file is stdout */ #ifdef USE_SETMODE /* need to hack file mode? */ setmode(fileno(stdout), O_BINARY); #endif #ifdef USE_FDOPEN /* need to re-open in binary mode? */ if ((outfile = fdopen(fileno(stdout), WRITE_BINARY)) == NULL) { fprintf(stderr, "%s: can't open stdout\n", progname); exit(EXIT_FAILURE); } #else outfile = stdout; #endif #endif /* TWO_FILE_COMMANDLINE */ /* Collect comment text from comment_file or stdin, if necessary */ if (comment_arg == NULL) { FILE *src_file; int c; comment_arg = (char *)malloc((size_t)MAX_COM_LENGTH); if (comment_arg == NULL) ERREXIT("Insufficient memory"); comment_length = 0; src_file = (comment_file != NULL ? comment_file : stdin); while ((c = getc(src_file)) != EOF) { if (comment_length >= (unsigned int)MAX_COM_LENGTH) { fprintf(stderr, "Comment text may not exceed %u bytes\n", (unsigned int)MAX_COM_LENGTH); exit(EXIT_FAILURE); } comment_arg[comment_length++] = (char)c; } if (comment_file != NULL) fclose(comment_file); } /* Copy JPEG headers until SOFn marker; * we will insert the new comment marker just before SOFn. * This (a) causes the new comment to appear after, rather than before, * existing comments; and (b) ensures that comments come after any JFIF * or JFXX markers, as required by the JFIF specification. */ marker = scan_JPEG_header(keep_COM); /* Insert the new COM marker, but only if nonempty text has been supplied */ if (comment_length > 0) { write_marker(M_COM); write_2_bytes(comment_length + 2); while (comment_length > 0) { write_1_byte(*comment_arg++); comment_length--; } } /* Duplicate the remainder of the source file. * Note that any COM markers occurring after SOF will not be touched. */ write_marker(marker); copy_rest_of_file(); /* All done. */ exit(EXIT_SUCCESS); return 0; /* suppress no-return-value warnings */ } libjpeg-turbo-2.1.5/wrppm.c000066400000000000000000000251301436506551100156040ustar00rootroot00000000000000/* * wrppm.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1996, Thomas G. Lane. * Modified 2009 by Guido Vollbeding. * libjpeg-turbo Modifications: * Copyright (C) 2017, 2019-2020, 2022, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains routines to write output images in PPM/PGM format. * The extended 2-byte-per-sample raw PPM/PGM formats are supported. * The PBMPLUS library is NOT required to compile this software * (but it is highly useful as a set of PPM image manipulation programs). * * These routines may need modification for non-Unix environments or * specialized applications. As they stand, they assume output to * an ordinary stdio stream. */ #include "cmyk.h" #include "cdjpeg.h" /* Common decls for cjpeg/djpeg applications */ #ifdef PPM_SUPPORTED /* * For 12-bit JPEG data, we either downscale the values to 8 bits * (to write standard byte-per-sample PPM/PGM files), or output * nonstandard word-per-sample PPM/PGM files. Downscaling is done * if PPM_NORAWWORD is defined (this can be done in the Makefile * or in jconfig.h). * (When the core library supports data precision reduction, a cleaner * implementation will be to ask for that instead.) */ #if BITS_IN_JSAMPLE == 8 #define PUTPPMSAMPLE(ptr, v) *ptr++ = (char)(v) #define BYTESPERSAMPLE 1 #define PPM_MAXVAL 255 #else #ifdef PPM_NORAWWORD #define PUTPPMSAMPLE(ptr, v) *ptr++ = (char)((v) >> (BITS_IN_JSAMPLE - 8)) #define BYTESPERSAMPLE 1 #define PPM_MAXVAL 255 #else /* The word-per-sample format always puts the MSB first. */ #define PUTPPMSAMPLE(ptr, v) { \ register int val_ = v; \ *ptr++ = (char)((val_ >> 8) & 0xFF); \ *ptr++ = (char)(val_ & 0xFF); \ } #define BYTESPERSAMPLE 2 #define PPM_MAXVAL ((1 << BITS_IN_JSAMPLE) - 1) #endif #endif /* * When JSAMPLE is the same size as char, we can just fwrite() the * decompressed data to the PPM or PGM file. */ /* Private version of data destination object */ typedef struct { struct djpeg_dest_struct pub; /* public fields */ /* Usually these two pointers point to the same place: */ char *iobuffer; /* fwrite's I/O buffer */ JSAMPROW pixrow; /* decompressor output buffer */ size_t buffer_width; /* width of I/O buffer */ JDIMENSION samples_per_row; /* JSAMPLEs per output row */ } ppm_dest_struct; typedef ppm_dest_struct *ppm_dest_ptr; /* * Write some pixel data. * In this module rows_supplied will always be 1. * * put_pixel_rows handles the "normal" 8-bit case where the decompressor * output buffer is physically the same as the fwrite buffer. */ METHODDEF(void) put_pixel_rows(j_decompress_ptr cinfo, djpeg_dest_ptr dinfo, JDIMENSION rows_supplied) { ppm_dest_ptr dest = (ppm_dest_ptr)dinfo; fwrite(dest->iobuffer, 1, dest->buffer_width, dest->pub.output_file); } /* * This code is used when we have to copy the data and apply a pixel * format translation. Typically this only happens in 12-bit mode. */ METHODDEF(void) copy_pixel_rows(j_decompress_ptr cinfo, djpeg_dest_ptr dinfo, JDIMENSION rows_supplied) { ppm_dest_ptr dest = (ppm_dest_ptr)dinfo; register char *bufferptr; register JSAMPROW ptr; #if BITS_IN_JSAMPLE != 8 register JDIMENSION col; #endif ptr = dest->pub.buffer[0]; bufferptr = dest->iobuffer; #if BITS_IN_JSAMPLE == 8 memcpy(bufferptr, ptr, dest->samples_per_row); #else for (col = dest->samples_per_row; col > 0; col--) { PUTPPMSAMPLE(bufferptr, *ptr++); } #endif fwrite(dest->iobuffer, 1, dest->buffer_width, dest->pub.output_file); } /* * Convert extended RGB to RGB. */ METHODDEF(void) put_rgb(j_decompress_ptr cinfo, djpeg_dest_ptr dinfo, JDIMENSION rows_supplied) { ppm_dest_ptr dest = (ppm_dest_ptr)dinfo; register char *bufferptr; register JSAMPROW ptr; register JDIMENSION col; register int rindex = rgb_red[cinfo->out_color_space]; register int gindex = rgb_green[cinfo->out_color_space]; register int bindex = rgb_blue[cinfo->out_color_space]; register int ps = rgb_pixelsize[cinfo->out_color_space]; ptr = dest->pub.buffer[0]; bufferptr = dest->iobuffer; for (col = cinfo->output_width; col > 0; col--) { PUTPPMSAMPLE(bufferptr, ptr[rindex]); PUTPPMSAMPLE(bufferptr, ptr[gindex]); PUTPPMSAMPLE(bufferptr, ptr[bindex]); ptr += ps; } fwrite(dest->iobuffer, 1, dest->buffer_width, dest->pub.output_file); } /* * Convert CMYK to RGB. */ METHODDEF(void) put_cmyk(j_decompress_ptr cinfo, djpeg_dest_ptr dinfo, JDIMENSION rows_supplied) { ppm_dest_ptr dest = (ppm_dest_ptr)dinfo; register char *bufferptr; register JSAMPROW ptr; register JDIMENSION col; ptr = dest->pub.buffer[0]; bufferptr = dest->iobuffer; for (col = cinfo->output_width; col > 0; col--) { JSAMPLE r, g, b, c = *ptr++, m = *ptr++, y = *ptr++, k = *ptr++; cmyk_to_rgb(c, m, y, k, &r, &g, &b); PUTPPMSAMPLE(bufferptr, r); PUTPPMSAMPLE(bufferptr, g); PUTPPMSAMPLE(bufferptr, b); } fwrite(dest->iobuffer, 1, dest->buffer_width, dest->pub.output_file); } /* * Write some pixel data when color quantization is in effect. * We have to demap the color index values to straight data. */ METHODDEF(void) put_demapped_rgb(j_decompress_ptr cinfo, djpeg_dest_ptr dinfo, JDIMENSION rows_supplied) { ppm_dest_ptr dest = (ppm_dest_ptr)dinfo; register char *bufferptr; register int pixval; register JSAMPROW ptr; register JSAMPROW color_map0 = cinfo->colormap[0]; register JSAMPROW color_map1 = cinfo->colormap[1]; register JSAMPROW color_map2 = cinfo->colormap[2]; register JDIMENSION col; ptr = dest->pub.buffer[0]; bufferptr = dest->iobuffer; for (col = cinfo->output_width; col > 0; col--) { pixval = *ptr++; PUTPPMSAMPLE(bufferptr, color_map0[pixval]); PUTPPMSAMPLE(bufferptr, color_map1[pixval]); PUTPPMSAMPLE(bufferptr, color_map2[pixval]); } fwrite(dest->iobuffer, 1, dest->buffer_width, dest->pub.output_file); } METHODDEF(void) put_demapped_gray(j_decompress_ptr cinfo, djpeg_dest_ptr dinfo, JDIMENSION rows_supplied) { ppm_dest_ptr dest = (ppm_dest_ptr)dinfo; register char *bufferptr; register JSAMPROW ptr; register JSAMPROW color_map = cinfo->colormap[0]; register JDIMENSION col; ptr = dest->pub.buffer[0]; bufferptr = dest->iobuffer; for (col = cinfo->output_width; col > 0; col--) { PUTPPMSAMPLE(bufferptr, color_map[*ptr++]); } fwrite(dest->iobuffer, 1, dest->buffer_width, dest->pub.output_file); } /* * Startup: write the file header. */ METHODDEF(void) start_output_ppm(j_decompress_ptr cinfo, djpeg_dest_ptr dinfo) { ppm_dest_ptr dest = (ppm_dest_ptr)dinfo; /* Emit file header */ switch (cinfo->out_color_space) { case JCS_GRAYSCALE: /* emit header for raw PGM format */ fprintf(dest->pub.output_file, "P5\n%ld %ld\n%d\n", (long)cinfo->output_width, (long)cinfo->output_height, PPM_MAXVAL); break; case JCS_RGB: case JCS_EXT_RGB: case JCS_EXT_RGBX: case JCS_EXT_BGR: case JCS_EXT_BGRX: case JCS_EXT_XBGR: case JCS_EXT_XRGB: case JCS_EXT_RGBA: case JCS_EXT_BGRA: case JCS_EXT_ABGR: case JCS_EXT_ARGB: case JCS_CMYK: if (!IsExtRGB(cinfo->out_color_space) && cinfo->quantize_colors) ERREXIT(cinfo, JERR_PPM_COLORSPACE); /* emit header for raw PPM format */ fprintf(dest->pub.output_file, "P6\n%ld %ld\n%d\n", (long)cinfo->output_width, (long)cinfo->output_height, PPM_MAXVAL); break; default: ERREXIT(cinfo, JERR_PPM_COLORSPACE); } } /* * Finish up at the end of the file. */ METHODDEF(void) finish_output_ppm(j_decompress_ptr cinfo, djpeg_dest_ptr dinfo) { /* Make sure we wrote the output file OK */ fflush(dinfo->output_file); if (ferror(dinfo->output_file)) ERREXIT(cinfo, JERR_FILE_WRITE); } /* * Re-calculate buffer dimensions based on output dimensions. */ METHODDEF(void) calc_buffer_dimensions_ppm(j_decompress_ptr cinfo, djpeg_dest_ptr dinfo) { ppm_dest_ptr dest = (ppm_dest_ptr)dinfo; if (cinfo->out_color_space == JCS_GRAYSCALE) dest->samples_per_row = cinfo->output_width * cinfo->out_color_components; else dest->samples_per_row = cinfo->output_width * 3; dest->buffer_width = dest->samples_per_row * (BYTESPERSAMPLE * sizeof(char)); } /* * The module selection routine for PPM format output. */ GLOBAL(djpeg_dest_ptr) jinit_write_ppm(j_decompress_ptr cinfo) { ppm_dest_ptr dest; /* Create module interface object, fill in method pointers */ dest = (ppm_dest_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, sizeof(ppm_dest_struct)); dest->pub.start_output = start_output_ppm; dest->pub.finish_output = finish_output_ppm; dest->pub.calc_buffer_dimensions = calc_buffer_dimensions_ppm; /* Calculate output image dimensions so we can allocate space */ jpeg_calc_output_dimensions(cinfo); /* Create physical I/O buffer */ dest->pub.calc_buffer_dimensions(cinfo, (djpeg_dest_ptr)dest); dest->iobuffer = (char *)(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, dest->buffer_width); if (cinfo->quantize_colors || BITS_IN_JSAMPLE != 8 || sizeof(JSAMPLE) != sizeof(char) || #if RGB_RED == 0 && RGB_GREEN == 1 && RGB_BLUE == 2 && RGB_PIXELSIZE == 3 (cinfo->out_color_space != JCS_EXT_RGB && cinfo->out_color_space != JCS_RGB)) { #else cinfo->out_color_space != JCS_EXT_RGB) { #endif /* When quantizing, we need an output buffer for colormap indexes * that's separate from the physical I/O buffer. We also need a * separate buffer if pixel format translation must take place. */ dest->pub.buffer = (*cinfo->mem->alloc_sarray) ((j_common_ptr)cinfo, JPOOL_IMAGE, cinfo->output_width * cinfo->output_components, (JDIMENSION)1); dest->pub.buffer_height = 1; if (!cinfo->quantize_colors) { if (IsExtRGB(cinfo->out_color_space)) dest->pub.put_pixel_rows = put_rgb; else if (cinfo->out_color_space == JCS_CMYK) dest->pub.put_pixel_rows = put_cmyk; else dest->pub.put_pixel_rows = copy_pixel_rows; } else if (cinfo->out_color_space == JCS_GRAYSCALE) dest->pub.put_pixel_rows = put_demapped_gray; else dest->pub.put_pixel_rows = put_demapped_rgb; } else { /* We will fwrite() directly from decompressor output buffer. */ /* Synthesize a JSAMPARRAY pointer structure */ dest->pixrow = (JSAMPROW)dest->iobuffer; dest->pub.buffer = &dest->pixrow; dest->pub.buffer_height = 1; dest->pub.put_pixel_rows = put_pixel_rows; } return (djpeg_dest_ptr)dest; } #endif /* PPM_SUPPORTED */ libjpeg-turbo-2.1.5/wrtarga.c000066400000000000000000000164731436506551100161200ustar00rootroot00000000000000/* * wrtarga.c * * This file was part of the Independent JPEG Group's software: * Copyright (C) 1991-1996, Thomas G. Lane. * libjpeg-turbo Modifications: * Copyright (C) 2017, 2019, 2022, D. R. Commander. * For conditions of distribution and use, see the accompanying README.ijg * file. * * This file contains routines to write output images in Targa format. * * These routines may need modification for non-Unix environments or * specialized applications. As they stand, they assume output to * an ordinary stdio stream. * * Based on code contributed by Lee Daniel Crocker. */ #include "cdjpeg.h" /* Common decls for cjpeg/djpeg applications */ #ifdef TARGA_SUPPORTED /* * To support 12-bit JPEG data, we'd have to scale output down to 8 bits. * This is not yet implemented. */ #if BITS_IN_JSAMPLE != 8 Sorry, this code only copes with 8-bit JSAMPLEs. /* deliberate syntax err */ #endif /* Private version of data destination object */ typedef struct { struct djpeg_dest_struct pub; /* public fields */ char *iobuffer; /* physical I/O buffer */ JDIMENSION buffer_width; /* width of one row */ } tga_dest_struct; typedef tga_dest_struct *tga_dest_ptr; LOCAL(void) write_header(j_decompress_ptr cinfo, djpeg_dest_ptr dinfo, int num_colors) /* Create and write a Targa header */ { char targaheader[18]; /* Set unused fields of header to 0 */ memset(targaheader, 0, sizeof(targaheader)); if (num_colors > 0) { targaheader[1] = 1; /* color map type 1 */ targaheader[5] = (char)(num_colors & 0xFF); targaheader[6] = (char)(num_colors >> 8); targaheader[7] = 24; /* 24 bits per cmap entry */ } targaheader[12] = (char)(cinfo->output_width & 0xFF); targaheader[13] = (char)(cinfo->output_width >> 8); targaheader[14] = (char)(cinfo->output_height & 0xFF); targaheader[15] = (char)(cinfo->output_height >> 8); targaheader[17] = 0x20; /* Top-down, non-interlaced */ if (cinfo->out_color_space == JCS_GRAYSCALE) { targaheader[2] = 3; /* image type = uncompressed grayscale */ targaheader[16] = 8; /* bits per pixel */ } else { /* must be RGB */ if (num_colors > 0) { targaheader[2] = 1; /* image type = colormapped RGB */ targaheader[16] = 8; } else { targaheader[2] = 2; /* image type = uncompressed RGB */ targaheader[16] = 24; } } if (fwrite(targaheader, 1, 18, dinfo->output_file) != (size_t)18) ERREXIT(cinfo, JERR_FILE_WRITE); } /* * Write some pixel data. * In this module rows_supplied will always be 1. */ METHODDEF(void) put_pixel_rows(j_decompress_ptr cinfo, djpeg_dest_ptr dinfo, JDIMENSION rows_supplied) /* used for unquantized full-color output */ { tga_dest_ptr dest = (tga_dest_ptr)dinfo; register JSAMPROW inptr; register char *outptr; register JDIMENSION col; inptr = dest->pub.buffer[0]; outptr = dest->iobuffer; for (col = cinfo->output_width; col > 0; col--) { outptr[0] = inptr[2]; /* RGB to BGR order */ outptr[1] = inptr[1]; outptr[2] = inptr[0]; inptr += 3, outptr += 3; } fwrite(dest->iobuffer, 1, dest->buffer_width, dest->pub.output_file); } METHODDEF(void) put_gray_rows(j_decompress_ptr cinfo, djpeg_dest_ptr dinfo, JDIMENSION rows_supplied) /* used for grayscale OR quantized color output */ { tga_dest_ptr dest = (tga_dest_ptr)dinfo; register JSAMPROW inptr; register char *outptr; inptr = dest->pub.buffer[0]; outptr = dest->iobuffer; memcpy(outptr, inptr, cinfo->output_width); fwrite(dest->iobuffer, 1, dest->buffer_width, dest->pub.output_file); } /* * Write some demapped pixel data when color quantization is in effect. * For Targa, this is only applied to grayscale data. */ METHODDEF(void) put_demapped_gray(j_decompress_ptr cinfo, djpeg_dest_ptr dinfo, JDIMENSION rows_supplied) { tga_dest_ptr dest = (tga_dest_ptr)dinfo; register JSAMPROW inptr; register char *outptr; register JSAMPROW color_map0 = cinfo->colormap[0]; register JDIMENSION col; inptr = dest->pub.buffer[0]; outptr = dest->iobuffer; for (col = cinfo->output_width; col > 0; col--) { *outptr++ = color_map0[*inptr++]; } fwrite(dest->iobuffer, 1, dest->buffer_width, dest->pub.output_file); } /* * Startup: write the file header. */ METHODDEF(void) start_output_tga(j_decompress_ptr cinfo, djpeg_dest_ptr dinfo) { tga_dest_ptr dest = (tga_dest_ptr)dinfo; int num_colors, i; FILE *outfile; if (cinfo->out_color_space == JCS_GRAYSCALE) { /* Targa doesn't have a mapped grayscale format, so we will */ /* demap quantized gray output. Never emit a colormap. */ write_header(cinfo, dinfo, 0); if (cinfo->quantize_colors) dest->pub.put_pixel_rows = put_demapped_gray; else dest->pub.put_pixel_rows = put_gray_rows; } else if (cinfo->out_color_space == JCS_RGB) { if (cinfo->quantize_colors) { /* We only support 8-bit colormap indexes, so only 256 colors */ num_colors = cinfo->actual_number_of_colors; if (num_colors > 256) ERREXIT1(cinfo, JERR_TOO_MANY_COLORS, num_colors); write_header(cinfo, dinfo, num_colors); /* Write the colormap. Note Targa uses BGR byte order */ outfile = dest->pub.output_file; for (i = 0; i < num_colors; i++) { putc(cinfo->colormap[2][i], outfile); putc(cinfo->colormap[1][i], outfile); putc(cinfo->colormap[0][i], outfile); } dest->pub.put_pixel_rows = put_gray_rows; } else { write_header(cinfo, dinfo, 0); dest->pub.put_pixel_rows = put_pixel_rows; } } else { ERREXIT(cinfo, JERR_TGA_COLORSPACE); } } /* * Finish up at the end of the file. */ METHODDEF(void) finish_output_tga(j_decompress_ptr cinfo, djpeg_dest_ptr dinfo) { /* Make sure we wrote the output file OK */ fflush(dinfo->output_file); if (ferror(dinfo->output_file)) ERREXIT(cinfo, JERR_FILE_WRITE); } /* * Re-calculate buffer dimensions based on output dimensions. */ METHODDEF(void) calc_buffer_dimensions_tga(j_decompress_ptr cinfo, djpeg_dest_ptr dinfo) { tga_dest_ptr dest = (tga_dest_ptr)dinfo; dest->buffer_width = cinfo->output_width * cinfo->output_components; } /* * The module selection routine for Targa format output. */ GLOBAL(djpeg_dest_ptr) jinit_write_targa(j_decompress_ptr cinfo) { tga_dest_ptr dest; /* Create module interface object, fill in method pointers */ dest = (tga_dest_ptr) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, sizeof(tga_dest_struct)); dest->pub.start_output = start_output_tga; dest->pub.finish_output = finish_output_tga; dest->pub.calc_buffer_dimensions = calc_buffer_dimensions_tga; /* Calculate output image dimensions so we can allocate space */ jpeg_calc_output_dimensions(cinfo); /* Create I/O buffer. */ dest->pub.calc_buffer_dimensions(cinfo, (djpeg_dest_ptr)dest); dest->iobuffer = (char *) (*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE, (size_t)(dest->buffer_width * sizeof(char))); /* Create decompressor output buffer. */ dest->pub.buffer = (*cinfo->mem->alloc_sarray) ((j_common_ptr)cinfo, JPOOL_IMAGE, dest->buffer_width, (JDIMENSION)1); dest->pub.buffer_height = 1; return (djpeg_dest_ptr)dest; } #endif /* TARGA_SUPPORTED */